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PREFACE TO THE SECOND EDITION

It is with great pleasure that we are presenting to the community the
second edition of this extraordinary handbook. It has been over 15 years
since the publication of the �rst edition and there have been great changes
in the landscape of philosophical logic since then.

The �rst edition has proved invaluable to generations of students and
researchers in formal philosophy and language, as well as to consumers of
logic in many applied areas. The main logic article in the Encyclopaedia
Britannica 1999 has described the �rst edition as `the best starting point
for exploring any of the topics in logic'. We are con�dent that the second
edition will prove to be just as good.!

The �rst edition was the second handbook published for the logic commu-
nity. It followed the North Holland one volume Handbook of Mathematical
Logic, published in 1977, edited by the late Jon Barwise. The four volume
Handbook of Philosophical Logic, published 1983{1989 came at a fortunate
temporal junction at the evolution of logic. This was the time when logic
was gaining ground in computer science and arti�cial intelligence circles.

These areas were under increasing commercial pressure to provide devices
which help and/or replace the human in his daily activity. This pressure
required the use of logic in the modelling of human activity and organisa-
tion on the one hand and to provide the theoretical basis for the computer
program constructs on the other. The result was that the Handbook of
Philosophical Logic, which covered most of the areas needed from logic for
these active communities, became their bible.

The increased demand for philosophical logic from computer science and
arti�cial intelligence and computational linguistics accelerated the devel-
opment of the subject directly and indirectly. It directly pushed research
forward, stimulated by the needs of applications. New logic areas became
established and old areas were enriched and expanded. At the same time, it
socially provided employment for generations of logicians residing in com-
puter science, linguistics and electrical engineering departments which of
course helped keep the logic community thriving. In addition to that, it so
happens (perhaps not by accident) that many of the Handbook contributors
became active in these application areas and took their place as time passed
on, among the most famous leading �gures of applied philosophical logic of
our times. Today we have a handbook with a most extraordinary collection
of famous people as authors!

The table below will give our readers an idea of the landscape of logic
and its relation to computer science and formal language and arti�cial in-
telligence. It shows that the �rst edition is very close to the mark of what
was needed. Two topics were not included in the �rst edition, even though
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they were extensively discussed by all authors in a 3-day Handbook meeting.
These are:

� a chapter on non-monotonic logic

� a chapter on combinatory logic and �-calculus

We felt at the time (1979) that non-monotonic logic was not ready for
a chapter yet and that combinatory logic and �-calculus was too far re-
moved.1 Non-monotonic logic is now a very major area of philosophi-
cal logic, alongside default logics, labelled deductive systems, �bring log-
ics, multi-dimensional, multimodal and substructural logics. Intensive re-
examinations of fragments of classical logic have produced fresh insights,
including at time decision procedures and equivalence with non-classical
systems.

Perhaps the most impressive achievement of philosophical logic as arising
in the past decade has been the e�ective negotiation of research partnerships
with fallacy theory, informal logic and argumentation theory, attested to by
the Amsterdam Conference in Logic and Argumentation in 1995, and the
two Bonn Conferences in Practical Reasoning in 1996 and 1997.

These subjects are becoming more and more useful in agent theory and
intelligent and reactive databases.

Finally, �fteen years after the start of the Handbook project, I would
like to take this opportunity to put forward my current views about logic
in computer science, computational linguistics and arti�cial intelligence. In
the early 1980s the perception of the role of logic in computer science was
that of a speci�cation and reasoning tool and that of a basis for possibly
neat computer languages. The computer scientist was manipulating data
structures and the use of logic was one of his options.

My own view at the time was that there was an opportunity for logic to
play a key role in computer science and to exchange bene�ts with this rich
and important application area and thus enhance its own evolution. The
relationship between logic and computer science was perceived as very much
like the relationship of applied mathematics to physics and engineering. Ap-
plied mathematics evolves through its use as an essential tool, and so we
hoped for logic. Today my view has changed. As computer science and
arti�cial intelligence deal more and more with distributed and interactive
systems, processes, concurrency, agents, causes, transitions, communication
and control (to name a few), the researcher in this area is having more and
more in common with the traditional philosopher who has been analysing

1I am really sorry, in hindsight, about the omission of the non-monotonic logic chapter.
I wonder how the subject would have developed, if the AI research community had had
a theoretical model, in the form of a chapter, to look at. Perhaps the area would have
developed in a more streamlined way!
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such questions for centuries (unrestricted by the capabilities of any hard-
ware).

The principles governing the interaction of several processes, for example,
are abstract an similar to principles governing the cooperation of two large
organisation. A detailed rule based e�ective but rigid bureaucracy is very
much similar to a complex computer program handling and manipulating
data. My guess is that the principles underlying one are very much the
same as those underlying the other.

I believe the day is not far away in the future when the computer scientist
will wake up one morning with the realisation that he is actually a kind of
formal philosopher!

The projected number of volumes for this Handbook is about 18. The
subject has evolved and its areas have become interrelated to such an extent
that it no longer makes sense to dedicate volumes to topics. However, the
volumes do follow some natural groupings of chapters.

I would like to thank our authors are readers for their contributions and
their commitment in making this Handbook a success. Thanks also to
our publication administrator Mrs J. Spurr for her usual dedication and
excellence and to Kluwer Academic Publishers for their continuing support
for the Handbook.

Dov Gabbay
King's College London
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WILFRID HODGES

ELEMENTARY PREDICATE LOGIC

INTRODUCTION

Elementary (�rst-order) predicate logic is a child of many parents. At least
three di�erent groups of thinkers played their part in its conception, with
three quite distinct motives. Maybe the mixture gave it hybrid strength.
But whatever the reason, �rst-order logic is both the simplest, the most
powerful and the most applicable branch of modern logic.

The �rst group who can claim paternity are the Traditional Logicians. For
these scholars the central aim of logic was to schematise valid arguments.
For present purposes an argument consists of a string of sentences called
premises, followed by the word `Therefore', followed by a single sentence
called the conclusion. An argument is called valid when its premises entail
its conclusion, in other words, if the premises can't be true without the
conclusion also being true.

A typical valid argument schema might be:

1. a is more X than b. b is more X than c.
Therefore a is more X than c.

This becomes a valid argument whenever we substitute names for a; b; c
respectively and an adjective for X ; as for example

2. Oslo is more clean than Ydsteb�havn. Ydsteb�havn is more clean
than Trondheim. Therefore Oslo is more clean than Trondheim.

Arguments like (2) which result from such substitutions are called instances
of the schema (1). Traditional logicians collected valid argument schemas
such as (1). This activity used to be known as formal logic on the grounds
that it was concerned with the forms of arguments. (Today we more often
speak of formal versus informal logic, just as formal versus informal seman-
tics, meaning mathematically precise versus mathematically imprecise.)

The ancients and the medievals had concerned themselves with small
numbers of argument schemas gathered more or less ad hoc. Aristotle's
syllogisms give twenty-four schemas, of which Aristotle himself mentions
nineteen. The watershed between classical and modern logic lies in 1847,
when George Boole (1815{1864) published a calculus which yielded in�nitely
many valid argument schemas of arbitrarily high complexity (Boole [1847;
1854]). Today we know Boole's calculus as propositional logic. Other early
researchers who belong among the Traditionals are Augustus De Morgan
(1806{1871) and C. S. Peirce (1839{1914). Their writings are lively with
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examples of people i being enemies to people j at time k, and other people
overdrawing their bank accounts.

The second group of originators were the Proof Theorists. Among these
should be included Gottlob Frege (1848{1925), Giuseppe Peano (1858{
1932), David Hilbert (1862{1943), Bertrand Russell (1872{1970), Jacques
Herbrand (1908{1931) and Gerhard Gentzen (1909{1945). Their aim was
to systematise mathematical reasoning so that all assumptions were made
explicit and all steps rigorous. For Frege this was a matter of integrity and
mental hygiene. For Hilbert the aim was to make mathematical reasoning
itself the object of mathematical study, partly in order to justify in�nitary
mathematics but partly also as a new method of mathematical research.
This group devised both the notation and the proof theory of �rst-order
logic. The earliest calculus adequate for �rst-order logic was the system
which Frege published in his Begri�schrift [1879]. This was also the �rst
work to discuss quanti�ers.

With a slight anachronism I call the third group the Model Theorists.
Their aim was to study mathematical structures from the point of view of
the laws which these structures obey. The group includes Ernst Schr�oder
(1841{1902), Leopold L�owenheim (1878{1957), Thoralf Skolem (1887{1963),
C. H. Langford (1895?{1964), Kurt G�odel (1906{1978) and Alfred Tarski
(1901{1983). The notion of a �rst-order property is already clear in
Schr�oder's work [1895], though the earliest use I could �nd of the term
`�rst-order' in the modern sense is in Langford [1927]. (Langford quotes the
slightly di�erent use of the term Principia Mathematica, Whitehead and
Russell [1910].)

Our present understanding of what �rst-order logic is about was painstak-
ingly built up by this group of workers during the years 1915 to 1935. The
progress was conceptual as much as technical; a historian of logic feels his
�ngers tingle as he watches it. Increasing precision was an important part
of it. But it is worth reecting that by 1935 a logician could safely say `The
formal sentence S is true in the structure A' and mean it. Frege [1906] had
found such language morally reprehensible (cf. Section 12 below). Skolem
[1922] talked of formal axioms `holding in a domain', but he felt obliged
to add that this was `only a manner of speaking, which can lead only to
purely formal propositions|perhaps made up of very beautiful words. . . '.
(On taking truth literally, see above all Kurt G�odel's letters to Hao Wang,
[1974, p. 8 �] and the analysis by Solomon Feferman [1984]. R. L. Vaught's
historical paper [1974] is also valuable.)

Other groups with other aims have arisen more recently and found �rst-
order logic helpful for their purposes. Let me mention two.

One group (if we can lump together such a vast army of workers) are
the computer scientists. There is wide agreement that trainee computer
scientists need to study logic, and a range of textbooks have come onto
the market aimed speci�cally at them. (To mention just two, Reeves and
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Clarke [1990] is an introductory text and Gallier [1986] is more advanced.)
But this is mainly for training; �rst-order logic itself is not the logic of
choice for many computer science applications. The arti�cial intelligence
community consume logics on a grand scale, but they tend to prefer logics
which are modal or intensional. By and large, speci�cation languages need
to be able to de�ne functions, and this forces them to incorporate some
higher-order features. Very often the structures which concern a computer
scientist are �nite, and (as Yuri Gurevich [1984] argued) �rst-order logic
seems not to be the best logic for classifying �nite structures.

Computer science has raised several questions which cast fresh light on
�rst-order logic. For example, how does one search for a proof? The ques-
tion itself is not new|philosophers from Aristotle to Leibniz considered it.
What is completely new is the mathematical analysis of systematic searches
through all possible proofs in a formal calculus. Searches of this kind arise
naturally in automated theorem proving. Robert Kowalski [1979] proposed
that one could read some �rst-order sentences as instructions to search for a
proof; the standard interpretation of the programming language PROLOG
rests on his idea. Another question is the cost of a formal proof, in terms of
the number of assumptions which are needed and the number of times each
assumption is used; this line of enquiry has led to fragments of �rst-order
logic in which one has some control over the cost (see for example Jean-Yves
Girard [1987; 1995] on linear logic and Do�sen and Schroeder-Heister [1993]

on substructural logics in general).
Last but in no way least come the linguists. After Chomsky had revo-

lutionised the study of syntax of natural languages in the 1950s and 60s,
many linguists shifted the spotlight from grammar to meaning. It was nat-
ural to presume that the meaning of a sentence in a natural language is
built up from the meanings of its component words in a way which re-
ects the grammatical structure of the sentence. The problem then is to
describe the structure of meanings. One can see the beginnings of this en-
terprise in Bertrand Russell's theory of propositions and the `logical forms'
beloved of English philosophers earlier in this century; but the aims of these
early investigations were not often clearly articulated. Round about 1970
the generative semanticists (we may cite G. Lako� and J. D. McCawley)
began to use apparatus from �rst-order logic in their analyses of natural lan-
guage sentences; some of their analyses looked very much like the formulas
which an up-to-date Traditional Logician might write down in the course of
knocking arguments into tractable forms. Then Richard Montague [1974]

opened a fruitful line of research by using tools from logic to give extremely
precise analyses of both the grammar and semantics of some fragments of
English. (Cf. Dowty et al. [1981] for an introduction to Montague gram-
mar.) I should add that many researchers on natural language semantics,
from Montague onwards, have found that they needed logical devices which
go far beyond �rst-order logic. More recently some of the apparatus of �rst-
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order proof theory has turned up unexpectedly in the analysis of grammar;
see for example Morrill [1994] and Kempson [1995].

Logicians like to debate over co�ee when `real' �rst-order logic �rst
appeared in print. The earliest textbook account was in the Grundz�uge
der theoretischen Logik of Hilbert and Ackermann [1928], based on Hilbert's
lectures of 1917{1922. Skolem's paper [1920] is undeniably about �rst-order
logic. But Whitehead and Russell's Principia Mathematica [1910] belongs
to an earlier era. It contains notation, axioms and theorems which we now
regard as part of �rst-order logic, and for this reason it was quoted as a
reference by Post, Langford, Herbrand and G�odel up to 1931, when it �g-
ured in the title of G�odel's famous paper on incompleteness, [G�odel, 1931b].
But the �rst-order part of Prinicipia is not distinguished from the rest;
and more important, its authors had no notion of a precise syntax or the
interpretation of formulas in structures.

I: Propositional Logic

1 TRUTH FUNCTORS

In propositional logic we use six arti�cial symbols :;^;_;!;$;?, called
truth-functors. These symbols all have agreed meanings. They can be used
in English, or they can have an arti�cial language built around them.

Let me explain one of these symbols, ^, quite carefully. The remainder
will then be easy.

We use ^ between sentences �;  to form a new sentence

(1) (� ^  ):

The brackets are an essential part of the notation. Here and below, `sen-
tence' means `indicative sentence'. If � and  are sentences, then in any
situation,

(2) (� ^  ) is true i� � is true and  is true; otherwise it is false.

(`I�' means `if and only if'.) This de�nes the meaning of ^.
Several points about this de�nition call for comment. First, we had to

mention the situation, because a sentence can be true in one situation and
not true in another. For example, the sentence may contain demonstrative
pronouns or other indexicals that need to be given a reference, or words that
need to be disambiguated. (The situation is not necessarily the `context of
utterance'|a sentence can be true in situations where it is never uttered.)

In propositional logic we assume that in every situation, each sentence
under discussion is determinately either true or false and not both. This
assumption is completely innocent. We can make it correct by adopting
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either or both of the following conventions. First, we can agree that although
we intend to use the word `true' as it is normally used, we shall take `false'
to mean simply `not true'. And second, we can take it as understood that
the term `situation' covers only situations in which the relevant sentences
are either true or false and not both. (We may also wish to put an embargo
on nonsensical sentences, but this is not necessary.) There are of course
several ways of being not true, but propositional logic doesn't distinguish
between them.

Logicians always make one further assumption here: they assume that
truth and falsehood|T and F for short|are objects. Then they say that
the truth-value of a sentence is T if the sentence is true, and F otherwise.
(Frege [1912]: `. . . in logic we have only two objects, in the �rst place: the
two truth-values.') But I think in fact even the most scrupulous sceptic
could follow the literature if he de�ned the truth-value of all true sentences
to be his left big toe and that of false sentences to be his right. Many
writers take truth to be the number 1, which they identify with the set
f0g, and falsehood to be the number 0, which is identi�ed with the empty
set. Nobody is obliged to follow these choices, but technically they are very
convenient. For example (2) says that if the truth-value of � is x and the
truth-value of  is y, then that of (� ^  ) is xy.

With this notation, the de�nition (2) of the meaning of ^ can be written
in a self-explanatory chart:

(3) �  (� ^  )

T T T
T F F
F T F
F F F

The diagram (3) is called the truth-table of ^. Truth-tables were �rst intro-
duced by C. S. Peirce in [1902].

Does (3) really de�ne the meaning of ^? Couldn't there be two symbols
^1 and ^2 with di�erent meanings, which both satis�ed (3)?

The answer is that there certainly can be. For example, if ^1 is any
symbol whose meaning agrees with (3), then we can introduce another such
symbol ^2 by declaring that (� ^2  ) shall mean the same as the sentence

(4) (� ^1  ) and the number � is irrational.

(Wittgenstein [1910] said that ^1 and ^2 then mean the same! Tractatus
4.46�, 4.465 in particular.) But this is the wrong way to read (3). Diagram
(3) should be read as stating what one has to check in order to determine
that (� ^  ) is true. One can verify that (� ^  ) is true without knowing
that � is irrational, but not without verifying that � and  are true. (See
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Michael Dummett [1958/59; 1975] on the relation between meaning and
truth-conditions.)

Some logicians have claimed that the sentence (� ^  ) means the same
as the sentence

(5) � and  :

Is this correct? Obviously the meanings are very close. But there are some
apparent di�erences. For example, consider Mr Slippery who said in a court
of law:

(6) I heard a shot and I saw the girl fall.

when the facts are that he saw the girl fall and then heard the shot. Under
these circumstances

(7) (I heard a shot ^ I saw the girl fall)

was true, but Mr Slippery could still get himself locked up for perjury. One
might maintain that (6) does mean the same as (7) and was equally true,
but that the conventions of normal discourse would have led Mr Slippery
to choose a di�erent sentence from (6) if he had not wanted to mislead the
jury. (See Grice [1975] for these conventions; Cohen [1971] discusses the
connection with truth-tables.)

Assuming, then, that the truth-table (3) does adequately de�ne the mean-
ing of ^, we can de�ne the meanings of the remaining truth-functors in the
same way. For convenience I repeat the table for ^.

(8) �  :� � ^  � _  �!  �$  ?

T T F T T T T F
T F F T F F
F T T F T T F
F F F F T T

:� is read `Not �' and called the negation of �. (� ^  ) is read `� and  '
and called the conjunction of � and  , with conjuncts � and  . (� _  ) is
read `� or  ' and called the disjunction of � and  , with disjuncts � and
 . (� !  ) is read `If � then  ' or `� arrow  '; it is called a material
implication with antecedent � and consequent  . (� $  ) is read `� if and
only if  ', and is called the biconditional of � and  . The symbol ? is read
as `absurdity', and it forms a sentence by itself; this sentence is false in all
situations.

There are some alternative notations in common use; for example

(9) �� or � � for :�:
(�& ) for (� ^  ):
(� �  ) for (�!  ):
(� �  ) for (�$  ):
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Also the truth-functor symbols are often used for other purposes. For exam-
ple the intutionists use the symbols :;^;_;!;$ but not with the meanings
given in (8); cf. van Dalen's chapter on Intutionistic Logic in a later volume.
Some writers use the symbol ! for other kinds of implication, or even as a
shorthand for the English words `If . . . then'.

A remark on metavariables. The symbols `�' and ` ' are not themselves
sentences and are not the names of particular sentences. They are used
as above, for making statements about any and all sentences. Symbols
used in this way are called (sentence) metavariables. They are part of
the metalanguage, i.e. the language we use for talking about formulas. I
follow the convention that when we talk about a formula, symbols which
are not metavariables are used as names for themselves. So for example
the expression in line (1) means the same as: the formula consisting of `('
followed by � followed by `^' followed by  followed by `)'. I use quotation
marks only when clarity or style demand them. These conventions, which
are normal in mathematical writing, cut down the clutter but put some
obligation on reader and writer to watch for ambiguities and be sensible
about them. Sometimes a more rigorous convention is needed. Quine's
corners pq supply one; see Quine [1940, Section 6]. There are some more
remarks about notation in Section 4 below.

2 PROPOSITIONAL ARGUMENTS

Besides the truth-functors, propositional logic uses a second kind of symbol,
namely the sentence letters

(10) p; q; r; : : : ; p1; p2; : : : ; :

These letters have no �xed meaning. They serve to mark spaces where
English sentences can be written. We can combine them with the truth-
functors to produce expressions called formulas, which become sentences
when the sentence letters are replaced by sentences.

For example, from the sentence letters p; q and r we can build up the
formula

(11) (p ^ ((p _ q)! r))

as follows:
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(12) p q

(p _ q)

r

p ((p _ q)! r)

(p ^ ((p _ q)! r))

We call (12) the formation tree of the formula (11). Sentence letters them-
selves are reckoned to be atomic formulas, while formulas which use truth-
functors are called compound formulas. In a compound formula there is
always a truth-functor which was added last in the formation tree; this oc-
currence of the truth-functor is called the main connective of the formula.
In (11) the main connective is the occurrence of ^. The main connective of
? is reckoned to be ? itself.

Suppose � is a formula. An instance of � is a sentence which is got
from � by replacing each sentence letter in � by an English sentence, in
such a way that no sentence letter gets replaced by di�erent sentences at
di�erent occurrences. (Henceforth, the symbols `�', ` ' are metavariables for
formulas as well as sentences. The letters `p', `q' etc. are not metavariables;
they are the actual symbols of propositional logic.)

Now if we know the truth-values of the inserted sentences in an instance
of �, then we can work out by table (8) what the truth-value of the whole
instance must be. Taking (11) as an example, consider the following table:

(13) p q r (p ^ ((p _ q)! r))
(i) T T T T T T T T T T

(ii) T T F TF T T T F F
(iii) T F T T T T TF T T
(iv) T F F TF T TF F F
(v) F T T FF FT T T T

(vi) F T F FF FT T F F
(vii) F F T FF FFF T T

(viii) F F F FF FFF T F
1 7 2 5 3 6 4

The rows (i){(viii) on the left list all the possible ways in which the sen-
tences put for p and q can have truth-values. The columns on the right are
computed in the order shown by the numbers at the bottom. (The numbers
at left and bottom are not normally written|I put them in to help the ex-
planation.) Columns 1, 2, 3, 4 just repeat the columns on the left. Column
5 shows the truth-value of (p _ q), and is calculated from columns 2 and 3
by means of table (8). Then column 6 is worked out from columns 5 and
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4, using the truth-table for (� !  ) in (8). Finally, column 7 comes from
columns 1 and 6 by the table for (� ^  ). Column 7 is written under the
main connective of (11) and shows the truth-value of the whole instance of
(11) under each of the eight possibilities listed on the left.

Table (13) is called the truth-table of the formula (11). As we constructed
it, we were working out truth-tables for all the formulas shown in the for-
mation tree (12), starting at the top and working downwards.

We are now equipped to use propositional logic to prove the validity of
an argument. Consider:

(14) That was a hornet, and soda only makes hornet and wasp stings
worse. So you don't want to use soda.

This contains an argument along the following lines:

(15) (You were stung by a hornet ^ ((you were stung by a hornet _ you
were stung by a wasp) ! soda will make the sting worse)).
Therefore soda will make the sting worse.

We replace the component sentences by letters according to the scheme:

(16) p : You were stung by a hornet.
q : You were stung by a wasp.
r : Soda will make the sting worse.

The result is:

(17) (p ^ ((p _ q)! r)): Therefore r:

Then we calculate truth-tables for both premise and conclusion of (17) at
the same time. Only the main columns are shown below.

(18) p q r (p ^ ((p _ q)! r)): Therefore r
(i) T T T T T
(ii) T T F F F
(iii) T F T T T
(iv) T F F F F
(v) F T T F T
(vi) F T F F F
(vii) F F T F T
(viii) F F F F F

Table (18) shows that if the premise of (15) is true then so is the conclusion.
For if the premise is true, then the column under the premise shows that
we are in row (i) or row (iii). In both of these rows, the last column in (18)
shows that the conclusion is true. There is no row which has a T below
(p ^ ((p _ q)! r)) and an F below r. Hence, (15) is valid.
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In the language of the traditional logician, these calculations showed that
(17) is a valid argument schema. Every instance of (17) is a valid argument.

Note how the proof of the validity of an argument falls into two parts.
The �rst is to translate the argument into the symbols of propositional logic.
This involves no calculation, though a gauche translation can frustrate the
second part. I say no more about this �rst part|the elementary text-
books give hundreds of examples [Kalish and Montague, 1964; Mates, 1965;
Thomason, 1970; Hodges, 1977]. The second part of the proof is pure me-
chanical calculation using the truth-table de�nitions of the truth-functors.
What remains to discuss below is the theory behind this mechanical part.

First and foremost, why does it work?

3 WHY TRUTH-TABLES WORK

If � is any formula of propositional logic, then any assignment of truth-
values to the sentence letters which occur in � can be extended, by means of
the truth-table de�nitions of the truth-functors, to give a truth-value to �;
this truth-value assigned to � is uniquely determined and it can be computed
mechanically.

This is the central thesis of propositional logic. In Section 2 I showed
how the assignment to � is calculated, with an example. But we shouldn't
rest satis�ed until we see, �rst, that this procedure must always work, and
second, that the outcome is uniquely determined by the truth-table de�ni-
tions. Now there are in�nitely many formulas � to be considered. Hence
we have no hope of setting out all the possibilities on a page; we need to
invoke some abstract principle to see why the thesis is true.

There is no doubt what principle has to be invoked. It is the principle of
induction on the natural numbers, otherwise called mathematical induction.
This principle says the following:

(19) Suppose that the number 0 has a certain property, and suppose
also that whenever all numbers from 0 to n inclusive have the
property, n + 1 must also have the property. Then all natural
numbers from 0 upwards have the property.

This principle can be put in several forms; the form above is called course-
of-values induction. (See Appendix B below.) For the moment we shall only
be using one or two highly speci�c instances of it, where the property in
question is a mechanically checkable property of arrays of symbols. Several
writers have maintained that one knows the truth of any such instance of
(19) by a kind of inspection (Anschauung). (See for example [Herbrand,
1930, Introduction] and [Hilbert, 1923]. There is a discussion of the point
in [Steiner, 1975].)

Essentially what we have to do is to tie a number n to each formula �,
calling n the complexity of �, so that we can then use induction to prove:
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(20) For each number n from 0 upwards, the thesis stated at the begin-
ning of this section is true for all formulas of complexity n.

There are several ways of carrying this through, but they all rest on the
same idea, namely this: all formulas are generated from atomic formulas in
a �nite number of steps and in a unique way; therefore each formula can
be assigned a complexity which is greater than the complexities assigned to
any formulas that went into the making of it. It was Emil Post, one of the
founders of formal language theory, who �rst showed the importance of this
idea in his paper on truth-tables:

(21) \It is desirable in what follows to have before us the vision of
the totality of these [formulas] streaming out from the unmodi�ed
[sentence letters] through forms of ever-growing complexity . . . "
(Post [1921], p. 266 of van Heijenoort [1967]).

For an exact de�nition of formulas and their complexities, we need to
say precisely what sentence letters we are using. But it would be a pity to
lumber ourselves with a set of letters that was inconvenient for some future
purposes. So we adopt a compromise. Let X be any set of symbols to be
used as sentence letters. Then we shall de�ne the propositional language of
similarity type X , in symbols L(X). The set X is not �xed in advance; but
as soon as it is �xed, the de�nition of L(X) becomes completely precise.
This is the usual modern practice.

The notions `formula of similarity type X ' (we say `formula' for short)
and `complexity of a formula' are de�ned as follows.

1. Every symbol in X is a formula of complexity 0. ? is a formula of
complexity 1.

2. If � and  are formulas of complexities m and n respectively, then :�
is a formula with complexity m+ 1, and (�^ ); (�_ ), (�!  ) and
(�$  ) are formulas of complexity m+ n+ 1.

3. Nothing is a formula except as required by (1) and (2).

For de�niteness the language of similarity type X;L(X), can be de�ned as
the ordered pair hX;F i where F is the set of all formulas of similarity type
X . A propositional language is a language L(X) where X is a set of symbols;
the formulas of L(X) are the formulas of similarity type X .

Frege would have asked: How do we know there is a unique notion `for-
mula of similarity type X ' with the properties (1){(3)? A full answer to this
question lies in the theory of inductive de�nitions; cf. Appendix B below.
But for the present it will be enough to note that by (1) and (2), every
formation tree has a formula as its bottom line, and conversely by (3) every
formula is the bottom line of a formation tree. We can prove rigorously by
induction that if a formula has complexity n by de�nition (1){(3) then it
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can't also have complexity m where m 6= n. This is actually not trivial.
It depends on showing that the main connective in a compound formula is
uniquely determined, and|ignoring : and ? for simplicity|we can do that
by showing that the main connective is the only truth-functor occurrence
which has one more `(' than `)' to the left of it. (Cf. [Kleene, 1952, pp.
21�].) The proof shows at the same time that every formula has a unique
formation tree.

The atomic formulas are those which have complexity 0. A formula is
called basic if it is either atomic or the negation of an atomic formula.

Now that the language has been adequately formulated, we come back
to truth-tables. Let L be a propositional language with similarity type X .
Then we de�ne an L-structure to be a function from the set X to the set
fT; Fg of truth-values. (Set-theoretic notions such as `function' are de�ned
in Appendix C below, or in any elementary textbook of set theory.) So
an L-structure assigns a truth-value to each sentence letter of L. For each
sentence letter � we write IA(�) for the truth-value assigned to � by the
L-structure A. In a truth-table where the sentence letters of L are listed
at top left, each row on the left will describe an L-structure, and every
L-structure corresponds to just one row of the table.

Now we shall de�ne when a formula � of L is true in an L-structure A,
or in symbols

(22) A � �:

The de�nition of (22) will be by induction of the complexity of �. This
means that when � has low complexity, the truth or falsity of (22) will
be determined outright; when � has higher complexity the truth of (22)
depends in an unambiguous way on the truth of statements `A �  ' for
formulas  of lower complexity than �. (Cf. Appendix B.) We can prove
by induction on the natural numbers that this de�nition determines exactly
when (22) is true, and in fact that the truth or otherwise of (22) can be
calculated mechanically once we know what A and � are. The de�nition is
as follows:

(23) For each sentence letter �;A � � i� IA(�) = T:
It is false that A � ?:
For all formulas �;  of L,
A � :� if it is not true that A � �;
A � (� ^  ) i� A � ' and A �  ;
A � (' _  ) i� either A � � or A �  or both;
A � (�!  ) i� not: A � � but not A �  .
A � (�$  ) i� either A � � and A �  , or neither A � � nor A �  .

De�nition (23) is known as the truth de�nition for the language L. The
statement `A � �' is sometimes read as: A is a model of �.
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The reader can verify that (23) matches the truth-table de�nitions of
the truth-functors, in the following sense. The left-hand part of any row
of a truth-table for � describes an L-structure A (for some appropriate
language L). The truth-table gives � the value T in this row if and only if
A � �; moreover the steps by which we calculated this value for � in the
table exactly match the steps by which the de�nition (23) above determines
whether A � �. In this sense, and only in this sense, (23) is a correct
`de�nition of truth for L'. Nobody claims that (23) explains what is meant
by the word `true'.

I should mention a useful piece of notation. We can write k�kA for the
truth-value assigned to the formula � by the structure A. Then k�kA can
be de�ned in terms of � by:

(24) k�kA =

�
T if A � �;
F otherwise:

Some writers prefer to de�ne k kA directly, and then � in terms of k kA. If
we write 1 for T and 0 for F , an inductive de�nition of k kA will contain
clauses such as

(25) k:�kA = 1� k�kA; k(� _  )kA = max fk�kA; k kAg:

4 SOME POINTS OF NOTATION

In Section 3 we put the truth-table method onto a more solid footing. We
extended it a little too, because we made no assumption that the language L
had just �nitely many sentence letters. The original purpose of the exercise
was to prove valid argument schemas, and we can now rede�ne these in
sharper terms too.

Let L be a �xed propositional language and �1; : : : ; �n;  any formulas
of L. Then the statement

(26) �1; : : : ; �n �  

will mean: for every L-structure A, if A � �1 and . . .A � �n, then A �  .
We allow n to be zero; thus

(27) �  

means that for every L-structure A;A �  . To say that (26) is false, we
write

(28) �1; : : : ; �n 6�  :
Note that (26){(28) are statements about formulas of L and not themselves
formulas of L.
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It is a misfortune that custom requires us to use the same symbol � both
in `A � �' (cf. (22) above) and in `�1; : : : ; �n �  '. It means quite di�erent
things in the two cases. But one can always see which is meant, because in
the �rst case a structure A is mentioned immediately to the left of �, and
in the second usage � follows either a formula or an empty space. � can
be pronounced `double turnstile' or `semantic turnstile', to contrast it with
the symbol ` (`turnstile' or `syntactic turnstile') which occurs in the study
of formal proof calculi (cf. Section 7 below).

The point of de�nition (26) should be clear. It says in e�ect that if
we make any consistent replacement of the sentence letters by sentences of
English, then in any situation where the sentences resulting from �1; : : : ; �n
are true, the sentence got from  will be true too. In short (26) says that

(29) �1; : : : ; �n: Therefore  :

is a valid argument schema. What's more, it says it without mentioning
either English sentences or possible situations. Statements of form (26) or
(27) are called sequents (= `things that follow' in Latin). When (26) is true,
�1; : : : ; �n are said to logically imply  . When (27) is true,  is said to be a
tautology; for a language with a �nite number of sentence letters, this means
that the truth-table of  has T all the way down its main column. Some
elementary texts give long lists of tautologies (e.g. Kalish and Montague
[1964, pp. 80{ 84]).

While we are introducing notation, let me mention some useful abbrevi-
ations. Too many brackets can make a formula hard to read. So we shall
agree that when naming formulas we can leave out some of the brackets.
First, we can leave o� the brackets at the two ends of an occurrence of (�^ )
or (� _  ) provided that the only truth-functor which occurs immediately
outside them is either ! or $. For example we can abbreviate

(30) (p$ (q ^ r)) and ((p ^ q)! (r _ s))
to

(31) (p$ q ^ r) and (p ^ q ! r _ s)
respectively; but we can not abbreviate

(32) (:(p ^ q)! r) and ((p$ q) ^ r)
to

(33) (:p ^ q ! r) and (p$ q ^ r)
respectively.

Second, we can leave o� brackets at the ends of a formula. So the formulas
in (31) can also be written
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(34) p$ q ^ r and p ^ q ! r _ s

respectively.

Third, if we have a string of ^'s with their associated brackets bunched
up towards the left end of the formula, as in

(35) (((q ^ r) ^ s) ^ t);

then we can omit all but the outermost brackets:

(36) (q ^ r ^ s ^ t):

Formula (36) is called a conjunction whose conjuncts are q; r; s; t. Likewise
we can abbreviate (((q _ r) _ s) _ t) to the disjunction (q _ r _ s _ t) with
disjuncts q; r; s; t. (But the corresponding move with! or$ is not allowed.)

All these conventions can be applied together, as when we write

(37) p ^ q ^ r ! s

for

(38) (((p ^ q) ^ r)! s):

When only these abbreviations are used, it is always possible to work out
exactly which brackets have been omitted, so that there is no loss of infor-
mation.

Jan  Lukasiewicz pointed out that if we always write connectives to the
left of the formulas they connect, then there is no need for any brackets at
all. In this style the second formula of (30) could be written

(39) ! ^pq _ rs; or in  Lukasiewicz's notation CKpqArs:

Prior [1962] uses  Lukasiewicz's notation throughout.

Note that the abbreviations described above only a�ect the way we talk
about formulas of L|the formulas themselves remain untouched. The def-
inition of `formula of similarity type X ' given in Section 3 stands without
alteration. Some early writers were rather carefree about this point, making
it diÆcult to follow what language L they really had in mind. If anybody
wants to do calculations in L but still take advantage of our abbreviations,
there is an easy way he can do it. He simply writes down abbreviated names
of formulas instead of the formulas themselves. In other words, he works
always in the metalanguage and never in the object language. This cheap
trick will allow him the best of both worlds: a rigorously de�ned language
and a relaxed and generous notation. Practising logicians do it all the time.
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5 PROPERTIES OF �

This section gathers up some properties of � which can be proved directly
from the de�nitions in Sections 3 and 4 above. They are rather a ragbag,
but there are some common themes.

THEOREM 1. If A and B are structures which assign the same truth-values
as each other to each sentence letter occurring in �, then A � � i� B � �.

This is obvious from (23), but it can also be proved rigorously by induc-
tion on the complexity of �. The most important consequence of Theorem
1 is:

THEOREM 2. The truth of the sequent `�1; : : : ; �n �  ' doesn't depend on
what language L the formulas �1; : : : ; �n and  come from.

In other words, although the de�nition of `�1; : : : ; �n �  ' was stated in
terms of one language L containing �1; : : : ; �n and  , any two such languages
would give the same outcome. At �rst sight Theorem 2 seems a reasonable
property to expect of any decent notion of entailment. But in other logics,
notions of entailment which violate Theorem 2 have sometimes been pro-
posed. (There is an example in Dunn and Belnap [1968], and another in
Section 15 below.)

The next result turns all problems about sequents into problems about
tautologies.

THEOREM 3 (Deduction Theorem). �1; : : : ; �n �  if and only if �1; : : : ;
�n�1 � �n !  .

Theorem 3 moves formulas to the right of �. It has a twin that does the
opposite:

THEOREM 4. �1; : : : ; �n �  i� �1; : : : ; �n;: � ?.
We say that the formula � is logically equivalent to the formula  if � �  

and  � �. This is equivalent to saying that � �$  . Intuitively speaking,
logically equivalent formulas are formulas which behave in exactly the same
way inside arguments. Theorem 5 makes this more precise:

THEOREM 5. If �1; : : : ; �n �  , and we take an occurrence of a formula
� inside one of �1; : : : ; �n;  and replace it by an occurrence of a formula
which is logically equivalent to �, then the resulting sequent holds too.

For example, :p _ q is logically equivalent to p! q (as truth-tables will
con�rm). Also we can easily check that

(40) r ! (:p _ q); p � r ! q:

Then Theorem 5 tells us that the following sequent holds too:

(41) r ! (p! q); p � r ! q:
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An interesting consequence of Theorem 5 is:

THEOREM 6. Every formula � is logically equivalent to a formula which
uses the same sentence letters as �, but no truth-functors except ?;: and
!.

Proof. Truth-tables will quickly show that

(42)  ^ � is logically equivalent to :( ! :�);
 _ � is logically equivalent to (: ! �); and
 $ � is logically equivalent to :(( ! �)! :(�!  )):

But then by Theorem 5, if we replace a part of � of form ( ^�) by :( !
:�), the resulting formula will be logically equivalent to �. By replacements
of this kind we can eliminate in turn all the occurrences of ^;_ and $ in
�, and be left with a formula which is logically equivalent to �. This proves
Theorem 6. Noting that

(43) :� is logically equivalent to �! ?;
we can eliminate : too, at the cost of introducing some more occurrences
of ?. �

An argument just like the proof of Theorem 6 shows that every formula
is logically equivalent to one whose only truth-functors are : and ^, and to
one whose only truth-functors are : and _. But there are some limits to
this style of reduction: there is no way of eliminating : and ? in favour of
^;_;! and $.

The next result is a useful theorem of Post [1921]. In Section 2 we found
a truth-table for each formula. Now we go the opposite way and �nd a
formula for each truth-table.

THEOREM 7. Let P be a truth-table which writes either T or F against
each possible assignment of truth-values to the sentence letters p1; : : : ; pn.
Then P is the truth-table of some formula using no sentence letters apart
from p1; : : : ; pn.

Proof. I sketch the proof. Consider the jth row of the table, and write �j
for the formula p01^� � �^p0n, where each p0i is pi if the jth row makes pi true,
and :pi if the jth row makes pi false. Then �j is a formula which is true at
just the jth row of the table. Suppose the rows to which the table gives the
value T are rows j1; : : : ; jk. Then take � to be �j1 _ � � � _ �jk . If the table
has F all the way down, take � to be ?. Then P is the truth-table of �. �

Theorem 7 says in e�ect that we could never get a more expressive logic
by inventing new truth-functors. Anything we could say with the new truth-
functors could also be said using the ones we already have.
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A formula is said to be in disjunctive normal form if it is either ? or
a disjunction of conjunctions of basic formulas (basic = atomic or negated
atomic). The proof of Theorem 7 actually shows that P is the truth-table
of some formula in disjunctive normal form. Suppose now that we take any
formula  , work out its truth-table P , and �nd a formula � in disjunctive
normal form with truth-table P . Then  and � are logically equivalent,
because they have the same truth-table. So we have proved:

THEOREM 8. Every formula is logically equivalent to a formula in dis-
junctive normal form.

One can also show that every formula is logically equivalent to one in
conjunctive normal form, i.e. either :? or a conjunction of disjunctions of
basic formulas.

LEMMA 9 (Craig's Interpolation Lemma for propositional logic). If  � �
then there exists a formula � such that  � � and � � �, and every sentence
letter which occurs in � occurs both in  and in �.

Proof. Let L be the language whose sentence letters are those which occur
both in  and in �, and L+ the language whose sentence letters are those
in either  or �. Write out a truth-table for the letters in L, putting T
against a row if and only if the assignment of truth-values in that row
can be expanded to form a model of  . By Theorem 7, this table is the
truth-table of some formula � of L. Now we show � � �. Let A be any
L+-structure such that A � �. Let C be the L-structure which agrees with
A on all letters in L. Then C � � by Theorem 1. By the de�nition of �
it follows that some model B of  agrees with C on all letters in L. Now
we can put together an L+-structure D which agrees with B on all letters
occurring in  , and with A on all letters occurring in �. (The overlap was
L, but A and B both agree with C and hence with each other on all letters
in L.) Then D �  and hence D � � since  � �; but then A � � too. The
proof that  � � is easier and I leave it to the reader. �

Craig's Lemma is the most recent fundamental discovery in propositional
logic. It is easy to state and to prove, but it was �rst published over a
hundred years after propositional logic was invented [Craig, 1957a]. The
corresponding lemma holds for full �rst-order logic too; this is much harder
to prove. (See Lemma 32 below.)

Most of the topics in this section are taken further in Hilbert and Bernays
[1934], Kleene [1952], Rasiowa and Sikorski [1963] and Bell and Machover
[1977].



ELEMENTARY PREDICATE LOGIC 19

6 DECISION METHODS

Propositional logic owes much of its avour to the fact that all interesting
problems within it can be solved by scribbled calculations on the back of an
envelope. If somebody presents you with formulas �1; : : : ; �n and  , and
asks you whether �1; : : : ; �n logically imply  , then you can calculate the
answer as follows. First choose a language L whose sentence letters are just
those which occur in the formulas �1; : : : ; �n;  . If L has k sentence letters
then there are just 2k di�erent L-structures. For each such structure you
can check in a �nite time whether it is a model of �1 and . . . and �n but not
of  . If you �nd an L-structure with these properties, then �1; : : : ; �n don't
logically imply  ; if you don't, they do. This is the truth-table decision
method for logical implication.

The question I want to consider next is whether this decision method
can be improved. This is not a precise question. Some alternatives to
truth-tables are very fast for very short sequents but get quite unwieldy for
long ones. Other alternatives grow steadily more eÆcient as we progress to
longer sequents. Some methods are easy to run on a computer but messy
on paper; some are as handy one way as another.

Let me sketch one alternative to truth-tables. An example will show the
gist. We want to determine whether the following sequent holds.

(44) p ^ q;:(p ^ r) � :r:
By Theorem 4, (44) holds if and only if

(45) p ^ q;:(p ^ r);::r � ?:
Now (45) says that any structure in which all the formulas on the left of
� are true is a model of ?. But ? has no models; so (45) says there is no
model of p ^ q;:(p ^ r) and ::r simultaneously. We try to refute this by
constructing such a model. At each stage we ask: what must be true in the
model for it to be a model of these sentences? For example, ::r is true in a
structure A if and only if r is true in A; so we can simplify (45) by replacing
::r by r:

(46) p ^ q; :(p ^ r); ::r � ?
j

p ^ q; :(p ^ r); r � ?:
Likewise a structure is a model of p ^ q if and only if it is both a model of
p and a model of q; so we can replace p ^ q by the two formulas p and q:

(47) p ^ q;:(p ^ r);::r � ?
p ^ q;:(p ^ r); r � ?

p; q;:(p ^ r); r � ?
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Now there are just two ways of making :(p^r) true, namely to make :p true
and to make :r true. (Of course these ways are not mutually exclusive.)
So in our attempt to refute (45) we have two possible options to try, and
the diagram accordingly branches in two directions:

(48) p ^ q;:(p ^ r);::r � ?

p ^ q;:(p ^ r); r � ?

p; q;:(p ^ r); r � ?

p; q;:p; r � ? p; q;:r; r � ?
But there is no chance of having both p and :p true in the same structure.
So the left-hand fork is a non-starter, and we block it o� with a line. Likewise
the right-hand fork expects a structure in which :r and r are both true, so
it must be blocked o�:

(49) p ^ q;:(p ^ r);::r j= ?

p ^ q;:(p ^ r); r j= ?

p; q;:(p ^ r); r j= ?

p; q;:p; r j= ? p; q;:r; r j= ?
Since every possibility has been explored and closed o�, we conclude that
there is no possible way of refuting (45), and so (45) is correct.

What happens if we apply the same technique to an incorrect sequent?
Here is an example:

(50) p _ :(q ! r); q ! r � q:

I leave it to the reader to check the reasons for the steps below|he should
note that q ! r is true if and only if either :q is true or r is true:

(51) p _ :(q ! r); q ! r;:q j= ?

p; q ! r;:q j= ?

p;:q;:q j= ?
�� ZZ

p; r;:q j= ?

��
� HHH

:(q ! r); q ! r;:q j= ?

Here two branches remain open, and since all the formulas in them have
been decomposed into atomic formulas or negations of atomic formulas,
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there is nothing more we can do with them. In every such case it turns
out that each open branch describes a structure which refutes the original
sequent. For example, take the leftmost branch in (51). The formulas on
the left side of the bottom sequent describe a structure A in which p is
true and q is false. The sequent says nothing about r, so we can make an
arbitrary choice: let r be false in A. Then A is a structure in which the two
formulas on the left in (50) are true but that on the right is false.

This method always leads in a �nite time either to a tree diagram with
all branches closed o�, in which case the beginning sequent was correct; or
to a diagram in which at least one branch remains resolutely open, in which
case this branch describes a structure which shows that the sequent was
incorrect.

Diagrams constructed along the lines of (49) or (51) above are known
as semantic tableaux. They were �rst invented, upside-down and with a
di�erent explanation, by Gentzen [1934]. The explanation given above is
from Beth [1955] and Hintikka [1955].

We can cut out a lot of unnecessary writing by omitting the `� ?' at the
end of each sequent. Also in all sequents below the top one, we need only
write the new formulas. In this abbreviated style the diagrams are called
truth-trees. Written as truth-trees, (49) looks like this:

(52) p _ q;:(p ^ r);::r

r

p

q

:p
�� TT

:r

and (51) becomes

(53) p _ :(q ! r); q ! r;:q

p

:q
�� AA

r

�� SS
:(q ! r)
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The rules for breaking down formulas in truth-trees can be worked out
straight from the truth-table de�nitions of the truth-functors, but for the
reader's convenience I list them:

(54) ::�

�

� ^  

�

 

:(� ^  )

:�
�� TT

: 

� _  

�
�� AA

 

:(� _  )

:�
: 

�!  

:�
�� AA

 

:(�!  )

�

: 

�$  

�

 

�� TT
:�
: 

:(�$  )

�

: 

�� TT
:�
 

One is allowed to close o� a branch as soon as either ? or any outright
contradiction �;:� appears among the formulas in a branch. (Truth-trees
are used in Je�rey [1967]; see [Smullyan, 1968; Bell and Machover, 1977] for
mathematical analyses.) Truth-trees are one dialect of semantic tableaux.
Here is another. We shall understand the generalised sequent

(55) �1; : : : ; �n �  1; : : : ;  m

to mean that there is no structure which makes �1; : : : ; �n all true and
 1; : : : ;  m all false. A structure in which �1; : : : ; �n are true and  1; : : : ;  m
are false is called a counterexample to (55). When there is only one formula
to the right of �, (55) means just the same as our previous sequents (26).

Generalised sequents have the following two symmetrical properties:

(56) �1; : : : ; �n;:� �  1; : : : ;  m i� �1; : : : ; �n �  1; : : : ;  m; �:

(57) �1; : : : ; �n;�  1; : : : ;  m;:� i� �1; : : : ; �n; � �  1; : : : ;  m:

Suppose now that we construct semantic tableaux as �rst described above,
but using generalised sequents instead of sequents. The e�ect of (56) and
(57) is that we handle : by itself; as (54) shows, our previous tableaux could
only tackle : two at a time or in combination with another truth-functor.

Using generalised sequents, a proof of (44) goes as follows:



ELEMENTARY PREDICATE LOGIC 23

(58)

(i)

(ii)

(iii)

(iv)

p ^ q;:(p ^ r) j= :r

p ^ q;:(p ^ r); r j=

p ^ q; r j= p ^ r

p; q; r j= p ^ r

p; q; r j= p
,, ll

p; q; r j= r

Steps (i) and (ii) are by (57) and (56) respectively. Step (iv) is justi�ed as
follows. We are trying to build a structure in which p; q and r are true but
p ^ r is false, as a counterexample to the sequent `p; q; r � p ^ r'. By the
truth-table for ^, it is necessary and suÆcient to build either a structure in
which p; q; r are true and p is false, or a structure in which p; q; r are true
and r is false. We can close o� under the bottom left sequent `p; q; r � p'
because a formula p occurs both on the right and on the left of �, so that in a
counterexample it would have to be both false and true, which is impossible.
Likewise at bottom right.

Proofs with generalised sequents are virtually identical with the cut-free
sequent proofs of [Gentzen, 1934], except that he wrote them upside down.
Beth [1955; 1962] used them as a method for testing sequents. He wrote
them in a form where, after the �rst sequent, one only needs to mention the
new formulas.

Quine [1950] presents another quite fast decision method which he calls
fell swoop (to be contrasted with the `full sweep' of truth-tables).

I turn to the question how fast a decision method of testing sequents can
be in the long run, i.e. as the number and lengths of the formulas increase.
At the time of writing, this is one of the major unsolved problems of com-
putation theory. A function p(n) of the number n is said to be polynomial if
it is calculated from n and some other �xed numbers by adding, subtracting
and multiplying. (So for example n2 + 3 and 2n3 � n are polynomial func-
tions of n but 3n; n! and 1=(n2 + 1) are not.) It is not known whether there
exist a decision method M for sequents of propositional logic, and a poly-
nomial function p(n), such that for every sequent S, if n is the number of
symbols in S then M can determine in less than p(n) steps whether or not S
is correct. If the answer is Yes there are such M and p(n), then we say that
the decision problem for propositional logic is solvable in polynomial time.
Cook [1971] showed that a large number of other interesting computational
problems will be solvable in polynomial time if this one is. (See [Garey and
Johnson, 1979].) I have the impression that everybody working in the �eld
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expects the answer to be No. This would mean in e�ect that for longer
sequents the problem is too hard to be solved eÆciently by a deterministic
computer.

7 FORMAL PROOF CALCULI

During the �rst third of this century, a good deal of e�ort was put into
constructing various formal proof calculi for logic. The purpose of this
work was to reduce reasoning|or at least a sizeable part of mathematical
reasoning|to precise mechanical rules. I should explain at once what a
formal proof calculus (or formal system) is.

A formal proof calculus, call it �, is a device for proving sequents in
a language L. First, � gives us a set of rules for writing down arrays of
symbols on a page. An array which is written down according to the rules
is called a formal proof in �. The rules must be such that one can check
by inspection and calculation whether or not an array is a formal proof.
Second, the calculus contains a rule to tell us how we can mechanically
work out what are the premises and the conclusion of each formal proof.

We write

(59) �1; : : : ; �n `�  or more briey �1; : : : ; �n `  
to mean that there is a formal proof in the calculus � whose premises all
appear in the list �1; : : : ; �n, and whose conclusion is  . Some other ways
of expressing (59) are:

`�1; : : : ; �n `  ' is a derivable sequent of �;
 is deducible from �1; : : : ; �n in �;
�1; : : : ; �n yield  in �.

We call  a derivable formula of � if there is a formal proof in � with
conclusion  and no premises. The symbol ` is called turnstile or syntactic
turnstile.

We say that the calculus � is:

sound if �1; : : : ; �n `� implies �1; : : : ; �n �  
strongly complete if �1; : : : ; �n �  implies �1; : : : ; �n `�  ,
weakly complete if �  implies `�  ,

where �1; : : : ; �n;  range over the formulas of L. These de�nitions also
make sense when � is de�ned in terms of other logics, not necessarily �rst-
order. In this chapter `complete' will always mean `strongly complete'.

The formal proofs in a calculus � are in general meaningless arrays of
symbols. They need not be genuine proofs, that is, demonstrations that
something is the case. But if we know that � is sound, then the fact that a
certain sequent is derivable in � will prove that the corresponding sequent
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with � is correct. In some proof calculi the formal proofs are made to look
as much as possible like intuitively correct reasoning, so that soundness can
be checked easily.

We already have the makings of one formal proof calculus in Section 6
above: the cut-free sequent proofs using generalised sequents. As proofs,
these are usually written the other way up, with ` in place of �, and with
horizontal lines separating the sequents. Also there is no need to put in
the lines which mark the branches that are closed, because every branch is
closed.

For example, here is a cut-free sequent proof of the sequent `p^q;:(p^r) `
:r'; compare it with (58):

(60)

p ` p
p; q; r ` p

r ` r
p; q; r ` r

p; q; r ` p ^ r
p ^ q; r ` p ^ r

p ^ q;:(p ^ r); r `
p ^ q;:(p ^ r) ` :r

To justify this proof we would show, working upwards from the bottom, that
if there is a counterexample to the bottom sequent then at least one of the
top sequents has a counterexample, which is impossible. Or equivalently, we
could start by noting that the top sequents are correct, and then work down
the tree, showing that each of the sequents must also be correct. By this
kind of argument we can show that the cut-free sequent calculus is sound.

To prove that the calculus is complete, we borrow another argument
from Section 6 above. Assuming that a sequent S is not derivable, we have
to prove that it is not correct. To do this, we try to construct a cut-free
sequent proof, working upwards from S. After a �nite number of steps we
shall have broken down the formulas as much as possible, but the resulting
diagram can't be a proof of S because we assumed there isn't one. So at
least one branch must still be `open' in the sense that it hasn't revealed any
immediate contradiction. Let B be such a branch. Let BL be the set of all
formulas which occur to the left of ` in some generalised sequent in B, and
let BR be the same with `right' for `left'. We can de�ne a structure A by

(61) IA(�) =

�
T if � is a sentence letter which is in BL,
F if � is a sentence letter not in BL.

Then we can prove, by induction on the complexity of the formula  , that
if  is any formula in BL then A �  , and if  is any formula in BR then
A � : . It follows that A is a counterexample to the bottom sequent S, so
that S is not correct.
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The cut-free sequent calculus itself consists of a set of mechanical rules
for constructing proofs, and it could be operated by somebody who had not
the least idea what ` or any of the other symbols mean. These rules are
listed in Sundholm (in Volume 2 of this Handbook.).

Gentzen [1934] had another formal proof calculus, known simply as the
sequent calculus. This was the same as the cut-free sequent calculus, except
that it allowed a further rule called the cut rule (because it cuts out a
formula):

(62)
: : : ` � � �; � : : : ; � ` � � �

: : : ` � � �
This rule often permits much shorter proofs. Gentzen justi�ed it by showing
that any proof which uses the cut rule can be converted into a cut-free proof
of the same sequent. This cut elimination theorem is easily the best math-
ematical theorem about proofs. Gentzen himself adapted it to give a proof
of the consistency of �rst-order Peano arithmetic. By analysing Gentzen's
argument we can get sharp information about the degree to which di�erent
parts of mathematics rely on in�nite sets. (Cf. [Sch�utte, 1977]. Gentzen's
results on cut-elimination were closely related to deep but undigested work
on quanti�er logic which Jacques Herbrand had done before his death in
a mountaineering accident at the age of 23; see [Herbrand, 1930] and the
Introduction to [Herbrand, 1971].) Further details of Gentzen's sequent cal-
culi, including the intuitionistic versions, are given in [Kleene, 1952, Ch XV]

and Sundholm (in Volume 2 of this Handbook).

In the same paper, Gentzen [1934] described yet a third formal proof
calculus. This is known as the natural deduction calculus because proofs
in this calculus start with their premises and �nish at their conclusions
(unlike sequent calculi and semantic tableaux), and all the steps between are
intuitively natural (unlike the Hilbert-style calculi to be described below).

A proof in the natural deduction calculus is a tree of formulas, with a
single formula at the bottom. The formulas at the tops of the branches
are called the assumptions of the proof. Some of the assumptions may
be discharged or cancelled by having square brackets [ ] written around
them. The premises of the proof are its uncancelled assumptions, and the
conclusion of the proof is the formula at the bottom.

Sundholm (in his chapter in Volume D2 of this Handbook) gives the full
rules of the natural deduction calculus. Here are a few illustrations. Leaving
aside : and ? for the moment, there are two rules for each truth-functor,
namely an introduction rule and an elimination rule. The introduction rule
for ^ is:

(63)
�  

� ^  
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i.e. from � and  deduce � ^  . The elimination rule for ^ comes in a
left-hand version and a right-hand version:

(64)
� ^  
�

� ^  
:

 

The introduction rule for ! says that if we have a proof of  from certain
assumptions, then we can deduce �!  from those assumptions less �:

(65) [�]
...
 

�!  

The elimination rule for ! is the modus ponens of the medievals:

(66)
� �!  

:
 

For example, to prove

(67) q; p ^ q ! r � p! r

in the natural deduction calculus we write:

(68)

[p] q

p ^ q p ^ q ! r
r

p! r

Note that the assumption p is discharged at the last step when p ! r is
introduced.

The calculus reads :� as a shorthand for � ! ?. So for example, from
� and :� we deduce ? by (66). There is an elimination rule for ?. It
says: given a proof of ? from certain assumptions, derive � from the same
assumptions less �! ?:

(69) [�! ?]
...
?

�

This is a form of reductio ad absurdum.
The rule about cancelling assumptions in (65) should be understood as

follows. When we make the deduction, we are allowed to cancel � wherever
it occurs as an assumption. But we are not obliged to; we can cancel some
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occurrences of � and not others, or we can leave it completely uncancelled.
The formula � may not occur as an assumption anyway, in which case we
can forget about cancelling it. The same applies to �! ? in (69). So (69)
implies the following weaker rule in which we make no cancellations:

(70)
?
�

(`Anything follows from a contradiction'.) Intuitionist logic accepts (70)
but rejects the stronger rule (69) (cf. van Dalen (Volume 7).

Belnap [1962] and Prawitz [1965] have explained the idea behind the
natural deduction calculus in an interesting way. For each truth-functor
the rules are of two sorts, the introduction rules and the elimination rules.
In every case the elimination rules only allow us to infer from a formula
what we had to know in order to introduce the formula. For example we can
remove � !  only by rule (66), i.e. by using it to deduce  from �; but
�!  can only be introduced either as an explicit assumption or (by (65))
when we already know that  can be deduced from �. (Rule (69) is in a
special category. It expresses (1) that everything is deducible from ?, and
(2) that for each formula �, at least one of � and �! ? is true.)

Popper [1946/47, particularly p. 284] rashly claimed that he could de�ne
truth-functors just by writing down natural deduction rules for them. Prior
[1960] gave a neat example to show that this led to absurdities. He invented
the new truth-functor tonk, which is de�ned by the rules

(71)
�

� tonk  

� tonk  

 

and then proceeded to infer everything from anything. Belnap [1962] points
out that Prior's example works because its introduction and elimination
rules fail to match up in the way described above. Popper should at least
have imposed a requirement that the rules must match up. (Cf. [Prawitz,
1979], [Tennant, 1978, p. 74�], and Sundholm (Volume 2).)

Natural deduction calculi, all of them variants of Gentzen's, are given by
Anderson and Johnstone [1962], Fitch [1952], Kalish and Montague [1964],
Lemmon [1965], Prawitz [1965], Quine [1950], Suppes [1957], Tennant [1978],
Thomason [1970] and van Dalen [1980]. Fitch (followed e.g. by Thomason)
makes the trees branch to the right. Some versions (e.g. Quine's) disguise
the pattern by writing the formulas in a vertical column. So they have to
supply some other way of marking which formulas depend on which assump-
tions; di�erent versions do this in di�erent ways.

Just as a semantic tableau with its branches closed is at heart the same
thing as a cut-free sequent proof written upside down, Prawitz [1965] has
shown that after removing redundant steps, a natural deduction proof is
really the same thing as a cut-free sequent proof written sideways. (See
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also Zucker [1974].) The relationship becomes clearer if we adapt the nat-
ural deduction calculus so as to allow a proof to have several alternative
conclusions, just as it has several premises. Details of such calculi have
been worked out by Kneale [1956] and more fully by Shoesmith and Smiley
[1978].

A proof of p _ :p in Gentzen's natural deduction calculus takes several
lines. This is a pity, because formulas of the form �_:� are useful halfway
steps in proofs of other formulas. So some versions of natural deduction
allow us to quote a few tautologies such as � _ :� whenever we need them
in a proof. These tautologies are then called axioms. Technically they are
formulas deduced from no assumptions, so we draw a line across the top of
them, as at top right in (72) below.

If we wanted to undermine the whole idea of natural deduction proofs, we
could introduce axioms which replace all the natural deduction rules except
modus ponens. For example we can put (63) out of a job by using the axiom
� ! ( ! � ^  ). Whenever Gentzen used (63) in a proof, we can replace
it by

(72)  

� �! ( ! � ^  )

 ! � ^  
� ^  

using (66) twice. Likewise (64) become redundant if we use the axioms
� ^  ! � and � ^  !  . Rule (65) is a little harder to dislodge, but it
can be done, using the axioms � ! ( ! �) and (� !  ) ! ((� ! ( !
�))! (�! �)).

At the end of these manipulations we have what is called a Hilbert-style
proof calculus. A Hilbert-style calculus consists of a set of formulas called
axioms, together with one or two derivation rules for getting new formulas
out of given ones. To prove �1; : : : ; �n �  in such a calculus, we apply
the derivation rules as many times as we like to �1; : : : ; �n and the axioms,
until they give us  .

One Hilbert-style system is described in Appendix A below. Mates [1965]

works out another such system in detail. Hilbert-style calculi for proposi-
tional logic were given by Frege [1879; 1893], Peirce [1885], Hilbert [1923]

and  Lukasiewicz (see [ Lukasiewicz and Tarski, 1930]). (Cf. Sundholm (Vol-
ume 2 of this Handbook).)

The typical Hilbert-style calculus is ineÆcient and barbarously unintu-
itive. But they do have two merits. The �rst is that their mechanics are
usually very simple to describe|many Hilbert-style calculi for propositional
logic have only one derivation rule, namely modus ponens. This makes them
suitable for encoding into arithmetic (Section 24 below). The second merit is
that we can strengthen or weaken them quite straightforwardly by tamper-
ing with the axioms, and this commends them to researchers in non-classical
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logics.
Soundness for these calculi is usually easy to prove: one shows (a) that

the axioms are true in every structure and (b) that the derivation rules
never lead from truth to falsehood. One way of proving completeness is to
show that every natural deduction proof can be converted into a Hilbert-
style proof of the same sequent, as hinted above. (Kleene [1952] Section
77 shows how to convert sequent proofs into Hilbert-style proofs and vice
versa; see Sundholm (Volume 2 of this Handbook).)

Alternatively we can prove their completeness directly, using maximal
consistent sets. Since this is a very un-proof-theoretic approach, and this
section is already too long, let me promise to come back to the matter at the
end of Section 16 below. (Kalm�ar [1934/5] and Kleene independently found
a neat proof of the weak completeness of Hilbert-style calculi, by converting
a truth-table into a formal proof; cf. Kleene [1952, p. 132�] or Mendelson
[1987, p. 34].)

II: Predicate Logic

8 BETWEEN PROPOSITIONAL LOGIC AND PREDICATE LOGIC

If we asked a Proof Theorist to explain what it means to say

(73) �1; : : : ; �n logically imply  ;

where �1; : : : ; �n and  are formulas from propositional logic, he would
explain that it means this: there is a proof of  from �1; : : : ; �n in one
of the standard proof calculi. A Model Theorist would prefer to use the
de�nition we gave in Section 4 above, and say that (73) means: whenever
�1; : : : ; �n are true in a structure, then  is true in that structure too. The
Traditional Logician for his part would explain it thus: every argument of
the form `�1; : : : ; �n. Therefore  ' is valid. There need be no �ght between
these three honest scholars, because it is elementary to show that (73) is
true under any one of these de�nitions if and only if it is true under any
other.

In the next few sections we shall turn from propositional logic to predicate
logic, and the correct interpretation of (73) will become more contentious.

When �1; : : : ; �n and  are sentences from predicate logic, the Proof
Theorist has a de�nition of (73) which is a straightforward extension of his
de�nition for propositional logic, so he at any rate is happy.

But the Traditional Logician will be in diÆculties, because the quanti-
�er expressions of predicate logic have a quite di�erent grammar from all
locutions of normal English; so he is hard put to say what would count as
an argument of the form `�1; : : : ; �n. Therefore  '. He will be tempted to
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say that really we should look at sentences whose deep structures (which he
may call logical forms) are like the formulas �1; : : : ; �n;  . This may satisfy
him, but it will hardly impress people who know that in the present state
of the linguistic art one can �nd experts to mount convincing arguments for
any one of seventeen deep structures for a single sentence. A more objective
but admittedly vague option would be for him to say that (73) means that
any argument which can be paraphrased into this form, using the apparatus
of �rst-order logic, is valid.

But the man in the worst trouble is the Model Theorist. On the surface
all is well|he has a good notion of `structure', which he took over from the
algebraists, and he can say just what it means for a formula of predicate
logic to be `true in' a structure. So he can say, just as he did for propositional
logic, that (73) means that whenever �1; : : : ; �n are true in a structure, then
 is true in that structure too. His problems start as soon as he asks himself
what a structure really is, and how he knows that they exist.

Structures, as they are presented in any textbook of model theory, are
abstract set-theoretic objects. There are uncountably many of them and
most of them are in�nite. They can't be inspected on a page (like proofs
in a formal calculus) or heard at Hyde Park Corner (like valid arguments).
True, several writers have claimed that the only structures which exist are
those which somebody constructs. (E.g. Putnam [1980, p. 482]: `Models
are . . . constructions within our theory itself, and they have names from
birth.') Unfortunately this claim is in at contradiction to about half the
major theorems of model theory (such as the Upward L�owenheim{Skolem
Theorem, Theorem 14 in Section 17 below).

Anybody who wants to share in present-day model theory has to accept
that structures are as disparate and intangible as sets are. One must handle
them by set-theoretic principles and not by explicit calculation. Many model
theorists have wider horizons even than this. They regard the whole universe
V of sets as a structure, and they claim that �rst-order formulas in the
language of set theory are true or false in this structure by just the same
criteria as in smaller structures. The axioms of Zermelo{Fraenkel set theory,
they claim, are simply true in V .

It is actually a theorem of set theory that a notion of truth adequate
to cope with the whole universe of sets cannot be formalised within set
theory. (We prove this in Section 24 below.) So a model theorist with this
wider horizon is strictly not entitled to use formal set-theoretic principles
either, and he is forced back onto his intuitive understanding of words like
`true', `and', `there is' and so forth. In mathematical practice this causes
no problems whatever. The problems arise when one tries to justify what
the mathematicians are doing.

In any event it is a major exercise to show that these three interpreta-
tions of (73) in predicate logic|or four if we allow the Model Theorist his
wider and narrower options|agree with each other. But logicians pride
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themselves that it can be done. Section 17 will show how.

9 QUANTIFIERS

First-order predicate logic comes from propositional logic by adding the
words `every' and `some'.

Let me open with some remarks about the meaning of the word `every'.
There is no space here to rebut rival views (Cf. Leblanc (see Volume 2 of this
Handbook); on substitutional quanti�cation see [Dunn and Belnap, 1968;
Kripke, 1976; Stevenson, 1973].) But anybody who puts a signi�cantly
di�erent interpretation on `every' from the one presented below will have to
see �rst-order logic in a di�erent light too.

A person who understands the words `every', `Pole', the sentence

(74) Richard is a Catholic.

and the principles of English sentence construction must also understand
the sentence

(75) Every Pole is a Catholic.

How?
First, (74) is true if and only if Richard satis�es a certain condition,

namely that

(76) He is a Catholic.

I underline the pronoun that stands for whatever does or does not satisfy
the condition. Note that the condition expressed by (76) is one which people
either satisfy or do not satisfy, regardless of how or whether we can identify
them. Understanding the condition is a necessary part of understanding
(74). In Michael Dummett's words [1973, p. 517]:

. . . given that we understand a sentence from which a predicate
has been formed by omission of certain occurrences of a name,
we are capable of recognising what concept that predicate stands
for in the sense of knowing what it is for it to be true of or false
of any arbitrary object, whether or not the language contains a
name for that object.

Second, the truth or otherwise of (75) in a situation depends on what class
of Poles is on the agenda. Maybe only Poles at this end of town are under
discussion, maybe Poles anywhere in the world; maybe only Poles alive now,
maybe Poles for the last hundred years or so. Possibly the speaker was a
little vague about which Poles he meant to include. I count the speci�cation
of the relevant class of Poles as part of the situation in which (75) has a



ELEMENTARY PREDICATE LOGIC 33

truth-value. This class of Poles is called the domain of quanti�cation for the
phrase `every Pole' in (75). The word `Pole' is called the restriction term,
because it restricts us to Poles; any further restrictions on the domain of
quanti�cation are called contextual restrictions.

So when (75) is used in a context, the word `Pole' contributes a domain
of quanti�cation and the words `is a Catholic' contribute a condition. The
contribution of the word `Every' is as follows: In any situation, (75) is true
i� every individual in the domain of quanti�cation satis�es the condition.

This analysis applies equally well to other simple sentences containing
`Every', such as:

(77) She ate every ower in the garden.

For (77), the situation must determine what the garden is, and hence what
is the class of owers that were in the garden. This class is the domain of
quanti�cation; `ower in the garden' is the restriction term. The sentence

(78) She ate it.

expresses a condition which things do or do not satisfy, once the situation
has determined who `she' refers to. So in this example the condition varies
with the situation. The passage from condition and domain of quanti�cation
to truth-value is exactly as before.

The analysis of

(79) Some Pole is a Catholic

(80) She ate some ower (that was) in the garden,

is the same as that of (75), (77) respectively, except at the last step. For
(79) or (80) to be true we require that at least one individual in the domain
of quanti�cation satis�es the condition.

In the light of these analyses we can introduce some notation from �rst-
order logic. In place of the underlined pronoun in (76) and (78) we shall use
an individual variable, i.e. (usually) a lower-case letter from near the end of
the alphabet, possibly with a subscript. Thus:

(81) x is a Catholic.

Generalising (81), we use the phrase 1-place predicate to mean a string
consisting of words and one individual variable (which may be repeated),
such that if the variable is understood as a pronoun referring to a certain
person or object, then the string becomes a sentence which expresses that
the person or object referred to satis�es a certain condition. The condition
may depend on the situation into which the sentence is put.

For an example in which a variable occurs twice,
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(82) x handed the melon to Schmidt, who gave it back to x:

is a 1-place predicate. It expresses the condition which Braun satis�es if
and only Braun handed the melon to Schmidt and Schmidt gave it back to
Braun.

To return to (75), `Every Pole is a Catholic': we have now analysed this
sentence into (a) a quanti�er word `Every', (b) the restriction term `Pole',
and (c) the predicate `x is a Catholic'.

The separating out of the predicate (by [Frege, 1879], see also [Mitchell,
1883] and [Peirce, 1883]) was vital for the development of modern logic.
Predicates have the grammatical form of sentences, so that they can be
combined by truth-functors. For example

(83) (x is a Catholic ^ x is a philatelist)

is a predicate which is got by conjoining two other predicates with ^. It
expresses the condition which a person satis�es if he is both a Catholic and a
philatelist. Incidentally I have seen it suggested that the symbol ^ must
have a di�erent meaning in (83) from its meaning in propositional logic,
because in (83) it stands between predicates which do not have truth-values.
The answer is that predicates do gain truth-values when their variables are
either replaced by or interpreted as names. The truth-value gained in this
way by the compound predicate (83) is related to the truth-values gained
by its two conjuncts in exactly the way the truth-table for ^ describes.

(A historical aside: Peirce [1885] points out that by separating o� the
predicate we can combine quanti�ers with propositional logic; he says that
all attempts to do this were `more or less complete failures until Mr Mitchell
showed how it was to be e�ected'. Mitchell published in a volume of essays
by students of Peirce at Johns Hopkins [Members of the Johns Hopkins
University, Boston, 1883]. Christine Ladd's paper in the same volume men-
tions both Frege's Begri�schrift [1879] and Schr�oder's review of it. It is
abundantly clear that nobody in Peirce's group had read either. The same
happens today.)

The account of quanti�ers given above agrees with what Frege said in his
Funktion und Begri� [1891] and Grundgesetze [1893], except in one point.
Frege required that all conditions on possible values of the variable should
be stated in the predicate. In other words, he allowed only one domain of
quanti�cation, namely absolutely everything. For example, if someone were
to say, �a propos of Poles in New York, `Every Pole is a Catholic', Frege
would take this to mean that absolutely everything satis�es the condition

(84) If x is a Pole in New York City then x is a Catholic.

If a person were to say

(85) Somebody has stolen my lipstick.
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Frege's �rst move would be to interpret this as saying that at least one thing
satis�es the condition expressed by

(86) x is a person and x has stolen my lipstick.

Thus Frege removed the restriction term, barred all contextual restrictions,
and hence trivialised the domain of quanti�cation.

There are two obvious advantages in getting rid of the restriction term:
we have fewer separate expressions to deal with, and everything is thrown
into the predicate where it can be analysed by way of truth-functors.

However, it is often useful to keep the restriction terms, if only because
it makes formulas easier to read. (There are solid technical dividends too,
see Feferman [1968b; 1974].) Most logicians who do this follow the advice of
Peirce [1885] and use a special style of variable to indicate the restriction.
For example set theorists use Greek variables when the restriction is to
ordinals. Variables that indicate a special restriction are said to be sorted
or sortal. Two variables marked with the same restriction are said to be of
the same sort. Logics which use this device are said to be many-sorted.

One can also go halfway with Frege and convert the restriction term into
another predicate. In this style, `Every Pole is a Catholic' comes out as
a combination of three units: the quanti�er word `Every', the predicate
`x is a Catholic', and a second relativisation predicate `x is a pole'. The
mathematical literature is full of ad hoc examples of this approach. See for
example the bounded quanti�ers of number theory in Section 24 below.

When people started to look seriously at other quanti�er words besides
`every' and `some', it became clear that Frege's method of eliminating the
restriction term won't always work. For example, the sentence `Most judges
are freemasons' can't be understood as saying that most things satisfy a
certain condition. (For a proof of this, and many other examples, see the
study of natural language quanti�ers by Barwise and Cooper [1981].) For
this reason Neil Tennant [Altham and Tennant, 1975] and Barwise [1974]

proposed very general formalisms which keep the relativisation predicate
separate from the main predicate.

Frege also avoided contextual restrictions. Given his aim, which was to
make everything in mathematical reasoning fully explicit, this might seem
natural. But it was a bad move. Contextual restrictions do occur, and a
logician ought to be prepared to operate with them. In any case various
writers have raised philosophical objections to Frege's habit of talking about
just everything. Do we really have an unde�nable notion of `object', as
Frege supposed? Is it determinate what objects there are? Don't we falsify
the meanings of English sentences if we suppose that they state something
about everything there is, when on the face of it they are only about Poles?

For a historical study of quanti�ers in �rst-order logic, consult
Goldfarb [1979].
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10 SATISFACTION

As a convenient and well-known shorthand, we shall say that a person or
thing satis�es the 1-place predicate � if he or it satis�es the condition which
the predicate � expresses. (Notice that we are now allowing the metavari-
ables `�', ` ' etc. to range over predicates as well as sentences and formulas.
This shouldn't cause any confusion.)

Many writers put it a little di�erently. They say that a person or thing
satis�es � if the result of putting a name of the person or thing in place of
every occurrence of the variable in � is a true sentence. This way of phrasing
matters is �ne as a �rst approximation, but it runs into two hazards.

The �rst hazard is that not everything has a name, even if we allow
phrases of the form `the such-and-such' as names. For example there are
uncountably many real numbers and only countably many names.

I can dispose of this objection quickly, as follows. I decree that for pur-
poses of naming arbitrary objects, any ordered pair whose �rst term is an
object and whose second term is the Ayatollah Khalkhali shall be a name
of that object. There is a problem about using these names in sentences,
but that's just a matter of �nding an appropriate convention. So it is clear
that if we have an abstract enough notion of what a name is, then every
object can have a name.

More conscientious authors have tried to mount reasoned arguments to
show that everything is in principle nameable. The results are not always a
success. In one paper I recall, the author was apparently under the impres-
sion that the nub of the problem was to �nd a symbol that could be used
for naming hitherto nameless objects. After quoting quite a lot of formulas
from Quine's Methods of Logic, he eventually announced that lower-case
italic w can always be used for the purpose. No doubt it can!

There is a second hazard in the `inserted name' de�nition of satisfaction.
If we allow phrases of the form `the such-and-such' to count as names, it
can happen that on the natural reading, a name means something di�erent
within the context of the sentence from what it means in isolation. For
example, if my uncle is the mayor of Pinner, and in 1954 he fainted during
the opening ceremony of the Pinner Fair, then the mayor of Pinner satis�es
the predicate:

(87) In 1954 x fainted during the opening ceremony of the Pinner Fair.

But on the natural reading the sentence

(88)
In 1954 the mayor of Pinner fainted during the opening ceremony
of the Pinner Fair.

says something quite di�erent and is probably false. One can avoid this
phenomenon by sticking to names like `the present mayor of Pinner' which
automatically extract themselves from the scope of surrounding temporal
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operators (cf. [Kamp, 1971]). But other examples are less easily sorted
out. If the programme note says simply `Peter Warlock wrote this song',
then Philip Heseltine, one of whose pen-names was `Peter Warlock', surely
satis�es the predicate

(89) The programme note attributes this song to x.

But my feeling is that on the natural reading, the sentence

(90) The programme note attributes this song to Philip Heseltine

is false. Examples like these should warn us to be careful in applying �rst-
order formalisms to English discourse. (Cf. B�auerle and Cresswell's chapter
`Propositional Attitudes' to be found in a later Volume of this Handbook.)

I turn to some more technical points. We shall need to handle expressions
like

(91) x was observed handing a marked envelope to y

which expresses a condition on pairs of people or things. It is, I think, quite
obvious how to generalize the notion of a 1-place predicate to that of an
n-place predicate, where n counts the number of distinct individual variables
that stand in place of proper names. (Predicates with any positive number
of places are also called open sentences.) Expression (91) is clearly a 2-place
predicate. The only problem is to devise a convention for steering the right
objects to the right variables. We do it as follows.

By the free variables of a predicate, we mean the individual variables
which occur in proper name places in the predicate; so an n-place predicate
has n free variables. (In Section 11 we shall have to revise this de�nition and
exclude certain variables from being free.) A predicate with no free variables
is called a sentence. We de�ne an assignment g to a set of variables (in a
situation) to be a function whose domain is that set of variables, with the
stipulation that if x is a sorted variable then (in that situation) g(x) meets
the restriction which goes with the variable. So for example g(yraccoon) has
to be a raccoon.

We say that an assignment g is suitable for a predicate � if every free
variable of � is in the domain of g. Using the inserted name de�nition of
satisfaction as a temporary expedient, we de�ne: if � is a predicate and g is
an assignment which is suitable for �, then g satis�es � (in a given situation)
i� a true sentence results (in that situation) when we replace each variable
x in � by a name of the object g(x).

We shall write

(92) �=x; �=y; =z; : : :

to name the assignment g such that g(x) = �; g(y) = �; g(z) =  etc. If
A is a situation, � a predicate and g an assignment suitable for �, then we
write
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(93) A � �[g]

to mean that g satis�es � in the situation A. The notation (93) is basic for
all that follows, so let me give some examples. For simplicity I take A to be
the real world here and now. The following are true:

(94) A � In the year y, x was appointed Assistant Professor of Math-
ematics at w at the age of 19 years. [Dr Harvey Friedman/x,
1967/y, Stanford University California/w].

Example (94) asserts that in 1967 Dr Harvey Friedman was appointed As-
sistant Professor of Mathematics at Stanford University California at the
age of 19 years; which must be true because the Guinness Book of Records
says so.

(95) A � v is the smallest number which can be expressed in two dif-
ferent ways as the sum of two squares. [65/v].

(96) A � x wrote poems about the physical anatomy of x. [Walt
Whitman/x].

This notation connects predicates with objects, not with names of objects.
In (96) it is Mr Whitman himself who satis�es the predicate shown.

In the literature a slightly di�erent and less formal convention is often
used. The �rst time that a predicate � is mentioned, it is referred to, say,
as �(y; t). This means that � has at most the free variables y and t, and
that these variables are to be considered in that order. To illustrate, let
�(w; x; y) be the predicate

(97) In the year y, x was appointed Assistant Professor of Mathematics
at w at the age of 19 years.

Then (94) will be written simply as

(98) A � � [Stanford University California, Dr Harvey Friedman, 1967].

This handy convention can save us having to mention the variables again
after the �rst time that a predicate is introduced.

There is another variant of (93) which is often used in the study of logics.
Suppose that in situation A; g is an assignment which is suitable for the
predicate �, and S is a sentence which is got from � by replacing each free
variable x in � by a name of g(x). Then the truth-value of S is determined
by A; g and �, and it can be written

(99) g�A(�) or k�kA;g:
So we have

(100) A � �[g] i� g�
A

(�) = T:

In (99), g�
A

can be thought of as a function taking predicates to truth-
values. Sometimes it is abbreviated to gA or even g, where this leads to no
ambiguity.
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11 QUANTIFIER NOTATION

Let us use the symbols xboy; yboy etc. as sorted variables which are restricted
to boys. We shall read the two sentences

(101) 8xboy(xboy has remembered to bring his woggle):

(102) 9xboy(xboy has remembered to bring his woggle):

as meaning exactly the same as (103) and (104) respectively:

(103) Every boy has remembered to bring his woggle.

(104) Some boy has remembered to bring his woggle.

In other words, (101) is true in a situation if and only if in that situation,
every member of the domain of quanti�cation of 8xboy satis�es the predicate

(105) xboy has remembered to bring his woggle.

Likewise (102) is true if and only if some member of the domain of quan-
ti�cation of 9xboy satis�es (105). The situation has to determine what the
domain of quanti�cation is, i.e. what boys are being talked about.

The expression 8xboy is called a universal quanti�er and the expression
9xboy is called an existential quanti�er. Because of the restriction `boy' on
the variable, they are called sorted or sortal quanti�ers. The symbols 8; 9
are called respectively the universal and existential quanti�er symbols; 8 is
read `for all', 9 is read `for some' or `there is'.

For unsorted quanti�ers using plain variables x; y; z, etc., similar de�-
nitions apply, but now the domain of quanti�cation for such a quanti�er
can be any class of things. Most uses of unsorted quanti�ers are so remote
from anything in ordinary language that we can't rely on the conventions
of speech to locate a domain of quanti�cation for us. So instead we have to
assume that each situation speci�es a class which is to serve as the domain
of quanti�cation for all unsorted quanti�ers. Then

(106) 8x (if x is a boy then x has remembered to bring his woggle).

counts as true in a situation if and only if in that situation, every object in
the domain of quanti�cation satis�es the predicate

(107) if x is a boy then x has remembered to bring his woggle.

There is a corresponding criterion for the truth of a sentence starting with
the unsorted existential quanti�er 9x; the reader can easily supply it.

The occurrences of the variable xboy in (101) and (102), and of x in (106),
are no longer doing duty for pronouns or marking places where names can be
inserted. They are simply part of the quanti�er notation. We express this by



40 WILFRID HODGES

saying that these occurrences are bound in the respective sentences. We also
say, for example, that the quanti�er at the beginning of (101) binds the two
occurrences of xboy in that sentence. By contrast an occurrence of a variable
in a predicate is called free in the predicate if it serves the role we discussed
in Sections 9 and 10, of referring to whoever or whatever the predicate
expresses a condition on. What we called the free variables of a predicate
in Section 10 are simply those variables which have free occurrences in
the predicate. Note that the concepts `free' and `bound' are relative: the
occurrence of xboy before `has' in (101) is bound in (101) but free in (105).
Consider also the predicate

(108) xboy forgot his whistle, but 8xboy (xboy has remembered to bring
his woggle).

Predicate (108) expresses the condition which Billy satis�es if Billy forgot
his whistle but every boy has remembered to bring his woggle. So the �rst
occurrence of xboy in (108) is free in (108) but the other two occurrences
are bound in (108).

I should recall here the well-known fact that in natural languages, a
pronoun can be linked to a quanti�er phrase that occurs much earlier, even
in a di�erent sentence:

(109) HE: This evening I heard a nightingale in the pear tree.
SHE: It was a thrush|we don't get nightingales here.

In our notation this can't happen. Our quanti�ers bind only variables in
themselves and the clause immediately following them. We express this by
saying that the scope of an occurrence of a quanti�er consists of the quan-
ti�er itself and the clause immediately following it; a quanti�er occurrence
8x or 9x binds all and only occurrences of the same variable x which lie
within its scope.

It is worth digressing for a moment to ask why (109) makes life hard for
logicians. The crucial question is: just when is the woman's remark `It was
a thrush' a true statement? We want to say that it's true if and only if the
object referred to by `It' is a thrush. But what is there for `It' to refer to?
Arguably the man hasn't referred to any nightingale, he has merely said
that there was at least one that he heard in the pear tree. Also we want to
say that if her remark is true, then it follows that he heard a thrush in the
pear tree. But if this follows, why doesn't it also follow that the nightingale
in the pear tree was a thrush? (which is absurd.)

There is a large literature on the problems of cross-reference in natural
languages. See for example [Chastain, 1975; Partee, 1978; Evans, 1980].
In the early 1980s Hans Kamp and Irene Heim independently proposed
formalisms to handle the matter systematically ([Kamp, 1981; Heim, 1988];
see also [Kamp and Reyle, 1993]). These new formalisms are fundamentally
di�erent from �rst-order logic. Jeroen Groenendijk and Martin Stokhof
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[1991] gave an ingenious new semantics for �rst-order logic which is based
on Kamp's ideas and allows a quanti�er to pick up a free variable in a later
sentence. Their underlying idea is that the meaning of a sentence is the
change which it makes to the information provided by earlier sentences in
the conversation. This opens up new possibilities, but it heads in a very
di�erent direction from the usual �rst-order logic.

Returning to �rst-order logic, consider the sentence

(110) 9xboy(xboy kissed Brenda):

This sentence can be turned into a predicate by putting a variable in place of
`Brenda'. Naturally the variable we use has to be di�erent from xboy, or
else it would get bound by the quanti�er at the beginning. Apart from that
constraint, any variable will do. For instance:

(111) 9xboy(xboy kissed ygirlwithpigtails):

We need to describe the conditions in which Brenda satis�es (111). Brenda
must of course be a girl with pigtails. She satis�es (111) if and only if there
is a boy � such that the assignment

(112) �=xboy; Brenda=ygirlwithpigtails

satis�es the predicate `xboy kissed ygirlwithpigtails'. Formal details will follow
in Section 14 below.

12 AMBIGUOUS CONSTANTS

In his Wissenschaftslehre II [1837, Section 147] Bernard Bolzano noted that
we use demonstrative pronouns at di�erent times and places to refer now
to this, now to that. He continued:

Since we do this anyhow, it is worth the e�ort to undertake
this procedure with full consciousness and with the intention of
gaining more precise knowledge about the nature of such propo-
sitions by observing their behaviour with respect to truth. Given
a proposition, we could merely inquire whether it is true or false.
But some very remarkable properties of propositions can be dis-
covered if, in addition, we consider the truth values of all those
propositions which can be generated from it, if we take some of
its constituent ideas as variable and replace them by any other
ideas whatever.

We can abandon to the nineteenth century the notion of `variable ideas'.
What Bolzano did in fact was to introduce totally ambiguous symbols. When
a writer uses such a symbol, he has to indicate what it means, just as he has
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to make clear what his demonstrative pronouns refer to. In our terminology,
the situation must �x the meanings of such symbols. Each totally ambiguous
symbol has a certain grammatical type, and the meaning supplied must �t
the grammatical type; but that apart, anything goes.

Let us refer to a sentence which contains totally ambiguous symbols as
a sentence schema. Then an argument schema will consist of a string of
sentence schemas called premises, followed by the word `Therefore', followed
by a sentence schema called the conclusion. A typical argument schema
might be:

(113) a is more X than b. b is more X than c. Therefore a is more X
than c.

A traditional logician would have said that (113) is a valid argument schema
if and only if all its instances are valid arguments (cf. (1) in the Introduction
above). Bolzano said something di�erent. Following him, we shall say that
(113) is Bolzano-valid if for every situation in which a; b; c are interpreted
as names and X is interpreted as an adjective, either one or more of the
premises are not true, or the conclusion is true. We say that the premises
in (113) Bolzano-entail the conclusion if (113) is Bolzano-valid.

Note the di�erences. For the traditional logician entailment is from
sentences to sentences, not from sentence schemas to sentence schemas.
Bolzano's entailment is between schemas, not sentences, and moreover he
de�nes it without mentioning entailment between sentences. The schemas
become sentences of a sort when their symbols are interpreted, but Bolzano
never asks whether these sentences \can't be true without certain other sen-
tences being true" (to recall our de�nition of entailment in the Introduction)|
he merely asks when they are true.

The crucial relationship between Bolzano's ideas and the traditional ones
is that every instance of a Bolzano-valid argument schema is a valid argu-
ment. If an argument is an instance of a Bolzano-valid argument schema,
then that fact itself is a reason why the premises can't be true without the
conclusion also being true, and so the argument is valid. The traditional lo-
gician may want to add a caution here: the argument need not be logically
valid unless the schema is Bolzano-valid for logical reasons|whatever we
take `logical' to mean. Tarski [1936] made this point. (Let me take the op-
portunity to add that recent discussions of the nature of logical consequence
have been clouded by some very unhistorical readings of [Tarski, 1936]. For-
tunately there is an excellent historical analysis by G�omez-Torrente [1996].)

In �rst-order logic we follow Bolzano and study entailments between
schemas. We use two kinds of totally ambiguous constants. The �rst kind
are the individual constants, which are normally chosen from lower-case
letters near the beginning of the alphabet: a; b; c etc. These behave gram-
matically as singular proper names, and are taken to stand for objects. The
other kind are the predicate (or relation) constants. These are usually cho-
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sen from the letters P;Q;R etc. They behave as verbs or predicates, in the
following way. To specify a meaning for the predicate constant P , we could
write

(114) Pxyz means x aimed at y and hit z.

The choice of variables here is quite arbitrary, so (114) says the same as:

(115) Pyst means y aimed at s and hit t.

We shall say that under the interpretation (114), an ordered 3-tuple h�; �; i
of objects satis�es P if and only if the assignment

(116) �=x; �=y; =z

satis�es the predicate `x aimed at y and hit z'. So for example the ordered
3-tuple hBert, Angelo, Cheni satis�es P under the interpretation (114) or
(115) if and only if Bert aimed at Angelo and hit Chen. (We take P to be
satis�ed by ordered 3-tuples rather than by assignments because, unlike a
predicate, the symbol P comes without bene�t of variables.) The collection
of all ordered 3-tuples which satisfy P in a situation where P has the inter-
pretation (114) is called the extension of P in that situation. In general a
collection of ordered n-tuples is called an n-place relation.

Since P is followed by three variables in (114), we say that P in (114)
is serving as a 3-place predicate constant. One can have n-place predicate
constants for any positive integer n; the extension of such a constant in a
situation is always an n-place relation. In theory a predicate constant could
be used both as a 3-place and as a 5-place predicate constant in the same
setting without causing mishap, but in practice logicians try to avoid doing
this.

Now consider the sentence

(117) 8x (if Rxc then x is red).

with 2-place predicate constant R and individual constant c. What do we
need to be told about a situation A in order to determine whether (117) is
true or false in A? The relevant items in A seem to be:

(a) the domain of quanti�cation for 8x.

(b) the object named by the constant c. (Note: it is irrelevant what
meaning c has over and above naming this object, because R will be
interpreted by a predicate.) We call this object IA(c).

(c) the extension of the constant R. (Note: it is irrelevant what predicate
is used to give R this extension; the extension contains all relevant
information.) We call this extension IA(R).
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(d) the class of red things.

In Section 14 we shall de�ne the important notion of a structure by ex-
tracting what is essential from (a){(d). Logicians normally put into the
de�nition of `structure' some requirements that are designed to make them
simpler to handle. Before matters get buried under symbolism, let me say
what these requirements amount to in terms of A. (See Appendix C below
for the set-theoretic notions used.)

1. There is to be a collection of objects called the domain of A, in symbols
jAj.

2. jAj is the domain of quanti�cation for all unsorted quanti�ers. Two
sorted quanti�ers with variables of the same sort (if there are any)
always have the same domain of quanti�cation, which is included in
jAj.

3. For every individual constant c, the interpretation IA(c) is a member
of jAj; for every predicate constant R, the relation IA(R) is a relation
on jAj.

4. Some authors require jAj to be a pure set. Most authors require it to
have at least one member. A very few authors (e.g. [Carnap, 1956;
Hintikka, 1955]) require it to be at most countable.

Requirements (1){(3) mean in e�ect that �rst-order logicians abandon any
pretence of following the way that domains of quanti�cation are �xed in
natural languages. Frege's device of Section 9 (e.g. (84)) shows how we
can meet these requirements and still say what we wanted to say, though
at greater length. Requirements (4) are an odd bunch; I shall study their
reasons and justi�cations in due course below.

Logicians also allow one important relaxation of (1){(4). They permit an
n-place predicate symbol to be interpreted by any n-place relation on the
domain, not just one that comes from a predicate. Likewise they permit
an individual constant to stand for any member of the domain, regardless
of whether we can identify that member. The point is that the question
whether we can describe the extension or the member is totally irrelevant
to the question what is true in the structure.

Note here the 3-way analogy
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name object named

predicate � extension of �

individual constant c IA(C)

predicate constant P IA(P )

��
��

��
��

��
��

��
��

The front face of this cube is essentially due to Frege. Would he have
accepted the back?

No, he would not. In 1899 Hilbert published a study of the axioms of
geometry. Among other things, he asked questions of the form `Do axioms
A;B;C together entail axiom D?' (The famous problem of the indepen-
dence of Euclid's parallel postulate is a question of this sort.) Hilbert
answered these questions by regarding the axioms as schemas containing
ambiguous signs, and then giving number-theoretic interpretations which
made the premises A;B and C true but the conclusion D false. Frege read
the book [Hilbert, 1899] and reacted angrily. After a brief correspondence
with Hilbert (Frege and Hilbert [1899{1900], he published a detailed critique
[1906], declaring [Frege, 1971, p. 66]: \Indeed, if it were a matter of de-
ceiving oneself and others, there would be no better means than ambiguous
signs."

Part of Frege's complaint was that Hilbert had merely shown that certain
argument schemas were not Bolzano-valid; he had not shown that axioms
A;B and C, taken literally as statements about points, lines etc. in real
space, do not entail axiomD taken literally. This is true and need not detain
us|Hilbert had answered the questions he wanted to answer. Much more
seriously, Frege asserted that Hilbert's propositions, being ambiguous, did
not express determinate thoughts and hence could not serve as the premises
or conclusions of inferences. In short, Frege refused to consider Bolzano-
valid argument schemas as any kind of valid argument. So adamant was he
about this that he undertook to translate the core of Hilbert's reasoning into
what he considered an acceptable form which never mentioned schematic
sentences. This is not diÆcult to do| it is a matter of replacing statements
of the form `Axiom A entails axiom B' by statements of the form `For all
relations P and R, if P and R do this then they do that'. But the resulting
translation is quite unreadable, so good mathematics is thrown away and
all for no purpose.

Frege's rejection of ambiguous symbols is part and parcel of his refusal
to handle indexical expressions; see [Perry, 1977] for some discussion of the
issue. It is sad to learn that the grand architect of modern logic �ercely
rejected the one last advance which was needed to make his ideas fruitful.
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In fact it took some years for logicians to accept the use of ambiguous
symbols in the semantics of �rst-order logic. For example Tarski's paper
[1936] on logical deduction made no use of them; Tarski found another
device with the same e�ect (at the cost of adapting the word `model' to mean
`re-interpretation' rather than `interpretation'). But in his model-theoretic
work of the 1950s and later, Tarski used ambiguous constants wholesale in
the modern fashion, as a form of indexical. (Cf. [Hodges, 1985/86].)

13 FIRST-ORDER SYNTAX FORMALISED

The main purpose of this section and the next is to extract the formal con-
tent of Sections 9{12 above. I give the de�nitions �rst under the assumption
that there are no sorted variables. Also I ignore for the moment the fact
that some �rst-order logicians use = and function symbols. Section 18 below
will be more broad-minded.

A similarity type is de�ned to be a set of individual constants together
with a set of predicate constants; each predicate constant is assumed to be
labelled somehow to indicate that it is an n-place predicate constant, for
some positive integer n. Some writers include the n as a superscript: R133

is a 133-place predicate constant.
We shall de�ne the �rst-order language L of similarity type X . For def-

initeness, L shall be an ordered triple hX;T (X); F (X)i where X is the
similarity type, and T (X) and F (X) are respectively the set of all terms
and formulas of similarity type X (known more briey as the terms and for-
mulas of L). Grammatically speaking, the terms of L are its noun phrases
and the formulas are its sentences. Metavariables �; � will range over terms,
and metavariables �;  ; � will range over formulas.

We start the de�nition by de�ning the variables to be the countably many
symbols

(118) x0; x1; x2; : : : :

UnoÆcially everybody uses the symbol x; y; z etc. as variables. But in the
spirit of Section 4 above, these can be understood as metavariables ranging
over variables. The terms of L are de�ned to be the variables of L and the
individual constants in X .

An atomic formula of L is an expression of form P (�1; : : : ; �n) where P
is an n-place predicate constant in X and �1; : : : ; �n are terms of L. The
class of formulas of L is de�ned inductively, and as the induction proceeds
we shall de�ne also the set of subformulas of the formula �, and the set
FV (�) of free variables of �:

(a) Every atomic formula � of L is a formula of L; it is its only subformula,
and FV (�) is the set of all variables which occur in �. ? is a formula
of L; it is its only subformula, and FV (?) is empty.
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(b) Suppose � and  are formulas of L and x is a variable. Then: :� is
a formula of L; its subformulas are itself and the subformulas of �;
FV (:�) is FV (�). Also (� ^  ); (� _  ); (� !  ) and (� $  ) are
formulas of L; the subformulas of each of these formulas are itself, the
subformulas of � and the subformulas of  ; its free variables are those
of � together with those of  . Also 8x� and 9x� are formulas of L;
for each of these, its subformulas are itself and the subformulas of �;
its free variables are those of � excluding x.

(c) Nothing is a formula of L except as required by (a) and (b).

The complexity of a formula � is de�ned to be the number of subformulas
of �. This de�nition disagrees with that in Section 3, but it retains the
crucial property that every formula has a higher complexity than any of its
proper subformulas. (The proper subformulas of � are all the subformulas
of � except � itself.) A formula is said to be closed, or to be a sentence, if it
has no free variables. Closed formulas correspond to sentences of English,
non-closed formulas to predicates or open sentences of English. Formulas
of a formal language are sometimes called well-formed formulas or w�s for
short.

If � is a formula, x is a variable and � is a term, then there is a formula
�[�=x] which `says the same thing about the object � as � says about the
object x'. At a �rst approximation, �[�=x] can be described as the formula
which results if we put � in place of each free occurrence of x in �; when this
description works, we say � is free for x in � or substitutable for x in �. Here
is an example where the approximation doesn't work: � is 9yR(x; y) and �
is y. If we put y for x in �, the resulting formula 9yR(y; y) says nothing
at all about `the object y', because the inserted y becomes bound by the
quanti�er 9y|a phenomenon known as clash of variables. In such cases we
have to de�ne �[�=x] to be 9zR(y; z) where z is some other variable. (There
is a good account of this messy matter in Bell and Machover [1977, Chapter
2, Section 3].)

Note the useful shorthand: if � is described at its �rst occurrence as �(x),
then �(�) means �[�=x]. Likewise if � is introduced as �(y1; : : : ; yn) then
�(�1; : : : ; �n) means the formula which says about the objects �1; : : : ; �n the
same thing as � says about the objects y1; : : : ; yn.

Not much in the de�nitions above needs to be changed if you want a
system with sorted variables. You must start by deciding what kind of
sortal system you want. There will be a set S of sorts s; t etc., and for
each sort s there will be sorted variables xs0; s

s
1; x

s
2 etc. But then (a) do you

want every object to belong to some sort? If so, the similarity type must
assign each individual constant to at least one sort. (b) Do you want the
sorts to be mutually exclusive? Then the similarity type must assign each
individual constant to at most one sort. (c) Do you want to be able to say
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`everything', rather than just `everything of such-and-such a sort'? If not
then the unsorted variables (118) should be struck out.

Some formal languages allow restricted quanti�cation. For example in
languages designed for talking about numbers, we have formulas (8x < y)�
and (9x < y)�, read respectively as `For all numbers x less than y; �' and
`There is a number x less than y such that �'. These expressions can be
regarded as metalanguage abbreviations for 8x(x < y ! �) and 9x(x <
y ^ �) respectively (where `x < y' in turn is an abbreviation for `< (x; y)').
Or we can alter the de�nition of `formula of L' to allow restricted quanti�ers
in L itself.

One often sees abbreviations such as `8xy�' or `9~z�'. These are metalan-
guage abbreviations. 8xy is short for 8x8y. ~z means a �nite sequence z1; : : : ;
zn. Furthermore, the abbreviations of Section 4 remain in force.

All the syntactic notions described in this section can be de�ned using
only concrete instances of the induction axiom as in Section 3 above.

14 FIRST-ORDER SEMANTICS FORMALISED

We turn to the de�nition of structures. (They are also known as models|
but it is better to reserve this term for the context `model of �'.) Let L be
a language with similarity type X . Then an L-structure A is de�ned to be
an ordered pair hA; Ii where:

1. A is a class called the domain of A, in symbols jAj. The elements of
A are called the elements of A, and the cardinality of A is called the
cardinality of A. So for example we call A �nite or empty if A is �nite
or empty. Many writers use the convention that A;B and C are the
domains of A;B and C respectively.

2. I is a function which assigns to each individual constant c of X an
element I(c) of A, and to each n-place predicate symbol R of X an
n-place relation I(R) on A. I is referred to as IA.

Structure means: L-structure for some language L.
If Z is a set of variables, then an assignment to Z in A is de�ned to be

a function from Z to A. If g is an assignment to Z in A; x is a variable not
in Z and � is an element of A, then we write

(119) g; �=x

for the assignment h got from g by adding x to g's domain and putting
h(x) = �. (Some writers call assignments valuations.)

For each assignment g in A and each individual constant c we de�ne c[g]
to be the element IA(c). For each variable x and assignment g whose domain
contains x, we de�ne x[g] to be the element g(x). Then � [g] is `the element
named by the term � under the assignment g'.
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For each formula � of L and each assignment g to the free variables of
� in A, we shall now de�ne the conditions under which A � �[g] (cf. (93)
above). The de�nition is by induction on the complexity of �.

(a) If R is an n-place predicate constant in X and �1; : : : ; �n are terms,
then A � R(�1; : : : ; �n) i� the ordered n-tuple h�1[g]; : : : ; �n[g]i is in
IA(R).

(b) It is never true that A � ?.

(c) A � :�[g] i� it is not true that A � �[g].
A � � ^  [g] i� A � �[g1] and A �  [g2], where g1 and g2 are the
results of restricting g to the free variables of � and  respectively.
Etc. as in (23).

(d) If x is a free variable of �, then:
A � 8x�[g] i� for every element � of A;A � �[g; �=x];
A � 9x�[g] i� for at least one element � of A;A � �[g; �=x].
If x is not a free variable of �, then A � 8x�[g] i� A � �[g], and
A � 9x�[g] i� A � �[g].

We say an assignment g in A is suitable for the formula � if every free
variable of � is in the domain of g. If g is suitable for �, we say that
A � �[g] if and only if A � �[h], where h comes from g by throwing out of
the domain of g those variables which are not free variables of �.

If � is a sentence, then � has no free variables and we can write just
A � � in place of A � �[ ]. This notation agrees with (22) above. When
A � �, we say that A is a model of �, or that � is true in A. `A � �[g]' can
be pronounced `g satis�es � in A'.

To anybody who has mastered the symbolism it should be obvious that
clauses (a){(d) really do determine whether or not A � �, for every L-
structure A and every sentence � of L. If A is a set then we can formalise
the de�nition in the language of set theory and prove that it determines
� uniquely, using only quite weak set-theoretic axioms (cf. [Barwise, 1975,
Chapter 3]). Set structures are adequate for most applications of �rst-order
logic in mathematics, so that many textbooks simply state without apology
that a structure has to be a set. We shall return to this point in Section 17
below.

The de�nition of � given above is called the truth-de�nition, because it
speci�es exactly when a symbolic formula is to count as `true in' a structure.
It solves no substantive problems about what is true|we are just as much in
the dark about the Riemann hypothesis or the Reichstag �re after writing it
down as we were before. But it has attracted a lot of attention as a possible
answer to the question of what is Truth. Many variants of it have appeared
in the literature, which can cause anguish to people anxious to get to the
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heart of the matter. Let me briey describe three of these variants; they
are all mathematically equivalent to the version given above. (Cf. Leblanc
[Volume 2 of this Handbook].)

In the �rst variant, assignments are sequences. More precisely an assign-
ment in A is de�ned to be a function g from the natural numbers N to the
domain A of A. Such a function can be thought of as an in�nite sequence
hg(0); g(1); g(2); : : :i. The element g(i) is assigned to the ith variable xi, so
that xi[g] is de�ned to be g(i). In (c) and (d) we have to make some changes
for the purely technical reason that g assigns elements to every variable and
not just those free in �. In (c) the clause for � ^  becomes

A � � ^  [g] i� A � �[g] and A �  [g];

which is an improvement (and similarly with (�_ ); (� !  ) and (�$  )).
But (d) becomes distorted, because g already makes an assignment to the
quanti�ed variable x; this assignment is irrelevant to the truth of A � 8x�[g],
so we have to discard it as follows. For each number i and element � of A,
let g(�=i) be the assignment h which is exactly like g except that h(i) = �.
Then (d) is replaced by:

(d0) For each variable xi : A � 8xi�[g] i� for every element � of A, A �

�[g(�=i)].

together with a similar clause for 9xi�.
In the second variant, we copy (24) and de�ne the truth-value of � in A;

k�kA, to be the set of all assignments g to the free variables of � such that
A � �[g]. When � is a sentence, there is only one assignment to the free
variables of �, namely the empty function 0; so k�kA is f0g if � is true in
A, and the empty set (again 0) if � is false in A. This variant is barely more
than a change of notation. Instead of `A � �[g]' we write `g 2 k�kA'. The
clauses (a){(d) can be translated easily into the new notation.

Some writers combine our �rst and second variants, taking k�kA to be
the set of all sequences g such that A � �[g]. In this style, the clause for
� ^  in (c) becomes rather elegant:

k� ^  kA = k�kA \ k kA:
However, when � is a sentence the de�nition of `� is true in A' becomes
`every sequence is in k�kA', or equivalently `at least one sequence is in
k�kA'. I have heard students repeat this de�nition with ba�ed awe as if
they learned it in the Eleusinian Mysteries.

The third variant dispenses with assignments altogether and adds new
constant names to the language L. Write L(c) for the language got from L
by adding c as an extra individual constant. If A is an L-structure and � is
an element of A, write (A; �) for the L(c)-structure B which is the same as
A except that IB(c) = �. If � is a formula of L with just the free variable
x, one can prove by induction on the complexity of � that
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(120) (A; �) � �[c=x] i� A � �[�=x]:

(Warning: [c=x] on the left is a substitution in the formula �; �=x on the
right is an assignment to the variable x.) The two sides in (120) are just
di�erent ways of expressing that � satis�es � in A. Hence we have

(121) A � 8x� i� for every element � of A; (A; �) � �[c=x],

and a similar clause for 9x�. In our third variant, (121) is taken as the
de�nition of � for sentences of form 8x�. This trick sidesteps assignments.
Its disadvantage is that we have to alter the language and the structure each
time we come to apply clause (d). The great merit of assignments is that
they enable us to keep the structure �xed while we wiggle around elements
in order to handle the quanti�ers.

There are L-structures whose elements are all named by individual con-
stants of L. For example, the natural numbers are sometimes understood as
a structure in which every number n is named by a numeral constant n of
the language. For such structures, and only for such structures, (121) can
be replaced by

(122) A � 8x� i� for every individual constant c of L;A � �[c=x].

Some writers con�ne themselves to structures for which (122) applies.
Alfred Tarski's famous paper on the concept of truth in formalised lan-

guages [1935] was the �rst paper to present anything like our de�nition of �.
Readers should be aware of one vital di�erence between his notion and ours.
His languages have no ambiguous constants. True, Tarski says they have
constants. But he explains that by `constants' he means negation signs,
quanti�er symbols and suchlike, together with symbols of �xed meaning
such as the inclusion sign � in set theory. (See Section 20 below on symbols
with an `intended interpretation'.) The only concession that Tarski makes
to the notion of an L-structure is that he allows the domain of elements to
be any class, not necessarily the class of everything. Even then he says that
relativising to a particular class is `not essential for the understanding of the
main theme of this work' ! (Cf. pages 199, 212 of the English translation of
[Tarski, 1935].) Carnap's truth-de�nition [1935] is also little sideways from
modern versions.

There is no problem about adapting Tarski's de�nition to our setting. It
can be done in several ways. Probably the simplest is to allow some of his
constants to turn ambiguous; then his de�nition becomes our �rst variant.

Finally I should mention structures for many-sorted languages, if only to
say that no new issues of principle arise. If the language L has a set S of
sorts, then for each sort s in S, an L-structure A must carry a class s(A) of
elements of sort s. In accordance with Section 12, s(A) must be included in
jAj. If the individual constant c is of sort s, then IA(c) must be an element
of s(A). If we have required that every element should be of at least one
sort, then jAj must be the union of the classes s(A).
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15 FIRST-ORDER IMPLICATIONS

Let me make a leap that will seem absurd to the Traditional Logician, and
de�ne sequents with in�nitely many premises.

Suppose L is a �rst-order language. By a theory in L we shall mean a set
of sentences of L|it can be �nite or in�nite. The metavariables �;�;�;�
will range over theories. If � is a theory in L and A is an L-structure, we
say that A is a model of � if A is a model of every sentence in �.

For any theory � in L and sentence � of L, we de�ne

(123) � � � (`� logically implies �', `� is a logical consequence of �')

to mean that every L-structure which is a model of � is also a model of �. If
� has no models, (123) is reckoned to be true by default. A counterexample
to (123) is an L-structure which is a model of � but not of �. We write

(124) � � (`� is logically valid')

to mean that every L-structure is a model of �; a counterexample to (124) is
an L-structure which is not a model of �. The expressions (123) and (124)
are called sequents. This de�nition of logical implication was �rst set down
by Tarski [1936], though it only makes precise what Bolzano [1837, Section
155] and Hilbert [1899] already understood.

Warning: (123) is a de�nition of logical consequence for �rst-order schemas.
It doesn't make sense as a de�nition of logical consequence between mean-
ingful sentences, even when the sentences are written in �rst-order notation;
logical consequence might hold between the sentences for reasons not ex-
pressed in the �rst-order notation. This is obvious: let `p' stand for your
favourite logical truth, and consider `j= p'. I mention this because I have
seen a small river of philosophical papers which criticise (123) under the
impression that it is intended as a de�nition of logical consequence be-
tween sentences of English (they call it the `model-theoretic de�nition of
logical consequence'). In one case where I collared the author and traced
the mistake to source, it turned out to be a straight misreading of that
excellent textbook [Enderton, 1972]; though I am not sure the author ac-
cepted my correction. One can track down some of these confusions to the
terminology of Etchemendy [1990], who uses phrases such as `the set of log-
ical truths of any given �rst-order language' [Etchemendy, 1990, p. 148] to
mean those sentences of a fully interpreted �rst-order language which are (in
Etchemendy's sense) intuitively logically true. In his Chapter 11 especially,
Etchemendy's terminology is way out of line with that of the authors he is
commenting on.

If the language L has at least one individual constant c, then every L-
structure must have an element IA(c), so the domain of A can't be empty.
It follows that in this language the sentence 9x:? must be logically valid,
so we can `prove' that at least one thing exists.
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On the other hand if L has no individual constants, then there is an L-
structure whose domain is empty. This is not just a quirk of our conventions:
one can quite easily think of English sentences uttered in contexts where the
natural domain of quanti�cation happens to be empty. In such a language
L, 9x:? is not logically valid.

This odd state of a�airs deserves some analysis. Suppose L does have
an individual constant c. By the Bolzano{Tarski de�nition (123), when we
consider logical implication in L we are only concerned with structures in
which c names something. In other words, the Bolzano{Tarski de�nition
slips into every argument a tacit premise that every name does in fact
name something. If we wanted to, we could adapt the Traditional Logician's
notion of a valid argument in just the same way. For a traditional example,
consider

(125) Every man runs. Therefore Socrates, if he is a man, runs.

On the traditional view, (125) is not a valid argument|it could happen that
every man runs and yet there is no such entity as Socrates. On the Bolzano{
Tarski view we must consider only situations in which `Socrates' names
something or someone, and on that reckoning, (125) is valid. (According to
Walter Burleigh in the fourteenth century, (125) is not valid outright, but
it is valid at the times when Socrates exists. Cf. Boche�nski [1970, p. 193];
I have slightly altered Burleigh's example. I don't know how one and the
same argument can be valid at 4 p.m. and invalid at 5 p.m.).

Once this much is clear, we can decide whether we want to do anything
about it. From the Traditional Logician's point of view it might seem sen-
sible to amend the Bolzano{Tarski de�nition. This is the direction which
free logic has taken. Cf. Bencivenga, (Volume 7 of this Handbook).

The mainstream has gone the other way. Non-referring constants are
anathema in most mathematics. Besides, Hilbert-style calculi with identity
always have 9x(x = x) as a provable formula. (See Remark 6 in Appendix
A below. On the other hand semantic tableau systems which allow empty
structures, such as Hodges [1977], are arguably a little simpler and more
natural than versions which exclude them.) If 9x:? is logically valid in
some languages and not in others, the easiest remedy is to make it logically
valid in all languages, and we can do that by requiring all structures to have
non-empty domains. Henceforth we shall do so (after pausing to note that
Schr�oder [1895, p. 5] required all structures to have at least two elements).

Let us review some properties of �. Analogues of Theorems 1{4 (allowing
in�nitely many premises!) and Theorem 5 of Section 5 now hold. The rele-
vant notion of logical equivalence is this: the formula � is logically equivalent
to the formula � if for every structure A and every assignment g in A which
is suitable for both � and  , A � �[g] if and only if A �  [g]. For example

(126) 8x� is logically equivalent to :9x:�,
9x� is logically equivalent to :8x:�.
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A formula is said to be basic if it is either atomic or the negation of an
atomic formula. A formula is in disjunctive normal form if it is either ? or
a disjunction of conjunctions of basic formulas. One can show:

(127) Every formula of L is logically equivalent to a formula of L with the
same free variables, in which all quanti�ers are at the left-hand
end, and the part after the quanti�ers is in disjunctive normal
form.

A formula with its quanti�ers all at the front is said to be in prenex form.
(In Section 25 below we meet Skolem normal forms, which are di�erent from
(127) but also prenex.)

Proof calculi for propositional logic are generally quite easy to adapt
to predicate logic. Sundholm (Volume 2 of this Handbook) surveys the
possibilities. Usually in predicate logic one allows arbitrary formulas to
occur in a proof, not just sentences, and this can make it a little tricky to
say exactly what is the informal idea expressed by a proof. (This applies
particularly to Hilbert-style calculi; cf. Remarks 4 and 5 in Appendix A
below. Some calculi paper over the diÆculty by writing the free variables
as constants.) When one speaks of a formal calculus for predicate logic as
being sound or complete (cf. Section 7 above), one always ignores formulas
which have free variables.

Gentzen's natural deduction calculus can be adapted to predicate logic
simply by adding four rules, namely introduction and elimination rules for
8 and 9. The introduction rule for 9 says:

(128) From �[�=x] infer 9x�.

(If the object � satis�es �, then at least one thing satis�es �.) The elimi-
nation rule for 9 says:

(129) Given a proof of  from �[y=x] and assumptions �1; : : : ; �n, where
y is not free in any of 9x�;  ; �1; : : : ; �n, deduce  from 9x� and
�1; : : : ; �n.

The justi�cation of (129) is of some philosophical interest, as the following
example will show. We want to deduce an absurdity from the assumption
that there is a greatest integer. So we let y be a greatest integer, we get a
contradiction y < y + 1 � y, whence ?. Then by (129) we deduce ? from
9x (x is a greatest integer). Now the problem is: How can we possibly `let
y be a greatest integer', since there aren't any? Some logicians exhort us
to `imagine that y is a greatest integer', but I always found that this one
defeats my powers of imagination.

The Bolzano{Tarski de�nition of logical implication is a real help here,
because it steers us away from matters of `If it were the case that . . . '
towards questions about what actually is the case in structures which do
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exist. We have to decide how natural deduction proofs are supposed to
match the Bolzano{Tarski de�nition, bearing in mind that formulas with
free variables may occur. The following interpretation is the right one:
the existence of a natural deduction proof with conclusion  and premises
�1; : : : ; �n should tell us that for every structure A and every assignment g in
A which is suitable for all of  ; �1; : : : ; �n, we haveA � (�1^� � �^�n !  )[g].
(This is not obvious| for Hilbert-style calculi one has to supply a quite
di�erent rationale, cf. Remark 5 on Hilbert-style calculi in Appendix A.)

Now we can justify (129). Let A be a structure and g an assignment in
A which is suitable for 9x�; �1; : : : ; �n and  . We wish to show that:

(130) A � (9x� ^ �1 ^ � � � ^ �n !  )[g]:

By the truth-de�nition in Section 14 we can assume that the domain of g
is just the set of variables free in the formulas listed, so that in particular
y is not in the domain of g. There are now two cases. The �rst is that
A � :(9x� ^ �1 ^ � � � ^ �n)[g]. Then truth-tables show that (130) holds.
The second case is that A � (9x� ^ �1 ^ � � � ^ �n)[g], so there is an element
� of A such that A � (�[y=x] ^ �1 ^ � � � ^ �n !  )[g; �=y], so A �  [g; �=y].
But then since y is not free in  , A �  [g], which again implies (130).

I do not think this solves all the philosophical problems raised by (129).
Wiredu [1973] seems relevant.

The references given for the proof calculi discussed in Section 7 remain
relevant, except  Lukasiewicz and Tarski [1930] which is only about propo-
sitional logic. The various theorems of Gentzen [1934], including the cut-
elimination theorem, all apply to predicate logic. From the point of view of
these calculi, the di�erence between propositional and predicate logic is rel-
atively slight and has to do with checking that certain symbols don't occur
in the wrong places in proofs.

Proof calculi for many-sorted languages are also not hard to come by. See
[Schmidt, 1938; Wang, 1952; Feferman, 1968a].

Quanti�ers did provoke one quite new proof-theoretic contrivance. In
the 1920s a number of logicians (notably Skolem, Hilbert, Herbrand) re-
garded quanti�ers as an intrusion of in�nity into the �nite-minded world of
propositional logic, and they tried various ways of|so to say|deactivating
quanti�ers. Hilbert proposed the following: replace 9x� everywhere by
the sentence �["x�=x], where `"x�' is interpreted as `the element I choose
among those that satisfy �'. The interpretation is of course outrageous, but
Hilbert showed that his "-calculus proved exactly the same sequents as more
conventional calculi. See Hilbert and Bernays [1939] and Leisenring [1969].

It can easily be checked that any sequent which can be proved by the
natural deduction calculus sketched above (cf. Sundholm's Chapter in a
following volume of this Handbook for details) is correct. But nobody could
claim to see, just by staring at it, that this calculus can prove every correct
sequent of predicate logic. Nevertheless it can, as the next section will show.
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16 CREATING MODELS

The natural deduction calculus for �rst-order logic is complete in the sense
that if � �  then the calculus gives a proof of  from assumptions in �.
This result, or rather the same result for an equivalent Hilbert-style calculus,
was �rst proved by Kurt G�odel in his doctoral dissertation [1930]. Strictly
Thoralf Skolem had already proved it in his brilliant papers [1922; 1928;
1929], but he was blissfully unaware that he had done so. (See [Vaught, 1974;
Wang, 1970]; Skolem's �nitist philosophical leanings seem to have blinded
him to some mathematical implications of his work.)

A theory � in the language L is said to be consistent for a particular
proof calculus if the calculus gives no proof of ? from assumptions in �.
(Some writers say instead: `gives no proof of a contradiction � ^ :� from
assumptions in �'. For the calculi we are considering, this amounts to the
same thing.) We shall demonstrate that if � is consistent for the natural
deduction calculus then � has a model. This implies that the calculus is
complete, as follows. Suppose � �  . Then �;  ! ? � ? (cf. Theorem 4
in Section 5), hence � together with  ! ? has no model. But then the
theory consisting of � together with  ! ? is not consistent for the natural
deduction calculus, so we have a proof of ? from  ! ? and sentences in
�. One can then quickly construct a proof of  from sentences in � by the
rule (69) for ?.

So the main problem is to show that every consistent theory has a model.
This involves constructing a model|but out of what? Spontaneous cre-
ation is not allowed in mathematics; the pieces must come from somewhere.
Skolem [1922] and G�odel [1930] made their models out of natural numbers,
using an informal induction to de�ne the relations. A much more direct
source of materials was noticed by Henkin [1949] and independently by Ra-
siowa and Sikorski [1950]: they constructed the model of � out of the theory
� itself. (Their proof was closely related to Kronecker's [1882] method of
constructing extension �elds of a �eld K out of polynomials over K. Both
he and they factored out a maximal ideal in a ring.)

Hintikka [1955] and Sch�utte [1956] extracted the essentials of the Henkin{
Rasiowa{Sikorski proof in an elegant form, and what follows is based on
their account. For simplicity we assume that the language L has in�nitely
many individual constants but its only truth-functors are : and ^ and its
only quanti�er symbol is 9. A theory � in L is called a Hintikka set if it
satis�es these seven conditions:

1. ? is not in �.

2. If � is an atomic formula in � then :� is not in �.

3. If :: is in � then  is in �.

4. If  ^ � is in � then  and � are both in �.
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5. If :( ^ �) is in � then either : is in � or :� is in �.

6. If 9x is in � then  [c=x] is in � for some individual constant c.

7. If :9x is in � then : [c=x] is in � for each individual constant c.

We can construct an L-structure A out of a theory � as follows. The
elements of A are the individual constants of L. For each constant c; IA(c)
is c itself. For each n-place predicate constant R of L the relation IA(R)
is de�ned to be the set of all ordered n-tuples hc1; : : : ; cni such that the
sentence R(c1; : : : ; cn) is in �.

Let � be a Hintikka set. We claim that the structure A built out of
� is a model of �. It suÆces to show the following, by induction on the
complexity of �: if � is in � then � is true in A, and if :� is in � then :�
is true in A. I consider two sample cases. First let � be atomic. If � is in
� then the construction of A guarantees that A � �. If :� is in �, then
by clause (2), � is not in �; so by the construction of A again, A is not a
model of � and hence A � :�. Next suppose � is  ^ �. If � is in �, then
by clause (4), both  and � are in �; since they have lower complexities
than �, we infer that A �  and A � �; so again A � �. If :� is in � then
by clause (5) either : is in � or :� is in �; suppose the former. Since  
has lower complexity than �, we have A � : ; it follows again that A � :�.
The remaining cases are similar. So every Hintikka set has a model.

It remains to show that if � is consistent, then by adding sentences to �
we can get a Hintikka set �+; �+ will then have a model, which must also
be a model of � because �+ includes �. The strategy is as follows.

Step 1. Extend the language L of T to a language L+ which has in-
�nitely many new individual constants c0; c1; c2; : : :. These new constants
are known as the witnesses (because in (6) above they will serve as witnesses
to the truth of 9x ).

Step 2. List all the sentences of L+ as �0; �1; : : : in an in�nite list so that
every sentence occurs in�nitely often in the list. This can be done by some
kind of zigzagging back and forth.

Step 3. At this very last step there is a parting of the ways. Three
di�erent arguments will lead us home. Let me describe them and then
compare them.

The �rst argument we may call the direct argument: we simply add
sentences to � as required by (3){(7), making sure as we do so that (1) and
(2) are not violated. To spell out the details, we de�ne by induction theories
�0;�1; : : : in the language L+ so that (i) every theory �i is consistent; (ii)
for all i;�i+1 includes �i; (iii) for each i, only �nitely many of the witnesses
appear in the sentences in �i; (iv) �0 is �; and (v) for each i, if �i is in
�i then:
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30 if �i is of form :: then �i+1 is �i together with  ;

40 if �i is of form  ^ � then �i+1 is �i together with  and �;

50 if �i is of form :( ^�) then �i+1 is �i together with at least one of
: ;:�;

60 if �i is of form 9x then �i+1 is �i together with  [c=x] for some
witness c which doesn't occur in �i;

70 if �i is of form :9x then �i+1 is �i together with : [c=x] for the
�rst witness c such that : [c=x] is not already in �i.

It has to be shown that theories �i exist meeting conditions (1){(5). The
proof is by induction. We satisfy (1){(5) for �0 by putting �0 = � (and this
is the point where we use the assumption that � is consistent for natural
deduction). Then we must show that if we have got as far as �i safely,
�i+1 can be constructed too. Conditions (2) and (3) are actually implied
by the others and (4) is guaranteed from the beginning. So we merely need
to show that

(131) assuming �i is consistent, �i+1 can be chosen so that it is con-
sistent and satis�es the appropriate one of (30){ (70).

There are �ve cases to consider. Let me take the hardest, which is (60). It is
assumed that �i is 9x and is in �i. By (3) so far, some witness has not yet
been used; let c be the �rst such witness and let �i+1 be �i together with
 [c=x]. If by misfortune �i+1 was inconsistent, then since c never occurs in
�i or �i, the elimination rule for 9 (section 15 or Sundholm, Volume 2 of this
Handbook) shows that we can prove ? already from 9x and assumptions
in �i. But 9x was in �i, so we have a contradiction to our assumption
that �i was consistent. Hence �i+1 is consistent as required.

When the theories �i have been constructed, let �+ be the set of all
sentences which are in at least one theory �i. Since each �i was consistent,
�+ satis�es conditions (1) and (2) for a Hintikka set. The requirements
(30){(70), and the fact that in the listing �0; �1; : : : we keep coming round
to each sentence in�nitely often, ensure that �+ satis�es conditions (3){(7)
as well. So �+ is a Hintikka set and has a model, which completes the
construction of a model of �.

The second argument we may call the tree argument. A hint of it is in
[Skolem, 1929]. We imagine a man constructing the theories �i as in the
direct argument above. When he faces clauses (30), (40), (60) or (70), he
knows at once how he should construct �i+1 out of �i; the hardest thing
he has to do is to work out which is the �rst witness not yet used in �i in
the case of clause (60). But in (50) we can only prove for him that at least
one of : and :� can consistently be added to �i, so he must check for
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himself whether �i together with : is in fact consistent. Let us imagine
that he is allergic to consistency calculations. Then the best he can do is to
make two alternative suggestions for �i+1, viz. �i with : , and �i with
:�. Thus he will make not a chain of theories �0;�1; : : : but a branching
tree of theories:

(132) �0 �1

@
@
@ �b

2

�
�
�

�a
2

��
��aa

3

HHH�ab
3

��
��ba

3

HHH�bb
3

�aa
4 : : :

�ab
4 : : :

�ba
4 : : :

�bb
4 : : :

Now he no longer knows which of these theories are consistent. So he
forgets about consistency and looks directly at conditions (1) and (2) in the
de�nition of a Hintikka set. At least he can tell by inspection whether a
theory violates these. So he prunes o� the tree all theories which fail (1) or
(2)|he can do this as he goes along. Some theories in the tree will become
dead ends. But the argument we gave for the earlier direct approach shows
that at every level in the tree there must be some theory which can be
extended to the next level.

Now a combinatorial theorem known as K�onig's tree lemma says that if
a tree has a positive but �nite number of items at the nth level, for every
natural number n, then the tree has a branch which runs up through all these
levels. So we know that (132) has an in�nite branch. Let �0;�1;�2; : : :
be such a branch and let �+ be the set of all sentences which occur in
at least one theory �i in the branch. The previous argument shows that
�+ satis�es (3){(7), and we know that �+ satis�es (1) and (2) because
otherwise it would have been pruned o� at some �nite stage. So again �+

is a Hintikka set.
The third argument is the maximising argument, sometimes known as the

Henkin-style argument, though Skolem's argument in [1922] seems to be of
this type. This argument is an opposite to the second kind of argument:
instead of using (1){(7) in the construction and forgetting consistency, we
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exploit consistency and leave (1){(7) on one side until the very end. We
de�ne by induction theories �0;�1; : : : in the language L+ so that (i) every
theory �i is consistent; (ii) for all i;�i+1 includes �i; (iii) for each i, only
�nitely many of the witnesses appear in the sentences in �i; (iv) �0 is �;
and (v) for each i,

(�) if �i together with �i is consistent then �i+1 contains �i;

(�) if �i is in �i+1 and is of form 9x , then for some witness c which
doesn't occur in �i or in �i;  [c=x] is in �i+1.

The argument to justify this construction is the same as for the direct
argument, except that (30), (40), (50) and (70) are now irrelevant. As before,
let �+ be the set of sentences which occur in at least one theory �i. Clause
(�) in the construction guarantees that

(133) for every sentence � of L+, if �+ together with � is consistent,
then � is in �+.

From (133) and properties of natural deduction we infer

(134) for every sentence � of L+, if � is provable from assumptions in
�+ then � is in �+.

Knowing (133) and (134), we can show that �+ satis�es (3){(7). For ex-
ample, take (5) and suppose that :( ^ �) is in �+ but : is not in �+.
Then by (133) there is a proof of ? from �+ and : . Using the natural
deduction rules we can adapt this proof to get a proof of :� from �+, and
it follows by (134) that :� is in �+. Since the �i are all consistent, �+

also satis�es (1) and (2). So once again �+ is a Hintikka set.
Some authors take care of clause (�) before the main construction. They

can do it by adding to � a collection of sentences of the form 9x !  [c=x].
The argument which justi�ed (60) will justify this too.

The �rst and third arguments above are very closely related. I gave
both of them in the form that would serve for a countable language, but
they adapt to �rst-order languages of any cardinality. The merit of the
maximising argument is that the construction is easy to describe. (For
example, the listing �0; �1; : : : need not repeat any formulas.)

The �rst and second arguments have one advantage over the third. Sup-
pose � is a �nite set of prenex sentences of form 9~x8~y , with no quanti�ers
in  . Then these two arguments �nd �+ after only a �nite number of steps
in the construction. So �+ is �nite and has a �nite model, and it follows
that we can compute whether or not a sentence of this form has a model.
(This is no longer true if function symbols are added to the language as in
Section 18 below.) The decidability of propositional logic is a special case
of this. So also are various theorems about �nite models for modal logics.
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When �0 is �nite, closer inspection of the trees (132) shows that they
are just the natural extension to predicate logic of the semantic tableaux of
propositional logic. If �0 has no models then every branch comes to a dead
end after a �nite number of steps. If �0 has a model, then the tree has a
branch which never closes, and we can read this branch as a description of
a model. So the tree argument has given us a complete proof calculus for
predicate logic. (Cf. Beth [1955; 1962], Je�rey [1967], Smullyan [1968], Bell
and Machover [1977] for predicate logic semantic tableaux.) Incidentally it
is most unpleasant to prove the completeness of semantic tableaux by the
direct or maximising arguments. One needs facts of the form: if � `  and
�;  ` � then � ` �. To prove these is to prove Gentzen's cut-elimination
theorem.

Notice that even when �0 is �nite, semantic tableaux no longer provide
a method for deciding whether �0 has a model. If it does have a model, the
tree may simply go on branching forever, and we may never know whether
it is going to close o� in the next minute or the next century. In Section 24
below we prove a theorem of Church [1936] which says that there is not and
cannot be any mechanical method for deciding which sentences of predicate
logic have models.

17 CONSEQUENCES OF THE CONSTRUCTION OF MODELS

Many of the most important consequences of the construction in the pre-
vious section are got by making some changes in the details. For example,
instead of using the individual constants of the language as elements, we
can number these constants as b0; b1; : : :, and use the number n in place of
the constant bn. Since numbers can be thought of as pure sets ([Mendelson,
1987, pp. 187 �.] or Appendix C below), the structure which emerges at
the end will be a pure set structure. Hence, for any standard proof calculus
for a language L of predicate logic:

THEOREM 10. Suppose T is a theory and  a sentence of L, such that the
calculus doesn't prove  from T . Then there is a pure set structure which
is a model of T and not of  .

In terms of the discussion in Section 8 above, this shows that the Proof
Theorist's notion of logical implication agrees with the Model Theorist's,
whether or not the Model Theorist restricts himself to pure set structures.

We can take matters one step further by encoding all symbols and for-
mulas of L as natural numbers. So a theory in L will be a set of numbers.
Suppose the theory T is in fact the set of all numbers which satisfy the �rst-
order formula � in the language of arithmetic; then by analysing the proof
of Theorem 10 we can �nd another �rst-order formula � in the language of
arithmetic, which de�nes a structure with natural numbers as its elements,
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so that:

THEOREM 11. In �rst-order Peano arithmetic we can prove that if some
standard proof calculus doesn't prove T is inconsistent, then the structure
de�ned by � is a model of T .

(Cf. [Kleene, 1952, p. 394] and [Hasenjaeger, 1953] for a sharper result.)

Theorem 11 is philosophically very interesting. Suppose T is a �nite
theory, and proof-theoretically T doesn't imply  . Applying Theorem 11
to the theory T [f: g, we get a formula � which de�nes a natural number
structure A in which T is true and  is false. By means of �, the formulas
of T and  can be read as meaningful statements about A and hence about
the natural numbers. The statements in T are true but  is false, so we have
found an invalid argument of the form `T . Therefore  '. It follows that if a
�rst-order sequent is correct by the Traditional Logician's de�nition, then it
is correct by the Proof Theorist's too. Since the converse is straightforward
to prove, we have a demonstration that the Traditional Logician's notion of
validity exactly coincides with the Proof Theorist's. The proof of this result
uses nothing stronger than the assumption that the axioms of �rst-order
Peano arithmetic have a model.

The Traditional Logician's notion of logical implication is quite informal|
on any version it involves the imprecise notion of a `valid English argument'.
Nevertheless we have now proved that it agrees exactly with the mathe-
matically precise notion of logical implication given by the Proof Theorist.
(Cf. [Kreisel, 1967].) People are apt to say that it is impossible to prove
that an informal notion and a formal one agree exactly. Since we have just
done the impossible, maybe I should add a comment. Although the notion
of a valid argument is vague, there is no doubt that (i) if there is a for-
mal proof of a sequent, then any argument with the form of that sequent
must be valid, and (ii) if there is an explicitly de�nable counterexample
to the sequent, then there is an invalid argument of that form. We have
shown, by strict mathematics, that every �nite sequent has either a formal
proof or an explicitly de�nable counterexample. So we have trapped the in-
formal notion between two formal ones. Contrast Church's thesis, that the
e�ectively computable functions (informal notion) are exactly the recursive
ones (formal). There is no doubt that the existence of a recursive de�nition
for a function makes the function e�ectively computable. But nobody has
yet thought of any kind of mathematical object whose existence undeniably
implies that a function is not e�ectively computable. So Church's thesis
remains unproved. (Van Dalen's chapter in this Volume discusses Church's
thesis.)

I return to the completeness proof. By coding all expressions of L into
numbers or sets, we made it completely irrelevant that the symbols of L can
be written on a page, or even that there are at most countably many of them.
So let us now allow arbitrary sets to serve instead of symbols. Languages
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of this abstract type can be called set languages. They are in common use
today even among proof theorists. Of course to use these languages we
have to rely either on our intuitions about sets or on proofs in axiomatic
set theory; there is no question of checking by inspection. Henkin's [1949]

completeness proof was given in this setting. In fact he proved:

THEOREM 12. If L is a �rst-order set language and T a theory in L whose
cardinality is at most the in�nite cardinal �, then either a �nite part of T
can be proved inconsistent by a proof calculus, or T has a model with at
most � elements.

Theorem 12 has several important mathematical consequences. For exam-
ple, the Compactness Theorem says:

THEOREM 13. Let T be a �rst-order theory (in a set language). If every
�nite set of sentences in T has a model, then T has a model.

Theorem 13 for countable languages was proved by G�odel in [1930]. For
propositional logic with arbitrarily many symbols it was proved by G�odel
[1931a], in answer to a question of Menger. The �rst proof of Theorem
13 was sketched rather inadequately by Anatolii Mal'tsev in [1936] (see
the review of [Mal'tsev, 1941] by Henkin and Mostowski [1959]). But in
[1941] Mal'tsev showed that Theorem 13 has interesting and far from trivial
consequences in group theory, thus beginning one of the most important
lines of application of �rst-order logic in mathematics.

The last consequence I shall draw from Theorem 12 is not really interest-
ing until identity is added to the language (see the next section); but this is
a convenient place to state it. It is the Upward and Downward L�owenheim{
Skolem Theorem:

THEOREM 14. Let T be a �rst-order theory in a language with � formulas,
and � an in�nite cardinal at least as great as �. If T has a model with
in�nitely many elements then T has one with exactly � elements.

Theorem 13 was proved in successively stronger versions by L�owenheim
[1915], Skolem [1920; 1922], Tarski in unpublished lectures in 1928, Mal'tsev
[1936] and Tarski and Vaught [1956]; see [Vaught, 1974] for a thorough his-
tory of this and Theorems 12 and 13. The texts of Bell and Slomson [1969],
Chang and Keisler [1973] and Hodges [1993a] develop these theorems, and
Sacks [1972] and Cherlin [1976] study some of their applications in alge-
bra. Skolem [1955] expressly dissociated himself from the Upward version
of Theorem 14, which he regarded as nonsense.

18 IDENTITY

The symbol `=' is reserved for use as a 2-place predicate symbol with the
intended meaning
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(135) a = b i� a and b are one and the same thing.

When A is a structure for a language containing `=', we say that A has
standard identity if the relation IA(=) holds between elements � and � of
A precisely when � and � are the same element.

`x = y' is read as `x equals y', rather misleadingly|all men may be
created equal but they are not created one and the same man. Another
reading is `x is identical with y'. As far as English usage goes, this is not
much improvement on `equals': there are two identical birds feeding outside
my window, but they aren't the same bird (and think of identical twins).
Be that as it may, `=' is called the identity sign and the relation it expresses
in (135) is called identity.

Let L be a language containing the symbol `='. It would be pleasant if
we could �nd a theory � in L whose models are exactly the L-structures
with standard identity. Alas, there is no such theory. For every L-structure
A with standard identity there is an L-structure B which is a model of the
same sentences of L as A but doesn't have standard identity. Let us prove
this.

Take an L-structure A with standard identity and let Æ1; : : : ; Æ2;000;000 be
two million objects which are not in the domain of A. Let � be an element
of A. We construct the L-structure B thus. The elements of B are those
of A together with Æ1; : : : ; Æ2;000;000. For each individual constant c we put
IB(c) = IA(c). For each element � of B we de�ne an element �̂ of A as
follows: if � is in the domain of A then �̂ is �, and if � is one of the Æj 's
then �̂ is �. For every n-place predicate constant R we choose IB(R) so
that if h�1; : : : ; �ni is any n-tuple of elements of B, then:

(136) h�1; : : : ; �ni is in IB(R) i� h�̂1; : : : ; �̂ni is in IA(R).

This de�nes B. By induction on the complexity of � we can prove that for
every formula �(x1; : : : ; xn) of L and every n-tuple h�1; : : : ; �ni of elements
of B,

(137) B � �[�1=x1; : : : ; �n=xn] i� A � �[�̂1=x1; : : : ; �̂n=xn].

In particular A and B are models of exactly the same sentences of L. Since
A has standard identity, A � (x = x)[�=x]. Then from (136) it follows that
the relation IB(=) holds between any two of the elements Æ1; : : : ; Æ2;000;000,
and so IB(=) is vastly di�erent from standard identity.

So we look for a second best. Is there a theory � which is true in all L-
structures with standard identity, and which logically implies every sentence
of L that is true in all such L-structures? This time the answer is positive.
The following theory will do the job:

(138) 8x x = x:
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(139) All sentences of the form 8~zxy(x = y ! (�! �[y=x])).

Formula (138) is known as the law of reexivity of identity. (139) is not a
single sentence but an in�nite family of sentences, namely all those which
can be got by putting any formula � of L into the expression in (139); ~z
are all the free variables of � except for x and y. These sentences (139) are
collectively known as Leibniz' Law. They are the nearest we can get within
L to saying that if a = b then anything which is true of a is true of b too.

By inspection it is clear that every L-structure with standard identity is
a model of (138) and (139). To show that (138) and (139) logically imply
every sentence true in all structures with standard identity, let me prove
something stronger, namely: For every L-structure B which is a model of
(138) and (139) there is an L-structure A which is a model of exactly the
same sentences of L as B and has standard identity. Supposing this has
been proved, let � be the theory consisting of (138) and (139), and let  be
a sentence of L which is not logically implied by �. Then some L-structure
B is a model of � and : ; so some structure A with standard identity
is also a model of : . It follows that  is not true in all structures with
standard identity.

To prove what I undertook to prove, let B be a model of �. Then we
can show that the following hold, where we write =B for IB(=):

(140) the relation IB(=) is an equivalence relation;

(141) for every n-place predicate constant R of L, if �1 =B
�1; : : : ; �n =B �n and h�1; : : : ; �ni is in IB(R) then h�1; : : : ; �ni
is in IB(R).

Statement (141) can be proved by applying Leibniz' Law n times. Then
(140) follows from (141) and reexivity of identity, taking `=' for R. State-
ments (140) and (141) together are summarised by saying that the relation
=B is a congruence for L. For each element � of B, we write �= for the
equivalence class of � under the relation =B.

Now we de�ne the L-structure A as follows. The domain of A is the
class of all equivalence classes �= of elements � of B. For each individual
constant c we de�ne IA(c) to be IB(c)=. For each n-place predicate symbol
R of L we de�ne IA(R) by:

(142) h�=1 ; : : : ; �=n i is in IA(R) i� h�1; : : : ; �ni is in IB(R).

De�nition (142) presupposes that the right-hand side of (142) is true or false
depending only on the equivalence classes of �1; : : : ; �n; but (141) assured
this.

In particular, �= =A �= if and only if � =B �, in other words, if and
only if �= equals �=. Hence, A has standard identity. It remains only to
show that for every formula �(x1; : : : ; xn) of L and all elements �1; : : : ; �n
of B,
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(143) A � �[�=1 =x1; : : : ; �
=
n =xn] i� B � �[�1=x1; : : : ; �n=xn].

Statement (143) is proved by induction on the complexity of �.
Most logicians include `=' as part of the vocabulary of every language for

predicate logic, and interpret it always to mean standard identity. Since it
is in every language, it is usually not mentioned in the similarity type. The
proof calculi have to be extended to accommodate `='. One way to extend
the natural deduction calculus is to add two new rules:

(144)
x = x

x = y �

�[y=x]

The �rst rule deduces x = x from no premises.
Identity is needed for virtually all mathematical applications of logic.

It also makes it possible to express in formulas the meanings of various
English phrases such as `the', `only', `at least one', `at most eight', etc. (see
e.g. Section 21 below).

Many mathematical applications of logic need symbols of another kind,
called function symbols. The de�nitions given above can be stretched to
allow function symbols as follows. Symbols f; g; h etc., with or without
subscripts, are called function constants. A similarity type may contain
function constants, each of which is labelled as an n-place constant for some
positive integer n. If the language L has an n-place function constant f
and A is an L-structure, then f is interpreted by A as an n-place function
IA(f) which assigns one element of A to each ordered n-tuple of elements
of A. For example the 2-place function constant `+' may be interpreted as
a function which assigns 5 to h2; 3i, 18 to h9; 9i and so forth|though of
course it can also be interpreted as some quite di�erent function.

There are various ways of writing functions, such as

(145) sin x;
p
x; x2; x̂; yy; x+ y; hx; yi.

But the general style is `f(x1; : : : ; xn)', and logicians' notation tends to
follow this style. The details of syntax and proof theory with function
symbols are rather messy, so I omit them and refer the reader to [Hilbert
and Bernays, 1934] for details.

One rarely needs function symbols outside mathematical contexts. In any
case, provided we have `=' in our language, everything that can be said with
function symbols can also be said without them. Briey, the idea is to use a
predicate constant R in such a way that `R(x1; : : : ; xn+1)' means `f(x1; : : : ;
xn) = xn+1'. When the function symbol f is in the language, it is true in
all structures|and hence logically valid|that for all x1; : : : ; xn there is a
unique xn+1 such that f(x1; : : : ; xn) = xn+1. Translating f into R, this
becomes

(146) 8x1 � � �xnzt9y((R(x1; : : : ; xn; z) ^ R(x1; : : : ; xn; t) ! z = t)^
R(x1; : : : ; xn; y)).
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Since (146) is not logically valid, it may have to be assumed as an extra
premise when we translate arguments involving f into arguments involving
R.

19 AXIOMS AS DEFINITIONS

Axioms are, roughly speaking, the statements which one writes down at the
beginning of a book in order to de�ne the subject-matter of the book and
provide a basis for deductions made in the book. For example any textbook
of group theory will start by telling you that a group is a triple hG; �; ei
where � is a binary operation in the set G and e is an element of G such
that

(147) � is associative, i.e. for all x; y and z; x � (y � z) = (x � y) � z,

(148) e is an identity, i.e. for all x; x � e = e � x = x,

(149) every element x has an inverse, i.e. an element y such that x�y =
y � x = e.

Statements (147){(149) are known as the axioms for groups. I could have
chosen examples from physics, economics or even ethics.

It is often said that in an `axiomatic theory' such as group theory, the
axioms are `assumed' and the remaining results are `deduced from the ax-
ioms'. This is completely wrong. W. R. Scott's textbook Group Theory
[1964] contains 457 pages of facts about groups, and the last fact which
can by any stretch of the imagination be described as being `deduced from
(147){(149)' occurs on page 8. We could indeed rewrite Scott's book as a
set of deductions from assumed axioms, but the axioms would be those of
set theory, not (147){(149). These three group axioms would appear, not
as assumptions but as part of the de�nition of `group'.

The de�nition of a group can be paraphrased as follows. First we can
recast the triple hG; �; ei as an L-structure G = hG; IGi in a �rst-order
language L with one 2-place function symbol � and one individual constant
e. Then G is a group if and only if G is a model of the following three
sentences:

(150) 8xyz x � (y � z) = (x � y) � z;

(151) 8x(x � e = x ^ e � x = x);

(152) 8x9y(x � y = e ^ y � x = e):

Generalising this, let � be any theory in a �rst-order language L. Let
K be a class of L-structures. Then � is said to axiomatise K, and K is
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called Mod(�), if K is the class of all L-structures which are models of �.
The sentences in � are called axioms for K. Classes of form Mod(f�g) for
a single �rst-order sentence � are said to be �rst-order de�nable. Classes
of form Mod(�) for a �rst-order theory � are said to be generalised �rst-
order de�nable. The class of groups is �rst-order de�nable|we can use the
conjunction of the three sentences (150){(152).

Many other classes of structure which appear in pure or applied mathe-
matics are (generalised) �rst-order de�nable. To give examples I need only
list the axioms. First, equivalence relations:

(153) 8xR(x; x) `R is reexive'

(154) 8xy(R(x; y)! R(y; x)) `R is symmetric'

(155) 8xyz(R(x; y) ^ R(y; z)! R(x; z)) `R is transitive'.

Next, partial orderings:

(156) 8x x � x `� is reexive'

(157) 8xyz(x � y ^ y � z ! x � z) `� is transitive'

(158) 8xy(x � y ^ y � x! x = y) `� is antisymmetric'.

Then total or linear orderings are axiomatised by (157) and (158) and

(159) 8xy(x � y _ y � x) `� is connected'.

Total orderings can also be axiomatised as follows, using < instead of �:

(160) 8xyz(x < y ^ y < z ! x < z)

(161) 8x:x < x

(162) 8xy(x < y _ y < x _ x = y):

A total ordering in the second style can be converted into a total ordering
in the �rst style by reading x � y as meaning x < y _ x = y. There is a
similar conversion from the �rst style to the second. We can express various
conditions on linear orderings by adding further axioms to (157){(159):

(163) 9x8y y � x `there is a last element'

(164) 8x9y(:x = y ^ 8z(x � z $ x = z _ y � z))
`every element has an immediate successor'.

Algebra is particularly rich in �rst-order or generalised �rst-order de�nable
classes, for example rings, �elds, lattices, categories, toposes, algebraically
closed �elds, vector spaces over a given �eld. Commutative groups are ax-
iomatised by adding to (150){(152) the axiom
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(165) 8xy x � y = y � x:
All the examples mentioned so far are �rst-order de�nable except for alge-
braically closed �elds and vector spaces over an in�nite �eld, which need
in�nitely many sentences to de�ne them.

The notion of �rst-order de�nable classes was �rst made explicit in a
paper of Tarski [1954]. If we know that a class of structures is generalised
�rst-order de�nable then we immediately know various other facts about it,
for example that it is closed under taking ultraproducts (cf. [Chang and
Keisler, 1973] or [Bell and Slomson, 1969]|they are de�ned in Appendix
C below) and that implicit de�nitions in the class can all be made explicit
(`Beth's theorem'|Theorem 33 in Section 27 below). On the other hand, if
one is not interested in model-theoretic facts like these, the informal style of
(147){(149) makes just as good a de�nition of a class as any set of �rst-order
formulas. (In the philosophy of science, structuralists have given reasons for
preferring the informal set-theoretic style; see [Sneed, 1971] and [Stegm�uller,
1976].)

It was Hilbert and his school who �rst exploited axioms, higher-order as
well as �rst-order, as a means of de�ning classes of structures. Hilbert was
horri�cally inaccurate in describing what he was doing. When he set up
geometric axioms, he said that they de�ned what was meant by a point.
Frege then caustically asked how he could use this de�nition to determine
whether his pocket watch was a point ([Frege and Hilbert, 1899{1900]).
Hilbert had simply confused de�ning a class of structures with de�ning the
component relations and elements of a single structure. (Cf. the comments
of [Bernays, 1942].) In this matter Hilbert was a spokesman for a confusion
which many people shared. Even today one meets hopeful souls who believe
that the axioms of set theory de�ne what is meant by `set'.

Hilbert added the lunatic remark that `If . . . arbitrarily posited axioms to-
gether with all their consequences do not contradict one another, then they
are true and the things de�ned by these axioms exist' [Frege and Hilbert,
1899{1900]. For example, one infers, if the axioms which say there is a
measurable cardinal are consistent, then there is a measurable cardinal. If
the axioms which say there is no measurable cardinal are consistent, then
there is no measurable cardinal. If both sets of axioms are consistent . . . .
In later years he was more cautious. In fairness to Hilbert, one should set
his remark against the background beliefs of his time, one of which was the
now happily discredited theory of `implicit de�nition' (nothing to do with
Beth's theorem of that name). See [Co�a, 1991], who puts the Frege-Hilbert
debate helpfully into a broad historical context. Be that as it may, readers
of Hilbert's philosophical remarks should always bear in mind his slogan
`Wir sind Mathematiker ' [Hilbert, 1926].
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20 AXIOMS WITH INTENDED MODELS

Axioms are not always intended to de�ne a class of structures as in Section
19 above. Often they are written down in order to set on record certain facts
about a particular structure. The structure in question is then called the
intended interpretation or standard model of the axioms. The best known
example is probably the axioms of Peano arithmetic, which were set down
by Dedekind [1888; 1967] as a statement of the `fundamental properties' of
the natural number sequence (the �rst-order formalisation is due to G�odel
[1931b], cf. Appendix B below). Euclid's axioms and postulates of geom-
etry are another example, since he undoubtedly had space in mind as the
intended interpretation.

The object in both Dedekind's case and Euclid's was to write down some
elementary facts about the standard model so that further information could
be got by making deductions from these facts. With this aim it becomes
very natural to write the axioms in a �rst-order language, because we un-
derstand �rst-order deducibility well and so we shall know exactly what we
are entitled to deduce from the axioms.

However, there is no hope at all of de�ning the natural numbers, even
up to isomorphism, by means of any �rst-order axioms. Let me sketch a
proof of this|it will be useful later. Suppose L is the �rst-order language
of arithmetic, with symbols to represent plus and times, a 2-place predicate
constant < (`less than'), and a name n� for each natural number n. Let
L+ be L with a new individual constant c added. Let � be the set of all
sentences of L which are true in the standard model. Let �+ be � together
with the sentences

(166) 0� < c; 1� < c; 2� < c; : : : :

Now if � is any �nite set of sentences from �+ then � has a model: take
the standard model of � and let c stand for some natural number which is
greater than every number mentioned in �. So by the Compactness Theorem
(Theorem 13 in Section 17 above), �+ has a model A. Since �+ includes
�, A is a model of � and hence is a model of exactly the same sentences of
L as the standard model. But A also has an element IA(c) which by (166)
is `greater than' IA(0�); IA(1�); IA(2�) and all the `natural numbers' of A.
So A is a model of � with an `in�nite element'. Such models of � are called
non-standard models of arithmetic. They were �rst constructed by Skolem
[1934], and today people hold conferences on them.

But one can reasonably ask whether, say, the �rst-order Peano axioms
(cf. Appendix B) imply all �rst-order sentences which are true in the stan-
dard model. This is equivalent to asking whether the axioms are a complete
theory in the sense that if � is any sentence of their language, then either �
or :� is a consequence of the axioms. G�odel's epoch-making paper [1931b]
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showed that the �rst-order Peano axioms are not complete; in fact no me-
chanically describable theory in this language is both complete and true in
the standard model. In Section 24 below I shall sketch a proof of this.

There is a halfway house between the use of axioms to de�ne a class and
their use to say things about a standard model. Often we want to work with
a class K of L-structures which may not be generalised �rst-order de�nable.
In such cases we say that a theory � is a set of axioms for K if every
structure in K is a model of �; we call it a complete set of axioms for K if
moreover every sentence of L which is true in all structures in K is a logical
consequence of �.

Let me give three examples. (i) For the �rst, paraphrasing Carnap [1956,
p. 222 �] I consider the class of all structures which represent possible
worlds, with domain the set of all people, `Bx' interpreted as `x is a bachelor'
and `Mx' as `x is married'. Obviously this class is not generalised �rst-order
de�nable. But the following sentence is a complete set of axioms:

(167) 8x(Bx! :Mx):

In Carnap's terminology, when K is the class of all structures in which
certain symbols have certain �xed meanings, axioms for K are called mean-
ing postulates. (Lako� [1972] discusses some trade-o�s between meaning
postulates and deep structure analysis in linguistics.)

(ii) For a second sample, consider second-order logic (cf. [Chapter 4,
below]). In this logic we are able to say `for all subsets P of the domain,
. . . ', using second-order quanti�ers `8P '. For reasons explained in Chapter
4 below, there is no hope of constructing a complete proof calculus for
second-order logic. But we do have some incomplete calculi which are good
for most practical purposes. They prove, among other things, the formula

(168) 8PQ(8z(P (z)$ Q(z))! P = Q)

which is the second-order logician's version of the axiom of extensionality.
Second-order logic can be translated wholesale into a kind of two-sorted

�rst-order logic by the following device. Let L be any (�rst-order) language.
Form a two-sorted language L# with the same predicate and individual
constants as L, together with one new 2-place predicate constant ". For
each L-structure A, form the L#-structure A# as follows. The domain of A#

is jAj [ PjAj; jAj is the domain for the �rst sort and PjAj is the domain for
the second. (PX = the set of all subsets of X .) If � and � are elements of
A
#, then

(169) h�; �i is in IA#(") i� � is an element of the �rst sort;
� of the second sort, and � 2 �:

The constants of L are interpreted in the �rst sort of A# just as they were in
A. Now each second-order statement � about L-structures A is equivalent to
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a �rst-order statement �# about L#- structures A#. For example, if we use
number superscripts to distinguish the �rst and second sorts of variables,
the axiom of extensionality (168) translates into

(170) 8x2y2(8z1(z1"x2 $ z1"y2)! x2 = y2):

Axiom (170) is a �rst-order sentence in L#.

Let K be the class of all L#-structures of form A# for some L-structure
A. Let QC2 be some standard proof calculus for second-order logic, and
let � be the set of all sentences �# such that � is provable by QC2. Then
� is a set of axioms of K, though not a complete one. The L#-structures
in K are known as the standard models of �. There will be plenty of non-
standard models of � too, but because of (170) they can all be seen as
`parts of' standard models in the following way. For each element � of the
second sort in the model B of �, let �+ be the set of elements � such that
h�; �i 2 IB("). By (170), �+ = + implies � = . So in B we can replace
each element � of the second sort by �+. Then the second sort consists of
subsets of the domain of the �rst sort, but not necessarily all the subsets.
All the subsets are in the second domain if and only if this doctored version
of B is a standard model. (Models of �, standard or non-standard, are
known as Henkin models of second-order logic, in view of [Henkin, 1950].)

How can one distinguish between a proof calculus for second-order logic
on the one hand, and on the other hand a �rst-order proof calculus which
also proves the sentences in �? The answer is easy: one can't. In our no-
tation above, the proof calculus for second-order logic has `P (z)' where the
�rst-order calculus has `z1"x2', but this is no more than a di�erence of nota-
tion. Take away this di�erence and the two calculi become exactly the same
thing. Don't be misled by texts like Church [1956] which present `calculi of
�rst order' in one chapter and `calculi of second order' in another. The lat-
ter calculi are certainly di�erent from the former, because they incorporate
a certain amount of set theory. But what makes them second-order calculi,
as opposed to two-sorted �rst-order calculi with extra non-logical axioms,
is solely their intended interpretation.

It follows, incidentally, that it is quite meaningless to ask whether the
proof theory of actual mathematics is �rst-order or higher-order. (I recently
saw this question asked. The questioner concluded that the problem is `not
easy'.)

Where then can one meaningfully distinguish second-order from �rst-
order? One place is the classi�cation of structures. The class K of standard
models of � is not a �rst-order de�nable class of L#-structures, but it is
second-order de�nable.

More controversially, we can distinguish between �rst-order and second-
order statements about a speci�c structure, even when there is no question
of classi�cation. For example the sentence (168) says about an L-structure
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A something which can't be expressed in the �rst-order language of A. This
is not a matter of classi�cation, because (168) is true in all L-structures.

(iii) In Section 18 we studied the class of all L-structures with standard
identity. Quine [1970, p. 63f] studies them too, and I admire his nerve. He
�rst demonstrates that in any language L with �nite similarity type there is
a formula � which de�nes a congruence relation in every L-structure. From
Section 18 we know that � cannot always express identity. Never mind, says
Quine, let us rede�ne identity by the formula �. This happy rede�nition
instantly makes identity �rst-order de�nable, at least when the similarity
type is �nite. It also has the consequence, not mentioned by Quine, that
for any two di�erent things there is some language in which they are the
same thing. (Excuse me for a moment while I rede�ne exams as things that
I don't have to set.)

21 NOUN PHRASES

In this section I want to consider whether we can make any headway by
adding to �rst-order logic some symbols for various types of noun phrase.
Some types of noun phrase, such as `most Xs', are not really �t for formal-
ising because their meanings are too vague or too shifting. Of those which
can be formalised, some never give us anything new, in the sense that any
formula using a symbol for them is logically equivalent to a formula of �rst-
order logic (with =); to express this we say that these formalisations give
conservative extensions of �rst-order logic. Conservative extensions are not
necessarily a waste of time. Sometimes they enable us to say quickly some-
thing that can only be said lengthily in �rst-order symbols, sometimes they
behave more like natural languages than �rst-order logic does. So they may
be useful to linguists or to logicians in a hurry.

Many (perhaps most) English noun phrases have to be symbolised as
quanti�ers and not as terms. For example the English sentence

(171) I have inspected every batch.

�nds itself symbolised by something of form

(172) For every batch x, I have inspected x.

Let me recall the reason for this. If we copied English and simply put the
noun phrase in place of the variable x, there would be no way of distin-
guishing between (i) the negation of `I have inspected every batch' and (ii)
the sentence which asserts, of every batch, that I have not inspected it. In
style (172) there is no confusion between (i), viz.

(173) : For every batch x, I have inspected x.

and (ii), viz.
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(174) For every batch x, : I have inspected x.

Confusions like that between (i) and (ii) are so disastrous in logic that it
constantly amazes logicians to see that natural languages, using style (171),
have not yet collapsed into total anarchy.

In the logician's terminology, the scope of the quanti�er `For every batch
x' in (174) is the whole sentence, while in (173) it is only the part after the
negation sign. Unlike its English counterpart, the quanti�er doesn't replace
the free occurrences of x in the predicate, it binds them. (More precisely, an
occurrence of a quanti�er with variable x binds all occurrences of x which
are within its scope and not already bound.) This terminology carries over
at once to the other kinds of quanti�er that we shall consider, for example

(175) : For one in every three men x; x is colour blind.

The quanti�er `For one in every three men x' binds both occurrences of the
variable, and doesn't include the negation in its scope.

I shall consider three groups of noun phrases. The �rst yield conservative
extensions of �rst-order logic and are quite unproblematic. The second
again give conservative extensions and are awkward. The third don't yield
conservative extensions|we shall prove this. In all cases I assume that we
start with a �rst-order language L with identity.

The �rst group are noun phrases such as `At least n things x such that
�'. We do it recursively:

(176) 9�0x� is :?; 9�1x� is 9x�.

(177) 9�n+1x� is 9y(�[y=x] ^ 9�nx(:x = y ^ �)) when n � 1.

To these de�nitions we add:

(178) 9�nx� is :9�n+1x�:
(179) 9=nx� is 9�nx� ^ 9�nx�:
9=1x� is sometimes written 9!x�.

De�nitions (176){(179) are in the metalanguage; they simply select for-
mulas of L. But there is no diÆculty at all in adding the symbols 9�n,
9�n and 9=n for each natural number to the language L, and supplying the
needed extra clauses in the de�nition of �, together with a complete formal
calculus.

The second group are singular noun phrases of the form `The such-and-
such'. These are known as de�nite descriptions. Verbal variants of de�nite
descriptions, such as `My father's beard' for `The beard of my father', are
generally allowed to be de�nite descriptions too.

According to Bertrand Russell [1905], Whitehead and Russell
[1910, Introduction, Chapter III], the sentence
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(180) The author of `Slawkenburgius on Noses' was a poet.

can be paraphrased as stating three things: (1) at least one person wrote
`Slawkenburgius on Noses'; (2) at most one person wrote `Slawkenburgius
on Noses'; (3) some person who did write `Slawkenburgius on Noses' was
a poet. I happily leave to Bencivenga [4.5] and Salmon [8.5] the question
whether Russell was right about this. But assuming he was, his theory calls
for the following symbolisation. We write `f �x g' to represent `the person
or thing x such that  ', and we de�ne

(181) f �x g� to mean 9=1x ^ 9x( ^ �):

Expression (181) can be read either as a metalinguistic de�nition of a for-
mula L, or as a shorthand explanation of how the expressions f �x g can be
added to L. In the latter case the de�nition of � has to sprout one extra
clause:

(182) A � f �x g�[g] i� there is a unique element � of A such that
A �  [g; �=x]; and for this �;A � �[g; �=x]:

There is something quite strongly counterintuitive about the formulas
on either side in (181). It seems in a way obvious that when there is a
unique such-and-such, we can refer to it by saying `the such-and-such'. But
Russell's paraphrase never allows us to use the expression f �x g this way.
For example if we want to say that the such-and-such equals 5, Russell will
not allow us to render this as `f �x g = 5'. The expression f �x g has the
wrong grammatical type, and the semantical explanation in (182) doesn't
make it work like a name. On the right-hand side in (181) the position is
even worse|the de�nition description has vanished without trace.

Leaving intuition on one side, there are any number of places in the
course of formal calculation where one wants to be able to say `the such-
and-such', and then operate with this expression as a term. For example
formal number theorists would be in dire straits if they were forbidden use
of the term

(183) �x , i.e. the least number x such that  .

Likewise formal set theorists need a term

(184) fxj g, i.e. the set of all sets x such that  .

Less urgently, there are a number of mathematical terms which bind vari-
ables, for example the integral

R a
b
f(x)dx with bound variable x, which are

naturally de�ned as `the number � such that . . . (here follows half a page
of calculus)'. If we are concerned to formalise mathematics, the straightfor-
ward way to formalise such an integral is by a de�nite description term.

Necessity breeds invention, and in the event it is quite easy to extend the
�rst-order language L by adding terms �x . (The de�nitions of `term' and
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`formula' in Section 13 above have to be rewritten so that the classes are
de�ned by simultaneous induction, because now we can form terms out of
formulas as well as forming formulas out of terms.) There are two ways to
proceed. One is to take �x as a name of the unique element satisfying  , if
there is such a unique element, and as unde�ned otherwise; then to reckon
an atomic formula false whenever it contains an unde�ned term. This is
equivalent to giving each occurrence of �x the smallest possible scope, so
that the notation need not indicate any scope. (Cf. [Kleene, 1952, p. 327];
[Kalish and Montague, 1964, Chapter VII].) The second is to note that
questions of scope only arise if there is not a unique such-and-such. So we
can choose a constant of the language, say 0, and read �x as

(185) the element which is equal to the unique x such that  if there is
such a unique x, and is equal to 0 if there is not.

(Cf. [Montague and Vaught, 1959; Suppes, 1972].)
Russell himself claimed to believe that de�nite descriptions `do not name'.

So it is curious to note (as Kaplan does in his illuminating paper [1966] on
Russell's theory of descriptions) that Russell himself didn't use the notation
(181) which makes de�nite descriptions into quanti�ers. What he did in-
stead was to invent the notation �x and then use it both as a quanti�er and
as a term, even though this makes for a contorted syntax. Kaplan detects
in this `a lingering ambivalence' in the mind of the noble lord.

The third group of noun phrases express things which can't be said with
�rst-order formulas. Peirce [1885] invented the two-thirds quanti�er which
enables us to say `At least 2

3 of the company have white neckties'. (His
example.) Peirce's quanti�er was unrestricted. It seems more natural, and
changes nothing in principle, if we allow a relativisation predicate and write
2
3x( ; �) to mean `At least 2

3 of the things x which satisfy  satisfy �'.
Can this quanti�er be de�ned away in the spirit of (176){(179)? Unfor-

tunately not. Let me prove this. By a functionalI shall mean an expression
which is a �rst-order formula except that formula metavariables may occur
in it, and it has no constant symbols except perhaps =. By substitut-
ing actual formulas for the metavariables, we get a �rst-order formula. Two
functionals will be reckoned logically equivalent if whenever the same formu-
las are substituted for the metavariables in both functionals, the resulting
�rst-order formulas are logically equivalent. For example the expression
9�2x�, viz.

(186) 9y(�[y=x] ^ 9x(:x = y ^ �));

is a functional which is logically equivalent to 9�3x� _ 9=2x�. Notice that
we allow the functional to change some variables which it binds, so as to
avoid clash of variables.

A theorem of Skolem [1919] and Behmann [1922] (cf. [Ackermann, 1962,
pp. 41{47]) states that if a functional binds only one variable in each in-
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serted formula, then it is logically equivalent to a combination by :;^ and
_ of equations y = z and functionals of the form 9=nx� where � is a
functional without quanti�ers. Suppose now that we could de�ne away the
quanti�er 2

3x(; ). The result would be a functional binding just the variable
x in  and �, so by the Skolem{Behmann theorem we could rewrite it as a
propositional compound of a �nite number of functionals of the form 9=nx�,
and some equations. (The equations we can forget, because the meaning of
2
3x( ; �) shows that it has no signi�cant free variables beyond those in  
or �.) If n is the greatest integer for which 9=nx occurs in the functional,
then the functional is incapable of distinguishing any two numbers greater
than n, so that it can't possibly express that one of them is at least 2

3 times
the other.

A harder example is

(187) The average Briton speaks at least two-thirds of a foreign language.

I take this to mean that if we add up the number of foreign languages spoken
by each Briton, and divide the sum total by the number of Britons, then the
answer is at least 2

3 . Putting  (x) for `x is a Briton' and �(x; y) for `y is a for-
eign language spoken by x', this can be symbolised as fAv 23xyg( ; �). Can
the quanti�er fAv 23xyg be de�ned away in a �rst-order language? Again
the answer is no. This time the Skolem{Behmann result won't apply di-
rectly, because fAv 23xyg binds two variables, x and y, in the second formula
�. But indirectly the same argument will work. 2

3x( ; �) expresses just the
same thing as 8z( [z=x]! fAv 23xyg( ; z = x^ �[y=x]^ [y=x])). Hence if
fAv 23xyg could be de�ned away, then so could 2

3x, and we have seen that
this is impossible.

Barwise and Cooper [1981] made a thorough study of the logical prop-
erties of natural language noun phrases. See also [Montague, 1970; Mon-
tague, 1973], particularly his discussion of `the'. Van Benthem and Doets
(this Volume) have a fuller discussion of things not expressible in �rst-order
language.

III: The Expressive Power of First-order Logic

22 AFTER ALL THAT, WHAT IS FIRST-ORDER LOGIC?

It may seem perverse to write twenty-one sections of a chapter about ele-
mentary (i.e. �rst-order) logic without ever saying what elementary logic is.
But the easiest de�nition is ostensive: elementary logic is the logic that we
have been doing in Sections 1{18 above. But then, why set that logic apart
from any other? What particular virtues and vices does it have?
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At �rst sight the Traditional Logician might well prefer a stronger logic.
After all, the more valid argument schemas you can �nd him the happier
he is. But in fact Traditional Logicians tend to draw a line between what is
`genuinely logic' and what is really mathematics. The `genuine logic' usually
turns out to be a version of �rst-order logic.

One argument often put forward for this choice of `genuine logic' runs
along the following lines. In English we can group the parts of speech
into two groups. The �rst group consists of open classes such as nouns,
verbs, adjectives. These classes expand and contract as people absorb new
technology or abandon old-fashioned morality. Every word in these classes
carries its own meaning and subject-matter. In the second group are the
closed classes such as pronouns and conjunctions. Each of these classes
contains a �xed, small stock of words; these words have no subject-matter,
and their meaning lies in the way they combine with open-class words to
form phrases. Quirk and Greenbaum [1973, p.18] list the following examples
of closed-class words: the, a, that, this, he, they, anybody, one, which, of,
at, in, without, in spite of, and, that, when, although, oh, ah, ugh, phew.

The Traditional Logicians' claim is essentially this: `genuine logic' is
the logic which assembles those valid argument schemas in which open-
class words are replaced by schematic letters and closed-class words are
not. Quirk and Greenbaum's list already gives us ^ `and', : `without', 8
`anybody', 9 `a', and of course the words `not', `if', `then', `or' are also
closed-class words. The presence of `at', `in spite of' and `phew' in their list
doesn't imply we ought to have added any such items to our logic, because
these words don't play any distinctive role in arguments. (The presence of
`when' is suggestive though.) Arguably it is impossible to express second-
order conditions in English without using open-class words such as `set' or
`concept'.

It's a pretty theory. Related ideas run through Quine's [1970]. But for
myself I can't see why features of the surface grammar of a few languages
that we know and love should be considered relevant to the question what
is `genuine logic'.

We turn to the Proof Theorist. His views are not very helpful to us
here. As we saw in Section 20 above, there is in principle no di�erence
between a �rst-order proof calculus and a non-�rst-order one. Still, he
is likely to make the following comment, which is worth passing on. For
certain kinds of application of logic in mathematics, a stronger logic may
lead to weaker results. To quote one example among thousands: in a famous
paper [1965] Ax and Kochen showed that for each positive integer d there
are only �nitely many primes which contradict a conjecture of Artin about
d. Their proof used heavy set theory and gave no indication what these
primes were. Then Cohen [1969] found a proof of the same result using no
set-theoretic assumptions at all. From his proof one can calculate, for each
d, what the bad primes are. By using the heavy guns, Ax and Kochen had
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gained intuition but lost information. The moral is that we should think
twice before strengthening our logic. The mere fact that a thing is provable
in a weaker logic may lead us to further information.

We turn to the Model Theorist. He was probably taught that `�rst-order'
means we only quantify over elements, not over subsets of the domain of a
structure. By now he will have learned (Section 21 above) that some kinds
of quanti�cation over elements are not �rst-order either.

What really matters to a Model Theorist in his language is the interplay of
strength and weakness. Suppose he �nds a language which is so weak that
it can't tell a Montagu from a Capulet. Then at once he will try to use it
to prove things about Capulets, as follows. First he shows that something
is true for all Montagus, and then he shows that this thing is expressible in
his weak language L. Then this thing must be true for at least one Capulet
too, otherwise he could use it to distinguish Montagus from Capulets in L.
If L is bad enough at telling Montagus and Capulets apart, he may even
be able to deduce that all Capulets have the feature in question. These
methods, which are variously known as overspill or transfer methods, can
be extremely useful if Montagus are easier to study than Capulets.

It happens that �rst-order languages are excellent for encoding �nite
combinatorial information (e.g. about �nite sequences or syntax), but hope-
lessly bad at distinguishing one in�nite cardinal or in�nite ordering from
another in�nite cardinal or in�nite ordering. This particular combination
makes �rst-order model theory very rich in transfer arguments. For example
the whole of Abraham Robinson's non-standard analysis [Robinson, 1967]

is one vast transfer argument. The Model Theorist will not lightly give
up a language which is as splendidly weak as the Upward and Downward
L�owenheim{Skolem Theorem and the Compactness Theorem (Section 17
above) show �rst-order languages to be.

This is the setting into which Per Lindstr�om's theorem came (Section 27
below). He showed that any language which has as much coding power as
�rst-order languages, but also the same weaknesses which have just been
mentioned, must actually be a �rst-order language in the sense that each of
its sentences has exactly the same models as some �rst-order sentence.

23 SET THEORY

In 1922 Skolem described a set of �rst-order sentences which have become
accepted, with slight variations, as the de�nitive axiomatisation of set the-
ory and hence in some sense a foundation for mathematics. Skolem's ax-
ioms were in fact a �rst-order version of the informal axioms which Zer-
melo [1908] had given, together with one extra axiom (Replacement) which
Fraenkel [1922] had also seen was necessary. The axioms are known as
ZFC|Zermelo{Fraenkel set theory with Choice. They are listed in Ap-
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pendix C below and developed in detail in [Suppes, 1972] and [Levy, 1979].
When these axioms are used as a foundation for set theory or any other

part of mathematics, they are read as being about a particular collection V ,
the class of all sets. Mathematicians di�er about whether we have any ac-
cess to this collection V independently of the axioms. Some writers [G�odel,
1947] believe V is the standard model of the axioms, while others [von Neu-
mann, 1925] regard the symbol `V ' as having no literal meaning at all. But
everybody agrees that the axioms have a standard reading, namely as being
about V . In this the axioms of ZFC di�er from, say, the axioms for group
theory, which are never read as being about The Group, but simply as being
true in any group.

These axioms form a foundation for mathematics in two di�erent ways.
First, some parts of mathematics are directly about sets, so that all their
theorems can be phrased quite naturally as statements about V . For ex-
ample the natural numbers are now often taken to be sets. If they are sets,
then the integers, the rationals, the reals, the complex numbers and various
vector spaces over the complex numbers are sets too. Thus the whole of
real and complex analysis is now recognised as being part of set theory and
can be developed from the axioms of ZFC.

Some other parts of mathematics are not about sets, but can be encoded
in V . We already have an example in Section 17 above, where we converted
languages into sets. There are two parts to an encoding. First the entities
under discussion are replaced by sets, and we check that all the relations
between the original entities go over into relations in V that can be de�ned
within the language of �rst-order set theory. In the case of our encoded
languages, it was enough to note that any �nite sequence of sets a1; : : : ; an
can be coded into an ordered n-tuple ha1; : : : ; ani, and that lengths of se-
quences, concatenations of sequences and the result of altering one term of
a sequence can all be de�ned. (Cf. [Gandy, 1974].)

The second part of an encoding is to check that all the theorems one
wants to prove can be deduced from the axioms of ZFC. Most theorems of
elementary syntax can be proved using only the much weaker axioms of
Kripke{Platek set theory (cf. [Barwise, 1975]); these axioms plus the axiom
of in�nity suÆce for most elementary model theory too. (Harnik [1985] and
[1987] analyses the set-theoretic assumptions needed for various theorems
in model theory.) Thus the possibility of encoding pieces of mathematics
in set theory rests on two things: �rst the expressive power of the �rst-
order language for talking about sets, and second the proving power of
the set-theoretic axioms. Most of modern mathematics lies within V or
can be encoded within it in the way just described. Not all the encodings
can be done in a uniform way; see for example Feferman [1969] for a way of
handling tricky items from category theory, and the next section below for a
trickier item from set theory itself. I think it is fair to say that all of modern
mathematics can be encoded in set theory, but it has to be done locally and
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not all at once, and sometimes there is a perceptible loss of meaning in the
encoding. (Incidentally the rival system of Principia Mathematica, using a
higher-order logic, came nowhere near this goal. As G�odel says of Principia
in his [1951]: `it is clear that the theory of real numbers in its present form
cannot be obtained'.)

One naturally asks how much of the credit for this universality lies with
�rst-order logic. Might a weaker logic suÆce? The question turns out to
be not entirely well-posed; if this other logic can in some sense express
everything that can be expressed in �rst-order logic, then in what sense is
it `weaker'? In case any reader feels disposed to look at the question and
clarify it, let me mention some reductions to other logics.

First, workers in logic programming or algebraic speci�cation are con-
stantly reducing �rst-order statements to universal Horn expressions. One
can systematise these reductions; see for example Hodges [1993b, Section
10], or Padawitz [1988, Section 4.8]. Second, using very much subtler meth-
ods, Tarski and Givant [1987] showed that one can develop set theory within
an equational relational calculus L�. In their Preface they comment:

. . .L� is equipollent (in a natural sense) to a certain fragment

. . . of �rst-order logic having one binary predicate and containing
just three variables. . . . It is therefore quite surprising that L�
proves adequate for the formalization of practically all known
systems of set theory and hence for the development of all of
classical mathematics.

And third, there may be some mileage in the fact that essentially any piece
of mathematics can be encoded in an elementary topos (cf. [Johnstone,
1977]).

Amazingly, Skolem's purpose in writing down the axioms of ZFC was to
debunk the enterprise: `But in recent times I have seen to my surprise that
so many mathematicians think that these axioms of set theory provide the
ideal foundation for mathematics; therefore it seemed to me that the time
had come to publish a critique' [Skolem, 1922].

In fact Skolem showed that, since the axioms form a countable �rst-
order theory, they have a countable model A. In A there are `sets' which
satisfy the predicate `x is uncountable', but since A is countable, these `sets'
have only countably many `members'. This has become known as Skolem's
Paradox, though in fact there is no paradox. The set-theoretic predicate `x
is uncountable' is written so as to catch the uncountable elements of V , and
there is no reason at all to expect it to distinguish the uncountable elements
of other models of set theory. More precisely, this predicate says `there is
no 1{1 function from x to the set !'. In a model A which is di�erent from
V , this only expresses that there is no function which is an element of A
and which is 1{1 from x to !.
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According to several writers the real moral of Skolem's Paradox is that
there is no standard model of ZFC, since for any model A of ZFC there
is another model B which is not isomorphic to A but is indistinguishable
from A by �rst-order sentences. If you have already convinced yourself that
the only things we can say about an abstract structure A are of the form
`Such-and-such �rst-order sentences are true in A', then you should �nd
this argument persuasive. (See [Klenk, 1976; Putnam, 1980] for further
discussion.)

Skolem's own explanation of why his argument debunks axiomatic set-
theoretic foundations is very obscure. He says in several places that the
conclusion is that the meaning of `uncountable' is relative to the axioms of
set theory. I have no idea what this means. The obvious conclusion, surely,
is that the meaning of `uncountable' is relative to the model. But Skolem
said that he didn't believe in the existence of uncountable sets anyway, and
we learn he found it disagreeable to review the articles of people who did
[Skolem, 1955].

Contemporary set theorists make free use of non-standard|especially
countable|models of ZFC. One usually requires the models to be well-
founded, i.e. to have no elements which descend in an in�nite sequence

(188) � � � 2 a2 2 a1 2 a0:
It is easy to see that this is not a �rst-order condition on models (for exam-
ple, Hodges [1972] constructs models of full �rst-order set theory with arbi-
trarily long descending sequences of ordinals but no uncountable increasing
well-ordered sequences|these models are almost inversely well-founded.)
However, if we restrict ourselves to models which are subsets of V , then
the statement that such a model contains no sequence (188) can be writ-
ten as a �rst-order formula in the language of V . The moral is that it is
simply meaningless to classify mathematical statements absolutely as `�rst-
order' or `not �rst-order'. One and the same statement can perfectly well
express a second-order condition on structure A but a �rst-order condition
on structure B. (Cf. Section 20 above.)

Meanwhile since the 1950s a number of set theorists have been exploring
�rst-order axioms which imply that the universe of sets is not well-founded.
Axioms of this kind are called anti-foundation axioms; they are rivals to
the Foundation (or Regularity) axiom ZF3 in Appendix C below. For many
years this work went largely unnoticed, probably because nobody saw any
foundational use for it (forgive the pun). But in the 1980s Aczel [1988]

saw how to use models of anti-foundation axioms in order to build repre-
sentations of in�nite processes. Barwise generalised Aczel's idea and used
non-well-founded sets to represent self-referential phenomena in semantics
and elsewhere (cf. [Barwise and Moss, 1996]). Of course there is no prob-
lem about describing non-well-founded relations in conventional set theory.
The advantage of models of anti-foundation axioms is that they take the
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membership relation 2 itself to be non-well-founded, and it is claimed that
this allows us to fall back on other intuitions that we already have about
set membership.

24 ENCODING SYNTAX

I begin by showing that the de�nition of truth in the class V of all sets is
not itself expressible in V by a �rst-order formula. This will demonstrate
that there is at least one piece of mathematics which can't be encoded in
set theory without serious change of meaning.

As we saw in the previous section, there is no problem about encoding
the �rst-order language L of set theory into V . Without going into details,
let me add that we can go one stage further and add to the language L a
name for each set; the resulting language L+ can still be encoded in V as
a de�nable proper class. Let us assume this has been done, so that every
formula of L+ is in fact a set. For each set b, we write pbq for the constant of
L+ which names b. (This is nothing to do with Quine's corners p q. ) When
we speak of sentences of L+ being true in V , we mean that they are true in
the structure whose domain is V where `2' is interpreted as set membership
and each constant pbq is taken as a name of b.

A class X of sets is said to be de�nable by the formula  if for every set
�,

(189) V �  [�=x] i� � 2 X:
Since every set � has a name p�q, (189) is equivalent to:

(190) V �  (p�q=x) i� � 2 X
where I now write  (p�q=x) for the result of putting p�q in place of free
occurrences of x in  .

Suppose now that the class of true sentences of L+ can be de�ned by a
formula True of L+ with the free variable x. Then for every sentence � of
L+, according to (190),

(191) V � True (p�q=x) i� V � �:

But since the syntax of L+ is de�nable in V , there is a formula � of L+ with
just x free, such that for every formula � of L+ with just x free, if p�q = b
then

(192) V � �(pbq=x) i� V � : True (p�(pbq=x)q=x):

Now put b = p�q. Then by (191) and (192),

(193) V � �(pbq=x) i� V � True (p�(pbq=x)q=x) i� V � :�(pbq=x):
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Evidently the two ends of (193) make a contradiction. Hence the class of
true sentences of L can't be de�ned by any formula of L. Thus we have
shown that

THEOREM 15. The class of pairs h�; gi where � is a formula of the lan-
guage L of set theory, g is an assignment in V and V � �[g], is not de�nable
in V by any formula of the language L+ of set theory with names for arbi-
trary sets.

This is one version of Tarski's [1935] theorem on the unde�nability of
truth. Another version, with essentially the same proof, is:

THEOREM 16. The class of sentences � of L which are true in V is not
de�nable in V by any formula of L.

Of course the set b of all true sentences of L would be de�nable in V if
we allowed ourselves a name for b. Hence the di�erence between Theorems
15 and 16. These two theorems mean that the matter of truth in V has to
be handled either informally or not at all.

L�evy [1965] gives several re�ned theorems about de�nability of truth in
V . He shows that truth for certain limited classes of sentences of L+ can
be de�ned in V ; in fact each sentence of L+ lies in one of his classes. As I
remarked earlier, everything can be encoded, but not all at once.

Tarski's argument was based on a famous paper of G�odel [1931b], to
which I now turn. When formalising the language of arithmetic it is com-
mon to include two restricted quanti�ers (8x < y) and (9x < y), meaning
respectively `for all x which are less than y' and `there is an x which is less
than y, such that'. A formula in which every quanti�er is restricted is called
a �0 formula. Formulas of form 8~x� and 9~x�, where � is a �0 formula, are
said to be �1 and �1 respectively. (See under `Arithmetical hierarchy' in
van Dalen (this Volume).)
N shall be the structure whose elements are the natural numbers; each

natural number is named by an individual constant pnq, and there are
relations or functions giving `plus' and `times'. A relation on the domain of
N which is de�ned by a �1 or �1 formula is said to be a �1 or �1 relation
respectively. Some relations can be de�ned in both ways; these are said to
be �1 relations. The interest of these classi�cations lies in a theorem of
Kleene [1943].

THEOREM 17. An n-place relation R on the natural numbers is �1 i�
there is a computational test which decides whether any given n-tuple is in
R; an n-tuple relation R on the natural numbers is �1 i� a computer can
be programmed to print out all and only the n-tuples in R.

Hilbert in [1926], the paper that started this whole line of enquiry, had
laid great stress on the fact that we can test the truth of a �0 sentence in a
�nite number of steps, because each time we meet a restricted quanti�er we
have only to check a �nite number of numbers. This is the central idea of
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the proofs from left to right in Kleene's equivalences. The other directions
are proved by encoding computers into N ; see Theorems 2.5 and 2.14 in
Van Dalen (this Volume).

Now all grammatical properties of a sentence can be checked by me-
chanical computation. So we can encode the language of �rst-order Peano
arithmetic into N in such a way that all the grammatical notions are ex-
pressed by �1 relations. (This follows from Theorem 17, but G�odel [1931b]

wrote out an encoding explicitly.) We shall suppose that this has been done,
so that from now on every formula or symbol of the language of arithmetic
is simply a number. Thus every formula � is a number which is named by
the individual constant p�q. Here p�q is also a number, but generally a
di�erent number from �; p�q is called the G�odel number of �. Note that
if T is any mechanically describable theory in the language of arithmetic,
then a suitably programmed computer can spew out all the consequences
of T one by one, so that by Kleene's equivalences (Theorem 17), the set of
all sentences � such that T ` � is a �1 set.

We need one other piece of general theory. Tarski et al. [1953] describe
a sentence Q in the language of arithmetic which is true in N and has the
remarkable property that for every �1 sentence �,

(194) Q ` � i� N � �:

We shall use these facts to show that the set of numbers n which are not
sentences deducible from Q is not a �1 set. Suppose it were a �1 set, de�ned
by the �1 formula  . Then for every number n we would have

(195) N �  (pnq=x) i� not(Q ` n):

Now since all syntactic notions are �1, with a little care one can �nd a �1

formula � with just x free, such that for every formula � with just x free, if
p�q = n then

(196) N � �(pnq=x) i� N �  (p�(pnq=x)q=x):

Putting n = p�q we get by (194), (195) and (196):

(197) N � �(pnq=x) i� N �  (p�(pnq=x)q=x)
i� not(Q ` �(pnq=x))
i� not(N � �(pnq=x))

where the last equivalence is because �(pnq=x) is a �1 sentence. The two
ends of (197) make a contradiction; so we have proved that the set of num-
bers n which are not sentences deducible from Q is not �1. Hence the set
of numbers which are deducible is not �1, and therefore by Theorem 17
there is no mechanical test for what numbers belong to it. We have proved:
there is no mechanical test which determines, for any given sentence � of
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the language of arithmetic, whether or not ` (Q ! �). This immediately
implies Church's theorem [1936]:

THEOREM 18. There is no mechanical test to determine which sentences
of �rst-order languages are logically valid.

Now we can very easily prove a weak version of G�odel's [1931b] incom-
pleteness theorem too. Let P be �rst-order Peano arithmetic. Then it can
be shown that P ` Q. Hence from (194) we can infer that (194) holds with
P in place of Q. So the same argument as above shows that the set of
non-consequences of P is not �1. If P had as consequences all the sentences
true in N , then the non-consequences of P would consist of (i) the sentences
� such that P ` :�, and (ii) the numbers which are not sentences. But
these together form a �1 set. Hence, as G�odel proved,

THEOREM 19. There are sentences which are true in N but not deducible
from P .

Finally Tarski's theorem (Theorems 15, 16) on the unde�nability of truth
applies to arithmetic just as well as to set theory. A set of numbers which
is de�nable in N by a �rst-order formula is said to be arithmetical. Tarski's
theorem on the unde�nability of truth in N states:

THEOREM 20. The class of �rst-order sentences which are true in N is
not arithmetical.

Van Benthem and Doets (this Volume) show why Theorem 19 implies
that there can be no complete formal proof calculus for second-order logic.

For work connecting G�odel's argument with modal logic, see Boolos [1979;
1993] and Smory�nski (Volume 9 of this Handbook).

25 SKOLEM FUNCTIONS

When Hilbert interpreted 9x� as saying in e�ect `The element x which I
choose satis�es �' (cf. Section 15 above), Brouwer accused him of `causing
mathematics to degenerate into a game' [Hilbert, 1928]. Hilbert was de-
lighted with this description, as well he might have been, since games which
are closely related to Hilbert's idea have turned out to be an extremely
powerful tool for understanding quanti�ers.

Before the technicalities, here is an example. Take the sentence

(198) Everybody in Croydon owns a dog.

Imagine a game G: you make the �rst move by producing someone who
lives in Croydon, and I have to reply by producing a dog. I win if and only
if the dog I produced belongs to the person you produced. Assuming that
I have free access to other people's dogs, (198) is true if and only if I can
always win the game G. This can be rephrased: (198) is true if and only if
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there is a function F assigning a dog to each person living in Croydon, such
that whenever we play G, whatever person x you produce, if I retaliate with
dog F (x) then I win. A function F with this property is called a winning
strategy for me in the game G. By translating (198) into a statement about
winning strategies, we have turned a statement of form 8x9y� into one of
form 9F8x .

Now come the technicalities. For simplicity, I shall assume that our
language L doesn't contain ?;! or $, and that all occurrences of : are
immediately in front of atomic formulas. The arguments of Sections 5 and
15 show that every �rst-order formula is logically equivalent to one in this
form, so the theorems proved below hold without this restriction on L. A
shall be a �xed L-structure. For each formula � of L and assignment g in A
to the free variables of �, we shall de�ne a game G(A; �; g) to be played by
two players 8 and 9 (male and female). The de�nition of G(A; �; g) is by
induction on the complexity of �, and it very closely follows the de�nition
of � in Section 14:

1. If � is atomic then neither player makes any move in G(A; �; g) or
G(A;:�; g); player 9 wins G(A; �; g) if A � �[g], and she wins
G(A;:�; g) if A � :�[g]; player 8 wins i� player 9 doesn't win.

2. Suppose � is  ^ �, and g1 and g2 are respectively the restrictions
of g to the free variables of  ; �; then player 8 has the �rst move in
G(A; �; g), and the move consists of deciding whether the game shall
proceed as G(A;  ; g1) or as G(A; �; g2).

3. Suppose � is  _ �, and g1; g2 are as in (2); then player 9 moves by
deciding whether the game shall continue as G(A;  ; g1) orG(A; �; g2).

4. If � is 8x then player 8 chooses an element � of A, and the game
proceeds as G(A;  ; g; �=x).

5. If � is 9x then player 9 chooses an element � of A, and the game
proceeds as G(A;  ; g; �=x).

If g is an assignment suitable for �, and h is the restriction of g to the free
variables of �, then G(A; �; g) shall be G(A; �;h). When � is a sentence, h
is empty and we write the game simply as G(A; �).

The quanti�er clauses for these games were introduced in [Henkin, 1961].
It is then clear how to handle the other clauses; see [Hintikka, 1973, Chap-
ter V]. Lorenzen [1961; 1962] (cf. also Lorenzen and Schwemmer [1975])
described similar games, but in his versions the winning player had to prove
a sentence, so that his games turned out to de�ne intuitionistic provability
where ours will de�ne truth. (Cf. Felscher (Volume 7 of this Handbook.) In
Lorenzen [1962] one sees a clear link with cut-free sequent proofs.
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A strategy for a player in a game is a set of rules that tell him how he
should play, in terms of the previous moves of the other player. The strategy
is called winning if the player wins every time he uses it, regardless of how
the other player moves. Leaving aside the game-theoretic setting, the next
result probably ought to be credited to Skolem [1920]:

THEOREM 21. Assume the axiom of choice (cf. Appendix C). Then for
every L-structure A, every formula � of L and every assignment g in A
which is suitable for �;A � �[g] i� player 9 has a winning strategy for the
game G(A; �; g).

Theorem 21 is proved by induction on the complexity of �. I consider only
clause (4), which is the one that needs the axiom of choice. The `if' direction
is not hard to prove. For the `only if', suppose that A � 8x [g], where g is
an assignment to the free variables of 8x . Then A �  [g; �=x] for every
element �; so by the induction assumption, player 9 has a winning strategy
for each G(A;  ; g; �=x). Now choose a winning strategy S� for player 9 in
each game G(A;  ; g; �=x). Player 9's winning strategy for G(A; �; g) shall
be as follows: wait to see what element � player 8 chooses, and then follow
S� for the rest of the game.

Theorem 21 has a wide range of consequences. First, it shows that games
can be used to give a de�nition of truth in structures. In fact this was
Henkin's purpose in introducing them. See Chapter III of Hintikka [1973]

for some phenomenological reections on this kind of truth-de�nition.
For the next applications we should bear in mind that every �rst-order

formula can be converted into a logically equivalent �rst-order formula which
is prenex, i.e. with all its quanti�ers at the left-hand end. (Cf. (127).)
When � is prenex, a strategy for player 9 takes a particularly simple form.
It consists of a set of functions, one for each existential quanti�er in �,
which tell player 9 what element to choose, depending on what elements
were chosen by player 8 at earlier universal quanti�ers.

For example if � is 8x9y8z9tR(x; y; z; t), then a strategy for player 9 in
G(A; �) will consist of two functions, a 1-place function Fy and a 2-place
function Ft. This strategy will be winning if and only if

(199) for all elements � and , A � R(x; y; z; t)[�=x; Fy(�)=y; =z;
Ft(�; )=t].

Statement (199) can be paraphrased as follows. Introduce new function
symbols fy and ft. Write �^ for the sentence got from � by removing the
existential quanti�ers and then putting fy(x); ft(x; z) in place of y; t respec-
tively. So �^ is 8x8zR(x; fy(x); z; ft(x; z)). We expand A to a structure A^
by adding interpretations IA^(fy) and IA^(ft) for the new function symbols;
let Fy and Ft be these interpretations. Then by (199),

(200) Fy ; Ft are a winning strategy for player 9 in G(A; �) i� A^� � .̂



ELEMENTARY PREDICATE LOGIC 89

Functions Fy; Ft which do satisfy either side of (200) are called Skolem
functions for �. Putting together (200) and Theorem 21, we get

(201) A � � i� by adding functions to A we can get a structure A^ such
that A^ � � .̂

A sentence �^ can be de�ned in the same way whenever � is any prenex
sentence; (201) will still apply. Note that �^ is of the form 8~x where  has
no quanti�ers; a formula of this form is said to be universal.

From (201) we can deduce:

THEOREM 22. Every prenex �rst-order sentence � is logically equivalent
to a second-order sentence 9~f�^ in which �^ is universal.

In other words, we can always push existential quanti�ers to the left of
universal quanti�ers, provided that we convert the existential quanti�ers
into second-order function quanti�ers 9~f . Another consequence of (201)
is:

LEMMA 23. For every prenex �rst-order sentence � we can e�ectively �nd
a universal sentence �^ which has a model i� � has a model.

Because of Lemma 23, �^ is known as the Skolem normal form of � for
satis�ability.

Lemma 23 is handy for simplifying various logical problems. But it would
be handier still if no function symbols were involved. At the end of Section
18 we saw that anything that can be said with a function constant can also
be said with a relation constant. However, in order to make the implication
from right to left in (201) still hold when relations are used instead of
functions, we have to require that the relations really do represent functions,
in other words some sentences of form (146) must hold. These sentences
are 89 sentences, i.e. they have form 8~x9~y where  has no quanti�ers.
The upshot is that for every prenex �rst-order sentence � without function
symbols we can e�ectively �nd an 89 �rst-order sentence �^ without function
symbols but with extra relation symbols, such that � has a model if and only
if �^ has a model. The sentence �^ is also known as the Skolem normal
form of � for satis�ability.

For more on Skolem normal forms see [Kreisel and Krivine, 1967, Chap-
ter 2].

Skolem also applied Theorem 21 to prove his part of the L�owenheim{
Skolem Theorem 14. We say that L-structures A and B are elementarily
equivalent to each other if exactly the same sentences of L are true in A as
in B. Skolem showed:

THEOREM 24. If L is a language with at most countably many formulas
and A is an in�nite L-structure, then by choosing countably many elements
of A and throwing out the rest, we can get a countable L-structure B which
is elementarily equivalent to A.
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This is proved as follows. There are countably many sentences of L which
are true in A. For each of these sentences �, player 9 has a winning strategy
S� for G(A; �). All we need to do is �nd a countable set X of elements of
A such that if player 8 chooses his elements from X , all the strategies S�
tell player 9 to pick elements which are in X too. Then X will serve as
the domain of B, and player 9 will win each G(B; �) by playing the same
strategy S� as for G(A; �). Starting from any countable set X0 of elements
of A, let Xn+1 be Xn together with all elements called forth by any of the
strategies S� when player 8 chooses from Xn; then X can be the set of all
elements which occur in Xn for at least one natural number n.

In his paper [1920], Skolem noticed that the proof of Theorem 21 gives
us information in a rather broader setting too. Let L!1! be the logic we get
if, starting from �rst-order logic, we allow formulas to contain conjunctions
or disjunctions of countably many formulas at a time. For example, in L!1!
there is an in�nite sentence

(202) 8x(x = 0 _ x = 1 _ x = 2 _ � � �)
which says `Every element is a natural number'. If we add (202) to the
axioms of �rst-order Peano arithmetic we get a theory whose only models are
the natural number system and other structures which are exact copies of it.
This implies that the Compactness Theorem (Theorem 13) and the Upward
L�owenheim{Skolem Theorem (Theorem 14) both fail when we replace �rst-
order logic by L!1!.

Skolem noticed that the proof of Theorem 21 tells us:

THEOREM 25. If � is a sentence of the logic L!1! and A is a model of �,
then by choosing at most countably many elements of A we can get an at
most countable structure B which is also a model of �.

So a form of the Downward L�owenheim{Skolem Theorem (cf. Theorem
14) does hold in L!1!.

To return for a moment to the games at the beginning of this section:
Hintikka [1996] has pointed out that there is an unspoken assumption that
each player is allowed to know the previous choices of the other player. (If
I don't know what person in Croydon you have produced, how can I know
which dog to choose?) He has proposed that we should recast �rst-order
logic so that this assumption need no longer hold. For example, in his
notation, if � is the sentence

(203) 8x(9y=8x)x = y

then in the game G(A; �), player 8 chooses an element a of A, then player
9 chooses an element b of A without being told what a is. Player 9 wins
if and only if a = b. (One easily sees that if A has at least two elements,
then neither player has a winning strategy for this game.) These added
slash quanti�ers greatly add to the expressive power of �rst-order logic. For
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example there is now a sentence which is true in a structure A if and only if A
has in�nitely many elements; there is no such sentence of ordinary �rst-order
logic. As a result, the compactness theorem fails for Hintikka's logic, and
hence in turn the logic has no complete proof calculus. One can construct a
Tarski-style semantics for the new logic (by a slight adaptation of [Hodges,
1997b]), but it has some very odd features. It no longer makes sense to
talk of an element satisfying a formula; instead one has to use the notion of
a set of elements uniformly satisfying the formula, where `uniform' means
essentially that player 9 doesn't need any forbidden information about which
element within the set has been chosen. Hintikka claims, boldly, that the
extended logic is in several ways more natural than the usual �rst-order
logic.

26 BACK-AND-FORTH EQUIVALENCE

In this section and the next, we shall prove that certain things are de�nable
by �rst-order formulas. The original versions of the theorems we prove go
back to the mid 1950s. But for us their interest lies in the proofs which Per
Lindstr�om gave in [1969]. He very cleverly used the facts (1) that �rst-order
logic is good for encoding �nite sequences, and (2) that �rst-order logic is
bad for distinguishing in�nite cardinals. His proofs showed that anything we
can say using a logic which shares features (1) and (2) with �rst-order logic
can also be said with a �rst-order sentence; so �rst-order logic is essentially
the only logic with these features.

I should say what we mean by a logic. A logic L is a family of languages,
one for each similarity type, together with a de�nition of what it is for a
sentence of a language L of L to be true in an L-structure. Just as in �rst-
order logic, an L-structure is a structure which has named relations and
elements corresponding to the similarity type of L. We shall always assume
that the analogue of Theorem 1 holds for L, i.e., that the truth-value of a
sentence � in a structure A doesn't depend on how A interprets constants
which don't occur in �.

We shall say that a logic L is an extension of �rst-order logic if, roughly
speaking, it can do everything that �rst-order logic can do and maybe a bit
more. More precisely, it must satisfy three conditions. (i) Every �rst-order
formula must be a formula of L. (ii) If � and  are formulas of L then so
are :�; �^ ; �_ ; � !  ; �$  ;8x�; 9x�; we assume the symbols : etc.
keep their usual meanings. (iii) L is closed under relativisation. This means
that for every sentence � of L and every 1-place predicate constant P not in
�, there is a sentence �(P ) such that a structure A is a model of �(P ) if and
only if the part of A with domain IA(P ) satis�es �. For example, if L can
say `Two-thirds of the elements satisfy R(x)', then it must also be able to
say `Two-thirds of the elements which satisfy P (x) satisfy R(x)'. First-order



92 WILFRID HODGES

logic itself is closed under relativisation; although I haven't called attention
to it earlier, it is a device which is constantly used in applications.

The logic L!1! mentioned in the previous section is a logic in the sense
de�ned above, and it is an extension of �rst-order logic. Another logic
which extends �rst-order logic is L1!; this is like �rst-order logic except
that we are allowed to form conjunctions and disjunctions of arbitrary sets
of formulas, never mind how large. Russell's logic, got by adding de�nite
description operators to �rst-order logic, is another extension of �rst-order
logic though it never enables us to say anything new.

We shall always require logics to obey one more condition, which needs
some de�nitions. L-structures A and B are said to be isomorphic to each
other if there is a function F from the domain of A to the domain of B
which is bijective, and such that for all elements �0; �1; : : : ; of A and every
atomic formula � of L,

(204) A � �[�0=x0; �1=x1; : : :] i� B � �[F (�0)=x0; F (�1)=x1; : : :]:

It will be helpful in this section and the next if we omit the xi's when writing
conditions like (204); so (205) means the same as (204) but is briefer:

(205) A � �[�0; �1; : : :] i� B � �[F (�0); F (�1); : : :]:

If (204) or equivalently (205) holds, where F is a bijection from the domain
of A to that of B, we say that F is an isomorphism from A toB. Intuitively,
A is isomorphic to B when B is a perfect copy of A.

If L is a logic, we say that structures A and B are L-equivalent to each
other if every sentence of L which is true in one is true in the other. Thus
`elementarily equivalent' means L-equivalent where L is �rst-order logic.
The further condition we impose on logics is this: structures which are
isomorphic to each other must also be L-equivalent to each other. Obviously
this is a reasonable requirement. Any logic you think of will meet it.

Now we shall introduce another kind of game. This one is used for com-
paring two structures. Let A and B be L-structures. The game EF!(A;B)
is played by two players 8 and 9 as follows. There are in�nitely many moves.
At the ith move, player 8 chooses one of A and B and then selects an el-
ement of the structure he has chosen; then player 9 must pick an element
from the other structure. The elements chosen from A and B at the ith
move are written �i and �i respectively. Player 9 wins the game if and only
if for every atomic formula � of L,

(206) A � �[�0; �1; : : :] i� B � �[�0; �1; : : :]:

We say that A and B are back-and-forth equivalent to each other if player
9 has a winning strategy for this game.

The game EF!(A;B) is known as the Ehrenfeucht{Fra��ss�e game of length
!, for reasons that will appear in the next section. One feels that the more
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similar A and B are, the easier it ought to be for player 9 to win the game.
The rest of this section is devoted to turning this feeling into theorems. For
an easy start:

THEOREM 26. If A is isomorphic to B then A is back-and-forth equivalent
to B.

Given an isomorphism F from A to B, player 9 should always choose so
that for each natural number i; �i = F (�i). Then she wins. Warning: we
are talking set theory now, so F may not be describable in terms which any
human player could use, even if he could last out the game.

As a partial converse to Theorem 26:

THEOREM 27. If A is back-and-forth equivalent to B and both A and B
have at most countably many elements, then A is isomorphic to B.

For this, imagine that player 8 chooses his moves so that he picks each
element of A or B at least once during the game; he can do this if both
structures are countable. Let player 9 use her winning strategy. When all
the �i's and �i's have been picked, de�ne F by putting F (�i) = �i for each
i. (The de�nition is possible because (206) holds for each atomic formula
`xi = xj '.) Comparing (205) with (206), we see that F is an isomorphism.
The idea of this proof was �rst stated by Huntington [1904] and Hausdor�
[1914, p. 99] in proofs of a theorem of Cantor about dense linear orderings.
Fra��ss�e [1954] noticed that the argument works just as well for structures as
for orderings.

Now we are going to show that whether or not A and B have count-
ably many elements, if A and B are back-and-forth equivalent then they
are elementarily equivalent. This was known to Fra��ss�e [1955], and Karp
[1965] gave a direct proof of the stronger result that A is back-and-forth
equivalent to B if and only if A is L1!-equivalent to B. The interest of our
proof (which was extracted from Lindstr�om [1969] by Barwise [1974]) is that
it works for any extension of �rst-order logic which obeys the Downward
L�owenheim{Skolem Theorem. To be precise:

THEOREM 28. Suppose L is an extension of �rst-order logic, and every
structure of at most countable similarity type is L-equivalent to a structure
with at most countably many elements. Suppose also that every sentence of
L has at most countably many distinct symbols. Then any two structures
which are back-and-forth equivalent are L-equivalent to each other.

Theorem 28 can be used to prove Karp's result too, by a piece of set-
theoretic strong-arm tactics called `collapsing cardinals' (as in [Barwise,
1973]). By Skolem's observation (Theorem 25), Theorem 28 applies almost
directly to L!1! (though one still has to use `countable fragments' of L!1!|I
omit details).

Let me sketch the proof of Theorem 28. Assume all the assumptions of
Theorem 28, and let A and B be L-structures which are back-and-forth
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equivalent. We have to show that A and B are L-equivalent. Replacing B
by an isomorphic copy if necessary, we can assume that A and B have no
elements in common. Now we construct a jumbo structure:

(207) C:

�
�
�
�

��
��
A ��

��
B

The language of C shall contain two 1-place predicate constants @A and
@B. Also for each predicate constant R and individual constant c of L the
language of C shall contain two symbols RA; RB and cA; cB. The elements
in IC(@A) are precisely the elements of A, and each IC(RA) and IC(cA)
is to be identical with IA(R) and IA(c) respectively. Thus C contains an
exact copy of A. Likewise with B in place of A. The remaining pieces of
C outside A and B consist of enough set-theoretic apparatus to code up all
�nite sequences of elements of A and B. Finally the language of C shall
have a 2-place predicate constant S which encodes the winning strategy of
player 9 in the game EF!(A;B) as follows:

(208) IC(S) contains exactly those ordered pairs hh0; : : : ; n�1i; ni
such that n is the element which player 9's winning strategy
tells her to play if player 8's previous moves were 0; : : : ; n�1.

Now we wish to show that any sentence L which is true in A is true also inB,
and vice versa. Since each sentence of L contains at most countably many
symbols, we can assume without any loss of generality that the similarity
type of A and B has just countably many symbols; hence the same is true
for C, and thus by the assumption in Theorem 28, C is L-equivalent to a
structure C0 with at most countably many elements. The sets IC0(@

A) and
IC0(@

B) of C0 de�ne L-structures A0 and B0 which are L-equivalent to A
and B respectively, since everything we say in L about A can be rewritten
as a statement about C using @A and the RA and cA. (Here we use the fact
that L allows relativisation.)

Since L contains all �rst-order logic, everything that we can say in a �rst-
order language about C must also be true in C0. For example we can say in
�rst-order sentences that for every �nite sequence 0; : : : ; n�1 of elements
of A or B there is a unique element n such that hh0; : : : ; n�1i; ni is in
IC(S); also that if player 9 in EF!(A;B) reads IC(S) as a strategy for her,
then she wins. So all these things must be true also for A0;B0 and IC0(S).
(The reader can pro�tably check for himself that all this can be coded into
�rst-order sentences, but if he gets stuck he can consult [Barwise, 1974] or
[Flum, 1975].)

Therefore A0 is back-and-forth equivalent to B0. But both A0 and B0

are bits of C0, so they have at most countably many elements. Hence by
Theorem 27, A0 is isomorphic to B0 and therefore A0 is L-equivalent to B0.
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But A0 was L-equivalent to A and B0 was L-equivalent to B. So �nally we
deduce that A and B are L-equivalent.

In our de�nition of logics, we allowed the formulas to include some items
that go beyond �rst-order logic, but we made no change in the class of L-
structures. The methods of this section, and many of those of the next
section too (in particular Theorem 29), still work if one restricts attention
to �nite structures. Ebbinghaus and Flum [1995] explore the implications
of this fact, with an eye on complexity theory.

27 LINDSTR �OM'S THEOREM

Theorem 28 showed that any extension of �rst-order logic which obeys a
form of the Downward L�owenheim{Skolem Theorem is in a sense no stronger
than the in�nitary logic L1!. This result is relatively shallow and not
terribly useful; the logic L1! is quite powerful and not very well understood.
(See Van Benthem and Doets [this Volume].) Lindstr�om [1969] found a
stronger and more subtle result: he showed that if in addition L obeys a form
of the Compactness Theorem or the Upward L�owenheim{Skolem Theorem
then every sentence of L has exactly the same models as some �rst-order
sentence. Since a �rst-order sentence contains only �nitely many symbols,
this result evidently needs some �niteness restriction on the sentences of L.
So from now on we shall assume that all similarity types are �nite and have
no function symbols.

Lindstr�om's argument relies on some detailed information about Ehren-
feucht{Fra��ss�e games. The Ehrenfeucht{Fra��ss�e game EFn(A;B) of length
n, where n is a natural number, is fought and won exactly like EF!(A;B)
except that the players stop after n moves. We say that the structures
A and B are n-equivalent if player 9 has a winning strategy for the game
EFn(A;B). If A and B are back-and-forth equivalent then they are n-
equivalent for all n; the converse is not true.

Ehrenfeucht{Fra��ss�e games of �nite length were invented by Ehrenfeucht
[1960] as a means of showing that two structures are elementarily equiva-
lent. He showed that if two structures A and B are n-equivalent for all �nite
n then A and B are elementarily equivalent (which follows easily from The-
orem 28), and that if the similarity type is �nite and contains no function
symbols, then the converse holds too. Fra��ss�e's de�nitions were di�erent,
but in his [1955] he proved close analogues of Ehrenfeucht's theorems, in-
cluding an analogue of the following:

THEOREM 29. Let L be a �rst-order language. Then for every natural
number n there is a �nite set of sentences �n;1; : : : ; �n;jn of L such that:

1. every L-structure A is a model of exactly one of �n;1; : : : ; �n;jn ; if
A � �n;i we say that A has n-type �n;i;
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2. L-structures A and B are n-equivalent i� they have the same n-type.

Theorem 29 is best proved by de�ning a more complicated game. Sup-
pose 0; : : : ; k�1 are elements of A and Æ0; : : : ; Æk�1 are elements of B.
Then the game EFn(A; 0; : : : ; k�1;B; Æ0; : : : ; Æk�1) shall be played ex-
actly like EFn(A;B), but at the end when elements �0; : : : ; �n�1 of A and
�0; : : : ; �n�1 of B have been chosen, player 9 wins if and only if for every
atomic formula �,

(209) A � �[0; : : : ; k�1; �0; : : : ; �n�1]
i� B � �[Æ0; : : : ; Æk�1; �0; : : : ; �n�1]:

So this game is harder for player 9 to win than EFn(A;B) was. We say
that hA; 0; : : : ; k�1i is n{equivalent to hB; Æ0; : : : ; Æk�1i if player 9 has
a winning strategy for the game EFn(A; 0; : : : ; k�1;B; Æ0; : : : ; Æk�1). We
assert that for each �nite k and n there is a �nite set of formulas �kn;1; �

k
n;2

etc. of L such that

1. for every L-structure A and elements 0; : : : ; k�1 of A there is a
unique i such that A � �kn;i[0; : : : ; k�1]; this �kn;i is called the n-
type of hA; 0; : : : ; k�1i;

2. hA; 0; : : : ; k�1i and hB; Æ0; : : : ; Æk�1i are n-equivalent i� they have
the same n-type.

Theorem 29 will then follow by taking k to be 0. We prove the assertion
above for each k by induction on n.

When n = 0, for each k there are just �nitely many sequences hA; 0; : : : ;
k�1i which can be distinguished by atomic formulas. (Here we use the fact
that the similarity type is �nite and there are no function symbols.) So we
can write down �nitely many formulas �k0;1; �

k
0;2 etc. which distinguish all

the sequences that can be distinguished.
When the formulas have been constructed and (1), (2) proved for the

number n, we construct and prove them for n+ 1 as follows. Player 9 has
a winning strategy for EFn+1(A; 0; : : : ; k�1;B; Æ0; : : : ; Æk�1) if and only if
she can make her �rst move so that she has a winning strategy from that
point onwards, i.e. if she can ensure that �0 and �0 are picked so that

hA; 0; : : : ; k�1; �0i is n-equivalent to hB; Æ0; : : : ; Æk�1; �0i:

In other words, using (2) for n which we assume has already been proved,
player 9 has this winning strategy if and only if for every element � of A
there is an element � of B so that

hA; 0; : : : ; k�1; �i has the same n-type as hB; Æ0; : : : ; Æk�1; �i;
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and vice versa with A and B reversed. But this is equivalent to the condi-
tion:

for every i;

A � 9xk�k+1n;i [0; : : : ; k�1] i� B � 9xk�k+1n;i [Æ0; : : : ; Æk�1]:

It follows that we can build suitable formulas �kn+1;i by taking conjunc-

tions of formulas of form 9xk�k+1n;i or :9xk�k+1n;i , running through all the
possibilities.

When the formulas �kn;i have all been de�ned, we take �n;i to be �0n;i.
Thus Theorem 29 is proved.

Barwise [1975, Chapter VII.6] describes the formulas �kn;i in detail in a
rather more general setting. The sentences �n;i were �rst described by Hin-
tikka [1953] (cf. also [Hintikka, 1973, Chapter XI]), but their meaning was
mysterious until Ehrenfeucht's paper appeared. We shall call the sentences
Hintikka sentences. Hintikka proved that every �rst-order sentence is log-
ically equivalent to a (�nite) disjunction of Hintikka sentences. We shall
prove this too, but by Lindstr�om's proof [1969] which assumes only some
general facts about the expressive power of �rst-order logic; so the proof will
show that any sentence in any logic with this expressive power has the same
models as some �rst-order sentence, viz. a disjunction of Hintikka sentences.
Lindstr�om proved:

THEOREM 30. Let L be any extension of �rst-order logic with the two
properties:

(a) (Downward L�owenheim{Skolem) If a sentence � of L has an in�nite
model then � has a model with at most countably many elements.

(b) Either (Upward L�owenheim{Skolem) if a sentence of L has an in�nite
model then it has one with uncountably many elements; or (Compact-
ness) if � is a theory in L such that every �nite set of sentences from
� has a model then � has a model.

Then every sentence of L has exactly the same models as some �rst-order
sentence.

The proof is by the same kind of coding as the proof of Theorem 28.
Instead of proving Theorem 30 directly, we shall show:

THEOREM 31. Let L be any extension of �rst-order logic obeying (a) and
(b) as in Theorem 30, and let � and  be sentences of L such that no model
of � is also a model of  . Then for some integer n there is a disjunction �
of Hintikka sentences �n;i such that � � � and  � :�.

To get Theorem 30 from Theorem 31, let  be :�.
Suppose then that Theorem 31 is false. This means that there exist

sentences � and  of L with no models in common, and for every natural
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number n there is no disjunction of Hintikka sentences �n;i which separates
the models of � from the models of  . So by Theorem 29 there are, for each
n, n-equivalent structures An and Bn such that An is a model of � and
Bn is a model of  . By (a) we can assume that An and Bn have at most
countably many elements (since the sentences �n;i ^� and �n;i^ are both
in L).

So now once again we build a mammoth model C:

�
�
�
�
�
�
�� �

�
�
�
�
�
��

�

0 1 2

��
����
��

B0

A0

��
����
��

B1

A1

��
����
��

B2

A2

B2

A2

N : � � �
� � �

� � �

The coding is more complicated this time. C contains a copy of the natural
numbers N , picked out by a predicate constant @N . There are 2-place
predicate constants @A; @B. IC(@A) contains just those pairs h�; ni such
that n is a natural number and � is an element of An. Similarly with
the Bn. Also C has constants which describe each An and Bn completely,
and C contains all �nite sequences of elements taken from any An or Bn,
together with enough set theory to describe lengths of sequences etc. There
is a relation IC(S) which encodes the winning strategies for player 9 in all
games EFn(An;Bn). Finally C can be assumed to have just countably many
elements, so we can incorporate a relation which sets up a bijection between
N and the whole of the domain of C.

We shall need the fact that everything salient about C can be said in
one single sentence � of L. Since N is in C and we can build in as much
set-theoretic equipment as we please, this is no problem, bearing in mind
that L is an extension of �rst-order logic. Barwise [1974] and Flum [1975]

give details.
Now by (b), the sentence � has a model C0 in which some `in�nite' number

1 comes after all the `natural numbers' IC0(0); IC0(1); IC0(2); : : : in IC0(@
N ).

If the Upward L�owenheim{Skolem property holds, then this is because the
N -part of any uncountable model of � must have the same cardinality as
the whole model, in view of the bijection which we incorporated. If on the
other hand the Compactness property holds, we follow the construction of
non-standard models in Section 20 above.

By means of IC0(@
A) and IC0(@

B), the structure C0 encodes structures
A
0
1 and B0

1, and IC0(S) encodes a winning strategy for player 9 in the
game EF1(A01;B0

1). All this is implied by a suitable choice of �. The
game EF1(A01;B0

1) turns out to be bizarre and quite unplayable; but the
important point is that if player 9 has a winning strategy for this game,
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then she has one for the shorter and entirely playable game EF!(A01;B0
1).

Hence A01 and B0
1 are back-and-forth equivalent.

But now � records that all the structures encoded by @A are models of
�, while those encoded by @B are models of  . Hence A01 � � but B0

1 �

 . Since � and  have no models in common, it follows that B0
1 � :�.

The �nal step is to use assumption (a), the Downward L�owenheim{Skolem
property, to prove a slightly sharpened version of Theorem 28. To be precise,
since A01 and B0

1 are back-and-forth equivalent and A01 is a model of the
sentence � of L;B0

1 must also be a model of �. (The proof is like that in
Section 26, but we use the fact that the similarity type is �nite and has no
function symbols in order to boil down the essential properties of C into a
single sentence.) So we have reached a contradiction, and Theorem 31 is
proved.

The proof of Theorem 31, less the last paragraph, adapts to give a proof
of Craig's Interpolation Lemma for predicate logic:

LEMMA 32. Let � and  be sentences of �rst-order predicate logic such
that � � : . Then there is a �rst-order sentence � such that � � �;  � :�,
and every constant symbol which occurs in � occurs both in � and  .

Let L in the proof of Theorem 31 be �rst-order logic and let L be the
�rst-order language whose constants are those which occur both in � and in
 . Using Section 18, we can assume that L has no function symbols. If A is
any model of �, then we get an L-structure AjL by discarding all constant
symbols not in L, without changing the elements or the interpretations of the
symbols which are in L. Likewise for every modelB of  . Now suppose that
the conclusion of Lemma 32 fails. Then for each natural number n there is
no disjunction � of Hintikka sentences �n;i in the language L such that � � �
and  � :�, and hence there are models An;Bn of �;  respectively, such
that AnjL is n-equivalent to BnjL. Proceed now as in the proof of Theorem
31, using the Compactness and Downward L�owenheim{Skolem Theorems
to �nd a countable C0 with an in�nite natural number 1. Excavate models
A
0
1;B

0
1 of �;  from C

0 as before, noting this time that A01jL is back-and-
forth equivalent to B0

1jL. Then by Theorem 27, since A01jL and B0
1jL are

countable and back-and-forth equivalent, they are isomorphic. It follows
that we can add to A01 interpretations of those symbols which are in  
but not in L, using B0

1 as a template. Let D be the resulting structure.
Then D � � since A01 � �, and D �  since B0

1 �  . This contradicts the
assumption that � � : . Hence Lemma 32 is proved.

Craig himself [1957b] used his interpolation result to give a proof of
Beth's De�nability Theorem [Beth, 1953]:

THEOREM 33. Let L be a �rst-order language and � a �rst-order theory
which uses the language L together with one extra n-place predicate constant
R. Suppose that for every L-structure A there is at most one way of adding
to A an interpretation of R so that the resulting structure is a model of �.
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Then � has a consequence of form 8x1; : : : ; xn(R(x1; : : : ; xn) $ �), where
� is a formula in the language L.

Time's wing�ed chariot prevents a proper discussion of implicit and explicit
de�nitions here, but Beth's theorem is proved in Section 5.5 of [Hodges,
1997a], and Section 2.2 of Chang and Keisler [1973]. There is some useful
background on implicit de�nitions in [Suppes, 1957, Chapter 8]. Craig's
and Beth's results have interested philosophers of science; see e.g. [Sneed,
1971].

28 LAWS OF THOUGHT?

This section is new in the second edition. I am not sure that it belongs at
Section 28, but this was the simplest place to add it.

Frege fought many battles against the enemies of sound reason. One bat-
tle which engaged some of his best energies was that against psychologism.
Psychologism, put briey, was the view that the proper de�nitions of logical
notions (such as validity) make essential reference to the contents of minds.
Today psychologism in �rst-order logic is a dead duck; not necessarily be-
cause Frege convinced anybody, but simply because there is no room for
any mention of minds in the agreed de�nitions of the subject. The question
whether the sequent

p ^ q ` p

is valid has nothing more to do with minds than it has to do with the
virginity of Artemis or the war in Indonesia.

Still, psychology �ghts back. The next generation has to learn the
subject|and so we �nd ourselves asking: How does one teach logic? How
does one learn it? How far do people think logically anyway, without bene�t
of logic texts? and what are the mental mechanisms involved?

During the 1980s a number of computer programs for teaching elemen-
tary logic came onto the market. Generally they would give the student a
sequent and allow him or her to build a formal proof on the screen; then
they would check it for correctness. Sometimes they would o�er hints on
possible ways to �nd a proof. One can still �nd such programs today, but
mostly they are high-tech practical aids for working computer scientists,
and they work in higher-order logic as happily as in �rst-order. (There is a
review of teaching packages in [Goldson, Reeves and Bornat, 1993].) To a
great extent the introductory teaching packages were driven out by a better
program, Tarski's World. This was a sophisticated stand-alone Macintosh
program put on the market in 1986 by a team of logicians and computer
scientists at Stanford University led by Jon Barwise and John Etchemendy
[1991].
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Tarski's World teaches the notation of �rst-order logic, by means of the
Hintikka games which we studied in Section 25 above. The student sees
on the screen a formal sentence, together with a `world' which consists of
a checker board with various objects on it, some labelled with constant
symbols. The predicate symbols in the sentence all have �xed meanings
such as `x is a tetrahedron' or `x is between y and z'. The student is invited
to guess whether the given world makes the sentence true or false, and to
defend the guess by playing a game against the machine. (A little later but
independently, a group in Omsk produced a similar package for teaching
logic to students in Siberia. The Russian version didn't use the notion of
games, and its `worlds' consisted of graphs.)

As it stands, Tarski's World is no use for learning about logical conse-
quence: in the �rst place it contains no proof theory, and in the second
place the geometrical interpretations of the predicate symbols are built into
the program, so that there is no possibility of constructing counterexamples
in general|even small ones. Barwise and Etchemendy found an innovative
way to plug the gap. Their next computer package, Hyperproof [Barwise
and Etchemendy, 1994], consists of a natural deduction theorem prover for
�rst-order logic, together with a device that allows students to represent
facts pictorially rather than by sentences. Thus the picture for `a is a small
tetrahedron' is a small tetrahedron labelled a. The picture for `a is small'
is subtler: we have to represent a without showing what shape it is, so the
picture is a small paper bag labelled a. There are devices for reading o�
sentences from pictures, and for adjusting pictures to �t stated sentences.
Proofs are allowed to contain both sentences and pictures.

The language is limited to a small number of predicates with �xed mean-
ings: `x is between y and z', `x likes y' and a few others. The student is
allowed (in fact encouraged) to use geometrical knowledge about the proper-
ties of betweenness and the shape of the picture frame. As this suggests, the
package aims to teach the students to reason, rather than teaching them
logical theory. (On pictorial reasoning in �rst-order logic, see [Hammer,
1995] and his references.)

There has already been some research on how good Hyperproof is at
teaching students to reason, compared with more `syntactic' logic courses.
Stenning, Cox and Oberlander [1995] found that one can divide students

into two groups|which they call DetHi and DetLo|in terms of their per-
formance on reasoning tests before they take a logic course. DetHi students
bene�t from Hyperproof, whereas a syntactic logic course tends if anything
to make them less able to reason about positions of blocks in space. For
this spatial reasoning, DetLo students gain more advantage from a syntactic
course than from Hyperproof. Di�erent patterns emerge on other measures
of reasoning skill. Stenning et al. comment:

. . . the evidence presented here already indicates both that dif-
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ferent teaching methods can induce opposite e�ects in di�erent
groups of students, and that the same teaching method admin-
istered in a strictly controlled computerised environment using
the same examples, and the same advice can induce di�erent
groups of students to develop quite distinct reasoning styles.

We need replications and extensions of this research, not least because there
are several ways in which logic courses can di�er. Hyperproof is more picto-
rial than any other logic course that I know. But it also belongs with those
courses that give equal weight to deduction and consistency, using both
proofs and counterexamples; this is a di�erent dimension, and Stenning et
al. suggest that it might account for some of their �ndings. Another fea-
ture is that students using computer logic programs get immediate feedback
from the computer, unlike students learning in a class from a textbook.

These �ndings are a good peg to hang several other questions on. First,
do classes in �rst-order logic really help students to do anything except
�rst-order logic? Before the days of the Trade Descriptions Act, one early
twentieth-century textbook of syllogisms advertised them as a cure for
blushing and stammering. (I quote from memory; the book has long since
disappeared from libraries.) Psychological experimenters have usually been
much more pessimistic, claiming that there is very little transfer of skills
from logic courses to any other kind of reasoning. For example Nisbett,
Fong, Lehman and Cheng [1987] found that if you want to improve a stu-
dent's logical skills (as measured by the Wason selection task mentioned
below|admittedly a narrow and untypical test), you should teach her two
years of law, medicine or psychology; a standard undergraduate course in
logic is completely ine�ectual. On the other hand Stenning et al. [1995]

found that a logic course gave an average overall improvement of about
12% on the Analytical Reasoning score in the US Graduate Record Exam
(I thank Keith Stenning for this �gure). Their results suggest that the
improvement may vary sharply with the kind of logic course, the kind of
student and the kind of test.

Second, what is the brute native competence in �rst-order reasoning of
a person with average intelligence and education but no speci�c training in
logic? One of the most thorough-going attempts to answer this question
is the work of Lance Rips [1994]. Rips writes a theorem-proving program
called PSYCOP, which is designed to have more or less the same pro�ciency
in �rst-order reasoning as the man on the Clapham omnibus. He defends it
with a large amount of empirical evidence. A typical example of a piece of
reasoning which is beyond PSYCOP is:

NOT (IF Calvin passes history THEN Calvin will graduate).
Therefore Calvin passes history.

One has to say straight away that the man on the Clapham omnibus has
never seen the basic symbols of �rst-order logic, and there could be a great
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deal of slippage in the translation between �rst-order formalism and the
words used in the experiments. In Rips' work there certainly is some
slippage. For example he regards 8x9y:�(x; y) as the same sentence as
:9x8y�(x; y), which makes it impossible for him to ask whether people
are successful in deducing one from the other|even though the two forms
suggest quite di�erent sentences of English.

It might seem shocking that there are simple �rst-order inferences which
the average person can't make. One suspects that this must be a misde-
scription of the facts. Anybody who does suspect as much should look
at the astonishing `selection task' experiment of P. C. Wason [1966], who
showed that in broad daylight, with no tricks and no race against a clock,
average subjects can reliably and repeatedly be brought to make horren-
dous mistakes of truth-table reasoning. This experiment has generated a
huge amount of work, testing various hypotheses about what causes these
mistakes; see [Manktelow and Over, 1990].

Third, what are the mental mechanisms that an untrained person uses in
making logical deductions? Credit for raising this as an experimental issue
goes to P. N. Johnson-Laird, who with his various collaborators has put to-
gether a considerable body of empirical facts (summarised in Johnson-Laird
and Byrne [1991], see also the critiques in Behavioral and Brain Sciences,
16, 323{380, 1993). Unfortunately it is hard for an outsider to see what
thesis Johnson-Laird is aiming to prove with these facts. He uses some of
the jargon of logical theory to set up a dichotomy between rule-based rea-
soning and model-based reasoning, and he claims that his evidence supports
the latter against the former. But for anybody who comes to it from the
side of logical theory, Johnson-Laird's dichotomy is a nonsense. If it has any
meaning at all, it can only be an operational one in terms of the computer
simulation which he o�ers, and I hope the reader can make more sense of
that than I could. Perhaps two things emerge clearly. The �rst is that
what he calls model-based reasoning is meta-level|it is reasoning about
reasoning; which leaves us asking what his theory of object-level reasoning
can be. The second claim to emerge from the mist is that we regularly use
a form of proof-by-cases, and the main cause of making deductions that we
shouldn't have done is that we fail to list all the necessary cases. This is an
interesting suggestion, but I was unable to see how the theory explains the
cases where we fail to make deductions that we should have done.

It would be a pity to end on a negative note. This section has shown, I
hope, that at the end of the millenium �rst-order logic is still full of surprises
for the old hands and new opportunities for young researchers.
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IV: Appendices

These three appendices will show in outline how one can construct a
formal calculus of set theory, which in some sense formalises the whole of
mathematics. I have put this material into appendices, �rst because it is
turgid, and second because I should hate to resuscitate the dreadful notion
that the business of logicians is to produce all-embracing formal systems.

A. A FORMAL PROOF SYSTEM

We shall de�ne a formal proof system for predicate logic with identity. To
cover propositional logic too, the language will have some sentence letters.
The calculus is a Hilbert-style system.

First we de�ne the language L, by describing its similarity type, its set
of terms and its set of formulas (cf. Sections 3 and 13 above).

The similarity type of L is made up of the following sentence letters, indi-
vidual constants, predicate constants and function constants. The sentence
letters are the expressions pn, where n is a natural number subscript. The
individual constants are the expressions cn, where n is a natural number
subscript. The predicate constants are the expressions Pm

n , where n is a
natural number subscript and m is a positive integer superscript. The func-
tion constants are the expressions fmn , where n is a natural number subscript
and m is a positive integer superscript. A predicate or function constant is
said to be m-place if its superscript is m.

The terms of L are de�ned inductively as follows: (i) Every variable is
a term, where the variables are the expressions xn with natural number
subscript n. (ii) For each function symbol fmn , if �1; : : : ; �m are terms then
the expression fmn (�1; : : : ; �m) is a term. (iii) Nothing is a term except as
required by (i) and (ii).
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The formulas of L are de�ned inductively as follows: (i) Every sentence
letter is a formula. (ii) The expression? is a formula. (iii) For each predicate
constant Rm

n , if �1; : : : ; �m are terms then the expression Rm
n (�1; : : : ; �m) is a

formula. (iv) If � and � are terms then the expression (� = �) is a formula.
(v) If � and  are formulas, then so are the expressions :�; (� ^  ); (� _
 ); (� !  ); (� $  ). (vi) For each variable xn, if � is a formula then so
are the expressions 8xn� and 9xn�. (vii) Nothing is a formula except as
required by (i){(vi).

A full account would now de�ne two further notions, FV (�) (the set of
variables with free occurrences in �) and �[�1 � � � �k=xii � � �xik ] (the formula
which results when we simultaneously replace all free occurrences of xij in
� by �j , for each j; 1 � j � k, avoiding clash of variables). Cf. Section 13
above.

Now that L has been de�ned, formulas occurring below should be read
as metalinguistic names for formulas of L. Hence we can make free use of
the metalanguage abbreviations in Sections 4 and 13.

Now we de�ne the proof system|let us call it H. We do this by describing
the axioms, the derivations, and the way in which a sequent is to be read
o� from a derivation. (Sundholm (see Volume 2) describes an alternative
Hilbert-style system CQC which is equivalent to H.)

The axioms of H are all formulas of the following forms:

H1. �! ( ! �)

H2. (�!  )! ((�! ( ! �))! (�! �))

H3. (:�!  )! ((:�! : )! �)

H4. ((�! ?)! ?)! �

H5. �! ( ! � ^  )

H6. � ^  ! �; � ^  !  

H7. �! � _  ;  ! � _  
H8. (�! �)! (( ! �)! (� _  ! �))

H9. (�!  )! (( ! �)! (�$  ))

H10. (�$  )! (�!  ); (�$  )!  ! �)

H11. �[�=x] ! 9x�
H12. 8x�! �[�=x]

H13. x = x

H14. x = y ! (�! �[y=x])
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A derivation (or formal proof) in H is de�ned to be a �nite sequence

(A.1) hh�1;m1i; : : : ; h�n;mnii

such that n � 1, and for each i (1 � i � n) one of the �ve following
conditions holds:

1. mi = 1 and �i is an axiom;

2. mi = 2 and �i is any formula of L;

3. mi = 3 and there are j and k in f1; : : : ; i�1g such that �k is �j ! �i;

4. mi = 4 and there is j (1 � j < i) such that �j has the form  ! �,
x is a variable not free in  , and �i is  ! 8x�;

5. mi = 5 and there is j (1 � j < i) such that �j has the form  ! �,
x is a variable not free in �, and �i is 9x ! �.

Conditions 3{5 are called the derivation rules of the calculus. They tell us
how we can add new formulas to the end of a derivation. Thus (3) says that
if  and  ! � occur in a derivation, then we can add � at the end; this is
the rule of modus ponens.

The premises of the derivation (A.1) are those formulas �i such that
mi = 2. Its conclusion is �n. We say that  is derivable from �1; : : : ; �k in
the calculus H, in symbols

(A.2) �1; : : : ; �n �H  ,

if there exists a derivation whose premises are all among �1; : : : ; �n and
whose conclusion is  .

Remarks

1. The calculus H is sound and strongly complete for propositional and
predicate logic with identity. (Cf. Section 7; as in Section 15, this says
nothing about provable sequents in which some variables occur free.)

2. In practice most logicians would write the formulas of a derivation as
a column or a tree, and they would omit the numbers mi.

3. To prove the completeness of H by either the �rst or the third method
in Section 16, one needs to know for all sentences �1; : : : ; �n and  ,

(A.3) if �1; : : : ; �n `H  then �1; : : : ; �n�1 `H �n !  :

Statement (A.3) is the Deduction Theorem for H. It remains true if we
allow free variables to occur in the formulas, provided that they occur
only in certain ways. See [Kleene, 1952, Sections 21{24] for details.
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4. Completeness and soundness tell us that if �1; : : : ; �n and  are sen-
tences, then (A.2) holds if and only if �1; : : : ; �n �  . This gives an
intuitive meaning to such sequents. But when �1; : : : ; �n and  are al-
lowed to be any formulas of L, then to the best of my knowledge there
are no natural necessary and suÆcient conditions for (A.2) to hold. So
it seems impossible to explain what if anything (A.2) tells us, except
by referring to the �ne details of the calculus H. This is a general
feature of Hilbert-style calculi for predicate logic, and I submit that it
makes them thoroughly inappropriate for introducing undergraduates
to logic.

5. If we are thinking of varying the rules of the calculus, or even if we
just want a picture of what the calculus is about, it is helpful to have
at least a necessary condition for (A.2) to hold. The following supplies
one. The universal closure of � is 8y1; : : : ; yn�, where y1; : : : ; yn are
the free variables of �. Let �1 be the universal closure of �1 ^ � � � ^�n
and �2 the universal closure of  . Then one can show that

(A.4) if �1; : : : ; �n `H  then �1 � �2.

The proof of (A.4) is by induction on the lengths of derivations. State-
ment (A.4) is one way of showing that H is sound.

6. The following derivation shows that `H 9x(x = x):

(A.5) x = x (axiom H13)
x = x! 9x(x = x) (axiom H11)
9x(x = x) (from above by modus ponens)

Statement (A.4) shows the reason, namely:

(A.6) 8x(x = x ^ (x = x! 9x(x = x))) � 9x(x = x).

On any reasonable semantic interpretation (cf. Section 14 above), the
left-hand side in (A.6) is true in the empty structure but the right-
hand side is false. Suppose now that we want to modify the calculus
in order to allow empty structures. Then we must alter the derivation
rule which took us from left to right in (A.6), and this is the rule of
modus ponens. (Cf. Bencivenga (Volume 7 of this Handbook.) It is
important to note here that even if (A.4) was a tidy two-way impli-
cation, the modus ponens rule would not express `� and �!  imply
 ', but rather something of the form `8~x(� ^ (� !  )) implies 8~y '.
As it is, the meaning of modus ponens in H is quite obscure. (Cf.
[Kleene, 1952, Section 24].)
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B. ARITHMETIC

I begin with naive arithmetic, not formal Peano arithmetic. One needs to
have at least an intuitive grasp of naive arithmetic in order to understand
what a formal system is. In any case [Peano, 1889] reached his axioms by
throwing naive arithmetic into fancy symbols.

Naive arithmetic is adequately summed up by the following �ve axioms,
which come from Dedekind [1888; 1967]. Here and below, `number' means
`natural number', and I start with 0 (Dedekind's �rst number was 1).

NA1. 0 is a number.

NA2. For every number n there is a next number after n; this next number
is called Sn or the successor of n.

NA3. Two di�erent numbers never have the same successor.

NA4. 0 is not the successor of any number.

NA5. (Induction axiom) Let K be any set with the properties (i) 0 is in K,
(ii) for every number n in K, Sn is also in K. Then every number is
in K.

These axioms miss one vital feature of numbers, viz. their order. So we
de�ne < as follows. First we de�ne an initial segment to be a set K of
numbers such that if a number Sn is in K then n is also in K. We say:

(B.1) m < n i� there is an initial segment which contains m but not n.

The de�nition (B.1) implies:

(B.2) If m < Sn then either m < n or m = n.

For future reference I give a proof. Suppose m < Sn but not m = n. Then
there is an initial segment K such that m is in K and Sn is not in K. Now
there are two cases. Case 1: n is not in K. Then by (B.1), m < n. Case 2:
n is in K. Then let M be K with n omitted. Since m 6= n, M contains m
but not n. Also M is an initial segment; for if Sk is in M but k is not, then
by the de�nition of M we must have k = n, which implies that Sn is in M
and hence in K; contradiction. So we can use M in (B.1) to show m < n.

(B.3) For each number m it is false that m < 0.

(B.3) is proved `by induction on m', using the induction axiom NA5. Proofs
of this type are written in a standard style, as follows:

Case 1. m = 0. Then m < 0 would imply by (B.1) that there was a set
containing 0 but not 0, which is impossible.
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Case 2. m = Sk, assuming it proved when m = k. Suppose Sk < 0.
Then by (B.1) there is an initial segment containing Sk and not 0. Since
K is an initial segment containing Sk, k is also in K. So by (B.1) again,
K shows that k < 0. But the induction hypothesis states that not k < 0;
contradiction.

This is all one would normally say in the proof. To connect it with NA5,
let M be the set of all numbers m such that not m < 0. The two cases
show exactly what has to be shown, according to NA5, in order to prove
that every number is in M .

Here are two more provable facts.

(B.4) The relation < is a linear ordering of the numbers (in the sense of
(157){(159) in Section 19 above).

(B.5) Every non-empty set of numbers has a �rst element.

Fact (B.5) states that the numbers are well-ordered, and it is proved as
follows. Let X be any set of numbers without a �rst element. Let Y be
the set of numbers not in X . Then by induction on n we show that every
number n is in Y . So X is empty.

Fact (B.5) is one way of justifying course-of-values induction. This is
a style of argument like the proof of (B.3) above, except that in Case 2,
instead of proving the result for Sk assuming it was true for k, we prove it
for Sk assuming it was true for all numbers � k. In many theorems about
logic, one shows that every formula has some property A by showing (i)
that every atomic formula has property A and (ii) that if � is a compound
formula whose proper subformulas have A then � has A. Arguments of this
type are course-of-values inductions on the complexity of formulas.

In naive arithmetic we can justify two important types of de�nition. The
�rst is sometimes called recursive de�nition and sometimes de�nition by
induction. It is used for de�ning functions whose domain is the set of natural
numbers. To de�ne such a function F recursively, we �rst say outright what
F (0) is, and then we de�ne F (Sn) in terms of F (n). A typical example is
the recursive de�nition of addition:

(B.6) m+ 0 = m; m+ Sn = S(m+ n).

Here F (n) is m + n; the de�nition says �rst that F (0) is m and then that
for each number n, F (Sn) is SF (n). To justify such a de�nition, we have
to show that there is exactly one function F which satis�es the stated con-
ditions. To show there is at most one such function, we suppose that F and
G are two functions which meet the conditions, and we prove by induction
on n that for every n, F (n) = G(n); this is easy. To show that there is at
least one is harder. For this we de�ne an n-approximation to be a function
whose domain is the set of all numbers < n, and which obeys the conditions
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in the recursive de�nition for all numbers in its domain. Then we show by
induction on n (i) that there is at least one n-approximation, and (ii) that
if m < k < n, f is a k-approximation and g is an n-approximation, then
f(m) = g(m). Then �nally we de�ne F explicitly by saying that F (m) is
the unique number h such that f(m) = h whenever f is an n-approximation
for some number n greater than m.

After de�ning + by (B.6), we can go on to de�ne � by:

(B.7) m � 0 = 0; m � Sn = m � n+m.

The functions de�nable by a sequence of recursive de�nitions in this way,
using equations and previously de�ned functions, are called primitive recur-
sive functions. Van Dalen [this Volume] discusses them further.

There is a course-of-values recursive de�nition too: in this we de�ne F (0)
outright, and then F (Sn) in terms of values F (k) for numbers k � n. For
example if F (n) is the set of all formulas of complexity n, understood as in
Section 3 above, then the de�nition of F (n) will have to refer to the sets
F (k) for all k < n. Course-of-values de�nitions can be justi�ed in the same
way as straightforward recursive de�nitions.

The second important type of de�nition that can be justi�ed in naive
arithmetic is also known as inductive de�nition, though it is quite di�erent
from the `de�nition by induction' above. Let H be a function and X a set.
We say that X is closed under H if for every element x of X , if x is in the
domain of H then H(x) is also in X . We say that X is the closure of Y
under H if (i) every element of Y is in X , (ii) X is closed under H , and (iii)
if Z is any set which includes Y and is closed under H then Z also includes
X . (Briey, `X is the smallest set which includes Y and is closed under
H '.) Similar de�nitions apply if we have a family of functions H1; : : : ; Hk

instead of the one function H ; also the functions can be n-place functions
with n > 1.

A set is said to be inductively de�ned if it is de�ned as being the closure of
some speci�ed set Y under some speci�ed functions H1; : : : ; Hk. A typical
inductive de�nition is the de�nition of the set of terms of a language L. The
usual form for such a de�nition is:

1. Every variable and every individual constant is a term.

2. For each function constant f , if f is n-place and �1; : : : ; �n are terms,
then the expression f(�1; : : : ; �n) is a term.

3. Nothing is a term except as required by (1) and (2).

Here we are de�ning the set X of terms. The so-called basic clause (1)
describes Y as the set of all variables and all individual constants. The in-
ductive clause (2) describes the functions Hi, one for each function constant.
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Finally the extremal clause (3) says that X is the closure of Y under the Hi.
(Many writers omit the extremal clause, because it is rather predictable.)

Frege [1884] may have been the �rst to argue that inductive de�nitions
need to be justi�ed. He kept asking: How do we know that there is a smallest
set which includes Y and is closed under H? One possible justi�cation
runs as follows. We recursively de�ne F (n), for each positive integer n, to
be the set of all sequences hb1; : : : ; bni such that b1 is in Y and for every
i (1 � i < n), bi+1 is H(bi). Then we de�ne X to be the set of all b such
that for some number n there is a sequence in F (n) whose last term is b.
Clearly Y is included in X , and we can show that X is closed under H . If
Z is any set which is closed under H and includes Y , then an induction on
the lengths of sequences shows that every element of X is in Z.

Naive arithmetic, as described above, is an axiomatic system but not
a formal one. Peano [1889] took the �rst step towards formalising it, by
inventing a good symbolism. But the arguments above use quite an amount
of set theory, and Peano made no attempt to write down what he was
assuming about sets. Skolem [1923] threw out the set theory and made his
assumptions precise, but his system was rather weak. First-order Peano
arithmetic, a formalisation of the �rst-order part of Peano's axioms, was
introduced in [G�odel, 1931b].
P, or �rst-order Peano Arithmetic, is the following formal system. The

constants of the language are an individual constant 0, a 1-place function
symbol S and 2-place functions symbols + and �, forming terms of form
Sx, (x+y); (x�y). Write n as an abbreviation for S : : : (n times): : : S0; the
symbols n are called numerals. We use a standard proof calculus for �rst-
order logic (e.g. the calculus H of Appendix A) together with the following
axioms:

P1. 8xy(Sx = Sy ! x = y)

P2. 8x:(Sx = 0)

P3. (Axiom schema of induction ) All sentences of the form 8~z(�[0=x] ^
8x(�! �[Sx=x]) ! 8x�)

P4. 8x(x+ 0 = x)

P5. 8xy(x+ Sy = S(x+ y))

P6. 8x(x � 0 = 0)

P7. 8xy(x � Sy = (x � y) + x)

The axioms are read as being just about numbers, so that 8x is read as
`for all numbers x'. In this way the symbols 0 and S in the language take
care of axioms NA1 and NA2 without further ado. Axioms NA3 and NA4
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appear as P1 and P2. Since we can refer only to numbers and not to sets,
axiom NA5 has to be recast as a condition on those sets of numbers which
are de�nable by �rst-order formulas; this accounts for the axiom schema of
induction, P3.
P4{P7 are the recursive de�nitions of addition and multiplication, cf.

(B.6) and (B.7) above. In naive arithmetic there was no need to assume
these as axioms, because we could prove that there are unique functions
meeting these conditions. However, the proof used some set-theoretic no-
tions like `function de�ned on the numbers 0; : : : ; n� 1', which can't be ex-
pressed in a �rst-order
language using just 0 and S. So we have to put the symbols +, � into the
language|in particular they occur in formulas in the axiom schema of
induction|and we have to assume the de�nitions P4 { P7 as axioms.

G�odel showed that with the aid of �rst-order formulas involving only
0; S;+ and �, he could explicitly de�ne a number of other notions. For
example

(B.8) x < y i� 9z(x+ Sz = y).

Also by using a clever trick with prime numbers he could encode each �nite
sequence hm1;m2; : : :i of numbers as a single number

(B.9) 2m1+1:3m2+1:5m3+1: : : :

and he could express the relation `x is the yth term of the sequence coded by
z' by a �rst-order formula. But then he could carry out `in P' all the parts
of naive arithmetic which use only numbers, �nite sequences of numbers,
�nite sequences of �nite sequences of numbers, and so on. This includes the
argument which justi�es primitive recursive de�nitions. In fact:

1. For every recursive de�nition Æ of a number function, using just �rst-
order formulas, there is a formula �(x; y) such that in P we can prove
that � de�nes a function obeying Æ. (If Æ is primitive recursive then �
can be chosen to be �1, cf. Section 24.)

2. For every inductive de�nition of a set, where a formula  de�nes the
basic set Y and formulas � de�ne the functions H in the inductive
clause, there is a formula �(x) such that we can prove in P that the
numbers satisfying � are those which can be reached in a �nite number
of steps from Y by H. (If  and � are �1 then � can be chosen to be
�1.)

These two facts state in summary form why the whole of elementary syntax
can be formalised within P.

There are some things that can be said in the language of P but not
proved or refuted from the axioms of P. For example the statement that P
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itself is consistent (i.e. doesn't yield ?) can be formalised in the language of
P. In [1931b] G�odel showed that this formalised statement is not deducible
from P, although we all hope it is true.

There are some other things that can't even be said in the language of
P. For example we can't say in this language that the set X de�ned by � in
(2) above really is the closure of Y under H , because that would involve us
in saying that `if Z is any set which includes Y and is closed under H then
Z includes X '. In the �rst-order language of P there is no way of talking
about `all sets of numbers'. For the same reason, many statements about
real numbers can't be expressed in the language of P|even though some
can by clever use of rational approximations.

In second-order arithmetic we can talk about real numbers, because real
numbers can be represented as sets of natural numbers. Actually the natural
numbers themselves are de�nable up to isomorphism in second-order logic
without special arithmetical axioms. In third-order logic we can talk about
sets of real numbers, fourth-order logic can talk about sets of sets of real
numbers, and so on. Most of the events that take place in any standard
textbook of real analysis can be recorded in, say, �fth-order logic. See Van
Benthem and Doets [this Volume] for these higher-order logics.

C. SET THEORY

The e�orts of various nineteenth-century mathematicians reduced all the
concepts of real and complex number theory to one basic notion: classes.
So when Frege, in his Grundgesetze der Arithmetik I [1893], attempted a
formal system which was to be adequate for all of arithmetic and analysis,
the backbone of his system was a theory of classes. One of his assumptions
was that for every condition there is a corresponding class, namely the class
of all the objects that satisfy the condition. Unfortunately this assumption
leads to contradictions, as Russell and Zermelo showed. Frege's approach
has now been abandoned.

Today the most commonly adopted theory of classes is Zermelo{Fraenkel
set theory, ZF. This theory was propounded by Zermelo [1908] as an informal
axiomatic theory. It reached its present shape through contributions from
Mirimano�, Fraenkel, Skolem and von Neumann. (Cf. Fraenkel's historical
introduction to [Bernays and Fraenkel, 1958].)

OÆcially ZF is a set of axioms in a �rst-order language whose only con-
stant is the 2-place predicate symbol 2 (`is a member of'). But all set
theorists make free use of symbols introduced by de�nition.

Let me illustrate how a set theorist introduces new symbols. The axiom
of Extensionality says that no two di�erent sets have the same members.
The Pair-set axiom says that if x and y are sets then there is at least one set
which has just x and y as members. Putting these two axioms together, we
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infer that there is exactly one set with just x and y as members. Introducing
a new symbol, we call this set fx; yg. There are also some de�nitions which
don't depend on the axioms. For example we say x is included in y, or
a subset of y, if every member of x is a member of y. This prompts the
de�nition

(C1) x � y i� 8t(t 2 x! t 2 y).

The language with these extra de�ned symbols is in a sense impure, but it
is much easier to read than the pure set language with only 2, and one can
always paraphrase away the new symbols when necessary. In what follows
I shall be relentlessly impure. (On introducing new terms by de�nition, cf.
Section 21 above. Suppes [1972] and Levy [1979] are careful about it.)

The �rst three axioms of ZF are about what kind of things we choose
to count as sets. The axiom of Extensionality says that sets will count as
equal when they have the same members:

ZF1. (Extensionality) 8xy(x � y ^ y � x! x = y)

We think of sets as being built up by assembling their members, starting
with the empty or null set 0 which has no members:

ZF2. (Null-set) 8t t 62 0 (x 62 y means :(x 2 y):)

In a formal calculus which proves 9x x = x, the Null-set axiom is derivable
from the Separation axiom below and can be omitted. The axiom of Reg-
ularity (also known as the axiom of Foundation) expresses|as well as one
can express it with a �rst-order statement|that X will not count as a set
unless each of the members of x could be assembled together at an earlier
stage than x itself. (So for example there is no `set' x such that x 2 x.)

ZF3. (Regularity) 8x(x = 0 _ 9y(y 2 x ^ 8z(z 2 y ! z 62 x))).

The next three axioms state that certain collections can be built up:

ZF4. (Pair-set) 8xyt(t 2 fx; yg $ t = x _ t = y)

ZF5. (Union) 8xt(t 2 Sx$ 9y(t 2 y ^ y 2 x))

ZF6. (Power-set) 8xt(t 2 Px$ t � x).

Axioms ZF3{ZF6 allow some constructions. We write fxg for fx; xg; x [ y
for

Sfx; yg; fx1; x2; x3g for fx1; x2g [ fx3g; fx2; : : : ; x4g for fx1; x2; x3g [
fx4g, and so on. Likewise we can form ordered pairs hx; yi = ffxg; fx; ygg,
ordered triplets hx; y; zi = hhx; yi; zi and so on. Building up from 0 we can
form 1 = f0g; 2 = f0; 1g; 3 = f0; 1; 2g etc.; the axiom of Regularity implies
that 0; 1; 2; : : : are all distinct. We can regard 0; 1; 2; : : : as the natural
numbers.
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We need to be able to express `x is a natural number' in the language of
set theory, without using informal notions like `and so on'. It can be done as
follows. First, following von Neumann, we de�ne Ord(x), `x is an ordinal',
by:

(C.2) Ord(x) i�
S
x � x ^ 8yz(y 2 x ^ z 2 x! y 2 z _ z 2 y _ y = z).

This somewhat technical de�nition implies that the ordinals are linearly
ordered by 2, and that they are well-ordered (i.e. every non-empty set of
them has a least element, cf. (B.5) above). We can prove that the �rst
ordinals are 0; 1; 2; : : :. Greek letters �; �;  are used for ordinals. For every
ordinal � there is a �rst greater ordinal; it is written � + 1 and de�ned
as � [ f�g. For every set X of ordinals there is a �rst ordinal � which is
greater than or equal to every ordinal in X , viz. � =

S
X . Each ordinal �

has just one of the following three forms: either � = 0, or � is a successor
(i.e. of form �+ 1), or � is a limit (i.e. of form

S
X for a non-empty set X

of ordinals which has no greatest member). Now the natural numbers can
be de�ned as follows:

(C.3) x is a natural number i� Ord(x) ^ 8y(y 2 x + 1 ! y = 0 _ y is a
successor).

The remaining four axioms, ZF7{ZF10, are needed for talking about
in�nite sets. Each of them says that sets exist with certain properties.
Nothing in ZF1{ZF6 implies that there are any in�nite sets. We �ll the gap
by decreeing that the set ! of all natural numbers exists:

ZF7. (In�nity) 8t(t 2 ! $ t is a natural number).

The next axiom says that within any given set x we can collect together
those members w which satisfy the formula �(~z; w). Here � is allowed to
be any �rst-order formula in the language of set theory, and it can mention
other sets ~z. Strictly ZF8 is an axiom schema and not a single axiom.

ZF8. (Separation) 8~zxt(t 2 fw 2 xj�g $ t 2 fx ^ �[t=w]g.
For example this tells us that for any sets x and y there is a set whose
members are exactly those members w of x which satisfy the formula w 2 y;
in symbols this set is fw 2 xjw 2 yg. So we can introduce a new symbol
for this set, and write x \ y = fw 2 xjw 2 yg. Similarly we can de�ne:T
x = fw 2 Sxj8z(z 2 x ! w 2 z)g; x � y = ft 2 PP(x [ y)j9zw(z 2

x ^w 2 y ^ t = hz; wi)g; x2 = x� x and more generally xn+1 = xn � x. An
n-place relation on the set x is a subset of xn. We can de�ne `f is a function
from x to y', in symbols f : x! y, by:

(C.4) f : x! y i� f � x� y ^ 8w(w 2 x! 9z8t(t = z $ hw; ti 2 f)).
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We say f is an n-place function from x to y if f : xn ! y. When f : x! y,
we call x the domain of f , and we can de�ne it in terms of f by: domf =
fw 2 SS f j9zhw; zi 2 fg. We de�ne the value of f for argument w, in
symbols f(w), as ft 2 SSS f j9z(hw; zi 2 f ^ t 2 z)g. A bijection (or
one-one correspondence) from x to y is a function f such that f : x ! y
and every element z of y is of form f(w) for exactly one w in x. A sequence
of length � is de�ned to be a function with domain �.

The system of axioms ZF1{ZF8 is sometimes known as Zermelo set the-
ory, or Z for short. It is adequate for formalising all of naive arithmetic, not
just the �nite parts that can be axiomatised in �rst-order Peano arithmetic.
The Separation axiom is needed. For example in the proof of (B.2) we had
to know that there is a set M whose members are all the members of K
except n;M is fw 2 Kjw 6= ng.

First-order languages can be de�ned formally within Z. For example we
can de�ne a similarity type for predicate logic to be a set whose members
each have one of the following forms: (i) h1; xi, (ii) h2;m; xi where m is a
positive natural number, (iii) h3;m; xi wherem is a positive natural number.
The elements of form (i) are called individual constants, those of form (ii)
are the m-place predicate constants and those of form (iii) are the m-place
function constants. Variables can be de�ned as ordered pairs of form h4; ni
where n is a natural number. Terms can be de�ned inductively by: (a)
Every variable or individual constant is a term. (b) If f is an m-place
function constant and �1; : : : ; �m are terms then h5; f; �1; : : : ; �mi is a term.
(c) Nothing is a term except as required by (a) and (b). By similar devices
we can de�ne the whole language L of a given similarity typeX . L-structures
can be de�ned to be ordered pairs hA; Ii where A is a non-empty set and
I is a function with domain X , such that for each individual constant c
of X; I(c) 2 A (and so on as in Section 14). Likewise we can de�ne � for
L-structures.

The two remaining axioms of ZF are needed for various arguments in
in�nite arithmetic.

In Appendix B we saw how one can de�ne functions with domain the
natural numbers, by recursion. We want to be able to do the same in set
theory, but with any ordinal as the domain. For example if the language L is
not countable, then the proof of completeness in Section 16 above will need
to be revised so that we build a chain of theories �i for i 2 �, where � is
some ordinal greater than !. One can try to justify recursive de�nitions on
ordinals, just as we justi�ed de�nitions in Appendix B. It turns out that one
piece of information is missing. We need to know that if a formula de�nes
a function f whose domain is an ordinal, then f is a set. The following
axiom supplies this missing information. It says that if a formula � de�nes
a function with domain a set, then the image of this function is again a set:

ZF9. (Replacement)
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8~zx(8ywt(y 2 x ^ � ^ �[w=t]! t = w) !
9u8t(t 2 u$ 9y(y 2 x ^ �))):

Like Separation, the Replacement axiom is really an axiom schema.
The �nal axiom is the axiom of Choice, which is needed for most kinds of

counting argument. This axiom can be given in many forms, all equivalent
in the sense that any one can be derived from any other using ZF1{ZF9. The
form given below, Zermelo's Well-ordering principle, means intuitively that
the elements of any set can be checked o� one by one against the ordinals,
and that the results of this checking can be gathered together into a set.

ZF10. (Well-ordering)
8x9f� (� is an ordinal and f is a bijection from � to x).

Axiom ZF10 is unlike axioms ZF4{ZF9 in a curious way. These earlier
axioms each said that there is a set with just such-and-such members. But
ZF10 says that a certain set exists (the function f) without telling us what
the members of the set are. So arguments which use the axiom of Choice
have to be less explicit than arguments which only use ZF1{ZF9.

Using ZF10, the theory of `cardinality proceeds as follows. The cardinality
jxj or x= of a set x is the �rst ordinal � such that there is a bijection from
� to x. Ordinals which are the cardinalities of sets are called cardinals.
Every cardinal is equal to its own cardinality. Every natural number is a
cardinal. A set is said to be �nite if its cardinality is a natural number. The
cardinals which are not natural numbers are said to be in�nite. The in�nite
cardinals can be listed in increasing order as !0; !1; !2; : : : ; ;!0 is !. For
every ordinal � there is an �th in�nite cardinal !�, sometimes also written
as @�. It can be proved that there is no greatest cardinal, using Cantor's
theorem that for every set x;P(x) has greater cardinality than x.

Let me give an example of a principle equivalent to ZF10. If I is a set
and for each i 2 I a set Ai is given, then �IAi is de�ned to be the set of all
functions f : I ! SfAiji 2 Ig such that for each j 2 I; f(j) 2 Aj . �IAi is
called the product of the sets Ai. Then ZF10 is equivalent to the statement:
If the sets Ai in a product are all non-empty then their product is also not
empty.

The compactness theorem for propositional logic with any set of sentence
letters is not provable from ZF1{ZF9. A fortiori neither is the compactness
theorem for predicate logic. Logicians have dissected the steps between
ZF10 and the compactness theorem, and the following notion is one of the
results. (It arose in other parts of mathematics too.)

Let I be any set. Then an ultra�lter on I is de�ned to be a subset D of
P(I) such that (i) if a and b 2 D then a\ b 2 D, (ii) if a 2 D and a � b � I
then b 2 D, and (iii) for all subsets a of I , exactly one of I and I�a is in D
(where I � a is the set of all elements of I which are not in a). For example
if i 2 I and D = fa 2 P(I)ji 2 ag then D is an ultra�lter on I ; ultra�lters
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of this form are called principal and they are uninteresting. From ZF1{ZF9
it is not even possible to show that there exist any non-principal ultra�lters
at all. But using ZF10 one can prove the following principle:

THEOREM C.5 Let I be any in�nite set. Then there exist an ultra�lter
D on I and for each i 2 I an element ai 2 D, such that for every j 2 I the
set fi 2 I jj 2 aig is �nite.
An ultra�lter D with the property described in Theorem C.5 is said to be
regular. Regular ultra�lters are always non-principal.

To derive the compactness theorem from Theorem C.5, we need to con-
nect ultra�lters with structures. This is done as follows. For simplicity we
can assume that the language L has just one constant symbol, the 2-place
predicate constant R. Let D be an ultra�lter on the set I . For each i 2 I ,
let Ai be an L-structure with domain Ai. De�ne a relation � on �IAi by:

(C.6) f � g i� fi 2 I jf(i) = g(i)g 2 D.

Then since D is an ultra�lter, � is an equivalence relation; write f� for
the equivalence class containing f . Let B be ff�jf 2 �iAig. De�ne an
L-structure B = hB; IBi by putting

(C.7) hf�; g�i 2 IB(R) i� fi 2 I jhf(i); g(i)i 2 IAi(R)g 2 D.

(Using the fact that D is an ultra�lter, this de�nition makes sense.) Then
B is called the ultraproduct of the Ai by D, in symbols �DAi or D-prod Ai.
By a theorem of Jerzy  Lo�s, if � is any sentence of the �rst-order language
L, then

(C.8) �DAi � � i� fi 2 I jAi � �g 2 D.

Using the facts above, we can give another proof of the compactness
theorem for predicate logic. Suppose that � is a �rst-order theory and
every �nite subset of � has a model. We have to show that � has a model.
If � itself is �nite, there is nothing to prove. So assume now that � is
in�nite, and let I in Theorem C.5 be �. Let D and the sets a� (� 2 �)
be as in Theorem C.5. For each i 2 �, the set f�ji 2 a�g is �nite, so
by assumption it has a model Ai. Let B be �DAi. For each sentence
� 2 �; a� � fi 2 �jAi � �g, so by (ii) in the de�nition of an ultra�lter,
fi 2 �jAi � �g 2 D. It follows by  Lo�s's theorem (C.8) that B � �. Hence
� has a model, namely B.

There are full accounts of ultraproducts in Bell and Slomson [1969] and
Chang and Keisler [1973]. One principle which often turns up when ultra-
products are around is as follows. Let X be a set of subsets of a set I .
We say that X has the �nite intersection property if for every �nite subset
fa1; : : : ; ang of X , the set a1 \ � � � \ an is not empty. The principle states
that if X has the �nite intersection property then there is an ultra�lter D
on I such that X � D. This can be proved quite quickly from ZF10.
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Some writers refer to ZF1{ZF9, without the axiom of Choice, as ZF;
they write ZFC when Choice is included. There are a number of variants of
ZF. For example the set-class theory of G�odel and Bernays (cf. [Mendelson,
1987]) allows one to talk about `the class of all sets which satisfy the formula
�' provided that � has no quanti�ers ranging over classes. This extension
of ZF is only a notational convenience. It enables one to replace axiom
schemas by single axioms, so as to get a system with just �nitely many
axioms.

Another variant allows elements which are not sets|these elements are
called individuals. Thus we can talk about the set fGeo�rey Boycottg with-
out having to believe that Geo�rey Boycott is a set. In informal set theory
of course one considers such sets all the time. But there seems to be no
mathematical advantage in admitting individuals into formal set theory;
rather the contrary, we learn nothing new and the proofs are messier. A
set is called a pure set if its members, its members' members, its members'
members' members etc. are all of them sets. In ZF all sets are pure.
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STEWART SHAPIRO

SYSTEMS BETWEEN FIRST-ORDER AND

SECOND-ORDER LOGICS

1 WHY?

The most common logical system taught, used, and studied today is Ele-
mentary predicate logic, otherwise known as �rst-order logic (see Hodges'
chapter in this Volume). First-order logic has a well-studied proof theory
and model theory, and it enjoys a number of interesting properties. There
is a recursively-enumerable deductive system D1 such that any �rst-order
sentence � is a consequence of a set � of �rst-order sentences if and only if �
is deducible from � in D1. Thus, �rst-order logic is (strongly) complete. It
follows that �rst-order logic is compact in the sense that if every �nite sub-
set of a set � of �rst-order sentences is satis�able then � itself is satis�able.
The downward L�owenheim{Skolem theorem is that if a set � of �rst-order
sentences is satis�able, then it has a model whose domain is countable (or
the cardinality of �, whichever is larger). The upward L�owenheim{Skolem
theorem is that if a set � of �rst-order sentences has, for each natural num-
ber n, a model whose domain has at least n elements, then for any in�nite
cardinal �;� has a model whose domain is of size at least � (see Hodges'
chapter, and virtually any textbook in mathematical logic, such as Boolos
and Je�rey [1989] or Mendelson [1987]).

Since many arguments in both everyday discourse and mathematics have
natural renderings in �rst-order languages, �rst-order logic is a good tool
to begin the study of validity. First-order languages also capture important
features of the semantics of natural language, and so �rst-order logic is a
tool for the study of natural language. However, �rst-order languages su�er
from expressive poverty. It is an easy consequence of compactness that
many central concepts|such as �nitude, countability, minimal closure, well-
foundedness, and well-order|cannot be captured in a �rst-order language.
The L�owenheim{Skolem theorems entail that no in�nite structure can be
characterized up to isomorphism in a �rst-order language. Moreover, many
important linguistic locutions, distinctions, and constructions fall outside
the scope of �rst-order logic (see van Benthem and Doets' chapter below
and Shapiro [1991, Chapter 5]).

The main alternative to �rst-order logic is second-order logic (and higher-
order logic generally). The aforementioned mathematical notions that lack
�rst-order characterizations all have adequate characterizations in second-
order languages. For example, there is a second-order formula FIN(X) that
is satis�ed in a structure if and only if the set assigned to X is �nite. Also,
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basic in�nite mathematical structures have categorical characterizations in
second-order languages. Examples include the natural numbers, the real
numbers, Euclidean space, and some initial segments of the set-theoretic
hierarchy. Second-order languages, and higher-order languages generally,
allow the linguist to model many linguistic constructions that reach beyond
�rst-order.

The expressive richness of second-order languages and logic carries a cost.
It follows from the expressive power of second-order logic that it is not
compact and the L�owenheim{Skolem theorems fail. Second-order logic is
highly complex, and in some ways it is intractable. For example, let AR be
a categorical characterization of the natural numbers. Then a sentence �
in the (�rst-order) language of arithmetic is true of the natural numbers if
and only if AR!� is a logical truth. Thus, the notion of arithmetic truth
is reducible to second-order logical truth. Similarly, the notion of `truth of
analysis' and even `truth of the �rst inaccessible rank', or `truth of the rank
of the �rst hyper-Mahlo cardinal' is reducible to second-order logical truth.
It follows that second-order logic is inherently incomplete in the sense that
there is no sound, recursively enumerable deductive system for it. Indeed,
the set of second-order logical truths is not in the analytic hierarchy. A
number of central, set-theoretic principles have natural renderings in second-
order languages, many of which are independent of Zermelo-Fraenkel set
theory. For example, there is a second-order sentence CH, which has no
non-logical terminology, such that CH is a logical truth if and only if the
continuum hypothesis fails. There is another sentence which is a logical
truth if and only if the generalized continuum hypothesis holds, and there
is a sentence which is a logical truth if and only if there are no inaccessible
cardinals (again, see [Shapiro, 1991, Chapter 5]).

Of course, whether these features of second-order logic are `defects' de-
pends on what properties a good logical theory should have. This, in turn,
depends on what logical theory is supposed to accomplish. On this ancient
question, we will rest content with a brief sketch.

The intractability of second-order consequence is a direct and inevitable
result of the expressive power of second-order languages. In one sense, this
good and bad news is to be expected and welcomed. The informal notion
of logical consequence is tied to what sentences (or propositions) mean and
what the linguistic items refer to. Thus, one of the purposes of a formal lan-
guage is to capture the informal semantics of mathematical discourse and,
in particular, to replicate the notion of reference and satisfaction. Since
informal mathematical discourse appears to have the resources to charac-
terize notions like �nitude and structures like the natural numbers and the
real numbers (up to isomorphism), our formal language should have this
expressive power as well. The richness and intractability of second-order
languages is a consequence of the richness and intractability of mathemati-
cal discourse generally. From this perspective, one should hold that mathe-
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matics and logic are a seamless whole, and it is impossible to draw a sharp
boundary between them. In his treatment of second-order logic, Church
[1956, p. 332] wrote that `logic and mathematics should be characterized,
not as di�erent subjects, but as elementary and advanced parts of the same
subject'. Barwise [1985, 5] elaborates a similar idea:

. . . in basic logic courses . . . we attempt to draw a line between
`logical concepts', as embodied in the so-called `logical constants',
and all the rest of the concepts of mathematics. [W]e do not so
much question the placement of this line, as question whether
there is such a line, or whether all mathematical concepts have
their own logic, something that can be investigated by the tools
of mathematics . . . As logicians, we do our subject a disservice
by convincing others that logic is �rst-order and then convincing
them that almost none of the concepts of modern mathematics
can really be captured in �rst-order logic.

Barwise concludes that `one thing is certain. There is no going back to the
view that logic is �rst-order logic'. See [Shapiro, 1991] and [Sher, 1991] for
articulations of similar theses.

On the other hand, there are reasons to demur from the full expressive
power|and intractability|of second-order logic. The mathematical logi-
cian desires a system that she can study and shed some light upon, using the
`tools of mathematics'. Completeness, compactness, and the L�owenheim{
Skolem theorems give rise to the main tools developed by the mathematical
logician, and these tools only apply to relatively weak formal languages. A
logical system that is just as complex as mathematics provides no special
handle for the logician. At the extreme of the view articulated in the pre-
vious paragraph, logic just is mathematics and so there is nothing for the
logician to contribute. The `logic' of arithmetic, say, is number theory and
so the logician just is a number theorist. The `logic' of Euclidean geometry
is Euclidean geometry and so here the logician is just the geometer.

The philosopher also has reasons to keep logic tractable, or at least more
tractable than the second-order consequence relation. There is a longstand-
ing view that logic should be free of ontological and metaphysical presup-
positions. If that cannot be maintained, then at least these presuppositions
should be kept to a minimum. Logical consequence should just turn on
the meanings of the logical particles. The consequence relation should be
transparent and potentially obvious. Something has gone wrong when the
continuum hypothesis (or its negation) becomes a logical truth. Quine is a
vocal champion of �rst-order logic, against second-order logic. In [1953, p.
116], he wrote:

The bulk of logical reasoning takes place on a level which does
not presuppose abstract entities. Such reasoning proceeds mostly
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by quanti�cation theory [i.e., �rst-order logic], the laws of which
can be represented through schemata involving no quanti�ca-
tion over class variables. Much of what is commonly formulated
in terms of classes, relations, and even number, can easily be
reformulated schematically within quanti�cation theory . . .

Quine [1986, p. 68] later argued that second-order logic is not logic, but
is `set theory in disguise', a wolf in sheep's clothing:

Set theory's staggering existential assumptions are cunningly
hidden . . . in the tacit shift from schematic predicate letter to
quanti�able variable.

See also [Jan�e, 1993] and [Wagner, 1987].
Although I am among the advocates of second-order logic [Shapiro, 1991],

there is no need to adjudicate this issue here. A safe compromise is that
there is motivation to develop logics that are, in a sense, intermediate be-
tween �rst-order and second-order. The philosopher seeks a course between
the two extremes delimited above, a logical system that is not as weak as
�rst-order, but has at least some of the traditional desiderata of analyticity
and transparency. Formally, we desire systems that have greater expressive
resources than �rst-order logic, but are not as intractable as second-order
logic. This is the motivation behind the extensive study [Barwise and Fe-
ferman, 1985]. Cowles [1979, p. 129] put it well:

It is well-known that �rst-order logic has a limited ability to
express many of the concepts studied by mathematicians . . .
However, �rst-order logic . . . does have an extensively devel-
oped and well-understood model theory. On the other hand,
full second-order logic has all the expressive power needed to
do mathematics, but has an unworkable model theory. Indeed,
the search for a logic with a semantics complex enough to say
something, yet at the same time simple enough to say something
about, accounts for the proliferation of logics . . .

There are a growing number of candidates for our mathematical and philo-
sophical logician to consider.

2 WHAT?

Just what is a logical system between �rst-order and second-order? I pre-
sume that the reader is familiar with `logical system', `�rst-order' (Sun-
cholm's chapter in Volume 2 of this Handbook) and `second-order' ([Shapiro,
1991] and van Benthem and Doets' Chapter below), but I will indulge in a
few words on `between'.
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There is, �rst, a proof-theoretic sense of `between'. The logician be-
gins with an ordinary, second-order language of a particular theory, such
as arithmetic or analysis, and studies sub-systems of the full second-order
deductive system for that theory. A typical focus is on restricted versions
of the comprehension scheme, for example limiting it to �0

1-formulas, or
to �1

1-formulas. Logicians also consider restrictions on the axiom of choice,
and restrictions on the schemes used to characterize various structures, such
as the induction principle for arithmetic and the completeness principle for
analysis. There is an ambitious, fruitful, and growing program developed
along these lines. The so-called `reverse mathematics' lies at the heart of this
research. Interested readers can begin with [Feferman, 1977] and [Simpson,
1985].

This chapter focuses on a model-theoretic sense of `between'. We consider
a potpourri of di�erent languages, or to be precise, a potpourri of di�erent
logical operators which can be added to a standard, �rst-order language.
Most of the languages have a model-theoretic semantics over the same class
of models as �rst-order and second-order logic, and each of the logics can
make more distinctions among models than can be done in �rst-order logic.
That is, each language has more expressive resources than the corresponding
�rst-order language. For example, most of them can characterize the notion
of `�nitude', and most of the languages allow a categorical characterization
of the natural numbers.

Some of the logics have properties enjoyed by �rst-order logic, such
as compactness, completeness, and the L�owenheim{Skolem theorems, and
some have weaker versions of these properties. On the other hand, the logics
considered here cannot make all of the distinctions that can be accomplished
with full second-order languages with standard semantics. Thus, the logics
are `between' �rst-order and second-order. Some of the systems are strictly
weaker than second-order, in a sense to be made precise, while others (like
the in�nitary languages) are not comparable. In light of the theme of this
Handbook, I will stick (for the most part) to systems that have, or might
have, some philosophical interest or application. There is no attempt to be
exhaustive.

Logicians have discovered limits to the ability to optimize between ex-
pressive power and tractability. Certain of the limitative properties char-
acterize �rst-order logic, in a sense to be made precise, and so we cannot
have the bulk of our cake and eat the bulk of it too. If we are to have the
main tractable features of �rst-order logic, we are stuck with its expressive
poverty. Conversely, some central non-�rst-order concepts and structures
can be characterized, up to isomorphism, as soon as some of the limitative
properties are given up.

Let K be a set of non-logical terminology. It is convenient to assume that
K contains in�nitely many constants and relation symbols of each degree.
Sometimes K is called a `vocabulary' or a `signature'. We consider various
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languages built upon K. Let L1[K] = be the �rst-order language, with
identity, whose non-logical terminology comes from K, and let L2[K] be
the corresponding second-order language.

Suppose that L[K] is a language that contains L1[K] =. Assume that
if � and 	 are formulas in L[K], then so are :�;� ! 	, and 9x�, for
each �rst-order variable x. That is, we assume that L[K] is closed under
the usual �rst-order connectives and quanti�ers. Assume also that L[K]
has a semantics with the same class of models as that of L1[K] = and
that the aforementioned connectives and quanti�ers have the same role in
the satisfaction of formulas as they have in L1[K] =. Thus, in particular,
the semantics of L[K] agrees with that of L1[K] = on the satisfaction of
�rst-order formulas. We assume �nally that if M1 and M2 are isomorphic
models and � is any formula of L[K], then M1 � � if and only if M2 � �.
This isomorphism property seems essential to any model-theoretic semantics
worthy of the name. If a language/logic could distinguish between isomor-
phic structures, then its consequence relation is not formal.1 Of course,
L1[K] = and L2[K] have the isomorphism property, as do all of the logics
considered below.

Many common semantical notions can be formulated in this general set-
ting. The logic L[K] is compact if for every set � of formulas of L[K], if
each �nite subset of � is satis�able, then � itself is satis�able; and L[K] is
countably compact if for every countable set � of formulas of L[K], if each
�nite subset of � is satis�able, then � itself is satis�able. The logic L[K] is
weakly complete if the collection of logically true sentences of L[K] is a re-
cursively enumerable set of strings. If L[K] is weakly complete, then there
is an e�ective deductive system whose theorems are the logical truths of
L[K]. That is, if L[K] is weakly complete, then there is an e�ective, sound,
and complete deductive system for it. The logic L[K] has the downward
L�owenheim{Skolem property if each satis�able, countable set of sentences
has a model whose domain is at most countable; and L[K] has the upward
L�owenheim{Skolem property if, for each set � of sentences, if � has a model
whose domain is in�nite, then for each in�nite cardinal �;� has a model
whose domain has cardinality at least �. All of these properties are enjoyed
by L1[K]= (provided that K is recursive), but decidedly not by L2[K].

We say that L[K] is �rst-order equivalent if for each sentence � of L[K],
there is a sentence �0 of L1[K] = such that � � �0 is a logical truth, or
in other words, � and �0 are satis�ed by the same models. Thus, if L[K]
is �rst-order equivalent, then it is not capable of making any distinctions
among models that cannot be made by the �rst-order L1[K]=. Clearly, the
second-order L2[K] is not �rst-order equivalent. Any categorical sentence
with an in�nite model is not equivalent to any �rst-order sentence. There are
a number of results that characterize logics that are �rst-order equivalent,

1See [Tarski, 1986] and [Sher, 1991] for an elaboration of this point.
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several of which are reported here. A few more de�nitions are needed.

The logic L[K] has the relativization property if for each formula � in
L[K] and each 	(x) with x free, there is a formula �=fxj	(x)g asserting
that � holds when the domain is fxj	(x)g. L[K] has the substitution prop-
erty if, for each formula � containing an n-place relation symbol R, and
each formula 	(x1; : : : ; xn) (containing no free variables that occur in �,
except possibly x1; : : : ; xn), there is a formula �(Rj	) that is equivalent to
the result of substituting 	(t1; : : : ; tn) for each occurrence of Rt1; : : : ; tn in
�. Both L1[K]= and L2[K] have these properties, as do most of the logics
considered below.2 The logic L[K] is e�ectively regular if the collection of
formulas of L[K] is a recursive set of strings, and if the aforementioned rela-
tivization and substitution functions are recursive. In the case of �rst-order
and second-order languages, the indicated functions are straightforward.
L1[K]= and L2[K] are e�ectively regular if the set K is recursive.

Finally, L[K] has the �nite occurrence property if for each formula � of
L[K], there is a �nite subset K 0 of K such that � is in L[K 0]. The idea
is that if L[K] has the �nite occurrence property, then each formula of
L[K] involves only �nitely many non-logical items. For most of the logics
considered below, the �nite occurrence property holds automatically, since
their formulas are �nite strings of characters. Only the in�nitary logics lack
this property.

The most well-known characterizations of �rst-order equivalence are due
to Lindstr�om:

THEOREM 1 ([Lindstr�om, 1969]). If L[K] has the �nite occurrence prop-
erty, is countably compact, and has the downward L�owenheim{Skolem prop-
erty, then L[K] is �rst-order equivalent.

THEOREM 2 ([Lindstr�om, 1969]). Let L[K] be an e�ectively regular logic.
Then if L[K] has the downward L�owenheim{Skolem property and the upward
L�owenheim{Skolem property, then L[K] is �rst-order equivalent.

THEOREM 3 ([Lindstr�om, 1969]). Let L[K] be an e�ectively regular logic.
If L[K] has the downward L�owenheim{Skolem property and is weakly com-
plete then L[K] is �rst-order equivalent, and, moreover, there is a recursive
function f such that for every sentence � of L[K], f(�) is a sentence of
L1[K]= that has exactly the same models as �.

See Flum [1985, Section 1] for proofs of these theorems, and further
re�nements of them.

So we see some limitations to our optimization project. We cannot have
both compactness and the downward L�owenheim- Skolem property and get
beyond the expressive poverty of �rst-order logic. If we manage to keep
compactness and get beyond �rst-order, we forgo L�owenheim{Skolem. If

2See [Ebbinghaus, 1985, Section 1.2] for more precise de�nitions of relativization and
substitution.
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we keep L�owenheim{Skolem and get beyond �rst-order, we forgo weak com-
pleteness.

The proofs of Lindstr�om's results given in [Flum, 1985, Section 1] re-
veal that if L[K] has the �nite occurrence property and the downward
L�owenheim{Skolem property, and yet L[K] is not �rst-order equivalent,
then it is possible to characterize the notion of �nitude in L[K] . In partic-
ular, under these circumstances, there is a sentence � of L[K] containing a
monadic predicate letter U such that (1) in every model of �, the extension
of U is �nite; and (2) for each natural number n � 1, there is a model of
� in which the extension of U has cardinality n. There can be no such
sentence in any countably compact extension of a �rst-order language. To
see this consider the following countable set of sentences:

� = f�; 9xUx; 9x9y(x 6= y&Ux&Uy);
9x9y9z(x 6= y&x 6= z&y 6= z&Ux&Uy&Uz); : : :g

By hypothesis, every �nite subset of � is satis�able and so by countable
compactness, � itself is satis�able. But a model of � is a model of � in
which the extension of U is in�nite.

Let M1 and M2 be two models of the logic L[K] (and of L1[K] =).
A partial isomorphism between M1 and M2 is de�ned to be a one-to-one
function f from a subset of the domain of M1 onto a subset of the domain
of M2 that preserves the relevant structure. Thus, for example, if R is a
binary relation letter and m and n are both in the domain of f , then hm;ni
is in the extension of R in M1 if and only if hfm; fni is in the extension of
R in M2. Now, the structures M1 and M2 are partially isomorphic if there
is a set P of partial isomorphisms between M2 and M2 with the back-and-
forth property: for each f 2 P and each m in the domain if M1 and each
m0 in the domain of M2, there is an f 0 2 P such that f � f 0 and m is in
the domain of f 0 and m0 is in the range of f 0.

A well known technique, due to Cantor, establishes that if M1 and M2
are partially isomorphic and both domains are countable, then M1 and M2
are isomorphic. This does not hold for domains with higher cardinalities,
since, for example, any two dense linear orderings with neither a �rst nor a
last element are partially isomorphic.

A logic L[K] has the Karp property if partially isomorphic structures are
equivalent. That is, L[K] has the Karp property i� for any models M1 and
M2, and any sentence � of L[K], if M1 and M2 are partially isomorphic,
then M1 � � i� M2 � �. The Karp property gives rise to many of the
techniques for the study of �rst-order model theory. It is part of another
characterization of �rst-order logic:

THEOREM 4. Let L[K] be a logic with the relativization, substitution, and
�nite occurrence properties. If L[K] has the Karp property and is countably
compact, then L[K] is �rst-order equivalent.
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The proof of this in [Flum, 1985, Section 2] establishes that if a logic L[K]
(with the relativization, substitution, and �nite occurrence properties) has
the Karp property and is not �rst-order equivalent, then the natural num-
bers under the `less than' relation can be characterized up to isomorphism
in L[K]. See van Benthem and Doets' Chapter below for an interesting
relationship between partial isomorphism and �rst-order quanti�ers.

One more example: The use of ultraproducts is an extremely fruitful
technique in the model theory of �rst-order logic. In e�ect, this gives another
characterization of �rst-order equivalence (for the relevant de�nitions, see
[Bell and Slomson, 1971] or [Chang and Keisler, 1973]). If fMi j i 2 Ag is
a family of models of L1[K]=, and U an ultra�lter on A, then let �UfMig
be the resulting ultraproduct. Say that a logic L[K] preserves ultraproducts
if for each sentence � of L[K] and each ultraproduct �UfMig, if Mi � �
for each i 2 A, then �UfMig � �.

THEOREM 5 ([1973, Chapter 6]). L[K] is �rst-order equivalent if and only
if L[K] preserves ultraproducts.

The `only if' part of this equivalence underwrites the ultraproduct con-
struction in �rst-order logic; the `if' part indicates that only �rst-order logic
can be illuminated this way.

It is surely signi�cant that such a wide variety of properties all converge
on �rst-order semantics. In philosophical jargon, one might call �rst-order
logic a `natural kind'. But we should not forget the expressive poverty of
�rst-order languages. First-order logic is important, but it does not have a
monopoly on the attention of mathematical and philosophical logicians.

3 JUST SHORT OF SECOND-ORDER LOGIC

Here we consider two seemingly minor restrictions to full second-order logic.
One is to allow only second-order variables that range over monadic predi-
cates or properties (or sets). The other is to allow the full range of second-
order variables, but insist that the variables do not occur bound. This is
equivalent to using a language with nothing more complex than �1

1-formulas.
It is interesting how much tractability these restrictions bring, with a min-
imal loss in expressive power.

3.1 Monadic second-order logic

De�ne a set K of non-logical terminology to be monadic if it does not con-
tain any function symbols or any n-place relation symbols, for n > 1. It is
well-known that if K is monadic and recursive, then the set of logical truths
of the �rst-order L1[K] = is recursive. Moreover, if the set of non-logical
terminology is monadic, the L�owenheim [1915] classic contains a decision
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procedure for the logical truths of a language that contains bound �rst-
variables and bound second-order variables ranging over 1-place properties
(see [Gandy, 1988, p. 61] and [Dreben and Goldfarb, 1979, Section 8.3]).
This sounds like wonderful news, but the languages are too weak to ex-
press substantial mathematics. The notion of function is central to modern
mathematics, and it is hard to do much without it. However, we may get
by without variables ranging over functions.

Monadic second-order languages contain bound variables ranging over 1-
place relations, but there are no variables ranging over functions or n-place
relations, for any n > 1. That is, all second-order variables are monadic.
No restrictions are placed on the non-logical terminology, so that monadic
second-order languages lie between �rst-order and second-order languages.
Gurevich [1985] is an extensive treatment of such languages, arguing that
they are `a good source of theories that are both expressive and manageable'.

There is an important restriction on this statement. A pair function on a
given domain d is a one-to-one function from d� d into d. A theory admits
pairing if there is a de�nable pair function on it. That is, there is a formula
�(x; y; z), with only the free variables shown, such that in every model M
of the theory, there is a pair function f on the domain of M such that for
any a; b; c in the domain, M satis�es �(a; b; c) if and only if f(a; b) = c.
Then if a theory cast in a monadic second-order language admits pairing, it
is equivalent to the same theory formulated in an unrestricted second-order
language. There is no loss of expressive power and no gain in manageability.3

The reason, of course, is that a relation can be thought of as a property of
pairs. Let f be a pair function. Then a given binary relation R is equivalent
to the property that holds of an element x i� there is a y and z such that
f(y; z) = x and R holds of the pair hy; zi.

In arithmetic, the function g(x; y) = 2x3y is a pair function, and in set
theory h(x; y) = ffxg; fx; ygg is the standard pair function. For this rea-
son, monadic second-order arithmetic and monadic second-order set theory
are equivalent to their full second-order versions. However, on the positive
side of the ledger, Gurevich [1985] points out that there are theories that
do not admit pairing, whose monadic second-order theories are interesting.
One is arithmetic, formulated with the successor function alone. Although
the monadic second-order theory is categorical, and the natural order can
easily be de�ned in it, the theory is decidable. Addition and multiplication
can be de�ned in the full second-order theory of arithmetic (see [Shapiro,
1991, Chapter 5]), but not in the monadic theory. A second example, also
decidable, is the monadic theory of the binary tree|the structure of the set
of strings on a two letter alphabet. Rabin [1969] showed how to interpret
the theory of strings on a countable alphabet in the monadic second-order

3Shapiro [1991, Chapter 6, Section 2] contains a theorem that what may be called
monadic nth-order logic (for suÆciently large n) admits pairing. Thus, the manageability
of monadic second-order logic does not apply to monadic higher-order logic in general.
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theory of the binary tree, so the theory does have interesting and useful ap-
plications. A third example is the monadic second-order theory of countable
ordinals.

Some reducibility results indicate that certain monadic theories are rich
and intractable. Shelah [1975] showed that �rst-order arithmetic can be
reduced to the monadic second-order theory of the real numbers under the
order relation. It follows that the latter is a rich, undecidable theory|just
as rich and unmanageable as �rst-order arithmetic. More generally, Gure-
vich and Shelah [1983] established that full second-order logic itself can be
reduced to what is called the monadic second-order theory of order, cast in a
language with a single binary, non-logical relation symbol <. In particular,
they show that there is a recursive function F such that for each sentence �
of the second-order language L2 (with no non-logical terminology), F (�) is
a sentence in the monadic second-order language of order, and � is a logical
truth i� F (�) is satis�ed by every linear order. It follows that the monadic
second-order theory of order is just as rich and unmanageable as second-
order logic.

George Boolos [1984; 1985] proposed an alternate way to understand
monadic second-order languages|with or without pairing|which promises
to overcome at least some of the objections to second-order logic (see also
[Boolos, 1985a; Lewis, 1991]). Recall that according to standard semantics
for second-order languages, a monadic second-order existential quanti�er
can be read `there is a class' or `there is a property', in which case, of
course, the locution invokes classes or properties. This is the source of
Quine's argument that in order to understand second-order quanti�ers, we
need to invoke a special subject|the mathematical theory of sets or, even
worse, the metaphysical theory of properties. Quine concludes that second-
order logic is not logic. Against this, Boolos suggests that the monadic
second-order universal quanti�er be understood as a plural quanti�er, like
the locution `there are (objects)' in natural language.

Consider the following, sometimes called the `Geach{Kaplan sentence':

Some critics admire only one another.

Taking the class of critics to be the domain of discourse, and symboliz-
ing `x admires y' as Axy, the Geach-Kaplan sentence has a (more or less)
straightforward second-order rendering:

(�) 9X(9xXx&8x8y((Xx&Axy)! (x 6= y&Xy))):

Kaplan observed that if Axy is interpreted as x = 0 _ x = y + 1 in the
language of arithmetic, then (�) is satis�ed by all non-standard models of
�rst-order arithmetic, but not by the natural number structure N . However,
a compactness argument establishes the existence of a non-standard model
M such that for any sentence � of �rst- order arithmetic, M � � if and
only if N � �. Thus there is no �rst-order sentence that is equivalent to (�).
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The issue concerns how the sentence (�) is to be understood. According
to standard semantics, it would correspond to `there is a non-empty class
X of critics such that for any x in X and any critic y, if x admires y, then
x 6= y and y is in X '. This gloss implies the existence of a class, while
the original `some critics admire only one another' does not, at least prima
facie.

Natural languages, like English, allow the plural construction and, in
particular, English contains the plural quanti�er. Boolos argues that the
informal meta-language|the one we use in developing formal semantics|
also contains this construction, and the construction can be employed to
interpret monadic second-order existential quanti�ers. The relevant locution
is `there are objects X , such that . . . '. As in the �rst-order case, the variable
serves as a place-holder, for purposes of cross reference.

In set theory, for example, the `Russell sentence',

9x8x(Xx � x 62 x);

is a consequence of the comprehension scheme. According to standard se-
mantics, it corresponds to a statement that there is a class (or property)
that is not coextensive with any set. Admittedly, this takes some getting
used to. On Boolos' interpretation, the Russell sentence has an innocent
reading: `there are some sets such that any set is one of them just in case it is
not a member of itself'. Similarly, the second-order principle of foundation,

8X(9xXx! 9x(Xx&8y(y 2 x! :Xy)));

comes to `it is not the case that there are some sets such that every one of
them has a member that is also one of them'. Again, neither properties nor
proper classes are invoked.

There is a complication here due to the fact that an English sentence
in the form `there are some objects with a certain property' implies that
there is at least one object with this property, while a sentence that begins
with a standard second-order existential quanti�er does not have a similar
implication. In particular, in standard semantics, a sentence in the form
9X�(X) is satis�ed by a model even if � holds only of the empty class in
that model.4 To accommodate this, Boolos takes the comprehension scheme
9X8x(Xx � �(x)), for example, to correspond to `either :9x�(x) or else
there are some objects such that any object is one of them just in case �
holds of it'.

Boolos [1985] develops a rigorous, model-theoretic semantics for monadic
second-order languages. As indicated, the plural quanti�er is used in the
meta-language to interpret the monadic quanti�er. If this semantics can

4Actually, it seems to me that the locution `there are objects with a certain property'
implies that there are at least two objects with the property. This detail can be handled
in a straightforward manner, if desired.
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be sustained, then one can accept monadic second-order languages, without
thereby being committed to the existence of classes. Boolos' main claim
is that plural quanti�ers do not involve any ontology other than the range
of the �rst-order variables. Monadic second-order formulas do not invoke
classes at all, unless the corresponding �rst-order formulas do.

According to the Boolos proposal, then, second-order arithmetic presup-
poses natural numbers, but not sets of numbers, and second-order geometry
presupposes points, but not sets of points. This may be an important dis-
tinction for tracking the separate presuppositions of di�erent �elds, but
ultimately it is not crucial for these �elds. Boolos is certainly not out to
reject sets altogether, being an advocate set theory. Moreover, if certain
reection principles hold, the second-order consequence relation is the same
on both standard semantics and his interpretation. The di�erence between
the interpretations comes to the fore in set theory itself. Boolos does not
accept the existence of proper classes (and thus does not regard `V' as a
proper noun). In [1985], he wrote that `the diÆculty of interpreting second-
order quanti�ers is most acute when the underlying language is the language
of set theory . . . '. And in [1984]:

. . . we [do not] want to take the second-order variables as rang-
ing over some set-like objects, sometimes called `classes', which
have members, but are not themselves members of other sets,
supposedly because they are `too big' to be sets. Set theory is
supposed to be a theory about all set-like objects. [Boolos, 1984,
p, 442]

The Boolos program, then, accomplishes a reduction of ontology by em-
ploying plural quanti�ers, which are found in ordinary language. It is thus
a tradeo� between ontology and ideology, and, as such, it is not clear how
the case is to be adjudicated. The prevailing criterion is the Quinean as-
sertion that the ontology of a theory is the range of its bound variables.
Quine insists that the theory in question be �rst regimented in a �rst-
order language, but the criterion is readily extended to standard higher-
order languages, since in such systems, higher-order variables have (more
or less) straightforward ranges, namely, classes, relations, or functions. In
this respect, second-order variables are on a par with �rst-order variables.
Boolos, however, proposes a certain asymmetry between �rst-order and
monadic second-order variables. The latter do not have `ranges' in the
same sense that the former do.

Resnik [1988] argues against the Boolos program, suggesting that plural
quanti�ers of natural language be understood (after all) in terms of classes.
Both Resnik and Boolos [1985] acknowledge that this sort of dispute leads
to a stando�, or a regress. Anything either side says can be reinterpreted
by the other. The issue concerns whether we have a serviceable grasp of
plural quanti�ers, suÆcient for use in the meta-languages of model-theoretic
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semantics. Resnik seems to claim that we do not. What understanding
we do have of plural quanti�ers is mediated by our understanding of sets.
Boolos claims that we do have a reasonable grasp on plural quanti�ers,
citing the prevalence of plurals in ordinary language. It might be noted,
however, that plurals in general seem to be rather complex, and there is no
consensus among linguists concerning how they are to be understood (see,
for example, [Landman, 1989]). But Boolos does not invoke the full range of
plural nouns, only plural quanti�ers. It must be admitted that these seem
to be understood reasonably well, about as well as (monadic) second-order
quanti�ers. Resnik would retort that even this is mediated by set theory,
�rst-order set theory. Thus, the regress.

3.2 Free-variable second-order logic

Our second `slight' restriction on second-order logic consists of restricting
the language to free second-order variables. The resulting logic has much
of the expressive power of full second-order logic, but is not quite as in-
tractable. Some of the usual arguments against second-order logic do not
apply to free-variable second-order logic. Free-variable second-order lan-
guages are similar (if not identical) to the `schematic' languages studied in
[Lavine, 1994], and they are in the same spirit as the `slightly augmented
�rst-order languages' presented in [Corcoran, 1980]. The latter has only a
single, monadic predicate variable, which occurs free.

The language L2[K]� is obtained from the �rst-order L1[K]= by adding
a stock of relation variables, with the usual formation rules for second-order
languages.5 The point, of course, is that L2[K]� has no quanti�ers to bind
the second-order variables. We follow the usual convention of interpreting
the free variables as if they are bound by universal quanti�ers whose range
is the whole formula. Thus, the formulas envisaged here are equivalent to
�1
1 formulas of a second-order language. We formulate the semantics in

terms of the usual model theory for second-order languages.
Let M be a structure appropriate for K and let d be the domain of M .

Let s be an assignment of a member of d to each �rst-order variable and an
assignment of an appropriate relation on d to each second-order variable.
Let � be a formula of L2[K]�. In the usual treatments of second-order
logic, one de�nes the notion that M satis�es � under the assignment s
(see van Benthem and Doets' Chapter below or [Shapiro, 1991, Chapter 3]).
This is not quite what we want here, since in the usual framework, a free
variable X is taken as `denoting' the particular relation s(X), whereas here
we want the variable to serve generality|we interpret the variable as if it

5The free-variable system in [Shapiro, 1991] includes variables ranging over functions.
This does not a�ect the expressive power of the language, since a function can be thought
of as a relation. The required modi�cations are straightforward, but they are tedious and
a distraction from the present focus.
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were bound by a universal quanti�er. So we say that M quasi-satis�es �
under the assignment s, written M; s � �, if and only if M satis�es � under
every assignment s0 that agrees with s on the �rst-order variables. Notice
that M quasi-satis�es � under s0 if and only if M satis�es 8X� under s.
The values assigned to the higher-order variables play no role. As usual, we
suppress the assignment if there are no free variables in �.

Since an L2[K]� formula in the form �(X) amounts to 8X�(X), a for-
mula :�(X) amounts to 8X:�(X). Thus, :�(X) is not the `contradictory
opposite' of �(X). There are formulas �(X) with X free, such that there is
no formula of L2[K]� equivalent to its contradictory opposite, :8X�(X).
Thus, even though L2[K]� has a negation sign, the language is not closed
under contradictory opposition.

In standard deductive systems for higher-order languages, the main item
is the comprehension scheme:

9X(8x(Xx � �(x)));

one instance for each formula � (not containing X free). Since this is not
a formula of L2[K]�, the deductive system for free-variable second-order
languages is a bit more complicated.

Let � and 	(x1; : : : ; xn) be formulas of L2[K]�, the latter possibly con-
taining the indicated free (�rst-order) variables. Let R be an n-place rela-
tion variable. De�ne �[R=	(x1; : : : ; xn)] to be the formula obtained from
� by replacing each occurrence of Rt1; : : : ; tn (where each ti is a term) with
	(t1; : : : ; tn), making sure that no free variables in any ti become bound
in 	(t1; : : : ; tn) (relettering bound variables if necessary). For example,
if � is Rf(w) _ 8y(Ry ! Qy) and 	(x) is 8zXxz, then �[R=	(x)] is
8zXf(w)z _ 8y(8zXyz! Qy).

The deductive system for L2[K]� consists of the schemes and rules of the
corresponding �rst-order system, together with the following substitution
rule:

From � infer �[R=	(x1; : : : ; xn)], where 	 does not contain any
free variables that are bound in �[R=	(x1; : : : ; xn)].

The substitution rule has the e�ect of treating any formula with relation
variables as a scheme, whose `place holders' are the relation variables, and
whose substitution instances are the appropriate formulas of L2[K]�.

In the usual deductive system for full second-order logic, one can derive
�[R=	(x1; : : : ; xn)] from 8R�, using an instance of the comprehension
scheme, provided that 	 does not contain any free variables that become
bound in 	[R=	(x1; : : : ; xn)]. A variant of the substitution rule is thus a
derived rule in full second-order logic. Henkin [1953] is an insightful account
of the relationship between substitution rules and principles of comprehen-
sion.
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Call the deductive system for free-variable second-order logic D2�.
Notice that D2� does not have an unrestricted deduction theorem. If it did,
then since :Xx `D2� :(x = x), we would have `D2� :Xx ! :(x = x)
and so `D2� Xx. But, from Xx, any formula can be deduced. Thus, if
the deduction theorem held, D2� would be inconsistent. The following,
however, is straightforward:

THEOREM 6 (Restricted deduction theorem). If there is a deduction in
D2� of 	 from � [ f	g in which the substitution rule is not applied to a
relation variable that occurs in �, then � `D2� �! 	.

This di�erence between D2� and a deductive system for full second-order
logic is due to a common ambiguity in the interpretation of free variables.
Sometimes they are taken as surrogate names for (unspeci�ed) individuals.
On this reading, a formula �(x) asserts that the object x has the property
represented by �. The phrase free constant might be better than `free vari-
able' in such cases. In other contexts, free variables are taken as if they are
bound by prenex universal quanti�ers. Accordingly, �(x) says that every-
thing has the property represented by �, in which case, the variable may
be called implicitly bound. Some authors employ di�erent notation for free
constants and (implicitly or explicitly) bound variables. Here, the seman-
tics and the substitution rule presuppose that all second-order variables of
L2[K]� are implicitly bound. Assume that � and 	 are in L2[K]�, � has
only X free, and 	 has no free variables. Suppose also that � `D2� 	.
Then in full second-order logic, we would have 8X� ` 	. So, from the
deduction theorem, (8X�)! 	 can be deduced from no premises. This is
not a formula of L2[K]�. In D2�, the conclusion of a deduction theorem
would be ` �(X)! 	, which amounts to ` 8X [�(X)! 	].

So much for deduction. What of expressive resources? The usual cate-
gorical axiomatizations of arithmetic, analysis, complex analysis, Euclidean
geometry, etc. each contain a �nite number of �rst-order sentences and
a single �1

1 sentence. Thus, the axiomatization can be written in a free-
variable second-order language. A categorical axiomatization of arithmetic
consists of the conjunction of the usual �rst-order Peano axioms and the
induction principle:

(X0&8x(Xx! Xsx))! 8xXx:

A categorical axiomatization of real analysis in a free-variable second-order
language consists of the conjunction of the axioms of an ordered �eld, all of
which are �rst-order, and the principle of completeness asserting that every
bounded set has a least upper bound:

9x8y(Xy ! y � x)! 9x[8y(Xy ! y � x)&8z(8y(Xy! y � z)! x � z)]:

In the second-order axiomatization of Zermelo{Fraenkel set theory, every
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axiom is �rst-order except the replacement principle, and that can be ren-
dered in L2[f2g]�:

8x8y8z(Rxy&Rxz! y = z)! 8x9y8z(z 2 y � 9w(w 2 x&Rwz)):

Thus, when it comes to the ability to characterize central structures, free-
variable second-order languages have much of the strength of full second-
order languages. A structure quasi-satis�es the axiomatization of arithmetic
if and only if it is isomorphic to the natural numbers, and so all models of
this axiomatization are countably in�nite. A structure quasi-satis�es the
axiomatization of analysis if and only if it is isomorphic to the real numbers,
and so all such structures have the cardinality of the continuum. A structure
quasi-satis�es the axiomatization of set theory if and only if it is isomorphic
to an inaccessible rank (or V itself). Thus, both of the L�owenheim{Skolem
theorems fail. There are no countable models of analysis and no uncountable
models of arithmetic.

Compactness also fails. To see this add a constant c to the language of
arithmetic and consider a set � consisting of the single free-variable second-
order axiom of arithmetic and the sentences c 6= 0; sc 6= 0; ssc 6= 0; : : : For
any �nite �0 � �, one can interpret the constant c so that �0 quasi-satis�es
the natural numbers. However, there is no structure that quasi-satis�es �
itself. Similarly, free-variable second-order logic is inherently incomplete,
for much that same reason that full second-order logic is. The set of logical
consequences of the axiomatization of arithmetic is not recursively enumer-
able. These results fail because of the expressive strength of the language.

There is some good news, however. Let � be a formula of L2[K]� and let
�0 be the result of uniformly replacing each second-order predicate variable
with a di�erent non-logical relation letter of the same degree, not in �
already (expanding the set K if necessary). Then �0 is �rst-order. Notice
that � is a logical truth (i.e., � is quasi-satis�ed by every structure) if and
only if �0 is a logical truth. It follows that free-variable second-order logic
is weakly complete. A formula � is a logical truth if and only if � can
be deduced in D2� (without using the substitution rule!). So the relevant
notion of logical truth is no more intractable than its �rst-order counterpart.

This small gain in manageability comes with the cost that free-variable
second-order languages are not as expressive as full second-order languages.
Let A be a monadic predicate letter and R a binary relation (both non-
logical). In any interpretation of the language, the minimal closure of A
under R is the smallest set that contains (the extension of) A and is closed
under R. This is an important construction in mathematics and logic. In
general, there is no �rst-order formula equivalent to `x is in the minimal
closure of A under R' (see [Shapiro, 1991, Chapter 5, Section 1]). There is
such a formula in L2[K]�. One simply renders the informal de�nition:

MC(x) : 8y(Ay ! Xy)&8y8z((Xy&Ryz)! Xz)]! Xx:
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However, one cannot state in L2[K]� that there is a minimal closure of
A under R|which, in the full second-order system is an instance of the
comprehension scheme. More importantly, the use of the minimal closure
construction is hampered by the inability to directly state in L2[K]� a
conditional whose antecedent is `x is in the minimal closure ofA under R'. In
such a conditional, the variable X would be implicitly bound by a universal
quanti�er whose scope is the entire formula. In the full second-order system,
8X(MC(x)) ! � is not equivalent to 8X(MC(x)! �), but only the latter
is directly equivalent to a formula in L2[K]�. This problem can sometimes
be circumvented. Introduce a new non-logical predicate letter B, with the
axiom:

8y(Ay ! By)&8y8z((By&Ryz)! Bz)&8x(Bx!MC(x)):

This entails that the extension of B is coextensive with the indicated mini-
mal closure. Then, to make the assertion that `if x is in the minimal closure
of A under R, then �' one would write

8x(Bx! �):

The extension of a predicate A is �nite if there is no one-to-one function
from this extension into a proper subset of itself. As noted above, one can
just state this in L2[fAg]� (using a relation variable instead of a function
variable):

FIN(A) : :[8x8y8z(Rxz&Ryz! x = y)&8x(Ax! 9y(Rxy&Ay))&
9x(Ax&8y(:Ryx))]:

That is, a structure quasi-satis�es FIN(A) if and only if the extension of
A is �nite. However, there is no general expression of the complement|
in�nitude|in this framework. The usual formula expressing in�nitude has
an existential quanti�er ranging over relations:

INF(A) : 9R[8x8y8z(Rxz&Ryz! x = y)&8x(Ax! 9y(Rxy&Ay))&
9x(Ax&8y(:Ryx))]:

See Shapiro [1991, Chapter 5, Section 1].
Another group of examples concerns the comparison of cardinalities. The

formulation of `the cardinality of the extension of A is less than the cardi-
nality of the extension of B',

9R[8x8y8z(Rxz&Ryz! x = y)&8x(Ax! 9y(Rxy&By))&
9x(Bx&8y(Ay ! :Ryx))];

has an initial existential quanti�er, and so the relation cannot be character-
ized directly in L2[K]�. But its complement `the cardinality of B is greater
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than or equal to the cardinality of A' can be:

:[8x8y8z(Rxz&Ryz! x = y)&8x(Ax! 9y(Rxy&By))&
9x(Bx&8y(Ay ! :Ryx))];

but this last cannot be the antecedent of a conditional (with its intended
meaning). Again, the notion `A and B have the same cardinality' can-
not be directly characterized, but its complement `A and B have di�erent
cardinality' can be.

Similarly, one can assert in L2[K]� that a given relation is well-founded,
or is a well-ordering of its �eld, but the well-ordering principle, that every
set has a well-ordering, cannot be stated. The latter requires an existential
quanti�er ranging over relations.

Many of these features are a consequence of the fact that L2[K]� is
not closed under contradictory opposition. It is clearly inconvenient to be
unable to express the complements of otherwise de�nable properties and
relations, and to be unable to use de�nable notions in the antecedents of
conditionals.

As with monadic second-order logic, some of the motivation for free-
variable second-order logic is philosophical. Recall that many thinkers balk
at the automatic assumption of the existence of relations, no matter how
they are construed. According to Quine, for example, if relations are in-
tensional then they are too obscure for serious scienti�c work, and if they
are extensional then we deal with sets, and have crossed the border out of
logic and into mathematics. There is a second tradition, also due to Quine,
that regards the ontology of a theory to consist of the range of its bound
variables. The point is a simple one. The existential quanti�er is a gloss
on the ordinary word for existence. Thus, an interpreted theory in a for-
mal language entails the existence of whatever falls under the range of an
existential quanti�er. In free-variable second-order languages, however, one
cannot say that relations exist, since relation variables are not bound by
quanti�ers.

In another context, Hilbert (e.g., [1925]) made a similar distinction. Ac-
cordingly, a formula with a free variable expresses a certain generality, in
that such a formula can be used to assert each of its instances. On the other
hand, a formula with a bound variable|called an `apparent variable'|
represents or entails a genuine claim of existence. In articulating his �nitism,
Hilbert proposed that we develop theories that avoid reference to completed
in�nite sets. If such �nitary theories are to capture any mathematics at all,
the formulas need to express generality. His �nitary formulas contain free
variables, but he banned bound (`apparent') variables. Skolem [1923] ex-
pressed a similar idea:

[Arithmetic] can be founded in a rigorous way without the use
of Russell and Whitehead's notions `always' and `sometimes'.
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This can also be expressed as follows: a logical foundation can
be provided for arithmetic without the use of apparent logical
variables.

Again, the system that Skolem proposed allows free variables, but not bound
variables.

Free-variable second-order languages exploit the Hilbert/Skolem distinc-
tion in the context of sets and relations|the items of second-order logic.
A common complaint against second-order logic emerges from the belief
that for a given in�nite domain d, there is no clear understanding of the
totality of the subsets of d (i.e., the powerset of d). The skeptic points
out that even the powerful axioms of Zermelo{Fraenkel set theory do not
suÆce to �x the powerset of the set of natural numbers, the simplest in�-
nite powerset. But this powerset is the range of the predicate variables in
second-order axiomatizations of arithmetic. The argument concludes that
even if the purported range of the second-order variables is unambiguous,
the range is too problematic to serve logic and foundational studies. Can
one claim to have an intuitive grasp of statements in the form 8X9Y 8Z�,
even in a simple context like arithmetic?

This is not the place to respond to these skeptical arguments (see [Shapiro,
1991]). The point here is that much of the force of the arguments is de-
ected from free-variable, second-order logic. An advocate of a second-order
free-variable system does not presuppose a far-reaching grasp of the range of
the second-order variables. In fact, the advocate need not even presuppose
that there is a �xed range of the relation variables. In typical cases, it is
enough to recognize unproblematic de�nitions of relations on the domain,
as they arise in practice. Recall that the only higher-order rule of inference
allowed in the deductive system D2� is the `substitution rule' allowing one
to systematically replace a subformula Xt, for example, with  (t). Since
the formula  determines a subclass fx j  (x)g of the domain, the sub-
stitution rule is a version of universal instantiation. To put it loosely, the
rule is that from �(X), one can infer �(S), where S is any set. If, in a
given case, there is no unclarity about the set S, then there is no unclarity
about the inference. In short, in L2[K]�, a formula in the form �(X) can
be interpreted as `once a set S is determined, � holds of it'.

Consider the axiom of induction in arithmetic, as formulated in a free-
variable, second-order language:

(X0&8x(Xx! Xsx))! 8xXx;
As interpreted here, the principle asserts that any given set of natural num-
bers that contains 0 and is closed under the successor function contains all
of the natural numbers. This axiom, so construed, is enough to establish
the categoricity of arithmetic (together with the other axioms, of course).
In the proof of categoricity (see [Shapiro, 1991, Chapter 4, Section 2] and,
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of course, [Dedekind, 1988]), we consider two models M;M 0 of the theory.
Using only weak and uncontroversial principles of set theory, one de�nes a
subset c of the domain of M in terms of M 0 and a subset c0 of the domain of
M 0 in terms of M . Then c and c0 are taken as instances of the induction ax-
iom. That is, we have an application of universal instantiation. Notice that
in order to apply the completeness axiom to c, one need only recognize that
c is a subset of the domain of M . This, I suggest, is patently obvious (even
though the de�nition of c goes beyond the resources of the corresponding
�rst-order language). The conclusion is that one can work with theories
formulated in free-variable second-order languages, and one can coherently
maintain the categoricity of arithmetic (and analysis, Euclidean geometry,
etc.) without claiming some sort of absolute grasp on the range of the rela-
tion variables|or even claiming that there is a �xed range. One only needs
the ability to recognize subsets as they are de�ned; and in the context of
the interpreted formal languages in question, this is not problematic. In
sum, the free-variable second-order versions of the various theories involve
only a rather weak hold on the range of the second-order variables.

Consider �rst-order logical consequence and logical truth. The standard
de�nition is that a sentence � is a logical truth if � is satis�ed by every
model under every interpretation of its non-logical terminology. This is vir-
tually the same as treating the non-logical terminology as implicitly bound
free variables, and some of these variables are higher-order. Tarski [1935]

explicitly uses second-order variables in his celebrated treatment of logical
consequence. The reader is told to replace each non-logical term with an
appropriate variable and consider the universal generalization of the formula
that results. The free-variable, second-order language would have done just
as well, and Tarski's procedure is recognized as the same as the contempo-
rary one (modulo a few possible di�erences of no concern here). Thus, some
grasp of second-order variables is even presupposed in standard treatments
of �rst-order logic, so a skeptic about free-variable second-order languages
should also be skeptical of common logical concepts.

The `dual' to L2[K]�would be a language that allowed only �1
1-formulas|

formulas with existential second-order quanti�ers whose range is the entire
formula. Call this a �-language. Like L2[K]�, a �-language is not closed
under contradictory opposition. The negation of a �1

1-formula is a �1
1-

formula. Thus, a given notion can be characterized in a �-language if and
only if its complement can be characterized in a free-variable second-order
language. So, for example, in�nitude can be characterized, but not �nitude.

Notice that the satis�ability of a �rst-order formula is equivalent to the
satis�ability of the �1

1-formula obtained by replacing the non-logical ter-
minology with appropriate variables and binding the formula with existen-
tial quanti�ers over the new variables. Thus, the downward and upward
L�owenheim{Skolem theorems hold for �-languages. However, it follows
from Church's theorem that the set of satis�able �rst-order formulas is not
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recursively enumerable. Thus, the set of logically true sentences in a �-
language is also not recursively enumerable and so the logic of �-languages
is not weakly complete. Flum [1985] establishes an interesting interpolation
theorem for �-languages: let � and 	 be two sentences in a �-language
such that �&	 has no models. Then there is a �rst-order sentence � such
that �! � is a logical truth and �&	 has no models. That is, any pair of
incompatible sentences in a �-language can be `separated' by a �rst-order
sentence.

Consider a language containing both �1
1-formulas and �1

1-formulas, but
nothing more complex than that. This combines the expressive advan-
tages of free-variable second-order languages and �-languages, but it also
combines the disadvantages of both languages. The logic is not weakly
complete and the L�owenheim{Skolem theorems fail. The language is closed
under contradictory opposition, but not under conjunction or disjunction.
We briey return to a language consisting of Boolean combinations of �1

1-
formulas in Section 6 below.

Note that someone might try to obtain the advantages of both monadic
second-order logic and free-variable second-order logic by proposing a lan-
guage with only free, monadic second-order variables. However, the main
philosophical advantage to the monadic system was that the Boolos seman-
tics could be used instead of standard semantics, thus easing the ontological
burden of second-order logic. However, the Boolos construction invokes the
plural quanti�er from ordinary language, which is an existential quanti�er:
`there are objects . . . '. The universal quanti�er is obtained by way of nega-
tion: 8X� is just :9X:�. Thus, the Boolos semantics is not available for
the free-variable language.

4 FINITUDE PRESUPPOSED

The main strength of full second-order languages is their ability to char-
acterize important mathematical structures and concepts. The simplest
in�nite mathematical structure is surely that of the natural numbers, and
one of the most basic mathematical concepts is �nitude. The four logics
presented in this section presuppose the notion of �nitude/natural number,
each in a di�erent way. We can use the logics to see what can be captured
in terms of, or relative to, �nitude or the natural numbers. After charac-
terizing each of the logics, we show how there is a sense in which they are
equivalent to each other. Then their expressive resources are assessed, and
they are compared to second-order logic. The succeeding sections take up
extensions of these logics, which cover most of the (�nitary) intermediate
logics under study today.

Weak second-order logic employs the same languages as second-order
logic, namely L2[K], except that there are no function variables (and we
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maintain a symbol for identity). The di�erence with second-order logic lies
in the model-theoretic semantics. In weak second-order logic, the second-
order quanti�ers range over �nite relations. Let M be a model whose do-
main is d. De�ne s to be a �nite assignment on M if s assigns a member
of d to each �rst-order variable and a �nite n-place relation on d to each
n-place relation variable. For example, if X is an n-place relation variable,
then s(X) is a �nite subset of dn. The semantics of weak second-order logic
is restricted to �nite assignments. The notion of a model M satisfying a
formula under the �nite assignment s, written M; s � �, is de�ned in the
straightforward manner. The crucial clause is:

M; s � 8X� if and only if M; s0 � � for every �nite assignment
s0 that agrees with s except possibly at X .

If the context does not make it clear which logic is under discussion, we
employ the symbol w for the satisfaction and consequence relation of weak
second-order logic.

Some instances of the comprehension scheme are not logically true in
weak second-order logic. In fact, a sentence in the form 9X8x(Xx � �(x))
is satis�ed by a structure M if and only if the extension of � in M is �nite.
Thus, the notion of �nitude can be expressed in weak second-order logic,
but if anything has the advantages of theft over toil, this does. The notion
of �nitude is built into the semantics from the outset. It does follow from
the theft that weak second-order logic is more expressive than �rst-order
logic, since the latter cannot express �nitude.

The next logic L(Q0) (or L(Q0)[K]) employs the language of �rst-order
logic with identity L1[K]=, augmented with another quanti�er Q, called a
cardinality quanti�er. Let M be a model of L1[K] = and s an assignment.
The new clause in the semantics is:

M; s � Qx� i� there are in�nitely many distinct assignments s0

such that s agrees with s0 on every variable except possibly x,
and M; s0 � �.

The formula Qx� may be read `for in�nitely many x;�' or `� holds of
in�nitely many x'. The sentence Qx(x = x) asserts that the domain is
in�nite; Qx� asserts that the extension of � is in�nite; and :Qx� asserts
asserts that the extension of � is �nite. So we can express �nitude in L(Q0),
again assuming the advantages of theft over toil. As above, it follows that
L(Q0) is more expressive than �rst-order logic.

Our third logic is even more explicit about the theft. Assume that the
set K of non-logical terms contains a binary relation symbol <. Let M be
a model whose domain is d. De�ne the �eld of < in M to be the set

fa 2 d jM � 9x(a < x _ x < a)g:
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That is, the �eld of < consists of the elements of the domain that are either
`less than' or `greater than' something. De�ne M to be an !-model if the
�eld of < in M is isomorphic to the natural numbers under the usual `less
than' relation. The idea here is to focus attention on !-models. We say
that a set � of formulas of L1[K]= is !-satis�able if there is an !-model M
and an assignment s on M such that M; s � �, for every � in �. A single
formula � is !-satis�able if the singleton f�g is !-satis�able. And we say
that a set of formulas !-implies �, or h�;�i is !{valid, written � �! �, if
for every !-model M and assignment s, if M; s satis�es every member of
�, then M , s satis�es �. A formula � is an !-logical truth if the empty
set !-implies �. For example, 9x8y(:y < x) is an !-logical truth. The
resulting system is called !-logic (see [Ebbinghaus, 1985]).

Let Sxy be an abbreviation of

x < y&:9z(x < z&z < y):

That is, Sxy asserts that y is the successor of x in the relation<. Notice that
8x(9y(x < y)! 9!ySxy) is an !-logical truth.

To motivate the fourth logic considered in this section, recall that Frege
[1979] de�ned the ancestral R� of a given relation R, and he made brilliant
use of this construction. To reiterate, R�xy holds if there is a �nite sequence
a0; : : : an such that a0 = x; an = y, and, for each i; 0 � i < n, Raiai+1 holds.
Equivalently, R�xy if y is in the minimal closure of fxg under R. Consider
the �rst-order language L1[K]=, augmented with an ancestral operator A.
If � is a formula in which x and y occur free, and if t1; t2 are terms, then
Axy(�)t1t2 is a well-formed formula in which the variables x; y are bound. If
M is a model and s an assignment to the variables, then M; s � Axy(�)t1t2
if the denotation of t2 is an ancestor of the denotation of t1 under the
relation (in M) expressed by �(x; y). Call the resulting system ancestral
logic. Immerman [1987] is an interesting treatment of (what amounts to)
ancestral logic, restricted to �nite models.

This completes the list of logics for this section. They are weak second-
order logic, L(Q0), !-logic, and ancestral logic. The next item on the agenda
is to assess and compare their expressive power.

It should not be surprising that in each of the four languages, there is a
single sentence that characterizes the natural numbers, up to isomorphism,
in the respective model theory:

THEOREM 7. Assume that the set K includes f0; s;+; �; <g, the non-
logical terminology of arithmetic plus the < symbol. Each of the languages
described in this section contains a sentence � such that for each model
M;M � � i� M is isomorphic to the natural numbers (with the usual oper-
ations and relations). In the terminology of [Barwise and Feferman, 1985],
the collection of structures isomorphic to the natural numbers is an elemen-
tary class (EC) of weak second-order logic, L(Q0), !-logic, and ancestral
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logic.

Proof. Let  be the conjunction of the following (�rst-order) sentences.

8x(sx 6= 0)&8x8y(sx = sy ! x = y)&8x(x 6= 0! 9y(sy = x))
(successor axiom)

8x(x+ 0 = x)&8x8y(x+ sy = s(x+ y)) (addition axiom)
8x(x � 0 = 0)&8x8y(x � sy = x � y + y) (multiplication axiom)
8x8y(x < y � 9z(x+ sz = y)) (order axiom)

In any model of the order, successor, and addition axioms, the �eld of < is
the entire domain. Thus, it is straightforward that if M is an !-model of  
then M is isomorphic to the natural numbers, and so  itself characterizes
the natural numbers, up to isomorphism, in !-logic. In the other cases,  
must be augmented with a statement that entails that 0; s0; ss0; : : : (i.e. the
minimal closure of 0 under s) is the whole domain. In ancestral logic, there
is a formula that just says this. Let �A be the following ancestral sentence:

8z(Axy(y = sx)0z);

In e�ect, �A asserts that everything is a successor-ancestor of 0. So,  &�A

characterizes the natural numbers up to isomorphism in ancestral logic.
Notice that it would also suÆce to conjoin  with an assertion that for
every object x there are only �nitely many elements smaller than x. This
can be said in L(Q0). Let �Q be the following sentence:

8y:Qx(x < y):

Then  &�Q is a categorical characterization of the natural numbers. Fi-
nally, for weak second-order logic, we add a statement asserting that for
each x there is a �nite set X that contains all of the elements smaller than
x. Let �w be:

8x9X8y(y < x! Xy):

Once again,  &�w is a categorical characterization of the natural numbers.
�

The refutations of compactness, completeness and the upward L�owen-
`heim{Skolem theorems for second-order logic only depend on the existence
of a categorical characterization of the natural numbers (see [Shapiro, 1991,
Chapter 4, Section 2]). Thus, these theorems fail for the logics under con-
sideration here:

COROLLARY 8. Let L be weak second-order logic, L(Q0), !-logic, or an-
cestral logic. Then the upward L�owenheim{Skolem theorem fails for L, and
L is not compact. Moreover, let D be any e�ective deductive system that is
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sound for L. Then D is not (weakly) complete: there is a logical truth of L
that is not a theorem of D. In short, L is inherently incomplete.

This summarizes the aforementioned theft.
Now for some toil. Let L[K] and L0[K] be languages based on the set K

of non-logical terminology, and let each be equipped with a model-theoretic
semantics involving the same class of models as the �rst-order L1[K] =.
Then L0[K] is said to include L[K], written L[K] � L0[K] , if for each
sentence � of L[K] there is a sentence �0 of L0[K] such that for every model
M;M � � in L[K] i� M � �0 in L0[K] . The idea is that L0[K] is capable
of expressing any distinctions among models that is expressible in L[K] .
In the terminology of [Barwise and Feferman, 1985], L0[K] includes L[K] if
every elementary class of L[K] is an elementary class of L0[K] , in which
case they say that L0[K] is `as strong as' L[K] . Under these circumstances,
Cowles [1979] says that L[K] is an `extension' of L[K]. If both L[K] � L0[K]
and L0[K] � L[K], the languages are said to be equivalent.6

We must extend this notion a bit to accommodate !-logic, since it does
not have the same class of models as the �rst-order L1[K] . Assume that
the set K contains the binary relation symbol <. Then we say that L0[K]
includes !-logic if, for each sentence � of the �rst-order L1[K]=, there is a
sentence �0 of L0[K] such that for each model M;M � �0 in L0[K] if and
only if M is an !-model and M � �. Note that we do not de�ne the notion
of !-logic including L[K] (but see below for a variation on this theme). The
following is immediate:

LEMMA 9. Suppose that L0[K] contains the connectives and quanti�ers of
the �rst-order L1[K]=. Then L0[K] includes !-logic if and only if there is
a sentence  of L0[K] whose only non-logical term is <, such that for each
model M;M �  in L0[K] if and only if the �eld of < in M is isomorphic
to the natural numbers (i.e., M is an !-model).

This makes it straightforward to deal with !-logic.

THEOREM 10. Weak second-order logic, L(Q0), and ancestral logic all
include !-logic.

Proof. According to the above lemma, for each case, we need a sentence
 whose only non-logical term is <, and which is satis�ed by all and only
!-models. Let  0 be a (�rst-order) sentence asserting that the �eld of <
is a non-reexive, linear order of its �eld, and that every element in the
�eld of < has a unique successor. For ancestral logic, we conjoin  0 with an
assertion that there is an element x such that every element in the �eld of
< is an ancestor of x under the successor relation:

9x8y(9z(y < z _ z < y)! (Apq(Spq)xy)):

6In these terms, the results reported in Theorems 1{5 above provide conditions under
which a logic is equivalent to the �rst-order L1[K]=.
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For L(Q0), we conjoin  0 with an assertion that for each y there are only
�nitely many x such that x < y:

8y:Qx(x < y):

And for weak second-order logic, we conjoin  0 with an assertion that for
each y, there is a �nite set X containing every element that `precedes' y
under <:

8y9X8x(x < y ! Xx):

�

This lends some precision to the remark that all of the logics considered
here presuppose the natural numbers.

Suppose that � is a formula of L(Q0) and �0 an equivalent formula in
weak second-order logic. Then Qx� is equivalent to :9X(8x(Xx � �0))
(where X does not ocur in �0). Thus a simple induction shows the following:

THEOREM 11. Weak second-order logic includes L(Q0).

Now let � be a formula of an ancestral language and �0 an equivalent
formula in the corresponding language of weak second-order logic. Then
there is a formula equivalent to Axy(�)t1t2 in weak second-order logic. It
is tedious to write out the ancestral formula, but it goes like this:

Either t1 = t2 or else there is a �nite binary relation Y such
that (1) the extension of Y is a sub-relation of the extension of
�0 (8x8y(Y xy ! �0((x; y)))), (2) Y is the graph of a one-to-one
function f whose domain is a subset of the domain of discourse,
(3) t2 is in the range of f (9xY xt2), (4) t1 is in the domain of
f (9xY t1x), (5) t1 is not in the range of f(:9xY xt1), and (6)
if y is in the range of f and y 6= t2 then y is in the domain of
f (8x8y(Y xy&y 6= t2 ! 9zY yz)).

So an induction establishes

THEOREM 12. Weak second-order logic includes ancestral logic.

This completes the list of inclusion relations among the logics of this
section. The other combinations fail.

THEOREM 13. L(Q0) does not include weak second-order logic [Cowles,
1979] and L(Q0) does not include ancestral logic.

Proof. Let � be the conjunction of the (�rst-order) axioms for an ordered
�eld and let �w be

8x9X(X1&8y((y < x&Xy)! X(y + 1))):

In weak second-order logic, this sentence asserts that for each x there is a
�nite set that contains all of the positive integers less than x. That is, �w
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says that for each number x, there are only �nitely many positive integers
less than x. In e�ect, �w entails that the structure is Archimedean. Thus,
M � �&�w i� M is an Archimedean �eld. Similarly, let �A be

8x(1 < x! 9y[Apq(q = p+ 1)1y&x < y]):

The sentence �A asserts that for every x, there is a positive integer y that
is larger than x. Thus, M � �&�A i� M is an Archimedean �eld. Thus,
the class of Archimedean �elds is an elementary class of both weak second-
order logic and ancestral logic. On the other hand, Cowles [1979] shows that
Tarski's theorem concerning the completeness of �rst-order analysis can be
extended to L(Q0). In particular, for each formula � of L(Q0) whose non-
logical terminology is in f0; 1;+; �; <g, there is a formula �0, with the same
free variables as �, such that �0 has no quanti�ers and � � �0 holds in
all models of the theory of real closed �elds|�rst-order analysis. Now, if
L(Q0) included weak second-order logic or ancestral logic, it would contain
a sentence �0 that is a correlate of �&�w or �&�A above. That is, �0 would
be satis�ed by all and only Archimedean �elds. Let �00 be its quanti�er-
free equivalent. But a compactness argument establishes that there is no
�rst-order sentence that is satis�ed by all and only Archimedean �elds (see
[Shapiro, 1991, Chapter 5]). �

There is a sense in which the notion of an Archimedean �eld can be charac-
terized in !-logic. Given the way we have set up !-logic, we require separate
symbols for the `less than' relation on the domain and the `less than' re-
lation on the `natural numbers'. Let us use `�' for the latter. Let �! be
a (�rst-order) sentence asserting that (1) 0 is the smallest element in the
�eld of � (8x(9y(x � y

W
y � x) ! (x = 0

W
0 � x))) and (2) for each

x in the �eld of �, the successor of x is x + 1 (8x(9y(x � y
W
y � x) !

(x � x + 1&:9z(x � z&z � x + 1)))). Then any !-model of �&�! is an
Archimedean �eld (in which the �eld of � is the `natural numbers' of the
model). It follows from Theorem 10 that there is a sentence �� of L(Q0)
that is equivalent to �&�!. Every model of �� is an Archimedean ordered
�eld and any Archimedean ordered �eld can be made into a model of ��.
However, this does not contradict the result from [Cowles, 1979] cited in
Theorem 13, since �� contains another non-logical constant, namely `�'.

THEOREM 14. Ancestral logic does not include L(Q0) or weak second-
order logic.

Proof. Let the set K contain only monadic predicate letters, and let �
be a formula of the �rst-order L1[K] =. Then it can be shown that there
is a natural number n such that for any model M and assignment s on
M;M; s � Axy(�)pq i�

M; s � 9x1 : : :9xn(x1 = p&xn = q&(�(x1; x2) _ x1 = x2)&
: : :&(�(xn�1; xn) _ xn�1 = xn))
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(where x1 : : : xn do not occur in Axy(�)pq, relettering if necessary). The
implication from right to left is immediate. The converse is a consequence of
the proof of the decidability of the monadic predicate calculus (see [Dreben
and Goldfarb, 1979, Section 8.3]). Thus, for this set K of non-logical ter-
minology, ancestral logic is equivalent to the �rst-order L1[K]=. Let D be
a monadic predicate letter in K. It follows from the above, and another
result reported in [Dreben and Goldfarb, 1979], that there is no sentence of
ancestral logic equivalent to either the sentence QxDx of L(Q0) or the sen-
tence :9X8x(Xx � Dx) of weak second-order logic, each of which asserts
that the extension of D is in�nite. �

I suggest that the `non-inclusions' are artifacts of a restriction on the
non-logical terminology. We have already seen that L(Q0) can express the
notion of an Archimedean ordered �eld if the non-logical terminology is
expanded to include a symbol `�' for the `less than' relation on the `natural
numbers' of the structure. In the terminology of [Barwise and Feferman,
1985], the class of Archimedean �elds is a projective class (PC) of L(Q0).
Similarly, the class of structures in which the extension of a predicate letter
D is in�nite is a projective class of �rst-order logic, and thus, of ancestral
logic.

The relevant insight here is that the four logics under study are equiv-
alent in the sense that any class of (in�nite) structures characterized by
one of them can be characterized by any of the others, if one can add
non-logical terminology. This can be made precise, using the resources of
model-theoretic logic.

Let K and K 0 be sets of non-logical terminology such that K � K 0. Let
M be a model of the �rst-order language L1[K] =, and let M be a model
of L1[K 0] =. We say that M 0 is an expansion of M if they have the same
domain and agree on the interpretation of the items in K.

Let L[K] and L0[K] be languages built on a set K of non-logical terminol-
ogy, and assume that each is equipped with a semantics involving the usual
class of models. We say that L0[K] quasi-projects L[K] if for each sentence
� of L[K], if � has only in�nite models, then there is a set K 0 � K and a
sentence �0 of L0[K 0], such that for each model M;M � � in L[K] i� there
is an expansion M 0 of M such that M 0 � �0 in L0[K 0]. In the terminology of
[Barwise and Feferman, 1985], L0[K] quasi-projects L[K] i� every elemen-
tary class of L[K] that contains only in�nite structures is a projective class
of L0[K] . We say that L[K] and L0[K] are quasi-projectively-equivalent if
L[K] quasi-projects L0[K] and L[K] quasi-projects L[K]. The restriction
to sentences without �nite models is admittedly inelegant, but convenient
here.7

7The standard model-theoretic notion is that L0[K] projects L[K] if for each sentence
� of L[K], there is a set K0 � K and a sentence �0 of L0[K0] such that for each structure
M;M � � in L[K] i� there is an expansion M 0 of M such that M 0 � �0 in L0[K0]. The
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The special symbol `<' of !-logic complicates the de�nition. We say that
L0[K] quasi-projects !-logic if, for each sentence of the �rst-order L1[K]=,
in which K includes the symbol <, there is a set K 0 � K and a sentence
�0 of L0[K 0], such that (1) for each structure M for the language L0[K 0],
if M � �0 in L0[K 0], then M is an !-model and M � �; and (2) for each
!-model M of L1[K]=, if M � � then there is an expansion M 0 of M such
that M 0 � �0 in L0[K 0].

Conversely, we say that !-logic quasi-projects L[K] if, for each sentence
� of L[K], in which K does not include the symbol <, if � has only in�nite
models, then there is a set K 0 � K such that the symbol < is in K 0, and
there is a sentence �0 of the �rst-order L1[K 0]=, such that for each structure
M;M � � in L[K] i� there is an expansion M 0 of M such that M 0 is an !-
model and M 0 � �0. And we say that L[K] is quasi-projectively equivalent
to !-logic if !-logic projects L[K] and L[K] projects !-logic.

We come, �nally, to the equivalence of the logics of this section:

THEOREM 15. Weak second-order logic, L(Q0), ancestral logic, and !-
logic are quasi-projectively equivalent to each other.

Proof. Notice, �rst, that if L0[K] includes L[K], then L0[K] quasi-projects
L[K]. It follows from this, Theorems 10, 11 and 12, and the various de�ni-
tions, that it suÆces to show that !-logic quasi-projects weak second-order
logic. This is accomplished by adding terminology for coding `�nite sets'.
The idea is to use a binary relation to represent some subsets of a domain
(see [Shapiro, 1991, Chapter 5]). Let R be a binary relation, and de�ne Rx
to be the set fy j Rxyg. We say that Rx is the set coded by x in R, and the
relation R represents the collection of all the sets Rx, where x ranges over
the domain of discourse. Of course, no relation can represent every subset
of the domain (Cantor's theorem), but if a domain is in�nite, then there is
a relation that represents the collection of its �nite subsets. The plan here
is to show that such a relation can be characterized in !-logic. Let E be
a binary non-logical relation symbol (not in the given set K of non-logical
terminology) and let  1 be the following (�rst-order) sentence:

9x8y(:Exy)&8x8y9z8w(Ezw � (Exw _ w = y)):

logics L[K] and L0[K] are PC-equivalent if each one projects the other. Ancestral logic
and L(Q0) are PC-equivalent (see [Shapiro, 1991, Chapter 9, Section 9.1.2]). The question
of whether L(Q0) and ancestral logic project weak second-order logic is equivalent to
the proposition that for every sentence � of the second-order L2[K] , there is a �1

1
sentence �� (also of L2[K]) such that for each �nite structure M;M � � i� M � �� (see
[Shapiro, 1991, Chapter 9, Section 9.1.2]). This, in turn, is equivalent to the longstanding
open problem in complexity theory concerning whether the properties of �nite structures
recognized by NP algorithms include the full polynomial-time hierarchy. For the relevant
complexity results see [Fagin, 1974; Immerman, 1987; Gurevich, 1988; Leivant, 1989], as
well as the wealth of papers cited there.
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The �rst conjunct of  1 asserts that the empty set is coded by something
in E, and the second conjunct asserts that if a set X is coded in E then,
for any element y;X [ fyg is coded n E. Thus  1 entails that every �nite
subset of the domain is coded in E. It remains to assert that only �nite
sets are coded in E. For this, the resources of !-logic are employed. We
introduce a non-logical binary relation N (not in K) such that Nxy entails
x is in the �eld of <, and the cardinality of Ey is the natural number
corresponding to x. In particular, let  2 be the conjunction of (1) the
assertion that if x is the initial element of <, then Nxy holds i� 8z(:Eyz)
and (2) if x0 is the successor of x in <, then Nx0y holds if there is a w
and a z such that Nxw; z is not in Ew, and Ey is Ew [ fzg. Finally, let
 3 be 8y9x(9z(x < z)&Nxy). That is  asserts that for every y there is
an x in the �eld of < that represents the cardinality of Ey. So let  be
 1& 2& 3. In any !-model of  , E represents the set of all �nite subsets
of the domain. Let � be a sentence of weak second- order logic that has no
�nite models. Then terminology for a pairing function can be introduced,
and there is a sentence �0 containing only monadic second-order variables
that has the same models as �. Assume that the relation letters <;E;N
do not occur in �0 (relettering if necessary). To each second-order variable
X that occurs in �0, associate a unique �rst-order variable xX that does
not occur in �0. Let �00 be the result of replacing each subformula Xt of �0

with ExX t (i.e. the formula asserting that t is in the set represented by xX
in E) and replacing each quanti�er 8X by 8xX . The result is a �rst-order
sentence. Finally, let � be  &�00. It is routine to establish that for each
model M;M � � i� there is an expansion of M that satis�es �. �

Enough comparison. It should be clear that the languages of this section
do not have all of the shortcomings of �rst-order languages, even if some
of this comes by way of theft. The natural numbers can be characterized
up to isomorphism, and minimal closures of de�nable sets and relations can
be characterized (e.g., in terms of the ancestral). Slightly less trivially, the
rational numbers can be characterized up to isomorphism as an in�nite �eld
whose domain is the minimal closure of f1g under the �eld operations and
their inverses. As noted above, the logics are not compact and the upward
L�owenheim{Skolem theorem fails.

When it comes to expressive resources, the logics presented here fall well
short of second-order languages. Recall that the stronger version of the
downward L�owenheim{Skolem theorem is that for every structure M with
an in�nite domain there is an elementarily equivalent submodel M 0 whose
domain is countable. A routine check of the usual proof will verify that if
the original structure M is an !-model, then the countable submodel M 0 is
also an !-model. Thus, the downward L�owenheim{Skolem theorem holds
for !-logic. It follows from the proofs of the above comparison results that
the downward theorem holds for weak second-order logic, ancestral logic,
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and L(Q0). In technical terms, the L�owenheim number of each logic is @0.
It follows, of course, that the real numbers cannot be characterized up

to isomorphism in any of these languages. Nevertheless, the versions of real
analysis in these languages are improvements over the �rst-order version of
the theory. For example, to repeat a result rehearsed above, one can guar-
antee that every model of real analysis is Archimedean (employing extra
terminology if needed), and thus one can guarantee that every model is iso-
morphic to a subset of the real numbers. To speak loosely, with the present
languages, we cannot establish the existence of every real number, but at
least extraneous `numbers'|in�nitesimals for example|can be excluded.
Moreover, the `natural numbers' and the `rational numbers' of each model
can be characterized up to isomorphism.

Set theorists de�ne an !-model to be a model of the axioms of set theory in
which the extension of `�nite ordinal' is isomorphic to the natural numbers.
This usage of the term is in line with the present one:

THEOREM 16. Let Z! be Zermelo{Fraenkel set theory (ZFC) where the
replacement scheme is expanded to include formulas with a new binary re-
lation symbol <. Let M be a model of ZFC. Then the extension of `�nite
ordinal' in M is isomorphic to the natural numbers if and only if there is a
way to interpret the symbol < in M so that the �eld of < is isomorphic to
the natural numbers and the expanded model satis�es Z!. In other words,
M is an !-model of ZFC in the set theorists' sense if and only if M is a
!-model of Z! in the present sense.

Proof.[Sketch] If the extension of `�nite ordinal' is isomorphic to the natural
numbers, then make the �eld of < the �nite ordinals of the model, with
membership as the order relation. The result is an !-model (in the present
sense) of Z!. For the converse, if M is an !-model (in the present sense)
of Z! then we can de�ne a one-to-one function from the �eld of < onto the
�nite ordinals of M . It follows from replacement that the �eld of < is a set
and that it is isomorphic to the �nite ordinals of M . A fortiori, M is an
!-model in the set-theorists' sense �

The above comparison results yield the following:

COROLLARY 17. A structureM is an !-model of ZFC if and only if M is
a model of the version of ZFC formulated in weak second-order logic, L(Q0),
and ancestral logic|in each case the replacement scheme is expanded to
include formulas with the new vocabulary.

Thus, the move to one of the languages under study in the present sec-
tion is an improvement over �rst-order ZFC. There are, however, countable
models of the indicated set theories. Moreover, there are models in which
the membership relation is not well-founded and so there are models in
which some members in the extension of `ordinal' are not well-ordered un-
der membership.
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The general notion of well-ordering cannot be characterized in any of the
logics under study here. In particular, let !CK1 (the `Church-Kleene !1') be
the least upper bound of all ordinals � such that there is a recursive well-
ordering of the natural numbers whose order-type is �. If � is a sentence
of one of our languages all of whose models are well-orderings, then there is
no model of � whose order type is !CK1 or any ordinal greater than !CK1 . In
the terminology of Barwise and Feferman [1985], !CK1 is not `pinned-down'
by weak second-order logic, ancestral logic, !-logic, or L(Q0) and, in fact,
!CK1 is the `bound' of these languages (see [Ebbinghaus, 1985, Section 5.2]).

Barwise [1985] indicates that the Beth de�nability property fails for the
logics of this section, for much the same reason that the general property
fails for second-order logic. The interpolation property also fails. Details
of the results reported here, and a host of other information about weak
second-order logic, !-logic, and L(Q0) can be found in the papers published
in [Barwise and Feferman, 1985], especially [Barwise, 1985; Ebbinghaus,
1985; V�aan�anen, 1985].

5 MORE THEFT, MORE TOIL

Since �nitude is probably the simplest notion that goes beyond the resources
of �rst-order logic, the logics of the previous section are the minimal inter-
mediate systems. Many of the other intermediate logics under study today
are obtained by presupposing other, richer mathematical structures and no-
tions. Recall that the logics of the previous section are all equivalent to
each other, in one sense or another. One surprising result is some of the
corresponding equivalences fail in the extended cases. Moreover, some of
the extended logics are more tractable than those of the previous section.
Completeness is regained in one case. This section contains a brief account
of some of the systems, but it seems to me that as the presupposition|the
theft|increases, the philosophical interest and application decreases. I have
no desire to legislate or predict what will or will not attract the attention
of philosophers.

The system of !-logic is an example of what Ebbinghaus [1985] calls a
`logic with a standard part'. Each !-model includes a copy of the `standard'
natural numbers, and the language has the resources to refer to this standard
part. In e�ect, the natural numbers are included in !-logic by �at. To
extend the idea, let L be any set of non-logical terminology not containing
a monadic predicate U , and let R be any class of structures on the �rst-
order language L1[L] =. We assume that R is closed under isomorphism.
Let K be a set of non-logical terminology such that L � K and U 2 K.
A structure M of L1[K] = is an R-model if the restriction of M to the
extension of U (and the terminology in L) is a structure in R. In other
words, an R-model has a de�nable substructure that is a member of R.
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The resulting system may be called R-logic, written L(R)[K]. A structure
can be characterized, up to isomorphism, in R-logic if and only if it can be
characterized in terms of R.

For example, R-logic would be the restriction of �rst-order logic to models
that contain an isomorphic copy of the real numbers. ZFC-logic would be
the restriction of �rst-order logic to models that contain an isomorphic copy
of an inaccessible rank. ZFC-logic would be the proper framework for those
philosophers and logicians who advocate �rst-order set theory, interpreted
standardly, as the foundation of mathematics. That is, ZFC-logic might be a
good framework for anyone who wants to develop this foundation more fully.
The proof of the L�owenheim{Skolem property can be adapted to establish
a weaker version for R-logic: for any R-model M , there is an elementarily
equivalent M 0 whose domain is the cardinality of the continuum (or size of
the non-logical terminology, whichever is larger). Ebbinghaus reports that
if R is the set of linear orders in which every initial segment is countable|
the @1-like orders|then R-logic is @0-compact: a countable set of sentences
has an R-model if each �nite subset does.

Moving on, de�ne quasi-weak second-order logic to be like weak second-
order logic, but with variables ranging over countable relations. That is,
quasi-weak second-order logic has the same formulas as full second-order
languages, but in the semantics each variable assignment consists of a func-
tion from the �rst-order variables to the domain (as usual) and a function
from the relation variables to countable relations. So 8X� can be read, `for
all countable X , �'. Quasi-weak second-order logic is equivalent to aug-
menting !-logic with bound variables ranging over functions whose domain
is the �eld of < (i.e. the collection of `natural numbers').

The following is a variation of the above second-order formula that asserts
that the extension of X is �nite (see Section 3.2):

8R:[8x8y8z(Rxz&Ryz! x = y)&8x8y(Rxy!
(Xx&Xy&9zRyz))&9x9y(Rxy&8z(:Rzx))]:

As interpreted in quasi-weak second-order logic, this formula asserts that
there is no countable one-to-one relation whose domain and range are con-
tained in X and whose range is a proper subset of its domain. This is clearly
a necessary and suÆcient condition for the extension of X to be �nite. It
follows that quasi-weak second-order logic includes weak second-order logic.

The converse fails, however: weak second-order logic does not include
quasi-weak second-order logic. To see this, consider the completeness prin-
ciple for real analysis:

8X(9x8y(Xy! y � x)! 9x[8y(Xy ! y � x)&8z(8y(Xy! y � z)
! x � z)]):

As interpreted in quasi-weak second-order logic, this sentence asserts that
every bounded, countable set has a least upper bound. This, with the other
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axioms for real analysis, is suÆcient to establish the categoricity of the
theory|all of its models are isomorphic to the real numbers. Since there is
no categorical axiomatization of real analysis in weak second-order logic, we
conclude that weak second-order logic does not include quasi-weak second-
order logic.

Let Z2q be the axioms of ZFC formulated in a quasi-weak second-order
language. This theory employs a replacement scheme, one instance for each
formula of the quasi-weak second-order language. Let M be a model of Z2q
and let c be a countable subset of the domain of M . Then there is a member
of the domain of M whose `elements' in M are the members of c. In other
words, every countable class is a set. It follows from this and the axiom of
foundation (and choice) that the membership relation of M is well-founded.
Thus, M is isomorphic to a transitive set m under membership. Also, m
contains all of its countable subsets. This is a major improvement over
the versions of set theory formulated in weak second-order logic, !-logic,
ancestral logic, and L(Q0).

In general, the notion of well-foundedness can be formulated in quasi-
weak second-order logic. Let WO(R) be the assertion that R is a linear
order and that every countable set of the domain has a `least element' under
R. This is a straightforward sentence in a quasi-weak second-order language.
Assuming the axiom of choice in the meta-theory, it follows that WO(R) is
satis�ed by a structure if and only if R is a well-ordering of the domain.

We are near the limit of the expressive resources of quasi-weak second-
order languages. The categoricity of real analysis entails that the full down-
ward L�owenheim{Skolem theorem fails for quasi-weak second-order logic.
There is, however, an attenuated version of the theorem, similar to the one
for R-logic: for every structure M , there is a substructure M 0 such that
the cardinality of the domain of M 0 is at most that of the continuum (or
the size of the non-logical terminology, whichever is larger) and M and M 0

satisfy the same formulas of the quasi-weak second-order language.

Of course, we need not stop here. One can construct languages with
variables ranging over relations of cardinality @1 or the ever present @17, or
the �rst measurable cardinal, etc. If the cardinality in question is de�nable
in a second-order language, then the system is intermediate between �rst-
order and second-order (see [Shapiro, 1991, Chapter 5, Section 5.1]).

The extensions of L(Q0) have attracted more attention from logicians
than the other logics in this section|even more than L(Q0) itself. For
each ordinal �, there is a logic L(Q�), with the same language as L(Q0).
That is, L(Q�)[K] is obtained from the �rst-order L1[K] = by adding a
(monadic) quanti�er Q. Let M be a structure and s an assignment to the
variables of the language. The model-theoretic semantics of L(Q�) includes
the following clause:

M; s � Qx� if there are at least @� distinct assignments s0 such
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that s0 agrees with s on every variable except possibly x, and
M; s0 � �.

In other words, in L(Q�) Qx� amounts to `there are at least @�-many x
such that �'. In L(Q1), Qx� comes to `there are uncountably many x such
that �'.

It is surprising that L(Q1) has many of the model-theoretic properties of
�rst-order logic. The logic is @0- compact, in the sense that if every �nite
subset of a countable set S of sentences in the language is satis�able, then
S itself is satis�able. Moreover, the logic is weakly complete, and the set of
consequences of a recursively enumerable set of sentences is itself recursively
enumerable. To obtain a sound and complete deductive system for L(Q1),
one adds the following axioms to a complete axiomatization for �rst-order
logic:

Bound variables can be renamed: Qx�(x) ! Qy�(y), provided y is not
free in �(x).
A set of two elements is countable: 8y8z:Qx(x = y _ x = z).
The new quanti�er is `monotone': 8x(�! 	)! (Qx�! Qx	).

Countable unions of countable sets are countable: (8x:Qy�&:Qx9y�)!
:Qy9x�.

The last scheme is a version of the axiom of choice, which is assumed in the
meta-theory.

THEOREM 18. L(Q1) does not project (or quasi-project) L(Q0).

Proof. This is a straightforward consequence of compactness (or complete-
ness). Let � be any sentence of L(Q1) that is satis�ed by the natural num-
bers and let c be an individual constant that does not occur in �. Consider
the set

S = f�; c 6= 0; c 6= s0; c 6= ss0g:
Every �nite subset of S is satis�able and so, by @0-compactness, S is sat-
is�able. However, a model of S is a model of � which is not isomorphic to
the natural numbers. Thus, there is no sentence in any L(Q1)[K] that is
equivalent to the L(Q0) characterization of the natural numbers. �

THEOREM 19. Quasi-weak second-order logic includes L(Q1), but is not
(quasi-) projectively equivalent to it.

Proof. Suppose that a formula � of L(Q1) is equivalent to �0 in quasi-weak
second-order logic, and let X be a monadic predicate variable that does not
occur in �0. Then Qx� is equivalent to :9X(8x(Xx � �0)) in quasi-weak
second-order logic. A straightforward induction establishes that quasi-weak
second-order logic includes L(Q1). The second clause of the theorem is a
corollary of the previous theorem and the fact that quasi-weak second-order
logic includes weak second-order logic and L(Q0). �
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It follows that L(Q1) does not enjoy the expressive resources of its cousin
L(Q0), but L(Q1) has a more attractive model theory. It is hard to assess
the philosophical signi�cance of L(Q1). The language can express the notion
of `uncountable', of course, and thus it can express the disjunctive property
`either �nite or countably in�nite', but it cannot express `�nite' nor can it
express `countably in�nite'.

One important class of mathematical objects that can be characterized in
L(Q1) is the aforementioned @1-like orderings|uncountable linear orderings
in which every initial segment is countable. Simply conjoin the (�rst-order)
axioms for a linear order with the following:

Qx(x = x)&8y:Qx(x < y):

Of course there is no �rst-order sentence equivalent to this, since any �rst-
order sentence with an in�nite model has a countable model. Strictly speak-
ing, the logic L(Q1) is not fully compact. To see this let fc�j� < @1g be an
uncountable set of constants, and consider the set

S = f:Qx(x = x)g [ fc� 6= c� j� < �g:

Every �nite subset if S is satis�able, but S itself is not. Clearly, this gen-
eralizes to any L(Q�). However, the non-compactness of L(Q1) invokes
countable models, which seem out of place in this context. If we eliminate
�nite and countable models from the model theory, then L(Q1) is compact.
In other words, if for every �nite subset S0 of a set S of sentences, there is
a model with an uncountable domain that satis�es S0, then the set S itself
is satis�able (in a model with an uncountable domain).

There is a downward L�owenheim{Skolem theorem of sorts for each logic
L(Q�). Let M be a structure. Then there is a substructure M 0 of M whose
domain has at most @� elements (or the cardinality of the set of non-logical
terminology, whichever is greater) such that M and M 0 satisfy the same
sentences of L(Q�).

In studying L(Q�) with � > 1, we enter the realm of matters that are (or
may be) independent of Zermelo{Fraenkel set theory. Chang [1965] showed
that if the generalized continuum hypothesis holds, and if @� is a regular
cardinal, then L(Q�+1) is @�- compact, and weakly complete. In fact, the
same axioms work for any L(Q�+1) where @� is regular. That is, if the
generalized continuum hypothesis is true, the sentence � is a logical truth
of L(Q1) if and only if � is a logical truth of L(Q�+1). Jensen [1972] showed
that if V = L, then for any ordinal �;L(Q�+1) is @�-compact and weakly
complete.

I close this section with a few variations on the theme of L(Q�). A
logic with a Chang quanti�er employs the same language as L(Q0) with the
following clause for the new quanti�er:
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M; s � Qx� if and only if the set fs0 j M; s0 � � and s0 agrees
with s except possibly at xg has the same cardinality as the
domain of M .

So Qx� asserts that the extension of �(x) is as large as the universe. Call
the resulting logic Chang logic. Schmerl [1985] reports that if the general-
ized continuum hypothesis holds and we omit �nite models from the model
theory, then the Chang logic is compact and is weakly complete. In second-
order set theory, the Chang quanti�er might be used to indicate that the
extension of � is a proper class. Von Neumann once proposed an axiom
that if a class is not the size of the universe, then it is a set. In this context,
the scheme would be

:Qx� � 9y8x(x 2 y � �):

Consider augmenting a �rst-order language with a two-place Ramsey
quanti�er Q2 with the following clause in the model theory:

m; s � Q2xy� if and only if there is an uncountable subset d of
the domain of M such that M; s0 � � for every assignment s0

which assigns members of d to x and y, and agrees with s at the
other variables.

The logic is called L(Q2
1). It turns out that if V = L, then L(Q2

1) is @0-
compact, but it is consistent with Zermelo{Fraenkel set theory that L(Q2

1)
is not @0-compact. In other words, it is independent of set theory whether
this logic enjoys the compactness property. Extensions of these logics have
been extensively studied.

The Rescher quanti�er QR and the H�artig quanti�er QI each binds two
variables and has two formulas in its scope. In words, QRxy[�(x);	(y)]
if and only if the extension of �(x) is not larger than the extension of
	(y), and QIxy[�(x);	(y)] if and only if the extension of �(x) is the same
size as the extension of 	(y). Rescher logic includes H�artig logic, but not
conversely. The natural numbers, under `less than' can be characterized in
H�artig logic (and thus in Rescher logic) with a sentence consisting of the
axioms for a linear order with a �rst but no last element and the following:

8x8y(x = y � QIuv[u < x; v < y]):

Thus, neither of these logics are compact or complete. H�artig logic includes
L(Q0) but not conversely.

For details on the logics invoked in this section, see [Ebbinghaus, 1985].
For a more extensive treatment of L(Q1) see [Kaufmann, 1985], and for
L(Q�) see [Schmerl, 1985; Mundici, 1985]. There are extensive references
in these sources. Cowles [1979] surveys the relations between some of the
logics|and a number of others that I neglected to mention.
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6 BRANCHING, OR NON-LINEAR QUANTIFIERS: THEFT OR
TOIL?

Let �(x1; y1; x2; y2) be a formula with only the indicated free variables, and
consider the following two sentences:

8x18x29y19y2�(x1; y1; x2; y2)
8x19y18x29y2�(x1; y1; x2; y2):

In words|and very roughly|the �rst of these says that if we are given an
x1 and x2 then we can pick a y1 and a y2 such that � holds. The `choice' of
the y's is made after we are given both of the x's. The second formula says
that if we are given an x1 then we can pick a y1 and if we are then given
an x2 we can pick a y2 such that � holds. Here also the `choice' of y2 is
made after both x's are `given', and so the `choice' of y2 `depends' on both
x1 and x2.

In general, each existentially quanti�ed variable depends on all of the
universally quanti�ed variables that come before it. Some logicians and
philosophers suggest that there is a need to introduce independence between
some of the bound variables in a string of quanti�ers. They have developed
what are called `partially ordered quanti�er pre�xes'. For example, the
two-dimensional formula,

8x19y1
�(x1; y1; x2; y2)

8x29y2
asserts that for every x1 there is a y1, and for every x2 there is a y2 chosen
independently of x1, such that � holds.

This four-place non-linear pre�x,

8x19y1
8x29y2

�

is called the Henkin quanti�er, and for the sake of typography, we will
sometimes abbreviate it Hx1y1x2y2. The language L(H)[K] is obtained
from �rst-order L1[K] = by adding the Henkin quanti�er. The relevant
formation rule is that if � is a formula and x1; y1; x2; y2 are four distinct
variables, then Hx1y1x2y2� is a formula.8

The literature contains several (more or less) equivalent ways to gener-
alize this notion. I will give one, in terms of what are called `dependency
relations'. A dependency pre�x is a triple Q = (AQ; EQ; DQ), structured as
follows: AQ is the set of universal variables of Q;EQ is the set of existential

8Strictly speaking, we should distinguish quanti�ers from quanti�er pre�xes. For
convenience, however, I do not enforce the distinction here, relying on context when
necessary.
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variables of Q; and DQ is a dependency relation between AQ and EQ. If
(x; y) is in DQ, then we say that the existential variable y depends on the
universal variable x in Q. See [Krynicki and Mostowski, 1995, Section 1.5].

In these terms, the aforementioned Henkin quanti�er is the triple
(AH ; EH ; DH) where AH is fx1; x2g; EH is fy1; y2g, and DH contains the
two pairs (x1; y1) and (x2; y2). Ordinary, linear quanti�er pre�xes can
also be cast in this form. Both of the formulas set o� at the top of
this section have the same sets of universal and existential variables as
H . The dependency relation of the pre�x, 8x18x29y19y2 of the �rst for-
mula is all of AH � EH : f(x1; y1); (x1; y2); (x2; y1); (x2; y2)g. The de-
pendency relation of the pre�x, 8x19y18x29y2 of the second formula is
f(x1; y1); (x1; y2); (x2; y2)g.

A dependency pre�x Q is called linear if there is a linear ordering R on
the variables of Q such that for each x in AQ and each y in EQ; (x; y) is in
DQ if and only if Rxy. Linear pre�xes are equivalent to �rst-order pre�xes.

Let S be a set of dependency pre�xes. The language L(S)[K] is obtained
from the �rst-order L1[K] = by adding formulas with dependency pre�xes
in S. The relevant formation rule is that if � is a formula and Q is in
S, then Q� is a formula. The language L�[K] is the language L(S)[K] in
which S is the set of all dependency pre�xes.

So much for the grammar. Now, what is the model theory? In other
words, what do these formulas Q� mean? We use functions in the meta-
language to express the relevant dependency and independency relations
among the variables, along the lines of Skolem functions for �rst-order lan-
guages. Here, the relevant functions are denoted by new non-logical ter-
minology in the object language. Suppose that Q is a dependency pre�x
and that � is a formula. De�ne the Skolemization of Q�, written skQ�,
as follows: let y be an existential variable in EQ and let x1; : : : ; xi be the
universal variables on which y depends. Pick a unique i-place non-logical
function letter fy, which does not occur in �, and replace each occurrence
of y with fyx1 : : : xi. Bind the result with universal quanti�ers over the
variables in AQ. To take an example, if H is the Henkin quanti�er, then
sk(Hxyzw�(x; y; z; w)) is:

8x8z�(x; fyx; z; fwz):

The functions express the requisite dependence of the existential variables.
Notice that if the pre�x Q is linear, then sk(Q�) is the usual result of
invoking Skolem functions to interpret existential variables.

The relevant clause in the semantics is:

Let M be a structure and s an assignment to the variables. Then
M; s � Q� if there are assignments to the new function letters
(as appropriate functions on the domain of M) such that the
resulting structure satis�es sk(Q�) under s.
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Suppose that f1 and f2 are the only new function letters in sk(Q�). Then,
if we can invoke second-order quanti�ers, M; s � Q� if and only if M; s �
9f19f2sk(Q�).

There is a potential complication for readers with constructivist tenden-
cies. Suppose that AQ is fxg; EQ is fyg, and DQ is f(x; y)g. Then Q is a
linear quanti�er pre�x and one would expect that Q�(x; y) to be equivalent
to 8x9y�(x; y). However, according to the semantics Q� is equivalent to
9f8x�(x; fx). The inference from 8x9y�(x; y) to 9f8x�(x; fx) is a version
of the axiom of choice (see [Shapiro, 1991, Chapter 4]). Thus, the plausi-
bility of the given model theory for L(S) presupposes choice. Krynicki and
Mostowski [1995, Section 2] provide a straightforward, but tedious, way to
avoid this presupposition. An n+ 1-place relation R is de�ned to be a de-
pendency relation if for each x1; : : : ; xn in the domain, there is at least one
y such that Rx1 : : : xny holds. In what follows, however, we follow Kryn-
icki and Mostowski's practice of assuming the axiom of choice, and using
functions instead of dependency relations.

It is straightforward to verify that if a dependency pre�x has fewer than 4
variables then it is linear and equivalent to a string of �rst-order quanti�ers.
Moreover, if a dependency pre�x has exactly four variables then either it is
linear or it is a Henkin quanti�er. Thus, the simplest non-linear quanti�er
is the Henkin quanti�er. Krynicki and Mostowski [1995, Section 3.3] show
that if a set S has at least one non-linear dependency pre�x, then L(S)[K]
includes L(H)[K] in the sense of Section 4 above: every formula in L(H)[K]
is equivalent to one in L(S)[K].

Krynicki and Mostowski [1995, Section 3.9] also show that if Q is any
dependency pre�x, then Q can be de�ned in terms of a pre�x Q0 in the
following form:

8x1 : : :8xn9y
8z1 : : :8zn9w

�

There are 2n variables in AQ0 and 2 variables in EQ0 . The variable y depends
on the x's and the variable w depends on the z's. In structures with a
pair function, the latter quanti�er can be reduced further to the Henkin
quanti�er H (see Section 3.1 above). In other words, in a structure with a
pair function, any formula using any dependency pre�x is equivalent to a
formula that just uses the Henkin quanti�er H .

A pair function can be added to any structure whose domain is in�nite.
This allows a signi�cant reduction of dependency pre�xes. Let � be any
formula using quanti�er pre�xes, such that � has only in�nite models. Then
there is a set K 0 of non-logical terminology|including a pair function|and
a sentence �0 in L(H)[K 0], such that a structure M satis�es � under a given
assignment if and only if there is an expansion of M (to the set K 0) which
satis�es �0 under the same assignment. Recall that L� is the language
containing every dependency pre�x. We see that L(H)[K] quasi-projects
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the full L�[K] in the sense of Section 4 above.
Enough of these de�nitions and internal comparisons. What can we do

with these new quanti�ers, and how tractable is the semantics? It turns
out that L(H) and thus L� represents a signi�cant foray into the expressive
resources of second-order logic.

Consider the following sentence in L(H) (which has no non-logical ter-
minology):

8x9y
9t ((x = x0 � y = y0)&y 6= t);
8x09y0

or in one line
9tH(xyx0y0)((x = x0 � y = y0)&y 6= t):

According to the given semantics, this holds in a given domain if and only
if there is an element t in the domain and two functions f and f 0 such that
for all x and x0; x = x0 if and only if fx = f 0x0 and fx 6= t. This entails
that f = f 0, that f is one-to-one, and that there is an element t that is not
in the range of f . Thus, the given formula holds in a given structure if and
only if its domain is in�nite. Thus, L(H)[K] does not include the �rst-order
L1[K]=. It follows that no logic that includes a non-linear quanti�er pre�x
is compact.

Let �(x) be any formula with x free. Then the formula

9t(�(t)&H(xyx0y0)((x = x0 � y = y0)&(�(x)! �(y))&y 6= t))

is satis�ed in a structure if and only if the extension of � is in�nite. That is,
the above formula is equivalent to Qx�(x) in the logic L(Q0). It follows that
L(H)[K] includes L(Q0)[K] . Thus, there is a categorical characterization
of the natural numbers in L(H), and so L(H) is not weakly complete.

Recall that the Rescher quanti�er QR binds one variable in each of two
formulas: QRxy[�(x);	(y)] `says' that the extension of �(x) is not larger
than the extension of 	(y). This holds if there is a one-to-one function from
the extension of � to the extension of 	. Thus, the Rescher quanti�er can
be captured with a sentence using the Henkin quanti�er:

H(xyx0y0)((x = x0 � y = y0)&(�(x)! 	(y))):

It follows that the H�artig quanti�er and the Chang quanti�er can also be
characterized in terms of the Henkin quanti�er.

The expressive power of the languages L(H)[K] is richer than most of
the languages considered above. Krynicki and Mostowski [1995, Section 8.4]

point out that the notion of well-ordering can be characterized in L(H),
using only the non-logical symbol <. The notion of dense continuous order
can be characterized, as can the ordinal structure of @n for each natural
number n.
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It follows, of course, that there is no simple downward L�owenheim{
Skolem theorem for L(H) or for the full L�. However, if a sentence �
in L�[K] has no non-logical terminology, then if � has an in�nite model
then it has a countable model. It follows that neither L(H)[K] nor L�[K]
includes any L(Q�) for any � > 0.

What are the exact bounds to the expressive resources of L(H) and L�?
Let � be �rst-order and let Hxyx0y0� be the result of pre�xing � with a
Henkin quanti�er. We saw above that Hxyx0y0� is equivalent to a formula
in the form 9f9f 08x8x0�0, where �0 is �rst-order. That is, Hxyx0y0� is
equivalent to a �1

1-formula. Krynicki and Mostowski [1995, Section 4] report
a converse of sorts:

THEOREM 20 (Enderton and Walkoe). There is an e�ective procedure for
assigning to each �1

1 formula � a dependency pre�x Q and a quanti�er free
formula 	 such that � is equivalent to Q	.

It follows from Theorem 20 that every Boolean combination of �1
1 formu-

las is equivalent to a formula in L�[K]. In particular, since any �1
1 formula is

equivalent to the negation of a �1
1 formula, it follows that every �1

1 formula
is equivalent to a formula in L�[K]. Thus, L�[K] (and L(H)[K] on in�nite
domains) has all the expressive power of free-variable second-order logic,
and then some. Moreover, L�[K] does not have the major shortcoming of
free-variable second-order languages, since L�[K] is closed under contradic-
tory opposition: the negation of a L�[K] formula is an L�[K] formula.

Krynicki and Mostowski report that the expressive resources of formulas
with quanti�er dependencies do not go much further than what is expressed
in Theorem 20:

THEOREM 21. For any formula � in any L�[K], we can e�ectively �nd a
�1
2-formula and a �1

2 formula both equivalent to �. Thus, any formula in
L�[K] is equivalent to a �1

2 formula.

They also point out that there are �1
2 formulas which are not equivalent

to any formula in any L�[K]. For example, there is a �1
2-sentence T that

gives a `truth de�nition' for arithmetic in the L� language of arithmetic.
That is, T characterizes structures hM; ci such that M is a standard model
of arithmetic and c is the code of an L� sentence true in M . It follows from
Tarski's theorem that T is not equivalent to any sentence in any L�[K].

It follows that Theorem 21 does not give the `best possible' characteriza-
tion of the expressive power of L�. According to Krynicki and Mostowski
[1995], it is an open question whether every formula of L�[K] is equivalent
to a Boolean combination of �1

1 formulas.

It is hard to assess the philosophical signi�cance of languages with de-
pendency pre�xes. As we saw, even L(H)[K] overcomes the bulk of the
shortcomings with �rst-order logic, such as those elaborated in [Shapiro,
1991, Chapters 4{5]. Yet L(H)[K] and even L�[K] only invoke �rst-order
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variables, and the ordinary existential and universal quanti�ers.

This may be too good to be signi�cant. Recall that the oÆcial model-
theoretic semantics for these languages invokes functions|or relations if
choice is to be avoided. The satis�ability of a formula that starts with a
Henkin quanti�er is understood in terms of the existence of certain functions
(or relations). Functions and relations, of course, are higher-type items.
Thus, it is no surprise that the expressive resources of the languages hovers
somewhere around that of �1

1- and �1
1-formulas. A critic of L� might claim

that an `ontological commitment' to functions (or relations) is hidden in the
model-theoretic semantics. He might argue that there is no way to under-
stand the requisite dependencies except via functions or relations. If the
critic is successful, then we would see that the very notion of `dependency'
invokes higher-order items, in which case there is no special signi�cance to
the expressive resources of L�.

To counter this argument, an advocate of dependency pre�xes might try
to give a semantics for the languages that does not explicitly invoke func-
tions or relations. One straightforward|and potentially question-begging|
way to do so would be to simply use quanti�er dependencies in the meta-
language. One clause might be the following:

M; s � H(xyx0y0)� if and only if in the domain ofM;H(mnm0n0)
such that M; s0 � � for every assignment s that agrees with s ex-
cept possibly at x; y; x0, and y0 and s(x) = m, s(y) = n; s(x0) =
m0, and s(y0) = n0.

This would make the clause for the Henkin quanti�er exactly analogous
to the clauses for the �rst-order connectives and quanti�ers. We use the
terminology in the meta-language in giving the model-theoretic semantics.

Is this a vicious circle? The potentially question-begging move is plau-
sible if, but only if, the advocate for dependency pre�xes can successfully
argue that we already understand these pre�xes. Then the situation with
dependency pre�xes would be no di�erent than the situation with the other
logical terminology.

The dialectic here is reminiscent of the clash between Resnik and Boolos
over plural quanti�cation (see Section 3.1 above). Boolos claims that we
have a decent pre-theoretic grasp of plural quanti�ers and uses this con-
struction to interpret monadic existential second-order variables. Resnik
claims that whatever understanding we have of the plural construction is
mediated by set theory, and thus the plural construction hides the `onto-
logical commitment' to sets. In reply Boolos can cite the prevalence of
the plural construction in natural language, pointing out that common folk
who are ignorant of set theory are clearly competent in the use of plurals.
What of the present case, concerning non-linear dependency pre�xes? Are
there any natural language constructions which are best interpreted using,
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say, Henkin quanti�ers? Hintikka [1976] argues that there are, and gives
examples like the following:

Some relative of each villager and some relative of each townsper-
son hate each other.

Every writer likes a book of his almost as much as every critic
dislikes some book he has reviewed.

Readers interested in this issue can also consult [Gabbay and Moravcsik,
1974; Barwise, 1979]. For more on the technical side of quanti�er pre�xes,
the aforementioned [Krynicki and Mostowski, 1995] is a comprehensive and
readable treatment. See also [Mundici, 1985, Section 1].

7 EXTRA LONG FORMULAS

Let us put philosophical worries aside, and assume that mathematicians
are able to refer to and discuss some in�nite mathematical sets and struc-
tures. Then they can also refer to and discuss in�nitely long sentences
and in�nitely long deductions, themselves construed as abstract objects. In
short, in�nitary languages are respectable objects of mathematical study.
Our question here is whether they are relevant to philosophical logic. Some
philosophers reject in�nitely long formulas, out of hand, as serious candi-
dates for foundational research. For good reason. One cannot do much
communicating if it takes an in�nite amount of time and space to write, or
speak, or comprehend, a single sentence. Surely, natural languages are not
in�nitary and so we should not need in�nitary languages to model them.

This eminently reasonable observation may not disqualify in�nitary lan-
guages from every role in foundational studies. Perhaps one can argue that
in�nitary languages capture something important about the logical struc-
ture of natural languages. One suggestion is to regard the natural language
of mathematics as an informal meta-language for an in�nitary object lan-
guage, whose models are the various structures under study. It may not be
too much of a distortion to view the proposal in [Zermelo, 1931] that way.

Less exotically, someone might propose that in�nitary formulas come
close to the logical forms of propositions, or one might suggest that in�ni-
tary languages capture important relations and features underlying mathe-
matics as practiced. For example, �rst-order arithmetic consists of a �nite
number of axioms together with each instance of the induction scheme. It
is reasonable to interpret such theories as the in�nitary conjunction of their
axioms, or to put it di�erently, there is not much di�erence between con-
sidering an in�nite set of axioms and considering an in�nitary conjunction
of them. In�nitary disjunctions are, of course, another story. They enter
via omitting types.
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In�nitary languages have been invoked by philosophers for various pur-
poses, often to reduce ontological or other commitments. It is common, for
example, for deationists about truth to regard an assertion like `Every-
thing my mother says is true' as an in�nite conjunction of sentences of the
form: if my mother says that � then �.

In�nitary logic has probably received more attention from mathematical
logicians than any of the intermediate systems presented above. Such sys-
tems seem to do well in the tradeo� between expressive ability and tractable
model theory|a major focus of this chapter. Without further ado, we take
a passing glance at in�nitary languages.

If K is a set of non-logical terminology, and � � � are two cardinal num-
bers, then L��[K] is an in�nitary language based on K. For convenience,
we will omit the `K' in most contexts. The formation rules of L�� are those
of the �rst-order L1[K]=, augmented with the following clauses:

If � is a set of well-formed formulas whose cardinality is less
than �, then ^� is a well-formed formula.

If A is a set of variables whose cardinality is less than �, and �
is a well-formed formula, then 8A� is a well-formed formula. In
8A�, every variable in A is bound.

Two technical caveats: Notice that if � is not regular, then there are, in
e�ect, conjunctions of size � in L��. Similarly, if � is not regular, there
are formulas with �-many bound variables. For this reason, some authors
require � and � to be regular cardinals. Also, for convenience, we stipulate
that the formulas in the set � of the �rst clause contain fewer than � free
variables total. Otherwise, there will be formulas of L�� that cannot be
turned into sentences by binding all of their free variables.

In�nitary disjunctions can be de�ned in a straightforward manner: if �
is a set of formulas, let :� be f:� j � 2 �g. Then de�ne _� to be : ^ :�.
In�nitary existential quanti�cation is similar: if A is a set of variables, then
de�ne 9A� to be :8A:�.

If the cardinality of the set K of non-logical terminology is not larger
than �, then there are (only) 2� well-formed formulas in L��. For readers
who do not think that this is enough formulas, there are some really big
languages. If the restriction on the size of the set � in the above clauses
is dropped, the language is called L1�. That is to say, if � is any set of
formulas in L1�, then ^� is a formula. Similarly, if the restriction on the
cardinality of the set A of variables is also dropped, the language is called
L11. Notice that L1� and L11 each have a proper class of formulas.
The latter has a proper class of variables!

At the other end of the scale, notice that L!! is just the �rst-order
L1[K]=. The `smallest' in�nitary language is L!1!, which allows countable
conjunctions but only �nitary quanti�ers.
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The semantics for all of these in�nitary languages is a straightforward
extension of the semantics of �rst-order languages. The new clauses are:

M; s � ^� if M; s � � for every � 2 �.
M; s � 8A� if M; s0 � � for every assignment s0 that agrees with
s on the variables not in A.

Suppose that K contains at least one binary relation letter. A straight-
forward trans�nite induction establishes that if � is any ordinal whose car-
dinality is less than �, then there is a sentence �� of L�![K], such that a
structure M satis�es �� i� M is isomorphic to �. Thus, there are uncount-
ably many di�erent structures that can be characterized up to isomorphism
in L!1!. On the other hand, if K is countable, then any �nitary language
based in K has only countably many sentences, and so only countably many
structures can be characterized up to isomorphism (with a single sentence).
Thus, second-order logic does not include L!1!. Strictly speaking, in�ni-
tary logics are not `intermediate' between �rst-order and second-order.

It might be added that no in�nitary language L�� includes second-order
logic. For example, the notions of compact space and complete linear order
can be characterized in a second-order language, but not in any L�� (see
[Dickmann, 1985, p. 323]). The reason is that there is no bound on the
cardinality of the relations in the range of second-order variables.

The expressive power of in�nitary languages is often a matter of `brute
force'. One constructs a formula that simply `says' what is required to
characterize a given notion or structure. For example, the extension of a
formula is �nite if and only if the disjunction of the following formulas holds:

9x8y(�(y)! x = y); 9x19x28y(�(y)! (x1 = y _ x2 = y));
9x19x29x38y(�(y)! (x1 = y _ x2 = y _ x3 = y)); : : :

Similarly, let 	(x) be the in�nitary disjunction of x = 0; x = s0; x =
ss0; : : : Any model of the axiom for the successor function and 8x	(x) is
isomorphic to the natural numbers. Thus, the natural numbers can be
characterized, up to isomorphism, in L!1!. The in�nitary 8x	(x) guar-
antees that the numerals exhaust the domain, and so there are no `non-
standard' numbers. To take one more example, let �(x) be the disjunction
of x < 1; x < 1 + 1; x < 1 + 1 + 1; : : : Then 8x�(x) is satis�ed by an ordered
�eld F if and only if F is Archimedean.

Let �(x; y) be any formula with x and y free. Then `w is an ancestor of
x under �' is characterized as the disjunction of

w = x;�(z; w); 9x(�(z; x)&�(x;w));
9x19x2(�(z; x1)&�(x1; x2)&�(x2; w)); : : :

This, and similar reasoning, shows that the smallest in�nitary language
L!1! includes the logics of Section 4 above|the ones that presuppose the
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notion of �nitude. That is, if � is any sentence of weak second-order logic,
L(Q0), ancestral logic, or !-logic, then there is a sentence �0 of L!1! such
that for any model M;M � � i� M � �0. See [Cowles, 1979] for more
details on these results.

There is an analogue of the downward L�owenheim{Skolem theorem: if �
is uncountable and � is any sentence of L�!, then if � has a model at all, it
has a model whose cardinality is less than �. It follows that the L�owenheim
number of L�! is at most �. The ordinary L�owenheim{Skolem theorem
holds in L!1!. If a sentence has a model at all, then it has a countable
model.

One consequence of this L�owenheim{Skolem result is that there is no
characterization of the real numbers in any L�! unless � is larger than the
continuum. However, there is a characterization of the real numbers, up
to isomorphism, in L!1!1, as follows: let A be the countably in�nite set
of distinct variables, x1; x2; : : :. If v is any variable, then let A < v be the
conjunction of the set fxi < v j xi 2 Ag. Let AR1 be the conjunction of
the axioms for an ordered �eld and the following version of the completeness
principle:

8A(9yA < y ! 9z(A < z&8y(A < y ! z � y))):

This formula asserts, via brute force, that for any countable (non-empty)
set of elements, if that set is bounded, then it has a least upper bound.
Thus, the L!1!1-sentence AR1 is a categorical characterization of the real
numbers.

Let A be a countable set of variables, as above, and let � be the conjunc-
tion of x2 < x1; x3 < x2; x4 < x3; : : :. Then, assuming the axiom of choice,
the relation < is well-founded if 8A:�. This last is a sentence of L!1!1.
Thus, if we assume the axiom of choice in the meta-theory, then the notion
well-ordering can be characterized by a sentence of L!1!1. Nadel [1985]

reports that there is no sentence of L1! that characterizes the class of
well-orderings. However, in L�!, one can characterize the notion of `well-
order of size smaller than �'. To move up one level, L!2!1 includes the
system called quasi-weak second-order logic in Section 5 above.

Compactness fails, even in L!1!. Let � be an in�nite set of (independent)
atomic sentences. For example, � might consist of c 6= 0; c 6= s0; c 6= ss0; c 6=
ss0; : : : Then the set � [ : ^ � is clearly unsatis�able, and yet every �nite
subset of � [ : ^ � is satis�able. In fact, every proper subset of � [ : ^ �
is satis�able.

For another example, for each � < !1, let c� be an individual constant,
and let f be a unary function symbol. Let � be the set fc� 6= c� j � < � <
!1g. Let 	 be the disjunction of ffx = c� j � < !g and let � be

8x8y(fx = fy ! x = y)&8x	:
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That is, � is a statement that f is one-to-one and the range of f is fc� j
� < !g. Then � entails that the domain is uncountable while � entails
that the domain is countable. Thus �[f�g has no models. Yet every �nite
subset of � [ f�g has a model. Indeed, every countable subset of � [ f�g
has a model.

I hope it will not further o�end the gentle reader's sensibilities to speak
of in�nitely long deductions. Hilbert [1925] wrote:

. . . the literature of mathematics is glutted with . . . absurdities
which have had their source in the in�nite. For example, we �nd
writers insisting, as though it were a restrictive condition, that
in rigorous mathematics only a �nite number of deductions are
admissible in a proof|as if someone had succeeded in making
an in�nite number of them.

Nevertheless, some of the above motivation for in�nitary logic might support
a theory of in�nitary deduction. Moreover, some of the semantic properties
of in�nitary languages are revealed via in�nitary deduction.

There is a pretty straightforward in�nitary deductive system for L�!.
Augment a standard deductive system for L1[K]= with the following rules:

Infer ^ �! 	; if 	 2 �:
From �!  ; for all  in �, infer �! ^�:

We require the `length' of a deduction in L�! to be `shorter' than �. If we
can be permitted to speak of `natural deduction' for in�nitary languages,
the �rst rule of inference can be replaced by a rule of ^-elimination: if
	 2 �, then infer 	 from ^�, resting on whatever assumptions ^� rests
upon. The second rule can be replaced with a rule of ^-introduction: from
	, for all 	 in �, infer ^�, resting on all assumptions that the members of
� rest upon.

The smallest in�nitary logic L!1! enjoys a certain completeness prop-
erty: if � is a logical truth in L!1!, then � can be `deduced' in the above
system. This is a `weak completeness' of sorts. We get a bit more as a
corollary: if � is a countable set of formulas and � a single formula, then
� � � in L!1! if � can be `deduced' from � in the expanded deductive
system.

However, there is no full completeness. Recall the set � [ f�g, de�ned
just above, which has no models. Thus, �[f�g � c0 6= c0. But a `deduction'
from � [ f�g can involve only countably many members of � [ f�g, and
any such collection is satis�able and thus consistent. So c0 6= c0 cannot be
deduced from � [ f�g.

The above completeness result indicates that `logical truth' in L!1! is
`absolute' in the background meta-theory. That is, if a formula is a logical
truth in any transitive model of ZFC, then it is a logical truth in any other
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transitive model of ZFC. However, when we consider larger languages we go
beyond what can be discerned in the background meta-theory. There are
sentences in L1! that are logical truths in some models of the background
meta-theory, but are not logical truths in others. In this respect, L1!
is like second-order logic. It follows that there is no `absolute'notion of
`provability' that will yield a version of weak completeness for even L!2!.

Logicians have studied in�nitary languages even more exotic than L1!.
Some have in�nite alternations of quanti�ers, e.g. 8x19y18x29y2 : : :�. From
the opposite perspective, the objections to in�nitary languages might be
attenuated if we focus attention on a subclass of L!1!. Logicians have
studied certain countable fragments of L!1!. The idea of an in�nitary
conjunction of a recursive (or otherwise de�nable) set of sentences might
be less o�ensive to a sensitive philosophical temperament. Assume that
we have cast the syntax for L1! in set theory, so that the formulas are
de�ned to be sets. A transitive set B of sets is called admissible if it satis�es
a certain theory, called `Kripke{Platek' set theory, which is weaker than full
Zermelo-Fraenkel set theory. A fragment L of L1! is admissible if there is
an admissible set B such that L is L1!\B. There is an extensive literature
on admissible fragments of L1! (see [Nadel, 1985, Section 5]).

The reader interested in in�nitary languages will do well to consult the es-
says in [Barwise and Feferman, 1985], especially [Dickmann, 1985; Kolaitis,
1985; Nadel, 1985] and and the wealth of references provided there.

8 SOMETHING COMPLETELY DIFFERENT: SUBSTITUTIONAL
QUANTIFICATION

Some philosophers, unhappy with `satisfaction' as the central component of
model-theoretic semantics, propose to replace the `satisfaction' of formulas
with the `truth' of sentences. The crucial clause in substitutional semantics
is:

Let �(x) be a formula whose only free variable is x. Then
8x�(x) is true substitutionally in an interpretation if for ev-
ery term t of the language, �(t) is true substitutionally in that
interpretation; 9x�(x) is true substitutionally in an interpreta-
tion if there is a term t of the language such that �(t) is true
substitutionally in that interpretation.

Sometimes di�erent quanti�ers are used, `�x' instead of `8x' and `�x' in-
stead of `9x', especially if an author wants to have substitutional quanti�ers
alongside ordinary quanti�ers. I do not follow this practice here.

For philosophers, one main purpose of substitutional semantics is to have
variables and quanti�ers in an interpreted formal language without thereby
taking on `ontological commitment'. Presumably, variables and quanti�ers,
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as understood substitutionally, do not have `ranges' (see, for example, [Got-
tlieb, 1980] and [Leblanc, 1976]). A nice deal for the anti-realist|perhaps.

Our purposes here are di�erent. We are examining languages and seman-
tics capable of expressing substantial mathematical concepts and describing
mathematical structures, like the natural and real numbers. Since this pre-
supposes that there is something to describe, we are not out to reduce
`ontological commitment'. When adapted to present purposes, however,
substitutional semantics has some interesting advantages. It happens that
the semantics is not compact, and no e�ective deductive system is both
sound and complete for it. Ironically, a system that is supposedly `ontolog-
ically' weaker than �rst-order (whatever that might mean) is semantically
stronger than �rst-order and is, in a sense, intermediate between �rst-order
and second-order.

It is straightforward to adapt model theory to substitutional semantics.
Let M be a model of a �rst-order language L1[K]= and let d be the domain
of M . De�ne M to be a substitution model if for every b 2 d, there is a
term t of L1[K] = such that t denotes b in M . In other words, M is a
substitution model if every element of its domain is denoted by a term of
the language. Substitution models are good candidates for what may be
called `substitutional interpretations' of a formal language like L1[K]=.

The usual semantic notions are readily de�ned. A set � of sentences is
substitutionally satis�able in L1[K] = if there is a substitution model M
such that for every � 2 �;M � �; and a sentence � is substitutionally
satis�able in L1[K] = if the singleton f�g is substitutionally satis�able in
L1[K]=. An argument h�;�i is substitutionally valid in L1[K]=, or � is a
substitutional consequence of � in L1[K] =, if for every substitution model
M , if M � 	 for every 	 2 �, then M � �. Finally, a sentence � is a
substitutional logical truth in L1[K] = if � is a substitutional consequence
of the empty set or, in other words, if � holds in every substitution model.

In the usual semantics for �rst-order languages, the properties of a for-
mula, a set of formulas, or an argument, depend only on the non-logical
items it contains. For example, if a formula � is in both L1[K] = and
L1[K 0] =, then � is a logical truth in L1[K] = if and only if � is a logical
truth in L1[K 0] =. The same goes for higher-order languages, and every
other logic presented in this chapter, but not for substitutional semantics.
The reason is that the extension of `substitution model' depends on the ter-
minology of the language. For example, if K consists only of the individual
constants p and q, then

8x(x = p _ x = q)

is a substitutional logical truth, as is its consequence 9y9z8x(x = y_x = z).
Neither of these sentences is a substitutional logical truth if there is a third
constant (or a function letter) in K.
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There is thus a close tie between the non-logical terminology available
and the semantic properties of a �rst-order language construed with substi-
tutional semantics. The link is attenuated somewhat with the customary
stipulation that the set K of non-logical terminology contain in�nitely many
individual constants. We adopt that convention here, unless explicitly noted
otherwise.

With this convention in place, we report some comparisons and some
meta-theory:

THEOREM 22. A sentence � of L1[K] = is substitutionally satis�able if
and only if � is satis�able in the usual �rst-order semantics. A fortiori, �
is a substitutional logical truth if and only if � is a logical truth.

Proof. Every substitution model is a model. So if � is substitutionally
satis�able then � is satis�able. For the converse, let M be a model that
satis�es �. Applying the downward L�owenheim{Skolem theorem, let M1

be a model whose domain is (at most) countable such that M1 � �. Then
let M2 be a substitution model with the same domain as M1 such that M2

agrees with M1 on every non-logical item that occurs in �. The model M2

is obtained by reassigning the non-logical individual constants that do not
occur in �, so that every element of the domain is assigned to at least one
constant. It is straightforward to verify that M2 � � (citing the aforemen-
tioned fact about �rst-order model theory). �

The following is then immediate:

COROLLARY 23. Substitutional semantics is weakly complete. A sentence
� is a substitutional logical truth if and only if � is deducible in a standard
deductive system for �rst-order logic.

On the other hand, there is no e�ective deductive system that is complete
for substitutional validity or logical consequence. Consider a language with
the non-logical terminology of arithmetic f0; s;+; �g together with the in�-
nite list of individual constants fp0; p1; : : :g. Let � consist of the successor,
addition, and multiplication axioms (see Section 4 above) and the sentences
p0 = 0; p1 = s0; p2 = ss0; : : : Then a substitution model M satis�es every
member of � if and only if M is isomorphic to the natural numbers, with
p0; p1; : : : as the numerals. In other words, in substitutional semantics, � is
a categorical characterization of the natural numbers. It follows that for ev-
ery sentence �, � is a substitutional consequence of � if and only if � is true
of the natural numbers. As above, it is a corollary of the incompleteness of
arithmetic that substitutional semantics is inherently incomplete.

Notice that no induction principle is explicitly included in �, and yet
each instance of the induction scheme is a substitutional consequence of �.
In any substitution model of �, the denotations of the constants p0; p1, etc.
exhaust the domain, and so there is no need for an additional axiom to state
this.
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This looks like another instance of theft over toil. Recall that one major
problem in characterizing the natural numbers up to isomorphism is to state,
somehow, that 0; s0; ss0; : : : are all the numbers there are. This can be done
with a higher-order language, and with most of the languages developed in
this chapter, and of course it cannot be done with any �rst-order language.
Indeed, if a �rst-order theory of arithmetic has an in�nite model at all
then it has models that contain elements di�erent from the denotations
of 0; s0; ss0; : : :. With substitutional semantics, categoricity is achieved by
simply excluding those non-standard models from the semantics, by �at.

Incidentally, in the example at hand, we added the constants p0; p1; : : :
in order to satisfy the convention that there be in�nitely many individual
constants. If that convention is waived, then the characterization of the
natural numbers can be accomplished by a single sentence. Let the set of
non-logical terminology be f0; s;+; �g and let � be the conjunction of the
successor, addition, and multiplication axioms. Then for every substitution
model M;M � � if and only if M is isomorphic to the natural numbers. It
follows that if we waive the convention and allow �nite sets of non-logical
terms, then substitutional semantics is not even weakly complete.

Recall that the usual proof of the upward L�owenheim{Skolem theorem
involves adding individual constants to the language. This maneouvre is not
kosher here, since with substitutional semantics the properties of a sentence
or a set of sentences are dependent on the non-logical terminology avail-
able in the language. Adding new constants would change the extension of
`substitution model'. In any case, the upward L�owenheim{Skolem theorem
fails, trivially. If there are only countably many terms of the language, then
there are no uncountable substitution models. There is a more substantial
result:

THEOREM 24. There is a set � of sentences such that for every natural
number n > 0;� has a substitution model whose domain has cardinality n,
but � has no substitution model whose domain is in�nite.

Proof. Let K consist of the unary function letter f and the individual
constants t0; t1; : : :. Let � consist of the sentences ft0 = t1; ft1 = t2; ft2 =
t3; : : : and 9x(fx = t0). For each n > 0, let the domain of Mn consist of the
natural numbers f0; 1; : : : ; n� 1g. The structure Mn assigns each constant
ti to the remainder when i is divided by n, and Mn assigns f to the function
whose value at j is the remainder when j + 1 is divided by n. Then Mn

is a substitution model that satis�es every member of �. Now, let M be
any substitution model of this language that satis�es every member of �.
If the domain of M were in�nite, then the denotations in M of the terms
t0; ft0; fft0, etc. must all be distinct and must exhaust the domain. Thus
M � :9x(fx = t0). A contradiction. Thus, the domain of M is �nite. �
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Despite this result, there is no characterization of �nitude in substitution
semantics. In particular, for every set � of formulas, if every �nite substitu-
tion model satis�es every member of �, then there is an in�nite substitution
model that also satis�es every member of �. On the other hand, if we waive
the convention that there be in�nitely many individual constants, then we
can characterize the notion of �nitude with a single sentence. Let the non-
logical terminology consist of only the individual constant 0 and the unary
function letter f . Then, for any substitution model M for this language,

M � 9x(fx = 0) _ 9x9y(x 6= y&fx = fy)

if and only if the domain of M is �nite.

THEOREM 25. Substitutional semantics is not compact.

Proof. This is a corollary of Theorem 24, and it can be established in the
usual way from the categoricity of the natural numbers. There is, however,
a direct way to establish this theorem. Let the non-logical terms consist
of the constants t0; t1; : : :, and the monadic predicate letter D, and let �
consist of Dt0; Dt1; : : :, together with 9x:Dx. Then every proper subset of
� is substitutionally satis�able and so every �nite subset is satis�able. But
� itself is not substitutionally satis�able. �

To belabour the obvious, no structure whose domain is uncountable can
be characterized in substitutional semantics, unless uncountably many non-
logical terms are employed. On the other hand, every structure whose
domain is countable can be characterized up to isomorphism with substi-
tutional semantics. In general, any structure can be characterized in a
language that has as many individual constants as the domain has mem-
bers. Indeed, let M be any model of a language L1[K]=. Assume that no
element of the domain d of M is a non-logical term of the associated lan-
guage (relettering the items in K if necessary). Now expand the language
so that every element of d is a non-logical constant. That is, consider the
language L1[K 0], where K 0 is K [ d. Expand the model M to the new
`language', so that each b 2 d denotes itself. Call the result M 0. Clearly,
M 0 is a substitution model for the expanded language. Let � be the set
of sentences f� j M 0 � �g. Then any substitution model in the expanded
language is isomorphic to M i� it satis�es every member of �.

The idea here is to expand the `language' so that the elements of the
domain of the model act as singular terms. The procedure can be reversed.
If a set � has a substitution model at all, then one can construct such
a model from equivalence classes of the terms of the language. In short,
a theory that is substitutionally satis�able carries a model in its syntax.
This is probably part of the reason that anti-realists �nd substitutional
semantics attractive. We must remain aware of the complexity and depth
of this semantics. See [Dunn and Belnap, 1968].
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HIGHER-ORDER LOGIC

INTRODUCTION

What is nowadays the central part of any introduction to logic, and indeed
to some the logical theory par excellence, used to be a modest fragment
of the more ambitious language employed in the logicist program of Frege
and Russell. `Elementary' or `�rst-order', or `predicate logic' only became
a recognized stable base for logical theory by 1930, when its interesting
and fruitful meta-properties had become clear, such as completeness, com-
pactness and L�owenheim-Skolem. Richer higher-order and type theories
receded into the background, to such an extent that the (re-) discovery of
useful and interesting extensions and variations upon �rst-order logic came
as a surprise to many logicians in the sixties.

In this chapter, we shall �rst take a general look at �rst-order logic, its
properties, limitations, and possible extensions, in the perspective of so-
called `abstract model theory'. Some characterizations of this basic system
are found in the process, due to Lindstr�om, Keisler-Shelah and Fra��ss�e.
Then, we go on to consider the original mother theory, of which �rst-order
logic was the elementary part, starting from second-order logic and arriving
at Russell's theory of �nite types. As will be observed repeatedly, a border
has been crossed here with the domain of set theory; and we proceed, as
Quine has warned us again and again, at our own peril. Nevertheless, �rst-
order logic has a vengeance. In the end, it turns out that higher-order logic
can be viewed from an elementary perspective again, and we shall derive
various insights from the resulting semantics.

Before pushing o�, however, we have a �nal remark about possible preten-
sions of what is to follow. Unlike �rst-order logic and some of its less baroque
extensions, second and higher-order logic have no coherent well-established
theory; the existent material consisting merely of scattered remarks quite
diverse with respect to character and origin. As the time available for the
present enterprise was rather limited (to say the least) the authors do not
therefore make any claims as to complete coverage of the relevant literature.

1 FIRST-ORDER LOGIC AND ITS EXTENSIONS

The starting point of the present story lies somewhere within Hodges' (this
volume). We will review some of the peculiarities of �rst-order logic, in
order to set the stage for higher-order logics.
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1.1 Limits of Expressive Power

In addition to its primitives all and some, a �rst-order predicate language
with identity can also express such quanti�ers as precisely one, all but two, at
most three, etcetera, referring to speci�c �nite quantities. What is lacking,
however, is the general mathematical concept of �niteness.

EXAMPLE. The notion `�niteness of the domain' is not de�nable by means
of any �rst-order sentence, or set of such sentences.

It will be recalled that the relevant refutation turned on the compactness
theorem for �rst-order logic, which implies that sentences with arbitrarily
large �nite models will also have in�nite ones.

Another striking omission, this time from the perspective of natural lan-
guage, is that of common quanti�ers, such as most, least, not to speak of
many or few.

EXAMPLE. The notion `most A are B' is not de�nable in a �rst-order
logic with identity having, at least, unary predicate constants A;B. This
time, a refutation involves both compactness and the (downward) L�owen-
heim{Skolem theorem: Consider any proposed de�nition �(A;B) together
with the in�nite set of assertions `at least n A are B', `at least n A are
not B' (n = 1; 2; 3; : : :). Any �nite subset of this collection is satis�able
in some �nite domain with A � B large enough and A \ B a little larger.
By compactness then, the whole collection has a model with in�nite A\B,
A�B. But now, the L�owenheim{Skolem theorem gives a countably in�nite
such model, which makes the latter two sets equinumerous | and `most' A
are no longer B: in spite of �(A;B).

One peculiarity of this argument is its lifting the meaning of colloquial
`most' to the in�nite case. The use of in�nite models is indeed vital in the
coming sections. Only in Section 1.4.3 shall we consider the purely �nite
case: little regarded in mathematically-oriented model theory, but rather
interesting for the semantics of natural language.

In a sense, these expressive limits of �rst-order logic show up more dra-
matically in a slightly di�erent perspective. A given theory in a �rst-
order language may possess various `non-standard models', not originally
intended. For instance, by compactness, Peano Arithmetic has non-Arch-
imedean models featuring in�nite natural numbers. And by L�owenheim{
Skolem, Zermelo-Fraenkel set theory has countable models (if consistent), a
phenomenon known as `Skolem's Paradox'. Conversely, a given model may
not be de�ned categorically by its complete �rst-order theory, as is in fact
known for al (in�nite) mathematical standard structures such as integers,
rationals or reals. (These two observations are sides of the same coin, of
course.) Weakness or strength carry no moral connotations in logic, how-
ever, as one may turn into the other. Non-standard models for analysis



HIGHER-ORDER LOGIC 191

have turned out quite useful for their own sake, and countable models of
set theory are at the base of the independence proofs: �rst-order logic's loss
thus can often be the mathematician's or philosopher's gain.

1.2 Extensions

When some reasonable notion falls outside the scope of �rst-order logic,
one rather natural strategy is to add it to the latter base and consider the
resulting stronger logic instead. Thus, for instance, the above two examples
inspire what is called `weak second-order logic', adding the quanti�er `there
exist �nitely many', as well as �rst-order logic with the added `generalized
quanti�er' most. But, there is a price to be paid here. Inevitably, these
logics lose some of the meta-properties of �rst-order logic employed in the
earlier refutations of de�nability. Here is a telling little table:

Compactness L�owenheim{Sk.
First-order logic yes yes
Plus `there exists �nitely many' no yes
Plus `there exist uncountably many' yes no
Plus `most' no no

For the second and third rows, cf. [Monk, 1976, Chapter 30]. For the
fourth row, here is an argument.

EXAMPLE. Let the most-sentence '(R) express that R is a discrete lin-
ear order with end points, possessing a greatest point with more successors
than non-successors (i.e. most points in the order are its successors). Such
orders can only be �nite, though of arbitrarily large size: which contradicts
compactness. Next, consider the statement that R is a dense linear order
without end points, possessing a point with more successors than predeces-
sors. There are uncountable models of this kind, but no countable ones:
and hence L�owenheim{Skolem fails.

As it happens, no proposed proper extension of �rst-order logic ever
managed to retain both the compactness and L�owenheim{Skolem proper-
ties. And indeed, in 1969 Lindstr�om proved his famous theorem [Lindstr�om,
1969] that, given some suitable explication of a `logic', �rst-order logic is
indeed characterizable as the strongest logic to possess these two meta-
properties.

1.3 Abstract Model Theory

Over the past two decades, many types of extension of �rst-order logic have
been considered. Again, the earlier two examples illustrate general patterns.
First, there are so-called �nitary extensions, retaining the (e�ective) �nite
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syntax of �rst-order logic. The most example inspires two general directions
of this kind.

First, one may add generalized quanti�ers Q, allowing patterns

Qx � '(x) or Qxy � '(x);  (y):

E.g. `the 's �ll the universe' (all), `the 's form the majority in the universe'
(most), `the 's form the majority of the  s' (most  are '). But also,
one may stick with the old types of quanti�er, while employing them with
new ranges. For instance, `most A are B' may be read as an ordinary
quanti�cation over functions: `there exists a 1{1 correspondence between
A{B and some subset of A \ B, but not vice versa'. Thus, one enters the
domain of higher-order logic, to be discussed in later sections.

The earlier example of `�niteness' may lead to �nitary extensions of the
above two kinds, but also to an in�nitary one, where the syntax now allows
in�nite conjunctions and disjunctions, or even quanti�cations. For instance,
�niteness may be expressed as `either one, or two, or three, or . . . ' in L!1!:
a �rst-order logic allowing countable conjunctions and disjunctions of formu-
las (provided that they have only �nitely many free variables together) and
�nite quanti�er sequences. Alternatively, it may be expressed as `there are
no x1; x2; : : :: all distinct', which would belong to L!1!1 , having a countably
in�nite quanti�er string. In general, logicians have studied a whole family
of languages L�� ; but L!1! remains the favourite (cf. [Keisler, 1971]).

Following Lindstr�om's result, a research area of `abstract model theory'
has arisen where these various logics are developed and compared. Here is
one example of a basic theme. Every logic L `casts its net' over the sea of all
structures, so to speak, identifying models verifying the same L-sentences
(L-equivalence). On the other hand, there is the �nest sieve of isomorphism
between models. One of Lindstr�om's basic requirements on a logic was that
the latter imply the former. One measure of strength of the logic is now
to which extent the converse obtains. For instance, when L is �rst-order
logic, we know that elementary equivalence implies isomorphism for �nite
models, but not for countable ones. (Cf. the earlier phenomenon of non-
categorical de�nability of the integers.) A famous result concerning L!1! is
Scott's theorem to the e�ect that, for countable models, L!1!-equivalence
and isomorphism coincide. (Cf. [Keisler, 1971, Chapter 2] or [Barwise, 1975,
Chapter VII.6].) That such matches cannot last in the long run follows from
a simple set-theoretic consideration, however, �rst made by Hanf. As long
as the L-sentences form a set, they can distinguish at best 2kLk models, up
to L-equivalence | whereas the number of models, even up to isomorphism,
is unbounded.

A more abstract line of research is concerned with the earlier meta-
properties. In addition to compactness and L�owenheim{Skolem, one also
considers such properties as recursive axiomatizability of universally valid
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sentences (`completeness') or interpolation (cf. Hodges' chapter in this Vol-
ume). Such notions may lead to new characterization results. For instance,
Lindstr�om himself proved that elementary logic is also the strongest logic
with an e�ective �nitary syntax to possess the L�owenheim{Skolem property
and be complete. (The in�nitary language L!1! has both, without collaps-
ing into elementary logic, however; its countable admissible fragments even
possess compactness in the sense of [Barwise, 1975].) Similar characteriza-
tions for stronger logics have proven rather elusive up till now.

But then, there are many further possible themes in this area which are
of a general interest. For instance, instead of haphazardly selecting some
particular feature of �rst-order, or any other suggestive logic, one might
proceed to a systematic description of meta-properties.

EXAMPLE. A folklore prejudice has it that interpolation was the `�nal ele-
mentary property of �rst-order logic to be discovered'. Recall the statement
of this meta-property: if one formula implies another, then (modulo some
trivial cases) there exists an interpolant in their common vocabulary, im-
plied by the �rst, itself implying the second. Now, this assertion may be
viewed as a (�rst-order) fact about the two-sorted `meta-structure' consist-
ing of all �rst-order formulas, their vocabulary types (i.e. all �nite sets of
non-logical constants), the relations of implication and type-inclusion, as
well as the type-assigning relation. Now, the complete �rst-order theories
of the separate components are easily determined. The pre-order hformulas,
implicationi carries a de�nable Boolean structure, as one may de�ne the
connectives (^ as greatest lower bound, : as some suitable complement).
Moreover, this Boolean algebra is countable, and atomless (the latter by
the assumption of an in�nite vocabulary). Thus, the given principles are
complete, thanks to the well-known categoricity and, hence, completeness
of the latter theory. The complete logic of the partial order h�nite types,
inclusioni may be determined in a slightly more complex way. The vindi-
cation of the above conviction concerning the above meta-structure would
then consist in showing that interpolation provides the essential link between
these two separate theories, in order to obtain a complete axiomatization
for the whole.

But as it happens, [Mason, 1985] (in response to the original version
of this chapter) has shown that the complete �rst-order theory of this
meta-model is e�ectively equivalent to True Arithmetic, and hence non-
axiomatizable.

Even more revolutionary about abstract model theory is the gradual re-
versal in methodological perspective. Instead of starting from a given logic
and proving some meta-properties, one also considers these properties as
such, establishes connections between them, and asks for (the ranges of)
logics exemplifying certain desirable combinations of features.
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Finally, a warning. The above study by no means exhausts the range
of logical questions that can be asked about extensions of �rst-order logic.
Indeed, the perspective of meta-properties is very global and abstract. One
more concrete new development is the interest in, e.g. generalized quanti�ers
from the perspective of linguistic semantics (cf. [Barwise and Cooper, 1981;
van Benthem, 1984]), which leads to proposals for reasonable constraints on
new quanti�ers, and to a semantically-motivated classi�cation of reasonable
additions to elementary logic.

1.4 Characterization Results

A good understanding of �rst-order logic is essential to any study of its
extensions. To this end, various characterizations of �rst-order de�nability
will be reviewed here in a little more detail than in Hodges' chapter.

1.4.1 Lindstr�om's Theorem. Lindstr�om's result itself gives a de�nition of
�rst-order logic, in terms of its global properties. Nevertheless, in practice,
it is of little help in establishing or refuting �rst-order de�nability. To see
if some property � of models is elementary, one would have to consider
the �rst-order language with � added (say, as a propositional constant),
close under the operations that Lindstr�om requires of a `logic' (notably, the
Boolean operations and relativization to unary predicates), and then �nd
out if the resulting logic possesses the compactness and L�owenheim{Skolem
properties. Moreover, the predicate logic is to have an in�nite vocabulary
(cf. the proof to be sketched below): otherwise, we are in for surprises.

EXAMPLE. Lindstr�om's theorem fails for the pure identity language. First,
it is a routine observation that sentences in this language can only express
(negations of) disjunctions `there are precisely n1 or . . . or precisely nk ob-
jects in the universe'. Now, add a propositional constant C expressing
countable in�nity of the universe.

This logic retains compactness. For, consider any �nitely satis�able set
� of its sentences. It is not diÆcult to see that either �[ fCg or �[ f:Cg
must also be �nitely satis�able. In the �rst case, replace occurrences of
C in � by some tautology: a set of �rst-order sentences remains, each of
whose �nite subsets has a (countably) in�nite model. Therefore, it has an
in�nite model itself and, hence, a countably in�nite one (satisfying C) |
by ordinary compactness and L�owenheim{Skolem. This model satis�es the
original � as well. In the second case, replace C in � by some contradiction.
The resulting set either has a �nite model, or an in�nite one, and hence
an uncountably in�nite one: either way, :C is satis�ed | and again, the
original � is too.

The logic also retains L�owenheim{Skolem. Suppose that ' has no count-
ably in�nite models. Then '^:C has a model, if ' has one. Again, replace
occurrences of C inside ' by some contradiction: a pure identity sentence



HIGHER-ORDER LOGIC 195

remains. But such sentences can always be veri�ed on some �nite universe
(witness the above description) where :C is satis�ed too.

1.4.2 Keisler's Theorem. A more local description of �rst-order de�nability
was given by Keisler, in terms of preservation under certain basic operations
on models.

THEOREM. A property � of models is de�nable by means of some �rst-
order sentence i� both � and its complement are closed under the formation
of isomorphs and ultraproducts.

The second operation has not been introduced yet. As it will occur at
several other places in this Handbook, a short introduction is given at this
point. For convenience, henceforth, our standard example will be that of
binary relational models F = hA;Ri (or Fi = hAi; Rii).

A logical fable. A family of models fFi j i 2 Ig once got together and
decided to join into a common state. As everyone wanted to be fully rep-
resented, it was decided to create new composite individuals as functions f
with domain I , picking at each i 2 I some individual f(i) 2 Ai. But now,
how were relations to be established between these new individuals? Many
models were in favour of consensus democracy:

Rfg i� Rif(i)g(i) for all i 2 I:
But, this lead to indeterminacies as soon as models started voting about
whether or not Rfg. More often than not, no decision was reached. There-
fore, it was decided to ask the gods for an `election manual' U , saying which
sets of votes were to be `decisive' for a given atomic statement. Thus, votes
now were to go as follows:

Rfg i� fi 2 I j Rif(i)g(i)g 2 U: (�)
Moreover, although one should not presume in these matters, the gods were
asked to incorporate certain requirements of consistency

if X 2 U; then I �X 62 U
as well as democracy

if X 2 U and Y � X; then Y 2 U:
Finally, there was also the matter of expediency: the voting procedure for
atomic statements should extend to complex decisions:

'(f1; : : : ; fn) i� fi 2 I j Fi � '[f1(i) : : : ; fn(i)]g 2 U
for all predicate-logical issues '.

After having pondered these wishes, the gods sent them an ultra�lter U
over I , proclaiming the  Lo�s Equivalence:
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THEOREM. For any ultra�lter U over I, the stipulation (�) creates a struc-
ture F = h�i2IAi; Ri such that

F � '[f1; : : : ; fn] i� fi 2 I j Fi � '[f1(i); : : : ; fn(i)]g 2 U:

Proof. The basic case is just (�). The negation and conjunction
cases correspond to precisely the de�ning conditions on ultra�lters, viz. (i)
X 62 U i� I �X 2 U ; (ii) X;Y 2 U i� X \Y 2 U (or, alternatively, besides
consistency and democracy above: if X;Y 2 U then also X \ Y 2 U ; and:
if I �X 62 U then X 2 U). And �nally, the gods gave them the existential
quanti�er step for free:

� if 9x'(x; f1; : : : ; fn) holds then so does '(f; f1; : : : ; fn) for some func-
tion f . Hence, by the inductive hypothesis for ', we have that
fi 2 I j Fi � '[f(i); f1(i); : : : ; fn(i)]g 2 U , which set is contained
in fi 2 I j Fi � 9x'[f1(i); : : : ; fn(i)]g 2 U .

� if fi 2 I j Fi � 9x'[f1(i); : : : ; fn(i)]g 2 U , then choose f(i) 2 Ai
verifying ' for each of these i (and arbitrary elsewhere): this f veri�es
'(x; f1; : : : ; fn) in the whole product, whence 9x'(f1; : : : ; fn) holds.

�

After a while, an unexpected diÆculty occurred. Two functions f; g who
did not agree among themselves asked for a public vote, and the outcome
was . . .

fi 2 I j f(i) = g(i)g 2 U:
Thus it came to light how the gift of the gods had introduced an invisible
equality �. By its de�nition and the  Lo�s Equivalence, it even turned out
to partition the individuals into equivalence classes, whose members were
indistinguishable as to R behaviour:

Rfg; f � f 0; g � g0 imply Rf 0g0:

But then, such classes themselves could be regarded as the building bricks
of society, and in the end there were:

DEFINITION. For any family of models fFi j i 2 Ig with an ultra�lter U
on I , the ultraproduct �UFi is the model hA;Ri with

1. A is the set of classes f� for all functions f 2 �i2IAi, where f� is the
equivalence class of f in the above relation,

2. R is the set of couples hf�; g�i for which fi 2 I j Rif(i)g(i)g 2 U .

By the above observations, the latter clause is well-de�ned | and indeed
the whole  Lo�s Equivalence remained valid.
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Whatever their merits as regards democracy, ultraproducts play an im-
portant role in the following fundamental question of model theory:

What structural behaviour makes a class of models elementary, i.e. de-
�nable by means of some �rst-order sentence?

First, the  Lo�s Equivalence implies that �rst-order sentences ' are pre-
served under ultraproducts in the following sense:

if Fi � ' (all i 2 I), then �UFi � ':

(The reason is that I itself must belong to U .) But conversely, Keisler's
theorem told us that this is also enough. End of fable.

The proof of Keisler's theorem (subsequently improved by Shelah) is
rather formidable: cf. [Chang and Keisler, 1973, Chapter 6]. A more acces-
sible variant will be proved below, however. First, one relaxes the notion of
isomorphism to the following partial variant.

DEFINITION. A partial isomorphism between hA;Ri and hB;Si is a set I
of coupled �nite sequences (s; t) from A resp. B, of equal length, satisfying

(s)i = (s)j i� (t)i = (t)j
(s)iR(s)j i� (t)iS(t)j

which possesses the back-and-forth property, i.e. for every (s; t) 2 I and
every a 2 A there exists some b 2 B with (s_a; t_b) 2 I ; and vice versa.

Cantor's zig-zag argument shows that partial isomorphism coincides with
total isomorphism on the countable models. Higher up, matters change; e.g.
hQ ; <i and hR ; <i are partially isomorphic by the obvious I without being
isomorphic.

First-order formulas ' are preserved under partial isomorphism in the
following sense:

if (s; t) 2 I; then hA;Ri � '[s] i� hB;Si � '[t]:

Indeed, this equivalence extends to formulas from arbitrary in�nitary lan-
guages L�!: cf. [Barwise, 1977, Chapter A.2.9] for further explanation.

THEOREM. A property � of models is �rst-order de�nable i� both � and
its complement are closed under the formation of partial isomorphs and
countable ultraproducts.

1.4.3 Fra��ss�e's Theorem. Even the Keisler characterization may be diÆcult
to apply in practice, as ultraproducts are such abstract entities. In many
cases, a more combinatorial method may be preferable; in some, it's even
necessary.
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EXAMPLE. As was remarked earlier, colloquial `most' only seems to have
natural meaning on the �nite models. But, as to �rst-order de�nability on
this restricted class, both previous methods fail us completely, all relevant
notions being tied up with in�nite models. Nevertheless, most A are B is
not de�nable on the �nite models in the �rst-order language with A;B and
identity. But this time, we need a closer combinatorial look at de�nability.

First, a natural measure of the `pattern complexity' of a �rst-order for-
mula ' is its quanti�er depth d('), which is the maximum length of quan-
ti�er nestings inside '. (Inductively, d(' = 0 for atomic '; d(:') = d('),
d(' ^  ) = maximum(d('); d( )), etcetera, d(9x') = d(8x') = d(' + 1.)
Intuitively, structural complexity beyond this level will escape ''s notice.
We make this precise.

Call two sets X;Y n-equivalent if either jX j = jY j < n or jX j; jY j � n.
By extension, call two models hD;A;Bi; hD0; A0; B0i n-equivalent if all four
`state descriptions' A \ B;A � B;B � A;D � (A [ B) are n-equivalent to
their primed counterparts.

LEMMA. If hD;A;Bi; hD0; A0; B0i are n-equivalent then all sequences d, d0

with corresponding points in corresponding states verify the same �rst-order
formulas with quanti�er depth not exceeding n.

COROLLARY. `Most A are B' is not �rst-order de�nable on the �nite
models.

Proof. For no �nite number n, `most A are B' exhibits the required n-
insensitivity. �

This idea of insensitivity to structural complexity beyond a certain level
forms the core of our third and �nal characterization, due to Fra��ss�e. Again,
only the case of a binary relation R will be considered, for ease of demon-
stration.

First, on the linguistic side, two models are n-elementarily equivalent if
they verify the same �rst-order sentences of quanti�er depth not exceeding
n. Next, on the structural side, a matching notion of n-partial isomorphism
may be de�ned, by postulating the existence of a chain In; � � � ; I0 of sets of
matching couples (s; t), as in the earlier de�nition of partial isomorphism.
This time, the back-and-forth condition is index-relative, however:

if (s; t) 2 Ii+1 and a 2 A, then for some b 2 B; (s_a; t_b) 2 Ii,
and vice versa.

PROPOSITION. Two models are n-elementarily equivalent i� they are n-
partially isomorphic.

The straightforward proof uses the following auxiliary result, for �rst-
order languages with a �nite non-logical vocabulary of relations and indi-
vidual constants.
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LEMMA. For each depth n and for each �xed number of free variables
x1; : : : ; xm, there exist only �nitely many formulas '(x1; : : : ; xm), up to
logical equivalence.

This lemma allows us to describe all possible n-patterns in a single �rst-
order formula, a purpose for which one sometimes uses explicit `Hintikka
normal forms'.

THEOREM. A property � of models is �rst-order de�nable i� it is preserved
under n-partial isomorphism for some natural number n.

Proof. The invariance condition is obvious for �rst-order de�nable proper-
ties. Conversely, for n-invariant properties, the disjunction of all complete
n-structure descriptions for models satisfying � de�nes the latter property.

�

Applications. Now, from the Fra��ss�e theorem, both the weak Keisler and
the Lindstr�om characterization may be derived in a perspicuous way. Here
is an indication of the proofs.

EXAMPLE. (Weak Keisler from Fra��ss�e) First-order de�nable properties
are obviously preserved under partial isomorphism and (countable) ultra-
products. As for the converse, suppose that � is not thus de�nable. By
Fra��ss�e, this implies the existence of a sequence of n-partially isomorphic
model pairs An;Bn of which only the �rst verify �.

The key observation is now simply this. Any free ultra�lter U on N (con-
taining all tails of the form [n;1)) will make the countable ultraproducts
�UAn, �UBn partially isomorphic. The trick here is to �nd a suitable set I
of partial isomorphisms, and this is accomplished by setting, for sequences
of functions s; t of length m

((s)U ; (t)U ) 2 I i� fn � m j (s(n); t(n)) 2 Inn�mg 2 U

where `Inn ; : : : ; I
n
0 ' is the sequence establishing the n-partial isomorphism of

An, Bn.
So, by the assumed preservation properties, � would hold for �UAn and

hence for �UBn. But, so would not-�: a contradiction.

EXAMPLE. (Lindstr�om from Fra��ss�e) Let L be a logic whose non-logical
vocabulary consists of in�nitely many predicate constants of all arities. L
is completely speci�ed by its sentences S, each provided with a �nite `type'
(i.e. set of predicate constants), its models M (this time: ordinary �rst-order
models) and its truth relation T between sentences and models. We assume
four basic conditions on L: the truth relation is invariant for isomorphs, the
sentence set S is closed under negations and conjunctions (in the obvious
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semantic sense), and each sentence ' can be relativized by arbitrary unary
predicates A, such that a model veri�es 'A i� its A-submodel veri�es '.
Finally, we say that L `contains elementary logic' if each �rst-order sentence
is represented by some sentence in S having the same models. `Compactness'
and `L�owenheim{Skolem' are already de�nable in this austere framework.
(By the latter we'll merely mean: `sentences with any model at all have
countable models'.)

THEOREM. Any logic containing elementary logic has compactness and
L�owenheim{Skolem i� it coincides with elementary logic.

The non-evident half of this assertion again starts from Fra��ss�e's result.
Suppose that � 2 S is not �rst-order. Again, there is a sequence An, Bn as
above. For a natural number n, consider the complex model (an expanded
\model pair") Mn = (An;Bn; R0; : : : ; Rn), where the 2i-ary relations Ri �
Ain �Bi

n (i = 0; : : : ; n) are de�ned by

Ri(a1; : : : ; ai; b1; : : : ; bi) :� (An; a1; : : : ; ai) �n�i (Bn; b1; : : : ; bi)

(�n�i denoting (n� i)-equivalence here). The model Mn satis�es sentences
expressing that

1. � is true in its �rst component An but false in its second one Bn,
(note that we use relativizations here),

2. if i � n and Ri(a1; : : : ; ai; b1; : : : ; bi) holds, then the relation f(a1; b1);
: : : ; (ai; bi)g between the component-models An and Bn has the prop-
erties of a partial isomorphism (preservation of equality and relations)
introduced earlier,

3. (a) R0 (which has 0 arguments) is true (of the empty sequence),

(b) if i < n and Ri(a1; : : : ; ai; b1; : : : ; bi) holds, then for all a 2 An
there exists b 2 Bn such that Ri+1(a1; : : : ; ai; a; b1; : : : ; bi; b), and
vice versa.

By the Downward L�owenheim{Skolem and Compactness property, there is
a countable complex (A;B; R0; R1; R2; : : :) with an in�nite sequence R0; R1;
R2; : : : that satis�es these requirements for every i. By requirements 2 and
3 and Cantor's zig-zag argument it then follows that A �= B. However, this
outcome contradicts requirement 1. �

2 SECOND-ORDER LOGIC

2.1 Language

Quanti�cation over properties and predicates, rather than just objects, has
a philosophical pedigree. For instance, Leibniz's celebrated principle of
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Identity of Indiscernibles has the natural form

8xy(8X(X(x)$ X(y))! x = y):

There also seems to be good evidence for this phenomenon from natural
language, witness Russell's example `Napoleon had all the properties of a
great general'

8X(8y(GG(y)! X(y))! X(n)):

Moreover, of course, mathematics abounds with this type of discourse, with
its explicit quanti�cation over relations and functions. And indeed, logic
itself seems to call for this move. For, there is a curious asymmetry in
ordinary predicate logic between individuals: occurring both in constant
and variable contexts, and predicates: where we are denied the power of
quanti�cation. This distinction seems arbitrary: signi�cantly, Frege's Be-
gri�sschrift still lacks it. We now pass on to an account of second-order
logic, with its virtues and vices.

The language of second-order logic distinguishes itself from that of �rst-
order logic by the addition of variables for subsets, relations and functions
of the universe and the possibility of quanti�cation over these. The result
is extremely strong in expressive power; we list a couple of examples in
Section 2.2. As a consequence, important theorems valid for �rst-order
languages fail here; we mention the compactness theorem, the L�owenheim{
Skolem theorems (Section 2.2) and the completeness theorem (Section 2.3).
With second-order logic, one really enters the realm of set theory. This
state of a�airs will be illustrated in Section 2.4 with a few examples. What
little viable logic can be snatched in the teeth of these limitations usually
concerns special fragments of the language, of which some are considered in
Section 2.5.

2.2 Expressive Power

2.2.1. An obvious example of a second-order statement is Peano's induction
axiom according to which every set of natural numbers containing 0 and
closed under immediate successors contains all natural numbers. Using S
for successor, this might be written down as

8Y [Y (0) ^ 8x(Y (x)! Y (S(x))) ! 8xY (x)] (1)

(The intention here is that x stands for numbers, Y for sets of numbers,
and Y (x) says, as usual, that x is an element of Y .)

Dedekind already observed that the axiom system consisting of the in-
duction axiom and the two �rst-order sentences

8x8y(S(x) = S(y)! x = y) (2)
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and

8x(S(x) 6= 0) (3)

is categorical. Indeed suppose that hA; f; ai models (1){(3). Let A0 =
fa; f(a); f(f(a)); : : :g. Axioms (2) and (3) alone imply that the submodel
hA0; f � A0; ai is isomorphic with hN ; S; 0i (the isomorphism is clear). But,
(1) implies that A0 = A (just let X be A0).

This result should be contrasted with the �rst-order case. No set of �rst-
order sentences true of hN ; S; 0i is categorical. This can be proved using
either the upward L�owenheim{Skolem theorem or the compactness theorem.
As a result, neither of these two extend to second-order logic. The nearest
one can come to (1) in �rst-order terms is the `schema'

'(0) ^ 8x('(x)! '(S(x))) ! 8x'(x) (4)

where ' is any �rst-order formula in the vocabulary under consideration. It
follows that in models hA; f; ai of (4) the set A0 above cannot be de�ned in
�rst-order terms: otherwise one could apply (4) showing A0 = A just as we
applied (1) to show this before. (This weakness of �rst-order logic becomes
its strength in so-called `overspill arguments', also mentioned in Hodges'
chapter (this Volume).) We will use the categoricity of (1){(3) again in
Section 2.3 to show non-axiomatizability of second-order logic.

2.2.2. The next prominent example of a second-order statement is the one
expressing `Dedekind completeness' of the order of the reals: every set of
reals with an upper bound has a least upper bound. Formally

8X [9x8y(X(y)! y � x)!
! 9x(8y(X(y)! y � x) ^ 8x0[8y(X(y)! y � x0)! x � x0])] (5)

It is an old theorem of Cantor's that (5) together with the �rst-order state-
ments expressing that � is a dense linear order without endpoints plus
the statement `there is a countable dense subset', is categorical. The lat-
ter statement of so-called `separability' is also second-order de�nable: cf.
Section 2.2.5. Without it a system is obtained whose models all embed
hR;�i. (For, these models must embed hQ ;�i for �rst-order reasons; and
such an embedding induces one for hR ;�i by (5).) Thus, the downward
L�owenheim{Skolem theorem fails for second-order logic.

2.2.3. A relation R � A2 is well-founded if every non-empty subset of A
has an R-minimal element. In second-order terms w.r.t. models hA;R; : : :i

8X [9xX(x)! 9x(X(x) ^ 8y[X(y)! :R(y; x)])] (6)

This cannot be expressed in �rst-order terms. For instance, every �rst-order
theory about R which admits models with R-chains of arbitrary large but
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�nite length must, by compactness, admit models with in�nite R-chains
which decrease, and such a chain has no minimal element.

2.2.4. Every �rst-order theory admitting arbitrarily large, �nite models has
in�nite models as well: this is one of the standard applications of compact-
ness. On the other hand, higher-order terms enable one to de�ne �niteness
of the universe. Probably the most natural way to do this uses third-order
means: a set is �nite i� it is in every collection of sets containing the empty
set and closed under the addition of one element. Nevertheless, we can
de�ne �niteness in second-order terms as well: A is �nite i� every relation
R � A2 is well-founded; hence, a second-order de�nition results from (6)
by putting a universal quanti�er over R in front. Yet another second-order
de�nition of �niteness uses Dedekind's criterion: every injective function
on A is surjective. Evidently, such a quanti�cation over functions on A
may be simulated using suitable predicates. By the way, to see that these
second-order sentences do indeed de�ne �niteness one needs the axiom of
choice.

2.2.5 Generalized Quanti�ers. Using Section 2.2.4, it is easy to de�ne the
quanti�er 9<@0 (where 9<@0x'(x) means: there are only �nitely many x
s.t. '(x)) in second-order terms; 9�@0 simply is its negation. (In earlier
terminology, weak second-order logic is part of second-order logic.) What
about higher cardinalities? Well, e.g. jX j � @1 i� X has an in�nite subset Y
which cannot be mapped one{one onto X . This can obviously be expressed
using function quanti�ers. And then of course one can go on to @2;@3; : : :

Other generalized quanti�ers are de�nable by second-order means as well.
For instance, the standard example of Section 1 has the following form. Most
A are B becomes `there is no injective function from A \ B into A�B'.

A highly successful generalized quanti�er occurs in stationary logic, cf.
[Barwise et al., 1978]. Its language is second-order in that it contains
monadic second-order variables; but the only quanti�cation over these al-
most all quanti�er aa. A sentence aaX'(X) is read as: there is a collection
C of countable sets X for which '(X), which is closed under the formation
of countable unions and has the property that every countable subset of the
universe is subset of a member of C. (We'll not take the trouble explaining
what `stationary' means here.) The obvious de�nition of aa in higher-order
terms employs third-order means. Stationary logic can de�ne the quanti�er
9�@1 . It has a complete axiomatization and, as a consequence, obeys com-
pactness and downward L�owenheim{Skolem (in the form: if a sentence has
an uncountable model, it has one of power @1).

Other compact logics de�ning 9�@1 have been studied by Magidor and
Malitz [1977].

2.2.6. The immense strength of second-order logic shows quite clearly when
set theory itself is considered.
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Zermelo's separation axiom says that the elements of a given set shar-
ing a given property form again a set. Knowing of problematic properties
occurring in the paradoxes, he required `de�niteness' of properties to be
used. In later times, Skolem replaced this by `�rst-order de�nability', and
the axiom became a �rst-order schema. Nevertheless, the intended axiom
quite simply is the second-order statement

8X8x9y8z(z 2 y $ z 2 x ^X(z)) (8)

Later on, Fraenkel and Skolem completed Zermelo's set theory with the
substitution axiom: the complete image of a set under an operation is again
a set, resulting from the �rst by `substituting' for its elements the corre-
sponding images. Again, this became a �rst-order schema, but the original
intention was the second-order principle

8F8a9b8y(y 2 b$ 9x[x 2 a ^ y = F (x)]) (9)

Here F is used as a variable for arbitrary operations from the universe to
itself; F (x) denotes application. The resources of set theory allow an equiv-
alent formulation of (9) with a set (i.e. class) variable, of course. Together
with the usual axioms, (9) implies (8).

It must be considered quite a remarkable fact that the �rst-order versions
of (8) and (9) have turned out to be suÆcient for every mathematical pur-
pose. (By the way, in ordinary mathematical practice, (9) is seldom used;
the proof that Borel-games are determined is a notable exception. Cf. also
Section 2.4.)

The Zermelo{Fraenkel axioms intend to describe the cumulative hierarchy
with its membership structure hV;2i, where V = [�V� (� ranging over all
ordinals) and V� = [�<�PV� . For the reasons mentioned in Section 1, the
�rst-order version ZF1 of these axioms does not come close to this goal, as it
has many non-standard models as well. The second-order counterpart ZF2

using (9) has a much better score in this respect:

THEOREM. hA;Ei satis�es ZF2 i� for some strongly inaccessible cardinal
� : hA;Ei �= hV�;2i.

It is generally agreed that the models hV�;2i are `standard' to a high degree.
If we add an axiom to ZF2 saying there are no inaccessibles, the system

even becomes categorical, de�ning hV�;2i for the �rst inaccessible �.

2.3 Non-axiomatizability

First-order logic has an e�ective notion of proof which is complete w.r.t. the
intended interpretation. This is the content of G�odel's completeness theo-
rem. As a result, the set of (G�odel numbers of) universally valid �rst-order
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formulas is recursively enumerable. Using second-order Example 2.2.1, it is
not hard to show that the set of second-order validities is not arithmetically
de�nable, let alone recursively enumerable and hence that an e�ective and
complete axiomatization of second-order validity is impossible.

Let P 2 be Peano arithmetic in its second-order form, i.e. the theory in the
language of N = hN ; S; 0;+;�i consisting of (1){(3) above plus the (�rst-
order) recursion equations for + and �. P 2 is a categorical description of N,
just as (1){(3) categorically describe hN ; S; 0i. Now, let ' be any �rst-order
sentence in the language of N. Then clearly

N � ' i� P 2 ! ' is valid.

(Notice that P 2 may be regarded as a single second-order sentence.)
Now the left-hand side of this equivalence expresses a condition on (the

G�odel number of) ' which is not arithmetically de�nable by Tarski's the-
orem on non-de�nability of truth (cf. Section 3.2 or, for a slightly di�erent
setting, see Section 20 of Hodges' chapter in this Volume). Thus, second-
order validity cannot be arithmetical either. �

Actually, this is still a very weak result. We may take ' second-order and
show that second-order truth doesn't �t in the analytic hierarchy (again,
see Section 3.4). Finally, using Section 2.2.6, we can replace in the above
argument N by hV�;2i, where � is the smallest inaccessible, and P 2 by
ZF2+ `there are no inaccessibles', and �nd that second-order truth cannot
be (�rst-order) de�ned in hV�;2i, etc. This clearly shows how frightfully
complex this notion is.

Not to end on too pessimistic a note, let it be remarked that the logic may
improve considerably for certain fragments of the second-order language,
possibly with restricted classes of models. An early example is the decid-
ability of second-order monadic predicate logic (cf. [Ackermann, 1968]). A
more recent example is Rabin's theorem (cf. [Rabin, 1969]) stating that the
monadic second-order theory (employing only second-order quanti�cation

over subsets) of the structure h2!^; P0; P1i is still decidable. Here, 2
!
^ is the

set of all �nite sequences of zeros and ones, and Pi is the unary operation
`post-�x i' (i = 0; 1).

Many decidability results for monadic second-order theories have been
derived from this one by showing their models to be de�nable parts of
the Rabin structure. For instance, the monadic second-order theory of the
natural numbers hN ; <i is decidable by this method.

The limits of Rabin's theorem show up again as follows. The dyadic
second-order theory of hN ; <i is already non-arithmetical, by the previous
type of consideration. (Briey, N � ' i� hN ; <i veri�es P ! ' for all those
choices of 0; S;+;� whose de�ned relation `smaller than' coincides with the
actual <. Here, P is �rst-order Peano Arithmetic minus induction. In this
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formulation, ternary predicates are employed (for +;�), but this can be
coded down to the binary case.)

2.4 Set-Theoretic Aspects

Even the simplest questions about the model theory of second-order logic
turn out to raise problems of set theory, rather than logic. Our �rst example
of this phenomenon was a basic theme in Section 1.3.

If two models are �rst-order (elementarily) equivalent and one of them is
�nite, they must be isomorphic. What, if we use second-order equivalence
and relax �niteness to, say, countability? Ajtai [1979] contains a proof
that this question is undecidable in ZF (of course, the �rst-order system is
intended here). One of his simplest examples shows it is consistent for there
to be two countable well-orderings, second-order (or indeed higher-order)
equivalent but not isomorphic.

The germ of the proof is in the following observation. If the Contin-
uum Hypothesis holds, there must be second-order (or indeed higher-order)
equivalent well-orderings of power @1: for, up to isomorphism, there are @2
such well orderings (by the standard representation in terms of ordinals),
whereas there are only 2@0 = @1 second-order theories. The consistency-
proof itself turns on a re�ned form of this cardinality-argument, using `car-
dinal collapsing'. On the other hand, Ajtai mentions the `folklore' fact that
countable second-order equivalent models are isomorphic when the axiom
of constructibility holds. In fact, this may be derived from the existence of
a second-order de�nable well-ordering of the reals (which follows from this
axiom).

Another example belongs to the �eld of second-order cardinal charac-
terization (cf. [Garland, 1974]). Whether a sentence without non-logical
symbols holds in a model or not depends only on the cardinality of the
model. If a sentence has models of one cardinality only, it is said to char-
acterize that cardinal. As we have seen in Section 1, �rst-order sentences
can only characterize single �nite cardinals. In the meantime, we have seen
how to characterize, e.g. @0 in a second-order way: let ' be the conjunct
of (1){(3) of Section 2.2.1 and consider 9S90' | where S and 0 are now
being considered as variables. Now, various questions about the simplest
second-order de�nition of a given cardinal, apparently admitting of `abso-
lute' answers, turn out to be undecidable set theoretic problems; cf. [Kunen,
1971].

As a third example, we �nally mention the question of cardinals charac-
terizing, conversely, a logic L. The oldest one is the notion of Hanf number
of a logic, alluded to in Section 1.3. This is the least cardinal  such that,
if an L-sentence has a model of power � , it has models of arbitrarily
large powers. The L�owenheim number � of a language L compares to the
downward L�owenheim{Skolem property just as the Hanf number does to
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the upward notion: it is the least cardinal with the property that every
satis�able L-sentence has a model of power � �. It exists by a reasoning
similar to Hanf's: for satis�able ', let j'j be the least cardinal which is
the power of some model of '. Then � clearly is the sup of these cardi-
nals. (By the way, existence proofs such as these may rely heavily on ZF's
substitution-axiom. Cf. [Barwise, 1972].)

How large are these numbers pertaining to second-order logic? From Sec-
tion 2.2.6 it follows, that the �rst inaccessible (if it exists) can be second-
order characterized; thus the L�owenheim and Hanf numbers are at least
bigger still. By similar reasoning, they are not smaller than the second,
third, . . . inaccessible. And we can go on to larger cardinals; for instance,
they must be larger than the �rst measurable. The reason is mainly that,
like inaccessibility, de�ning measurability of � only needs reference to sets
of rank not much higher than �. (In fact, inaccessibility of � is a �rst-order
property of hV�+1;2i; measurability one of hV�+2;2i.) Only when large
cardinal properties refer in an essential way to the whole set theoretic uni-
verse (the simplest example being that of strong compactness) can matters
possibly change. Thus, [Magidor, 1971] proves that the L�owenheim number
of universal second-order sentences (and hence, by 4.3, of higher-order logic
in general) is less than the �rst supercompact cardinal.

As these matters do bring us a little far a�eld (after all, this is a handbook
of philosophical logic) we stop here.

In this light, the recommendation in the last problem of the famous list
`Open problems in classical model theory' in Chang and Keisler [1973]

remains as problematic as ever: `Develop the model theory of second and
higher-order logic'.

Additional evidence for the view that second-order logic (and, a fortiori,
higher-order logic in general) is not so much logic as set theory, is provided
by looking directly at existing set-theoretic problems in second-order terms.

Let � be the �rst inaccessible cardinal. In Section 2.2.6 we have seen
that every ZF2 model contains (embeds) hV�;2i. As this portion is certainly
(�rst-order) de�nable in all ZF2 models in a uniform way, ZF2 decides every
set theoretic problem that mentions sets in V� only. This observation has led
Kreisel to recommend this theory to our lively attention, so let us continue.

Indeed, already far below �, interesting questions live. Foremost is the
continuum problem, which asks whether there are sets of reals in cardinality
strictly between N and R. (Cantor's famous continuum hypothesis (CH)
says there are not.) Thus, ZF2 decides CH: either it or its negation follows
logically from ZF2. Since ZF2 is correct, in the former case CH is true,
while it is false in the latter. But of course, this reduction of the continuum
problem to second-order truth really begs the question and is of no help
whatsoever.

It does refute an analogy, however, which is often drawn between the
continuum hypothesis and the Euclidean postulate of parallels in geometry.
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For, the latter axiom is not decided by second-order geometry. Its indepen-
dence is of a di�erent nature; there are di�erent `correct' geometries, but
only one correct set theory (modulo the addition of large cardinal axioms):
ZF2. (In view of Section 2.2.6, a better formal analogy would be that be-
tween the parallel postulate and the existence of inaccessibles | though it
has shortcomings as well.)

Another example of a set-theoretic question deep down in the universe is
whether there are non-constructible reals. This question occurs at a level
so low that, using a certain amount of coding, it can be formulated already
in the language of P 2.

ZF2 knows the answers | unfortunately, we're not able to �gure out
exactly what it knows.

So, what is the practical use of second-order set theory? To be true, there
are some things we do know ZF2 proves while ZF1 does not; for instance,
the fact that ZF1 is consistent. Such metamathematical gains are hardly
encouraging, however, and indeed we can reasonably argue that there is no
way of knowing something to follow from ZF2 unless it is provable in the
two-sorted set/class theory of Morse-Mostowski, a theory that doesn't have
many advantages over its subtheory ZF = ZF1. (In terms of Section 4.2
below, Morse-Mostowski can be described as ZF2 under the general-models
interpretation with full comprehension-axioms added.)

We �nally mention that sometimes, higher-order notions �nd application
in the theory of sets. In Myhill and Scott [1971] it is shown that the class
of hereditarily ordinal-de�nable sets can be obtained by iterating second-
order (or general higher-order) de�nability through the ordinals. (The con-
structible sets are obtained by iterating �rst-order de�nability; they satisfy
the ZF-axioms only by virtue of their �rst-order character.) Also, interest-
ing classes of large cardinals can be obtained by their reecting higher-order
properties; cf. for instance [Drake, 1974, Chapter 9].

2.5 Special Classes: �1
1 and �1

1

In the light of the above considerations, the scarcity of results forming a
subject of `second-order logic' becomes understandable. (A little) more can
be said, however, for certain fragments of the second-order language. Thus,
in Section 2.3, the monadic quanti�cational part was considered, to which
belong, e.g. second-order Peano arithmetic P 2 and Zermelo-Fraenkel set the-
ory ZF2. The more fruitful restriction for general model-theoretic purposes
employs quanti�cational pattern complexity, however. We will consider the
two simplest cases here, viz. prenex forms with only existential second-order
quanti�ers (�1

1 formulas) or only universal quanti�ers (�1
1 formulas). For

the full prenex hierarchy, cf. Section 3.2; note however that we restrict the
discussion here to formulas all of whose free variables are �rst-order. One
useful shift in perspective, made possible by the present restricted language,
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is the following.
If 9X1; : : : ; 9Xk' is a �1

1 formula in a vocabulary L, we sometimes con-
sider ' as a �rst-order formula in the vocabulary L [ fX1; : : : ; Xkg | now
suddenly looking upon the X1; : : : ; Xk not as second-order variables but as
non-logical constants of the extended language. Conversely, if ' is a �rst-
order L formula containing a relational symbol R, we may consider 9R' as
a �1

1 formula of L�fRg| viewing R now as a second-order variable. As a
matter of fact, this way of putting things has been used already (in Section
2.4).

2.5.1 Showing Things to be �1
1 or �1

1. Most examples of second-order for-
mulas given in Section 2.2 were either �1

1 or �1
1; in most cases, it was not

too hard to translate the given notion into second-order terms.
A simple result is given in Section 3.2 which may be used in showing

things to be �1
1 or �1

1-expressible: any formula obtained from a �1
1 (�1

1)
formula by pre�xing a series of �rst-order quanti�cations still has a �1

1 (�1
1)

equivalent.
For more intricate results, we refer to Kleene [1952] and Barwise [1975].

The �rst shows that if � is a recursive set of �rst-order formulas, the
in�nitary conjunct

V
� has a �1

1 equivalent (on in�nite models). Thus,
9X1; : : : ; 9Xk

V
� is also �1

1. This fact has some relevance to resplendency,
cf. Section 2.5.4 below. Kleene's method of proof uses absoluteness of de�-
nitions of recursive sets, coding of satisfaction and the integer structure on
arbitrary in�nite models. (It is implicit in much of Barwise [1975, Chapter
IV 2/3], which shows that we are allowed to refer to integers in certain ways
when de�ning �1

1 and �1
1 notions.)

We now consider these concepts one by one.

2.5.2 �1
1-sentences. The key quanti�er combination in Frege's predicate

logic expresses dependencies beyond the resources of traditional logic: 89.
This dependency may be made explicit using a �1

1 formula:

8x9y'(x; y)$ 9f8x'(x; f(x)):

This introduction of so-called Skolem functions is one prime source of �1
1

statements. The quanti�cation over functions here may be reduced to our
predicate format as follows:

9X(8xyz(X(x; y) ^X(x; z)! y = z) ^ 8x9y(X(x; y) ^ '(x; y))):

Even at this innocent level, the connection with set theory shows up (Section
2.4): the above equivalence itself amounts to the assumption of the Axiom
of Choice (Bernays).

Through the above equivalence, all �rst-order sentences may be brought
into `Skolem normal form'. E.g., 8x9y8z9uA(x; y; z; u) goes to
9f8x8z9uA(x; f(x); z; u), and thence to 9f9g8x8zA(x; f(x); z; g(x; z)). For
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another type of Skolem normal form (using relations instead), cf. [Barwise,
1975, Chapter V 8.6].

Conversely, �1
1 sentences allow for many other patterns of dependency.

For instance, the variant 9f9g8x8zA(x; f(x); z; g(z)), with g only depen-
dent on z, is not equivalent to any �rst-order formula, but rather to a
so-called `branching' pattern (�rst studied in [Henkin, 1961])� 8x9y

8z9u
�
A(x; y; z; u):

For a discussion of the linguistic signi�cance of these `branching quanti-
�ers', cf. [Barwise, 1979]. One sentence which has been claimed to exhibit
the above pattern is `some relative of each villager and some relative of each
townsman hate each other' (Hintikka). The most convincing examples of
�rst-order branching to date, however, rather concern quanti�ers such as
(precisely) one or no. Thus, `one relative of each villager and one relative
of each townsman hate each other' seems to lack any linear reading. (The
reason is that any linear sequence of precisely one's creates undesired de-
pendencies. In this connection, recall that `one sailor has discovered one
sea' is not equivalent to `one sea has been discovered by one sailor'.) An
even simpler example might be `no one loves no one', which has a linear
reading :9x:9yL(x; y) (i.e. everyone loves someone), but also a branching
reading amounting to :9x9yL(x; y). (Curiously, it seems to lack the inverse
scope reading :9y:9xL(x; y) predicted by Montague Grammar.) Actually,
this last example also shows that the phenomenon of branching does not
lead inevitably to second-order readings.

The preceding digression has illustrated the delicacy of the issue whether
second-order quanti�cation actually occurs in natural language. In any case,
if branching quanti�ers occur, then the logic of natural language would be
extremely complex, because of the following two facts. As Enderton [1970]

observes, universal validity of �1
1 statements may be e�ectively reduced to

that of branching statements. Thus, the complexity of the latter notion is
at least that of the former. And, by inspection of the argument in Section
2.3 above, we see that

THEOREM. Universal validity of �1
1-sentences is non-arithmetical, etc.

Proof. The reduction formula was of the form P 2 ! ', where P 2 is �1
1 and

' is �rst-order. By the usual prenex operation, the universal second-order
quanti�er in the antecedent becomes an existential one in front. �

Indeed, as will be shown in Section 4.3, the complexity of �1
1-universal

validity is essentially that of universal validity for the whole second-order
(or higher-order) language. Nevertheless, one observation is in order here.

These results require the availability of non-logical constants and, e.g.
universal validity of 9X'(X;R) really amounts to universal validity of the
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�1
2-statement 8Y 9X'(X;Y ). When attention is restricted to `pure' cases, it

may be shown that universal validity of �1
1 statements is much less complex,

amounting to truth in all �nite models (cf. [van Benthem, 1977]). Thus, in
the arithmetical hierarchy (cf. Section 3.2.) its complexity is only �0

1.
When is a �1

1 sentence, say of the form 9X1; : : : ; 9Xk'(X1; : : : ; Xk; R),
equivalent to a �rst-order statement about its parameter R? An answer
follows from Keisler's theorem (Section 1.4.2), by the following observation.

THEOREM. Truth of �1
1 sentences is preserved under the formation of

ultra-products.

(This is a trivial corollary of the preservation of �rst-order sentences, cf.
Section 1.4.2.)

COROLLARY. A �1
1 sentence is �rst-order de�nable i� its negation is pre-

served under ultraproducts.

(That �1
1 sentences, and indeed all higher-order sentences are preserved

under isomorphism should be clear.)
Moreover, there is a consequence analogous to Post's theorem in recursion

theory:

COROLLARY. Properties of models which are both �1
1 and �1

1 are already
elementary.

(Of course, this is also immediate from the interpolation theorem which,
in this terminology, says that disjoint �1

1 classes an be separated by an
elementary class.)

Next, we consider a �ner subdivision of �1
1 sentences, according to their

�rst-order matrix. The simplest forms are the following (' quanti�er-free):

1. (99) 9X1 : : :Xk9y1 : : : ym'(X1; : : : ; Xk; y1; : : : ; ym; R)

2. (98) 9X1 : : :Xk8y1 : : : ym'(X1; : : : ; Xk; y1; : : : ; ym; R)

3. (989) 9X1 : : : Xk8y1 : : : ym9z1 : : : zn'(X1; : : : y1; : : : z1; : : : R).

We quote a few observations from [van Benthem, 1983]:

� all forms (1) have a �rst-order equivalent,

� all forms (2) are preserved under elementary (�rst-order) equivalence,
and hence are equivalent to some (in�nite) disjunction of (in�nite)
conjunctions of �rst-order sentences,

� the forms (3) harbour the full complexity of �1
1.
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The �rst assertion follows from its counterpart for �1
1 sentences, to be stated

below. A proof sketch of the second assertion is as follows. If (2) holds in a
model A, then so does its �rst-order matrix (2)� in some expansion A+ of A.
Now suppose that B is elementarily equivalent to A. By a standard com-
pactness argument, (2)� is satis�able together with the elementary diagram
of B, i.e. in some elementary extension of B. But, restricting X1; : : : ; Xk

to B, a substructure arises giving the same truth values to formulas of the
speci�c form (2)�; and hence we have an expansion of B to a model for (2)�

| i.e. B satis�es (2).

Finally, the third assertion follows from the earlier Skolem reduction: with
proper care, the Skolem normal form of the �rst-order matrix will add some
predicates to X1; : : : ; Xk, while leaving a �rst-order pre�x of the form 89.

�

Lastly, we mention the Svenonius characterization of �1
1-sentences in

terms of quanti�ers of in�nite length. In chapter I.1 an interpretation is
mentioned of �nite formulas in terms of games. This is a particularly good
way of explaining in�nite sequences of quanti�ers like

8x19y18x29y28x39y3 : : : '(x1; y1; x2; y2; : : :): (1)

Imagine players 8 and 9 alternatively picking x1; x2; : : : resp. y1; y2; : : :: 9
wins i� '(x1; y1; x2; : : :). (1) is counted as true i� 9 has a winning strategy,
i.e. a function telling him how to play, given 8's previous moves, in order to
win. Of course, a winning strategy is nothing more than a bunch of Skolem
functions.

Now, Svenonius' theorem says that, on countable models, every �1
1 sen-

tence is equivalent to one of the form (1) where ' is the conjunction of an
(in�nite) recursive set of �rst-order formulas. The theorem is in Svenonius
[1965]; for a more accessible exposition, cf. [Barwise, 1975, Chapter VI.6].

2.5.3 �1
1-sentences. Most examples of second-order sentences in Section 2.2

were �1
1: full induction, Dedekind completeness, full substitution. Also,

our recurrent example most belonged to this category | and so do, e.g.
the modal formulas of intensional logic (compare van Benthem's chapter on
Correspondence theory in Volume 3 of this Handbook).

Results about �1
1 sentences closely parallel those for �1

1. (One notable
exception is universal validity, however: that notion is recursively axioma-
tizable here, for the simple reason that �2 8X'(X;Y ) i� �1 '(X;Y ).) For
instance, we have

THEOREM. A �1
1-sentence has a �rst-order equivalent i� it is preserved

under ultraproducts.

This time, we shall be little more explicit about various possibilities here.
The above theorem refers to elementary de�nitions of �1

1-sentences, i.e. in
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terms of single �rst-order sentences. The next two more liberal possibilities
are �-elementary de�nitions (allowing an in�nite conjunction of �rst-order
sentences) and �-elementary ones (allowing an in�nite disjunction). As was
noted in Section 1.2, the non-�rst-order �1

1 notion of �niteness is also �-
elementary: `precisely one or precisely two or . . . '. The other possibility
does not occur, however: all �-elementary �1

1 sentences are already ele-
mentary. (If the conjunction

V
S de�nes 8X1; : : : ; Xn', then the following

�rst-order implication holds: S � '(X1; : : : ; Xn). Hence, by compactness
S0 � ' for some �nite S0 � S | and

V
S0 de�nes 8X1; : : : ; Xn' as well.)

The next levels in this more liberal hierarchy of �rst-order de�nability are
�� and ��. (Unions of intersections and intersections of unions, respec-

tively.) These two, and in fact all putative `higher' ones collapse, by the
following observation from Bell and Slomson [1969].

PROPOSITION. A property of models is preserved under elementary equiv-
alence i� it is ��-elementary.

Thus, essentially, there remains a hierarchy of the following form:

@
@

�
�

@
@@

�
��

essentially higher-order

��-elementary

�-elementary�-elementary

elementary

Now, by a reasoning similar to the above, we see that ��-elementary �1
1-

sentences are �-elementary already. Thus, in the �1
1-case, the hierarchy

collapses to `elementary, �-elementary, essentially second-order'. This ob-
servation may be connected up with the earlier syntactic classi�cation of
�1
1. Using negations, we get for �1

1-sentences the types 88(1);89(2) and
898(3). And these provide precisely instances for each of the above remain-
ing three stages. For instance, that all types (1) are elementary follows
from the above characterization theorem, in combination with the observa-
tion that type (1) �1

1-sentences are preserved under ultraproducts (cf. [van
Benthem, 1983]).

We may derive another interesting example of failure of �rst-order model
theory here. One of the classical mother results is the  Lo�s-Tarski theorem:
preservation under submodels is syntactically characterized by de�nabil-
ity in universal prenex form. But now, consider well-foundedness (Section
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2.2.3). This property of models is preserved in passing to submodels, but it
cannot even be de�ned in the universal form (1), lacking �rst-order de�n-
ability.

Our �nal result shows that even this modest, and basic topic of con-
nections between �1

1 sentences and �rst-order ones is already fraught with
complexity.

THEOREM. The notion of �rst-order de�nability for �1
1-sentences is not

arithmetical.

Proof. Suppose, for the sake of reduction, that it were. We will then derive
the arithmetical de�nability of arithmetical truth | again contradicting
Tarski's theorem. Actually, it is slightly more informative to consider a
set-theoretic reformulation (involving only one, binary relation constant):
truth in hV! ;2i cannot be arithmetical for �rst-order sentences  .

Now, consider any categorical �1
1-de�nition � for hV! ;2i. Truth in

hV! ;2i of  then amounts to the implication � �2  . It now suÆces to show
that this statement is e�ectively equivalent to the following one: `� _  is
�rst-order de�nable'. Here, the �1

1 statement � _  is obtained by pulling
 into the �rst-order matrix of �.

`=)': If � �2  , then � _  is de�ned by  .
`(=': Assume that some �rst-order sentence � de�nes � _  .

Consider hV! ;2i: � holds here, and hence so does �. Now let A be any
proper elementary extension of hV! ;2i : � fails there, while � still holds.
Hence (� _  and so)  holds in A. But then,  holds in the elementary
submodel hV! ;2i, i.e. � �2  . �

2.5.4 Resplendent Models. One tiny corner of `higher-order model theory'
deserves some special attention. Models on which �1

1 formulas are equiva-
lent with their set of �rst-order consequences have acquired special interest
in model theory. Formally, A is called resplendent if for every �rst-order
formula ' = '(x1; : : : ; xn) in the language of A supplemented with some
relation symbol R:

A �2 8x1 : : : xn(
^
 ! 9R');

where  is the set of all �rst-order  =  (x1; : : : ; xn) in the language of A
logically implied by '. Thus, A can be expanded to a model of ' as soon
as it satis�es all �rst-order consequences of ' in its own language.

Resplendency was introduced, in the setting of in�nitary admissible lan-
guages by Ressayre [1977] under the name relation-universality. A discus-
sion of its importance for the �rst-order case can be found in Barwise and
Schlipf [1976]. The notion is closely related to recursive saturation (i.e.
saturation w.r.t. recursive types of formulas): every resplendent model is
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recursively saturated, and, for countable models, the converse obtains as
well. In fact, Ressayre was led to (the in�nitary version of) this type of
saturation by looking at what it takes to prove resplendency.

The importance of resplendent models is derived from the fact that they
exist in abundance in all cardinals and can be used to trivialize results in
�rst-order model theory formerly proved by means of saturated and special
models of awkward cardinalities. Besides, Ressayre took the applicability
of the in�nitary notions to great depth, deriving results in descriptive set
theory as well. We only mention two easy examples.

Proof. (Craig interpolation theorem) Suppose that � '(R) !  (S); let �
be the set of R-less consequences of '. When � �  , we are �nished by
one application of compactness. Thus, let (A; S) be a resplendent model of
�. By de�nition, we can expand (A; S) to a model (A; R; S) of '. Hence,
(A; S) �  . But then, � �  , as every model has a resplendent equivalent.

�

As is the case of saturated and special models, many global de�nability
theorems have local companions for resplendent ones. We illustrate this fact
again with the interpolation theorem, which in its local version takes the
following form: if the resplendent model A satis�es 8x(9R'(x)! 8S (x)),
then there exists a �rst-order formula �(x) in the A-language such that A
satis�es both 8x(9R'! �) and 8x(� ! 8S ). To make the proof slightly
more perspicuous, we make the statement more symmetrical. Let '0 = : .
The �rst sentence then is equivalent with 8x(:9R' _ :9S'0) (*), while
the last amounts then to 8x(9S'0 ! :�). Hence, interpolation takes the
(local) `Robinson-consistency' form: disjoint �1

1-de�nable sets on A can be
separated by a �rst-order de�nable one.

Now for the proof, which is a nice co-operation of both resplendency
and recursive saturation. Suppose that our resplendent model A = hA; : : :i
satis�es (*). By resplendency, the set of logical consequences of either ' or
'0 in the language of A is not satis�able in A.

Applying recursive saturation (the set concerned is only recursively enu-
merable according to �rst-order completeness | but we can use Craig's
`pleonasm' trick to get a recursive equivalent), some �nite subset � [ �0 is
non-satis�able already, where we've put the ' consequences in � and the '0

consequences in �0. We now have � '! V
�, � '0 ! V

�0, and, by choice
of � [ �0, A � 8x:V(� [ �0), which amounts to A � 8x(:V� _ :V�0);
hence we may take either

V
� or

V
�0 as the `separating' formula. The local

Beth theorem is an immediate consequence: if the disjoint �1
1-de�nable sets

are each other's complement, they obviously coincide with the �rst-order
de�nable separating set and its complement, respectively. In other words,
sets which are both �1

1 and �1
1-de�nable on A are in fact �rst-order de�n-

able. �
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This situation sharply contrasts with the case for (say) N discussed in
Section 3.2, where we mention that arithmetic truth is both �1

1 and �1
1-

de�nable, but not arithmetical.

3 HIGHER-ORDER LOGIC

Once upon the road of second-order quanti�cation, higher predicates come
into view. In mathematics, one wants to quantify over functions, but also
over functions de�ned on functions, etcetera. Accordingly, the type theories
of the logicist foundational program allowed quanti�cation over objects of
all �nite orders, as in Principia Mathematica. But also natural language
o�ers such an ascending hierarchy, at least in the types of its lexical items.
For instance, nouns (such as `woman') denote properties, but then already
adjectives become higher-order phrases (`blond woman'), taking such prop-
erties to other properties. In fact, the latter type of motivation has given
type theories a new linguistic lease of life, in so-called `Montague Grammar',
at a time when their mathematical functions had largely been taken over
by ordinary set theory (cf. [Montague, 1974]).

In this section, we will consider a stream-lined relational version of higher-
order logic, which leads to the basic logical results with the least amount
of e�ort. Unfortunately for the contemporary semanticist, it does not look
very much like the functional Montagovian type theory. In fact, we will not
even encounter such modern highlights as lambda-abstraction, because our
language can do all this by purely traditional means. Moreover, in Section
4, we shall be able to derive partial completeness results from the standard
�rst-order ones for many-sorted logic in an extremely simple fashion. (In
particular, the complicated machinery of [Henkin, 1950] seems unnecessary.)
It's all very elegant, simple, and exasperating. A comparison with the more
semantic, categorial grammar-oriented type theories will be given at the
end.

3.1 Syntax and Semantics

As with �rst-order languages, higher-order formulas are generated from a
given set L of non-logical constants, among which we can distinguish indi-
vidual constants, function symbols and relation signs. (Often, we will just
think of the latter.) Formulas will be interpreted in the same type of models
A = hA; �i as used in the �rst-order case, i.e. A 6= ;, and � assigns something
appropriate to every L symbol: (`distinguished') elements of A to individual
constants, functions over A to function symbols (with the proper number
of arguments) and relations over A to relation signs (again, of the proper
arity).
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Thus, �x any such set L. Patterns of complexity are now recorded in
types, de�ned inductively by

1. 0 is a type

2. a �nite sequence of types is again a type.

Here, 0 will be the type of individuals, (�1; : : : ; �n) that of relations between
objects of types �1; : : : ; �n. Notice that, if we read clause (2) as also produc-
ing the empty sequence, we obtain a type of relation without arguments;
i.e. of propositional constants, or truth values. Higher up then, we will have
propositional functions, etcetera. This possibility will not be employed in
the future, as our metatheory would lose some of its elegance. (But see
Section 3.3 for a reasonable substitute.)

The order of a type is a natural number de�ned as follows: the order of
0 is 1 (individuals are `�rst-order' objects), while the order or (�1; : : : ; �n)
equals 1+ max order(�i) (1 � i � n). Thus, the terminology of `�rst-order',
`second-order', etcetera, now becomes perfectly general.

For each type � , the language has a countably in�nite set of variables.
The order of a variable is the order of its type. Thus, there is only one kind
of �rst-order variable, because the only order 1-type is 0. The second-order
variables all have types (0; : : : ; 0). Next, the terms of type 0 are generated
from the type 0 variables and the individual constants by applying function
symbols in the proper fashion. A term of type 6= 0 is just a variable of
that type. Thus, for convenience, non-logical constants of higher-orders
have been omitted: we are really thinking of our former �rst-order language
provided with a quanti�cational higher-order apparatus. Finally, one might
naturally consider a relation symbol with n places as a term of type (0; : : : ; 0)
(n times); but the resulting language has no additional expressive power,
while it becomes a little more complicated. Hence, we refrain from utilising
this possibility.

Atomic formulas arise as follows:

1. R(t1; : : : ; tn) where R is an n-place relation symbol and t1; : : : ; tn
terms of type 0,

2. X(t1; : : : ; tn), where X is a variable of type (�1; : : : ; �n) and ti a type
�i-term (1 � i � n).

We could have added identities X = Y here for all higher types; but these
may be thought of as de�ned through the scheme 8X1 : : :8Xn(X(X1; : : : ;
Xn)$ Y (X1; : : : ; Xn)), with appropriate types.

Formulas are de�ned inductively from the atomic ones using proposi-
tional connectives and quanti�cation with respect to variables of all types.
The resulting set, based on the vocabulary L is called L!. Ln is the set
of formulas all of whose variables have order � n (n = 1; 2; : : :). Thus,
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we can identify L1 with the �rst-order formulas over L, and L2 with the
second-order ones. (A more sophisticated classi�cation of orders is devel-
oped in Section 3.2 below, however.) The reader is requested to formulate
the examples of Section 2.2 in this language; especially the L3-de�nition of
�niteness.

Again, let us notice that we have opted for a rather austere medium:
no higher-order constants or identities, no conveniences such as function
quanti�ers, etcetera. One �nal omission is that of relational abstracts tak-
ing formulas '(X1; : : : ; Xn) to terms �X1 : : :Xn � '(X1; : : : ; Xn) denoting
the corresponding relation. In practice, these commodities do make life a
lot easier; but they are usually dispensable in theory. For instance, the
statement '(�X �  (X)) is equally well expressed by means of 9Y (Y =
�X �  (X) ^ '(Y )), and this again by 9Y (8Z(Y (Z)$  (Z)) ^ '(Y )).

From the syntax of our higher-order language, we now pass on to its
semantics. Let A be an ordinary L-model hA; �i as described above. To
interpret the L!-formulas in A we need the universes of type � over A for
all types � :

1. D0(A) = A

2. D(�1;:::;�n)(A) = P(D�1(A)� � � � �D�n(A)).

An A-assignment is a function � de�ned on all variables such that, if X has
type �; �(X) 2 D� (A).

We now lift the ordinary satisfaction relation to L!-formulas ' in the
obvious way. For instance, for an L-model A and an A-assignment �,

A �! X(t1; : : : ; tn)[�] i� �(X)(tA1 [�]; : : : ; tAn [�]);

where tA[�] is the value of the term t under � in A de�ned as usual. Also,
e.g. A �! 8X'[�] i� for all assignments �0 di�ering from � at most in the
value given to X : A �! '[�0].

The other semantical notions are derived from satisfaction in the usual
fashion.

3.2 The Prenex Hierarchy of Complexity

The logic and model theory of L! exhibit the same phenomena as those
of L2: a uid border line with set theory, and a few systematic results.
Indeed, in a sense, higher-order logic does not o�er anything new. It will be
shown in Section 4.2 that there exists an e�ective reduction from universal
validity for L! formulas to that for second-order ones, indeed to monadic
�1
1 formulas [Hintikka, 1955].
As for the connections between L! and set theory, notice that the present

logic is essentially that of arbitrary models A provided with a natural set-
theoretic superstructure

S
n V

n(A); where V 0(A) = A, and V n+1(A) =
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V n(A)[P(V n(A)). As a `working logic', this is a suÆcient setting for many
mathematical purposes. (But cf. [Barwise, 1975] for a smaller, constructible
hierarchy over models, with a far more elegant metatheory.)

We will not go into the exact relations between the logic of L! and
ordinary set theory, but for the following remark.

Given a structure A = hA; �i, the structure A+ = hSn V
n(A);2; �i is a

model for a set theory with atoms. There is an obvious translation from
the L!-theory of A into a fragment of the ordinary �rst-order theory of A+.
The reader may care to speculate about a converse (cf. [Kemeny, 1950]).

What will be considered instead in this section, is one new topic which
is typical for a hierarchical language such as the present one. We develop a
prenex classi�cation of formulas, according to their patterns of complexity;
�rst in general, then on a speci�c model, viz. the natural numbers. This is
one of the few areas where a coherent body of higher-order theory has so
far been developed.

There exists a standard classi�cation of �rst-order formulas in prenex
form. �0 = �0 is the class of quanti�er-free formulas; �m+1 is the class
of formulas 9x1 : : : 9xk' where ' 2 �m; and dually, �m+1 is the class of
formulas 8x1 : : :8xk' with ' 2 �m. The well-known Prenex Normal Form
Theorem now says that every �rst-order formula is logically equivalent to
one in

S
m(�m [ �m); i.e. to one in prenex form.

The above may be generalized to arbitrary higher-order formulas as fol-
lows. We classify quanti�cational complexity with respect to the n + 1st
order. �n

0 = �n
0 is the class of L!-formulas all of whose quanti�ed variables

have order � n. Thus, �0
0 is the class of quanti�er-free L!-formulas. (No-

tice that the above �0 is a proper subclass of �0
0, as we allow free variables

of higher type in �0
0 formulas. Also, it is not true that �1

0 � L1, or even
�1
0 � Ln for some n > 1.)
Next, �n

m+1 is the class of formulas 9X1 : : : 9Xk', where ' 2 �n
m and

X1; : : : ; Xk have order n + 1; and dually, �n
m+1 consists of the formulas

8X1 : : :8Xk' with ' 2 �n
m and X1; : : : ; Xk (n + 1)st order. (Notice the

peculiar, but well-established use of the upper index n: a �1
2 formula thus

has quanti�ed second-order variables.)
The reader may wonder why we did not just take �n

0 to be Ln. The reason
is that we do not consider the mere occurrence of, say, second-order variables
in a formula a reason to call it (at least) second-order. (Likewise, we do
not call �rst-order formulas `second-order' ones, because of the occurrence
of second-order relational constants.) It is quanti�cation that counts: we
take a formula to be of order n when its interpretation in a model hA; : : :i
presupposes complete knowledge about some nth order universe D� (A) over
A. And it is the quanti�er over some order n variable which presupposes
such knowledge, not the mere presence of free variables of that order. (After
all, we want to call, e.g. a property of type ((0)) `�rst-order' de�nable, even
if its �rst-order de�nition contains a second-order free variable | and it
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must.) There is an interesting historical analogy here. One way to think
of the prenex hierarchy is as one of de�nitional complexity, superimposed
upon one of argument type complexity (given by the free variable pattern of
a formula). This move is reminiscent of Russell's passage from ordinary to
rami�ed type theory.

THEOREM. Every Ln+1-formula has an equivalent in
S
m(�n

m [ �n
m).

Proof. Let ' 2 Ln+1 be given. First, manipulate it into prenex form,
where the order of the quanti�ers is immaterial | just as in the �rst-order
case. Now, if we can manage to get quanti�ers over n+ 1st order variables
to the front, we are done. But, this follows by repeated use of the valid
equivalence below and its dual.

Let x have type �0 and order less than n + 1: the order of the type
(�1; : : : ; �k) of the variable X . Let Y be some type (�0; : : : ; �k) variable; its
order is then n+ 1 too, and we have the equivalence

8x9X $ 9Y 8x 0:

Here  0 is obtained from  by replacing subformulas X(t1; : : : ; tk) by
Y (x; t1; : : : ; tk); where Y does not occur in  . Thanks to the restriction
to Ln+1, the only atomic subformulas of  containing X are of the above
form and, hence,  0 does not contain X any longer. (If X could occur
in argument positions, it would have to be de�ned away using suitable Y
abstracts. But, this addition to the language would bring about a revised
account of complexity in any case.)

To show intuitively that the above equivalence is valid, assume that 8x9X
 (x;X). For every x, choose Xx such that  (x;Xx). De�ne Y by setting
Y (x; y1; : : : ; yn) := Xx(y1; : : : ; yn). Then clearly 8x (x; fhy1; : : : ; yni j
Y (x; y1; : : : ; yn)g and, hence, 9Y 8x 0. The converse is immediate. �

We will now pass on to more concrete hierarchies of higher-order de�nable
relations on speci�c models.

Let A = hA; : : :i be some model, R 2 D� (A); � = (�1; : : : ; �n), and let
' 2 L! have free variables X1; : : : ; Xn of types (respectively) �1; : : : ; �n. '
is said to de�ne R on A if, whenever S1 2 D�1(A); : : : ; Sn 2 D�n(A),

R(S1; : : : ; Sn) i� A �! '[S1; : : : ; Sn]:

R is called �n
m(�n

m) on A if it has a de�ning formula of this kind. It is �n
m

if it is both �n
m and �n

m. We denote these classes of de�nable relations on
A by �n

m(A), etcetera.
Now, let us restrict attention to A = the natural numbersN : hN ;+;�; 0i.

(In this particular case it is customary to let �0
0(N) = �0

0(N) be the wider
class of relations de�nable using formulas in which restricted quanti�cation
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over �rst-class variables is allowed.) For any type � , �0
1(N) \D� (N ) is the

class of recursive relations of type � ; the ones in �0
1(N) \D� (N ) are called

recursively enumerable. These are the simplest cases of the arithmetical
hierarchy, consisting of all �0

n and �0
n-de�nable relations on N. Evidently,

these are precisely the �rst-order-de�nable ones, in any type � .
At the next level, the analytic hierarchy consists of the �1

n and �1
n-

de�nable relations on N. Those in �1
1(N) are called hyperarithmerical,

and have a (trans�nite) hierarchy of their own. One reason for the special
interest in this class is the fact that arithmetic truth for �rst-order sentences
is hyper-arithmerical (though not arithmetical, by Tarski's Theorem).

These hierarchies developed after the notion of recursiveness had been
identi�ed by G�odel, Turing and Church, and were studied in the �fties by
Kleene, Mostowski and others.

Just to give an impression of the more concrete type of investigation in
this area, we mention a few results. Methods of proof are rather uniform:
positive results (e.g. `' 2 �1

n') by actual inspection of possible de�nitions,
negative results (`' 62 �1

n') by diagonal arguments reminiscent of the mother
example in Russell's Paradox.

1. The satisfaction predicate `the sequence (coded by) s satis�es the �rst-
order formula (coded by) ' in N' is in �1

1(N) \D(0;0)(N ).

2. This predicate is not in �1
0(N).

3. The Analytic Hierarchy Theorem for D(0)(N ) relations. All inclusions
in the following scheme are proper (for all m):

�1
m(R)

� �
�1
m(R) �1

m+1(R)
� �

�1
m(R)

These results may be generalized to higher orders.

4. Satisfaction for �n
0 -formulas (with �rst-order free variables only) on

N is in �n
1 (N)��n

0 (N).

5. The Hierarchy Theorem holds in fact for any upper index � 1.

By allowing second-order parameters in the de�ning formulas, the ana-
lytic hierarchy is transformed into the classical hierarchy of projective re-
lations. Stied in set-theoretic diÆculties around the twenties, interest in
this theory was revived by the set-theoretic revolution of the sixties. The
reader is referred to the modern exposition [Moschovakis, 1980].
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3.3 Two Faces of Type Theory

As was observed earlier, the above language L! is one elegant medium
of description for one natural type superstructure on models with rela-
tions. Nevertheless, there is another perspective, leading to a more function-
oriented type theory closer to the categorial system of natural language.
In a sense, the two are equivalent through codings of functions as special
relations, or of relations through characteristic functions. It is this kind
of sous entendu which would allow an ordinary logic text book to sup-
press all reference to functional type theories in the spirit of [Church, 1940;
Henkin, 1950] or [Montague, 1974]. (It is this juggling with codings and
equivalences also, which makes advanced logic texts so impenetrable to the
outsider lacking that frame of mind.)

For this reason, we give the outline of a functional type theory, compar-
ing it with the above. As was observed earlier on, in a �rst approximation,
the existential part of natural language can be described on the model of a
categorial grammar, with basic entity expressions (e.g. proper names; type
e) and truth value expressions (sentences; type t), allowing arbitrary binary
couplings (a; b): the type of functional expressions taking an a-type expres-
sion to a b-type one. Thus, for instance, the intransitive verb `walk' has
type (e; t), the transitive verb `buy' type (e; (e; t)), the sentence negation
`not' has (t; t) while sentence conjunction has (t; (t; t)). More complicated
examples are quanti�er phrases, such as `no man', with type ((e; t); t), or
determiners, such as `no', with type ((e; t); ((e; t); t)). Again, to a �rst ap-
proximation, there arises the picture of natural language as a huge jigsaw
puzzle, in which the interpretable sentences are those for which the types of
their component words can be �tted together, step by step, in such a way
that the end result for the whole is type t.

Now, the natural matching type theory has the above types, with a gener-
ous supply of variables and constants for each of these. Its basic operations
will be, at least, identity (between expressions of the same type), yield-
ing truth value expressions, and functional application combining B with
type (a; b) and A with type a to form the expression B(A) of type b. What
about the logical constants? In the present light, these are merely constants
of speci�c categories. Thus, binary connectives (`and', `or') are in (t; (t; t)),
quanti�ers (`all', `some') in the above determiner type ((e; t); ((e; t); t)). (Ac-
tually, this makes them into binary relations between properties: a point
of view often urged in the logical folklore.) Nevertheless, one can single
them out for special treatment, as was Montague's own strategy. On the
other hand, a truly natural feature of natural language seems to be the
phenomenon of abstraction: from any expression of type b, we can make a
functional one of type (a; b) by varying some occurrence(s) of component
a expressions. Formally then, our type theory will have so-called `lambda
abstraction': if B is an expression of type b, and x a variable of type a, then
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�x � B is an expression of type (a; b).
Semantic structures for this language form a function hierarchy as follows:

1. De is some set (of `entitities' or `individuals'),

2. Dt is the set of truth values f0; 1g (or some generalization thereof),

3. D(a;b) = DDa

b

Given a suitable interpretation for constants and assignments for vari-
ables, values may be computed for terms of type a in the proper domain Da

through the usual compositional procedure. Thus, in particular, suppressing
indices,

val(B(A)) = val(B)(val(A))
val(�x � B) = �a 2 Da � val(B)x!a:

(Just this once, we have refrained from the usual pedantic formulation.)
In Montague's so-called `intensional type theory', this picture is con-

siderably complicated by the addition of a realm of possible world-times,
accompanied by an auxiliary type s with restricted occurrences. This is
a classical example of an unfortunate formalization. Actually, the above
set-up remains exactly the same with one additional basic type s (or two,
or ten) with corresponding semantic domains Ds (all world-times, in Mon-
tague's case). In the terms of [Gallin, 1975]: once we move up from Ty to
Ty2, simplicity is restored.

We return to the simplest case, as all relevant points can be made here.
What is the connection with the earlier logic L!? Here is the obvious
translation, simple in content, a little arduous in combinatorial detail.

First, let us embed the Montague hierarchy of domains Da over a given
universe A into our previous hierarchy D� (A). In fact, we shall identify
the Da with certain subsets of the D� (A). There seems to be one major
problem here, viz. what is to correspond to Dt = f0; 1g. (Recall that we
opted for an L!-hierarchy without truth-value types.) We choose to de�ne
Dt � D(0)(A) : 0 becoming ;, and 1 becoming the whole A. Next, of course

De = D0(A). The rule D(a;b) = DDa

b then generates the other domains.
Thus, every Montague universe Da has been identi�ed with a subset of a
certain Da(A); where a is obviously determined by the rules e := 0, t := (0)
and (a; b) := (a; b). (Thus, functions have become identi�ed with their
graphs; which are binary relations in this case.)

Next, for each Montague type a, one can write down an L!-formula Ta(x)
(with x of type a) which de�nes Da in Da(A), i.e. for b 2 Da(A), A �! Ta[b]
i� b 2 Da.

When E = E(x1; : : : ; xn) is any type a0 expression in the Montague sys-
tem, with the free variables x1; : : : ; xn (with types a1; : : : ; an, respectively)
and bi 2 Dai (1 � i � n), an object EA[b1; : : : ; bn] 2 Da0 has been de�ned
which is the value of E under b1; : : : ; bn in A. We shall indicate now how
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to write down an L!-formula V (x0; E) with free variables x0; : : : ; xn (where
now xi has type ai (1 � i � n)), which says that x0 is the value of E under
x1; : : : ; xn. To be completely precise, we will have

A �! V (x0; E)[b0; : : : ; bn] i� b0 = EA[b1; : : : ; bn]

for objects b0; : : : ; bn of the appropriate types.
As a consequence of this, we obtain

A �! 9x(V (x;E1) ^ V (x;E2)) i� EA1 = EA2

for closed expressions E1; E2. Thus, the characteristic assertions of Mon-
tagovian type theory have been translated into our higher-order logic.

It remains to be indicated how to construct the desired V . For per-
spicuity, three shorthands will be used in L!. First, x(y) stands for the
unique z such that x(y; z), if it exists. (Elimination is always possible in the
standard fashion.) Furthermore, we will always have 8x1 : : : xn9!x0V (x0; E)
valid when relativized to the proper types. Therefore, instead of V (x0; E),
one may write x0 = V (E). Third, quanti�er relativization to Ta will be
expressed by 8x 2 Ta (9x 2 Ta) (where x has type a). Finally, in agreement
with the above de�nition of the truth values, we abbreviate 8y 2 Tex(y)
and 8y 2 Te:x(y) by x = >, x = ?, respectively (where x has type (0)).

Here are the essential cases:

1. E is a two-place relation symbol of the base vocabulary L.

V (x;E) := x 2 T(e;(e;t)) ^ 8yz 2 Te((x(y))(z) = > $ E(y; z)):

2. E = E1(E2).
V (x;E) := x = V (E1)(V (E2)):

3. E = �y � F (y of type a, F of type b).

V (x;E) := x 2 T(a;b) ^ 8y 2 Ta(x(y) = V (F )):

4. E = (E1 = E2).

V (x;E) := x 2 Tt ^ (x = >$ V (E1) = V (E2)):

That these clauses do their job has to be demonstated by induction, of
course; but this is really obvious.

It should be noted that the procedure as it stands does not handle higher-
order constants: but, a generalization is straightforward.

For further details, cf. [Gallin, 1975, Chapter 13]. Gallin also has a
converse translation from L! into functional type theory, not considered
here.
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The reduction to L! makes some prominent features of functional type
theory disappear. Notably, lambda abstraction is simulated by means of
ordinary quanti�cation. It should be mentioned, however, that this also
deprives us of some natural and important questions of functional type
theory, such as the search for unique normal forms. The latter topic will be
reviewed briey at the end of the following Section.

4 REDUCTION TO FIRST-ORDER LOGIC

One weak spot in popular justi�cations for employing higher-order logic lies
precisely in the phrase `all predicates'. When we say that Napoleon has all
properties of the great generals, we surely mean to refer to some sort of
relevant human properties, probably even de�nable ones. In other words,
the lexical item `property' refers to some sort of `things', just like other
common nouns. Another, more philosophical illustration of this point is
Leibniz' Principle, quoted earlier, of the identity of indiscernibles. Of course,
when x; y share all properties, they will share that of being identical to x
and, hence, they coincide. But this triviality is not what the great German
had in mind | witness the charming anecdote about the ladies at court,
whom Leibniz made to search for autumn leaves, promising them noticeable
di�erences in colour or shape for any two merely distinct ones.

Thus, there arises the logical idea of re-interpreting second-order, or even
higher-order logic as some kind of many-sorted �rst-order logic, with var-
ious distinct kinds of objects: a useful, though inessential variation upon
�rst-order logic itself. To be true, properties and predicates are rather ab-
stract kinds of `things'; but then, so are many other kinds of `individual'
that no one would object to. The semantic net e�ect of this change in
perspective is to allow a greater variety of models for L!, with essentially
smaller ranges of predicates than the original `full ones'. Thus, more poten-
tial counter-examples become available to universal truths, and the earlier
set of L!-validities decreases; so much so, that we end up with a recursively
axiomatizable set. This is the basic content of the celebrated introduction
of `general models' in [Henkin, 1950]: the remainder is frills and laces.

4.1 General Models

The type structure hD� (A) j � 2T i (T the set of types) over a given non-
empty set A as de�ned in Section 3.1 is called the principal or full type
structure over A; the interpretation of L! by means of �! given there the
standard interpretation. We can generalize these de�nitions as follows.

E = hE� j � 2 T i is called a type structure over A when

1. E0 = A (as before)
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2. E(�1;:::;�n) � P(E�1 � � � � �E�n).

Thus, not every relation on E�1 � � � � �E�n need be in E(�1;:::;�n) any more.
Restricting assignments to take values in such more general type structures,
satisfaction can be de�ned as before, leading to a notion of truth with respect
to arbitrary type structures. This so-called general models interpretation of
L! admits of a complete axiomatisation, as we shall see in due course.

First, we need a certain transformation of higher-order logic into �rst-
order terms. Let L be a given vocabulary. L+ is the �rst-order language
based on the vocabulary

L [ f"� j 0 6= � 2 T g [ fT� j � 2 T g;
where "� is an n + 1ary relation symbol when � = (�1; : : : ; �n), and the
T� are unary relation symbols. Now, de�ne the translation + : L! ! L+

as follows. Let ' 2 L!. First, replace every atom X(t1; : : : ; tn) in it by
"� (X; t1; : : : ; tn) when X has type � . Second, relativize quanti�cation with
respect to type � variables to T� . Third, consider all variables to be (type
0) variables of L+. This de�nes '+. (For those familiar with many-sorted
thinking (cf. Hodges' chapter, this Volume), the unary predicates T� may
even be omitted, and '+ just becomes ', in a many-sorted reading.)

On the model-theoretic level, suppose that (A; E) is a general model for
L; i.e. A is an L-model with universe A and E is a type structure over A.
We indicate how (A; E) can be transformed into an ordinary (�rst-order)
model (A; E)+ for L+:

1. the universe of (A; E)+ is
S
�2T E�

2. the interpretation of L-symbols is the same as in A

3. "� is interpreted by (� = (�1; : : : ; �n)): "�� (R;S1; : : : ; Sn) i� R 2 E� ,
Si 2 E�i (1 � i � n) and R(S1; : : : ; Sn)

4. T� is interpreted by E� .

There is a slight problem here. When L contains function symbols, the
corresponding functions in A should be extended on

S
�2T E� . It is irrele-

vant how this is done, as arguments outside of E0 will not be used.
The connection between these transformations is the following

LEMMA. Let � be an E assignment, and let ' 2 L!. Then (A; E) �! '[�]
i� (A; E)+ � '+[�].

The proof is a straightforward induction on '.
There is semantic drama behind the simple change in clause (2) for

E(�1;:::;�n) from identity to inclusion. Full type structures are immense;
witness their cardinality, which increases exponentially at each level. In
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stark contrast, a general model may well have an empty type structure, not
ascending beyond the original universe. Evidently, the interesting general
models lie somewhere in-between these two extremes.

At least two points of view suggest themselves for picking out special
candidates, starting from either boundary.

`From above to below', the idea is to preserve as much as possible of
the global type structure; i.e. to impose various principles valid in the full
model, such as Comprehension or Choice (cf. the end of Section 4.2). In
the limit, one might consider general models which are L!-elementarily
equivalent to the full type model. Notice that, by general logic, only �1

1

truths are automatically preserved in passing from the full model to its
general submodels. Such preservation phenomena were already noticed in
[Orey, 1959], which contains the conjecture that a higher-order sentence is
�rst-order de�nable if and only if it has the above persistence property, as
well as its converse. (A proof of this assertion is in van Benthem [1977].)

Persistence is of some interest for the semantics of natural language, in
that some of its `extensional' fragments translate into persistent fragments
of higher-order logic (cf. [Gallin, 1975, Chapter 1.4]). Although the main
observation (due to Kamp and Montague) is a little beyond the resources
of our austere L!, it may be stated quite simply. Existential statements
9XA(X) may be lost in passing from full standard models to their general
variants (cf. the example given below). But, restricted existential statements
9X(P (X;Y )^A(X)) with all their parameters (i.e. P (!), Y ) in the relevant
general model, are thus preserved | and the above-mentioned extensional
fragments of natural language translate into these restricted forms, which
are insensitive, in a sense, to the di�erence between a general model and its
full parent. Therefore, the completeness of L! with respect to the general
models interpretation (Section 4.2) extends to these fragments of natural
language, despite their prima facie higher-order nature.

Conversely, one may also look `from below to above', considering reason-
able constructions for �lling the type universes without the above explosive
features. For instance, already in the particular case of L2, a natural idea is
to consider predicate ranges consisting of all predicates �rst-order de�nable
in the base vocabulary (possibly with individual parameters). Notice that
this choice is stable, in the sense that iteration of the construction (plugging
in newly de�ned predicates into �rst-order de�nitions) does not yield any-
thing new. (By the way, the simplest proof that, e.g. von Neumann-Bernays-
G�odel set theory is conservative over ZF uses exactly this construction.)

EXAMPLE. The �rst-order de�nable sets on the base model hN ; <i are
precisely all �nite and co-�nite ones; and a similar characterization may be
given for arbitrary predicates. This general model for L2 is not elementarily
equivalent to the standard model, however, as it fails to validate

9X8y((9z(X(z)^ y < z) ^ 9z(:X(z) ^ y < z)):
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Second-order general models obtained in this way only satisfy the so-
called `predicative' comprehension axioms. (Referring to the end of Section
4.2, these are the sentences (1) where ' does not quantify over second-order
variables, but may contain them freely.) We can, however, obtain general
models of full (`impredicative') comprehension if we iterate the procedure
as follows. For any second-order general model hA; Ei, let E+ consist of
all relations on A parametrically second-order de�nable in hA; Ei. Thus,
the above `predicative' extension is just hA; ;+i. This time, de�ne E� for
ordinals � by E� =

S
�<�E

+
� . By cardinality considerations, the hierarchy

must stop at some  (by �rst-order L�owenheim{Skolem, it can in fact be
proved that  has the same cardinal as A), which obviously means that
hA; Ei satis�es full comprehension.

For A = N, the above trans�nite hierarchy is called rami�ed analysis,
 is Church-Kleene !1 and there is an extensive literature on the subject.
Barwise [1975] studies related things in a more set-theory oriented setting
for arbitrary models.

4.2 General Completeness

As a necessary preliminary to a completeness theorem for L! with its new
semantics, we may ask which L+-sentences hold in every model of the form
(A; E)+, where A is an L-model and E a type structure over its universe A.
As it happens, these are of six kinds.

1. 9xT0x. This is because T0 is interpreted by E0 = A, which is not
empty. The other type levels of E might indeed be empty, if E is not
full.

2. The next sentences express the fact that the L-symbols stand for dis-
tinguished elements, functions and relations over the set denoted by
T0:

(a) T0(c), for each individual constant of L.

(b) 8x1 : : :8xn(T0(x1) ^ � � � ^ T0(xn) ! T0(F (x1; : : : ; xn))), for all
n-place function symbols F of L.

(c) 8x1 : : :8xn(R(x1; : : : ; xn)! T0(x1)^� � �^T0(xn)), for all n-place
relation symbols R of L.

Finally, there are sentences about the type levels.

3. 8x(T�(x)! :T� 0(x)), whenever � 6= � 0.

As a matter of fact, there is a small problem here. If A has elements
which are sets, then we might have simultaneously a 2 A and a � A.
It could happen then that a 2 E(0) also, and hence E0 \ E(0) 6=
;. To avoid inessential sophistries, we shall resolutely ignore these
eventualities.
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4. 8xW�2T T� (x).

The content of this statement is clear; but unfortunately, it is not a
�rst- order sentence of L+, having an in�nite disjunction. We shall
circumvent this problem eventually.

5. 8x8y1 : : :8yn("� (x; y1; : : : ; yn)! T� (x)^T�1(y1)^� � �^T�n(yn)), when-
ever � = (�1; : : : ; �n). (Compare the earlier de�nition of (A; E)+: es-
pecially the role of "�� .)

The sentences (1){(5) are all rather trivial constraints on the type frame-
work. The following extensionality axioms may be more interesting:

6. 8x8y(T�(x) ^ T� (y) ^ 8z1 : : :8zn(T�1(z1) ^ � � � ^ T�n(zn)!
! ("� (x; z1; : : : ; zn) $ "� (y; z1; : : : ; zn))) ! x = y); whenever � =
(�1; : : : ; �n).

That this holds in (A; E)+ when E is full, is due to the extensionality
axiom of set theory. But it is also easily checked for general type
structures.

This exhausts the obvious validities. Now, we can ask whether, con-
versely, every L+ model of (1){(6) is of the form (A; E)+, at least, up to
isomorphism. (Otherwise, trivial counter-examples could be given.) The
answer is positive, by an elementary argument. For any L+-model B of our
six principles, we may construct a general model (A; E) and an isomorphism
h : B! (A; E)+ as follows.

Writing h� := h � TB� , we shall construct h� and E� simultaneously by
induction on the order of � , relying heavily on (6). (This construction is
really a particular case of the Mostowski collapsing lemma in set theory.)

First, let A = E0 := TB0 , while h0 is the identity of TB0 . (1) says that A 6=
;, and (2) adds that we can de�ne A by taking over the interpretations that
B gave to the L-symbols. Trivially then, h0 preserves L-structure. Next,
suppose � = (�1; : : : ; �n), where E�i ; h�i(1 � i � n) have been constructed
already. De�ne h� on TB� by setting

h� (b) := f(h�1(a1); : : : ; h�n(an)) j "B� (b; a1; : : : ; an)g
(by (5), this stipulation makes sense); putting E� := h� [TB� ]. Clearly,
E� � P(E�1 � � � � � E�n). We are �nished if it can be shown that h�
is one-one, while "B� (b; a1; : : : ; an) i� h� (b)(h�1(a1); : : : ; h�n(an)). But, the
�rst assertion is immediate from (6), and it implies the second. Finally, put
h :=

S
�2T h� . (3) is our licence to do this. That h is de�ned on all of B is

implied by (4).

The previous observations yield a conclusion:

LEMMA. An L!-sentence ' is true in all general models if its translation
'+ logically follows from (1){(6) above.
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Proof. The direction from right to left is immediate from the de�nition of
the translation +, and its semantic behaviour. From left to right, we use
the above representation. �

The value of the Lemma is diminished by the fact that (4) has an in�nite
disjunction, outside of L+. But we can do better.

THEOREM. ' 2 L! is true in all general models i� '+ follows from (1),
(2), (3), (5) and (6).

Proof. The �rst half is as before. Next, assume that ' is true in all general
models, and consider any L+-model B satisfying the above �ve principles.
Now, its submodel B� with universe

S
�2T T

B
� satis�es these principles as

well, but in addition, it also veri�es (4). Thus, as before, B� � '+. But
then, as all quanti�ers in '+ occur restricted to the levels T� ;B � '+, and
we are done after all. �

This theorem e�ectively reduces L!-truth under the general model inter-
pretation to �rst-order consequence from a recursive set of axioms: which
shows it to be recursively enumerable and, hence, recursively axiomatisable
(by Craig's Theorem). This strongly contrasts with the negative result in
Section 2.3. We conclude with a few comments on the situation.

Henkin's original general models (de�ned, by the way, with respect to a
richer language) form a proper subclass of ours. This is because one may
strengthen the theorem a little (or much | depending on one's philoso-
phy) by adding to (1){(6) translations of L!-sentences obviously true in
the standard model interpretation, thereby narrowing the class of admissi-
ble general models. Of course, Section 2.3 prevents an e�ective narrowing
down to exactly the standard models!

Here are two examples of such additional axioms, bringing the general
models interpretation closer to the standard one.

1. Comprehension Axioms for type � = (�1; : : : ; �n):

8X1 : : :8Xm9Y 8Z1 : : :8Zn(Y (Z1; : : : ; Zn)$ ');

where Y has type �; Zi type �i(1 � i � n) and the free variables of '
are among X1; : : : ; Xm; Z1; : : : ; Zn. Thus, all de�nable predicates are
to be actually present in the model.

2. Axioms of Choice for type � = (�1; : : : ; �n; �n+1):

8Z19Z28X1 : : :8Xn(9Y Z1(X1; : : : ; Xn; Y )!
! 9!Y Z2(X1; : : : ; Xn; Y ));

where Z1; Z2 have type � , Xi has �i (1 � i � n) and Y has type
�n+1. Thus, every relation contains a function: cf. Bernays' Axiom of
Choice mentioned in Section 2.5.1.
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There is also a more `deductive' motivation for these axioms. When
one ponders which principles of deduction should enter into any reason-
able higher-order logic, one immediate candidate is the ordinary complete
�rst-order axiom set, with quanti�ers now also of higher orders (cf. [En-
derton, 1972], last chapter, for this line). All usual principles are valid in
general models without further ado, except for Universal Instantiation, or
equivalently, Existential Generalization:

8X'(X)! '(T ) or '(T )! 9X'(X):

These two axioms are valid in all general models when T is any variable or
constant of the type of X . But, in actual practice, one wants to substitute
further instances in higher-order reasoning. For example, from 8X'(X;R),
with X of type (0), one wants to conclude '( ) for any �rst-order de�nable
property  in R, = (cf. van Benthem's chapter on Correspondence Theory
in Volume 3 of this Handbook). In terms of Comprehension, this amounts
to closure of predicate ranges under �rst-order de�nability, mentioned in
Section 4.1. A further possibility is to allow predicative substitutions, where
 may be higher-order, but with its quanti�ers all ranging over orders lower
than that of X . Finally, no holds barred, there is the use of arbitrary
substitutions, whether predicative or not; as in the above Comprehension
Schema.

One consequence of Comprehension is the following Axiom of Descrip-
tiveness:

8x9!y'(x; y)! 9f8x'(x; f(x)):

If we want to strengthen this to the useful existence of Skolem functions (cf.
Section 2.5.2), we have to postulate

8x9y'(x; y)! 9f8x'(x; f(x));

and this motivates the above Axioms of Choice.
No further obvious logical desiderata seem to have been discovered in the

literature.
By the way, our above formulation of the Axiom of Choice cannot be

strengthened when all types are present, assuming the comprehension ax-
ioms. If this is not the case, it can be. For instance, in the second-order lan-
guage, the strongest possible formulation is just the implication 8x9X !
9Y 8x 0 (where  0 is obtained from  by substituting Y (x; t1; : : : ; tn) for
X(t1; : : : ; tn)) used to prove the prenex theorem in Section 3.2.

In a sense, this form gives more than just choice; conceived of set-
theoretically, it has the avour of a `collection' principle. It plays a crucial
role in proving reectivity of second-order theories containing it, similar
to the role the substitution (or collection) axiom has in proving reection
principles in set theory.
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The general picture emerging here is that of an ascending range of recur-
sively axiomatized higher-order logics, formalizing most useful fragments of
L!-validity that one encounters in practice.

4.3 Second-Order Reduction

The general completeness theorem, or rather, the family of theorems in
Section 4.2, by no means exhausts the uses of the general model idea of
Section 4.1. For instance, once upon this track, we may develop a `general
model theory' which is much closer to the �rst-order subject of that descrip-
tion. A case in point are the `general ultraproducts' of [van Benthem, 1983],
which allow for an extension of the fundamental characterization theorems
of Section 1.4 to higher-order logic. This area remains largely unexplored.

Here we present a rather more unexpected application, announced in
Section 3.2: L!-standard validity is e�ectively reducible to standard validity
in monadic L2, in fact in the monadic �1

1-fragment.
Consider the �rst-order language L+ (relative to a given base language

L) introduced in Section 4.1. Extend it to a second-order language L+2
by adding second-order variables of all types (0; : : : ; 0), with which we
can form atoms X(t1; : : : ; tn). Consider the following L+2 -principles (� =
(�1; : : : ; �n)):

Plenitude(�)
8X9x8y1 : : :8yn(T� (x) ^ (T�1(y1) ^ � � � ^ T�n(yn)!

! ("� (x; y1; : : : ; yn)$ X(y1; : : : ; yn)))):

Evidently, Plenitude holds in all +-transforms of all standard models of
L!. Conversely, if the L+-model B satis�es Plenitude(�) for all types � ,
then its submodel B� (cf. the proof of the main theorem in Section 4.2) is
isomorphic to a model of the form (A; E)+ with a full type structure E.

THEOREM. ' 2 L! is true in all standard models i� '+ follows from (1),
(2), (3), (5), (6), and the Plenitude axioms.

As ' can only mention a �nite number of types and non-logical constants,
the relevant axioms of the above-mentioned kinds can be reduced to a �nite
number and hence to a single sentence  .

THEOREM. With every ' 2 L!, a �1
1-sentence  of L+2 can be associated

e�ectively, and uniformly, such that

�!  i� �2  ! '+:

As  2 �1
1 and '+ is �rst-order, this implication is equivalent to a �1

1-
sentence; and the promised reduction is there.
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But Plenitude has been formulated using second-order variables of an
arbitrary type. We �nally indicate how this may be improved to the case
of only monadic ones. Consider the variant

Plenitude�(�)
8X9x8y1 : : :8yn(T� (x) ^ (T�1(y1) ^ � � � ^ T�n(yn)!

! ("� (x; y1; : : : ; yn)$ 9y(T� (y) ^X(y) ^ "� (y; y1; : : : ; yn)))):

When E is full, this will obviously hold in (A; E)+. To make this monadic
variant do its job, it has to be helped by the following �rst-order principle
stating the existence of singleton sets of ordered sequences:

Singletons(�)
8z1 : : :8zn9x8y1 : : :8yn(T�1(z1) ^ � � � ^ T�n(zn)! (T� (x)^

^(T�1(y1) ^ � � � ^ T�n(yn)! ("� (x; y1; : : : ; yn)$
$ y1 = z1 ^ � � � ^ yn = zn)))):

Suppose now that B satis�es all these axioms and (A; E)+ �= B�. Let
S � E�1 � � � � �E�n be arbitrary: we must show that S 2 E� . Notice that
Singletons(�) implies that, if s 2 E�1 � � � � � E�n (in particular, if s 2 S),
then fsg 2 E� . Now let S0 := ffsg j s 2 Sg. Clearly, S =

S
S0 and S0 � E� .

That S 2 E� follows from one application of Plenitude�(�), taking S0 as
value for X . �

4.4 Type Theory and Lambda Calculus

Readers of Section 4.2 may have been a little disappointed at �nding no
preferred explicit axiomatized `�rst-order' version of L!-logic. And indeed,
an extreme latitude of choices was of the essence of the situation. Indeed,
there exist various additional points of view leading to, at least, interesting
logics. One of these is provided by the earlier functional type theory of
Section 3.3. We will chart the natural road from the perspective of its basic
primitives.

Identity and application inspire the usual identity axioms, Lambda ab-
straction really including replacement of identicals. Lambda abstraction re-
ally contributes only one further principle, viz. the famous `lambda conver-
sion'

�x �B(A) = [A=x]B;

for x;B;A of suitable types, and modulo obvious conditions of freedom and
bondage. Thus, there arises a simple kind of lambda calculus. (Actually, a
rule of `alphabetic bound variants' will have to be added in any case, for
domestic purposes.)

Lambda conversion is really a kind of simpli�cation rule, often encoun-
tered in the semantics of natural, or programming languages. One immedi-
ate question then is if this process of simpli�cation ever stops.
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THEOREM. Every lambda reduction sequence stops in a �nite number of
steps.

Proof. Introduce a suitable measure of type complexity on terms, so that
each reduction lowers complexity. �

This theorem does not hold for the more general type free lambda calculi
of [Barendregt, 1980]; where, e.g. �x � x(x)(�x � x(x)) runs into an in�nite
regress.

Another immediate follow-up question concerns the unicity (in addition
to the above existence) of such irreducible `normal forms'. This follows in
fact from the `diamond property':

THEOREM. (Church-Rosser) Every two lambda reduction sequences start-
ing from the same terms can be continued to meet in a common term (up
to alphabetic variance).

Stronger lambda calculi arise upon the addition of further principles, such
as extensionality:

�x �A(x) = �x �B(x) implies A = B (for x not free in A;B):

This is the lambda analogon of the earlier principle (6) in Section 4.2.
Still further additions might be made reecting the constancy of the truth

value domain Dt. Up till now, all principles considered would also be valid
for arbitrary truth value structures. (In some cases, this will be a virtue, of
course.)

Let us now turn to traditional logic. Henkin has observed how all familiar
logical constants may be de�ned (under the standard interpretation) in
terms of the previous notions. Here is the relevant list [Henkin, 1963]:
> (a tautology) := �x � x = �x � x
? (a contradiction) := �xt � xt = �xt � >
: (negation) := �xt � xt = ?

The most tricky case is that of conjunction:

^ := �xt � �yt(�f(t;t) � (f(t;t)(xt) = yt) = �f(t;t) � f(t;t)>))

One may then de�ne _;! in various ways. Finally, as for the quanti�ers,

8xA := �x � A = �x � >:
The induced logic has not been determined yet, as far as we know.

With the addition of the axiom of bivalence, we are on the road to classical
logic:

8xt � f(t;t) � xt = f(t;t)>^ f(t;t)?:
For a fuller account, cf. [Gallin, 1975, Chapter 1.2].
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One may prove a general completeness theorem for the above identity,
application, abstraction theory in a not inelegant direct manner, along the
lines of Henkin's original completeness proof. (Notably, the familiar `wit-
nesses' would now be needed in order to provide instances f(c) 6= g(c) when
f 6= g.) But, the additional technicalities, especially in setting up the cor-
rect account of general models for functional-type theory, have motivated
exclusion here.

Even so, the di�erences between the more `logical' climate of functional-
type theory and the more `set-theoretic' atmosphere of the higher-order L!
will have become clear.

5 REFLECTIONS

Why should a Handbook of (after all) Philosophical Logic contain a chapter
on extensions of �rst-order logic; in particular, on higher-order logic? There
are some very general, but also some more speci�c answers to this (by now)
rather rhetorical question.

One general reason is that the advent of competitors for �rst-order logic
may relativize the intense preoccupation with the latter theory in philo-
sophical circles. No speci�c theory is sacrosanct in contemporary logic.
It is rather a certain logical perspective in setting up theories, weaker or
stronger as the needs of some speci�c application require, that should be
cultivated. Of course, this point is equally valid for alternatives to, rather
than extensions of classical �rst-order logic (such as intuitionistic logic).

More speci�cally, two themes in Section 1 seem of a wider philosophical
interest: the role of limitative results such as the L�owenheim{Skolem, or
the Compactness theorem for scienti�c theory construction; but also the
new systematic perspective upon the nature of logical constants (witness
the remarks made about generalized quanti�ers). Some authors have even
claimed that proper applications of logic, e.g. in the philosophy of science
or of language, can only get o� the ground now that we have this amaz-
ing diversity of logics, allowing for conceptual `�ne tuning' in our formal
analyses.

As for the speci�c case study of higher-order logic, there was at least a
convincing prima facie case for this theory, both from the (logicist) foun-
dations of mathematics and the formal semantics of natural language. Es-
pecially in the latter area, there have been recurrent disputes about clues
from natural language urging higher-order descriptions. (The discussion of
branching quanti�ers in Section 2.5.1 has been an example; but many others
could be cited.) This subject is rather delicate, however, having to do with
philosophy as much as with linguistics. (Cf. [van Benthem, 1984] for a dis-
cussion of some issues.) For instance, the choice between a standard model
or a general model approach to higher-order quanti�cation is semantically
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highly signi�cant and will hopefully undercut at present rather dogmatic
discussions of the issue. For instance, even on a Montagovian type theoretic
semantics, we are not committed to a non-axiomatizable logic, or models
of wild cardinalities: contrary to what is usually claimed. (General models
on a countable universe may well remain countable throughout, no matter
how far the full type structure explodes.)

One might even hazard the conjecture that natural language is partial
to restricted predicate ranges which are constructive in some sense. For in-
stance, [Hintikka, 1973] contains the suggestion to read branching quanti�er
statements on countable domains in terms of the existence of Skolem func-
tions which are recursive in the base predicates. If so, our story might end
quite di�erently: for, the higher-order logic of constructive general models
might well lapse into non-axiomatizability again. Thus, our chapter is an
open-ended one, as far as the philosophy and semantics of language are con-
cerned. It suggests possibilities for semantic description; but on the other
hand, this new area of application may well inspire new directions in logical
research.

ADDENDA

This chapter was written in the summer of 1982, in response to a last-minute
request of the editors, to �ll a gap in the existing literature. No standard
text on higher-order logic existed then, and no such text has emerged in the
meantime, as far as our information goes. We have decided to keep the text
of this chapter unchanged, as its topics still seem to the point. Nevertheless,
there have been quite a few developments concerning di�erent aspects of our
exposition. We provide a very brief indication | without any attempt at
broad coverage.1

Ehrenfeucht-Fra��ss�e Games

Game methods have become a common tool in logic for replacing com-
pactness arguments to extend standard meta-properties beyond �rst-order
model theory. Cf. [Hodges, 1993], [Doets, 1996]. They extend to many vari-
ations and extensions of �rst-order logic (cf. [Barwise and van Benthem,
1996]).

Finite Model Theory

Model theory over �nite models has become a topic in its own right. Cf.
[Ebbinghaus and Flum, 1995]. For connections with data base theory, cf.

1The following people were helpful in providing references: Henk Barendregt,
Philip Kremer, Godehard Link, Maria Manzano, Marcin Mostowski, Reinhard Muskens,
Mikhail Zakhariashev.
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[Kanellakis, 1990]. In particular, over �nite models, logical de�nability links
up with computational complexity: cf. [Immerman, 1996].

General Models

[Henkin, 1996] is an exposition by the author of the original discovery.
[Manzano, 1996] develops a broad spectrum of applied higher-order logics
over general models with partial truth values. [van Benthem, 1996] gives a
principled defense of general models in logical semantics, as a `geometric'
strategy of replacing predicates by objects.

Order-Independent Properties of Logics

The distinction `�rst-order'/`higher-order' is sometimes irrelevant. Many
logical properties hold independently of the division into logical `orders'.
Examples are monotonicity (upward preservation of positive statements) or
relativization (quanti�er restriction to de�nable subdomains), whose model-
theoretic statements have nothing to do with orders. There is an emerging
linguistic interest in such `transcendental' properties: cf. [van Benthem,
1986b], [Sanchez Valencia, 1991].

Generalized Quanti�er Theory

The theory of generalized quanti�ers has had a stormy development in the
80s and 90s, both on the linguistic and the mathematical side. Cf. [van Ben-
them, 1986a], [Westerst�ahl, 1989]. In particular, the latter has systematic
game-based (un-) de�nability results for hierarchies of generalized quanti-
�ers. [van Benthem and Westerst�ahl, 1995] is a survey of the current state
of the �eld, [Keenan and Westerst�ahl, 1996] survey the latest linguistic ap-
plications, many of which involve the polyadic quanti�ers �rst introduced
by [Lindstr�om, 1966].

Higher-Order Logic in Computer Science

Higher-order logics have been proposed for various applications in computer
science. Cf. [Leivant, 1994].

Higher-Order Logic in Natural Language

Much discussion has centered around the article [Boolos, 1984], claiming
that plurals in natural language form a plausible second-order logic. Strong
relational higher-order logics have been proposed by [Muskens, 1995]. The
actual extent of higher-order phenomena is a matter of debate: cf. [L�onning,
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1996], [Link, 1997, Chapter 14]. In particular, there is a continuing inter-
est in better-behaved `bounded fragments' that arise in natural language
semantics.

Higher-Order Logic in the Philosophy of Science

Higher-order logic has been used essentially in the philosophy of time (cf.
various temporal postulates and open questions in [van Benthem, 1992]),
the foundations of physics and measurement (cf. the higher-order physical
theories of [Field, 1980]) and mathematics (cf. [Shapiro, 1991]).

In�nitary Logic

In�nitary logics have become common in computer science: cf. [Harel, 1984],
[Goldblatt, 1982]. In particular, �xed-point logics are now a standard tool
in the theory of data bases and query languages: cf. [Kanellakis, 1990]. Re-
cently, [Barwise and van Benthem, 1996] have raised the issue just what are
the correct formulations of the �rst-order meta-properties that should hold
here. (For instance, the standard interpolation theorem fails for L1!, but
more sophisticated variants go through.) Similar reformulation strategies
might lead to interesting new meta-properties for second-order logic.

Lambda Calculus and Type Theories

There is an exploding literature on (typed) lambda calculus and type the-
ories, mostly in computer science. Cf. [Hindley and Seldin, 1986], [Baren-
dregt, 1980; Barendregt, 1992], [Mitchell, 1996; Gunter and Mitchell, 1994].
In natural language, higher-order logics and type theories have continued
their inuence. Cf. [Muskens, 1995] for a novel use of relational type theo-
ries, and [Lapierre, 1992; Lepage, 1992] for an alternative in partial func-
tional ones. [van Benthem, 1991] develops the mathematical theory of `cat-
egorial grammars', involving linear fragments of a typed lambda calculus
with added Booleans.

Modal De�nability Theory

First-order reductions of modal axioms viewed as �1
1-sentences have been

considerably extended in [Venema, 1991], [de Rijke, 1993]. In the literature
on theorem proving, these translations have been extended to second-order
logic itself: cf. [Ohlbach, 1991], [Doherty et al., 1994]. [Zakhariashev, 1992;
Zakhariashev, 1996] provides a three-step classi�cation of all second-order
forms occurring in modal logic.
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Propositional Quanti�cation in Intensional Logic

Modal Logic. [Kremer, 1996] considers the obvious interpretation of proposi-
tional quanti�cation in the topological semantics for S4, and de�nes a system
S4�t, related to the system S4�+ of [Fine, 1970]. He shows that second-
order arithmetic can be recursively embedded in S4�t, and asks whether
second order logic can.

[Fine, 1970] is the most comprehensive early piece on the topic of propo-
sitional quanti�ers in modal logic. (Contrary to what is stated therein,
decidability of S4.3�+ is open.)

Intuitionistic Logic. References here are [L�ob, 1976], [Gabbay, 1981],
[Kreisel, 1981] and [Pitts, 1992].

Relevance Logic. Cf. [Kremer, 1994].

Higher-Order Proof Theory

Cf. [Troelstra and Schwichtenberg, 1996, Chapter 11], for a modern exposi-
tion of relevant results.

University of Amsterdam, The Netherlands.
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DIRK VAN DALEN

ALGORITHMS AND DECISION PROBLEMS: A

CRASH COURSE IN RECURSION THEORY

At �rst sight it might seem strange to devote in a handbook of philo-
sophical logic a chapter to algorithms. For, algorithms are traditionally the
concern of mathematicians and computer scientists. There is a good reason,
however, to treat the material here, because the study of logic presupposes
the study of languages, and languages are by nature discrete inductively
de�ned structures of words over an alphabet. Moreover, the derivability
relation has strong algorithmic features. In almost any (�nitary) logical
system, the consequences of a statement can be produced by an algorithm.
Hence questions about derivability, and therefore also underivability, ask for
an analysis of possible algorithms. In particular, questions about decidabil-
ity ( is there an algorithm that automatically decides if  is derivable from
'?) boil down to questions about all algorithms. This explains the interest
of the study of algorithms for logicians.

There is also a philosophical aspect involved: granting the mathematical
universe, and by association the logicians universe, an independent status,
as providing the basic building blocs for abstract science, it is of supreme
importance to discover which basic objects and structures are given to us in a
precise and manageable manner. The natural numbers have long remained
the almost unique paradigm of a foundationally justi�ed notion, with a
degree of universal acceptance. The class of algorithms as given by any
of the current systems (Turing machines, Post systems, Markov systems,
lambda calculable functions, Herbrand-G�odel computable functions, register
machines, etc.), have in this century become the second such class. As
G�odel put it, \It seems to me that this importance [i.e. of the notion of
recursive function] is largely due to the fact that with this concept one has
for the �rst time succeeded in giving an absolute de�nition of an interesting
epistemological notion, i.e. one not depending on the formalism chosen."
[G�odel, 1965], [Wang, 1974, p. 81]

The reader may feel encouraged to go on and get acquainted with the
fascinating insights that are hidden behind a certain amount of technicality.

An acquaintance with such topics as diagonalization, arithmetization,
self-reference, decidability, recursive enumerability is indispensable for any
student of logic. The mere knowledge of syntax (and semantics) is not
suÆcient to elevate him to the desired height.

The present chapter contains the bare necessities of recursion theory, sup-
plemented by some heuristics and some applications to logic. The hard core
of the chapter is formed by Sections 1 and 2 on primitive recursive functions
and partial recursive functions|a reader who just wants the basic theory
of recursivity can stick to those two sections. However, Section 0 provides
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a motivation for much that happens in Sections 1 and 2. In particular, it
helps the reader to view recursive functions with a machine-oriented picture
in mind. Section 3 contains a number of familiar applications, mainly to
arithmetical theories.

The author does not claim any originality. There is a large number
of texts on recursion theory (or computability) and the reader is urged
to consult the literature for a more detailed treatment, or for alternative
approaches. Our approach is aimed at a relatively complete treatment of
some of the fundamental theorems, accompanied by a running commentary.

Drafts of this chapter have been read by a number of colleagues and
students and I have received most helpful comments. I wish to thank all
those who have kindly provided comments or criticism, but I would like to
mention in particular the editors of the Handbook and Henk Barendregt,
who tried out the �rst draft in a course, Karst Koymans and Erik Krabbe
for their error detecting and Albert Visser for many helpful discussions.

0 INTRODUCTION

Algorithms have a long and respectable history. There are, e.g. Euclid's
algorithm for determining the greatest common divisor of two numbers,
Sturm's algorithm to �nd the number of zeros of a polynomial between
given bounds.

Let us consider the example of Euclid's algorithm applied to 3900 and
5544.

After division of 5544 by 3900 the remainder is 1644
" 3900 " 1644 " 612
" 1644 " 612 " 420
" 612 " 420 " 192
" 420 " 192 " 36
" 192 " 36 " 12
" 36 " 12 " 0

Hence, the g.c.d. of 3900 and 5544 is 12.

There are three features in the above example:

1. There is a proof that the algorithm does what it is asked to do. In this
case, that 12 is actually the g.c.d., but in general that the outcome
for any pair n;m is the g.c.d. (the reader will see the proof after a
moment's reection).

2. The procedure is algorithmic, i.e. at each step it is clear what we have
to do, and it can be done `mechanically' by �nite manipulations. This
part is clear, assuming we know how to carry out the arithmetical
operations on numbers given in decimal representation.
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3. The procedure stops after a �nite number of steps. In a way (1) pre-
supposes (3), but (1) might give the following result: if the procedure
stops, then the answer is correct. So we are still left with the burden
of showing the halting of the procedure. In our example we observe
that all entries in the last column are positive and that each is smaller
than the preceding one. So a (very) rough estimate tells us that we
need at most 1644 steps.

Another example:
A palindrome is a word that reads the same forward or backwards, e.g.

bob. Is there a decision method to test if a string of symbols is a palindrome?
For short strings the answer seems obvious: you can see it at a glance.
However, a decision method must be universally applicable, e.g. also to
strings of 2000 symbols. Here is a good method: compare the �rst and last
symbol and if they are equal, erase them. If not then the string is not a
palindrome. Next repeat the procedure. After �nitely many steps we have
checked if the string is a palindrome. Here too, we can easily show that the
procedure always terminates, and that the answer is correct.

The best-known example from logic is the decidability of classical propo-
sitional logic. The algorithm requires us to write down the truth table for
a given proposition ' and check the entries in the last column if al of them
are 1 (or T ). If so, then ` '.

If ' has n atoms and m subformulas, then a truth table with m�2n entries
will do the job, so the process terminates. The truth tables for the basic
connectives tell us that the process is e�ective and give us the completeness
theorem.

The need for a notion of e�ectiveness entered logic in considerations on
symbolic languages. Roughly speaking, syntax was assumed (or required)
to be decidable, i.e. one either explicitly formulated the syntax in such a way
that an algorithm for testing strings of symbols on syntactic correctness was
seen to exist, or one postulated such an algorithm to exist, cf. [Carnap, 1937]

or [Fraenkel et al., 1973, p. 280 �]. Since then it is a generally recognized
practice to work with a decidable syntax This practice has vigorously been
adopted in the area of computer languages.

The quest for algorithms has been stimulated by the formalist view of
logic and mathematics, as being �elds described by mechanical (e�ective)
rules. Historically best-known is Hilbert's demand for a decision method for
logic and arithmetic. In a few instances there are some a priori philosophical
arguments for decidability. For example, the notion `p is a proof of '' should
be decidable, i.e. we should be able to recognize e�ectively whether or not
a given proof p proves a statement '. Furthermore, it is a basic assumption
for the usefulness of language that well-formedness should be e�ectively
testable.

In the thirties, a number of proposals for the codi�cation on the notion
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of `algorithm' were presented. A very attractive and suggestive view was
presented by Alan Turing, who de�ned e�ective procedures, or algorithms,
as abstract machines of a certain kind (cf. [Turing, 1936; Kleene, 1952;
Davis, 1958; Odifreddi, 1989]).

Without aiming for utmost precision, we will consider these so-called Tur-
ing machines a bit closer. This will give the reader a better understanding
of algorithms and, given a certain amount of practical experience, he will
come to appreciate the ultimate claim that any algorithm can be carried out
(or simulated) on a Turing machine. The reason for choosing this particular
kind of machine and not, e.g. Markov algorithms or Register machines, is
that there is a strong conceptual appeal to Turing machines. Turing has
given a very attractive argument supporting the claim that all algorithms
can be simulated by Turing machines|known as Turing's Thesis. We will
return to the matter later.

A Turing machine can be thought of as an abstract machine (a black
box) with a �nite number of internal states, say q1; : : : ; qn, a reading and
a printing device, and a (potentially in�nite) tape. The tape is divided
into squares and the machine can move one square at a time to the left
or right (it may be more realistic to make the tape move, but realism is
not in our object). We suppose that a Turing machine can read and print a
�nite number of symbols S1; : : : ; Sn. The actions of the machine are strictly
local, there are a �nite number of instructions of the form: When reading Sj
and being in state qi print Sk, go into state ql and move to the left (or right).

Figure 1.

We collect this instruction into a convenient string qiSjSkqlX , where X
is L or R. The machine is thus supposed to read a symbol, erase it, print a
new one, and move left or right. It would not hurt to allow the machine to
remain stationary, but it does not add to the algorithmic power of the class
of Turing machines.

Of course we need some conventions or else a machine would just go
on operating and we would never be able to speak of computations in a
systematic way. Here are our main conventions: (1) we will always present
the machine at the beginning with a tape whose squares, except for a �nite
number, are blank; (2) at the beginning of the process the machine scans
the leftmost non-blank square; (3) the machine stops when it is in a state
and reads a symbol such that no instruction applies; (4) for any state and
symbol read by the machine there is at most one instruction which applies
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(i.e. the machine is deterministic).

Another convention, which can be avoided at the cost of some complica-
tion, is that we always have a symbol B for `blank' available. This helps us
to locate the end of a given string, although even here there are some snags
(e.g. suppose you move right until you get to a blank, how do you know
that there may not be a non-blank square way out to the right?).

Now it is time for a few examples.

0.1 The Palindrome Tester

We use the ideas presented above. The machine runs back and forth check-
ing the end symbols of the string, when it is a matching pair it erases them
and proceeds to the next symbol. Let us stipulate that the machine erases
all symbols when it �nds a palindrome, and leaves at least one non- blank
square if the result is negative. Thus, we can see at a glance the yes or no
answer. We introduce the symbols a; b; B. During the process we will �nd
out how many states we need. Consider the following example: the tape is
of the form � � �BBaababaaBB � � � and the machine reads the �rst a while
being in the initial state q0, we represent this by

� � �Ba
q0
ababaaB � � �

We now want to move right while remembering that we scanned a �rst
symbol a. We do that by changing to a new state qa. We �nd out that we
have run through the word when we meet our �rst B, so then we move back,
read the symbol and check if it is an a, that is when we use our memory|i.e.
the qa.

Here are the necessary instructions:

q0aaqaR { in state q0, read a, go to state qa, move right,
qaaaqaR { in state qa, read a, do nothing, move right,
qabbqaR { in state qa, read b, do nothing, move right,
qaBBq1L { in state qa, read B, go to state q1, move left,
q1aBq2L { in state q1, read a, erase a, go to state q2, move left,

and now return to the front of the word.

We indicate the moves of the machine below:

q0
BaababaaB !

qa
BaababaaB ! � � � !

qa
BaababaaB !

q1
BaababaaB !

q2
BaababaBB ! � � � !

q2
BaababaB

We now move right, erase the �rst symbol, look for the next one and
repeat the procedure.
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More instructions:

move to
the front

8<
:

q2aaq2L
q2bbq2L
q2BBq3R

erase the
�rst symbol

�
q3aBq0R
q3bBq0R

move right,
when you see a
b and check the
last symbol

8>>>><
>>>>:

q0bbqbR
qbbbqbR
qbaaqbR
qbBBq4L
q4bBq2L

We indicate a few more steps in the computation:

q2
BaababaB !

q3
BaababaB !

q0
BBababaB ! � � � !

q0
BbabB !

qb
BbabB ! : : :!

q4
BbabB !

q2
BbaBB ! � � � !

q0
BaB !

qa
BaB !

q1
BaB !

q2
BBB !

q3
BBB

Here the machine stops, there is no instruction beginning with q3B. The
tape is blank, so the given word was a palindrome. If the word is not a
palindrome, the machine stops at the end of the printed tape in state q1 or
q4 and a non-blank tape is left.

One can also present the machine in the form of a graph (a kind of ow
diagram). Circles represent states and arrows the action of the machine,
e.g.

(qi)
SjSkX�! (ql)

stands for the instruction qiSjSkqlX .
The graph for the above machine is given in Figure 2.

qa q1

q0 q3 q2

q5 q4

aa
R

BBL

a R

bBR

BBR

bbR
BBL

a
B
L

bB
L

aaR

bbR

bbR

aaR

aaL

bbL

Figure 2.

The expressions consisting of a �nite part of the tape containing the non-
blank part plus the state symbol indicating which symbol is being read, are
called state descriptions. For better printing we place the state symbol in
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front of the scanned symbol instead of below it. A sequence of successive
state descriptions is called a computation. Note that a computation may be
in�nite. In that case there is no output.

Exercises. Design Turing machines for the following tasks:

1. check if a word (over the alphabet fa, bg) contains an a,

2. check if a word (over the alphabet fa, bg) contains two a's,

3. check if a word (over the alphabet fa, bg) has even length,

4. interchange all as and bs in a word,

5. produce the mirror image of a word.

0.2 Some Arithmetical Operations

We represent natural numbers n by n+ 1 strokes (so that 0 is taken along
in accordance with modern usage). A pair of numbers is represented by two
strings of strokes separated by a blank. We will denote the sequence of n+1
strokes by �n.

The convention for reading the output is: count all the strokes that are on
the tape when the machine stops. It is a simple exercise to convert the tape
contents into the above unary representation, but it is not always required
to make the conversion.

The identity function: f(x) = x

We just have to erase one stroke .
Instructions:

q0 j Bq0L
Here is a computation

Bq0 j j j � � � j B ! q0BB j j � � � j B:

The successor function: f(x) = x+ 1

This is a very simple task: do nothing. So the machine has some dummy
instruction, e.g. q0BBq0R. This machine stops right when it starts.

Addition: f(x; y) = x+ y

Here we have to erase two strokes. It is tempting to erase both from the
�rst string; however, the �rst string may contain only one j, so we have to
be somewhat careful.
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Here is the informal description: erase the �rst j and go into state q1,
move right until you meet the �rst j, erase it and stop. Instructions:

q0 j Bq1R
q1 j Bq2R
q1BBq1R:

Example:
q0 j B j j! Bq1B j j! BBq1 j j! BBBq2 j

and
q0 j j B j! Bq1 j B j! BBq2B j

Subtraction: f(x; y) = x� y
Observe that this is a partial function, for x � y is de�ned only for x � y.
The obvious procedure seems to erase alternatingly a stroke of y and one of
x. If y is exhausted before x is, we stop.
Instructions: array here

For convenience we will write
�! to indicate a �nite number of steps !.

EXAMPLE.

Bq0 j j j B j j B �!j j j Bq1 j j B �! B j j j B j j q1B !
B j j j B j q2 j B ! B j j j Bq3 j a ! B j j j q3B j a !
B j j q4 j B j a ! B j j Bq5B j a �! B j j BBq2 j a �!
B j BBBq5aa ! B j BBq2Baa :

If x is exhausted before y is, then by (y) the machine keeps moving left, i.e.
it never stops. Hence for x < y there is no output.

The projection functions: Un
i (x0; : : : ; xn) = xi(0 � i � n)

The machine has to erase all the xj 's for j 6= i and also to erase one j from
xi.
Instructions:

q0 j Bq0R
q0BBq1R
q1 j Bq1R
q1BBq2R

...
qi j Bq0iR
q0i jj q0iR
q0iBBqi+1R

...
qn j BqnR
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By now the reader will have reached the point where he realizes that he is
simply writing programs in a rather uncomfortable language for an imag-
inary machine. The awkwardness of the programming language is not ac-
cidental, we wanted to perform really atomic acts so that the evidence for
the algorithmic character of Turing machines can immediately be read o�
from those acts. Of course, a high-level programming language is more
convenient to handle, but it also stresses some features and neglects some
other features, e.g. it might be perfect for numerical calculation and poor
for string manipulations.

It is also about time to give a de�nition of the Turing machine, after all
we have treated it so far as a Gedankenexperiment. Well, a Turing machine
is precisely a �nite set of instructions! For, given those instructions, we
can perform al the computations we wish to perform. So, strictly speaking,
adding or changing an instruction gives us a new machine. One can, in
general, perform operations on Turing machines, e.g. for the purpose of
presenting the output in a convenient way, or for creating a kind of memory
for the purpose of recording the computation.

EXAMPLE. Carrying out a computation between end markers.
Let a machine M (i.e. a set of instructions) be given. We want to add two

end markers, so that any computation of M has descriptions of the form
$1{$2, where the tape contains only blanks to the left of $1 and to the right
of $2. We add two new symbols $1 and $2 to those of M and a number of
instructions that take care of keeping the descriptions between $1 and $2.
For, in the course of a computation, one may need more space, so we have
to build in a $- moving feature. The following instructions will do the job:

qi$1Bq
0
iL

q0iB$1qiR

�
if M reads $1 print a blank, move one step left,
print $1, move back and to into the original state

qi$2Bq
00
i R

q00i B$2qiL

�
same action on the right hand side.

Here q0i and q00i are new states not occurring in M .

The reader may try his hand at the following operations.

1. Suppose that a computation has been carried out between end mark-
ers. Add instructions so that the output is presented in the form $1�n$2
(sweeping up the strokes).

2. Let M be given, add a terminal state to it, i.e. a new state qt such
that the new machine M 0 acts exactly like M , but when M stops M 0

makes one more step so that it stops at the same description with the
new qt as state.
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3. Suppose a tape containing a word between end markers is given. Add
instructions to a machine M such that during a computation M pre-
serves the word intact, i.e. any time M reads, e.g. the left end marker,
it moves the whole word one square to the right, and resumes its
normal activity to the left of this marker.

The last exercise may serve to store, e.g. the input in the tape as memory,
so that we can use it later.

We will now consider some operations on Turing machines, required for
certain arithmetical procedures. The precise details of those operations can
be found in the literature, e.g. [B�orger, 1989; Davis, 1958; Minsky, 1967],
we will present a rough sketch here.

Substitution

Suppose that machines M1 and M2 carry out the computations for the
functions f and g. How can we compute h(x) = f(g(x)) by means of a
Turing machine? To begin with, we make the sets of states of M1 and M2

disjoint. The idea is to carry out the computation of M2 on input x, we
add extra instructions so that M2 moves into a terminal state qt when it
stops. Then we add some instructions that collect at the strokes into one
string and make the machine scan the leftmost j in the initial state of M1.

As simple as this sounds, it takes a certain amount of precaution to carry
out the above plan, e.g. in order to sweep all the strokes together one has to
provide end markers so that one knows when all strokes have been counted,
cf. the example above.

Schematically, we perform the following operations on the machines
M1;M2: (1) change M2 into a machine M 0

2 which carries out the same
computations, but between end markers, (2) change M 0

2 into M 00
2 which

goes on to sweep all j's together and stops in a terminal state qt scanning
the leftmost j, (3) renumber the states q0; : : : ; qm, of M1 into qt; : : : ; qt+m,
the resulting machine is M 0

1. Then the instructions of M 00
2 and M 0

1, joined
together, de�ne the required machine for h. Substitution with more vari-
ables is merely a more complicated variation of the above.

Primitive recursion

One of the standard techniques for de�ning new algorithms is that of recur-
sion. We consider the simple parameterless case. If g is a given algorithm
(and a total function) then so is f , with�

f(0) = n
f(x+ 1) = g(f(x); x):

We give a rough outline of the speci�cation of the required Turing ma-
chine. To begin, we store the input x together with n on the tape in the
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form $1x$2n$3. we check if x = 0, i.e. we erase one j and see if no j is left. If
x = 0, then we erase one j from n, and terminate the computation. If x 6= 0,
we let the machine N for g act on $2n$3j$4, sweep up the strokes between
$2 and $4, add one stroke between $3 and $4 and rewrite the tape content as
$1x� 1$2f(1)$3jj$4. Now we test if x� 1 = 0. If `yes', we erase one stroke
from f(1), and all strokes between $3 and $4 and terminate. If `no', let N
operate on $2f(1)$3k$4, replace the tape content by $1x� 1$2f(2)$3jjj$4.
In x steps this procedure terminates and yields f(x).

The resulting machine eventually stops after x steps with f(x) strokes
on the tape. The addition of extra parameters is merely a matter of storing
the parameters conveniently on the tape.

Unbounded search or minimalization

Suppose we have a Turing machine M which computes a total function
g(x; y). Can we �nd a Turing machine M1 that for a given y looks for the
�rst x such that g(x; y) = 0?

Essentially, we will successively compute g(0; y); g(1; y); g(2; y); : : : and
stop as soon as an output 0 has been produced. This is what we will do:
(1) start with a tape of the form � � �B$1 j B�y$2$3B � � � and read the �rst j,
(2) copy the string between $1 and $2 between $2 and $3, (3) let M act on
the string between $2 and $3, (4) add instructions that test if there is a j
left between $2 and $3, if not erase �y and also one stroke to the right of $1
then stop, otherwise erase everything between $2 and $3 while shifting $3
to the left, then move left and add one j following $1, (5) repeat (2).

Clearly, if the new machine stops, then the tape content yields the de-
sired output. The machine may, however, go on computing inde�nitely.
Contrary to the cases of substitution and recursion, the minimalization op-
eration leads outside the domain of totally-de�ned algorithms!

The most striking feature of the family of Turing machines is that it
contains a `master' machine, that can mimic all Turing machines. This was
established in Turing's very �rst paper on the subject. We will �rst give a
loose and imperfect statement of this fact:

There is a Turing machine, such that if it is presented with a tape con-
taining all the instructions of a Turing machine M plus an input, it will
mimic the computations of M on this input, and yield the same output.

We will indicate the idea of the simulation process by means of a rough
sketch of a simple case. Consider the addition-machine (0.2.3). On the tape
we print the instructions plus the input separated by suitable symbols.

$1q0 j Bq1R � q1 j Bq2R � q1BBq1R$2q0 j B j j $3:

Note that the states of the addition-machine and its symbolism and the R
and L have become symbols for the new machine Now we start the machine
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reading the symbol to the right of $2, it moves one square to the right, stores
q0 j in its memory (i.e. it goes into a state that carries this information) and
moves left looking for a pair q0 j left of $2. When it �nds such a pair,
it looks at the three right-hand neighbours, stores them into its memory
(again by means of an internal state), and moves right in order to replace
the q0 j following $2 by Bq1. Then the machine repeats the procedure all
over again. In this way the machine mimics the original computation.

$1 � $2�q0q0 j B j j $3
�! $1 � $2B�qkqkB j j $3

�! � � � �!
�! $1 � $2BB�qiq1 j j $3

�! $1 � $2BBB�qjq2 j $3 �!
�! $2BBB�qjq2 j $3:

The states of the new machine have been indicated by barred q's. The �nal
steps are to erase everything left of $2.

Of course, we have in a most irresponsible way suppressed all technical
details, e.g. the search procedure, the `memory' trick. But the worst sin is
our oversimpli�cation of the representation of the instructions. In fact we
are dealing with an in�nite collection of Turing machines and, hence, we
have to take care of in�nitely many states qi and symbols Sj . We solve this
problem by a unary coding of the qi's and Sj 's, e.g. represent qi by qq : : : q
(i times) and Sj by SS : : : S (j + 1 times). This of course complicates the
above schema, but not in an insurmountable way.

A more precise formulation of the theorem concerning the so-called Uni-
versal Turing machine is:

There is a Turing machine U such that for each Turing machine M it can
simulate the computation of M with input x, when presented with an input
consisting of a coded sequence of instructions of M and x. The output of U
is identical with that of M (possibly up to some auxiliary symbols).

One can �nd proofs of this theorem in a number of places, e.g. [Davis, 1958;
Minsky, 1967; Turing, 1936].

If the reader is willing to accept the above facts for the moment, he can
draw some immediate consequences. We will give a few informal sketches.

Let us call the coded sequence e of instructions of a machine M its index,
and let us denote the output of M with input x by 'e(x). Obviously the
universal Turing machine has itself an index; up to some coding U can act
on Turing machines (i.e. their indices), in particular, on itself. In a way we
can view this as a kind of self-reference or self-application.

Since Turing machines are algorithmic, i.e. given an input they e�ectively
go through a sequence of well-determined steps and hence, produce in an
e�ective way an output when they stop, they can be used for decision pro-
cedures. Decision problems ask for e�ective yes-no answers, and Turing
machines provide a particular framework for dealing with them. We can
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design a Turing machine that decides if a number is even, i.e. it produces a
1 if the input n is even and a 0 if n is odd.

If there is a Turing machine that produces in such a way 0{1 answers
for a problem, we say that the problem is decidable. Question: are there
undecidable problems? In a trivial way, yes. A problem can be thought of as
a subset X of N , and the question to be answered is: `Is n an element of X?'.
(In a way this exhausts all reasonably well-posed decision problems.) Since
there are uncountably many subsets of N and only countably many Turing
machines, the negative answer is obvious. Let us therefore reformulate the
question: are there interesting undecidable problems? Again the answer
is yes, but the solution is not trivial; it makes use of Cantor's diagonal
procedure.

It would be interesting to have a decision method for the question: does a
Turing machine (with index e) eventually stop (and thus produce an output)
on an input x? This is Turing's famous Halting Problem. We can make this
precise in the following way: is there a Turing machine such that with input
(e; x) it produces an output 1 if the machine with index e and input x
eventually stops, and an output 0 otherwise. We will show (informally)
that there is no such machine.

Suppose there is a machine M0 with index e0 such that

'e0 (e; x) =

8<
:

1 if 'e(x) exists;
0 if there is no such output for the machine with

index e on input x:

We can change this machine M0 slightly such that we get a new machine
M1 with index e1 such that

'e1 (x) = 1 if 'e0(x; x) = 0

and there is no output if 'e0 (x; x) = 1. One can simply take the machine
M0 and change the output 0 into a 1, and send it inde�nitely moving to the
left if the output of M0 was 1.

Now,

'e0 (e1; e1) = 0, 'e1 (e1) = 1, 'e0(e1; ; e1) = 1:

Contradiction. So the machine M0 does not exist: the halting problem is
undecidable.

Turing himself has put forward certain arguments to support the thesis
that all algorithms (including the partial ones) can be carried out by means
of Turing machines. Algorithms are here supposed to be of a `mechanical'
nature, i.e. they operate stepwise, each step is completely determined by the
instructions and the given con�gurations (e.g. number-symbols on paper,
pebbles, or the memory content of a computer), and everything involved is
strictly �nite. Since computations have to be performed on (or in) some
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device (paper, strings of beads, magnetic tape, etc.) it will not essentially
restrict the discussion if we consider computations on paper. In order to
carry out the algorithm one (or a machine) has to act on the information
provided by the con�guration of symbols on the paper. The e�ectiveness
of an algorithm requires that one uses an immediately recognizable portion
of this information, so one can use only local information (we cannot even
copy a number of 20 �gures as a whole!), such as three numerals in a row
or the letters attached to the vertices of a small-sized triangle. A Turing
machine can only read one symbol at a time, but it can, e.g. scan three
squares successively and use the information by using internal states for
memory purposes. So the limitations of the reading ability to one symbol
at a time is not essential.

The �niteness condition on Turing machines, i.e. both on the alphabet
and on the number of states, is also a consequence of the e�ectiveness of
algorithms. An in�nite number of symbols that can be printed on a square
would violate the principle of immediate recognizability, for a number of
symbols would become so similar that they would drop below the recogniz-
ability threshold.

Taking into account the ability of Turing machines to simulate more
complex processes by breaking them into small atomic acts, one realizes
that any execution of an algorithm can be mimicked by a Turing machine.
We will return to this matter when we discuss Church's Thesis.

There are many alternative but equivalent characterizations of algorithms:
recursive functions, �-calculable functions, Markov Algorithms, Register
Machines, etc.|all of which have the discrete character in common. Each
can be given by a �nite description of some sort. Given this feature, it
is a fundamental trick to code these machines, or functions, or whatever
they may be, into natural numbers. The basic idea, introduced by G�odel,
is simple: a description is given in a particular (�nite) alphabet, code each
of the symbols by �xed numbers and code the strings, e.g. by the prime-
power-method.

EXAMPLE. Code a and b as 2 and 3. Then the strings aba aaba : : : are
coded as 22 � 33 � 52; 22 � 32 � 53 � 72 � 113 � 133; : : :. Note that the coding is fully
e�ective: we can �nd for each word its numerical code, and conversely, given
a natural number, we simply factorize it and, by looking at the exponents,
can check if it is a code of a word, and if so, of which word.

Our example is, of course, shockingly simple, but the reader can invent
(or look up) more complicated and versatile codings, cf. [Smorynski, 1991].

The coding reduces the study of algorithms and decision methods to that
of e�ective operations on natural numbers.

EXAMPLE. (1) We consider strings of a's and b's, and we want to test if
such a string contains 15 consecutive b's.
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First we code a! 1; b! 2 and next each string x1; x2 � � �xn is coded as
p�x11 � p�x22 � � � p�xnn , where pi is the ith prime and �xi the code of xi(xi 2 fa bg),
e.g. a ! 21 � 32 � 52 � 71 = 3150; bbb! 44100.

Under this coding, the test for containing 15 consecutive b's is taken to
be a test for a number to be divisible by 15 squares of consecutive primes,
which is a purely number-theoretic test.

(2) We want an algorithm for the same set of strings that counts the
number of a's. We use the same coding, then the algorithm is translated
into a numerical algorithm: compute the prime factorization of n and count
the number of primes with exponent 1.

�nite
objects

algorithm
�nite
object

number
numerical
algorithm number

code of
program

universal
algorithm

input output

coding decoding isomorphism coding decoding

input output

coding decoding

input

input output

Figure 3.

Figure 3 illustrates the use of codings. the lower half contains the so-
called Universal Algorithm. Our working hypothesis is that there is a stan-
dard codi�cation of algorithms that is speci�ed in a certain language. By
coding the linguistic expression for the algorithm in standard codi�cation
into a number, we obtain two inputs for a `super'-algorithm that looks at the
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number that codes the algorithm and then proceeds to simulate the whole
computation. We will meet this so-called universal algorithm in Section 2
under the disguise of clause R7.

We also can see now why the general form of a decision problem can be
taken to be of the form `n 2 X?', for a set of natural numbers X .

Say we want to decide if an object a has the property A; we consider
a coding # of the class of objects under consideration into the natural
numbers. Then A is coded as a predicate A](x) of natural numbers, which
n turn determines the set A] = fx 2 N j A](x)g. So, we have reduced the
question `Does a have the property A?' to `](a) 2 A]?'

For theoretical purposes we can therefore restrict ourselves to the study of
algorithms on natural numbers and to decision problems for sets of natural
numbers.

We say that a set X is decidable if there is an algorithm F such that

F (n) =

�
1 if n 2 X
0 if n 62 X:

We say that F tests for membership of X . In other words: X is decidable
if its characteristic function is given by an algorithm.

1 PRIMITIVE RECURSIVE FUNCTIONS

Given the fact that numerical algorithms can simulate arbitrary algorithms,
it stands to reason that a considerable amount of time and ingenuity has
been invested in that speci�c area. A historically and methodologically
important class of numerical algorithms is that of the primitive recursive
functions. One obtains the primitive recursive functions by starting with
a stock of acknowledged algorithms and constructing new algorithms by
means of substitution and recursion. We have presented evidence that,
indeed, recursion and substitution transform Turing machines into Turing
machines, but the reader can easily provide intuitive arguments for the
algorithmic character of functions de�ned by recursion from algorithmic
functions. The primitive recursive functions are so absolutely basic and
foundationally unproblematic (or rather, just as problematic as the natural
number sequence), that they are generally accepted as a starting point for
metamathematical research. Primitive recursive functions provide us with a
surprisingly large stock of algorithms, including codings of �nite sequences
of natural numbers as mentioned above, and one has to do some highly
non-trivial tricks to get algorithms which are not primitive recursive.

The basic algorithms one departs from are extremely simple indeed:
the successor function, the constant functions and the projection functions
(x1; : : : ; xn) 7! xi(i � n). The use of recursion was already known to
Dedekind, and Landau spelled out the technique in his `Foundations of
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Analysis'. The study of primitive recursive functions was initiated in logic
by Skolem, Herbrand, G�odel and others.

We will now proceed with a precise de�nition, which will be given in
the form of an inductive de�nition. First we present a list of initial func-
tions of an unmistakably algorithmic nature, and then we specify how to
get new algorithms from old ones. The so-called initial functions are the
constant functions Ck

m with Ck
m(n1; : : : ; nk) = m, the successor function S

with S(n) = n + 1, and the projection function P k
i with P k

i (n1; : : : ; nk) =
ni(i � k).

The recognized procedures are: substitution or composition, i.e. when
f(n1; : : : ; nk) = g(h1(n1; : : : ; nk); : : : ; hp(n1; : : : ; nk)) then we say that f is
obtained by substitution from g and h1; : : : ; hp, and primitive recursion, i.e.
we say that f is obtained by primitive recursion from g and h if�

f(0; n1; : : : ; nk) = g(n1; : : : ; nk)
f(m+ 1; n1; : : : ; nk) = h(f(m;n1; : : : ; nk); n1; : : : ; nk;m):

A class of functions is closed under substitution or primitive recursion if f
belongs to it whenever it is obtained by substitution or primitive recursion
from functions that already belong to that class.

DEFINITION 1. The class of primitive recursive functions is the smallest
class containing the initial functions that is closed under substitution and
primitive recursion.

Notation. For convenience we abbreviate sequences n1; : : : ; nk as ~n, when-
ever no confusion arises.

EXAMPLES 2. The following functions are primitive recursive.

1. x+ y �
x+ 0 = x
x+ (y + 1) = (x+ y) + 1

This de�nition can be put in the form that shows immediately that + is
primitive recursive.

+(0; x) = P 1
1 (x)

+(y + 1; x) = S(P 3
1 (+(y; x); x; y)):

In accordance with tradition we write x+ y for +(y; x). Note that we have
given an h in the second line, that actually contains all the variables that
the schema of recursion prescribes. This is not really necessary since the
projection functions allow us to add dummy variables.
EXAMPLE. Let g contain only the variables x and y, then we can add the
dummy variable z as follows f(x; y; z) = g(P 3

1 (x; y; z); P 3
2 (x; y; z)).

We will leave such re�nements to the reader and proceed along traditional
lines.
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2. x � y �
x � 0 = 0
x � (y + 1) = x � y + x (we use (1))

3. xy �
x0 = 1
xy+1 = xy � x

4. the predecessor function, p(x) =

�
x� 1 if x > 0
0 if x = 0

�
p(0) = 0
p(x+ 1) = x

5. the cut-o� subtraction (monus), x
:� y, where x

:� y = x� y if x � y
and 0 else. �

x
:� 0 = x

x
:� (y + 1) = p((x

:� y))

6. the factorial function, n! = 1 � 2 � 3 � � � (n� 1) � n.

7. the signum function, sg(x) = 0 if x = 0, 1 otherwise.

8. sg, with sg(x) = 1 if x = 0; 0 otherwise.

Observe that sg(x) = 1
:� sg(x).

9. j x� y j, observe that j x� y j= (x
:� y) + (y

:� x).

10. f(~x; y) = �y
i=0g(~x; i), where g is primitive recursive.

11. f(~x; y) = �y
i=0g(~x; i), idem.

12. If f is primitive recursive and � is a permutation of the set f1; : : : ; ng,
then g with g(x1; : : : ; xn) = f(x�1; : : : ; x�n) is also primitive recursive.

Proof. g(~x) = f(Pn
�1(~x); : : : ; Pn

�n(~x)). �

The reader may �nd it an amusing exercise to enlarge the stock for primitive
recursive functions `by hand'. We will, however, look for a more systematic
way to obtain new primitive recursive functions.

DEFINITION 3. A relation R is primitive recursive if its characteristic
function is so.

Note that this corresponds to the idea of testing R for membership: let
KR be the characteristic function of R then we know that

~n 2 R, KR(n1; : : : ; nk) = 1:

EXAMPLES 4. The following sets (relations) are primitive recursive
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1. ;;K;(x) = 0

2. The set of even numbers, E.�
KE(0) = 1
KE(x+ 1) = sg(KE(x))

3. The equality relation K=(x; y) = sg(j x� y j)
4. The order relation: K<(x; y) = sg(x

:� y).

Note that relations are subsets of Nk for a suitable k; when dealing with
operations or relations, we assume that we have the correct number of ar-
guments, e.g. when we write A \ B we suppose that A;B � Nk.

LEMMA 5. The primitive recursive relations are closed under [;\; c and
bounded quanti�cation.

Proof. Let C = A \ B, then x 2 C $ x 2 A ^ x 2 B, so KC(x) =
1 $ KA(x) = 1 ^KB(x) = 1. Therefore we put KC(x) = KA(x) �KB(x).
For union take KA[B(x) = sg(KA(x) + KB(x)), and for the complement
KAC (x) = sg(KA(x)).

We say that R is obtained by bounded quanti�cation from S if R(n1; : : : ;
nk;m) := Qx � mS(n1; : : : ; nk; x), where Q is one of the quanti�ers 8; 9.

Consider the bounded existential quanti�cation: R(~x; n) := 9y � nS(~x; y),
then KR(~x; n) = sg�y�nKS(~x; y), therefore R is primitive recursive if S is
so.

The 8 case is similar, and is left to the reader. �

LEMMA 6. The primitive recursive relations are closed under primitive
recursive substitutions, i.e. if f1; : : : ; fn and R are primitive recursive, then
so is
S(x1; : : : ; xk) := R(f1(~x); : : : ; fn(~x)).

Proof. KS(~x) = KR(f1(~x); : : : ; fn(~x)). �

LEMMA 7 (de�nition by cases). Let R1; : : : ; Rp be mutually exclusive prim-
itive recursive predicates, such that 8~x(R1(~x) _ R2(~x) _ � � � _ Rp(~x)) and
g1; : : : ; gp primitive recursive functions, then f with

f(~x) =

8>>><
>>>:

g1(~x) if R1(~x)
g2(~x) if R2(~x)

...
gp(~x) if Rp(~x)

is primitive recursive.
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Proof. If KRi(~x) = 1, then all the other characteristic functions yield 0, so
we put f(~x) = g1(~x) �KR1

(~x) + : : :+ gp(~x) �KRp(~x). �

The natural numbers have the fundamental and convenient property that
each non-empty set has a least element (N is well-ordered). A natural
question to pose is: can we e�ectively �nd this least element? In general
the answer is negative, but if the set under consideration is non-empty and
primitive recursive, then we can simply take the element that ensured its
non-emptiness and test the smaller numbers one by one for membership.

Some notation: (�y)R(~x; y) stands for the least number y such that
R(~x; y) if it exists. (�y < m)R(~x; y) stands for the least number y < m
such that R(~x; y) if such a number exists; if not, we simply take it to be m.

LEMMA 8. If R is primitive recursive, then so is (�y < m)R(~x; y).

Proof. Consider the following table

R R(~x; 0) R(~x; 1) ; : : : ; R(~x; i); R(~x; i+ 1) ; : : : ; R(~x;m)
KR 0 0 : : : 1 0 : : : 1
g 0 0 : : : 1 1 : : : 1
h 1 1 : : : 0 0 : : : 0
f 1 2 : : : i i : : : i

In the �rst line we write the values of KR(~x; i) for 0 � i � m, in the second
line we make the sequence monotone, e.g. take g(~x; i) = sg�i

j=0KR(~x; j).
Next we switch 0 and 1: h(~x; i)=sgg(~x; i) and �nally we sum the h : f(~x; i) =
�i
j=0h(~x; j). If R(~x; j) holds for the �rst time in i, then f(~x;m) = i, and

if R(~x; j) does not hold for any j < m, then f(~x;m � 1) = m. So (�y <
m)R(~x; y) = f(~x;m)`, and this bounded minimalization yields a primitive
recursive function. �

We put (�y � m)R(~x; y) := (�y < m+ 1)R(~x; y).

We now have suÆcient equipment to establish the primitive recursiveness
of a considerable number of functions and relations.

EXAMPLES 9. The following are primitive recursive.

1. The set of primes: x is a prime$ 8yz � x(x = yz ! y = 1_z = 1)^
x 6= 1.

2. The divisibility relation: x j y $ 9z � y(x � z = y)

3. The exponent of the prime p in the factorization of x:

f(x) = (�y � x)(py j x ^ :py+1 j x)
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4. The `nth prime' function:�
p1 = 2
pn+1 = (�x � pnn)[x is prime ^ x > pn]:

We can use the stock of primitive recursive functions that we built up so far
to get a coding of �nite sequences of natural numbers into natural numbers:

(n1; : : : ; nk) 7! 2n1+1 � 3n2+1 � � � � � pni+1i � � � � � pnk+1k :

Note that not all numbers �gure as codes, e.g. 14 does not.
For convenience we add a code for the so-called `empty sequence'.
Recall that, in the framework of set theory a sequence of length n is

a mapping from f1; : : : ; ng to N , so we de�ne the empty sequence as the
unique sequence of length 0, i.e. the unique map from ; to N , which is the
empty function (set). The choice of the code is a matter of convenience, we
put it 1. Following tradition, we write 1 = h i.

The predicate Seq(n), `n is a sequence number', is clearly primitive recur-
sive, for it boils down to `if a prime divides n, then each smaller prime divides
it': 8p; q � n (`p is a prime' ^ `q is a prime' ^q < p^ p j n! q j n)^n 6= 0.
If n is a sequence number, say of ha1; : : : ; aki we can �nd its `length', i.e. k:

lth(n) := (�x � n+ 1)[:px j n]
:� 1:

Observe that lth(2) = 0. We can `decode' n: (n)i = (the exponent of the

ith prime in the factorization of n)
:� 1 (cf. Example 3 above). Note that

lth(n) and (n)i are primitive recursive. For a �xed k

(a1; : : : ; ak) 7! �k
i=1p

ai+1
i

is primitive recursive. Notation: ha1; : : : ; aki := �k
i=1p

ai+1
i .

We will use abbreviations for the iterated decoding functions: (n)i;j =
((n)i)j , etc.

We can also code the `concatenation' of two sequence numbers: n�m is the
code of ha1; : : : ; ak; b1; : : : ; bpi where n and m are the codes of ha1; : : : ; aki
and hb1; : : : ; bpi. the de�nition of � is as follows (but may be skipped):

n �m = n ��lth(m)
i=1 p

(m)i+1
lth(n)+i:

There is one more form of recursion that will come in handy|the one where
a value may depend on all preceding values. In order to make this precise
we de�ne for a function f(y; ~x) its `course of value' function �f(y; ~x):

� �f(0; ~x) = 1
�f(y + 1; ~x) = �f(y � ~x) � pf(y;~x)+1y+1 ;
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e.g. if f(0) = 1; f(1) = 0; f(2) = 7, then

�f(0) = 1; �f(1) = 21+1; �f(2) = 21+1 � 31; �f(3) = 22 � 3 � 58:
Clearly, if f is primitive recursive, then so is �f . Since �f(n+ 1) `codes' so to
speak all information on f up to the nth value, we can use �f to formulate
course-of-value recursion.

THEOREM 10. If g is primitive recursive and f(y; ~x) = g( �f(y; ~x); y; ~x),
then f is primitive recursive.

Proof. We �rst de�ne �f .

�f(0; ~x) = 1
�f(y + 1; ~x) = �f(y; ~x) � hg( �f(y; ~x); y; ~x)i:

By primitive recursion, �f is primitive recursive. Now f(y; ~x) = ( �f(y +
1; ~x))y, and so f is primitive recursive. �

By now we have collected enough facts about the primitive recursive func-
tions. We might ask if there are more algorithms than just the primitive
recursive functions. The answer turns out to be yes. Consider the following
construction: each primitive recursive function f is determined by its def-
inition, which consists of a string of functions f0; f1; : : : ; fn = f such that
each function is either an initial function, or obtained from earlier ones by
substitution or primitive recursion.

It is a matter of dull routine to code the whole de�nition into a natural
number such that all information can be e�ectively extracted from the code
(see [Grzegorczyk, 1961, p. 41]). The construction shows that we may de�ne
a function F such that F (x; y) = fx(y), where fx is the primitive recursive
function with code x. Now consider D(x) = F (x; x) + 1. Suppose that D is
primitive recursive, i.e. D = fn for a certain n, but then fn(n) = D(n) =
F (n; n) + 1 = fn(n) + 1. Contradiction.

Conclusion. We have `diagonalized out' of the class of primitive recursive
functions and yet preserved the algorithmic character. Hence, we have to
consider a wider class of algorithms.

In case the reader should have qualms in accepting the above outlined
argument, he may set his mind at ease. There are straightforward examples
of algorithms that are not primitive recursive, e.g. Ackermann's function
(cf. Section 2.4).

Since our class of primitive recursive functions evidently does not contain
all algorithms, we will have to look for ways of creating new algorithms not
covered by substitution or primitive recursion. There are various solutions
to this problem. The most radical being a switch to a conceptually di�erent
framework, e.g. that of Turing machines. We want to stay, however, as close
as possible to our mode of generating the primitive recursive functions.
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One way out is to generalize the minimalization, e.g. if g(~x; y) is an
algorithm such that 8~x9y(g(~x; y) = 0) then f(~x) = (�y)[g(~x; y) = 0)] is an
algorithm. This leads to the so-called �-recursive functions.

Although we will ultimately adopt another approach that will quickly
yield all the fundamental theorems of the �eld, we will dwell for a moment
on the �-recursive functions.

The operation of minimalization associates with each total function g(~x; y)
a partial function f(~x) = �y[g(~x; y) = 0].

DEFINITION 11. The class of �-recursive partial functions is the least set
containing the initial functions P k

i (projection), +; �;K< (the characteristic
function of `less than') which is closed under substitution and minimaliza-
tion.

Although the successor and the constant functions are obviously �- recur-
sive, we apparently have lost as much as we have won, for now we no longer
have closure under recursion. One can, fortunately, show that the class of
�-recursive (partial) functions is closed under recursion. The proof rests on
the presence of a coding of �nite sequences of numbers, for a computation
associated with a function de�ned by recursion proceeds by computing suc-
cessively f(0); f(1); : : : f(x). Although we cannot in any obvious way use
the coding via the prime factorization|since we cannot make use of the ex-
ponential function|we can get an alternative coding. The main tool here
is G�odel's �-function:

THEOREM 12. there is a �-recursive function � such that �(n; i) � n :� 1
and for any sequence q0; a1; : : : ; an�1 there is an a with �(a i) = ai for
i < n.

For a proof, cf. [Shoen�eld, 1967, p. 115].
One then de�nes the coding of a0; : : : ; an�1 as �a[8i < n(�(a i) = ai)].

Here we have skipped the traditional lemma's on �-recursive functions and
relations (in particular the closure properties), cf. [Shoen�eld, 1967] or
[Davis, 1958].

If we denote this particular coding temporarily by [a0; : : : ; an�1], then we
can get closure under recursion as follows:
Let �

f(0; ~x) = g(~x)
f(y + 1; ~x) = h(f(y; ~x); ~x; y)

put
f 0(y; ~x) = [f(0; ~x; : : : ; f(y; ~x)]

then

f 0(y; ~x) = �z[Seq(z) ^ 8i < y([z]0 = g(~x) ^ [z]i+1 = h([z]i; ~x; i)]:

Here Seq is the obvious predicate which states that z is a coded sequence and
[ ]i is the decoding function belonging to [ ]. Taking the closure properties
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for granted we see that f 0(y; ~x) is �-recursive. But then so is f , since
f(y; ~x) = [f 0(y; ~x)]lth(y), where lth is the proper length function.

The de�nition of recursiveness via minimalization has the advantage that
it does not ask for fancy apparatus, just two innocent closure operations.
One has, however, to work harder to obtain the fundamental theorems that
concern the properties of algorithms as �nite, discrete, structured objects.

The sketch of Turing machine computability that we have presented
should, however, make it clear that all (partial) �-recursive functions can be
simulated by Turing machines. The converse is also correct: every function
that can be computed by a Turing machine is �-recursive (cf. [Davis, 1958]).

The approach to the partial recursive functions that we will use is that of
Kleene using indices of recursive functions in the de�nition. The most strik-
ing aspect of that approach is that we postulate right away the existence of
a universal function for each class of (partial) recursive functions of n argu-
ments. The system has, so to speak, its diagonalization built in. Because of
this we cannot have total functions only, for suppose that we have a univer-
sal recursive function g(x; y) for the class of all unary recursive functions,
i.e. for each f in the class there is a y such that f(x) = g(x; y). Taking
for granted that the recursive functions are closed under identi�cation of
variables, we get a unary recursive function g(x; x). Evidently g(x; x) + 1
is also recursive, so g(x; x) + 1 = g(x; y) for some y. For this particular
y, we get g(y; y) + 1 = g(y; y). Contradiction. Since g(x; y) was taken to
be recursive, we cannot conclude to have diagonalized out of the class of
recursive functions. Instead, we conclude that g(y; y) is unde�ned, so not
all recursive functional are total.

Surprising as it may seem, we thus escape a diagonalization paradox for
recursion theory.

Before we start our de�nition of the recursive functions in earnest, it
may be helpful to the reader to stress an analogy with the theory of Turing
machines.

We have seen that there is a universal Turing machine that operates on
suitably coded strings of instructions. Calling such a coded string the index
of the machine that is being simulated by the universal Turing machine,
we introduced the notation 'e(x) = y for `the machine with index e yields
output y on input x'. We can now refer to the Turing machines by their
indices, e.g. the existence of the universal Turing machine comes to : there
is an index u such that for all indices e'u(e; x) ' 'e(x). The last expression
has to be read as `both sides are unde�ned, or they are de�ned and identical'.

Whereas in the case of Turing machines there is quire a lot of work to
be done before one gets the universal machine, we will take the easy road
and give the `universal' recursive functions by one of the closure properties
(clause R7 in De�nition 2.1).

One �nal remark: matters of terminology in recursion theory are some-
what loosely observed. One should always speak of partial recursive func-
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tions, and add the predicate total when such a function is de�ned for all
arguments. However, the total `partial recursive functions are called just
`recursive'. Moreover, some authors simply drop the adjective `partial' and
always speak of `recursive functions'. We will steer a middle course and add
whatever adjectives that may be helpful. Nonetheless, the reader should be
aware!

2 PARTIAL RECURSIVE FUNCTIONS

We will now extend the class of algorithms as indicated above. This exten-
sion will yield new algorithms and it will automatically widen the class to
partial functions.

In our context functions have natural domains, i.e. sets of the form Nn

(= f(m1; : : : ;mn) j mi 2 Ng, so called Cartesian products), a partial func-
tion has a domain that is a subset of Nn. If the domain is all of Nn, then
we call the function total.

EXAMPLE. f(x) = x2 is total, g(x) = �y[y2 = x] is partial and not total,
(g(x) is the square root of x if it is an integer).

The algorithms that we are going to introduce are called partial recur-
sive functions; maybe recursive partial functions would have been a better
name, anyway, the name has come to be generally accepted. The particular
technique for de�ning partial recursive functions that we employ here goes
back to Kleene. As before, we use an inductive de�nition; apart from clause
R7 below, we could have used a formulation almost identical to that of
the de�nition of the primitive recursive functions. Since we want a built-in
universal function, we have to employ a more re�ned technique that allows
explicit reference to the various algorithms. The trick is not esoteric at all,
we simply give each algorithm a code number, what we call its index. We
�x these indices in advance so that we can speak of the `algorithm with
index e yields output y on input (x1; : : : ; xn)', symbolically represented as
feg(x1; : : : ; xn) ' y.

Note that we do not know in advance that the result is a partial function,
i.e. that for each input there is at most one output. However plausible that
is, it has to be shown. Kleene has introduced the symbol ' for equality in
the context of unde�ned terms. A proper treatment would be by means of
the existence predicate and ' would be the � of Van Dalen [see the chapter
on Intuitionistic Logic in Volume 7 of this Handbook]. The convention ruling
' is: if g ' s then t and s are simultaneously de�ned and identical, or they
are simultaneously unde�ned, [Kleene, 1952, p. 327].
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DEFINITION 13. The relation feg(~x) ' y is inductively de�ned by

R1 fh0; n; qig(m1; : : : ;mn) ' q
R2 fh1; n; iig(m1; : : : ;mn) ' mi for 1 � i � n
R3 fh2; n; iig(m1; : : : ;mn) ' mi + 1 for 1 � i � n
R4 fh3; n+ 4ig(p; q; r; s;m1; : : : ;mn) ' p if r = s

fh3; n+ 4ig(p; q; r; s;m1; : : : ;mn) ' q if r 6= s

R5 fh4; n; b; c1; : : : ; ckig(m1; : : : ;mn) ' p if there are q1; : : : ; qk
such that fcig(m1; : : : ;mn) ' qi(1 � i � k) and fbg(q1; : : : ; qk) ' p

R6 fh5; n+ 2ig(p; q;m1; : : : ;mn) ' S1n(p; q)
R7 fh6; n+ 1ig(b;m1; : : : ;mn) ' p if fbg(m1; : : : ;mn) ' p:

The function S1n from R6 will be speci�ed in the Smn theorem. It is a pure
technicality, slipped in to simplify the proof of the normal form theorem.
We will comment on it below.

Keeping the above reading of feg(~x) in mind, we can paraphrase the
schema's as follows:

R1 the machine with index h0; n; qi yields for input
(m1; : : : ;mn) output q (the constant function),

R2 the machine with index h1; n; ii yields for input ~m out-
put mi (the projection function pni ),

R3 the machine with index h2; n; ii yields for input ~m out-
put mi+1 (the successor function on the ith argument),

R4 the machine with index h4; n+4i tests the equality of the
third and fourth argument of the input and puts out the
�rst or second argument accordingly (the discriminator
function),

R5 the machine with index h4; n; b; c1; : : : ; cki �rst simulates
the machines with index c1; : : : ; ck with input ~m, then
uses the output sequence (q1; : : : ; qk) as input and sim-
ulates the machine with index b (substitution),

R7 the machine with index h6; n+ 1i simulates for a given
input b;m1; : : : ;mn, the machine with index b and input
m1; : : : ;mn (reection).

The machine with index h6; n + 1i acts as a universal machine for all ma-
chines with n-argument inputs.
Remarks. (1) The index of a machine contains all relevant information, the
�rst co-ordinate tells us which clause to use, the second co-ordinate always
gives the number of arguments. The remaining co-ordinates contain the
speci�c information.

(2) R7 is very powerful, it yields an enumeration of all machines with a
�xed number of arguments. Exactly the kind of machine we needed above
for the diagonalization. Intuitively, the existence of such a machine seems
quite reasonable. If one can e�ectively recognize the indices of machines,
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then a machine should be able to do so, and thus to simulate each single
machine.

The scrupulous might cal R7 a case of cheating, since it does away with
all the hard work one has to do in order to obtain a universal machine, e.g.
in the case of Turing machines.

The relation feg(~x) ' y is functional, i.e. we can show

Fact. feg(~x) ' y; feg(~x) ' z ) y = z.

Proof. Use induction on the de�nition of feg. �

The above de�nition tells us implicitly what we have to consider a com-
putation: to compute feg(~x) we look at e, is the �rst `entry' of e if 0; 1; 2,
then we compute the output via the corresponding initial function. If the
�rst `entry' is 3, then we determine the output `by cases'. First `entry' 5
is handled as indicated in the Smn theorem. If the �rst entry is 4, then we
�rst carry out the subcomputations with indices c1; : : : ; ck, followed by the
subcomputation with index b, and �nd the output according to R5. At �rst
`entry' 6, we jump to the subcomputation with index b (cf. R7).

In the presence of R7 we are no longer guaranteed that the process will
stop; indeed, we may run into a loop, as the following simple example shows.

By R7 there exists an e such that feg(x) = fxg(x).
To compute feg for the argument e we pass, according to R7, onto the

right-hand side, i.e. we must compute feg(e), since e was introduced by R7,
we must repeat the transitions to the right hand side, etc. Evidently our
procedure does not get us anywhere!

Loops and non-terminating computations account for algorithms being
unde�ned at some inputs.

There could also be a trivial reason for not producing outputs, e.g.
f0g(~x) ' y holds for no y, since 0 is to an index at all, so f0g stands
for the empty function.

Some terminology:

1. If for a partial function ' 9y('(~x) ' y), then we say that ' converges
at ~x, otherwise ' diverges at ~x.

2. If a partial function converges for all inputs, it is called total.

3. A total partial recursive function (sic!) will be called a recursive func-
tion.

4. a set (relation) is called recursive if its characteristic function is re-
cursive.

The de�nition of feg(~x) ' y has the consequence that a partial recursive
function diverges if one of its arguments diverges. This is an important
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feature, not shared for example by �-calculus or combinatory logic. It tells
us that we have to carry out all subcomputations. We could, for instance,
not assert that
fegx� fegx = 0 for all e and x, we �rst must show that fegx converges.

This feature is sometimes inconvenient and slightly paradoxical, e.g. in
direct applications of the discriminator scheme R4; fh3; 4ig('(x);  (x); 0; 0)
is unde�ned when the (seemingly irrelevant) function  (x) is unde�ned.
With a bit of extra work, we can get an index for a partial recursive function
that does de�nition by cases on partial recursive functions:

feg(~x) '
� fe1g(~x) if g1(~x) = g2(~x)
fe2g(~x if g1(~x) 6= g2(~x)

for recursive g1; g2.

De�ne

'(~x) '
�
e1 if g1(~x) = g2(~x)
e2 if g1(~x) 6= g2(~x)

by '(~x) ' fh3; 4ig(e1; e2; g1(~x; g2(~x)), use R5. Then an application of R7
and R5 to f'(~x)g(~x) yields the desired feg(~x).

We will adopt the following notational convention after Rogers' [1967]

book: partial recursive functions will be denoted by ';  ; : : :, and the total
ones by f; g; h, . . . . From now on we will indiscriminately use `=' for `'',
and for the ordinary equality.

After some preliminary work, we will show that all primitive recursive
functions are recursive. We could forget about the primitive recursive func-
tions and just discuss partial recursive ones. However, the primitive recur-
sive functions form a very natural class, and they play an important role in
metamathematics.

The following important theorem has a neat machine motivation. Con-
sider a machine with index e operating on two arguments x and y. Keeping
x �xed, we have a machine operating on y. So we get a sequence of ma-
chines, one for each x. Does the index of each such machine depend in a
decent way on x? The plausible answer seems `yes'. The following theorem
con�rms this.

THEOREM 14 (The Smn Theorem). For every m;n such that 0 < m < n
there exists a primitive recursive function Smn such that
fSmn (e; x1; : : : ; xm)g(xm+1; : : : ; xn) = feg(~x).

Proof. The �rst function S1n is given by R6, we write down its explicit
de�nition:

S1n(e; y) = h4; (e)2
:� 1; e; h0; (e)2

:� 1; 1i; : : : ;
h1; (e)2

:� 1; n
:�ii:
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Then fS1n(e; y)g(~x) = z , 9q1 � � � qn[fh0; (e)2
:� 1; yig)(~x) = q1 ^

fh1; (e)2
:� 1; 1i(~x) = q2 ^ � � � ^ fh1; (e)2

:� 1; n
:� 1ig(~x) = qn ^

feg(q1; : : : ; qn) = z].
By the clauses R1 and R2 we get q1 = y and qi+1 = xi, so fS1n(e; y)g(~x) =

feg(y; ~x). Clearly S1n is primitive recursive.
Smn is obtained by applying S1n m times. Note that Smn is primitive

recursive. �

The Smn theorem expresses a uniformity property of the partial recursive
functions. It is obvious indeed that, say for a partial recursive function
'(x; y), each individual '(n; y) is partial recursive (substitute the constant
n function for x), but this does not yet show that the index of �y �'(x; y) is
in a systematic, uniform way computable from the index of ' and x, thisis
taken care of by the Smn -theorem.

There are numerous applications, we will just give one: de�ne '(x) =
feg(x)+ffg(x), then by 20 ' is partial recursive and we would like to express
the index of ' as a function of e and f . Consider  (e; f; x) = feg(x)+ffg().
 is partial recursive, so it has an index n, i.e. fng(e; f; x) = feg(x)+ffg(x).
By the Smn theorem there is a primitive recursive function h such that
fng(e; f; x) = fh(n; e; f)g(x). Therefore, g(e; f) = h(n; e; f) is the required
function.

Next we will prove a fundamental theorem about partial recursive func-
tions that allows us to introduce partial recursive functions by inductive
de�nitions, or by implicit de�nition. We have seen that we can de�ne a
primitive recursive function by using all (or some) of the preceding values
to get a value in n. We might, however, just as well make the value depend
on future values, only then we can no longer guarantee that the resulting
function is total (let alone primitive recursive!).

EXAMPLE.

'(n) =

�
0 if n is a prime, or 0, or 1
'(2n+ 1) + 1 otherwise:

Then '(0) = '(1) = '(2) = '(3) = 0, '(4) = '(9) + 1 = '(19) + 2 = 2,
'(5) = 0, and , e.g. '(85) = 6. Prima facie, we cannot say much about such
a sequence. The following theorem of Kleene shows that we can always �nd
a partial recursive solution to such an equation for '.

THEOREM 15 (The Recursion Theorem). Three exists a primitive recur-
sive function rc such that frc(e)g(~x) = feg(rc(e); ~x).

Before we prove the theorem let us convince ourselves that it solves our
problem. We want a partial recursive ' such that '(~x) = feg(: : : ' : : : ~x)
(where the notation is meant to indicate that ' occurs on the right-hand
side). To ask for a partial recursive function is to ask for an index for it, so
replace ' by fzg, where z is the unknown index:
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fzg(~x) = feg(: : :fzg : : : ; ~x) = fe0g(z; ~x):

Now it is clear that rc(e0) gives us the required index for '.

Proof. Let '(m; e; ~x) = feg(S2n+2(m;m; e); ~x) and let p be an index of '.
Put rc(e) = S2n+2(p; p; e), then

frc(e)g(~x) = fS2n+2(p; p; e)g(~x) = fpg(p; e; ~x) = '(p; e; ~x)
= feg(S2n+2(p; p; e); ~x) = feg(rc(e); ~x):

�

As a special case we get the

COROLLARY. For each e there exists an n such that fng(~x) = feg(n; ~x).

REMARK. Although we have not yet shown that the class of partial recur-
sive functions contains all primitive recursive functions, we know what prim-
itive recursive functions are and what their closure properties are. In par-
ticular, if feg should happen to be primitive recursive, then by frc(e)g(~x) =
feg(rc(e); ~x); frc(e)g is also primitive recursive.

EXAMPLES 16.

1. There is a partial recursive function ' such that '(n) = ('(n+1)+1)2:
Consider fzg(n) = feg(z; n) = (fzg(n + 1) + 1)2. By the recursion
theorem there is a solution rc(e), hence ' exists. A simple argument
shows that ' cannot be de�ned for any n, so the solution is the empty
function (the machine that never gives an output).

2. The Ackermann function, see [Smorynski, 1991], p. 70 . Consider the
following sequence of functions.

'0(m;n) = n+m
'1(m;n) = n �m
'2(m;n) = nm

...�
'k+1(0; n) = n
'k+1(m+ 1; n) = 'k('k+1(m;n); n) (k � 2)

This sequence consists of faster and faster growing functions. We can lump
all those functions together in one function

'(k; k; n) = 'k(m;n):
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The above equations can be summarized as

8>>>><
>>>>:

'(0;m; n) = n+m

'(k + 1; 0; n) =

8<
:

0 if k = 0
1 if k = 1
n else

'(k + 1;m+ 1; n) = '(k; '(k + 1;m; n); n):

Note that the second equation has to distinguish cases according to the
'k+1 being the multiplication, exponentiation, or the general case (k � 2).

Using the fact that all primitive recursive functions are recursive
(Corollary 20) we rewrite the three cases into one equation of the form
feg(k;m; n) = f(e; k;m; n) for a suitable recursive f . Hence, by the recur-
sion theorem there exists a recursive function with index e that satis�es the
equations above. Ackermann has shown that the function '(n; n; n) grows
eventually faster than any primitive recursive function.

The recursion theorem can also be used for inductive de�nitions of sets
or relations, this is seen by changing over to characteristic functions, e.g.
suppose we want a relation R(x; y) such that

R(x; y)$ (x = 0 ^ y 6= 0) _ (x 6= 0 ^ y 6= 0 ^ R(x
:� 1; y

:� 1)):

Then we write

KR(x; y) = sg(sg(x) � sg(y) + sg(x) � sg(y) �KR(x
:� 1; y

:� 1));

so there is an e such that

KR(x; y) = feg(KR(
:� 1; y

:� 1); x; y):

Now suppose KR has index z then we have

fzg(x; y) = fe0g(z; x; y):

The solution fng provided by the recursion theorem is the required char-
acteristic function. One immediately sees that R is the relation `less than',
so fng is total recursive and hence so is R (cf. 4), note that by the remark
following the recursion theorem we even get the primitive recursiveness of
R. The partial recursive functions are a rather wild lot, they have an enor-
mous variety of de�nitions (in terms of R1{R7). We can, however, obtain
them in a uniform way by one minimalization from a �xed predicate.

THEOREM 17 (Normal Form Theorem). There is a primitive recursive
predicate T such that feg(~x) = ((�z)T (e; h~xi; z))1.

Proof. See the Appendix. �
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The predicate T formalizes the statement `z is the computation of the partial
recursive function (machine with index e operating on input h~xi', where
`computation' has been de�ned such that the �rst projection is the output.

For applications the precise structure of T is not important. One can
obtain the well-known undecidability results from the Smn theorem, the re-
cursion theorem and the normal form theorem.

The partial recursive functions are closed under a general form of mini-
malization, sometimes called unbounded search, which for a given recursive
function f(y; ~x) and arguments ~x runs through the values of y and looks for
the �rst one that makes f(y; ~x) equal to zero.

THEOREM 18. Let f be a recursive function, then '(~x) = �y[f(y; ~x) = 0]
is partial recursive.

Proof. Our strategy consists of testing successively all values of y until
we �nd the �rst y such that f(y; ~x) = 0. We want a function  such that
 (y; ~x) produces a 0 if f(y; ~x) = 0 and moves on to the next y while counting
the steps if f(y; ~x) 6= 0. Let this function  have index e. We introduce
auxiliary functions  1;  2 with indices b and c such that  1(e; y; ~x) = 0 and
 2(e; y; ~x) =  (y + 1; ~x) + 1 = feg(y + 1; ~x) + 1. If f(y; ~x) = 0 then we
consider  1, if not,  2. So we introduce, by clause R4, a new function �0:

�0(e; y; ~x) =

�
b if f(y; ~x) = 0
c else

and we put �(e; y; ~x) = f�0(e; y; ~x)g(e; y; ~x).
The recursion theorem provides us with an index e0 such that �(e0; y; ~x) =

fe0g(y; ~x).
We claim that fe0g(0; ~x) yields the desired value, if it exists at all, i.e. e0

is the index of the  we were looking for.
For, if f(y; ~x) 6= 0 then �(e0; y; ~x) = fcg(e0; y; ~x) =  2(e0; y; ~x) =

 (y + 1; ~x) + 1, and if f(y; ~x) = 0 then �(e0; y; ~x) = fbg(e0; y; ~x) = 0.
So suppose that y0 is the �rst value y such that f(y; ~x) = 0, then

 (0; ~x) =  (1; ~x) + 1 =  (2; ~x) + 2 = � � � = 	(y0; ~x) + y0 = y0:

�

Note that the given function need not be recursive, and that the above
argument also works for partial recursive f . We then have to reformulate
�y[f(x; ~y) = 0] as the y such that f(y; ~x) = 0 and for al z < y f(z; ~x) is
de�ned and positive.

We need minimalization in our approach to obtain closure under primitive
recursion. We could just as well have thrown in an extra clause for primitive
recursion, (and deleted R4 and R6), but that would have obscured the power
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of the reection clause R7. Observe that in order to get closure under
primitive recursion, we need a simple consequence of it, namely R6.

It is easy to see that the predecessor function, x
:� 1, can be obtained:

de�ne x
:� 1 =

�
0 if x = 0
�y[y + 1 = x] else

where �y[y + 1 = x] = �y[f(y; x) = 0] with

f(y; x) =

�
0 if y + 1 = x
1 else

THEOREM 19. The recursive functions are closed under primitive recur-
sion.

Proof. We want to show that if g and h are recursive, then so is f , de�ned
by �

f(0; ~x) = g(~x)
f(y + 1; ~x) = h(f(y; ~x); ~x; y):

We rewrite the schema as

f(y; ~x) =

�
g(~x) if y = 0

h(f(y
:� 1; ~x); ~x; y

:� 1) otherwise:

Since the predecessor is recursive, an application of de�nition by cases
yields the following equation for an index of the function f : feg(y; ~x) =
fag(y; ~x; e) (where a can be computed from the indices of g; h and the pre-
decessor). By the recursion theorem the equation has a solution e0. One
shows by induction on y that fe0g is total, so f is a recursive function. �

We now get the obligatory

COROLLARY 20. All primitive recursive functions are recursive.

DEFINITION 21.

1. A set ( relation) is (recursively) decidable if it is recursive.

2. A set is recursively enumerable (RE) if it is the domain of a partial
recursive function.

3. W k
e = f~x 2 Nk j 9y(feg(~x) = yg, i.e. the domain of the partial

recursive function feg. We call e the RE index of W k
e . If no confusion

arises we will delete the superscript.

We write '(~x) # (resp. '(~x) ") for '(~x) converges (resp. ' diverges).
One can think of a recursively enumerable set as a set that is accepted

by an abstract machine; one successively o�ers the natural numbers, 0, 1,
2, : : :, and when the machine produces an output the input is `accepted'.
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The next theorem states that we could also have de�ned RE sets as those
produced by a machine.

It is good heuristics to think of RE sets as being accepted by machines,
e.g. if Ai is accepted by machine Mi(i = 0; 1), then we make a new machine
that simulates M0 and M1 running parallel, and so n is accepted by M if
it is accepted by M0 or M1. Hence the union of two RE sets is also RE.

EXAMPLES 22 (of RE sets).

1. N = the domain of the constant function.

2. ; = the domain of the empty function. This function is partial recur-
sive, as we have already seen.

3. Every recursive set is RE. Let A be recursive, put

 (~x) = �y[KA(~x) = y ^ y 6= 0]

Then Dom( ) = A.

The recursively enumerable sets derive their importance from the fact that
they are e�ectively given, in the sense that they are produced by partial
recursive functions, i.e. they are presented by an algorithm. Furthermore it
is the case that the majority of important relations (sets) in logic are RE.
For example the set of provable sentences of arithmetic or predicate logic is
RE. The RE sets represent the �rst step beyond the decidable sets, as we
will show below.

THEOREM 23. The following statements are equivalent, (A � N ):

1. A = Dom(') for some partial recursive ',

2. A = Ran(') for some partial recursive ',

3. A = fx j 9yR(x; y)g for some recursive R.

Proof. (1) ) (2). De�ne  (x) = x � sg('(x) + 1). If x 2 Dom('), then
 (x) = x, so x 2 Ran( ), and if x 2 Ran( ), then '(x) #, so x 2 Dom(').

(2) ) (3) Let A = Ran(fgg) then

x 2 A$ 9w[T (g; (w)1; (w)2) ^ x = (w)2;1]:

The relation in the scope of the quanti�er is recursive.
Note that w acts as a pair: �rst co-ordinate|input, second co-ordinate|

computation.
(3) ) (1) De�ne '(x) = �yR(x; y). ' is partial recursive and Dom(') =

A:
Observe that (1) ) (3) also holds for A � Nk. �
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Since we have de�ned recursive sets by means of characteristic functions,
and since we have established closure under primitive recursion, we can copy
all the closure properties of primitive recursive sets (and relations) for the
recursive sets (and relations).

Next we list a number of closure properties of RE-sets.

THEOREM 24.

1. If A and B are RE, then so are A [ B and A \B
2. If R(x; ~y) is RE, then so is 9xR(x; ~y)

3. If R(x; ~y) is RE and ' partial recursive, then R('(~y; ~z); ~y) is RE

4. If R(x; ~y) is RE, then so are 8x < zR(x; ~y) and 9x < zR(x; ~y).

Proof.

1. There are recursive R and S such that

A~y $ 9xR(x; ~y); B~y $ 9xS(x; ~y):

Then
A~y ^ B~y $ 9x1x2(R(x1; ~y) ^ S(x2; ~y))

$ 9z(R((z)1; ~y) ^ S((z)2; ~y)):

The relation in the scope of the quanti�er is recursive, so A\B is RE.
A similar argument establishes the recursive enumerability of A [ B.
The trick of replacing x1 and x2 by (z)1 and (z)2 and 9x1x2 by 9z is
called contraction of quanti�ers.

2. Let R(x; ~y) $ 9zS(z; x; ~y) for a recursive S, then 9xR(x; ~y) $
9x9zS(z; x; ~y) $ 9uS((u)1; (u)2; ~y). So the projection 9xR(x; ~y) of
R is RE.

9xR(x; ~y) is indeed a projection. Consider the two- dimensional case
(Figure 4).

The vertical projection S of R is given by Sx$ 9yR(x; y).

3. Let R be the domain of a partial recursive  , then R('(~y; ~z); ~y) is the
domain of  ('(~y; ~z); ~y).

4. Left to the reader. �

THEOREM 25. The graph of a partial function is RE i� the function is
partial recursive.

Proof. G = f(~x; y) j y = feg(~x)g is the graph of feg. Now (~x; y) 2 G ,
9z(T (e; h~xi; z)^y = (z)1), soG is RE. Conversely, if G is RE, thenG(~x; y),
9zR(~x; y; z) for some recursive R. Hence '(~x) = (�wR(~x; (w)1; (w)2))1, so
' is partial recursive. �
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We can also characterize sets in terms of RE-sets. Suppose both A and
its complement Ac are RE, then (heuristically) we have two machines enu-
merating A and Ac. Now the test for membership of A is simple: turn
both machines on and wait for n to turn up as output of the �rst or second
machine. This must necessarily occur in �nitely many steps since n 2 A or
n 2 Ac (principle of the excluded third). Hence, we have an e�ective test.
We formalize the above:

THEOREM 26. A is recursive , A and Ac are RE.

Proof. ) is trivial, A(~x) $ 9yA(~x), where y is a dummy variable. Simi-
larly for Ac.
( Let A(~x))$ 9yR(~x; y);:A(~x)$ 9z(S(v; z). Since 8~x(A(~x)_:A(~x)), we
have 8~x9y(R(~x; y)_S(~x; y)), so f(~x) = �y[R(~x; y)_S(~x; y)] is recursive and
if we plug the y that we found in R(~x; y), then we know that if R(~x; f(~x))
is true, the ~x belongs to A. So A(~x)$ R(~x; f(~x)), i.e. A is recursive. �

For partial recursive functions we have a strong form of de�nition by
cases:

THEOREM 27. Let  1; : : : ;  k be partial recursive, R1; : : : ; Rk mutually
disjoint RE-relations, then

'(~x) =

8>>>>><
>>>>>:

 1(~x) if R1(~x)
 2(~x) if R2(~x)
...

 k(~x) if Rk(~x)
" else

is partial recursive.

Proof. We consider the graph of the function '.

G(~x; y)$ (R1(~x) ^ y =  1(~x)) _ � � � _ (Rk(~x) ^ y =  k(~x)):
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By the properties of RE-sets, G(~x; y) is RE and, hence, '(~x) is partial
recursive. �

Note that the last case in the de�nition is just a bit of decoration.
Now we can show the existence of undecidable RE sets.

PROBLEM 28 (The Halting Problem (A. Turing)). (1) Consider K =
fx j 9zT (x; x; z)g. K is the projection of a recursive relation, so it is RE.
Suppose that Kc is also RE, then x 2 Kc $ 9zT (e; x; z) for some index
e. Now e 2 K $ 9zT (e; e; z) $ e 2 Kc. Contradiction. Hence K is not
recursive by the above theorem.

The decision problem forK is called the halting problem, because it can be
paraphrased as `decide if the machine with index x performs a computation
that halts after a �nite number of steps when presented with x as input.
Note that it is ipso facto undecidable if `the machine with index x eventually
halts on input y'.

We will exhibit a few more examples of undecidable problems.
(2) It is not decidable if fxg is a total function.
Suppose it were decidable, then we would have a recursive function f

such that f(x) = 0$ fxg is total.
Now consider

'(x; y) :=

�
0 if x 2 K
" else

By the Smn theorem there is a recursive h such that fh(x)g(y) = '(x; y).
Now fh(x)g is total $ x 2 K, so for f(h(x)) = 0 $ x 2 K, i.e. we have a
recursive characteristic function sg(f(h(x))) for K. Contradiction. Hence
such an f does not exist, that is fx j fxg is totalg is not recursive.

(3) The problem `We is �nite' is not recursively solvable. Suppose that
there was a recursive function f such that f(e) = 0$We is �nite.

Consider the h(x) de�ned in example (2). ClearlyWh(x) = Domfh(x)g =
; $ x 62 K, and Wh(x) is in�nite for x 2 K. f(h(x)) = 0 $ x 62 K, and
hence sg(f(h(x))) is a recursive characteristic function for K. Contradic-
tion.

Note that x 2 K $ fxgx #, so we can reformulate the above solutions as
follows: in (2) take '(x; y) = 0. fxg(x) and in (3) '(x; y) = fxg(x).

(4) The equality of RE sets is undecidable, i.e. f(x; y) j Wx = Wyg is
not recursive. We reduce the problem to the solution of (3) by choosing
Wy = ;.

(5) It is not decidable if We is recursive. Put '(x; y) = fxg(x) � fyg(y),
then '(x; y) = fh(x)g(y) for a certain recursive h, and

Domfh(x)g =

�
K if x 2 K
; otherwise:
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Figure 5.

Suppose there were a recursive function f such that f(x) = 0 $ Wx is
recursive, then f(h(x)) = 0 $ x 62 K and, hence, K would be recursive.
Contradiction.

There are several more techniques for establishing undecidability. We
will consider the method of inseparability.

DEFINITION 29. Two disjoint RE-sets Wm and Wn are recursively separa-
ble (Figure 5) if there is a recursive set A such that Wn � A and Wm � Ac.
Disjoint sets A and B are e�ectively inseparable if there is a partial recursive
' such that for every m;n with A � Wm; B � Wn;Wm \Wn = ; we have
'(m;n) # and '(m;n) 62Wm [Wn.

We immediately see that e�ectively inseparable RE sets are recursively
inseparable, i.e. not recursively separable.

THEOREM 30. There exist e�ectively inseparable RE sets.

Proof. De�ne A = fx j fxg(x) = 0g; B = fx j fxg(x) = 1g. Clearly
A \B = ; and both are RE.

Let Wm \Wn = ; and A � Wm; B � Wn. To de�ne ' we start testing
x 2 Wm or x 2 Wn, if we �rst �nd x 2 Wm, then we put an auxiliary
function �(x) equal to 1, if x turns up �rst in Wn then we put �(x) = 0.

Formally

�(m;n; x) =

8<
:

1 if 9z(T (m;x; z) and 8y < z:T (n; x; y))
0 if 9z(T (n; x; z) and 8y � z:T (m;x; y))
" else:

By the Smn theorem fh(m;n)g(x) = �(m;n; x) for some recursive h.
Now

h(m;n) 2Wm ) h(m;n) 62Wn: So 9z(T (m;h(m;n); z) and
8y < z:T (n; h(m;n); y))

) �(m;n; h(m;n)) = 1) fh(m;n)g(h(m;n)) = 1
) h(m;n) 2 B ) h(m;n) 2Wn:
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Contradiction. Hence h(m;n) 62 Wm. Similarly h(m;n) 62 Wn. Thus h is
the required '. �

As a corollary we �nd that Ac is productive, i.e. there is a partial recursive
 such that for each Wk � Ac we have  (k) 2 Ac�Wk. Simply take in the
above proof Wm0

= A and Wn = B [Wk .

Using the simple fact that there is a recursive f such that Wx [Wy =
Wf(x;y), we �nd a recursive g such that B [Wk = Wg(k). Putting  (k) =
'(m0; g(k)) (' as de�ned in 30), we �nd the desired production function:
 (k) 2 Ac �Wk.

Such a productive set is in a strong sense not RE: if one tries to �t in an
RE set then one can uniformly and e�ectively indicate a point that eludes
this RE set.

2.1 Relative Recursiveness

Following Turing we can widen the scope of computability (recursiveness) a
bit, by allowing one (or �nitely many) functions to be added to the initial
functions, e.g. let f be such an extra initial function, then de�nition 13
yields a wider class of partial functions. We call these functions `recursive
in f ', and we may think of them as being computable when f is given
beforehand as an oracle. The theory of this section can be carried through
for the new concept, just replace `recursive' or `RE' by `recursive in f ' or
`RE in f '.

The notion of `recursive in' is particularly interesting when applied to
(characteristic functions of) sets. We say that A is Turing reducible to B
(notation A �T B) if KA is recursive in KB . KA stands for a membership
test for A, so A �T B means that there is an algorithm such that we can
test n 2 A by applying the algorithm to the (given) membership test for B
(i.e. KB).

By assigning an index to KB , we can write this as KA(x) = fegB(x),
where e is computed as before. The superscript B (or in general f) is added
to indicate the dependence on B (or f).

It is not terribly diÆcult to show that in computing fegB(x) we can only
use a �nite part of the function KB. Heuristically this means that in order
to test n 2 A we carry out an algorithm while during the computation we
may ask �nitely many questions to the oracle KB (or B).

It is easily seen that �T is transitive, but not a partial order. Since A �T
B means roughly that A is, from a recursive viewpoint, less complicated
than B, A �T B ^ B �T A means that A and B are equally complicated.
Thus we introduce the relation=T : A =T B := A �T B ^ B �T A. It can
be shown to be an equivalence relation, the equivalence classes are called
degrees of unsolvability or Turing degrees, cf. [Shoen�eld, 1971].
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2.2 Church's Thesis

Are there more algorithms than just the recursive ones? This question has
never been settled, partly due to the nature of the problem. The same
question for the primitive recursive functions has been answered positively.
We have been able to `diagonalize out of the class of primitive recursive
functions' in an e�ective way. The same procedure does not work for the
recursive functions, since there is no e�ective (i.e. recursive) way to enumer-
ate them.

If one accepts the fact that the initial functions are algorithmic, and
that the closure under substitution and reection leads from algorithms to
algorithms, then there is an inductive proof that all recursive functions are
algorithms. Or, if one takes partial functions into consideration, that all
partial recursive functions are algorithmic.

The converse poses the real hard question: are all algorithms recursive,
or in a negative form: are there any non-recursive algorithms?

The exhibition of a non-recursive algorithms would settle the problem in
the negative. A positive solution would require an exact characterization
of the class of algorithms, something that is lacking. Actually the partial
recursive functions have been introduced precisely for this purpose. To put
it succinctly: an algorithm is a function that we recognize as e�ectively
computable. So there is on the one hand the mathematically precise notion
of a partial recursive function and on the other hand the anthropological,
subjective notion of an algorithm.

In 1936 Alonzo Church proposed to identify the two notions, a proposal
that since has become known as Church's Thesis: A (number theoretic)
function is algorithmic if and only if it is recursive. A similar proposal was
made by Turing, hence one sometimes speaks of the Church{Turing Thesis.

There are a number of arguments that support Church's Thesis.

(1) A pragmatic argument: all known algorithms are recursive. As a
matter of fact, the search for non-recursive algorithms has not yielded any
result. The long experience in the subject has led to acceptance for all prac-
tical purposes of the thesis by all who have practised the art of recursion
theory. This has led to a tradition of `proof by Church's Thesis', cf. [Rogers,
1967], which takes the following form: one convinces oneself by any means
whatsoever that a certain function is computable and then jumps to the con-
clusion that it is (partial) recursive. Similarly, for `e�ectively enumerable'
and `RE'.

We will demonstrate a `proof by Church's Thesis' in the following

EXAMPLE. Each in�nite RE set contains an in�nite recursive set.

Proof. Let A be in�nite RE. We list the elements of A e�ectively, n0; n1; n2;
n3; : : :.
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From this list we extract an increasing sublist: put m0 = n0, after �nitely
many steps we �nd an nk such that nk > n0, put m1 = nk. We repeat this
procedure to �nd m2 > m1, etc. this yields an e�ective listing of the subset
B = fm0;m1;m2; : : :g of A, with the property mi < mi+1.

Claim. B is decidable. For, in order to test k 2 B we must check if
k = mi for some i. Since the sequence of mi's is increasing we have to
produce at most k + 1 elements of the list and compare them with k. If
none of them is equal to k, then k 62 B. Since this test is e�ective, B is
decidable and, by Church's Thesis, recursive. �

This practice is not quite above board, but it is very convenient, and most
experienced recursion theorists adhere to it.

(2) A conceptual analysis of the notion of computability. An impressive
specimen is to be found in Alan Turing's fundamental paper [1936], also cf.
[Kleene, 1952]. Turing has broken down the human computational proce-
dures in elementary steps formulated in terms of abstract computers, the
so-called Turing machines.

Robin Gandy has pursued the line of Turing's analysis in his paper
`Church's thesis and principles for mechanisms' [Gandy, 1980], which con-
tains a list of four principles that underlie, so to speak, the conceptual
justi�cation of Church's Thesis.

(3) A stability argument: all the codi�cations of the notion of computabil-
ity that have been put forward (by, e.g. G�odel{Herbrand, Church, Curry,
Turing, Markov, Post, Minsky, Shepherdson{Sturgis) have been shown to
be equivalent. Although, as Kreisel pointed out, this does not rule out a
systematic mistake, it does carry some weight as a heuristic argument: the
existence of a large number of independent but equivalent formulations of
the same notion tends to underline the naturalness of the notion.

The algorithms referred to in Church's Thesis must be `mechanical' in
nature, i.e. they should not require any creativity or inventiveness on the
part of the human performer. The points to be kept in mind; in the chapter
on intuitionistic logic [Volume 7 of this Handbook] we will return to it.

One particular consequence of Church's thesis has come to light in the
recent literature. In order to appreciate the phenomenon, one has to take
into account the constructive meaning of the `there exists'. That is to say,
one has to adopt a constructive logic in order to obtain a formal version of
Church's thesis.

For intuitionists the proof interpretation explains 8x9y'(x; y) as ` there
exists an algorithm f such that 8x'(x; f(x)). There are a few sophisti-
cated conditions that must be observed, but for natural numbers there is
no problem:

8x 2 N 9y 2 N '(x; y)! 9f 2 NN 8x 2 N '(x; f(x))
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Since f has to be lawlike, it is an algorithm in the broadest sense, and on
the basis of Church's thesis f must be recursive. This gives us a means to
formulate Church's thesis in arithmetic (in intuitionistic arithmetic, HA,
to be precise):

CT0 8x9y'(x; y)! 9e8x'(x; feg(x))

The totality of feg is implicit in this formulation. CT0 tells us in particular
that all number theoretic functions are recursive.

Kleene, by means of his realizability interpretation, has shown that HA+
CT0 is consistent, so it is allowed to assume Church's thesis in the context
of intuitionistic arithmetic. In the eighties, the position of CT was further
clari�ed , when it was shown independently by David McCarty and M. Hy-
land that there are models for higher-order intuitionistic logic (including
arithmetic) in which Church's thesis holds, hence the above result was not
a mere freak of �rst-order logic. McCarty employed an amalgamation of
Kleene's realizability and von Neumann's cumulative hierarchy for set the-
ory. Hyland constructed a particular category which acts as a higher-order
intuitionistic universe in which Church's thesis holds, the so-called e�ective
topos, cf. [McCarty, 1986; Hyland, 1982].

McCarty has explored the consequences of Church's thesis in a series of
papers. We will mention just two facts here:

(a). Intuitionistic arithmetic has no non-standard models.
The proof runs roughly as follows: Suppose that M is a non-standard

model of HA, then the standard numbers form, exactly as in classical
arithmetic, an initial segment of M. Let a be a non-standard element
of M. Consider the two recursively inseparable RE sets A and B of the-
orem 18. The �0

1 formulas '(x) and  (x) represent A and B. It is rou-
tine exercise to show that HA ` 8x::8y < x('(y) _ :'(y)), and hence
M j= ::8y < a('(y) _ :'(y)).
Assume for the sake of argument that M j= 8y < a('(y) _ :'(y)). Since
a is preceded by all standard numbers, M j= '(n) or M j= :'(n) for all
standard n. De�ne a 0� 1 function f so that f(n) = 0,M j= ('(n). By
CT0 f is recursive, moreover it is the characteristic function of a recursive
set which separates the standards extensions of '(x) and  (x), i.e. A ands
B, contradiction. This shows thatM cannot be a non-standard model. The
technique of the proof goes back to Tenenbaum

(b). Validity for IQC (intuitionistic predicate logic) is non-arithmetic,
[McCarty, 1986]. The fact goes back to Kreisel (cf. [van Dalen, 1973];
McCarty's proof is an improvement both in elegance and length.

One should also keep in mind that the notion of computability that is un-
der discussion here is an abstract one. Matters of feasibility are not relevant
to Church's Thesis, but they are of basic interest to theoretical computer
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scientists. In particular, the time (or tape) complexity has become a sub-
ject of considerable importance. Computations in `polynomial time' are
still acceptable from a practical point of view. Unfortunately, many impor-
tant decision methods (algorithms) require exponential time (or worse), cf.
[B�orger, 1989; Papadimitriou, 1994].

There is a constructive and a non-constructive approach to the notion
of recursiveness. There seems little doubt that the proper framework for a
theory of (abstract) computability is the constructive one. Let us illustrate
an anomaly of the non-constructive approach: there is a partial recursive
function with at most one output, that is the G�odel number of the name
of the President of American in oÆce on the �rst of January of the year
2050, if there is such a president, and which diverges otherwise. This may
seem surprising; is the future fully determined? A moments reection shows
that the above statement is a cheap, magician's trick: consider the empty
function and all constant functions (we can even bound the number by
putting a bound on the possible length of the name of the future president).
Exactly one of those partial (recursive) functions is the required one, we
don't known which one, but a repeated application of the principle of the
excluded third proves the statement. Here is another one: consider some
unsolved problem P (e.g. the Riemann hypothesis)|there is a recursive
function f such that f has (constant) output 1 if P holds and 0 if P is false.
Solution: consider the constant 0 and 1 functions f0 and f1. Since P _ :P
holds (classically) either f1 or f0 is the required recursive function.

Constructively viewed, the above examples are defective, since the prin-
ciple of the excluded third is constructively false (cf. the chapter on intu-
itionistic logic [see Volume 7 of this Handbook]). The constructive reading
of `there exists a partial recursive function '' is: we can e�ectively com-
pute an index e. R�osza P�eter has used the constructive reading of recursion
theory as an argument for the circularity of the notion of recursiveness,
when based on Church's Thesis, [P�eter, 1959]. The circularity is, however,
specious. Recursive functions are not used for computing single numbers,
but to yield outputs for given inputs. The computation of isolated discrete
objects precedes the manipulations of recursive functions, it is one of the ba-
sic activities of constructivism. So the computation of an index of a partial
recursive function does itself not need recursive functions.

The notion of a recursive function has received much attention. Histor-
ically speaking, its emergence is an event of the �rst order. It is another
example where an existing notion was successfully captured by a precise
mathematical notion.
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3 APPLICATIONS

It is no exaggeration to say that recursion theory was conceived for the
sake of the study of arithmetic. G�odel used the machinery of recursion
theory to show that theories containing a suÆcient portion of arithmetic
are incomplete. Subsequent research showed that arithmetic is undecidable,
and many more theories to boot. The book [Smorynski, 1991] is an excellent
source on arithmetic.

We will briey sketch some of the methods and results.

3.1 Formal Arithmetic

The �rst-order theory of arithmetic, PA (Peano's arithmetic), has a lan-
guage with S;+; � and 0.

Its axioms are

Sx 6= 0 x+ Sy = S(x+ y)
Sx = Sy ! x = y x � 0 = 0
x+ 0 = x x � Sy = x � y + x

'(0) ^ 8x('(x)! '(Sx))! 8x'(x):
(the induction schema).

In PA we can de�ne the order relation: x < y := 9z(x + Sz = y) and we
can prove its properties: :(x < 0); x < Sy $ x < y _ x = y; x < y _ x =
y _ y < x; x < y ^ y < z ! x < z, by induction. The individual natural
number symbols are de�ned by

1 = S0; 2 = SS0; 3 = SSS0; : : :

R. Robinson introduced a �nitely axiomatized sybsystem Q of PA with
the schema of induction replaced by one axiom:

x 6= 0! 9y(x = Sy):

Another �nitely axiomatized subsystem, N, of PA was introduced by
Shoen�eld. This system has < as a primitive symbol, and the schema of
induction is replaced by the axioms :(x < 0); x < Sy ! x < y _ x = y; x <
y _ x = y _ y < x.

3.2 Arithmetization

One can code the expressions of arithmetic as natural numbers in such
a way that the relevant syntactical properties become primitive recursive
predicates of the codes.

There are many ways to carry out the actual coding. Unfortunately this
part of the theory is strongly `coordinate dependent', i.e. it depends on the
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underlying coding of �nite sequences of natural numbers. Canonical codings
have been proposed at various points, cf. [Jeroslow, 1972], but there has
always remained a residue of arbitrariness. We will sketch a coding based
on the coding of Examples 9. Following the tradition, we will call the codes
G�odel numbers.

1. We assign G�odel numbers to the symbols of the alphabet.

xi 7! 2i; 0 7! 1;_ 7! 3;: 7! 5; 9 7! 7; S 7! 9;+ 7! 11; � 7! 13;
=7! 15; (<7! 17; if considering N)

2. The G�odel numbers of terms are de�ned by

pxiq = h2ii; p0q = h1i; pStq = h0; ptqi; p(t+ s)q = h11; ptq; psqi;
pt � sq = h13; ptq; psqi

3. The G�odel numbers of formulas are de�ned by

p(t = s)q = h15; ptq; psqi; p('_  )q = h3; p'q; p qi; p:'q = h5; p'qi;
p(9xi')q = h7; pxiq; p'qi:

The above functions that assign G�odel numbers to expressions are de�ned
by recursion, and one would like to know if, e.g. the set of G�odel numbers
of formulas is decidable. The following lemmas provide answers.

1. Lemma The following predicates are primitive recursive;

(a) n is the G�odel number of a variable

(b) n is the G�odel number of a term

(c) n is the G�odel number of a formula.

Proof. We will write down the predicate in a suitable form such that
by means of the usual closure properties the reader can immediately
conclude the primitive recursiveness.

(a) V ble(n)$ 9x � n(n = h2xi)
(b) Term(n)$ [V ble(n) _ n = h1i_
9x < n(n = h0; xi) ^ Term(x))_
9x; y < n(n = h11; x; y) ^ Term(x) ^ Term(y)) _ 9xy < n
(n = h13; x; yi ^ Term(x) ^ Term(y))

(c) Form(n)$
9xy < n(n = h15; x; yi ^ Term(x) ^ Term(y))_
9xy < n(n = h3; x; yi ^ Form(x) ^ Form(y))_
9x < n(n = h5; xi ^ Form(x))_
9xy < n(n = h7; x; yi ^ V ble(x) ^ Form(y)).
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Note that the lemma is established by an appeal to the primitive
recursive version of the recursion theorem (cf. Theorem 15, remark);
by switching to characteristic functions, one can make use of course
of value recursion. Another standard procedure, e.g. for the coding
of terms, is to arithmetize the condition `there is a �nite sequence
of which each member is either a variable or 0, or obtained from
earlier ones by applying S;+ or �'. This immediately establishes the
recursiveness, for primitive recursiveness one only has to indicate a
bound on the code of this sequence.

2. At certain places it is important to keep track of the free variables in
terms and formulas, e.g. in 8x'(x) ! '(t). The following predicate
expresses that `x is free in A' (where A is a term or a formula|we
handle them simultaneously): `x is A itself or A is built from two
parts not by means of 9 and x is free in at least one of those, or built
from two parts by means of 9 and x is not the �rst part and free in
the second part, etc.'.

So put

Fr(m;n)$ (m = n ^ V ble(m)) _ 9xy < n(n = h3; x; yi^
(Fr(m;x) _ Fr(m; y))) _ (9xy < n(n = h11; : : :i : : :)_
(: : : n = h13; : : :i : : :) _ (: : : n = h15; : : :i : : :) _ : : :
: : :9xy < n(n = h7; x; yi ^m 6= x ^ Fr(m; y))

Again Fr is primitive recursive.

3. We need a number-theoretic function that mimics the substitution
operation, i.e. that from the G�odel numbers of '; x and t computes
the G�odel number of '[t=x].

The function Sub must satisfy Sub(pAq; pxq; ptq) = pA[t=x]q, where
A is a term or a formula.

So put

Sub(m;n; k) =

8>>>>>>>><
>>>>>>>>:

k if V ble(m) ^m = n
h0; Sub(p; n; k)i if m = h0; pi
h5; Sub(p; n; k)i if m = h5; pi
ha Sub(p; n; k); Sub(q; n; k)i if m = ha p; qi

for a = 3; 11; 13; 15
h7; p; Sub(q; n; k)i if m = h7; p; qi ^ p 6= n;
m otherwise:

Clearly, Sub is primitive recursive.

4. Depending on the logical basis of PA (e.g. a Hilbert type system, or
sequent calculus, etc.) one can �nd a primitive recursive predicate
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Prov(m;n) which expresses that n is the G�odel number of a proof
of the formula with G�odel number m. Every textbook will give the
details, but by now the reader will be able to concoct such a predicate
by himself.

In order to avoid cumbersome manipulations, one usually assumes the
set of (G�odel numbers of) axioms to be recursive. For PA, Q and N
this evidently is correct.

5. The predicate Thm(m) := 9xProv(m;x) expresses that m is the
G�odel number of a theorem of PA. The existential quanti�er makes
Thm recursively enumerable, and we will show that it is not recursive.

6. Super�cially speaking, natural numbers lead a double life; they occur
in the theory of arithmetic and in the real world. In the �rst case
they occur as symbols, the so-called numerals. The numeral for the
number n is denoted by �n. To be speci�c �0 = 0 (recall that PA
had 0 as a constant symbol, we could have used a bold face zero, but
the reader will not be confused), n+ 1 = S(�n). Now numerals are
symbols, so they have G�odel numbers. We de�ne the function Num
which associates with each number n the G�odel number of �n:

Num(0) = h1i;
Num(n+ 1) = h9; Num(n)i:

So Num(n) = p�nq.

7. In order to avoid needless restrictions, we quote the following theorem
of Craig:

THEOREM. Every axiomatizable theory can be axiomatized by a recursive
set of axioms.

Here a theory is called axiomatizable if the set of its axioms is RE. The
following informal argument may suÆce.

Let '0; '1; '2; : : : be an e�ective enumeration of the axioms of T (it is
no restriction to assume an in�nite list). then '0; '0 ^ '1; '0 ^ '1 ^ '2; : : :
also axiomatizes T , and we can e�ectively test whether a given sentence �
belongs to this set. For the length of the axioms is strictly increasing so after
a �nite number of those axioms have been listed we know that if � has not yet
occurred, it will not occur at all. In the literature axiomatizable arithmetical
theories are also called RE theories. Non-axiomatizable theories are ipso
facto undecidable, for their class of theorems is even not RE.

3.3 Representability of the Recursive Functions and Predicates

In the preceding section we have reduced, so to speak, logic and arithmetic
to recursion theory. Now we will reduce recursion theory to the formal
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theory of arithmetic. We will show that inside PA (or Q, or N, for that
matter) we can speak about recursive functions and relations, be it in a
rather complicated way.

For convenience we will treat the three theories of arithmetic above on an
equal footing by considering a theory T which is an axiomatizable extension
of Q or N. If we need special features of T (e.g. T = PA), then we will
explicitly list them.

DEFINITION 31. An n-ary function f is represented by a formula ' with
n+ 1 variables x1; : : : ; xn; y if for all k1; : : : ; kn; l.

f(k1; : : : ; kn) = l , T ` '(�k1; : : : ; �kn; y)$ �l = y:

An n-ary relation R is represented by a formula ' with n free variables if
F (k1; : : : ; kn)) T ` '(�k1; : : : ; �kn) and
not-R(k1; : : : ; kn)) T ` :'(�k1; : : : ; �kn).

The basic theorem states that

THEOREM. All recursive functions and predicates are representable in any
of the systems PA, Q, N (and hence in any T ).

It is a simple exercise to show that a relation is representable i� its
characteristic function is so. Therefore it suÆces to prove the theorem
for recursive functions. For this purpose it is most convenient to use the
characterization of recursive functions by means of �-recursion.

The proof of the theorem is not very diÆcult but rather clerical, the
reader may look it up in, e.g. [Davis, 1958; Kleene, 1952; Shoen�eld, 1967;
Smorynski, 1991].

As a consequence we now have available formulas in T for the predicates
that we introduced in Section 3.2. In particular, there is a formula that
represents Prov. We will, for convenience, use the same symbol for the
representing formulas. It will always appear from the context which reading
must be used.

The soundness theorem for predicate logic tells us that the theorems of a
theory T are true in all models of T . In particular, all provable sentences of
T are true in the standard model, following the tradition we call sentences
true in N simply true.

Until the late twenties it was hoped and expected that, conversely, all
true sentences would also be provable in PA. G�odel destroyed that hope in
1931. Nonetheless, one might hope to establish this converse for a signi�cant
class of sentences.

The following theorem provides such a class.

Convention. We call a formula �0
1(�

0
1) if it is (equivalent to) a prenex

formula with a pre�x of existential (universal) quanti�ers followed by a
formula containing only bounded quanti�ers.
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THEOREM 32 (�0
1-completeness).

') PA ` ' for �0
1 sentences ':

The proof proceeds by induction on the structure of ', cf. [Shoen�eld,
1967,
p. 211]. Note that the premise is `' is true', or to spell it out `N � ''.

For �0
1 sentences truth does not imply provability as we will show below.

Before we proceed to the incompleteness theorem, let us have another
look at our formal system. The language of arithmetic contains function
symbols for +; �; S, should we leave it at that? After all, exponentiation,
the square, the factorial, etc. belong to the daily routine of arithmetic, so
why should we not introduce them into the language? Well, there is no
harm in doing so since primitive recursive functions are given by de�ning
equations which can be formulated in arithmetical language. To be speci�c,
for each primitive recursive function f we can �nd the representing formula
'(~x; y) such that not only f(~m) = n , PA ` '(~m; y) $ y = n, but also
PA ` 8~x9!y'(~x; y). Note that here one essentially needs induction.

Now it is a well-known fact of elementary logic that one can add a function
symbol F to the language, and an axiom 8~x'(~x; F (~x)), without essentially
strengthening the theory. To be precise: the extended theory T 0 is conser-
vative over the original theory T : for formulas  not containing F we have
T `  , T 0 `  .

In this case we even have a translation Æ that eliminates the symbol F
so that T 0 `  ,  Æ an T 0 `  , T `  Æ (cf. [Shoen�eld, 1967, p. 55 �.],
[van Dalen, 1997, p. 144 �.]).

Summing up, we can conservatively add function symbols and de�ning
axioms for all primitive recursive functions to PA.

The proof of this fact runs parallel to the proof of the representability of
the primitive recursive functions (and makes use of G�odel's �-function), cf.
[Shoen�eld, 1967; Smorynski, 1991].

Observe that if F is related to the primitive recursive f in the above
manner, then F represents f :

f(~m) = n, PA ` F (~m) = �n:

Note that we can also add function symbols for recursive functions since
a recursive f is represented by a formula '. For put  (~x; y) = [9z'(~x; z)!
'(~x; y) ^ 8u < y:'(~x; y)] ^ [:9z'(~x; z) ! y = 0], then clearly  also
represents f and PA ` 8~x9!y (~x; y).

For metamathematical purposes it usually does not harm to consider the
conservative extension by primitive recursive functions. E.g. with respect to
decidability and completeness T 0 and T behave exactly alike. T 0 is decidable
(complete) , T is decidable (complete).
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Since the presence of function symbols for primitive recursive functions
considerably streamlines the presentation of certain results, we will freely
make use of the above de�nitional extension of arithmetic, which we, by
abuse of notation, also call PA.

3.4 The First Incompleteness Theorem and the Undecidability

of PA

G�odel formulated a sentence which had a certain analogy to the famous Liar
Paradox. Paraphrased in everyday language, it states: `I am not provable
in PA'. This kind of self-referential sentence makes full use of the ability
of PA (and related systems) to formulate its own syntax and derivability
relation. A convenient expedient is the

THEOREM 33 (Fixed Point Theorem). Let '(x0) have only the free vari-
able x0 then there is a sentence  such that PA`  $ '(p q).

Proof. We will use the substitution function. Put s(m;n) = Sub(m; px0q,
Num(n)), and let k := p'(s(x0; x0))q, then  := '(s(�k; �k)) will do the trick.

For s(k; k) = s(p'(s(x0; x0))q; k) = p'(s(�k; �k))q; so by the representabil-
ity of s;PA `  $ '(p q). �

Observe that Theorem 33 holds for any axiomatizable extension of PA.
We now quickly get the incompleteness result, by applying the �xed point

theorem to :9yProv(x; y):

PA `  $ :9yProv(p q; y) for a certain  .

Note that our notation is slightly ambiguous. Since there is a primitive
recursive predicate Prov(m,n) for provability, there is also a formula in the
language of PA which represents Prov, we will commit a harmless abuse of
language by calling this formula also Prov. The reader will always be able
to see immediately what Prov stands for.

Now PA`  ! PA ` Prov( ; �k) where k is the G�odel number of the ac-
tual proof of  . So PA` 9y Prov(p q; y). But also PA` :9yProv(p q; y),
so PA ` ?. Assuming consistency we get PA6`  .

The negation is a bit more troublesome.
We assume that that PA is !-consistent, that is, it is not the case that
PA` �(n), for all n, and PA` 9x:�(x), for arbitrary �
Obviously, !-consistency implies consistency. The converse does not hold.

If PA` : , then PA` 9yProv(p q; y) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(1)
Since PA is consistent, we have PA 6`  , so :Prov(p q; n) for all n, hence
PA ` :Prov(p q; n) for all n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2)

(1) and (2) contradict the !-inconsistency of PA. Conclusion: PA 6` : .
This establishes the incompleteness of PA.
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By appealing to the fact that N is a model of PA we can avoid those tech-
nicalities mentioning consistency or !-consistency: PA ` 9yProv(p q; y))
N � 9yProv(p q; y), so there is an n such that Prov(p q; �n) holds, but this
implies that PA `  . Contradiction.

Note that the above G�odel sentence  is �0
1.

Remarks

1. Since PA extends Q and N we also have established the incomplete-
ness of Q and N (although for just incompleteness a simple model-
theoretic argument would suÆce, e.g. in Q we cannot even prove addi-
tion to be commutative). By means of a careful rewording of the G�odel
sentences, such that no use is made of primitive recursive functions
in the system one can present a similar argument which shows that
all consistent axiomatizable extensions T of Q (or N) are incomplete.
Cf. [Mendelson, 1979; Smorynski, 1991].

2. Rosser eliminated the appeal to !-consistency by applying the �xed-
point theorem to another formula: \there is a proof of my negation
and no proof of me precedes it."

In symbols: 9y[Prov(neg(x); y)^8z < y:Prov(x; z)]. Here neg is a primitive
recursive function such that neg(p'q) = p:'q. the whole formula is formu-
lated in the language of a conservative extension of PA. Call this formula
R(x) and apply the �xed point theorem: PA `  $ R(p q). For better
readability we suppress the reference to PA.

(1) `  $ 9y(Prov(p: q; y) ^ 8z < y:Prov(p q; z))

Suppose `  , then Prov(p q; �n) is true for some n.

(2) So ` Prov(p q; �n)

(3) Also ` 9y(Provp: q; y) ^ 8z < y:Prov(p q; z))

(4) (2); (3))` 9y < �nProv(p: q; y)

Using ` y < �n$ y = 0_y = �1_� � �_y = n� 1 we �nd `Prov(p: q; �0)_
� � � _Prov(p: q; n� 1). Now one easily establishes ` � _ � )` � or ` � for
sentences � and � with only bounded quanti�ers, this yields ` Prov(p: q; �m)
for some m < n.

Hence, ` : . but this contradicts the consistency of PA.

(5) Suppose now ` : then 6`  ; i.e. ` :Prov(p q; �n) for all n;
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From ` : we get ` 8y(Prov(p: q; y) ! 9z < yProv(p q; z)) and
` ` Prov(p: q; �m) for some m.

Hence ` 9z < �mProv(p q; z), so as before we get ` Prov(p q; �k) for
some k < m. Together with (5) this contradicts the consistency of PA.

Conclusion: 6`  and 6` : .

3. Interpreting the G�odel sentence  in the standard model N we see
that it is true. So the G�odel sentence provides an instance of a true
but unprovable sentence.

4. From the above incompleteness theorem we can easily conclude that
fp'q j N � 'g, i.e. the set of (G�odel numbers of) true sentences of
arithmetic is not decidable (i.e. recursive). For suppose it were, then
we could use the true sentences as axioms and repeat the incomplete-
ness theorem for this system Tr: there is a ' such that Tr 6` ' and
Tr 6` :'. but this is impossible since the true and false sentences
exhaust all sentences. Hence, Tr is not recursive.

5. By means of the provability predicate one can immediately show that
in axiomatizable extensions of Q or N representable predicates and
functions are recursive. To be precise, in any axiomatizable theory
with 0 and S such that ` �m = �n) n = m the representable predicates
and functions are recursive. This provides another characterization
of the recursive functions: the class of recursive functions coincides
with that of the functions representable in PA. Theories satisfying
the above conditions are called numerical.

6. The technique of arithmetization and the representability of recursive
functions allows us to prove the undecidability of extensions of Q
and N (and hence PA) (35). We say that Q and N are essentially
undecidable.

Exactly the same method allows us to prove the general result: numerical
theories in which all recursive functions are representable are undecidable.
We can also derive the following theorem of Tarski on the unde�nability
of truth in arithmetic, We say that a formula � is a truth de�nition in a
numerical theory T if T ` '$ �(p'q).

THEOREM 34 (Tarski's Theorem). No consistent axiomatizable extension
of Q or N has a truth de�nition.

Proof. Suppose a truth de�nition � exists, then we can formulate the
Liar Paradox. By the �xed point theorem there is a sentence � such that
T ` � $ :�(p�q). Since � is a truth de�nition, we get T ` � $ :�. This
conicts with the consistency of T . �
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Thm

A

Figure 6.

For the undecidability of Q, N or PA we use the set K from 28. Or, what
comes to the same thing, we diagonalize once more.

Consider the set Thm and an RE-set A disjoint from Thm (Figure 6),
for any axiomatizable extension T of Q (or N).

De�ne

'(k) =

8<
:

0 if ` 9zT (�k; �k; z) ^ Uz 6= 0
1 if p(9zT (�k; �k; z) ^ Uz 6= 0)q 2 A
" otherwise:

Clearly ' is a partial recursive function, say with index e.
(i) Then fege = 0) T (e; e; n) ^ Un = 0 for some n)

(6) ` T (�e; �e; �n) ^ U �n = �0)` 9z(T (�e; �e; z) ^ Uz = 0);

(7) Also, by de�nition, fege = 0!` 9z(T (�e; �e; z) ^ Uz 6= 0).

From the de�nition the T -predicate it easily follows that

(8) ` T (�e; �e; z) ^ T (�e; �e; z0)! z = z0

So (4), (7), (8) imply that T is inconsistent.
(ii) fege = 1) T (e; e; n) ^ Un = 1 for some n)` T (�e; �e; �n) ^ U �n =

1 !` 9zT (�e; �e; z) ^ Uz 6= �0. also fege = 1 ) p9zT (�e; �e; z) ^ Uz 6= 0q 2 A,
but that contradicts the disjointness of Thm and A.

So we have shown that Thmc is productive (cf. 30, corolary) and, hence,
undecidable. A slight adaptation of the argument shows that the set of the-
orems and the set of refutable sentences (i.e. � with T ` :�) are e�ectively
inseparable. The above proof established

THEOREM 35. If T is a consistent extension of Q (or N) then T is un-
decidable.

As a corollary we get

THEOREM 36 (Church's Theorem). First-order predicate logic is undecid-
able.

Proof. Consider a �rst-order language containing at least the language of
arithmetic. Since Q is �nitely axiomatized we can write Q ` ')` � ! ',
where � is the conjunction of the axioms of Q. Clearly any decision proce-
dure for �rst-order predicate logic would also provide a decision procedure
for Q. �
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The undecidability of PA yields another proof of its incompleteness, for
there is a fairly obvious theorem of model theory that states

THEOREM 37. A complete, axiomatizable theory is decidable (Vaught).

Observe that it is standard practice to identify `decidable' and `recursive',
i.e. to rely on Church's Thesis. In a more cautious approach one would, of
course, use phrases such as `the set of G�odel numbers of theorems of PA is
not recursive'.

There are various paths that lead from recursion theory to the area of
decidable and undecidable theories. Usually one starts from a suitable class
of undecidable (sometimes also called unsolvable) problems in one of the
many approaches to the notion of algorithm, e.g. the Halting problem for
Turing machines or register machine, or Post's correspondence problem and
somehow `interprets' them in a convenient logical form. The actual role of
recursion theory by then is modest or often even nil. Most of the techniques
in the particular �eld of undecidable theories are of a logical nature, e.g.
the construction of suitable translations.

3.5 Decidable and Undecidable Theories

In a large number of cases there are reductions of the decision problem of
certain theories to well-known theories.

We list a few undecidable theories below:

1. Peano's arithmetic,

2. Theory of rings [Tarski, 1951],

3. Ordered �elds [Robinson, 1949],

4. Theory of lattices [Tarski, 1951],

5. Theory of a binary predicate [Kalmar, 19336],

6. Theory of a symmetric binary predicate [Church and Quine, 1952],

7. Theory of partial order [Tarski, 1951],

8. Theory of two equivalence relations [Rogers, 1956],

9. Theory of groups,

10. Theory of semi groups,

11. Theory of integral domains.
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One should note that the underlying logic does play a role in decidability
results, e.g. whereas classical monadic predicate logic is decidable, intu-
itionistic monadic predicate logic is not [Kripke, 1968], cf. [Gabbay, 1981,
p. 234]).

The decidability aspects of predicate logic have been widely studied.
One of the oldest results is the decidability of monadic predicate calculus
[L�owenheim, 1915; Behmann, 1922], and the high-water mark is the unde-
cidability of predicate logic [Church, 1936]. In this particular area there has
been much research into solvable and unsolvable cases of the decision prob-
lem. A comprehensive treatment of decidability and undecidability results
can be found in [B�orger et al., 1997].

There are special classes � of formulas, given by syntactical criteria, for
which undecidability has been established by a reduction procedure that
e�ectively associates to each ' a formula '� of � such that ` ',` '�. Such
a class � is called a reduction class with respect to provability) (or validity).
Analogously one has reduction classes with respect to satis�ability.

Among the syntactic criteria that are used we distinguish, e.g. (i) the
number of arguments of the predicates, (ii) the number of predicates, (iii)
the length of the quanti�er pre�x for the prenex normal form, (iv) the
number of quanti�er changes in the same.

For convenience we introduce some notation: Qn1
1 ; : : : ; Qnm

m stands for the
class of all prenex formulas with pre�xes of n1 quanti�ers Q1; n2 quanti�ers
Q2; : : : nm quanti�ers Qm. A superscript 1 indicates a quanti�er block of
arbitrary �nite length.

Restrictions on the nature of predicate symbols is indicated by �nite se-
quences, e.g. (0; 2; 1) indicates a predicate logic language with no unary
predicates, two binary and one ternary predicate. Combining the two no-
tations we get the obvious classes, such as 8192(0; 1); 918193(2; 1), etc.

An immediate simple but not trivial example is furnished by the Skolem
normal form for satis�ability: the class of 8191 formulas is a reduction
class for satis�ability. So this class consists of prenex formulas with universal
quanti�ers followed by existential quanti�ers.

Of course, this can be improved upon since the undecidability proofs for
predicate logic provide more information.

We list some examples of reduction classes. There will be no function
symbols or constants involved.
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9898(0; 3) (B�uchi 1962)
898(0;1) (Kahr, Moore, Wang 1962)
839(0;1) (G�odel 1933)
9898(1; 1) (R�odding 1969)
898(1; 1) (Kahr 1962)
91829281(0; 1) (Kalmar 1932)
819(0; 1) (Kalmar, Suranyi 1950)
8981(0; 1) (Denton 1963)
89891(0; 1) (Gurevich 1966)

One can also consider prenex formulas with the matrix in conjunctive or
disjunctive normal form, and place restrictions on the number of disjuncts,
conjuncts, etc.
Dn is the class of disjunctive normal forms with at most n disjuncts: Cn is

the class of conjunctive normal forms with at most n disjuncts per conjunct.
Krom formulas are those in D2 or C2; Horn formulas those in C1 with at
most one negated disjunct per conjunct.

Pre�x classes of Krom and Horn formulas have been investigated by Aan-
dera, Dreben, B�orger, Goldfarb, Lewis, Maslov and others. For a thorough
treatment of the subject the reader is referred to [Lewis, 1979], [B�orger et
al., 1997].

The reader should not get the impression that logicians deal exclusively
with undecidable theories. There is a considerable lore of decidable theories,
but the actual decision methods usually employ little or no recursion theory.
This is in accordance with the time-honoured practice: one recognizes a
decision method when one sees one.

The single most important decision method for showing the decidabil-
ity of theories is that of quanti�er elimination. Briey, a theory T is said
to have (or allow) quanti�er elimination if for each formula '(x1; : : : ; xn),
with all free variables shown, there is an open (i.e. quanti�er free) formula
 (x1; : : : ; xn) such that T ` '(x1; : : : ; xn) $  (x1; : : : ; xn). So for theo-
ries with quanti�er elimination one has only to check derivability for open
formulas. This problem usually is much simpler than the full derivability
problem, and it yields a decision procedure in a number of familiar cases.

An early, spectacular result was that of [Presburger, 1930] who showed
that the theory of arithmetic with only successor and addition has a quan-
ti�er elimination and is decidable. However, additive number theory is not
the most impressive theory in the world, so Presburger's result was seen as
a curiosity (moreover, people hoped at that time that full arithmetic was
decidable, so this was seen as an encouraging �rst step).

The result that really made an impression was Tarski's famous Decision
Method for Elementary Algebra and Geometry [1951], which consisted of a
quanti�er elimination for real closed (and algebraically closed) �elds.

By now quanti�er elimination is established for a long list of theories,
among which are linear dense ordering, Abelian groups (Szmielev 1955), p-



ALGORITHMS AND DECISION PROBLEMS 301

adic �elds (Cohen 1969), Boolean algebras (Tarski 1949. For a survey of
decidable theories, including some complexity aspects, cf. [Rabin, 1977].

We will give a quick sketch of the method for the theory of equality.

1. Since one wants to eliminate step by step the quanti�er in front of the
matrix of a prenex formula it clearly suÆces to consider formulas of
the form 9y'(y; x1; : : : ; xn).

2. We may suppose ' to be in disjunctive normal form
WW

i'i and, hence,
we can distribute the 9-quanti�er. So it suÆces to consider formulas
of the form 9y (y; x1; : : : ; xn) where  is a conjunction of atoms and
negations of atoms.

3. After a bit of rearranging, and eliminating trivial parts (e.g. xi = xi or
:y = y), we are left with 9y(y = xi1 ^� � �^y = xik ^y 6= xj1 ^� � �^y 6=
xjl ^ Æ), where Æ does not contain y. By ordinary logic we reduce this
to 9y(||) ^ Æ. Now the formula 9y(||) is logically equivalent to
(xi1 = xi2 ^ � � � ^ xi1 = xik ^ xi1 6= xj1 ^ � � � ^ xi1 6= xjl ).

So we eliminated one quanti�er. However, there are a number of
special cases to be considered, e.g. there are no atoms in the range of
9y. Then we cannot eliminate the quanti�er. So we simply introduce a
constant c and replace 9y(y 6= xja) by c 6= xja (the Henkin constants,
or witnesses), i.e. we consider conservative extensions of the theory.

In this way we �nally end up with an open formula containing new con-
stants. If we started with a sentence then the result is a Boolean com-
bination of sentences which express conditions on the constants, namely
which ones should be unequal. Such conditions can be read as conditions
of cardinality: there are at least n elements.

From the form of the resulting sentence we can immediately see whether
it is derivable or not. Moreover, the method shows what completions the
theory of identity has (cf. [Chang and Keisler, 1973, p. 55]).

Whereas the actual stepwise elimination of quanti�ers is clearly algorith-
mic, there are a number of decidability results that have no clear algorithmic
content. Most of these are based on the fact that a set is recursive i� it and
its complement are recursive enumerable. An example is the theorem: if T
is axiomatizable and complete then T is decidable.

3.6 The Arithmetical Hierarchy

We have seen that decision problems can be considered to be of the form
`does n belong to a set X?', so, up to a coding, the powerset of N presents
us with all possible decision problems. Put in this way, we get too many
unrealistic decision problems. For, a reasonable decision problem is usually
presented in the form: test if an element of a certain e�ectively generated
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Figure 7.

(or described) set is an element of another such set, e.g. if a formula is a
theorem. So among the subsets of N , we are interested in certain sets that
are somehow e�ectively described.

We have already met such sets, e.g. the primitive recursive, the recursive,
and the recursive enumerable sets. It seems plausible to consider sets of
natural numbers de�nable in a theory or in a structure. The very �rst
candidate that comes to mind is the standard model of arithmetic, N . Sets
de�nable in N are called arithmetical, they are of the form fn j N � '(n)g.

We already know that recursive sets and RE sets are arithmetical, and we
know at least one particular set that is not arithmetical: the set of (G�odel
numbers of) true sentences of arithmetic (Tarski's theorem).

It is natural to ask if the collection of arithmetical sets has some structure,
for example with respect to a certain measure of complexity. The answer,
provided by Kleene and Mostowski, was `yes'. We can classify the arith-
metical sets according to their syntactic form. The classi�cation, called the
arithmetical hierarchy, is based on the prenex normal forms of the de�ning
formulas.

The hierarchy is de�ned as follows:
a �0

1-formula is of the form 9~y'(~x; ~y)
a �0

1-formula is of the form 8~y'(~x; ~y)

where ' contains only bounded quanti�ers,
if '(~x; ~y) is a �0

n formula, then 8~y'(~x; ~y) is a �0
n+1 formula,

if '(~x; ~y) is a �0
n formula, then 9~y'(~x; ~y) is a �0

n+1 formula,

�0
n and �0

n sets are de�ned as extensions of corresponding formulas, and
a set is �0

n if it is both �0
n and �0

n.

The inclusions indicated in �gure 7 are easily established,

e.g. if X 2 �0
1, then it is de�ned by a formula 9~y'(x; ~y), by adding dummy

variables and quanti�ers we can get an equivalent �0
2-formula 8z9~y'(x; ~y).

The above classi�cation is based on syntactic criteria; there is, however,
a `parallel' classi�cation in terms of recursion theory. At the lower end of
the hierarchy we have the correspondence
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�0
1 recursive sets,

�0
1 RE sets,

�0
1 complements of RE sets.

We know, by theorem 26, that �0
1 \ �0

1 = �0
1.

The predicate 9zT (x; y; z) is universal for the RE sets in the sense that
each RE set is of the form 9zT (e; y; z) for some E. Via the above correspon-
dence, 9zT (x; y; z) is universal for the class �0

1. Likewise :9zT (x; y; z) is
universal for �0

1 (for proofs of the facts stated here see any of the standard
texts in the bibliography). To progress beyond the RE sets and their com-
plements, we use an operation that can be considered as an in�nite union, let
Un(x; y) be universal for �0

n, then 9zUn(x; hz; yi) is universal for �0
n+1. The

basic technique here is in complete analogy to that in the so-called hierarchy
of Borel sets, one can make this precise and show that the arithmetical hier-
archy is the �nite part of the e�ective Borel hierarchy (cf. [Shoen�eld, 1967;
Hinman, 1978]).

Since one goes from �0
n to �0

n+1 by adding an existential quanti�er in
front of the de�ning �0

n formula, we can also express the relation between
�0
n and �0

n+1 in another recursion-theoretic way.

We have already de�ned the notion of relative recursiveness: f is recursive
in g if f(x) = fegg(x) for some e (where the superscript g indicates that g
is an extra initial function), or A is recursive in B if KA(x) = fegB(x) for
some e.

We use this de�nition to introduce the notion: A is recursively enumerable
in B: A is RE in B if A is the domain of fegB for some e.

Generalising the T -predicate in an obvious way to a relativized version
we get A is RE in B if n 2 A, 9zTB(e; n; z) for some E.

Now the relation between �0
n and �0

n+1 can be stated as

A 2 �0
n+1 , A is RE in some B 2 �0

n:

There is another way to go up in the hierarchy. The operation that one can
use for this purpose is the jump. The jump of a set A, denoted by A0, is
de�ned as

fx j fxgA(x) #g; or fx j 9zTA(x; x; z)g;
e.g. the jump ;0 of ; is K.

The successive jumps of ; : ;0; ;00; : : : ; ;(n); : : : are the paradigmatic ex-
amples of �0

n sets, in the sense that

A 2 �0
n+1 , A is RE in ;(n):

What happens if we take a set that is recursive in ;(n)? The answer is given
by Post's theorem:

A 2 �0
n+1 , A �T ;(n):
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An important special case is A 2 �0
2 , A is recursive in the Halting

Problem (i.e. K).
A diagonal argument, similar to that of 28 shows that �0

n ��0
n 6= ; and

�0
n��0

n 6= ;, hence all the inclusions in the diagram above are proper (this
is called the Hierarchy Theorem) and the hierarchy is in�nite.

For arithmetical predicates one can simply compute the place in the arith-
metical hierarchy by applying the reduction to (almost) prenex form, i.e. a
string of quanti�ers followed by a recursive matrix.

Example: `e is the index of a total recursive function'. We can reformulate
this as `8x9yT (e; x; y)' and this is a �0

2 expression.
The more diÆcult problem is to �nd the lowest possible place in the

hierarchy. So in the example: could fe j feg is totalg be �0
1?

There are various ways to show that one has got the best possible result.
One such technique uses reducibility arguments.

DEFINITION 38. Let A;B � N . A is many-one (one-one) reducible to B if
there is a (one-one) recursive function f such that 8x(x 2 A , f(x) 2 B).
Notation: A �m B(A �1 B).

EXAMPLE 39.

1. We �1 fhx; yi j x 2 Wyg = fhx; yi j fygx #g = fhx; yi j 9zT (y; x; z)g.
De�ne f(n) = hn; ei, then clearly n 2 We , hn; ei 2 fhx; yi j x 2 Wyg
and f is injective.

2. fhx; yi j x 2 Wyg �m K = fx j x 2Wxg = fx j fxgx #g.
Consider the function f(z)1g(z)0, and de�ne

feg(z; x) =

�
1 if f(z)1g(z)0 #
divergent otherwise

By the Smn theorem feg(z; x) = ff(z)g(x) and

a 2 Wb , fbga #, f(ha bi)1g(ha bi)0 #,
, ffha bigfha bi #, fha bi 2 K:

an extra argument shows that �m can be replaced by �1.
Now we call A 2 �0

n(�0
n)�0

n complete (�0
n complete) if for all B 2 �0

n(�0
n)

B �m A (equivalently �1).
One can show that the nth jump of ;; ;(n), is �0

n complete.
Therefore, we use the sets ;(n) to establish, e.g. that A 2 �0

n does not be-
long to �0

n�1 or �0
n�1 by showing ;(n) �m A. For, otherwise ;(n) �m A �1

;(n�1) (or its complement), which is not the case. For more applications
and examples see [Rogers, 1967, Section 14.8].

The complexity of models can also be measured by means of the arith-
metical hierarchy, i.e. we call a model �0

n(�0
n or �0

n) if its universe is the
set of all natural numbers and the relations are �0

n(�0
n or �0

n).
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We mention several results:

1. The Hilbert-Bernays completeness theorem. If a theory (in a countable
language) has an RE set of axioms, and it is consistent then it has a
�0
2 model (Kleene, Hasenjaeger).

2. A decidable theory has a recursive model.

3. The only recursive model of arithmetic is the standard model (Tenen-
baum).

In 1970, Matijasevi�c gave a negative solution to Hilbert's tenth problem:
there is no algorithm that decides if any given Diophantine-equation (that
is of the form p(x1; : : : ; xn) = 0, for a polynomial p with integer coeÆcients)
has a solution. To be precise, he established that every RE subset of N is
Diophantine, that is for each RE set A we can �nd a polynomial p with
integer coeÆcients such that A =
fn j 9x1; : : : ; xnp(n; x1; : : : ; xn) = 0g.

Using results of Davis, Julia Robinson and Putnam, Matijasevi�c solved
the problem by a purely number-theoretic argument, [Matijasevi�c, 1973].

Basis theorem, or do decent sets have decent elements? Let us agree for a
moment that decent subsets of the Euclidean plane are open sets and that
decent points are points with rational coordinates, then each non-empty
decent set contains a decent point. For, a non-empty open set A is a union
of open discs, so if p 2 A then p 2 C � A, where C is an open disc. Now a
bit of geometry tells us that C contains decent points. We express this by
saying that the rational points form a basis for the open sets. Had we taken
points with integer coordinates, then we would not have found a basis.

The problem of �nding a basis for a given family of sets is of general in-
terest in logic. One usually considers families of subsets of N , or of functions
from N to N . `Decency' is mostly expressed in terms of the arithmetical (or
analytical) hierarchy.

Since most basis-theorems deal with classes of functions, we will classify
functions by mans of their graphs. To be precise, a function is �0

n (�0
n or

�0
n) if its graph is so.
Unfortunately the majority of basis theorems deal with the analytical

hierarchy instead of the arithmetical hierarchy, so we restrict ourselves to a
theorem that �ts into the arithmetical hierarchy, and also has nice applica-
tions in logic:

THEOREM 40 (Kreisel's Basis Theorem). The �0
2 functions form a basis

of the �0
1 sets of characteristic functions.

Here the notions of �0
n;�

0
n generalize in a natural way to classes of func-

tions or sets. Consider a language for arithmetic that also contains set
variables Xi and a relation symbol 2 (for `element of'), i.e. a language
for second-order arithmetic. For this language we de�ne the notions �0

n



306 DIRK VAN DALEN

and �0
n exactly as in �rst-order arithmetic. Now a class A of sets is �0

n

if A = fX j '(X)g for a �0
n formula '. One may just as well consider a

language for second-order arithmetic with function variables.
For a detailed treatment of basis theorems, cf. [Shoen�eld, 1967] and

[Hinman, 1978].

APPENDIX

Proof of the Normal Form Theorem

The normal form theorem states, roughly speaking, that there is a primitive
recursive relation T (e; u; z) that formalizes the heuristic statement `z is a
(coded) computation that is performed by a partial recursive function with
index e on input u' (i.e. h~xi). The `computation' has been arranged in such
a way that its �rst projection is its output.

The proof is a matter of clerical perseverance|not diÆcult, but not ex-
citing either.

We have tried to arrange the proof in a readable manner by providing a
running commentary.

We have displayed below the ingredients for, and conditions on, compu-
tations. The index contains the information given in the clauses Ri. The
computation codes the following items:

1. the output,

2. the input,

3. the index

4. subcomputations.

Index Input Step Conditions on
Subcomputations

e u z

R1 h0; n; qi h~xi hq; u; ei
R2 h1; n; ii h~xi hxi; u; ei
R3 h2; n; ii h~xi hxi + 1; u; ei
R4 h3; n + 4i hp; q; r; s; ~xi hp; u; ei if r = s

hq; u; ei if r 6= s

R5 h4; n; b; c1; : : : ; cki h~xi h(z0)1; u; e; z0; z0; z001 ; : : : ; z
00
k

are
hz001 ; : : : ; z

00
k
ii computations with indices

b; c1; : : : ; ck. z00i has
input h(z001 )1; : : : ; (z00k )1i.

R6 h5; n + 2i hp; q; ~xi hs; u; ei (cf. 14)
R7 h6; n + 1i hb; ~xi h(z0)1; u; e; z0i z0 is a computation with

input h~xi and index b.

Note that z is the `master number', i.e. we can read o� the remaining data
from z, e.g. e = (z)3, lth(u) = (z)3;2 but in particular the `master numbers'
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of the subcomputations. So, by decoding the code for a computation, we
can e�ectively �nd the codes for the subcomputations, etc. This suggests
a primitive recursive algorithm for the extraction of the total `history' of
a computation from its code. As a matter of fact, that is essentially the
content of the normal form theorem.

We will now proceed in a (slightly) more formal manner, by de�ning
a predicate C(z) (for z is a computation), using the information of the
preceding table. For convenience, we assume that in the clauses below,
sequences u (in Seq(u)) have positive length.
C(z) is de�ned by cases as follows:

C(z) :=

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

9q; u; e < z[z = hq; u; ei ^ Seq(u) ^ e = h0; lth(u); qi] (1)
or
9u; e; i < z[z = h(u)i; u; ei ^ Seq(u) ^ e = h1; 1h(u); ii] (2)
or
9u; e; i < z[z = h(u)i + 1; u; ei ^ Seq(u) ^ e = h2; lth(u); ii] (3)
or
9u; e < z[Seq(u) ^ e = h3; lth(u)i ^ lth(u) > 4 ^ ([z = h(u)1; u; ei^
^(u)3 = (u)4] _ [z = h(u)2; u; ei ^ (u)3 6= (u)4])] (4)

or
Seq(z) ^ lth(z) = 5 ^ Seq((z)3) ^ Seq((z)5) ^ lth((z)3) =

= 3 + lth((z)5) ^ (z)3;1 = 4 ^ C((z)4) ^ (z)4;1 = (z)1 ^ (z)4;2 =
= h(z)5;1;1; : : : ; (z)5;lth((z)5);1i ^ (z)4;3 = (z)3;3^

^
VVlth((z)5)

i=1 [C((z)5;i) ^ (z)5;i;3 = (z)1;3+i ^ (z)5;i;2 = (z)2] (5)
or
9s; u; e < z[z = hs; u; ei ^ Seq(u) ^ e = h5; lth(u)i^

s = h4; (u)1;2
:

� 1; (u)1; h0; (u)1;2
:

� 1; (u)2i; h1; (u)1;2
:

� 1; 1i; : : :

: : : ; h1; (u)1;2
:

� 1; (e)2
:

� 2ii]; (6)
or
9u; e; w < z[Seq(u) ^ e = h6; lth(y)i ^ z = h(w)1; u; e; wi ^ C(w)^
^(w)3 = (u)1 ^ (w)2 = h(u)2; : : : ; (u)lth(u)i] (7)

Now observe that each clause of the disjunction only refers to C for
smaller numbers. Furthermore, each disjunct clearly is primitive recursive.
By changing to the characteristic function of C, we see that (1)- -(7) present
us (via de�nition by cases) with a course of value recursion. Hence, KC is
primitive recursive, and so is C.

This brings us to the end of the proof; de�ne T (e; u; z) := C(z) ^ u =
(z)2 ^ e = (z)3 (i.e. `z is a computation with index e and input u'), then T
is primitive recursive, and feg(u) = (�zT (e; u; z))1.

HISTORICAL NOTES

Recursion theory was the o�spring of G�odel's famous investigation into the
completeness of arithmetic [1931]. In the course of his proof of the incom-
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pleteness theorem he introduced the primitive recursive functions (under
the name `recursive'). In a subsequent paper [1934] he introduced, follow-
ing a suggestion of Herbrand, a wider class of the so-called Herbrand{G�odel
recursive functions. In the following years a number of approaches to the
theory of algorithms were worked out: �-calculus |Church, Kleene, cf.
[Barendregt, 1981]; Turing machines | [Turing, 1936], cf. [Davis, 1965];
Combinatory Logic | [Sch�on�nkel, 1924; Curry, 1929], cf. [Barendregt,
1981]; Post Systems [Post, 1947], cf. [Hopcroft and Ullman, 1969]; Regis-
ter machines | [Minsky, 1961; J.C. Shepherdson, 1963], cf. [Schnorr, 1974;
Minsky, 1967]; Markov algorithms [Markov, 1954], cf. [Mendelson, 1979].

The theory of recursive functions as a discipline in its own right was
developed by Kleene, who proved all the basic theorems: the Smn theorem,
the recursion theorem, the normal form theorem, and many others. Turing
developed the theory of Turing machines, constructed a Universal Turing
machine and showed the unsolvability of the Halting Problem. After G�odel's
pioneering work, Rosser modi�ed the independent statement so that only
the consistency of arithmetic was required fore the proof [Rosser, 1936], cf.
[Smory�nski, 1977].

Following Post [1944], a study of subsets of N was undertaken, leading to
notions as creative, productive, simple, etc. At the same time Post initiated
the classi�cation of sets of natural numbers in terms of `Turing reducibility',
i.e. a set A is Turing reducible to a set B if the characteristic function of
A is recursive when the characteristic function of B is given as one of the
initial functions| in popular terms if we can test membership of A given a
test for membership of B. The theory of degrees of unsolvability has grown
out of this notion, cf. [Shoen�eld, 1971; Soare, 1980].

The applications to logic are of various sorts. In the �rst place there
is the re�nement of (un)decidability results of G�odel, Rosser, Turing and
others, now known as the theory of reduction types, in which syntactical
classes with unsolvable decision problems are studied, cf. [Lewis, 1979], on
the other hand a study of solvable cases of the decision problem has been
carried out, cf. [Drebden and Goldfarb, 1979].

The theory of (arithmetical and other) hierarchies started with papers
of Kleene [1943] and Mostowski [1947], the subject has been extensively
explored and generalized in many directions, cf. [Hinman, 1978; Gri�or,
2000].

Generalizations of recursion theory to objects other than natural num-
bers have been studied extensively. To mention a few approaches: recursion
in higher types, [Kleene, 1959]; recursion on ordinals, Kripke, Platek; Ad-
missible sets, Kripke, Barwise, a.o.; De�nability Theory, Moschovakis, a.o.;
Axiomatic recursion theory, Wagner{Strong, Friedman, a.o.; Recursion on
continuous functionals, Kleene, Kreisel. The reader is referred to [Barwise,
1975; Hinman, 1978; Fenstad, 1980; Moschovakis, 1974; Norman, 1980].

The connection between recursion theory and intuitionism was �rst es-
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tablished by Kleene [1945], since then the subject has proliferated, cf. [Troel-
stra, 1973]. For historical accounts of the subject cf. [Kleene, 1976; Kleene,
1981; Mostowski, 1966; Heijenoort, 1967; Odifreddi, 1989].

Utrecht University, The Netherlands.
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H.-D. EBBINGHAUS AND J. FLUM

MATHEMATICS OF LOGIC PROGRAMMING

INTRODUCTION

Consider a set � of �rst-order sentences and a �rst-order sentence  . If
� j=  , i.e., if  is a consequence of �, then this can be established by
a formal proof using some complete �rst-order calculus. However, there is
no universal program that, given any � and  as inputs, decides whether
� j=  . This general fact does not exclude to ask for such a program for
\simple" � or  . As an important example, let  be restricted to existential
statements of the form 9x'(x), where '(x) is quanti�er-free. One might
think of '(x) as an equation in x. Then 9x'(x) states that '(x) has a
solution, and � j= 9x'(x) means that � guarantees a solution for '(x).
Given � and 9x'(x) one might not only wish to decide whether

(1) � j= 9x'(x);

but in the positive case to produce one solution (or all solutions) as terms
t of the underlying language, i.e. those terms t such that

(2) � j= '(t);

and, for practical purposes, it should be possible to produce these solutions
quickly.

In general, if � j= 9x'(x), there is no term t such that � j= '(t). An
example is given by � = f9xRxg and '(x) = Rx with a unary relation
symbol R. To give a further example, let � be a set of sentences axiomatizing
the class of real closed �elds (in the notions +;�;�;�; 0; 1) and let '(x) be
x3 + (1 + 1)x2 = x+ 1. Then \� j= 9x'(x)?" asks whether the polynomial
x3+2x2�x�1 has a root in all real closed �elds or, equivalently, in the �eld
of reals (the equivalence follows from a well-known theorem of the theory
of models). In general, we are unable to give the roots of a polynomial as
terms in the arithmetic operations.

Hence, in order to realize the extended expectations concerning concrete
solutions, we have to impose further restrictions on � or  . As it turns out,
there are fairly general conditions under which the existence of solutions
can be witnessed by terms and that even allow to create all solutions t.
For example, one assumes that � consists of so-called universal Horn for-
mulas. The theory concerned is known as logic programming. The central
idea here, going back mainly to [Kowalski, 1974] and [Colmerauer, 1970], is
that quanti�er-free Horn formulas can be given a procedural interpretation;
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for instance, an implication of the form ( 1 ^ : : : ^  k)!  can be viewed
as a rule that allows to pass from  1; : : : ;  k to  . The ideas rest on work
of Herbrand [Herbrand, 1968] from the thirties; the methods refer to the
so-called resolution developed in [Robinson, 1965].

Programming languages based on the theory of logic programming have
widely been used, e.g. for knowledge based systems, the best known ones
being those of the PROLOG (= programming in logic) family. There is a
bulk of methods and results with respect to larger applicability and eÆ-
ciency of the procedures. These aspects, however, will not be considered
here; the interested reader is referred to [Apt, 1990], [Lloyd, 1984], [Ster-
ling and Shapiro, 1986] and to [Gabbay, Hogger and Robinson, 1993f]. In
particular, we will treat negation only marginally (see [Shepherdson, 1988]).

To give an example of how basic features of knowledge based systems can
be modelled in the framework addressed by (1) and (2), think of a system S
to check cars. S consists of a certain experience or knowledge about possible
damages recorded as \rules" and formalized by the axioms in �. A simple
example of such a rule could be: \If the battery is empty, the starter does
not operate". Let '(x) express that x is a possible reason for a car not to
operate correctly in a speci�c manner (e.g., a reason for ineÆcient brakes).
Then we may ask whether

� [ �D j= 9x'(x);

where �D contains the results from a diagnosis of a concrete car with the
speci�ed damage, and we expect that we are provided with a list of all
possible reasons, i.e., of all t with

� [ �D j= '(t):

The situation in (1) and (2) refers to all models of � (in case of S to all cars
of the type S is designed for). In practice, say, in connection with databases,
it often is desirable to consider speci�c structures A and to ask whether

(3) A j= 9x'(x);

and { in the positive case { to quickly produce one (or all) solution(s) in
A. As a typical example, which we will present in more detail in Section
2, let A be a description of the schedules of a national bus company and
let 9x'(x) ask for a connection between two towns (also involving a change
of buses). The aim then could be to provide a customer with a full list of
all connections. As it turns out, the methods that were developed in logic
programming, can also be applied to structures, as there is a close connection
between the general problem as mirrored by (1) and speci�c problems as
mirrored by (3). Section 2 is concerned with these aspects.

The quanti�er-free formulas '(x) are propositional combinations of atomic
�rst-order formulas. Therefore, important aspects of the theory of logic pro-
gramming will be concerned with propositional logic and hence, in a �rst
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approximation, may be treated in the framework of this logic. We will do
so in Section 1, where we describe the main tool of logic programming, the
resolution method, on the propositional level. The �rst-order case will be
presented in Section 4.

The structure A mentioned above containing the schedule of a national
bus company may be viewed as a (relational) database. In Section 3 we
will give a short description of DATALOG, a language designed to serve
as a query language for databases, and investigate its relationship to logic
programming.

Finally, in Section 5, we analyze the computational complexity of the
methods in question. The main result we state says that the feasible database
queries (where feasibility is made precise by the notion of polynomial time
computability) just coincide with the queries that can be formulated in
DATALOG.

In part 2 of Section 5, we come back to the undecidability of �rst order
logic as mentioned at the beginning and give an even stronger result, namely
the undecidability of the Horn part of �rst-order logic. In particular, we
get that there is no uniform procedure to decide questions of the form
\� j= 9x'(x)?" even in the framework of Horn formulas. We thus will have
gained a principal borderline of eÆciency that we cannot surpass.

We assume that the reader is aquainted with the basics of propositional
logic and of �rst-order logic as given, for example, in [Ebbinghaus, Flum
and Thomas, 1992] or [Hodges, 1983]. Our terminology and notations will
deviate a little bit from those in [Hodges, 1983]. In any case, we hope that
the short descriptions we usually give, will clarify their use.

1 PROPOSITIONAL RESOLUTION

We start by �xing our notation for propositional logic.

Propositional formulas are built up from the propositional variables p1; p2;
p3; : : : by means of the propositional connectives : (not), ^ (and), and _ (or)
using the parantheses ),(. We denote propositional formulas by �; �; ; : : :
and use p; q; r; : : : for propositional variables. Then the propositional for-
mulas are just the strings that can be obtained by means of the following
rules:

p
;

�

:� ;
�; �

(� ^ �)
;

�; �

(� _ �)
:

We also write (�0^: : :^�n) for (: : : ((�0^�1)^�2) : : :^�n) and (�0_: : :_�n)
for (: : : ((�0 _ �1) _ �2) : : : _ �n); furthermore, (�0 ^ : : : ^ �n ! �) stands
for (:�0 _ : : : _ :�n _ �).
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To provide the semantics, we consider assignments

b : fp1; p2; : : :g ! fT;Fg
where T stands for the truth value \true" and F for the truth value \false".
For each b we de�ne the truth value k�kb inductively by

kqkb := b(q)

k:�kb :=

�
F if k�kb = T
T if k�kb = F

k(� ^ �)kb :=

�
T if k�kb = k�kb = T
F else

k(� _ �)kb :=

�
F if k�kb = k�kb = F
T else.

If k�kb = T we say that b is a model of � and also write b j= �. For a set
� of propositional formulas, b is a model of �, written b j= �, if b j= � for
all � 2 �. � is satis�able, if b j= � for some b. Furthermore, � is satis�able
if f�g is, and � is valid if b j= � for all b. Finally, � is a consequence of �,
written � j= �, if every model of � is a model of �. Note that ; j= � (also
written j= �) i� � is valid.

Clearly, the truth value k�kb is determined by the values b(q) of the
variables q that occur in �. Hence, to check whether � with variables among
q1; : : : ; qn is satis�able (or valid) we only need to calculate the truth values of
� under the 2n \assignments" of values to q1; : : : ; qn; a number exponential
in the number of variables in �.

Of course, even for relatively small n, this is an unfeasible number of
steps. So the question remains whether there is a feasible procedure to test
satis�ability. According to the common model of complexity theory, the
class of problems solvable with a feasible algorithm is identi�ed with the
class PTIME of problems that have an algorithm whose number of steps (or
running time) is polynomially bounded in the length of the input. Hence,
for a procedure that checks satis�ability, feasibility means that there is a
polynomial f over the set N of natural numbers such that for any input �,
the procedure needs at most f(length of �) steps.

The question whether the satis�ability problem for propositional formulas
belongs to PTIME is still open; it is equivalent to one of the most prominent
questions of complexity theory, namely to the question whether PTIME =
NPTIME, where NPTIME denotes the class of problems solvable by poly-
nomially bounded nondeterministic algorithms. For more information cf.
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[Hopcroft and Ullman, 1979] and also Section 5.

After having reviewed normal forms for propositional logic, we will present
a syntactically de�ned class of propositional formulas, for which the satis�-
ability problem is polynomially bounded. The class and the algorithm will
be of importance later.

Normal forms. A formula � is in conjunctive normal form (CNF), if it is a
conjunction of disjunctions of literals (that is, of propositional variables or
negated propositional variables), i.e.,

(1) � = (�11 _ : : : _ �1m1
) ^ : : : ^ (�n1 _ : : : _ �nmn

);

where the �ij are literals. Dually, � is in disjunctive normal form (DNF), if
� is a disjunction of conjunctions of literals,

(2) � = (�11 ^ : : : ^ �1m1
) _ : : : _ (�n1 ^ : : : ^ �nmn

):

Every propositional formula is logically equivalent to (i.e., has the same mod-
els as) both a formula in CNF and a formula in DNF (see, e.g., [Ebbinghaus,
Flum and Thomas, 1992]). We mention that the satis�ability problem for
formulas in CNF is as hard (in a precise sense) as it is for arbitrary propo-
sitional formulas. However, formulas in DNF can be tested quickly: Given
a formula as in (2), one simply has to check whether there is an i such
that the literals �i1; : : : ; �imi

do not include a propositional variable and
its negation. Therefore, it may be hard to translate formulas into logically
equivalent formulas in DNF. In fact, the usual proofs lead to translation
procedures of exponential time complexity.

Horn formulas. Our aim is to exhibit a feasible algorithm that decides sat-
is�ability for formulas in conjunctive normal form where each conjunct con-
tains at most one unnegated propositional variable. Thus, such a formula
has the form (�0 ^ : : : ^ �n) where each �i is a Horn formula in the sense
of the following de�nition.

DEFINITION 1. A Horn formula 1 is a formula of one of the forms

(H1) q

(H2) (:q0 _ : : : _ :qk _ q); i: (q0 ^ : : : ^ qk ! q)

(H3) (:q0 _ : : : _ :qk):

Horn formulas according to (H1) and (H2) are called positive (or strict),
those according to (H3) are called negative.2

1After the logician Alfred Horn.
2In the literature, Horn formulas in our sense are usually called basic Horn formulas,

whereas Horn formulas are conjunctions of basic Horn formulas.
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Clearly, the satis�ability of (�0^: : :^�n) is equivalent to that of f�0; : : : ; �ng:
Next we present a quick algorithm to decide whether a �nite set of Horn
formulas is satis�able, an algorithm important for the applications we have
in mind.

Whenever � is a set of Horn formulas, we denote by �+ and �� the subset
of positive and negative Horn formulas in �, respectively.

Let � be a set of Horn formulas and let b be a model of �. Then b(q) = T
for q 2 �, and whenever (q0^: : :^qk ! q) 2 � and b(q0) = : : : = b(qk) = T,
then b(q) = T. Therefore, we have b(q) = T at least for those variables q
that are underlined by applying the underlining algorithm consisting of the
following rules (U1) and (U2):

(U1) Underline in � all occurrences of propositional variables that them-
selves are elements of �.

(U2) If (q0 ^ : : : ^ qk ! q) 2 � and q0; : : : ; qk are already underlined, then
underline all occurrences of q in formulas of �.

The algorithm terminates when none of the two rules can be applied any
more. If � contains r propositional variables, this happens after at most r
applications.

EXAMPLE 2. Let

� := f(r ! q); (s ^ q ! t); (:r _ :t); (p! q); s; (s ^ p ^ r ! p); rg:
Then (U1) leads to

f(r ! q); (s ^ q ! t); (:r _ :t); (p! q); s; (s ^ p ^ r ! p); rg
and (U2) to

f(r ! q); (s ^ q ! t); (:r _ :t); (p! q); s; (s ^ p ^ r ! p); rg:
Again, (U2) can be applied, yielding

f(r ! q); (s ^ q ! t); (:r _ :t); (p! q); s; (s ^ p ^ r ! p); rg
where the algorithm terminates.

Now, let b� be the following assignment associated with �:

b�(q) :=

�
T if q is underlined
F else.

Then the remarks leading to the underlining algorithm show:

Whenever b j= � and b�(q) = T then b(q) = T;
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this is part (a) of the lemma below. Note that the set of underlined variables

only depends on the set �+ of positive Horn formulas in �; hence, b� = b�
+

(this is part (b) of the lemma).

LEMMA 3.

(a) For all assignments b and propositional variables q:

if b j= � and b�(q) = T then b(q) = T:

(b) b� = b�
+

:

(c) b�
+ j= �+:

(d) b� j= � i� � is satis�able
i� for all � 2 ��; �+ [ f�g is satis�able.

Proof. (c) Formulas in �+ have the form (H1) or (H2). Note that b�
+

(q) =
T for q 2 �+, because such q's are underlined by (U1). Now, let (q0 ^ : : :^
qk ! q) be in �+. If b�

+

(q0) = : : : = b�
+

(qk) = T then q0; : : : ; qk are

underlined and hence, by (U2), also q is underlined; thus, b�
+

(q) = T:

Therefore we have b�
+ j= (q0 ^ : : : ^ qk ! q):

(d) Clearly, if b� j= � then � is satis�able, and if � is satis�able then so
is �+ [ f�g for � 2 ��. Now assume that

for all � 2 �� : �+ [ f�g is satis�able.

We have to show that b� j= � or equivalently (by (b)) that b�
+ j= �. By

(c), b�
+ j= �+. Let � 2 ��, say, � = (:q0 _ : : :_:qk): By our assumption

there is b such that b j= �+[f�g; in particular, b(qi) = F for i = 0; : : : ; k. By

(a) applied to � := �+, b�
+

(qi) = F for i = 0; : : : ; k and hence, b�
+ j= �:

�

Since negative Horn formulas have the form (:q0 _ : : : _ :qk), we obtain:

COROLLARY 4. The following are equivalent:

(i) � is satis�able.

(ii) For no � in �� all propositional variables in � are marked by the
underlining algorithm. �

The corollary shows that the underlining algorithm gives us a feasible test
for satis�ability of �nite sets � of Horn formulas: We use the rules (U1)
and (U2) for � and �nally check whether in all negative Horn formulas of
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� there is at least one propositional variable that is not underlined. Thus,
the set � of Example 2 is not satis�able, since both variables of (:r _ :t)
get underlined.

REMARK 5. (1) In case � is satis�able, parts (a) and (d) of the lemma
show that b� is a minimal model of �, minimal in the sense that a variable
gets the value T only if necessary. Even, by (a){(c),

b�(p) = T i� �+ j= p:

Further reformulations of this minimality are contained in (3) and (4).

(2) Part (c) of the lemma shows that every set � of positive Horn formulas
is satis�able. While b� is a minimal model, the assignment mapping all
propositional variables to T is a \maximal" model of �.

(3) Given �, set

CWA(�) := f:p j not � j= pg:
CWA stands for closed world assumption: To assume CWA means that we
regard � as a full description of a world in the sense that :p must hold
in case � does not yield that p is true. If not � j= p, then � [ f:pg is
satis�able, hence b�[f:pg (= b�) is a model of � [ f:pg by the lemma.
Thus,

if � is satis�able then b� j= � [ CWA(�):

(The concept of closed world assumption goes back to [Reiter, 1978].)

(4) For a variable q occurring on the right side of an implication in �,
consider all such implications in �, say

(�1 ! q)

...

(�s ! q)

and set

�q := q $ (�1 _ : : : _ �s):
Let

CDB(�) := f�q j q =2 �; q occurs on the right side of

an implication in �g:
CDB stands for completed database (here, � is viewed as a database con-
taining information in terms of propositional formulas). Using (a) and (d)
of the lemma, one easily shows:

If � is satis�able then b� j= � [ CDB(�):



MATHEMATICS OF LOGIC PROGRAMMING 321

(The concept of completion of a database goes back to [Clark, 1978].)

In the procedure for checking (un-)satis�ability which we will study later
under the name \Horn resolution", the underlining algorithm is run upside
down. For example, let � be a set of Horn formulas with only one negative
element (:q0 _ : : : _ :qk). If we want to prove the unsatis�ability of �
by use of the underlining algorithm, we have to show that all variables in
f:q0; : : : ;:qkg will �nally be underlined. If (r0 ^ : : : ^ rn ! qi) 2 � (or
qi 2 �), by rule (U2) (or (U1)) it suÆces to show that each variable in

(�) f:q0; : : : ;:qi�1;:r0; : : : ;:rn;:qi+1; : : : ;:qkg
(or f:q0; : : : ;:qi�1;:qi+1; : : : ;:qkg)

ends up being underlined.
Now this argument can be repeated and applied to the set in (�). It will

turn out that � is not satis�able if in this way one can reach the empty set
in �nitely many steps (then none of the variables remains to be shown to
be underlined). In the case of

�0 := f(:p _ :q _ :s); (r ! p); r; q; (u! s); ug
we can reach the empty set at follows:

f:p;:q;:sg
f:p;:q;:ug ( since (u! s) 2 �0:)
f:p;:qg ( since u 2 �0)
f:pg ( since q 2 �0)
f:rg ( since (r ! p) 2 �0)
; ( since r 2 �0):

The idea underlying this procedure can be extended to arbitrary formulas
in CNF; in this way one arrives at the resolution method due to A. Blake
[1937] and J.A. Robinson [1965]. There, formulas in CNF are given in set-
theoretic notation. For instance, one identi�es a disjunction (�0 _ : : : _ �k)
with the set f�0; : : : ; �kg of its members. In this way the formulas (:p0 _
p1 _ :p0); (:p0 _ :p0 _ p1), and (p1 _ :p0) coincide with the set f:p0; p1g:
Obviously, disjunctions which lead to the same set are logically equivalent.
We introduce the notation in a more precise way.

For literals we write �; �1; : : : : A �nite, possibly empty set of literals is
called a clause. We use the letters C;L M : : : for clauses and C; : : : for (not
necessarily �nite) sets of clauses.

The transition from a disjunction (�0 _ : : : _ �k) of literals to the clause
f�0; : : : ; �kg motivates the following de�nitions:

DEFINITION 6. Let b be an assignment, C a clause, and C a set of clauses.
(a) b satis�es C, if there is � 2 C with b j= �:



322 H.-D. EBBINGHAUS AND J. FLUM

(b) C is satis�able, if there is an assignment which satis�es C.

(c) b satis�es C, if b satis�es C for all C 2 C.
(d) C is satis�able, if there is an assignment which satis�es C.

Thus a formula in CNF and the set of clauses that corresponds to its
conjuncts hold under the same assignments. The empty clause is not satis�-
able. Therefore, if ; 2 C, C is not satis�able. On the other hand, the empty
set of clauses is satis�able.

With the resolution method one can check whether a set C of clauses (and
therefore, whether a formula in CNF) is satis�able. The method is based on
a single rule; it allows the formation of so-called resolvents.

For a literal � let �F = :p if � = p, and �F = p if � = :p.
DEFINITION 7. Let C;C1, C2 be clauses. C is called a resolvent of C1 and
C2, if there is a literal � with � 2 C1 and �F 2 C2 such that

(C1 n f�g) [ (C2 n f�Fg) � C � C1 [ C2:3

The transition to resolvents preserves truth in the following sense:

LEMMA 8 (Resolution Lemma). Let C be a resolvent of C1 and C2. Then
for every assignment b,

if b j= C1 and b j= C2 then b j= C:

Proof. As C is a resolvent of C1 and C2, there is a literal � with � 2
C1; �

F 2 C2, and (C1 n f�g) [ (C2 n f�Fg) � C � C1 [ C2. There are two
cases:

b 6j= � : Since C1 holds under b, there is �0 2 C1, � 6= �0, with b j= �0. Since
�0 2 C, C is satis�ed by b.

b j= � : Then b 6j= �F, and we argue similarly with C2 and �F. �

We show in the appendix to this section that an arbitrary set C of clauses
is not satis�able if and only if starting from the clauses in C and forming
resolvents, one can obtain the empty clause in �nitely many steps. Here we
show that for unsatis�able sets of Horn clauses there is a more \direct" way
leading to the empty clause.

Horn clauses are clauses stemming from Horn formulas. Positive Horn

3The results that follow below remain valid if, in additon, we require that C = (C1 n
f�g) [ (C2 n f�Fg). For the purposes of logic programming, however, it is better to give
the de�nition as done above.
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clauses are clauses of the form fpg or f:q0; : : : ;:qk; pg with k � 0, while
negative Horn clauses are of the form f:q1; : : : ;:qkg with k � 0. Thus the
empty set is a negative clause (k = 0): If C is a set of Horn clauses, we
denote by C+ and C� the subset of its positive and negative Horn clauses,
respectively.

DEFINITION 9. Let C be a set of Horn clauses.

(a) A sequence N0; N1; : : : ; Nn is a Horn resolution (short: H-resolution)
from C, if there are P0; : : : ; Pn�1 2 C+ such that

(1) N0; : : : ; Nn are negative Horn clauses;

(2) N0 2 C�;
(3) Ni+1 is a resolvent of Ni and Pi for i < n.

(b) A negative Horn clause N is H-derivable from C, if there is an H-
resolution N0; : : : ; Nn from C with N = Nn.

We represent the \H-resolution via P0; : : : ; Pn�1" of (a) by

N0
-N1

P0

?
-N2

P1

?
- : : : -Nn

Pn�1

?

In particular, the steps on page 321 leading to the unsatis�ability of �0

correspond to the H-resolution

f:p;:q;:sg - f:p;:q;:ug

f:u;sg

?
- f:p;:qg

fug

?
- f:pg

fqg

?
- f:rg

f:r;pg

?
- ;

frg

?

of ; from the set of clauses corresponding to �0.

This relationship holds in general as shown by

THEOREM 10 (Theorem on the H-Resolution). Let C be a set of Horn
clauses. Then the following are equivalent:

(i) C is satis�able.

(ii) ; is not H-derivable from C.

Proof. First, let b be an assignment satisfying C and let

N0
-N1

P0

?
-N2

P1

?
- : : : -Nn

Pn�1

?
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be an H-resolution from C. As N0 2 C and P0 2 C, and as N1 is a resolvent
of N0 and P0, b is a model of N1 by the Resolution Lemma 8. Going on in
this way, one gets b j= N2; : : : ; b j= Nn. In particular, Nn 6= ;. Hence, ; is
not H-derivable from C.

The direction from (ii) to (i): The clauses in C+ correspond to a set � of
positive Horn formulas. We show:

(�) If k 2 N and b�(q0) = : : : = b�(qk) = T; then ; is H-derivable from
C+ [ ff:q0; : : : ;:qkgg.

Then we are done: Assume (ii). By Lemma 3(c) it suÆces to show that b�

is a model of all clauses in C�. So let N 2 C�. By (ii), ; is not H-derivable
from C+ [ fNg(� C), in particular, N 6= ;, say N = f:q0; : : : ;:qkg. Thus
(�) shows that there is an i � k with b�(qi) = F. So b� j= N .

To show (�), we prove by induction on l that (�) holds provided each qi is
underlined during the �rst l steps, when applying the underlining algorithm
to �. For l = 1, the variables q0; : : : ; qk are underlined in the �rst step,
hence q0; : : : ; qk 2 � and therefore, fq0g; : : : ; fqkg 2 C+: Thus,

f:q0;:::;:qkg - f:q1;:::;:qkg

fq0g

?
- ::: - f:qkg

fqk�1g

?
- ;

fqkg

?

is an H-resolution of ; from C+ [ ff:q0; : : : ;:qkgg:
Suppose l = m + 1, where m � 1. For simplicity, let q0; q1 be all the

variables among the qi's that are underlined in the l-th step (the general
case being only notationally more complicated). Then, for i = 0; 1, there is
a clause (ri0 ^ : : :^ rimi

! qi) 2 � such that ri0; : : : ; rimi
are underlined in

the �rst m steps. Set

N0 := f:r00; : : : ;:r0m0
;:r10; : : : ;:r1m1

;:q2; : : : ;:qkg:

By induction hypothesis, there is an H-resolution of ; from C+ [ fN0g, say

N0
-N1

P0

?
-N2

P1

?
- : : : -Nn

Pn�1

?

with Nn = ;: Then

f:q0;:::;:qkg -f:r00;:::;:r0m0
;:q1;:::;:qkg

f:r00;:::;:r0m0
;q0g

?
-N0

f:r10;:::;:r1m1
;q1g

?
- N1

P0

?
- : : : -Nn

Pn�1

?



MATHEMATICS OF LOGIC PROGRAMMING 325

is an H-resolution of ; from C+ [ ff:q0; : : : ;:qkgg: �

As indicated above, Horn resolution (for �rst-order logic) is essential for
logic programming. We turn to it in Section 4.

1.1 Appendix

The Theorem on the H-Resolution has a generalization to arbitrary sets of
clauses. This appendix is addressed to the reader interested in it.

For an arbitrary set C of clauses we let Res1(C) be the smallest set of
clauses that contains C and is closed under the formation of resolvents. Thus,
if C1; C2 2 Res1(C) and C is a resolvent of C1 and C2, then C 2 Res1(C).
THEOREM 11 (Resolution Theorem). For any set C of clauses, the fol-
lowing are equivalent:

(i) C is satis�able.

(ii) ; 62 Res1(C):

Proof. (i) ) (ii): Let b be a model of C. Then the set

Cb := fC j C a clause, b j= Cg
contains C and is closed under the formation of resolvents (by the Resolution
Lemma). Hence, Res1(C) � Cb and therefore, b is a model of Res1(C). In
particular, ; =2 Res1(C).
(ii) ) (i): As by the compactness theorem for propositional logic

C is satis�able i� each �nite subset of C is satis�able

and as
Res1(C) =

[
C0�C; C0�nite

Res1(C0);

we may assume that C is �nite. For a contradiction suppose that C is a
counterexample, i.e.,

(�) C ; =2 Res1(C) and C is not satis�able:

In addition, let C be minimal with respect to the number of variables oc-
curring in it. Since the empty set of clauses is satis�able, we see that C 6= ;,
and since ; 2 Res1(f;g), we see that C 6= f;g. Thus, there is at least one
variable p occurring in C. Without loss of generality we may assume that

(+) no clause in C contains both p and :p.
Otherwise, we may remove such clauses from C without destroying the va-
lidity of (�)C .

Let C0 consist of
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(a) the clauses C 2 C with p =2 C;:p =2 C;

(b) the clauses of the form C = C1 [ C2 such that p =2 C1, C1 [ fpg 2 C,
and :p =2 C2, C2 [ f:pg 2 C (thus, C is a resolvent of C1 [ fpg and
C2 [ f:pg):

As C0 � Res1(C), we get Res1(C0) � Res1(C) and thus, by (�)C , that
; =2 Res1(C0): By (+), p does not occur in C0. Hence, the minimality of C
yields that C0 is satis�able. Let b be a model of C0 and, say, b(p) = T. We
show that b or bFp (where bFp di�ers from b only in assigning F to p) is a
model of C, a contradiction. We distinguish two cases.

Case 1. For all C 0 2 C, if C 0 = C1 [fpg with p =2 C1, then b j= C1. We show
that bFp is a model of C. Let C 2 C. If p 2 C then, by assumption, b j= Cnfpg;
hence, bFp j= C. If :p 2 C, then trivially bFp j= C. If p =2 C;:p =2 C, then

C 2 C0 and hence, b j= C and therefore, bFp j= C.

Case 2. For some C 0 = C1 [ fpg 2 C with p =2 C1 we have b 6j= C1. We
show that b is a model of C. Let C 2 C. If :p =2 C, then b j= C. If :p 2 C,
say, C = C2 [ f:pg with :p =2 C2, we have C1 [ C2 2 C0 by (b) and hence,
b j= C1 [ C2: As b 6j= C1; we get b j= C2 and therefore, b j= C. �

The resolution method provides a further test for satis�ability of clauses
(and, hence, of propositional formulas in CNF). However, in contrast to H-
resolution for Horn clauses, this test may have exponential running time.
For details and a comparison with other methods for checking satis�ability,
see e.g. [Urquhart, 1995].

2 TERM MODELS

As we have mentioned in the introduction, we are exploring questions of two
kinds: questions that ask whether an assertion 9x'(x) follows from a set �
of sentences and questions that ask whether such an assertion is true in a
particular structure. In this section we exhibit a relationship between both
kinds that is based on models of � which reect just the information ex-
pressed by �, so-called term models (Subsections 2.3, 2.4). The relationship
lives in the framework of universal sentences. For such sentences the prob-
lem of (consequence and) satisfaction can be reduced to propositional logic
(Subsection 2.2), thus opening it for the methods of the preceding section.
We start by �xing our notation for �rst-order logic.

2.1 First-Order Logic

Vocabularies are sets that consist of relation symbols P;Q;R; : : : ; function
symbols f; g; h; : : : ; and constants c; d; e; : : :. Each relation symbol and each
function symbol has a positive integer assigned to it, its arity.
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Fix a vocabulary �. We let �-terms be the variables v1; v2; : : : (indicated
by x; y; z; : : :), the constants c 2 �, and the \composed" terms f(t1; : : : ; tn)
for n-ary f 2 � and �-terms t1; : : : ; tn. T � is the set of �-terms, T �0 the set
of �-terms that contain no variables, so-called ground terms.

First-order �-formulas comprise the atomic formulas Rt1 : : : tn for n-ary
R 2 � and t1; : : : ; tn 2 T � and the �-formulas :'; ('^ ); ('_ );8x'; 9x'
for �-formulas ';  and variables x.4

L� is the set of �-formulas, L�0 the set of �-sentences, i.e., of �-formulas
where every variable x is in the scope of a quanti�er 8x or 9x. We use
';  ; : : : as variables for �-formulas and �;	; : : : as variables for sets of
�-formulas.

For any quanti�er-free �-formula ', any variable x, and any �-term t,
the �-formula '(xjt) arises from ' by replacing t for x throughout '. If x
is clear from the context, say by writing '(x) for ', we also use '(t) for

'(xjt). With
n
x for x1; : : : ; xn and

n
t for t1; : : : ; tn we use '(

n
xjnt) to denote

the result of simultaneously replacing x1 by t1; : : : ; xn by tn in '.

A �-structure A consists of a nonempty set A, the universe or domain of A,
of an n-ary relation RA over A for every n-ary R 2 �, of an n-ary function
fA over A for every n-ary f 2 �, and of an element cA of A for every
constant c 2 �.

For a �-structure A and an A-assignment �, i.e., a map from fv1; v2; : : :g
into A, we write

(�) (A; �) j= '

if (A; �) satis�es (or is a model of) '. The satisfaction relation (�) depends
only on how A interpretes the symbols of � that actually appear in ' and
on the values �(x) for those x free in '. So for ' 2 L�0 we may write

A j= '

instead of (�).
We say that ' follows from (or is a consequence of) �, written � j= ', if

every model of � is a model of '.

A �-formula ' is universal if it is a formula of the form 8nx�, where �
is quanti�er-free. We call � the kernel of '. Quanti�er-free formulas are
logically equivalent to both formulas in conjunctive normal form (CNF)
and formulas in disjunctive normal form (DNF),

n̂

i=1

mi_
j=1

�ij and

n_
i=1

mî

j=1

�ij ;

4Note that we do not include equality. We treat formulas with equality in 2.4.
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respectively, where the �ij are atomic or negated atomic formulas, so-called
(�rst-order) literals.

Henceforth, we often omit the pre�x \�-" in connection with formulas and
structures when it will be clear from the context or inessential. Moreover, we
always assume that the vocabulary � contains a constant. This assumption
is not essential, as a variable could serve the same purpose; however, it
facilitates the presentation.

2.2 Universal Sentences and Propositional Logic

We reduce the problem of satis�ability of universal sentences to that of
quanti�er-free formulas. This allows us to pass to propositional logic and
to translate the results on propositional logic of the previous section to
�rst-order logic.

DEFINITION 12. A �-structure A is named if for every a 2 A there is a
term t 2 T �0 such that a = tA.

The structures introduced in the following de�nition are named. They
will play a major role later.

DEFINITION 13. A �-structure A is a Herbrand structure if

(a) A = T �0 :

(b) For n-ary f 2 � and t1; : : : ; tn 2 T �0 : fA(t1; : : : ; tn) = f(t1; : : : ; tn).

(c) For c 2 � : cA = c:

Clearly, in every Herbrand structure A we have tA = t for every t 2 T �0 :
LEMMA 14. Assume that 8 nx 2 L�0 and that  is quanti�er-free. Then
for every named structure A,

(a) A j= 8 nx i� for all t1; : : : ; tn 2 T �; A j=  (
n
xjnt).

(b) A j= 9 nx i� there are t1; : : : ; tn 2 T � such that A j=  (
n
xjnt).

The proof is immediate.

THEOREM 15. Let � � L�0 be a set of universal sentences. Then the fol-
lowing are equivalent:

(i) � is satis�able.

(ii) The set GI(�) of ground instances of sentences in �,

GI(�) := f (
n
xjnt) j 8 nx 2 �;  quanti�er-free;

n
t 2 T �0 g;

is satis�able.
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Proof. The implication (i) ) (ii) is trivial, as 8 nx j=  (
n
xjnt) for all

n
t:

(ii) ) (i): Let A j= GI(�): The subset B := ftA j t 2 T �0 g of values in A of
the ground terms is not empty (because � contains a constant), contains the
values of the constants in �, and is closed under the functions fA for f 2 �
(as for n-ary f 2 � and

n
t 2 T �0 , we have fA(tA1 ; : : : ; t

A
n ) = f(t1; : : : ; tn)A):

Hence, B is the domain of a substructure B of A. Clearly, B j= GI(�) (since
A j= GI(�)) and hence, B j= � by the preceding lemma, as B is named. �

As an immediate corollary we get:

THEOREM 16. (Herbrand's Theorem) Let � be a set of universal sentences

and 9my a sentence with quanti�er-free  . Assume that

� j= 9my :

Then there are l � 1 and ground terms
m
t1; : : : ;

m
tl such that

� j= ( (
m
y jmt1) _ : : : _  (

m
y jmtl)):

Proof. If � j= 9my , then

� [ f8my: g is not satis�able,

hence, by the preceding theorem,

� [ f: (
m
y jmt ) j mt 2 T �0 g is not satis�able,

so the compactness theorem for �rst-order logic yields terms
m
t1; : : : ;

m
tl 2 T �0

such that

� [ f: (
m
y jmti) j 1 � i � lg is not satis�able,

i.e.

� j= ( (
m
y jmt1) _ : : : _  (

m
y jmtl)):

�

REMARK 17. For � and 9my as in Herbrand's Theorem we get that in

case  has a solution, i.e., in case � j= 9my , there are �nitely many tuples
m
t1; : : : ;

m
tl such that in every model A of 	 at least one of the tuples

m
t1; : : : ;

m
tl

is a solution. This is a �rst step towards our aim to witness the existence
of solutions by terms. However, the example

(Rc _ Rd) j= 9xRx
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shows that, in general, we cannot expect l to be one. Later we shall see that

under further restrictions on � and 9my we can choose l = 1.

By Theorem 15 the satis�ability problem for sets of universal sentences
is reduced to the satis�ability problem for sets of quanti�er-free sentences.
Such sentences behave like propositional formulas. We start by clarifying
this point.

Let � be a countable vocabulary that contains a relation symbol (other-
wise L� is empty). Then the set

At� := fRt1 : : : tn j R 2 � n-ary,
n
t 2 T �g

is countably in�nite. Let

�0 : At� ! fp1; p2; : : :g

be a bijection from the atomic �-formulas onto the propositional variables.
We extend �0 to a map � which is de�ned on the set of quanti�er-free
�-formulas by setting inductively

�(') := �0(') for ' 2 At�

�(:') := :�(')
�((' ^  )) := (�(') ^ �( ))
�((' _  )) := (�(') _ �( )):

It can easily be seen that � is a bijection between quanti�er-free �-formulas
and propositional formulas. The proof of the following lemma is immedi-
ate.

LEMMA 18. Let A be a �-structure and b be a propositional assignment.
Assume that A and b agree on atomic sentences, i.e.

for all sentences ' 2 At� : A j= ' i� b j= �('):

Then A and b agree on quanti�er-free sentences, i.e.

for all quanti�er-free ' 2 L�0 : A j= ' i� b j= �('):

PROPOSITION 19.

(a) For every �-structure A there is an assignment b such that A and b
agree on quanti�er-free sentences.

(b) For every assignment b there is a Herbrand structure A such that A
and b agree on quanti�er-free sentences.
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Proof. (a) Given A, de�ne the assignment b by

b(p) = T i� ��1(p) is a sentence and A j= ��1(p):

Then A and b agree on atomic sentences and hence, by the preceding lemma,
on quanti�er-free sentences.

(b) Given b, let A be the Herbrand structure with

RAt1 : : : tn i� b j= �(Rt1 : : : tn):

Again, A and b agree on atomic sentences and hence, on quanti�er-free
sentences. �

COROLLARY 20. Let � [ f g be a set of quanti�er-free sentences. Then

(a) � is satis�able i� �(�) is satis�able (i� � has a Herbrand model).

(b) � j=  i� �(�) j= �( ). �

So with respect to satis�ability we may view quanti�er-free sentences as
propositional formulas. This allows to apply methods and results of proposi-
tional logic. For this purpose we consider universal sentences whose kernels
correspond to a propositional Horn formula.

DEFINITION 21. Universal Horn sentences are universal �rst-order sen-
tences whose kernel is of the form (a), (b), or (c):

(a)  

(b) (: 0 ^ : : : ^ : k !  )

(c) (: 0 _ : : : _ : k)

with atomic  ;  0; : : : ;  k. They are positive (or strict) in cases (a), (b),
and negative in case (c).

Let � be a set of universal Horn sentences. In order to check whether � is
satis�able, Theorem 15 shows that we may check whether the set GI(�) =

f (
n
xjnt) j 8 nx 2 �;  quanti�er-free;

n
t 2 T �0 g is satis�able. By Corollary

20, its satis�ability is equivalent to that of the set �(GI(�)) of propositional
formulas. If � and T �0 are �nite, �(GI(�)) is �nite and we therefore can use
propositional Horn resolution to quickly check satis�ability of �.
T �0 is �nite if � contains no function symbols (and only �nitely many

constants). In Section 5 we will see that the satis�ability problem for �nite
sets of universal Horn sentences is undecidable if function symbols are al-
lowed. On the other hand, function symbols are often needed in applications
(cf. the example at the end of this section). The problem of how to go
through in�nitely many terms in an \eÆcient" manner, will be discussed in
Section 4.
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2.3 Minimal Herbrand Models

For sets � of propositional Horn formulas the minimal assignment b� played
a special role. For a set � of universal Horn sentences we are now going to
de�ne a minimal Herbrand structure H� that will be of similar importance.
For instance, similarly as with � and b�, we can test the satis�ability of �
by just looking at H�.

For the rest of this section, let � be a set of universal Horn sentences and let
�+ and �� be the subsets of � consisting of the positive and the negative
Horn sentences, respectively.

Recall that for a set � of propositional Horn formulas and a propositional
variable p we have

b� j= p i� �+ j= p

(cf. Remark 5(1)). This motivates how to �x the relations in the �rst-order
case.

DEFINITION 22. The Herbrand structure H� associated with � is given
by setting for n-ary R 2 � and t1; : : : ; tn 2 T �0 :

RH�

t1 : : : tn : i� �+ j= Rt1 : : : tn:

Note that the atomic sentences in L�0 are just the formulas of the form
Rt1 : : : tn with t1; : : : ; tn 2 T �0 . Now the following proposition parallels
Lemma 3.

PROPOSITION 23.

(a) For all structures A and all
n
t 2 T �0 :

if A j= � and H� j= Rt1 : : : tn then A j= Rt1 : : : tn.

(b) H� = H�+ :

(c) H�+ j= �+:

(d) H� j= � i� � is satis�able
i� for all ' 2 �� : �+ [ f'g is satis�able.

Proof. (a) If A j= � and H� j= Rt1 : : : tn then, by De�nition 22, �+ j=
Rt1 : : : tn and thus, A j= Rt1 : : : tn.

(b) is immediate from De�nition 22.

(c) Let ' 2 �+, say, ' = 8 nx( 0^ : : :^ k !  ) (the proof for ' of the form

8 nx is even simpler). Let t1; : : : ; tn 2 T �0 and assume that

(�) H�+ j= ( 0 ^ : : : ^  k)(
n
xjnt):
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We have to show that H�+ j=  (
n
xjnt). By (�) and De�nition 22,

�+ j=  0(
n
xjnt); : : : ;�+ j=  k(

n
xjnt)

and thus, by ' 2 �+; �+ j=  (
n
xjnt); hence, H�+ j=  (

n
xjnt):

(d) Clearly, it suÆces to show H� j= � in case

(+) for all ' 2 �� : �+ [ f'g is satis�able.

So assume (+). By (b) and (c), H� j= �+. Let ' = 8 nx(: 0 _ : : : _ : k) 2
��. To prove H� j= ', let A be a model of �+ [ f'g: Then

for all
n
t 2 T �0 there is i � k such that A j= : i(nxj

n
t)

and hence, by (a),

for all
n
t 2 T �0 there is i � k such that H� j= : i(nxj

n
t);

i.e.,

for all
n
t 2 T �0 ; H� j= (: 0(

n
xjnt) _ : : : _ : k(

n
xjnt))

and thus, by Lemma 14, H� j= 8 nx(: 0 _ : : : _ : k): �

COROLLARY 24. Let � = �+ and let ' be a negative universal Horn
sentence. Then

� j= :' i� H� j= :':

Proof. � j= :' i� � [ f'g is not satis�able
i� H�[f'g 6j= � [ f'g (by Proposition 23(d))
i� H� j= :' (by 23(b),(c),

as (� [ f'g)+ = �): �

Since :8 nx(: 0_ : : :_: k) is equivalent to 9 nx( 0^ : : :^ k), we immedi-
ately get the equivalences of (i) and (ii), of (iii) and (iv), and the equivalence
in (�) of the following corollary. The equivalence of (ii) and (iv) holds by
Lemma 14(b).

COROLLARY 25. Let � be a set of positive universal Horn sentences and
let
9 nx( 0 ^ : : : ^  k) be a sentence with atomic  i. Then the following are
equivalent:

(i) � j= 9 nx( 0 ^ : : : ^  k):

(ii) H� j= 9 nx( 0 ^ : : : ^  k):
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(iii) There are
n
t 2 T �0 such that � j= ( 0(

n
xjnt) ^ : : : ^  k(

n
xjnt)):

(iv) There are
n
t 2 T �0 such that H� j= ( 0(

n
xjnt) ^ : : : ^  k(

n
xjnt)):

Moreover, the equivalence of (iii) and (iv) is termwise in the sense that for

all
n
t 2 T �0 :

(�) � j= ( 0(
n
xjnt) ^ : : : ^  k)(

n
xjnt)) i� H� j= ( 0(

n
xjnt) ^ : : : ^  k(

n
xjnt)):

REMARK 26. (1) In the situation of the preceding corollary the validity of

the implication � j= 9 nx', where ' = ( 0^ : : :^ k), can be tested by looking

just at one structure, namely H�: This implies that in case � j= 9 nx' there

is a single tuple
n
t of terms such that � j= '(

n
xjnt) (in Herbrand's Theorem

16 we needed �nitely many tuples).

(2) Assume that � is satis�able. Then the model H� of � is minimal, that
is:

if A is a Herbrand structure and A j= �; then for all R 2 � : RH� � RA:

(3) (cf. Remark 5(3)) Let � be satis�able. Set

CWA(�) := f: j  an atomic sentence and not � j=  g;
the closed world assumption for �. Then (see Proposition 23) we have that
H� j= �[CWA(�). The closed world assumption goes back to [Reiter, 1978].
It decides to accept : in case  is not deducible. However, one should
pay attention to the following point: Consider CWA(�) as a logical rule
(extending the system of usual �rst-order rules) that allows to deduce : 
from �, if  is not deducible from �. If : 2 CWA(�), : is deducible from
� in the new sense, however, it is not deducible from � [ f g. So the new
calculus lacks one of the fundamental properties of classical logical calculi,
namely monotonicity according to which deducibility is preserved under the
addition of axioms. For more information on non-monotonic reasoning cf.
volume 3 of [Gabbay, Hogger and Robinson, 1993f]; for the role of negation
in logic programming, see [Shepherdson, 1988].

(4) The preceding results Proposition 23 and Corollary 24 can also be derived
directly from those for propositional logic. We encourage the reader to do so
by noting that H� is the Herbrand structure associated with the assignment
b� for � = �(GI(�)).

As already pointed out in Remark 26(1), Corollary 25 emphasizes the
speci�c role of the Herbrand structure H�. However, in practice one usually
starts with an arbitrary structure. So, the question arises which structures
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A are of the form H� for some set � of positive universal Horn sentences.
In case � contains a function symbol we have in�nitely many terms and T �0
will be in�nite, so �nite structures will not even be Herbrand structures.
Once we have explained in the next subsection how to deal with equality,
we will see that, to a certain extent, every structure can be viewed as a
structure of the form H�.

2.4 First-Order Logic with Equality

Denote by L�;= the set of formulas that we obtain by adding to L� atomic
formulas of the form

s = t

where s and t are terms. In any �-structure, = is interpreted by the equality
relation.

To deal with L�;= in the framework of �rst-order logic without equality,
we take a binary relation symbol E0 not in �. Then we let Eq(�) be the set
consisting of the following sentences (the sentences under (1) say that E0 is
an equivalence relation, those under (2) and (3) say that E0 is compatible
with the relations and functions, respectively):

1. 8xE0xx; 8xy(E0xy ! E0yx); 8xyz(E0xy ^ E0yz ! E0xz)

2. 8 nx8 ny(Rx1 : : : xn ^ E0x1y1 ^ : : : ^ E0xnyn ! Ry1 : : : yn) for n-ary
R 2 �

3. 8 nx8 ny(E0x1y1 ^ : : : ^ E0xnyn ! E0f(x1; : : : ; xn)f(y1; : : : ; yn)) for n-
ary f 2 �.

Note that Eq(�) is a set of positive universal Horn sentences.

If the � [ fE0g-structure A is a model of Eq(�), we de�ne the �-structure
A=E0 , the quotient structure of A modulo EA

0 , as follows:

A=E0 := fa j a 2 Ag;

where a denotes the equivalence class of a modulo EA
0 ;

RA=E0 := f(a1; : : : ; an) j a1; : : : ; an 2 A; na 2 RAg;

fA=E0 (a1; : : : ; an) := fA(a1; : : : ; an):

As A j= Eq(�), this de�nition makes sense.

For ' 2 L�;= let 'E0 be the L�[fE0g-formula that arises from ' if one
replaces the equality sign by E0. One easily shows by induction on formulas:
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For every ' 2 L�;=0 and every � [ fE0g-structure A with A j= Eq(�);

(1) A=E0 j= ' i� A j= 'E0 ;

and one concludes for � [ f g � L�;=0 :

(2) � j=  i� �E0 [ Eq(�) j=  E0 ;

where �E0 := f'E0 j ' 2 �g. Using these equivalences, we can translate
problems of �rst-order logic with equality into problems of �rst-order logic
without equality. In particular, for a set � � L�;=0 of universal Horn sen-
tences they tell us how to de�ne the Herbrand structure H� associated with
� (by de�nition,  2 L�;=0 is a universal Horn sentence, if  E0 is): By (2),
the role of � is taken over by the set �E0 [ Eq(�). Since the sentences in

Eq(�) are positive, its Herbrand structure H�E0[Eq(�) is a model of Eq(�);

hence, H�E0[Eq(�)=E0 is well-de�ned. Now, we set

(3) H� := H�E0[Eq(�)=E0

Then the results on universal Horn sentences given above survive in the
presence of equality. We illustrate this by proving the analogue of Corollary
24.

COROLLARY 27. Let � � L�;=0 be a set of positive universal Horn sen-
tences and let ' 2 L�;=0 be a negative universal Horn sentence. Then

� j= :' i� H� j= :':

Proof.
� j= :' i� �E0 [ Eq(�) j= :'E0 (by (2))

i� H�E0[Eq(�) j= :'E0 (by Corollary 24)

i� H�E0[Eq(�)=E0 j= :' (by (1))
i� H� j= :' (by (3)). �

REMARK 28. If � is a set of universal Horn sentences that does not con-
tain the equality sign, it does not matter whether we view � as a subset of
L�0 or as a subset of L�;=0 : The minimal Herbrand models H� that we get
by viewing � as a subset of L�0 and as a subset of L�;=0 are the same (up to
isomorphism). To show this, note that

�+ j= t1 = t2 i� t1 = t2:

We come back to the problem of how a given structure can be viewed as
the Herbrand structure H� for a suitable �.
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Let A be a �-structure and set

�(A) := � [ fca j a 2 Ag

where the ca are new constants. The positive diagram D(A) of A consists
of the following �(A)-sentences:

(1) Rca1 : : : can for n-ary R 2 � and
n
a 2 RA;

(2) f(ca1 ; : : : ; can) = ca for n-ary f 2 �,
n
a; a 2 A; and fA(a1; : : : ; an) = a;

(3) ca = c for c 2 �, a 2 A, and cA = a:

A simple induction on terms using the sentences in (2) and (3) shows:

(4) For every t 2 T �(A)0 there is an a 2 A such that D(A) j= t = ca:

If we denote by (A; (a)a2A) the �(A)-structure where ca is interpreted by
a, we therefore get:

PROPOSITION 29. HD(A) �= (A; (a)a2A); and hence, we have for the �-
reduct HD(A)j� of HD(A):

HD(A)j� �= A:

The next example will show how we may apply the \ubiquity" of Her-
brand structures in a concrete situation.

2.5 An Example

Using the results of the preceding subsections and the concept of diagram
we analyze one of the examples indicated in the introduction.

Consider a directed graph, i.e., a structure G = (G;EG) with binary E
such that G j= 8x:Exx. Imagine that the elements of G are the towns of
a country and that (a b) 2 EG means that a certain bus company o�ers a
direct connection from a to b. Then the question whether two persons living
in towns a1; a2, respectively, can meet in some town b getting there by buses
of the company, comes up to the question:
(1)

Is there a town b s.t. there are EG-paths from a1 to b and from a2 to b?

To give a �rst-order formulation, we introduce a new binary relation symbol
C for connections possibly requiring a change of buses and set

G0 := (G;EG; CG);
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where

CG := f(a b) 2 G�G j there is an EG-path from a to bg

(by de�nition, there is an EG-path from a to a). Then (1) is equivalent to

(2) G0 j= 9z(Cxz ^ Cyz)[a1; a2]?
5

Since HD(G0) �= (G0; (a)a2G), by Corollary 25 we get that (2) is equivalent
to

(3) D(G0) j= 9z(Cca1z ^ Cca2z)?

Thus we have arrived at a formulation of (1) that falls under the \entailment
form" we have been considering so far. Of course, once the data of G0 are
available, one only has to go through them in an obvious way to obtain an
answer to (2). However, in practice it may happen that only the data of the
original G are stored. Then, to the \data" D(G) corresponding to G we add
the \production rules" de�ning CG. More precisely, we set

� := f8xCxx;8x8y8z(Cxy ^Eyz ! Cxz)g

and convince ourselves that (1) is equivalent to

(4) D(G) [ � j= 9z(Cca1z ^ Cca2z)?

(It suÆces to show that (3) and (4) are equivalent; for this purpose prove
that
HD(G)[� �= HD(G0).)

The framework we have established so far does not suÆce to give us paths
or even a list of paths leading from a1 and a2 to a meeting point b. The
reason simply is that we are missing adequate means to name connections.
We therefore revise our model, replacing the relation symbol C by a ternary
relation symbol P together with a binary function symbol f . Intuitively,

f(x; y) represents a hypothetical path from x to y,
f(f(x; y); z) represents a hypothetical path from x via y to z,

Pxyz says that z is a \real" path from x to y.

Hence, the hypothetical path a ! b ! d ! a ! e is represented by the
term

t := f(f(f(f(ca; cb); cd); ca); ce)

5Clearly, if the variables free in '(x1; : : : ; xn) are among x1; : : : xn, then A j=
'[a1; : : : ; an] means that ' holds in A if x1 is interpreted by a1, x2 by a2; : : : ; and
xn by an:
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and
Pcacet

means that a ! b ! d ! a ! e is a real path from a to e in G, that is,
(a b); (b; d); (d; a); (a e) 2 EG.

The \production rules" de�ning P are

�0 := f8xPxxx; 6 8u8x8y8z(Pxyu^Eyz ! Pxzf(u; z))g:
For the Herbrand structure HD(G)[�0 we have

HD(G)[�0 j= Pcacbt i� t represents a path from a to b:

But then our original question (1) is equivalent to

HD(G)[�0 j= 9z9u9v(Pca1zu ^ Pca2zv)?

and hence, by Corollary 25, to

D(G) [ �0 j= 9z9u9v(Pca1zu ^ Pca2zv)?

And
D(G) [ �0 j= Pca1tt1 ^ Pca2tt2

is equivalent to the statement

t is a town, t1 a path from a1 to t, and t2 a path from a2 to t.

3 DATALOG

Some of the notions, methods, and tools we have developed so far, play a
role in the analysis of query languages for databases. In this section we con-
sider an example of such a language, DATALOG, and point out similarities
and di�erences. Sometimes, query languages are designed with the aim in
mind to capture all queries which can be answered by algorithms of a given
complexitiy. In Section 5 we show that DATALOG captures PTIME in this
sense.

So far we mainly analyzed relations between

� j= 9 nx( 0 ^ : : : ^  k) and � j= ( 0 ^ : : : ^  k)(
n
xjnt)

where � is a set of positive universal Horn sentences, the  i are atomic, and
n
t 2 T �0 : We know that

� j= ( 0 ^ : : : ^  k)(
n
xjnt) i� H� j= ( 0 ^ : : : ^  k)(

n
xjnt);

6So x represents the \empty path" from x to x.
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where H� is the Herbrand structure associated with � (cf. De�nition 22).
The set

(�) f(t1; : : : ; tn) j � j= ( 0 ^ : : : ^  k)(
n
xjnt)g

gives a new n-ary relation on the universe of H�. Let R be a new n-ary
relation symbol and set

�1 := � [ f8 nx( 0 ^ : : : ^  k ! R
n
x)g:

One easily shows that

�1 j= R
n
t i� � j= ( 0 ^ : : : ^  k)(

n
xjnt)

and that

H�1 = (H�; RH�1

);

where RH�1
is the relation given by (�).

It is this aspect of de�ning new relations from given ones (we already encoun-
tered in the example at the end of the previous section) that is important
for DATALOG. However, it comes with several generalizations:

� we may de�ne several new relations (instead of a single one) which, in
addition, are allowed to occur in the bodies ( 0 ^ : : : ^  k);

� the old relation symbols and the equality sign may also occur negated
in ( 0 ^ : : : ^  k);

� we consider arbitrary structures, not only Herbrand structures.

Now the precise notions.

DEFINITION 30. Fix a vocabulary �. A DATALOG program � over � is
a �nite set of formulas of L�;= of the form

(+) (�1 ^ : : : ^ �l ! �)

where l � 0; �1; : : : ; �l are literals, and � is atomic of the form R
n
t (so � does

not contain the equality sign). We call � the head and (�1^: : :^�l) the body
of (+). The relation symbols occurring in the head of some formula of � are
intentional; the remaining symbols of � are extensional. We denote the set
of intentional symbols by �int(= ��int) and the set of extensional symbols by
�ext: Hence, �ext = � n �int. Finally, we require that no intentional symbol
occurs negated in the body of any formula of �. The formulas of � are often
called rules or clauses, and (+) is often written in the form �1; : : : ; �l ! �
(or in the form � �1; : : : ; �l).
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Before giving a precise de�nition of the semantics of DATALOG pro-
grams, we consider a concrete example.

EXAMPLE 31. Let � = fE;C; Pg with binary E;C and unary P . Let �0

be the DATALOG program which consists of the rules

(1) Exy ! Cxy

(2) Cxy;:Py;Eyz ! Cxz:

Hence, �int = fCg and �ext = fE;Pg:
Given an fE;Pg-structure or \relational database" A = (A;EA; PA),

the program �0 de�nes a relation CA on A. CA is the union of \levels"
CA0 ; C

A
1 ; : : : that are successively generated by viewing the formulas of �0

as rules:

CA0 := ;
and

(a b) 2 CAi+1 i� (a b) 2 EA (cf : (1))
or there is d 2 A such that (a d) 2 CAi ;
d 62 PA, and (d; b) 2 EA (cf. (2)).

Then

CA :=
[
i�0

CAi :

Note that CA0 � CA1 � CA2 � : : :.
Obviously, CAi contains those pairs (a b) such that there is an EA-path
from a to b of length � i that does not pass through PA. So CA consists of
those pairs (a b) for which there is an EA-path from a to b that does not
pass through PA.

There is a di�erent way to de�ne (the same) CA that is more in the spirit
of the preceding sections: We form the vocabulary �(A) := �[fca j a 2 Ag,
where the ca are new constants, and let GI(�; A) be the set of ground
instances of � in this vocabulary, i.e., GI(�; A) consists of the sentences of
the form (10) or (20):

(10) Ecacb ! Ccacb

(20) Ccacb; :Pcb; Ecbcd ! Ccacd

for a b; d 2 A. Suppose that b0 2 PA. Then, for b = b0 (and arbitrary
a d 2 A), the rule in (20) never can \�re", since :Pcb0 gets the value F
(false) in (A; (a)a2A). This example shows that we can omit from GI(�; A)
all the ground instances which contain literals false in (A; (a)a2A). Now,
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suppose that b0 62 PA. Then, the literal :Pcb0 always gets the value T
(true); so we can delete such true literals in ground instances. Altogether,
we obtain from GI(�; A) a modi�ed set GI(�;A) that only contains positive
literals and no extensional symbols, namely

(100) Ccacb if (a b) 2 EA

(200) Ccacb ! Ccadd if b 62 PA and (b; d) 2 EA:

Now we can apply the underlining algorithm (cf. Section 1) to GI(�;A),
viewing the formulas in GI(�;A) as propositional ones. It is easy to see
that (a b) 2 CA i� Ccacb gets underlined this way.

We give a precise de�nition of the semantics of DATALOG that follows
this approach.

Let � be a DATALOG program over �. Fix a �ext-structure A and con-
sider the set GI(�; A) of ground instances in the vocabulary �(A) := �[fca j
a 2 Ag. Pass from GI(�; A) to GI(�;A) by successively

� replacing every term t by cb if b = t(A;(a)a2A);

� deleting all instances that contain a literal false in (A; (a)a2A);

� deleting literals that are true in (A; (a)a2A):

Note that the clauses in GI(�;A) are of the form 1; : : : ; m !  where the

atomic parts are of the form Rca1 : : : can with R 2 �int and
n
a 2 A. Now

apply the underlining algorithm to GI(�;A). For an n-ary R 2 �int set

RA := f(a1; : : : ; an) j Rca1 : : : can has been underlinedg
and, if �int = fR1; : : : ; Rlg; let

A(�) := (A; RA
1 ; : : : ; R

A
l ):

A DATALOG formula or DATALOG query has the form (�; R)
n
x where �

is a DATALOG program and R is an n-ary intentional relation symbol.

(�; R)
n
x is a formula of vocabulary �ext. Its meaning is given by setting for

a �ext-structure A and
n
a 2 A

A j= (�; R)
n
x [

n
a] i�

n
a 2 RA(�):

To compare the expressive power of DATALOG with that of other logics, it
is desirable to have something like DATALOG sentences. For this purpose
one also admits zero-ary relation symbols R. Then (�; R) is a DATALOG
sentence. When evaluating � in a �ext-structure A, the value of RA will be
T if R is �nally underlined, and F otherwise. So,

A j= (�; R) i� R gets the value T.
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EXAMPLE 32. Let R be zero-ary and extend the DATALOG program of
Example 31 to

�0 := f(1); (2); Ccd! Rg:
Then ��

0

int = fC;Rg and ��
0

ext = fE;P; c; dg; and for any ��
0

ext-structure
(A; a b),

(A; a b) j= (�0; R) i� there is an EA-path from a to b
which does not pass through PA.

The relationship between DATALOG and the framework that we have de-
veloped in the preceding sections is illustrated by the following easy facts:

REMARK 33. (1) Let � be a DATALOG program that contains only formu-
las �1;
: : : ; �n ! � of vocabulary � where the �i are atomic. Let �(�) consist
of the positive universal Horn sentences

8mx(�1 ^ : : : ^ �l ! �)

where �1; : : : ; �l ! � 2 � and
m
x are the variables in �1; : : : ; �l ! � (in

some �xed order). Then, for every �ext-structure A, n-ary R 2 �int and
n
t 2 T �0 ,

RA(�)
n
t i� D(A) [ �(�) j= R

n
t

(recall that D(A) denotes the positive diagram of A (cf. Remark 28)). Hence,

A(�) = HD(A)[�(�)j�:
To a certain extent the restriction on the �i's is not essential, as negated �i's
can be replaced by their complements. For example, for any fPg-structure
A = (A;PA), the program � = fPx;:Py ! Rxyg gives the same meaning
to R in A as the program �0 = fPx;Qy ! Rxyg gives to R in (A; QA)
where QA is the complement A n PA of PA.

(2) As in the introduction to this section, let � be a set of positive universal

Horn sentences from L�0 , let  0(
n
x); : : : ;  k(

n
x) 2 L� be atomic,

n
t 2 T �0 ,

and R a new n-ary relation symbol. For the DATALOG program � :=

f 0; : : : ;  k ! R
n
xg (hence, �int = fRg) one easily gets the equivalence

of � j= ( 0 ^ : : : ^  k)(
n
xjnt) and H� j= (�; R)

n
t:

Part (2) of this remark shows how questions concerning the entailment
relation can be treated within DATALOG, whereas (1) aims at the other
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direction by showing us that the evaluation of RA(�)
n
t can be reduced to the

entailment relation D(A)[�(�) j= R
n
t: Altogether, we see a close relation-

ship between the kind of entailment relations studied in the previous section
and the kind of database queries addressed in this section. However, the two
approaches stand for di�erent aspects: resolution �rst aims at consequence

relations of the form � j= ( 0^ : : :^ k)(
n
xjnt), whereas DATALOG �rst aims

at a quick and uniform evaluation of queries of the form \A j= (�; R)
n
x [

n
a]?",

uniform in A; na, and also in (�; R)
n
x. For �xed (�; R)

n
x these queries can be

evaluated in time polynomial in the cardinality jAj of A:

THEOREM 34. DATALOG queries can be evaluated in polynomial time,

that is, given a DATALOG formula (�; R)
n
x, there is an algorithm A and a

polynomial f such that A applied to (the coding 7 of) a �nite �ext-structure

A and any
n
a 2 A decides in � f(jAj) steps whether A j= (�; R)

n
x [

n
a].

Proof. LetA be a �nite �ext-structure. Recall the de�nition of the semantics
of DATALOG programs. Note that we can pass from A and � to the set
GI(�;A) in a number of steps polynomial in jAj. Now it suÆces to show

that we obtain the values R
A(�)
1 ; : : : ; R

A(�)
l of the intentional symbols in

time polynomial in jAj. Let Ri be ri-ary and set r := maxfr1; : : : ; rlg. For
s � 1 let

Rs
i := f(a1; : : : ; ari) j Rca1 : : : cari is underlined during the

�rst s steps of the underlining algorithmg:
Clearly,

� R1
i � R2

i � R3
i � : : :

� RA(�)i =
S
s�1 R

s
i

� if for some m

(�) Rm
1 = Rm+1

1 ; : : : ; Rm
l = Rm+1

l ;

then for all s � 1

Rm
1 = Rm+s

1 = R
A(�)
1 ; : : : ; Rm

l = Rm+s
l = R

A(�)
l :

Since in the disjoint union of Ar1 ; : : : ; Arl there are � l � jAjr tuples, we see
that (�) must hold for some m � l � jAjr. �

In Section 5 we prove the converse of the theorem: Queries evaluable in
polynomial time can be expressed by DATALOG formulas.

7An explicit coding of �nite structures is given in Section 5.
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REMARK 35. The precise semantics for DATALOG that we have intro-
duced above provides an eÆcient way for evaluating the intentional predi-
cates. We sketch another equivalent way of introducing the semantics that
follows the �rst approach illustrated in Example 31. For a DATALOG pro-
gram � this approach makes more visible the uniform character of the rules
of � that in the de�nitions given above lies somewhat hidden under the
(modi�ed) set of ground instances.

Let � be a DATALOG program over �. We assume that all heads in �

that belong to the same symbol R have the form R
n
x with a �xed tuple

n
x of

distinct variables. (Otherwise, we replace, for instance, Tz; Px1 ! Rzz by
Tx1; x1 = x2; P z ! Rx1x2:) Then we set

'R(
n
x) :=

_
f9y(�1 ^ : : : ^ �k) j �1; : : : ; �k ! R

n
x 2 �g;

where y is the tuple of those variables in �1; : : : ; �k that are di�erent from
x1; : : : ; xn:

Let R1; : : : ; Rl be the intentional symbols of �; Ri of arity ri. For s � 0
de�ne the ri-ary relation Rs

i on A by

(1)
R0
i := ;

Rs+1
i := fria 2 Ari j (A; Rs

1; : : : ; R
s
l ) j= 'Ri [

ri
a]g:

As the Rj occur only unnegated in 'Ri(
ri
x), we have

R0
i � R1

i � R2
i � : : : :

It is not hard to show that

R
A(�)
i =

[
s�0

Rs
i

(in fact, Rs
i is the set of tuples

ri
a 2 Ari such that Rica1 : : : cari is underlined

in the �rst s steps of the underlining algorithm applied to GI(�;A)).

In particular, for i = 1; : : : ; l we have

(2) A(�) j= 8rix(Ri
ri
x $ 'Ri(

ri
x)):

The transition from (Rs
1; : : : ; R

s
l ) to (Rs+1

1 ; : : : ; Rs+1
l ) given by ('R1

(
r1
x); : : : ;

'Rl(
rl
x)) in (1) above, can be considered for arbitrary \arguments" (M1; : : : ;

Ml) with Mi � Ari , thus yielding an operation Op given by the formulas

'Ri(
ri
x). Obviously, Op(

S
s�0R

s
1; : : : ;

S
s�0 R

s
l ) = (

S
s�0R

s
1; : : : ;

S
s�0R

s
l ).

So (R
A(�)
1 ; : : : ; R

A(�)
l ) is a �xed point of Op (in fact, it is the least �xed

point). There are extensions of �rst-order logic, so-called �xed point logics,
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that are designed to speak about �xed points of such de�nable operations.
The most prominent logic of this kind is least �xed point logic. There are
close connections between �xed point logics and (variants of) DATALOG
(cf. [Ebbinghaus and Flum, 1995]). For DATALOG and its relatives we
refer to [Abiteboul and Vianu, 1991], [Abiteboul, Hull and Vianu, 1995],
and [Chandra and Harel, 1985].

4 FIRST-ORDER RESOLUTION

Let us come back to the questions concerning the entailment relation that
we have addressed in Section 2: Given a set � of positive universal Horn

sentences and a sentence 9 nx( 0 ^ : : :^ k) with atomic  i, we ask whether

(1) � j= 9 nx( 0 ^ : : : ^  k):

By Corollary 25 we know that the answer is positive just in case

(2) there are terms
n
t 2 T �0 such that

� j= ( 0(
n
xjnt) ^ : : : ^  k(

n
xjnt)):

We are interested in �nding such terms
n
t or even in generating all such

terms
n
t. By Theorem 15, (2) is equivalent to

(3) there are
n
t 2 T �0 such that

GI(�) [ f(: 0(
n
xjnt) _ : : : _ : k(

n
xjnt))g

is not satis�able.
Clearly, (3) can be answered by systematically checking for all

n
t 2 T �0

whether GI(�)[f(: 0(
n
xjnt)_ : : :_: k(

n
xjnt))g is not satis�able, thereby ap-

plying propositional Horn resolution. However, this way of handling things
does not take into consideration that, say, for � = f'1; : : : ; 'ng and in�nite
T �0 , the in�nitely many ground instances in GI(�) stem from the �nitely
many '1; : : : ; 'n. Taking into account this aspect, we are led to a more
goal-oriented procedure.

So far we de�ned GI(�) only for sets � of universal sentences. We extend
this de�nition to formulas:

DEFINITION 36. Let ' be a formula of the form 8 nx with quanti�er-
free  . Then for arbitrary pairwise distinct variables y1; : : : ; yl and terms

t1; : : : ; tl, the formula  (
l
yjlt) is called an instance of '. If  (

l
yjlt) is a sen-

tence, we also call it a ground instance. For a set � of formulas ' of the
form above, GI(�) is the set of its ground instances.
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Recall the function � mapping in a one-to-one way atomic formulas onto
propositional variables and quanti�er-free formulas onto propositional for-
mulas. It allows to freely use notations such as literal, clause, Horn clause,
resolvent also in the framework of �rst-order logic. Moreover, we freely pass
from formulas to clauses and vice versa.

4.1 An Example.

The following example serves to explain the idea underlying the goal-oriented
procedure we have in mind.

Assume � = fP;R; f; g; cg with ternary P , binary R, and unary f; g: Let

� := f8x8y(Pxyc! Ry g(f(x))); 8x8yPf(x)ycg:

We want to check whether

� j= 9x9yRf(x)g(y);

i.e., equivalently, whether for some s; t 2 T �0
GI(f:Pxyc;Ry g(f(x))g; fPf(x)ycg) [ f:Rf(s)g(t)g

is not satis�able. Set

C1 := f:Pxyc;Ryg(f(x))g;
C2 := fPf(x)ycg;
N1 := f:Rf(x)g(y)g:

By the Theorem on the H-Resolution 10 our problem is equivalent to the
existence of a ground instance N 0

1 of N1 and of a set C of ground instances
of C1 and C2 such that the empty clause is H-derivable from C [ fN 0

1g.
Now, when forming resolvents, the idea is to use instances of C1; C2, and
N1 not by substituting appropriate ground terms for the variables, but by
choosing terms from T � as general as possible. In our case, a closer look at
C1; C2, and N1 shows that there is at most one possibility for a resolution
(i.e., for obtaining a resolvent) with N1, namely a resolution involving N1

and C1. To avoid a collision of variables, we �rst rename x and y in C1 by
new variables u and v (recall that x; y are quanti�ed) getting

C 01 := f:Puvc;Rvg(f(u))g:

Comparing N1 and C 01 we see that a replacement of v by f(x) and of y by
f(u) leads to the \simplest" instances of N1 and C 01 that can be resolved.
In fact, this replacement leads to

N 0
1 := f:Rf(x)g(f(u))g
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and

C 001 := f:Puf(x)c; Rf(x)g(f(u))g;

and we obtain the resolvent N2 of N 0
1 and C 001 ;

N2 := f:Puf(x)cg:

This process can be pictured as

N1 N 0
1

-

vyjf(x)f(u)

N2

C 001

?

C 01

xyjuv
C1

Now we can treat N2 and C2 similarly, arriving at the empty clause. The
whole derivation is pictured by

N1 N 0
1
- f:Puf(x)cg f:Pf(z)f(x)cg - ;

C 001

?

vyjf(x)f(u)

C 01

xyjuv
C1

fPf(z)f(x)cg
?

uyjf(z)f(x)

fPf(z)ycg
xjz
fPf(x)ycg

When taking all renamings and substitutions together, the variable y of the
negative clause N1 = f:Rf(x)g(y)g has �nally been replaced by f(f(z)),
whereas the variable x of N1 has been kept unchanged. So it is intuitively
clear that there is a set C0 of instances of C1 and C2 such that

C0 [ f:Rf(x)g(y)g(xy j xf(f(z)))

is not satis�able, and therefore,

� j= Rf(x)g(f(f(z))):
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As we have chosen the substitutions in the derivation above as general as
possible, it is plausible that we thus get all solutions, i.e.,

f(s; t) 2 T �0 � T �0 j � j= Rf(x)g(y)(xyjst)g = f(s; f(f(t))) j s; t 2 T �0 g:

The precise considerations that follow will show that this is true. We hope
that the reader will have no diÆculties to view the preceding example as a
special case of the general theory. Our considerations take place in �rst-order
logic without equality.

4.2 Uni�cation and U-Resolution.

We start with a systematic treatment of substitutions.

DEFINITION 37. A substitutor is a map � : fv1; v2; : : :g ! T � such that
�(x) = x for almost all x.

For a substitutor �, let x1; : : : ; xn be distinct variables such that �(x) = x
for x 6= x1; : : : ; x 6= xn. Setting ti := �(xi) for i = 1; : : : ; n, we often denote

� by (
n
xjnt) and extend � to arbitrary terms and arbitrary quanti�er-free

formulas in the natural way by de�ning (with t� for �(t) and '� for �('))

t� := t(
n
xjnt); '� := '(

n
xjnt):

Let � be the substitutor with �(x)(= x�) = x for all x and de�ne the com-
position �� of substitutors � and � by

x(��) := (x�)�

for all variables x. Then it is easy to check:

LEMMA 38. For all t 2 T �; quanti�er-free ', and substitutors �; �; �:

(a) t� = t and '� = ':

(b) t(��) = (t�)� and '(��) = ('�)�:

(c) (��)� = �(��):

Part (c) justi�es parenthesis-free notations such as t��� or '��� that we
will use later.

DEFINITION 39.

(a) A renaming is a substitutor that is a bijection of the set fv1; v2; v3; : : :g
of variables.

(b) Let C1; C2 be clauses and � a renaming. We call � a separator of C1
and C2 if no variables occur both in C1 and in C2� (:= f�� j � 2 C2g).
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In our example in Subsection 4.1 we can view the �rst step as applying the
renaming � = (xyuvjuvxy) as a separator of N1(= f:Rf(x)g(y)g) and C1(=
f:Pxyc;Ryg(f(x))g): Note that C1� = f:Puvc;Rvg(f(u))g is the clause
which we denoted by C 01: We then have chosen a \simplest" substitutor �
such that we were able to form a resolvent of N1� and C 01�. The role of �
can be described as to \unify in the simplest way" the literals :Rf(x)g(y)
(2 N1) and Rvg(f(u)) (2 C 01) in the sense that the clause fRf(x)g(y);
Rvg(f(u))g� consists of a single element.

DEFINITION 40. A clause C is uni�able if there is a substitutor � such
that C� consists of a single element. Such a substitutor � is called a uni�er
of C. A uni�er of C is a general uni�er of C if for any uni�er �0 of C there
is a substitutor � such that �0 = ��.

Note that the empty clause is not uni�able. { We now establish an algo-
rithm that, applied to a clause C, decides whether C is uni�able and, in the
positive case, yields a general uni�er of C.

DEFINITION 41. The uni�cation algorithm, applied to a clause C, is given
by the following rules (u1) to (u9) which are applied step by step, starting
with rule (u1).

(u1) If C is empty or C contains atomic as well as negated atomic formulas
or if the formulas in C do not all contain the same relation symbol,
then stop with the answer \C is not uni�able".

(u2) Set i := 0 and �0 := �.

(u3) If C�i contains a single element, stop with the answer \C is uni�able
and �i is a general uni�er".

(u4) If C�i contains more than one element, let �1 and �2 be two distinct
literals in C�i (say, the �rst two distinct ones with respect to a �xed
order, e.g. the lexicographic order). Determine the �rst place where
the words �1 and �2 di�er. Let x1 and x2 be the letters at this place
in �1 and �2, respectively.

(u5) If the (di�erent) letters x1 and x2 are function symbols or constants,
stop with the answer \C is not uni�able".

(u6) One of the letters x1, x2 is a variable x, say x1. Determine the term t
which starts with x2 in �2.

8

(u7) If x occurs in t, stop with the answer \C is not uni�able".

(u8) Set �i+1 := �i(xjt) and i := i+ 1.

(u9) Go to (u3).

8t may be a variable; it is easy to show that t exists.
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LEMMA 42. Applied to any clause C, the uni�cation algorithm stops and
yields the right answer to the question whether C is uni�able, in the positive
case also providing a general uni�er.

Before the proof we give some examples. We start with the clause dis-
cussed before De�nition 40.

(1) Let C := fRf(x)g(y); Rvg(f(u))g: The uni�cation algorithm succes-
sively yields

�0 = �; �1 = (vjf(x)); �2 = (vjf(x))(yjf(u)) (= (vyjf(x)f(u))

together with the answer \C is satis�able and �2 is a general uni�er".

(2) Let C := fRyf(y); Rzzg. The uni�cation algorithm yields �0 = �
and �1 = (yjz) (or �1 = (zjy)) and then, going back to (u3) with C 0 :=
fRzf(z); Rzzg, stops by (u7) with the answer \C is not uni�able".

Proof [of Lemma 42]. Let C be a clause. We have to show that the uni�-
cation algorithm stops when applied to C and gives the right answer to the
question \Is C uni�able?", and, in the positive case, yields a general uni�er.

If the algorithm stops at (u1) then obviously C is not uni�able. Therefore
we may assume that C is a nonempty clause whose literals are all atomic
or all negated atomic formulas that, moreover, contain the same relation
symbol.

The algorithm will stop for C after �nitely many steps: Since applying
(u8) causes the variable x to disappear (x does not occur in t!), the only
possible loop (u3){(u9) can be passed through only as often as there are
di�erent variables in C.

If the algorithm stops at (u3), C is uni�able. Therefore, if C is not uni�-
able, it can stop only by (u5) or (u7). Thus the algorithm yields the right
answer in case C is not uni�able.

Now let C be uni�able. We will show:
(�)

If � is a uni�er of C then for every value i reached by the algorithm
there is �i with �i�i = �.

Then we are done: If k is the last value of i then the clause C�k is uni�able
since C�k�k = C�; so the algorithm cannot end with (u5) or (u7). (If it
would end, e.g., with (u7), there would be two di�erent literals in C�k of the
form : : : x � and : : : t where t 6= x and x occurs in t; after any substitutions
are carried out, there would always be terms of di�erent length starting at
the places corresponding to x and t, respectively, hence, C�k would not be
uni�able, and, by (�), the same would hold for C.) Therefore the algorithm
must end with (u3), i.e., �k is a uni�er and by (�) a general uni�er of C.

We prove (�) by induction on i. For i = 0 we set �0 := �. Then �0�0 =
�� = �. In the induction step let �i�i = � and suppose the value i+ 1 has
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been reached. By (u8) we have �i+1 = �i(xjt) for some x; t, with x not
occurring in t. Next, we observe (C�i�i has a single element!):

(1) x�i = t�i:

We de�ne �i+1 by

y�i+1 :=

�
y�i if y 6= x;
x if y = x:

Since x does not occur in t, we have

(2) t�i+1 = t�i:

Now (xjt)�i+1 = �i: namely, if y 6= x, then y((xjt)�i+1) = y�i+1 = y�i, and
x((xjt)�i+1) = t�i+1 = t�i = x�i. Altogether:

�i+1�i+1 = (�i(x j t))�i+1 = �i((x j t)�i+1) = �i�i = �;

and we have �nished the induction step. �

The issue of the computational complexity of the uni�cation algorithm is
important for concrete implementations; it is addressed e.g. in [Baader and
Siekmann, 1994; B�orger, Gr�adel and Gurevich, 1997]).

For a clause C, CF stands for f�F j � 2 Cg, where for a literal � we set
�F = :� if � is atomic, and �F =  if � = :: The following notion of
U-resolution (U stands for \uni�cation") comprises the steps \renaming -
substitution - forming a resolvent" as contained in the picture on page 348.

DEFINITION 43. Let C;C1; C2 be clauses. C is a U-resolvent of C1 and
C2 if there are a separator � of C1 and C2 and clauses D1; E1 � C1 and
D2; E2 � C2 such that

(i) E1; E2 6= ;:
(ii) EF

1 [ E2� is uni�able.

(iii) C1 = D1 [ E1, C2 = D2 [ E2, and C = (D1 [D2�)�;

where � is the general uni�er of EF
1 [E2�, that is, the general uni�er yielded

by the uni�cation algorithm.

Schematically, we represent this U-resolution by

C1

�

- C

C2�

?

C2

�

or even shorter by

C1 -� C

C2

?�
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The reader may check that the resolution instances in the example above
are really U-resolutions in the precise sense.

If C1 and C2 are ground clauses (i.e., clauses without variables) then,
since a uni�able ground clause has only one element (with � as the general
uni�er), we have:

LEMMA 44. For ground clauses C, C1, and C2, clause C is a (proposi-
tional) resolvent of C1 and C2 i� C is a U-resolvent of C1 and C2.

The relationship between (propositional) resolution and U-resolution is
even stronger; both forms are compatible in the following sense:

LEMMA 45. (Compatibility Lemma) Let C1 and C2 be clauses. Then:

(a) Every resolvent of a ground instance of C1 and of a ground instance
of C2 is a ground instance of a U-resolvent of C1 and C2.

(b) Every ground instance of a U-resolvent of C1 and C2 is a resolvent of
a ground instance of C1 and a ground instance of C2.

The following technical proof may be skipped in a �rst reading.

Proof. (a) Let Ci�i be a ground instance of Ci (i = 1; 2) and C a resolvent
of C1�1 and C2�2, i.e., for suitable M1;M2, and �0

C1�1 = M1 [ f�0g; C2�2 = M2 [ f�F0 g; C = M1 [M2:

We set

M 0
i := f� 2 Ci j ��i 2Mig (i = 1; 2);

L1 := f� 2 C1 j ��1 = �0g; L2 := f� 2 C2 j ��2 = �F0 g:
Then we have:

(1)
Ci = M 0

i [ Li (i = 1; 2);
M 0

i�i = Mi (i = 1; 2);
LF1 �1 = L2�2 = f�F0 g:

Let � be a separator of C1 and C2 and � a substitutor with

x� :=

�
x��1�2 if x appears in C2�
x�1 otherwise.

As no variable appears both in C1 and in C2�, we obtain

(2) �� = ��1 for � 2 C1 and ��� = ��2 for � 2 C2:
Therefore,

(LF1 [ L2�)� = LF1 �1 [ L2�2 = f�F0 g;



354 H.-D. EBBINGHAUS AND J. FLUM

hence � is a uni�er of LF1 [L2�. Let � be the general uni�er and � = ��. Then
C� := (M 0

1 [M 0
2�)� is a U-resolvent of C1 and C2. Finally, C is a ground

instance of C�; namely C�� = (M 0
1[M 0

2�)�
(2)
=M 0

1�1[M 0
2�2

(1)
=M1[M2 = C:

So we proved (a). For later purposes we note the following strengthening:
Since, for a given �nite set Y of variables, we can choose the separator � of
C1 and C2 such that no variable from Y appears in C2�, we have shown:

(y) If C1 and C2 are clauses and C1�1 and C2�2 are ground instances of
C1 and C2, respectively, and if

C is a resolvent of C1�1 and C2�2;

then for every �nite set Y of variables there are C�; �; �, and � such
that

C1 -� C�

C2

� ?

is a U-resolution and C = C�� as well as y�� = y�1 for y 2 Y .

(b) Let C be a U-resolvent of C1 and C2, say C = (M1 [ M2�)�; Ci =
Mi [ Li (i = 1; 2); and (LF1 [ L2�)� = f�0g, where � is a separator of C1
and C2, and � the general uni�er of LF1 [ L2�:

Furthermore, let C� be a ground instance of C. We set

�1 := �� and �2 := ���:

We can assume that C1�1 and C2�2 are ground clauses (otherwise we replace
� by �� where �(x) 2 T �0 if x appears in C1�1 [ C2�2, and note that
C�� = C�, since C� is a ground instance). Hence, it suÆces to show

C� is a resolvent of C1�1 and C2�2:

For this, we only have to note that

C1�1 = M1�1 [ L1�1 = M1�1 [ f�F0 �g;

C2�2 = M2�2 [ L2�2 = M2�2 [ f�0�g;
and

M1�1 [M2�2 = (M1 [M2�)�� = C�:

�
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We now adopt the propositional Horn resolution to our framework. For a
set C of (�rst-order) Horn clauses we let C+ and C� be the set of positive
and negative Horn clauses in C, respectively.

DEFINITION 46. Let C be a set of (�rst-order) Horn clauses.

(a) A sequence N0; N1; : : : ; Nm is a UH-resolution from C, if there are
P0; : : : ; Pm�1 2 C+ such that

(1) N0; : : : ; Nm are negative Horn clauses;

(2) N0 2 C�;
(3) Ni+1 is a U-resolvent of Ni and Pi for i < m.

(b) A negative Horn clause N is UH-derivable from C, if there is a UH-
resolution N0; : : : ; Nm from C with N = Nm.

If a \UH-resolution via P0; : : : ; Pm�1" as in (a) uses the separators �i
and the substitutors �i to form the corresponding U-resolvents Ni+1, we
represent it as

N0
-
�0
N1

P0

?�0
-
�1
N2

P1

�1 ?
-
�2

: : : -
�m�2

Nm�1

Pm�2

�m�2 ?
-

�m�1
Nm

�m�1

Pm�1

?

Then we have the following connection between H-derivability and UH-
derivability:

LEMMA 47. For a set C of Horn clauses and a negative ground clause N
the following are equivalent:

(i) N is H-derivable from GI(C).
(ii) N is a ground instance of a clause that is UH-derivable from C.

In particular, ; is H-derivable from GI(C) i� ; is UH-derivable from C.

Proof. We prove the direction from (i) to (ii) by induction on the length
m of an H-resolution of N from GI(C).

If m = 0, N belongs to GI(C�), that means, N is a ground instance of a
clause in C� and hence, a ground instance of a clause that is UH-derivable
from C. In the induction step, let N0; : : : ; Nm; N be an H-resolution from
GI(C) which ends with

Nm
- N

Pm

?
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where Pm is a ground instance of some clause C 2 C+. By induction hy-
pothesis, there is a negative clause N 0 which is UH-derivable from C, such
that Nm is a ground instance of N 0. In particular, N is an H-resolvent of a
ground instance of N 0 and of a ground instance of C. Hence, by part (a) of
the Compatibility Lemma 45, N is a ground instance of a U-resolvent, say
N 00, of N 0 and C. As N 00 is UH-derivable from C, (ii) follows.

The other direction has a similar proof, using part (b) of the Compati-
bility Lemma. �

As a corollary we have:

THEOREM 48 (Theorem on the UH-Resolution). Let � be a set of univer-
sal Horn sentences and let C(�) denote the set of clauses which correspond
to the kernels of the formulas in �. Then the following are equivalent:

(i) � is satis�able.

(ii) ; is not UH-derivable from C(�).

Proof. By Theorem 15 we have that � is satis�able i� GI(C(�)) is satis�-
able, that is, by the Theorem on the H-Resolution 10, i� ; is not H-derivable
from GI(C(�)). By the preceding lemma, the last statement is true i� ; is
not UH-derivable from C(�): �

Finally, we come to questions of the form \� j= 9 nx( 0^ : : :^ k)?" where �
is a set of positive universal Horn sentences. The following theorem shows

that in case \� j= 9 nx( 0 ^ : : :^ k)" the method of UH-resolution provides

all \solutions"
n
t 2 T �0 , thus being correct and complete for our purposes.

Of course, any other adequate �rst-order calculus would do the same job,
but the UH-resolution does it in a goal-oriented manner.

THEOREM 49 (Theorem on Logic Programming). Let � be a set of posi-

tive universal Horn sentences and 9 nx( 0 ^ : : :^ k) a sentence with atomic
 0; : : : ;  k. Set

N := f: 0; : : : ;: kg:

Then the following holds:

(a) A d e q u a c y:

� j= 9 nx( 0 ^ : : : ^  k) i� ; is UH-derivable from C(�) [ fNg:

(b) C o r r e c t n e s s: If
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N = N1
-
�1
N2

P1

�1 ?
-
�2

: : : -
�m�1

Nm

Pm�1

�m�1 ?
-
�m ;
�m

Pm

?

is a UH-resolution from C(�) [ fNg then

� j= ( 0 ^ : : : ^  k)�1 : : : �m:

(c) C o m p l e t e n e s s: If for t1; : : : ; tm 2 T �0

� j= ( 0 ^ : : : ^  k)(
n
xjnt)

then there is a UH-resolution of ; from C(�)[ fNg of the form given
in (b) and a substitutor � with

ti = xi�1 : : : �m� for i = 1; : : : ;m:

If in part (b) exactly the variables z1; : : : ; zs occur in the formula ( 0 ^
: : : ^  k)�1 : : : �m then � j= 8z1 : : :8zs( 0 ^ : : : ^  k)�1 : : : �m; therefore,
� j= ( 0 ^ : : : ^  k)�1 : : : �m� for every substitutor �. Thus, (b) and (c)

show that the ground terms
n
t with � j= ( 0 ^ : : : ^  k)(

n
xjnt) are exactly

the instances of the \solutions" x1�1 : : : �m; : : : ; xn�1 : : : �m given by the
UH-resolution.

Proof. Since � j= 9 nx( 0 ^ : : : ^  k) i� � [ f8 nx(: 0 _ : : : _ : k)g is not
satis�able, (a) follows immediately from the preceding theorem.

(b) The proof is by induction on m. For m = 1 we have

N = N1
-
�1 ;

P1

�1 ?

Therefore, NF �1 = P1�1�1, so there must be a sentence 8 l
y 2 � with

quanti�er-free  such that P1 = f g and  �1�1 =  i�1 for i = 0; : : : ; k.

Since � j= 8 l
y , we have � j=  �1�1 and hence, � j=  i�1 for i = 0; : : : ; k,

i.e. � j= ( 0 ^ : : : ^  k)�1:
For the induction step let m > 1 and, say, N2 = f:�0; : : : ;:�rg (N2 is

not empty!). The induction hypothesis, applied to the resolution starting
with N2 and P2, gives

(1) � j= (�0 ^ : : : ^ �r)�2 : : : �m:
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Let i � k. We show

(�) � j=  i�1 : : : �m;

thus getting our claim � j= ( 0 ^ : : : ^  k)�1 : : : �m: We distinguish two
cases: If : i�1 2 N2, we get (�) immediately from (1).

Now suppose : i�1 62 N2. Then we \lost" : i�1 in the resolution step
leading to N2. So in � there is a sentence 8y1 : : :8yl('1^ : : :^'s ! ') with
P1 = f:'1; : : : ;:'s; 'g and

(2) '�1�1 =  i�1;

(3) :'j�1�1 2 N2 for 1 � j � s;
therefore by (3) and (1):

(4) � j= 'j�1�1�2 : : : �m for 1 � j � s:
Since � j= 8y1 : : :8yl('1 ^ : : : ^ 's ! ') we get

� j= (:'1 _ : : : _ :'s _ ')�1�1�2 : : : �m;

thus by (4)
� j= '�1�1�2 : : : �m;

and with (2) this leads to (�).
(c): For

n
t 2 T � set �1 := (

n
xjnt) and let N1 := N(= f: 0; : : : ;: kg); suppose

that � j= ( 0 ^ : : : ^  k)�1 and that N 0 := N1�1 is a ground clause. Then,
by Theorem 15, C(GI(�)) [ fN1�1g is not satis�able. So, by the Theorem
on the H-Resolution 10, ; is H-derivable from C(GI(�)) [ fN1�1g, say, as
pictured in

N1�1 = N 0
1
-N 0

2

P 01

?
-N 0

3

P 02

?
- : : : - N 0

m

P 0m�1

?
- ;

P 0m

?

Here, the P 0j and the N 0
j are ground clauses and, say, P 0j = Pj�j with suitable

clauses Pj 2 C(�):
We show: For every �nite set X of variables there is a UH-resolution from

C(�) [ fNg as pictured below such that there exists a substitutor � with
x�1 : : : �m� = x�1 for x 2 X .

N = N1
-
�1
N2

P1

?�1
-
�2
N3

P2

�2 ?
-
�3

: : : -
�m�1

Nm

Pm�1

�m�1 ?
-
�m ;
�m

Pm

?
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Then, for X := fx1; : : : ; xng, we get

xi�1 : : : �m� = ti (1 � i � m);

and we are done.
We show the existence of a corresponding UH-resolution by induction on

m.
For m = 1 we have the resolution

N1�1 = N 0
1
- ;

P 01

?

The claim follows immediately from (y) in the proof of the Compatibility
Lemma 45 by setting

C1 := N1; �1 := �1; C := ; and Y := X:

In the induction step, let m � 2. For the �rst step of the H-resolution in
the �gure above we choose, again with (y) from Lemma 45, �1; �1; N2, and
�2 so that

N1
-
�1
N2

P1

�1 ?

and

(�) x�1�2 = x�1 for x 2 X
as well as N 0

2 = N2�2. We apply the induction hypothesis to the part of the
H-resolution above starting with N 0

2 and P 02 and to

Y := the set of variables in fx�1 j x 2 Xg:
Then we get an UH-resolution as pictured by

N2
-
�2
N3

P2

�2 ?
-
�3

: : : -
�m�1

Nm

Pm�1

�m�1 ?
-
�m ;
�m

Pm

?

and a substitution � for which

y�2 : : : �m� = y�2 for y 2 Y;
hence, by (�) and the de�nition of Y ,

x�1�2 : : : ym� = x�1�2 = x�1 for x 2 X:
Thus, everything is proved. �
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4.3 Appendix

In the appendix to Section 1 we have generalized the Theorem on the H-
Resolution to the Resolution Theorem of propositional logic. In the fol-
lowing, we give an analogous generalization of the Theorem on the UH-
Resolution.

For an arbitrary set C of (�rst-order) clauses we let Res1(C) be the
smallest set of clauses that contains C and is closed under the formation of
U-resolvents. Then we have:

THEOREM 50 (U-Resolution Theorem). For any set � of sentences of the

form 8 nx , where  is a disjunction of literals, the following are equivalent:

(i) � is satis�able.

(ii) ; 62 Res1(C(�)):

Proof. As a generalization of Lemma 47 we show:

(�) For all ground clauses C: C 2 Res1(GI(C(�))) i�
C is a ground instance of a clause in Res1(C(�)):

Then we are done, because we have:

� is satis�able i� GI(C(�)) is satis�able (by Theorem 15)
i� ; 62 Res1(GI(C(�))) (by Theorem 11)
i� ; 62 Res1(C(�)) (by (�)).

Concerning the direction from left to right in (�), we set

C := fC j C is a ground instance of a clause in Res1(C(�))g:

Then GI(C(�)) � C and, by the Compatibility Lemma 45, C is closed under
resolvents. Hence, Res1(GI(C(�))) � C.

For the other direction we argue similarly with the set C0 of (�rst-order)
clauses C 0 all ground instances of which belong to Res1(GI(C(�))), thus
obtaining Res1(C(�)) � C0: �

For extended representations of the resolution method besides those men-
tioned in the introduction, we refer the reader to [Eisinger and Ohlbach,
1993; Leitsch, 1996].

5 DECIDABILITY AND FEASIBILITY

In the preceding sections we often talked about quick or feasible procedures;
however, we did so only in an intuitive way. The model commonly accepted
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as a precise version of feasibility is that of polynomial complexity, i.e., the
number of steps needed for the procedure is polynomial in the length of
the input data. Here, the procedure is performed by some precisely de�ned
computing device. As it turns out, the notion does not depend on the device
as long as we refer to one of the universal machine models that are used
to adequately de�ne the basic notions of computability. The computing
device we shall refer to will be register machines [Ebbinghaus, Flum and
Thomas, 1992; Minsky, 1967]. We introduce them in Subsection 5.1. In 5.2,
relying upon the undecidability of the halting problem for register machines,
we show that the satis�ability problem for �nite sets of universal Horn
sentences is undecidable. Finally, in 5.3 we prove that the queries that are
of polynomial complexity coincide with those that can be formalized in
DATALOG, that is, DATALOG queries just concide with the feasible ones.
Subsections 5.2 and 5.3 can be read independently of each other.

5.1 Register Machines

Let A be an alphabet, i.e., a non-empty �nite set of symbols such as fjg or
f0; 1g. A � denotes the set of words over A .

A register machine over A is a computing device with a memory that
consists of registers or storing units R0;R1;R2; : : :. In each step of a compu-
tation each register contains a word over A ; up to �nitely many registers this
is the empty word �. The machine is able to perform so-called (register)
programs that are built up by certain instructions. The instructions are
preceded by a natural number L, their label. They are of the following form:

(1) For L, i 2 N and a 2 A :

L LET Ri = Ri + a

(\L Add the letter a at the end of the word in Ri")

(2) For L, i 2 N and a 2 A :

L LET Ri = Ri � a

(\L If the word in Ri ends with the letter a, delete this letter; else
leave the word unchanged")

(3) For L, i; L0; L00 2 N :

L IF Ri = � THEN L0 ELSE L00

(\L If Ri contains the empty word, continue with instruction L0, else
with instruction L00")
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(4) For L 2 N :
L HALT

(\L Halt").

A program P is a �nite sequence (�0; : : : ; �k) of instructions with the following
properties:

(i) �j has label j.

(ii) Every instruction in P of type (3) refers to labels � k (i.e., L0; L00 � k).

(iii) Only �k is of type (4).

Note that each program addresses only �nitely many Ri. A register machine
that is programmed with a program P = (�0; : : : ; �k) and contains certain
words in its registers, starts with instruction �0 and, stepwise, always per-
forms the next instruction, only jumping if this is required by an instruction
of type (3) and stopping if instruction �k is performed. Of course, it may
happen that the machine runs for ever.

Let P be a program over A , n 2 N , and w0; : : : wn 2 A � . We write

P : (w0; : : : ; wn)! halt

if P, started with wi in Ri for i � n and � in the remaining registers, �nally
stops, and we write

P : (w0; : : : ; wn)! yes

if P, started with wi in Ri for i � n and � in the remaining registers, �nally
stops, R0 then containing the empty word.

A subset A of (A � )n+1 is decidable (in the precise sense) if there is a program
P over A such that

� for all w0; : : : ; wn 2 A � , P : (w0; : : : ; wn)! halt

� A = f(w0; : : : ; wn) j P : (w0; : : : ; wn)! yesg:
According to the Church{Turing Thesis decidability (in the precise sense)
coincides with decidability in the intuitive sense, i.e., decidability by register
machines exactly captures the intuitive counterpart.

One can code programs over A as words over A (cf. e.g. [Ebbinghaus, Flum
and Thomas, 1992]). Let P 7! code(P) be such a coding. Then we have the
following well-known theorem:

THEOREM 51 (Undecidability of the Halting Problem). For any n � 2
and any alphabet A , the set

HALT(A ) := fcode(P) j P a program over A which only addresses
n registers and with P : �! haltg
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is not decidable.

A subset A of (A � )n+1 is polynomially decidable, if A is decidable via
a program P over A that, for any input (w0; : : : ; wn) over A , stops after
polynomially many steps, i.e., there is a polynomial p with integer coeÆcients
such that P, started with (w0; : : : ; wn), stops after at most p(l) steps where
l is the length of the word w0 : : : wn.

We let PTIME be the set of all polynomially decidable sets, regardless of
the underlying alphabet. By naturally coding symbols of one alphabet by
words over another alphabet, say f0; 1g, one can, without loss of generality,
restrict oneself to the alphabet f0; 1g.

5.2 Undecidability of the Horn Part of First-Order Logic

As mentioned earlier, it is undecidable whether, for a �nite set � of universal

Horn sentences and a sentence 9 nx( 0 ^ : : : ^  k) with atomic  i, we have

� j= 9 nx( 0 ^ : : :^ k). In the following we give a proof of an even stronger
result by a reduction to the undecidability of the halting problem for register
machines.

Below we introduce a �nite vocabulary �0 and show (recall that L�00
denotes the set of �rst-order sentences of vocabulary �0 without equality):

THEOREM 52. The set

f(�; ') j � � L�00 a �nite set of positive universal Horn sentences,

' 2 L�00 of the form 9 nx with atomic  , and � j= 'g
is undecidable.

COROLLARY 53. It is undecidable whether a �nite set of universal Horn
sentences is satis�able.

COROLLARY 54. It is undecidable whether a �rst-order sentence is satis-
�able.

Corollary 54, the undecidability of �rst-order logic, goes back to Church
1936; it contains the negative solution of the so-called Entscheidungsprob-
lem; Theorem 52 is essentially due to Aandera 1971 and B�orger 1971 (see
[B�orger, Gr�adel and Gurevich, 1997]). Clearly, Theorem 52 and its corol-
laries remain true for vocabularies containing �0. Corollary 54 even holds
for vocabularies containing one at least binary relation symbol. However,
Theorem 52 gets wrong if the vocabulary does not contain function symbols
(cf. Corollary 20).

Proof [of Theorem 52]. We establish an e�ective procedure that assigns
a pair (�P; 'P) to each register program P over the alphabet fjg which
addresses only R0; R1 such that

(1) �P j= 'P i� P; started with empty registers, halts.
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Then we are done: If there would be an e�ective procedure to decide ques-
tions \� j= '?" then, using (1), we could e�ectively decide whether a pro-
gram P of the form in question stops when started with empty registers, a
contradiction to the undecidability of the halting problem (cf. Theorem 51).

Let P be a program with instructions �0; : : : ; �k which addresses only R0

and R1. A triple (L m0;m1) with L � k is called a con�guration of P. We
say that (L m0;m1) is the con�guration of P after s steps if P, started with
empty registers, runs for at least s steps and after s steps instruction L is
to be executed next, while the numbers (i.e., the lengths of the words) in
R0;R1 are m0;m1, respectively. In particular, (0; 0; 0) is the con�guration
after 0 steps, the initial con�guration. Since only �k is a halt instruction, we
have

(2) P, started with empty registers, halts i� for suitable s;m0;m1;
(k;m0;m1) is the con�guration after s steps.

We set

�0 := fC; f;ming;

where C is 4-ary, f unary, and min a constant. With P we associate the
following �0-structure AP which is designed to describe the run of P, started
with empty registers:

AP := N

CAP := f(s; L m0;m1) j (L m0;m1) is the con�guration of P

after s stepsg
fAP := the successor function on N

minAP := 0:

We abbreviate min by 0, f(min) by 1, f(f(min)) by 2, etc. Then we set

'P := 9x9y09y1Cxky0y1;

and we de�ne the set �P of positive universal Horn sentences such that it
has the following properties:

(3) AP j= �P:

(4) If A is a �0-structure which satis�es �P and (L m0;m1) is the con�g-
uration of P after s steps, then A j= CsLm0m1:

Both (3) and (4) will be obvious from the de�nition.
�P consists of the following positive universal Horn sentences:

(i) C�0�0�0�0;
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(ii) for each instruction L LET R0 = R0 + j :

8xy0y1(CxLy0y1 ! Cf(x)L+ 1f(y0)y1);

and similarly for instructions L LET R1 = R1 + j;
(iii) for each instruction L LET R0 = R0 � j:

8xy1(CxL 0y1 ! Cf(x)L+ 1 0y1);

8xy0y1(CxLf(y0)y1 ! Cf(x)L+ 1y0y1);

and similarly for instructions L LET R1 = R1 � j;
(iv) for each instruction L IF R0 = � THEN L0 ELSE L00:

8xy1(CxL 0y1 ! Cf(x)L0 0y1);

8xy0y1(CxLf(y0)y1 ! Cf(x)L00f(y0)y1);

and similarly for instructions L IF R1 = � THEN L0 ELSE L00.
�P and 'P satisfy (1). To prove this, assume �rst that �P j= 'P. Then, as

AP j= �P (by (3)), AP j= 'P and hence (cf. (2)), P stops when started with
empty registers. Conversely, if P stops when started with empty registers,
there are s;m0;m1 such that (k;m0;m1) is the con�guration after s steps.
Then, if A is a model of �P, (4) yields that A is a model of Cs km0m1 and,
hence, of 'P. �

5.3 PTIME and DATALOG

To prove our �nal result stating that DATALOG captures PTIME we must
deal with structures as inputs for register machines. In logic, structures
are abstract objects, and there is no canonical way of coding structures by
words. Any reasonable coding of structures will rely on a naming of the
elements and thus implicitly on an ordering of the structures. In general,
di�erent orderings will lead to di�erent codes, and di�erent codes, when
serving as inputs for calculations, may lead to di�erent results. To check in-
dependence, one would have to take into consideration the codes for all pos-
sible orderings. As their number is exponential in the size of the structures,
we would be lost when considering questions of polynomial complexity. To
overcome these diÆculties, we restrict ourselves to ordered structures and
then use their ordering to de�ne the codes in a canonical way.

We let � contain a binary relation symbol S and constants min and max.
A �nite �-structure A is ordered, if there is an ordering< on A such that SA

is its successor relation, i.e., SA = f(a b) j a < b and for all b0, if a < b0 then
b � b0g, and minA and maxA are the minimal element and the maximal
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element, respectively. Clearly, < is uniquely determined by SA and is called
the ordering induced by SA.

To de�ne the code of an ordered structure, we consider the special case

� = fS;min;max; g [ fE; cg

with binary E. (It will be clear how to handle the general case.) Let A be
an ordered structure. The code of A, code(A), is the triple (wdom; wE ; wc)
of words over f0; 1g, where

wdom := 1 : : : 1| {z }
jAj times

wE := w0 : : : wjAj2�1; where

wi :=

8<
:

0; if the i-th pair in the lexicographic ordering
induced by SA on A�A belongs to EA

1; else

wc := 1 : : : 1| {z }
i times

, if cA is the i-th element in the induced ordering of A.9

Note that for ordered structures A and B,

A �= B i� code(A) = code(B):

Let K be a class of �nite ordered �-structures closed under isomorphisms.
We say that K 2 PTIME, if fcode(A) j A 2 Kg 2 PTIME. The main result
now is:

THEOREM 55. Let K be a class of �nite ordered structures closed under
isomorphisms. Then K belongs to PTIME i� it is DATALOG-de�nable,
that is, there exists a DATALOG sentence (�; R) such that K = fA j A j=
(�; R)g:

Proof. At the end of the preceding section we have shown that the class of
�nite models of a DATALOG sentence is decidable (in the intuitive sense) in
polynomial time. It is only a matter of patience to represent the algorithm
given there as a register program.

Concerning the other direction, assume that K 2 PTIME via a program P

over A = f0; 1g that, given (the code of) an ordered structure as input, has
running time polynomial in the length of code(A) and, hence, polynomial in
jAj. Say, the number of steps is � jAjn. (This can be assumed without loss of
generality; there are diÆculties at most in case jAj = 1; however, structures
of cardinality one may be treated separately.) Moreover, we assume that n
is greater than the arities of the relation symbols in �.

9If cA is the 0-th element, wc is the empty word.
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Again, as a typical example, let � = fS;min;max; g [ fE; cg with binary
E. We de�ne a DATALOG program � which is designed to reect the
performance of the program P and its outcome. We give � in several steps.

Part 1. Let Sn be a (2n)-ary new (intentional) relation symbol. Let �1

consist of the following rules that generate the n-ary lexicographic successor
relation induced by S.

Suv ! Sn
r
x u

s
max

r
x v

s
min for r + s = n� 1.

Part 2. For each register Ri addressed in P, including the registers R0;R1,
and R2 (that, in the beginning, store the components of the code of the
input structure), we choose (2n)-ary (intentional) relation symbols Zi; Oi; Vi
where

� Zi nx
n
y means that in the

n
x-th step (counted in the ordering given by

Sn) the word stored in Ri has an
n
y-th letter, and this letter is 0;

� Oi has a similar meaning, the letter now being 1;

� Vi nx
n
y means that in the

n
x-th step the word stored in Ri has length

n
y:

The second part �2 of � serves to generate the relations Zi; Oi; Vi before

starting, that is at \time point"
n
x =

n
min. It consists of the following rules:

! O0

n
min

n�1
min y

Smin x ! V0
n

min
n�2
minxmin

Exy ! Z1
n

min
n�2
min xy

:Exy ! O1

n
min

n�2
minxy

Smin x ! V1
n

min
n�3
minx

2
min

c 6= min ! O2

n
min

n�1
min min

O2

n
min

n�1
minx; Sxy; y 6= c ! O2

n
min

n�1
min y

! V2
n

min
n�1
min c

! Vi
n

min
n

min for i 6= 0; 1; 2 and

Ri addressed in P:

Part 3. We now turn to a DATALOG description of how P works. The last
intentional symbols we need are n-ary symbols Lab0; : : : ;Labk for the labels

0; : : : ; k of P and a zero-ary symbol P . P will code \success" and Labj
n
x

means that P performs (at least)
n
x steps and that after the

n
x-th step the
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instruction with label j has to be performed. The last part �3 consists of
the following rules:

(i) Lab0
n

min

(ii) Clauses describing a step according to the instructions of P di�erent
from the halting instruction.

For any instruction with label L addressing Ri, and for any j 6= i such
that Rj is addressed in �, we take the rules

LabL
n
x; Sn

n
x
n
y; Oj

n
x
n
u ! Oj

n
y
n
u

LabL
n
x; Sn

n
x
n
y; Zj

n
x
n
u ! Zj

n
y
n
u

LabL
n
x; Sn

n
x
n
y; Vj

n
x
n
u ! Vj

n
y
n
u;

they describe that nothing happens with Rj :

For L LET Ri = Ri + 0 in P we add the rules

LabL
n
x; Sn

n
x
n
y ! LabL+1

n
y

LabL
n
x; Sn

n
x
n
y; Vi

n
x
n
u ! Zi

n
y
n
u

LabL
n
x; Sn

n
x
n
y; Vi

n
x
n
u; Sn

n
u
n
v ! Vi

n
y
n
v

LabL
n
x; Sn

n
x
n
y; Oi

n
x
n
u ! Oi

n
y
n
u

LabL
n
x; Sn

n
x
n
y; Zi

n
x
n
u ! Zi

n
y
n
u

and similarly for instructions L LET Ri = Ri+1, L LET Ri = Ri�0,
L LET Ri = Ri � 1.

And for L IF Ri = � THEN L0 ELSE L00 in P we add the rules

LabL
n
x; Sn

n
x
n
y; Vi

n
x

n
min ! LabL0

n
y

LabL
n
x; Sn

n
x
n
y; Oi

n
x

n
min ! LabL00

n
y

LabL
n
x; Sn

n
x
n
y; Zi

n
x

n
min ! LabL00

n
y

LabL
n
x; Sn

n
x
n
y; Oi

n
x
n
u ! Oi

n
y
n
u

LabL
n
x; Sn

n
x
n
y; Zi

n
x
n
u ! Zi

n
y
n
u

LabL
n
x; Sn

n
x
n
y; Vi

n
x
n
u ! Vi

n
y
n
u:

(iii) Finally, for k HALT in P we add the \success rule"

Labk
n
x; V0

n
x

n
min ! P:
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Setting � := �1 [ �2 [ �3, it is easy to see that (�; P ) axiomatizes K
(with possible mistakes only for structures of cardinality one; to eliminate
these mistakes, one can restrict � to structures with at least two elements
by adding Smin z to all bodies and treating structures of cardinality one
separately by rules that have min = max in their body). �

REMARK 56. In Theorem 34 we not only considered queries de�ned by
DATALOG sentences, but also queries de�ned by DATALOG formulas; in

fact, we showed that for any such formula (�; R)
n
x the corresponding query

can be evaluated in polynomial time; hence,

f(A; na) j A j= (�; R)
n
x [

n
a]g 2 PTIME:

This is the way we can reduce any query to a class of structures: We identify
a query asking whether elements x1; : : : ; xn in a �-structure have property
P (say, asking whether elements x1; x2 in a graph are connected by a path)
with the class of (� [ fc1; : : : ; cng)-structures

f(A; na) j na have property P in Ag:
The coincidence of DATALOG and PTIME goes back to [Immerman, 1987]

and [Vardi, 1982], cf. [Papadimitriou, 1985], too; it is a typical result of
descriptive complexity theory, a theory that relates logical descriptions to
descriptions by machines, cf. [Ebbinghaus and Flum, 1995].

Institut f�ur math. Logik, Universit�at Freiburg, Germany.
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PREFACE TO THE SECOND EDITION

It is with great pleasure that we are presenting to the community the
second edition of this extraordinary handbook. It has been over 15 years
since the publication of the �rst edition and there have been great changes
in the landscape of philosophical logic since then.

The �rst edition has proved invaluable to generations of students and
researchers in formal philosophy and language, as well as to consumers of
logic in many applied areas. The main logic article in the Encyclopaedia
Britannica 1999 has described the �rst edition as `the best starting point
for exploring any of the topics in logic'. We are con�dent that the second
edition will prove to be just as good.!

The �rst edition was the second handbook published for the logic commu-
nity. It followed the North Holland one volume Handbook of Mathematical
Logic, published in 1977, edited by the late Jon Barwise. The four volume
Handbook of Philosophical Logic, published 1983{1989 came at a fortunate
temporal junction at the evolution of logic. This was the time when logic
was gaining ground in computer science and arti�cial intelligence circles.

These areas were under increasing commercial pressure to provide devices
which help and/or replace the human in his daily activity. This pressure
required the use of logic in the modelling of human activity and organisa-
tion on the one hand and to provide the theoretical basis for the computer
program constructs on the other. The result was that the Handbook of
Philosophical Logic, which covered most of the areas needed from logic for
these active communities, became their bible.

The increased demand for philosophical logic from computer science and
arti�cial intelligence and computational linguistics accelerated the devel-
opment of the subject directly and indirectly. It directly pushed research
forward, stimulated by the needs of applications. New logic areas became
established and old areas were enriched and expanded. At the same time, it
socially provided employment for generations of logicians residing in com-
puter science, linguistics and electrical engineering departments which of
course helped keep the logic community thriving. In addition to that, it so
happens (perhaps not by accident) that many of the Handbook contributors
became active in these application areas and took their place as time passed
on, among the most famous leading �gures of applied philosophical logic of
our times. Today we have a handbook with a most extraordinary collection
of famous people as authors!

The table below will give our readers an idea of the landscape of logic
and its relation to computer science and formal language and arti�cial in-
telligence. It shows that the �rst edition is very close to the mark of what
was needed. Two topics were not included in the �rst edition, even though
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they were extensively discussed by all authors in a 3-day Handbook meeting.
These are:

� a chapter on non-monotonic logic

� a chapter on combinatory logic and �-calculus

We felt at the time (1979) that non-monotonic logic was not ready for
a chapter yet and that combinatory logic and �-calculus was too far re-
moved.1 Non-monotonic logic is now a very major area of philosophi-
cal logic, alongside default logics, labelled deductive systems, �bring log-
ics, multi-dimensional, multimodal and substructural logics. Intensive re-
examinations of fragments of classical logic have produced fresh insights,
including at time decision procedures and equivalence with non-classical
systems.

Perhaps the most impressive achievement of philosophical logic as arising
in the past decade has been the e�ective negotiation of research partnerships
with fallacy theory, informal logic and argumentation theory, attested to by
the Amsterdam Conference in Logic and Argumentation in 1995, and the
two Bonn Conferences in Practical Reasoning in 1996 and 1997.

These subjects are becoming more and more useful in agent theory and
intelligent and reactive databases.

Finally, �fteen years after the start of the Handbook project, I would
like to take this opportunity to put forward my current views about logic
in computer science, computational linguistics and arti�cial intelligence. In
the early 1980s the perception of the role of logic in computer science was
that of a speci�cation and reasoning tool and that of a basis for possibly
neat computer languages. The computer scientist was manipulating data
structures and the use of logic was one of his options.

My own view at the time was that there was an opportunity for logic to
play a key role in computer science and to exchange bene�ts with this rich
and important application area and thus enhance its own evolution. The
relationship between logic and computer science was perceived as very much
like the relationship of applied mathematics to physics and engineering. Ap-
plied mathematics evolves through its use as an essential tool, and so we
hoped for logic. Today my view has changed. As computer science and
arti�cial intelligence deal more and more with distributed and interactive
systems, processes, concurrency, agents, causes, transitions, communication
and control (to name a few), the researcher in this area is having more and
more in common with the traditional philosopher who has been analysing

1I am really sorry, in hindsight, about the omission of the non-monotonic logic chapter.
I wonder how the subject would have developed, if the AI research community had had
a theoretical model, in the form of a chapter, to look at. Perhaps the area would have
developed in a more streamlined way!
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such questions for centuries (unrestricted by the capabilities of any hard-
ware).

The principles governing the interaction of several processes, for example,
are abstract an similar to principles governing the cooperation of two large
organisation. A detailed rule based e�ective but rigid bureaucracy is very
much similar to a complex computer program handling and manipulating
data. My guess is that the principles underlying one are very much the
same as those underlying the other.

I believe the day is not far away in the future when the computer scientist
will wake up one morning with the realisation that he is actually a kind of
formal philosopher!

The projected number of volumes for this Handbook is about 18. The
subject has evolved and its areas have become interrelated to such an extent
that it no longer makes sense to dedicate volumes to topics. However, the
volumes do follow some natural groupings of chapters.

I would like to thank our authors are readers for their contributions and
their commitment in making this Handbook a success. Thanks also to
our publication administrator Mrs J. Spurr for her usual dedication and
excellence and to Kluwer Academic Publishers for their continuing support
for the Handbook.

Dov Gabbay
King's College London
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G�ORAN SUNDHOLM

SYSTEMS OF DEDUCTION

1 INTRODUCTION

Formal calculi of deduction have proved useful in logic and in the founda-
tions of mathematics, as well as in metamathematics. Examples of some of
these uses are:

1. The use of formal calculi in attempts to give a secure foundation for
mathematics, as in the original work of Frege.

2. To generate syntactically an Already given semantical consequence
relation, e.g. in some branches of technical modal logic.

3. Formal calculi can serve as heuristic devices for �nding metamathe-
matical properties of the consequence relation, as was the case, e.g. in
the early development of in�nitary logic via the use of cut-free Gentzen
sequent calculi.

4. Formal calculi have served as the objects of mathematical study, as in
traditional work on Hilbert's consistency programme.

5. Certain versions of formal calculi have been used in attempts to for-
mulate philosophical insights into the nature of reasoning.

It goes without saying that a particular type of calculus which serves
admirably for one of the above uses, which are just a small indication of
the many uses to which calculi of deduction have been put, does not have
to be at all suitable for some of the other. Thus a rich variety of di�er-
ent techniques have been developed for doing he `book-keeping' of formal
deduction, each one with its own advantages and disadvantages. It is the
purpose of the present chapter to present a number of these techniques and
to indicate some of the connections between the various versions.

More precisely, we shall concentrate on three main types of deductive
systems known as (a) Hilbert{Frege style systems (b) Natural deduction sys-
tems and (c) Sequent Calculi. Under each of these headings we are going to
study di�erent variants of the main idea underlying the deductive technique
in question. In particular, we shall relate the sequent calculus of Gentzen
to currently fashionable `tableaux' systems of logic and show in what way
they are essentially just a variant of the original Gentzen idea.
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A Remark about Notation

In the present chapter we largely follow the notation of Gentzen [1934], and
in particular, we use `�' as implication and `&' as conjunction, as well as the
`falsum' or absurdity symbol `?'. The arrow `!' we reserve for the sequent
arrow.

Various versions of predicate logic can be formulated more conveniently
by the use of a special category of free individual variables, `parameters'.
As individual variables, free or bound, we use

x0; x1; : : : ; y0; y1; : : : x; y; z; : : :

and as parameters

a0; a1; : : : ; b0; b1; : : : a; b; : : : :

Greek letters are used as schematic letters for formulae, cf. Hodges' Chapter
in Volume 1 of this Handbook.

we shall sometimes use subscripts on our turnstiles, e.g. ``N'' will be
used to indicate that ' is a theorem of a Natural Deduction system.

2 HILBERT{FREGE STYLE SYSTEMS

We begin by considering the historically earliest of the three main types
of systems, viz. the Hilbert{Frege style systems. One of the main advan-
tages of such systems in their contemporary versions is a certain neatness
of formulation and typographical ease. It is therefore somewhat ironical
that the �rst such system in [Frege, 1879] was typographically most cum-
bersome. The sort of presentation used here has become standard since the
codi�cation given in [Hilbert and Bernays, 1934].

The central notion in Hilbert{Frege style systems is provability (other
items used include derivability and theoremhood). One lays down that cer-
tain w�s are axioms and de�nes the theorems as the least class of w�s which
contains all axioms and is closed under certain rules of proof. The most fa-
miliar of such rules is unquestionably modus ponens, MP, which states: If
' �  and ' are theorems, then so is  .

Sometimes the term `rule of inference's is used where we use `rule of
proof'. This is a question of terminological choice, but in order to em-
phasise the fact that, say, the premises and the conclusion of MP are all
theorems, we prefer the present usage and reserve `rule of inference' for
those situations where the premises are allowed to depend on assumptions.
In present terminology, therefore, the theorems are inductively de�ned by
the axioms and rules of proof.

Let us begin by considering a very simple system for CPC based on
� and : as primitives and with other connectives, e.g. &, introduced by
standard de�nitions, cf. Hodges (see Volume 1 of this Handbook.
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The axioms are given in the form of axiom schemata, any instance of
which is an axiom.

(A1) ' � ( � ')

(A2) (' � ( � �)) � ((' �  ) � (' � �))

(A3) (: � :') � (' �  ).

Hence
(p0 � p1) � (:p3 � (p0 � p1))

is an instance of A1, and if ' and  are w�s then

(' � (' �  )) � ((' � ') � (' �  ))

is a schema which gives a subclass of the axioms which are instances of A2.
We now de�ne the theorems of the system:

DEFINITION 1. Every axiom is a theorem.

DEFINITION 2. If ' �  and ' both are theorems, then so is  .

The system so given may be called HCPC|`H' for Hilbert|and is
known to be complete for tautologies. Note that HCPC has only three
axiom schemata but in�nitely many axioms, and that MP is the only rule
of proof. Sometimes one sees formulations using three axioms only|the
relevant instances of (A1){(A3) for sentence variables p0; p1 and p2, but
with an extra rule of proof instead. This is the

Substitution rule: The result of substituting a w� for a sentence variable in
a theorem is a theorem.

In the case of predicate logic, the substitution rule becomes very complicated
if one wants to formulate it in an exact way, cf. [Church, 1956, pp. 289{290],
and formulations using axiom schemata have become almost universal.

We write `` '' to indicate that ' is a theorem of HCPC, and then the
proper way to present MP becomes:

` ' �  ` '
(MP)

`  

By the inductive generation of the theorems, to every theorem there corre-
sponds a proof tree, or derivation, of '. Such a tree D is a �nite tree of
w�s which is regulated by MP, has got ' at its root and axioms only as top
formulae.

We are now going to give a proof tree for the schema ' � ', thereby
establishing that this is a theorem schema.

(' � ((' � ') � ')) � ((' � (' � ')) � (' � ')) ' � ((' � ') � ')

(' � (' � ')) � (' � ') ' � (' � ')

' � '
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This is a tree of the form
(1) (2)

(3) (4)

(5)

where (1) is a schematic instance of (A2), (2) is an instance of (A1) and (3)
is a consequence by MP of (1) and (2). Likewise, (5) is an MP consequence
of (3) and the (A1) instance (4). This is the shortest proof known to us
of ' � ' in HCPC, and amply brings out one of the drawbacks of the
Hilbert{Frege style systems. If one is interested in actually carrying out
derivations in the systems, the work involved rapidly becomes enormous and
quite unintuitive. If, on the other hand, we were allowed to use proofs from
assumptions, then one could prove the above schema easily enough, provided
that proofs from assumptions have the property that if  is provable from
assumptions ' and '1; '2; : : : ; 'k, then ' �  is provable from assumption
'1; : : : ; 'k only. We say that D is a proof from assumptions '1; : : : ; 'k of ',
if D is a �nite tree of w�s regulated by MP and with ' as its end formula.
All the top formulae of D are either axioms or one of '1; : : : ; 'k. Thus
we may use the assumptions as if they were axioms in a proof from these
assumptions. If there is a proof of ' from assumptions '1; : : : ; 'k we write

'1; : : : ; 'k ` ':

This notion is extended to schemata in the obvious way. We can also de�ne
a consequence relation between possibly in�nite sets � of assumptions and
w�s by putting

� ` ' i� '1; : : : ; 'k ` '; for some f'1; : : : ; 'kg � �:

For this notion of consequence from assumption by means of a proof tree
from the assumptions, one is able to establish one of the central theorems
of elementary metamathematics.

The Deduction Theorem (Herbrand, Tarski). If �; ' `  , then � ` ' �
 .

Proof. (After Hilbert and Bernays [1934]).

By hypothesis, there is a proof tree ? of  from the assumptions ' and
�. Such a D must, in principle, look like

'; '1; : : : ; 'k; 1; : : :; m

� � Æ �
Æ

(MP )
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where the top formulae '1; : : : ; 'k are all assumptions from the set � and
1; : : : ; m are all axioms.

We need to �nd a proof tree for ' �  from assumption in � only.
Consider �rst the `' �' transformation of D; that is, in front of every w�
in D we write `' �'. This transformed tree, call it `' � D', is no longer a
proof tree from assumptions but looks like:

' �; ' �1; : : : ; ' � 'k ' � 1; : : : ; ' � m

' � (� � Æ) ' � �
'�Æ `' � MP'

'� 

Our task is thus to show that at each step in this transformed tree `' � D'
we can restore provability from �. We begin by considering the three sorts
of top formulae:

(a) The top formula if ' � '. We have already seen how to prove this
without assumptions.

(b) The top formula is one of the ' � 'i, where 'i is in �. Then we
use (A1)|this is, in fact, the main raison d'être for the schema (A1).
It is exactly what is needed to go from 'i to ' � 'i|given modus
ponens|to construct a proof of ' � 'i from �:

'i � (' � 'i) 'i

' � 'i

This proof tree uses only one assumption 'i which we assume is a
member of �. Thus, provability from � is also restored here.

(c) The top formula is ' � j where j is an axiom. Then, in this case,

j � (' � j) j

' � j

is actually a proof of ' � j from no assumptions at all, and hence, a
fortiori, provability from assumptions in � is also restored here.

This ends the discussion of the top formulae. It remains, however, to
check that the transformation of instances of MP preserve derivability from
assumptions in �. So assume that we are given proofs from assumptions in
� of ' � � and ' � (� � Æ). Using these given proof trees from assumptions
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we continue via (A2):

(MP)

(' � (� � Æ)) � ((' � �) � (' � Æ)) ' � (� � Æ)

(' � �) � (' � Æ) ' � �
(MP)

' � Æ

But, by hypothesis, we have obtained proofs from assumptions in � of
' � (� � Æ) and ' � �, and the remaining top formula is an axiom.
Therefore, the here provability from � has also been secured and the proof
of the Deduction Theorem is completed. �

REMARK. The proof is very general and, in fact, shows that the Deduction
Theorem holds for any system where the notion of consequence from sets
of assumptions is introduced via proofs from assumptions, provided that

1. (A1) and (A2) are axiom schemata of the system, and

2. MP is the only rule of proof.

In order to see the importance of the second of these two conditions, we
will consider a case where the Deduction Theorem does not hold, or bet-
ter, where the notion of consequence from sets of assumptions cannot be
introduced via proofs from assumptions, and where the latter are straight-
forwardly introduced, as in HCPC above. When proof trees are extended
to those from assumptions, what in e�ect takes place is that MP is con-
verted into a rule of inference rather than a rule of proof, because it now
licenses the step from inference rather than a rule of proof, because it now
licenses the step from  ` ' � � and � ` ' to �;� ` �. (Here we use `�;�'
as an abbreviation of `� [�' and similarly for `�; '' and `� [ f'g'.)

Consider now the modal logic s4, cf. Bull and Segerberg chapter in
Volume D3 of this Handbook, where we have a further primitive connective
� and & is de�ned from : and �), with the additional axiom schemata and
extra rule of proof:

(A4) �' � '

(A5) �(' �  ) � (�' � � )

(A6) �' � ��'

Necessitation (Nec)
` '

` �'
If we were now to de�ne proofs from assumptions in such a way that the

proof trees have to be regulated by MP and Nec, then, as above, in the case
of modus ponens, we would have converted the rule of proof (Nec) into a
rule of inference, which licenses steps of the following form:
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� `S4 '

� `S4 �'

Such a rule is not sound, however, for the standard semantics for s4, and to-
gether with the Deduction Theorem, it leads to unacceptable consequences:

' `S4 '
(Nec)

' `S4 �'
(Deduction Theorem)

`S4 ' � �'

In this case, one therefore introduces the notion of consequence from
assumptions in another way:

� `S4 ' i� `S4 '1& : : :&'k � ';
for some '1: : : : ; 'k in �:

Note that this way of introducing consequences of assumptions has the same
drawbacks as HCPC had before we introduced proofs from assumptions.
The consequence from assumptions in S4 is de�ned in terms of provability
and hence, all the diÆculties which adhere to straightforward provability
also remain here. The Deduction Theorem holds for the turnstile, though;
this is because in HCPC one can prove

'&'1& � � �&'k �  

i� one can prove
'1& � � �&'k � (' �  ):

We will give one more example of a system where the Deduction Theorem
and its proof are of use, namely an axiomatic system for CQC=, classical
predicate logic with identity. (Cf. Hodges in Volume 1 of this Handbook, in
particular for the notions of term and free variable.) We use the universal
quanti�er 8 as a primitive.

The w�  is said to be a generalisation of ', if for some variables
x1; : : : ; xk;  is identical with 8x1 : : :8xk', where the case k = 0 is per-
mitted.

The axiom schemata are:
(Q1){(Q3) =def any generalisation of an instance of (A1){(A3).
Any generalisation of the following:

(Q4) 8x' � 'xt , where t is a term substitutable for x in '.

(Q5) 8x(' �  ) � (8x' � 8x )

(Q6) ' � 8x', provided that x does not occur free in '.
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(Q7) x = x

(Q8)
x = y � (' � '0); where ' is atomic and '0 results from ' by

replacing x with y in zero or more (but not
necessarily all) places in ':

MP is the only rule of proof.

In (Q4) the notion `substitutable for x' needs to be explained as well as
the substitution notation `'xt '. The latter stands for the expression which
results from ' by replacing the variable x, wherever it occurs free in ', by
the term t. One can de�ne this precisely by an induction:

0. For an atomic '; 'xt is the expression obtained by replacing every x in
' by the term t. (The use of `replacing' can be replaced with another
inductive de�nition.)

1. (:')xt =def :('xt ),

2. (' �  )xt =def '
x
t �  

x
t ,

3.
(8y')xt =def 8y'; if x and y are the same variable,

8y('xt otherwise:

Hence, (x = y)yx is equal to (x = x) and 8x(x = x)xt is equal to 8x(x = x).

Consider the w� ' =def :8y(x = y). Then 'xy =def :8y(y = y), and
(8x' � ')xy =def (8x:8y(x = y) � :8y(y = y)). This last sentence is
not logically valid, because the antecedent is true whenever the individual
domain has got more than one element and the consequence is never true.
Thus, there is no lack of counter-models. In this phenomenon, sometimes
known as `clashes between bound variables', lies the reason for the restric-
tion on schema Q4. One says that t is substitutable for x in ', if no free
occurrence of x in ' lies within the scope of a quanti�er which binds a
variable of the term t. This notion can be precisely de�ned in the following
way:

(i) If ' is atomic, then t is substitutable for x in '.

(ii) If t is substitutable for x in ', then t is substitutable for x in (:').

(iii) If g is substitutable for x in ' and in  , then t is substitutable for x in
(' �  ).

(iv) (the crucial clause)
If either, x does not occur free in 8y', or, y does not occur in t and
t is substitutable for x in ', then t is substitutable for x in 8y'.
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In place of `substitutable for x' one sometimes sees the phrase `free for x'.
We illustrate the use of the present formulation of HCQC= in an im-

portant

Metatheorem. If x does not occur free in any w� of � and � ` ', then
� ` 8x'.

(The notion of consequence from assumptions is de�ned via proof trees, just
in the same way as before for HCPC. the proof of the Deduction Theorem
works.)

Proof. Consider a proof tree D for ' from �. Then D must, in principle,
be of the following form:

'1 : : : ; 'k; 1; : : : ; m

� �  �
 

(MP)

'

where '1; : : : ; 'k are members of the set of assumptions �, and 1; : : : ; m
are axioms. We show that for each w� Æ which occurs in D;� ` 8xÆ.
Consider �rst the cases where Æ is a top formula of D.

(i) Æ is one of the axioms 1; : : : ; m, but any generalisation of an axiom
is an axiom. Therefore, 8xÆ is an axiom and, hence, � ` 8xÆ.

(ii) Æ is an element of �. By the hypothesis of the theorem, x does not
occur free in � and, hence, a fortiori, also not in Æ. But then Æ � 8xÆ
is an instance of (Q6) and an application of MP proves 8xÆ from
assumptions in � only. This case provides us with the reason for the
inclusion of axiom schema (Q6), just as the previous case gives the
explanation for why every generalisation of an axiom is an axiom.

What remains to be considered is the case of modus ponens. So assume that
we have already established that � ` 8x(� �  ) and � ` 8x�. We must
show that � ` 8x . This is accomplished by the use of a suitable instance
of (Q5), viz. 8x(� �  ) � (8x� � 8x ) and two applications of MP. Here,
then, we see the reason for the inclusion of axiom schema (Q5).

Thus, the proof of our theorem is completed and this so-called Generali-
sation rule holds as a derivable rule of inference. �

This sort of system for CQC=, which uses only MP as a rule of proof,
is treated in great detail in a series of papers by Tarski [1965], Kalish and
Montague [1965] and Monk [1965]. An elegant exposition is in Enderton
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[2000], on which we have relied. This sort of system is sometimes of impor-
tance in quanti�ed modal logic if one wishes to avoid the so called Barcan
formula, cf. Kripke [1963].

We just want to remark that another common axiomatization is obtained
by using (A1){(A3) plus (Q4) with the same restriction and

(Q05) 8x(' �  (� (' � 8x ) if x does not occur free in '.

Here, only the instances of the schemata, but not their generalisations,
are axioms. There are, however, two rules of proof:

R01: MP

R02: If ' is a theorem, then so is 8x'.

This last rule is also known as `generalisation', but note that here it is a rule
of proof and previously we showed that it was a (derived) rule of inference
in HCQC=.

The equivalence between HCQC and the latter, primed, version (call it
H0CQC|for simplicity we leave = out) is readily established. We will not
enter into details, but only note that the e�ect of the HCQC condition
that every generalisation of an axiom is an axiom, is taken care of via the
Generalisation rule of proof in H0CQC. Detailed expositions of the H0CQC
type of system can be found in [Church, 1956; Mendelson, 1997].

The HCQC system is a system of pure predicate calculus. If we wish to
deal with a speci�c �rst-order theory T we have to specify a language LT and
to de�ne the `non-logical axioms' of T , although the deductive machinery
and the development of the theory remain, on the whole, unchanged.

In order to facilitate comparisons with the two other essentially di�erent
ways of presenting logical deduction, we �nd it convenient at this point
to change the basic syntactic set-up used hitherto. As we hinted at in the
Remark on notation, we shall use a separate category of parameters: a; b; : : :
possibly with subscripts. The de�nition of individual terms then runs:

(i) Individual constants are terms.

(ii) Parameters are terms.

(iii) If f i is an i-place function symbol and t1; : : : ; ti are all terms,
then f i(t1; : : : ; ti) is a terms.

(iv) Nothing is a term except by a �nite number of (i){(iii).

In future, we shall leave out the `extremal clause' (iv) from our inductive
de�nitions.

The language for QC, which we shall use in the sequel, is based on the full
set of connectives; &;_;�;?;8 and 9, where, however, we introduce nega-
tion by de�nition :' =def ' � ?. The de�nition of well-formed formula
runs as usual, except that we use a di�erent clause for the quanti�ers:
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(+) If ' is a w�, b is a parameter and x is a variable which does not occur
in ', ten 8x'0 and 9x'0 are both w�s,

where '0 is the result of writing `x' for `b' wherever it occurs in '.

The net e�ect of the two main changes|the use of parameters in place
of free individual variables in the theory and the prohibition of quantifying
with a variable over a w�, which already contains this variable|is to ensure
that the same variable does not occur as both free and bound in a w� (this
is given by the use of parameters in place of free occurrences of variables)
and that no variable occurs bound `twice over' in a w�. The properties are
not important per se in the development of a Hilbert{Frege style system for
QC, but they prove indispensable in the case of the sequent calculus. Note
that although the restriction on quanti�cation rules out such expressions as

9x(P (x)&8xQ(x);

where P and Q are predicate variables, from the class of w�s, this is not an
impoverishment of the language because

9y(P (y)&8xQ(x))

is a w� and has the same meaning as the forbidden expression.

We will use the same substitution notation as before, e.g. `'at ' denotes
then the result of substituting the expression t everywhere for the expression
a in the expression '. Sometimes we wish to consider expressions which are
just like w�s, except that they contain free variables in place of parameters.
Such expressions are called pseudo-w�s. an example of a pseudo-w� is
obtained by removing the quanti�er pre�x from a w�, e.g. P (y)&8xQ(x) is
a pseudo-w�. All the pseudo-w�s we shall have occasion to consider will be
of this type.

We now give a version of intuitionistic predicate logic with identity,
HIQC=, in a form which is particularly suited for establishing connec-
tions with the other main types of systems. The system is, essentially, due
to Hilbert and Gentzen, cf. Gentzen [1934].

Axiom schemata: propositional part

(A �1) ' � ( � ')

(A �2) (' � ( � �)) � ((' �  ) � (' � �))

(A & I) (' � ( � ('& )))

(A & Ei) '0&'1 � 'i; i = 0; 1:

(A _ Ii) 'i � '0 _ '1; i = 0; 1.
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(A _ E) (' � �) � (( � �) � (' _  � �))
This is the only complicated axiom so far; it says that given ways
to reach � from ' and  , respectively, there is a way to go from
' _  to �.

these axiom schemata, together with MP, give Minimal logic. In intuition-
istic logic we have one more axiom schema:

(A?) ? � '.

Modus ponens is the only rule of proof in the propositional part.
Hence, the Deduction Theorem holds and we establish two theorem

schemata with its use:

` ('& � �) � (' � ( � �))

and
` (' � ( � �)) � ('& � �):

We reason informally:
By MP and (A & I): ';  ` '& .
But then, by MP and A & E: '& � �; ';  ` �.
So, by the Deduction Theorem (twice): '& � � ` ' � ( � �).
So, by the Deduction Theorem: ` ('& � �) � (' � ( � �)):
The other direction is left as an exercise.

There are further axioms for the quanti�ers and the identity symbol.

(A8E) 8x' � 'xt

(A9I) 'xt � 9'.

Note that we have got `'xt ' . Hence, say, (a = a) � 9x(a = x) is an instance
of A9I, because

(a = x)xa =def (a = a):

There are two rules of proof in the quanti�cational part:

(R8I)
` ' �  

provided that a does not occur in '.
` ' � 8x ax

(R9E)
` ' �  

provided that a does not occur in  :
` 9x'ax �  

In these two rules, the parameter a is called the eigen-parameter, or the
proper parameter, of the instance of the rule.

We note that the restrictions are necessary if the rules are to be sound.
Clearly, ` P (a) � P (a), but P (a) � 8xP (x) is not logically valid. (Consider
an interpretation with the domain of persons and interpretation of P as the
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property of holding the world championship of chess. Over this particular
interpretation, the assignment (at the moment of writing) of Anatoly Kar-
pov to the parameter a, produces a counter-model. It is certainly not true
that if Karpov is world champion, then anyone is. I, for one, am not.) It is
also essential to grasp that (R8I) is a rule of proof. The corresponding rule
of inference is not sound without further restrictions. Semantically, and also
deductively in the propositional part, where 8yQ(y) can be viewed just as
another w� with no further structure,

P (a) ` 8yQ(y) � P (a); say via (A �1) and MP

if we de�ne proof-trees in the usual way, but we cannot allow that

P (a) ` 8yQ(y) � 8xP (x)

as a similar counter-model to the Karpov one will show.
We therefore need to take particular care in the de�nition of proof trees

from assumptions. The crucial restriction is this: If D is a proof tree for
' �  from certain top formulae, where '1; : : : ; 'k are all the top formulae
in D which are not axioms, and the parameter a does not occur in ', then

D
' �  

' � 8x ax

is a proof tree for ' � 8x a�x from assumptions '1; : : : ; 'k, provided that
a does not occur in any of '1; : : : ; 'k.

A similar eigen-parameter condition is imposed on applications of (R9E)
in proofs from assumptions. With these restrictions, the Deduction Theo-
rem is valid and the `' �' transformation method of proof works.

Consider a proof tree D

';'1 : : : ; 'k

�� 
��8x ax

(R8I).

As (R8I) is permissible here, we know that (i) the eigen-parameter a does
not occur in �, nor (ii) in any of the assumption formulae '1; : : : ; 'k and '.
The transformation gives a proof tree D0 of ' � (� �  ) from assumptions
'1; : : : ; 'k, because in the restoration of provability from assumptions, we
use only auxiliary proof trees of the form.

'1 � (' � '1) '1
(MP)

' � '1

and this leaves only '1 as an assumption formula. So we now continue D0

as follows:
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D0

(' � (� �  )) � ('& � �  ) ' � (� �  )

'& � �  
('& � � 8x ax) � (' � (� � 8x ax)) '& � � 8x ax

(' � (� � 8x ax))

(MP)
(R8I)
(MP)

The application of (R8I) is permissible because we know that the parameter
a does not occur in '&�, nor in any of the assumption formulae of D0.
The rest is just dotting the i's and crossing the t's using the two derivable
schemata from the prepositional part. The treatment of (R9E) is similar.

The details of the entire development for rules of inference with param-
eters and the resulting Deduction Theorem are given meticulous treatment
in Hilbert and Bernays [1934] and Kleene [1952, Sections 21{24].

We can now write (R8I) as one condition of the consequence relation:

If � ` � �  , then � ` � � 8x ax

provided that the eigen-parameter a does not occur in �; �. Note the simi-
larity with the rule of inference which we showed was derivable in HCQC.

We still have to give the identity axioms:

(A=I) (a = a)

(A=E) (a = b) � ('xa � '
x
b ), where ' is atomic.

As these are axioms, the presence of parameters does not further complicate
the proof trees.

Let us �nally conclude our treatment of the Hilbert{Frege style systems
by remarking that for all three systems just presented, propositional, quan-
ti�cational and identity logic, the corresponding classical system results
simply by adding either of the two axiom schemata

(DN) ::' � ' (`DN' for `double negation')

(Excluded middle) ' _ :'

and that if we wish to use negation as a primitive he relevant intuitionistic
rules are

(A: I) (' �  ) � ((' � : ) � :')

(A : E) ' � (:' �  )

The Hilbert{Frege style systems are particularly well suited for arithme-
tization of metamathematics, because the inductively de�ned objects have a
very simple structure. Detailed treatment can be found in [Smory�nski, 1977;
Feferman, 1960].
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3 NATURAL DEDUCTION

The Hilbert{Frege style systems have, as we have seen in Section 1, a rea-
sonably smooth theory, but they su�er from one essential drawback: if one
is interested in actually carrying out derivational work, they are hopelessly
cumbersome, because even the simplest inferences have to be brought back
to the �xed and settled axioms. The use of proofs from assumptions, and
the ensuing Deduction Theorem, is an attempt to ease the derivational
burden which is at lest partially successful, particularly for the last of the
formulations given above.

In Natural Deduction, on the other hand, one of the two main features
is that all rules are rules of inference rather than rules of proof and, con-
sequently, theoremhood is de�ned as the limiting case of derivability from
the empty collection of assumptions. The other main feature of Natural
Deduction is that the derivational use of each operator $ | connective,
quanti�er, inductively de�ned predicate etc. | is regulated by two rules:
one, the introduction rule for $, ( $ I), which tells us how a sentence with
$ as its main operator may be inferred as a conclusion, how $ may be in-
troduced, and another rule, the elimination rule for $, ($ E), which tells us
how further consequences may be drawn from a premise with $ as its main
operator, how $ can be eliminated.

We now proceed directly to presenting these rules for a Natural Deduction
version of IQC, which we henceforth call NIQC.

(A) Assumption. For any w� ', the tree which consists of ' only is
a derivation of ' which depends on the assumption '.

If

(& I)
D0 D1

and
'0 '1

are derivations of '0 and '1, respectively, which

depend on assumptions '1; : : : ; 'k and  1; : : : ;  m, respectively,
then

D0 D1

' �  '
(� E)

 

is a derivation of '0&'1, which depends on all of '1; : : : ; 'k,
 1; : : : ;  m.

(& Ei) i = 0; 1. The elimination rule for conjunction is, properly speaking,
not one, but two rules.

If
D

'0&'1
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is a derivation of '0&'1, depending on  1; : : : ;  m, then

D
'0&'1

(& Ei)
'i

is a derivation of 'i, depending on the same assumptions.

(� I) This is the most characteristic of Natural Deduction rules. It is
also diÆcult to state precisely.

If
D
 

is a derivation of  , depending on assumptions '1; : : : ; 'm, then

D
 

(� I)
' �  

is a derivation of ' �  depending on assumptions '01; : : : ; '
0
m,

where this list results from '1; : : : ; 'm by removing some (all or
no) occurrences of '. We say that the removed occurrences have
been discharged or closed.

(�D) If
D0 and D1

' �  '

are derivations of ' �  and ', respectively, depending on '1; : : : ; 'k
and  1; : : : ;  m, respectively, then

D0 D1

' �  '
(� E)

 

is a derivation of  depending on all the assumptions '1; : : : ; 'k,
 1; : : : ;  m. The elimination-rule for � is nothing but MP con-
strued as a rule of inference.

We now have enough rules to give a simple example:

'1 '2

(&I)
('& )

(�I)
 � ('& )2

�I)
' � ( � ('& ))1
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This derivation tree is a proof, i.e. a derivation in which the assumptions
have all been closed (there are no open assumptions left). It also illustrates
how one sets out the derivations in practice. The assumptions are indexed
with a numeral and, at the inference where an assumption is discharged, the
numeral is written again to indicate closure. In practice, when the system
is familiar, one does not always give the names of the rules, nor does one
always indicate where the assumptions are discharged, but con�nes oneself
just to crossing them out to indicate closure. The mechanism of the above
derivation is thus: assume ' and  . By (& I ) we get ('& ) depending on
the assumptions ' and  . Therefore, by the use of (�I): � ('& ), now
depending only on ', and �nally by one more use of (�I): ' � ( � ('& )).
The use of (�I) corresponds to the Deduction Theorem in HIQC. Note that
we have here given a proof in NIQC of the HIQC-axiom (A& I). the reader
may wish to try his hand at (A & E) as an exercise.

The above elementary example illustrates a point of principal importance.
It is given as a derivation schema and we naturally wish that each instance
thereof shall be a derivation. Consider then the, albeit somewhat extreme,
choice of the propositional variable p both for ' and  . The result is

p1 P 2

(& I)
p&p

(�I)
p � (p&p)2

(�I)
p � (p � (p&p))1

We see that both assumptions p are struck out, but the discharge takes
place at di�erent inferences. The moral of this example is that not all
assumptions of the form ' have to be discharged at an application of (�I)
giving ' �  as a conclusion. In fact, no assumption needs to be discharged:

'1

(�I)
 � '

(�I)
' � ( � ')1

Here at the �rst application of (�I) no discharge takes place. We are given a
derivation of ', depending on certain assumptions|in fact only on '|and
we go on to a derivation of ( � ') as we have the right to do by (�I). As we
search for an occurrence to discharge, we see that there is none. Thus, with
this permissiveness and the resulting liberal use of (�I) Natural Deduction
is not suitable for Relevant logic (but cf. [Prawitz, 1965, Chapter VII]).

To sum up: Discharge is a right, but not an obligation.
as not all assumptions of the same form need to be discharged at the

same place, one speaks of `assumption classes', where those assumptions of
the same form which are discharged by the same inference belong to the
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same assumption class. Leivant [1979] contains an exhaustive discussion of
the need for assumption classes.

The rules given above were formulated in a rather elaborate way in order
to be precise. In practice, one often sees the following sort of de�nition for
the rule (�I): If

'
D
 

is a derivation of  , depending on, among others, the assumption ', then

'
D
 

(�I)
' �  

is a derivation of ' �  , where the indicated assumptions of the form '
have been closed (have been discharged or cancelled). This is a somewhat
loose way of formulating the rule as the discussion of assumption-classes etc.
shows. It has, however, a great intuitive appeal, and the rest of our rules
will be set out in this fashion on the understanding that the precise versions
of the rules have to be formulated in analogy with the exact statement of
(�I).

We now give the rest of the rules:

(_I) i = 0; 1. (This is not one but two rules, just as in the case of (& E).)
If

D

'i

is a derivation of 'i, depending on certain assumptions, then

D
'i

(_I)i
'0 _ '1

is a derivation of '0 _ '1, depending on the same assumptions.

(_E) If
D

' _  

is a derivation of ' _  , and

'  
D1 and D2

� �
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are derivations of �, depending respectively on, among others, the
assumptions ' and  , then

'  
D D1 D2

' _  � �
(_E)

�

is a derivation of �, where the indicated assumptions have been closed.
(This could, and for exactness, should, be reformulated in a manner
corresponding to the exact statement of (�I).)

The rule (_E) is a formal version of the type of reasoning known as `con-
structive dilemma': we know that A or B is true. First case: A is true. Ten
C is also true. Second case: B is true. Again, C is also true. Therefore, C
is true.

Using (_E) we can, of course, give a proof, i.e. a derivation without open
assumptions, of the axiom (A_E):

'_ 1

' � �2 '3

�

 � �4  5

�
�

' _  � �
(1)

( � �) � (' _  � �)
(4)

(' � �) � (( � �) � (' _  � �))
(2)

3; 5
(_E)

(8I) If
D

'

is a derivation of ', depending on  1; : : : ;  k, then

D
'

8x'ax

is a derivation of 8x'ax, depending on the same assumptions, provided
that the parameter a, the eigen- parameter of the inference, does not
occur in any of the assumptions  1; : : : ;  k.

This rule is a codi�cation of a type of reasoning very well-known to calculus
students: `Pick an " > 0. Then there is for this " such and such a Æ > 0.
But " was chosen arbitrarily. Therefore, for every " > 0 there is such a
Æ.' The restriction on the eigen-parameter a is, of course, necessary. The
Karpov counter-example given in Section 1 in a similar situation works here
as well, and for the same reason.
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(8E) If
D

8x'

is a derivation of 8x', depending on certain assumptions, then

D
8x'

(8E)
'xt

is a derivation of 'xt , depending on the same assumptions.

(9I) If
D

'xt

is a derivation of 'xt , depending on certain assumptions, then

D
'xt

9x'

is a derivation of 9x', depending on the same assumptions.

We now come to the most complicated of the rules, viz.

(9E) If
D

9x'

is a derivation of 9x', and
'xa
D1

�

is a derivation of � depending on, among others, the assumption 'xa,
then

'xa
D D1

9x' �
(9E)

�

is a derivation of � depending on all the assumptions used in D an
D1, except those of the indicated form 'xa , provided that the eigen-
parameter a does not occur in 9x', nor in � or any of the assumptions
in D1, except those of the form 'xa. For examples illustrating the need
for the restrictions, we refer to [Tennant, 1978, Chapter 4.8].
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(=I) For any term t; t = t(= I) is a derivation of t = t, depending on no
assumptions.

(=E) If

D and D1

t0 = t1 'xt0

are derivations of t0 = t1 and 'xt0 , depending on certain assumptions,
then

D D1

t0 = t1 'xt0 (= E)
'xt1

is a derivation of 'xt1 depending on all the assumption used in D and
D1.

Examples:

1.

(a = a) (= I)
(9I)

9x(a = x)

and

2.

(a = a) (= I)
(9I)

9x(x = x)

are correct proofs of their respective conclusions; in (1) (a = a) =def

(a = x)xa and in (2) (a = a) =def (x = x)xa
In order to complete the description of HIQC= we must add one more

rule to the above set of rules for Minimal predicate logic with identity. The
extra rule is of course

(?) If
D

?

is a derivation of ', depending on the same assumptions.

This ends the presentation of the rules. In order to summarise the above
description of the system of Natural Deduction we now give the rules as
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inference �gures:

(& I)
'  

'& 
(& E)

'& 

'

'& 

 

(_I)
'

' _  

 

' _  
(_E)

'  
...

...
' _  � �

�

(8I)

'
...
 

' �  

(�E)
' �  '

 

(8I)
'

8x'zx
(8E)

8x'

'xt
provided that the eigen-
parameter a does not
occur in any assumptions
on which ' depends

(9I)
'xt

9x'
(9E)

'xa
...

9x' �

�
provided that the eigen-
parameter a does not occur
in any assumptions on which
� depends (except 'xa),
nor in 9x' or �.

(=I) t = t (=E)
s = t 'x � s

'xt

(?)
?

'

The system thus given was introduced, essentially, by Gentzen [1934].
We write

'1; : : : ; 'k `N '

if there is a derivation of ' where all open assumptions are among '1; : : : ; 'k,
and similarly for sets �.
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Above we gave a proof of (A & I), using the homonymous rule and the
rules for �. Later we did the same for (A _ E). The pattern thus presented
is perfectly general and it should be clear to the reader how to prove every
HIQC= axiom by using the corresponding Natural Deduction rule together
with the implication rules. The Hilbert{Frege style axioms were chosen just
because they are the linearisations of the Natural Deduction rules. When
discussing the discharge of assumptions, we gave a proof of (A�1). We now
give a proof of (A�2): in order to do this it is clearly enough to show that

' � ( � �(; (' �  ); ' `N �

because then a series of three (�I) will establish the axiom. This is readily
done by means of the following derivation tree:

' � ( � �) '

 � �

' �  '

 

�

Here we have used a more relaxed style for setting out the derivation; the
assumptions are not indexed and the names of the rules have not been
indicated. `OÆcially' this must be done, but in practice they are often left
out.

We have seen that the Hilbert{Frege style axioms are all provable from
our Natural Deduction rules. What about the rules of inference in the
Hilbert{Frege style system? We consider (R8I); then one is given a deriva-
tion D of ' �  , from assumptions  1; : : : ;  k where a does not occur in
any of the assumptions nor in ', and is allowed to proceed to a derivation
of ' supset8x ax from the same assumptions. Can this be e�ected using
also Natural Deduction? One would expect the answer to be yes, and this
is indeed found to be the case by means of the following derivation tree:

D
' �  

'1

(� E)
 

(8I)
8x ax

' � 8x a(1)
x

Here the use of (8I) is permitted because, by hypothesis, the eigen-
parameter a does not occur in any of the assumptions of D nor in the
assumption '. Hence, the Natural Deduction system `is closed' under the
Hilbert{Frege style rule (R8I). The other quanti�er rule (R9E) can be given
an analogous treatment. We have therefore established the following

THEOREM 3 ([Gentzen, 1934]). If � `H ', then � `N '.
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For the other direction, the main work has already been carried out in
the form of the Deduction Theorem. This theorem enables us to capture the
e�ect of the discharge of assumptions within a Hilbert{Frege style system.

Consider the case of (& I). We must show that the system HIQC= is
closed under this rule. To this e�ect assume that '1; : : : ; 'k `H ' and
 1; : : : ;  m `H  . We must show that '1; : : : 'k;  1; : : : ;  m `H '& . But
by use of (A& I) and MP we obtain �rst '1; : : : ; 'k `H  � '& ; and then
by a use of the second given consequence relation and MP we reach our
desired conclusion. the other rules are established in the same simple way
by the use of the homonymous axiom and MP. The two eigen-parameter
rules demand a separate treatment, however. We consider (9E). So let
there be given H-derivations D and D1 which establishes that � `H 9x'
and 'x�a; Æ `H �. Assume further that the parameter a does not occur in
9x'; �, or �. We have to show that �;� `H �, i.e. the desired conclusion
of (9D) from the given premises. This is readily done, however:

�
D
9x'

'x
1

a ;�
D1

�
(�I) (= The Deduction Theorem)

'xa � �
(1)

(R9E)
9x' � �

(MP)
�

The use of rule (R9E) is permitted, because by hypothesis the parameter a
does not occur in � (this justi�es use of the Deduction Theorem as well),
nor in 9x' or �. Hence, the Hilbert{Frege style system is closed under the
quanti�er rule (9E); the treatment of (8I) is similar. Thus, the second half
of Gentzen's

THEOREM. If � `N ', then � `H ' is established.

The above system used intuitionistic logic; in order to obtain smooth sys-
tems for classical logic (whether, propositional or predicate, with or without
identity) one can add any one of the following three rules:

(i) The axiom tertium non datur: ' _ :' (TND)

(ii) The rule of indirect proof:

:'
...
?

(C) (C for classical!)
'
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1. The rule of Non-Constructive Dilemma:

' :'
...

...
� �

(NCD)
�

These all give classical logic when added to the intuitionistic rules for
propositional calculus. We prove this by establishing a chain of implications:

If (ii), then (i). This shall be understood in such a way that given the
schematic rule C, one can derive all instances of TND:

:(' _ :')2

:(' _ :')2

'1

' _ :'
?

:'(1)

' _ :'
(_I)

(_I)
(�E)

?

' _ :'(2)
(C)

If (i), then (iii). This is immediate: given TND, the rule NCD simply
becomes an instance of (_E).

If (iii), the (ii). Here we assume that we are given a derivation

:'
D
?

of ? from the assumption :'. Using only intuitionistic logic plus NCD we
have to �nd a derivation of ', not depending on :'. �rst we note that

'1

:'2

D
?

'
(1;2) (NCD)

'

As ' is trivially derivable from the assumption ', we have obtained a deriva-
tion of ' from the assumption ' and one of ' from the assumption :'. The
rule NCD gives us the right to discharge the assumptions ' and :'.

With the given de�nition of negation in terms of the absurdity ?, one
is able to keep the idea that each symbol is governed by its introduction
and elimination rules; the absurdity ? has no introduction rules and only
one elimination rule, viz. (?). If one wishes to retain : as a primitive, the
appropriate intuitionistic rules become:
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(:I)

' '
...

...
 : 

:'

and

(:E)

' :'

�

In the classical case the elimination rule becomes:

(:Ec)

::'

'

The (:I) and (:E) rules are less satisfactory than the other rules because
the sign to be introduced occurs already in the premises of the rule.

The intuitionistic rules have a pleasing symmetry; each connective has its
use regulated by two rules, one of which is, in a certain sense, the inverse of
the other. To give this remark a bit more substance, consider a maximum
formula, i.e. a formula occurrence in a derivation which is the conclusion of
an I rule and the major premise of the corresponding E rule, e.g. & in:

'1  2

(& I)
'& 

(& E)
'

This maximum can be removed, i.e. we can �nd a derivation of the same
conclusion from (at most) the same assumptions, in a maximally simple
way: '1.

This maximum-removing operation is called a reduction and similar re-
ductions can also be given for other types of maxima, e.g. the � reduction
is given by:

(�I)

'1

...
 

' �  (1)
...
'

(� E) reduces to
 

...
'
...
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and the 8-reduction is given by:

...
'

(8I)
8x'ax

(8E) reduces to
('ax)xt

...

a

t

'at

(i.e. everwhere in the erivationof '
replace a with t.)

For the other reductions, cf. [Prawitz, 1965, pp. 36{38] (where they were
�rst introduced and [Prawitz, 1971, pp. 252{253].

Although each individual maximum can be removed via a reduction, the
situation is not altogether as simple as one would wish because the removal
of one maximum can create a new maximum, e.g. in:

'1

...
 

(� I)
' �  (1)

...
�

(&I)
(' �  )&�

(&E)
' �  

...
'

 

Here (' �  )&� is a maximum and an & reduction gives:

'1

...
 

(� I)
' �  (1) '

(� E)
 

Now the w� ' �  , which previously was not a maximum, has been
turned into a maximum. A � reduction will, of course, suÆce to remove
this new maximum, but what about the general case? If we consider the
complexities of the old and the new maximum, respectively, we �nd that
the new one has a lower complexity than the old one, and this phenomenon
holds in general. Hence, one has something to use induction on in a proof
that every maximum can be removed by successive reductions (even though
new ones may arise along the way). In fact Prawitz has proved the

NORMALISATION THEOREM. Every derivation can be brought to
maximum-free, or normal, form by means of successive reductions.
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For a proof and precise statements of this and related results, we refer to
the works by Prawitz and Tennant just cited. Dummett [2000] also contains
an exhaustive discussion of normalisation.

The reduction and the normalisation procedures have formed a basis for
various attempts to give a `theory of meaning' not using the Tarski truth
de�nition as a key concept. Cf. [Prawitz, 1977] and this Sundholm's chapter
III.8 in this handbook for a description of this use of Natural Deduction and
its metatheoretical properties.

Natural Deduction formulations can be given not only for pure proposi-
tional and predicate logic, as above, but also for, say, modal logic. De�ne:

(0) ? is essentially modal,

(i) �' is essentially modal,

(ii) If ' and  are both essentially modal, then so are '& and ' _  .

Using this concept of an essentially modal formula, one then gives an
attractive version of classical S4 by adding the following two rules to CPC

(�E)
�'

'
(This rule is, of course, a rule version of the T axiom: �' � '), and

(�I)
'

�'
provided that all assumptions on which ' depends are essentially
modal.

This formulation of S4 is given in [Prawitz, 1965, Chapter VI] We derive
the S4 axioms. for these axioms, cf. Bull and Segerberg's chapter in Volume
3 of this Handbook.

k: We have to prove �(' �  ) � (�' � � )

(�E)

�(' �  )1

' �  

�'2

(�E)
'

(� E)
 

(�I)
� 

(� I)
�' �  (2)

�(' �  ) � (�' � � )(1)



SYSTEMS OF DEDUCTION 29

(All assumptions are essentially modal.)

T: We have to prove �' � '.

�'1

(�E
'

(� I)
�' � '(1)

4. We have to prove �' � ��'.

�'1

(�E)
��'

(� I)
�' � ��'(1)

The rule Nec is just a special case of (�I), with the class of assumptions
empty.

Thus we have proved that NS4 includes the previously given HS4. For
the other direction one uses the two readily veri�ed facts:

(i) If '1; : : : ; 'k `HS4 ', then �'1; : : : ;�'k `HS4 �'.

(ii) For every essentially modal ';`HS4 ' � �'.

The details are left as an exercise. Finally we remark that if we change (ii)
to ii0) in the de�nition of essentially modal w�s, we obtain a formulation of
S5, where (ii0) says: If ' and  are essentially modal, then so are '& ; '_ 
and ' �  .

For another , �nal, example of a Natural Deduction version of a wider
system, we consider a smooth version of Heyting Arithmetic, HA, cf. Van
Dalen's chapter in Volume 7 of this Handbook. We use a new predicate
N(x)|`x is a natural number', a constant 0 and a `successor function' s(x)
(plus some further function constants which we need not bother about now).
The introduction rule for N gives an inductive de�nition of the natural
numbers:

(NI):

N(0)
N(a)

(NI)
N(s(a))

By this rule, every natural numeral 0, s(0); s(s(0)); : : : is in N . The elimi-
nation rule, on the other hand, says that nothing else is in N :



30 G�ORAN SUNDHOLM

(NE):

'x
1

a

...
N(t) 'x0 'xs(a)

(1)(NE) eigen-parameter condition on a)
'xt

This version of the induction axiom thus says that if t is in N and the
property ' is closed under successor and contains 0, then t has the property
'. This form of spelling out inductive de�nitions can be applied not just to
the inductively-generated natural numbers, but to a wide range of inductive
de�nitions, cf. [Martin-L�of, 1971].

On the positive side of natural Deduction formulations there are, as we
have seen, several advantages, the foremost of which is the great ease with
which derivations can actually be carried out. On the minus score how-
ever, one must note that Natural Deductions is not suitable for all sorts of
systems. In several modal systems, say between S4 and S5, it is not at all
clear that one can isolate the behaviour of � in the form of introduction and
elimination rules. It was already noted that the conventions on assumptions
made it diÆcult to �nd suitable systems for relevance logic. For some e�orts
in this area, cf. [Prawitz, 1965, Chapter VII].

The arithmetization of a Natural Deduction formulation is, prima facie
also a little more cumbersome than in the case of an Hilbert{Frege style
formulation. The G�odel number of a derivation has to contain the following
information: (i) the end formula, (ii) the rule used at the last inference,
(iii) G�odel numbers for derivation of the premises, (iv) the assumption class
possibly discharged at the inference, (v) the still open assumption classes.
Such G�odel numbers are best constructed as sequence numbers containing
the above items, cf. [Kleene, 1952, Section 51{ 52] and [Troelstra, 1973,
Chapter IV]. (The latter reference contains much valuable material on var-
ious aspects on the derivability relation (for intuitionistic predicate logic):

(0) ' ` '|to make an assumption.

(i) If � ` ', then �;� ` '|we may add further assumptions.

(ii) If � ` ' and � `  , then �;� ` '& |by (& I).

(iii) If � ` '0& 1, then � ` 'i|by (& E) for i = 0; 1.

(iv) If ';� `  , then � ` ' �  |by (�I).

(v) If � ` ' �  and � ` ', then �;� `  |by (�E).

(vi){(vii) The corresponding clauses for (_I) and (_E) are left as exercises.
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(viii) If � ` ' and a does not occur in �, then � ` 8x'ax| by (8I).

(ix) If � ` 8x', then � ` 'xt |by (8E).

(x) If � ` 'xt , then � ` 9x'| by (9I).

(xi) If � ` 9x' and 'xa;� ` � and a does not occur in any of �; � and
9x', then �;� ` �|by (9E).

(xii) If � ` ?, then � ` '| by (?).

De�ne a sequent to be an expression of the form `� ` '' where � is a
�nite set of w�s|possibly empty|and ' a w�. Then the above clauses
(0){(xii) give the axioms and rules of a certain Hilbert{Frege style system
for deriving sequents; the clause (0) gives the only axiom, which says that he
sequent ' ` ' is derivable. (Here I adhere to the same connections about
notation as before; strictly speaking `f'g ` '' is the axiom.) The other
clauses are rules of proof. The present system is just a notational variant
of the tree arrangement version of Natural Deduction which we have used
in the present section; in particular it is not to be confused with Gentzen's
Sequent Calculi. The main feature of the sequential formulation of Natural
Deduction is that there are both elimination rules and introduction rules. In
the Sequent Calculus, on the other hand, there are only introduction rules.
The sequential version was �rst given by Gentzen [1936] in his `�rst consis-
tency proof'. there is a certain formal di�erence between Gentzen's system
and ours, because for him the sequent part � is not a set of w�s but of a
list of w�s, and he therefore has rules to the e�ect that one may permute
assumption formulae in the lists and contract two identical assumption for-
mulae to one. The latter rule neglects the problem of assumption classes.
The best way to treat that in the sequentila version seems to be to let � be
a set of labelled formulae, where a labelled formula is an order pair h'; ki
where k is a natural number (and ' is a w�, of course). The details can be
found in [Leivant, 1979].

One has several options as to the choice of rules for a sequential version |
for an indication of the various possibilities, cf. [Dummett, 2000, Chapter
IV] who treats the sequential formulations in considerable detail|and in
particular the `thinning' rule (i) allows us to restrict the multi-premise rules
to the special cases of always using the same set of assumptions. Thus, one
can formulate the rule for conjunction- introduction as follows:

� ` ' � `  

� ` '& 

The e�ect of the old rule (ii) can be simulated. From � ` ', by thinning, one
obtains �;� ` ' and from � `  one obtains �;� `  , also by thinning.
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Finally, the (new) conjunction introduction gives the desired conclusion:
;� ` '& .

Another variation is to formulate the axioms in a more general way:
� ` ' is an axiom where ' is an element of �, or equivalently: ';� ` ' is
an axiom.

If we carry out both of these modi�cations the resulting calculus for
deriving sequents will look like:

Axiom ';� ` '

Thinning
� ` '

�;� ` '

(& I)
� ` ' � `  

� ` '& 

(& E)
� ` '0&'1

i = 0; 1
� `1

(_I)
� ` 'i

i = 0; 1
� ` '0 _ '1

(_E)
� ` ' _  ';� ` �  ;� ` �

� ` �

(�I)
';� `  

� ` ' �  

(�E)
� ` ' �  � ` '

� `  

(8I) 1
� ` '

� ` 8x'ax

(8 E)
� ` 8x'

� ` 'xt

(9I)
� ` 'xt

� ` 9x'

(9E)
� ` 9x' 'xa;� ` �

� ` �
1On these rules there is an eigen-parameter condition: a must not occur in �;

9x' or �.
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(?)
� ` ?

� ` '

We conclude our treatment of Natural Deduction by mentioning [Ten-
nant, 1978] which treats the traditional metamathematics of �rst- order
logic and arithmetic on the basis of Natural Deduction formulations of the
systems concerned, and [van Dalen, 1997], which treats model theory in a
similar way. Gentzen's treatment of Natural Deduction, which still seems
the most natural to me, inspired many other attempts to keep the deriva-
tions from assumptions and the discharge of certain of these as a basic
feature. In particular, many authors have experimented with linear ar-
rangements of the derivations as opposed to Gentzen's tree formulations. A
list of variant treatments of Natural Deduction is found in Hodges (Volume
1, Section 7).

4 SEQUENT CALCULI

The (reformulated) sequential version of Natural Deduction, which we con-
sidered at the end of Section 2, was nothing but a direct linearisation of the
introduction and elimination rules, where the latter were thought of as im-
posing conditions on the derivability relation `. The pattern thus obtained
is, however, not the only way of axiomatising the derivability relation on
the basis of the Natural Deduction rules. Crucial in the above treatment
was that the elimination rules were formulated as such and operated on the
right-hand side of the turnstile `. A completely di�erent approach to the
elimination rules is possible, though, and leads to Gentzen's [1934] Sequent
Calculi.

Consider a derivable sequent

'; '1; : : : ; 'k ` �;

hence if we read the derivation in the sequential system as a description of
how to build a derivation tree for � from assumptions '; '1; : : : ; 'k, we can
�nd a derivation tree D such that

'1; '1; : : : ; 'k
D
�

where, in particular, ' is an undischarged assumption. Therefore, using (one
of) (& E) we obtain a derivation tree D0 of � from assumptions '1; : : : ; 'k
and '& . In this tree D0 the assumption ' has `disappeared'.

D0 =def

(&E)
'& 1

;
'

'1; : : : ; 'k

D
0
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So the sequent '& ; '1; : : : ; 'k ` � is derivable, and on the given inter-
pretation the rule

';� ` �

'& ;� ` �

is a sound rule of proof.
Likewise, the rule

� ` '  ;� ` �

' �  ;� ` �

is a sound rule of proof, because given derivation trees

�  1; �

' and �

one readily �nds a derivation tree in which the place of the Assumption  
is taken by ' �  :

�

(� E) ' � '1 '
 ; �

�

The use of (_E) immediately justi�es the step:

';  ` �  ;� ` �

' _  ;� ` �

and (8E) justi�es:
'xt ;� ` �

9x';  ` �

Finally, if a does not occur in the conclusion, then trivially (9E) justi�es
the step:

'xt ;� ` �

8x';  ` �
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From the present point of view, the elimination rules are viewed as left-hand
side introduction rules. De�ne a sequent to be an expression of the form

�! �

where � is a �nite set of w�s. This (re-) de�nition is only for historical
reasons; by custom, one uses an arrow in the sequents.

The axioms and rules of Gentzen's Sequent Calculus are given by:

(Axiom) ';�! '

(Thinning)
� ` '

�;� ` '

(! &)
�! ' �!  

�! '& 

(&!)
';�! �

'& ;�! �

 ;�! �

'& ;�! �

(! _)
�! '

�! ' _  

�!  

�! ' _  

(_ !)
'; t �  ;�! �

$ _  ;�! �

(!�)
';�!  

�! ' �  

(�!)
�! '  ;�! �

' �  ;�! �

(! 8)
�! '

provided that a does not occur in �
�! 8x'ax

(8 !)
'xt ;�! �

8x';�! �

(! 9)
�! 'xt

�! 9x'

(9 !)
'xa;�! �

provided that a does not occur in the conclusion
9x';�! �

(?)
�! ?

�! �
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A sequent �! ' is provable in this `cut-free' intuitionistic sequent calculus
if it has got a proof tree regulated by the above rules and where all the top
nodes are axioms. In symbols we write:

`IS �! '

(IS for intuitionistic sequent calculus.)
The introductory discussion implicitly proved the following inclusion:

If `IS �! ', then the sequent � ` ' is derivable in the sequen-
tial formulation of Natural Deduction.

A formal proof by induction on the length of the IS proof of �! ' can
safely be left to the patient reader.

Of course, one would like to establish the converse relation between the
two axiomatizations of the Natural Deduction turnstile, i.e. that the idea of
treating the elimination rules as left-hand side introduction is as strong as
the original formulations where the eliminations operate to the right. This
can, in fact, be done but a direct proof would be quite unwieldy. Instead,
Gentzen introduced a rule:

(CUT)
�! ' ';�! �

�! �

such that in IS+ = IS + CUT one readily shows that the e�ect of the full
Natural Deduction eliminations can be simulated. Then, by means of his
famous Hauptsatz, he established that if `IS+ �! ', then `IS �! ', and
the equivalence is established.

We treat the case of (& E). Hence we are given an IS+ proof of �! '& 
and we wish to �nd one for �!  . This we do as follows:

.
. .
. .

 ;�!  (Axiom)
�! '& '& ;�!  (&!)

�!  (CUT)

The same technique using the CUT rule works uniformly for all the Natu-
ral Deduction elimination rules. To treat one more case, we choose the most
complex, viz. (�E): Here we are given IS+ proofs of �! ' and �! ' �  ,
and have to �nd one for �!  . This is done as follows:

.
. .
. .

.
. .
. .

�! '  ;�!  
�! ' �  ' �  ;�!  (�!)

�!  (CUT)

The same method proves the other cases and, hence, it is established that



SYSTEMS OF DEDUCTION 37

If � ` ' is a provable Natural Deduction sequent, then `IS+

�! '.

In order to get the inclusion in IS we have to discuss Gentzen's Hauptsatz
that CUT can be eliminated. What is the signi�cance of CUT for the
Natural Deduction derivations? Here it licenses the step from provable
sequents � ` ' and ';� `  to � `  . It is simply a derivable rule of proof
by means of (�I) and (�E), viz:

.
. .
. .

(� I) ';� `  .
. .
. .

(� E) � ` ' �  � ` '

� `  

Here we created a new maximum, viz. ' �  which is the conclusion of
an introduction and the major premise of an elimination. Another way to
view CUT in Natural Deduction contexts is that it expresses the closure
under substituting a derivation of an assumption for that assumption, e.g.
consider:

� '; �

' and  

The result of putting the �rst derivation on top of the other looks like:

�

.
. .
. .

'; �

 

Here the assumption ' has disappeared, but a new maximum may have
arisen, viz. '. If the last rule of the deviation of ' from � is an introduction|
say that ' = '0&'1, inferred by an (% I)|and the �rst rule applied to '
in the derivation of  from assumptions ' and � is an elimination|in
this case, then, an (& E)|then ' has been turned into a maximum, al-
though the derivations are closed under the rule of CUT. Hence, cut-free
derivations in the Sequent Calculus correspond to normal derivations in the
Natural Deduction systems, and if we may assume that the Natural De-
duction derivation we have of a sequent is normal, one can directly �nd a
cut-free IS proof of the corresponding sequent, cf. [Prawitz, 1965, Appendix
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A, pp. 88{93]. Hence, one needs to prove the Normalisation Theorem, or
the Hauptsatz, to have an easy proof of the inclusion of the Natural Deduc-
tion in the cut-free system IS. In view of the above discussion, this is hardly
surprising, since there is a correspondence between cuts and maxima.

Gentzen's proof of his Hauptsatz consists of a series of permutations of
cuts in such a fashion that the complexity of the `cut formula' is lowered.
We can illustrate this by considering the simplest of the cases:

.
. .
. .

.
. .
. .

.
. .
. .

(� &) �! ' �!  ';�! �

�! '& '& ;�! � (&!)

�! � (CUT)

Here we replace the cut on the w� '& by a cut on the w� ' in this
way:

.
. .
. .

�! '
.

. .
. .

';�! �
(CUT)

�! �

The situation is not always as simple as this but it gives the idea. The
proof of the Hauptsatz can be found in many places. Apart from Gentzen's
own [1934], [Kleene, 1952; Takeuti, 1975] as well as [Dummett, 2000], con-
tain good expositions of the proof.

Gentzen's own Sequent Calculi used �nite lists of formulae (in place of �-
nite sets) and, as already remarked apropos his formulation of the sequential
Natural Deduction system, he needs further `structural' rules to permute
and contract formulae in the �nite lists. The presence of a contraction rule:

'; ';�! �

';�! �

again raises the question of assumption classes and mandatory discharge of
assumptions (via the correspondence with Natural Deduction). The inter-
ested reader is referred to [Zucker, 1974] and [Pottinger, 1979] for a thorough
treatment of such matters.

The Sequent Calculus just presented was set up so as to make the transi-
tion from Natural Deduction particularly easy and, hence, it was expedient
to keep ? as a primitive (with negation de�ned). In the Sequent Calcu-
lus, however, another more congenial treatment consists of dropping ? and
adding : as a primitive. The concept of sequent is widened to include se-
quents `� ! �', , where both the `antecedent' � and the `succedent' � are
�nite sets of formulae, with the important restriction that � has got at most
one element. The sequent `�! f'g' will be written `�! '' and a sequent
�! �, with empty succedent, is written ` !'.
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In the calculus one drops the (?) rule, of course, but in order to secure
its e�ect, one also adds a Thinning for the succedent:

�!

�! �

This makes the empty succedent behave like absurdity, and the following
two rules for negation suggest themselves:

(! :)
';�!

�! :'

and

(: !)
�! '

:';�!

The system thus modi�ed we call IS0.
The underlying idea for our way of looking at the Sequent Calculus, up

till this point, has been to regard the Sequent Calculus as a soft of `meta-
descriptive' system for how Natural Deduction derivations are put together.
There is also another approach to the sequent apart from this consequence
relation interpretation, which other approach is particularly well suited to
e�ect the transition to the fully symmetric, classical Sequent Calculus.

On a naive semantical level, we may call a sequent � ! � valid, if
whenever all the members of � are true, then at least some member of �
is true. (Hence, a sequent � ! is valid i� � is inconsistent.) The rules if
IS0 then give rules of passage between valid sequents; in particular, every
axiom is valid. On the other hand, let us call a sequent falsi�able if one can
make all the members of � true and all the members of � false. We note
that these explanations of validity and falsi�ability also work for sequents
with more than one element in the succedent.

Now the other approach suggests itself; instead of reading the rules of IS
as expressing validity conditions of the form, say `if S1 and S2 are both valid
sequents, then so is S' we may read them as expressing falsi�abilty conditions
of the form, say, `if the sequent s is falsi�able, then S1 is falsi�able or S2

is falsi�able'. Let us work this out for the conjunction rules: Assume that
the sequent `� ! '& ' is falsi�able. Then one can make all of � true and
yet make '& false. Hence, one can make at least one of ' and  false,
and therefore at least one of the premises � ! ' and � !  must be a
falsi�able sequent. Likewise, for the antecedent conjunction rule: Assume
that '& ;�! � is a falsi�able sequent. Then one can make all of '& ;�
true and � false. But then both of ';� ! � and  ;� ! � are falsi�able
sequents, so (& !) expresses two falsi�ability conditions.

The same sort of reasoning applies to the other rules of IS0. It is worth-
while considering the negation rules a bit more carefully. Take (: !) �rst.
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If :';� ! is falsi�able, this means one can make all of :'� true, so one
can make ' false. Hence, � ! ' is falsi�able. As for (! :), assume that
� ! :' is falsi�able. Then all of � can be made true while :' is false.
Hence, all of ';� can be made true.

Both of these rules thus express good falsi�ability conditions, but they
are too `weak' to make use of full classical reasoning. The same argument
would also justify the rules with extra members in the succedents:

';�! �

�! �;:'

�! �; '

:';�! �

The calculus which results is particularly nice because the rules express nec-
essary and suÆcient conditions for the falsi�ability of the conclusion, i.e. in
order that the conclusion be falsi�able it is necessary and suÆcient that at
least one of the premises be falsi�able. The axioms indicate unfalsi�ability,
because it is impossible to give ' both the value true and the value false. In
general, we see that the complexity of the premises is lower|the quanti�er
rules form exceptions|than the complexity of the conclusion and, hence,
the falsi�ability condition for the conclusion is|in general|expressed in
terms of falsi�ability conditions of lower complexity. This leads to a prac-
tical way of systematically searching for a proof in the Sequent Calculus.

Axiom ';  ! Æ; '

(! &)
�! �; ' �! �;  

�! �; '& 

(&!)
';  ;�! �

'& ;�! �

(! _)
�! �; ';  

�! �; ' _  

(_ !)
';�! �  ;�! �

' _  ;�! �

(!�)
';�! �;  

�! �; ' �  

(�!)
�! �; '  ;�! �

' �  ;�! �

(! :)
';�! �

�! �;:'



SYSTEMS OF DEDUCTION 41

(: !)
�! �; '

:';�! �

(! 8)
�! �; '

provided that A does not occur in �;�
�! �;8x'ax

(8 !)
'xt ;8x';�! �

8x';�! �

(! 9)Q
�! �; 9x'; 'xt

�! Æ; 9x'

(9 !)
';�! �

provided that a does not occur in �;�:
9x'az ;�! �

This system we call CS|`C' for classical.
The reader should convince himself that CS is sound for the standard

truth-value semantics for classical logic, i.e. that if `CS �! �, then � �!
�, where � � ! � is de�ned to mean that if all the members of � are
true in an interpretation, then at least one member of � is true in the same
interpretation.

Hence, CS does not give us more than classical logic, and as a matter of
fact CS is complete and gives us all of classical logic. First one notes that
CS does prove all instances of TND:

'! '
(! :) (Axiom)

! ';:'
(! _)

! ' _ :'

Secondly, one notes that CS is closed under Thinning. Let D be a CS
proof of the sequent � ! �. One has to show that �;�0 ! �;�0 is CS
provable for any �nite �0 and �0. Inspect the parameters which occur in
�0;�0; these are �nitely many. Therefore, every eigen-parameter of D which
also occurs in �0;�0, can be exchanged for a new eigen-parameter which
does not occur in D or in �0; Æ0 (as we have in�nitely many parameters
at our disposal). The result is still a derivation D0 of the sequent � !
�. If we now add �0 and �0 as side formulae everywhere, the result is
still a derivation D00 in CS (as axioms go into axioms and applications of
rules become applications of the same rules), without violating any eigen-
parameter conditions. Hence, we have found the desired derivation of the
sequent �;�0 ! �;�0 which is, thus CS provable.

Thirdly, observe the from the premise of an IS rule, the premise of the
corresponding CS rule can be inferred by Thinning, and then the conlcusion
of the IS rule follows by the CS rule from the CS premise, e.g. from the



42 G�ORAN SUNDHOLM

IS premise ';�! � by thinning one obtains the CS premise ';  ;�! �,
and the CS rule (&!) yields the IS conclusion '& ;� ! �. Hence, CS
includes IS, and proves TND and is thus complete for classical logic.

The system CS is treated in [Kleene, 1967, Chapter VI] where, in partic-
ular, an elegant completeness-proof is given, using the technique of treating
the sequent as expressing a falsi�ability condition and applying the sequent
rules backwards one searches for a counter-model e�ecting the falsifying in-
terpretation. The whole treatment is very systematic and leads to a canon-
ical search method. We will not enter into the details of the proof for the
present calculus, but postpone the matter until we discuss the next sys-
tem to be considered, viz. a `Tableaux system' for signed formulae. Before
we discuss this, however, we wish to consider one ore, fairly complicated,
derivation in the system CS. For this we choose to derive in CS the schema
CD|`constant domains', so called because it is valid in Kripke models with
constant domains of individuals only, cf. van Dalen's chapter in Volume 7
of this Handbook|which is not IS-provable.

CD =def 8x(' _  ) � ' _ 8x ; where x does not occur in ':

We derive CD as follows: Pick a parameter a which does not occur in '.

(_ !)
(8 !)
(! 8)
(! _)
(!�)

';8x(' _  )! ';  xa  xa ;8x(' _  )! ';  xa
' _  xa ;8x(' _  )! ';  xa
8x(' _  )! ';  xa
8x(' _  )! ';8x 

8x(' _  )! ' _ 8x 

! 8x(' _  ) � ' _ 8x 

The cut-elimination theorem holds for CS as well as by the same type of
syntactic manipulations as in the case of IS and IS+. The fact that the cut-
free calculus is complete is very useful, because cut-free derivations have the
sub-formula property, i.e. that every formula which occurs in the derivation
is a sub-formula of some formula in the conclusion (here one has to count '
as a sub-formula of '). This simple fact that the conlcusion gives abound on
the complexity of the derivation is the source of a host of metamathematical
information. We refer to [Takeuti, 1975] for a comprehensive survey of how
to use the cut-free derivations for metamathematical purposes.

Before we leave the system CS, we wish to mention what is basically a
notational variant due to Sch�utte [1951]. The semantic interpretation of a
sequent '1; : : : ; 'k !  1; : : : ;  m is given by the formula '1& � � �&'k �
 1 _ � � � _ m, or equivalently, by classical logic, :'1 _ � � � _:'k _ 1 _ � � � _
 m. The sequent-rules of CS can therefore be thought of as giving rules
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of passage between such disjunctions. The axioms, for instance, become
' _  _ :' (both sets of side formulae are joined into  ). The rule (_ !)
becomes:

(:_)
:' _ � : _ �

:(' _  ) _ �

whereas (! :) disappears: the premise has the form ';� ! � and the
conclusion � ! �;:', but their `Sch�utte-translations' are the same. We
leave the other reformulations to the reader and just consider cut:

 _ ' :' _ �

 _ �

NB. It is customary to restrict oneself to the connectives &;_ and : in the
Sch�utte-style formulation.

A readily available description of a Sch�utte-type system can be found in
[Mendelson, 1997, Appendix], where an exposition of Sch�utte's consistency
proof using the in�nitary !-rule also can be found. (Unfortunately, the
appendix was dropped from later editions of the book.)

Another variant of the same idea is found in [Tait, 1968]. We now explain
the mechanism for the propositional case. With each propositional letter p
we associate another propositional letter p, called the complement of p. As
we work in classical logic, we con�ne ourselves to using &;_ and : only.
One then also de�nes the complements for complex formulae:

p
==def p
(p _ q) =def p&q

(P&q) =def p _ q

The negation of a formula is identi�ed with its complement. This has the
advantage that all formulae are in negation-normal form, i.e. negation can
be thought of as applying only to propositional letters.

The sequents are �nite sets of formulae; on the intended interpretation
they are read as disjunctions (so one has taken one step beyond Sch�utte;
the disjunction signs are not written out). The system of axioms and rules
is particularly easy to give:

Axiom �; '; '

(_)
�; '

�; ' _  
and

�;  

�; ' _  

(&)
�; ' �;  

�; '& 

(CUT)
�;  �;:'

�
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The rules (_) and (&) correspond, in the �rst place, to (! _) and (! &),
respectively. But the original (& !) rule corresponds to the inference of
:('& );� from the premise :';�, say. As one now identi�es the negation
of a formula with the complement of that formula, this corresponds to the
inference of '& ;� from ';�, but by de�nition, the complement of a con-
junction is the disjunction of the complements. Hence, we have an instance
of the rule (_).

The present approach thus manages to keep the number of rules at a
minimum, and this can be put to metamathematical use. The present sort
of Tait-like system is sued by Schwichtenberg [1977] (for full predicate logic
and various system s of arithmetic) to present Gentzen's cut elimination
theorem in a very compact way. We give a derivation of CD within the
Sch�utte-type formulation so as to bring out the essential equivalence with
the original formulation:

:' _ ' _  xa : xa _ ' _  
x
a

(:_)
:(' _  xa) _ ' _  xa

(:8)
:8x(' _  ) _ ' _  xa

(8)
:8x(' _  ) _ ' _ 8x 

The rest of the steps fall away since implication is no longer a connective.
We conclude our treatment of the systems IS and CS (and their no-

tational variants) by drawing the reader's attention to the survey article
Bernays [1965] in which a wealth of information as to various options in
formulating the rules and systems is systematically presented. In particu-
lar, the connections between general consequence relations and conditions
on sequents are examined. The reader interested in this area should also
consult the series of papers by Scott, cf. [1974] and other references given
therein.

There now remains only the last of the main variants of the sequent
calculus, namely systems of semantic tableaux. These systems arose out
of the completeness proofs for the cut-free Sequent Calculus which were
independently discovered in the mid 1950s by Beth, Hintikka, Kanger and
Sch�utte. (Cf. [Prawitz, 1975] for historical references and a lucid exposition
of the completeness proof in question. Another good reference is, as already
remarked [Kleene, 1967, Chapter VI, p. 285].) The method of tableaux
can be applied both in the intuitionistic and classical settings, although
the former strikes the author as being a bit arti�cial. Here we con�ne
ourselves to the classical case, for which the locus classicus is [Smullyan,
1968] and whose presentation we follow. For the intuitionistic case refer,
e.g. to [Fitting, 1969] or [Bell and Machover, 1977] (another good source for
information about tableaux.)

We �rst need a
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DEFINITION 4. If ' is a w�, then T' and F' are both signed formulae.

Note that signed formulae cannot be joined together by connectives etc.
to form other signed formulae; their intended interpretations are, of course,
`' is true' and `' is false', respectively.

The main idea is now to take the falsi�ability condition interpretation of
CS seriously. Thus, the sequent f'1; : : : ; 'kg ! f 1; : : : ;  mg is now trans-
formed into a �nite set of signed formulae T'1; : : : ; T'k; F 1; : : : ; F m and
a further change is that the CS rules are turned upside-down. One there-
fore treats a derivation as a systematic search for a falsifying interpretation,
and the branching rules, which in CS have got more than one premise,
now indicate that a falsifying interpretation has to be sought along di�erent
possibilities.

We begin by presenting the derivation of CD (before we give the rules):
Consider CD; we wish to prove it classically so we wish to show the absence
of a falsifying interpretation. therefore, we begin by assuming that

F (8x(' _  ) � ' _ 8x ):

A necessary (and suÆcient) condition for this to be the case, is:

T8x(' _  ); F (' _ 8x )

because an implication is false precisely when its antecedent is true and the
consequent is false. It is a necessary and suÆcient condition for this to hold
that

T8x(' _  ); F'; F8x 

because a disjunction is false precisely when both disjuncts are false.
But in order to falsify 8x , we must falsify  xa for some a, about which

we have assumed nothing in particular up till now, so:

T8x(' _  ); F'; F xa

is a falsi�ability condition for CD. Now, in order to make 8x(' _  ) true
we also need to make, among other instances, ' _  xa true. Thus,

T8x(' _  ), T (' _  xa) F', F xa (Here we use that
x does not occur in
'.)

is a falsi�ability condition for CD. Now, the condition splits into two possi-
bilities for falsifying CD, as in order to make a disjunction true it is suÆcient
to make only one of the disjuncts true:

(1st possibility): T8x(' _  ); T'; F'; F xa.

This possibility will not yield a falsifying interpretation though, because
we cannot assign both the value true and the value false to the same w�.
Hence, the search along this possibility may safely be abandoned or closed.
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(2nd possibility): T8x(' _  ); T xa ; F'; F xa .

Also this possibility has to be closed, because  xa has to be made true and
false. (It will not have escaped the attentive reader that the closure condi-
tions correspond exactly to the axioms of CS.) But we have now exhausted
all the possibilities for �nding a falsifying interpretation; thus CD must be
classically valid as none of the possible routes along which we could hope
for a falsifying interpretation is able to yield one.

The above search can be set out more compactly:

F (8x(' _  ) � ' _ 8x )

T8x(' _  ); F' _ 8x 

T8x(' _  ); F'; F8x 

T8x(' _  ; F'; F xa

T8x(' _  ); T' _  xa ; F'; F 
x
a

T8x(' _  ); T'; F'; F xa j T8x(' _  ); T xa ; F'; F 
x
a

This search tree, however, is nothing but the CS derivation of CD turned
upside-down and rewritten using other notation.

We now give the rules for the tableaux system T. We will use `S' as a
notation for �nite sets of signed formulae.

F&
S; F'& 

S; F' j S; F 

T&
S; T'& 

S; T'; T 

F_
S; F' _  

S; F'; F 

T_
S; T' _  

S; T' j S; T 

F �
S; F' �  

S; T'; F 

T �
S; T' �  

S; T j S; F'

F:]
S; F:'

S; T'
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T:
S; T:'

S; F'

F8
S; F8x'

provided that a does not occur in S.
S; F'xa

T8
S; T8x'

S; T8x'; T'xt

F9
S; F9x'

S; F9x'; F'xt

T9
S; T9x'

provided that a does not occur in S.
s; T'xa

Some of the rules give a branching, viz. T_; F& and T �. This is because
of the fact that in these cases there is more than just one way of ful�lling the
falsi�ability condition above the line and all of these must be investigated.

A tableaux proof for ' is a �nite tree of �nite sets of signed formulae,
regulated by the above rules such that (i) the top node of the tree is the
set fF'g and (ii) every branch in the tree is closed, i.e. ends with a set of
the form S; T'; F'. Hence, the tableaux proofs should best be regarded as
failed attempts at the construction of a counter-model.

We also show how one can de�ne a counter-model to the top node set
from an open branch in the tableaux, where one cannot apply the rules any
longer.

Consider the propositional w� (p � q) � (p&q). This is not a tautology,
and, hence, it is not provable. An attempt at a tableaux proof looks like:

F (p � q) � (p& q)

Tp � q; Fp& q

Tp � q; Fp

Fp; Fp j Tq; Fp

j Tp � q; Fp

Fp; Fq j Tq; Fq

The last of the branches in the search tree is closed, but from the third, say,
we can de�ne a valuation � by

�(p) = F and �(q) = F:

Then the value of the formula (p � q) � (p&q) under � is F , so we have
found our counter-model. This simple example contains the germ of the
completeness proof for tableaux proofs; one describes a systematic pro-
cedure for generating a search tree (in particular, for how to choose the
eigen-parameters) such that either the procedure breaks o� in a tableaux
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proof or it provides a counter-model. For the details we refer to [Smullyan,
1968].

The above formulation, using �nite sets of signed formulae, was used
mainly to show the equivalence with the classical Sequent Calculus CS. It
is less convenient in actual practice, as one must duplicate the side formulae
in S all the time. A more convenient arrangement of the tableaux consists
of using trees where the nodes are not sets of signed formulae but just one
signed formula. To transform a `set' tableaux by a more convenient tableaux
one takes the top node which has the form, say fT'1; : : : ; T'k; F 1; : : : ;
F mg and places it upright instead:

T'1

...
T'k
F 1

...
F m:

Such an arrangement can then be continued by use of the rules:

F'& 
= n

F' F 

T'& 
T'
T 

F' _  
F'
F 

T' _  
= n

T' T 

F' �  

T'
F 

T' �  
= n

T F'
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F:'

T'

T:'

F'

F8x' provided that a is

f'xa new to the branch

T8x'

T'xt

F9x'

F'xt

T9x' provided that a is

T'xa new to the branch

We do not wish to trouble the reader with a more detailed description of
the modi�ed system, and so we con�ne ourselves to showing how the rules
are used in practice for proving CD:

(1) f8x(' _  ) � ' _ 8x'
j

(2) T8x(' _  )
j

(3) F' _ 8x 
j

(4) F'
j

(5) F8x 
j

(6) F xa
j

(7) T' _  xa
= n

(8) T' T xa (9)

The tableaux proof begins with the signed formula FCD, as we try to
show that there is no counter-model to CD. Lines (2) and (3) result from
(1) by breaking down the implication. Lines (4) and (5) likewise result from
(3) and, as the parameter a is new to the (only) branch the step from (5)
to (6) is permitted. Line (7) results from (2) as we have the right to choose
any term here. Finally, (8) and (9) come from (7) by breaking up a true
disjunction. Both branches are closed at once; (8) closes o� against (4) and
(9) against (6).

Although this is very simple, there is yet another simpli�cation which
can be performed: drop the signed formulae altogether and in place of `F''
write `:'' and in place of `T'' write `''. The resulting rules look like:
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:('& )
= n
:' : 

'& 
j
'
j
 

:(' _  )
j
:'
j
: 

' _  
= n
'  

:(' �  )
j
'
j
: 

' �  
n

:'  

::'
j
'

the elucidating remarks after the previous example apply almost word for
word also here. There remains only to point out that this last style of
`unsigned' tableaux is used in readily available elementary texts, e.g. [Je�rey,
1990] and [Hodges, 1977].

The order of presentation used in the present Chapter was also used
by the author in those sections of Scott et al. [1981, Volume II] which
were drafted by him. Those notes, Volumes I and II, were intended as a
supplement to [Hodges, 1977] and, in particular, Volume I contains a very
detailed development of a tableaux system.
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HUGUES LEBLANC

ALTERNATIVES TO STANDARD FIRST-ORDER

SEMANTICS

0 INTRODUCTION

Alternatives to standard semantics are legion, some even antedating stan-
dard semantics. I shall study several here, among them: substitutional
semantics, truth-value semantics, and probabilistic semantics. All three in-
terpret the quanti�ers substitutionally, i.e. all three rate a universal (an
existential) quanti�cation true if, and only if, every one (at least one) of its
substitution instances is true.1 As a result, the �rst, which retains models,
retains only those which are to be called Henkin models. The other two dis-
pense with models entirely, truth-value semantics using instead truth-value
assignments (or equivalents thereof to be called truth-value functions) and
probabilistic semantics using probability functions. So reference, central to
standard semantics, is no concern at all of truth-value and probabilistic se-
mantics; and truth, also central to standard semantics, is but a marginal
concern of probabilistic semantics.

Each of these alternatives to standard semantics explicates logical
entailment|and, hence, logical truth|in its own way.2 In all three cases,
however, it can and will be shown that

1. A statement is logically entailed by a set of statements if, and only if,
provable from the set,

and hence that

2. A statement is logically true if, and only if, provable.

Statement (1) will legitimise each account of logical entailment, (2) will le-
gitimise each account of logical truth, and (1) and (2) together will legitimise
each alternative semantics treated here.

1The rival, and more generally accepted, interpretation of the quanti�ers is of course
the objectual one (that in (iv) on page 60). Goldfarb [1979] intimates that the �rst correct
account of (�rst-order) logical truth, an objectual one, is in [Bernays, 1922]. By then a
substitutional account of logical truth had already been sketched in [Wittgenstein, 1921].
To take the matter further back, Frege [1893{1903] interprets the quanti�ers objectually,
but Frege [1879] interprets them substitutionally (see [Stevenson, 1973]).

2In standard semantics and each alternative to it studied here, logical truth is but
logical entailment by the null set, the way provability (i.e. theoremhood) is but provability
from that set. As a result more space will generally be devoted to logical entailment
than to logical truth, and by the same token to strong than to weak soundness and
completeness.
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I had two options: presenting each of substitutional semantics, truth-
value semantics, and probabilistic semantics as a semantics for CQC, the
�rst-order quanti�cational calculus, or as one for an arbitrary �rst-order
language L. I chose the latter option for a simple reason. This essay deals
largely with truth and probability, and to me truth and probability (the lat-
ter understood as a degree of rational belief) are features of the statements
you meet in a language rather than the statement forms you meet in such
a language form as CQC.

For use in alternatives to standard semantics, though not in standard
semantics itself, I out�t L with term extensions. One of them, L1, will
serve to prove various completeness theorems in Sections 2{5. I could,
instead, have out�tted each set of statements of L with term rewrites, which
was the practice in [Leblanc, 1976] and earlier writings of mine. However,
term extensions, exploited in [Dunn and Belnap, 1968] are handier and
admittedly more natural. So I switched to them.3

Several matters are studied below, and in the process are bound together.
I de�ne for each semantics the notions of logical truth and logical entail-
ment, plus, of course, such notions as they presuppose; and, as announced,
I justify the de�nitions by showing that of logical entailment strongly|and
hence, that of logical truth weakly|sound and complete. I further show
that (i) substitutional semantics is a by-product of standard semantics, (ii)
truth-value semantics is substitutional semantics done without models, and
(iii) probabilistic semantics is a generalisation of truth-value semantics, a
transcription of truth-value semantics into the idiom of sets, and model-set
semantics, an intriguing and handy variant by Hintikka of truth-set seman-
tics. And, occasionally in the main text, but more often in the footnotes
and the Appendix, I supply pertinent names, dates, and references.

However, there is far more to truth-value and probabilistic semantics than
the essay conveys. (i) When studying probabilistic semantics, I pay particu-
lar attention to singulary (i.e. one-argument) probability functions. Binary
(i.e. two-argument) ones also permit de�nition of logical truth and logical
entailment, as writers from Popper on have shown. They receive some at-
tention here, but deserve far more. (ii) When studying truth-value and
probabilistic semantics, I largely restrict myself to matters of logical truth,
logical entailment, soundness, and completeness. But, as Leblanc [1976]

attests, a host of de�nitions, theorems, and proofs from standard semantics
translate into the idiom of truth-values; and many|though, for sure, not
all|of them translate as well into the idiom of probabilities. The transla-
tions, sometimes easy to come by but sometimes not, should �gure in any
full-edged treatment of either semantics. (iii) I restrict myself throughout

3Term extensions|i.e. languages exactly like L except for having individual terms|
have been in use for a good many years. They �gure in [Henkin, 1949], in [Hintikka, 1955]

(a passage from which is quoted in note 16), in [Gaifman, 1964], etc. The Dunn{Belnap
extensions I use are the least extensions of L that serve all my purposes here.
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the essay to �rst- order logic without identity. Yet other logics (�rst-order
logic with identity, higher-order logics, many-valued logics, modal logics,
tense logics, intuitionistic logic, conditional logic, etc.) have also been sup-
plied with a truth-value semantics or a probabilistic one. Only study of
these extensions of and alternatives to elementary logic would reveal the
true scope of either semantics.

The alternatives to standard semantics studied here have, in my opin-
ion, considerable interest and|possibly|merit. As noted above, they are
frugal, (i) substitutional semantics discarding all but Henkin models, while
truth-value semantics and probabilistic semantics discard all models, and
(ii) truth-value-semantics|though it retains the notion of truth|discarding
that of reference, while probabilistic semantics discards both notions. And
they are innovative, truth-value semantics assigning truth-values to the
atomic `substatements' of all statements (those with quanti�ers as well as
those without), while probabilistic semantics assigns to statements degrees
of credibility rather than truth-values.

I touch on these matters in Sections 2{5, and devote much of Section
6 to them. My main concern, though, is di�erent: to provide the formal
prerequisites to further study of and research in non-standard semantics.

1 FIRST-ORDER SYNTAX AND STANDARD SEMANTICS

The primitive signs of L will be (i) one or more predicates, each identi�ed
as being of a certain degree d(d � 1), (ii) @0 individual terms, presumed
to come in some order known as their alphabetic order, (iii) @0 individual
variables, (iv) the three logical operators `:', `^', and `8', (v) the two paren-
theses `(' and `)', and (vi) the comma `,'. The formulas of L will be all the
�nite sequences of the primitive signs of L. I shall refer to the predicates of L
by means of `Q'; to its individual terms in general by means of `T ', and|for
each i from 1 on|to its alphabetically ith individual term by means of `ti';
to its individual variables by means of `x'; to its individual signs (i.e. its in-
dividual terms and individual variables) by means of `I '; to its formulas by
means of `A', `B', and `C'; and to sets of its formulas by means of `S'. And,
(i) A being a formula of L, (ii) I1; I2; : : : ; In(n � 0) being distinct individual
signs of L, and (iii) I 01; I

0
2; : : : ; I

0
n being individual signs of L not necessarily

distinct from one another nor from I1; I2; : : : ; In, I shall refer by means of
`((A)(I 01; I

0
2; : : : ; I

0
n=I1; I2; : : : In))' to the result of simultaneously putting I 01

everywhere in A for I1; I
0
2 for I2; : : : ; I

0
n for In. (When clarity permits I shall

omit some of the parentheses in `((A)(I 01; I
0
2; : : : ; I

0
n=I1; I2; : : : ; In))', thus

writing `(A)(I 01; I
0
2; : : : ; I

0
n=I1; I2; : : : ; In)', `(A(I 01; I

0
2; : : : I

0
n=I1; I2; : : : ; In))',

and `A(I 01; I
0
2; : : : ; I

0
n=I1; I2; : : : ; In)'.)

The statements of L will be all formulas of L of the following sorts:
(i) Q(T1; T2; : : : ; Td), where Q is a predicate of L of degree d(d � 1) and
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T1; T2; : : : ; Td are (not necessarily distinct) individual terms of L, (ii) :A,
where A is a statement of L, (iii) (A^B), where A and B are (not necessarily
distinct) statements of L, and (iv) (8x)A, where A(T=x)|T here being any
term of L you please|is a statement of L.4 As usual, the statements in (i)
will be called atomic, and the rest compound, those in (ii) being negations,
(iii) conjunctions, and (iv) (universal) quanti�cations. Statements that con-
tain no individual terms will be called termless and statements that contain
no `8' will be called quanti�erless. At a few points the statements of L will
be presumed to come in some de�nite order, to be known as their alpha-
betic order (that on p. 9{10 of [Leblanc, 1976] would do). For brevity's
sake, I shall write `(A ! B)' for `:(A ^ :B)', `(A _ B)' for `:(:A ^ :B)',
`(A $ B)' for `(:(A ^ :B) ^ :(B ^ :A))', `(9x)A' for `:(8x):A', and
`�ni=1Ai' for `((: : : (A1 ^A2)^ : : :)^An)'.5 I shall also drop outer parenthe-
ses whenever clarity permits, and I shall talk of terms and variables rather
than individual terms and individual variables.

Substatements will behave like Gentzen's subformulas. (i) A statement of
L will count as one of its substatements; (ii) A will count as a substatement
of a negation :A of L, each of A and B as a substatement of a conjunction
A ^B of L, and A(T=x) for each term T of L as a substatement of a quan-
ti�cation (8x)A of L; and (iii) the substatements of any substatement of a
statement of L will count as substatements of that statement. The substat-
ments of a set of statements of L will be the substatments of the various
members of the set. As for the atomic substatements of a statement or set of
statements of L, they will, of course, be those among its substatements that
are atomic. When further precision is needed, I shall refer to the foregoing
as the substatements in L of a statement or set of statements of L.6

The substatements A(t1=x); A(t2=x); A(t3=x) etc. of a universal quan-
ti�cation (8x)A|and, by extension, of an existential one (9x)A|of L are
what I called above the substitution instances (in L) of the quanti�cation.
As suggested, they play a critical role in substitutional, truth-value, and
probabilistic semantics. (Note that when a quanti�cation (8x)A of L is
vacuous, it has but one substitution instance, A itself.)

The length l(A) of an atomic statement A of L will be 1; that, l(:A), of
a negation :A of L will be l(A) + 1; that, l(A^B), of a conjunction A ^B
of L will be l(A) + l(B) + 1; and that, l((8x)A), of a quanti�cation (8x)A

4It follows from the account that (a) individual variables can occur only bound and
(b) identical quanti�ers cannot overlap in a statement of L. Because of (a) all statements
of L are so-called closed statements. As regards (iv): When x does not occur in A; (8x)A
is known as a vacuous quanti�cation.

5Statements of the sorts (A ! B); (A _ B); (A $ B), and (9x)A are, of course
known as conditionals, disjunctions, biconditionals, and existential quanti�cations. The
convention whereby (A ! B) is short for :(A ^ :B) will be referred to by means of
`D!', that whereby (A _ B) is short for :(:A ^ :B) by means of `D_', etc.

6The (atomic) substatements of a quanti�erless statement of L are also known as|and
on page 56 will be called|its (atomic components).



ALTERNATIVES TO STANDARD FIRST-ORDER SEMANTICS 57

of L will be l(A(T=x)) + 1, where T is any term of L you please.
Lastly, a term will be said to be foreign to a statement A of L if it does

not occur in A; to occur in a set S of statements of L if it occurs in at least
one member of S; and to be foreign to S if it is foreign to each member of
S. and S will be held in�nitely extendible in L if @0 terms of L are foreign
to S.

Borrowing from Quine [1940], Fitch [1948], Rosser [1953] and Leblanc
[1979a], I shall take (i) the axioms of L to be all the statements of L of the
following sorts:

A1. A! (A ^ A)

A2. (A ^ B)! A

A3. (A! B)! (:(B ^ C)! :(C ^A))

A4. A! (8x)A

A5. (8x)A! A(T=x)

A6. (8x)(A! B)! ((8x)A! (8x)B),

plus all those of the sort (8x)(A(x=T )), where A is an axiom of L, and (ii)
the ponential of two statements A and A! B of L to be B. (Note as regards
A4 that, with A ! (8x)A presumed here to be a statement, x is sure not
to occur in A, and hence (8x)A is sure to be a vacuous quanti�cation.)

It follows from this account of an axiom that:

THEOREM 1. Every axiom of L is of the sort

(8x1)(8x2) : : : (8xn)(A(x1; x2; : : : ; xn=T1; T2; : : : ; Tn));

where n � 0 and A is one of the six sorts A1{A6;

and

THEOREM 2. If (8x1)(8x2) : : : (8xn)(A(x1; x2; : : : ; xn=T1; T2; : : : ; Tn)) is
an axiom of L, so for each i from 1 on is ((8x2) : : : (8xn)(A(x1; x2; : : : ; xn=T1;
T2; : : : ; Tn)))(ti=x1).

By a proof in L of a statement A of L from a set S of statements of L,
I shall understand any �nite column of statements of L such that (i) each
entry in the column is a member of S, an axiom of L, or the ponential of two
earlier entries in the column, and (ii) the last entry in the column is A. I
shall say that a statement A of L is provable in L from a set S of statements
of L|S ` A, for short|if there is a proof in L of A from S. I shall say that
a statement A of L is provable in L|` A, for short|if ? ` A. When all the
axioms that turn up in a proof in L of a statement A of L are of the sorts
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A1{A3, I shall say that A is provable in L by means of just A1{A3, and
write ``0 A' in place of `` A'. And I shall say of a set S of statements of L,
(i) when each statement of L provable in L from S belongs to S, that S is
deductively closed in L or constitutes a theory of L (in Tarski's sense),7 (ii)
when there is no (there is a) statement A of L such that S ` A^:A, that S
is (in)consistent in L; (iii) when S is consistent in L and|for any statement
A of L not in S|S[fAg is inconsistent in L, that S is maximally consistent
in L, and (iv) when|no matter the quanti�cation (8x)A of L|S ` (8x)A
if S ` A(T=x) for each term T of L, that S is !-complete in L.

Deductively closed sets (i.e. theories) will make one appearance below.
Consistent, maximally consistent, and !-complete sets, on the other hand,
will turn up everywhere and, hence, immediately rate a few extra words.

When a set S of statements of L is consistent and in�nitely extendible in
L, there is a way of extending S to a set|called here the Henkin extension
H(S) of S in L|that is maximally consistent and !-complete in L. The
method, due essentially to Henkin, is as follows:

1. let S0 be S itself,

2. An being for each n from 1 on the alphabetically nth statement of L,

let Sn be

8>>>>>>>><>>>>>>>>:

Sn�1 if Sn�1 [ fAng is inconsistent in L
Sn�1 [ fAng if Sn�1 [ fAng is consistent in L and An

is not a negated universal quanti�cation of L
Sn�1 [ fAn;:B(T=x)g; where T is the alphabetically

earliest term of L foreign to Sn�1 [ fAng; if
Sn�1 [ fAng is consistent in L and An is a negated
quanti�cation :(8x)B of L; 8

and

3. let H(S) be [1i=0Si.

(Henkins's original instructions for extending a set appeared in [Henkin,
1949], a seminal paper for substitutional and truth-value semantics. I avail
myself here of simpli�cations to those instructions due to Hasenjaeger and
Henkin himself|see [Smullyan, 1968, pp. 93{97] on this matter. Linden-
baum had already shown in the late Twenties how to extend a consistent set
into a maximal one, thus paving the way for Henkin's result|see [Tarski,
1930, Section 7].)

Proofs of the following theorems are in numerous texts (e.g. [Leblanc,
1976, pp. 38{ 40]) and will be taken for granted. (To abridge things I write
`i�' for `if, and only if'.)

7Tarski himself talked of deductive systems rather than theories (see Tarski [1930;
1935{36]); but the application `theory in Tarski's sense' has prevailed.

8With S presumed to be in�nitely extendible in L, there is sure to be|however large
the n|a term T of L foreign to Sn�1 [ fAng; not so, otherwise.
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THEOREM 3. If a set S of statements of L is maximally consistent in
L, then (i) a negation :A of L belongs to S i� A does not, and (ii) a
conjunction A ^ B of L belongs to S i� each of A and B does. Further, if
S is !-complete in L as well, then (iii) a quanti�cation (8x)A of L belongs
to S i� each substitution instance A(T=x) of (8x)A in L does.

THEOREM 4. If a set S of statements of L is consistent and in�nitely
extendible in L, then the Henkin extension H(S) of S in L is maximally
consistent and !-complete in L (= Henkin's Extension Lemma).

With Dunn and Belnap I shall understand by a term extension of L any
language that is exactly like L except for having countably many terms|
i.e. �nitely many or @0 many terms|besides those of L. Note that by this
de�nition L|having zero and, hence, �nitely many terms besides its own|
is one of its term extensions. I shall refer to the term extensions of L by
means of `L+'. And, L+ being an arbitrary term extension of L, I shall
assume that the terms of L+ come in some alphabetic order, refer to the
alphabetically ith (i = 1; 2; 3; : : :) of them by means of `t+i ', and write
`S `+ A' for `A is provable in L+ from S'.

It will prove convenient, when (8x)A is a quanti�cation of L, to talk
of the substitution instances of (8x)A in any term extension L+ of L one
pleases, not just in L itself. These will of course be

A(t+1 =x); A(t+2 =x); A(t+3 =x); : : :

a list which in the case that L+ is L boils down to A(t1=x); A(t2=x);
A(t3=x); : : : ; but otherwise will sport fresh entries|the substitution in-
stances of (8x)A peculiar to L+. It will also prove convenient, when S
is a set of statements of L, to talk of S as being (or failing to be) in�nitely
extendible, consistent, maximally consistent, and !-complete in any term
extension L+ of L one pleases. S, for example, will be held in�nitely ex-
tendible in L+ if @0 terms of L+ are foreign to S, consistent in L+ if there
is no statement A of L+ such that S `+ A ^ :A, etc. And it will prove
convenient, when S is as above, to talk of the Henkin extension of S in any
term extension of L one pleases.

One term extension of L will play a special role below. It will have @0

terms besides those of L, and for that reason will be known as L1.

The @0 terms of L1 peculiar to L1 are foreign of course to any set of
statements of L. Hence:

THEOREM 5. Each set of statements of L is in�nitely extendible in L1.

Note further that:

THEOREM 6. If S `1 A, where S is a set of statements of L and A a
statement of L, then S ` A,

and hence:



60 HUGUES LEBLANC

THEOREM 7. If a set S of statements of L is consistent in L, then S is
consistent in L1.

For a proof of Theorem 6, suppose the column made up of B1; B2; : : : ; Bp
constitutes a proof in L1 of A from S, and for each i from 1 through p let Ci
be the result of putting t1 (the alphabetically �rst term of L) for every term
in Bi that is peculiar to L1. The column made up of C1; C2; : : : ; Cp will
constitute a proof in L of A from S. For a proof of Theorem 7, suppose S is
inconsistent in L1. Then by a familiar result S `1 A for every statement
A of L1; hence, by Theorem 6, S ` A for every statement A of L; and,
hence, S is inconsistent in L. Hence, Theorem 7 by Contraposition.

Now for one kind of standard semantics that L might be out�tted with.9

Understand by a domain any non-empty set. Given a domain D, under-
stand by a D-interpretation of (the terms and predicates of ) L any result
of assigning to each term of L a member of D and to each predicate of L
of degree d (d = 1; 2; : : :) a subset of Dd (Dd the Cartesian product of D
with itself d times); D being a domain, ID a D-interpretation of L, and T a
term of L, understand by a T -variant of ID any D-interpretation of L that
is like ID except for possibly assigning to T a member of D di�erent from
that assigned by ID ; and understand by a model for L any pair of the sort
hD; IDi, where D is a domain and ID is a D-interpretation of L. A model
hD; IDi will be termed �nite if D is, denumerably in�nite if D is countable
if D is, etc. (Many writers, Hodges among them, talk of structures where I
talk of models.)

This done, let hD; IDi be a model for L, A a statement of L, and S a set
of statements of L. I shall say that A is true in hD; IDi (for short, true on
ID) if (i) in the case that A is an atomic statement Q(T1; T2; : : : ; Td), the
d-tuple hID(T1); ID(T2); : : : ; ID(Td)i belongs to ID(Q), (ii) in the case that
A is a negation :B;B is not true in hD; IDi, (iii) in the case that A is a
conjunction B ^C, each of B and C is true in hD; IDi, and (iv) in the case
that A is a quanti�cation (8x)B;B(T=x)|T here any term of L foreign to
A|is true in hD; I 0Di for each T -variant I 0D of ID; and I shall say that S
is true in hD; IDi if each member of S is. (Note: (ii){(iv) are known and
will be referred to as the truth-conditions for negations, conjunctions, and
universal quanti�cations; as indicated in note 2, (iv) embodies the objectual
interpretation of `All'.)

This done, I shall declare a statement A of L logically true in the standard
sense if A is true in every model for L; and, where S is a set of statements

9Standard (i.e. model-theoretic) semantics comes in various brands. The present brand
(an early version of which appeared in [Leblanc and Wisdom, 1993]) especially suits
languages such as L whose statements are all closed; the one propounded in [Tarski,
1936] and used in quite a number of recent texts, Hodges among them, especially suits
languages with both open and closed statements. The beginnings of standard semantics
are chronicled in [Goldfarb, 1979].
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of L, I shall declare A logically entailed by S in the standard sense if A is
true in every model for L in which S is true. Under these de�nitions, A is
logically true in the standard sense i� logically entailed by ; in the standard
sense, the point made in note 3.

When a statement A (a set S of statements) of L is true in a model
hD; IDi, (i) A(S) is often said to have hD; IDi as a model and (ii) hD; IDi
is said to be a model of A(S). Given the second of these locutions, A is
logically entailed by S if every model of S is one of A.

Prominent in Section 2 will be Henkin D-interpretations and Henkin
models. ID will constitute a Henkin D-interpretation of L if each member
of D is assigned by ID to a term of L (more formally, if for each d in D there
is a term T of L such that ID(T ) = d); and hD; IDi will constitute a Henkin
model for L if ID is a Henkin D-interpretation of L. Since L has only @0

terms, the domain D must be countable in each case. So Henkin models are
countable by de�nition. (The telling use to which Henkin D-interpretations
and models were put in [Henkin, 1949] accounts for their names, bestowed
upon them in [Leblanc and Wisdom, 1993].)

The foregoing de�nitions of a D-interpretation, a model, a Henkin D-
interpretation, and a Henkin model are easily generalised to suit any term
extension L+ of L (rather than just L itself): write `L+' everywhere for
`L'. Since L+|like L itself|has only @0 terms, Henkin models for  L+ are
countable by de�nition.

2 SUBSTITUTION IN STANDARD SEMANTICS AND
SUBSTITUTIONAL SEMANTICS

Substitutional semantics was characterised on page 53 as a semantics that
interprets `All' and `Some' substitutionally and, hence, can own only Henkin
models. It might also be characterised as a semantics that owns only Henkin
models, and hence can interpret `All' and `Some' substitutionally. But,
whichever characterisation can be favoured, substitutional semantics is an
elaboration of the old, yet resilient, dictum: \A universal quanti�cation is
true i� all its substitution instances are (and an existential one true i� at
least one of them is)."

The dictum, suitably rephrased, appears below as Theorem 13 and will
be called the Substitution Theorem. Devotees of standard semantics often
slight it|unaccountably so. Indeed, their proof of the completeness theorem

A, if logically entailed by S in the standard sense, is provable
from S in L (= Theorem 21)

appeals to Theorem 13; and, slightly reworded, the half of that proof con-
cerning in�nitely extendible S's yields the counterpart of Theorem 21 in
substitutional semantics. Further, their proof of the soundness theorem
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A, if provable from S in L, is logically entailed by S in the stan-
dard sense (= Theorem 11)

appeals to half of Theorem 13, a half recorded below as Theorem 9; and,
reworded to concern all Henkin models for all term extensions of L, that
proof yields the counterpart of Theorem 11 in substitutional semantics. So,
Theorem 21 and Theorem 11, the theorems which together legitimise the
standard account of logical entailment, hinge upon a substitution lemma;
and editing half the proof of one theorem and all the proof of the other will
legitimise the substitutional account of that notion.

Concerned to show substitutional semantics a by-product of standard se-
mantics, I �rst substantiate the above claims, and stress as I go along the
role that Henkin models play in standard semantics. Then I spell out and
justify what substitutional semantics understands by logical truth and log-
ical entailment. Last I comment on the substitutional handling of theories.

Demonstrating Theorem 11 is easy once you have shown that the axioms
of L are true in all models for L. Showing that the axioms of L are true
in all models for L is relatively easy once you have shown that those of
sorts A1{A6 are. And showing that the axioms of L of sorts A1{A4 and
A6 are true in all models for L is quite easy. (In the case of A4, refer
to [Leblanc, 1976, Theorem 4.1.2], which guarantees that if A is true on a
D-interpretation ID of L, then A is true on any T -variant of ID . T here
is an arbitrary term of L foreign to (8x)A.) But showing that the axioms
of L of sort A5 are true in all models for L calls for a lemma whose proof
is surprisingly diÆcult. (Indeed, few texts undertake to prove Theorem 8.
The proof here is borrowed from Leblanc and Wisdom [1993, pp. 313{314]

and Leblanc [1976, pp. 86{88], with several simpli�cations and corrections
due to Wisdom.)

THEOREM 8. Let A be a statement of L, T and T ; be terms of L, D be a
domain, ID be a D-interpretation of L, and I 0D be the T - variant of ID such
that I 0D(T ) = ID(T 0). Then A(T 0=T ) is true on ID i� A is true on I 0D.

Proof of Theorem 8 is by mathematical induction on the length l(A) of A.

Basis: l(A) = 1. Then A is of the sort Q(T1; T2; : : : ; Td), and hence
A(T 0=T ) is of the sort Q(T 01; T

0
2; : : : ; T

0
d), where|for each i from 1 through

d|T 0i is Ti itself if Ti is distinct from T , otherwise T 0i is T 0. But, by
the construction of I 0D ; I

0
D(Ti) = ID(T 0i ) for each i from 1 through d, and

I 0D(Q) = ID(Q). Hence, hI 0D(T1); I 0D(T2); : : : ; I 0D(Td)i belongs to I 0D(Q) i�
hID(T 01); ID(T 02); : : : ; ID(T 0d)i belongs to ID(Q). Hence A(T 0=T ) is true on
ID i� A is true on I 0D.

Inductive Step: l(A) > 1.

Case 1. A is a negation :B. By the hypothesis of the induction B(T 0=T )
is (not) true on ID i� B is (not) true on I 0D . Hence, :(B(T 0=T )), i.e.
(:B)(T 0=T ), is true on ID i� :B is true on I 0D .
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Case 2. A is a conjunction B ^ C. Proof similar to that of Case 1.
Case 3. A is a quanti�cation (8x)B. (i) Suppose ((8x)B)(T 0=T )|i.e.

(8x)(B(T 0=T ))|is not true on ID . Then, with T 00 an arbitrary term of L
foreign to (8x)(B(T 0=T )) and distinct from T , there is a T 00-variant I 00D
of ID on which (B(T 0=T ))(T 00=x) is not true. But, given the hypoth-
esis on T 00, (B(T 00=x))(T 0=T ) is the same as (B(T 0=T ))(T 00=x). Hence,
(B(T 00=x))(T 0=T ) is not true on I 00D. Now let I 000D be the T - variant of I 00D such
that I 000D (T ) = I 00D(T 0). Then, by the hypothesis of the induction, B(T 00=x)
is not true on I 000D . But I 000D is a T 00-variant of I 0D , a point I demonstrates
two lines hence. So, there is a T 00-variant of I 0D on which B(T 00=x) is not
true. So, (8x)B is not true on I 0D . (For proof that I 000D is a T 00-variant of I 0D :
Since I 000D is a T -variant of I 00D and I 00D is a T 00-variant of ID ; I

000
D and ID can

di�er only on T . So, I 000D and I 0D can di�er only on T 00.) (ii) Suppose (8x)B
is not true on I 0D. Then, with T 00 a term of L foreign to (8x)B and distinct
from T , there is a T 00-variant I 00D of I 0D on which B(T 00=x) is not true. Now
let I 000D be the T 00-variant of ID such that I 000D (T 00) = I 00D(T 00). Then I 00D is
the T -variant of I 000D such that I 00D(T ) = I 000D (T 0), a point I demonstrate four
lines hence. So, by the hypothesis of the induction (B(T 00=x))(T 0=T )| i.e.
(B(T=T ))(T 0=x)|is not true on I 000D . So, there is a T 00-variant of ID on which
(B(T 0=T ))(T 00=x) is not true. So, (8x)(B(T 0=T ))|i.e. ((8x)B)(T 0=T )|
is not true on ID . (For proof that I 00D is the T -variant of I 000D such that
I 00D(T ) = I 000D (T 0): Since I 00D is a T 00-variant of I 0D and I 0D is a T - variant of
ID, I 00D and ID can di�er only on T 00 and T . But I 000D , being a T 00-variant
of ID , can di�er from ID only on T 00. But I 00D(T 00)=I

000
D (T 00). So, I 00D is the

T -variant of I 000D such that I 00D(T ) = I 000D (T 0).) �

Hence, the following half of Theorem 13 which guarantees at once that
every axiom of L of the sort (8x)A ! A(T=x) (=A5) is true in all models
for L:

THEOREM 9. Let D be a domain and ID be a D-interpretation of L. If
(8x)A is true on ID, so is each substitution instance A(T=x) of (8x)A in
L.

Proof. Suppose (8x)A is true on ID , and let T 0 be an arbitrary term of L
foreign to (8x)A. Then A(T 0=x) is true on the T 0- variant I 0D of ID such
that I 0D(T 0) = ID(T ) and, hence, by Theorem 8 (A(T 0=x))(T=T 0) is true on
ID. But, with T 0 foreign to (8x)A;A(T=x) is the same as (A(T 0=x))(T=T 0).
Hence, A(T=x) is true on ID . �

Proof can now be given that:

THEOREM 10. Every axiom of L is true in all models for L.

Proof. Suppose A is an axiom of L, in which case A is bound by Theorem
1 to be of the sort

(8x1)(8x2) : : : (8xn)(B(x1; x2; : : : ; ; xn=T1; T2; : : : ; Tn));
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where n � 0 and B is one of the sorts A1{A6. Proof that A is true in all
models for L will be by mathematical induction on n.

Basis: n = 0. Then A(= B) is one of the sorts A1{A6, a case treated
above.

Inductive Step: n > 0. Let hD; IDi be an arbitrary model for L, and T
be an arbitrary term of L foreign to A.

((8x2) : : : (8xn)(B(x1; x2; : : : xn=T1; T2; : : : ; Tn)))(T=x1)

is bound by Theorem 2 to be an axiom of L, and hence by the hypothesis
of the induction to be true in hD; I 0Di for every T -variant I 0D of ID . Hence,
A is true in hD; IDi. Hence, A is true in all models for L. �

And, with Theorem 10 on hand, proof can be given that:

THEOREM 11. Let S be an arbitrary set of statements and A be an ar-
bitrary statement of L. If S ` A, then A is true in every model for L in
which S is true, i.e. A is logically entailed by S in the standard sense (=
The Strong Soundness Theorem for L in Standard Semantics).

Proof. Suppose the column made up of B1; B2; : : : ; Bp constitutes a proof
in L of A from S, and let hD; IDi be an arbitrary model for L in which S
is true. It is easily shown by mathematical induction on i that, for each i
from 1 through p;Bi is true in hD; IDi . Indeed, when Bi is a member of
S;Bi is true in hD; IDi by the hypothesis on hD; IDi; when Bi is an axiom
of L, Bi is true in hD; IDi by Theorem 10; and, when Bi is the ponential of,
say, Bg and Bh; Bi is sure to be true in hD; IDi if|as the hypothesis of the
induction guarantees|Bg and Bh are. Hence, Bp(= A) is true in hD; IDi.
Hence, A is true in every model for L in which S is true. Hence, Theorem
11. �

Because of Theorem 11, A|when provable in L from S|is of course sure
to be true in every countable model for L in which S is true, and|more
particularly|to be true in every Henkin model for L in which S is true.
With an eye to proving the counterpart of Theorem 11 for substitutional
semantics, I record the second of these corollaries as a separate theorem:

THEOREM 12. Let S and A be as in Theorem 11. If S ` A, then A is true
in every Henkin model for L in which S is true.

Theorem 11, as previously noted, is one of the two theorems that legit-
imise the standard account of logical entailment. Now for the other, the
converse of Theorem 11. Proof of it for the case where S is in�nitely ex-
tendible in L uses one extra notion, that of a model associate, and two extra
lemmas, Theorems 13 and 14.
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Let S be an arbitrary set of statements of L. By the model associate of S
in L, I shall understand the pair hT ; IT i, where (i) T consists of the @0 terms
of L, (ii) for each term T of L, IT (T ) = T , and (iii) for each predicate Q of
L of degree d(d = 1; 2; 3; : : :) IT (Q) = fhT1; T2; : : : ; Tdi : Q(T1; T2; : : : ; Td) 2
Sg. hT ; IT i is a Henkin model, and one of particular signi�cance. Theorem
13 is what I called on p. 61 the Substitution Theorem (for L). Together
with Theorem 3, it yields Theorem 14, a result guaranteeing that if a set
S of statements of L is maximally consistent and !- complete in L, then a
statement of L will be true in the model associate of S in L i� it belongs to
S. And Theorem 14 yields in turn the converse of Theorem 11 for in�nitely
extendible S, this in a mere seven lines.

THEOREM 13. Let ID be a Henkin D-interpretation of L. Then a quan-
ti�cation (8x)A of L is true on ID i� each substitution instance A(T=x) of
(8x)A in L is true on ID (= The Substitution Theorem for L).

Proof. Suppose A(T=x) is true on ID for every term T of L; let T 0 be an
arbitrary term of L foreign to (8x)A; let I 0D be an arbitrary T 0-variant of
ID; and let d be the value of I 0D for T 0. ID being a Henkin D-interpretation
of L, there is sure to be a term T 00 of L such that ID(T 00) = d and, hence,
ID(T 00) = I 0D(T 0). But, since A(T=x) is true on ID for every term T of L
and (A(T 0=x))(T=T 0) is the same as A(T=x), (A(T 0=x))(T 00=T 0) is sure to
be true on ID . Hence, by Theorem 8 A(T 0=x) is true on I 0D . So, if A(T=x)
is true on ID for every term T of L, then A(T 0=x) is true on every T 0-variant
of ID, and hence (8x)A is true on ID. Hence, Theorem 13 by Theorem 9.

�

THEOREM 14. Let S be a set of statements of L that is maximally consis-
tent and !-complete in L, and let hT ; IT i be the model associate of S in L.
Then a statement A of L belongs to S i� A is true in hT ; IT i.

Proof. of Theorem 14 is by mathematical induction on the length l(A) of
A.

Basis: l(A) = 1, in which case A is of the sort Q(T1; T2; : : : ; Td). By the
construction of IT , (i) Q(T1; T2; : : : ; Td) belongs to S i� hT1; T2; : : : ; Tdi
belongs to IT (Q) and (ii) hT1; T2; : : : ; Tdi belongs to IT (Q) i� hIT (T1);
IT (T2); : : : ; IT (Td)i does. Hence, Theorem 14.

Inductive Step: l(A) > 1. Proof of Theorem 14 in the case that A is a
negation :B or a conjunction B^C is by Theorem 3 (i){(ii)), the hypothesis
of the induction, and the truth-conditions for `:' and `^'. Suppose then that
A is a universal quanti�cation (8x)B. By Theorem 3 (iii) (8x)B belongs to
S i� each substitution instance B(T=x) of (8x)B in L does, hence by the
hypothesis of the induction i� each substitution instance B(T=x) of (8x)B
in L is true in hT ; IT i, hence by Theorem 13 (and the fact that hT ; IT i is a
Henkin model) i� (8x)B is true in hT ; IT i. �
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Suppose now that S 6` A, where S is in�nitely extendible in L.10 Then by
a familiar result S [f:Ag, a set also in�nitely extendible in L, is consistent
in L; hence, by Theorem 4 the Henkin extension H(S[f:Ag) of S[f:Ag in
L is maximally consistent and !-complete in L; and, hence by Theorem 14
every member of H(S[f:Ag) is true in the model associate of H(S[f:Ag)
in L. But S [ f:Ag is a subset of H(S [ f:Ag). Hence, (every member of)
S is true in that model, but A is not. Hence:

THEOREM 15. Let S be a set of statements of L that is in�nitely extendible
in L, and let A be an arbitrary statement of L. If S 6` A, then there is a
model for L in which S is true but A is not.

Hence by Contraposition:

THEOREM 16. Let S and A be as in Theorem 15. If A is true in every
model for L in which S is true, i.e. if A is logically entailed by S in the
standard sense, then S ` A.

Since the model associate of H(S [ f:Ag) in L is a Henkin model for L,
Theorems 15 and 16 can be sharpened to read:

THEOREM 17. Let S and A be as in Theorem 15. If S 6` A, then there
is a Henkin model for L (and hence, there is a countable model for L) in
which S is true but A is not.

THEOREM 18. Let S and A be as in Theorem 15. If A is true in every
Henkin model for L in which S is true, then S ` A.

; is, of course, in�nitely extendible in L. So by Theorems 11, 12, 16 and
18:

THEOREM 19. Let A be an arbitrary statement of L.

(a) If ` A, then A is true in every model for L, i.e. A is logically true
in the standard sense ( = The Weak Soundness Theorem for L in
Standard Semantics).

(b) If A is true in every model for L, i.e. if A is logically true in the
standard sense, then ` A (= The Weak Completeness Theorem for L
in Standard Semantics).

(c) ` A i� A is true in every Henkin model for L.

(d) A is true in every model for L if|and, hence i�|true in every Henkin
model for L.

Theorem 19 (a){(b) legitimises the standard account of logical truth.

10`S 6` A' is short here for `A is not provable from S in L.' The proof I embark upon
is essentially due to Henkin, and for this reason is often called Henkin's Completeness
Proof.
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The argument leading to Theorem 15 and hence to theorems 16{18, fails
when S is not in�nitely extendible in L. S [ f:Ag, if consistent in L, will
extend to a set that is maximally consistent in L, but it need not extend
to one that is both maximally consistent and !-complete in L. A set of
the sort fQ(t1); Q(t2); Q(t3); : : : ;:(8x)Q(x)g, for example, will clearly not
extend to one maximally consistent and !-complete in L. In point of fact,
for many an S that is not in�nitely extendible in L, Theorem 17 fails: for
many an A such that S 6` A, there is no Henkin model for L in which S
is true but A is not. To exploit the same counterexample as above, though
fQ(t1); Q(t2); Q(t3); : : :g 6` (8x)Q(x), there is no Henkin model for L in
which fQ(t1); Q(t2); Q(t3); : : :g is true but (8x)Q(x)Q is not.11 However, it
can be shown that if S 6` A, where S is not in�nitely extendible in L, then
there is a non-Henkin model for L (more speci�cally, a denumerably in�nite
non-Henkin model for L) in which S is true but A is not.

Understand (i) by the double rewrite A2 of a statement A of L the result
of substituting everywhere in At2i for ti(i = 1; 2; 3; : : :), (ii) by the double
rewrite S2 of a set S of statements of L the set ; when S is empty, otherwise
that consisting of the double rewrites of the various members of S, (iii) by
the double rewrite of a D-interpretation ID of L the D-interpretation I2

D of
L such that I2

D(Q) = ID(Q) for every predicate Q of L, and I2
D(ti) = ID(t2i)

for each i from 1 on, and (iv) by the double rewrite of a model hD; IDi for L
the model hD; I2

Di, where I2
D is the double rewrite of ID . It is easily veri�ed

that (a) whether or not S is in�nitely extendible, S2 is, (b) if S is consistent
in L, so is S2, (c) if the double rewrite of a statement A of L is true in a
model hD; IDi for L, then A itself is true in the double rewrite of hD; IDi,
and (d) although the model associate hT ; IT i in L of a set of statements
of L is a Henkin model for L, the double rewrite hT ; I2

T i of hT ; IT i is not
(members t1; t3; t5; : : : ; of T are not assigned in I2

T to any term of L).

Suppose now that S 6` A, where S is not in�nitely extendible in L, and
hence S[f:Ag is consistent in L. By (a){(b), the double rewrite S2[f:A2g
of S [ f:Ag is both consistent and in�nitely extendible in L. Hence, as
before, S2 [ f:A2g is true in the model associate in L of H(S2 [ f:A2g).
Hence, by (c) S is true in the double rewrite of that model but A is not.
Hence, there is a model for L in which S is true but A is not.12 That the
model in question is not a Henkin one follows from (d).

Hence

11The counterexample in the text was noted in [Thomason, 1965]. I learned of it from
Thomason and reported it in [Leblanc, 1968]. Dunn and Belnap, who had known of the
counterexample for several years, reported it in [Dunn and Belnap, 1968].
12The result is proved in surprisingly few texts. The proof here stems from [Leblanc,

1966, pp. 177{ 78], but avoids that text's recourse to L1. To illustrate matters,
fQ(t1); Q(t2); Q(t3); : : :g is true|but (8x)Q(x) is not|in hT ; I2

T
i, the double rewrite

of the model associate hT ; IT i of H(fQ(t2);Q(t4); Q(t6); : : : ;:(8x)Q(x)g). IT assigns ti
to ti and, hence, I2

T
assigns t2i to ti; but both IT and I2

T
assign T to Q.
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THEOREM 20. Let S be a set of statements of L that is not in�nitely
extendible in L, and let A be an arbitrary statement of L. If S 6` A, then
there is a model for L (more speci�cally, a countable model for L) in which
S is true but A is not.

Hence, by Contraposition on Theorem 20 and (for the case where S is
in�nitely extendible in L) on Theorem 15:

THEOREM 21. Let S be an arbitrary set of statements of L and A be an
arbitrary statement of L. If A is true in every model for L in which S is
true, i.e. if A is logically entailed by S in the standard sense, then S ` A
(= The Strong Completeness Theorem for L in Standard Semantics).

The argument yielding Theorem 11 and, hence, Theorem 12 can be made
to yield:

THEOREM 22. Let S be an arbitrary set of statements of L and A be an
arbitrary statement of L. If S ` A, then|no matter the term extension L+

of L|A is true in every Henkin model for L+ in which S is true.

Substituting `L+' for `L' at places that the very phrasing of Theorem 12
dictates will do the trick, as the reader may verify.

Theorem 17 fails, we just say, for S not in�nitely extendible in L. So
the converse of Theorem 12 fails. Thanks, however, to the term extension
L1 of L, the converse of Theorem 22 does hold. Recall indeed that a
set of statements of L, either in�nitely extendible in L or not, is in�nitely
extendible in L1 (= Theorem 5), and is sure to be consistent in L1 if
consistent in L (= Theorem 7). So, suppose S 6` A, where S and A are as
in Theorem 22. Then S [f:Ag is consistent in L1; hence, by the analogue
of Theorem 4, for L1, the Henkin extension H1(S [ f:Ag) of S [ f:Ag in
L1 is maximally consistent and !-complete in L1; hence, by the analogue
of Theorem 14 for L1 every member of H1(S [f:Ag) is true in the model
associate of H1(S [ f:Ag) in L1; and, hence, S is true in that model but
A is not.13 But the model associate of H1(S [ f:Ag) in L1 constitutes a
Henkin model for L1. So, there is a term extension L+ of L and a Henkin
model for L+ in which S is true but A is not.14 So, by a slight editing of
the proof of Theorems 15 and 16:

THEOREM 23. Let S and A be as in Theorem 22. If|no matter the term
extension L+ of L|A is true in every Henkin model for L+ in which S is
true, then S ` A.

13I assume in the text that sets of statements of L1 (as well as L) have been provided
with model associates.
14To illustrate matters, fQ(t1); Q(t2);Q(t3); : : :g is true, but (8x)Q(x) is not, on the

(Henkin) IT1 - interpretation of L1 (T1 the set of all the terms of L1) that assigns
each term of L1 to itself and ft1; t2; t3; : : :g to Q. Though not true in any Henkin model
for L, the set fQ(t1); Q(t2); Q(t3); : : : ;:(8x)Q(x)g is thus true in one for L1.
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As their proofs attest, Theorems 21 and 23 would hold with L1 the only
term extension of L (besides L itself), but would thereby lose much of their
intuitive appeal.

Now for truth, logical truth and logical entailment in substitutional se-
mantics. Theorem 25 (a){(b), the results of writing `true S ' for `true' in The-
orems 22 and 23, will legitimise the substitutional account of the third|and
hence, of the second|of these notions.

Let L+ be an arbitrary term extension of L, A be an arbitrary statement
of L+, and S be an arbitrary set of statements of L+. I shall say that A is
substitutionally true|or, for short, trueS|in a Henkin model hD; IDi for
L+ if (i) in the case that A is an atomic statement Q(T1; T2; : : : ; Td), the
d-tuple hID(T1); ID(T2); : : : ; ID(Td)i belongs to ID(Q), (ii) in the case that
A is a negation :B, B is not trueS in hD; IDi, (iii) in the case that A is
a conjunction B ^ C, each of B and C is trueS in hD; IDi, and (iv) in the
case that A is a quanti�cation (8x)B, each substitution instance B(T=x) of
(8x)B in L+ is trueS in hD; IDi; and I shall say that S is trueS in hD; IDi
if every member of S is.

This done, I shall declare a statement A of L logically true in the sub-
stitutional sense if|no matter the term extension L+ of L|A is trueS in
every Henkin model for L+; and, where S is a set of statements of L, I shall
declare A logically entailed by S in the substitutional sense if|no matter
the term extension L+ of L|A is trueS in every Henkin model for L+ in
which S is trueS . Equivalently, but more simply, A may be declared log-
ically true in the substitutional sense if trueS in all Henkin models for L.
(By supplying two de�nitions of logical truth I set here a precedent to be
repeatedly heeded in the essay. In each case it is, of course, the in�nite
extendibility of ; in L which allows for the simpler of the two de�nitions,
the one using just L.)

It follows at once from Theorem 13 that:

THEOREM 24. Let L+ be a term extension of L, A be a statement of L+,
S be a set of statements of L+, and hD; IDi be a Henkin model for L+.

(a) A is trueS in hD; IDi i� true in hD; IDi.

(b) S is trueS in hD; IDi i� true in hD; IDi.

Hence by Theorems 22 and 23:

THEOREM 25.
Let S be an arbitrary set of statements and A be an arbitrary statement

of L.

(a) If S ` A, then|no matter the term extension of L+ of L|A is trueS
in every Henkin model for L+ in which S is trueS, i.e. A is logically
entailed by S in the substitutional sense (= The Strong Soundness
Theorem for L in Substitutional Semantics).
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(b) If|no matter the term extension L+ of L|A is trueS in every Henkin
model for L+ in which S is trueS, i.e. if A is logically entailed by S
in the substitutional sense, then S ` A (= The Strong Completeness
Theorem for L in Substitutional Semantics).

And hence:

THEOREM 26. Let A be an arbitrary statement of L.

(a) If `A, then|no matter the term extension L+ of L|A is trueS in
every Henkin model for L+, i.e. A is logically true in the substitutional
sense
(= The Weak Soundness Theorem for L in Substitutional Semantics).

(b) If|no matter the term extension L+ of L|A is trueS in every Henkin
model for L+, i.e. if A is logically true in the substitutional sense,
then ` A (= The Weak Completeness Theorem for L in Substitutional
Semantics).

Theorem 26 legitimises the �rst account of logical truth in the preceding
paragraph. Writing `trueS ' for `true' in Theorem 19 (c) legitimises the
second and simpler one:

THEOREM 27. Let A be as in Theorem 26. Then ` A i� A is trueS in
every Henkin model for L.

Suppose there is a model for L in which a set S of statements of L is true.
Then there is one in which S is true but, say Q(t1) ^ :Q(t1) is not; hence,
by Theorem 11 Q(t1) ^ :Q(t1) is not provable in L from S; and, hence, by
Theorems 17 and 20 there is a countable model for L in which S is true
(and Q(t1) ^ :Q(t1) is not). So,

(1) A set S of statements of L, if true in a model for L, is sure to be true
in a countable model for L.

The result, known as the L�owenheim{Skolem Theorem (or Skolem's Gen-
eralisation of L�owenheim's Theorem) can be edited some (use Theorem 25
(b) in lieu of Theorems 25 and 20):

(2) A set S of statements of L, if true in a model for L, is sure|for some
term extension L+ of L|to be trueS in a Henkin model for L+.

(1), from which the so-called `Skolem Paradox' issues, disturbed many
when reported in [Skolem, 1920]. But it comforted others who, uneasy
over large in�nite cardinals (possibly over all cardinals beyond @0), wel-
comed word that any consistent (�rst-order) theory can be trusted to have
a countable model. In view of (2) such a theory will even have a Henkin
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model, the kind of model permitting the quanti�ers in the theory to be
understood substitutionally.

On closer inspection, though, (2) a�ords only slight comfort to devotees of
substitutional semantics. The `intended model' of a (�rst-order) theory may
very much matter, the theory often owing to its intended model whatever
consideration it enjoys. Yet hT 1; IT1i, the Henkin model whose existence
the above proof of (2) guarantees, is generally no kin of that model. Indeed,
t11 ; t

1
2 ; t

1
3 ; : : :, rarely �gure in the `intended domain' (= the domain of

the `intended model') of a (�rst-order) theory. To be sure, some proofs of
Theorem 23 (the theorem from which Theorem 25(b) issues) use f1; 2; 3; : : :g
in lieu of T 1, but the positive integers|though �guring in more domains
than t11 ; t

1
2 ; t

1
3 ; : : : do|hardly �gure in the intended domain of every (�rst-

order) theory. So, one might hesitate to turn in the intended model of a
(�rst-order) theory, even if uncountable, for hT 1; IT1i.

Well-informed readers will at this point appeal to a sharper version of the
L�owenheim{Skolem Theorem. Given a model hD; IDi for L, acknowledge as
a submodel of hD; IDi any pair hD0; ID0i such that (i) D0 is a subset of D to
which belong all of ID(t1); ID(t2); ID(t3); : : :, and (ii) ID0 is the restriction
of ID to D0. What indeed [Skolem, 1920] shows is that

(3) A set S of statements of L, if true in a model hD; IDi for L, is sure
to be true in a countable model for L that is a submodel of hD; IDi.

The model in question, call it hD0; ID0i, need not constitute a Henkin
model for L. But it easily extends to a Henkin model hD0; I 0D0i for L1 in
which S is sure to be trueS . If the members of D0 that are not assigned by
ID0 to any term of L are �nitely many in number, let them be d1; d2; : : : ; dn
(Case 1); otherwise, let them be d1; d2; d3; : : : (Case 2); and let I 0D0 (i) agree
with ID0 on all the terms and predicates of L, and (ii) assign in Case 1 di
to t1i for each i from 1 through n�1 and dn to the remaining terms of L1,
and in Case 2 di to t1i for each i from 1 on. It is easily veri�ed that S, if
true in hD0; ID0i will be trueS in hD0; I 0D0 i.
hD0; I 0D0i escapes the criticism levelled at the Henkin model in (2). It

bears to the intended model hD; IDi of a (�rst-order) theory the closest
relationship that logical propriety allows, D0 being a subset of D and the
interpretation that I 0D0 places upon the terms and predicates of L being the
restriction of ID toD0. So, some might actually turn in hD; IDi for hD0; I 0D0i.
Others would not, to be sure. But they might well cite hD0; I 0D0i|a `fall-
back model' of the theory, so to speak|as their reason for retaining hD; IDi,
and retaining it with a clear conscience.

There are, however, practitioners of substitutional semantics who have no
qualms over cardinals beyond @0 and consequently provide room in their
texts for Henkin models of any size. For example, in [Robinson, 1951] and
[Shoen�eld, 1967] no bound is placed on the number of terms such a lan-
guage as L might have; and in [Hintikka, 1955] none of it placed on the



72 HUGUES LEBLANC

number of terms the extensions of L might have.15 Under these circum-
stances the intended model of any theory of L, if not a Henkin model for L,
extends to one for some extension or other or L; and the quanti�ers in the
theory can as a result be understood substitutionally, something Robinson
and Shoen�eld both proceed to do on page 19 of their respective texts and
which Hintikka does (in a beautifully sly way) on page 24 of his.16

(The Appendix has further information on the history of substitutional
semantics.)

3 TRUTH-VALUE SEMANTICS

What I called on page 56 a quanti�erless statement of L would normally
be counted logically true (also truth-functionally true, tautologous, etc.) if
true on all truth-value assignments to its atomic components. Beth in 1959,
Sch�utte in 1962, Dunn and Belnap in 1968, etc. showed in e�ect that an
arbitrary statement of L is logically true in the standard sense i� (substi-
tutionally) true on all truth-value assignments to the atomic statements of
L; and I showed, also in 1968, that such a statement is logically true in the
standard sense i� (substitutionally) true on all truth- value assignments to
its atomic substatements. These may have been the �rst contributions to
what, at Quine's suggestion, I term truth-value semantics.

Truth-value semantics is a non-referential kind of semantics: it dispenses
with models and with condition (i) on page 69, the one truth condition of a
model-theoretic sort that substitutional semantics retains. Instead, atomic
statements are assigned a truth-value each, and compound statements are
then assigned truth-values via counterparts of conditions (ii){(iv) on page
69. Though modelless, truth-value semantics is nonetheless a congener of
substitutional semantics, a claim I made on page 54 and will substantiate
in Theorem 28 below.

There are several versions of truth-value semantics. I begin with one
sketched in [Leblanc, 1968], subsequently developed in [Leblanc and Wis-
dom, 1993; Leblanc, 1976], and various papers in Part 2 of [Leblanc, 1982b],
and recently amended to exploit Dunn and Belnap's term extensions.

Let L+ be an arbitrary term extension of L. By a truth-value assignment
to a non-empty set �+ of atomic statements of L+, I shall understand any
function from the members of �+ to fT, Fg. Where A is a statement of
L+;�+ a set of atomic statements of L+ to which belong all the atomic

15To quote from p. 52 of [Hintikka, 1955]: \We assume that on any particular occasion
we can choose the cardinal number of the individual constants and of the individual
variables as large as we wish, by constructing a new, more comprehensive calculus, if
necessary." The passage certainly allows what I call the term extensions of L, and it
might be construed as allowing L itself, to have any number of terms.
16Hintikka deals principally with model sets, a topic I cover in the next section. Robin-

son and Shoen�eld, on the other hand, deal with (Henkin) models.



ALTERNATIVES TO STANDARD FIRST-ORDER SEMANTICS 73

substatements of A, and �+ a truth value assignment to �+, I shall say
that A is true on �+ if (i) in the case that A is atomic, �+(A) = T, (ii) in
the case that A is a negation :B, B is not true on �+, (iii) in the case that
A is a conjunction B ^ C, each of B and C is true on �+, and (iv) in the
case that A is a quanti�cation (8x)B, each substitution instance of (8x)B
in L+ is true on �+. �nally, where S is a set of statements of L+;�+ a set
of atomic statements of L+ to which belong all the atomic substatements
of S, and �+ a truth-value assignment to �+, I shall say that S is true on
�+ if each member of S is true on �+.

This done, I shall declare a statement A of L logically true in the truth-
value sense if|no matter the term extension L+ of L and truth-value as-
signment �+ to the atomic substatements of A in L+|A is true on �+;
and, where S is a set of statements of L, I shall declare A logically entailed
by S in the truth-value sense if|no matter the term extension L+ of L and
truth-value assignment �+ to the atomic substatements of S [fAg in L+|
A is true on �+ if S is. Equivalently but more simply, A may be declared
logically true in the truth-value sense if (as the matter was put above) A is
true on every truth-value assignment to the atomic substatements of A in
L.

Proof that, where S is a set of statements and A a statement of L,

1. S ` A i� A is logically entailed by S in the foregoing sense

and

2. ` A i� A is logically true in either of the foregoing senses,

can be retrieved from Chapter 2 of [Leblanc, 1976]. So I turn at once to
another version of truth-value semantics, a version using total rather than
partial assignments.

Again, let L+ be an arbitrary term extension of L. By a truth-value
assignment for L+ I shall understand any function from all the atomic
statements of L+ to fT, Fg. Where A is a statement of L+, S a set of
statements of L+, and �+ a truth-value assignment for L+, I shall say that
A is true on �+ if conditions (i){(iv) two paragraphs back are met, and say
that S is true on �+ if each member of S is. And, where A is a statement
of L and S a set of statements of L, I shall declare A logically true in the
truth-value sense if|no matter the term extension L+ of L|A is true on
every truth-value assignment for L+ (equivalently, but more simply, if A is
true on every truth-value assignment for L); and I shall declare A logically
entailed by S in the truth-value sense if|no matter the term extension L+

of L|A is true on every truth-value assignment for L+ on which S is true.
Proof that, where S is a set of statements and A is a statement of L,

3. S ` A i� A is logically entailed by S in this truth-value sense
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and

4. ` A i� A is logically true in either of these truth-value senses,

can be had in two di�erent ways.
Arguing (3) (and hence (4)) directly, understand by the truth-value asso-

ciate in L1 of a set S1 of statements of L1 the function �1 that assigns
T to the atomic statements of L1 in S1 and F to the rest. It follows from
Theorem 3 that if S1 is maximally consistent and !-complete in L1, then
a statement of L1 will belong to S1 i� true on �1. But, if S 6` A, then by
Theorems 7 and 4 the Henkin extension H1(S [ f:Ag) of S [ f:Ag in L1

is maximally consistent and !-complete in L1, and hence S is true on �1

but A is not. Hence, if|no matter the term extension L+ of L|A is true
on every truth-value assignment for L+ on which S is true, then S ` A. But
the proof of the converse is routine. Hence, (3) and, letting S be ;, (4).17

You can also argue (3){(4) by appealing to Theorems 25{ 27, the coun-
terparts of (3){(4) in substitutional semantics, and to equivalence theorems
that bind Henkin models and truth-value assignments. (The de�nitions
used are from [Leblanc, 1976, pp. 92{93].)

With hD; IDi a Henkin model for L+, understand by the truth-value
counterpart of hD; IDi the function �+ that assigns T to the atomic state-
ments of L+ true in hD; IDi and F to the rest; and, �+ being a truth-value
assignment for L+, understand by the model counterpart of �+ the pair
hT +; IT +i, where (i) T + consists as usual of the terms of L+, (ii) for each
term T of L+, IT +(T ) = T , and (iii) for each predicate Q of L+ of degree
d; IT +(Q) = fhT1; T2; : : : ; Tdi : �+(Q(T1; T2; : : : ; Td)) = Tg. The truth-
value counterpart of hD; IDi constitutes, of course, a truth-value assign-
ment for L+, and the model counterpart of �+ a Henkin model for L+.

Proof that:

THEOREM 28. Let A be an arbitrary statement of L+.

(a) A is true in a Henkin model hD; IDi for L+ i� A is true on the truth-
value counterpart �+ of the model (= Equivalence Theorem One for
Truth-value Semantics);

(b) A is true on a truth-value assignment �+ for L+ i� A is true in
the model counterpart hT +; IT +i of the assignment (= Equivalence
Theorem Two for Truth-value Semantics);

is immediate. Suppose indeed that A is atomic. The foregoing de�nitions
see to it that A is true in hD; IDi i� true on its counterpart, and that A is
true on �+ i� true in its counterpart. Or suppose A is a universal quanti�-
cation. Since hD; IDi is a Henkin model by hypothesis and hT +; IT +i is one

17Because it uses the truth-value associate of H1(S [ f:Ag), this proof of (3) will be
recalled in Section 6.
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by construction, A will be true in either model i� each of its substitution
instances in L+ is. So Henkin models and truth-value assignments match
one-to-one.

Tackling soundness �rst, suppose that S `A (S a set of statements and
A a statement of L); let L+ be an arbitrary term extension of L; and let �+

be an arbitrary truth-value assignment for L+ on which S is true. Then by
Theorem 28 (b) S will be true in the model counterpart of �+; hence, by
Theorem 25 (a), A will be true in that model; and, hence, by Theorem 28
(b) again, A will be true on �+. So:

THEOREM 29. Let S be an arbitrary set of statements and A be an ar-
bitrary statement of L. If S ` A, then A is logically entailed by S in the
truth- value sense of page 73 (= The Strong Soundness Theorem for L, in
Truth-Value Semantics).

Tackling completeness next, suppose that|no matter the term extension
L+ of L|A is true on every truth-value assignment for L+ on which S is
true; let L+ be an arbitrary term extension of L; and let hD; IDi be an
arbitrary Henkin model for L+ in which S is true. Then by Theorem 28
(a) S will be true on the truth-value counterpart of hD; IDi; hence, by
hypothesis, A will be true on that assignment; and hence, by Theorem 28
(a) again, A will be true in hD; IDi. Hence, A will be true in every Henkin
model for L+ in which S is true. Hence, by Theorem 25 (b), S ` A. So:

THEOREM 30. Let S and A be as in Theorem 29. If A is logically en-
tailed by S in the truth-value sense of page 73, then S ` A (= The Strong
Completeness Theorem for L in Truth-Value Semantics).

The same arguments, but using Theorems 12 and 18 rather than Theorem
25, will guarantee that:

THEOREM 31. Let S be a set of statements of L that is in�nitely extendible
in L, and let A be an arbitrary statement of L. Then S ` A i� A is true on
every truth-value assignment for L on which S is true.

Hence:

THEOREM 32. Let A be an arbitrary statement of L. Then `A i� A is
true on every truth-value assignment for L.

Theorems 29 and 30 are in [Dunn and Belnap, 1968]; and variants thereof,
using isomorphisms in lieu of term extensions, are in [Leblanc, 1968]. A
special case of Theorem 31|S a set of termless statements of L|is in
[Beth, 1959]; and, as reported earlier, versions of Theorem 32 are in these
three texts and in [Sch�utte, 1962].

Yet another version of truth-value semantics assigns truth-values to all
the statements of L+ (rather than just the atomic statements of L+ or just
the atomic substatements of a statement or set of statements of L+). I
expound it in some detail because of its kinship to truth-set semantics and
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to probability theory.
Let L+ be an arbitrary term extension of L. By a truth-value function

for L+ I shall understand any function �+ from the statements of L+ to
fT;Fg that meets the following three constraints (reminiscent of (i){(iii) in
Theorem 3):

B1. �+(:A) = T i� �+(A) 6= T

B2. �+(A ^ B) = T i� �+(A) = T and �+(B) = T

B3. �+((8x)A) = T i� �+(A(T=x)) = T for each term T of L+.

I shall then declare a statement A of L logically true in the truth-value sense
if|no matter the term extension L+ of L and truth-value function �+ for
L+|�+(A) = T (equivalently, but more simply, if �(A) = T for every
truth- value function � for L); and, where S is a set of statements of L+|I
shall declare A logically entailed by S in the truth-value sense if|no matter
the term extension L+ of L and truth- function �+ for L+|�+(A) = T if
�+(B) = T for each member B of S.

It is clear that each truth-value function for L+ is an extension to all
the statements of L+ of a truth-value assignment for L+, and each truth-
value assignment for L+ the restriction to just the atomic statements of L+

of a truth-value function for L+. So, truth-value assignments and truth-
value functions match one-to-one, the way Henkin models and truth-value
assignments did. the present accounts of logical truth are therefore sure in
light of Theorems 29, 30 and 32 to be weakly sound and complete, and the
present account of logical entailment is sure in light of Theorems 29 and 30
to be strongly sound and complete.

When showing in Section 5 the truth-value functions for L to issue into
probability functions, I shall refer to them by means of `P ' rather than `�',
and I shall use as truth-values the reals 1 and 0 rather than T and F.

Truth-set semantics, my next concern, is but truth-value semantics in
set-theoretic disguise. And like truth-value semantics, which|interestingly
enough|it antedates, it comes in several versions. One, due to Carnap18

but recast here in the Dunn and Belnap manner, matches the semantics of
page 73 with its total truth-value assignments.

Where L+ is an arbitrary term extension of L, understand by a basic
pair for L+ any set of the sort fA;:Ag, where A is an atomic statement
of L+; understand by a basic truth set for L+|or, as Carnap would put it,
a state-description for L+|any set consisting of one statement from each
basic pair for L+; take a statement A of L+ to hold in a state-description
SD+ for L+ if (i) in the case that A is atomic, A belongs to SD+, (ii) in

18To be more exact, sketched in [Wittgenstein, 1921] and formalised in [Carnap, 1950].
The de�nitions in the next paragraph are borrowed from [Carnap, 1950, Section 18].
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the case that A is a negation :B;B does not hold in SD+, (iii) in the case
that A is a conjunction B ^ C, each of B and C holds in SD+, and (iv) in
the case that A is a quanti�cation (8x)B, each substitution instance of A
in L+ holds in SD+; and take a set of statements of L+ to hold in SD+ if
each member of S does.

This done, declare a statement A of L logically true in the truth-set sense
if|no matter the term extension L+ of L|A holds in every state-description
for L+ (equivalently, but more simply, if A holds in every state-description
for L); and where S is a set of statements of L, declare A logically entailed
by S in the truth-set sense if|no matter the term extension L+ of L|A
holds in every state-description for L+ in which S does.

As truth-value assignments and state-descriptions for L+ match one-to-
one, a statement of L+ will be true on a truth-value assignment for L+ i�
it holds in the matching state-description, and the statement will hold in a
state-description for L+ i� it is true on the matching truth-value assignment.
So, by Theorems 29, 30 and 32:

THEOREM 33. Let S be an arbitrary set of statements and A be an arbi-
trary statement of L.

(a) S ` A i� A is logically entailed by S in the truth-set sense.
(b) ` A i� A is logically true in the truth-set sense.

That A, if provable in L, holds in every state-description for L was �rst
shown in [Carnap, 1950]. (See Section 22, which should be consulted for
more information on this particular brand of truth-set semantics.)

A second version of truth-set semantics can be retrieved from [Quine,
1940], [Smullyan, 1968] and doubtless several other sources. It matches the
semantics of pages 76{77 with its truth-value functions, boasts the tersest
accounts yet of logical truth and entailment, and can be legitimised in the
swiftest manner yet.

With L+ an arbitrary term extension of L, understand by a truth set for
L+ any set S+ of statements of L+ that meets the following three conditions
(patterned after (i){(iii) in Theorem 3):

(a) :A belongs to S+ i� A does not,
(b) A ^B belongs to S+ if each of A and B does,
(c) (8x)A belongs to S+ i� A(T=x) does for each term T of L+.

Declare a statement A of L logically true in the truth-set sense if|no matter
the term extension L+ of L|A belongs to every truth set for L+ (equiva-
lently, but more simply, if A belongs to every truth set for L); and, where S
is a set of statements of L, declare A logically entailed by S in the truth-set
sense if|no matter the term extension L+ of L|A belongs to every truth
set for L+ of which S is a subset.19

19Quine's truth sets consist of components of a quanti�erless statement, and are ac-
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Truth-value functions and truth sets for L+ match one-to-one. Indeed,
the set of all statements of L+ evaluating to T on a truth-value function
for L+ constitutes a truth set for L+; and the function on which all the
statements of L+ in a truth set for L+ evaluate to T and the rest evaluate
to F constitutes a truth-value function for L+. So, the accounts of logical
truth in the foregoing paragraph are sure to be weakly sound and complete
since those of page 76 were, and the account of logical entitlement in that
paragraph is sure to be strongly sound and complete since the one of page
76 was. However, more direct and compact proofs of these matters can
be had. Suppose that S ` A, where S is a set of statements and A is a
statement of L; let L+ be an arbitrary term extension of L; and let S+ be
an arbitrary truth set for L+ of which S is a subset. It is readily veri�ed
that each axiom of L belongs to each truth set for L+, and hence to S+;
and that the ponential of two statements of L belongs to a truth set for L+,
say S+, if the two statements themselves do. So each entry in any proof of
A from S in L will belong to S+. So:

THEOREM 34. Let S be an arbitrary set of statements and A be an ar-
bitrary statement of L. If S ` A, then|no matter the term extension L+

of L| A belongs to every truth set for L+ of which S is a subset (= The
Strong Soundness Theorem for L in Truth-Set Semantics).

As for the converse of Theorem 34, recall that if a set of statements of
L is consistent and in�nitely extendible in L, then the Henkin extension of
the set is sure by Theorem 4 to be maximally consistent and !-complete in
L. But by virtue of Theorem 3 any set of statements of L that is maximally
consistent and !-complete in L constitutes a truth set for L (and vice-versa),
truth sets being sometimes called, as a result, Henkin sets. So:

THEOREM 35. Let S be a set of statements of L that is in�nitely extendible
in L. If S is consistent in L, then there is a truth set for L|and, hence,
there is for some term extension L+ of L a truth set for L+|of which S is
a subset.

But, if S ` A, then S [ f:Ag is consistent in L. So:

THEOREM 36. Let S be as in Theorem 35, and let A be an arbitrary
statement of L. If S 6` A, then there is a truth set for L|and, hence, there
is for some term extension L+ of L a truth set for L+|of which S is a
subset but A is not a member.

Hence, thanks to L1, when S is not in�nitely extendible:

THEOREM 37. Let S be an arbitrary set of statements and A be an arbi-
trary statement of L. If|no matter the term extension L+ of L|A belongs
to every truth set for L+ of which S is a subset, then S ` A (= The Strong

cordingly called the truth set of that statement. As one would expect, a quanti�erless
statement is declared tautologous if it belongs to every one of its truth sets.
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Completeness Theorem for L in Truth-Set Semantics).

Hence also:

THEOREM 38. Let A be an arbitrary statement of L. Then ` A i� A
belongs to every truth set for L.

Proof of Theorem 38 is in [Smullyan, 1968], a text to be consulted on this
particular brand of truth-set semantics.

Note that Q(t1) ^ :Q(t1) cannot belong to any truth set for L+ since
at most one of Q(t1) and :Q(t1) does. But a set S of statements of L is
consistent in L i� Q(t1) ^ :Q(t1) is not provable in L from S. Hence, by
Theorem 34:

THEOREM 39. Let S be an arbitrary set of statements of L. If there is for
some term extension L+ of L a truth set for L+ of which S is a subset, then
S is consistent in L.

Hence as a transition to our last topic in this section:

THEOREM 40. Let S be as in Theorem 39. Then S is consistent in L i�
there is for some term extension L+ of L a truth set for L+ of which S is a
subset (i.e. to which S extends).

Besides extending to truth sets, consistent sets also extend to model sets,
a kind of set �rst investigated in [Hintikka, 1955]. These are intriguing in
several respects. Though true on a truth-value assignment, a model set
need not comprise|as a truth set would|all the statements true on that
assignment, and hence it is not a truth-value function in disguise. A model
set may even be �nite, in which case it (plus of course all sets extending
to it) has a �nite model. And routines have been devised which (i) when
a �nite set S is inconsistent, will invariably apprise us of the fact and (ii)
when S is consistent, will frequently|though not invariably|extend it to
a �nite model set and hand us a model of S.

Model sets also permit de�nitions of logical truth and logical entailment
which, though reminiscent of those on page 77, cunningly di�er from them.
It is, of course, these de�nitions which particularly interest us and which we
will legitimise by means of suitable soundness and completeness theorems.
But some of the results in the previous paragraph are readily had and will
be recorded as well.

L+ being an arbitrary term extension of L, I shall understand by a model
set for L+ any set S of statements of L+ such that (i) at least one term of
L+ occurs in S and (ii) S meets the following constraints:

(a) where A is an atomic statement of L+, at most one of A and :A
belongs to S,

(b) if ::A belongs to S, then so does A,
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(c) if A ^ B belongs to S, then so does each of A and B,

(d) if :(A ^ B) belongs to S, then at least one of :A and :B does,

(e) if (8x)A belongs to S, then so does A(T=x) for every term T of L+

that occurs in S,

(f) if :(8x)A belongs to S, then so does :A(T=x) for at least one term
T of L+.

Note: Because of requirement (i) S must, of course, be non-empty and|
more importantly|at least one substitution instance of any universal quan-
ti�cation belonging to S must belong to S (see clause (e)). The latter is
tantamount, model-theoretically, to requiring that domains be non-empty,
a point �rst made in [Hintikka, 1955, pp. 34{35]. And, because of the qual-
i�cation `that occurs in S' in clause (e), not every substitution instance of
(8x)A need belong to S (though, as we just saw, at least one must). This is
the most distinctive feature of model sets, and the one which most notably
allows (some) �nite sets of statements of L+ to qualify as model sets for L+.

It is easily veri�ed that each truth set for L constitutes a model set for
L, a fact which with an eye to later developments I record separately:

THEOREM 41. Each truth set for L constitutes a model set for L.

(And each model set for L is a subset|though not necessarily more than
a subset|of a truth set for L: as noted above and proved on pages 82{83,
each model set for L is true on a truth-value assignment for L and, hence,
is a subset of the truth-set associate of that assignment.)

This done, I declare a statement A of L logically true in the model-set
sense if|no matter the term extension L+ of L|:A does not belong to
any model set for L+ (equivalently, but more simply, if :A does not belong
to any model set for L); and, where S is a set of statements of L, I declare
A logically entailed by S in the model-set sense if| no matter the term
extension L+ of L|:A does not belong to any model set for L+ of which
S is a subset. (The de�nitions are suggested by results in [Hintikka, 1955].)

Proof that the foregoing de�nition of logical entailment is strongly sound
calls for four lemmas (Theorems 42{45) and one de�nition. Theorem 42 is
crucial to the whole enterprise. As noted above, the substitution instances of
a quanti�cation (8x)A that belongs to a model set need not all belong to the
set. Truth-value assignment � in theorem 42 ensures that the substitution
instances not in the set behave exactly like those in it. (Clause (a) of
Theorem 42 stands to clause (b) and eventually to Theorem 44 somewhat
as Theorem 8 stands to Theorem 13.)

THEOREM 42. Let T be a non-empty set of terms of L; let T 0 be the
complement of T ; T1 being the alphabetically earliest member of T , let the
T1-rewrite T1(A) of a statement A of L be the result of putting T1 for each
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member of T 0 in A;20 and let � be any truth-value assignment for L such
that, for each atomic statement A of L, �(A) = �(T1(A)).

(a) T 01; T
0
2; T

0
3; : : :, being in alphabetic order the various members (if any)

of T 0, let the L-rewrite L(A) of a statement A of L be the result of
simultaneously putting T1 for T 01 in A, T 01 for T 02; T

0
2 for T 03, etc.21

Then A is true on � i� L(A) is.

(b) Let (8x)A be a quanti�cation of L in which no member of T 0 occurs.
If A(T=x) is true on � for each term T in T , then A(T 0=x) is true on
� for each term T 0 in T 0.

Proof. (a) That A is true on � i� L(A) is true on � is shown by mathe-
matical induction on the length l(A) of A.

Basis: l(A) = 1, in which case A is atomic. By construction A and
L(A) have the same T1-rewrite. Hence, �(A) = �(L(a)). Hence, (a).

Inductive Step: l(A) > 1.
Case 1: A is a negation :B. By the hypothesis of the induction B is

true on � i� L(B) is. Hence, :B is true on � i� :(L(B)) is, i.e. i� L(:B)
is. Hence, (a).

Case 2: A is a conjunction B ^ C. Proof similar to that of Case 1.
Case 3: A is a quanti�cation (8x)B. (i) for each term T in T ; (L(B))

(T=x) is the same as L(B(T=x)); and, for each i from 1 on, (L(B))(T 0i =x) is
the same as L(B(T 0i+1=x)). So, each substitution instance of (8x)(L(B))(=
L((Ax)B)) is the L-rewrite of a substitution instance for (8x)B. (ii) For
each member T of T ;L(B(T=x)) is the same as (L(B))(T=x);L(B)T 01=x))
is the same as (L(B))(T1=x); and, for each i from 2 on, L(B(T 0i =x)) is the
same as (L(B))(T 0i�1=x). So, the L-rewrite of each substitution instance
of (8x)B is a substitution instance of (8x)(L(B)). (iii) Suppose �rst that
(8x)B is true on �, and hence that each substitution instance of (8x)B is
true on �. Then, by the hypothesis of the induction, the L- rewrite of each
substitution instance of (8x)B is true on �, and hence by (i) so is each
substitution instance of L((8x)B). Hence, L((8x)B) is true on �. Suppose
next that (8x)B is not true on �, and hence that at least one substitution
instance of (8x)B is not true on �. Then, by the hypothesis of the induction,
the L-rewrite of at least one substitution instance of (8x)B is not true on
�, and hence by (ii) at least one substitution instance of L((8x)B) is not
either. hence, L((8x)B) is not true on �. Hence, (a).

(b) (i) Since no member of T 0 occurs in A, L(A(T 01=x)) is the same as
A(t1=x), and for each i from 2 on L(A(T 0i=x)) is the same as A(T 0i�1=x). (ii)
Suppose A(T=x) is true on � for each member T of T . Then in particular
A(T1=x) is true on �, hence by (i) so is L(A(T 01=x)), hence by (a) so is

20When ambiguity threatens, I shall enclose `T1(A)' within parentheses.
21When ambiguity threatens, I shall enclose `L(A)' within parentheses.
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A(T 01=x), hence by (i) so is L(A(T 02=x)) , hence, by (a) so is A(T 02=x), hence
by (i) so is L(A(T 03=x)), hence by (a) so is A(T 03=x), etc. Hence, if A(T=x)
is true on � for each member T of T , so is A(T 0=x) for each member T 0 of
T 0. �

Now let S be a model set for L, and let T1 be the alphabetically earliest
term of L that occurs in S.22 By the truth-value associate of S in L, I shall
understand the function �S from the atomic statements of L to fT;Fg such
that, for each atomic statement A of L,

�S(A) =

�
T if T1(A) belongs to S
F otherwise:

(The function stems from [Leblanc and Wisdom, 1993, p. 191], and the
proofs of Theorems 43{45 below are simpli�cations of proofs in that text,
pp. 300{304.)

THEOREM 43. Let S be a model set for L, and �S be the truth-value
associate of S in L. Then:

(a) �S constitutes a truth-value assignment for L, and

(b) for each atomic statement A of L, �S(A) = �S(T1(A)).

As regards (b), note that any term of L that occurs in T1(A) is sure to
occur in S. So, T1(A) and T1(T1(A)) are the same. So, T1(A) belongs to S
i� T1(T1(A)) does. So, by the construction of �S ; �S(A) = �S(T1(A)).

Hence, by Theorem 42 (b) (with the set of all the terms that occur in S
serving as T , and the truth-value associate of S serving as �):

THEOREM 44. Let S be a model set for L, and (8x)A be a quanti�cation
of L that belongs to S. If|for each and every term T of L that occurs in
S|A(T=x) is true on the truth-value associate of S, then (8x)A is true on
that associate.

I am now in a position to show that each model set for L is true on its
truth-value associate, hence is true in the model associate of that associate,
and hence has a (Henkin) model.

THEOREM 45. Each model set for L is true on its truth-value associate.

Proof. Let S be an arbitrary model set for L, A be an arbitrary member
of S, and �S be the truth-value associate of S. That A is sure to be true
on �S is shown by mathematical induction on the length l(A) of A.

Basis: l(S) = 1, in which case A is atomic. Since A belongs to S;A is
its own T1-rewrite (T1 the alphabetically earliest term of L to occur in S);
hence, �S(A) = T; and, hence, A is true on �S .
22Here, as in Theorem 42, any other term of L occurring in S could of course substitute

for T1.
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Inductive Step: l(A) > 1, in which case A is a negation, or a conjunc-
tion or a universal quanti�cation (and, when a negation, one of an atomic
statement or of a negation, or of a conjunction, or of a universal quanti�-
cation).23

Case 1: A is of the sort :B, where B is an atomic statement. Then by
the de�nition of a model set B does not belong to S. But, since :B belongs
to S, :B is its own T1-rewrite and, hence, so is B. Hence, T1(B) does not
belong to S. Hence, �S(B) = F. Hence, B is not true on �S . Hence, :B is.

Case 2: A is of the sort ::B . Then by the de�nition of a model set
B belongs to S; hence, by the hypothesis of the induction, B is true on �S ;
and hence, so is ::B.

Case 3. A is of the sort :(B ^ C). Then by the de�nition of a model
set at least one of :B and :C belongs to S; hence, by the hypothesis of the
induction, at least one of :B and :C is true on �S ; and, hence, :(B ^ C)
is true on �S .

Case 4: A is of the sort :(8x)B. Then by the de�nition of a model
set :B(T=x) belongs to S for some term T of L; hence, by the hypothesis
of the induction, :B(T=x) is true on �S for some term T of L; and, hence,
:(8x)B is true on �S .

Case 5: A is of the sort B ^ C. Then by the de�nition of a model set
each of B and C belongs to S; hence, by the hypothesis of the induction,
each of B and C is true on �S ; and, hence, so is B ^ C.

Case 6: A is of the sort (8x)B. Then by the de�nition of a model set
B(T=x) belongs to S for each term T of L that occurs in S; hence by the
hypothesis of the induction, B(T=x) is true on �S for each term T of L that
occurs in S; and, hence, by Theorem 44, (8x)B is true on �S . �

Now for the Strong Soundness Theorem for L in model-set semantics.

THEOREM 46. Let S be an arbitrary set of statements and A be an arbi-
trary statement of L. If S ` A, then :A does not belong to any model set
for L of which S is a subset.

Proof. Suppose S ` A, and suppose there is no model set for L of which S
is a subset. Then, trivially, :A does not belong to any model set for L of
which S is a subset. Suppose, on the other hand, there is at least one model
set for L, say, S0, of which S is a subset, and let �S0 be the truth-value
associate of S0. Then, by Theorem 45, S0 is true on �S0 ; hence, so is S; and
hence by Theorem 29,so is A. But, if A is true on �S0 , then :A is not; and,
if :A is not true on �S0 , then by Theorem 45 again :A does not belong to
S0. Hence, again, :A does not belong to any model set for L of which S is
a subset. �

23An induction of this sort, with each kind of negation treated separately, is called in
[Leblanc and Wisdom, 1993] a Hintikka induction.
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But the argument leading to Theorem 46 holds with `L+' in place of `L'.
Hence:

THEOREM 47. Let S and A be as in Theorem 46. If S ` A, then|no
matter the term extension L+ of L|:A does not belong to any model set
for L+ of which S is a subset (= The Strong Soundness Theorem for L in
Model-Set Semantics).

The converse of Theorem 46 for in�nitely extendible S and that of The-
orem 47 for arbitrary S readily issue from Theorems 41, 36 and 37:

THEOREM 48. Let S be a set of statements of L that is in�nitely extendible
in L, and A be an arbitrary statement of L. If :A does not belong to any
model set for L of which S is a subset, then S ` A.

THEOREM 49. Let S be an arbitrary set of statements and A be an arbi-
trary statement of L. If|no matter the term extension L+ of L|:A does
not belong to any model set for L+ of which S is a subset, then S ` A (=
The Strong Completeness Theorem for L in Model- Set Semantics).

Hence:

THEOREM 50. Let S and A be as in Theorem 49. Then S ` A i�|no
matter the term extension L+ of L|:A does not belong to any model set
for L+ of which S is a subset.

And hence:

THEOREM 51. ` A i�|no matter the term extension L+ of L|:A does
not belong to any model set for L+.

Theorem 50 legitimises the account of logical entailment and Theorem
51 the �rst account of logical truth, on page 79.

Theorems 46 and 49 combine, of course, to read:

THEOREM 52. Let S be a set of statements of L that is in�nitely extendible
in L, and A be an arbitrary statement of L. Then S ` A i� :A does not
belong to any model set for L of which S is a subset.

Hence the following theorem, which legitimises the second (and simpler)
account of logical truth on page 79:

THEOREM 53. ` A i� :A does not belong to any model set for L.

Now for some of the results reported on page 79. Note that (i) a set S
of statements of L is consistent in L i� Q(T1) ^ :Q(t1), for example, is not
provable from S in L, and (ii) any model set for L+ is a subset of one with
:(Q(t1) ^ :Q(t1)) as a member. (For proof of (ii) note that any model set
for L+ is a subset of a truth set for L+ (page 81), :(Q(t1)^:Q(t1)) belongs
by Theorem 33 (b) to every truth set for L+, and any truth set for L+ is
a model set for L+. So, any model set for L+ is sure to be a subset of one
with :(Q(t1) ^ :Q(t1)) as a member). Hence, by Theorem 49:
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THEOREM 54. Let S be an arbitrary set of statements of L. Then S is
consistent in L i� there is, for some term extension L+ of L, a model set
for L+ to which S extends (i.e. of which S is a subset).

Similarly, but with Theorem 52 substituting for Theorem 49:

THEOREM 55. Let S be a set of statements of L that is in�nitely extendible
in L. Then S is consistent in L i� there is a model set for L to which S
extends (i.e. of which S is a subset).

The two results stem from [Hintikka, 1955], where|thanks to �rst-order
languages having as many terms as the occasion calls for|sets of �rst-order
statements were shown to be consistent i� they extend to model sets. Since
a set of �rst-order statements is consistent i� it has a model, Hintikka's
result reads, in e�ect: `Sets of �rst-order statements have models i� they
extend to model sets'.

As suggested earlier, one model in which a model set for L+ is sure to be
true can be obtained from pages 74 and 82. Indeed, let S be a model set
for L+; let �+

S be the counterpart for L+ of the truth-value assignment �S
on page 82; and let hT +; IT +i be the model counterpart of �+

S as per page
74. By the counterpart of Theorem 45 for L+, S is sure to be true on �+

S .
Hence, S is sure by Theorem 28 to have hT +; IT +i as a model. Hence, so
are all sets of statements of L extending to S. The model, one will recall,
is a Henkin one.

THEOREM 56. Let L+ be an arbitrary term extension of L, and S be an
arbitrary model set for L+. Then there is a (Henkin) model for L+ in which
S (and, hence, each set of statements of L that extends to S) is true.

Since the set T + of all the terms of L+ is in�nite, model hT +; IT +i is
in�nite as well, a point noted in [Smullyan, 1968, p. 62]. However, when S
is a �nite model set for L, S is sure to have a �nite model as well. Let (i) TS
consist of the various terms of L that occur in S, (ii) for each term T of L, let
ITS (T ) be T itself if T belongs to TS , otherwise the alphabetically earliest
member of TS , and (iii) for each predicate Q of L of degree d, let ITS (Q) be
fhITS(T1); ITS (T2); : : : ; ITS (Td)i : Q(T1; T2; : : : ; Td) 2 Sg. Theorems 45 and
28 are easily edited to show that S has �nite model hTS ; ITS i as a model.
Hence, so do all sets of statements of L extending to S. The model, again,
is a Henkin one.

THEOREM 57. Let S be a �nite model set for L. Then there is a �nite
(Henkin) model for L in which S (and, hence, each set of statements of L
that extends to S ) is true.

It can further be shown of any �nite set S of statements of L that if S
has a �nite model, then S extends to a �nite model set for L. A �nite set of
statements of L thus has a �nite model if it extends to a �nite model set for
L. The result is particularly interesting as regards the routine in [Leblanc
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and Wisdom, 1993] (and that in [Je�rey, 1990] from which it stems) for
making consistency trees. As pointed out on p. 298 of [Leblanc and Wisdom,
1993], any set of statements declared consistent by the routine of p. 189
is a subset of a �nite model set (as that text puts it, a subset of a �nite
Hintikka set). Any such set thus has a �nite model. The routine in question
declares consistent only some of the sets of statements of L that extend
to �nite model sets. However, I have since found another routine which does
declare consistent all sets of statements of L that extend to �nite model
sets.24

So much, however, for accounts of logical truth and entailment which|
be it overtly or covertly|hinge upon the notion of truth.

4 PROBABILISTIC SEMANTICS (1)

My concern in this section and the next is with probabilities, i.e. with de-
grees of rational belief. The probability functions I consider �rst are sin-
gulary real-valued functions. They will thus take single statements of L+

as their arguments, the way truth-value functions do; but they will take
as their values reals from the entire interval [0,1], unlike truth-value func-
tions, which merely take the end-points 0 and 1. I shall place on the func-
tions seven constraints ensuring that `for any such function P+ for L+, a
rational agent might simultaneously believe the various statements of L+|
say A1; A2; A3, etc.25|to the respective extents P+(A1); P+(S2); P+(A3),
etc.'26 These constraints, adopted in some cases and adapted in others from
[Kolmogorov, 1933; Popper, 1955] and [Gaifman, 1964], are of considerable
interest.27 Not only do they eschew all semantic notions, thus being what
one calls autonomous; they in fact permit de�nition of several of them|in
particular, logical truth and logical entailment. So, besides freeing proba-
bility theory (hence, to some extent, inductive logic) of its past dependence
upon deductive logic, they make for a brand-new semantics: probabilistic
semantics.

24For further results concerning model (or Hintikka) sets, see [Hintikka, 1955], [Je�rey,
1990], [Smullyan, 1968], [Leblanc and Wisdom, 1993] and [Leblanc, 1976].
25A1 here the alphabetically �rst statement of L+; A2 the second, A3 the third, etc.
26I.e. ensuring that any such function P+ for L+ is coherent in the sense of [De Finetti,

1937]. The literature on belief functions is considerable. For a survey of early results on
coherent belief (particularly betting) functions, see [Carnap and Je�rey, 1971, p. 105{
116]; for a recent study of belief systems, see [Ellis, 1979]. I owe the phrasing in the text
to Kent Bendall; hence the quotation marks.
27As the reader doubtless knows, Kolmogorov's functions take sets rather than state-

ments as their arguments. However, they convert into statement-theoretic functions once
you think of his complements and intersections as negations and conjunctions. Popper's
functions take what he calls elements as their arguments; these, as pointed out in [Popper,
1959, p. 319], may be understood either as sets or as statements. Gaifman's functions
do take statements as their arguments.
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Thanks in good part to Popper, the functions studied here thus have a
fresh look and a new thrust. They nonetheless are of the most orthodox
and in the present context most welcome sort. They accord to negations
and conjunctions the very values that the functions in [Kolmogorov, 1933]

would to complements and intersections. and they accord to universal quan-
ti�cations values complying with the substitution interpretation of `8' (and,
quite serviceably, accord such values to all universal quanti�cations).

Popper's interest eventually shifted from the present functions to the
binary ones studied in [Popper, 1959]. It is the latter which �gure most
prominently in recent contributions to probabilistic semantics. I shall in-
vestigate them in the second half of Section 5. For novelty's sake, however,
and because of the close relationship they bear to truth-value functions, I
shall devote this section and half the next to singulary functions.

Formal details, borrowed from [Leblanc, 1982c], are as follows.
Let L+ be an arbitrary term extension of L. By a (singulary) probability

function for L+ I shall understand any function P+ from the statements of
L+ to the reals that meets the following constraints:

C1. 0 � P+(a)

C2. P+(:(A ^ :A)) = 1

C3. P+(A) = P+(A ^ B) + P+(A ^ :B)

C4. P+(A) � P+(A ^ A)

C5. P+(A ^ B) � P+(B ^ A)

C6. P+(A ^ (B ^ C)) � P+((A ^B) ^ C)

C7. P+(A ^ (8x)B) = Limitj!1P
+(A ^

Qj
i=1B(t+i =x)).28

28Information concerning the provenance of C1{C7 may be welcome.
(i) C1 andC2 are statement-theoretic counterparts of two axioms in [Kolmogorov,

1933]; they are known as Non-negativity and Unit Normalisation. C3-C6 are borrowed
from [Popper, 1955]; they are known as Complementation, Idempotence, Commutativity,
and Associativity. And C7 is an adaptation by Bendall of an axiom in [Gaifman, 1964].
Both Gaifman and Bendall, incidentally, use minima where I use limits, but the di�erence
is immaterial here.

(ii) Kolmogorov had two additional axioms, known as Additivity and Continuity. The
statement-theoretic counterpart of the latter calls for in�nite disjunctions and, hence,
does not belong here. The statement-theoretic counterpart of the former runs:

C8 If two statements A and B of L+ are logically incompatible in the standard sense
(i.e. if :(A^B) is logically true in that sense), then P+(A_B) = P+(A)+P+(B).

Switching from sets to statements forces adoption of yet another constraint:

C9. If A and B are logically equivalent in the standard sense (i.e. if A � B is logically
true), then P+(A) = P+(B). (= Substitutivity).

It is readily shown, given Theorem 107 below, that C1{C2 and C8{C9 pick out exactly
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I shall declare a statement A of L logically true in the probabilistic sense
if|no matter the term extension L+ of L and probability function P+

for L+|P+(A) = 1; and, where S is a set of statements of L, I shall
declare A logically entailed by S in the probabilistic sense if|no matter the
term extension L+ of L and probability function P+ for L+|P+(A) = 1
if P+(B) = 1 for each member B of S. Equivalently, but more simply, A
may be declared logically true in the probabilistic sense if A evaluates to 1
on every probability function for L.

I shall legitimise the foregoing account of logical entailment by showing it
strongly sound (= Theorem 100) and strongly complete (= Theorem 105).
That the �rst account of logical truth is legitimate follows, of course, from
Theorems 100 and 105; and that the second is follows from the theorems
leading to Theorems 100 and 105.

Preparatory to proving Theorem 100, the Strong Soundness Theorem for
L in probabilistic semantics, I establish that (i) each axiom of L evaluates
to 1 on an arbitrary function P for L (= Theorem 98) and (ii) the ponential
B of two statements A and A! B of L evaluates to 1 on P if A and A! B
do (= Theorem 87). Proof of (i) is in three steps. I �rst show that each
axiom of L of sorts A1{A3 evaluates to 1 on P (= Theorems 75, 76, and
86). Given this �rst result and Theorem 87, I next show that if `0 A (i.e. if
A is provable in L by means of just A1{A3), then A evaluates to 1 on P (=
Theorem 88). And, given this second result, I then show that each axiom
of L of sorts A4{A6|and, more generally, each axiom of L|evaluates to
1 on P (= Theorems 95{98).

the same probability functions as C1{C6 do.
(iii) Popper uses in place of C1{C2 the following three constraints:

C10. P+(A ^ B) � P+(A) (= Monotony)

C11. There are at least two distinct statements A and B of L+ such that P+(A) 6=
P+(B) (= Existence)

C12. For each statement A of L+ there is a statement B of L+ such that P+(A) �
P+(B) and P+(A ^ B) = P+(A)� P+(B) (= Multiplication).

It can be shown that C3{C6 and C10{C12 pick out exactly the same probability func-
tions as C1{C6 do; see [Leblanc, 1982c] on the matter.

(iv) That P+(:A) = 1�P+(A) (= Theorem 68) would not do as a substitute for C3
is readily shown. Let P+(:A) be 1 � P+(A), and P+(A ^ B) be the smaller of P+(A)
and P+(B). All of C1{C2, Theorem 68, and C4{C7 will then `pan out', but C3 will

not. Whether P+((8x)A) = Limitj!1P+(
Qj
i=1 A(t+i =x)) (= Theorem 90) would do

as a substitute for C7 is an open question. It does in [Gaifman, 1964]; but, as Bendall
pointed out to me, the non- autonomous constraint that Gaifman would use to pass from
Theorem 90 to C7 is not available here.

Note that the two limits Limitj!1P
+(A ^ �j

i�1B(t+i =x)) and Limitj!1P
+

(�j
i=1A(t+i =x)) exist for every function P+ for L+ and all quanti�cations (8x)B and

(8x)A of L+. Carnap would rather construe P+((8x)A) as Limitj!1P
+(A(t+j =x)) (see

[Carnap, 1950, p. 302]). But, since this third limit does not always exist, the ensuing
function P+ would not accord values to all universal quanti�cations, a serious drawback
this.
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As the reader will notice, the proofs of Theorems 58{98 hold with `P+'
everywhere for `P '. Hence, so do Theorems 59{98 themselves. Hence, so
do such among Theorem 58{98 as are needed to prove Theorem 100 (and,
further on, Theorem 105).

THEOREM 58. P (A ^ B) � P (A).

Proof. P (A ^ :B) � 0 by C1. Hence, P (A) � P (A ^ B) by C3. Hence
Theorem 58. �

THEOREM 59. P (A) = P (A ^ A).

Proof. By C4 and Theroem 58. �

THEOREM 60. P (A ^ B) = P (B ^A).

Proof. By C5. �

THEOREM 61. P ((A ^ B) ^ C) = P (A ^ (B ^ C)).

Proof.

P ((A ^ B) ^ C) = P (C ^ (A ^B)) (Theorem 60)
� P ((C ^ A) ^ B) (C6)
� P (B ^ (C ^ A)) (Theorem 60)
� P ((B ^ C) ^ A) (C6)
� P (A ^ (B ^ C)) (Theorem 60).

Hence Theorem 61 by C6. �

THEOREM 62. P (A) = P (B ^ A) + P (:B ^ A).

Proof. By C3 and Theorem 60. �

THEOREM 63. If P (A) � 0, then P (A) = 0.

Proof. By C1. �

THEOREM 64. P (A ^ B) � P (B).

Proof. By Theorems 58 and 60. �

THEOREM 65. P (A ^ :A) = 0.

Proof.

P (A ^ :A) = P (A)� P (A ^ A) (C3)
= 0 (Theorem 59).

�
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THEOREM 66. P ((A ^ :A) ^ B) = 0.

Proof.

P ((A ^ :A) ^ B) � P (A ^ :A) (Theorem 58
� 0 (Theorem 65)
= 0 (Theorem 63):

�

THEOREM 67. P (A) = P (:(B ^ :B) ^ A).

Proof.

P (A) = P (:(B ^ :B) ^A) + P ((B ^ :B) ^A) (Theorem 62)
= P (:(B ^ :B) ^A) (Theorem 66):

�

THEOREM 68. P (:A) = 1� P (A).

Proof.

P (:A) = P (:(A ^ :A) ^ :A) (Theorem 67)
= P (:(A ^ :A))� P (:(A ^ :A) ^ A) (C3)
= 1� P (:(A ^ :A) ^ A) (C2)
= 1� P (A) (Theorem 67):

�

THEOREM 69. P (A) � 1.

Proof. P (A) = 1�P (:A) by Theorem 68. but P (:A) � 0 by C1. Hence,
Theorem 69. �

THEOREM 70. If P (A) � 1, then P (A) = 1.

Proof. By Theorem 69. �

THEOREM 71. P (:A ^ (A ^ B)) = 0.

Proof.

P (:A ^ (A ^ B)) = P ((:A ^ A) ^B) (Theorem 61)
� P (:A ^ A) (Theorem 58)
� P (A ^ :A) (Theorem 60)
� 0 (Theorem 65)
= 0 (Theorem 63):

�
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THEOREM 72. P (A ^ B) = P (A ^ (A ^B)).

Proof.

P (A ^ B) = P (A ^ (A ^B)) + P (:A ^ (A ^ B)) (Theorem 62)
= P (A ^ (A ^B)) (Theorem 71):

�

THEOREM 73. P (A! B) = 1 i� P (A ^ :B) = 0.

Proof. By D! and Theorems 68. �

THEOREM 74. P (A! B) = 1 i� P (A) = P (A ^ B).

Proof. By Theorems 73 andC3. �

THEOREM 75. P (A! (A ^A)) = 1 (= Axiom Schema A1).

Proof.
P (A) = P (A ^ A) (Theorem 59)

= P (A ^ (A ^ A)) (Theorem 72):

Hence, Theorem 75 by Theorem 74. �

THEOREM 76. P ((A ^ B)! A) = 1 (= Axiom Schema A2).

Proof.
P (A ^B) = P (A ^ (A ^ B)) (Theorem 72)

= P ((A ^B) ^ A) (Theorem 60):

Hence, Theorem 76 by Theorem 74. �

THEOREM 77. P ((A ^ B)! B) = 1.

Proof.

P (A ^ B) = P ((A ^ B) ^ B) + P ((A ^B) ^ :B) (C3)
= P ((A ^ B) ^ B) + P (A ^ (B ^ :B)) (Theorem 61)
= P ((A ^ B) ^ B) + ((B ^ :B) ^A) (Theorem 60)
= P ((A ^ B) ^ B) (Theorem 66):

Hence, Theorem 77 by Theorem 74. �

THEOREM 78. If P (A ! B) = 1 and P (B ! C) = 1, then P (A !
C) = 1.
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Proof. Suppose �rst that P (A! B) = 1. Then

0 = P (A ^ :B) (Theorem 73)
� P (:C ^ (A ^ :B)) (Theorem 64)
= P (:C ^ (A ^ :B)) (Theorem 63)
= P ((:C ^A) ^ :B) (Theorem 61):

Suppose next that P (B ! C) = 1. Then

0 = P (B ^ :C) (Theorem 73)
� P ((B ^ :C) ^ A) (Theorem 58)
= P ((B ^ :C) ^ A) (Theorem 63)
= P (B ^ (:C ^A)) (Theorem 61)
= P ((:C ^ A) ^ B) (Theorem 60):

Hence, P (:C ^A) = 0 by C3; hence, P (A ^:C) = 0 by Theorem 60; and,
hence, P (A! C) = 1 by Theorem 73. Hence, Theorem 78. �

THEOREM 79. If P (A! (B ^ C)) = 1, then P (A! B) = 1.

Proof. Suppose P (A! (B ^ C)) = 1. Then

P (A) = P (A ^ (B ^ C)) (Theorem 74)
= P ((A ^B) ^ C) (Theorem 61)
� P (A ^ B) (Theorem 58):

Hence, P (A) = P (A ^ B) by Theorem 58; and, hence, P (A ! B) = 1 by
Theorem 74. Hence, Theorem 79. �

THEOREM 80. P (A ^ ::B) = P (A ^ B).

Proof. By C3
P (A) = P (A ^ :B) + P (A ^ ::B)

and
P (A) = P (A ^ :B) + P (A ^ B):

Hence, Theorem 80. �

THEOREM 81. If P (A ! (B ! C)) = 1 and P (A ! B) = 1, then
P (A! C) = 1.

Proof. Suppose �rst that P (A! (B ! C)) = 1. Then

0 = P (A ^ ::(B ^ :C)) (Theorem 73 and D!)
= P (A ^ (B ^ :C)) (Theorem 80)
= P ((A ^ B) ^ :C) (Theorem 61)
= P (:C ^ (A ^ B)) (Theorem 60)
= P ((:C ^ A) ^ B) (Theorem 61):
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Suppose next that P (A! B) = 1. Then

0 = P (A ^ :C) (Theorem 73)
� P (:C ^ (A ^ :B)) (Theorem 64)
= P (:C ^ (A ^ :B)) (Theorem 63)
= P ((:C ^ A) ^ :B) (Theorem 61):

Hence, P (:C ^A) = 0 by C3; hence, P (A ^ :C) = 0 by Theorem 60; and,
hence, P (A! C) = 1 by Theorem 73. Hence, Theorem 81. �

THEOREM 82. If P (A ! B) = 1 and P (A ! C) = 1, then P (A !
(B ^ C)) = 1.

Proof. Suppose �rst that P (A! B) = 1. Then

P (A) = P (A ^ B) (Theorem 74)
= P ((A ^ B) ^ C) + P ((A ^ B) ^ :C) (C3)
= P (A ^ (B ^ C)) + P ((A ^ B) ^ :C) (Theorem 61)
= P (A ^ (B ^ C)) + P (:C ^ (A ^ B)) (Theorem 60):

Suppose next that P (A! C) = 1. Then

0 = P (A ^ :C) (Theorem 73)
= P (:C ^A) (Theorem 60)
� P ((:C ^ A) ^ B) (Theorem 58)
= P ((:C ^ A) ^ B) (Theorem 63)
= P (:C ^ (A ^ B)) (Theorem 61):

Hence, P (A) = P (A ^ (B ^ C)); and, hence, P (A ! (B ^ C)) = 1 by
Theorem 74. Hence, Theorem 82. �

THEOREM 83. If P (A! (B ^ C)) = 1, then P (A! C) = 1.

Proof. Suppose that P (A! (B ^ C)) = 1. Then

P (A) = P (A ^ (B ^ C)) (Theorem 74)
= P ((A ^ B) ^ C) (Theorem 61)
= P (C ^ (A ^ B)) (Theorem 60)
= P ((C ^ A) ^ B) (Theorem 61)
� P (C ^ A) (Theorem 58)
� (A ^ C) (Theorem 60):

Hence, P (A ! C) = 1 by the same reasoning as in the proof of Theorem
79. Hence, Theorem 83. �

THEOREM 84. If P (A! B) = 1 and P (A! :B) = 1, then P (A) = 0.
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Proof. Suppose P (A ! B) = 1. Then P (A ^ :B) = 0 by Theorem 73.
Suppose further that P (A! :B) = 1. Then P (A^::B) = 0 by Theorem
73 again. Hence, P (A) = 0 by C3. Hence, Theorem 84. �

THEOREM 85. If P ((A ^ B)! C) = 1, then P (A! (B ! C)) = 1.

Proof. Suppose P ((A ^ B)! C) = 1. Then

0 = P ((A ^B) ^ :C) (Theorem 73)
= P (A ^ (B ^ :C)) (Theorem 61)
= P (A ^ ::(B ^ :C)) (Theorem 80):

Hence, P (A ! (B ! C)) = 1 by Theorem 74 and D!. Hence, Theorem
85. �

THEOREM 86. P ((A ! B) ! (:(B ^ C) ! :(C ^ A))) = 1.
(= Axiom Schema A3).

Proof. (i) By Theorem 77

P ((((A ! B) ^ :(B ^ C)) ^ (C ^ A))! (C ^ A)) = 1:

But by Theorem 76
P ((C ^A)! C) = 1:

Hence, by Theorem 78

P ((((A! B) ^ :(B ^ C)) ^ (C ^ A))! C) = 1:

(ii) Similarly, but with Theorem 77 substituting for Theorem 76.

P ((((A ! B) ^ :(B ^ C)) ^ (C ^ A))! A) = 1:

But by Theorem 76

P ((((A! B) ^ :(B ^ C)) ^ (C ^ A))! ((A! B) ^ :(B ^ C))) = 1;

and, hence, by Theorem 79

P ((((A! B) ^ :(B ^ C)) ^ (C ^ A))! (A! B)) = 1:

Hence, by Theorem 81

P ((((A! B) ^ :(B ^ C)) ^ (C ^ A))! B) = 1:

(iii) By (i){(ii) and Theorem 82

P ((((A! B) ^ :(B ^ C)) ^ (C ^ A))! (B ^ C)) = 1:
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But by Theorem 76

P ((((A! B) ^ :(B ^ C)) ^ (C ^ A))! ((A! B) ^ :(B ^ C))) = 1;

and, hence, by Theorem 83

P ((((A! B) ^ :(B ^ C)) ^ (C ^ A))! :(B ^ C)) = 1:

Hence, by Theorem 84

P (((A! B) ^ :(B ^ C)) ^ (C ^ A)) = 0;

hence, by Theorem 80

P (((A! B) ^ :(B ^ C)) ^ ::(C ^ A)) = 0;

hence, by Theorem 73

P (((A! B) ^ :(B ^ C))! :(C ^ A)) = 1:

and, hence, by Theorem 85

P ((A! B)! (:(B ^ C)! :(C ^ A))) = 1:

�

THEOREM 87. If P (A) = 1 and P (A! B) = 1, then P (B) = 1
(= Modus Ponens).

Proof. Suppose P (A) = 1 and P (A ! B) = 1. Then by Theorem 74
P (A ^ B) = 1; hence, by Theorem 64 P (B) � 1; and, hence, by Theorem
70 P (B) = 1. �

Hence:

THEOREM 88. If `0 A, then P (A) = 1.

Proof. Suppose the column made up of B1; B2; : : : ; Bp constitutes a proof
of A in L by mans of just A1{A3. It is easily shown by mathematical
induction on i that, for each i from 1 through p, P (Bi) = 1. For in the case
that Bi is an axiom, P (Bi) = 1 by Theorems 75, 76 and 86; and in the case
that Bi is the ponential of two pervious entries in the column, P (Bi) = 1
by Theorem 87 and the hypothesis of the induction. Hence, P (Bp) = 1, i.e.
P (A) = 1. Hence, Theorem 88. �

And hence:

THEOREM 89. If `0 A$ B, then P (A) = P (B).
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Proof. If `0 A $ B, then `0 A ! B and `0 B ! A; hence, by Theorem
74,

P (A) = P (A ^B)

and

P (B) = P (B ^ A);

and. hence, by Theorem 60

P (A) = P (B):

�

With Theorem 89 on hand, I am ready to show that all axioms of L of
sorts A4{A6|and, more generally, all axioms of L| evaluate to 1 on any
probability function for L.

THEOREM 90. P ((8x)A) = Limitj!1P (
Qj
i=1 A(ti=x)).

Proof. By C7

P (:(A ^ :A) ^ (8x)A) = Limitj!1P (:(A ^ :A) ^

jY
i=1

A(ti=x)):

Hence, Theorem 90 by Theorem 67 and the de�nition of a limit. �

THEOREM 91. If P (A) = 1 and P (B) = 1, then P (A ^ B) = 1.

Proof. Suppose P (A) = 1. Then P (A ^ B) + P (A ^ :B) = 1 by C3.
Suppose also that P (B) = 1. then P (:B) = 0 by Theorem 68; hence,
P (A ^ :B) � 0 by Theorem 64; and, hence, P (A ^ :B) = 0 by Theorem
63. Hence, Theorem 91. �

THEOREM 92. If P (Ai) = 1 for each i from 1 through j, then

P (
Qj
i=1 Ai) = 1.

Proof. By Theorem 91 and mathematical induction on j. �

THEOREM 93. If P (A(ti=x)) = 1 for each i from 1 on, then P ((8x)A) = 1.

Proof. By Theorems 92 and 90, and the de�nition of a limit. �

THEOREM 94. If P (A! B(ti=x)) = 1 for each i from 1 on, then P (A!
(8x)B) = 1.
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Proof. Suppose
P (A! B(ti=x)) = 1

for each i from 1 on. Then by Theorem 82 and mathematical induction on j

P (A!

jY
i=1

B(ti=x));

for each j from 1 on, hence, by Theorem 74

P (A) = P (A ^

jY
i=1

B(ti=x));

hence, by the de�nition of a limit

P (A) = Limitj!1P (A ^

jY
i=1

B(ti=x));

hence, by C7
P (A) = P (A ^ (8x)B);

and, hence, by Theorem 74

P (A! (8x)B) = 1:

Hence, Theorem 94. �

THEOREM 95. P (A! (8x)A) = 1 (= Axiom Schema A4).

Proof. Since x here is sure to be foreign to a;A(ti=x) is sure to be the
same as A. Hence,

`0 (A ^

jY
i=1

A(ti=x))$ A;

hence, by Theorem 89 and the de�nition of a limit

Limitj!1P (A ^

jY
i=1

A(ti=x)) = P (A);

hence, by C7
P (A ^ (8x)A) = P (A);

and, hence, by Theorem 74

P (A! (8x)A) = 1:

�
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THEOREM 96. P ((8x)A! A(T=x)) = 1 (= Axiom Schema A5).

Proof. Let T be the kth term of L. So long as j � k,

`0 (A(T=x) ^

jY
i=1

A(ti=x))$

jY
i=1

A(ti=x):

Hence, by Theorem 89 and the de�nition of a limit

Limitj!1P (A(T=x) ^

jY
i=1

A(ti=x)) = Limitj!1P (

jY
i=1

A(ti=x));

hence, by C7 and Theorem 90

P (A(T=x) ^ (8x)A) = P ((8x)A);

hence, by Theorem 60

P ((8x)A ^ A(t=x)) = P ((8x)A);

and, hence, by Theorem 74

P ((8x)A! A(T=x)) = 1:

�

THEOREM 97. P ((8x)(A ! B) ! ((8x)A ! (8x)B)) = 1 (Axiom
Schema A6).

Proof. Let T be an arbitrary term of L. By Theorem 76

P (((8x)(A ! B) ^ (8x)A)! (8x)(A! B)) = 1:

But by Theorem 96

P ((8x)(A! B)! (A! B)(T=x)) = 1:

Hence, by Theorem 78

P (((8x)(A! B) ^ (8x)A)! (A! B)(T=x)) = 1:

Similarly, but using Theorem 77 in place of Theorem 76,

P (((8x)(A! B) ^ (8x)A)! A(T=x)) = 1:

Hence, by Theorem 81

P (((8x)(A! B) ^ (8x)A)! B(T=x)) = 1;
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hence, by Theorem 94 and the hypothesis on T

P (((8x)(A! B) ^ (8x)A)! (8x)B) = 1;

and, hence, by Theorem 85

P ((8x)(A! B)! ((8x)A! (8x)B)) = 1:

�

THEOREM 98. If A is an axiom of L, then P (A) = 1.

Proof. Suppose A is an axiom of L, in which case A is bound by Theorem
1 to be of the sort

(8x1)(8x2) : : : (8xn)(B(x1; x2; : : : ; xn=T1; T2; : : : ; Tn));

where n � 0 and B is one of the sorts A1{A6. Proof that P (A) = 1 will
be by mathematical induction on n.

Basis: n = 0. Then A(= B) is of one of the sorts A1{A6 and, hence,
P (A) = 1 by Theorems 75, 76, 86 and 95{97.

Inductive Step: n > 0. By Theorem 2

((8x2) : : : (8xn)(B(x1; x2; : : : ; xn=T1; T2; : : : ; Tn)))(ti=x1)

constitutes an axiom of L for each i from 1 on. Hence, by the hypothesis of
the induction

P (((8x2) : : : (8xn)(B(x1; x2; : : : ; xn=T1; T2; : : : ; Tn)))(ti=xi)) = 1

for each i from 1 on. Hence, by Theorem 93,

P ((8x1)(8x2) : : : (8xn)(B(x1; x2; : : : ; xn=T1; T2; : : : ; Tn))) = 1:

Hence, P (A) = 1. �

With Theorems 87 and 98 on hand, an obvious induction readily delivers
Theorem 99, which in turn delivers the Strong Soundness Theorem for L
in probabilistic semantics. Suppose indeed that the column made up of
B1; B2; : : : ; Bp constitutes a proof of A from S in L, and suppose each
member of S evaluates to 1 on P . In the case that Bi belongs to S; P (Bi) = 1
by Theorem 98; and in the case that Bi is the ponential of two earlier
entries in the column, P (Bi) = 1 by Theorem 87 and the hypothesis of the
induction. Hence, P (Bi) = 1 for each i from 1 through p. Hence P (Bp) = 1.
hence, P (A) = 1.

THEOREM 99. If S ` A, then A evaluates to 1 on P if all the members of
S do.
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But Theorems 87 and 98 hold with `P+' for `P '. Hence:

THEOREM 100. If S ` A, then|no matter the term extension L+ of L and
probability function P+ for L+|A evaluates to 1 on P+ if all the members
of S do, i.e. A is logically entailed by S in the probabilistic sense (= The
Strong Soundness Theorem for L in Probabilistic Semantics).

Proof of the converse of Theorem 100 calls for an additional de�nition
and two additional lemmas.

Let S be an arbitrary set of statements of L. By the probability associate
of S in L, I shall understand the function PS such that for any statement
A of L:

PS(A) =

�
1 if S ` A
0 otherwise:

I �rst establish that the probability associate of S in L meets Constraints
C1{C2 and C4{C6 under all circumstances, meets Constraint C3 as well
when S is maximally consistent in L, and meets Constraint C7 as well when
S is !-complete in L. I then establish that when S is maximally consistent
in L, a statement A of L belongs to S i� it evaluates to 1 on the probability
associate of S.

THEOREM 101. Let S be a set of statements of L, and PS be the probability
associate of S in L.

(a) PS meets Constraints C1{C2 and C4{C6.

(b) If S is maximally consistent in L, then PS meets Constraint C3 as
well.

(c) If S is !-complete in L, then PS meets Constraint C7 as well.

(d) If S is maximally consistent and !-complete in L, then PS constitutes
a probability function for L.29

Proof.

(a) follows from the de�nition of PS and elementary facts about prov-
ability in L.

(b) Suppose S is maximally consistent in L, and suppose �rst that PS(A) =
1. Then S ` A (by the de�nition of PS). Hence S ` A ^ B or S ` A ^ :B,
but not both. Hence, one of PS(A ^ B) and PS(A ^ :B) equals 1 and the
other 0. Hence, PS(A) = PS(A ^ B) + PS(A ^ :B). Suppose next that

29Note that if a set of statements of L is in�nitely extendible in L, then S is sure to be
!-complete and hence its probability associate is sure to meet C7. The result, exploited
in [Morgan and Leblanc, 1983c], is of no use here: the probability associate of S cannot
meet C3 unless S is maximally consistent, in which case S sports every term of L.
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PS(A) = 0. Then S 6` A (by the de�nition of PS). Hence neither S ` A^B
nor S ` A ^ :B. Hence, both PS(A ^ B) and PS(A ^ :B) equal 0. Hence,
again, PS(A) = PS(A ^ B) + PS(A ^ :B).

(c) Suppose S is !-complete in L, and suppose �rst that PS(A^(8x)B) =
1. Then S ` A ^ (8x)B (by the de�nition of PS). Hence, S ` A ^Qj
i=1 B(ti=x) for every j from 1 on. Hence, PS(A ^

Qj
i=1 B(ti=x)) = 1

for every j from 1 on. Hence, Limitj!1PS(A ^
Qj
i=1 B(ti=x)) = 1. Sup-

pose next that PS(A ^ (8x)B) = 0. Then S 6` A ^ (8x)B (by the de�nition
of PS). Hence, either S 6` A or S 6` (8x)B (or both). Now, if S 6` A, then

S 6` A ^
Qj
i=1 B(ti=x) for any j, hence PS(A ^

Qj
i=1 B(ti=x)) = 0 for every

j, and hence Limitj!1PS(A ^
Qj
i=1B(ti=x)) = 0. If, on the other hand,

S 6` (8x)B, then S 6` B(t=x) for at least one term T of L, this because S
is !- complete in L. Hence, there is a k such that, for every j from k on,
S 6` A^

Qj
i=1B(ti=x). Hence, there is a k such that, for every j from k on,

PS(A^
Qj
i=1 B(ti=x)) = 0; and, hence, Limitj!1PS(A^

Qj
i=1B(ti=x)) = 0.

Hence, PS meets Constraint C7. �

THEOREM 102. Let S be a set of statements of L that is maximally con-
sistent and !-complete in L, and let PS be the probability associate of S in
L. Then a statement A of L belongs to S i� PS(A) = 1.

Proof. If A belongs to S, then S ` A and, hence, PS(A) = 1 by the
de�nition of PS . If A does not belong to S, then by Theorem 3 :A belongs
to S, hence, PS(:A) = 1 by the de�nition of PS , hence, PS(A) = 0 by
Theorems 101 (d) and 68, and, hence, PS(A) 6= 1. Hence, Theorem 102. �

Now suppose, as on earlier occasions, that S 6` A where S is in�nitely
extendible in L. Then by Theorem 4 the Henkin extension H(S [ f:Ag) of
S [ f:Ag in L is sure, as usual, to be maximally consistent and !-complete
in L; hence, by Theorem 102, every member of H(S [ f:Ag) is sure to
evaluate to 1 on the probability associate of H(S [ f:Ag) in L. But by
Theorem 101 the probability associate in question constitutes a probability
function for L. Hence, by Theorem 68:

THEOREM 103. Let S be a set of statements of L that is in�nitely ex-
tendible in L, and let A be an arbitrary statement of L. If S 6` A, then there
is a probability function for L on which all members of S evaluate to 1 but
A does not.

But all of Theorems 4, 102, 101 and 68 hold with `L+' in place of `L' and
`P+' in place of `P '. Hence:

THEOREM 104. Let S and A be as in Theorem 103. If|no matter the
term extension L+ of L and probability function P+ for L+| A evaluates
to 1 on P+ if all members of S do, then S ` A.
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When S is not in�nitely extendible in L, S [ f:Ag is sure|as usual|to
be in�nitely extendible in L1. Hence, if S 6` A, then by the analogues of
Theorems 4, 101, 102 and 68 for L+ there is sure to be a term extension L+

of L (L1) and a probability function P+ for L+ (the probability associate
in L1 of the Henkin extension of S [ f:Ag in L1) such that all members
of S evaluate to 1 on P+ but A does not. Hence, given Theorem 104:

THEOREM 105. Let S be an arbitrary set of statements of L and A be an
arbitrary statement of L. If|no matter the term extension L+ of L and
probability function P+ for L+|A evaluates to 1 on P+ if all members of
S do, i.e. if A is logically entailed by S in the probabilistic sense, then S ` A
(= The Strong Completeness Theorem for L in Probabilistic Semantics).

Hence, appealing to Theorem 100 and taking S in each case to be ;:

THEOREM 106. Let A be an arbitrary statement of L. Then ` A i�|no
matter the term extension L+ of L and probability function p+ for L+|A
evaluates to 1 on P+, i.e. i� A is logically true in the probabilistic sense.

As mentioned earlier, Theorems 100 and 105 legitimise the account on
page 87 of logical entailment; Theorem 106 legitimises the �rst account
there of logical truth; and the following corollary of Theorems 99 and 103
legitimises the second:

THEOREM 107. Let A be as in Theorem 106. Then ` A i� A evaluates to
1 on every probability function for L.

5 PROBABILISTIC SEMANTICS II

Getting on with the agenda of page 87, I establish here that (singulary)
probability theory is but a generalisation of truth-value theory, and then

turn to binary probability functions. These too, the reader will recall, permit
de�nition of logical truth, logical entailment, and such.

As documented in Section 3, truth-value semantics can be couched in
either of two idioms: that of truth-value assignments and that of truth-value
functions. The former idiom makes for a smooth and easy transition from
truth-functional truth to logical truth, truth-functional entailment to logical
entailment, etc. (write `substatements' for `components'). However, when
it comes to investigating the relationship between truth-value theory and
probability theory, the latter idiom is the handier one, and I accordingly
switch to it.

I indicated on page 76 that I would eventually refer to both the truth-
value functions for L and the probability ones by means of a single letter
`P ', and use 0 and 1 as truth values. That time has come. From here on a
truth-value function for L will thus be any function P from the statements
of L to f0; 1g that meets the following three constraints:
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B1. P (:A) = 1� P (A)

B2. P (A ^ B) = P (A)� P (B)

B3. P ((8x)A) = 1 i� P (A(T=x)) = 1 for each term T of L.

Thus understood, a truth-value function for L is obviously a two-valued
function from the statements of L to the reals that meets Constraints B1{
B3. That, conversely, a two-valued function from the statements of L to
the reals is sure, if it meets Constraints B1{B3, to have 0 and 1 as its two
values and hence be a truth-value function for L, follows from clause (a) in
Theorem 108 (`

Qn
i=1 P (A1)' in the proof of that clause is short of course for

`P (A1)� P (A2)� � � � � P (An)').

THEOREM 108. Let P be a two-valued function from the statements of L to
the
reals.

(a) If P meets Constraint B1{B2, then P has 0 and 1 as its values.

(b) If P meets Constraints C1{C4 then P again has 0 and 1 as its values.

Proof.
(a) Suppose P meets Constraint B2, in which case

P (

nY
i=1

Ai) =

nY
i=1

P (Ai)

for each n from 1 on, and suppose at least one value of P were some real
r other than 0 and 1. Then P would number all of r; r2; r3, etc. among its
values and, hence, would not|as supposed|be two- valued. Hence, (a).

(b) P (:(A^:A)) equals 1 by virtue of Constraint C2, and|as the proof
of Theorem 65 attests|P (A ^ :A) equals 0 by virtue of Constraints C1,
C3, and C4. Hence, (b). �

So:

THEOREM 109. P constitutes a truth-value function for L i� P is a two-
valued function from the statements of L to the reals that meets Constraints
B1{B3.

Theorem 109 is the �rst, and more trite, step in my proof of Theorem
115.

I next show that:

THEOREM 110. Let P be a two-valued function from the statements of
L to the reals. If P meets Constraints B1{B3, then P meets Constraints
C1{C7 as well.
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Proof. Because of the hypothesis on P and Theorem 108 (a), P has but 0
and 1 as values. (i) Proof that under them P meets Constraints C1{C2 and
C4{C6 is immediate. (ii) Proof that under these circumstances P meets
Constraint C3 is as follows:

P (A) = (P (A) � P (B)) + P (A)� (P (A)� P (B))
= P (A ^ B) + P (A)� (P (A)� P (B)) (B2)
= P (A ^ B) + P (A)(1� P (B))
= P (A ^ B) + (P (A)� P (:B)) (B1)
= P (A ^ B) + P (A ^ :B) (B2)

(iii) Proof that under these circumstances P meets Constraint C7 is as fol-
lows. Suppose �rst that P (A^ (8x)B) = 1. Then by Constraint B2 P (A)�
P ((8z)B) = 1; hence, P (A) = P ((8x)B) = 1; hence, by B3 P (B(T=x)) = 1

for every term T of L; hence, by Constraint B2 P (A^
Qj
i=1B(ti=x)) = 1 for

each j from 1 on; and, hence, Limitj!1P (A^
Qj
i=1B(ti=x)) = 1. Suppose

next that P (A^ (8x)B) = 0. Then by Constraint B2 P (A)�P ((8x)B) = 0
and, hence, P (A) = 0 or P ((8x)B) = 0. Now, if P (A) = 0, then by

Constraint B2 P (A ^
Qj
i=1 B(ti=x)) = 0 for each j from 1 on, and hence

Limitj!1P (A ^
Qj
i=1 B(ti=x)) = 0. If, on the other hand, P ((8x)B) = 0,

then by Constraint B3 P (B(T=x)) = 0 for at least one term T of L,
hence by Constraint B2 there is a k such that for every j from k on
P (A ^

Qj
i=1B(ti=x)) = 0, and hence Limitj!1P (A ^

Qj
i=1B(ti=x)) = 0.

�

Proof of the converse of Theorem 110 calls for two lemmas. Note that in
the �rst P may have anywhere from two to @0 values, but in the second it
is understood to have but two.

THEOREM 111. Let P be a function from the statements of L to the reals
that meets Constraints C1{C5.

(a) P (:A) = 1� P (A) (= B1).

(b) If P (A ^ B) = 1, then P (A) = P (B) = 1.

(c) If P (A ^ B) = 1, then P (A ^ B) = P (A) � P (B).

Proof. (a) is Theorem 68. (b) Suppose P (A ^ B) = 1. Then P (A) = 1 by
Theorems 58 and 70, and P (B) = 1 by Theorems 64 and 70. (c) By (b). �

THEOREM 112. Let P be a two-valued function from the statements of L to
the
reals that meets Constraints C1{C5 and C7.

(a) If P (A ^ B) = 0, then P (A) = 0 or P (B) = 0.
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(b) If P (A ^ B) 6= 1, then P (A ^ B) = P (A)� P (B).

(c) P (A ^ B) = P (A)� P (B) (= B2)

(d) P ((8x)A) = 1 i� P (A(T=x)) = 1 for each term T of L (= B3).

Proof. (a) Suppose P (A ^ B) = 0, in which case P (A) = P (A ^ :B) by
C3. Suppose further that P (A) 6= 0, and hence P (A) = 1 by Theorem 108
(b). then P (A ^ :B) = 1; hence, P (:B) = 1 by Theorems 64 and 70; and,
hence, P (B) = 0 by Theorem 68. Hence, P (A) = 0 or P (B) = 0. hence,
(a).

(b) By Theorem 108 (b) and clause (a) of the present theorem.
(c) By (b) and Theorem 111 (c).
(d) Suppose �rst that P ((8x)A) = 1. Then by Theorem 90 Limitj!1

P (
Qj
i=1 A(ti=x)) = 1. But by Theorem 108 (b) each of P (

Q1
i=1A(ti=x)),

P (
Q2
i=1 A(ti=x)), etc. equals 0 or 1, and by Theorem 58 each one of them

is equal to or smaller than the preceding one. Hence, P (
Qj
i=1A(ti=x)) = 1

for each j from 1 on and, hence, by Theorem 111 (b) P (A(T=x)) = 1 for
each term T of L. Suppose next that P ((8x)A) 6= 1. Then by Theorem 108

(b) P ((8x)A) = 0; hence by Theorem 90 Limitj!1P (
Qj
i=1 A(ti=x)) = 0;

hence, by Theorem 108 (b) there is a k such that, for every j from k on,

P (
Qj
i=1 A(ti=x)) = 0; hence; by (a) P (A(T=x)) = 0 for at least one term T

of L; and, hence, P (A(T=x)) 6= 1 for at least one such term. Hence, (d). �

Hence,

THEOREM 113. Let P be a two-valued function from the statements of L to
the
reals. If P meets Constraints C1{C7, then P meets Constraints B1{B3 as
well.30

Hence, the second step in my proof of Theorem 115:

THEOREM 114. Let P be a two-valued function from the statements of
L to the reals. Then P meets Constrains B1{B3 i� P meets Constrains
C1{C7.

Hence by Theorem 109:

THEOREM 115. P constitutes a truth-value function for L i� P constitutes
a two- valued probability function for L.

Hence, as claimed earlier, probability theory is but a generalisation of
truth-value theory: allow truth-value functions|understood as meeting

30Since Constraint C6 does not �gure in Theorems 111 and 112, two-valued functions
that meet Constraints C1{C5 are sure by Theorem 110 to meet Constraint C6 as well.
I doubt, however, that this holds true of functions with more than two values.
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Constraints C1{C7|to have anywhere from two to @0 values, and truth-
value theory expands into probability theory.31 Or, to view it the other way
round, truth-value theory is but a restriction of probability theory: require
probability functions to have but two values, and probability theory reduces
to truth-value theory. (To press the point further, probability functions are
measure functions with reals from the interval [0, 1] as their only values,
and truth-value functions are probability functions with the end-points in
this interval as their only values.)

However, two-valued probability functions (i.e. truth-value functions) dif-
fer from the rest in one fundamental respect: the former are extensional, but
the latter are not. Indeed, call a probability function P for L extensional if
the value of P for a statement of L depends exclusively upon the value(s)
of P for the immediate substatement(s) of that statement|more formally
if

(i) given that P (A) = P (A0); P (:A) = P (:A0),

(ii) given that P (A) = P (A0) and P (B) = P (B0); P (A^B) = P (A0 ^B0),

(iii) given that P (A(T=x)) = P (A0(T=x)) for each term T of L, P ((8x)A) =
P ((8x)A0).

Since P (:A) = 1 � P (A) by Theorem 68, (i) holds however many values
P may have. When P is two-valued, (ii) and (iii) also hold: (ii) because
P (A ^ B) is then equal by Theorem 112(c) to P (A) � P (B), and (iii) be-

cause P ((8x)A) is equal by Theorem 90 to Limitj!1P (
Qj
i=1 A(ti=x)) and,

hence, behaves as P (A(t1=x)); P (A(t1=x)^A(t2=x)); P ((A(t1=x)^A(t2=x))^
A(t3=x)), etc. do. However, when P has more than two values, (ii) and hence
(iii) fail. Suppose, for example, that for some statement A of L, P (A)|and,
hence, P (:A)|equals 1

2 . Then by Theorem 59 P (A ^A) equals P (A) and
hence 1

2 , whereas by Theorem 65 P (A ^ :A) equals 0. So those among the
probability functions for L that have just two values are extensional, but
he rest are not.32 The two results were to be expected. P is understood
here as a measure of rational belief, and by all accounts rational belief is
an intensional matter. When P has just two values, though, P is but a
truth-value function, and truth-value functions are extensional.

Binary probability functions, also known as conditional probability func-
tions, are often de�ned in terms of singulary ones. For example, in [Kol-
mogorov, 1933; Carnap, 1950], etc., P (A=B) is set at P (A^B)=P (B) when

31A similar conclusion is reached in [Popper, 1959, p. 356]: `In its logical interpretation,
the probability calculus is a genuine generalisation of the logic of derivation.' It is based,
though, on a di�erent result, that reported in the Appendix.
32The point was brought to my attention by Bas C. van Fraassen. The counterexample

in the text is a simpli�cation by Michael E. Levin and myself of one originally suggested
by van Fraassen.
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P (B) 6= 0, but otherwise is left without a value (recall that, when deal-
ing with Kolmogorov, I think of his intersections as conjunctions). Partial
functions, however, are unwieldy and|perforce| of limited service.

An alternative approach, favoured by Keynes as early as 1921 and, hence,
antedating Kolmogorov's, has now gained wide currency, thanks to such di-
verse writers as Reichenbach, Je�reys, Von Wright, R�enyi, Carnap (in post-
1950 publications), Popper, etc. Handling binary probability functions as
you would singulary ones, you adopt constraints suiting your understanding
of P (A=B) and then own as your binary probability functions all functions
meeting these constraints.

Heeding the precedent of Section 4, I shall think of P+(A1=B); P+(A2=B);
P+(A3=B), etc., as degrees to which a rational agent might|in the light
of (or relative to) statement B of L+| simultaneously believe the various
statements A1; A2; A3, etc., of L+.33 Constraints particularly suiting this
understanding of P+(A=B) can be found in [Von Wright, 1957]. Slightly
edited for the occasion, they run:

1. 0 � P+(A=B)

2. P+(A=A) = 1

3. If B is not logically false in the standard sense, then
P+(:A=B) = 1� P+(A=B)

4. P+(A ^ B=C) = P+(A=B ^ C)� P+(B=C)

5. If A and B are logically equivalent in the standard sense, then
P+(A=C) = P+(B=C)

6. If B and C are logically equivalent in the standard sense, then
P+(A=B) = P+(A=C).34

33I thus construe the present P+'s as what note 27 called coherent belief functions.
Since singulary probability functions are|in e�ect|binary ones relative to a logical truth
(say, :(Q(t1) ^ :Q(t1)), just one notion of coherence is involved here.
34Von Wright weakens (2) to read:

(2*) If A is not logically false, then P+(A=A) = 1,

and strengthens (3) to read:

(3*) P+(:A=B) = 1� P+(A=B),

a course few have adopted. That one or the other of (2*) and (3*) must carry a restriction
is obvious. Suppose B is logically false, in which case both B ! A and B ! :A are
logically true. (2) will then permit proof of P+(A=B) = P+(:A=B) = 1, and (3*) must
on pain of contradiction be weakened to read like (3). However, weaken (2) to read like
Von Wright's (2*). Then proofs of P+(A=B) = 1 and P+(:A=B) = 1 are blocked, and
(3) may be strengthened to read like Von Wright's (3*). Carnap, who accords P+(A=B)
a value only when B is not logically false, can make do with (2) and (3*). But, as
suggested in the text, partial probability functions are wanting.
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Note: A statement is held logically false in the standard sense if its negation
is logically true in that sense; and, as in note 29, two statements are held
logically equivalent in the standard sense if their biconditional is logically
true in that sense.

Substitutes for (3), (5) and (6) must of course be found, as these con-
straints are not autonomous. A number are available in the literature,
among them:

(30) If P+(C=B) 6= 1 for at least one statement C of L+, then P+(:A=B) =
1� P+(A=B),

(50) P+(A ^ B=C) = P+(B ^ A=C),

and

(60) P+(A=B ^ C) = P+(A=C ^ B).

The last two of these come from [Leblanc, 1981]. (Like C5 they could
sport `�' rather than `=', but the present formulations are more commonly
employed.) (30) stems from [Popper, 1957]. It is weaker than (3) (in that
certain functions meeting (30) will not meet (3)), but welcomely so. To
compare the two constraints, declare a statement B of L+ P+-absurd if
P+(C=B) = 1 for every statement C of L+, i.e. if in light of B a rational
agent might believe any such C. Given either of (3) and (30) you can prove
that any logical falsehood is P+-absurd. And, given (3), you can go on
and prove that, conversely, any statement P+-absurd is logically false. Not
so, however given (30). Several writers, Carnap one of them, favour (3)
as a result. Equally many, Popper one of them, do not|agreeing with
Wellington that there are statements which are not logically false, to be
sure, but in light of which one might believe anything.35 I side with Popper
on this and adopt Constraint (30).36

35`Occasions when (Wellington) exhibited his other peculiarity, the crashing retort,
were no doubt multiplied by the wit and inventiveness of his contemporaries; but the
celebrated exchange between the Duke and some minor oÆcial from a government oÆce
is authentic.

\Mr. Jones, I believe," said the oÆcial blandly, accosting the great man in Pall Mall
and mistaking him for the secretary of the Royal Academy. The world-famous pro�le
froze.

\If you believe that, you'll believe anything." (Elizabeth Longford, Wellington Pillar
of State, Harper & Rowe, New York, 1972.)

Because of this anecdote P+-absurd statements are occasionally called Jones state-
ments.
36To my knowledge, Popper is the �rst to have devised autonomous constraints for

binary probability functions. The ones he �nally settled on appeared in [Popper, 1957],
and are extensively studied in [Popper, 1959, Appendices *iv{*v]. They run (in the
symbolism of this essay):

A1. For any two statements A and B of L+ there are statements A0 and B0 of L+ such
that P+(A=B) 6= P+(A0=B0) (Existence)
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Popper placed on his binary probability functions an extra constraint,
requiring each of them to have at lest two values. I adopt a simpli�ed but
equivalent version of it, requiring that|for each binary probability function
P+ for L+|at least one statement is not P+-absurd. The constraint guar-
antees, among other things, that logical truths are not P+-absurd, a matter
of some comfort, and that singulary and binary probability functions bear
to each other the relationship reported in my last theorem Theorem 141.

Formal details are as follows, with the more commonly used `P+- abnor-
mal' substituting for `P+-absurd'.

Let L+ be an arbitrary term extension of L. By a binary probability
function for L+ I shall understand any function P+ that takes each pair of
statements for L+ into a real and meets the following constraints:

D0. There is a statement A and a statementB of L+ such that P+(A=B) 6=
1

D1. 0 � P+(A=B)

D2. P+(A=A) = 1

D3. If there is a statement C of L+ such that P+(C=B) 6= 1, then
P+(:A=B) = 1� P+(A=B)

D4. P+(A ^ B=C) = P+(A=B ^ C)� P+(B=C)

D5. P+(A ^ B=C) = P+(B ^ A=C)

D6. P+(A=B ^ C) = P+(A=C ^B)

D7. P+((8x)A=B) = Limitj!1P
+(
Qj
i=1A(t+i =x)=B).

Where L+ is a term extension of L and P+ a binary probability function for
L+, I shall declare a statement B of L+ P+- normal (P+-abnormal) if there
is a (there is no) statement A of L+ such that P+(A=B) 6= 1. I shall declare
a statement A of L logically true in the binary probabilistic sense if|no

A2. If P+(A=C) = P+(B=C) for every statement C of L+, then P+(C=A) = P+(C=B)
(Substitutivity)

A3. P+(A=A) = P+(B=B) (Reexivity)

B1. P+(A ^B=C) � P+(A=C) (Monotony)

B2. P+(A ^B=C) = P+(A=B ^ C)� P+(B=C) (Multiplication)

C. If P+(C=B) 6= P+(B=B) for at least one statement C of L+, then P+(:A=B) =
P+(B=B) � P+(A=B) (Complementation).

That D0{D6 pick out exactly the same binary probability functions as these six con-
straints do was undoubtedly known to Popper. The result is formally established in
[Harper et al., 1983]. (For a proof of A2 that uses only D1, D2, D4 and Theorem 116
see [Leblanc, 1981].) In e�ect, Popper only dealt with quanti�erless statements and hence
had no analogue of D7.
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matter the term extension L+ of L, binary probability function P+ for L+,
and statement B of L+|P+(A=B) = 1; and, where S is a set of statements
of L, I shall declare A logically entailed by S in the binary probabilistic
sense if|no matter the term extension L+ of L, binary probability function
P+ for L+, and statement B of L+|P+(A=B) = 1 if P+(C=B) = 1 for
each member C of S. Equivalently, but more simply, A may be declared
logically true in the binary probabilistic sense if P (A=B) = 1 for every
binary probability function P for L and every statement B of L. (In the
idiom of rational belief A is thus logically true if in the light of any statement
B of L a rational agent could not but believe A.)

I �rst argue for the foregoing de�nitions by showing that of logical entail-
ment strongly sound and complete, and hence that of logical truth weakly
sound and complete. I then study the relationship between singulary and
binary probability functions.

Thanks to Harper, proof of my last Strong Soundness Theorem can be
breathtakingly simple:

THEOREM 116. P (A=B) � 1.

Proof. When B if P -abnormal, P (A=B) = 1 by de�nition and, hence,
P (A=B)
� 1. Suppose then that B is P -normal. By D1 P (:A=B) � 0 and, hence,
by D3 P (A=B) � 1. Hence, Theorem 116. �

THEOREM 117. P (A=B ^ A) = 1.

Proof. By D2 P (B ^ A=B ^A) = 1. Hence, by D4, P (B=A ^ (B ^ A))�
P (A=B ^ A) = 1. But by D1 and Theorem 116 each of P (B=A ^ (B ^ A))
and P (A=B ^ A) lies in the interval [0; 1] and, hence, each of them here
must equal 1. Hence, Theorem 117. �

THEOREM 118. P (A=A ^ B) = 1.

Proof. By Theorem 117 and D6. �

THEOREM 119. Let B be P -normal. Then:

(a) P (:B=B) = 0.

(b) P (:B ^A=B) = 0.

Proof. (a) By D2, D3, and the hypothesis on B. (b) By D5 P (:B^A=B)
equals P (A^:B=B), which by D4 equals P (A=:B^B)�P (:B=B). Hence
(b) by (a). �

THEOREM 120. If P (A=B) = 0 for no statement B of L, then P (A=B) =
1 for every such B (= Harper's Lemma).
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Proof. Suppose P (A=B) 6= 1 for some statement B of L. Then B is
P -normal; hence, P (:B ^ :A=B) = 0 by Theorem 119 (b); and, hence,
P (:B=:A ^ B) � P (:A=B) = 0 by D4. But, since P (A=B) 6= 1 and
B is P -normal, P (:A=B) 6= 0. Hence, P (:B=:A ^ B) = 0; and, hence,
:A ^ B is P -normal. But P (:A=:A ^ B) = 1 by Theorem 118. Hence,
P (A=:A^B) = 0 by D3; and, hence, there is a statement B of L such that
P (A=B) = 0. Hence, Theorem 120. �

THEOREM 121. P (A ^B=C) � P (B=C).

Proof. By D4 P (A ^ B=C) = P (A=B ^ C) � P (B=C). But by D1 and
Theorem 116, each of P (A=B ^ C) and P (B=C) lies in the interval [0; 1]
and, hence, neither can be less than P (A^B=C). Hence, Theorem 121. �

THEOREM 122. P (A ^B=C) � P (A=C).

Proof. By Theorem 121 and D5. �

THEOREM 123. If P (A ^B=C) = 1 then P (A=C) = P (B=C) = 1.

Proof. Suppose P (A ^ B=C) = 1. Then P (A=C) = 1 by Theorems 122
and 116, and P (B=C) = 1 by Theorems 121 and 116. Hence, Theorem 123.

�

THEOREM 124. If P (A! B=C) = 0, then P (A=C) = 1 and P (B=C) = 0.

Proof. Suppose P (A ! B=C) = 0, in which case C is P -normal. Then
P (A ^ :B=C) = 1 by D! and D3; hence, P (A=C) = P (:B=C) = 1 by
Theorem 123 and, hence, P (A=C) = 1 and P (B=C) = 0 by D3. �

THEOREM 125. P (A ^A=B) = P (A=B).

Proof. By D4 P (A ^ A=B) = P (A=A ^ B) � P (A=B). Hence, Theorem
125 by Theorem 118. �

THEOREM 126. If C is P -normal, then P (A=C) = P (A ^B=C) + P (A ^
:B=C).

Proof. Suppose C is P -normal. By de�nition when A ^ C is P -abnormal
but otherwise by D3,

P (B=A ^ C) + P (:B=A ^ C) = P (C=A ^ C) + P (:C=A ^ C);

hence

P (B=A ^ C)� P (A=C) + P (:B=A ^ C)� P (A=C)
= P (C=A ^ C)� P (A=C) + P (:C=A ^ C)� P (A=C);
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hence by D4

P (B ^ A=C) + P (:B ^ A=C)
= P (C=A ^ C)� P (A=C) + P (:C ^ A=C);

and, hence, by Theorems 117 and 119 (b)

P (B ^A=C) + P (:B ^ A=C) = P (A=C):

Hence, Theorem 126 by D5. �

THEOREM 127. If P (A! B=C) = 1 and P (A=C) = 1, then P (B=C) = 1
(= Modus Ponens).

Proof. When C is P -abnormal, P (B=C) = 1 by de�nition. So suppose
that C is P -normal and P (A ! B=C) = 1. Then by D! and D3, P (A ^
:B=C) = 0; and, hence, by Theorem 126, P (A^B=C) = P (A=C). Suppose
further that P (A=C) = 1. Then P (A^B=C) = 1; and, hence, P (B=C) = 1
by Theorems 121 and 116. Hence, Theorem 127. �

THEOREM 128. If P (A=C) = P (B=C) = 1, then P (A ^ B=C) = 1.

Proof. When C is P -abnormal, P (A^B=C) = 1 by de�nition. So suppose
that C is P -normal and P (A=C) = 1. Then by Theorem 126 P (A^B=C)+
P (A ^ :B=C) = 1. Suppose further that P (B=C) = 1. Then by D3
P (:B=C) = 0; hence, by Theorem 121 and D1 P (A ^ :B=C) = 0; and,
hence, by Theorem 126 P (A ^B=C) = 1. Hence, Theorem 128. �

That, no matter the statement B of L, P (A=B) = 1 for any axiom A of
L of sorts A1{A6 follows by six applications of Harper's Lemma:

THEOREM 129. If A is an axiom of L of sorts A1{A6, then P (A=B) = 1
for every statement B of L.

Proof. Let A be an axiom of L of sorts A1{A6. I show that if there
were a statement B of L such that P (A=B) = 0, a contradiction would
ensue. So P (A=B) = 0 for no statement B of L and hence, by Theorem 120
P (A=B) = 1 for every such B.

Case 1: A is of the sort A0 ! (A0 ^A0). Suppose P (A=B) = 0 for some
statement B of L. Then by Theorem 124

1. P (A0=B) = 1

and

2. P (A0 ^A0=B) = 0.

But by (2) and Theorem 125
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3. P (A0=B) = 0.

So a contradiction ensues. So P (A=B) = 1 for every B.
Case 2: A is of the sort (A0 ^ B0) ! A0. Suppose P (A=B) = 0 for

some statement B of L. Then by Theorem 124

1. P (A0 ^ B0=B) = 1

and

2. P (A0=B) = 0.

But by (1) and Theorem 123

3. P (A0=B) = 1.

So a contradiction ensues. So P (A=B) = 1 for every B.
Case 3: A is of the sort (A0 ! B0)! (:(B0^C 0)! :(C 0^A0)). Suppose

P (A=B) = 0 for some statement B of L. Then by Theorem 124

1. P (A0 ! B0=B) = 1

and

2. P (:B0 ^ C 0)! :(C 0 ^ A0)=B) = 0.

But by (2) and Theorem 124

3. P (:(B0 ^ C 0)=B) = 1.

and

4. P (:(C 0 ^ A)=B) = 0.

Hence by D3 (and the fact that, since P (A=B) = 0, B is P -normal).

5. P (C 0 ^ A0=B) = 1,

and, hence, by Theorem 123

6. P (A0=B) = 1.

But by (1), D!, and D3

7. P (A0 ^ :B0=B) = 0.

Hence, by (6) and Theorem 126

8. P (A0 ^ B0=B) = 1,

and, hence, by Theorem 123

9. P (B0=B) = 1.
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But by (3) and D3

10. P (B0 ^ C 0=B) = 0,

and, hence, by D5

11. P (C 0 ^B0=B) = 0,

whereas by (5) and Theorem 123

12. P (C 0=B) = 1.

Hence, by (11) and Theorem 126

13. P (C 0 ^ :B0=B) = 1,

hence, by Theorem 123

14. P (:B0=B) = 1,

and. hence, by D3

15. P (B0=B) = 0.

So a contradiction (= (9) and (15)) ensues. So P (A=B) = 1 for every B.
Case 4: A is of the sort A0 ! (8x)A0. Suppose P (A=B) = 0 for some

statement B of L. Then by Theorem 124

1. P (A0=B) = 1

and

2. P ((8x)A0=B) = 0.

But by (2) and D7

3. Limitj!1P ((� � � (A0 ^A0) ^ � � �) ^ A0| {z }
j times

=B) = 0

and, hence, by Theorem 125 and the de�nition of a limit

4. (A0=B) = 0.

So a contradiction ensues. So P (A=B) = 1 for every B.
Case 5: A is of the sort (8x)A0 ! A0(T=x). Suppose P (A=B) = 0 for

some statement B of L. Then by Theorem 124

1. P ((8x)A0=B) = 1

and

2. P (A0(T=x)=B) = 0 for some term T of L.
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But by (1) and D7

3. Limitj!1P (
Qj
i=1A(ti=x)=B) = 1,

hence, by Theorem 122 and familiar considerations

4. P (
Qj
i=1A(ti=x)=B) = 1 for j from 1 on,

and hence, by Theorem 123

5. P (A(T=x)=B) = 1 for each term T of L.

So a contradiction ensues. So P (A=B) = 1 for every B.
Case 6: A is of the sort (8x)(A0 ! B0)! ((8x)A0 ! (8x)B0). Suppose

P (A=B) = 0 for some statement B of L. Then by Theorem 124

1. P ((8x)(A0 ! B0)=B) = 1

and

3. P ((8x)A0 ! (8x)B0=B) = 0.

But by (2) and Theorem 124

3. P ((8x)A0=B) = 1

and

4. P ((8x)B0=B) = 0.

Hence by (1), (3), and D7

5. Limitj!1P (
Qj
i=1(A0 ! B0)(ti=x)=B) = 1

and

6. Limitj!1P (
Qj
i=1A

0(ti=x)=B) = 1,

and, hence, by Theorem 122 and familiar considerations

7. P ((A0 ! B0)(T=x)=B) = 1 for each term T of L

and

8. P (A0(T=x)=B) = 1 for each term T of L.

Hence, by Theorem 127

9. P (B0(T=x)=B) = 1 for each term T of L,

hence, by Theorem 128 and the de�nition of a limit

10. Limitj!1P (
Qj
i=1B

0(ti=x)=B) = 1,
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and, hence, by D7

11. P ((8x)B0=B) = 1.

So a contradiction (= (4) and (11)) ensues. So P (A=B) = 1 for every B.
�

So by an induction like the one on page 99 (with Theorem 128 substituting
for Theorem 91):

THEOREM 130. If A is an axiom of L, then P (A=B) = 1 for every state-
ment B of L.

So by an induction like the one on page 100 (with Theorem 130 substi-
tuting for Theorem 98 and Theorem 127 for Theorem 87):

THEOREM 131. If S ` A, then|no matter the statement B of L|
P (A=B) = 1 if P (C=B) = 1 for every member C of S.

But Theorems 127 and 130 hold with `P+' for `P '. Hence, the following
counterpart of Theorem 100 for binary probability functions:

THEOREM 132. If S ` A, then|no matter the term extension L+ of L,
binary probability function P+ for L+, and statement B of L+|P+(A=B) =
1 if
P+(C=B) = 1 for every member C of S, i.e. A is logically implied by S
in the binary probabilistic sense.

Slight editing of the material on pages 100{102 yields proof of the coun-
terpart of Theorem 103 for binary probability functions.

Where S is an arbitrary set of statements of L, understand by the binary
probability associate of S in L the function PS such that, for any statement
A and any statement B of L:

PS(A=B) =

�
1 if S ` B ! A
0 otherwise:

As the reader may wish to verify.

THEOREM 133. Let S be a set of statements of L, and PS be the binary
probability associate of S in L.

(a) PS meets Constraints D1{D2 and D4{D6; and, when S is consistent
in L, PS meets constraint D0 as well. .

(b) If S is maximally consistent in L, then PS meets Constraint D3 as
well.

(c) If S is !-complete in L, then PS meets Constraint D7 as well.

(d) If S is maximally consistent and !-complete in L, then PS constitutes
a binary probability function for L.
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THEOREM 134. Let S be a set of statements of L that is maximally con-
sistent in L, and let PS be the binary probability associate of S in L.

(a) A conditional B ! A of L belongs to S i� PS(A=B) = 1.

(b) PS(A=:(B ^ :B)) equals 1 if A belongs to S, but 0 if :A does.

Note for proof of (b) that, with S maximally consistent in L, (i) :(B^:B) !
A belongs to S if A does, but (ii) :(B^:B) ! A does not if :A does (and,
hence, A does not). So, (b) by (a).

Now suppose, for the last time, that S 6` A, where S is in�nitely ex-
tendible in L; let H(S [ f:Ag) be the Henkin extension of S [ f:Ag in L;
let PH(S[f:Ag) be the binary probability associate of H(S[f:Ag) in L; and
let B0 be an arbitrary statement of L. Since by Theorem 4 H(S [ f:Ag)
is maximally consistent in L, we know by Theorem 134 (b) that relative to
:(B0 ^:B0) each member C of S evaluates to 1 on PH(S[f:Ag), whereas A
evaluates to 0. But, since by Theorem 4 H(S[f:Ag) is !- complete as well
as maximally consistent in L, we know by Theorem 133(b) that PH(S[f:Ag)

constitutes a binary probability function for L. Hence:

THEOREM 135. Let S be a set of statements of L that is in�nitely ex-
tendible in L, and A be an arbitrary statement of L. If S 6` A, then there
is a binary probability function P for L and a statement B of L such that
P (C=B) = 1 for each member C of S but P (A=B) 6= 1.

But all of Theorems 4, 133, and 134 hold with `P+' in place of `P '. Hence:

THEOREM 136. Let S and A be as in Theorem 135. If|no matter the
binary probability function P of L and statement B of L|P (A=B) = 1 if
P (C=B) = 1 for each member C of S, then S ` A.

When S is not in�nitely extendible in L, resort to L1 will do the trick
as usual. Hence, given Theorem 136, the following counterpart of Theorem
105 for binary probability functions:

THEOREM 137. Let S be an arbitrary set of statements of L, and A be an
arbitrary statement of L. If|no matter the term extension L+ of L, binary
probability function P+ for L+, and statement B of L+|P+(A=B) = 1 if
P+(C=B) = 1 for each member C of S, i.e. if A is logically entailed by S
in the binary probabilistic sense, then S ` A.

Hence, appealing to Theorem 132 and taking S in each case to be ;:

THEOREM 138. Let A be an arbitrary statement of L. Then ` A i�|no
matter the term extension L+ of L, binary probability function P+ for L+,
and statement B of L+|P+(A=B) = 1, i.e. i� A is logically true in the
binary probabilistic sense.

And, with S again set at ;, Theorems 131 and 136 yield:
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THEOREM 139. Let A be as in Theorem 138. Then ` A i�|no matter
the probability function P for L and statement B of L| P (A=B) = 1.

The binary account of logical entailment on page 109 is thus strongly
sound and complete, and the two binary accounts of logical truth on that
page weakly sound and complete.

No appeal has been made so far to D0: the soundness and completeness
theorems I have just proved thus hold with P+ presumed to meet only Con-
straints D1{D7. However, D0 will now do some work, namely: ensure that
:(Q(t1)^:Q(t1)) (Q a predicate of L of degree 1 and t1 the alphabetically
�rst term of L) is P -normal, and thereby allow for an important connection
between singulary and binary probability functions. To abridge matters I
refer to :(Q(t1) ^Q(t1)) by means of `>'.

D0, as stressed earlier, demands that at least one statement of L be
P -normal. After proving one ancillary result, I establish by means of just
D1{D7 (indeed, just D1{D6) that > is P - normal if any statement of L
is, and hence by dint of D0 that > is P -normal.

THEOREM 140. Let P be an arbitrary binary probability function for L.

(a) P (A=B ^ >) = P (A=B).

(b) If any statement of L is P -normal, then > is.

(c) > is P -normal.

Proof. (a) By D4 P (>^A=B) = P (>=A^B)�P (a=B). But by Theorem
131 P (>=A ^ B) = 1. Hence, P (> ^ A=B) = P (A=B). But by the same
reasoning P (A ^ >=B) = P (A=> ^ B). Hence, by D5, P (A=> ^ B) =
P (A=B) and, hence, by D6, P (A=B ^>) = P (A=B).

(b) Suppose P (A=>) = 1 for every statement A of L, and let B be an
arbitrary statement of L. Then P (A ^ B=>) = 1; hence, by D4 P (A=B ^
>) � P (B=>) = 1; hence, by D1 and thorem 116 P (A=B ^ T ) = 1; and,
hence, by (a) P (A=B) = 1. Hence, P (A=B) = 1 for every statement A
and every statement B of L. Hence, by Contraposition, if P (A=B) 6= 1 for
any statement A and any statement B of L, then P (A=>) 6= 1 for some
statement A of L. Hence, (b).

(c) By D0 and (b). �

The argument is easily edited to show that any logical truth of L, not just
>, is P -normal. (It follows, incidentally, from Theorem 140 (c) and D2 that
P (:>=>) = 0 and, hence, that each binary probability function P for L
has at least two values. So D0 does the same work as Popper's constraint
A1.)
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The reader will note that by virtue of Theorems 140 (c) and 126

P (A=>) = P (A ^ B=>) + P (A ^ :B=>);

a >-version|so to speak|of C3. But similar >-versions of C1{C2 and
C4{C7 can be had as well. Indeed, the >-versions of C1, C5, and C7:

0 � P (A=>); P (A ^B=>) � P (B ^ A=>);

and

P ((8x)A> = Limitj!1P (

jY
i=1

A(ti=x)=>);

are special cases of D1, D5 and D7. The >-versions of C2 and C4:

P (:(A ^ :A)=>) = 1

and
P (A=>) � P (A ^ A=>);

hold by Theorem 131 and Theorem 125. And the >- version ofC6:

P (A ^ (B ^ C)=>) � P ((A ^ B) ^ C=>);

can be had by repeated applications of D4 and Theorem 140 (a). What
is known as the restriction of P to >, i.e. the function P> such that|for
each statement A of L|P>(A) = P (A=>), thus constitutes a singulary
probability function for L.

On the other hand, let P be a singulary probability function for L; let P 0

be the function such that, for any statement A and any statement B of L,

P 0(A=B) =

�
P (A ^ B)=P (B) if P (B) = 0
1 otherwise;

and let P 0> be the restriction of P 0 to >. It is easily veri�ed that (i) P 0>
constitutes a binary probability function for L and (ii) P 0>(A) = P (A) for
any statement A of L. For proof of (ii) note that by de�nition P 0>(A)
equals P 0>(A=>). But by C2 P (>) = 0. Hence by de�nition P 0>A) equals
P (A ^ >)=P (>), which by Theorem 67 and C2 equals P (A). So there is a
binary probability function for L, to wit: P 0>, of which P is the restriction
to >.

So:

THEOREM 141. (a) Each binary probability function for L has as its re-
striction to > a singulary probability function for L.

(b) Each singulary probability function for L is the restriction to > of a
binary probability function for L.

Like results hold of course with `L+' for `L', thus binding together all the
probability functions treated in Sections 4 and 5.37

37Binary probability functions, like their singularity brethren, bear a close relationship
to truth-value functions. See [Gumb, 1983] for preliminary results on the matter.
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6 IN SUMMARY AND CONCLUSION

The non-standard accounts of logical entailment (and, hence, of logical
truth) in this essay were justi�ed thusly|with truth sets and model ones
treated �rst to vary the perspective slightly:

Supposing S 6` A, I formed the Henkin extension H1(S [ f:Ag) of
S [ f:Ag in L1 (in L itself when S is in�nitely extendible). That set
proved to be a truth set for L1 (for L), which ensured that if S ` A, then
there is|for some term extension L+ of L|a truth set for L+ of which S
is a subset but A is not a member. Hence, by dint of a suitable soundness
theorem, S ` A i�|no matter the term extension L+ of L|A belongs to
every truth set for L+ of which S is a subset (Theorems 34 and 37). But
any truth set for L+ is a model set for L+, which ensured that if S 6` A, then
there is|for some term extension L+ of L|a model set for L+ of which S is
a subset and :A is a member. Hence, by dint again of a suitable soundness
theorem, S ` A i�|no matter the term extension L+ of L|:A does not
belong to any model set for L+ of which S is a subset (Theorems 47 and
50). Two alternatives to the standard account of logical entailment, the
truth-set account of page 77 and the model-set account on pages 79 were
thereby legitimised. So, consequently, were two alternatives to the standard
account of logical truth.

But any truth set for L1 generates a Henkin model for L1, the model
associate of that set de�ned on page 64. The fact ensured that if S 6` A,
then there is| for some extension L+ of L|a Henkin model for L+ in which
S is trueS but A does not. Hence, by dint of a suitable soundness theorem,
S ` A i�|no matter the term extension L+ of L|A is trueS in every
Henkin model for L+ in which S is trueS (Theorem 25). But any truth set
for L1 also generates a truth-value assignment (equivalently, a truth-value
function) for L1, the truth-value associate of that set de�ned on page 73.
The fact ensured that if S 6` A, then there is|for some extension L+ of
L|a truth-value assignment (a truth-value function) for L+ on which each
member of S is true (evaluates to >) but A is not (does not). Hence, by
dint again of a suitable soundness theorem, S ` A i�|no matter the term
extension L+ of L|A is true on every truth- value assignment (A evaluates
to > on every truth-value function) for L+ on which all members of S
are (do) (Theorems 29 and 30).38 Two extra alternatives to the standard
account of logical entailment, the substitutional account of page 69 and the
truth-value one of page 73, were thereby legitimised. So, consequently, were
two extra alternatives to the standard account of logical truth.

But any truth set for L1 also generates a singulary probability function
for L1, the probability associate of that set de�ned on page 100. The fact
ensured that if S ` A, then there is| for some term extension L+ of L|a

38The proof of Theorem 30 I just rehearse is that on page 74 (see note 18).
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singulary probability function for L+ on which all members of S evaluate to 1
gut A does not. Hence, by dint of a suitable soundness theorem, S ` A i�|
no matter the term extension L+ of L|A evaluates to 1 on every singulary
probability function for L+ on which all member s of S do (Theorems 100
and 105). But any truth set for L1 also generates a binary probability
function for L1, the probability associate of that set de�ned on page 118.
The fact ensured that if S ` A, then there is|for some term extension L+

of L and some statement B of L+|a binary probability function for L+ on
which all members of S evaluate to 1 relative to B but A does not. Hence,
by dint of a suitable soundness theorem, S ` A i�|no matter the term
extension L+ of L and statement B of L+|A evaluates to 1 relative to B
on every binary probability function for L+ on which all members of S do
(Theorems 132 and 137). Two extra alternatives to the standard account
of logical entailment, the probability account of page 87 and that of page
109, were thereby legitimised. So, consequently, were two extra alternatives
to the standard account of logical truth.39

The de�nitions of pages 69, 73, 77{78, 79, 87 and 109, thus known to
capture exactly the same logical truths and exactly the same logical entail-
ments as the standard ones do, merit attention on further counts. I largely
limit myself in what follows to logical truths. Like remarks apply mutatis
mutandis to logical entailments.

Logical truths are de�ned quite grandly in standard semantics as state-
ments true in all models or|to spell it out once more|true in hD; IDi,
no matter the domain D and D- interpretation ID of the terms and predi-
cates in those statements. Unfortunately, domains are sets and since 1895,
the year Cantor discovered the Burali{Forti paradox, sets have been very
much a concern, one indeed that may never be alleviated.40 So the stan-
dard account of logical truth, with its mention| be it overt or covert|of
all domains and hence of all sets, may be injudicious: it rests logic on very

39Schematically:

S [ f:Ag extends to
H1(S [ f:Ag); a set of
L1 which constitutes

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

a truth set for
L1 generating

8>>>>>>><
>>>>>>>:

a Henkin model for L1

a truth-value assignment
(truth-value function) for L1

a singulary and a binary
probability function for L1

hence

a model set
for L1

40The Zermelo{Fraenkel axiomatisation of set theory is mathematically serviceable, to
be sure, but ontologically and epistemologically how much of a case has ever been made
for it?
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shaky foundations.41

That the models �guring in the above account can be presumed to be
countable was therefore major news (though, as noted earlier, not welcome
news to all). Since �nite cardinals and @0 are unproblematic (to put it more
judiciously, are less problematic than larger cardinals), logic studies could
be pursued with little apprehension. As conceded on page 56, one might
still deal in uncountable models when attending to certain theories (though
countable submodels of those models would always do the trick, we saw).
But attending to theories whose intended models are uncountable is one
thing, explicating logical truth (and logical entailment) is quite another;
and discharging the latter assignment without courting disaster or at the
very least embarrassment seems the wiser course.

But, as later developments showed, one can do far better than the L�owen-
heim Theorem and Skolem's generalisation thereof guaranteed. Since count-
able models will do and �rst-order languages have @0 terms, Henkin models
should do as well, with all items in their domains provided with names.
What, given just @0 names, uncountable models ruled out, should now be
feasible. And indeed statements true in all countable models (hence, in
all models) proved to be, as Henkins' completeness proof intimated, those
very statements true in all Henkin models. The result buoyed those who
like things to bear names and quanti�ers to be construed substitutionally,
a natural inclination as Wittgenstein admitted.

True, logical entailment does pose a problem. As sets are not all in�nitely
extendible, one may occasionally run out of terms, even though one has @0

of them and only @0 items to name. But, following Henkins' precedent, one
can always send out for extra terms by extending one's original language
to such a language as L1. The Henkin models of L1 will serve all of
one's needs, yielding a de�nition of logical entailment to the same e�ect as
the standard one. The resulting semantics is, of course, that on page 69:
substitutional semantics.

However, even such minimal use of sets as substitutional semantics makes
is unnecessary, as Beth, Sch�utte, and others showed. With the quanti�ers
substitutionally construed, sets (qua domains) turn up at only one point:
the truth condition for atomic statements on page 69. That condition, in-
cidentally, is not to everyone's taste: some (Frege, Church, and possibly
Whitehead and Russell, among them) prefer one that uses propositional
functions and, hence, has an intensional rather than extensional avour.
But, whatever one's preference in these matters, is it really logic's charge
to spell out the circumstances under which atomic statements are true?
The recounting plays no role in substitutional semantics. So, instead of en-
gaging in such controversial and (in this context) inconsequential business,

41When teaching standard semantics, how many warn students not to ask whether the
set of all domains is itself a domain?
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why not assume with Beth, Sch�utte, and others that atomic statements
have truth-values, however they come by them, and proceed with matters
of truly logical import?42 Thus was truth-value semantics born, a semantics
that dispenses with domains and, hence, with reference (crucial though that
notion may be elsewhere). And, dispensing with reference, truth-value se-
mantics can focus on a single notion: truth. In one version of it, truth-value
assignments (to atomic statements) and a recounting of when compound
statements are true on them share the work; in another and even sparer
version truth-functions do it all. And if future studies prove as rewarding
as past ones, most (if not all) of standard semantics might soon admit of
translation into truth-value idiom.

As it turns out, though, even truth can be dispensed with, the truth sets
introduced in [Quine, 1940] permitting de�nition (we saw) of logical truth
and logical entailment, as do the model sets introduced in [Hintikka, 1955].
Some have objected that for A to belong to every truth set (for :A to belong
to no model set) is a purely syntactical feature of A, and consequently that
truth-set semantics (model set semantics) is but mislabelled syntax.

I shall not meet the objection here, except for recalling that truth sets, for
example, automatically convert into truth-value functions, the pre-requisites
for belonging to a truth set being those for evaluating to > on a truth-value
function (B1{B3 on page 103). Rather, I will draw attention to proba-
bilistic semantics, where the notion of truth yields to that of rational (more
speci�cally, coherent) belief, and accounts of logical truth and logical entail-
ment matching the standard ones are also available. Probabilistic semantics
is as spare as truth-value semantics is|probability functions (be they sin-
gulary ones or binary ones) doing all the work. And it o�ers a whole new
perspective on logical truth (and logical entailment): traditionally viewed
as statements true in all models (more judiciously, in all countable models)
and more recently as statements evaluating to > on all truth-value func-
tions, logical truths can now be seen as statements than which none are
more (coherently) believable.43

Probabilistic semantics, the new intensional semantics studied here, has
yet to match standard semantics in breadth. But it already boasts signif-
icant results, some presented in Sections 4{5; and, feeding as it does on
probability theory, belief theory, game theory, etc. it should soon boast
others.

In any event there are accounts of logical truth and logical entailment
other than the standard one and no less legitimate. This much the essay
has shown.

42I borrow at this point from a conversation with Alex Orenstein.
43Note indeed that ` A i�|no matter the probability function P for L|P (A) = 1.

But P (B) � 1 for every statement B of L. Hence ` A i�|no matter the probability
function P for L and statement B of L| P (A) 6< P (B).
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APPENDIX

I supplement here historical information provided in the main text.

A THE SUBSTITUTION INTERPRETATION AND
SUBSTITUTIONAL SEMANTICS

The substitution interpretation of the quanti�ers and, more particularly,
substitutional semantics have a long and still unchronicled history. As re-
marked in note 2, Frege understood the quanti�ers substitutionally in 1879,
but switched later on to the objectual interpretation. Wittgenstein is quoted
in [Moore, 1959, p. 297] as saying in the course of a 1932 lecture that \there
was a temptation, to which he had yielded in the Tractatus, to say that
(x) � f(x) is identical with the logical product `fa � fb � fc � : : :', and (9x) � fx
identical with the logical sum `fa_ fb_ fc_ : : :'; but that this was in both
cases a mistake." In papers written in 1925 and 1926 F. P. Ramsey reported
on the interpretation as Wittgenstein's, defended it against an objection of
Hilbert's, and stated that, with the quanti�ers interpreted Wittgenstein's
way, all axioms of Whitehead and Russell [1910{13] other than the Axiom of
Reducibility hold true (see Ramsey [1926a] and [1926b]). Ramsey's remark
on Whitehead and Russell's work may well be the �rst formal contribution
to substitutional semantics.

To my knowledge little was heard (in any event, little was made) of the
substitution interpretation of the quanti�ers for the next �fteen years. It
then turned up in a succession of books and papers by Carnap, beginning
with [Carnap, 1942] and culminating in [Carnap, 1950]. The latter book
is quite instructive. The account of truth you �nd there is essentially the
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substitutional one I gave on page 69, but the account of logical truth, logical
entailment, etc. is the truth-set one that I gave on pages 76{77.

Henkin's completeness paper, to which reference has frequently been
made, appeared in 1949; the Robinson book mentioned on page 56 ap-
peared in 1951; the �rst of several papers in which Ruth Marcus champions
the substitution interpretation of the quanti�ers, and particularly urges its
adoption in modal logic, appeared in 1963; the Shoen�eld book mentioned
on page 56, appeared in 1967; etc. By then, of course, what I call truth-
value semantics had come into its own, and it eventually captured some of
the interest earlier accorded to substitutional semantics. The beginnings of
truth-value semantics were reported in Section 3. since substitutional and
truth-value semantics are close relatives, some of the information supplied
there belongs here as well.

As the substitution interpretation gained greater currency, it was
subjected|expectedly enough|to intense and often critical scrutiny. David-
son and some of his students wondered, for example, whether the substitu-
tional account of truth satis�es Tarski's celebrated Convention T , a matter
of considerable importance reviewed in [Kripke, 1976]. Other concerns were
voiced by other writers (see [Quine, 1969], for instance), but in my opinion
have been or could be met. Admittedly, the pros and cons of the substi-
tution interpretation demand further study. As suggested at the outset,
though, my attention in this essay goes to the novel accounts of logical
truth, logical entailment, etc. that the interpretation allows.

B TRUTH-VALUE SEMANTICS

Truth-value semantics, the reader may recall, dates back to 1959, the year
that saw the publication of Beth's Foundations of Mathematics. Several of
the contributions to truth-value semantics between 1959 and 1975 are reca-
pitulated in [Leblanc, 1976]; they concern �rst-order logic without and with
identity, second-order logic, a variety of modal logic's, three-valued logic,
and presupposition-free variants of most of these. Further contributions
will be found in [Leblanc, 1973] (the proceedings of a Temple University
conference on alternative semantics) and in Part 2 of [Leblanc, 1982a] (a
set of papers on truth-value semantics I authored or co-authored from 1968
onwards). The papers in the bibliography of [Kripke, 1976] deal primarily
with the substitution interpretation of the quanti�ers, but many of them
touch on truth-value semantics as well. A few additional titles will be found
in the bibliography of this essay: [Kearns, 1978], which distinguished three
brands of substitution interpretation and |hence|of truth-value seman-
tics; [Garson, 1979], which investigates which logics are susceptible of a sub-
stitutional semantics and|hence|of a truth-value one; [Parsons, 1971] and
[Gottlieb and McCarthy, 1979], which attend to substitutional and truth-
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value semantics in the particular context of set theory; [McArthur, 1976],
[McArthur and Leblanc, 1976] and [Barnes and Gumb, 1979], which pro-
vide a truth-value semantics for tense logic, [Leblanc and Gumb, 1983] and
[Leblanc, 1982b] which provide one for intuitionistic logic; and [Gumb, 1978;
Gumb, 1979], which sport an important variant of truth-value semantics and
also deal with model sets.

Some of these texts are explicitly labelled contributions to truth-value se-
mantics; others are not. A few, anxious to show logical truth and entailment
outgrowths of truth-functional truth and entailment, employ the truth-value
assignments of page 73; others employ the truth-value assignments of page
76, or|following the precedent of [Sch�utte, 1960]|truth-value functions.

C PROBABILISTIC SEMANTICS

Popper devised autonomous constraints for singulary probability functions
as early as 1938 (see [Popper, 1959, Appendix*ii]), and attended to binary
ones only eighteen years later. Yet contributions to singulary probabilistic
semantics are comparatively recent and few in number: [Stalnaker, 1970;
Bendall, 1979; Leblanc, 1982c], portions of this essay, etc. The �rst two
study the relationship between singulary probability functions and what I
call truth-value functions (Stalnaker talks instead of truth-valuation func-
tions and limits himself to quanti�erless statements); the third de�nes logi-
cal truth and logical entailment as on page 87, proves some of the theorems
in Sections 4 and 5 (referring the reader to this text for proof of Theo-
rem 100), and shows Constraints C1{C6 to pick out the same functions as
Kolmogorov's constraints and Popper's do.

Binary probabilistic semantics has a more eventful history, and one spread-
ing over more than two decades.

The earliest account of truth-functional truth to employ binary probabil-
ity functions may be that in [Leblanc, 1960]. As pointed out in [Stalnaker,
1970], it is unfortunately too broad, suiting only the binary probability
functions attributed to Carnap in [Harper et al., 1983]. A correct account
of the notion can, incidentally, be retrieved from Stalnaker's paper.

The earliest published accounts of logical truth and logical entailment to
employ binary probability functions may be those in [Field, 1977]. Dissatis-
�ed with Field's resort to limits, I proposed in [Leblanc, 1979b] substitute|
but equivalent|accounts of the two notions, those used in this essay (page
109). However, while my paper was in press, I learned that Harper had
used the very same accounts in his unpublished doctoral dissertation of
1974. A summary of the dissertation is to appear in [Leblanc, 1983].
Further, but again equivalent, accounts will be found in [Adams, 1981;
Van Fraassen, 1981; Morgan and Leblanc, 1983a], and doubtless many other
texts. Incidentally, [Van Fraassen, 1981] uses in lieu of D7 constraints which
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render the term extensions of L unnecessary but rule out some of the func-
tions acknowledged here. Like substitutes for C7 have yet to be found.

The earliest theorem that probabilistic semantics boasts of is in [Pop-
per, 1959, Appendix *v]. A soundness theorem, it is roughly to the ef-
fect that if a Boolean identity A = B (A and B here either sets or state-
ments) is provable by means of the `fourth set' of postulates in [Hunting-
ton, 1933], then P (A=C) = P (B=C) for any set or statement C and any
binary probability function P meeting Popper's constraints. I extended
the result in [Leblanc, 1960] showing in e�ect that if `0 A, where A is
a quanti�erless statement of L, then P (A=B) = 1 for any quanti�erless
statement B of L and any binary probability function P meeting Popper's
constraints. Soundness and completeness theorems essentially like Theorem
132 and Theorem 137 in this essay were proved in [Harper, 1974; Field, 1977;
Leblanc, 1979b] and most probably other texts as well. The strategy used on
pages 112{116 to prove Theorem 130 is due to Harper and already �gures in
[Harper et al., 1983].; details, however are simpler here. The strategy used
on page 118 to prove Theorem 135 is essentially that in [Leblanc, 1979b],
but again details are simpler here.

As announced on page 55, I con�ned myself in this essay to �rst-order
logic without identity. [Gaifman, 1964; Gumb, 1983] and [Seager, 1983]

attend to �rst-order logic with identity; [Van Fraassen, 1981] attends to
intuitionistic logic, as do Morgan and Leblanc [1983a; 1983b]; Morgan
[1982b; 1982a] attend to modal logic, as does [Schotch and Jennings, 1981];
several papers, [Stalnaker, 1970] possibly the earliest of them, attend the
conditional logic (see Section 9 of Nute's essay in this Handbook [II,9] for
further information); etc. The majority of these results will be surveyed in
Probabilistic Semantics.

Temple University
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The following additional books are relevant to this and related chapters:
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ALGEBRAIC LOGIC

We dedicate this work to
J. Donald Monk

who taught us algebraic logic and more.

INTRODUCTION

Algebraic logic can be divided into two main parts. Part I studies algebras
which are relevant to logic(s), e.g. algebras which were obtained from logics
(one way or another). Since Part I studies algebras, its methods are, ba-
sically, algebraic. One could say that Part I belongs to `Algebra Country'.
Continuing this metaphor, Part II deals with studying and building the
bridge between Algebra Country and Logic Country. Part II deals with the
methodology of solving logic problems by (i) translating them to algebra
(the process of algebraization), (ii) solving the algebraic problem (this re-
ally belongs to Part I), and (iii) translating the result back to logic. There
is an emphasis here on step (iii), because without such a methodological
emphasis one could be tempted to play the `enjoyable games' (i) and (ii),
and then forget about the `boring duty' of (iii). Of course, this bridge can
also be used backwards, to solve algebraic problems with logical methods.
We will give some simple examples for this in the present work.

Accordingly, the present work consists of two parts, too. Parts I and II of
the Paper deal with the corresponding parts of algebraic logic. More specif-
ically, Part I deals with the algebraic theory in general, and with algebras of
sets of sequences, or algebras of relations, in particular. Part II deals with
the methodology of algebraization of logics and logical problems, equiva-
lence theorems between properties of logics and properties of (classes of)
algebras, and in particular, discusses concrete results about logics obtained
via this methodology of algebraization. Since Part II deals with general
connections between logics and algebras, a general de�nition of what we
understand by a logic or logical system is needed. Of course, such a de�-
nition has to be broad enough to be widely applicable and narrow enough
to support interesting theorems. The �rst Section of Part II is devoted to
�nding such a de�nition.

We need to make a disclaimer here. Algebraic logic, today, is an extremely
broad subject. We could not cover all of it. In Part II we managed to be
broader than in Part I. Even in Part II we could not come even close to dis-
cussing the important research directions, but the de�nitions in Part II are
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general enough to render the results applicable to all those logics which W.
J. Blok and D. L. Pigozzi call algebraizable (cf. e.g. [Blok and Pigozzi, 1989;
Font and Jansana, 1994]). Most of what we say in Part II can be generalized
even beyond this, e.g. to the equivalential logics of J. Czelakowski. Further
possibilities of generalizing Part II beyond algebraizable logics are in recent
works of Blok and Pigozzi, and others, cf. e.g. [Blok and Pigozzi, 1986;
Pigozzi, 1991; Czelakowski and Pigozzi, 1999; Andr�eka et al., to appear]

and [Czelakowski, 1997].

In Part I we had to be more restrictive. We concentrated attention to
those kinds of algebras which are connected to the idea of `relations' (one
way or another), the idea of sets of pairs, or sets of triples, sets of sequences
or something related to these. An important omission is the theory of
Boolean Algebras with Operators (BAO's). BAO's are related to algebras of
relations, and they provide an important unifying theory of many of the al-
gebras we discuss here. Another important omission is Category Theoretic
Logic. That branch of algebraic logic is not (at all) unrelated to what we are
discussing here, but for various reasons we could not include an appropriate
discussion here. In this connection more references are given in the survey
[N�emeti, 1991]. Here we mention only [Makkai, 1987; Makkai and Reyes,
1977; Zlato�s, 1985; Makkai and Par�e, 1989]. We could not cover polyadic
algebras, either. However, their (basic) theory is analogous to that of cylin-
dric algebras which we do discuss in detail. There are a few exceptional
points where the two theories wildly diverge, e.g. in [N�emeti and S�agi, to
appear] it was proved that the equational theory of representable polyadic
algebras is highly non-computable (while that of cylindric algebras is recur-
sively enumerable). We refer the reader to the survey paper [N�emeti, 1991]

and to [Henkin, Monk and Tarski, 1985] for modern overviews of polyadic
algebras. Cf. also [Sain and Thompson, 1991; Pigozzi and Salibra, 1993;
Andr�eka et al., 1998]. Further important omissions are: (i) the �nitization
problem (cf. [N�emeti, 1991, beginning with Remark 2], [Sain, 1995; Simon,
1993; Madar�asz, N�emeti and S�agi, 1997]); (ii) propositional modal logics
of quanti�cation, and connections with the new research direction `Logic,
Language and Information' (cf. [Venema, 1995; Marx and Venema, 1997;
Marx, P�olos and Masuch, 1996; Andr�eka, van Benthem and N�emeti, 1997;
van Benthem and ter Meulen, 1997; van Benthem, 1997]); (iii) relativiza-
tion as a methodology for turning negative results to positive (cf. [N�emeti,
1996; Monk, 1993; Marx, 1995; Mikul�as, 1995; Marx and Venema, 1997;
Andr�eka, van Benthem and N�emeti, 1996]). Also there are strong connec-
tions between algebraic logic and computer science, we do not discuss these
here.

On the history: The invention of Boolean algebras belongs to the `pre-
history' of Part I. Algebras of sets of sequences (as in Part I) were studied
by De Morgan, Peirce and Schr�oder in the last century; and the modern
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form of their theory was created by Tarski and his school.1 The history
of Part II also goes back to Tarski and his followers, but is, in general,
more recent. For more on history we refer to [Andr�eka et al., to appear;
Anellis and Houser, 1991; Blok and Pigozzi, 1991a; Blok and Pigozzi, 1989;
Henkin, Monk and Tarski, 1985; Maddux, 1991; Pratt, 1992] and [Tarski
and Givant, 1987].

I: Algebras of Relations

GETTING ACQUAINTED WITH THE SUBJECT OF PART I.

The algebraization of classical propositional logic, yielding Boolean algebras
(in short BA's), was immensely successful. What happens then if we want
to extend the original algebraization yielding BA's to other, more complex
logics, among others, say, to predicate logic (�rst{order logic)?2

Boolean algebras can be viewed as algebras of unary relations. Indeed,
the elements of a BA are subsets of a set U , i.e. unary relations over U ,
and the operations are the natural operations on unary relations, e.g. in-
tersection, complementation. The problem of extending this approach to
predicate logics boils down to the problem of expanding the natural alge-
bras of unary relations to natural algebras of relations of higher ranks , i.e. of
relations in general. The reason for this is, roughly speaking, the fact that
the basic building blocks of predicate logics are predicates, and the meanings
of predicates can be relations of arbitrary ranks.3 Indeed, already in the
middle of the last century, when De Morgan wanted to generalize algebras
of propositional logic in the direction of what we would call today predicate
logic, he turned to algebras of binary relations.4 That was probably the

1Relation and cylindric algebras were introduced by Tarski, polyadic algebras were
introduced by Halmos, algebras of sets of �nite sequences were studied by Craig; for
other kinds of algebras of sets of sequences cf. e.g. [N�emeti, 1991; Henkin, Monk and
Tarski, 1985].

2The things we say here about predicate logic apply also to most logics having in-
dividual variables, hence to all quanti�er logics. However, the present Paper need not
be `predicate logic centered' because our considerations apply also to many proposi-
tional logics, e.g. to Lambek Calculus, propositional dynamic logic, arrow logics, many-
dimensional modal logics. C.f. e.g. [Marx and Venema, 1997; van Benthem, 1996;
van Benthem and ter Meulen, 1997; Mikul�as, 1995; Tarski and Givant, 1987].

3For more on this see Part II, Sections 4 and 7 of the present Paper.
4De Morgan illustrated the need for expanding the algebras of unary relations (i.e.

BA's) to algebras of relations in general (the topic of Part I of the present Paper) by
saying that the scholastics, after two millennia of Aristotelian tradition, were still unable
to prove that if a horse is an animal, then a horse's tail is an animal's tail. (`v0 is a tail
of v1' is a binary relation.)
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beginning of the quest for algebras of relations in general. Returning to this
quest, the new algebras will, of course, have more operations than BA's,
since between relations in general there are more kinds of connections than
between unary relations (e.g. one relation might be the converse, sometimes
called inverse, of the other). So, our algebras in most cases will be Boolean
algebras with some further operations.

The framework for the quest for the natural algebras of relations is uni-
versal algebra. The reason for this is that universal algebra is the �eld which
investigates classes of algebras in general, their interconnections, their fun-
damental properties etc. Therefore universal algebra can provide us for our
search with a `map and a compass' to orient ourselves. There is a further
good reason for using universal algebra. Namely, universal algebra is not
only a unifying framework, but it also contains powerful theories. E.g. if
we know in advance some general properties of the kinds of algebras we are
going to investigate, then universal algebra can reward us with a powerful
machinery for doing these investigations. Among the special classes of al-
gebras concerning which universal algebra has powerful theories are the so
called discriminator varieties and the arithmetical varieties . At the same
time, algebras originating from logic turn out to fall in one of these two
categories, in most cases. More concretely, more than half of these alge-
bras are in discriminator varieties and almost all are in arithmetical ones.
Certainly, all the algebras studied in the present Paper are in arithmetical
varieties. Therefore, awareness of these recent parts of universal algebra
can be rewarding in algebraic logic. We will not assume familiarity with
these theories of universal algebra, we will cite the relevant de�nitions and
theorems when using them.5

Moreover, as we already said, most of our algebras will be BA's with
some additional (extra-Boolean) operations. When these operations are
distributive over the Boolean join, as will be the case most often, such
algebras are called Boolean Algebras with Operators, in short BAO's. Many
of our important classes of algebras will be discriminator varieties of BAO's.
The theory of BAO's is well-developed.6

Let us return to our task of moving from BA's of unary relations to
expanded BA's of relations in general. What are the elements of a BA? They

5Some good introductions to universal algebra and discriminator varieties are [Henkin,
Monk and Tarski, 1971, Chapter 0], [Burris and Sankappanavar, 1981; Cohn, 1965;
Gr�atzer, 1979; McKenzie, McNulty and Taylor, 1987; Werner, 1978].

6Distributivity of the extra-Boolean operations over join is used in the theory to build a
well-working duality-theory for it (atom-structures or Kripke-frames, complex algebras).
This duality theory is a quite central part of algebraic logic. Because of the limited size
of the present Paper, we will not deal with this here. Some references are [J�onsson and
Tarski, 1951], [Henkin, Monk and Tarski, 1971, section 2.5], [J�onsson, 1995; Goldblatt,
1990; Goldblatt, 1991; Venema, 1996; Venema, 1997; Andr�eka, Givant and N�emeti, 1995;
Hodkinson, 1997; Andr�eka, Goldblatt and N�emeti, 1998].
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are sets of `points'. What will be the elements of the expanded new algebras?
One thing about them seems to be certain, they will be sets of sequences,
because relations in general are sets of sequences. These sequences may
be just pairs if the relation is binary, they may be triples if the relation is
ternary, or they may be longer | or even more general kinds of sequences.7

So, one thing is clear at this point, namely that the elements of our expanded
BA's of relations will be sets of sequences. Indeed, this applies to all known
algebraizations of predicate logics or quanti�er logics.8

At this point it might be useful to point out that the most obvious ap-
proach (to studying algebras of relations) based on the above observation
(that the elements of the algebra are sets of sequences) leads to diÆculties
right at the start.9 So, what is the most obvious approach? Consider some
set U ; let <!U denote the set of all �nite sequences over U , and consider
the BA P(<!U) (the powerset of <!U conceived as a BA the standard way).
Now if we are given any �nitary relation, say, R � U � U over U , then
R 2 P(<!U). So P(<!U) contains all relations over U independently of
their ranks. Therefore it might be a candidate for being the universe of an
algebra of relations. Before thinking about what the new, so called extra-
Boolean operations on P(<!U) should be, let us have another look at its
Boolean structure: If R is a binary relation, we would like to obtain its
complement (U �U)rR as a result of applying a Boolean operation to R.
However, in our algebra P(<!U), the complement of R is not (U �U)rR
but something in�nitely bigger.

1 ALGEBRAS OF BINARY RELATIONS

The above diÆculty with P(<!U) motivates our concentrating �rst on the
simplest nontrivial case, namely that of the algebras of binary relations
(BRA's). Actually, BRA's will be strong enough to be called a truly �rst{
order (as opposed to propositional) algebraic logic, namely the logic cap-
tured by BRA's is strong enough to serve as a vehicle for set theory and

7There is another consideration pointing in the direction of sequences. Namely, the
semantics of quanti�er logics is de�ned via satisfaction of formulas in models, which in
turn is de�ned via evaluations of variables, and these evaluations are sequences. The
meaning of a formula in a model is the set of those sequences which satisfy the formula
in that model. So we arrive again at sets of sequences. For more on this see Part II,
Section 7 of the present Paper.

8As mentioned earlier, this also applies to the more complex propositional logics, like
e.g. many-dimensional modal logic.

9With further work this approach can be turned into a fruitful approach to algebraizing
logic, see [N�emeti, 1991, x7 (2{4) and the Section containing Facts 2, 3 at the end of x4];
see also [Henkin, Monk and Tarski, 1985, x5.6.(A survey).3, p. 265], and the references
therein. The approach originates with Craig, but already the algebras in [Quine, 1936]

consist of sets of �nite sequences.
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hence for ordinary metamathematics.10

Throughout this Paper, P(U) denotes the powerset of U , and P(U) de-
notes the Boolean algebra (in short BA) with universe P(U), for any set U .
Thus P(U) is the set of all subsets of U , and

P(U) = hP(U);[;�i

where [ is the binary operation of taking union of two subsets of U , and
� is the unary operation of taking complement (w.r.t. U) of a subset of U .
Then P(U), as well as any of its subalgebras, is a natural algebra of unary
relations on U , because a unary relation on U is just a subset of U , hence
an element of P(U).

A binary relation is a set of pairs. Thus the usual set-theoretic (or in
other words, Boolean) operations of union and complementation can be
performed on binary relations. First we consider two natural operations
on binary relations that use the fact that we have sets of pairs, namely
relation-composition and relation conversion. Let R;S be binary relations.
Then their composition11 R ÆS and the converse R�1 of R are de�ned as12

R Æ S = fha; bi : 9c(aRc and cSb)g

R�1 = fhb; ai : ha; bi 2 Rg.

By a concrete algebra of binary relations, a cBRA, we understand an alge-
bra whose elements are binary relations having a greatest one among them,
and whose operations are the Boolean ones: union and complementation
(w.r.t. this greatest relation), relation-composition and relation conversion.
Thus the universe of a cBRA is closed under these operations, e.g. the union
and relation composition of any two elements of the algebra are also in the
universe of the algebra.13

Formally, a cBRA is of the form

A = hA;[;�; Æ;�1i

where

10A very interesting class of algebras of relations which is halfway between BA's and
BRA's is the class RCA2 of cylindric algebras of dimension 2. They will be discussed at
the beginning of Section 2.
11This is denoted by RjS in part of the literature, e.g. in [Henkin, Monk and Tarski,

1985]. The reason for this is that in a large part of the literature, Æ is reserved for the
case when R and S are functions and is written backwards, i.e. what we denote by R Æ S
is denoted by S Æ R.
12Throughout this Paper we will use the convention that if R is a binary relation, then

aRb means that ha; bi 2 R.
13To understand how (and why) the theory works, it would be enough to include only

`Æ' as `extra-Boolean' operation. Inclusion of conversion is motivated by some of the
applications. Cf. the discussion of BSR below Theorem 9 (this Section).
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A is a set of binary relations and A has a biggest element V ,

[;�; Æ;�1 are total operations on A, which means that
fR [ S; V {R;R Æ S;R�1g � A whenever R;S 2 A.

An algebra of binary relations, a BRA, is an algebra isomorphic to a
concrete algebra of binary relations. If A is a BRA, then 1A denotes the
greatest element of A, which we shall sometimes call the unit of A.

Throughout, we use abbreviations like BRA also for denoting the corre-
sponding class itself, e.g. BRA also denotes the class of all BRA's, and BA

also denotes the class of all BA's MDNM.
The similarity type, or language, of our BRA's should contain two binary

function symbols for [ and Æ, and two unary function symbols for � and
�1. In this Paper, for simplicity and suggestiveness, we use the symbols
[; Æ;�;�1 for these. We hope, this will cause no confusion.14 Typical
equations holding in BRA are (x [ y) Æ z = (x Æ z) [ (y Æ z); (x [ y)�1 =
x�1 [ y�1. In the literature _;+ are often used as function symbols for [,
and likewise ; ;` are used as function symbols for Æ;�1. Using these symbols,
the above equations look as (x _ y); z = (x; z) _ (y; z); (x _ y)` = x` _ y`,
or (x+ y); z = (x; z) + (y; z); (x+ y)` = x` + y`.

So we will use the symbol [ also in abstract Boolean algebras. Moreover,

in abstract Boolean algebras we also will use \ as derived operation: x\y
def
=

�(�x [�y). �; 0; 1 will denote the ordering x � y
def
() x [ y = y, smallest

element and biggest element, respectively. Thus � � � is an equation.

Having a fresh look at our BRA's with an abstract algebraic eye, we notice
that they should be very familiar from the abstract algebraic literature.
Namely, a BRA A consists of two well known algebraic structures, a Boolean
algebra hA;[;�i and an involuted semigroup hA; Æ;�1i sharing the same
universe A. The two structures are connected so that they form a normal
Boolean algebra with operators, in short a normal BAO, which means that
each extra-Boolean operation is distributive over [ (additivity) and takes
the value 0 whenever at least one of the arguments is 0 (normality). Also
�1 is a Boolean isomorphism and x 7! 1 Æ x, where 1 is the Boolean 1,
de�nes a complemented closure operation15 on A. The properties listed in

14When seeing, say `x[ y', the reader will have to decide whether this denotes a term
of BRA's built up from the variables x; y, or whether it denotes a set (the union of the
sets x and y).
15Closure operations are unary functions f : U ! U , where we have an ordering � on

U . f is called a closure operation if it is order preserving, idempotent and increasing, i.e.
if for all u; v 2 U we have u � f(u) = ff(u) and u � v ) f(u) � f(v). Boolean orderings
with closure operations on them are one of the central concepts of abstract algebra, for
example topological spaces or subalgebras of an algebra are often represented as such. f
is called a complemented closure operation if f(�fx) = �f(x), i.e. the complement of
a closed element is closed. For more on these see e.g. [Henkin, Monk and Tarski, 1971,
p.38].
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this paragraph de�ne a nice variety ARA containing BRA and is a reasonable
starting point for an axiomatic study of the algebras of binary relations.16

DEFINITION 1. (ARA, an abstract approximation of BRA) ARA is de�ned
to be the class of all algebras of the similarity type of BRA's which validate
the following equations.

(1) The Boolean axioms17

x [ y = y [ x,

x [ (y [ z) = (x [ y) [ z,

�[�(x [ y) [ �(x [ �y)] = x.

(2) The axioms of involuted semigroups, i.e.

(x Æ y) Æ z = x Æ (y Æ z),

(x Æ y)�1 = y�1 Æ x�1,

x�1�1 = x.

(3) The axioms of normal BAO, i.e.18

(x [ y) Æ z = (x Æ z) [ (y Æ z),

(x [ y)�1 = x�1 [ y�1,

0 Æ x = 0, 0�1 = 0.

(4) �1 is a Boolean isomorphism and x 7! 1Æx is a complemented closure
operation, i.e.

�(x�1) = (�x)�1,

x � 1 Æ x,

�(1 Æ x) = 1 Æ �(1 Æ x).

If E is a set of equations, then Mod(E) denotes the class of all algebras
(of a given similarity type) in which E holds. A class K of algebras is called
a variety , or an equational class , if K = Mod(E) for some set E of equations.
The following theorem is due to A. Tarski.

16Most of these postulates already appear in [De Morgan, 1964], and since then inves-
tigations of ARA's have been carried on for almost 130 years.
17Problem 1.1 in [Henkin, Monk and Tarski, 1971, p.245], originating with H. Robbins,

asks whether this is an axiom system for BA. This problem has recently been solved
aÆrmatively (by the theorem prover program EQP developed at Argonne National Lab-
oratory, USA). We will use this axiom system for BA in Part II, Section 7.1.
18We are omitting some axioms that follow from the already stated ones. E.g. here we

omit x Æ (y [ z) = (x Æ y) [ (x Æ z), x Æ 0 = 0.
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THEOREM 2. BRA is an equational class, i.e. there is a set E of equations
such that BRA = Mod(E).

To prove the above theorem, we will use the machinery of universal alge-
bra. First we prove that BRA is closed under taking subalgebras and direct
products. If K is a class of algebras, then SK denotes the class of all subalge-
bras of elements of K, PK; IK, HK and UpK denote the classes of all algebras
isomorphic to direct products, isomorphic copies, homomorphic images, and
ultraproducts of elements of K respectively.19 Thus BRA = IcBRA.

LEMMA 3. BRA = SPfhP(U � U); Æ;�1i : U is a setg.

Proof. Let V be a binary relation. We say that V is an equivalence relation
if V is symmetric and transitive, i.e. if V �1 = V and V Æ V � V . The �eld
of V is the smallest set U such that V � U � U , i.e. U = fu : (9v)[hu; vi 2
V or hv; ui 2 V ]g. The following three statements (�){(���) will not be
diÆcult to check:

1. (�) If A 2 cBRA, then 1A is an equivalence relation.

(��) If V is an equivalence relation, then

R(V )
def
= hP(V ); Æ;�1i 2 cBRA:

(���) Let I be a set and for all i 2 I let Vi be an equivalence relation.
Assume that the �elds of the Vis are pairwise disjoint. Then

R

 [
i2I

Vi

!
�= Pi2IR(Vi):

Indeed, to see (�), let A 2 cBRA and V
def
= 1A. Then V 2 A, hence V ÆV; V �1

are in A as well, hence V Æ V � V and V �1 � V , because V is the biggest
element of A. But V �1 � V is equivalent to V �1 = V , hence V is an
equivalence relation.

To show (��), one has to check that for any R;S � V also RÆS � V and
R�1 � V . These follow from V Æ V � V , V �1 � V .

To show (���), we de�ne the function f : P(
S
i2I

Vi) ! Pi2IP(Vi) by

letting for all X �
S
i2I

Vi,

f(X)
def
= hX \ Vi : i 2 Ii:

19Note that S is di�erent from P; I;H and Up in that S 6= IS, while P = IP etc. For
our reasons for de�ning S this way see the remark after the de�nition of Algm in Part
II, De�nition 42. We will use simple facts like IS = SI, IP = PI, SS = S, etc. without
mentioning them.
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Then it is easy to check that this f is the required isomorphism.

We are ready to prove the lemma. First we show that BRA = SPBRA.
By de�nition, cBRA is closed under taking subalgebras, so BRA is also closed
under taking subalgebras (because BRA = IcBRA). Let I be a set, and let
Ai 2 cBRA with unit Vi for each i 2 I . We may assume that the Vis have
disjoint �elds. Then Ai � R(Vi), so PAi � PR(Vi) �= R(

S
Vi) 2 cBRA by

(�){(���). This shows that PAi is isomorphic to a cBRA, i.e. BRA is closed
under taking direct products.

Now let A 2 cBRA with greatest element V . Then V is an equivalence
relation, let Ui, i 2 I be the blocks of this equivalence relation. Then Ui�Ui
are also equivalence relations with pairwise disjoint �elds, and V is the union
of these. Hence by (��){(���) we have that A � PhhP(Ui � Ui); Æ;�1i :
Ui is a block of 1Ai. This completes the proof of Lemma 3. �

To formulate our next lemma, we need the notions of a subdirect product
and a discriminator term.

Subdirect products of algebras, and subdirectly irreducible algebras are
de�ned in practically every textbook on universal algebra, cf. e.g. [Gr�atzer,
1979], or [Burris and Sankappanavar, 1981; Henkin, Monk and Tarski, 1971;
McKenzie, McNulty and Taylor, 1987]. By a subdirect product we mean a
subalgebra of a product such that the projections of the product restricted
to the subalgebra remain surjective mappings. An algebra A is subdirectly
irreducible if it is not (isomorphic to) a subdirect product of algebras dif-
ferent from A. We note that the one-element algebra is not subdirectly
irreducible. By Birkho�'s classical theorem, every algebra is a subdirect
product of some subdirectly irreducible ones. Therefore, the subdirectly
irreducible algebras are often regarded as the basic building blocks of all
the other algebras. In particular, when studying an algebra A, it is often
enough to study its subdirectly irreducible building blocks. For a class K of
algebras, Sir(K) denotes the class of subdirectly irreducible members of K.
For K = BA, Sir(BA) consists of the 2-element Boolean algebra only (up to
isomorphisms).

We say that a class K of algebras has a discriminator term i� there is a
term �(x; y; z; u) in the language of K such that in every member of K we
have

�(x; y; z; u) =

�
z; if x = y;
u; if x 6= y:

The term � above is called a discriminator term. Sometimes instead of
the four-ary � , the ternary discriminator term t(x; y; z) = �(x; y; z; x) is
used. They are interde�nable, since �(x; y; z; u) = t(t(x; y; z); t(x; y; u); u).
Therefore, it does not matter which one is used. Moreover, in classes of
algebras which have a Boolean algebra reduct, like our BRAs or ARAs, the



ALGEBRAIC LOGIC 143

discriminator term can be replaced with the so called switching term

c(x) =

�
1; if x 6= 0;
0; if x = 0:

By this we mean that in such a class of algebras, if �(x; y; z; u) is a discrim-
inator term, then c(x) = �(x; 0; 0; 1) is a switching term, and vica versa, if
c(x) is a switching term, then �(x; y; z; u) = [�c(x�y)\z][ [c(x�y)\u] is
a discriminator term. Here, and later on, � denotes symmetric di�erence,

i.e. x� y
def
= (x \ �y) [ (�x \ y).

LEMMA 4. Sir(BRA) = ISfhP(U � U); Æ;�1i : U is a nonempty setg and
Sir(BRA) has a discriminator term.

Proof. Let K
def
= ISfhP(U � U); Æ;�1i : U is a nonempty setg. Let A 2

BRA. Then A is isomorphic to a subalgebra of PR(Ui�Ui) for some system
hUi : i 2 Ii of sets, by Lemma 3. If Ui = ;, then R(Ui � Ui) is the one-
element algebra which can be left out from any product, so we may assume
that each Ui above is nonempty. But then A is a subdirect product of some
Bi, i 2 I where each Bi is a subalgebra of R(Ui � Ui). This shows that
Sir(BRA) � K.

It is not diÆcult to check that

c(x)
def
= 1 Æ x Æ 1

is a switching term on R(U �U) for all U . Hence it is a switching term on
K also. Thus, K has a discriminator term.

Finally, if A has a discriminator term, then A has no nontrivial congru-
ences, i.e. A is simple. This is a basic fact of discriminator theory.20 Clearly,
any simple algebra is subdirectly irreducible, so K � Sir(BRA). �

We say that K is a pseudo-axiomatizable class if there are an expansion L
of the language of K, a set � of �rst{order formulas in this bigger language
L and a unary relation symbol U of L such that

K = RdUMod�;

where Mod� denotes the class of all models of �, and RdU denotes the
operator of taking reducts to the language of K and restricting the universe
to U at the same time. In more detail: Let M be a model of the language
L. Then RdM denotes the reduct of M to the language of K, and RdUM

20The reason is the following. Assume that R is a nonidentity congruence of A. We
will show that then R = A � A. Let u; v 2 A, u 6= v be such that uRv, and let a; b 2 A
be arbitrary. Then a = �(u; u; a; b)R�(u; v; a; b) = b, so aRb.
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denotes the restriction of the model RdM to the interpretation UM � M
of U in M. I.e. while M is a model of the bigger language L, RdUM is a
model of the smaller language of K. If N is a class of models of the language

of L, then RdUN
def
= fRdUM : M 2 Ng.

It is known that pseudo-axiomatizable classes are closed under ultraprod-
ucts, this is easy to show.

LEMMA 5. Sir(BRA) is a pseudo-axiomatizable class.

Proof. The expansion L of the language of BRA will be a many-sorted �rst-
order language with three sorts: S; P and R (for set, pairs, and relations),
two unary functions p0; p1 from P to S (�rst and second projections), a
binary relation " between P and R (for `is an element of'), and binary
functions [; Æ on R, unary functions �;�1 on R. The variables x; y; z are
of sort S, the variables u; v; w are of sort P , and the variables a; b; c are of
sort R. We also consider S; P;R as unary relations.21 See Figure 1.

∪, −, ◦, −1

ε
p0

p1
R P S

(relations) (pairs) (base set)
a, b, c u, v, w x, y, z

Figure 1.

The set � of axioms is as follows: In the following formulas we will write
" in in�x mode, like u"a. Also we will write comma in place of conjunction
^. There are free variables in the elements of �, validity of an open formula
is meant in such a way that all the free variables are universally quanti�ed
at the beginning of the formula. � is de�ned to be f(1a); (1b); : : : ; (4)g,
where

The `pair-axioms' are:

(1a) (9u)(p0(u) = x; p1(u) = y).

(1b) p0(u) = p0(v); p1(u) = p1(v) ! u = v.

21If one is not familiar with many-sorted models, then one can think of the above
language as having S;P;R as unary relation symbols, and e.g. p0 as a binary rela-
tion. Then to our axioms we have to add statements like p0(x; y) ! P (x); p0(x; y) !
S(y); p0(x; y); p0(x; z) ! y = z; P (x) ! (9y)p0(x; y). Then the fact that the variable x
in the many-sorted language is of sort S while the variable u is of sort P means that one
has to replace e.g. the formula 8x9up0(x) = u with (8x)(S(x) ! 9u(P (u) ^ p0(x; u)).



ALGEBRAIC LOGIC 145

Extensionality of sets of pairs:

(2) 8u(u"a$ u"b)! a = b:

The de�nitions of the operations of cBRA:

(3a) u"(a [ b)$ (u"a or u"b).

(3b) u"(�a)$ :u"a.

(3c) u"(a Æ b)$ (9vw)(v"a; w"b; p0(u) = p0(v); p1(v) = p0(w);
p1(w) = p1(u)):

(3d) u"(a�1)$ (9v)(v"a; p0(u) = p1(v); p1(u) = p0(v)):

There are at least two elements in the relations sort:

(4) (9ab)a 6= b:

This �nishes the de�nition of �. We will show that

Sir(BRA) = RdRMod�:

Indeed, let A 2 Sir(BRA), say A is isomorphic to a subalgebra of hP(U �
U); Æ;�1i. We may assume that A � hP(U � U); Æ;�1i. We de�ne the
three-sorted model M as follows.

SM
def
= U; PM

def
= U � U; RM

def
= A;

pM0 (hu; vi) = u; pM1 (hu; vi) = v for all u; v 2 U;

hu; vi"Ma i� hu; vi 2 a; for all u; v 2 U; a 2 A;

a [M b
def
= a [ b; �Ma

def
= �a; a ÆM b

def
= a Æ b; a�1Mb

def
= a�1:

Then it is easy to check that M j= � and RdRM = A. See Figure 2.

Conversely, let M be such that M j= �. Let U
def
= SM. De�ne the relation

T between U � U and PM as follows:

hu; viTx i� p0(x) = u; p1(x) = v:

By (1a),(1b) in � then T is a bijection between U �U and PM. Therefore
we will assume that

U � U = PM and u = pM0 (hu; vi); v = pM1 (hu; vi):
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∪, −, ◦, −1

ε
A U × U U

p0

p1

︸ ︷︷ ︸
the original extra structure

A ⊆ R(U × U) used for axiomatizing

Figure 2.

We de�ne now the function Q : RM ! P(U � U) as

Q(a) = fhu; vi : hu; vi"Mag:

See Figure 3. Then Q is one-to-one by (2) in �. Axioms (3a){(3d) in � say
that22

Q(a [M b) = Q(a) [Q(b);
Q(�Ma) = (U � U)rQ(a);
Q(a ÆM b) = Q(a) ÆQ(b);

Q(a�1M) = (Q(a))�1:

{〈u, v〉, 〈v, v〉}
R A ⊆ P(U × U)

ε ε

〈u, v〉 〈v, v〉
P U × U

p0 p1

S U
u v

The three-story structure of A

Figure 3.

This shows that Q is an isomorphism from RdRM into hP(U�U); Æ;�1i.
Finally, (4) in � implies that U is nonempty, RdRM is nonempty. �

Proof of Theorem 2. Now we are ready to prove Theorem 2, applying
the following theorem of universal algebra (it follows easily from e.g. [Burris

22 X r Y
def
= fx 2 X : x =2 Y g:
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and Sankappanavar, 1981, Thm. IV.9.4 (b,c)], and it is proved in detail in
[N�emeti, 1991, Thm 9.1]).

THEOREM (Universal algebra). If SUpK has a discriminator term, then
SPUpK is an equational class.

Indeed, let K = Sir(BRA). Then K = SK by Lemma 4, and K = UpK
by Lemma 5, thus K = SUpK. Also, K has a discriminator term by
Lemma 4. Thus SPUpK is an equational class by the above theorem
of universal algebra. But SPUpK = SPK = SPSir(BRA) = BRA by
Lemma 3, and we are done with proving that BRA is an equational class.
QED (Theorem 2) �

In universal algebra, an equational class K such that SirK has a discrim-
inator term is called a discriminator variety. So we proved that BRA is a
discriminator variety.

The above proof of Theorem 2 uses techniques that can be applied in
many cases in algebraic logic. E.g. these same techniques work for cylindric
and polyadic algebras. See e.g. Theorems 10, 17. hP(U�U); Æ;�1i is called
the full BRA over the set U . By Lemma 3 we could have de�ned BRA as

BRA = SPfhP(U � U); Æ;�1i : U is a setg; or as

BRA = SPfhP(U � U); Æ;�1i : U is a nonempty setg:

Set
setBRA

def
= SfhP(U � U); Æ;�1i : U is a nonempty setg:

Then BRA = SPsetBRA.23 This fact, and the class setBRA will be used in
Part II (Section 7.4) when translating our algebraic results to logic.

In the following, we will de�ne our classes of algebras of relations in this
style. So when de�ning new kinds of algebras of relations, we will �rst de�ne
the simplest version (e.g. the one with top element U � U � : : : � U), and
then take all subalgebras of all direct products of these.

Let K = setBRA. Then, as we have seen, BRA = SPK is a variety because
K has a discriminator term and K is pseudo-axiomatizable.24 In almost all

23Because SPS = SP, this is a basic theorem in universal algebra. See e.g. [Henkin,
Monk and Tarski, 1971, 0.3.12].
24We could have proved K = SUpK more directly, as follows. An ultraproduct of

full BRAs on some sets Ui is isomorphic to the full BRA on the ultraproduct of the Uis,
namely if F is an ultra�lter on I, and F(U) denotes hP(U �U); Æ;�1i, then PF(Ui)=F �=
F(PUi=F ), and the isomorphism h is given by a=F 7! fhu=F; v=F i : fi 2 I : hui; vii 2
aig 2 Fg. The reader is invited to check that h is indeed an isomorphism. This method
also is applicable in many places. We chose the method of pseudo-axiomatizability for
proving that K is closed under ultraproducts, because we feel that this method reveals
the real cause: our concrete algebras are usually pseudo-axiomatizable, because `concrete'
very much means this, i.e. `concrete' means that there is some extra structure not coded
in the operations, which means that this extra structure may disappear when taking
isomorphic copies.
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our cases, K, where K is the class of the corresponding set algebras, will be
pseudo-axiomatizable because K is de�ned to be a three-story structure like
BRA, only the operations on the third level will vary (and instead of U �U
we may have U�U� : : :�U), and in most cases K will have a discriminator
term.25

Theorem 2 indicates that BRA is indeed a promising start for developing
a nice algebraization of stronger logics (like e.g. quanti�er logics), or in the
non-logical perspective, for developing an algebraic theory of relations. Af-
ter Theorem 2, the question comes up naturally whether we can strengthen
the postulates de�ning ARA to obtain a �nite set E of equations describing
the variety BRA, i.e. such that BRA = Mod(E) would be the case. The
answer is due to J. D. Monk:

THEOREM 6. BRA is not �nitely axiomatizable, i.e. for no �nite set � of
�rst-order formulas is BRA = Mod(�).

The idea of one possible proof is explained in Remark 23 in Section 2
herein. This idea is based on the proof of Theorem 19 which is the reason
why it is postponed to that part of the Paper. See [Monk, 1964], and also
[Henkin, Monk and Tarski, 1985, 5.1.57, 4.1.3], for the original proof of
Theorem 6 (in slightly di�erent settings).

For a class K of algebras, let EqK denote the set of all equations valid
in K.

THEOREM 7. Eq(BRA) is recursively enumerable but not decidable.

Proof. An equation holds in BRA i� it holds in Sir(BRA) by Lemma 3. Let
� be the �nite set of �rst-order formulas such that Sir(BRA) = RdRMod(�),
from the proof of Lemma 5. Thus an equation is valid in Sir(BRA) i� it
is valid in Mod(�) (when all the variables of the original equation are con-
sidered to be of sort R). The consequences of any �nite set of �rst-order
formulas is recursively enumerable by the completeness theorem of �rst-
order logic. Thus Eq(BRA) is recursively enumerable (and an enumeration
is given by the present proof).

The proof of undecidability of Eq(BRA) goes via interpreting the quasi-
equational theory of semigroups into Eq(BRA). The proof consists of two
steps:

(�) An equational implication (i.e. a quasi-equation) about Æ is valid in
all semigroups i� it is valid in BRA.

25Even if K would not have a discriminator term, then SPK would still be a quasi-
variety, i.e. de�nable by equational implications, because K will be pseudo-axiomatizable,
hence K = UpK, thus SPK = SPUpK will hold. It is a basic theorem of universal algebra
that K is a quasi-variety i� K = SPUpK0 for some K0.
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(��) To any equational implication q there is an equation e in the language
of BRA such that BRA j= q i� BRA j= e.

Proof of (�): If q is true in all semigroups, then it is true in BRA because Æ
is associative in BRA. If q fails in a semigroup hS; �i, then take the Cayley-
representation of this semigroup, this is an embedding of hS; �i into hP(S0�
S0); Æi which is a reduct of R(S0 � S0) 2 BRA. Thus q fails in BRA.

Proof of (��): The reason is that BRA is a discriminator variety, and in
every discriminator variety a quasi-equation q is equivalent to an equation
e on the subdirectly irreducibles26. Now, by BRA = SPSir(BRA) we have
that BRA j= q i� Sir(BRA) j= q i�(by the above) Sir(BRA) j= e i� BRA j= e.

Now (�) and (��) above give an interpretation of the quasi-equations
valid in all semigroups into the equations valid in BRA. Since it is known
that the former is undecidable, we also have that the latter, Eq(BRA), is
undecidable. �

The above method of proof for undecidability is also widely applicable
in algebraic logic. The above proof e.g. is in [Crvenkovic and Madar�asz,
1992]. For more re�ned uses of this technique see e.g. [Maddux, 1980],
[N�emeti, 1985a] (�nite dimensional part) [Kurucz et al., 1995], [Kurucz et
al., 1993], [Andr�eka, Givant and N�emeti, 1997, chapter II], [Kurucz, 1997].
For more on (un)decidability in algebraic logic we refer to the just quoted
works together with [Jipsen, 1992], [Maddux, 1978], [Henkin, Monk and
Tarski, 1985], [N�emeti, 1986], [N�emeti, 1987], [N�emeti, 1992], [Marx and
Venema, 1997], [Mikul�as, 1995], [N�emeti, 1991].

We turn to determining the logic `captured by' BRA. We note that the
connection with logic will be much more lucid in the case of cylindric (and
polyadic) algebras of n-ary relations.

Let L6=3;2 denote �rst order logic without equality and using only three
variables x; y; z, with countably many binary relation symbols R0; R1; : : :
(so, e.g., no ternary relation symbols are allowed), and the atomic formulas
are Ri(u; v) with distinct variables u; v (so atomic formulas of the form
Ri(u; u) are not allowed).

THEOREM 8. L6=3;2 can be interpreted into Eq(BRA). I.e. there is a recur-

sive function e mapping L6=3;2 into the set of equations on the language of

BRA such that for every ' 2 L6=3;2

' is valid i� BRA j= e('):
26This is one of the basic facts of discriminator varieties. Assume that q is �1 =

�1^ : : :^�n = �n ! �0 = �0. Then c� (�1��1)\ : : :\c� (�n��n) � �(�0��0) can be
chosen for e , where c denotes the switching term and � denotes symmetric di�erence.
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Theorem 8 will be a consequence of the following, stronger Theorem 9.
We stated Theorem 8 because it states that L6=3;2 can be interpreted into

Eq(BRA), thus Eq(BRA) is `at least as strong' as L6=3;2. Set Theory can be

interpreted in L6=3;2, this is proved in [Tarski and Givant, 1987, x4.6, pp.127{

134]. Thus the logic captured by BRA is strong enough to serve as a vehicle
for set theory, and hence for ordinary mathematics, as we mentioned at the
beginning of this chapter.27

We can characterize the expressive power of BRA in terms of L6=3;2. This
will be stated and proved as Theorem 9 below. We need some preparations
for stating Theorem 9.

In the equational language of BRA let us use the variables vi; i 2 !,
where ! = f0; 1; 2; : : :g is the set of natural numbers. For any model M =

hM;RMi ii2! of L6=3;2 let kM denote the evaluation of the variables vi; i 2 !
such that

kM(vi) = RMi for all i 2 !:

Recall that R(M �M) = hP(M �M); Æ;�1i 2 setBRA.

If A is an algebra, k is an evaluation of the variables, � is a term, and e is
an equation, then A j= e[k] denotes that the equation e is true in the algebra
A under the evaluation k of the variables, and �A;k denotes the element of
A denoted by the term � when the variables are evaluated according to k.

Let u; v be distinct elements of fx; y; zg. Then Luv3 denotes the set of

those elements of L6=3;2 which contain only u; v as free variables. If ' 2 Lxy3

and M is a model, then 'M denotes the following binary relation on M :

'M
def
= fha; bi 2M �M : M j= '[a; b]g:

The following Theorem 9 says28 that, in a way, the expressive power of

BRA is Lxy3 . We included (i) for its simple content, and (ii) states a corre-
spondence between meanings of formulas in Lxy3 and denotation of terms in
elements of setBRA. For more on the background ideas of this see Part II
of the present Paper.

THEOREM 9 (The expressive power of Eq(BRA)).

(i) For any ' 2 L 6=3;2 there is an equation e such that for all models M of

L6=3;2
M j= ' i� R(M �M) j= e[kM]:

27This also gives another proof for undecidability of Eq(BRA), because Set Theory is
undecidable.
28These statements and proofs are simpli�ed versions of those in [Tarski and Givant,

1987]. Cf. also [Henkin, Monk and Tarski, 1985, x5.3, 4.3].
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(ii) There are recursive functions t : L6=3;2 ! Terms and f : Terms! L6=3;2
such that for any ' 2 Lxy3 and model M

'M = t(')hR(M�M);kMi; and

for any term � , set U , and evaluation k,

� hR(U�U);ki = f(�)hU;k(vi)ii2! :

Proof. (i) follows from (ii), so it is enough to prove (ii).

The translation function f : Terms ! L6=3;2 is not hard to give. Let
u; v 2 fx; y; zg be distinct, and let w be the third variable, i.e. fu; v; wg =

fx; y; zg. We will simultaneously de�ne the functions fuv : Terms ! L6=3;2
as follows:

fuv(vi)
def
= Ri(uv);

fuv(� [ �)
def
= f(�) _ f(�); f(��)

def
= :f(�);

fuv(� Æ �)
def
= 9w(fuw(�) ^ fwv(�)),

fuv(�
�1)

def
= fvu(�).

For the other direction, we want to de�ne, by simultaneous recursion, a
term �('; u; v) for all distinct variables u; v 2 fx; y; zg and ' 2 Luv3 such
that for all models M we have

(�) fha; bi 2M �M : M j= '(u=a; v=b)g = �('; u; v)hR(M�M);kMi:

So let ' 2 Luv3 .

Case 1. If ' is an atomic formula, then ' is Ri(uv) or Ri(vu) for some
i 2 ! (by ' 2 Luv3 ).

�(Ri(uv); u; v)
def
= vi, �(Ri(vu); u; v)

def
= vi

�1.

Case 2. If ' is a disjunction of two formulas, say ' is  _�, then  ; � 2 Luv3 ,
and

�( _ �; u; v)
def
= �( ; u; v) [ �(�; u; v).

Case 3. If ' is a negation of another formula, then ' is : for some  2 Luv3 ,
and we de�ne
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�(: ; u; v)
def
= ��( ; u; v).

Case 4. If ' begins with 9u, then ' is 9u for some  2 Luv3 , and then we
de�ne

�(9u ; u; v)
def
= 1 Æ �( ; u; v).

Likewise we de�ne

�(9v ; u; v)
def
= �( ; u; v) Æ 1.

Case 5. Assume that ' begins with 9w, i.e. ' is 9w . Then  2 L6=3;2 can

be arbitrary. It is easy to prove by induction that every element of L6=3;2
is a Boolean combination of formulas in Lxy3 ;Lxz3 and Lyz3 . Bring  into
disjunctive normal form  1 _ : : : _  n where each  i is a conjunction of
formulas with two free variables. Now 9w is equivalent to

(9w 1) _ : : : _ (9w n);

so by Case 2 we may assume that  is of form  uv ^  uw ^  vw where
 uv 2 Luv3 , etc. Now 9w is equivalent to

 uv ^ 9w( uw ^  vw):

We now de�ne

�(9w( uw ^  vw); u; v)
def
= �( uw ; u; w) Æ �( vw ; w; v).

It is not diÆcult to check that the so de�ned �('; u; v) satis�es our re-
quirement (�). �

One can get very far in doing algebraic logic (for quanti�er or predicate
logics) via BRAs.29 As we have seen, the natural logical counterpart of BRAs
is classical �rst-order logic restricted to three individual variables and with-
out equality. As shown in [Tarski and Givant, 1987, x5.3], this system is an
adequate framework for building up set theory and hence metamathematics
in it. One can illustrate most of the main results, ideas and problems of
algebraic logic by using only BRAs.

We do not know how far BRAs can be simpli�ed without losing this
feature. In this connection, a natural candidate would be the class BSR of
Boolean semigroups of relations de�ned as

BSR = SP fhP(U � U); Æi : U is a setg :
29If we want to investigate nonclassical quanti�er logics, we can replace the Boolean

reduct B of A = hB; Æ;�1i 2 BRA with the algebras (e.g. Heyting algebras) corresponding
to the propositional version of the nonclassical logic in question.
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So we require only one extra-Boolean operation `Æ'.
The question is, how far BSR could replace BRA as the simplest, `in-

troductory' example of Tarskian algebraic logic. We conjecture that the
answer will be `very far'. BSR is a discriminator variety with a recursively
enumerable but not decidable equational theory, and it is not �nitely axiom-
atizable. Thus Theorems 2{7 remain true if BRA is replaced with BSR in
them.30 We conjecture that, following the lines of [Tarski and Givant, 1987,
x5.3], set theory can be built up in BSR instead of BRA with basically the
same positive properties (e.g. �nitely many axioms) as the present version
[Tarski and Givant, 1987] has.31 It would be nice to know if this conjecture
is true, and, more generally, to see a variant of algebraic logic elaborated on
the basis of BSR. We do not know what natural fragment of �rst-order logic
with three variables corresponds to BSR (if any). It certainly is diÆcult to
simulate substitution of individual variables using only Æ. The converse op-
eration, �1, is the algebraic counterpart of substitution because, intuitively,
R(v0; v1)�1 = R(v1; v0). One can simulate quanti�cation by Æ, and it is
easily seen that Æ is stronger than quanti�cation but without �1 it is not
clear exactly how much stronger.32 Curiously enough, these issues are bet-
ter understood in the case of cylindric algebras to be discussed in Section
2.

If we want to algebraize �rst-order logic with equality, we have to add an
extra constant Id, representing equality, to the operations. RRA denotes the
class of algebras embeddable into direct products of algebras of the form

hP(U � U); Æ;�1; Idi

where Id = Id � U = fhu; ui : u 2 Ug is a constant of the expanded algebra.
I.e.

RRA = SP
�
hP(U � U); Æ;�1; Idi : U is a set

	
:

RRA abbreviates representable relation algebras. RRAs have been inves-
tigated more thoroughly than BRAs; actually, Theorems 2, 6 above were
proved �rst for RRAs.

Let L=
3;2 denote �rst-order logic with three individual variables x; y; z,

with equality, and with in�nitely many binary relation symbols. (Thus the

30The proofs of Theorems 2, 7 given here go through for BSR with the obvious mod-
i�cations. Non�nite axiomatizability of BSR will follow from the later Theorems 10,
11.
31Perhaps here [N�emeti, 1985], [N�emeti, 1986] can be useful, because an analogous task

was carried through there. The last 12 lines of [J�onsson, 1982, p. 276], seem to be also
useful here.
32For applications in propositional dynamic logic, BSR seems to be more relevant than

BRA, because there converse (of programs or actions) is not an essential feature of the
logic.
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atomic formulas are R(uv); u = v for any variables u; v 2 fx; y; zg, and the
logical connectives are _;:; 9x; 9y; 9z.)

THEOREM 10 (Basic properties of RRA).

(i) RRA is a non�nitely axiomatizable discriminator variety with a recur-
sively enumerable but undecidable equational theory.

(ii) The logic captured by RRA is L=
3;2, i.e. there are recursive functions

t : L=
3;2 ! Terms, and f : Terms ! L=

3;2 such that the `meanings'
of ' and t(') as well as those of � and f(�) coincide, i.e. for any
model M, ' 2 L=

3;2 with free variables x; y, term � and evaluation k
of variables,

'M = t(')hR(M�M);kMi and � hR(U�U);ki = f(�)hU;k(vi)ii2! :

Proof. Obvious modi�cations of the proofs of Theorems 2, 7, 8 prove
Theorem 10, except for non�nite axiomatizability of RRA. For the proof of
non�nite axiomatizability of RRA see Remark 23. �

The classes of algebras RRA;BRA;BSR have less operations in this order,
they form a chain of subreduct classes. Note that Eq(K) denotes the set of
all equations in the language of K holding in K. Thus

Eq(BSR) � Eq(BRA) � Eq(RRA):

The next theorem says that these classes are �nitely axiomatizable over the
bigger ones.

THEOREM 11. Let E0 denote the following set of equations:

(x [ y)�1 = x�1 [ y�1; (x Æ y)�1 = y�1 Æ x�1; x�1�1 = x
x Æ �(x�1 Æ �y) � y
x � x Æ [�(y�1 Æ �y) \ ((�y)�1 Æ y)�1]:

Then Eq(BSR) [ E0 axiomatizes BRA, and Eq(BSR) [ E0 [ fId Æ x = xg
axiomatizes RRA.

The proof can be found in [Andr�eka and N�emeti, 1993]. �

Theorem 11 talks about interconnections between the operations of RRA.
It says, in a way, that the sole cause of non�nite axiomatizability of RRA
is the operation Æ, it is so strong that the other operations, �1 and Id, are
�nitely axiomatizable with its help. This is in contrast with the case of
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cylindric algebras of n-ary relations, where the strength of the operations
are `evenly distributed', see Figure 10.

The next �gure, taken from [Andr�eka and N�emeti, 1993] describes com-
pletely the interconnections between the operations Æ;�1; Id (in the pres-
ence of the Boolean operations). On Figure 4, all classes represented by
the nodes are varieties, except the ones inside a box (those are only quasi-
varieties), and the classes inside a circle are not �nitely axiomatizable, ex-
cept BA.33

∪,−,◦,−1

BRA
∪,−,◦,−1,Id

RRA

Id◦x=x

E0 ∞ E1 ∞

x◦Id=Id◦x=x
∪,−,◦
BSR

∪,−,◦,Id

RBM

E3

∪,−,−1 ∪,−,−1,Id

∞ E2 ∞ E4

Id=0→1=0∪,−

BA ∪,−,Id

E0 from Thm. 1.11
E1 = {x−1 ◦ −x ≤ −Id, −(x−1) = (−x)−1}
E2 = {x−1 = −x → 1 = 0, (x ∪ y)−1 = x−1 ∪ y−1, x−1−1 = x}
E3 = {Id = 0 → 1 = 0, (x ∩ Id)−1 = x ∩ Id}
E4 = {(x ∪ y)−1 = x−1 ∪ y−1, x−1−1 = x, (x ∩ Id)−1 = x ∩ Id}

Figure 4.

33In Pratt [1990], the class RBM of representable Boolean monoids is obtained from our
BSRs by adding Id as an extra distinguished constant. So the extra-Boolean operations
of the RBMs are Æ; Id, and thus BSRs are the Id-free subreducts of RBMs. All the results
mentioned above for BSRs carry over to RBMs; e.g. RBM is a discriminator variety, hence
the simple RBMs form a universally axiomatizable class, Theorems 2, 6 above apply to
RBM. RRA;BRA;BSR;RBM;BA all occur as nodes on Figure 4.
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More on the equational theories of RRA;BRA and BSR:

Theorem 2 says that there is a set E of equations which de�nes BRA. Let
E be an arbitrary set of equations de�ning BRA. What do we know about
E? Theorem 6 says that E is not �nite, and Theorem 7 says that E can
be chosen to be recursively enumerable. By using the fact that BRA is a
discriminator variety and that Eq(BRA) is recursively enumerable, and by
using an argument of W. Craig, one can show that E can be chosen to be
decidable34 , i.e. there is a decidable set E de�ning BRA. On the other
hand, we know that E has to be complex in the following sense: to any
number k, E must contain an equation that uses more than k variables and
all of the operation symbols [;�; Æ. There is an E such that �1 occurs only
in �nitely many members of E, by Theorem 11. The analogous statements
are true for BSR;RRA.35

Concrete decidable sets E de�ning RRA are known in the literature, cf.
e.g. [Monk, 1969]. Lyndon [1956] outlines another recipe for obtaining a
di�erent such E. Hirsch{Hodkinson [1997] also contains such a set E. Some
of these work for BSR;BRA. However, the structures of these Es are rather
involved.36 In this connection, we note that the following is still one of the
most important open problems of algebraic logic:

PROBLEM 12. Find simple, mathematically transparent, decidable sets E
of equations axiomatizing BSR;BRA;RRA. (A solution for this problem has
to be considerably simpler than, or at least markedly di�erent from the Es
discussed above.)

Equational axiom systems for algebras of relations like for RRA, BRA;BSR
are interesting not only because of purely aesthetical reasons, but also be-
cause such an axiom system gives an inference system for the corresponding
logic. About this logical connections see e.g. Theorems 45, 46, 50 in Part II.

Since the classes RRA;BRA;BSR are not �nitely axiomatizable, �nitely
axiomatizable approximations, or `computational cores' are used for them.
For BRA we can take ARA as such an approximation. For RRA, the variety
RA of relation algebras, de�ned by Tarski, is used in the literature as such

34The idea is as follows. Let E be recursively enumerable, say E = fe(1); e(2); : : :g
for a recursive function e. For each number n, let �(n) denote the conjunction of n
copies of e(n). Since BRA is a discriminator variety, there is an equation "(�(n)) which is
equivalent to �(n) in SirBRA. Moreover, from "(�(n)) we can compute back �(n), see an

earlier footnote. Then E0
def
= f"(�(1)); "(�(2)); : : :g is equivalent to E and E0 is decidable.

The decision procedure for E0 is as follows: Take any equation g. Decide whether g is
"(f) for some f or no, and if yes, compute the f . If we get an f , check whether f is
the conjunction of some, say n, copies of an equation h. If yes, compute e(n) and check
whether h is e(n). If yes, g is in E0, otherwise not.
35The need of in�nitely many variables in any axiom system for RRA was proved in

[J�onsson, 1991], the need of all the operation symbols [;�; Æ in addition is proved in
[Andr�eka, 1994]. By Theorem 11 then the same hold for BRA;BSR.
36Cf. [Henkin, Monk and Tarski, 1985, pp. 112{119], for an overview.
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an approximation. We get the de�nition of RA from the de�nition of ARA
by replacing (4) with one stronger equation (5), and by adding the equation
Id Æ x = x.

DEFINITION 13 (RA, an abstract approximation of RRA). RA is de�ned
to be the class of all algebras of the similarity type of RRAs which satisfy
the equations (1){(3) from the de�nition of ARA, together with (5), (6)
below.

(5) x�1 Æ [�(x Æ y)] � �y:

(6) Id Æ x = x:

Equation (5) is equivalent, in the presence of the other RA-axioms37 with
the following so called triangle-rule (50)

(50) x \ (y Æ z) = 0 i� y \ (x Æ z�1) = 0 i� z \ (y�1 Æ x) = 0:

Intuitively, (50) says that the three ways of telling that no triangle

y z

x

exists, are equivalent.38 Thus, a relation algebra is a Boolean algebra to-
gether with an involuted monoid sharing the same universe, and the inter-
connection between the two structures is that they form a normal BAO and
the triangle rule (50) holds.

Equation (6) says that Id is the neutral element of the semigroup oper-
ation `Æ'. We note that in algebraic logic this translates to the so called
Leibniz law of equality in logic which says that equals cannot be distin-
guished.39

37We note that 0 Æ x = 0; 0�1 = 0 are usually omitted from the axiomatization of RA,
because they follow from the rest of the axioms.
38In a more algebraic language, (5') says that the maps x 7! a Æ x and y 7! a�1 Æ y are

conjugates of each other, and likewise the maps x 7! xÆa and y 7! yÆa�1 are conjugates.
We recall from [J�onsson and Tarski, 1951] that in a BAO the functions f; g are conjugates
of each other means that x \ f(y) = 0 i� y \ g(x) = 0 for all x; y.
39For more on this see [Blok and Pigozzi, 1989, p.10].
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RA is a very strong computational core for RRA, almost all natural equa-
tions about RRA hold also in RA.40 An RA which is not in RRA is called
a nonrepresentable RA. Equations holding in RRA and not in RA can be
obtained from each �nite nonrepresentable RA by using that RA is a dis-
criminator variety of BAOs, as follows. Let A 2 RA� RRA be �nite. Then
A cannot be embedded in any RRA, and this can be expressed with a uni-
versal formula because A is �nite. Now using the switching function, this
universal formula can be coded as an equation e. Then e does not hold
in A 2 RA, while it holds in RRA. Many �nite nonrepresentable RAs are
known in the literature. The smallest such has 16 elements.41 so-called
Lyndon algebras. A �nite Lyndon algebra is a �nite RA such that Id is
an atom, a�1 = a; a Æ a = a [ Id, and a Æ b = 1� (a [ b) hold for all other
distinct atoms a; b. In�nitely many of the �nite Lyndon algebras are nonrep-
resentable (and in�nitely many are representable). Another way of getting
�nite nonrepresentable RAs is to `distort' a representable one. There are
some known methods, like splitting and dilating42 with which we can obtain
nonrepresentable RAs from representable ones. Nonrepresentable RAs are
almost as important as representable ones.43

Some special, interesting classes of RRAs turn out to be �nitely axiom-
atizable, below we list two such classes. These �nite axiomatizations give
(non-standard) �nitary inference systems for L=

3;2, cf. Mikul�as [1996; 1995].
The elegant, purely algebraic proofs for the items in the next theorem are
examples for signi�cant applications of algebra to logic, via connections
between algebra and logic indicated in Part II of this Paper.

THEOREM 14. Let ' and  denote the following formulas, respectively.

9xy(x�1 Æ x � Id ^ y�1 Æ y � Id ^ x�1 Æ y = 1)
8x9y(x 6= 0 ! [0 6= y ^ y � x ^ y�1 Æ y � Id]):

Then RRA \Mod� = RA \Mod� for � = f'g and � = f g.

For the proofs see [Maddux, 1978b] and [Tarski and Givant, 1987]. �

An RA in which ' is true is called a quasi-projective RA, or a QRA, and
an RA in which  is true is called a functionally dense RA.44 We can look

40In other words, only complicated equations can distinguish RRA and RA.
41This was found by [McKenzie, 1966].
42For splitting in RA see [Andr�eka, Monk and N�emeti, 1991], for dilation in RA see

[N�emeti, 1986], [N�emeti and Simon, 1997], Simon [Simon, 1997].
43E.g. one proof of non�nite axiomatizability of RRA goes by �nding in�nitely many

nonrepresentable RAs whose ultraproduct is representable. Investigating the structure
of possible axiom systems for RRA often boils down to �nding suitable nonrepresentable
RAs.
44The fact that any QRA is representable is a theorem of Tarski, an elegant algebraic

proof was given in [Maddux, 1978b]. A di�erent, illuminating proof is given in [Simon,
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at Theorem 14 in two ways: on one hand it says that the class of quasi-
projective RRAs is �nitely axiomatizable (while RRA is not), and on the
other hand it says that quasi-projective RAs are representable (while RAs
in general are not). (And the same for functionally dense RAs.)

2 ALGEBRAS OF RELATIONS IN GENERAL

By this point we might have developed some vague picture of how algebras of
binary relations are introduced, investigated etc. One might even sense that
they give rise to a smooth, elegant, exciting and powerful theory. However,
our original intention was to develop algebras of relations in general, which
should surely incorporate not only binary but also ternary, and in general
n{ary relations.

Let us see how to generalize our RRAs and BRAs to relations of higher
ranks. Let us �rst �x n to be a �nite ordinal. As we said, we would like
the new algebras to be expansions of RRAs (and BRAs). However, de�ning
composition of n{ary relations for n > 2 is complicated.45 Therefore the
following sounds like a more attractive idea: We single out the simplest basic
operations on n{ary relations, and hope that composition will be derivable
as a term{function from these. Let us see how we could generalize our
generic or full RRAs hP(U�U); Æ;�1; Idi to relations of rank n. The obvious
part is that these algebras will begin with hP(U�U�: : :�U); Id; : : :i, where

Id = fhu; u; : : : ; ui : u 2 Ug

is the n-ary identity relation. Again, Id is a constant, just as it was in the
RRA case. Let nU denote U �U � : : :�U , e.g. 3U = U �U �U . The new
operations (besides the Boolean ones and Id) we will need are the algebraic
counterparts of quanti�cation 9vi, for i < n. So, we want an operation that
sends the relation de�ned by R(v0; v1) to the one de�ned by 9v0R(v0; v1),
and similarly for 9v1. For R � U � U let Dom(R) and Rng(R) denote the
usual domain and range of R. For n = 2 we de�ne

c0(R) = U �Rng(R) and c1(R) = Dom(R)� U:

Now
hP(U � U); c0; c1; Idi

is the full cylindric set algebra of binary relations over U , for short the full
Cs2.

1996]. For logical applications of this area see [Tarski and Givant, 1987]. The proof that
every functionally dense RA is representable is in [Maddux, 1978b]. See also [Andr�eka et
al., 1998].
45Composition for n-ary relations is studied in [Marx, N�emeti and Sain, 1996] and

[Marx, 1995]. The de�nition is Æ(R1; : : : ; Rn) = fha1; : : : ; ani : 9x(ha1; : : : ; an�1; xi 2
R1 & ha1; : : : ; an�2; x; ani 2 R2 & : : : & hx; a2; : : : ; ani 2 Rn)g.
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Before turning seriously to n{ary relations, we need the following:

CONVENTION 15. Throughout we will pretend that Cartesian products
and Cartesian powers are associative such that nU �mU = n+mU , and
if e.g. R � 3U then 2U �R � 5U � R� 2U .

The full Csn, i.e. the full cylindric set algebra of n{ary relations, is
the natural generalization of Cs2 as follows. Let R � nU . If Rng(R) =
fhb1 : : : bn�1i : hb0b1 : : : bn�1i 2 R for some b0g, then c0(R) = U � Rng(R)
considered as a set of n-tuples. Similarly, let Dom(R) = fhb0 : : : bn�2i :
hb0 : : : bn�2bn�1i 2 R for some bn�1g, and let cn�1(R) = Dom(R) � U .
Generalizing this to ci with i < n arbitrary, we obtain

ci(R) = fhb0; : : : ; bi�1; a; bi+1; : : : ; bn�1i : hb0; : : : ; bn�1i 2 R and a 2 Ug :

ci is one of the most natural operations on relations. It simply forgets the
i-th argument of the relation, or in other words, deletes the i-th column.
However, since deleting the i-th column would leave us with an (n� 1){ary
relation, Dom(R) if i = n � 1, we replace the i-th column with a dummy
column i.e. in the i = n � 1 case we represent Dom(R) with the `pseudo
n{ary relation' Dom(R) � U . The `real rank' of an R � nU is always easy
to recover, namely it is �(R) = fi < n : ci(R) 6= Rg. So ci is the natural
operation of removing i from the (real) rank of a relation.

For example, cfather when applied to the `father, mother, child' relation
gives back the `mother, child' relation coded as `anybody, mother, child' (in
which the anybody argument carries no information i.e. is dummy). By a
full Csn we understand an algebra

Reln(U)
def
= hP(nU); c0; : : : ; cn�1; Idi

for some set U . By a Csn we understand a subalgebra of a full Csn with
nonempty46 base set U i.e.

Csn
def
= SfReln(U) : U is a nonempty setg:

By a representable cylindric algebra of n{ary relations, (an RCAn) we un-
derstand a subalgebra of a direct product of full Csns (up to isomorphism),
formally:

RCAn = SPfhP(nU); c0; : : : ; cn�1; Idi : U is a setg:

Note that RCAn = SPfReln(U) : U is a setg = SP(full Csn) = SPCsn: By
the same argument as in the case of BRAs, every RCAn is directly repre-
sentable as an algebra of n-ary relations (with the greatest relation a disjoint

46Excluding the empty base set here is not essential, it serves easier applicability in
the second part of this Paper, in Section 7.
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union of Cartesian spaces). RCAn is one of the `leading candidates' for being
the natural algebra of n{ary relations.

The abstract algebraic picture is simple: an RCAn is a BA together with
n closure operations and an extra constant. Accordingly, an (abstract)
cylindric algebra of dimension n, a CAn, is de�ned as a normal BAO with
n self-conjugated and commuting closure operations, and with a constant
satisfying two equations. In more detail:

DEFINITION 16 (CAn, an abstract approximation of RCAn). CAn is de-
�ned to be the class of all algebras of the similarity type of Reln(U) which
satisfy the following equations for all i; j < n.

(1) The axioms for normal BAO, i.e.

the Boolean axioms,

ci0 = 0; ci(x [ y) = ci(x) [ ci(y):

(2) Axioms expressing that cis are self-conjugated commuting closure oper-
ations, i.e.

(i) x � cix = cicix,

(ii) y \ cix = 0 i� ciy \ x = 0,

(iii) cicjx = cjcix.

Because of the above axioms, the notation c(�)x = ci1 : : : cikx where � =
fi1; : : : ; ikg makes sense. We will use that notation from now on. We will
also use the convention47 that n = f0; 1; : : : ; n� 1g.

(3) The constant Id has domain 1 and satis�es the `Leibniz-law', i.e.

(i) c(nrfig)Id = 1,

(ii) c(nrfi;jg)Id \ cix = x whenever x � c(nrfi;jg)Id and i 6= j.

An equivalent form of saying that ci is self-conjugated48 is to say that
the complement of a closed element is closed. Thus, in the above de�nition,
(2)(ii) can be replaced with

ci � cix = �cix:

47For more on this see e.g. [Henkin, Monk and Tarski, 1971, Part I. pp. 31{32].
48I.e. that it is the conjugate of itself, cf. the footnote to the triangle-rule (50) in

Section 1.
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Note that (2)(ii) is an analogue of the triangle rule (50) in the de�nition
of RA. (3)(ii) expresses that the closure operator ci is `discrete', or is the
identity, when relativized to

Idij
def
= c(nrfi;jg)Id;

i 6= j. Both (2)(ii) and (3)(ii) have equivalent equational forms, e.g. an
equivalent form of (3)(ii) is

Idij \ ci(Idij \ x) = Idij \ x when i 6= j

and an equivalent (together with the other axioms) form of (2)(ii) is

ci(x \ ciy) = cix \ ciy:

Connection with geometry: The names in cylindric algebra theory come
from connection with geometry. Namely, an n-ary relation is a set of n-
tuples, while an n-tuple is a point of the n-dimensional space. E.g. ha; bi is
a point in the 2-dimensional space with coordinates a and b, while ha; b; ci
is a point in the 3-dimensional space with coordinates a; b and c. Thus a
binary relation is a subset of the 2-dimensional space, while an n-ary relation
is a subset of the n-dimensional space. Hence the name `cylindric algebra
of dimension n'.

If R is a subset of the n-dimensional space, then ci(R) is the cylinder
above R parallel to the i-th axis, and Id is the main diagonal. Hence the
name `cylindric algebra'. The operations ci and Id are called `cylindri�ca-
tions' and `diagonals' in CA-theory, and Idij is usually denoted by dij (for
diagonal). Because of these geometrical meanings, also the operations of
RCAn are easy to draw. This is illustrated on Figure 5, see also Figure 7.

How can we draw the operations of RRA? Converse is easy to draw: the
converse of R is the mirror image of R w.r.t. the diagonal. However, relation
composition of two relations R;S is not so easy to draw. See Figure 6.

Thus cylindric algebras (CAs) are simpler than relation algebras RAs in
two ways: CAs have only unary operations ci, while the central operation
of RA is the binary composition operation Æ; and secondly, cylindri�cations
are easy to draw, while composition is not so easy to draw. There are furher
connections with geometry, e.g. via projective planes. We do not discuss
these herein, but cf. [Monk, 1974; Givant, 1999; N�emeti and S�agi, 1997],
and [Andr�eka, Givant and N�emeti, 1997, Chapter II].

Connection between CAs and RAs: A natural question comes up: can
these `simple' CAs recapture the power of RAs? This was a requirement we
expected to meet, namely we expected that the theory of n-ary relations
should be an extension of that of binary relations. The answer is that RCAn
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R Id
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composition is not so easy to draw

Figure 6.
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with n � 3 is strong enough to recapture RRA, while RCA2 is not strong
enough. In more detail:

Mirroring cannot be expressed by the diagonal and the cylindri�cations
in the plane (i.e. in 2-dimensional space), but it can be expressed if we can
move out to 3-dimensional space, see Figure 7.

Namely, by letting

sij(x)
def
= ci(Idij \ x) and P = U � U � fug

for some �xed u 2 U , we have

R�1 = P \ s21s
1
0s

0
2c2R

for R � P . Here, we identi�ed the binary R � U � U with the ternary
R� fug, and similarly for R�1. Composition also can be expressed:

R Æ S = P \ c2(s12c2R \ s02c2S).

A more natural approach is based on identifying a binary relation R �
U � U with the ternary relation

Dr(R)
def
= R� U ;

we call Dr(R) the dummy representation of R as a ternary relation. Then
Dr : P(U � U)! P(U � U � U); and

Dr(R�1) = s21s
1
0s

0
2Dr(R),

Dr(R Æ S) = c2(s12Dr(R) \ s02Dr(S)).

So in a sense, RRAs form a kind of a reduct of RCAns for n � 3. In more
detail: Let A 2 CAn, n � 3. The relation-algebra reduct RaA of A is de�ned
as

RaA
def
= hRaA;[A;�A; Æ;�1; IdA01i;

where
RaA = fa 2 A : cAj a = a for all 2 � j < ng

and if a; b 2 RaA, then

a�1 def
= s21s

1
0s

0
2a;

a Æ b
def
= c2(s12a \ s

0
2b):

Now, Dr : hP(U�U); Æ;�1; Idi�! RaReln(U) is an isomorphism for n � 3.
We de�ne

RaCAn
def
= fRaA : A 2 CAng for 3 � n:
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For K � CAn, RaK is de�ned similarly.

Then RRA = SRaRCAn for all n > 2. The classes SRaCAn (n > 3) form
a chain between RA and RRA, providing a `dimension-theory' for49 RA. In
more detail, SRaCA3 ) RA [Monk, 1961], SRaCA4 = RA [Maddux, 1978],
RA � SRaCA5 � : : : � RRA [Monk, 1961], and50

RRA = \fSRaCAn : 3 � n < !g = SRaCA!:

Investigating the connection between RRA (RA) and RCA (CA) is an in-
teresting subject. Some of the references are [Monk, 1961; Maddux, 1978;
Maddux, 1989; Henkin, Monk and Tarski, 1985; N�emeti and Simon, 1997;
Simon, 1996; Simon, 1997; Hirsch and Hodkinson, 1997a]. Recent devel-
opments in the RA � CA ({ polyadic algebras) connection are reported in
[Simon, 1997; N�emeti and Simon, 1997].

Thus the answer is that RCAns, n > 2, do recapture the power of RRAs.
(On the other hand, RCA2s do not.51)

Connection with logic: Cylindric algebras have a very close and rich
connection with logic. This connection is partly described in [Henkin, Monk
and Tarski, 1985, x4.3], and in Examples 6, 8, 9 in Section 7 herein.

Summing up this connection very briey: RCA-theory corresponds to
model theory of �rst-order like languages (or quanti�er logics), while ab-
stract CA-theory corresponds to their proof theory. Individual CAs corre-
spond to theories in such logics, homomorphisms between CAs correspond to
interpretations between theories, while isomorphism of CAs corresponds to
de�nitional equivalence of models and/or theories. CA-theoretic terms and
equations correspond to �rst-order formula schemas, an equation e is valid
in RCA if its corresponding formula schema is valid, an equational deriva-
tion of e corresponds to a proof of the formula (schema) corresponding to
e. More on this is written in Section 7, Examples 6,8,9. Here, �rst-order
like languages encompass �nite-variable fragments of �rst-order language
(FOL for short), usual FOL, FOL with in�nitary relation symbols but with
�nitary logical connectives, FOL considered as a propositional multi-modal
logic, FOL with several modi�ed semantics etc.

Most of the above is discussed in [Henkin, Monk and Tarski, 1985, x4.3],
especially when taken together with [van Benthem, 1996]. Some other ref-
erences illustrating the rich connection of CAs with logic are the following.
In [Monk, 1993] the connection with FOL is treated. In [N�emeti, 1987]

and in [Rybakov, 1997] valid formula-schemas, in [N�emeti, 1990] model

49As later, in Theorem 28(ii), we will see, this is analogous to the chain SNrnCAn+k
(k � 0) between CAn and RCAn.
50For the de�nition of CA! see Def. 26.
51For example, EqRRA is undecidable, while EqRCA2 is decidable, see Theorem 10(i),

Theorem 17(iii).
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theory of FOL with in�nitary relation symbols, in [N�emeti, 1996] FOL
with generalized semantics, in [Amer, 1993], [Sayed Ahmed, 1997] algebras
of sentences, in [Ser�eny, 1985] and [Bir�o and Shelah, 1988] model theo-
retic notions like saturated, universal, atomic models are investigated with
the help of CAs, respectively. [Andr�eka, van Benthem and N�emeti, 1996;
van Benthem, 1996; Marx and Venema, 1997] connect CAs with modal logic,
[Sain, 1995; Sain and Gyuris, 1994] use CAs for searching for a FOL with
nicer behaviour. Further references on this line are e.g. [van Benthem, 1997;
Venema, 1995a].

The connection of CAs with logic also sheds light on the above ways of
expressing composition and converse of binary relations in CA. Namely,
RCAn is the algebraic counterpart of �rst-order logic with n variables (see
Part II, example 6 in Section 7), and in particular n-variable �rst-order
formulas and terms in the language of RCAn are in strong correspondence
with each other (see Corollary 46 in Part II). The RCA-terms in the def-
inition of an RA-reduct are just the transcripts of the 3-variable formulas
de�ning composition and conversion of binary relations. (On the intuitive
meaning of the terms sij see the remark after Example 7 in Section 7.)

At this point we can state the counterparts of Theorems 2{10.52

THEOREM 17 (Basic properties of RCAn). Let n be �nite.

(i) RCAn is a discriminator variety, with a recursively enumerable equa-
tional theory.

(ii) RCAn is not axiomatizable with a �nite set of equations and its equa-
tional theory is undecidable if n > 2.

(iii) RCA2 is axiomatizable with a �nite set of equations, and its equational
theory is decidable. The same is true for RCA1. Any CA2 satisfying
for all i; j < 2, i 6= j

cix � s
j
i cix � Id! x = c0x � c1x; or

c0x � c1x� x � ci(s
j
i cix� Id)

is representable.53

(iv) The logic captured by RCAn is �rst-order logic with equality restricted
to n individual variables.

52L. Henkin and A. Tarski proved that RCAn is a variety, J. D. Monk [Monk, 1969]

proved that RCAn is not �nitely axiomatizable, L. Henkin gave a �nite equational axiom
system for RCA2, and D. Scott proved that Eq(RCA2) is decidable.
53The above quasi-equation and equation then are equivalent to the so-called Henkin-

equation (see [Henkin, Monk and Tarski, 1985, 3.2.65]), which was further simpli�ed in
[Venema, 1991, x3.5.2]. On the intuitive meaning of these see the paragraph preceding
Theorem 70 in this work.
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Proof. The proof of (i) goes exactly as in the previous Section, cf. the proofs
of Theorems 2, 7.: The subdirectly irreducible members of RCAn are exactly
the isomorphic copies of the nontrivial Csns (i.e. those with nonempty base
set U), and a switching term is c(n)x, i.e. in Csn we have54

c(n)x =

�
1 if x 6= 0
0 if x = 0:

The proof of undecidability of BRA can be adapted here, too, by using
the above outlined connection between RA and CA. Namely, the quasi-
equational theory of semigroups can be interpreted in RCAn, e.g. by using
the term

x; y = c2(s12c(nr2)x \ s
0
2c(nr2)y):

The proof for non�nite axiomatizability of RCAn; n > 2 will be discussed
in Remark 23. The proof of the �rst part of (iii) can be found in [Henkin,
Monk and Tarski, 1985, 3.2.65, 4.2.9]. It is not hard to check that in all
CA2s, the quasi-equation and the equation in (iii) are equivalent to each
other. Also, the equation in (iii) is equivalent to

(�) c0x � c1x � x+ ci(s
j
i cix� Id)

which is then preserved under taking perfect extensions55 (because negation
� occurs only in front of a constant). Thus it is enough to show that any
simple atomic A 2 CA2 satisfying (�) is representable. Now, (�) implies
that there are no defective atoms in A, in the sense of [Henkin, Monk and
Tarski, 1985, 3.2.59], and then A 2 RCA2 by [Henkin, Monk and Tarski,
1985, 3.2.59]. For (iv) see Example 6 in Section 7 of Part II. �

More on the �ne-structure of the equational theory of RCAn will be said
later, after Problem 25.

How far did we get in obtaining algebras of relations in general (binary,
ternary, : : :, n{ary, : : :)? RCAn is a smooth and satisfactory algebraic theory
of n{ary relations. So, can our theory handle all �nitary relations? The
answer is both yes and no. Namely, since n is an arbitrary �nite number, in
a sense, we can handle all �nitary relations. But, we cannot have them all
in the same algebra or in the same variety. For any �nite family of relations,
we can pick n such that they are all in RCAn. But this does not extend to
in�nite families of relations. To alleviate this, we could try working in the
system hRCAn : n 2 !i of varieties instead of using just one of these. To
use them all together, we need a strong coordination between them. This
coordination is easily derivable from the embedding function Dr sending

54Recall that n = f0; 1; 2; : : : ; n� 1g. Thus nr 2 = f2; 3; : : : ; n� 1g.
55Perfect extensions are called canonical embedding algebras in [Henkin, Monk and

Tarski, 1971]. Cf. also [Goldblatt, 1991; Goldblatt, 2000; J�onsson, 1995; Venema, 1996].
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R to R � U for R � nU de�ned above. Let A � Reln(U) = hP(nU) � � �i
be a Csn and let B be the Csn+1 generated by the Dr image of A, i.e.
B � Reln+1(U) = hP(n+1U) � � �i is generated by fDr(R) : R 2 Ag. The
biggest A yielding the same B is called the n{ary neat-reduct of B, formally
A = Nrn(B). Then

Nrn(B) = fb 2 B : cn(b) = bg:

Intuitively, Nrn(B) is the algebra of n{ary relations `living in' the algebraB
of n+ 1{ary relations. It is not hard to see that Nrn : RCAn+1 �! RCAn
is a functor, in the category theoretical sense, for every n. Now, we can
use the collection of varieties RCAn for all n 2 !, synchronized via the
functors hNrn : n 2 !i, as a single mathematical entity containing all
�nitary relations.

Another possibility is to insist that we want all �nitary relations over U
represented as elements of a single algebra. In other words, this goal means
that instead of a system of varieties we want to consider a single variety that
in some sense incorporates all the original varieties taken together. Indeed,
each RCAn can be viewed as incorporating all the RCAks for k � n, since
the latter can be recovered from RCAn by using the functors Nrn�1, Nrn�2

etc. So as n increases, RCAn gets closer and closer to the variety we want.
Indeed, we take the limit of this sequence. There are two ways of doing
this, the na��ve way we will follow here and the category theoretical way we
only briey mention. It is shown in the textbook [Ad�amek, Herrlich and
Strecker, 1990] that the system or `diagram'

RCA1
Nr1 � RCA2

Nr2 � � � �RCAn
Nrn � RCAn+1 � � �

is `convergent' in the category theoretic sense, i.e. that it has a limit L.
Indeed, it is this class L of algebras that we will construct below in a na��ve
way that does not use category theoretic tools or concepts.

We �rst extend our Convention 15, stated at the beginning of the present
Section concerning associativity of Cartesian products and powers. In the
sequel , ! is the smallest in�nite ordinal, as well as the set of all �nite
numbers, and !U is the set of !-sequences over U . Furthermore, nU�!U =
!U , and if R � nU then R � !U � !U , for n < !. We will also have to
distinguish the constant Id of RCA3 from that of RCA4. Therefore we let

Idn
def
= fha; : : : ; ai : a 2 Ug

denote the n{ary identity relation on U .
How do we obtain an algebra containing all �nitary relations over U? If

R is binary, but we want to treat it together with a 5{ary relation, then we
representR by R�U�U�U = R�3U in a Cs5. Taking this procedure to the
limit, if we want to treat R together with relations of arbitrary high ranks,
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then we can represent R with R� !U . This way we can embed all �nitary
relations into relations of rank !, and relations of di�erent ranks become
`comparable' and `compatible'.56 We still haven't obtained the de�nition
of Cs!s from that of Csns because we do not know what to do with the
constant Id. More speci�cally, we want to be able to use the neat reduct
functor Nrn, as the inverse of R 7! R� !U for R � nU , in order to recover
the original Csns from the new Cs!. This means that for Idn � nU we want
Idn � !U to be a derived constant (distinguished element) in our algebra.
Adding Id! = fha; : : : ; a; : : :i : a 2 Ug as an extra constant does not ensure
this any more. One of the most natural solutions is letting

Id!ij = Idij = fq 2 !U : qi = qjg

and de�ning a full Cs! as

Rel!(U)
def
= hP(!U); ci; Idijii;j<! ;

where the Idijs are constants. The price we had to pay for replacing the �nite
bound n on the ranks of relations we can treat with the in�nite bound ! is
that we had to break up our single constant Id to in�nitely many constants
Idij (i; j 2 !).

RCA! is de�ned to consist of all subalgebras of direct products of full
Cs!s (up to isomorphisms),

RCA! = SPfhP(!U); ci; Idijii;j<! : U is a setg:

Again, as it was the case with BRAs and RCAns, RCA!s are directly repre-
sentable as algebras whose elements are !{ary relations.

The elements of P(!U) are all the !-ary relations over U , and not only
the `representations' R�!U of �nitary relations R over U . Can we actually
recover the algebras of �nitary relations from the huge full Cs!s? Let

Rf(U) = fR� !U : R � nU for some n 2 !g:

Then Rf(U) � P(!U); moreover it is a subalgebra of the full Cs! Rel!(U)
with universe P(!U). We will denote this subalgebra by Rf(U). Now, we
set

Csf!
def
= SfRf(U) : U is a nonempty setg:

56In particular we avoid the problem we ran into at the end of the introduction to this
part in connection with the Boolean algebra P(<!U), because e.g. the complement of
R�!U is R�!U where R denotes nU rR if R is an n-ary relation. Instead of trying to
tame the Boolean-like algebra fR : R � nU for some ng � P(<!U), we simply represent
R � nU by R� !U which is an element of hP(!U); c0; : : : ; cn; : : :in<!.
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In a sense, Csf! is the narrowest reasonable class of algebras of �nitary
relations.57

If R 2 Rf(U), then �(R) = fi 2 ! : ciR 6= Rg is �nite, in short R is
�nite-dimensional. We note that the converse is not true, there are R � !U
with �(R) = ;, yet R =2 Rf(U). Indeed, �x u 2 U and set

R = fs 2 !U : fi < ! : si 6= ug is �niteg:

Then R =2 Rf(U) if jU j � 2, while ciR = R for all i < !. A relation R � !U
is called regular if

(s 2 R i� z 2 R) whenever s; z 2 !U; s � �(R) = z � �(R):

Then the elements of Rf(U) are exactly the �nite-dimensional regular rela-
tions on U .

Now we turn to the connections between the classes Csf!, Cs! and RCA!.
Intuitively, the elements of Csf! are algebras of �nitary relations, while the
elements of Cs! (as well as those of RCA!) are algebras of !{ary relations.58

THEOREM 18 (Basic properties of RCA!).

(i) RCA! is a variety with recursively enumerable and undecidable equa-
tional theory.

(ii) Eq(RCA!) =
S
fEq(RCAn) : n 2 !g: I.e. in the language of RCAn,

the same59 equations are true in RCAn and in RCA!.

(iii) RCA! = SPCs! = SPUpCsf! 6= SPCsf!. I.e. RCA! is both the
variety and quasi-variety generated by Csf!; the same equations and
quasi-equations are true in Csf! and in Cs!, but there is an in�nitary
quasi-equation distinguishing Csf! and Cs!.

57The letters Rf (and Rf) refer to `finitary relations'. Csf! is the above mentioned
category theoretical limit L. More precisely, for this equality to be literally true, when
forming the category theoretic limit L, instead of the varieties RCAn we have to start out
from their subdirectly irreducible members, which are nothing but Csns. So Csf! is the
limit of the sequence Cs1; : : : ;Csn; : : :. The class Csf! and its relationship with RCA!

was systematically investigated in [Andr�eka, 1973; Andr�eka, Gergely and N�emeti, 1973;
Andr�eka, Gergely and N�emeti, 1977; Henkin et al., 1981] and [Henkin, Monk and Tarski,
1985]. In the �rst three works the class was denoted by Lv or Lr, while in the last two by
Cs

reg
! \ Lf!, the latter being the standard notation today.
58Theorem 18(i) is due to L. Henkin and A. Tarski. For the rest of the credits in

connection with Theorem 18 we refer the reader to [Henkin, Monk and Tarski, 1971, I,
II] and [Henkin et al., 1981].
59Here the language of RCAn should be taken to be the one de�ned above De�nition

27.
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Proof. (ii) follows from [Henkin, Monk and Tarski, 1985, 3.1.126]. Recur-
sive enumerability and undecidability of Eq(RCA!) follows from (ii) and
Theorem 17 (for recursive enumerability one also has to use the proof of
Theorem 17, namely that the recursive enumerations of Eq(RCAn) given
there are `uniform' in n). That RCA! is a variety follows e.g. from [Henkin,
Monk and Tarski, 1985, 3.1.103], (where it is proved directly that RCA!
is closed under taking homomorphic images). RCA! = SPUpCsf! fol-
lows from [Henkin, Monk and Tarski, 1985, 3.2.8, 3.2.10, 2.6.52]. To show
RCA! 6= SPCsf! consider60 the following in�nitary quasi-equation q:^

fcix = x : i < !g ^ Id01 � x ! x = 1:

Then q is valid in SPCsf! while it is not valid in RCA!. �

We note that SUpCsf! 6= RCA!. Indeed, consider the following universal
formula �

Id(3) 6= 0 ! �Id01 � c2Id(3); where

Id(3)
def
= �Id01 \ �Id02 \ �Id12:

(The intuitive content of � is that if there is a `subbase' of cardinality �3,
then there are no subbases of size 2.) Then Csf! � � and RCA! 6� �.

RCA! is not a discriminator variety, e.g. because there are subdirectly
irreducible but not simple RCA!s. But it is still an arithmetical variety of
BAOs, from which many properties of RCA! follow by using theorems of
universal algebra. It is not true that Sir(RCA!) = ICs!, in fact no intrinsic
characterization of Sir(RCA!) is known.61 The variety RCA! is very well
investigated, perhaps the most detailed study is in [Henkin et al., 1981;
Henkin, Monk and Tarski, 1985]. For more recent results see e.g. [Goldblatt,
1995; Monk, 1993; Shelah, 1991; Ser�eny, 1985; Ser�eny, 1997] and [Hodkinson,
1997].

The theorems which say that BRA, RRA, and RCAn are not �nitely ax-
iomatizable, carry over to RCA! too. However, to avoid triviality, instead
of non-�nite axiomatizability we have to state something stronger, because
RCA! has in�nitely many operations and �nitely many axioms can speak
about only �nitely many operations. Taking this into account, when try-
ing to axiomatize RCA!, one could still hope for a �nite `schema' (in some
sense) of equations treating the in�nity of the RCA!-operations uniformly.
A possible example for a �nite schema is cicjx = cjcix (i; j 2 !). The

60Another proof, exporting logical properties to algebras, can be found at the end of
Example 9 in Section 7.
61It is known that Sir(RCA!) is a proper subclass of IWs!. More on this see [Henkin,

Monk and Tarski, 1985, 3.1.83{3.1.88], [Andr�eka, N�emeti and Thompson, 1990].
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following theorem62 implies that it will be hard to �nd such a schema, and
that certain kinds of schemata are ruled out to begin with.

THEOREM 19 (Non�nite axiomatizability of RCA!). The variety RCA! is
not axiomatizable by any set � of universally quanti�ed formulas such that
� involves only �nitely many variables.

Proof. Plan: For all m < ! we will construct an algebra Am such that

a) Am =2 RCA!

b) every m{generated subalgebra of Am is in RCA!.

This will prove the theorem because of the following. Assume that � is
a set of quanti�er-free formulas such that � involves at most m variables
(jvar(�)j � m < !) and RCA! j= �. Then � is valid in an algebra B i� �
is valid in every m-generated subalgebra of B, because jvar(�)j � m and
� contains no quanti�ers. Thus Am j= � by b) and by RCA! j= �. Then
Am =2 RCA! shows that � does not axiomatize RCA!.

Construction of Am: Let � � 2m be �nite, and let hUi : i < !i be a
system of pairwise disjoint sets each of cardinality �. Let

U =
S
fUi : i 2 !g; let

q 2 Pi2!Ui
def
= fs 2 !U : (8i 2 !)si 2 Uig be arbitrary,

R = fz 2 Pi2!Ui : jfi 2 ! : zi 6= qigj < !g, and let

A0 be the subalgebra of hP(!U); ci; Idijii;j2! generated by the element
R.

Then R is an atom of A0 because of the following. For any two sequences
s; z 2 R there is a permutation � : U �! U of U taking s to z and �xing
R, i.e. s Æ � = z and R = fp Æ � : p 2 Rg (the obvious choice for �,
interchanging si and zi for all i 2 ! and leaving everything else �xed,
works). If � is a permutation of U �xing R, then � �xes all the elements
generated by R because the operations of RCA! are permutation invariant.
Thus if ; 6= a 2 A0 and s 2 a \ R then R � a, showing that R is an atom
of A0.

We now `split R into � + 1 new atoms Rj each imitating R' obtaining
a new, bigger algebra A from our old A0. i.e. we choose a larger algebra A
such that A satis�es the conditions below and is otherwise arbitrary.

62Monk [1969] proves that RCA! cannot be axiomatized by a �nite number of schemas
of equations like those in the de�nition of CA!. See [Henkin, Monk and Tarski, 1985,
4.1.7]. Theorem 19, due to Andr�eka, is a generalization of that result and can be found
in [Andr�eka, 1997] or in [Monk, 1993].
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A0 � A, the Boolean reduct of A is a Boolean algebra,

Rj are atoms of A and ciRj = ciR for j � �; i < !,

each element of A is a Boolean join of an element of A0 and of some
Rjs

ci distributes over joins, for any i < !, i.e. A j= ci(x [ y) = cix [ ciy.

Note that in A `[' is only an abstract algebraic operation and not necessarily
set theoretical union. It is easy to see that such an extension A of A0 exists.
See Figure 8.

ci ci A′ AR

...Rj ...

︸ ︷︷ ︸
0

κ + 1-many

Figure 8.

By the above, we have constructed our algebra Am which in the following
we will denote just by A.

CONVENTION 20. In this proof we use the symbols \, [ denoting the
concrete operations of our set algebras (Cs!s) also as the corresponding
abstract algebraic operation symbols (denoting themselves in Cs!s). So,
if x, y are variable symbols, then x \ y is a term. We hope context will
help in deciding whether x \ y is meant to be a term or a concrete set.
x � y is the Boolean term (x \ �y) denoting the set x r y in Cs!s. It is
especially important to note that since, for the algebra A constructed above,
A =2 RCA! was not excluded, the operations denoted by [, \, ci etc. in A

are not assumed to be the real, set theoretic ones. They are just abstract
operations despite of the notation `[' etc. The Boolean ordering on A will
be denoted by �.

CLAIM 21. A =2 RCA!.
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Proof. For i; j < !, i 6= j, let sij(x) = ci(Idij \ x) and sii(x) = x. Let the
term � be de�ned by

�(x)
def
=
\
i��

s0i c1 : : : c�x \
\

i<j��

�Idij :

Let !U (q) = fz 2 !U : fi 2 ! : zi 6= qig is �niteg. (!U (q) is usually called
the weak Cartesian space determined by U and q.) Then, for our concrete
choice of R, A0 j= �(R) = 0 because of the following:

c1 : : : c�R = (U0 �
�U � U�+1 � : : :) \

!U (q);

s0i c1 : : : c�R =
�
iU � U0 �

(��i)U � U�+1 � : : :
�
\ !U (q);\

i��

s0i c1 : : : c�R =
�

(�+1)U0 � U�+1 � : : :
�
\ !U (q) :

Then by jU0j � � we have that there is no repetition{free sequence in
(�+1)U0. Thus A0 j= �(R) = 0:

Then A j= �(R) = 0 by A0 � A and R 2 A0. Assume that A 2 RCA!.
Then there is a homomorphism h : A ! B 2 Cs! such that h(R) 6= 0,
for some B. By h(R) 6= 0, there is s 2 h(R). By R � c0Rj we have
h(R) � c0h(Rj), so there is uj such that huj ; s1; s2; : : : si : : :i 2 h(Rj), for
all j � �. These ujs are di�erent from each other since the Rjs are disjoint
from each other, and so the h(Rj)s are disjoint from each other. Consider
the sequence

z = hu0; u1; : : : ; u�; s�+1; : : :i:

Then z 2 �(h(R)) is easily seen as follows. Obviously z 2 �Idij , if i < j � �.
Further hui; z1; : : : zj : : :i 2 Id0i \ c1 : : : c�h(R), hence z 2 s0i c1 : : : c�h(R) if
i � �. Thus z 2 �(h(R)), a contradiction. �

CLAIM 22. The m{generated subalgebras of A are in RCA!.

Proof. Let G � A; jGj � m. For all i; j � � de�ne

Ri � Rj i� (8g 2 G)[Ri � g $ Rj � g]:

Then � is an equivalence relation on fRj : j � �g which has � 2m blocks
by jGj � m. Let p denote the number of blocks of �, i.e. p = jfRj=� : j �
�gj � 2m � �. De�ne

B = fa 2 A : (8i; j � �)([Ri � Rj and Rj � a]) Ri � a)g:

We now show that B is closed under the operations of A.: Let k < l < !.
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1) B clearly is closed under the Boolean operations.

2) Idkl 2 B since (8j � �)Rj 6� Idkl.

3) Clearly, A0 � B (since R is an atom of A0), and cka 2 A0 for all a 2 A.
Thus ckb 2 B (for all b 2 A).

Let B � A be the subalgebra of A with universe B. By G � B, it is
enough to show that B 2 RCA! .

We will de�ne an embedding h : B � hP(!U); ci; Idijii;j<! . Let fyj :
j < pg = f

P
(Rj=�) : j � �g. Then fyj : j < pg is a partition of R in B,

i.e. they are pairwise disjoint and sum up to R, ciyj = ciR for all j < p and
i < ! and every element of B is a join of some element of A0 and of some
yjs. So, B looks like the algebra on Figure 9.

ci ci A′ BR

... yj ...

︸ ︷︷ ︸
0

≤ κ-many

Figure 9.

First we de�ne the images of the yjs. Let Q = f0; 1; : : : ; � � 1g and let
(Q;+; 0) be a commutative group. For each i < ! let fi : Ui �! Q be a
bijection such that fi(qi) = 0. For j < � de�ne

R00j =
n
z 2 R :

X
hfi(zi) : i < !i = j

o
;

where
P

denotes the group-theoretic sum in (Q;+; 0). Then it is not diÆ-
cult to check that the R00j s are disjoint from each other and

ciR
00
j = ciR for all i < !

for the concrete set theoretic cis. De�ne for all j < p� 1

R0j = R00j

R0p�1 =
S�

R00j : p� 1 � j < �
	
:
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We are ready to de�ne the embedding h of B.: We de�ne for all b 2 B

h(b) = (b�R) [
[
fR0j : j < p; yj � bg;

where b�R is computed in A, and since (b�R) 2 A0 � P(!U), the rest of
the operations are the concrete set theoretic ones. Now it is not diÆcult to
check that h is an embedding h : B� hP(!U); ci; Idijii;j<! as follows.

Clearly h preserves [;�. h(b) = 0 implies b = 0, hence h is one-one.
h(Idkl) = Idkl. Now we check ckh(b) = h(ckb).

ckh(b) = ck[(b�R) [
[
fR0j : yj � bg]

= ck(b�R) [
[
fckR

0
j : yj � bg

= ck(b�R) [
[
fckyj : yj � bg

= ck[(b�R) [
[
fyj : yj � bg]

= ckb;

where the operations in the �rst two lines are set-theoretic while those in
the last three lines are understood in the abstract algebra A. h(ckb) =
(ckb� R) [

S
fR0j : yj � ckbg = ckb, since (9j)yj � ckb i� R � ckb, and

R 6� ckb i� ckb = ckb�R. QED(Claim 22) �

According to our Plan way above, the above two Claims complete the
proof of Theorem 19. �

Remark 23 below describes the modi�cations needed for obtaining proofs
for the analogous (with Theorem 19) non-�nitizability theorems for RCAn
(n > 2) and RRA.

REMARK 23. Here we outline the modi�cations of the above proof of The-
orem 19 yielding proofs for non-�nite axiomatizability of RCAn and RRA.

Let � be n or !. An algebra A similar to RCA�s is said to be repre-
sentable if A 2 RCA�. Thus representability means that A is isomorphic
to an algebra A+ whose elements are �{ary relations and whose greatest
element is a disjoint union of Cartesian spaces. A+ is called a representa-
tion of A and sometimes the isomorphism h : A �! A+ too is called the
representation of A. By a homomorphic representation we understand a
homomorphism mapping A into some Cs�. This concept receives its impor-
tance from the simple but useful fact that representability of A is equivalent
with the existence of a set H of homomorphic representations of A such that
(8nonzero x 2 A)(9h 2 H)h(x) 6= 0.

The intuitive idea of the above proof of Theorem 19 was the following.
We found two di�erent ways of `counting' the elements of the domain fs0 :
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s 2 Rg of the relation R. This counting was done by looking only at
the abstract, i.e. isomorphism invariant properties of A. The two ways of
counting were: (1) Looking at the number of the disjoints elements Rj below
R. This allowed us to conclude that the domain of R must be big. (2) Using
the Idijs exactly as one uses equality in �rst{order logic to express that a
certain �nite set is smaller than some �, we concluded that the domain of R
must be small. (This was done by the term �(R) in the proof of Claim 21.)

We started out from an A0 2 RCA! in which the counting (2) said that
`Dom(R)' is small. Then by splitting, we enlarged A0 to A, such that in this
bigger algebra A the counting (1) said that `Dom(R)' is big. Thus in A the
two countings (1) and (2) contradict each other, ensuring A =2 RCA!.

This is how we constructed one nonrepresentable algebra (Am). We were
able to construct an in�nite sequence of such algebras in such a way that
as m increases, the contradiction between (1) and (2) becomes weaker and
weaker. Actually, as m approaches in�nity, the contradiction between (1)
and (2) vanishes. So in the ultraproduct of the Ams, (1) and (2) do not
contradict each other any more, and this ultraproduct is in RCA!. In our
construction the conict between (1) and (2) became weaker and weaker
in the sense that more and more elements had to be inspected for discov-
ering this contradiction.63 This �nishes the intuitive idea of the proof of
Theorem 19.

Next we would like to repeat this proof for RCAn in place of RCA!, with
2 < n < !. If we simply replace ! everywhere with n, the proof does not
go through because the counting in (2) needs an arbitrarily large number
of Idijs and we have only n � n many.64 So we need a new method for
doing (2). This amounts to looking for an abstract algebra A together with
its element R and concluding that in any (homomorphic) representation
h : A! B 2 Csn of A, the domain U0 of h(R) must be of smaller size than
a certain �. (The diÆculty is that we have to be able to repeat this for
arbitrarily large � 2 !.) We also need to keep in mind that we will want to
have a contradiction with (1), which means that we will want to split R. In
order to be able to do this, we only need that R remain an atom. There are
many natural ways for ensuring (by abstract properties) smallness of a set.
Perhaps the simplest way is the following. If we could `see' by looking at A
`abstractly' that U0�U0 is a union of fewer than � functions fi (i < �� 1)
each of which is coded by an element of A, then the domain U0 of R must
be of smaller cardinality than � in any representation of A. E.g. we can
take these functions (the fis) to be powers of a single suitable permutation
f of U0; say let U0 = �, and let f be the usual successor modulo �. Let

63This allowed us to avoid ultraproducts in the �nal argument. We �nd it more natural
to explain the intuitive idea in terms of ultraproducts, which incidentally happens to be
the way the original proof of non�nitizability went.
64We can construct the algebras Am as in the proof of Thm. 19 for m < log2(n). But

for the contradiction to vanish, we need Am for arbitrarily large m.
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F
def
= f � n�2U . Then F � nU . We include into our algebra A0, besides R,

also F as a new generator element. It can be checked that R remains an
atom (because no subset of U0 became `de�nable'). Now, similarly to the
way we used the equation �(R) = 0 in the proof of Claim 21, by studying the
abstract properties of F and R in the new A0 we can conclude that in any
homomorphic representation h of A0, the Cartesian square of the domain of
h(R) is contained in the union of fewer than � powers of a function coded
by h(F ). But then this domain must be of cardinality � �. (Exactly what
we proved in Claim 21 of the old proof. So we can prove our new Claim
21.) After this modi�cation, the whole proof goes through by replacing all
occurrences of ! with n.65 This completes the outline of the proof that
RCAn cannot be axiomatized with quanti�er free formulas using �nitely
many variables, if n > 2.

Let us turn to the RRA case, i.e. to Theorems 6, 10. The idea is basically
the same as in the above outlined RCAn case. Exactly as in the RCAn case,
here too we use two counting principles (1), (2) and construct algebras Am
in which (1) and (2) contradict each other. Again we want a controllable
contradiction such that as m approaches in�nity the contradiction vanishes.
Here we have to take a less obvious principle for counting in (2), because
in RRA, functions interfere with splitting66 elements R = U0 � U1. E.g.
we can use colorings of the full graph U0 � U0 with �nitely many colors
without monochromatic triangles, and then apply Ramsey's theorem. This
means that we arrange U0�U0 to be a disjoint union of symmetric relations
G0; : : : ; Gr such that Gr = Id � U0 (symmetric means Gi = G�1

i ) and (Gi Æ
Gi)\Gi = 0. To ensure splittability of R we also arrange that Gi ÆGj � Gk
whenever jfi; j; kgj > 1, i; j; k < r. We let our A0 be generated in this case by
fG0; : : : ; Gr; Rg. All these properties of the Gis were abstract, `equational'
ones.67 This ensures that in every representation of A0, the domain U0

of R must be �nite (by Ramsey's theorem). We split R into ! many Ris
obtaining A from A0 as we did in the RCA!, RCAn cases before. The rest
of the proof goes through as before with replacing ! (or n) everywhere
by 2, except for the following change. In the RRA case we have to look
at the ultraproduct of the Ams and observe that it is representable (since
the contradiction between (1) and (2) disappeared as both counting gives
us continuum many elements). Therefore this proof gives only non-�nite

65We need n � 3 to be able to see abstractly that the fis are functions. This proof is
worked out in detail in [Andr�eka, 1997, Thm.1].
66Splitting in RA is de�ned, and the conditions for splittability are described, in

[Andr�eka, Maddux and N�emeti, 1991].
67In fact, it is an open problem in RA-theory (see e.g. [Andr�eka, Monk and N�emeti,

1991, section on open problems], whether there are such concrete relations G0; : : : ;Gr on
some set U0 or not. What we should do here is that we state these properties abstractly
on some abstract relations G0; : : : ; Gr. The only di�erence from the previous proof will
then be that we do not know whether A0 2 RRA. But this does not matter, what we
need is that Am =2 RRA and PAm=F 2 RRA.
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axiomatizability of RRA (i.e. Monk's theorem) without proving (J�onsson's
result saying) that in�nitely many variables are needed. For the latter, one
has to �ne-tune the construction some more.68

In Section 1, Theorem 6 leads to Problem 12 in a natural way. Exactly
the same way our present Theorem 19 leads to the following important open
problem.

PROBLEM 24. Find simple, mathematically transparent, decidable sets E
of equations axiomatizing RCA!. The RCAn, 2 < n < ! version of this
problem is open and interesting, too.

The RCAn version is strongly related to Problem 12 in Section 1. On
the other hand, the present, RCA! version has a logical counterpart, cf.
e.g. [Henkin, Monk and Tarski, 1985, Prob.4.16, p.180]. This is one of the
central problems of Algebraic Logic, cf. [Henkin, Monk and Tarski, 1985,
Prob.4.1], [Henkin and Monk, 1974, Prob.5], etc. For strongly related results
(or for partial solutions) see [Henkin, Monk and Tarski, 1985; Hirsch and
Hodkinson, 1997; Simon, 1991; Simon, 1993; Venema, 1991; Venema, 1995,
pp.112{119].

PROBLEM 25. Is there a �nite schema axiomatizable quasi-variety K such
that Eq(K) = Eq(RCA!), i.e. the variety generated by K is RCA!? The
same for RCAn for n < !. I.e., is there a �nitely axiomatizable quasi-variety
K � RCAn such that RCAn = HK?

This problem is related to the existence of weakly sound Hilbert-style
inference systems for �rst-order logic, see Part II, Theorem 52 and Open
Problem 64.

On the structure of the equational axiomatizations of RCAn, RCA!:

Let E be an arbitrary set of equations axiomatizing RCAn. As in the RRA-
case, E must be in�nite, but it can be chosen to be decidable. Unlike the
RRA-case, here every operation symbol has to occur in�nitely many times
in E (in the RRA-case, only the Booleans and Æ had to occur in�nitely many
times). A similar statement is true for RCA! in place of RCAn. For more on
this see Figure 10 and [Andr�eka, 1994; Andr�eka, 1997]. Concrete decidable
sets E are known, see e.g. [Henkin, Monk and Tarski, 1985, pp.112-119], cf.
also [Hirsch and Hodkinson, 1997; Simon, 1991; Simon, 1993; Venema, 1991;
Venema, 1995]. However, it would be important to �nd choices of E with
more perspicuous structures, see Problem 24.

Let us turn to the relationship between RCA! and its abstract approx-
imation CA!. These investigations yield information on proof theoretical
68This is done in [Andr�eka and N�emeti, 1990], where we use projective geometries for

the purposes of counting in (2).
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properties of �rst-order logic and of some related logics. See Examples 6, 8,
9 in Section 7, especially Theorem 66 { Remark 69.

DEFINITION 26 (CA!, an abstract approximation of RCA!). A CA! is a
normal BAO of the same similarity type as RCA! in which the cis are self-
conjugated commuting closure operations, and in which the constants Idij
satisfy the following equations:

(30) For all i; j; k < !

(i) ciIdij = 1; ckIdij = Idij if k 6= i; j, Idii = 1; Idij = Idji; and
Idij \ Idjk � Idik .

(ii) Idij \ cix = x whenever x � Idij and i 6= j.

To treat RCAn;CAn and RCA!;CA! in a uni�ed manner, we replace !
in the de�nitions of RCA! and CA! with an arbitrary but �xed ordinal �,
obtaining RCA�;CA� (here � = n and � = ! are of course permitted).69

If � = n < !, then the newly de�ned RCAn and CAn are only de�nition-
ally equivalent with the previously de�ned ones, because in De�nition 16
we had only one constant Id in place of the present n � n{many constants
Idij . This de�nitional equivalence is given by

Id =
\
i;j<n

Idij and Idij = c(nrfi;jg)Id:

Since de�nitional equivalence is a very close connection between classes of
algebras, we did not give new names for RCAn and CAn.

DEFINITION 27. (Locally �nite, dimension-complemented CAs, and neat-
reducts) Let �; � be any ordinals.

(i) Let A 2 CA�, x 2 A. Then �(x)
def
= fi 2 � : cix 6= xg.

Lf�
def
= fA 2 CA� : (8x 2 A)(�(x) is �nite)g:

Dc�
def
= fA 2 CA� : (8x 2 A)(� r�(x) is in�nite)g:

(ii) Assume � � � and A 2 CA� . Then

Nr�A
def
= fx 2 A : �(x) � �g, Nr�A

def
= hNr�A; cAi ; Id

A
ijii;j<�.

In the above, cAi ; Id
A
ij denote the corresponding operations of A. It can be

checked that Nr�A 2 CA�.

69This generalization will also be useful in algebraizing various quanti�er logics di�erent
from classical �rst{order logic.
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Nr�CA�
def
= fNr�A : A 2 CA�g.

The elements of Lf� and Dc� are called locally �nite and dimension-com-
plemented CA�s respectively. Nr�A is called the �-neat reduct of A. We
note that

Dc� = fA 2 CA� : (8x 2 A)(�r�(x) 6= ;)g:

THEOREM 28 (Relationships between Lfa;Dc�;Nr�CA� and RCA�
70).

(i) RCA! = SUpLf! 6= SPLf! and Dc! � RCA!. I.e. there is no uni-
versal formula distinguishing RCA! from Lf!, and every Dc! is rep-
resentable. The same hold for all � � ! in place of !.

(ii) RCA� = SNr�CA�+! =
T
fSNr�CA�+m : m 2 !g 6= SNraCA�+m

for all � and for all �nite m. SNr�CA�+m is a variety for all � and
m.

Proof. The positive statements follow from [Henkin, Monk and Tarski,
1985, 3.2.10, 2.6.32(ii), 2.6.50, 2.6.52, 3.2.11]. The negative statements are
also proved in [Henkin, Monk and Tarski, 1985] taken together with [Henkin
et al., 1981]. �

The above theorem gives information on the proof theory of �rst order
logic (FOL) and on its n-variable fragment Ln. Intuitively, it says (in several
di�erent forms) that the important feature of FOL is not that each formula
involves only �nitely many variables, but that given any formula, there are
in�nitely many variables it does not involve.71

Based on the above theorem, an inference system is given both for FOL
and Ln which uses the �nite-schema axiomatization of CA� together with a
supply of variables which do not occur in our original formulas.72 I.e. these
variables can occur in a proof, but not in the �nal formula we want to prove.

70The classes SNr�CA� were introduced by Henkin, and Monk [1961] proved that they
are varieties. Theorem 28(i) is due to J. D. Monk. The equalities in (ii) are due to L.
Henkin [1955], while the inequality in (ii) was proved by J. D. Monk [1969].
71The earlier mentioned theorem saying that quasi-projective RAs are representable,

also speaks about this phenomenon: the projections are used for coding together the
already involved variables, so that we get one more `unused' variable. This idea comes
through clearly in [Simon, 1996]. The same idea is used for proving �nite schema ax-
iomatizability (i.e. completeness of the corresponding logic) in [Sain, 1995], [Sain and
Gyuris, 1994]. The same idea is used for obtaining an unorthodox completeness theorem
in [Simon, 1991].
72Cf. e.g. [Henkin, Monk and Tarski, 1985, p.157], [N�emeti, 1996], [Andr�eka, Gergely

and N�emeti, 1977, Thm. 3.15] and [Simon, 1991]. cf. also Section 7 herein.
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3 ALGEBRAS FOR LOGICS WITHOUT IDENTITY

We start from RCA�, and would like to consider its `natural' Id-free reducts.
If we simply omit Id (or Idij), then we lose not only identity (or equality),
but also our ability to `algebraize' substitution of individual variables like
' 7! '[vi=vj ] in the logic to be algebraized. Therefore, before dropping the
Idijs, we �rst add our term functions sij(x) = ci(Idij \x) for i 6= j, sii(x) = x.
Now,

RSC�
def
= SPfhP(�U); ci; s

i
jii;j<� : U is a setg:

RSC�s are called representable substitution-cylindric algebras, cf. [N�emeti,
1991], [Andr�eka et al., 1998]. They are the simplest kind in the family
of polyadic-style algebras. The theory of RSC� is analogous with that of
RCA�, in particular, if � > 2, then RSC� is not �nitely axiomatizable, cf.
[Sain and Thompson, 1991].

Let Rdsc be the operator which associates to any cylindric-type algebra
A = hA;[;�; ci; Idijii;j<� the RSC�-type algebra

Rdsc(A)
def
= hA;[;�; ci; s

i
jii;j<�

where sij is the derived operation of A de�ned above. Now, RSC� =
SRdscRCA�. The �nitely axiomatizable approximation SC� of RSC� is
de�ned analogously,

SC�
def
= SRdscCA�:

SC�s are called substitution-cylindric algebras.

THEOREM 29. SC� is a �nite schema axiomatizable variety containing
RSC�. �

For the simple set of axioms, and for information on the proof we refer
the reader to [Andr�eka et al., 1998]. Cf. also [N�emeti, 1991, x8].

The theory of the pair SC�;RSC� is almost completely analogous with
that of CA�;RCA�. The connection between SC�-theory and �rst order
logic without equality is analogous with the connection between CA�-theory
and logic with equality. In particular, the logic counterpart of the algebraic
operation sij is the `substitution-modality' [vi=vj ], cf. Part II, Section 7. The
logics Lsn and Ls=n are introduced in Section 7, Example 7. Let Lzn and Lz=n
denote the fragments of these logics obtained by dropping the connective
[vi; vj ]. Then the CAn;RCAn pair is strongly connected to Lz=n while the
SCn;RSCn pair is completely analogously connected to Lzn. More on the
connection between SC� and logic can be found in [S�agi and N�emeti, 1997;
Marx and Venema, 1997; Venema, 1995a; van Benthem, 1996; N�emeti, 1991].
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The classes CA�;RCA� and SC�;RSC� introduced so far constitute the
hearts of the following two `worlds': the algebraic counterpart of logics
with equality (the `cylindric world'), and the algebraic counterpart of logics
without equality (the `polyadic world'). In both worlds one can introduce
natural extra operations like e.g. cardinality quanti�ers, generalized cylin-
dri�cations, but what determines the most basic theorems (remaining true
for the expanded algebras) remains the CA�-structure or the SC�-structure.
Therefore it seems reasonable to pay somewhat more attention (say, as a
default) to CA� and SC� than to their versions enriched with extra opera-
tors.73

SC�s with extra operators (like e.g. [vi; vj ]) are discussed in the litera-
ture under the names quasi-polyadic algebras (QPA�s) and polyadic algebras
respectively.74 The most important extra operator pij is a substitution op-

erator like sij (pij corresponds to the logical connective [vi; vj ] in Section 7,
Example 7). Let X � �U . Then

p01(X)
def
= fhq1; q0; q2; : : :i : q 2 Xg:

I.e., p01 interchanges q0 and q1 in a sequence q. For i; j < �, pij is de�ned
completely analogously. Now, RQPA�s are de�ned to be RSC�s enriched
with the pijs (i; j < �):

RQPA�
def
= SPfhP(�U); ci; s

i
j ; pijii;j<� : U is a setg:

The abstract class QPA� approximating RQPA� is de�ned by �nitely many
axiom-schemes analogously to the de�nition of CA� or SC�, cf. [N�emeti,
1991; Sain and Thompson, 1991; Andr�eka et al., 1998].

Polyadic algebras (RPA� and PA�) are obtained from RSC� and SC�
by adding in�nitary substitutions and in�nitary cylindri�cations denoted
as s� , c(�), for � : � ! � and � � �. For the theory of these algebras we
refer to [Halmos, 1962; Henkin, Monk and Tarski, 1985; N�emeti, 1991]. Cf.
also [N�emeti and S�agi, to appear].

We note that the theory of QPAs seems to be very strongly analogous
with that of SC�s. (However, in certain studies, e.g. when investigating the
connection between RAs and CAs, CAs enriched with the pijs play a very

illuminating role (cf. [N�emeti and Simon, 1997]). The latter algebras are
called QPAs with equality, or QPEAs. Cf. e.g. [Henkin, Monk and Tarski,
1985] for their theory.)
73Of course, no such rule is valid in general. Actually, pushing the above considera-

tions further, SC�s seem to be at the heart of CA�-theory, too, therefore they could be
considered as the core of (or basis for) the algebraizations of quanti�er logics in general.
This uni�ed perspective for algebraic logic has not been elaborated yet.
74PAs, QPAs, and their versions with equality like QPEAs, originate with P. Halmos (cf.

[Halmos, 1962]). SCs originate with C. Pinter, cf. e.g. [Andr�eka et al., 1998] or [N�emeti,
1991].
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For lack of space, we do not discuss further the theory of SC�s with extra
operators (like QPAs, PAs, etc).

The next �gure, taken from [Andr�eka, 1997] describes the interconnec-
tions between the operations ci; Idij ; s

i
j and pij (in the presence of the

Boolean operations). (In the �gure, Idij ; s
i
j are denoted as dij ; sij , respec-

tively.) In Figure 10, nodes represent classes of algebras of relations where
the units are Cartesian spaces nU (3 � n < !), and the operations are
those along the path leading to the node. A broken edge between two nodes
means that the second class is �nitely axiomatizable over the �rst one, a
bold edge means non-�nite axiomatizability over, and a normal line means
that it is unknown (to the authors) whether �nite or non-�nite axiomatiz-
ability holds.

II: Bridge Between Logic and Algebra: Abstract
Algebraic Logic

INTRODUCTION TO PART II

Let us start by putting the subject matter of Part II of the present Paper
into perspective.

The idea of solving problems in logic by �rst translating them to algebra,
then using the well developed methodology of algebra for solving them,
and then translating the solution back to logic, goes back to Leibnitz and
Pascal. Papers on the history of Logic (e.g. [Anellis and Houser, 1991;
Maddux, 1991]) point out that this method was fruitfully applied in the
19th century not only to propositional logics but also to quanti�er logics
(De Morgan, Peirce etc. applied it to quanti�er logics too). The number of
applications grew ever since. (Though some of these remained unnoticed,
e.g. the celebrated Kripke{Lemmon completeness theorem for modal logic
w.r.t. Kripke models was �rst proved by J�onsson and Tarski in 1948 using
algebraic logic.)

For brevity, we will refer to the above method or procedure as `applying
Algebraic Logic (AL) to Logic'. This expression might be somewhat mis-
leading since AL itself happens to be a part of logic, and we do not intend
to deny this. We will use the expression all the same, and hope, the reader
will not misunderstand our intention.

In items (i) and (ii) below we describe two of the main motivations for
applying AL to Logic.

(i) This is the more obvious one: When working with a relatively new
kind of problem, it often proved to be useful to `transform' the problem into
a well understood and streamlined area of mathematics, solve the problem
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there and translate the result back. Examples include the method of Laplace
Transform in solving di�erential equations (a central tool in Electrical En-
gineering).75

In the present part we de�ne the algebraic counterpart Alg(L) of a logic L
together with the algebraic counterpart Algm(L) of the semantical-model
theoretical ingredients of L. Then we prove equivalence theorems, which
to essential logical properties of L associate natural and well investigated
properties of Alg(L) such that if we want to decide whether L has a certain
property, we will know what to ask from our algebraician colleague about
Alg(L). The same devices are suitable for �nding out what one has to
change in L if we want to have a variant of L having a desirable property
(which L lacks). To illustrate these applications we include several examples
(which deal with various concrete logics) in Section 7. For all this, �rst
we have to de�ne what we understand by a logic L in general (because
otherwise it is impossible to de�ne e.g. the function Alg associating a class
Alg(L) of algebras to each logic L).

(ii) With the rapidly growing variety of applications of logic (in diverse
areas like computer science, linguistics, AI, law, physics etc.) there is a
growing number of new logics to be investigated. In this situation AL o�ers
us a tool for economy and a tool for uni�cation in various ways. One of
these is that Alg(L) is always a class of algebras, therefore we can apply the
same machinery, namely universal algebra, to study all the new logics. In
other words, we bring all the various logics to a kind of `normal form' where
they can be studied, compared, and even combined by uniform methods.
Moreover, for most choices of L, Alg(L) tends to appear in the same `area'
of universal algebra, hence specialized powerful methods lend themselves
to studying L. There is a fairly well understood `map' available for the
landscape of universal algebra. By using our algebraization process and
equivalence theorems, we can project this `map' back to the landscape of
possible logics.

In Section 7, we will illustrate the above outlined `application of AL to
logic' by using the AL-results of Part I, as follows. In Part I, we studied
various distinguished classes of algebras, like e.g. RCAn. Here, after study-
ing the bridge (L 7! Alg(L) etc.) between the world of logics and that of
algebras, we look up those distinguished logics to which the distinguished
algebras of Part I belong. E.g. we will �nd a certain logic Ln for which
RCAn = Alg(Ln). Then we will use results in Part I about RCAn to es-

75At this point we should dispell a misunderstanding: In certain circles of logicians
there seems to be a belief that AL applies only to syntactical problems of logic and that
semantical and model-theoretic problems are not treated by AL or at least not in their
original model theoretic form. Nothing can be as far from the truth as this belief, as e.g.
looking into the present part (i.e. Part II) should reveal. A variant of this belief is that
the main bulk of AL is about o�ering a cheap pseudo semantics to Logics as a substitute
for intuitive, model theoretic semantics. Again, this is very far from being true.
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tablish properties of Ln. For this, we will use the `equivalence theorems'
established in Section 6 (of Part II). Besides RCAn and Ln, a similar proce-
dure will be applied to other distinguished classes of algebras (from Part I)
and other distinguished logics.

The approach reported here is part of a broader, joint approach with
W. J. Blok and D. L. Pigozzi outlined in [Andr�eka et al., to appear]. The
present part contains only a somewhat specialized version of that general
approach, in order to suit the special needs of the present work. Besides
[Andr�eka et al., to appear], we refer to [Blok and Pigozzi, 1989; Blok and
Pigozzi, 1991; Czelakowski, 1997; Pigozzi, 1991; Font and Jansana, 1994;
Font and Jansana, 1997; Palasinska and Pigozzi, 1995; Czelakowski and
Pigozzi, 1999], as well as [Andr�eka et al., 1995]; [Henkin, Monk and Tarski,
1985, sections 5.6, 4.3]; [Andr�eka et al, 1993; N�emeti and Andr�eka, 1994;
Madar�asz, 1998; Hoogland, 1996; Mikul�as, 1995] for the more general ap-
proach. The semantic aspect of this approach goes back to, e.g., [Andr�eka
and N�emeti, 1975; Andr�eka, Gergely and N�emeti, 1977; Andr�eka and Sain,
1981].

4 GENERAL FRAMEWORK FOR STUDYING LOGICS

DEFINITION 30 (Logic). By a logic L we mean an ordered quadruple

L
def
= hF; `; M; j=i;

where (i){(iv) below hold.

(i) F (called the set of formulas of L) is a set of �nite76 sequences (called
words) over some set X (called the alphabet of L).

(ii) ` (called the provability relation of L) is a relation between sets of
formulas and formulas, that is, ` � P(F )� F . Following tradition,77

instead of `h�; 'i 2 `' we write `� ` ''.

(iii) M is a class78 (called the class of models of L).

76With this we exclude in�nitary languages like L�;�;L
n
1;!. This exclusion is not

necessary, all the methods go through with some modi�cations. Actually, occasionally
we will look into properties of the �nite variable fragment Ln1;! of in�nitary logic, because
it naturally admits applications of our methods and plays an essential role in �nite model
theory and in theoretical computer science.
77This tradition is used for all binary relations: if R is a binary relation, then instead

of ha; bi 2 R we sometimes write a R b.
78Although it is not automatically permitted in the `most oÆcial' version of set theory

(ZF), we may assume that for any four classes M1; : : : ;M4 the tuple hM1; : : : ;M4i exists
and is again a class. This does not lead to set theoretical paradoxes. What one should
avoid is assuming that the collection of all classes would (exist and) form a class again
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(iv) j= (called the validity relation) is a relation between M and F that is,
j= � M � F . Instead of `hM; 'i 2 j=' we write `M j= ''.

If L is a logic, then by FL, `L, ML, j=L we denote its corresponding
parts.

Intuitively, F is the collection of `texts' or `sentences' or `formulas' that
can be `said' in the language L. For � � F and ' 2 F , the intuitive meaning
of � ` ' is that ' is provable (or derivable) from � with the syntactic
inference system (or deductive mechanism) of L. In all important cases, ` is
subject to certain (well-known) conditions like � ` ' and �[f'g `  imply
� `  for any � � F and ';  2 F . The class M of models is understood
in the spirit of model theory: The models M 2 M of L are thought of as
`possible environments' or `possible interpretations' or `possible worlds', cf.
[All�en, 1989]. Here a possible world is not the same as the technical devices
called possible worlds in a Kripke model. The validity relation tells us which
texts are `true' in which possible environments (or worlds or models) under
what conditions. Usually F and ` are de�ned by what are called grammars
in mathematical linguistics. hF;`i together with the grammar de�ning them
is called the syntactical part of L, while hML; j=i is the semantical part or
model theoretical part of L.79

As a binary relation between M and F , j= induces a Galois-connection
between M and F , and in particular, it de�nes two closure operators, one
on M and one on F . Next we collect some of the relevant de�nitions.

DEFINITION 31 (Theory of a class of models, models of a set of formulas,
semantical consequence, validity).

(and variants of this). For more on this cf. [Henkin, Monk and Tarski, 1971, p.34, �rst
10 lines], [Henkin, Monk and Tarski, 1971, p.25], [Ad�amek, Herrlich and Strecker, 1990,
x2, pp.5-8], or almost any work on abstract model theory.
79Cf. Sections 14, 15 of [Gabbay, 1996b] for more intuitive motivation on how and why

these parts are highlighted in a logic.
At this point a natural objection suggests itself: Why is ML an arbitrary class? Why

did we not assume (like in [Barwise and Feferman, 1985]) that ML is a class of �rst
order structures or of algebraic systems? The answer is (i)-(iii) below. (i) In institutions
theory they do the same what we do and for the same reasons. Cf. the subsection
`Connections with the literature' at the very end of the present Section. (ii) We are
developing a general theory, and we do not know in advance what kinds of structures
will be the models of our L. E.g. they may be classical �rst order models, they may or
may not have a topological structure too, they may be propositional Kripke-models, they
may have in�nitary relations on them (cf. [Henkin, Monk and Tarski, 1971, x4.3]), they
may be models of intensional logic in the sense of Montague etc. Therefore, at the very
beginning, we do not want to commit ourselves on some actual kinds of mathematical
objects that exactly should be the elements of ML. (iii) All the same, during the
development of our theory, we will impose some structure on ML (but only gradually).
This structure-imposing process is carried even further in [Andr�eka et al., to appear], cf.
e.g. `concrete semantical systems' therein.



ALGEBRAIC LOGIC 191

(i) Let K �M and � � F . Then

K j=L � i� (8M 2 K)(8' 2 F )M j=L ':

We will write K j=L ' in place of K j=L f'g and M j=L � in place
of fMg j=L �.

ThL(K)
def
= f' 2 F : K j=L 'g, ThL(K) is called the theory of K, and

ModL(�)
def
= fM 2 M : M j=L �g, ModL(�) is called the class of

models of �.

(ii) Semantical consequence, valid formulas: Let � [ f'g � F . Then

� j
�
=L ' i� ModL(�) j=L ':

We read � j
�
=L ' as: ' is a semantical consequence of �. In case of

a singleton f g of formulas we write  j
�
=L ' in place of f g j

�
=L '

for simplicity.80

j=L ' i� M j=L '. In this case we say that ' is a valid formula of
L.

(iii) Axiomatizable classes of models:
ModLThL(K) is called the axiomatizable hull of K. K is axiomatizable
i� K = ModL(�) for some � � F . In this case we also say that �
describes or de�nes K.

(iv) Provability, or derivability:
`L ' i� ; `L ', in this case we say that ' is provable or derivable
in L. If � `L ', then we say that ' is provable from � (in L).

If there is no danger of confusion, we will omit the subscript L from j
�
=L,

ThL, ModL etc.

REMARK . ThMod and ModTh are the two closure operators induced by
j=. The semantical consequence relation j

�
= is a binary relation between

P(F ) and F , just like ` is. To treat ` and j
�
= uniformly, in some places

a logical system is de�ned to be hF; j� i where j� � P(F ) � F . E.g.
[Blok and Pigozzi, 1989] uses this de�nition. In this notion, j� can mean

either the derivability relation or the semantical consequence relation j
�
= .

Connections between our conception of a logic and the rest of the literature
will be discussed at the end of this section.

80In the literature of logic, in place of our symbol j
�
=, most often the same symbol

is used as the one denoting the validity relation (j=). Our choice of using two di�erent
symbols for denoting these two (though di�erent but not independent) relations comes
from the nature of our Paper (meta-logical considerations).
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The de�nition of a logic in De�nition 30 is very broad. Actually, it is
too broad for proving interesting theorems about logics. Now we will de�ne
a subclass of logics which we will call algebraizable semantical logics . The
notion of an algebraizable logic is broad enough to cover a very large part
of the logics investigated in the literature.81 On the other hand, the class
of algebraizable logics is narrow enough for proving interesting theorems
about such logics, that is, we will be able to establish typical logical facts
that hold for most logics studied in the literature.

Below, in De�nitions 32{39, we collect some common features of logics.
We will discuss the usual extra assumptions one usually makes about

a logic L in the following order. First we discuss (assumptions on) the
distinguished parts of L beginning with FL and ending with j=L. Then
in De�nition 39, we will discuss (assumptions on) how these parts are put
together. Often, what we call `extra assumptions' here will also imply `extra
structure'.

The set F of formulas is usually de�ned by �xing a set Cn of logical
connectives and a set P of atomic formulas:

DEFINITION 32 (L has connectives).
(i) Assume that two sets, P and Cn are given, such that every element of

Cn has a �nite rank. Then F (P;Cn) denotes the smallest set H satisfying
(1),(2) below:

(1) P � H , and

(2) for every c 2 Cn of rank k and '1; : : : ; 'k 2 H , c('1; : : : ; 'k) 2 H .

Note that F (P;Cn) is the universe of the word-algebra of type Cn generated
by P .

(ii) We say that FL is given by hP;Cni if FL = F (P;Cn). In this case we
say that P is the set of all atomic formulas or atomic propositions of L, and
Cn is the set of all logical connectives of L. P is also called the vocabulary of
L.82 The word-algebra generated by P and using the logical connectives of
Cn as algebraic operations is denoted by F, and is called the formula algebra

of L. Note that F = hF; cFic2Cn where cF('1; : : : ; 'k)
def
= c('1; : : : ; 'k) 2 F

for all '1; : : : ; 'k 2 F and k-ary connective c 2 Cn.

(iii) We say that L has connectives if FL is given by hP;Cni for some
sets P;Cn. In this case we usually assume that hP;Cni is given together
with L.

81Moreover, in Remark 40 we will indicate how to extend the methods of the present
work from algebraizable logics to a broader class called protoalgebraic semantical logics.
The latter is really broad enough to cover most logics in the literature.
82Sometimes, informally, P is also called the set of `propositional variables'. Here we

emphasize that the connotations of this name are misleading.
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Next we turn to inference systems `L. Inference systems (usually denoted
as `) are syntactical devices serving to recapture (or at least to approximate)
the semantical consequence relation of the logic L. The idea is the following.
Suppose � j

�
= '. This means that, in the logic L, the assumptions collected

in � semantically imply the conclusion '. (In any possible world or model
M of L whenever � is valid in M, then also ' is valid in M.) Then we would
like to be able to reproduce this relationship between � and ' by purely
syntactical, `�nitistic' means. That is, by applying some formal rules of
inference (and some axioms of the logic L) we would like to be able to
derive ' from � by using `paper and pencil' only. In particular, such a
derivation will always be a �nite string of symbols. If we can do this, that
will be denoted by � ` '.

Inference systems are usually given by axioms and inference rules. These
axioms and rules use formula-schemes in place of concrete formulas. A
formula-scheme is just like a formula, the only di�erence is that it is built up
from formula-variables (i.e. meta-variables ranging over formulas) in place
of atomic formulas.

DEFINITION 33 (Formula-scheme, Hilbert-style inference system).
(i) Assume that FL is given by hP;Cni. We will call �i (i < !) formula-

variables , and FV will denote the set of all formula-variables, i.e. FV =
f�i : i < !g. The elements of F (FV;Cn) are called formula-schemes , and

Fs will denote the set of all formula-schemes of L. I.e. Fs
def
= F (FV;Cn).

An instance of a formula-scheme is obtained by substituting formulas for
the formula variables in it. A formula-scheme is called valid if all of its
instances are valid.

(ii) An inference-rule for L is a pair


h�1; : : : ;�ki;�0

�
, where every �i

(i 6 k) is a formula scheme of L. This inference rule will be denoted by

�1; : : : ;�k
�0

:

An instance of an inference rule is obtained by substituting formulas
for the formula variables in the formula schemes occurring in the rule. An
inference rule hh�1; : : : ;�ki;�0i is called valid if f'1; : : : ; 'kg j

�
= '0 for

all instances hh'1; : : : ; 'ki; '0i of it. Valid inference rules are also called
admissible rules or strongly sound rules in the literature.

(iii) A Hilbert-style inference system (or calculus) for L is a pair hAx;Rui
where Ax is a �nite set of formula-schemes, called axioms , and Ru is a �nite
set of inference rules for L.

(iv) A Hilbert-style inference system I = hAx;Rui de�nes a provability or
derivability relation ` as follows. Assume �[f'g � F . We say that ' is `-
derivable (or `-provable) from � i� there is a �nite sequence h'1; : : : ; 'ni of
formulas (an `-proof of ' from �) such that 'n is ' and for every 1 6 i 6 n
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� 'i 2 � or

� 'i is an instance of an axiom scheme of I or

� there are j1; : : : ; jk < i, and there is an inference rule of I such that
'j1 ;:::;'jk

'i
is an instance of this rule.

We write � ` ' if ' is `-provable from �. Now ` = fh�; 'i : � ` 'g. We
say that ` is given by hAx;Rui. Throughout, we identify I with `, e.g. we
say that ' is an axiom of `.

Next we turn to the semantical part ML, j=L of L. Validity of formulas in
models, i.e. j=L, is usually de�ned indirectly by �rst de�ning something more
basic, namely the meanings or denotations of formulas (and of other kinds of
syntactic entities belonging to the language) in models. The idea is that the
meaning of some syntactic entity (like a noun-phrase, or a sentence) need
not always be a truth value. Therefore �rst we de�ne a so-called meaning
function which to each syntactic entity ' and each model M associates some
semantic entity mng(';M) called the meaning of ' in M. After knowing
what the particular syntactic entities mean in the models, one may be able
to derive information concerning which sentences are true or valid in which
models.

DEFINITION 34 (Meaning function, compositionality).
(i) Let mng be any function mapping F �M into a class; and let us call

mng(';M) the meaning of ' in M. For a �xed M 2M , the function mngM
mapping F to the set of meanings83 is de�ned by letting for all ' 2 F

mngM(')
def
= mng(';M):

We say that mng is a meaning-function for L if the validity of a formula
depends only on its meaning, i.e., if (�) below holds:

(�) mngM(') = mngM( ) =)
�
M j= ' i� M j=  

�
:

(ii) Assume that L has connectives. We say that the meaning-function
mng is compositional if the meanings of formulas are built up from the
meanings of their subformulas. More precisely, mng is compositional if,

83We use the word `meaning' in the sense Frege used `intension' or `sense'. It is im-
portant to emphasize that `meaning' is much more general than `extension' or truthvalue
(though for some logics the two may coincide). Further denotation (e.g. in [Partee, 1976])
can be identi�ed with what we call `meaning'. As an example, let L be Richard Mon-
tague's intensional logic. Then mng(';M) is exactly what Montague calls the intension
of ' in M. See also [Partee, 1976, pp. 1{18] on meaning(s). It seems that we are using
the word `meaning' in the same sense as [Janssen, 1997, pp. 419{470] does. What we call
the meaning function mngM is called a meaning assignment in [Janssen, 1997, p. 423].
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for each M, mngM is a homomorphism, or equivalently, if ker(mngM) =
fha; bi : mngM(a) = mngM(b)g is a congruence relation on the formula
algebra. Thus mng is compositional i� the (congruence) condition below is
satis�ed for all k-ary connective c 2 Cn and 'i;  i 2 F , 1 � i � k:

k̂

i=1

mngM('i) = mngM( i) =)

mngM(c('1; : : : ; 'k)) = mngM(c( 1; : : : ;  k)):

We say that L is compositional if it has connectives and a compositional
meaning-function (w.r.t. the connectives of L). This property is tradition-
ally called Frege's principle of compositionality .

(iii) From now on, by a logic L we understand a logic with a meaning-
function, i.e. L = hF;`;M;mng; j=i, where mng is a meaning-function for
the rest of L.

On the ingredients of a logic: Let L = h: : :mng; j=i be a logic. Then,
using the terminology of Frege, Carnap, Montague as in [van Benthem and
ter Meulen, 1997], mng represents the intensional (or denotational) aspects
of semantics, while j= represents the extensional (or truth-value oriented)
aspect of semantics, in L. Therefore those approaches to general logics in
which mng is repressed, seem to be extensionally oriented (cf. e.g. insti-
tutions theory e.g. in [Gabbay, 1994, p. 359]), while the ones emphasiz-
ing mng (e.g. [Andr�eka and Sain, 1981; Henkin, Monk and Tarski, 1985;
Epstein, 1990] and [Sain, 1979]) seem to be intensions-oriented (or sense or
denotations oriented). The latter intuition is reected in the fact that [Gab-
bay, 1994] traces the elements of the class

S
fmngM(') : ' 2 F and M 2

Mg as well, and calls them basic semantical units .

In many logics (cf. e.g. sentential logics LS , LS
0, modal logic S5 in Section

7) we have a derived connective $ and a formula denoted as True which
establish a strong connection between mng and j=, namely

(i) mngM(') = mngM( ) i� M j= '$  , and

(ii) M j= ' i� mngM(') = mngM(True).

In these logics there is a strong connection between Th(M) � F and the
kernel of the meaning function ker(mngM) � F � F , namely the kernel of
mngM and Th(M) are recoverable from each other.84 We will say that L
has the �lter-property i� there are derived connectives that generalize the
above situation, as follows.

84If f is an arbitrary function, then ker(f)
def
= fha; bi : f(a) = f(b)g.
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DEFINITION 35 (L has the �lter-property).
(i) A k-ary derived connective is a formula-scheme � 2 Fs using

the formula variables �0; : : : ; �k�1 only. If '0; : : : ; 'k�1 are formulas, then
�('0; : : : ; 'k�1) denotes the instance of � when we replace �0; : : : ; �k�1 by
'0; : : :, 'k�1 respectively.85

(ii) We say that L has the �lter-property i� there exist unary derived
connectives "0; : : : ; "m�1 and Æ0; : : : ; Æm�1 and binary ones �0; : : :, �n�1

(m;n 2 !) of L such that for all ';  2 F and for all M 2 M , properties
(1) and (2) below hold.

(1) mngM(') = mngM( ) () (8i < n)
�
M j= '�i 

�
.

(2) M j= ' () (8j < m)
�
mngM("j(')) = mngM(Æj('))

�
.

In the case of classical logic, we can choose the above derived connectives
such that � is `$', "(') is ', and Æ(') is `True'.

We consider one more basic feature of logics: substitution-invariance
properties. Roughly speaking, the idea is that substituting a part (sub-
formula) of a formula with another one which is \equivalent" to the original
part should not change the validity or meaning of the formula. In this
respect we usually expect a logic to be substitutional in the sense of De�ni-
tion 36 below. If it is not, then we rather treat it as a `theory' of a substi-
tutional logic. For such examples see Section 7 (Examples) or [Andr�eka et
al, 1993].

DEFINITION 36 (L has the substitution property).

(i) By a substitution s we understand a function s : P ! F (we will
`substitute' p 2 P with s(p) 2 F ). If ' 2 F , then '(p=s(p)) denotes the
formula we obtain from ' after simultaneously substituting s(p) for every

occurrence of p, for all p 2 P in '. In other words, '(p=s(p))
def
= ŝ('), where

ŝ is the (unique) extension of s : P ! F to a homomorphism ŝ : F! F.86

(ii) L has the (syntactic) substitution property (or L is substitutional) i�
for any formula ' 2 F and substitution s : P ! F

j= ' implies j= '(p=s(p)):

This means that a formula of L is valid i� the corresponding formula scheme
of L is valid (where we get the corresponding formula scheme by substituting
atomic formulas pi 2 P with formula variables �i 2 FV ).

85The algebraic counterpart of `derived connective' is `term function'. If � is binary,
then we will write '� in place of �(';  ).
86Such a unique extension exists because F is the word-algebra generated by P , i.e., in

algebraic terms, it is freely generated by P .
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(iii) L has the semantical substitution property i� for any model M 2M
and substitution s : P ! F there is another model N 2M such that

mngN(p) = mngM(s(p)) for all p 2 P:

Intuitively, the model N is the substituted version of M along s.

The semantical substitution property says that the atomic formulas can
have the meanings of any other formulas. (This statement will be made
precise in Proposition 43.) Examples where we have and do not have this
property are given in Section 7.

PROPOSITION 37. If a logic L has the �lter-property and the semantical
substitution property, then it has the syntactic substitution property, too.

Proof. We give a proof only for that simple case when the �lter property is
realized by the derived connectives $ and True. Actually we will use only
the following one of the two �lter-property conditions:

(��) M j= ' i� mngM(') = mngM(True) for every ' and M.
Assume that L satis�es condition (��) and has the semantical substitution

property. Let M 2 ML and s : P ! FL be arbitrary but �xed. To prove
the syntactic substitution property, assume that j= ' for some arbitrary but
�xed ' 2 FL. By the semantical substitution property of L, there exists
a model N 2 ML such that mngN(p) = mngM(s(p)) for all p 2 P . Using
formula induction, it is easy to check that

(y) mngN( ) = mngM(ŝ( )) for every  2 FL.

Now

mngM(True) = mngM(ŝ(True)) because ŝ is a homomorphism and
True is a constant connective

= mngN(True) by (y)
= mngN(') because N j= ' (by j= ') and (��)
= mngM(ŝ(')) by (y).

Then M j= ŝ(') by (��) again (in the other direction). Thus j= ŝ(') since
M was chosen arbitrarily; which proves the syntactic substitution property,
since s and ' were chosen arbitrarily as well. �

Thus, a `fully-edged' logic L = hF;`;M;mng; j=i sometimes is given
as L = hhP;Cni; hAx;Rui;M;mng; j=i. Often, not all parts of a logic are
given. Sometimes we have only hF;`i and we are searching for a `semantics'
hM;mng; j=i for it such that e.g. hF;`;M;mng; j=i is complete.87 Or, even
more often, we have hF;M;mng; j=i and we are searching for a provability
relation ` such that hF;`;M;mng; j=i would be complete. Sometimes hF;`i

87Completeness of a logic will be de�ned in De�nition 48 in Section 6.
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is called a `deductive logic' (or syntactic one), while hF;M;mng; j=i is called
a `semantic logic' (cf. e.g. [Andr�eka et al., to appear]). (Though, one should

keep in mind that hF; j
�
= i is a `deductive logic' in this sense.) From now

on we will often omit some parts of a logic. Most often we will deal with
hF;M;mng; j=i and we will say that L = hF;M;mng; j=i is a logic or more
carefully, a semantical logic. Most of the notions are meaningful for it, e.g.
that L is compositional, etc.

DEFINITION 38. (Algebraizable semantical logic, structural logic) Let L =
hF;M;mng; j=i be a logic in the above sense.

� We say that L is structural if L is compositional and has the semantical
substitution property.

� We say that L is an algebraizable88 semantical logic if L is structural
and has the �lter-property.

In most cases, the set P of atomic formulas is a parameter in the de�ni-
tion of the logic L. Namely, P is a �xed but arbitrary set. So in a sense,
L is a function of P , and we could write LP (instead of L) to make this
explicit. Most often the choice of P has only limited inuence on the be-
haviour of L. However, we will have to remember that P is a freely chosen
parameter because in certain investigations, the choice of P does inuence
the behaviour of LP .

DEFINITION 39. (General logic, algebraizable general logic)

(i) A general logic is a function (or indexed family)

L
def
= hLP : P is a seti;

where for each set P , LP = hFP ;MP ;mngP ; j=P i is a logic in the above
sense.

(ii) We say that L has connectives i� there is a set Cn of connectives
such that for every set P , Cn is the set of connectives of LP in the sense
of De�nition 32 and P is the set of atomic formulas89 of LP , i.e. FP =
F (P;Cn) for all P . Sometimes P is called the vocabulary of LP .

(iii) L is compositional if it has connectives and LP is compositional for
all P .

88The de�nition of algebraizability originates with Blok and Pigozzi, cf. e.g. [Blok and
Pigozzi, 1989].
89We are making simpli�cations now. It is not necessary to have LP in L for all sets

P . What is needed for our investigations is that for all cardinality � there be a P such
that the set of atomic formulas of LP has cardinality at least �.
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(iv) L has the �lter-property i� there are derived connectives "0; : : : ; "m�1,
Æ0; : : : ; Æm�1, �0; : : : ;�n�1 (common for all possible choices of P ) such that
LP has the �lter-property with these, for all P .

(v) L has the substitution property i� for all P;Q, s : P ! FQ, and
' 2 FP ,

j=P ' implies j=Q '(p=s(p)):

(vi) L has the semantical substitution property i� for all sets P;Q, s :

P ! FQ and M 2MQ there is N 2MP such that mngQM Æ ŝ = mngPN.

(vii) L is an algebraizable general logic i� L is compositional, has the
�lter-property, and has both substitution properties, L is structural if it is
compositional and has the semantical substitution property.

(viii) The notions of a formula-scheme, valid formula-scheme, valid rule,
and Hilbert-style inference system for a general logic are the obvious gener-
alizations of their versions given for (non-general) logics L, cf. e.g. De�ni-
tion 33.

(ix) By a fully edged general logic we understand a function

L = hLP : P is a set i

such that for each set P , LP = hFP ;`P ;MP ;mngP ; j=P i is a fully edged
logic i.e. hF;`i is a deductive logic, hF;M;mng; j=i is a semantical logic,

and `P � j
�
=
P

. Items (ii){(vii) above extend to the fully edged case the
natural way.

REMARK 40. We note that L is an algebraizable general logic i� LP is
an algebraizable semantical logic for all P , the connectives and the derived
connectives for the �lter-property are the same for all P , and the condition
below holds for all P � Q:�

mngPM : M 2MP
	

=
n

(mngQM) � FP : M 2MQ
o
:

Intuitively, this condition says that LP is the natural restriction of LQ.

REMARK 41. The theories of semantical logics Ls = hF;M;mng; j=i and
deductive logics Ld = hF;`; i are best when developed in a parallel fashion,
cf. e.g. [Andr�eka et al., to appear]. Throughout this remark we assume that
Ls is structural (cf. De�nition 38).

We called Ls algebraizable i� it has the �lter property. An analogous
de�nition for algebraizability of Ld was given in the papers of Blok and
Pigozzi, cf. [Blok and Pigozzi, 1989]. There are weaker properties of Ld
studied in the Blok and Pigozzi papers which properties already enable one
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to apply (at least part of) the methodology of algebraic logic to the logics
in question.

Logics with these properties are called `protoalgebraic', `equivalential',
and `weakly algebraizable'.90 (There are other such properties in the lit-
erature, but the weakest one facilitating application of our methodology
seems to be being protoalgebraic.) As we implied, the properties of being
protoalgebraic and equivalential naturally extend to semantical logics.

We call a semantical logic Ls protoalgebraic i� there is a set �(';  ) =
f�i(';  ) : i 2 Ig of derived connectives such that

(�) j= �('; ') and M j= �(';  ))
�
M j= ',M j=  

�
;

for all M 2M , and ';  2 F .

Ls is called equivalential i� there is � as in (�) above, but such that
Condition (1) in De�nition 35 holds for this � and Ls.
Ls is called weakly algebraizable i� it is protoalgebraic and there are sets

"(x) = f"i(x) : i 2 Ig and Æ(x) = fÆi(x) : i 2 Ig as in De�nition 35(2).

Clearly, if Ls is both equivalential and weakly algebraizable, then Ls is
in�nitely algebraizable, where `in�nitely' means that �; "; Æ may be in�nite
sets of derived connectives. (If they are �nite, then Ls is algebraizable.) To
keep the rest of this discussion short, we concentrate on protoalgebraic and
equivalential (but all what we say can be extended to weakly algebraizable,
too).

We note that if Ls is protoalgebraic (or equivalential), then so is its de-

ductive counterpart hF; j
�
= i in the sense of e.g. [Czelakowski and Pigozzi,

1999] Moreover, Ld is protoalgebraic/equivalential in the sense of `op. cit.'.

i� there is a semantical logic Ls such that Ld = hF; j
�
=Lsi and Ls is protoal-

gebraic/equivalential, respectively. For the method of proving such equiva-
lence theorems we refer to [Font and Jansana, 1994] and [Andr�eka et al., to
appear]. We also note that

protoalgebraic ) equivalential ) algebraizable

for semantical logics (the same applies to deductive ones, too). The ma-
chinery (algebraization process, equivalence theorems etc) developed in the
present work does extend to protoalgebraic and equivalential semantical
logics (from algebraizable ones). Cf. e.g. [Hoogland, 1996; Hoogland and
Madar�asz, 1997] for part of this extension. For brevity, in this work we
present the above mentioned machinery for the case of algebraizable logics
only, at the same time inviting the interested reader to extend this machin-
ery to the protoalgebraic and/or equivalential cases, too.

Connections with the literature: What we call a fully edged logic L =

90Cf. [Czelakowski and Pigozzi, 1999].
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hF;`; : : : ; j=i was called91 a `formalism' in [Tarski and Givant, 1987, p.16
(section 1.6)], an `axiomatic system with semantics hA;`;Mod; j=i' in [Aczel,
1994, p.265] (hereA coincides with our F ), and a `logic hSign; sen;Mod;`;j=i'
in [Mart��-Oliet and Meseguer, 1994]. More precisely, the latter corresponds
to our fully edged general logics (cf. the subitem below).

What we call a semantic logic was called a `semantical system' in [Andr�eka
et al., to appear], a `semantical system hA;Mod; j=i' in [Aczel, 1994, p.265];
and our general logic L = hLP : : : :i corresponds to an institution hSign; sen;
Mod; j=i in [Mart��-Oliet and Meseguer, 1994, p.358] (the latter will be elab-
orated below).

Connection with institutions: Institutions theory (e.g. [Mart��-Oliet and
Meseguer, 1994]) emphasizes the category theoretic aspects of a general logic
L = hLP : : : :i (which are downplayed here), and suppresses the intensional
aspects represented by mng. To see that such a general logic is a category
whose objects are the logics LP , let

Sign = fP : P occurs as a set of atomic formulas in Lg

be �xed.92 (We know that according to our conventions, Sign = `all sets',
but let us abstract away from this, and just assume that Sign is a �xed
proper class.) Let P; P1 2 Sign. Next we de�ne what a logic morphism h :
LP ! LP1 is. A logic morphism is a pair h = hf; �i such that f : FP ! FP1

is a homomorphism of the formula-algebras and � : MP1 ! MP `makes
everything commute', e.g. M j= f(') () �(M) j= '.93Now, if hf; �i is
such a logic morphism, then (f � P ) is called a signature morphism. Let
Sign be the category of these signature-morphisms (as arrows, and Sign
itself is the class of objects).

Let Log be the category of logics LP and logic morphisms h = hf; �i
occurring in L. Then there is a functor F : Sign ! Log sending P to
LP . This F is almost the institution we are looking for. There is one
ingredient missing, though. Namely, MP is not only an arbitrary class, but
is a category in all the applications we know of. This category character of
MP is de-emphasized in the present Paper, but it does show up in the theory
later, cf. e.g. the category of concrete semantical systems in [Andr�eka et al.,
to appear]. So, let us assume that each MP is a category. Then our functor
F above induces two functors fml : Sign ! Fmla and Mod : Sign !
Catop, where Fmla is the category of formula-algebras (of the form FP ),

91A di�erence is that the intensional part mng is suppressed in most of the quoted
works but it is not suppressed in e.g. [Epstein, 1990].
92What we call here a set P of atomic formulas is called a signature in institutions

theory.
93If meaning functions are also present, then � should induce a function �+ on the

meanings such that mng�(M)(') = �+(mngM(f('))), cf. [Andr�eka et al., to appear].



202 H. ANDR�EKA, I. N�EMETI, I. SAIN

and for each P ,

F(P ) = hfml(P );Mod(P ); j=P i; while

F(�) = hfml(�);Mod(�)i

for the morphisms � of Sign. Now the tuple

I(L) = hSign; fml;Mod; j=i

is called an institution, where

j= = hj=P : P 2 Signi:

At this point one can see that to a general logic L there is an equivalent
institution I(L), and conversely to an institution I there is a general logic
L(I) such that the two can be recovered from each other. (Here we assumed
that in L(I) the models still form a category.) Therefore, institutions and
general logics can be studied interchangeably, depending on the kind of
mathematical tools (universal algebra or categories) one wants to use.94

In institutions theory, our `fml' is denoted by `sen', exactly because there
mng is suppressed and therefore meanings are replaced by truthvalues. So,
when the theory is applied to e.g. �rst-order logic, then attention has to
be restricted to sentences (=closed formulas) because meanings of open
formulas are more complex objects than just truthvalues.

We do not treat here the di�erent notions of equivalence of logics, mor-
phisms acting between logics, concrete semantical logics, cf. e.g. [Andr�eka,
et al., to appear]. Also, we do not treat here interpretability between log-
ics, and combining logics, [Gabbay, 1996; Gabbay, 1998; J�anossy, Kurucz
and Eiben, 1996; Andr�eka et al., to appear]. These are important and very
interesting subjects.

For the rest of this work, one of the most important de�nitions of Section
4 is that of an algebraizable general logic. It is summarized in Remark 40.

5 THE PROCESS OF ALGEBRAIZATION

The algebraic counterpart of classical sentential logic LS is the variety BA of
Boolean algebras. Why is this so important? The answer lies in the general
experience that sometimes it is easier to solve a problem concerning LS by
translating it to BA, solving the algebraic problem, and then translating the
result back to LS (than solving it directly in LS).

94To make this statement hundred percent true, one should include the intensional
aspect mng into institutions and make MP into a category in general logics. We do not
see why one would not do these amendments.
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In this Section we extend applicability of BA to LS to applicability of
algebra in general to logics in general. We will introduce a standard trans-
lation method from logic to algebra, which to each logic L associates a class
Alg(L) of algebras. (Of course, Alg(LS) will be BA.) Further, this transla-
tion method will tell us how to �nd the algebraic question corresponding to
a logical question. If the logical question is about L, then its algebraic equiv-
alent will be about Alg(L). For example, if we want to decide whether L
has the property called Craig's interpolation property, then it is suÆcient to
decide whether Alg(L) has the so called amalgamation property (for which
there are powerful methods in the literature of algebra). If the logical ques-
tion concerns connections between several logics, say between L1 and L2,
then the algebraic question will be about connections between Alg(L1) and
Alg(L2). (The latter are quite often simpler, hence easier to investigate.)
This `bridge' also enables us to solve algebraic problems by logical methods
(for an example see Section 7).

DEFINITION 42 (Meaning algebra, Algm, Alg). Let L = hF;M;mng; j=i
be a compositional logic with F 6= ;.

(i) First we turn every model into an algebra. Compositionality of mngM
means that we can de�ne an algebra of type Cn on the set fmngM(') : ' 2
Fg of meanings. This algebra is mngM(F), it will be called the meaning
algebra of M and it will be denoted by Mng(M). In more detail, to any
logical connective c of arity k we can de�ne a k-ary function cM on the
meanings in M by setting for all formulas '1; : : : ; 'k

cM(mngM('1); : : : ;mngM('k))
def
= mngM(c('1; : : : ; 'k)):

(We could say that cM is the meaning of the logical connective c.) Then

Mng(M)
def
= hfmngM(') : ' 2 Fg; cMic2Cn.

(ii) Algm(L) denotes the class of all meaning-algebras of L, i.e.

Algm(L)
def
= fmngM(F) : M 2MLg = fMng(M) : M 2MLg:

(iii) Let K �ML. Then for every ';  2 F

' �K  
def
() (8M 2 K) mngM(') = mngM( ):

Then �K is an equivalence relation, which is a congruence on F by compo-
sitionality of L. F=�K denotes the factor-algebra of F, factorized by �K .
It is called the Lindenbaum{Tarski algebra of K. Now,

Alg(L)
def
= I fF=�K : K �MLg :
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Thus, Alg(L) is the class of isomorphic copies of the Lindenbaum{Tarski
algebras of L.

(iv) Let L = hLP : P is a seti be a general logic. Then

Algm(L)
def
=
[
fAlgm(LP ) : P is a set; FP 6= ;g;

and
Alg(L)

def
=
[
fAlg(LP ) : P is a set; FP 6= ;g:

REMARK . In the de�nition of Algm(L) above, it is important that
Algm(L) is not an abstract class in the sense that it is not closed under
isomorphisms. The reason for de�ning Algm(L) in such a way is that
since Algm(L) is the class of algebraic counterparts of the models of L,
we need these algebras as concrete algebras and replacing them with their
isomorphic copies would lead to loss of information (about semantic-model
theoretic matters). See e.g. the algebraic characterization of the weak Beth
de�nability property , Theorem 59 in the next Section.

For a logic L, let MngL
def
= fmngM : M 2 MLg. That is, MngL is the

class of `meaning-homomorphisms' of the logic L (or equivalently, the unary
meaning-functions induced by the models of L). If L is a general logic hLP :
P is a seti then MngP denotes the class of all meaning-homomorphisms of
LP . That is, MngP = MngLP . If A is an algebra and K is a class of algebras,
then Hom(A;K) denotes the class of all homomorphisms h : A! B where
B 2 K.

PROPOSITION 43 (Characterization of structural logics). Let L and L be
a compositional logic and a compositional general logic, respectively. Then
(i){(ii) below hold.

(i) L has the semantic substitution property i�
MngL = Hom(F;Algm(L)), i�
MngL = Hom(F;K) for some class K of algebras.

(ii) L has the semantic substitution property i�
MngP = Hom(FP ;Algm(L)), for all P , i�
MngP = Hom(FP ;K), for all P , for some K.

Proof. To prove the �rst equivalence in (i), assume �rst that L has the
semantic substitution property, and let h 2 Hom(F;Algm(L)). Then h :
F ! mngM(F) for some M 2 ML. Let such an M be �xed. We want to
show that h = mngN for some N 2ML. Of course, the kernel R(= fha; bi 2
F : mngM(a) = mngM(b)g) of mngM is an equivalence relation. Let F=R
denote the partition of F determined by R. Let s : P ! F=R be a choice
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function such that s(p) 2 mng�1
M (h(p)). Thus s chooses exactly one element

from each equivalence class of R the mngM{image of which is h(p) for some
p 2 P . Such an s exists (assuming the Axiom of Choice), since mngM is an
onto function.

Since L has the semantic substitution property by hypothesis, to the
model M and the substitution s there exists an N 2ML such that mngN(p)
= mngM(s(p)) for each p 2 P . Since mngM(s(p)) = h(p) for each p 2 P ,
by the choice of s, we have that mngN(p) = mngM(s(p)) = h(p) for each
p 2 P , thus mngN and h agree on P . Since F is freely generated by P and
both h and mngN are homomorphisms (the latter by compositionality of L),
we have that h = mngN. This completes the proof of Hom(F;Algm(L)) �
MngL, since h was chosen arbitrarily.

If h 2 MngL then h = mngM for some M 2 ML, and thus h 2 Hom(F;
Algm(L)) by compositionality of L. ThereforeMngL � Hom(F;Algm(L)),
which completes the proof of MngL = Hom(F;Algm(L)).

The other direction of the �rst part of (i) is trivial: Let M 2 ML and
s : P ! F . We have to show that mngM Æ ŝ 2 Mng, which is true by
mngM Æ ŝ : F! mngM(F) 2 Algm(L).

To prove the equivalence of the second and third statements in (i), assume
thatMngL = Hom(F;K). We want to show thatMngL = Hom(F;Algm(L)).
Notice �rst that MngL = Hom(F;K) implies that Algm(L) � SK. So
let h : F ! A, A 2 Algm(L). Then h : F ! B for some B 2 K, by
Algm(L) � SK. Thus h 2MngL by MngL = Hom(F;K).

The proof of (ii) is completely analogous, and we omit it. �

THEOREM 44 (Connection between Algm and Alg).

(i) Let L be a compositional logic. Then

SPAlg(L) = SPAlgm(L):

(ii) Let L be a structural general logic. Then

Alg(L) = SPAlgm(L):

Proof. Proof of (i): First we show Algm(L) � IAlg(L). Let A 2 Algm(L),
say A = mngM(F). Set K = fMg. Then �K= ker(mngM), so F=�K is
isomorphic to A.

To show the other direction, let A 2 Alg(L), say A = F=�K for some
K � ML. Then there is a subset K 0 � K such that F=�K= F=�K0 (this
holds because F is a set). Thus we may assume that K �ML is a set. We
de�ne for all ' 2 F

h ('=�K)
def
= hmngM(') : M 2 Ki:
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This is a sound de�nition by the de�nition of �K . It is not diÆcult to check
that h is one-to-one and a homomorphism, so h : A� PhmngM(F) : M 2
Ki, showing that A 2 SPAlgm(L). Since SP is a closure operator, we are
done with proving (i).
Proof of (ii): First we note that, by (i), Alg(LP ) � SPAlgm(LP ) for any
set P , thus Alg(L) � SPAlgm(L) holds.

We are going to prove SPAlgm(L) � Alg(L). Let A 2 SPAlgm(L), say
A � Pi2IAi for a set I and algebras Ai 2 Algm(L). Let h : FA � A be any
onto homomorphism (e.g. we can take for h the homomorphic extension
of the identity mapping h0 : A ! A). For each i 2 I let �i denote the

projection function onto Ai, and let hi
def
= �i Æ h. Then hi : FA ! Ai 2

Algm(L). By Proposition 43 (ii) then hi = mngMi
for some Mi 2MA. Let

K = fMi : i 2 Ig. Then it is easy to check that h(') = h( ) i� ' �K  
for all ';  2 FA. Thus A is isomorphic to FA=�K2 Alg(L), and we are
done. �

We note that we also proved that for structural logics L,

Alg(L) = SPAlgm(L) \ fA : jAj � jFLjg:

Now we turn to proving that the equations valid in Alg(L) correspond
to the valid formula-schemes of L, and the quasi-equations valid in Alg(L)
correspond to the valid rules of L. Here we will use the �lter-property.
If L is algebraizable, then the equational and quasi-equational theories of
Alg(L) recapture the validities and the semantical consequence relation

j
�
= of L, respectively. Thus, when a logic L is given, it is interesting to
investigate the equational and quasi-equational theories of Alg(L). Note
that by Theorem 44 above, Alg(L) and Algm(L) have the same equational
and quasi-equational theories.

First we note that formulas and formula-schemes are terms in the lan-
guage of Alg(L). Hence if ';  2 Fs, then ' =  is an equation in the
language of Alg(L) where we consider the formula-variables �i as algebraic
variables (ranging over the elements of the algebras). Similarly, if ';  2 F ,
then ' =  is also an equation in the language of Alg(L), where we consider
the elements of P as algebraic variables.

THEOREM 45 (Valid rules of L and quasi-equations of Alg(L)). Let L
be a compositional logic with �lter-property. Let "; Æ;�;m; n be as in the
de�nition of �lter-property. Then (i){(ii) below hold.

(i) A rule hh'0; : : : ; 'k�1i; 'ki of L is valid (or admissible) i�

Alg(L) j=
V
`<k
i<m

"i('`) = Æi('`)! "j('k) = Æj('k) for each j < m.
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(ii) A quasi-equation '0 =  0 ^ : : : ^ 'k�1 =  k�1 ! 'k =  k (with
variables from FV ) is valid in Alg(L) i�

the rules

'0�0 0; : : : ; '0�n�1 0; : : : ; 'k�1�0 k�1; : : : ; 'k�1�n�1 k�1

'k�j k

are valid in L for all j < n.

Proof. Assume that � is a valid rule of L of the form hh'0; : : :, 'k�1i; 'ki.
Let qeqj denote the quasi-equation associated to it in (i). We want to show
that qeqj is valid in Alg(L). By Theorem 44 it is enough to prove that it is
valid in Algm(L). Let A 2 Algm(L), and let h : FV ! A be an evaluation
of the variables in qeqj such that the hypothesis part of qeqj is true in A

under the evaluation h, i.e. assume that

(?) A j=
^
`<k
i<m

"i('`) = Æi('`)[h]:

We want to show
A j= "j('k) = Æj('k)[h]:

By A 2 Algm(L), there is M 2ML such that A = mngM(F). For any �i 2
FV take  i 2 F such that h(�i) = mngM( i) and let hh'00; : : : ; '

0
k�1i; '

0
ki

be the instance of our rule � by replacing each �i with  i. Then for each
i < m and ` � k we have that ĥ("i('`)) = mngM("i('

0
`)) and the same for Æ,

i.e. ĥ(Æi('`)) = mngM(Æi('
0
`)). (Here ĥ denotes the homomorphic extension

of h to Fs.) Then by the �lter-property of L, and by our assumption (?),
we have M j=L '0` for all ` < k. Since hh'0; : : : ; 'k�1i; 'ki is a valid
rule, and hh'00; : : : ; '

0
k�1i; '

0
ki is an instance of it, this implies M j=L '0k.

Then by the �lter-property again, mngM("j('
0
k)) = mngM(Æj('

0
k)), i.e.

ĥ('k)) = ĥ(Æj('k)) and we are done.

Conversely, assume that the quasi-equation is valid in Alg(L), and we
want to show that the rule is valid. Let hh'00; : : : ; '

0
k�1i; '

0
ki be an instance

of the rule that we got by substituting  i to the formulavariables �i, for
all i < !. Assume M 2 ML and M j=L f'

0
0; : : : ; '

0
k�1g. We want to show

M j=L '0k. By the �lter-property we have mngM("i('
0
`)) = mngM(Æi('

0
`)).

Let h : Fs ! F be a homomorphism such that h(�i) =  i for all i < !.
Then h("i('`)) = mngM("i('

0
`)) and the same for Æi, thus (?) above holds

with A = mngM(F). Thus A j= "j('k) = Æj('k)[h], since the quasi-equation
is valid in A 2 Alg(L), i.e. mngM("j('

0
k)) = mngM(Æj('

0
k)), for all j < m.

By the �lter-property then M j=L '0k as was to be shown.
We omit the proof of (ii). It is analogous to the above proof of (i). �
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COROLLARY 46. (Valid formula-schemes, validities, and Eq(Alg(L)))

(i) Let L be a compositional logic with �lter-property. Let "; Æ;�;m; n be
as in the de�nition of the �lter-property. Then for every formula-scheme '
of L

' is a valid formula-scheme of L i�

Alg(L) j= "j(') = Æj(') for all j < m.

(ii) Assume further that L is algebraizable. Then for any formulas '; '0; : : : ; 'k
of L,

j=L ' i�

Alg(L) j= "j(') = Æj(') for each j < m.

f'0; : : : ; 'k�1gj
�
=L 'k i�

Alg(L) j=
V
`<k
i<m

"i('`) = Æi('`)! "j('k) = Æj('k) for each j < m.

(iii) The set of valid formula-shemes of L is decidable (recursively enu-
merable) i� Eq(Alg(L)) is decidable (recursively enumerable). The set of
valid (admissible) rules of L is decidable (recursively enumerable) i� the
quasi-equational theory of Alg(L) is decidable (recursively enumerable).

(iv) Statements (i) and (ii) above hold for general logics L in place of
L. �

We say that the validity problem of the logic L is decidable i� the set of
valid formulas of L is decidable. If L = hLP : P is a seti is a general logic,
then the validity problem of L is decidable i� it is decidable for LP , for all
P .

COROLLARY 47. Let L be an algebraizable logic with jP j � ! or an al-
gebraizable general logic. Then the validity problem of L is decidable i�
Eq(Alg(L)) is decidable. �

6 EQUIVALENCE THEOREMS (WRITTEN BY J. MADAR�ASZ)

In this part we give algebraic characterizations of some logical properties.
In the next Section we will apply these theorems to some well known log-
ics. Instead of giving the proofs of the theorems in this Section, we will
refer to where they can be found. First we characterize completeness and
compactness properties.

DEFINITION 48 (Complete, sound inference systems).

Let L = hF;M;mng; j=i be a logic, and let ` � P(F )� F .
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� ` is weakly complete for L i� each valid formula is derivable, i.e. i�

(8' 2 F ) (j= ' =) ` ') :

� ` is �nitely complete for L i� consequences of �nite sets are derivable,
i.e. i�95

(8� �! F )(8' 2 F )
�

� j
�
= ' =) � ` '

�
:

� ` is strongly complete for L i� any semantical consequence is derivable
(not only consequences of �nite sets), i.e. i�

(8� � F )(8' 2 F )
�

� j
�
= ' =) � ` '

�
:

� ` is weakly sound for L i� derivable formulas are valid, i.e. i�

(8' 2 F ) (` ' =) j= ') :

� ` is strongly sound for L i� derivable consequences are valid conse-
quences, i.e. i�

(8� � F )(8' 2 F )
�

� ` ' =) � j
�
= '

�
:

� ` is strongly complete and sound for L i� the derivability and semantic
consequence relations coincide, i.e. i�

(8� � F )(8' 2 F )
�

� ` ' i� � j
�
= '

�
:

Let I = hAx;Rui be a Hilbert-style inference system. We say that I
is (weakly, �nitely, strongly) complete for L if the derivability relation `
given by hAx;Rui is such for L. We say that I is (weakly, �nitely, strongly)
complete for a general logic L = hLP : P is a seti if I is such for all LP .
We use an analogous terminology for the soundness properties.

The next theorem is a characterization of existence of strongly complete
and sound Hilbert-style inference systems for general logics. It is proved in
[Andr�eka et al, 1993, Thm.3.2.21]. A class K is a quasi-variety i� it can be
axiomatized with a set of quasi-equations, i.e. equational implications. See
a footnote in Section 1.

THEOREM 49. Assume that L is an algebraizable general logic. Then there
is a strongly complete and sound Hilbert-style inference system for L i�
Alg(L) is a �nitely axiomatizable quasi-variety. �

95X �! Y denotes that X is a �nite subset of Y .
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In Theorem 50 below we give a suÆcient and necessary condition for
an algebraizable semantic logic to have a �nitely complete Hilbert-style
inference system. Its proof can be found in [Andr�eka et al, 1993, Thm.3.2.3].

THEOREM 50. Assume that L is an algebraizable semantic logic and Cn(L)
is �nite.96. Then there is a �nitely complete and strongly sound Hilbert-style
inference system for L i� Alg(L) generates a �nitely axiomatizable quasi-
variety. �

The following theorem is a characterization of existence of weakly com-
plete and strongly sound Hilbert-style inference systems. It is [Andr�eka et
al., 1993, Thm. 3.2.4].

THEOREM 51. Assume that L is an algebraizable semantic logic and Cn(L)
is �nite. Then there is a weakly complete and strongly sound Hilbert-style
inference system for L i� there is a �nitely axiomatizable quasi-variety K

such that Algm(L) � K � HSPAlg(L). The same is true for algebraizable
general logics. �

The following theorem, due to J. Madar�asz, is a characterization of exis-
tence of weakly complete and weakly sound Hilbert-style inference systems.
Such an inference-system is sometimes called a Gabbay-style inference sys-
tem. Its rules are not necessarily valid, but the formula-schemes they derive
(from the empty set � = ; of premises) should be valid.97

THEOREM 52. Assume that L is an algebraizable general logic and Cn(L)
is �nite. Assume that HAlg(L) j= "(x�y) = Æ(x�y) ! x = y. Then
there is a weakly complete and weakly sound Hilbert-style inference system
for L i� there is a �nitely axiomatizable quasi-variety K such that HK =
HAlg(L).98 �

96One can eliminate the assumption of Cn(L) being �nite. Then the �nitary character
of a Hilbert-style ensured in a more subtle way. Also, `�nitely axiomatizable quasi-variety'
must be replaced by `�nite-schema axiomatizable quasi-variety' in the second clause, cf.
e.g. [Monk, 1969], or [N�emeti, 1991].
97Cf. e.g. [Mikul�as, 1995; Marx and Venema, 1997; Simon, 1991]. We note that many

Gabbay-style rules are even more `liberal' than not being strongly sound in that in addi-
tion their form does not satisfy De�nition 33 (ii). (It is not known yet which of these two
liberties is responsible for their behaviour. Our feeling is that non-strongly soundness is
the more essential.) These extremely liberal (Gabbay-style) inference systems correspond
to classes K � Alg(L) such that K is �nitely axiomatized by 89-formulas (of a certain
form) and HSK = HAlg(L). An example for such K is the class of rectangularly dense
cylindric algebras, the representation theorem of which ([Andr�eka et al., 1998]) was used
in [Mikul�as, 1995] for obtaining a weakly-sound completeness theorem for Ln (which will
be de�ned in Section 7). Cf. also [Mikul�as, 1995, the open problem below Thm.1.3.11,
p.27].
98Here, x�y = fx�iy : i < ng and for a set H of formulas, "(H) = Æ(H) denotes

f"i(') = Æi(') : i < m;' 2 Hg. We do not know whether the condition `HAlg(L) j= : : :'
is needed for this theorem. It is not needed for direction `=)'. In the other direction,
we can always obtain a weakly complete and weakly sound ``', but this ` may not
be completely Hilbert-style (this ` is more into the `Gabbay{Venema{Simon{Mikul�as'
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DEFINITION 53 (Compactness).

� L is satis�ability compact i� a set � has a model whenever all of its
�nite subsets � have models, i.e.

(8� �! �)Mod(�) 6= ; =) Mod(�) 6= ;:

� L is consequence compact if a consequence of � is always a consequence
of a �nite subset � already, i.e. i�

� j
�
= ' =) (9� �! �)� j

�
= ':

A general logic L = hLP : P is a seti is (satis�ability, consequence) com-
pact if LP is such for all P .

We note that in general, consequence compactness and satis�ability com-
pactness are independent properties, i.e. neither of them implies the other.
However, for algebraizable general logics, consequence compactness implies
satis�ability compactness. Also, if we have some kind of negation, then the
two notions of compactness coincide.99 In all our examples in Section 7,
the two notions of compactness coincide.

Our next theorem characterizes consequence compactness of algebraiz-
able general logics. For a proof see [Andr�eka et al, 1993, Thm. 3.2.20], or
[Andr�eka et al., 1995, Cor. 3.10].

THEOREM 54 (Characterization of compactness). Assume that L is an
algebraizable general logic. Then L is consequence compact i� Alg(L) is
closed under taking ultraproducts, i.e. i� Alg(L) = UpAlg(L). �

Now we turn to characterization of some de�nability properties. Beth's
de�nability properties of logics were de�ned e.g. in [Barwise and Feferman,
1985]. Here we give the de�nitions in the framework of the present Paper.

DEFINITION 55 (Implicit de�nition, explicit de�nition).

Let hLP : P is a seti be a general logic. Let P $ Q be sets with FP 6= ;,

and let R
def
= Qr P .

� A set � � FQ of formulas de�nes R implicitly in Q i� a P -model can
be extended to a Q-model of � at most one way, i.e. i�

(8M;N 2 ModQ(�))[mngQM � FP = mngQN � FP �! mngQM =

mngQN]:

direction).
99More on this can be found in [Andr�eka et al, 1993; Andr�eka et al., 1995].



212 H. ANDR�EKA, I. N�EMETI, I. SAIN

� � de�nes R implicitly in Q in the strong sense i�, in addition, any
P -model that in principle can, indeed can be extended to a Q-model
of �, i.e. i�

� de�nes R implicitly in Q and

(8M 2 ModP ([ThQModQ�] \ FP ))(9N 2 ModQ(�))

mngQN � F
P = mngPM.

� � de�nes R explicitly in Q i� any element of R has an `explicit de�-
nition' that works in all models of �, i.e. i�

(8r 2 R)(9'r 2 FP )(8M 2 ModQ(�))mngQM(r) = mngQM('r):

� � de�nes R local-explicitly in Q i� the above de�nition can vary from
model to model, i.e. i�

(8M 2 ModQ(�))(8r 2 R)(9'r 2 FP )mngQM(r) = mngQM('r):

DEFINITION 56 (Beth de�nability properties). Let L be a general logic.

� L has the (strong) Beth de�nability property i� for all P;Q;R and �
as in De�nition 55,

(� de�nes R implicitly in Q =) � de�nes R explicitly in Q).

� L has the local Beth de�nability property i� for all P;Q;R and � as
in De�nition 55,

(� de�nes R implicitly in Q =) � de�nes R local-explicitly in Q).

� L has the weak Beth de�nability property i� for all P;Q;R and � as
in De�nition 55,

(� de�nes R implicitly in Q in the strong sense =) � de�nes R
explicitly in Q).

DEFINITION 57 (Patchwork property of models). Let L be a general
logic. L has the patchwork property of models i�
for all sets P;Q, and models M 2MP , N 2MQ,

FP\Q 6= ; and mngPM � (P \Q) = mngQN � (P \Q) =)

(9P 2 MP[Q)(mngP[QP � FP = mngPM and mngP[QP � FQ =

mngQN).
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Recall that if K is a class of algebras, then by a morphism of K we under-
stand a triple hA; h;Bi, where A;B 2 K and h : A! B is a homomorphism.
A morphism hA; h;Bi is an epimorphism of K i� for every C 2 K and ev-
ery pair f; k : B ! C of homomorphisms we have f Æ h = k Æ h implies
f = k. Typical examples of epimorphisms are the surjections. But for
certain choices of K there are epimorphisms of K which are not surjective.
Such is the case, e.g., when K is the class of distributive lattices.

Let K0 � K be two classes of algebras. Let hA; h;Bi be a morphism
of K. h is said to be K0-extensible i� for every algebra C 2 K0 and every
homomorphism f : A ! C there exists some N 2 K0 and g : B ! N such
that C � N and g Æ h = f . It is important to emphasize here that C is a
concrete subalgebra of N and not only is embeddable into N.

THEOREM 58 (Characterization of Beth properties100). Let L be an al-
gebraizable general logic which has the patchwork property of models. Then
(i){(iii) below hold.

(i) L has the Beth de�nability property i� all the epimorphisms of Alg(L)
are surjective.

(ii) L has the local Beth de�nability property i� all the epimorphisms of
Algm(L) are surjective.

(iii) L has the weak Beth de�nability property i� every Algm(L)-extensible
epimorphism of Algm(L) is surjective. �

In the formulation of Theorem 58 (ii),(iii) above, it was important that
Algm(L) is not an abstract class in the sense that it is not closed under
isomorphisms, since the de�nition of K-extensibility strongly di�erentiates
isomorphic algebras.

If K is a class of algebras, then maxK denotes the class of all �-maximal
elements of K:

maxK
def
= fA 2 K : (8B 2 K)(A � B =) A = B)g:

We note that e.g. maxCsn is the class of all full Csns.

We will use the notions of `reective subcategory', and `limits of diagrams
of algebras' as in [Mac Lane, 1971]. We will not recall these. Throughout,
100The proof of (i) is in [N�emeti, 1982] and in [Hoogland, 1996]. A less general version

of (i) is proved in [Henkin, Monk and Tarski, 1985, Thm.5.6.10]. Part (ii) is due to
J. Madar�asz. An early version of (iii) is in [Sain, 1990], and the full version is proved
in [Hoogland, 1996]. The �nite Beth property is obtained from the Beth property by
restricting R to be �nite. The emphasis in [N�emeti, 1982] and [Henkin, Monk and
Tarski, 1985] was on the �nite Beth property. E. Hoogland and J. Madar�asz [1997]

extended the characterization of Theorem 58(i) to the broader (than algebraizable) class
of equivalential logics.
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by a reective subcategory we understand a full and isomorphism closed
one.

The weak Beth property was introduced in [Friedman, 1973] (cf. refer-
ences of [Barwise and Feferman, 1985]) and has been investigated since then,
cf. e.g. [Barwise and Feferman, 1985, pp. 73{76, 689{716].

THEOREM 59 (Characterization of weak Beth property101). Let L be
an algebraizable general logic which has the patchwork property of models.
Assume that every element of Algm(L) can be extended to a maximal ele-
ment of Algm(L), i.e. that Algm(L) � SmaxAlgm(L). Then conditions

(i){(iii) below are equivalent.

(i) L has the weak Beth de�nability property.

(ii) Alg(L) is the smallest full reective subcategory of Alg(L) containing
maxAlgm(L).

(iii) maxAlgm(L) generates Alg(L) by taking limits of diagrams of alge-
bras. I.e. there is no limit-closed proper subclass separating these two
classes of algebras. �

Now we turn to characterizing Craig's interpolation properties.

DEFINITION 60 (interpolation properties). Let L = hF;M;mng; j=i be a
logic with connectives. For each formula ' 2 F let voc(') denote the set of
atomic formulas occurring in '. Let ! be a binary connective of L.

� L has the j=-interpolation property i�

for all ';  2 F such that ' j
�
=  there is � 2 F such that

voc(�) � voc(') \ voc( ) and ' j
�
= � j

�
=  .

� L has the !-interpolation property i�

for all ';  2 F such that j= '!  there is � 2 F such that
voc(�) � voc(') \ voc( ) and j= '! � and j= �!  .

Next we recall from the literature the amalgamation and superamalga-
mation properties of classes of algebras. Let K be a class of algebras. We
say that K has the amalgamation property i� any two algebras in K can
be jointly embedded into a third element of K such that we can require
some parts of them to go to the same place. I.e. for any A;B;C 2 IK with
B � A � C, there are N 2 K and injective homomorphisms (embeddings)
f : B� N, h : C� N such that f � A = h � A.

101This is due to I. Sain, J. Madar�asz, and I. N�emeti. For the origins of this character-
ization of weak Beth property see [Sain, 1990, p.223 and on].
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By a partially ordered algebra we mean a structure hA;�i where A is
an algebra and � is a partial ordering on the universe A of A. A class
K of partially ordered algebras has the superamalgamation property i� any
two algebras as above can be embedded in a third one such that only the
necessary coincidences and ordering would hold, i.e. if for any Ai 2 K, i � 2
and for any embeddings i1 : A0 ! A1 and i2 : A0 ! A2 there exist an A 2 K
and embeddings m1 : A1 ! A and m2 : A2 ! A such that m1 Æ i1 = m2 Æ i2
and for fj; kg = f1; 2g, (8x 2 Aj)(8y 2 Ak)[mj(x) � mk(y) =) (9z 2
A0)(x � ij(z) and ik(z) � y)].

DEFINITION 61. Let L be a compositional logic. We say that L has a
deduction theorem i� there is a binary derived connective r such that for
all � � F , ';  2 F

� [ f'g j
�
=  i� � j

�
= 'r :

Such a r is called a deduction term.

THEOREM 62 (Characterization of interpolation properties102).
Let L be an algebraizable semantic logic.

(i) Assume that L is consequence compact and usual conjunction ^ is in
Cn(L). Assume that L has a deduction theorem. Then L has the
j=-interpolation property i� Alg(L) has the amalgamation property.

(ii) Assume that Alg(L) consists of normal BAOs. Assume that Alg(L)
is algebraized via the usual Boolean biconditional $, i.e. in the �lter-
property � is $. Let ! denote the usual Boolean implication term.
Then L has the !-interpolation property i� HSPAlg(L) has the su-
peramalgamation property. �

The above is only a sample of the equivalence theorems in algebraic logic.
Other kinds of investigations are connecting deduction property of a logic L
with Alg(L) having equationally de�nable principal congruences (EDPC)
[Blok and Pigozzi, 1989a; Blok and Pigozzi, 1989c; Blok and Pigozzi, 1997];
theorems connecting e.g. atomicity of the formula-algebra of L with G�odel's
incompleteness property of L ([N�emeti, 1985; N�emeti, 1986]), theorems con-
necting logical meanings to neat-reducts of formula-algebras ([Amer, 1993;
Sayed Ahmed, 1997]) etc.

102The proof of (i) is in [Czelakowski, 1982, Thm.3]. The proof of (ii) is in [Madar�asz,
1998], [Madar�asz, 1997].
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7 EXAMPLES AND APPLICATIONS

In this Section we give some applications for the previous theorems. Most
of the logics we use are well-known, but we recall their de�nitions for illus-
trating how they are special cases of the concept de�ned herein, and also for
�xing our notation. More and also di�erent kinds of examples are given in
[Andr�eka et al, 1993], [N�emeti and Andr�eka, 1994], [Andr�eka et al., 1995].

1. Classical sentential logic LS = hLPS : P is a seti.
Below, we often will omit the index S.

The set of logical connectives is Cn = f^;:g, ^ is binary, : is unary.
Let P be any set. Thus the set of formulas of LPS is FPS = F (P;Cn).

A model of sentential logic LPS is a function assigning 0 (false) or 1 (true)
to each atomic proposition p 2 P . Thus the class MP

S of models of LPS is
P 2, the set of all functions mapping P to 2. (Recall that 2 = f0; 1g.)

We can extend any model M : P ! 2 to the set FPS of all formulas: for
all ';  2 FPS we let

M(:') =

�
1 if M(') = 0
0 if M(') = 1;

M(' ^  ) =

�
1 if M(') = M( ) = 1
0 otherwise:

Now, the meaning of ' in M is M('), i.e. mngPS (';M) = M('), and '
is valid in M, M j=S ', i� M(') = 1.

We let LPS
def
= hFPS ;M

P
S ;mng

P
S ; j=Si and LS

def
= hLPS : P is a seti.

By this, we have de�ned LS . We are going to show that LS is an alge-
braizable general logic with Alg(LS) = BA.

That LS is compositional comes immediately from the de�nition. Let 2
denote the 2-element Boolean algebra with universe 2. Then Mng(M) = 2
for all M 2 MP , P 6= 0. Thus Algm(LS) = f2g, and it can be seen from
the de�nition that any homomorphism h : FP ! 2 is a meaning-function
of some model (namely, that of h � P ), thus MngP = Hom(FP ; f2g).
Thus by Proposition 43, LS has the semantical substitution property, so
LS is structural. Then Alg(LS) = SPf2g = BA by Theorem 44 (iii) (and
also Alg(LPS ) = `BAs of cardinality � max(!; jP j)'). It can be seen that

LS has the �lter-property with m = n = 1, �0(';  )
def
= (' $  )

def
=

:(:' ^  ) ^ :(' ^ : ), "0(')
def
= ' and Æ0(')

def
= TRUE

def
= :(:p ^ p) for a

�xed p 2 P .
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Thus LS is an algebraizable general logic with Alg(LS) = BA,
Algm(LS) = f2g.

By Theorem 54, LS is compact, because BA = UpBA. By Theorem 49,
LS has a strongly complete and sound Hilbert-style inference system, be-
cause BA is a �nitely axiomatizable quasi-variety. Moreover, the proof of
Theorem 49 (in [Andr�eka et al, 1993]) constructs such a Hilbert-style infer-
ence system (given any axiomatization of BA). We give here the inference
system we get from the proof.

In the next inference system, we will use ';  ; � and Æ as formula-variables,
and we will use $ and TRUE as derived connectives.

The axioms are:

' ^  $  ^ ',

' ^ ( ^ �) $ (' ^  ) ^ �,

' $ :(:(' ^  ) ^ :(' ^ : )).

The rules are as follows:

'$ '
;

'$  

 $ '
;

'$  ;  $ �

'$ �
;

'$  

:'$ : 
;

'$  ; �$ Æ

(' ^ �)$ ( ^ Æ)
;

'$ TRUE

'
;

'

'$ TRUE
:

It is easy to check that LS has the patchwork property. LS has the Beth
property by Theorem 58 (i), because epimorphisms are surjective in BA.
By Theorem 58 (iii), LS has the weak Beth property. So by Theorem 59, 2
generates BA by limits, since maxAlgm(LS) = Algm(LS) = f2g.

A deduction term for LS is �0 ! �1
def
= :(�0 ^ :�1). Since BA has

superamalgamation, Theorem 62 implies that LS has the interpolation
properties.

The validity problem of LS is decidable, the set of admissible rules of
LS is decidable, the set of valid formula-schemes of LS is decidable by
Theorem 45 and Corollary 46, because the quasi-equational theory of BA is
decidable.

2. Sentential logic in a slightly di�erent form, LS
0.

The set of connectives, thus the set of formulas are just like in the previous
case. The models are di�erent. Let P be a set.
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M 0S
def
= fhW; vi : W is a non-empty set and v : P ! P(W )g:

Thus a model M = hW; vi is a non-empty set together with an assignment
assigning a subset of W to each p 2 P . Let M = hW; vi be a model. We
call W the set of possible situations (or states, or worlds) of M. For any
formula ', we de�ne M; w  ', which we read as `' is true in M at w', as
follows:

M; w  p i� w 2 v(p), for p 2 P .

M; w  :' i� M; w 6 ',

M; w  ' ^  i� (M; w  ' and M; w   ).

We say that ' is valid in M if M; w  ' for all w 2W .
The above amounts to saying that the meaning-function mngM is the

homomorphic extension of v into the algebra hP(W );\;ri, i.e. mngM :
FP ! hP(W );\;ri, and

M; w  ' i� w 2 mngM('),

M j= ' i� W = mngM(').

Now, LS
0 is de�ned. It is compositional,

Algm(LS
0) = setBA

def
= SfhP(W );\;ri : W is a non-empty setg =

=`the class of all non-trivial set Boolean algebras',
and MngP (LS

0) = Hom(FP ; setBA).

Thus LS
0 is algebraizable, Alg(LS

0) = BA, Algm(L0S) = setBA. By

Theorem 45, it has the same semantical consequence relation j
�
= , same

admissible rules, same valid formula-schemes and same valid formulas as
LS .

3. Modal logic S5.
The set of connectives is f^;:;�g, ^ binary, :;� unary. The class of models
is the same as for LS

0. The `meaning of �' is as follows:

M; w  �' i� (M; w0  ' for some w0 2W ).

This is the same as saying that

mngM(�') = CW0 (mngM(')), where for any set X �W
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CW0 (X) =

�
W if X 6= 0
0 otherwise:

The rest of the de�nition of S5 goes the same way as in the case of LS
0

above.

It can be checked that S5 has the �lter property with the same terms as
sentential logic LS .

Thus S5 is an algebraizable general logic with Algm(S5) = Cs1 =
SfhP(W );\;r; CW0 i : W is a nonempty setg, Alg(S5) = SPCs1 = RCA1.

A deduction term for S5 is :�:�0 ! :�:�1.

Therefore S5 is decidable, compact, has a strongly complete and sound
Hilbert-style inference system, and has the Beth and interpolation proper-
ties by Theorems 45, 54, 49, 58, 62, because RCA1 is a decidable, �nitely
axiomatizable variety having the superamalgamation property, see Theorem
17(ii) .

4. Arrow logic LREL.
The �eld of Arrow Logics grew out of application areas in Logic, Language
and Computation, and plays an important role there, cf. e.g. [van Benthem,
1996; van Benthem, 1991a], and the proceedings of the Arrow Logic day
at the conference `Logic at Work' (Dec.1992, Amsterdam). These arrow
logics go back to the investigations in [Tarski and Givant, 1987]. Tarski
de�ned in 1951 basically LREL to give the �rst example of an undecidable
propositional logic.

The set of connectives of LREL is f^;:; Æ;�1g, ^; Æ binary, :;�1 unary.
The models are as in S5, except that we require that the elements of W be
all pairs over some set U , i.e.

MP
REL

def
= fhW; vi : W = U � U for some U and v : P ! P(W )g:

The de�nition of M; w  ' is as in the previous case, and we de�ne the
meanings of Æ and �1 as

M; hu; zi  ' Æ  i� (M; hu; xi  ' and M; hx; zi   for some x),

M; hu; zi  '�1 i� M; hz; ui  '.

This amounts to saying that the meaning of Æ is relation composition,
and the meaning of �1 is relation conversion, i.e.

mngM(' Æ  ) = mngM(') ÆmngM( ),
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mngM('�1) = (mngM('))�1.

Otherwise everything is the same as before, e.g. M j= ' i� mngM(') =
W .

Now, LREL is an algebraizable general logic with Alg(LREL) = BRA,
Algm(LREL) = setBRA.

Thus, by our equivalence theorems in Section 6 and by our algebraic the-
orems on BRA in Section 1, we obtain that LREL is undecidable, compact,
has no �nitely complete and strongly sound Hilbert-style inference system.
Since in BRA epimorphisms are not surjective,103 LREL does not have the
Beth property.

A deduction term for LREL is TRUEÆ�0ÆTRUE ! TRUEÆ�1ÆTRUE.
Since BRA does not have the amalgamation property, by Theorem 62 LREL
does not have the interpolation property.

We can add `equality' to LREL, obtaining L=
REL as follows. We add Id to

the set of connectives as a zero-ary connective, and we de�ne its meaning
as for any model M = hU � U; vi

mngM(Id) = fhu; ui : u 2 Ug:

Then L=
REL is an algebraizable general logic with Alg(L=

REL) = RRA,
Algm(L=

REL) = setRRA. Just as in the previous cases we get properties
of L=

REL by using the theorems about RRA stated in Section 1, and the
equivalence theorems stated in Section 6.

5. First-order logic with n variables, with substituted atomic for-
mulas, Ln

0.

Let n 2 !, let Vn
def
= fvi : i < ng, our set of variables. Let R be any set (our

relation symbols). The set P of atomic formulas of the logic L0n
def
= L0n

R
is

P
def
= fR(x0; : : : ; xn�1) : R 2 R; x0; : : : ; xn�1 2 Vng:

The set of connectives is f^;:; vi = vj ; 9vi : i; j < ng, ^ binary, :; 9vi
unary, and vi = vj zero-ary.104 This de�nes the set F 0n

R
of formulas of

L0n
R. The class of models is the usual one,

MRn
def
= fhM;RMiR2R : M is a nonempty set and

RM � nM for all R 2 Rg:
103See the methods in [Sain, 1990].
104Notice that vi = vj is not an atomic formula but rather a zero-ary logical connective.
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Let M = hM;RMiR2R be a model. Then we de�ne  as before: Let ' 2 F
and h 2 nM . We call h an evaluation of the variables. Because of the
tradition, we will write M j= '[h] in place of M; h  '.

M j= R(vi0 : : : vin�1
)[h] i� hh(i0); : : : ; h(in�1)i 2 RM,

M j= vi = vj [h] i� h(i) = h(j),

M j= 9vi'[h] i� (M j= '[h0] for some h0 2 nM such that h and h0

di�er at most at i.)

M j= (' ^  )[h] and M j= :'[h] are as before.

M j=n ' i� (M j= '[h] for all h 2 nM).

We de�ne105

mngM(')
def
= fh 2 nM : M j= '[h]g:

We de�ne L0n
R def

= hF 0n
R
;MRn ;mng; j=ni, and Ln

0 def
= hL0n

R
: R is a seti.

Now, Ln
0 is compositional, and has the �lter property. But it is not

structural in general (and then it is not semantically structural either) as
the following example shows. Let

p
def
= R(v0; v1) and q

def
= R(v0; v0):

Then it can be checked that

j=2 q $ 9v1(v1 = v0 ^ p); but
6j=2 p $ 9v1(v1 = v0 ^ p):

Another example is the following. Let

p
def
= R(v0; v1) and q

def
= R(v1; v0):

Then it can be checked that

j=2 9v1p $ 9v1(v1 = v0 ^ 9v0q); but
6j=2 9v1q $ 9v1(v1 = v0 ^ 9v0q):

The logic L0n is not structural because the meanings of the atomic for-
mulas are not independent of each other: as soon as we know the mean-
ing of R(v0 : : : vn�1), this will determine the meanings of R(x0 : : : xn�1)
where x0; : : : ; xn�1 are arbitrary variables. It would be natural to treat

105In the literature, mngM(') is called the relation de�ned by ' in the model M. Thus
Mng(M) is the algebra of n-variable de�nable relations in M.
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only R(v0 : : : vn�1) as an atomic formula. Then we would like to obtain the
substituted atomic formulas R(x0 : : : xn�1) as `complex', built-up formu-
las. We will achieve this in two di�erent ways. In the �rst case we will use
Tarski's observation that substitution can be expressed with quanti�ers and
equality106 and in the second case we will introduce substitutions explicitly
as logical connectives.107

6. First-order logic with n variables, structural version108 Ln, for
n < ! and for n any ordinal.

This is exactly like the previous example, except that we keep as atomic for-
mulas only R(v0; : : : ; vn�1); R 2 R. Since the order of the variables is �xed
in our atomic formulas, we will simply write R in place of R(v0; : : : ; vn�1).
The set of connectives, the class of models, and the meaning function are
exactly as before, the only di�erence is that now the set of atomic formulas
is R itself. When n is an in�nite ordinal, everything is analogous (then R
stands for R(v0 : : : vi : : :)i<n).

Notation: Ln = hLRn : R is a set i, LRn = hFRn ; : : :i.
Then, Ln is compositional, and MngLRn = Hom(FR;Csn), so Ln has

the semantic substitution property by Proposition 43. Ln has the �lter
property (with �0; TRUE; �0 $ �1 as "; Æ;�), so Ln is an algebraizable
general logic. It is easy to check that Algm(LRn ) is the class of jRj-generated
Csns, so Algm(Ln) = Csn. Thus Alg(Ln) = RCAn by Theorem 44(ii), since
RCAn = SPCsn. Using Algm(Ln) = Csn and Alg(L) = RCAn, we begin to
apply the theorems in Sections 2,6 to Ln.

Ln is compact for all n by Theorem 54, because RCAn = UpRCAn by
Theorem 17. For �nite n, a deduction term for Ln is :9v0 : : : 9vn�1:�0 !
:9v0 : : :9vn�1:�1.

THEOREM 63. Let n > 2. There is no weakly complete and strongly sound
Hilbert-style inference system for Ln. As a contrast, there are strongly com-
plete and sound Hilbert-style inference systems for L2, L1, L0.

Proof. For n > 2, this follows from Theorem 51, because RCAn is a non-
�nitely axiomatizable variety (by Theorems 17, 18, 19). For n � 2, this
follows from Theorem 49, because RCAn, n � 2 is a �nitely axiomatizable
quasi-variety (by Theorem 17). �

106C.f. [Tarski, 1951; Tarski, 1965].
107For more detail see [Blok and Pigozzi, 1989, Appendix C], and [Henkin, Monk and

Tarski, 1985, x4.3].
108This is called a full restricted �rst-order language in [Henkin, Monk and Tarski,

1985, x4.3]. `Restricted' refers to the fact that we keep atomic formulas only with a �xed
sequence of variables, and `full' refers to the fact that the arity (or rank) of each relation
symbol is n. This logic is investigated in [Blok and Pigozzi, 1989, Appendix C], too.
Most of what we say in this example, can be generalized to the in�nitary version Ln1!

of Ln studied in �nite model theory, see Example 11 herein.
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Soon we will give a strongly sound and complete inference system j=2+

for L2.
The above negative result can be meaningfully generalized to most known

variants109 of Ln, Ln without equality, and the in�nitary version Ln1! of
Ln studied e.g. in �nite model theory (e.g. [Ebbinghaus and Flum, 1995;
Otto, 1997]). See Example 11 herein.

The proof of Theorem 63 above is a typical example of applying alge-
braic logic to logic. There are analogous theorems (using the same `gen-
eral methodology'). An example is provided by the positive results giving
completeness theorems for relativized versions of Ln cf. e.g. [Andr�eka, van
Benthem and N�emeti, 1997] or [N�emeti, 1996]. Di�erent kinds of positive
results relevant to Theorem 63 above are in [Sain, 1995; Sain and Gyuris,
1994].

OPEN PROBLEM 64. Is there a weakly complete and weakly sound Hilbert-
style inference system for Ln, n > 2?

By Theorem 52, Open Problem 64 above is equivalent to Problem 25
(i.e. whether RCAn = HK for some �nitely axiomatizable quasi-variety K),
because RCAn j= (x$ y) = 1! x = y, where x$ y = �(x� y). Actually,
in the present case a positive answer would imply the existence of a strongly
complete and weakly sound ``' for Ln, because Alg(Ln) is a variety.

Next we turn to investigating inference systems suggested by the connec-
tions between RCAn, CAn, and SNrnCAm, for m � n (see Theorem 28).
We will de�ne two provability relations, `n and `n;m for Ln. (Of these, `n
is given by a Hilbert-style inference system, while `n;m is not.)

In the following we will heavily use that FRn � F
R
n+m (which is so because

the atomic formulas of LRn and LRn+m are identi�ed).

DEFINITION 65 (Provability relations `n and `n;m for Ln
110).

(i) First we de�ne `n which will be given by the Hilbert-style infer-
ence system hAxn; Runi. In the formula-shemes below we will use ';  as
formula-variables (instead of �0; �1), and 8vi, ! are derived connectives:

8vi'
def
= :9vi:'

'!  
def
= :(:' ^  ):

Recall that 9vi, vi = vj are logical connectives for i; j < n.
Axn consists of the following formula-shemes of Ln: For all i; j; k < n

109E.g. to Ln0 of Example 5.
110`n;m, in a slightly di�erent form, is de�ned in [Henkin, Monk and Tarski, 1985, p.

157], and also in [N�emeti, 1986; N�emeti, 1992; N�emeti, 1995; Blok and Pigozzi, 1989;
Czelakowski and Pigozzi, 1999]. In [Blok and Pigozzi, 1989], `n is denoted by `PRn .
One could get the de�nition of `n by mechanically translating the CAn-axioms, as we
did with the BA-axioms in Example 1, and then polishing the so obtained axioms and
rules.
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�, � a propositional tautology,111 i.e., a valid formula-sheme of L0

8vi('!  )! (8vi'! 8vi )

8vi'! '

8vi8vj'! 8vj8vi'

8vi'! 8vi8vi'

9vi'! 8vi9vi'

vi = vi

vi = vj ! (vi = vk ! vj = vk)

9vi(vi = vj)

vi = vj ! 8vk(vi = vj) if k 6= i; j.

vi = vj ! ('! 8vi(vi = vj ! '), if i 6= j.

Run consists of the rules Modus Ponens (MP ) and Generalization (G)i
for i < n, where (MP ) and (G)i are, respectively:

'; '!  

 
and

'

8vi'
:

Now, `n is the derivability relation given by hAxn; Runi (for Ln).

(ii) To de�ne `n;m, let n � m. Let Axnm � FRm consist of the following
formulas:

(R) R! 8viR if n � i < m; and R 2 R:

Now the inference system `n;m � P(FRn )� FRn is de�ned to be `(Axnm `m)
restricted to Ln', i.e.

`n;m
def
= fh�; 'i : � [Axnm `m '; � [ f'g � FRn g:

Thus, in an `n;m-proof, in addition to the instances of Axm, we also can
use R ! 8viR, for n � i < m, R 2 R. If `n;m ', then we say that `' is
provable with m variables', or `' is m-variable provable'.

It is not hard to check that both `n and `n;m are strongly sound for Ln,
and `n is given by a Hilbert-style inference system (if n is �nite).

111To keep Axn �nite for n < !, we replace the in�nitely many schemes here with Ax0,
where hAx0; f(MP )gi is a strongly complete and sound Hilbert-style inference system for
L0. Such systems are known, cf. e.g. [Andr�eka et al., to appear].
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Therefore, from Theorem 63 we can conclude that there are in�nitely
many valid Ln-formulas which are not `n-provable, i.e. `n is incomplete for
Ln (in a rather strong way). On the other hand, we will see below that `n;!
is strongly complete for Ln.

We are going to prove that the inference system `n is the logical equiva-
lent of the algebraic axiom system de�ning the variety CAn.

Any formula ' 2 LRn can be identi�ed with a term in the algebraic lan-
guage of CAn such that the elements of R are considered as (algebraic)
variables, assuming that we identify the operations of CAn with the con-
nectives of Ln. Hence ' = 1 is an equation in the language of CAn (for
' 2 LRn ). We write ' 2 LRn for ' 2 FRn . Also, ' 2 Ln means (9 set R)
' 2 LRn .

THEOREM 66. Let ' 2 LRn , n any ordinal, R any set. Then (i){(iii) below
hold for all n � m.

(i) `n ' i� CAn j= ' = 1.

(ii) `n;m ' i� SNrnCAm j= ' = 1.

(iii) j=n ' i� RCAn j= ' = 1.

Proof. (i){(iii) are proved in [Henkin, Monk and Tarski, 1985] as Corollary
4.3.26, Theorem 4.3.25, and Theorem 4.3.17, respectively. See also 4.3.57,
4.3.59 therein. To check that `r of [Henkin, Monk and Tarski, 1985] is the
same as our `n;m, it suÆces to check that in the proof of 4.3.22, only the
axioms of our Axn are used. �

Now we are ready to state the logical corollaries of Theorem 28(ii).

COROLLARY 67.

(i) `n;n+! is strongly complete for Ln, for all n.

(ii) `n;n+m is not even weakly complete for Ln, if m < !.

(iii) Let ' 2 Ln. Then j=n ' i� `n;n+m ' for some m < !.

(iv) For all n;m < ! there are valid n-variable formulas which cannot be
proved with m variables. For each valid n-variable formula ' there is
an m < ! such that ' is m-variable provable.

Proof. (i): Weak completeness of `n;n+! follows immediately from The-
orem 66, Theorem 28 (RCAn = SNrnCAn+!). For n < !, then strong
completeness follows, because Ln is compact and has a deduction theorem.
For n � !, Ln is still compact, but it does not have a deduction theorem.
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However, `n;n+! is strongly complete for Ln by [Henkin, Monk and Tarski,
1985, 4.3.23(ii)].

(ii){(iv) follow from Theorem 66 and Theorem 28. E.g., assume ' 2 Ln.
Then j=n ' i� RCAn j= ' = 1 i� (by RCAn = SNrnCAn+!) SNrnCAn+! j=
' = 1 i� j=n;n+! ' i� (by the de�nition of `n;m) `n;n+m ' for some m < !.

�

We note that Corollary 67 speaks also about usual �rst-order logic, be-
cause an n-variable formula is valid in Ln i� it is valid in usual �rst-order
logic (and every �rst order formula ' has a normal form '0 which is in Ln,
for some n 2 !).

To investigate further the provability relations `n, `n;m, now we com-
pare their `deductive powers'. Results in cylindric algebra theory yield the
following.

THEOREM 68 (The deductive powers of `n, `n;m).

(i) For any 1 < n < !, `n 6= (`n+1� Ln), i.e. there is an n-variable
formula ' such that

6`n ' but `n+1 ':

(ii) If n � !, then `n;m 6=`n;m+1 for all m < !, i.e. there is a ' 2 L!
such that

6`!;m ' and `!;m+1 ':

(iii) `2 6= `2;3 = `2;m for all m � 3.

(iv) If n � 1 or n � !, then for any n-variable ', `n ' i� `m ', for
all m � n. If n � 1, then `n = `n;m for all m � n.

Proof. (i) follows from Theorem 66 and [Henkin, Monk and Tarski, 1971,
2.6.14], as follows. Let 2 � n < !. Then there is an equation e in the
language of CAn such that CAn 6j= e and CAn+1 j= e, by [Henkin, Monk and
Tarski, 1971, 2.6.14]. We may assume that e is of form ' = 1, and then
Theorem 66(i) �nishes the proof.

Similarly, (iv) follows from Theorem 66 and [Henkin, Monk and Tarski,
1971, 2.6.8, 2.6.9], and from CAn = RCAn = SNrnCAn+m if n � 1.

(ii) follows from (Theorem 66(ii) and) SNrnCAn+m 6= SNrnCAn+m+1

for all n � !, m < ! which is an unpublished result of Don Pigozzi.

(iii) follows from CA2 6= SNr2CA3 = RCA2 = SNr2CA!, see [Henkin,
Monk and Tarski, 1971, 2.6.42, 3.2.65]. �
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REMARK 69. [Henkin, Monk and Tarski, 1971, Problem 2.12] asks, for any
3 � n � m < !, whether SNrnCAm = SNrnCAm+1. A negative answer
(for all such n;m) is implied by the statement that SRaCAm 6= SRaCAm+1

for 3 � m < !. The consequence of such an answer for proof theory is that
`3;m 6= `3;m+1. Results in this direction are proved e.g. in [Maddux, 1983;
Maddux, 1991a; Andr�eka, 1997; Goldblatt, 1999]. Hirsch, Hodkinson and
Maddux recently proved:

THEOREM 69.1 ([Hirsch, Hodkinson, and Maddux, to appear])

1. For each m with 3 � m < !, SRaCAm strictly contains SRaCAm+1.

2. For 3 � m � n < !, SNrnCAm strictly contains SRaCAm+1.

3. For each m with 3 � m < ! there is a 3-variable �rst-order sentence
' such that `3;m+1 ' but 6`3;m '.

Furthermore, the relation algebra constructed in [Hirsch, Hodkinson, and
Maddux, to appear] that witnesses (1) has the property of being generated
by a single element. It follows that ' can be taken to be a sentence in a
signature consisting of a single binary relation symbol.

Given that SNrnCAm;SRaCAm strictly contain SNrnCAm+1;
SRaCAm+1 respectively, for 3 � n � m < !, it is natural to ask if the
inclusions can be axiomatized �nitely. In other words, is there a �nite set
�m of �rst-order sentences such that for any A 2 SRaCAm, we have A j= �m
if and only if A 2 SRaCAm+1 (and a similar question about neat cylindric
reducts)? For m = 3, the answer is yes: �3 can be taken to be single sen-
tence expressing the associative law. For m > 3, we get a negative answer;
again, this has a consequence for proof theory.

THEOREM 69.2 ([Hirsch and Hodkinson, to appear])

1. For 4 � m < !, the variety SRaCAm+1 cannot be axiomatized relative
to SRaCAm, using only �nitely many �rst-order sentences.

2. For 3 � n < m < !, the variety SNrnCAm+1 cannot be axiomatized
relative to SNrnCAm+1, using only �nitely many �rst-order sentences.

3. There is no �nite set of n-variable schemata whose n-variable in-
stances, when added to `n;m as axioms, yield `n;m+1.

REMARK . `n;m is a (structural) derivability relation for Ln in the sense
of [Blok and Pigozzi, 1989], i.e. for any ' 2 LRn and s : R ! LRn , if
`n;m ' then `n;m ŝ('). This follows from Theorem 66(ii). Theorem 66(ii)
also implies that `n;n+1 for n < ! can be given by some Hilbert-style
inference system hAx0n; Ru

0
ni; while `n;n+m withm � 2 cannot be given with

such. The latter is so because SNrnCAn+1 is a �nitely axiomatizable variety
while SNrnCAn+m, m � 2 is not �nitely axiomatizable (see [Andr�eka, 1997,
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Thm. 2.3]), and then one can use the presently discussed `methodogy of
algebraization', cf. Theorem 50, to infer the above information.

`n;n+! is strongly complete for Ln, but the `n;n+!-proofs use formulas
that are not in Ln. Di�erent kinds of complete inference systems for Ln,
where the proofs use only Ln-formulas, are in [Simon, 1991; Venema, 1991;
Marx and Venema, 1997; Mikul�as, 1995; Mikul�as, 1996]. A common feature
of the latter inference systems is that they are not strongly sound. (This is
natural to expect because by Theorem 63 there cannot exist strongly sound
and complete Hilbert-style inference systems for Ln if n > 2.)

Now we turn to L2. If n � 1, then `n is strongly complete for Ln by
Theorem 66, because then CAn = RCAn. `2 is not complete for L2 (but
`2;3 is). We will show that if we add a rule or axiom expressing

(�) jDom(R)j � 1 =) R = Dom(R)�Rng(R);

(and the same for Rng(R)), then we get a strongly complete Hilbert-style
inference system for L2. Namely, consider the following formula-shema and
rule for i 6= j, i; j < 2:

(SA) 9v0' ^ 9v1' ^ :'! 9vi(9vj(v0 = v1 ^ 9vi') ^ v0 6= v1)

(SR)
[9vi' ^ 9vj(v0 = v1 ^ 9vi')]! v0 = v1

'$ (9v0' ^ 9v1')
:

THEOREM 70. Both hAx2 [ (SA); Ru2i and hAx2; Ru2 [ (SR)i are
strongly complete for L2.

Proof. This follows from Theorem 66 and Theorem 17(iii). �

Now we turn to checking what Theorems 58 and 62 say about de�nabil-
ity and interpolation properties of Ln. Ln has the patchwork property of
models.

So Ln for n � 2 does not have the local Beth de�nability property by
Theorem 58, because epimorphisms are not surjective in Csn (see [Kiss et al.,
1983] and [Madar�asz, 1999, T.7.4.(i)], for 2 � n < ! see [Andr�eka, Comer
and N�emeti, 1983], for n � ! see [N�emeti, 1988]; [Sain, 1990, Thm.10]).

It is proved in [Kearnes, Sain and Simon, to appear] that L3 does not have
the weak Beth property, and we conjecture that this extends to 3 < n < !,
while L2 has the weak Beth property. It is proved in [Kearnes, Sain and
Simon, to appear] that for n < !, Ln has the weak local Beth property. By
Theorem 62, Ln does not have the interpolation property for all n > 1, since
RCAn does not have the amalgamation property (see [Kiss et al., 1983], this
is a result of [Comer, 1969]).
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Further de�nability and interpolation results for Ln, `n (both n < ! and
n � !) are in [Madar�asz, 1997b]. That paper is devoted to solving problems
from [Pigozzi, 1972].

Summing up:
L0 is equivalent to sentential logic LS

0.
L1 is equivalent to S5.
L2: Our characterization theorems in Section 6 and the corresponding

algebraic theorems in Section 2 give the following properties for L2:L2 is de-
cidable, it has a strongly complete and sound Hilbert-style inference system,
which can be obtained from the equational axiomatization of RCA2. L2 has
the �nite model property. The algebraic version of this is stated in [Henkin,
Monk and Tarski, 1985, 3.2.66]. It does not have the Beth (de�nability)
property, and it does not have the interpolation property. We conjecture
that L2 has the weak Beth property.

Ln for 3 � n < !: The characterization theorems and the corresponding
algebraic theorems give the following properties of Ln: Ln is undecidable,
Ln does not have a strongly sound and complete Hilbert-style inference
system. It is open whether it has a weakly sound and weakly complete
Hilbert-style inference system, cf. Problem 25 and Theorem 52. Ln has
neither the Beth property nor the interpolation property.

L! : This is called `Finitary logic of in�nitary relations'. Model theoretic
results (using AL) are in [N�emeti, 1990].

7. First-order logic with n variables with substitutions, with and
without equality, Ln

s=, Ln
s, (n � !).

First we de�ne Ls=n . The set of connectives is f^;:; 9vi; [vi=vj ], [vi; vj ]; vi =
vj : i; j < ng, ^ binary, vi = vj zero-ary, and the rest unary. Everything is
as in the previous example, we only have to give the meanings of the logical
connectives [vi=vj ]; [vi; vj ]. Let M be a model, and recall112 he operations
[i=j]; [i; j] mapping n to n. Now

mngM([vi=vj ]') = fh 2 nM : h Æ [i=j] 2 mngM(')g,

mngM([vi; vj ]') = fh 2 nM : h Æ [i; j] 2 mngM(')g.

By this, we have de�ned Ls=n . It is not hard to check that Ls=n is an
algebraizable general logic.

The theory of quasi-polyadic algebras QPAs is analogous with that of
cylindric algebras. Exactly as cylindric algebras are the algebraic counter-
parts of quanti�er logics with equality, QPAs are the algebraic counterparts
of quanti�er logics without equality, cf. Section 3 herein. RQPAn and QPsn
denote the classes of representable QPAs of dimension n and quasi-polyadic

112[i=j] sends i to j and leaves everything else �xed, and [i; j] interchanges i and j and
leaves everything else �xed.
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set algebras (of dimension n) respectively as introduced e.g. in [N�emeti,
1991] and in Section 3 herein. Analogously, QPEAn and QPsen denote the
same classes but with equality.

Now, Algm(Ls=n ) = QPsen, Alg(Ls=n ) = RQPEAn.
If we omit equality from the set of connectives, then we get the equality-

free version Lsn of the logic. This is also an algebraizable general logic with
Algm(Lsn) = QPsn, Alg(Lsn) = RQPAn.

Now we turn to showing how to retrieve substituted atomic formulas
R(vi0 : : : vin�1

) in Ln, Lsn. Here we assume n < !.

First we treat the case Lsn. Since a �nite mapping can always be written
as a product of [i; j]s and [i=j]s, we obtain that for any sequence x0; : : : ; xn�1

of variables there is a sequence [i1; j1]; : : : ; [i`=j`] of `substitutions' such that
for all models M and relation symbols R,

mngM(R(x0 : : : xn�1)) = mngM([vi1 ; vj1 ] : : : [vi`=vj` ]R).

(Here the �rst meaning-function is taken from L0n, while the second one
from Lsn.) This shows that in Lsn we do have our substituted atomic formulas
back as `complex' formulas. (On the other hand, the expressive power of
Lsn is not bigger than that of L0n, because of the following. It can be proved
with a simple induction that the meaning of the formula [vi; vj ]' is the
same as that of the formula we get from ' by interchanging vi and vj in it
everywhere (in the connectives 9vi also), and the meaning of the formula
[vi=vj ]' coincides with that of the formula we get from ' by replacing vi
everywhere it it with vj . Here ' is a formula of L0n.)

Now we show how to get substituted atomic formulas back in Ln by using
Tarski's observation that substitution can be expressed with quanti�ers and
equality. By the above, it is enough to express the meaning of the formulas
[vi=vj ]' and [vi; vj ]', for i 6= j. So let M be a model and h an evaluation
of the variables in M . Then it can be checked that

M j=n ([vi=vj ]'$ 9vi(vi = vj ^ '))[h],

and if k 6= i; j, M j=n '$ 9vk', then

M j=n ([vi; vj ]'$ [vi=vk][vk=vj ][vj=vi]')[h].

Thus to express [vi; vj ] we need one extra free variable. We can get this

e.g. by treating L0n
R

as the following theory of LRn+1:

f(9vnR)$ R : R 2 Rg
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and then treat the atomic formula R(v0; : : : ; vn�1) of L0n as the atomic
formula R of Ln+1. For more on this see [Henkin, Monk and Tarski, 1985;
Blok and Pigozzi, 1989, x4.3].

8. First-order logic, ranked113 version, LrankedFOL .
The set of connectives is Cn = f^;:; 9vi; vi = vj : i; j < !g, ^ binary,
:; 9vi unary, and vi = vj zero-ary. (This is the same as that of L! .)

Let R be a set (the set of relation-symbols), and let � : R ! ! be a
function (the rank-function, �(R) is the rank of R). First we de�ne the logic
L�FOL.

Our atomic formulas will be R(v0; : : : ; v�(R)�1) for R 2 R. We do not
include R(vi0 ; : : : ; vi�R�1

) into the set of atomic formulas for the same rea-
son as in our previous examples: because they would immediately make
our logic unstructural. However, these substituted atomic formulas will be
present in our logic as (complex) formulas, because they can be expressed
by quanti�ers and equality (see our previous remark on this). Since the
sequence (v0; : : : ; v�(R)�1) of variables is determined by �, we will just write
R in place of R(v0; : : : ; v�(R)�1). (This will be convenient also when we will
compare our present logic with L!.) Thus the set of atomic formulas is R.
Then the formula-algebra F� of L�FOL has universe F (R; Cn).

The models are M = hM;RMiR2R where RM is a �(R)-ary relation on
M for all R 2 R. i.e.

M� = fhM;RMiR2R : R � (�R)M for all R 2 Rg:

Validity and the meaning function are practically the same as those of L!,
therefore we only give here the concise algebraic de�nition: Let M be a
model.

mngM(R) = fh 2 !M : h � �(R) 2 RMg, and

mngM : F� ! hP(!M); ci; Idijii;j<! is a homomorphism.

M j= ' i� mngM(') = !M .

Now
LrankedFOL = hL�FOL : � is a function into !i:

Let L = LrankedFOL . Then L is compositional, and has the �lter-property.
Also we have that

Algm(L) = Csf! and Alg(L) = Lf!:

The second statement is proved in [Henkin, Monk and Tarski, 1985, 4.3.28(iii)].

113These are called ordinary languages in [Henkin, Monk and Tarski, 1985, x4.3].
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But L is not substitutional, even L�FOL is not substitutional if � 6= ;. An
example is: Let R be an n-ary relation symbol in � and let ' denote the
formula v0 = v1 ^ : : : ^ v0 = vn. Then

j= R! 8vnR while 6j= '! 8vn':

It is easy to see that L is compact. Since UpLf! 6= Lf!, this logic shows
that the condition of structurality in Theorem 54 is necessary.

We can extend our inference system `! of the non-ranked logic L! to get
a complete one for LrankedFOL , as follows.

For any rank-function � : R ! !, let Ax� denote the set of the following
formulas:

(R0) R! 8viR; if �(R) � i < !; and R 2 R:

(Ax� is a straightforward modi�cation of Axmn .) Then `� is de�ned as

`�
def
= fh�; 'i : � [ Ax� `! '; � [ f'g � L�FOLg:

Now, `� provides a complete inference system for the ranked version of
�rst-order logic LrankedFOL . I.e.:

THEOREM 71 (G�odel's completeness theorem). For every formula ' of
L�FOL we have

j= ' i� `� ':

Proof. This is a corollary of Theorem 66(ii) and Lf! � RCA! = HSPCsf!

(Theorems 28(i), 18(iii)), as follows. Let �
def
= f(';  ) : `� ' $  g. Then

F�=� 2 Lf! by Theorem 66(i) and Rng(�) � !. Assume 6`� '. Then
F�=� 6j= ' = 1, hence Csf! 6j= ' = 1 by Lf! �HSPCsf!, i.e. 6j= '. �

We note that `� is the usual inference system of �rst-order logic (up to
unessential variations in picking the axioms and in notation). The following
is a purely logical corollary of the non-�nitizability of RCA!.

COROLLARY. The usual inference system `� of �rst-order logic (L�FOL) is
not complete w.r.t. the formula schemas of that logic. That is, there are
valid formula schemas � of L�FOL such that 6`� �.

Outline of proof. We want to prove that there are valid schemes114 � of
L�FOL such that although j= �, we have 6`� �. This is so because there is no

114If � is a formula schema of L (cf. De�nition 33), then by L-derivability `L of �
we understand the natural extension of De�nition 33 to a mixed language consisting of
both L-formulas and schemes. I.e., in a derivation h�1; : : : ;�ni of �, �i is built up from
atomic formulas pj 2 P of L and formula-variables �j 2 FV (using the connectives Cn
of L).
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di�erence between the schema languages of L�FOL and L!, and also the valid
schemes of LrankedFOL and L! coincide by Corollary 46, because Eq(Lf!) =
Eq(RCA!), and the `�-provable and `!-provable schemas coincide.115

How is it possible that there is an `�-unprovable valid formula-scheme
�? This means that though each instance of � in L�FOL is `�-provable
(because of Theorem 71), these `�-proofs vary form instance to instance.
We cannot give a `uniform' `�{proof for these instances, in spite of there
being a uniform `cause' � of their validity. �

REMARK . The above corollary can be strengthened in the following direc-
tion. Let ` be de�ned by some \reasonable" generalization of �nite schema
for L�FOL. Then ` cannot be sound and complete for all formula schemas of
L�FOL. Here we do not de�ne what we mean by a reasonable generalization
of �nite schema, but it can be done by analyzing the usual axiomatizations
of L!! and analyzing the proof of the above corollary. Of course, what we
have in mind admits the usual axiomatizations of L!! as special cases.

Theorem 28(i) stating Dc! � RCA! can be used to overcome schema-in-
completeness of `�. Using this theorem, one can obtain enriched inference
systems `�+ by adding brand new variables wi (i < !) to the language and
new axioms postulating the e�ects of the fact that wi does not occur in the
old formulas. Roughly, these axioms say that

R! 8viR if �(R) � i < ! and
�j ! 8wi�j if i < !; �j is a formula-variable.

These inference systems are strongly complete for the formula-schemas of
LrankedFOL . These completeness theorems (based on the Dc-representation re-
sult) are proved in [Andr�eka, Gergely and N�emeti, 1977; Henkin, Monk and
Tarski, 1985].

The reason for LrankedFOL not being substitutional is that the atomic for-
mulas cannot take the meanings of any formula, because an atomic formula
has a �xed �nite rank, while formulas can have meanings of arbitrarily large
�nite ranks. This will be repaired in our next example.

115This is not quite trivial, but can be proved with CA-theoretic methods, e.g. one can
use [Henkin, Monk and Tarski, 1971, 2.5.26].
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9. First-order logic, rank-free116 (or type-less) version, LFOL.
The set of connectives is as in the previous case. Let R be a set (of relation
symbols). Then the set of atomic formulas of LRFOL is R, as before.

The models will be di�erent (as the information � : R ! ! is missing):
We only know that R denotes a �nitary relation, we do not know what its
arity is. The actual arity will be given by the model. I.e., the models are
M = hM;RMiR2R where RM is an arbitrary �nitary relation on M for all
R 2 R,

MR = fhM;RMiR2R : (8R 2 R)(9n 2 !)R � nMg:

Validity and the meaning function are the same as in the previous case, the
only di�erence is that

mngM(R) = fh 2 !M : h � n 2 RM for some ng.

Let LFOL denote the system of these logics. Now this general logic is
structural, since

MngR = Hom(FR;Csf!):

Thus LFOL is an algebraizable general logic with

Algm(LFOL) = Csf! and Alg(LFOL) = SPCsf!:

Thus Theorem 54 says that LFOL is not compact because, by Theorem
18(iii), SPCsf! 6= UpSPCsf!. Or vice versa, one can prove the algebraic
theorem SPCsf! 6= UpSPCsf! by showing that LFOL is not compact, as
follows: LFOL is not compact because the set � = f:(R $ 9viR) : i < !g
of formulas, where R is any relation symbol, is not satis�able while all of
its �nite subsets are. Thus Theorem 54 says that SPCsf! 6= UpSPCsf!
because Alg(LFOL) = SPCsf!.

Theorem 51 admits a generalization to logics like LFOL above. Then we
obtain the following corollary of this generalized result and of Theorem 19
(saying that RCAn is not �nite schema axiomatizable).

COROLLARY 72. Assume that hAx;Rui de�nes a strongly sound and
weakly complete inference system ` for LFOL. Then hAx;Rui must in-
volve an in�nite set of formula-variables. I.e., LFOL is not �nite-schema
axiomatizable. The same applies for L! in place of LFOL. �

Improved versions of this negative result are in [Andr�eka, 1997] where it
is proved that hAx;Rui has to be extremely complex, too, besides involv-
ing in�nitely many formula-variables. Positive results kind of side-stepping
Corollary 72 above are in [Sain, 1995; Sain, 2000; Sain and Gyuris, 1994].

116Rank-free �rst-order logic was introduced in [Henkin and Tarski, 1961], and elabo-
rated in more detail in [Andr�eka, 1973], [Andr�eka, Gergely and N�emeti, 1977, sec. IV].
See also [Henkin, Monk and Tarski, 1985, section 4.3]. A nice proof system for this logic
is given in [Simon, 1991].
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These present expansions of LFOL with further logical connectives, such
that the new L+

FOL becomes �nite schema axiomatizable.
At this point the reader might have the impression that Corollary 72

seems to contradict G�odel's completeness theorem. However, G�odel's the-
orem holds for the ranked version LrankedFOL of �rst order logic but not for
LFOL. The essential di�erence between these two logics is that LrankedFOL is
not structural (substitutional). No structural version of �rst order logic is
known for which G�odel's completeness theorem would hold. More precisely,
the only such versions are the logics presented in [Sain and Gyuris, 1994]

etc. cited above. The presently discussed issue is highly relevant to the
propositional modal versions of �rst order logic, cf. e.g. [van Benthem, 1997;
van Benthem, 1996; van Benthem and ter Meulen, 1997; Venema, 1995a;
Marx and Venema, 1997].

Now we briey compare our three versions of FOL: non-ranked L! , the
ranked version LrankedFOL , and the rank-free one, LFOL. The same formula-
schemes are valid in them, and they have the same admissible rules by
Theorem 45, because the same quasi-equations are true in their algebraized
forms by SPUpCsf! = RCA! = Alg(L!). Also, this set of admissible
formula-schemes is recursively enumerable, and the validity problem in these
logics is not decidable, by Theorems 18, 45 and Corollary 47.

As a contrast, here we will give a logic which has a decidable validity
problem and at the same time the set of valid formula-schemes is not even
recursively enumerable.

10. Equality logic, monadic logic.
First we treat equality logic Le. This is the same as �rst-order logic with !

variables and with no atomic formulas, i.e. Le
def
= L;!. Therefore, this is not

a general logic. Notice that the set of formulas is non-empty because vi = vj
is a zero-ary logical connective. A model is just a set M and the meaning-
algebra Mng(M) of this model is the subalgebra of hP(!M); Ci; Dijii;j<!
generated by fDij : i; j < !g. These are called the minimal cylindric set

algebras, and their class is denoted by setMn!, while Mn!
def
= IsetMn!.

Le is an algebraizable semantic logic with Algm(Le) = setMn! and
Alg(Le) = SPMn!. (Le is substitutional because its set of atomic formulas
is empty.)

It is well known that the validity problem of Le is decidable, it has the
�nite model property, and it admits an elimination-of-quanti�ers theorem.
(See e.g. [Monk, 1964a].)

However, the set of valid formula-schemes of Le is not even recursively
enumerable. This is so by Corollary 46, because Eq(Mn!) is not recursively
enumerable.117

117This was proved by M. Rubin, and independently by I. N�emeti, see [N�emeti, 1987].
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More generally, consider now ranked �rst-order logics L�!. Ranked �rst-
order logic L�n with n variables, n < ! can be de�ned analogously for
� : R ! n. Let n � !. If every relation symbol is unary, i.e. if Rng� � f1g,
then L�n is called a monadic logic. Let LmRn denote monadic logic with

relation symbols R, i.e. LmRn
def
= L�n where � = R� f1g.

LmRn is a compositional logic with �lter-property. It is not substitutional.

It is known that the validity problem of monadic logics is also decid-
able, they have the �nite model property, and they admit elimination of
quanti�ers. (See also [Monk, 1964a].)

Let n > 2. If n is in�nite, then the valid schemes of LmRn are not
recursively enumerable. If � is not monadic, then the valid schemes of
L�n are recursively enumerable (and the validities become undecidable). (If
n � 2, then the set of valid schemes of L�n is decidable.) These are proved in
[N�emeti, 1987] by showing that the equational theories of the corresponding
classes of algebras are not recursively enumerable (and using Theorem 45).
The logical implications and the reasons for this behaviour are also explained
carefully in [N�emeti, 1987].

11. In�nitary version Ln1! of the �nite variable fragments Ln.
Let � be an in�nite cardinal. Ln�! is obtained from Ln by adding �-ary
conjunction to the logical connectives. More formally, let Fn be the set of
formulas of LRn = hFn; : : :i. Let Fn� be the smallest set satisfying (i){(iii)
below.

(i) Fn� � Fn,

(ii) Fn� is closed under the connectives of Ln,

(iii) jH j < � ) (^H) 2 Fn� , for any H � Fn� .

The models of LnR�! are the same as those of LRn , and mng�, F� are the
obvious generalizations of the de�nition given for LRn . Then

LnR�!
def
= hFn� ;Mn;mng�; F�i and Ln�!

def
= hLnR�! : R is a seti :

Ln1! is obtained from Ln�! by removing all conditions of the form `: : : < �'.
That is, Fn1! :=

S
fFn�! : � is a cardinalg, etc. Ln1! and Ln�! (with � > !)

are not logics in the sense of De�nition 30 because they involve in�nitely
long strings of symbols. All the same, Ln1! is an interesting mathematical
structure whose study is motivated by studying logics. Most properties of
logics make sense for the `pseudo-logic' Ln1!, too. Studying mathematical
structures like Ln1! , Ln�! seems to be useful for obtaining a better under-
standing of logics (in the sense of De�nition 30).
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Most of the results obtained for Ln via the methods of algebraic logic
can be pushed through for Ln1! by the same kinds of algebraic methods.
In particular, by stretching the algebraic methods which lead to Theorem
63, one can obtain the following. The notions of formula schema, inference
system, axiom schema, rule schema can be generalized to Ln�! the natural
way. Herein we do not go into the details of this.

COROLLARY 73. Assume ` is a strongly sound and weakly complete prov-
ability relation for Ln1! or for Ln�! (� � !). Then ` is not de�nable by a
Hilbert-style inference system. Moreover, any schema hAx;Rui axiomatiz-
ing ` must involve in�nitely many formula variables (cf. De�nition 33 for
hAx;Rui axiomatizing `.)

The next table summarizes the algebraic counterparts of some of the
distinguished logics.

Table 1.

substitutional,
Logic L Alg(L) Algm(L) compact

Ls
sentential logic BA f2g + +

S5
modal logic RCA1 Cs1 + +

LREL
arrow logic BRA setBRA + +

L0n
n-var. FOL Rdca Rdca

with substituted RPEAn Psen � +
atomic fmlas

Ln
structural RCAn Csn + +
n-var. FOL

L!
�nitary FOL of RCA! Cs! + +
!-ary rels

LrankedFOL

ranked FOL Lf! Csf! � +
LFOL

rank-free FOL SPCsf! Csf! + �
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ALASDAIR URQUHART

BASIC MANY-VALUED LOGIC

Many-valued logic is a vast �eld with hundreds of published papers and
numerous monographs devoted to it. I have attempted to keep this survey
to manageable length by focusing on many-valued logic as an independent
discipline. This means that such topics as the use of many-valued logics
for proving the independence of axioms in propositional logic have been
omitted.

I am indebted to Gordon Beavers, Peter O'Hearn, Wolfgang Rautenberg
and Andrzej Wro�nski for comments on the earlier version of this survey, and
to Daniele Mundici for his constructive criticism of the revised version.

1 EARLY HISTORY AND MOTIVATION

1.1 Introduction

Although anticipations of many-valued logic are to be found in Peirce and
Vasiliev, the modern era in the subject must be dated from the early papers
of  Lukasiewicz and Post. Independently, these authors gave the �rst pub-
lished systematic descriptions of many-valued logical systems, the former
motivated by philosophical, the latter by mathematical considerations.

1.2  Lukasiewicz and Future Contingency

In his philosophical papers, now conveniently available in English trans-
lation [ Lukasiewicz, 1970],  Lukasiewicz engages in an ongoing battle with
determinism and logical coercion. His farewell lecture of 1918 contains the
following striking passage:

I have declared a spiritual war upon all coercion that restricts man's creative activity.
There are two kinds of coercion. One of them is physical . . . the other . . . is logical. We
must accept self-evident principles and the theorems resulting therefrom . . . . That coer-
cion originated with the rise of Aristotelian logic and Euclidean geometry [ Lukasiewicz,
1970, p. 84].

These and similar passages in `On Determinism' [1970, p. 110] show that
many-valued logic was not just a mathematical toy for  Lukasiewicz, but
rather a weapon of the most fundamental importance in his �ght against
the mental strait-jacket of Aristotelian logic, a weapon that he classed with
non-Euclidean geometry as a tool for liberating people from the tyranny of
rigid intellectual systems.

In `On Determinism' he argued that if statements about future events are
already true or false, then the future is as much determined as the past and
di�ers from the past only in so far as it has not yet come to pass. His way
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out of this deterministic impasse is to reject the law of excluded middle,
that is, the assumption that every proposition is true or false. A third
truth-value is added, to be read as `possible'. The resulting system of logic
was developed by  Lukasiewicz and his collaborators between 1920 and 1930.
Their technical results appeared in the famous compendium [ Lukasiewicz
and Tarski, 1930], the philosophical background in [ Lukasiewicz, 1930] to
which we now turn.

1.3  Lukasiewicz's 3-valued Matrices and their Motivation

The original 3{valued system of propositional logic is based on two connec-
tives,! and : that are intended to generalize the implication and negation
connectives of classical logic. Their truth tables are as follows:

! 0 1
2 1 :

0 1 1 1 1

1
2

1
2 1 1 1

2

1 0 1
2 1 0

Here 0 stands for `false', 1 for `true' and 1
2 for `possible'. A formula is said

to be a three-valued tautology if it always takes the value 1, no matter what
values are assigned to its variables. The value 1 is said to be the `designated
value' because of its special role in de�ning tautologies.

How did  Lukasiewicz hit on his tables? Unfortunately, he is not very
explicit on this crucial point. All that he tells us is that \the desired equa-
tions I obtained on the basis of detailed considerations, which were more
or less plausible to me" ( Lukasiewicz [1930], also [1970, p. 166]). However
it is possible to make a guess. Let's think of  Lukasiewicz's truth-values as
sets of classical truth-values, that is, 0 = fFg, 1 = fTg, 1

2 = fT, Fg. The
intention here is that each set of classical values represents the set of values
that a proposition may take in the future. Thus the proposition `Ronald
Reagan was elected president of the USA' has the truth value f1g = T , since
it is determined now and henceforth to be true, while the proposition `A
thermonuclear war will have taken place by 2500' has the value fT, Fg = 1

2 ,
since according to our current knowledge it is determined as neither true
nor false, and may take either value in the future.

Now, given a `truth value' (i.e. a set of classical truth values) for each
of ' and  , how do we go about computing the truth value of ' !  ? It
might seem that the following idea should work: take a classical truth value
from the set assigned to ', a classical truth value from the set assigned to
 , compute the value of the classical conditional (' !  )|the set of all
values you get in this way is the truth value. So, for example, if  has the
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value fTg, ' !  must have the value fTg as well; similarly for the case
where ' has the value fFg. So far, so good:

! fFg fT, Fg fTg :

fFg fTg fTg fTg fTg

fT, Fg fT, Fg fTg fT, Fg

fTg fFg fT, Fg fTg fFg

But how do we �ll in the remaining central entry? According to our way
of looking at the matter, it should be fT, Fg; but  Lukasiewicz's table has
fTg, or rather 1. Why? The reason is not far to seek;  Lukasiewicz wants
'! ' to be a three-valued tautology.

In fact,  Lukasiewicz has taken over from classical logic two basic assump-
tions that he does not critically examine, in spite of the polemical character
of his attack on Aristotelian logic. The assumptions are:

1. Logic should be formulated as in Principia Mathematica using axioms,
substitution and modus ponens.

2. The values of complex propositions should be a function of the values
of their component parts (generalized extensionality).

Given these assumptions, we can see how the central entry in the truth-
table is forced. If the central entry were 1

2 , then there would be no three-
valued tautologies. But should the central entry be 1

2 (or fT, Fgin the mod-
i�ed notation)? Let's re-examine the whole question.

If ' and  express the same proposition, then ' !  certainly should
have the value 1, whether or not we are unsure about the value of ' (and
hence  ). But if this condition doesn't hold, then it doesn't follow. For
example, suppose ' is the statement `A global nuclear war has taken place
by the year 2500', and  is the statement `The human race is extinct by the
year 2600'. Obviously, we are presently unsure about the truth value of '
and  . But what about '!  ? If we read it as some kind of counterfactual,
then we might think it true or false, or be undecided about it. Or we could
reason according to our earlier scheme: ' could be true or false, so could
 , the propositions are logically independent, so ' !  could have either
value.

The conclusion here seems inescapable. The logic of the `possible' in
 Lukasiewicz's sense is just not truth-functional (an observation �rst made
by Gonseth [1941]). This is no more surprising than the fact that the prob-
ability calculus is not truth-functional, and it holds for the same reasons.
However, it throws in doubt  Lukasiewicz's claim to provide a serious logical
and philosophical alternative to Aristotelian logic.
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1.4 Other  Lukasiewicz Logics

 Lukasiewicz generalized his 3-valued logic to n values and also to an in�nite-
valued system in 1922. The matrix for the in�nite-valued system is de�ned
on the rational numbers in the closed unit interval from 0 to 1. For x; y in
the interval, we have: x ! y = min(1; 1� x+ y);:x = 1� x. If instead of
the whole rational interval, a �nite subset closed under the above functions
is chosen, the result is the n-valued  Lukasiewicz connectives, for some n.

 Lukasiewicz himself [1930] expressed a philosophical preference for the
in�nite-valued logic. It should be pointed out, though, that the transition
to in�nitely many values makes no di�erence to the critique given above.

1.5 Post's Many-valued Systems

Emil Post [1921] independently gave a formal development of many-valued
logic. His m-valued systems, de�ned on the set f0; : : : ;m � 1g (we are
altering Post's notation slightly) have as primitive operators a generalized
disjunction and a generalized negation:

x _ y = min(x; y)
:x = x+ 1 (mod m):

Post's remarkable paper includes not only a proof of functional complete-
ness for his system of connectives, but also a general method of constructing
a complete axiomatization of the system Tnm, where the values 0; : : : ; n are
designated, for 0 � n < m� 1.

1.6 Bochvar and the Paradoxes

The work of the Russian logician Bochvar [1939] represents a new philo-
sophical motivation for many-valued logic; its use as a means of avoiding
the logical paradoxes. His system introduces the intermediate value I in ad-
dition to the classical values T and F . His idea is to avoid logical paradoxes
such as Russell's and Grelling's by declaring the crucial sentences involving
them to be meaningless (having the value I). Bochvar's basic tables for his
connectives are as follows. When only the values T; F are involved, they
are exactly like their classical counterparts; any formula having a mean-
ingless component is meaningless. For example, Bochvar's conjunction and
negation have the tables:

^ T I F :

T T I F F

I I I I I

F F I F T
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If we take T as the only designated value, then it is clear that there are no
tautologies in the system. This feature of the system can be repaired by
adding an `assertion operator' Ap, that is intended to represent the `external
assertion' of a proposition p, so that Ap can be considered as the assertion `p
is true' in a two-valued metalanguage. Thus Ap is T if p is true, otherwise
Ap is false. Using this operator, we can de�ne the `external connectives'
that always take the values T or F . For example, the external negation �p
is de�ned as :Ap, external conjunction p& q as Ap ^ Aq:

& T I F �

T T F F F

I F F F T

F F F F T

If we con�ne our logic to internal negation, it would seem that we can avoid
Russell's paradox. Denoting the truth-value of a formula ' by [[']], we
assume the basic comprehension principle: [[a 2 fx j : : : x : : :g]] = [[: : : a : : :]].
Then de�ning R = fx j :x 2 xg, the equation that results from substitution
in the above, namely [[R 2 R]] = :[[R 2 R]] is consistent, since [[R 2 R]] can
be I . However, as Church pointed out in his review [1939], if we de�ne
R0 = fx j �x 2 xg, paradox again results. The Russell paradox rules out
the presence of the assertion operator or external negation.

1.7 Kleene's System

In 1938, Kleene introduced yet another 3-valued logic [1938], see also [1952].
His connectives are de�ned as follows:

p ^ q p _ q p � q p � q :p
q T I F T I F T I F T I F

T T I F T T T T I F T I F F

p I I I F T I I T I I I I I I

F F F F T I F T T T F I T T

Kleene's motivation arises from the theory of recursive functions. In that
theory, if we think of a machine designed to respond `true' or `false' to
certain questions, then for certain inputs the machine may not provide an
answer, perhaps by going into an in�nite loop, or by exhausting its com-
puting capacity. In that case, we can think of the machine's response as
unde�ned or `I '. In this light, the truth-tables can be seen as rules for
computing the truth-values of complex predicates. For example, if we are
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computing the value of a disjunction, then we give the disjunction the value
T as soon as the machine gives the answer T for either disjunct. Notice that
for Kleene (unlike Bochvar) a compound sentence can have a truth-value
even if some of its components lack a truth-value. Kleene also considers a
set of tables identical with Bochvar's, which he calls the `weak connectives';
the tables above are for Kleene's `strong connectives'.

2 GENERAL THEORY OF MANY-VALUED LOGICS

In the preceding section we have surveyed a somewhat heterogeneous collec-
tion of logical systems, that have in common the idea of enlarging the set of
classical truth-values, with varied interpretations for the added non-classical
truth-values, such as `meaningless', `unde�ned' or `presently undetermined'.
In the present section, we abandon philosophical and motivational discus-
sion and attempt a systematization.

2.1 The Matrix Method

We assume in what follows languages for sentential logic with an in�nite
supply of sentential variables p; q; r; p1; q1; r1; : : : : If L;L

0 are such languages,
we say that L is a sublanguage of L0 if it is based on the same connectives
as L0, and is a subset of L0. To simplify notation let us assume that we have
one two-place connective (' �  ) and a one-place connective �'. If � is a
set of formulas, we write Var(�) for the set of variables in �, and Var(')
for the set of variables in a formula '.

A substitution for a language L is a function from the set of variables
into L. If ' is a formula of L and g a substitution, then we write 'g for the
result of applying the substitution g to the variables in '. If � is a set of
formulas of L and g a substitution, �g is the set of all formulas 'g for ' in
�.

A matrix for the language L consists of (1) an abstract algebra A of
the appropriate type, i.e. a non-empty set A with a two-place operation
x + y and a one-place operation fx de�ned on A, (2) a non-empty subset
D � A|the elements of D are the designated elements of A. For example,
in  Lukasiewicz's 3-valued logic, A = f0; 1

2 ; 1g, D = f1g, x+ y = x! y, and
fx = :x.

If g is an assignment of elements of the matrix to propositional variables
in L, then g can be extended to all of L, that is, we can de�ne: g(' �  ) =
g(') + g( ), and g(�') = f(g(')).

The basic concepts of universal algebra extend in a straightforward way
to matrices. If the elements of A1 are a subset of A2, and the operations
and designated values of A1 are just the restriction of those of A2 to the
domain of A1, then A1 is said to be a submatrix of A2. For example, it is
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easy to see that the classical matrices are submatrices of all the 3-valued
logics introduced above.

2.2 Consequence Relations

To de�ne the logical system determined by a matrix, it is possible to gen-
eralize the classical concept of tautology, following  Lukasiewicz's lead (see
Section 1.3); but the result is insuÆcient in the sense that some systems con-
tain no tautologies at all. For example, in Bochvar's system, if we take only
T as a designated value, then there are no tautologies. Thus the concept
of tautology is inadequate in that by employing it we cannot distinguish
between systems that have quite distinct matrix de�nitions|for example,
the Bochvar system with ^ alone, and the Bochvar system with _ alone.
To obtain a concept adequate to the general case, we need the notion of
consequence relation.

Let �[f g be a �nite set of formulas of L. We say that  is a consequence
of � with respect to the matrix M;� �M  , if the following holds: for every
assignment g of elements of M to variables in L, if g(') 2 D for all ' 2 �
then g( ) 2 D. A formula ' is a tautology with respect to M if ? �M ' |
we abbreviate this as �M '. We also abbreviate �[� �M  as �;� �M  
and � [ f'g �M  as �; ' �M  . If F is a family of matrices, then we say
that  is a consequence of � with respect to F , � �F  , if � �M  for all
matrices M in F .

If F is a family of matrices for a language L, then the consequence relation
�F satis�es the conditions:

� �F  if  2 �
If �; ' �F  and � �F '; then �;� �F  (Cut).

A sequent we de�ne as a pair h�; 'i consisting of a set � of formulas of
L, and a formula ' of L, written as � ` '. If � is a consequence relation,
we say that a sequent � ` ' is in � if � � '.

If L is a language, we de�ne a consequence relation in L as any relation
between �nite sets of formulas and formulas in L that obeys the above rules.
If � is a �nite set of formulas of L, and � a consequence relation in L, then
we say that � is consistent with respect to �, or simply consistent (where �
is understood) if there is a formula ' of L so that � 6� '.

A matrix M validates a sequent � ` ' if � �M '; M validates a conse-
quence relation � if it validates all the sequents in �. If an abstract conse-
quence relation ` coincides with a consequence relation �M determined by
a matrix M , then we say that M is a characteristic matrix for `. Similarly,
if an abstract consequence relation ` coincides with a consequence relation
�F determined by a set of matrices F , then we say that F is a characteristic
set of matrices for `.
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It is natural to ask what the general properties are that hold for conse-
quence relations with characteristic sets of matrices. It is obvious that a
consequence relation �F must satisfy the rule of uniform substitution:

If � �F  and g is a substitution, then �g �F  
g :

Let us say that a consequence relation is structural if it satis�es this rule.
This added condition is suÆcient to characterize consequence relations with
characteristic sets of matrices.

THEOREM 1. If � is a structural consequence relation then � has a char-
acteristic set of matrices.

Proof. Let � be a structural consequence relation, and suppose that � 6� '.
We wish to show that there is a matrix M validating �, so that � 6�M '.

De�ne the matrix M as follows: the elements of the matrix are the for-
mulas of L, where '+ = (' � ); f(') = �'. The designated elements D
of M are those formulas ' such that � � '. If we assign each variable in L
to itself, then under this assignment all the formulas in � take a designated
value, and ' is not designated, so � � ' is not validated by M .

It remains to show that M validates �. Assume that � �  ,and that
g is an assignment of variables so that g(�) � D. Thinking of g as a
substitution, we have g(�) = �g and g( ) =  g . By the substitution rule,
we have �g �  g . For all � 2 �g , � � �, so by the Cut rule, � �  g , that is,
g( ) =  g 2 D, completing the proof. �

Consequence relations that have a single characteristic matrix are clearly
structural, but in addition satisfy a further condition:

If �;� � '; V ar(� [ f'g) \ V ar(�) = ?; and � is consistent then � � ':

We de�ne a consequence relation to be uniform if it satis�es this added
condition. This condition is suÆcient to characterize consequence relations
having a characteristic matrix.

As a preliminary to proving this result, we give a lemma on consequence
relations. If � is a consequence relation in a language L, and L is a sublan-
guage of L0, we de�ne the natural extension of � to L0 to be the consequence
relation �0 in L0 de�ned by: �0 �0 '0 if and only if there is a formula ' in
L, a set of formulas � of L and a substitution � so that '� = '0, �� � �0,
and � � '.

LEMMA 2. If � is a uniform structural consequence relation in L, L is a
sublanguage of L0, and �0 is the natural extension of � to L0, then �0 is also
a uniform structural consequence relation.

Proof. Let � [ f'g be a �nite set of formulas in L0, and � a bijective
substitution whose domain is Var(� [ f'g) nVar(L), and whose range is a
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set of variables in L disjoint from Var(� [ f'g). Then � �0 ' if and only if
�� � '� . Using this fact, it is not hard to show that each of the properties
in the lemma is preserved in passing from � to �0. �

THEOREM 3. If � is a uniform structural consequence relation then � has
a characteristic matrix.

Proof. Let L be the language of the consequence relation �. We enlarge L
to a new language L0 by adding suÆciently many propositional variables so
that there is a family of substitutions f�(X) : X a consistent subset of Lg,
where each �(X) is a bijective substitution de�ned on Var(L) whose range
is a set of variables in L0, and for distinct X;Y the ranges of �(X) and �(Y )
are distinct. By Lemma 2, the natural extension �0 of � to L0 is a uniform
structural consequence relation.

De�ne a matrix M by taking as elements of the matrix the formulas of
L0; an element ' of M belongs to the set D of designated values if there are
sets of formulas X1; : : : ; Xn in L consistent with respect to � so that

X1; : : : ; Xn �
0 ';

where X = X�(X).
We need to verify that the de�ned matrix M validates �. Assume that

� � ', and let g be an assignment in M so that g(�) � D. By the de�nition
of D, for any  2 �, there are sets of formulas X1; : : : ; Xm � L consistent
with respect to � so that

X1; : : : ; Xm �
0  g:

By the de�nition of �0, �g �0 'g , so by the Cut rule,

X1; : : : ; Xn �
0 'g ;

that is to say, g(') 2 D.
For the converse, let us suppose that � �M ', where �[f'g � L. If � is

not consistent with respect to �, then � � '. Thus assuming � consistent
with respect to �, let � = �(�). Then �� = � � D, so �(') 2 D. Hence
there are sets of formulas Y1; : : : ; Ym in L consistent with respect to � so
that

�; Y1; : : : ; Ym �
0 '� :

Since Y1; : : : ; Ym are consistent with respect to �, Y1; : : : ; Ym are consis-
tent with respect to �0. By construction, the ranges of the substitutions
�(�); �(Y1); : : : ; �(Ym) are mutually disjoint. It follows by repeated use of
the uniformity of �0 that � �0 '� . Since the substitution � is bijective,
there is a substitution �0 so that ���

0

= � and '��
0

= '. Because �0 is
structural, it follows that � �0 ', hence � � '. �
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This result, a generalization of the classic result of Lindenbaum, is due
to  Los and Suszko [1958]. The consequence relations considered above are
�nitary, that is to say, the domain of the relations consists solely of �nite
sets. It is possible to consider a more general concept of consequence relation
in which this restriction is dropped. In this case, a version of Theorem 3
also holds. However, the condition of uniformity needs to be replaced by the
following stronger condition: If �;� � ' and � is a union of consistent sets
that have no variables in common with one another or with � or ', then
� � '. For the details of this result see [W�ojcicki, 1970] and [Shoesmith and
Smiley, 1971]. The reader is also referred to the book of W�ojcicki [1988] for
this and many other results in the general theory of consequence relations.

We conclude this subsection by noting that not all logics can be con-
sidered as many-valued logics in the sense that the consequence relations
corresponding to them fail to satisfy the uniformity condition. For example,
in the minimal logic of Johansson (see Chapter 4.3), the sequent P;:P ` :Q
is valid, though the set fP;:Pg is consistent, so the uniformity condition
fails. The same thing is true for the modal logics S1,S2 and S3 of C.I. Lewis
(see [Shoesmith and Smiley, 1971, Theorem 6]).

2.3 The Bochvar Consequence Relation

Now that we have formulated the general concept of consequence relation,
it is possible to address the problem of �nding complete sets of rules for the
consequence relations of the matrices discussed above.

For Bochvar's matrices, it is easiest to formulate the consequence relation
as a special form of the classical consequence relation. Let us write �B for
the consequence relation determined by Bochvar's matrices, with T the sole
designated value.

THEOREM 4. � �B ' holds if and only if (1) � � ' is classically valid;
(2) If � is classically consistent, then every variable in ' occurs in �.

Proof. If � �B ', then the �rst condition holds because the classical
two-valued matrices are submatrices of Bochvar's matrices. If the second
condition fails, then we can assign the values T and F to the variables in
�, but the value I to an extra variable in ' so as to satisfy � but give '
the value I .

For the converse, if the two conditions hold, then any valuation in the
Bochvar matrices giving all formulas in � the value T must assign values T
or F to all variables in �, showing that ' must also take the value T . �

2.4 The Kleene Consequence Relation

In the case of Kleene's truth tables, we proceed by adding a number of
sequents as axioms to our basic structural rules for the abstract consequence
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relation in Section 2.2, together with an added rule of inference. We take
the operators ^;_;: as primitive, since we have the de�nitions:

p � q = :p _ q; p � q = (p ^ q) _ (:p ^ :q):

Let us de�ne `K as the smallest structural consequence relation that con-
tains the sequents:

p `K ::p p;:p `K q ::p `K p
p ^ q `K p p `K p _ q
p ^ q `K q q `K p _ q
p; q `K p ^ q :p;:q `K :(p _ q)
:p `K :(p ^ q) :(p ^ q) `K :p _ :q
:q `K :(p ^ q) :(p _ q) `K :p ^ :q;

and is closed under the rule of inference:

If �; ' `K � and �;  `K � then �; ' _  `K � (Dilemma):

Let �K stand for the consequence relation determined by the Kleene ma-
trices. Before proving the completeness theorem for the Kleene consequence
relation, we need a lemma that will also be useful in later sections. We de-
�ne a consequence relation � to be �-prime if � � ' _  implies � � ' or
� �  for any ';  .

LEMMA 5. If � is a consequence relation satisfying the Dilemma rule, and
� 6� ', then there is a �-prime consequence relation �0 extending � so that
� 6�0 '.

Proof. Consider the family F of all consequence relations �00 extending
� that satisfy the Dilemma rule, but � 6�00 '. The union of any chain of
consequence relations in F is also in F , so by Zorn's lemma F contains a
maximal element �0.

It remains to show that �0 is �-prime. Suppose that � �0  1 _  2, but
neither � �0  1 nor � �0  2. De�ne relations �1 and �2 by the de�nitions:
� �1 � if and only if �;  1 �

0 � and � �2 � if and only if �;  2 �
0 �.

Both �1 and �2 are consequence relations that satisfy the Dilemma rule
and properly extend �0. It follows by the maximality of �0 that � �1 ' and
� �2 ', that is to say, �;  1 �

0 ' and �;  2 �
0 '. By the Dilemma rule,

�;  1_ 2 �
0 '. However, since � �0  1_ 2, it follows by the Cut rule that

� �0 ', a contradiction. �

THEOREM 6. � `K ' if and only if � �K '.

Proof. Suppose that � 6`K '. By Lemma 5 there is a �-prime consequence
relation ` extending `K in which � 6` '. Now de�ne an assignment of
values g as follows:

g(p) = T i� � ` p; g(p) = F if � ` :p;
g(p) = I otherwise:
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We note that this assignment is consistent, because if � ` p and � ` :p
then � ` ' by p;:p ` q and the cut rule.

We can prove by using the basic sequents and the Cut and Contraposition
rules that � `K ' ^  holds if and only if � `K ' and � `K  , that
� `K :('^ ) holds if and only if � `K :'_: , and that � `K :('_ )
holds if and only if � `K :' and � `K : . Using these equivalences, we
argue inductively that for any  ;� `  if and only if g( ) = T , and � ` : 
if and only if g( ) = F , completing the proof. �

Those who are familiar with relevance logic will notice a similarity be-
tween the logic just de�ned and �rst degree entailments [4.7]. The Kleene
system does not contain the paradox of material implication p ` q _ :q;
however it contains p;:p ` q, so it is not free of the paradoxes of material
implication. The relationship between the two systems can be briey indi-
cated by noting that while Kleene allows for the possibility `neither true nor
false', Anderson and Belnap allow for the possibility `both true and false'.
We are imagining a computational system (for example) that is attempting
to act on the basis of inconsistent information. The reader is referred to
Belnap's interesting paper [Belnap, 1977] for more details of this interpre-
tation.

An application of Kleene's truth tables to a problem of a somewhat di�er-
ent sort is to be found in the chapter by Blamey on partial logic in Volume
7 of this Handbook and in Visser's chapter on the liar paradox in a later
volume.

2.5  Lukasiewicz Consequence (Finite Case)

In this section we give an axiomatization of all the �nite-valued  Lukasiewicz
logics. Before giving the axiomatization, we prove a lemma on de�nability
in these logics, that will also prove important in later sections.

First, we make a notational change in the systems, to facilitate the proof.
In the m + 1-valued logic of  Lukasiewicz,  Lm+1, we take the truth val-
ues to be 0; 1; : : : ;m, with implication as modi�ed subtraction; for x; y 2
f0; : : : ;mg; x! y is y : x, where y : x is y�x if y � x, 0 otherwise. Negation
:x is m : x. So, for example, the basic truth tables for L5 are:

! 0 1 2 3 4 :

0 0 1 2 3 4 4
1 0 0 1 2 3 3
2 0 0 0 1 2 2
3 0 0 0 0 1 1
4 0 0 0 0 0 0

In contrast to  Lukasiewicz, we are taking the smallest value to be the
`truest', the largest to be the `falsest'. We note that if we de�ne (' _  ) as
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('!  )!  then x_ y = min(x; y) and de�ning '^ as :(:' _: ), we
have x ^ y = max(x; y). For k 2 f0; : : : ;mg, we de�ne the function Jk by :
Jk(x) = 0 if x = k; Jk(x) = m otherwise. A function de�ned on f0; : : : ;mg
is said to be  Lm+1-de�nable if it can be expressed in terms of ! and :.

LEMMA 7. For any k 2 f0; : : : ;mg; Jk is  Lm+1-de�nable.

Proof. We �rst show that for any k where 0 � k � m, the function

Ik(x) =

�
m if x � k
0 if x > k

is de�nable. We de�ne inductively:

(a) H1(x) = :x, (b) Hn+1(x) = x! Hn(x).

It is easy to see that for any n;Hn(x) = m : nx. De�ne I0(x) = Hm(x).
The function Ik ; 0 � k � m is de�ned by induction on k. Suppose Iq de�ned
for q � k. Let r be the largest integer such that Hr(k + 1) > 0. De�ne
p = Hr(k + 1) � 1. By construction, p � k. It follows that we can de�ne:
Ik+1(x) = :Ip(Hr(x)). Then we can de�ne: J0(x) = :I0(x); Jk(x) =
:Ik(x) ^ Ik�1(x). �

With the J functions de�ned, it is a simple matter to axiomatize the con-
sequence relation of Lm+1. Let `m+1 be the smallest structural consequence
relation containing the following sequents for all x; y; z 2 f0; : : : ;mg:

(A) ` J0(p) _ : : : _ Jm(p)

(B) Jx(p); Jy(p) ` q; for x 6= y

(C) Jx(p); Jy(q) ` Jx!y(p! q)

(D) Jx(p) ` J:x(:p)

(E) J0(p) ` p

(F) p ` J0(p),

and closed under the Dilemma rule.

THEOREM 8. � `m+1 ' i� � �m+1 '.

Proof. If � 6`m+1 ' then by Lemma 5 there is a �-prime consequence
relation ` extending `m+1 such that � 6` '. Now de�ne an assignment of
values in Lm+1 as follows: g(p) = k i� � ` Jk(p). By the sequents (A) and
(B), the function g is well de�ned. Using (C) and (D), we can show that
for any ';� ` Jk(') i� g(') = k. By (F), every formula in � takes the
designated value 0; by (E), ' cannot take the value 0. Thus � 6�m+1 '. �



262 ALASDAIR URQUHART

The above axiomatization of the  Lm+1 consequence relation is convenient
for the purposes of the completeness proof, though hardly elegant. A more
perspicuous axiomatization of  L3 was provided by Wajsberg [1931], who
shows that the tautologies of this logic can be axiomatized by the axioms:

1. p! (q ! p)

2. (p! q)! ((q ! r)! (p! r))

3. (:p! :q)! (q ! p)

4. ((p! :p)! p)! p,

using the rules of substitution and modus ponens.
The techniques we have just used for  Lm+1 apply to any �nite-valued logic

in which analogues of the Jk functions are de�nable, for example Post's
many-valued systems. For more general results in  Lukasiewicz logics, in-
cluding the case where a di�erent set of designated values is adopted in  Lm,
the reader is referred to the monograph of Rosser and Turquette [1952] and
to the papers of Rose (see the bibliographies of [Rescher, 1969] and [Wolf,
1977]) who has investigated in great depth the many possibilities in this
area. Grigolia [1973; 1977] provided axiomatic versions of the logics  Ln, for
n > 3.

The relations between the �nite-valued systems  Lm is completely settled
by the following elegant result of Lindenbaum.

THEOREM 9. �m � �n i� n� 1 divides m� 1.

Proof. We �rst have to settle the case where m < n. De�ne ' $  as
(' !  ) ^ ( ! '). It is easy to see that for any assignment of values
g in  Lm, g(' $  ) = jg(') � g( )j, where jxj is the absolute value of x.
For k > 1, let the formula Æk be the disjunction of all formulas of the form
pi $ pj ; 0 � i < j � k. For example, Æ2 is:

(p0 $ p1) _ (p1 $ p2) _ (p0 $ p2):

Now Æk is a tautology of  Lm if and only if m � k; this follows from the
pigeon-hole principle. If there are k truth values or fewer, at least two
distinct variables in Æk must take the same value, so Æk takes the value 0; if
there are more than k truth values, simply assign a di�erent value to each
variable. It follows that if m < n, Æm is a tautology of  Lm, but not of  Ln,
showing that �m is not contained in �n.

So, assuming that we have m � n, we wish to show that �m+1 � �n+1

if and only if n divides m. If m = qn then the matrix  Ln+1 is isomorphic
to a submatrix of  Lm+1 via the mapping f : x ! qx, so �m+1 � �n+1.
To prove the converse, let us assume that m is not divisible by n. Con-
sider the formula Hm(Hn�1(p) $ p); see the proof of Lemma 7 for the
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de�nition of Hm. For any assignment g in  Lm+1; g(Hn�1(p) $ p) > 0,
for if g(Hn�1(p) $ p) = 0 for g(p) = k;Hn�1(k) = g(p) = k, so that
m : k(n � 1) = k, implying that m = kn, contrary to assumption. Thus
Hm(Hn�1(p) $ p) is a tautology of  Lm+1. But if we give p the value 1 in
 Ln+1, then Hm(Hn�1(p)$ p) takes the value n, showing that �m+1 is not
contained in �n+1. �

2.6 In�nite-valued Consequence

The intersection of all the �nite consequence relations �m forms a conse-
quence relation �!. In fact, this consequence relation has as a characteris-
tic matrix the in�nite-valued matrix of  Lukasiewicz de�ned on the rational
numbers in the unit interval, with 1 as designated value (we are returning
in this section to the original notation of x1.4). Let R denote this matrix.

THEOREM 10. R is a characteristic matrix for �!.

Proof. Let 1; : : : ; n be rational numbers in the unit interval, where i =
ai=bi, and let k be the least common multiple of the bi's. Application of
the operations ! and : in R produces only rational numbers expressible
in the form c=k, so that the smallest submatrix of R containing 1; : : : ; n
is �nite. It follows that � �R � holds if and only if � �M � for every �nite
submatrix M of R. But these �nite submatrices are (up to isomorphism)
exactly the matrices of  Lm;m � 2. �

There is no �nite characteristic matrix for �!, as can be seen by con-
sideration of the formulas Æk used in the proof of Theorem 9. If N is a
�nite characteristic matrix with k truth values, then Æk must be valid in N ,
because any formula that has (p$ p) as a disjunct is a theorem of  L!. But
none of the formulas Æk is valid in �!.

Axiomatization of the in�nite-valued logic  L! was �rst accomplished by
Wajsberg in 1935, but his proof did not appear in print. The diÆculty of
the proof may be gauged by the fact that the �rst published proof by Rose
and Rosser [1958] runs to over �fty pages containing many intricate combi-
natorial lemmas; Rose and Rosser show that all the tautologies of  L! can
be derived from the axiom set conjectured to be complete by  Lukasiewicz.

1. p! (q ! p)

2. (p! q)! ((q ! r)! (p! r))

3. ((p! q)! q)! ((q ! p)! p)

4. (:p! :q)! (q ! p)

5. ((p! q)! (q ! p))! (q ! p)
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together with the rules of substitution and modus ponens. The �fth axiom
was shown to be derivable from the remaining four by Meredith [1958], and
independently by Chang [1958b].

We omit the completeness proof for  L!, as no really simple proof seems
available. The reader is referred to the very useful survey of Rosser [1960]

for an overview of this subject. Other published proofs of the completeness
result use such diverse methods as quanti�er elimination in the �rst order
theory of divisible totally-ordered Abelian groups [Chang, 1958a; Chang,
1959], the representation of free Abelian lattice-ordered groups [Cignoli,
1993], and algebraic geometry [Panti, 1995]. An elementary self-contained
proof due to Cignoli and Mundici appears in [1997].

2.7 Finite Axiomatizability

In the case of the  Lukasiewicz logics, the consequence relation generated by
a given matrix could be axiomatized by adding a �nite number of sequents to
the basic consequence rules together with the rule of uniform substitution
(the added Dilemma rule can be replaced by a �nite set of sequents). If
a consequence relation can be formulated in this way, we say that it is
�nitely axiomatizable. It is natural to ask whether for every �nite matrix
M , the consequence relation �M is �nitely axiomatizable. This question
was answered in the negative by Wro�nski [1976], who gave an example of
a 6-valued matrix whose consequence relation is not �nitely axiomatizable.
Urquhart [1977] gave another example of a �ve-valued matrix, and �nally
Wro�nski [1979] improved Urquhart's example to show that the matrix:

� 0 1 2

0 2 0 2
1 2 2 2
2 2 2 2

with 2 the only designated value has a consequence relation that is not
�nitely axiomatizable. This result is the best possible, for every two-valued
consequence relation can be �nitely axiomatized [Rautenberg, 1981].

2.8 De�nable Functions

Beside the problem of axiomatization just discussed, the most thoroughly
investigated in many-valued logic is the question of which functions are
de�nable in a given many-valued matrix.

It is a familiar fact that the two-valued classical matrix is functionally
complete; every truth function is de�nable using only ^ and :, or in fact
by using only one binary connective, which can be (' j  ) = :(' ^  ), the
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She�er stroke or (' #  ) = :(' _  ). Let us de�ne a logical matrix to
be functionally complete if every function f(~a) de�ned on M is expressible
by a formula '(~p) de�nable from the sentential variables and the basic
connectives in the matrix.

Before discussing functions de�nable in various logics, we prove a use-
ful lemma that gives a generalization of the disjunctive normal form used
in classical logic. Let F be a set of functions de�ned on the set M =
f0; : : : ;mg|we treat constants as 0-place functions. Let us say that a sub-
set N of M is F -closed if it is closed under the application of functions in
F . The F -closure of a set X � M is de�ned as the smallest F -closed set
containing X .

LEMMA 11. Let F be a set of functions de�ned on M = f0; : : : ;mg con-
taining max, min and all Jk for k 2M . Then an n-place function f de�ned
on M is F -de�nable if and only if f(~x) is in the F -closure of fx1; : : : ; xng
for all ~x in M .

Proof. The condition is obviously necessary. For the converse, assume that
f satis�es the condition and that ~a is an n-tuple in M . The formula  (~a),
de�ned as max(Ja1

(x1); : : : ; Jan(xn); f(~a)) takes the value f(~a) for ~x = ~a
and m for ~x 6= ~a. It follows that the function min( (~a);~a an n-tuple in M)
coincides with f , so f is F -de�nable. �

THEOREM 12. The m+ 1-valued logic of Post is functionally complete.

Proof. Recall that the basic connectives are x _ y = min(x; y) and :x =
x + 1(mod m + 1) de�ned on M = f0; : : : ;mg. We �rst show that any
one-place function is Post-de�nable. The function

T (x) = min(x; x+ 1; : : : ; x+m)

always takes the value 0 (this is a generalization of the law of excluded
middle). It follows that for any k 2M the function

Tk(x) = min[min(T (x) + 1; x) +m;x+ k + 1] +m

takes the value m for x 6= 0 and k for x = 0. Now let f(x) be any m + 1-
valued function in one variable. Then the function

min(Tf(0)(x); Tf(1)(x+m); : : : ; Tf(m)(x+ 1))

coincides with f . Thus the Jk functions are de�nable and max(x; y) is
de�ned as h(min(h(x); h(y)), where h(x) = m � x. We can now apply
Lemma 11. Since all one-place functions are Post-de�nable, the only non-
empty Post-closed subset of M is M itself. It follows that Post's connectives
form a functionally complete set. �
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The two operators of Post's logic that we have just shown to be suÆcient
can in fact be replaced by a single operator. Using the set f0; : : : ;m � 1g
as the set of truth values, as before, de�ne w(x; y) = min(x; y) + 1, where
the addition sign stands for addition modulo m. Then we can de�ne Post's
negation :x as w(x; x) and min(x; y) = :mw(x; y). By Theorem 12, w
generates all m-valued functions; w is said to be a She�er function for m-
valued logic. Note that the She�er stroke of two-valued logic can be written
as min(x; y) + 1. A great deal of research e�ort has gone into the problem
of characterizing She�er functions in m-valued logic, culminating in the
paper of Rosenberg [1970] that gives a complete characterization of these
functions.

2.9 De�nable Functions in  Lm

 Lukasiewicz's logics  Lm+1 for m > 1 are not functionally complete. This is
easily seen from the fact that for any formula '(p1; : : : ; pn) if p1; : : : ; pn are
given only the classical values 0 and m then '(p1; : : : ; pn) can take only the
values 0 or m. This functional incompleteness can be remedied in the case
of  L3 by adding a function Tp taking the constant value 1. S lupecki [1936]

added this function to  L3 and axiomatized the resulting logic by adding the
axiom Tp$ T:p. In fact, to make  L3 functionally complete it is suÆcient
to add any function not de�nable in  L3. A set of connectives that has this
property we shall call precomplete, that is, a set S of m-valued connectives
is precomplete if and only if it is not functionally complete, but the addition
of a function to S that is not already de�nable in S results in a functionally
complete set.

It can be shown that the connectives in  L6 form a precomplete set, while
those in  L7 do not. A complete characterization of those m for which
the  Lm connectives form a precomplete set follows from the next theorem.
Let gcd(x; y) be the greatest common divisor of x and y; for a �nite set
X = fx1; : : : ; xng let gcd(X) be the greatest common divisor of x1; : : : ; xn.
The key lemma in the characterization of  Lm-de�nable functions is:

LEMMA 13. Let F be a set of functions on f0; : : : ;mg containing all  Lm+1-
de�nable functions. If X � f0; : : : ;mg is F -closed then gcd(x; y) 2 X for
all x; y 2 X.

Proof. For x; y 2 X , if x > y then x�y 2 X ; hence by repeated subtraction
the remainder of x on division by y is also in X . The Euclidean algorithm for
�nding gcd(x; y) works simply by repeatedly computing remainders. Thus
gcd(x; y) 2 X . �

THEOREM 14. An n-place function f de�ned on M = f0; : : : ;mg is  Lm+1-
de�nable if and only if for any n-tuple ~a, gcd(fa1; : : : ; an;mg) divides f(~a).
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Proof. The necessity of the condition follows from the fact that if k divides
x and y then it divides x : y.

In view of Lemmas 7 and 11, to prove suÆciency we need only characterize
the  Lm+1-closed sets. LetXk be de�ned as the set of multiples of k inM . We
now show that the  Lm+1-closed sets are exactly the sets Xk for k a divisor
of m. It is easy to see that Xk is closed for k a divisor of m. Conversely, if
X is an  Lm+1-closed set, let k = gcd(X). By Lemma 13, k 2 X . Since m is
in every  Lm+1-closed set, k is a divisor of m, say m = qk. Now let y = pk
be any multiple of k in M . Then y = m� (q � p)k, hence y 2 X , showing
that X = Xk.

The stated characterization of  Lm+1-de�nable functions now follows
easily from the description of the  Lm+1-closed sets. �

Theorem 14 actually gives us more information than we have stated,
namely a characterization of all functions de�nable from a set of functions
extending the  Lukasiewicz set. Let X be a subset of the divisors of m.
De�ne X to be lcm-closed if (1) 1 2 X and (2) if x; y 2 X then lcm(x; y),
the least common multiple of x and y, is in X . Further, for Y � f0; : : : ;mg,
Y 6= ;, let F (Y ) be de�ned as the set of functions on f0; : : : ;mg that satisfy
the condition: for any k 2 Y; a1; : : : ; an 2 Xk implies f(~a) 2 Xk. It is easy
to see that F (Y ) is closed under function composition.

COROLLARY 15. The sets of m+1-valued functions that are closed under
composition and extend the  Lm+1-de�nable functions are exactly the sets
F (Y ), where Y is an lcm-closed subset of f0; : : : ;mg.

Proof. By theorem 14, the closed sets of such a set of functions must all
be of the form Xk for k a divisor of m. Furthermore, the set fk j Xk

an F -closed setg is lcm-closed. It remains only to check that every lcm-
closed subset of M arises as the F -closed sets of some set of functions F .
Accordingly, let Y be an lcm-closed subset of M . We wish to show that
the sets Xk for k 2 Y are exactly the F (Y )-closed sets. Thus let X be an
F (Y )-closed subset of M ; by Theorem 14, X = Xk for some divisor k of m.
Let p = lcm (fq j X � Xq ; q 2 Y g). Then X � Xp; to show X = Xp it is
suÆcient to show that p 2 X . De�ne a function f by: f(k) = p; f(a) = 0
for a 6= k. If k 2 Xq for q 2 Y then X = Xk � Xq hence p 2 Xq because
Xp is the smallest set Xr; r 2 Y , containing X . It follows that f 2 F (Y ).
Thus p 2 X , completing the proof. �

COROLLARY 16. The connectives of  Lm+1 form a precomplete set if and
only if m is prime.

Proof. The only lcm-closed subsets of divisors of m are f1;mg and f1g,
provided m is a prime. If m is not prime, there are others. �
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The characterization of the  Lm+1-de�nable functions in Theorem 14 is
due to McNaughton [1951]. McNaughton's paper contains as its main re-
sult a characterization of the real-valued functions de�nable in  L!. Mc-
Naughton's original proof of this result makes use of a non-constructive re-
ductio ad absurdum argument, based on a procedure of unbounded search;
for a constructive proof, see [Mundici, 1994].

3 CHARACTERIZING FUNCTIONAL COMPLETENESS

A question that has been extensively investigated is the problem of deter-
mining whether a given set of m-valued connectives is functionally complete.
One of the most useful theorems gives the S lupecki criterion for functional
completeness. Let us �rst de�ne an m + 1-valued function to be essen-
tial if it depends on at least two variables and takes on all values from
M = f0; : : : ;mg.

THEOREM 17 ([S lupecki, 1939]). Let m � 2, and F a set of functions on
M that contains all one-place m+1-valued functions. Then F is functionally
complete if and only if F contains an essential function.

Let us de�ne a set ofm-valued functions to be maximal if it is closed under
function composition and is precomplete. It is not hard to see (by a use of
Zorn's lemma) that any proper subset of the set of all m-valued functions
de�ned on M that is closed under function composition is contained in a
maximal set. Thus we have:

THEOREM 18. A set F of m+ 1-valued functions is functionally complete
if and only if it is not contained in a maximal set of functions.

Theorem 18 reduces the problem of characterizing functional complete-
ness to the problem of describing the maximal sets of functions in m-valued
logic. A complete characterization of these sets has been provided by Rosen-
berg [1965; 1970]. To state this result, we need some de�nitions. Let R
be an n-place relation on the set M = f0; : : : ;mg. A function of k vari-
ables de�ned on M is said to preserve R if ~a1; : : : ;~an 2 R implies that
hf~a1; : : : ; ; f~ani 2 R. For example, let R be the partial order of f0; 1g de-
�ned by 0 � 0, 0 � 1; 1 � 1. Then a function preserving R is a monotone
Boolean function: these functions form a maximal set in two-valued logic.
The maximal sets in m+1-valued logic can be described completely in terms
of the preservation of certain relations on M .

Let p be a prime number. A group G = hM; �i is called p-elementary
Abelian if G is Abelian and px = x � x � : : : � x (p times) is the zero of the
group for all x 2M . It is a well-known fact that p-elementary groups in M
exist if and only if m+ 1 = pq for some q � 1.

A k-place relation R on M is central if R 6= Mk and there is a non-empty
proper subset C of M such that
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1. aj 2 C ) ~a 2 R for any k-tuple ~a;

2. ~a 2 R and ~b is a permutation of ~a ) ~b 2 R;

3. ai = aj ) ~a 2 R for any i 6= j.

Let 2 < h � m+1 and let q � 1. We say that the family T = f�1; : : : ;�qg
of equivalence relations on M is h-regular if

1. Each �j has h equivalence classes;

2. The intersection
Tq
j=1 �j of arbitrary equivalence classes �j of �j (j =

1; : : : ; q) is non-empty.

The relation determined by T is the relation �T of all h-tuples ~a in Mh

having the property that for each 1 � j � q at least two elements among
a1; : : : ; ah are equivalent on �j .

Let Pres(R) stand for the functions preserving a relation de�ned on
M = f0; : : : ;mg. We are now ready to state the beautiful and deep charac-
terization theorem of Rosenberg.

THEOREM 19. Every maximal class of functions in m+ 1-valued logic is
of the form Pres(R) where R is one of the following types of relation on M :

1. A partial order on M with least and greatest element;

2. A relation fhx; sxi j x 2 Mg where s is a permutation of M with
(m+ 1)=p cycles of the same prime length p;

3. A four-place relation of the form fha1; a2; a3; a4i 2 M4 j a1 � a2 =
a3 � a4g where hM; �i is a p-elementary Abelian group.

4. A non-trivial equivalence relation R on M(R 6= M2, R is not the
identity on M);

5. A central relation on M ;

6. A relation �T determined by an h-regular family T of equivalence re-
lations on M .

A set of connectives in m + 1-valued logic is functionally complete if and
only if for every relation R described under (1){(6) there is an f in the set
not preserving R.

The reader is referred to the excellent survey article [Rosenberg, 1984]

for more details and further references on the problem of de�nability of
functions.
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3.1 Post Algebras

Classical propositional logic can be cast in algebraic form as the theory of
Boolean algebras. A similar transformation on Post's many-valued systems
produces the theory of Post algebras.

To motivate the algebraic developments that follow, we introduce the
notion of m-valued set. A set in the ordinary sense can be considered
as a map from a collection of individuals into the set of classical truth-
values; given a �xed universal collection U , any subset X � U is uniquely
determined by its characteristic function f de�ned as: f(a) = T if a 2
X; f(a) = F if a 62 X . Generalizing to the m-valued case, we de�ne an
m-valued set X de�ned on a collection U to be a map from U into the
truth-values f0; : : : ;m� 1g. The equation X(a) = k is to be read as: `a is
an element of X ' has truth-value k. The classical operations of intersection
and union generalize in an obvious way to the family of all m-valued sets
on U , which we shall write as P (U;m). For X;Y 2 P (U;m), de�ne:

X ^ Y (a) = min[X(a); Y (a)]
X _ Y (a) = max[X(a); Y (a)]:

Obviously, these operations are the algebraic counterpart of conjunction
and disjunction. P (U;m) forms a distributive lattice with respect to ^ and
_; if we de�ne m-valued set containment by:

X � Y if and only if X(a) � Y (a) for all a 2 U;

then X ^ Y is the greatest lower bound, X _ Y the least upper bound of X
and Y , and X ^ (Y _ Z) = (X ^ Y ) _ (X ^ Z).

With respect to m-valued set containment, P (U;m) has a greatest ele-
ment _ and a least element ^; _ is the constant function with value m� 1,
^ the constant function with value 0. More generally, let Ck be the con-
stant function de�ned on U with value k; then P (U;m) contains a chain
^ = C0 � C1 � � � � � Cm�1 = _. (Note that here C0 is the `falsest', Cm�1

the `truest' truth-value, reversing our previous ordering in which 0 is the
`truest' value.)

An important role in P (U;m) is played by the m-valued sets that are clas-
sical or two-valued in the sense that X(a) is either 0 or m�1. Algebraically,
the classical sets are exactly the complemented elements of P (U;m), the el-
ements for which there is a (unique) complement x such that x ^ x = ^,
x _ x = _. The centre of a lattice, C(L) is de�ned as the set of comple-
mented elements of L. Any m-valued set de�ned on U can be expressed as a
combination of constant functions and classical sets. Let X be any element
of P (U;m). For k any truth-value, let Dk(X) be the two-valued set on U
that has the value m� 1 at a if X(a) � k, and the value 0 at a if X(a) < k.
It is easy to see that:

X = (D1(X) ^ C1) _ � � � _ (Dm�1(X) ^ Cm�1):
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What we have shown, in fact, is an algebraic version of the disjunctive
normal form theorem provided by Lemma 11.

After this preliminary discussion, the following abstract de�nition of a
Post algebra should be easy to understand.

DEFINITION 20 (Traczyk [1963]). A Post algebra of order m + 1 is a
distributive lattice L with greatest element _ and least element ^ that
satis�es the conditions:

1. L has a subchain ^ = c0 � c1 � � � � � cm = _ such that every element
a 2 L can be written as a = (a1 ^ c1) _ � � � _ (am ^ cm), where each
ai 2 C(L),

2. If a 2 C(L) and (a ^ ci) � ci�1 for some i, i > 0, then a = ^.

It follows immediately from (2) that the ci's are all distinct.

The join representation of an element as postulated in (1) is not unique
in general; a unique representation can be obtained by adding an extra
condition.

THEOREM 21 (Epstein [1960]). If L is a Post algebra of order m + 1,
m > 0, then every element a 2 L has a unique representation

a = (a1 ^ c1) _ � � � _ (am ^ cm) where ai 2 C(L);
a1 � a2 � � � � � am:

Proof. Let a = (a1 ^ c1) _ � � � _ (am ^ cm). For 1 � i � m, de�ne
bi = ai_ai+1_: : :_am. Then a = (b1^c1)_: : :_(bm^cm) is a representation
of the required sort.

To show uniqueness, suppose a = (d1 ^ c1) _ : : : _ (dm ^ cm), and d1 �
d2 � � � � � dm. Then for 1 � k � m; bk ^ ck � a, so

bk ^ dk ^ ck � dk ^ ck ^ a

= dk ^ ck ^ [(d1 ^ c1) _ : : : _ (dm ^ cm)]

= [(d1 ^ c1 ^ dk ^ ck) _ : : : _ (dm ^ cm ^ dk ^ ck)]:

Since d1 � d2 � � � � � dm; (dj ^ cj ^ dk ^ ck) = ^ for j � k. It follows that
bk ^ dk ^ ck � ck�1. But then bk ^ dk = ^, by De�nition 20, so bk � dk.
Symmetrically, dk � bk so bk = dk. �

Theorem 21 allows us to introduce operations in any Post algebra that
correspond to the unique representation of an element. For any Post algebra
L of order m+ 1, a 2 L, let Dk(a), for 1 � k � m, be the unique element
ak 2 L in the representation of the theorem. These new operations can be
used unde�ned in an equational formulation of Post algebras:
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DEFINITION 22 (Traczyk [1964]). A Post algebra L of order m+1(m > 0)
can be de�ned as an algebra with two-place operations ^;_, one-place op-
erations :; D1; D2; : : : ; Dm and constants c0; : : : ; cm that satis�es the con-
ditions:

1. L is a distributive lattice with respect to ^;_, with least element c0
and greatest element cm;

2. L forms a de Morgan algebra with :, that is, :(x^y) = :x_:y, and
::x = x;

3. ci ^ cj = ci for i � j;

4. Di(x _ y) = Di(x) _Di(y) and Di(x ^ y) = Di(x) ^Di(y);

5. Di(x) _ :Di(x) = cm, Di(x) ^ :Di(x) = c0;

6. Di(x) ^Dj(x) = Dj(x) for i � j;

7. Di(:x) = :Dm�i(x);

8. Di(cj) = cm for i � j;Di(cj) = c0 for j < i;

9. x = (D1(x) ^ c1) _ � � � _ (Dm(x) ^ cm).

To show that this de�nition is equivalent to De�nition 20, we �rst observe
that in any Post algebra we can introduce an operation :a as follows: if
a = (a1 ^ c1) _ � � � _ (an ^ cn), where a1 � : : : � an, de�ne :a to be
(an^ c1)_ � � � _ (a1 ^ cn). Then it is easy to check that the above postulates
are satis�ed.

For the converse, �rst note that c0 � : : : � cm, where we de�ne: x � y
if and only if x ^ y = x. Furthermore, (5) implies that Di(x) is in C(L).
A representation of the type given in Theorem 21 is guaranteed by (6)
and (9). It remains only to check that (2) of De�nition 20 is satis�ed.
Accordingly, assume that a ^ ci � ci�1, where a 2 C(L). Then by (4)
Di(a) ^ Di(ci) � Di(ci�1); but by (8), Di(ci) = cm and Di(ci�1) = c0, so
Di(a) = c0, hence Dm(a) = c0. Now let a be the complement of a in C(L).
By (4) and (8), Dm(a) _ Dm(a) = Dm(a _ a) = cm. Thus Dm(a) = cm.
But then by (9), Dm(a) � a, so a = cm, hence a = c0.

It is well known that every Boolean algebra is isomorphic to a �eld of
sets, that is, a collection of subsets of a set U that is closed with respect
to intersection, union and complementation with respect to U . A similar
theorem holds for Post algebras of order m + 1. Let us de�ne a concrete
Post algebra of order m + 1 to consist of a family of m + 1-valued sets
de�ned on a collection U , together with operations ^;_; Dk and the constant
functions ck as de�ned earlier together with the operation :X de�ned as:
:X(a) = m�X(a).
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THEOREM 23 (Wade [1945]). Every Post algebra L of order m + 1 is
isomorphic to a concrete Post algebra of m+ 1-valued sets.

Proof. We have seen in Theorem 21 that every element of L corresponds
uniquely to an m-tuple of elements in C(L) that satisfy a1 � � � � � am.
Since C(L) is a Boolean algebra, it is isomorphic to a �eld of sets. Let '(a)
for a 2 C(L) be the corresponding subset of U in the �eld of sets to which
C(L) is isomorphic. Now for an element a of L, de�ne an m + 1-valued
function on U by:

Xa(z) = maxfk j z 2 '(Dk(a))g:

We wish to show that the map  : a! Xa is an isomorphism with respect
to the operations of L. For any a; b 2 L; a � b if and only if Dk(a) � Dk(b)
for all 1 � k � m; this follows readily from Theorem 21. It is easy to see
from this that a � b if and only if Xa � Xb. It is a straightforward exercise
to check that  is an isomorphism with respect to the operations Dk, and
that  (ck) is the constant function Ck. �

3.2 Generalized Post Algebras and Algorithmic Logic

Various generalizations of Post algebras have been considered in the litera-
ture of which the most widely investigated have been Post algebras of order
!+.

The simplest example of a Post algebra of order !+ is the matrix P!
de�ned on the ordinals 0; 1; 2; : : : ; !, where these are ordered as a chain
0 < 1 < 2 < : : : < !, x _ y = max(x; y), x ^ y = min(x; y); we have
in addition the operations Dk for k a positive integer, where Dk(x) = !
if k � x;Dk(x) = 0 otherwise. An implication operation and negation
operator : are de�ned by: x) y = ! if x � y; x) y = y if x > y;:x = !
if x = 0, :x = 0 if x 6= 0. P! plays the same role in !+-valued Post
algebras as the m-valued Post matrices play in Post algebras of order m.
Post algebras of order !+ can be axiomatized by a set of equations similar
to the identities of De�nition 22.

The motivation for considering these generalized Post algebras arises from
the theory of programming languages. It is possible to add to a classical
propositional language containing predicates and individual terms opera-
tors that represent composition, branching and iteration operations on pro-
grammes. Using these operations, it is possible to express programmes and
expressions representing their properties in a compact language (for details,
see [Salwicki, 1970]). The extension of this idea to many-valued logic is
convenient in cases where a programme has a branching structure. For ex-
ample, there may be an instruction in the programme of the form: do one of
P0 : : : Pn according to whether conditions A0 : : : or An are realised. In this
situation, we can use the generalized truth-values c0; : : : ; cn as devices that
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keep track of which of A0; : : : ; An are true, so that a convenient language
for such programmes is the language of !+-valued logic, or Post algebras
of order !+. This application of many-valued logic to computer languages
is due to H. Rasiowa. The reader is referred to her survey article [Rasiowa,
1977] for more details and references.

The theory of Post algebras arises from the case of an m-valued logic that
is functionally complete. Other many-valued logics with connectives that
are not functionally complete have been given algebraic form, such as the
many-valued logics of  Lukasiewicz. The MV -algebras of Chang [1958a] con-
stitute an algebraic version of the in�nite-valued logic of  Lukasiewicz, while
the �nite-valued  Lukasiewicz logics have been given algebraic form as MVn-
algebras [Grigolia, 1977]. For background on these algebraic structures, the
reader is referred to the monograph [Gottwald, 1989].

3.3 Many-valued Predicate Logic

Many-valued logics can be extended to include quanti�cation in a straight-
forward way. The basic idea here (as in classical logic) is that universal
quanti�cation can be treated as extended conjunction, existential quanti�-
cation as extended disjunction.

To make ideas de�nite, let us suppose that we are dealing with the m-
valued logic of  Lukasiewicz. We extend the language of the propositional
calculus  Lm to include individual variables, predicates of any degree and
the quanti�ers 8 and 9. Let us call the resulting language L. Given an
non-empty set I of individuals, we add to L a stock of individual constants
a; b; c : : : ; etc. uniquely correlated with individuals a, b, c, . . . , in I ; call the
resulting language L(I). Then an m-valued structure for L over the set of
individuals I is de�ned to be an assignment of a value in f0; : : : ;m� 1g to
the atomic sentences in L(I) that contain no free variables. Thus if P is
an n-place predicate in L, we assign a value [[Pa1 : : : an]] to every sentence
Pa1 : : : an for a1 : : : an in I . We extend this assignment of values to sentences
in L(I) that contain connectives by the earlier truth-tables. For quanti�ed
sentences in L(I), we have the de�nitions:

[[8x']] = maxf[['[a=x]]] j a 2 Ig;
[[9x']] = minf[['[a=x]]] j a 2 Ig:

Comparison of these rules for quanti�ers with the conjunction and dis-
junction rules of Section 1.2 shows that if I is a �nite set fa1; : : : ; ang,
then 8x' is equivalent to '[a1=x] ^ � � � ^ '[an=x] and 9x' is equivalent to
'[a1=x] _ � � � _ '[an=x].

If we take 0 as the sole designated value, as before, then the consequence
relation of the quanti�ed version of L can be axiomatized. To carry out
this axiomatization, we add to the language L an in�nite number of new
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constants a0; a1; a2; : : : that we shall call parameters. The quanti�ed version
of  Lm;  Lm QC, is axiomatized by adding to the rules of Section 2.5 the
following scheme for sequents:

(F ) Jk('[a=x]) ` Jk(8x') _ Jk+1(8x') _ : : : _ Jm�1(8x');

where a is any parameter, together with the rule:

�; '! Jk( [a=x]) ` �
(G);

�; '! Jk(8x ) ` �

where a is a parameter that does not occur in the conclusion of the rule.

The existential quanti�er we are taking as de�ned by:

9x' = :8x:':

Let ` be a consequence relation in a language L and `0 a consequence
relation in a language L0 that is an extension of L0. We say that `0 is a
conservative extension of ` if exactly the same sequents of L are provable
in ` and `0. That is to say, if � [ f'g is a set of formulas in L, then � ` '
if and only if � `0 '.

Let us denote the consequence relation of  LmQC by `Qm
. Let L0 be

the language that results from the language of  LmQC by adding an in�nite
set of new constants c0; c1; c2; : : :. We now de�ne `0Qm

to be the smallest
consequence relation in the language L0 that contains `Qm

, together with
all sequents of the form:

` Jk(8x')! Jk('[c=x]);

where ' is a formula of L0, and c is a new constant that does not occur in
'.

LEMMA 24. `0Qm
is a conservative extension of `Qm

.

Proof. Let � `0Qm
Æ hold, where �[fÆg is a set of formulas in the language

of  LmQC. The proof of � `0Qm
Æ can involve only �nitely many sequents of

the form

` Jk(8x')! Jk('[c=x]):

Let � stand for the set of sentences of L0 that occur in these sequents.
Now perform the following transformation on the proof of � `0Qm

Æ; (1)
replace each sequent � `  by �;� `  , (2) replace each new constant c
throughout the resulting set of sequents by a new parameter a that does
not occur anywhere in the proof. We can now prove by induction on the
length of the proof that for every sequent � `  in the old proof, the new
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sequent �0;�0 `  0 that results from the replacement process is provable in
 LmQC. In particular the sequent

�;�0 ` Æ

is provable in  LmQC, where �0 is a set of formulas of the form

Jk(8x')! Jk('[a=x]);

where a does not occur in �; Æ or '. Since `Qm
Jk(8x') ! Jk(8x') it

follows by the rule (G) that � `Qm
Æ. �

Before proving  LmQC complete, we need a precise de�nition of validity. Let
� ` Æ be a sequent of  LmQC with no free variables. Then � ` Æ is m-valid,
� �m Æ, if and only if for every m-valued structure over a set I [[']] = 0
for all ' 2 � implies that [[Æ]] = 0|we are assuming that the de�nition of
structure is extended to include an interpretation in I for all the parameters
in the language of  LmQC. Sequents � ` Æ that contain free variables are
de�ned to be m-valid if and only if the sequents that result from them by
replacing all free variables by parameters are m-valid.

THEOREM 25. � `Qm
Æ if and only if � �m Æ.

Proof. That all sequents provable in  LmQC are m-valid follows by a
straightforward induction on the length of proofs. The only non-trivial
step concerns rule (G). Suppose that the sequent

�; '! Jk(8x ) ` Æ

is not m-valid. Then we can �nd an interpretation [[ ]] in a set of individuals
I so that [[�]] = 0 for � 2 �; [[' ! Jk(8x )]] = 0, but [[ ]] 6= 0. Let
b be an element of I such that [[8x ]] = [[ [b=x]]]|such a b must exist
by the truth de�nition for 8x . Now de�ne a new interpretation [[ that
[[8x ]]0 = [[ [a=x]]]0. Then [[�]] = 0, for � 2 �; [[' ! Jk( [a=x]]] = 0, and
[[Æ]]0 = [[Æ]]. Thus the premiss of an application of rule (G) is also not m-valid.

For completeness, let � ` Æ be a sequent with no free variables that is
not provable in  LmQC. Then � ` Æ is also not in the consequence relation
`0, by Lemma 24. Let `00 be a �-prime consequence relation containing
`0 that does not contain � ` Æ|existence of such a consequence relation
is guaranteed by Lemma 5. Now take as domain of individuals for an m-
valued structure the set C of all the new constants c0; c1; : : :, together with
the set of parameters. For P an n-place predicate, de�ne:

[[Pd1; : : : ; dn]] = k , � `00 Jk(Pd1; : : : ; dn);

where d1; : : : ; dn are constants or parameters. We can now prove inductively
that for all sentences ' in the language of `0; [[']] = k if and only if � `00
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Jk('). The inductive steps for the propositional connectives are exactly
as in Theorem 8. For the quanti�er, it is suÆcient to show that for any
';� `00 Jk(8x') if and only if

maxfp j 9c(� `00 Jp('[c=x])g = k:

First, if � `00 Jk(8x'), since `00 Jk(8x')! Jk('[c=x]) for some c, it follows
that � `00 Jk('[c=x]). Now if � `00 Jp('[d=x]) for some d, with p > k, then
by (F), we must have � `00 Jq(8x') for some q � p, a contradiction. It
follows that

maxfp j 9c(� `00 Jp('[c=x]))g = k:

Second, if � 6`00 Jk(8x'), then � `00 Jq(8x') for some q 6= k, so that

maxfp j 9c(� `00 Jp('[c=x]))g = q;

by the argument just given, so the condition is suÆcient as well as necessary.
We have thus proved that in the interpretation just de�ned, [[]] = 0 for all
 2 �, and [[Æ]] 6= 0, so that � ` Æ is not m-valid. �

Further results on the axiomatization of many-valued predicate logic, in-
cluding systems with generalized quanti�ers, can be found in the monograph
of Rosser and Turquette [1952].

The axiomatization of the quanti�ed versions of in�nite-valued logics
presents more diÆcult problems. If we take as our set of truth-values the
real numbers between 0 and 1, with the only designated value 0, we have a
system  LRQC of in�nite-valued predicate logic with the  Lukasiewicz con-
nectives. Bruno Scarpellini [1962] has shown that the valid formulas of
 LRQC cannot be recursively axiomatized. Louise Hay [1963] axiomatized
this logic by making use of an in�nitary rule of inference.

3.4 Set Theory in Many-valued Logic

The idea of avoiding the paradoxes of set theory by altering the underlying
logic rather than the comprehension axiom is an old one, as we saw in
Section 1.4. In this section we consider some of the research that has been
done since Bochvar's early work on that topic.

The system for which this question has been most fully investigated are
the  Lukasiewicz systems. Here we immediately notice that the �nite-valued
systems are non-starters. We consider a version of m-valued predicate logic
that contains only the binary predicate of 2 of membership, together with
a predicate = for identity. We add to the valid formulas of  LmQC in this
language the comprehension axiom scheme:

(COM): 8~x9y8z(z 2 y $ '(z; ~x)):
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We shall show that in the resulting system any formula whatever can be
derived. De�ne: ('0 !  ) =  , ('n+1 !  ) = (' ! ('n !  )). Now
by substituting (z 2 z)m !  for '(z; ~x) in (COM), we have for some c
that c 2 c $ ((c 2 c)m !  ), hence (c 2 c)m+1 !  . But in  LmQC,
('m+1 !  ) ! ('m !  ) is valid, so that by modus ponens, we have
(c 2 c)m !  . But then c 2 c follows, hence  by m applications of modus
ponens. (This version of Russell's paradox, using only implication, is due
to Curry.)

The crucial step in the preceding proof, the step from ('m+1 !  )
to ('m !  ), is invalid in in�nite-valued  Lukasiewicz logic, a fact that
encourages a hope that the result of adding (COM) to the in�nite-valued
predicate logic  LmQC is consistent. The earliest result along these lines
was that of Skolem [1957], who proved that the system in which (COM)
is restricted to formulas '(x; ~z) with no free variables is consistent. This
result was improved by Chang [1963] who extended the class of formulas
admissible on the right-hand side of the comprehension scheme to those
in which every bound variable is restricted to occur only in the second
place in atomic formulas of the form v 2 w. Chang also proved consistent
the form of (COM) in which the right-hand formula has no restrictions
on its bound variables, but contains no free variables except z. Another
result of a similar type was obtained by Fenstad [1964] who proved the
consistency of the scheme where the free variable z is allowed to occur only
in the �rst place in atomic formulas of the form v 2 w. All of these proofs
of consistency use the Brouwer �xed point theorem. Richard B. White
[1979] �nally solved the consistency problem for the full system by a proof-
theoretical argument. Starting from the axiom system of Hay mentioned
above, he used normalization techniques to show the full comprehension
axiom consistent in in�nite-valued logic.

Some more negative results are forthcoming if we consider adding other
axioms of set theory beside comprehension. For example, let (EXT) be the
sentence 8x8y(8z(z 2 x $ z 2 y) ! x = y). Then the system resulting
from the addition of (EXT) and (COM) to L!QC is inconsistent, even if
we restrict ourselves to the instance of (COM) allowed by the �rst result of
Chang mentioned above.

The extent to which mathematics can be developed in many-valued logic
remains a largely open question; the reader is referred to White's paper
[1979] for a discussion. There does not seem to be a clear natural interpre-
tation for set theory in many-valued logic that would play a role similar to
that of the cumulative type hierarchy in classical set theory.
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4 DEVELOPMENTS SINCE 1960

After the initial period of development in the 1920s and early 1930s, many-
valued logic remained a kind of intellectual backwater. However, the area
has seen a recent revival of interest, in large part due to the e�orts of
engineers and computer scientists. In this part we sketch three recent de-
velopments. First, an interpretation of the  Lukasiewicz systems that links
these logics with other areas of non-classical logic; second, the contemporary
activity in the area of `fuzzy logic'; lastly, work on the logic of signi�cance.

4.1 Model Structures on Commutative Monoids

Although the  Lukasiewicz systems of many-valued logic were the �rst non-
classical systems to be investigated in depth, the work in this area has re-
mained somewhat apart from the mainstream of work in non-classical logic.
In particular, the semantical methods involving relational model structures,
`possible worlds' and the like, that have proved so fruitful in areas like
modal logic, seem to have no clear connection with traditional many-valued
logic. In this section, we show how these ideas can be brought to bear on
 Lukasiewicz systems, and thereby uncover a somewhat unexpected connec-
tion with relevance logic.

We begin by describing a model theory that initially will seem to have
little or no connection with many-valued logic. We are concerned with a
propositional language containing ^;_, and ! as primitive symbols. Let
A = hA;+; 0;�i be a (totally) ordered commutative monoid, i.e. an algebra
equipped with an associative, commutative operation with 0 an element
satisfying x+ 0 = x for all x 2 A, and � a total ordering of A that satis�es
the condition that x � y implies x + z � y + z for all x; y; z. Let A0 be
the set fx 2 A : x � 0g. A model structure over A consists of a subset
[[P ]] � A0 for each propositional variable P in the language. The sets [[P ]]
are required to be increasing (a subset B � A is increasing if x 2 B; x � y
imply that y 2 B). Given a model over A, we de�ne truth at a point x in
A0 by induction:

1. x � P , x 2 [[P ]]

2. x � (' ^  ), (x � '& x �  )

3. x � (' _  ), (x � ' _ x �  )

4. x � ('!  ), 8y 2 A0(y � ') x+ y �  ).

Given this de�nition, we can prove by induction on the complexity of ' that
the points in A0 at which a formula ' is true form an increasing set.

A striking feature of the de�nition of truth just given is its close resem-
blance to the truth de�nition for a model theory for relevance logic due to
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Routley and the present author (see the Chapter by B�auerle and Cresswell
in a later volume of this Handbook for details). The di�erences between that
model theory and the present are two-fold: �rst, in the case of the relevance
logic R, the underlying structure is assumed to be a semilattice, so that
x+ x = x is generally valid; second, in relevance logic the subsets assigned
to variables do not have to be increasing. Apart from these two di�erences,
the truth de�nition, for ^;_ and ! is word for word the same.

A formula ' is said to be valid in this model theory if 0 � ' in any model
structure over an ordered commutative monoid. The reader can easily verify
that the following axiom schemes are all valid:

1. '! ( ! (' ^  ))

2. ('!  )! ((� ! ')! (� !  ))

3. ('! (� !  ))! (� ! ('!  ))

4. (' ^  )! '

5. (' ^  )!  

6. (('!  ) ^ ('! �))! ('! ( ^ �))

7. '! (' _  )

8.  ! (' _  )

9. (('k !  ) ^ (�k !  ))! ((' _ �)k !  )

10. ('!  ) _ ( ! ').

Let us call the system consisting of these axioms together with the rule
of modus ponens C. There is a close resemblance between C and certain
systems of relevance logic. The di�erences lie in (1), which reects the
hereditary condition, in (10) which reects the total ordering condition
(although it is valid in the logic RM) and in the absence of Contraction
(' ! (' !  )) ! (' !  ), which corresponds to our omission of the
equation x+ x = x.

We postpone until a later section a discussion of the intuitive interpre-
tation to be attached to this model theory. We conclude the section with a
completeness proof for C.

LEMMA 26. The following theorem schemes are provable in C:

(a) '! '

(b) ('!  )! ((' _  )!  )

(c) ('! � _  )! (('! �) _ ('!  )).
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Proof. To prove (a), we substitute a theorem for  in Axiom (1), then use
Axioms (3) and (4). Schema (b) follows immediately from (a), (1), (3) and
(9). Finally, for (c), from (b) we have by Axiom (2):

(� !  )! (('! (� _  ))! ('!  ));

hence by Axioms (2) and (8),

(� !  )! [('! (� _  ))! (('! �) _ ('!  ))]:

Similarly,

( ! �)! [('! (� _  ))! (('! �) _ ('!  ))];

so by Axioms (6) and (10),

('! � _  )! (('! �) _ ('!  )):

�

We de�ne a C theory to be a set of formulas that contains all theorems
of C and is closed under modus ponens. If � is a C theory, �(') is de�ned
to be the smallest C theory containing � [ f'g.

LEMMA 27. If  2 �('), then for some k; 'k !  2 �.

Proof. By induction on the length of the proof of  in �('). For � an
axiom of C '0 ! � 2 �; by Lemma 26, ' ! ' is provable in C. For the
induction step, assume that 'k ! � and 'm ! (� !  ) are in � and that
 is derived from � !  and � in �('). By repeated use of Axiom (2),
we have (� !  ) ! (('k ! �) ! ('k !  )) as a theorem of C so by
Axiom (3), we have (� !  ) ! ('k !  ) in �. By using (2) again, we
have 'k+m !  in �. �

THEOREM 28. `BC ' if and only if ' is valid in all model structures over
an ordered commutative monoid.

Proof. Let ' be a formula not provable in C; then there is a C theory that
we shall call 0 that is maximal in the family of C theories not containing '.
Now let A be the family of sets of formulas � that satisfy the conditions:
(a) 0 � �; (b) ' !  2 0; ' 2 � )  2 �; (c) � is prime, that is
(� _  ) 2 �) � 2 � or  2 �; (d) �; � 2 �) � ^ � 2 �. We have to show
that 0 itself is prime. Suppose (� _  ) 2 0; � 62 0;  62 0. By maximality,
' 2 0(�) and ' 2 0( ), so by Lemma 27, �k ! ';  m ! ' 2 0 for some
k;m. By (1), we can assume k = m. Now by Axiom (9), (� _  )k ! ' 2 0
so ' 2 0, a contradiction.
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On A, we de�ne the operation + by :

� + � = f j 9�(� !  2 � ^ � 2 �)g:

We have to show that A with the de�ned + operation is a commutative
monoid. First, though, we have to show that A is closed under +. It is
straightforward to check that conditions (a), (b) and (d) are satis�ed by
� + �, by using the appropriate theorems of C. Finally, we note that by
Lemma 26 (c), �+� is prime. Commutativity of + follows from Axiom (3),
associativity from Axiom (2). Axiom (10) implies that A is totally ordered
by containment: � � � implies � + � � � + � is trivially true. That
� + 0 = � follows by de�nition and Lemma 26 (a).

We now let [[P ]] = f� 2 A j P 2 �g. We have to verify that in the
resulting model, � � ' if and only if ' 2 � for any �. The induction steps
for ^ and _ are straightforward. Assuming the claim for �;  , we prove it
for � !  . If � !  2 �, then if � 2 �;  2 � + � by de�nition, so
� ` � !  holds. Conversely, if � � � !  , let � = f� j � ! � 2 0g.
By (1), � satis�es (a), by (2), it satis�es (b), and � is prime by Lemma 26
(c). The condition (d) follows from (6). Thus � 2 A, so � + � �  since
� � �. Thus  2 � + � by inductive hypothesis. This means that for some
�; � !  2 �; � 2 � so � ! � 2 0. But then (� !  ) ! (� !  ) 2 0 so
that � !  2 �. This completes the induction. Since ' 62 0, 0 6� ' in this
model, so the proof of completeness is �nished. �

4.2 Model Structures for  L!

The logic C we have just discussed bears a strong resemblance to  L!, but
does not coincide with it. For a model theory adequate to  L!, we have to
add several features to our earlier model structures.

For  L!, we postulate that the underlying algebra is not simply an or-
dered commutative monoid, but an ordered Abelian group. That is, we add
to the postulates of Section 4.1 the additional requirement that for each
element x in A there is an element �x 2 A such that x + (�x) = 0. As
usual, we abbreviate x + (�y) as x � y; note that x � y if and only if
y�x � 0. It may be noted here that Chang [1959] proved the completeness
of the  Lukasiewicz axioms for the in�nite-valued calculus by interpreting
formulas as universal sentences on totally ordered Abelian groups. Mundici
[1986] gives further developments of Chang's ideas, featuring the equiva-
lence between MV-algebras and Abelian lattice-ordered groups with strong
units.

To accommodate negation, we add to our earlier language a constant ?
to denote the constant false proposition, de�ning :A as A ! ?. We now
de�ne a model structure over an Abelian group as an assignment of subsets
[[P ]] � A to propositional variables and also [[?]], so that [[P ]] and [[?]] are
non-empty subsets that have a least element, and [[?]] � [[P ]] for any P .
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THEOREM 29. �! ' if and only if ' is valid in all model structures over
an ordered Abelian group.

Proof. We need to verify that all the axioms of  L! (see Section 2.6) are
valid in any such model structure. These are all easy to check, with the
possible exception of

(('!  )!  )! (( ! ')! '):

We shall prove this by showing that ('!  )!  and '_ take the same
value at any point x in a model structure. If x � '_ then x � ('!  )!  
follows immediately. Assume x � (' !  ) !  , but not x � ' or x �  .
It follows that the least point z at which ' is true is smaller than the least
point y at which  is true. Now consider the point y�z. For any u, if u � '
then u � z, so (y � z) + u � y hence (y � z) + u �  . Thus y � z � '!  .
It follows that (y � z) + x �  . But since x 6� '; x < z, so (y � z) + x < y,
which is a contradiction.

For completeness, recall that an invalid formula of  L! is refutable in a
�nite matrix for  Lm. Suppose ' is invalid in such a matrix. Consider the
ordered Abelian group I of the integers. For a propositional variable P , let
g(P ) be the value assigned to P in  Lm+1; set [[P ]] = fx 2 I j x � g(P )g.
Furthermore, set [[?]] = fx 2 I j x � mg. We can now prove by induction
that for any formula ', integer x; 0 � x � m;x � ' if and only if x � g(').
The easy inductive proof is left to the reader. Now since g(') 6= 0; ' is
invalid in the model structure over the integers. �

It should be noted that the condition that for each formula there is a
least point at which it is true is essential. Consider the ordered Abelian
group of the reals, and set [[P ]] = (1;1); [[q]] = [2;1). Then x � p ! q if
x � 1, so that 1 � (p ! q) ! q. But 1 6� p _ q, so that not all theorems of
 L! are validated.

It is possible to give a direct completeness proof for  L! by using the
model theory just expounded. The reader is referred to Scott's paper [1974]

for details.

4.3 Do Errors Add Up?

We have not yet discussed the intuitive meaning of the model theory of the
previous section, due independently to Scott [1974] and Urquhart [1973].

Urquhart [1973] attempts a tense logical interpretation of the model the-
ory, which seems plausible because of  Lukasiewicz's concern with future
contingents. However, if we think of the points in a model as moments of
time, and the statements as `coming to be true' at moments in time, the
truth condition for implication (see Section 4.1) just does not seem to make
sense.
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A more plausible reading is suggested in Scott [1974] who reads the points
in a model as representing degrees of error. Thus 0 represents no error at
all (truth), while the higher points in a model represent greater degrees.
With this interpretation, the semantical condition for implication takes on
an interesting aspect. It says that when we apply modus ponens the degrees
of error add up. That is, if ' !  is true with degree of error k; ' with
degree of error m, then  can be inferred with degree of error k + m.
Scott suggests that this idea might have applications in areas where we are
thinking of something like approximate equality. Suppose P is a space of
point with a real-valued metric on it where j a� b j is the distance between
a and b. We can adopt the convention that a degree of error � i can be
tolerated, so that a statement ' is designated if i � ', where `x � '' is to be
read as `the degree of error of ' is � x'. Now given this choice of designated
values, the sequent

a = b; b = c � a = c

is not valid|approximate equality is not transitive. However, the condi-
tional assertion

a = b � b = c! a = c

is valid, in fact is just a restatement of the triangle inequality.
These kinds of examples have a certain persuasiveness, but diÆculties

remain, as Smiley [1976] points out in his comments on Scott [1976]. The
diÆculty is the same as the one we pointed out in Section 1.3. We want to
say that `if A, then A' is true with degree of error zero. But we don't want
to accept `if A, then B' for any B that happens to have the same degree
of error as A. Similar problems arise with conjunction and negation. The
statement `A and not A' ought to be completely false|but it isn't, if it has
an intermediate value of error. In fact, it isn't even clear how negation can
make sense in most contexts involving error. Suppose we are making guesses
as to the position of (say) an enemy ship on a map. Then we can measure
the degree of error of `not A' where A represents a guess of a position? A
little thought is all that is needed to see that it is just not a proposition of
the right type for degree of error to be de�ned.

Although there are diÆculties with the \degrees of error" interpretation
of  Lukasiewicz's logic, Mundici [1992] has suggested a very interesting ap-
plication of the logic in reasoning under uncertainty. The application has
its origins in a question of Stanislaw Ulam:

Someone thinks of a number between one and one million (which is just less than 220).
Another person is allowed to ask up to twenty questions, to each of which the �rst person
is supposed to answer only yes or no. Obviously the number can be guessed by asking
�rst: Is the number in the �rst half million? then again reduce the reservoir of numbers
in the next question by one-half, and so on. Finally the number is obtained in less
than log2(1; 000; 000). Now suppose one were allowed to lie once or twice, then how
many questions would one need to get the right answer? One clearly needs more than
n questions for guessing one of 2n objects because one does not know when the lie was
told. [1976, p. 281]
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Mundici [1992] has shown that Ulam's guessing game with lies can be anal-
ysed in a natural way using many-valued logic. In the game with no lies, the
second player's current state of knowledge can be represented by a function
from the set of numbers S to the Boolean values f0; 1g; a number has the
value 1 just in case it has not been ruled out by any of the questions so far.
Similarly, in the case of Ulam's guessing game where k lies are permitted,
the second player's current state of knowledge is represented by a function
F : S ! f0; 1=(k + 1); :::; k=(k + 1); 1g, where, for each y 2 S, the quantity
1�F (y) is just the number n of answers currently falsi�ed by y, divided by
k + 1. In this representation, the  Lukasiewicz truth-value is the distance,
measured in units of k+1, from the condition of falsifying too many answers
in Ulam's game with k lies (since only k lies are permitted, all numbers of
errors exceeding k are represented by the value 1 = k+ 1=k+ 1). If we rep-
resent states of knowledge in arbitrary Ulam games by the variables s; t; : : :,
then the equation s ^ s = s is valid just in the games where k = 0. Thus
failure of contraction in  Lukasiewicz logics is given a natural meaning in
the context of this interpretation; in contrast to the classical case of no lies
(k = 0), asking the same question twice provides us with useful information.
Mundici [1992; 1993] shows that equations valid in all Ulam games with an
arbitrary number of lies coincide with tautologies in the in�nite-valued cal-
culus of  Lukasiewicz (where we rewrite s! t as :(s ^ :t)).

4.4 Fuzzy Logic

One of the reasons for the recent revival of interest in many-valued logic is
the growth of research in the area of `fuzzy sets' and `fuzzy logic'. Since
its inception in the mid 1960s this subject has seen an explosive growth
and there are now hundreds of papers in the area, numerous volumes of
conference proceedings and a journal entirely devoted to fuzzy matters.
Here we can only touch on the �eld as it relates to logical questions.

The growth of the �eld is largely owing to the enthusiastic advocacy of
L. A. Zadeh [1965], who introduced the concept of a `fuzzy set'. Given a
collection X of elements, a fuzzy set on X is characterized by a membership
function f(x) that associates with each point in X a real number in the
interval [0; 1]. The nearer the value of f(x) to unity, the higher the grade
of membership in the set. When the range of f is restricted to f0; 1g, we
have the characteristic function of an ordinary classical set.

The intention behind the de�nition of a fuzzy set is to represent predicates
in ordinary discourse that are vague or lacking in precisely de�ned criteria
for membership. For example, the class of numbers much greater than 1
is certainly rather vague. Zadeh suggests that it can be modelled by a
fuzzy set de�ned on the real line with a characteristic function satisfying
f(0) = 0; f(1) = 0; f(5) = 0:01; f(100) = 0:95; f(500) = 1, and so forth.

Complement, containment, union and intersection Zadeh de�nes as fol-
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lows. If f is the function associated with a fuzzy set on X , then the com-
plement of the set has the characteristic function 1� f(x). Containment is
de�ned by f � g, i.e. f(x) � g(x) for all x 2 X . Union and intersection
correspond to max(f; g) and min(f; g) respectively.

Zadeh proposes to use these ideas to model vague predicates such as
`beautiful', `tall', `long', and so forth. A philosophical application is sug-
gested by Goguen [1969] who attempts a solution of the classical paradox
of the bald man (or paradox of the heap). The paradox runs as follows. We
are inclined to admit the truth of the two following sentences:

1. A man with 20,000 hairs on his head is not bald,

2. If you remove one hair from a man who is not bald, then he remains
not bald.

However by applying (2) 20,000 times along with modus ponens, we derive
the absurd conclusion that a man with zero hairs on his head is not bald.
Goguen suggests that we think of `bald' as a fuzzy predicate. Then if we
attach to the implication (2) a truth value slightly less than 1 and adopt
 Lukasiewicz's implication, we �nd that although we may start by assigning
the truth value 1 to (1), each successive application of modus ponens lowers
the truth value of the sentence `A man with 20; 000� x hairs is bald'. In
this way, Goguen argues, fuzzy logic avoids the paradox of the heap.

One immediate objection that presents itself to this line of approach is
the extremely arti�cial nature of the attaching of precise numerical values to
sentences like `73 is a large number' or `Picasso's Guernica is beautiful'. In
fact, it seems plausible to say that the nature of vague predicates precludes
attaching precise numerical values just as much as it precludes attaching
precise classical truth values. The arti�ciality of Zadeh's and Goguen's
approach emerges readily from a little reection on the numerical example
given above.

Zadeh is of course aware of the arti�cial nature of his procedure, and in
later publications he introduces the idea of `fuzzy truth values'. A fuzzy
truth value (such as `true', `very true', `not so true') is a fuzzy subset of the
real line. The assignment of truth values to sentences now takes a form such
as `The compatibility of the numerical truth value 0.8 with the linguistic
truth value \true" is 0.7'. It seems, however, that the `fuzzi�cation' of truth
values (see Bellman and Zadeh [1977]) has only pushed the original problem
one stage back, as we still have numerically precise values for compatibility
with the fuzzy truth values.

Another problem that arises with fuzzy logic is a diÆculty very similar to
the diÆculties involved in interpreting  Lukasiewicz's logics. How are we to
interpret the operations on fuzzy sets? If we interpret intersection and union
as the algebraic equivalent of conjunction and disjunction, and complemen-
tation as negation, then things don't seem to work out right. Suppose we
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are dealing with a problem in pattern recognition (a case frequently dis-
cussed in the fuzzy literature). Then a given object x may be a triangle
(say) to degree 0:9; f�(x) = 0:9. If the complement of f� represents `is not
a triangle' and union disjunction, then max(f�; 1� f�) should represent `is
a triangle or isn't a triangle' and should be the constant 1 function; but it
isn't. So operations on fuzzy sets don't correspond to ordinary logical con-
nectives; but it's diÆcult to make out what they are supposed to represent.
It can be seen that the root diÆculty here is identical with the diÆculties
in  Lukasiewicz's systems.

The idea of fuzzy set suggests that the notion of a rule of inference can
itself be \fuzzi�ed"; following up the original suggestion of Goguen [1969]

(see the remarks above about the paradox of the heap) Jan Pavelka [1979]

has investigated this idea in some detail in a series of papers. Pavelka de�nes
a many-valued rule of inference from a fuzzy set of formulas by specifying a
rule of inference in the ordinary sense, together with a rule for computing
the value of the conclusion from the values of the premisses. Pavelka proves
both axiomatizability and non-axiomatizability results for the case where
the underlying algebra is a chain with a residuation operation.

Fuzzy logic has become a fairly active sub-discipline of software engineer-
ing with its own voluminous literature. For a sample of articles in the area,
the reader can consult [Baldwin, 1996]. The topics in such articles do not
have much to do with logic in the classical sense of a canon of inference.
The collection [H�ohle and Klement, 1995] is a useful compendium of work
on the algebraic and logical foundations of fuzzy set theory; a selection of
Zadeh's own papers is available in [Zadeh, 1996].

4.5 The Logic of Signi�cance

We have seen how Bochvar extended the classical truth values by adding a
third truth value to be read as `meaningless'.

His ideas were extended by Halld�en [1949] who formalized a version of
three-valued sentential logic containing a one-place operator S' in addition
to the usual propositional connectives. `S'' is to be read as `' is a signi�cant
proposition' and takes the value T if ' takes the value T or F , otherwise
the value F . Taking Bochvar's tables for the propositional connectives as
basic, and T as the only designated value, we now have valid formulas like:

S(' ^  )$ S' ^ S :

Halld�en's ideas have been greatly extended in the work of Goddard and
Routley [1973]. They include not only syntactical and semantical analyses of
sentential signi�cance logics, but also formalizations of quanti�ed and higher
order signi�cance logics. Their book is the fullest and richest discussion in
the literature of the logic of signi�cance, and its role in the history of logic
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and philosophy.

5 RETROSPECTIVE

5.1 What is Many-valued Logic?

So far we have avoided the question posed above by taking a more or less
historical approach. Many-valued logic from this point of view consists
simply in the systems developed by  Lukasiewicz, Post, Bochvar and Kleene,
or systems closely related to these.

Nevertheless, this characterization leaves something to be desired. It
would be better if we could give a more analytical account of what many-
valued logic is, and what distinguishes it from classical logic. A de�nition
that is explicitly or implicitly adopted by many authors is that a many-
valued logic is involved whenever we assign to formulas in a logical system
values in an algebra that is not the two element Boolean algebra (i.e. clas-
sical truth tables). By this de�nition, Boolean-valued models for set theory
count as many-valued logic (see for example, the introductory remarks in
[Mostowski, 1979, Lecture V]). But this broad usage of the phrase `many-
valued logic' does not have a great deal to commend it. How broad it is
emerges clearly from the fact that by Theorem 3, any uniform structural
consequence relation can be considered as a many-valued logic.

In order to get a more sensible idea of what many-valued logic is, let's
return to the ideas of the pioneers to see if we can extract some common
core to their assumptions.

According to the interpretation defended here what is characteristic of
a many-valued logic is not so much the formal apparatus of multiple truth
values as the relationship of the formalism of multiple truth values to the
intuitive interpretation. The key ideas that the systems of  Lukasiewicz,
Bochvar and Kleene have in common are:

1. To the classical truth values is added one or more extra truth values
with meanings like `possible', `meaningless' or `undetermined'. These
truth values are usually considered as linearly ordered.

2. The rules for assigning values to complex formulas satisfy a generalized
rule of truth functionality; the value assigned to a complex formula is
a function of the values assigned to its components.

Since we are not dealing with a given intuitive interpretation of the for-
malism, but several, we shall begin by considering  Lukasiewicz's interpreta-
tion and related ideas.
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5.2 The Logic of Uncertainty

 Lukasiewicz wished to use his logic to describe situations involving uncer-
tainty and the `open future'. As I have emphasised in the discussion of Sec-
tion 1, this idea seems to be de�nitely incorrect, provided that the connec-
tives of  Lukasiewicz's logic are to be read as corresponding to the ordinary
language connectives of conjunction, disjunction, negation and implication.
The logic of uncertainty is simply not truth-functional.

In fact, we can establish something stronger than the previous weak neg-
ative claim. Arguments of Ramsey, de Finetti and Savage (for details, see
[Je�rey, 1965]) establish that subjective probability values must obey the
rules of the probability calculus. More precisely, if we assume that prob-
ability values represent betting quotients, then the rules of the probabil-
ity calculus for subjective probability emerge automatically as consistency
conditions for a rational agent. Now the probability calculus is not truth-
functional; the probability value of a conjunction is not a function of the
values of its conjuncts, because the conjuncts may or may not be stochasti-
cally independent. These simple considerations suÆce to throw considerable
doubt on  Lukasiewicz's ideas.

Quite similar remarks apply to interpretations that consider the multiple
values as representing degrees of error, or degrees of precision or vague-
ness. It would seem that where one is attempting to formalize concepts
of uncertainty, vagueness and so forth, the rules of the probability calculus
provide a much more attractive model than the framework of ideas provided
by many-valued logic. I do not wish, however, to classify probability the-
ory as many-valued logic because it violates the basic truth-functionality
principle (2). It is a curious fact that in spite of his polemics against classi-
cal logic  Lukasiewicz came to grief by clinging to the classical principles of
truth-functionality.

5.3 `Unde�ned' as a Truth Value

The polemics in the previous section against any interpretation of many-
valued logic relating to subjective uncertainty leaves unscathed the applica-
tions where an intermediate value stands for `unde�ned' or `meaningless'.

As we have noted, the idea of using a many-valued logic as a foundation
for set theory is currently in doubt. However, there remains Kleene's strong
truth tables and their application in recursive function theory and other
areas where a formula fails to be assigned a truth value for practical or
theoretical reasons.

Here as in the previous case, the crucial questions turn around the general
principle of truth-functionality. It is possible to o�er a plausible argument
that in fact, the logic of `unde�ned' is not truth-functional. Suppose that
the sentence ' fails to have a truth-value; evidently :' must also fail to
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have a value. But '_:' should be true, not unde�ned (contrary to Kleene's
tables). On the other hand, if ' and  are logically independent propositions
with no truth value, then ' _  may certainly be unde�ned. We shall
describe briey in the next section an approach alternative to many-valued
logic that takes the foregoing ideas as basic.

5.4 Supervaluations

The method of supervaluations was introduced in [van Fraassen, 1966] as a
means of providing semantics for free logic, that is, a logic containing non-
denoting terms. Let L be a language for classical predicate logic containing
predicate letters, individual variables, quanti�ers and classical connectives.
To give a speci�c interpretation I for L, we specify a non-empty domain of
discourse D and an extension in D for the predicates in L. Furthermore,
for each individual constant or name a in L, we either assign a a denotation
in D, or leave the denotation of a unde�ned. For atomic sentences Pa; Pa
is true under the interpretation if a has a denotation d(a) in D and d(a) is
in the extension of P , false if d(a) is de�ned and not in the extension of P ;
otherwise Pa has no truth value. Thus we are considering an interpretation
in which `truth value gaps' exist. How do we de�ne truth and falsity in
this interpretation? One method might be to take `unde�ned' as a third
truth value, then use Kleene's three-valued logic. Van Fraassen, however,
wishes to hew to the classically valid arguments. Accordingly, he considers
all possible extensions of the truth value assignments to atomic formula in
I . Let us call any such extension that �lls in the truth value gaps in I
arbitrarily a classical extension of I . In any such classical extension we can
assess the truth value of any formula ' by the classical de�nition, bearing
in mind that 8x (x) is true in such an extension if and only if  (d) is true
for any d 2 D. Then a supervaluation over I is a function that assigns T (F )
exactly to those statements assigned T (F ) by all the classical extensions of
I . Let us say that a formula ' is SL-valid if it is true in all supervaluations.

The de�nition of supervaluation has the attractive feature that it makes
SL-valid exactly the theorems of classical `free logic'. For details of the
completeness proof and further work on supervaluation and free logic, the
reader is referred to Bencivenga's contribution to this Handbook (Chapter
4.5). Here our main concern is with supervaluations as an alternative to
many-valued logic.

One of the most striking features of the supervaluation approach is that
it makes SL-valid the law of excluded middle, but not the law of bivalence.
For example, if the name `Bruce Wayne' fails to denote in an interpretation
I , then `Bruce Wayne reads Proust' fails to have a truth value in the super-
valuation over I . This at �rst sight seems counter-intuitive, since we have
a true disjunction, with neither disjunct true. Our surprise is lessened if
we reect on what it means to say that a formula containing non-denoting
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terms is true under a supervaluation. To say that ' _ :' is true is to say
that it would be true if we pretend that the non-denoting terms in it have
a reference. Such a formula is true only in an `as if' kind of way, not a full-
blooded classical way. It is important to note that if we regard `unde�ned'
as a third truth value (a move that Van Fraassen strenuously resists) then
a supervaluation is not truth functional. For example, if `Dick Grayson' is
another non-denoting term, then `Dick Grayson reads Baudelaire' has no
truth value; but it is clear that `Bruce Wayne reads Proust or Dick Grayson
reads Baudelaire' has no truth value, in contrast to any instance of the law
of excluded middle.

For many purposes, the theory of supervaluations seems superior to the
older approaches involving many-valued logic. The supervaluation approach
has the very real advantage that it allows us all of classical (free) logic,
while admitting the possibility of truth value gaps. The method of super-
valuations accomplishes these seemingly incompatible objectives precisely
by abandoning the principle of truth functionality, which as we have seen
is the basic source of diÆculty in interpreting many-valued logic. It does so
admittedly at the price of abandoning such classical principles as the idea
that a disjunction is true only if one of its disjuncts is true. According to
Quine [1953] such an abandonment is a `desperate extremity'. Those who
like Quine wish to stick to this principle come what may should perhaps
�nd Kleene's truth table more congenial.

5.5 Summing Up

In a survey of mathematical logic and logical positivism, Zbigniew Jordan
gave the following remarkable assessment of many-valued logic:

Without any doubt it is a discovery of the �rst order, eclipsing
everything done in the �eld of logical research in Poland ([Jor-
dan, 1945] in [McCall, 1967, p. 389]).

This passage is the more striking if one reects that among the results said
to be eclipsed are: Chwistek's simple type theory, Kuratowski's work on
the projective hierarchy, Ja�skowski's work on natural deduction, Linden-
baum's results and above all, Tarski's fundamental work on methodology,
de�nability and the theory of truth.

It is diÆcult to agree with this estimate of  Lukasiewicz's work. While
Tarksi's ideas have proved their fruitfulness in virtually every area of modern
logic,  Lukasiewicz's many-valued systems have remained somewhat marginal
to the1 mainstream of logical research. It seems likely that this marginal
position is related to the diÆculties in �nding a natural interpretation of
the extra truth-values discussed above.
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Although many-valued logics have not ful�lled the revolutionary role that
 Lukasiewicz and others hoped for them, interest in these systems is currently
increasing, and they will doubtless continue to inspire interesting work in
both mathematics and philosophy.

Further reading. [Malinowksi, 1993], [Rine, 1984], [W�ojcicki and Mali-
nowski, 1977].

University of Toronto, Canada.
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REINER H�AHNLE

ADVANCED MANY-VALUED LOGICS

1 INTRODUCTION

Let me begin with a brief discussion of the name of this chapter: the adjec-
tive \advanced" in the title can only be understood in the temporal sense;
the bulk of Urquhart's chapter in this Handbook was written for the �rst edi-
tion in the early 1980s and, therefore, does not cover recent results in depth.
Perhaps \complementary" would be an altogether more �tting quali�cation
for the present text. It is not required to have read \Basic Many-Valued
Logic" in order to use my chapter. It is (I hope) not more diÆcult to read,
either. On the other hand, you will �nd few overlaps and for sure some quite
di�erent points of view. Urquhart's chapter, for example, covers functional
completeness, model theory, or theory of consequence relations very well,
and I do not repeat this material.

So what are the characteristics of the present chapter? First of all, I
included a lot of material on proof theory: not only results on axiomati-
zation, but as well on automated deduction; I tried to stress connections
between MVL and mainstream topics of mathematics and computer science
(for example, linear optimization, constraint programming, or circuit de-
sign) whenever possible; I concentrated on topics that, in my opinion, are
currently active and promising areas for research; if suitable, applications
and implemented systems are mentioned; at the end of this chapter, a list
of resources is included that will be continually updated on the web.

Section 2 serves to set up the notational framework for many-valued logic
needed later on. It also includes more or less standard material on abstract
algebra and inference systems to make this chapter self-contained. Many-
valued logic is sometimes criticized for lack of philosophical or mathematical
motivation of the additional truth values. If you should have such doubt,
then I try to convince you that it is worthwhile to read on in Section 2.5,
immediately after the tools for making precise statements have been assem-
bled.

In the last decade or so extremely rich algebraic and geometric struc-
tures in (in�nite-valued)  Lukasiewicz logic and related systems were exhib-
ited; moreover, convincing semantics of many-valued logics coming from
such diverse �elds as coding theory, functional analysis, geometry, or quan-
tum physics were given. Along with this, new completeness proofs for
 Lukasiewicz's axiom system and new proofs of McNaughton's fundamen-
tal characterization of  Lukasiewicz logic were found. In Section 4 some
strands of this research are reviewed. This is prepared in the preceding Sec-
tion 3 on algebraic aspects in general, where  Lukasiewicz logic is discussed
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as a particular member of a large family of many-valued logics based on
residuated lattices.

The �eld of fuzzy logic was not taken seriously by mainstream logicians
until a couple of years ago (it was more or less regarded as an ad hoc notation
used by engineers). This perception has changed.1 In Section 5, I discuss
the re-evaluated relationship between many-valued and fuzzy logic.

Although there existed implementations of satis�ability checkers for cer-
tain MVLs as far back as 1967, serious implementation e�orts (and along
with it, investigations into computational properties of MVL) were only
begun as part of the wave of non-classical deduction (mainly for AI applica-
tions) that surged from the mid-1980s onwards. By now many results from
classical deduction have been generalized to the many-valued case, often in
a generic way. Additional sources of complexity in deduction arising from
many-valuedness were identi�ed and tools to cope with this added complex-
ity were developed. In a sense, computational MVL is more mature than,
say, computational modal logic. Tools for analyzing many-valued logics and
for �nding formal proofs in them are available. The main developments are
sketched in Section 6.

Design of multimedia databases capable of dealing with heterogeneous,
distributed, richly typed data is acknowledged as one of the future challenges
of database theory [Gray, 1996]. Deductive databases can form the basis for
the more active role expected in this context from a database. Many-valued
logic can enhance the expressivity of deductive databases, particularly when
dealing with inconsistent and/or incomplete information. Closely related to
automated deduction and deductive databases, logic programming forms a
link between both in terms of expressivity and procedurality. MVL plays
quite di�erent roles here: on the one hand, it can be used to provide se-
mantics to extended classes of logic programs, on the other hand, logic
programs themselves may be extended to accommodate many-valued con-
nectives. Many-valued logic from the point of view of deductive databases
and logic programming is the topic of Section 7.

Discrete function manipulation has been a traditional tool in circuit de-
sign and a long-standing topic of applied MVL research. In the last decade
design techniques based on Binary and Many-Valued Decision Diagrams
became predominant in switch-level design. A less known fact which I also
elaborate on in Section 8 are the close connections between decision dia-
grams and proof theory of many-valued logic.

Questions on the complexity and decidability of problems associated to
classical logic can be freshly asked in the many-valued context, along with
new ones. Some answers are as expected, but some surprises are in store as
well, see Section 9.

1Both, their former opinions about and their re-evaluation of fuzzy logic were ex-
pressed, for example, by logicians S. Gottwald, P. H�ajek, and P. Schmitt in personal
communication with the author [1996].
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Many researchers, for example, Gabbay [1996], claim that applications of
AI in logic demand combination of various (and diverse) non-classical logics
within one system of reasoning. It is, therefore, important to understand
how MVL interacts with other logics and what the options for combining
them are. An overview of results achieved so far is in Section 10.

The chapter is closed with Section 11, a list of resources available to those
interested in MVL research.

2 PRELIMINARIES

In many-valued logic, we work with standard propositional and �rst-order
languages, but since we have di�erent and/or additional connectives and
quanti�ers it is convenient to regard these not as �xed, but to parameterize
many-valued logic languages with sets of connectives and possibly quanti-
�ers.

2.1 Propositional Logic

As usual, a countably in�nite set of propositional variables � = fp; q; r; : : : g
is a propositional signature. Let � be a �nite set of operator names,
called connectives; the arity of � 2 � is a non-negative integer given
by a function �. Connectives with arity 0 are called logical constants.
Given a propositional language L0 = h�; �i and a signature �, the set
of L0

�-formulas is de�ned inductively as usual:

1. Members of � and logical constants are L0
�-formulas.

2. If � 2 �, �(�) = r > 0, and '1; : : : ; 'r are L0
�-formulas, then also

�('1; : : : ; 'r) is an L0
�-formula.

The concrete signature usually is not relevant, and then we omit it from the
index.

EXAMPLE 1. Throughout this article, 0 is a logical constant, all connec-
tives of the form :x;r are unary, while !x;_;^;�x;�x are binary ones.

1. The language L0
c of classical propositional logic contains the connec-

tives 0;^;!.

2. The language L0
 L of  Lukasiewicz logic contains the connectives 0;

� L;! L.

3. The language L0
G of G�odel logic contains the connectives 0;^;!G.

4. The language L0
� of product logic contains the connectives 0;��;!�.
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5. We have the family of languages L0
t of t-norm logics containing the

connectives 0;�t;!t.

6. The language L0
P of Post logic contains the connectives :P;^.

7. The language of the paraconsistent logic L0
J contains the connectives

:;r, and _.

We say negation to the connectives :x, implication to !x, conjunc-
tion to ^, disjunction to _, product to �x, and sum to �x. This can
be quali�ed with a language, for example, when one says \ Lukasiewicz im-
plication", the connective ! L is meant.

Given a signature, in classical logic, a propositional variable can either
be true or false. Each such interpretation of the variables determines an
interpretation of arbitrary formulas in a �xed way. In many-valued logic,
we must be more exible: instead of true and false, a value from an arbitrary,
non-empty set of truth values N can be assigned to a variable. Moreover,
for each member of �, its behaviour on N must be �xed. As we will consider
many di�erent systems, it is convenient to introduce some terminology:

A propositional matrix A0 = hN; (A�)�2�i for a propositional lan-
guage L0 consists of a non-empty set of truth values N and a collection
(A�)�2� of operations on N such that A� : N�(�) ! N for each � 2 �. jN j
denotes the cardinality of N .

A pair L0 = hL0;A0i, where L0 is a propositional language and A0 is a
matrix for L0, is called (N -valued) propositional logic.

EXAMPLE 2. For each n � 2 let n = f0; 1
n�1 ; : : : ;

n�2
n�1 ; 1g be the truth

value set of cardinality n consisting of equidistant rational numbers. With
[0; 1] we denote the closed real unit interval. In the following, let N be either
[0; 1] or n for some n. In all logics considered below, A0 = 0, A^ = min, and
A_ = max. In each of 1.{5. below, implication is de�ned as A!x

(i; j) =
supfk j A�x(i; k) � jg with the help of product. This process is called
residuation.

1. In classical propositional logic L0
c , n = 2 (hence, N = f0; 1g). If

residuation is based on ^, the usual de�nitions result.

2. In  Lukasiewicz logic [ Lukasiewicz, 1920;  Lukasiewicz and Tarski,
1930] L0

 L, A� L
(i; j) = maxf0; i+ j � 1g.

3. In G�odel logic [G�odel, 1932] L0
G, A^ = A�G

= min.

4. In product logic [H�ajek et al., 1996] L0
�, A��

= � (multiplication).
Product logic is only de�ned for N = [0; 1], because none of the sets
n is closed under A��

.
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5. For N = [0; 1], an operator � : [0; 1]2 ! [0; 1] is a triangular norm
(t-norm, for short) if it is

commutative: i � j = j � i for all i; j 2 [0; 1]

associative: (i � j) � k = i � (j � k) for all i; j; k 2 [0; 1]

non-decreasing: i1 � i2 implies i1 � j � i2 � j for all i1; i2; j 2 [0; 1]
(hence, by commutativity, also j1 � j2 implies i � j1 � i � j2 for
all i; j1; j2 2 [0; 1])

left-neutral in 1: 1� i = i for all i 2 [0; 1] (hence, by commutativity,
� is also right-neutral; in particular, 0 = 0 � 1 � 0 � i, thus
0 � i = i � 0 = 0 for all i 2 [0; 1]).

A so-called t-norm logic L0
t is obtained from any continuous (in the

usual sense) t-norm A�t by restriction of A�t to N , whenever N is
closed under �t.

6. In Post logic [Post, 1921] L0
P, N = n is �nite and

A:P
(i) =

�
1 i = 0
i� 1

n�1 i > 0
:

7. In paraconsistent logic2 L0
J
, N = n is �nite and

Ar(i) =

8<:
2i 0 � i < 1

n�1

i+ 1
n�1

1
n�1 � i < 1

1 i = 1

:

It is straightforward to check that each of the products of  Lukasiewicz,
G�odel, and product logic is a continuous t-norm. The central place of these
particular t-norms is justi�ed by the fact that any continuous t-norm can
be represented with  Lukasiewicz, G�odel, and product t-norms alone (Sec-
tion 5.2).

Some operators of  Lukasiewicz and G�odel logic for N = [0; 1] are dis-
played in Figures 1 and 2. Observe, how implication results from residuation
of the product.

In t-norm theory one often considers 0 and �t as primitive operators, in
algebra, : and! or �. The base is not really relevant, but when everything
must be expressed with the help of base operators, then we have to translate
back and forth to versions used in the respective literature all the time.
Therefore, I use a nearly minimal and mostly uniform base for each logic

2For N = 3 this logic was de�ned in [D'Ottaviano and da Costa, 1970], beyond 3
several possibilities to de�ne r exist. The de�nition used here was suggested by Jo~ao
Marcos. Note that Ar converges towards the identity function as n increases. For N = 2,
too, Ar is the identity.
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Figure 1.  Lukasiewicz operators for N = [0; 1].

and add further connectives as abbreviations, if needed. For example, in
each t-norm logic, negation and sum connectives are obtained by writing

:t' for '!t 0(1)

'�t  for :t(:t'�t :t )(2)

Further, one can stipulate

' ^t  for '�t ('!t  )(3)

' _t  for (('!t  )!t  ) ^ (( !t ')!t ')(4)

An N -valued matrix A0 is called functionally complete, if every m-ary
function f : Nm ! N can be de�ned using operators from A0 alone. The
matrix of classical logic is functionally complete and the matrix of n-valued
Post logic L0

P is functionally complete for each n. None of the other matrices
is functionally complete. Functional completeness is thoroughly discussed
in Chapter Urquhart's chapter in this Volume of this Handbook.

A propositional interpretation I determines the truth value of each
variable in a given signature �, hence it is simply a mapping I : �! N . For
each propositional many-valued logic L0 its matrix A0 uniquely (simple ex-
ercise) determines the extension of any �-interpretation to a propositional
valuation function on L0

� (for which the same symbol is used) via

I(�('1; : : : ; 'r)) = A�(I('1); : : : ; I('r)) :(5)

Let D be any subset of N and 	 a set of L0
�-formulas. We say that 	 is

D-satis�able if there is a �-interpretation I such that I(') 2 D for all
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Figure 2. G�odel operators for N = [0; 1].

' 2 	. Such an I is called D-model of 	, in symbolic notation I j=D 	.
The set 	 is D-valid if all �-interpretations are D-models of 	, in symbols
j=D 	. We usually write j=D ' instead of j=D f'g. Finally, a formula ' is
a D-consequence of 	 if every D-model of 	 is as well a D-model of ',
in symbols 	 j=D '.

The well-known duality between satis�ability and validity known from
classical logic, extends as follows: ' is D-valid i� it is not D-satis�able.
D = ; is not excluded for technical reasons; obviously, no formula is ;-

satis�able. The notions of D-validity and -satis�ability are due to [Kirin,
1966].

In many cases, the set D is considered to be �xed in a given many-valued
logic. It is then called the set of designated truth values, and one writes
\satis�able" instead of \D-satis�able", \j=" instead of \j=D", etc.

EXAMPLE 3. For all the logics of Example 2, with the exception of L0
J,

the usual choice for the designated truth values is D = f1g. Here are some
examples of formulas that are valid in each t-norm logic:3

(A1) ('!t  )!t (( !t �)!t ('!t �))

(A2) ('�t  )!t '

(A3) ('�t  )!t ( �t ')

(A4) ('�t ('!t  ))!t ( �t ( !t '))

3These are the axioms of basic t-norm logic [H�ajek, 1998], see below.
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(A5a) ('!t ( !t �))!t (('�t  )!t �)

(A5b) ((' �t  )!t �)!t ('!t ( !t �))

(A6) (('!t  )!t �)!t ((( !t ')!t �)!t �)

(A7) 0!t '

Moreover, in any t-norm logic, f'; '!t  g j=  .
In L0

J, one �xes D = N � f0g, which has the e�ect that r characterizes
designatedness.

We may de�ne a strong notion of equivalence that can be paraphrased
as \fig-consequence in both directions for all i 2 N": L0

�-formulas ',  
are strongly equivalent, briey ' �  , when I(') = I( ) for all �-
interpretations I. For example, with the de�nitions in (3), respectively, in
(4) one has ' ^  � ' ^x  , respectively, ' _  � ' _x  in every t-norm
logic. Therefore, only the symbols _ and ^ will be used in all these logics.

EXAMPLE 4. It is easy to see that for N = 3 the matrices of the logics L0
 L

and L0
J de�ne the same functions: r' � :' ! L ' and, vice versa, ' ! L

 � (r:'_ )^(:'_r ), '� L � :(:'! L  ), and 0 � :(:r'_r').

REMARK 5. A choice other than D = f1g for the set of designated truth
values can have interesting consequences: as remarked earlier, the three-
valued matrices of L0

 L and L0
J are identical up to the base of operators.

The choice of D = N � f0g = f 1
2 ; 1g for L0

J, however, renders the latter a
paraconsistent logic. This is a logic equipped with a negation connective
: such that a syntactically inconsistent set of formulas containing, say, ' and
:' does not have every formula as a logical consequence (as it is the case in
classical logic). Indeed, in three-valued L0

J one has, for example, f';:'g 6j=
 and f';:'_ g 6j=  . One can even characterize the consequence relation
syntactically within the logic. Let ' �  � :r' _  , then 	 j= ' i�
j= (

V
 2	  ) � ' (	 �nite). f1g-consequence can be recovered with the

connective �' � :r:', which restricts models to f1g-models: j= �'
i� j=f1g '. On the other hand, unsatis�ability can easily be expressed
using, for example, the formula �'^:�'. These properties motivated the
de�nition of three-valued L0

J in [D'Ottaviano and da Costa, 1970], where it
was called J3. For more than three truth values similar relationships hold
in L0

J.
Paraconsistent logic is a �eld of research in its own right and discussed

at length elsewhere in this Handbook. Many paraconsistent logics, such as
the systems P 1 of [Sette, 1973; Sette and Carnielli, 1995] and LFI1 (whose
matrix de�nes the same functions as J3) of [Carnielli et al., to appear, 2000],
can be seen as a particular many-valued logic with more than one designated
value.
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2.2 First-Order Logic

A �rst-order signature � is a triple hP�; F�; ��i, where P� is a non-
empty family of predicate symbols, F� a possibly empty family of func-
tion symbols disjoint from P�, and �� assigns an arity to each member
of P� [ F�.

Let Term� be the set of �-terms, de�ned inductively as usual over a
countably in�nite set of object (or individual) variables Var = fx0;
x1; : : : g:

1. Members of Var and c 2 F� with �(c) = 0 are �-terms.

2. If f 2 F�, �(f) = r > 0, and t1; : : : ; tr are �-terms, then f(t1; : : : ; tr)
is a �-term.

Term0
� are the variable-free terms in Term�, the so-called ground terms.

The atoms are de�ned as:

At� = fp(t1; : : : ; tr) j p 2 P�; ��(p) = r; ti 2 Term�g :

A �rst-order language is a triple L = h�;�; �i, where h�; �i is proposi-
tional language and � is a �nite set of �rst-order quanti�ers.

EXAMPLE 6. All of the propositional languages L0
x de�ned in Example 1

are extended to �rst-order languages Lx by adding the quanti�er set � =
f8; 9g.

The set of L�-formulas of a �rst-order language L over a �rst-order
signature � is inductively de�ned by:

1. The atoms over � are L�-formulas.

2. If � 2 �, �(�) = r > 0, and '1; : : : ; 'r are L�-formulas, then also
�('1; : : : ; 'r) is an L�-formula.

3. If � 2 �, ' 2 L�, and x 2 Var, then (�x)' is an L�-formula and ' is
the scope of (�x)'.

A variable x 2 Var occurs bound in a formula ', if ' contains a subfor-
mula of the form (�x) . It occurs free, if there is an occurrence of x in '
that is not in the scope of a subformula of the form (�x) .

A classical �rst-order formula ' is said to be in conjunctive normal
form (CNF) i� it has the form (8x1) � � � (8xr)

VM
k=1

WJk
l=1 Lkl, where the

Lkl are literals and fx1; : : : ; xrg are the free variables in the scope. For any

1 � k �M , the expression (8y1) � � � (8ym)
WJk
l=1 Lkl, where fy1; : : : ; ymg are

the free variables in the scope, is a clause of '.
If L = h�;�; �i is a �rst-order language, then a �rst-order matrix is

a triple A = hN; (A�)�2�; (Q�)�2�i, where hN; (A�)�2�i is a propositional
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matrix for h�; �i and Q� : P+(N) ! N for each � 2 �, where P+(N) are
the non-empty subsets of N . Q� is called the distribution function of
the quanti�er �.

A pair L = hL;Ai, where L is a �rst-order language and A is a �rst-order
matrix for L, is called (N -valued) �rst-order logic.

EXAMPLE 7. From each �rst-order language Lx of Example 6 one obtains
a �rst-order logic Lx over N = [0; 1] or N = n using distribution functions
Q8 = inf and Q9 = sup.4 The reader is invited to check that Lc is classical
�rst-order logic.

Given a �rst-order signature �, a �rst-order structure M = hD; Ii �xes
a non-empty set D, the domain of discourse, and the meaning of function
and predicate symbols via an interpretation I that maps each function sym-
bol f 2 F� of arity r into a function I(f) : Dr ! D, and each predicate
symbol p 2 P� of arity r into a function I(p) : Dr ! N . Observe that
for F� = ; and P� containing only 0-ary predicate symbols I reduces to a
propositional interpretation.

Like in the propositional case, for each �rst-order logic L its matrix A
uniquely determines for any �rst-order structure M a valuation function on
arbitrary terms and L�-formulas. In addition, one must specify the meaning
of object variables that might occur within formulas. This is done as usual
with a variable assignment � : Var! D.

For given M and �, the �rst-order valuation function vM;� maps terms
into D and L�-formulas into N . For t 2 Term�, one writes tM;� instead of
vM;�(t). The de�nition is by induction:

xM;� = �(x); x 2 Var(6)

f(t1; : : : ; tr)
M;� = I(f)(tM;�

1 ; : : : ; tM;�
r ); f 2 F�; �(f) = r(7)

vM;�(p(t1; : : : ; tr)) = I(p)(tM;�
1 ; : : : ; tM;�

r ); p 2 P�; �(p) = r(8)

vM;�(�('1; : : : ; 'r)) = A�(vM;�('1); : : : ; vM;�('r)); � 2 �; �(�) = r(9)

vM;�((�x)') = Q�(fvM;�dx
(') j d 2 Dg); � 2 �(10)

The expression fvM;�dx
(') j d 2 Dg in (10) is the distribution of ' at x.

Equation (9) is, of course, the �rst-order version of (5).
Our de�nition of �rst-order structure automatically ensures that it is safe

in the sense of [H�ajek, 1998]: vM;�(') is a total function in any N -valued
�rst-order logic for all ' and �.

4Here, it would not do to have only rational numbers as truth values, because the
rationals are not closed under inf and sup.
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Satisfaction is de�ned analogously to the propositional case, with the
exception that the presence of assignments gives rise to one more concept,
just as in classical logic.

Let D be a non-empty subset of N and 	 a set of L�-formulas. We say
that 	 is D-satis�able if there is a �rst-order structure M over � and a
variable assignment � such that vM;�(') 2 D for all ' 2 	, for short write
M; � j=D 	. When M; � j=D 	 for all variable assignments �, 	 is said
to be D-true in M, for short M j=D 	, and M is called D-model of 	.
The formula set 	 is D-valid if it is true in all �rst-order �-structures, in
symbols j=D 	. Logical consequence is de�ned as before, that is, 	 j=D '
i� every D-model of 	 is as well D-model of '. The conventions about
dropping D when it is obvious and identifying f'g with ' are as above.

A substitution is a mapping � : Var! Term�. It is extended to terms
and formulas as usual:

� �(c) = c, if c 2 F� with �(c) = 0

� �(f(t1; : : : ; tr)) = f(�(t1); : : : ; �(tr)), if f(t1; : : : ; tr) 2 Term�,
f 2 F� with �(f) = r > 0

� �(p) = p, if p 2 P� with �(p) = 0

� �(p(t1; : : : ; tr)) = p(�(t1); : : : ; �(tr)), if p(t1; : : : ; tr) 2 At�, p 2 P�

with �(p) = r > 0

� �(�) = �, if � is a logical constant

� �(�('1; : : : ; 'r)) = �(�('1); : : : ; �('r)), if �('1; : : : ; 'r) 2 L�, � 2 �
with �(�) = r > 0

� �((�x)') = (�x)�0(') for (�x)' 2 L� and � 2 �, where �0(x) = x
and �0 = � otherwise.

If a substitution is the identity for all but �nitely many object variables
X = fx1; : : : ; xrg � Var, then it is a substitution for X , and it is written
as � = fx1=t1; : : : ; xr=trg, where �(xi) = ti, 1 � i � r. Application of
substitutions is usually written post�x (note that '(� Æ�) = ('�)� = '��).
When the image on X of a substitution for X consists of ground terms one
has a ground substitution for X .

We assume without loss of generality that all substitutions � for X are
free with respect to the formulas ' they are applied to, that is, no variable
in the image of � on X occurs bound in '. This can easily be achieved
by bound renaming of variables in ': for each bound variable x in '
replace all occurrences of x with a y 2 Var not occurring elsewhere. Bound
renaming obviously preserves the models of a formula.
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EXAMPLE 8. For the logics of Example 7, with the exception of LJ, the
usual choice for the designated truth values is D = f1g. Here are some
examples of formulas that are valid in each �rst-order t-norm logic:5

(A8) (8x)'!t 'fx=tg, for any t 2 Term0
�

(A9) 'fx=tg !t (9x)', for any t 2 Term0
�

(A10) (8x)('!t  )!t ('!t (8x) ), whenever x not free in '

(A11) (8x)('!t  )!t ((9x)' !t  ), whenever x not free in  

(A12) (8x)(' _  )!t ((8x)' _  ), whenever x not free in  

Moreover, in any t-norm logic, f'g j= (8x)'.

The semantics of quanti�ers in many-valued logic is not straightforward.
In logics having disjunction- and conjunction-like connectives _ and ^, these
can be used to de�ne existential and universal quanti�ers 9 and 8, where
vM;� j= (9x)' i�

W
d2D(vM;�dx

j= ') and similar for 8.6 This approach
is taken in Section 3.3 of Chapter Urquhart's chapter in this Volume in
the present volume. More generally, whenever N is a complete lattice with
operations u and t, universal and existential quanti�ers � and � can be de-
�ned as above, and they are characterized by Q�(S) = Fi2Si, respectively,
by Q�(S) =

F
i2S i, see [Zach, 1993; Baaz and Ferm�uller, 1995a; H�ahnle,

1998]. Here, we take a more general stance.
The idea of considering distributions of values is encountered in two-

valued logic as well: generalized two-valued quanti�ers � are obtained from
Q� : 2D ! ftrue; falseg based on the distribution fd 2 D j vM;�dx

(') =
trueg.

The present notion of a many-valued quanti�er is due to [Rosser and
Turquette, 1952, Chapter IV], but appears implicitly already in [Mostowski,
1948]. The simpli�ed de�nition used in (10) is from [Mostowski, 1961]. The
phrase distribution quanti�er for referring to quanti�ers of this kind was
coined by Carnielli [1987].

Even more general many-valued quanti�ers can be had by re�ning dis-
tributions. Consider, for example, the distribution obtained by regarding
vM;�dx

(') as a function in d. In that case, the semantics of a quanti�er
would be a mapping (D ! N) ! N and thus could distinguish between
di�erent domains and domain elements. This generality is greater than one
usually cares for, though.

So-called (r;m)-ary quanti�ers (�x1; : : : ; xr)('1; : : : ; 'm) are based on
this idea [Gottwald, 2000]. In principle, to each function v : Dr ! Nm

de�ned as

v'1;::: ;'m(d1; : : : ; dr) = hv
M;�

d1;::: ;dr
x1;::: ;xr

('1); : : : ; v
M;�

d1;::: ;dr
x1;::: ;xr

('m)i

5These are the axioms of �rst-order basic t-norm logic [H�ajek, 1998], see below.
6In abuse of notation, the symbol _ is used to denote meta-level disjunction as well.
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a di�erent truth value is assigned, but distinction between domains (and
domain elements) is renounced. Therefore, only with each possible distribu-
tion (that is: image) of v a truth value is associated. The distribution of v
for non-empty D is a non-empty subset of Nm. More precisely, the seman-
tics of an (r;m)-ary quanti�er � is given by a function Q� : (2N

m

�;)! N
and the truth value is computed by

vM;�((�x1; : : : ; xr)('1; : : : ; 'm)) =(11)

Q�(fv'1;::: ;'m(d1; : : : ; dr) j di 2 D; 1 � i � rg) :

For r = m = 1, equation (10) is obtained.

2.3 Algebra

In the terminology of universal algebra (see, for example, [Gr�atzer, 1979;
Cohn, 1981; Meinke and Tucker, 1992]), L0

� are the elements of the free
term algebra of L0 generated by �, and A0 is simply a (one-sorted) ab-
stract algebra over N similar to L0. An interpretation maps the genera-
tors � of L0

� into N , and can by standard results (for example, [Meinke and
Tucker, 1992, Corollary 3.4.9]) be uniquely extended to a homomorphism
from L0

� to N . This extension is given by condition (5), which states, of
course, homomorphy of I.7

We need several particular abstract algebras. An Abelian monoid
hA; 1; �i has a binary operation �, which is associative and commutative,
and neutral with respect to the constant 1. An Abelian monoid is extended
to an Abelian group hG; 1;�1 ; �i by adding a unary operation �1, which
for every x 2 G gives an inverse element x�1 such that x � x�1 = 1. It is
easy to show that x�1 is uniquely de�ned. The binary operation x=y is an
abbreviation for x � y�1. The operator �1 is an involution, if (x�1)�1 = x
for all x 2 G.

In addition, monoids and groups can be equipped with a partial order
�, with respect to which its operator � must be non-decreasing. A lattice-
ordered Abelian group is called an `-group, a totally ordered Abelian group
is an o-group for short.

If � is a t-norm on [0; 1], then h[0; 1]; 1; �;�i is a totally ordered Abelian
monoid.

Let xr stand for

r timesz }| {
x � � � � � x. An element x 2 G is idempotent if x2 = x,

it is nilpotent if xm = 0 for some m.
Let N be a set with partial order �. If M � N has the property that

i 2 M and j � i (j � i) imply j 2 M , then M is a downset or order

7Some authors prefer to start with an algebraic framework right away; I refrained
from this to keep this chapter accessible to a broad audience.
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ideal (upset or order �lter) of N . The collection of order ideals of N is
denoted by O(N).

Obviously, for each S � N , "S = fx 2 N j x � i for some i 2 Sg and
#S = fx 2 N j x � i for some i 2 Sg are upsets, respectively, downsets of
N . If N is �nite, all upsets and downsets are of this form. Instead of "fig
and #fig one writes "i and #i.

A lattice is an abstract algebra of the form L = hL;t;ui equipped with
a partial order � such that any two elements i; j of N have the unique
supremum i t j (the join) and in�mum i u j (the meet).

A lattice can be de�ned by join and meet alone; then, one explicitly stip-
ulates that these are associative, commutative, idempotent and absorptive
operations. With this in mind we write tfi1; : : : ; ing for i1t(i1t(� � � (in�1t
in) � � � )) and similarly with u. Given t or u, the order can be reconstructed
via: i � j i� i u j = i i� i t j = j. Any �nite lattice is bounded: there
is a (unique) minimal element 0 and maximal element 1 in L. A lattice is
distributive i� for all i; j; k 2 L: i u (j t k) = (i u j) t (i u k).

A special lattice is the Boolean set lattice for a set N , 2N = h2N ; ;; N;
\;[i, where \ is set intersection, [ is set union, � is set inclusion.

Let L be a lattice and I; F � L. If i; j 2 I (i; j 2 F ) imply i t j 2 I
(iu j 2 F ) and I is a non-empty order ideal (F is a non-empty order �lter)
of L, then I is called an ideal (F is called a �lter) of L. For each i 2 L, #i
is an ideal of L. In �nite lattices, all �lters and ideals are order �lters and
ideals of the form "i, respectively, #i. A non-trivial ideal (�lter) of L is a
prime ideal (prime �lter), if for all i; j 2 L, i u j 2 L (i t j 2 L) implies
i 2 L or j 2 L.

A lattice element x 2 L is called meet-irreducible (join-irreducible),
if

1. x 6= > (x 6= ?) and

2. x = i u j (x = i t j) implies x = i or x = j for all i; j 2 L.

The sets of meet-irreducible and join-irreducible elements of L are denoted
M(L) and J (L), respectively.

2.4 Inference

An inference system for a logic tries to capture its valid consequences in
a purely syntactical way, and so makes it possible to e�ectively enumer-
ate them. The most traditional type of inference system is the Hilbert
calculus. It consists of decidable sets of axioms and rule schemata.
An axiom is a formula schema, that is, simply a propositional formula
or a �rst-order formula whose atoms are 0-ary predicates, possibly with
a proviso. Examples are (A1{A12). An instance of a formula schema
is any formula obtained by replacing identical atoms in it with identical
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formulas while obeying the proviso (if any). For example, the formula
(8x)(p(y) !t q(x)) !t (p(y) !t (8x)q(x)) is an instance of (A8), but the
formula (8x)(p(x) !t q(x)) !t (p(x) !t (8x)q(x)) is not. A rule schema
is a pair h	; 'i, where 	 is a non-empty set of formula schemata, called
premiss, and ' is a formula schema, called conclusion. Whenever the
premiss is a �nite set, the rule is called �nitary. Finitary rules are denoted
like

premiss1 � � � premissr

conclusion
:(12)

A rule instance is obtained by instantiating each of its rule schemata. Let
us call a set of axioms and rule schemata over a �xed logical language L
a Hilbert calculus. An example is the calculus BL, consisting of axioms
(A1{A7), together with a rule schema that is the t-norm version of modus
ponens:

' '!t  
 

:(13)

Each Hilbert calculus HK induces a provability relation `HK between
sets 	 of L-formulas and L-formulas � as follows:

1. If � 2 	 or � is an instance of an axiom of HK, then 	 `HK �.

2. If 	 `HK 'i for 1 � i � r, and there is an instance of a rule schema
in HK with premisses '1; : : : ; 'r and conclusion �, then 	 `HK �.

One abbreviates ; ` � with ` �. A formula � is provable from 	 (in
HK), if 	 `HK �. If 	 = ;, then � is simply called provable.

Let L be a logic and HK a calculus over the same language L. One says
that HK is sound (for L), whenever 	 `HK ' implies 	 j= '. HK is
complete, if all valid formulas of L are provable in HK. It is strongly
complete, if 	 j= ' implies 	 `HK ' for all (sets of) L-formulas.

Example 3 and a straightforward induction shows soundness of BL for
each t-norm logic L0

t . Conversely, it can be shown [Cignoli et al., 2000] that
BL is complete for the intersection of all t-norm logics: if a L0

t -formula ' is
valid in all logics L0

t , then `BL '.
A logic, for which one has a sound and complete calculus is said to be

axiomatizable. If, moreover, the calculus consists of a �nite set of (�rst-
order) axioms and �nitary (�rst-order) rule schemata, its logic is �nitely
(�rst-order) axiomatizable.

Hilbert calculi provide crisp syntactic characterizations of many logics.
For example, a sound and complete axiomatization of G�odel logic L0

G is
obtained [Dummett, 1959] by adding the single axiom schema
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(G) '!G ('�G ')

to BL (and replacing indices t with G in the other schemas). Similar
results exist for the other famous t-norm logics (see also Section 4 below).
A sound and complete calculus CL for classical propositional logic L0

c , by
the way, is obtained from BL by adding the non tertium datur [H�ajek,
1998]:

(C) ' _ :'.

In classical logic strong completeness can be reduced to completeness
by way of the deduction theorem: if 	 is any set of L0

c-formulas and
'; � 2 L0

c , then 	 [ f�g `CL ' i� 	 `CL � ! '. Since in any deduction
only a �nite number of formulas from the premiss are used this allows to
\shu�e" all required premisses to the right-hand side. In many-valued logics
the deduction theorem does only hold in modi�ed form, and sometimes not
at all. For example, ' `BL ('�t '), but 6`BL '!t ('�t '). Let 'm stand
for '�t � � � �t ' (m copies of '). Then at least the following version of the
deduction theorem holds in BL:

THEOREM 9 ([H�ajek, 1998]). If 	 is any set of L0
t -formulas and '; � 2 L0

t ,
then 	 [ f�g `BL ' i� 	 `BL �m ! ' for some m 2 IN.

For the particular t-norm logic of  Lukasiewicz the theorem was proven
already in [Pogorzelski, 1964]. This improved by giving a concrete upper
bound for the number m, depending on 	, ', � (an exponent in the number
of variable occurrences in the formulas) in [Ciabattoni, 2000b; Aguzzoli and
Ciabattoni, 2000]. For the t-norm logic of G�odel m = 1 is suÆcient, that is,
the classical deduction theorem holds for G�odel logic.

Another version of completeness, so-called Pavelka style completeness
assumes that a logic L is expressive enough to characterize partial truth or
graded truth: for each formula ' 2 L and truth value i 2 N there must be
a formula 'i 2 L such that for all interpretations I, I('i) 2 D i� I(') � i.
In the case N = [0; 1] and D = f1g, for instance, it is suÆcient, if the unary
connective "i is de�nable for all rational i = d

m
2 N with d;m 2 IN:

"i(j) =

8<:
0 0 � j < d�1

m

m � j � d+ 1 d�1
m
� j < i

1 i � j � 1
(14)

In  Lukasiewicz logic the existence of "i follows directly from McNaughton's
Theorem. Explicit constructions of similar formulas can be found in [Mun-
dici and Olivetti, 1998; H�ajek, 1998].

Even if 	 ` ' does not hold, it may well be the case that 	 ` 'i
holds for some i 2 N . It is natural to de�ne the provability degree
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j'j	 = supfi j 	 ` 'ig as an upper bound on the level of truth for which '
can be proven from 	.

On the other hand, for any model I of 	, the value i = I(') says that '
is an fig-consequence of 	 at most. The truth degree jj'jj	 = inffI(') j
I model of 	g is a lower bound on the validity of ' relative to 	. An
axiomatization is Pavelka complete, if provability degree and truth degree
coincide, that is,8

jj'jj	 � j'j	(15)

for all 	 and '. Pavelka-completeness of  Lukasiewicz logic was shown by
Pavelka [1979a; 1979b; 1979c] after whom the concept is named, in simpli�ed
form in [H�ajek, 1998]. The tool used in this investigation, rational Pavelka
logic L0

RP L, is an extension of  Lukasiewicz logic, where rational constants
are built into the language. It is discussed in Section 4.3 below.

Pavelka completeness breaks down in general for logics with non-
continuous connectives, such as Goguen implication of product logic [H�ajek,
1998, 4.1.22]. Also from jj'jj	 = i one can, in general, not deduce 	 ` 'i:
consider 	 = f"i(p) j i < 1g and ' = p, for which jj'jj	 = j'j	 = 1, but
	 6` '1. For �nite 	, there are positive results.

Internal and External Calculi Some authors �nd it convenient to dis-
tinguish between external and internal calculi [H�ahnle and Escalada-Imaz,
1997; Ciabattoni, 2000b; Baaz et al., to appear, 2000]:

Internal calculi: the objects constructed during a proof are from the same
logical language as the goal to be proven; a typical example are Hilbert
calculi.

External calculi: the objects occurring during a formal proof are from an
extended language that may involve elements from the semantics such
as designators for truth values, worlds or even non-logical expressions
such as constraints; a typical example are the signed calculi developed
in Section 6.3.

Proof theorists often only accept calculi of the �rst kind and regard the
second option as a kind of \cheating". On the other hand, if a uniform and
computationally eÆcient treatment of deduction is desired, there seems to
be no alternative to external calculi: otherwise, highly indeterministic rules
are inevitable, even if an internal axiomatization exists.

A somewhat extreme position of gaining a classical logic approach to
deduction in non-classical logic would be to formulate the \external" ele-
ments in the second approach as a meta theory in classical logic. For a

8If ` is sound, then also jj'jj	 � j'j	.
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wide range of logics this is even possible in �rst-order logic. The \meta
theory" of �nite-valued logic in particular can always be captured without
having to move to a higher-order stage. From the viewpoint of eÆciency,
however, this is a disastrous strategy. In fact, this approach was used to
create challenge problems for �rst-order theorem provers [Anantharaman
and Bonacina, 1990].

2.5 What is the Meaning of Truth Values?

A frequently heard objection against MVL is the missing \logical meaning"
of truth values; more precisely, I was sometimes asked how, in general, the
structure of the truth value set N is reected in the provability relation `.
There is, however, no meaningful relation, in general.9 This is closely related
to another objection: that a useful distinction of what is and what is not a
many-valued logic is lacking in the �rst place. Indeed, as is pointed out in
Section 2.2 of Urquhart's chapter in this Volume, just about any notion of
logical consequence can be represented within the framework of many-valued
logic, that is, matrix semantics [W�ojcicki, 1988]. On the other hand, any
attempt undertaken so far to restrict many-valued logic to certain classes of
matrices lead to exclusion of natural examples. Thus we have the situation
that not every instance falling into the framework of matrix semantics can
be naturally considered as a many-valued logic while, at the same time, a
useful restriction is elusive.

I must admit that I cannot provide a natural and non-trivial de�nition of
MVL either, but neither do I follow the conjecture expressed in Section 5.5
of Urquhart's chapter in this Volume that the lack of such a de�nition
implies that \ Lukasiewicz's many-valued systems have remained somewhat
marginal to the mainstream of logical research."

If this were true, I think many other classes of logical systems would have
to be considered as marginal as well.

To explicate this point, consider the case of modal logic, see Bull and
Segerberg's chapter in Volume 3 of this Handbook. It is trivial to re-interpret
any many-valued logic as a two-valued modal logic (see Section 10) even if
this is, of course, completely unintuitive in most cases. Or one could make
also a case against, say, substructural logics, which are de�ned solely by
proof theoretic means, and often have only an awkward model semantics
(as an arbitrary example, consider non-commutative linear logic). But what
is a substructural logic? If the answer is \anything weaker than classical
logic and obtained by imposing restrictions upon the structural rules of
sequent calculi", then one could stipulate absurd things, say, requiring every
other contracted formula to be of opposite polarity. So are modal and
substructural logic marginal to the mainstream of logical research?

9Perhaps one should not speak of truth values at all, but only of values, however, I
chose to follow tradition here.
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I think not, and because no one cares too much about the boundaries of
an area provided that suÆciently many and rich results exist that clearly
fall within it. And from this point of view, the scale tilts in favor of MVL
in the past decades. I hope to demonstrate this in the remaining part of
the present chapter, but I want to seize the opportunity to present some
concrete usages of MVL right here:

Underlying the notion of a t-norm (p. 301) is the truth ordering or
certainty ordering of N , which identi�es 0 with the least true or certain
value and 1 with the most true or certain value. Let us write F for 0 and T
for 1, if this is the intended meaning, see left part of Figure 3. In the vast
majority of applications of t-norm-based logics, the order is assumed to be
total, see Section 5.

A fundamentally di�erent interpretation of truth values, found in AI
and programming, is the knowledge ordering or information ordering,
where 0 means to know nothing at all and 1 to know everything (which could
actually be too much : : : ). Let us write ? for 0 and > for 1, if this is the
intended meaning, see the central part of Figure 3.

The distinction between these two usages of truth values is also stressed in
philosophical treatments of non-classical logic [Haack, 1996, p. 113], where
our second kind of interpretation is referred to as epistemological uncer-
tainty.

T

F

>

?

t

k
>

F T

?

Figure 3. Truth ordering, knowledge ordering, and the bilattice FOUR.

It can be useful to have both orderings present in an MVL at the same
time. Following [Belnap Jr., 1977; Fitting, 1991a], imagine we have a set of
distributed agents working on the same problem. The two-valued answer
from each of these agents is from the set fF; Tg that is ordered by truth.
What, if we have no answer from any agent, or di�ering answers from two
or more agents? In the �rst case, we know nothing, thus we should assign
the truth value ? to model this situation; in the latter case, we assign > to
model total, here even inconsistent, knowledge. The uniquely de�ned values
F and T appear in between. The resulting knowledge diamond lattice
is depicted in the right part of Figure 3. This lattice and the many-valued
logics induced by it are investigated in many papers, starting perhaps with
[ Lukasiewicz, 1957] who thought of the resulting logic as a modal logic and
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was trying to capture Aristotle's Modal Syllogistic with it.  Lukasiewicz
considered an implication obtained by residuation of the lattice in�mum
as well as several unary connectives for adding/deleting/swapping support
of truth/falsity. Both, [ Lukasiewicz, 1957] and [Belnap Jr., 1977], have a
negation connective that swaps ? with > and F with T .

The knowledge diamond lattice is particularly useful to capture para-
consistent reasoning, that is, making useful deductions in the presence of
inconsistency [Belnap Jr., 1977; Lu et al., 1991]. Further uses are discussed
in Section 7.5.

The knowledge lattice becomes the truth diamond lattice, if rotated by
90 degrees, counterclockwise. It turns out that such interlaced lattices,
where both kinds of ordering are present, can be generalized from the four-
valued case:

DEFINITION 10 ([Ginsberg, 1988; Fitting, 1991a]). A bilattice is an ab-
stract algebra of the form hB;t;u;�;
i equipped with two partial orders
�t and �k such that:

� hB;t;ui with �t and hB;�;
i with �k are complete lattices,

� t;u are monotone with respect to �k and �;
 are monotone with
respect to �t.

A bilattice with negation in addition contains an involution �1 which
preserves the knowledge order and reverses the truth order.

Truth values are sometimes motivated by application domains and have
technical rather than logical meaning. Here is an example, taken from
[Hayes, 1986; H�ahnle and Kernig, 1993]: An MOS transistor has di�er-
ent signal strengths at source and drain terminals, due to a physical ef-
fect called degradation. We model this using a seven-valued logic with
N = fF; T; eF ; eT ;>; e>;?g and the ordering � depicted in Figure 4. Val-

ues F and T represent full strength signals, while eF and eT represent the
degraded signals. In a faulty circuit, each of those may clash at a node
resulting in unde�ned values > and e>. The value ? represents unconnected
nodes (\no signal"). In this setup, a node that connects two signals x and y
is simply computed by taking the join in the lattice induced by �. Note that
we have essentially two knowledge diamond lattices stacked on top of each
other. At the same time each degraded signal is below each full strength
signal. MOS transistors are modeled by propositional connectives in this
logic whose semantics is determined by the technical dimensions of NMOS
and PMOS transistors. There is no natural algebraic or proof theoretical
characterization of the resulting logic which, at the same time, is obviously
rather useful. It is examples like this that justify a generic approach to
many-valued logic as defended in the present article.
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>

F Te>eF eT
?

Figure 4. Seven-valued lattice used for modeling MOS transistors.

An example from a quite di�erent domain is found in [Kerber and
Kohlhase, 1996], where a four-valued logic is used to model the phenomenon
of presuppositions in natural language semantics.

Even truth value sets without any natural order have important appli-
cations, which makes it worth while to study their computational proof
theory (Section 6). Consider an undirected �nite graph G = (V;E) with
vertices V and edges E � fS � V j jSj = 2g. Each vertex v 2 V has a
color c(v) 2 C, where C is a �nite set of colors. The well-known graph
colorability problem asks whether there is a function c : V ! C such
that jfc(v); c(w)gj = 2 for each fv; wg 2 E. This can be easily modeled in
a C-valued logic [Many�a, 1996]. The basic idea is to represent vertices v by
propositional variables pv and to exploit that pv is C 0-satis�able i� v can
be colored by one of the colors in C 0 � C. Many-valued logic satis�ability
procedures as outlined below in Section 6 perform quite favorably on such
problems, if compared to traditional approaches [B�ejar and Many�a, 1999c].
More generally, satis�ability checking in �nite-valued logic looks like an in-
teresting alternative to mixed integer programming or constraint solving
when tackling combinatorial optimization problems over �nite domains.

Finally, I want to mention two uses of many-valued logic in philosophical
arguments: �rst, the heap paradox or Sorites paradox (see, for example,
[Cargile, 1969]) and its resolution in  Lukasiewicz logic. The paradox, in one
form, goes:

(A) One grain of sand is certainly not a heap;

(Bi) adding just one grain of sand to i many grains that are not yet a heap
(NHi), does not result in a heap;

(C) 100,000 grains of sand are a heap.

Taking (A), (Bi)1�i�99;999, and (C) together is classically inconsistent;
modifying (Bi) to the extent that going from, say, 27,000 to 27,001 grains
of sand produces a heap, seems implausible, just like dropping either (A)
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or (C). In  Lukasiewicz logic one can resolve this paradox by admitting (Bi)
to be somewhat less than true, like in "i0(NHi ! L NHi+1), using the
connective (14) and  Lukasiewicz implication. Now one has models provided
that 1=(1�i0) < 99; 999. Application of (Bi), if repeated often enough, \uses
up" the trust put into the conclusion and thus resolves the paradox. This
modeling is criticized in Section 4.4 of Urquhart's chapter in this Volume
of this Handbook for the \arti�ciality" of the truth value i0, but at least
the relation that r must have to the number of grains is quite clear, even
though not independent from it.

More important is a recent result [H�ajek and Paris, 1997; H�ajek et al.,
2000] on the logical formalization of the liar paradox (\the sentence I am
just stating is false") based on L L and using a many-valued truth predicate.
It is shown that this idea leads to a consistent de�nition of the truth predi-
cate in Peano Arithmetic, which is well-known to be impossible in classical
logic. Interestingly, arithmetic can be kept classical in this setup, only the
de�nition of truth must be many-valued.

3 ALGEBRAIC PERSPECTIVE

We remarked already that each propositional matrix A0 for a language L0

is an abstract algebra, Example 2 lists several concrete instances. It is
well-known that the matrix B2 = h2; 0;mini of classical propositional logic,
identical to the two-element Boolean algebra up to notation, plays a
special role: a formula ' 2 L0

c is valid in the particular algebra B2 i� it is
valid in all Boolean algebras. This algebraic completeness has, among
others, three important advantages:

1. it provides an abstract, algebraic characterization of validity;

2. the problem of checking validity in a class of algebras can be reduced to
the problem of checking validity in one so-called canonical algebra;

3. it often goes a long way towards proving completeness of a particular
axiomatization (this was the original motivation for the de�nition of
MV-algebras in [Chang, 1959], see below).

It is natural to try to extend algebraic results to many-valued logics.
Among the �rst landmarks were Chang's [1958] MV-algebras, which are
complete with respect to the matrix of  Lukasiewicz logic, that is, the canon-
ical MV-algebra. This lead to a drastically simpli�ed and shortened com-
pleteness proof for the axiomatization of  Lukasiewicz logic compared to
[Rose and Rosser, 1958].

Thus it is fruitful to investigate the algebraic structure of (many-valued)
logics, not only for its own sake. In the present section the main results in
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algebraic treatments of many-valued logics, an area that has been thriving
recently, are given.

As so many important logics turn out to be continuous t-norms, the latter
structures are the most thoroughly investigated. Recall the observation from
Section 2.3 that each t-norm � induces a lattice-ordered Abelian monoid
hL; 1; �;�i. Conversely, such a structure falls short of being a t-norm in two
respects (ignoring total order for the moment): �rst, in general, the upper
bound of the lattice induced by � on L needs not to be 1; second, there
is no residuated implication (see Example 2). This motivates the following
de�nition.

DEFINITION 11. Let hL; 1; �;�i be a lattice-ordered Abelian monoid. The
abstract algebra of the form hL; 0; 1;u;t; �;)i is a residuated lattice
(RL) provided that 0, 1, u, t are minimal element, maximal element, in-
�mum, and supremum, respectively, of the lattice induced by � on L and,
moreover,

i � (j ) k) i� i � j � k(16)

for all i; j; k 2 L. The operations � and ) are said to form an adjoint
pair.

One can show that the adjointness condition actually restricts t-norms �
to those that are left continuous (in the usual sense) in both arguments. In a
similar manner, full continuity of t-norms can be characterized algebraically:

DEFINITION 12. A residuated lattice hL; 0; 1;u;t; �;)i is divisible i�
for all i; j 2 L with i � j there exists some k 2 L such that i = j � k.

An alternative characterization of divisibility in residuated lattices is

i u j = i � (i) j)(17)

for all i; j 2 L. In other words, the lattice operators can be recovered from
an adjoint pair alone (the join operation is recovered as i t j = ((i) j))
j)u((j ) i)) i)). This justi�es de�nitions (3) and (4). Divisible residuated
lattices are, therefore, usually introduced in the form hL; 0; 1; �;)i.

A residuated lattice determined by a t-norm � is divisible i� � is con-
tinuous. Everything that remains to characterize continuous t-norms is
linearity:

DEFINITION 13. A residuated lattice hL; 0; 1;u;t; �;)i satis�es prelin-
earity i�

(i) j) t (j ) i) = 1(18)

for all i; j 2 L.

Note that this condition is somewhat weaker than stipulating that L be
totally ordered, which would amount to saying that one of i u j = i or
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i u j = j (equivalently, one of i t j = i or i t j = j) holds for all i; j 2 L.
In a prelinear residuated lattice, t is de�nable, and (18) is sometimes
called proof by case distinction.

In each residuated lattice, one can de�ne a unary negation operator \�"
by taking �i = i ) 0 for all i 2 L (in hindsight, this justi�es (1)). Now
hL; 0; �;�i is an Abelian group, so an involutive residuated lattice struc-
ture is one, where the negation operator is an involution (see Section 2.3).
One part of the equation characterizing involutions, ��i � i, holds in any
residuated lattice.

Altogether, there are now four useful restrictions of residuated lattices,
which can be combined in various ways: prelinearity (18), divisibility (17),
involutive negation, and conating the t-norm operator � with the lattice
operator u. The latter is succinctly expressed in the equation

i2 = i :(19)

Adding involutive negation to residuated lattices, respectively, identi�cation
of � and u yields well-known structures: Girard monoids, the standard
semantics of linear logic [Girard, 1987], respectively, Heyting algebras, the
algebras that characterize intuitionistic logic (see van Dalen's chapter in
Volume 7 of this Handbook). Prelinear residuated lattices are investigated
in [Esteva and Godo, 1999] under the name of QBL-algebra (shorthand for
quasi-BL-algebra) and divisible, prelinear residuated lattices were baptized
BL-algebra by [H�ajek, 1998] (BL stands for \basic t-norm logic").10

Do BL-algebras capture the tautologies of continuous t-norms? Clearly,
each continuous t-norm determines a BL-algebra on [0; 1], a so-called t-
algebra. But in fact t-algebras can prove no more tautologies than BL-
algebras, in other words, BL-algebras are complete with respect to t-algebras
[Cignoli et al., 2000]. Thus the label \basic t-norm logic" is fully justi�ed,
because BL-algebras capture the intersection of all logics based on continu-
ous t-norms over [0; 1].

Let us discuss some of the axioms of basic t-norm logic (A1{A7) in this
light. For adjoint pairs based on a t-norm A�t , residuated implication
characterizes the order on N :

i � j i� A!t
(i; j) = 1 for all i; j 2 N(20)

For the truth values f0; 1g,!t behaves like classical implication. Together,
this accounts for BL axioms (A5a{b). Further, (A1) expresses transitivity
of the truth value ordering, (A3) is commutativity of A�t . Axiom (A2) is
a direct consequence of A�t being non-decreasing.

10In [H�ajek, 1998] and related publications \basic t-norm logic" is just called \basic
logic"; in accordance with [Gottwald, 2000] I use the clari�cation \basic t-norm logic"
to avoid confusion with other systems of \basic logic". Likewise, \prelinear residuated
lattice" is used henceforth, rather than \QBL-algebra".
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Bool. Algebra

MV-Algebra �-Algebra G-Algebra

QMV-Algebra BL-Algebra

Linear RL

Girard Monoid prelinear RL Divisible RL Heyting Algebra

RL

(18) (17)��i = i

��i = i

(18)

(17)

i2 = i

(17)

(18)

��i = i
i2 = i

(18)

(21{22)

Figure 5. Hierarchy of some algebraic structures related to t-norms

We remarked already on page 301 that each of  Lukasiewicz, G�odel, and
product logic is a continuous t-norm logic. It is not surprising, therefore,
that the algebras of these logics can be obtained as extensions of BL-algebra.

Let us start with  Lukasiewicz logic. An MV-algebra is simply an involu-
tive BL-algebra. Alternatively, one may extend prelinear residuated lattices
with an involution to yield a QMV-algebra [Esteva and Godo, 1999], and
then obtain MV-algebras with divisibility.

Recall that in G�odel logic the t-norm coincides with the in�mum on
the totally ordered lattice [0; 1]. Hence, G-algebras are either obtained
as linearly ordered Heyting algebras or, alternatively, as those BL-algebras
satisfying (19).

Unfortunately, �-algebras, corresponding to product logic, are less in-
tuitive. It turns out that a �-algebra is a BL-algebra, where

i u � i = 0(21)

��k � (i � k ) j � k)) (i) j)(22)

hold. Equation (21) ensures that the fact i > 0 is indicated by �i = 0,
hence ��i = 1. Then, equation (22) is suÆcient to ensure: if k > 0, then
i � k = j � k implies i = j. This divisibility by non-zero elements is just
what characterizes product algebras (recall that A��

was multiplication on
[0; 1]).

The combination of any two of MV-, �-, or G-algebras yields Boolean
algebra. On the other hand, merely adding \tertium non datur" i t � i
to BL gives Boolean algebra as well (see also page 312). The picture so far
is summarized in Figure 5.
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All classes of algebras mentioned so far have been �nitely axiomatized:
residuated lattices, that is, the logic of left-continuous t-norms under the
label monoidal logic by H�ohle [1995]; prelinear residuated lattices and
QMV-algebras in [Esteva and Godo, 1999], the axiomatization of BL-algebras
is basic t-Norm Logic [H�ajek, 1998]; Girard monoids (linear logic) and
Heyting algebras (intuitionistic logic) were mentioned already; MV-algebras
characterize the axioms of  Lukasiewicz logic [Chang, 1959], see also Sec-
tion 4; G-algebras were shown to be sound and complete for G�odel logic in
[Dummett, 1959], while for the more recent �-algebras and product logic
the same was established in [H�ajek et al., 1996]. An overview of recent
results for t-norm-based logics is contained in [Gottwald, 2000].

Let us come back now to the question of algebraic completeness raised
at the beginning of this section. We mentioned already that the matrix of
 Lukasiewicz logic is the canonical MV-algebra [Chang, 1959]; analog results
hold for the matrix of G�odel logic and G-algebras [Dummett, 1959], product
logic and �-algebras [H�ajek et al., 1996]. The weaker structures seem not to
have canonical representations, although the result of [Cignoli et al., 2000],
that it is suÆcient to consider BL-algebras induced by continuous t-norms,
goes some way towards a canonical representation.

MV-Algebra �-Algebra G-Algebra

 L�-Algebra  LG-Algebra �G-Algebra

 L�G-Algebra SBL-Algebra

BL-Algebra

i u � i = 0

Figure 6. Algebraic structures between BL-algebras and MV-, �-, and G-
algebras

The hierarchy depicted in Figure 5 can be re�ned in various directions of
which we mention two possibilities:

1. In [Cignoli et al., 2000] the intersections between MV-, �-, or G-
algebras were investigated, see Figure 6. All algebras can be ob-
tained from BL-algebra by adding certain equations. It turns out
that stipulating i u � i = 0 for all i takes one from  L�G-Algebra to
�G-Algebra. In residuated lattices, this determines \�" to be G�odel
negation. Adding this equation alone gives SBL-algebras, which cor-
respond to t-norm-based logics with G�odel negation [de Baets et al.,
1999; Esteva et al., 2000].
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2. In [H�ajek, 1998] the language of t-norm-based logics is extended with
certain connectives, and the resulting algebras are investigated.

(a) The unary connective � has the semantics

A�(i) =

�
1 if i = 1
0 otherwise

(23)

and, therefore, states that its argument has a designated truth
value. It is investigated in [Baaz, 1996; H�ajek, 1998]. Resulting
algebras are called  L�-algebra, etc. It is noteworthy that with
the help of � one can de�ne G�odel implication and negation.

(b) Logical constants of the form r, where r is a rational number from
[0; 1] and Ar = r. Adding such constants to  Lukasiewicz logic, re-
sults in rational Pavelka logic [Pavelka, 1979a; Pavelka, 1979b;
Pavelka, 1979c], which is further discussed in Section 4. Rational
G�odel logic, obtained in the same way, is discussed in [de Baets
et al., 1999].

Post algebras [Rasiowa, 1974] are parameterized with n and thus are
diÆcult to compare with monoidal logics. Finite  Lukasiewicz logics become
functionally complete when logical constants for all truth values are added
and are then indistinguishable from Post algebras. In�nite Post algebras
[Rasiowa, 1973] are usually of order type !+ (a chain isomorphic to the
natural numbers topped by an in�nite element !) and cannot be directly
compared either.

It should be mentioned that a di�erent, and more general, notion of
algebraization of logics than the traditional approach employed here was
developed in [Blok and Pigozzi, 1989; Blok and Pigozzi, to appear, 2000].
This has been applied, among other systems, to various many-valued logics
[�Angel J. Gil et al., 1997].

An overview of some algebraic structures related to many-valued logics
is [Iturrioz et al., 2000].

4  LUKASIEWICZ LOGIC

A wide range of rather deep results has been established for  Lukasiewicz
logic in the last decade or so, and, without doubt, it is the most intensely
researched many-valued logic. Let us start this section with a classical
result.

4.1 McNaughton's Theorem

Denote with Ii1;::: ;irp1;::: ;pr
an interpretation that �xes I(pj) = ij for 1 � j � r.

Any propositional formula ' over r variables, say, p1; : : : ; pr, determines for
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any given logic in a natural way a function f' : Nr ! N via f'(i1; : : : ; ir) =
Ii1;::: ;irp1;::: ;pr

(') for all i1; : : : ; ir 2 N . Each L0
 L-formula ', in particular, deter-

mines for  Lukasiewicz logic a function f' : [0; 1]r ! [0; 1]. It is easy to prove
(or see [Cignoli et al., 1999, 3.1.8]) that for every ' 2 L0

 L over r variables,
f' has the following properties:

1. f' is continuous;

2. there is a �nite set P of linear polynomials in r variables over [0; 1] with
integral coeÆcients such that for each~{ 2 [0; 1]r, there is a polynomial
P 2 P with f'(~{) = P (~{).

McNaughton [1951] showed that, conversely, for every function f : [0; 1]r !
[0; 1] satisfying the above properties, there is a formula ' of  Lukasiewicz logic
such that f = f'. McNaughton originally gave an indirect argument, but
as shown in [Mundici, 1994], the formula ' can be e�ectively constructed
from f . Mundici's proof was simpli�ed in [Aguzzoli, 1999].

In the following I elaborate a little on McNaughton's Theorem, because
it is a good place to see how familiar and straightforward classical concepts
unfold in a surprisingly complex and rich manner against a many-valued
background.

The classical counterpart of McNaughton's Theorem is the well-known
fact that for every function b : f0; 1gr ! f0; 1g there is a L0

c-formula '
such that b' = b, in other words, every r-ary two-valued function can be
represented by a suitable propositional formula over r variables. There are
many ways to compute ' for a given b. Perhaps the most straightforward
method is as follows: let ON(b) = f~{ j b(~{) = 1g be the values for which b is
1, the ON-set of b; let p1; : : : ; pr be propositional variables corresponding
to the arguments of b. The elements of ON(b) are easily characterized:
let C(~{) =

Vr
j=1 Lj , where Lj = pj , if the j-the component of ~{ is 1, and

Lj = :pj otherwise. Then one takes as ' simply the formula
W
~{2ON(b) C(~{),

which enumerates all argument vectors of b, where b has value 1.
The formula ' one obtains from this construction is in disjunctive normal

form. The literals Lj correspond to primitive functions by means of which
the desired b is composed.

For �nite-valued logics, often the same technique can be used. One needs
to consider not merely one ON-set, but jDj many such sets, one for each
designated truth value, see also Section 6. This works at least when a logic
is expressive enough to specify that a variable p must evaluate to a truth
value i for some i 2 D.

In the in�nite case, the enumeration strategy would lead to a formula of
in�nite size, because ON(f) is in general an in�nite subset of [0; 1]r. Even
so, the idea of decomposing f into a normal form, whose primitive functions
h one knows how to represent, can be fruitfully applied here as well.
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It is fairly easy to �nd a L0
 L-formula ' such that f = f', if f is a linear

polynomial with integer coeÆcients [Rose and Rosser, 1958]. The reason is
that linear polynomials with integer coeÆcients can be de�ned by addition
alone, for example,

m � i =

m timesz }| {
i+ � � �+ i;

and addition is, up to truncation to [0; 1], present in the form of the connec-
tive � L. As a consequence, it is easy to represent convex polyhedra, de�ned
by polynomials with integer coeÆcients.

It is a tempting idea to try to combine a McNaughton function f disjunc-
tively from the polyhedral cones de�ned by its non-di�erentiable parts, but
this does not work. Assume, we wanted to �nd a formula representation of
the unary function depicted on the left in Figure 7. The polyhedral cone
originating in ( 1

3 ;
2
3 ) is larger than the function value below the dashed line;

one needs other, more primitive building blocks to compose McNaughton
functions.

0 1
3

1
2

2
3

1

1

( 1
3
; 2
3
)

0 1
3

1
2

2
3

1

1

h1

h3

h2 h4

h5

0 1
3

1
2

2
3

1

1

h3

2h2

Figure 7. Construction of one-dimensional McNaughton function

An ingenious solution based on Farey sequences of Schauder hats is due to
[Mundici, 1994; Mundici and Pasquetto, 1995]. I sketch the one-dimensional
case following [Cignoli et al., 1999].

The Farey partition Fareyn of [0; 1] is a �nite sequence of rational
numbers from [0; 1], inductively de�ned by:

1. Farey0 = h0; 1i

2. If Fareyn is a sequence of length m, then Fareyn+1 is a sequence of
length 2m�1 and is obtained by inserting between any two consecutive
numbers a

b
and c

d
in Fareyn, the number a+c

b+d .

Farey1 = h0; 1
2 ; 1i, Farey2 = h0; 1

3 ;
1
2 ;

2
3 ; 1i, etc.; observe that the non-sim-

pli�ed denominators correspond to Pascal's triangle.
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Trivially, jFareynj = 2n+1, moreover, it was proven by Cauchy that each
member of the rational unit interval occurs in Fareyn for some n. With each
sequence Fareyn = ha1

b1
; : : : ; au

bu
i one associates a sequence Schaudern of the

same length, whose elements are certain simple univariate functions, so-
called Schauder hats as follows: h1 connects (0; 1) and (a1

b1
; 0), hu connects

(1; 0) and (au
bu
; 0), whereas for each 1 < k < u, hk connects (ak

bk
; 1
bk

) with

(ak�1

bk�1
; 0) on the one hand and (ak+1

bk+1
; 0) on the other (Schauder2 is depicted

in Figure 7). De�ne the multiplicity of each Schauder hat hk to be �k = bk.
It is easy to see that �uk=1�khk = 1.

Using Schauder hats, a unary McNaughton function f is easy to con-
struct: Let n be the smallest number such that the non-di�erentiable points
of f are in Fareyn. In the example in Figure 7, these are 1

3 , 1
2 , and 2

3 , thus
we use Farey2.

Since f has integral coeÆcients, the value of f at each ak
bk

is an integral

multiple of 1
bk

= hk(ak
bk

). Therefore, a suitable linear combination g of the
hats hk coincides with f on Fareyn. And, since both f and hk are linear on
each interval [ak

bk
;
ak+1

bk+1
], f and g coincide on [0; 1]. In the example (rightmost

picture), f = 2h2 + h3.
The construction is completed by noting that Schauder hats have a

formula representation: Schauder1 is given by h0 = p, h1 = : Lp; as-
sume we have formulas for Schaudern = hh1; : : : ; hui, then Schaudern+1 =
hk1; : : : ; k2u�1i is given by:

� k1 = h1 	 (h1 ^ h2),

� k2j = hj ^ hj+1, for 1 � j < u,

� k2j�1 = hj 	 (hj�1 � L hj+1), for 1 < j < u,

� k2u�1 = hu 	 (hu�1 ^ hu),

where iA	j = maxf0; i� jg.
The n-dimensional case of the constructive proof of McNaughton's the-

orem proceeds along similar lines, but adds considerable technical com-
plications. For a start, the sequence of rational points in [0; 1], where f
is non-di�erentiable, becomes a set of at most (n � 1)-dimensional faces.
These give rise to a unimodular, simplicial triangulation, the n-dimensional
version of Farey partitions. Details are given in [Mundici, 1994; Cignoli
et al., 1999].

4.2 Mixed Integer Programming

It is well-known (see, for example, [Hooker, 1988; Jeroslow, 1988]) that
propositional classical formulas in conjunctive normal form correspond to
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certain 0-1 integer programs. More precisely, given a set � of classical
disjunctive clauses over the signature � one transforms each clause

C = p1_ � � � _pk_:pk+1_ � � � _:pk+m(24)

into a linear inequation

kX
i=1

pi �
mX

j=k+1

pj � 1�m(25)

Here, the variables from � are interpreted as function variables ranging
over f0; 1g. It is easy to see that the resulting set of inequations is solvable
i� � is satis�able: recall that A_(i; j) = maxfi; jg and A:(i) = 1 � i, so
clause C is satis�able i� fC � 1 i� (25) holds.

McNaughton's theorem suggests that this embedding of logic into integer
programming can be generalized to cover  Lukasiewicz logic (after all, a
McNaughton function is de�ned by linear polynomials) and, indeed, it turns
out to be possible [H�ahnle, 1994c; H�ahnle, 1997]. To aid the presentation
of this result, let us recall some facts and de�nitions about Mixed Integer
Programming (MIP). As background reading, for example, [Schrijver, 1986]
is recommended.

With the expression linear inequation I mean in the following always
a term of the form a1p1 + � � � + ampm � c, where a1p1 + � � � + ampm is
a linear polynomial over variables fp1; : : : ; pmg and integral coeÆcients
fa1; : : : ; am; cg. The type of the variables can be any truth value set N
as de�ned in Example 2. The expression a1p1 + � � �+ampm is called linear
term.

DEFINITION 14. Let J be a �nite set of linear inequations and K a linear
term. Let � be the set of variables occurring in J and K. Assume the type
N of each variable is �nite. Then hJ;Ki is a bounded integer program
(IP) with cost functionK.11 If the type of variables is either f0; 1g or [0; 1],
then one has a bounded 0-1 mixed integer program (MIP). When all
variables in � run over in�nite N , the result is a bounded linear program
(LP).

A variable assignment � : � ! [0; 1] that respects the type of each
variable and such that all inequations in J� are satis�ed is called a feasible
solution of hJ;Ki. A variable assignment � such that the value of K� is
minimal among all feasible solutions is called an optimal solution. hJ;Ki
is feasible i� there are feasible solutions.

Only the feasibility part of (M)IPs/LPs is required, cost functions are
not considered in the following.

11The adjective integer is justi�ed, because the elements of N can without loss of
generality assumed to be of the form f0; 1; : : : ; n� 1g.
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DEFINITION 15. Let M � [0; 1]k. M is a MIP-representable set if
there is an MIP J over variables �0 = fx1; : : : ; xkg with type [0; 1] and
variables �00 with type f0; 1g such that

M = f~x j ~x is feasible solution of J� for some � : �00 ! f0; 1gg :

A many-valued logic is MIP-representable i� for all its connectives � 2 �
the function A�, is an MIP-representable subset of [0; 1]�(�)+1. The variable
in a relational MIP-representation of a function that holds the function value
is called output variable, the variables that hold the function arguments
are called argument variables.

All �nite-valued logics are MIP-representable, simply because A� is a
�nite subset of [0; 1]�(�)+1. It is more interesting that  Lukasiewicz logic is
MIP-representable. Speci�cally, an MIP representation of � L is given by

(i) x + y + z � i � 0
(ii) �x � y + z + i � 0
(iii) x + y � z � 0
(iv) �x � y + z � �1
(v) � z + i � 0

where x and y are argument variables, i is output variable and z is an
additional variable with type f0; 1g. To see this, �rst set z = 0. Then the
polynomial P1(x; y) = i = x + y is de�ned by (i) and (ii), inequations (iii)
and (v) are trivially satis�ed, and (iv) determines the area in which P1

equals � L. The case z = 1 is similar. An MIP-representation of : L is
straightforward:

�x � i � �1
x + i � 1

All other connectives are de�nable with � L and : L. Now McNaughton's
Theorem can be strengthened to provide a direct link between MIP-repre-
sentable logics and MIP:

THEOREM 16 (Generic MIP version of McNaughton's Theorem).

1. If '(~p) is a formula of an MIP-representable logic then there is an
MIP J' with argument variables ~p and output variable y whose feasible
solutions restricted to (~p; y) are the function f'(~p). Moreover, the size
of J' is linear in the size of '.

2. Let J be an MIP over variables �. Then there is a �-formula 'J 2
L Luk which is satis�able i� J is feasible.

The �rst part of the theorem now is non-trivial to prove. In return, it
provides a direct way to perform deduction in MIP-representable logics.
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The second part of the theorem simply says that there is a \backend" to
McNaughton's result that allows to go from MIP to McNaughton functions.

It is instructive to sketch the proof of Part 1 (see [H�ahnle, 1997] for
Part 2): assume we have an MIP-representation of A� with output vari-
able y and argument variables x'1

; : : : ; x'k for each complex subformula
 = �('1; : : : ; 'k) of '. Connect the MIP-representations for each such
 by adding equations x = y ; furthermore, add equations xp = p for
each propositional variable p of ' to obtain an MIP-representation of f'
with output variable y' and argument variables p. The size of the MIP-
representation of each  is constant and depends only on the connective
� and the number of all such MIP-representations is proportional to the
number of subformulas in ', hence it is linear in the length of '.

A direct realization of this proof idea (written in Eclipse Prolog and
taken from [H�ahnle, 1994b; H�ahnle, 1997]) in the case of  Lukasiewicz logic
is given in Figure 8. It assumes that : L is represented by neg/1, � L by
plus/2, and atoms p by atom(p), all in pre�x notation. A query of the
form \:- sat(i,phi)." builds an MIP representation of phi and checks if
fphi = i, that is, I(phi) = i for some I, is possible.

4.3 Extensions of  Lukasiewicz Logic

Theorem 16, Part 1 does not require integrity of coeÆcients of the associ-
ated functions f' in a crucial way, hence it works for logics corresponding
to generalized McNaughton functions with possibly non-integral coeÆcients.
To determine the algebraic and logical counterpart of this class of functions
is ongoing research. One possibility is to add capability for division by pos-
itive integers, for example by supplying in�nitely many unary connectives
of the form 1

d
to  Lukasiewicz logic, where d is a positive natural number,

and A 1
d
(i) = i

d
for i 2 [0; 1].

Non-continuous connectives, such as G�odel implication and negation, can
easily be handled by MIPs with strict inequalities. The connectives of prod-
uct logic, on the other hand, lead outside MIP and into non-linear program-
ming.

Rational Pavelka logic (RPL) L0
RP L, Hajek's [1998] formalization of

Pavelka [1979a; 1979b; 1979c] within the framework of MVL, was mentioned
already in Section 2.4 in connection with Pavelka-style completeness.

The language of L0
RP L extends that of L0

 L by an in�nite number of logical
constants of the form i for each rational r 2 [0; 1], where Ar = r. The
�rst-order version LRP L is de�ned in the same manner. The rational logic
constants can used to express graded truth with r ! L '. One has rA! L

y =
minf1; 1�r+yg, which is di�erent from "r(y) used in Section 2.4. Moreover,
f(y) = minf1; 1� r + yg is in general not a McNaughton function. On the
other hand, rA! L

y = "r(y) = 1 i� r � y � 1.
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:- lib(r). % load linear constraint solver

sat(I,plus(Phi,Psi)) :-

sat(X,Phi), % Connect X, Phi

sat(Y,Psi), % Connect Y, Psi

truth_var(X), % X is in [0,1]

truth_var(Y), % Y is in [0,1]

truth_var(I), % I is in [0,1]

control_var(Z), % Z is in f0,1g
X + Y + Z $>= I, % (i)

X + Y - Z $<= I, % (ii)

X + Y - Z $>= 0, % (iii) MIP representation of �
X + Y - Z $<= 1, % (iv)

I $>= Z. % (v)

sat(I,neg(Phi)) :- sat(1-I,Phi).

sat(I,atom(P)) :- I $= P.

control_var(0).

control_var(1).

truth_var(X) :- 0 $<= X, X $<= 1.

Figure 8. A satis�ability checker for in�nite-valued  Lukasiewicz logic
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Provability in L0
RP L can be reduced to L0

 L, even though L0
RP L-formulas

need not correspond to McNaughton functions [H�ajek, 1998]. The idea is
to replace each constant r in an RPL-formula ' with a variable pr and to
add suitable formulas  r, for which I( r) = 1 i� I(pr) = r. Even for LRP L

one has that rational Pavelka logic is a conservative extension of �rst-order
 Lukasiewicz logic [H�ajek et al., to appear, 2000].

4.4 Axiomatization and Completeness

A sound and complete axiomatization [H�ajek, 1998] of in�nite-valued  Luka-
siewicz logic is obtained by adding the axiom

(I) : L: L'! L '

to (A1{A7) of basic t-Norm logic BL (and suitably adapting subscripts
of connectives), which expresses that : L is an involution.

Historically, a much simpler equivalent axiomatization of in�nite-valued
 Lukasiewicz logic was used, consisting of (A1{A2) together with:

(A13) (('! L  )! L  )! L (( ! L ')! L ')

(A14) (: L'! L : L )! L ( ! L ')

Completeness of  Lukasiewicz logic can be established with several strate-
gies: the historically �rst proof [Rose and Rosser, 1958] has a very syntactic
nature. The basic idea is to prove that ` ' �  ' for certain  ' with
f ' = f'. If ' is a tautology, then f' � 1, and `  ' can be relatively
easily established. The proof of ` ' �  ' is by induction on the complexity
of ' and not unlike the reduction of L0

 L-formulas into MIP described in
Section 4.2 (without the polynomial bound). All the reasoning has to take
place in terms of Hilbert calculi, so the proofs are very long and tedious to
follow.

Completeness of the calculus can be relatively easily obtained from alge-
braic completeness by showing that the Lindenbaum algebra of the axiom-
atization is a Wajsberg algebra and, hence, up to notation, an MV-algebra.

To prove algebraic completeness, the key insight of Chang [1959] was to
link MV-algebras to `-groups. Since ' holds in all MV-algebras i� it holds in
all totally ordered MV-algebras, it is suÆcient to consider o-groups. From
there, [Cignoli and Mundici, 1997a] directly go to the free Abelian group
ZZr and use linear algebra to embed that into IR; on the other hand, [H�ajek,
1998; Gottwald, 2000] following [Chang, 1959] take a shortcut by appealing
to the Gurevich-Kokorin Theorem on quanti�er elimination in o-groups. A
quite di�erent proof using the de Concini-Procesi theorem on elimination
of points of indeterminacy in toric varieties is due to [Panti, 1995]. Further
proof techniques are mentioned in [Cignoli et al., 1999].
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4.5 Further Topics

Deep connections between  Lukasiewicz logic and diverse other �elds have
been established. Examples are functional analysis (C�-algebras) [Mun-
dici, 1986] and coding theory (adaptive error-correcting codes and Ulam's
game) [Mundici, 1992; Mundici, 1990], these are discussed in Section 4.3
of Urquhart's chapter in this Volume.

Further links to quantum physics [Mundici, 1993], geometry (toric desin-
gularizations) [Mundici, 1996], and advanced algebra [Di Nola and Lettieri,
1994; Cignoli and Mundici, 1997b; Cignoli et al., 1999] are, unfortunately,
well beyond the scope of this article. SuÆce it to say that MV-algebras are
categorically equivalent to `-groups with strong unit [Mundici, 1986].

5 FUZZY LOGIC

5.1 Many-Valued Logics versus Fuzzy Logic

The main journal of fuzzy logic research, Fuzzy Sets and Systems, appears
bi-weekly with twelve articles on average. This makes about 300 published
articles per year alone for this journal. A search in the Library of Congress
Catalog yields that at least 150 books with the term fuzzy logic, fuzzy system
or fuzzy set in their title are available (of these, I can only mention a few
of the many recommendable ones: [Zimmermann, 1991; Gottwald, 1993;
Kruse et al., 1994; H�ajek, 1998; Turunen, 1999]). This is an indicator of
how unwieldy the �eld has become.

To get a �rst handle on the meaning of fuzzy logic from an MVL point
of view, I cite the inventor of fuzzy logic, Lot� Zadeh (after [H�ajek, 1998]):

\In a narrow sense, fuzzy logic, FLn, is a logical system which aims at a formalization of
approximate reasoning. In this sense, FLn is an extension of multivalued logic. However,
the agenda of FLn is quite di�erent from that of traditional multivalued logics. In par-
ticular, such key concepts in FLn as the concept of a linguistic variable, canonical form,
fuzzy if-then rule, fuzzy quanti�cation and defuzzi�cation, predicate modi�cation, truth
quali�cation, the extension principle, the compositional rule of inference and interpola-
tive reasoning, among others, are not addressed in traditional systems. In its wide sense,
fuzzy logic, FLw, is fuzzily synonymous with the fuzzy set theory, FST, which is the
theory of classes with unsharp boundaries. FST is much broader than FLn and includes
the latter as one of its branches." |Lot� Zadeh in [Marks, 1994, Preface]

H�ajek comments on this as follows:

\ : : : even if I agree with Zadeh's distinction between many-valued logic and fuzzy
logic in the narrow sense, I consider formal calculi of many-valued logic (including non-
`traditional' ones, of course) to be the kernel or base of fuzzy logic in the narrow sense
and the task of explaining things Zadeh mentions by means of these calculi to be a very
promising task (not yet �nished)." |[H�ajek, 1998, p. 2]

: : : and begins to unfold exactly this scienti�c program. It must be said that
the perception of fuzzy logic in the eyes of logicians has changed quite a bit
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in recent years [H�ajek, 2000]. H�ajek also authors the deepest investigation
into FLn from a logical point of view so far [H�ajek and Paris, 1997; H�ajek,
1998; H�ajek, 2000]. His conclusions about the relationship between FLn
and MVL seem eminently reasonable:

� FLn is an interesting mathematical pursuit in its own right;

� some of its concepts can be clari�ed by formalizing them in logic: the
nature of fuzzy rules, consistency, proof of general properties; as such,
the study of FLn in a many-valued logic framework is of interest to
the �eld of FL at large.

I want to re�ne the second point with an example: in classical rule-based
systems one uses modus ponens (' ^ (' !  )) !  to derive new facts
B from rules r = A0 ! B0 and facts A. In fuzzy control (FC) [Zadeh,
1979; Bonissone, 1997] all notions are \fuzzi�ed": A is a fuzzy predicate,
r typically is a fuzzy mapping (\for arguments approximately equal to A0

the image is approximately equal to B0") called Mamdani rule [Mamdani
and Assilian, 1975], etc. As [H�ajek, 1998] shows, it is possible to model
basic notions of FC adequately within the framework of �rst-order MVL,
speci�cally, with the logics Lt (Example 7). The important thing here is
that now notions of FC have a precise, unambiguous semantics and can
be analyzed with the tools of formal logic. It becomes clear, for instance,
that Mamdani rules are based on logical conjunction (thus t-norms) rather
than implication as is sometimes insinuated in FC [Driankow et al., 1993].
One also can easily compare di�erent interpretations of FC concepts. For
example, certain rule schemata turn out to be actually invalid in the sense
of many-valued logic [H�ajek, 1998, p. 192f], which should raise doubts on
their use within FC as well.

The logical analysis of FLn available so far indicates that FLn is deeply
rooted in \traditional" MVL: many logics used to analyze FLn (G�odel logic,
 Lukasiewicz logic) existed well before the term \fuzzy logic" was even in-
vented.

One can, of course, argue which particular many-valued logic should be
considered as the logical basis of FLn. H�ajek [1998; 2000] suggests con-
tinuous t-norms over [0; 1], naturally ordered, with residuated implication
(see p. 301) and negation (1), in other words, basic t-norm logic; in the
�rst-order case, the quanti�ers are 8; 9 (see Examples 6, 7). Other authors
advocate weaker systems such as monoidal t-norm logic [Esteva and Godo,
1999] or stronger systems such as rational Pavelka logic [Nov�ak, 1995].

5.2 Some Technical Results of Fuzzy Logic

Here I collect some odd ends and pieces of fuzzy logic that are in some way
relevant for the present chapter.
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On t-norm Theory. As classes of functions on the real unit interval,
t-norms were investigated in di�erent contexts long before FLn was even
around. One of the fundamental results is about the decomposition of con-
tinuous t-norms and it appears already in [Mostert and Shields, 1957].

A continuous t-norm � is Archimedean, if it has as idempotent elements
exactly 0 and 1. This the case for  Lukasiewicz product � L and multipli-
cation �� of product logic, but not for G�odel product �G which has all
elements of [0; 1] as idempotents. In fact, G�odel product is the only t-norm
with this property.

Recall that a t-norm � is nilpotent, if it has other nilpotent elements
besides 0; it is called strict otherwise. Obviously,  Lukasiewicz product � L

is nilpotent and �� of product logic is strict.
It turns out that these examples are actually characteristic in the sense

that:

� each nilpotent Archimedean t-norm is isomorphic to  Lukasiewicz prod-
uct

� and each strict Archimedean continuous t-norm is isomorphic to the
t-norm of product logic.

Starting from the observation that the idempotents I(�) of any con-
tinuous t-norm � form a closed subset of [0; 1], one obtains a well-known
representation theorem for continuous t-norms.

Let ([ar; br])r2I be a countable family of non-overlapping proper subin-
tervals of [0; 1]. Now assume a t-norm �r is associated with each interval.
One de�nes the ordinal sum T : [0; 1]2 ! [0; 1] of ([ar; br])r2I and (�r)r2I
as

T (i; j) =

�
ar + (br � ar) � (

i�ar
br�ar

�r
j�ar
br�ar

) if i; j 2 [ar; br]

minfi; jg otherwise
(26)

Observe that an Archimedean t-norm is an ordinal sum consisting of
just one summand and that the empty ordinal sum is the G�odel t-norm.
Non-Archimedean t-norms � are decomposed into the ordinal sum of the
Archimedean t-norms de�ned on the intervals in I(�), the closure of
[0; 1]nI(�).

THEOREM 17 ([Mostert and Shields, 1957]). Each continuous t-norm is
the ordinal sum of a family of continuous Archimedean t-norms.

Recall from Section 3 that basic t-norm logic is the logic of continuous
t-norms [Cignoli et al., 2000]. In the wake of this result an algebraic analog
of Theorem 17 is proven in the same paper that allows to decompose totally
ordered BL-algebras into G-, MV-, and �-algebras and ordinal sums thereof.
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A di�erent way to lend structure to t-norms is to give parameterized
families of t-norms that instantiate to well-known members. One of many
examples is Frank's family of t-norms [Frank, 1979]:

i �Fr j = logr

�
1 +

(ri � 1)(rj � 1)

r � 1

�
(27)

Our standard t-norms are obtained as limits: iA� L
j = limr!1 i �Fr j,

iA�G
j = limr!0 i �Fr j, and iA��

j = limr!1 i �Fr j.
A general and up-to-date reference on t-norm theory is the book [Klement

et al., 2000].

Fuzzy Mathematics. There hundreds of papers that claim to fuzzify
notions of classical mathematics, but many of these fuzzy notions are de�ned
rather ad hoc. Among the more serious attempts, I mention only Thiele's
ongoing program to fuzzify parts of universal algebra, for example, in [Thiele
and Schmechel, 1995; Thiele, 1998].

6 PROOF THEORY AND COMPUTATIONAL ASPECTS OF
MANY-VALUED LOGIC

6.1 Sequent and Tableau Calculi

Hilbert calculi give a good idea of what the \characteristic truths" of a
logic, its axioms, are. They are not well-suited for doing proof theory, the
analysis and systematic construction of formal proofs. For this purpose,
Gentzen or sequent calculi [Gentzen, 1935] and, more recently, tableaux
and resolution calculi are more suitable.

A sequent is an expression of the form � ) �, often read as \if I can
prove �, then I can prove �". Call � the antecedent, � the succedent of
the sequent. Depending on the purpose (and preferences of the author), �
and � are sequences, multisets, or sets of objects. In the present chapter,
we use sets.

Certain abbreviations are standard: \�; '" for \� [ f'g", \�;�0" for
\� [ �0", \) �" for \; ) �", etc.

A sequent calculus is a set of rule schemata (12), where premisses
and conclusion are sequent schemata (the latter are de�ned analogously to
formula schemata). A sequent rule with an empty set of premisses, is called
axiom in the context of sequent calculi.

Traditionally, sequent rules come in two kinds, structural rules and
logical rules. The latter have the property that some connective occurs
only in the succedent (\is introduced"), thus allowing to build up more
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complex formulas. A typical example from classical logic (for conjunction)
is:

�) �; ' �) �;  
�) �; ' ^  

Structural rules involve no connectives, but manipulate the arrangement of
objects within sequents. In our setting they will not be needed, because
antecedents and succedents are sets and because of the choice of axioms.

A calculus is analytic or obeys the subformula principle if, for each
rule, the premisses contain only subformulas of formulas in the conclusion.

Each sequent calculus SK induces a provability relation on sequents.
A sequent proof tree is labeled with sequents, and inductively de�ned
by:

(1) Each single-node tree labeled with an instance of an axiom of SK is
a sequent proof.

(2) If (�i)i2I is a family of sequent proofs and there is an instance of a
rule schema in SK with conclusion �, such that each of its premisses
occurs among the root labels of the �i, then the tree with root � and
immediate subtrees �i is a sequent proof.

A sequent proof with root label � is called a sequent proof of � (in SK).
Analyticity is a key property, if one is interested in automatic proof

search: in a �nitary and analytic sequent calculus goal-directed (backwards)
search has a �nite branching factor. Hilbert style calculi that contain modus
ponens are inherently non-analytic.

Sequent calculi permit a variety of structural (for example, through struc-
tural rules) or geometric conditions, by which the number and form of
derivations can be restricted and, hence, di�erent logics can be charac-
terized. For example, already in Gentzen's [1935] paper, intuitionistic logic
was obtained by restriction of succedents to at most singletons.

The presence or absence of this \structural feature" of sequent calculi
implies two fundamentally di�erent readings of sequents. The �rst is the
traditional one in proof theory, where antecedents and succedents typi-
cally are multisets or sequences of objects. In such calculi, a sequent like
h1; : : : ; ni ) hÆ1; : : : ; Æmi typically is interpreted as

1 f � � �f n j= Æ1 g � � � g Æm ;(28)

where f is some sort of conjunction or product operator and g a disjunction
or sum.

Several many-valued logics, including G�odel,  Lukasiewicz and the para-
consistent logic J3, were axiomatized with such sequent calculi [Avron,
1991b; H�osli, 1993; Prijatelj, 1996; Dyckho�, 1999; Avellone et al., 1999].
In the terminology introduced in Section 2.4 all of them are internal calculi.
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If one is interested in analytic calculi, then often some kind of extension
of the base mechanism is necessary to deal with many-valued logic. One
possibility which, at least in spirit, if not in letter, is internal are hyper-
sequent calculi [Pottinger, 1983; Avron, 1987; Avron, 1996]. They result
from sequent calculi by admitting �nite sets of sequents in the place, where
just single sequents stood before. Thus, a hypersequent is of the form

[�1 ) �1j � � � j�r ) �r];

where each �i ) �i is a standard sequent.
In hypersequents, the \j" is commonly interpreted as a disjunction. Sev-

eral �nite- and in�nite-valued logics, including  Lukasiewicz logic, G�odel
logic, and Urquhart's logic12 C [Urquhart, 1986] were successfully axiom-
atized with analytic hypersequent calculi [Avron, 1991b; Avron, 1991a;
Avron, 1996; Baaz et al., 1998c; Ciabattoni et al., 1999; Ciabattoni, 2000a;
Ciabattoni, 2000b].

In the following I will not discuss these results any further. First of all,
because each calculus typically involves a new and speci�c proof theoretical
insight and it is too space-consuming to give the details. Second, general
proof theoretical devices like structural modi�cations, hypersequents and,
even more so, display calculi [Belnap, 1982], are by no means speci�c to
many-valued logic and thus belong to a general discussion of proof theory,
which is found in other parts of this Handbook.

Let us now look at the second possible interpretation of sequents. In
classical logic, by virtue of the deduction theorem, (28) is equivalent to
j=
Vn
i=1 i !

Wm
j=1 Æj or

j=
n_
i=1

:i _
m_
j=1

Æj :(29)

This interpretation hinges on bi-valuedness of classical logic and gives a
hint what one can do in the many-valued case: for i 2 N , let �i be sets of
formulas.
The notation

�1 j � � � j �n ;(30)

due to [Rousseau, 1967], represents the assertion \there is an i 2 N and
 2 �i such that j=fig ".

This interpretation and form of sequents is usually objected against by
proof theorists:

\One should not be able to guess, just from the form of the structures which are used,
the intended semantics of a given proof system : : : " |[Avron, 1996, p. 2]

12Note that the de�nition changed in Urquhart's chapter in this Volume of the present
volume.
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But whether one regards, say, hypersequents still as strictly \internal"
is a matter of taste, and the explicit incorporation of semantical structures
into proof theory can be a great virtue from the point of view of automatic
proof search. It also gives us a proof theory that has a speci�c many-valued
avour. And this is what I intend to detail in the remaining section.

Variants of notation (30) exist (for example, [Takahashi, 1967]), but they
are all a little clumsy. [Sucho�n, 1974; Surma, 1974; Surma, 1984] suggested
to use signed formulas of the form i:', which stands for j=fig '. It is only
natural to make the �nal step, and use signed formulas of the form S:'
to represent j=S '. This was done by H�ahnle [1991a; 1994a] who realized
that using \truth value sets as signs" not only greatly simpli�es many rules,
but also may lead to exponentially shorter derivations. Similar, slightly less
general ideas were expressed independently in [Doherty, 1990; Murray and
Rosenthal, 1991a].

In the following sections, proof theory for many-valued logic based on
signed formulas, that is, with external calculi is developed. In particular,
the notion of sequent used is that of a signed sequent, which is simply a
set of signed formulas.

A tableau rule schema is a pair h'; Ci, where ' is a formula schema
called premiss, and C a non-empty family of non-empty sets of formula
schemata called conclusion; the members of C are called extension. A
closure rule schema is a set of formula schemata. In the �nitary case,
tableau rule schemata are written thus:

extension

8<:
premiss

 11 � � �  m1

...
...

 1r1 � � �  mrm| {z }
conclusion

(31)

In classical logic, one has m � 2 and ri � 2, but for many-valued logic
the general case is needed.

EXAMPLE 18. Here is a typical tableau rule schema for classical logic:

'!  
:'  

(32)

The usual closure rule schemata in classical logic are f0g and f:'; 'g.

A tableau calculus is a set of tableau rule schemata and closure rule
schemata. Each tableau calculus T K induces a provability relation on
sets of formulas 	. A tableau proof tree (for short, only tableau) for 	
is a tree labeled with formulas, inductively de�ned by:
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(1) The empty tree is a tableau for 	.

(2) If T is a tableau for 	, then so is the tree obtained by appending a
node labeled with some ' 2 	 below any branch of T.

(3) If T is a tableau for 	, ' a label on a branch B of T, and ' is the
premiss of a tableau rule instance of T K with extensions C, then one
obtains a tableau for 	 by extending B with jCj many linear subtrees,
each containing as labels exactly the formulas in an extension of C.

A branch B whose labels are a superset of a closure rule instance of T K is
called closed. A tableau is closed, if all its branches are closed. A closed
tableau for 	 is a tableau proof of 	 (in T K).

6.2 Generic MVL: the Logic of Signed Formulas

DEFINITION 19. A signed formula of an N -valued logic L is an expres-
sion of the form S:', where S � N , and ' 2 L. Satis�ability, validity,
and consequence of signed formulas are de�ned with D-satis�ability, etc.,
by identifying j=S ' with j= S:'. In the case when ' is atomic, S:' is called
a signed atom. If S is a singleton, one speaks of a monosigned formula.

It is possible to view a signed formula S:'(x1; : : : ; xm) with free variables
x1; : : : ; xm itself as an atomic expression and to build classical �rst-order
formulas over such atoms, for example, S:(p! L q) _ S0:r. Here, ! L is
 Lukasiewicz implication and _ is classical disjunction. From this point of
view, signs act as a separator between classical and many-valued parts of a
formula. This view is stressed in [Murray and Rosenthal, 1994].

A signed formula S:' implicitly stands for a disjunction over the state-
ments I(') = i for all i 2 S. With this device one can represent some
properties of the truth values that can be taken on by formulas more suc-
cinctly in signed logic than without signs, as we will see.

On the semantic side, it is often useful to de�ne the meaning of signed
formulas more directly using power algebras (see [Brink, 1993] for an
overview). Let A0 be the matrix of an N -valued propositional logic L0.
De�ne the power matrix of A0 to be

P(A0) = hP+(N); (A+
� )�2�i ;

where P+(N) is the family of non-empty subsets of N and the power

operation A+
� : P+(N)

�(�)
! P+(N) of A� is de�ned as

A+
� (S1; : : : ; S�(�)) = fA�(i1; : : : ; i�(�)) j ij 2 Sj ; 1 � j � �(�)g :

One can associate a power interpretation I+ : �! P+(N) with each
power matrix. It is continued on L0 exactly like a standard interpretation.
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I+ j=S ' i� I+(') � S. Obviously, if I+ j=S ', then I j=S ' for all
interpretations I with I(p) 2 I+(p) for all p 2 �.

The inverse (A+
� )�1 of A+

� yields a family of �(�)-tuples of subsets of N .
LetM(S) � P+(N) be the signs occurring in maximal tuples in (A+

� )�1(S)
(ordered by point-wise set inclusion). We call a family of signs S � P+(N)
complete with respect to D � N and L0, if D 2 S and for all � 2 �,
S 2 S, and S0 2 M(S), S0 is contained in the sublattice of 2N generated
by S.

EXAMPLE 20. Consider three-valued  Lukasiewicz implication! L, and let
S = ff 1

2g; f0;
1
2g; f0; 1gg, which generates S [ f;; f0g; Ng. Then S is not

complete with respect to f0; 1
2g and L0

 L, becauseM(f0; 1
2g) contains f 1

2 ; 1g
(because of A+

! L
(f 1

2 ; 1g; f0g) = f0; 1
2g).

A simple, complete system of signs for any D is

Smono = ffig j i 2 Ng ;(33)

the set of singleton signs. Another trivial example is

Sfull = P+(N)� fNg ;(34)

the set of all signs (except ; and N). A non-trivial example is

Sregular = f"i j i 2 N; "i 6= Ng [ f"i j i 2 N; "i 6= Ng ;(35)

the set of non-trivial order �lters of N and their complements that are
generated by single elements. It is de�ned for any partially ordered set of
truth values. For totally orderedN , these are exactly the prime ideals/�lters
and their complements and were called regular sign in [H�ahnle, 1994a].
The name is kept for the present, more general, de�nition. Many other sets
of signs are possible, for example, a kind of dual of (33):

Sdmono = fN � fig j i 2 Ng ;(36)

All of these systems of signs are trivially complete, because they generate
2N . The signi�cance of complete families of signs is that they yield simple
syntactic characterizations of any �nite-valued logic operator:

THEOREM 21. Let S be a complete family of signs for an n-valued logic
L0, S 2 S, and ' = S:�('1; : : : ; 'm) (for m � 1) a signed L0

�-formula. Let
I be an arbitrary n-valued �-interpretation.

Then there are numbers M1;M2 � nm, index sets I1, : : : , IM1
, J1, : : : ,

JM2
� f1; : : : ;mg, and signs Srs; Skl 2 S with 1 � r � M1; 1 � k � M2

and s 2 Ir; l 2 Jk such that

' is satis�able by I
i�
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WM1

r=1

V
s2Ir

Srs:'s is satis�able by I
i�VM2

k=1

W
l2Jk

Skl:'l is satis�able by I.

The �rst equivalent expression is called a signed DNF representation of
', the second a signed CNF representation of '.

There are two special cases hidden here: when the image of the func-
tion A� (that is, A+

� (N)) is a subset of S, then ' is valid; likewise, when
A+
� (N) \ S = ;, then ' is unsatis�able. Although the theorem holds in

those cases as well, it is more convenient to use then N :', respectively, ;:'
as a representation of S:' instead.

For Smono, Theorem 21 was shown in [Rousseau, 1967; Takahashi, 1967],
the general case in [H�ahnle, 1991a; H�ahnle, 1994a] with a slightly di�erent
formulation of completeness of signs.

Recall that the semantics of a �rst-order quanti�er � in many-valued logic
is de�ned via a distribution function Q� : P+(N) ! N . Similar as in the
propositional case, one may obtain a representation of a signed quanti�ed
formula in terms of certain signed instances. Informally, what one needs to
do is to characterize the distributions that are mapped to one of the truth
values that occur in the sign of a quanti�ed formula.

THEOREM 22. Let (Q�)�1(S) = f; 6= I � N j Q�(I) 2 Sg; then a signed
quanti�ed formula

S:(�x)'(x) is satis�able
i�W

I2(Q�)�1(S)

�V
i2I fig:'(ci) ^

V
t2Term0

�
I :'(t)

�
is satis�able,

where the ci are new Skolem constants.

Each disjunct in this representation says that the distribution of ' at x
is I : the �rst conjunction assures that at least the elements of I occur in
the distribution, the second conjunction says that at most the elements of
I occur.

In the spirit of the remark after Theorem 21, if (Q�)�1(S) = P+(N), use
N :(�x)'(x), and if (Q�)�1(S) = ;, use ;:(�x)'(x).

For a proof of the theorem, see [H�ahnle, 1999], also [Carnielli, 1991; Baaz
and Ferm�uller, 1995b] for a monosigned version. It must be stressed that
monosigned �rst-order rules are much more complicated, even for simple
quanti�ers.

A CNF representation is obtained by duality: compute a DNF represen-
tation for S and replace \not

WV
� � �S0 � � � " with \

VW
� � �S0 � � � " using de

Morgan's rules.
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6.3 Many-Valued Sequent and Tableau Calculi

Recall that in classical logic tableaux and sequent calculi correspond to each
other very closely (see, for example, [Fitting, 1996; D'Agostino, 1999]):

The semantics of signed sequents � is de�ned by j= � i� j=
W
2�  (com-

pare to the discussion of formulas (29) and (30) as well as De�nition 19).
Instances of axiomatic sequents are supposed to correspond to valid for-
mulas, and sequent rule schemata preserve validity for all instances: if all
premisses are valid, then the conclusion is valid as well. In other words, they
are CNF-representations of their premiss. A standard induction argument
then shows soundness: the existence of a sequent proof with root � implies
that � is valid.

Tableau proofs are completely dual to sequent proofs: let � = fS:' j
S:' 2 �g. A tableau proof shows that the set of formulas � is unsatis�able,
from which the validity of � follows. Thus, tableau rule instances preserve
satis�ability: if the premiss is satis�able, then all formulas in at least one
extension are satis�able; tableau rules are DNF representations of their
premiss. Tableau closure indicates unsatis�ability of each tableau branch.

As a consequence, both sequent and tableau rules can be derived from
Theorems 21 and 22. If Srs, Skl are as in Theorem 21, then the following
sequent, respectively, tableau rules are sound and complete for the connec-
tive appearing in the premiss, provided that the set of signs is complete
with respect to S:

�;
S
l2J1

S1l:'l � � � �;
S
l2JM2

SM2l:'l

�; fS:�('1; : : : ; 'm)g
(37)

S:�('1; : : : ; 'm)
...

...
...

S1s:'s � � � SM1s:'s...
...

...

(38)

EXAMPLE 23. A tableau rule for sign f0; 1
2g and three-valued  Lukasiewicz

implication is:

f0; 1
2g:'! L  

f 1
2 ; 1g:' f1g:'
f0g: f0; 1

2g: 

For the �rst-order case, with the notation of Theorem 22, one obtains
the tableau rule (the sequent rule is similar and skipped, see [H�ahnle, 1999]
for details):
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S:(�x)'(x)
fi11g:'(c1) � � � fim1g:'(c1)

...
...

fi1k1
g:'(ck1

) � � � fimkmg:'(ckm)
I1:'(t1) � � � Im:'(tm)

(39)

Here, (Q�)�1(S) = fI1; : : : ; Img, Ij = fij1; : : : ; ijkjg, the c1; c2; : : : are
new Skolem constants, and the t1; : : : ; tm are arbitrary ground terms.

As an immediate simpli�cation, note that, if Ij = fij1g for some j, then in
the corresponding extension it is suÆcient to list merely the signed formula
Ij :'(t). Moreover, one can always delete signed formulas of the form N :',
because they are trivially valid.

EXAMPLE 24. For three-valuedQ8 and the sign f 1
2 ; 1g (see Example 7) one

computes (Q8)
�1(f 1

2 ; 1g) = ff 1
2g; f1g; f

1
2 ; 1gg; and obtains the rule below

on the left, which can be simpli�ed to the rule on the right. Systematic
simpli�cation procedures for many-valued quanti�er rules are described in
[Salzer, 1996b; H�ahnle, 1998].

f 1
2 ; 1g:(8x)'(x)

f 1
2g:'(c1)
f1g:'(c2)

f 1
2g:'(t1) f 1

2 ; 1g:'(t2) f1g:'(t3)

f 1
2 ; 1g:(8x)'(x)
f 1

2 ; 1g:'(t)

Axiomatic sequents denote elementary valid formulas. They are of the
form �;

S
ifSi:'g such that

S
i Si = N .

Tableau closure rule schemata are completely dual and detect primitive
unsatis�ability: their form is

S
ifSi:'g such that

T
i Si = ;. In particular,

any branch containing a label ;:' is closed.
To summarize, for each �nite-valued logic one can construct in a generic

way sound and complete signed sequent and tableau calculi (see also The-
orem 25 below). The reverse question, that is, whether for any signed
sequent/tableau calculus with truth value sets as signs there is a �nite-logic
relative to which it is sound and complete, was answered aÆrmative in [Baaz
et al., 1998b] for families of signs S having the property

for each i 2 N there are S1; : : : ; Sr 2 S such that
Tr
j=1 Sj = fig(40)

(in this case S is also complete as de�ned in Section 6.2).
Only �nite-valued logics immediately yield �nitary signed calculi, but

there is a way around: in [Ciabattoni, 2000b; Aguzzoli and Ciabattoni,
2000] an e�ectively computable function f from L0

 L-formulas into IN is given
such that for each L0

 L-formula ', ' is valid in 1-valued L0
 L i� it is valid
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in f(')-valued L0
 L, improving on [Mundici, 1987] and the analysis given

in Section 4.2. This result is then used in combination with a notational
variant of the family of sequent calculi for �nite-valued L0

 L based on regular
signs (35). A labeling mechanism keeps track of the �nite truth value set
N , from which each concrete rule must be selected.

At this point we stop the parallel development of signed sequent and
tableau calculi, because their duality is fully unfolded. The remaining ma-
terial is stated for the tableau case only.

THEOREM 25 (Completeness). Let S be a complete family of signs with
respect to S 2 S for an n-valued logic L0 and ' a L0-formula.

If j=S ', then there is a tableau proof for S:' constructed with rules of
the form (38) according to Theorem 21.

Proof. If S = N , the result is trivial; otherwise, assume there were no
closed tableau for S:'. There must exist a non-closed branch B in some
tableau for S:', on which all possible rules were applied.

Identify B with the set of its labels. For each p 2 � let B(p) be the set
of signed atoms in B of the form S0:p for some S0 � N . We de�ne a power
interpretation:

I+(p) =

� T
S0:p2B(p) S

0 B(p) 6= ;

N B(p) = ;

I+ is well-de�ned, because B is not closed. By structural induction on
the depth of formulas one proves that I+ satis�es all formulas in B.

The atomic case follows from the de�nition of I+. Assume I+ satis�es
smaller formulas than the complex formula S0: 2 B. To this formula, a
rule according to Theorem 21 was applied based on a DNF representationWM
r=1 Cr (the representation is not ;: , because B is not closed).
By the de�nition of a tableau, for some Cr, 1 � r � M , all formulas of

Cr are on B and, by the induction hypothesis, satis�ed by I+ (again, the
empty sign cannot occur, otherwise B were closed). By Theorem 21, I+

satis�es S0: .
As I+ satis�es B, in particular, I+ j= S:', a contradiction to j=S '. �

The �rst-order version of this result based on rules of the form (39) holds
as well. Completeness is shown by combining Theorem 22 straightforwardly
with a standard argument from classical logic [Fitting, 1996]. Some more
details are given in [H�ahnle, 1994a].

EXAMPLE 26. Let us prove that (A8) is f1g-valid in three-valued L L. We
need to construct a closed tableau for f0; 1

2g:(8x)'(x)! L '(t) for any given
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t 2 Term0
�:

f0; 1
2g:(8x)'(x) ! L '(t)

f 1
2 ; 1g:(8x)'(x)

f0g:'(t)

f 1
2 ; 1g:'(t)

f1g:(8x)'(x)

f0; 1
2g:'(t)

f1g:'(t)

The rules of Examples 23, 24 are used in the construction.

The examples made it obvious that it is not trivial to compute minimal
tableau and sequent rules for a given �rst-order matrix. One can polynomi-
ally reduce the propositional aspect to minimization of Boolean functions
(and vice versa, hence this is an NP-complete problem) [H�ahnle, 1994a]. A
minimization algorithm for �nite-valued distribution quanti�ers is given in
[Salzer, 1996b]. The system MUltlog13 [Salzer, 1996a; Vienna Group for
Multiple Valued Logics, 1996] is a tool that computes optimal sequent and
tableau rules for any given �nite-valued �rst order logic. Its output can be

used, for example, to parameterize the system 3T
AP [Beckert et al., 1996],

a generic tableau-based theorem prover for many-valued sorted �rst-order
logic and (two-valued) equality. The system Deep Thought [Gerberding,

1996] essentially is a re-implementation of 3T
AP in the language C.

6.4 Many-Valued Analytic Cut

We will need the following de�nitions: a family (Si)i2I of subsets of a set
N is a covering of N , if

S
i2I Si = N . A covering of N is a partition of

N if, moreover, Si \ Sj = ; for all i; j 2 I , i 6= j.
Recall that in classical logic the cut rule in sequent calculus is seman-

tically equivalent to the conjunction of all tautologies of the form ' _ :',
where ' is any formula. If ' is restricted to subformulas of the formulas in
the root sequent, then one speaks of an analytic cut rule.

Hence, formally the cut rule is a DNF representation of truth; as such it
can be conceived as a tableau rule schema with empty (always true) premiss:

' :'(41)

This rule can be immediately generalized to signed DNF representations:

S1:' � � � Sm:'(42)

where m � 2, and fS1; : : : ; Smg is a partition of the set N . In the left
truth table in Figure 9 it is demonstrated (with the rule of Example 23)

13www.logic.at/multlog
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! L 0 1
2 1

0 1 1 1

1
2

1
2 1 1

1 0 1
2 1

! L 0 1
2 1

0 1 1 1

1
2

1
2 1 1

1 0 1
2 1

Figure 9. Di�erent coverings of the sign f0; 1
2g in truth table of three-valued

 Lukasiewicz implication.

how the union of the extensions of a tableau rule correspond to a covering
of all those �elds of a truth table whose entries occur in the sign (here:
S = f0; 1

2g) of the premiss. The covering property is necessary for complete
tableau rules, but the covering is not necessarily a partition of the �elds
containing entries from S: some �elds are possibly covered in more than
one extension, in the example, the �eld with entry 0.

With suitable cut rules one can enforce that the extensions of a rule form
a partition of the �elds to be covered. In the right table of Figure 9 a
covering partition of the truth table �elds with entries in f0; 1

2g of  Luka-
siewicz implication is displayed. The tableau rule corresponding to it is as
follows:

f0; 1
2g:'! L  

f 1
2 ; 1g:' f1g:'
f0g: f 1

2g: 
(43)

DEFINITION 27. A signed DNF representation
W
r Cr of S:�('1; : : : ; 'm)

(for m � 1) is called a partitioning DNF representation i� for any two
Ci and Cj with i 6= j the set of signed atoms Ci [ Cj contains an instance
of a tableau closure rule schema. Partitioning tableau rules are those
based on partitioning DNF representations.

Just as in classical logic with the analytic cut rule (41) it is possible to
derive many-valued partitioning rules from arbitrary ones with the help of
many-valued analytic cut (42). For instance, with the help of the many-
valued cut rule f0g: f 1

2 ; 1g: one can derive rule (43) from the rule in
Example 23.

The classical results of Gentzen [1935] on cut elimination in sequent sys-
tems can be recast in the �nite-valued logic setting. In [Carnielli, 1991]
it is observed that the existence of cut-free sequent proofs follows from the
completeness of many-valued tableaux and the duality between sequent and
tableau calculi, while [Baaz et al., 1994] give a direct and constructive cut
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elimination algorithm for singleton signed calculi.

6.5 Exploiting Duality Theory

If a truth value set is equipped with a partial order that de�nes the con-
nectives and quanti�ers of a logic, one can exploit dual representations of
ordered structures to improve its calculi. Consider, for example, Birkho�'s
well-known representation theorem for �nite distributive lattices saying that
each element of a �nite distributive lattice either is the top (bottom) element
or it can be uniquely represented as a meet (join) of meet-(join-)irreducible
elements.

THEOREM 28 (Birkho�). Let L be a �nite distributive lattice; then L is
isomorphic to O(J (L)), where O is ordered by set inclusion.

Moreover, if i 2 L, let M be the minimal elements of M(L) \ "i and
J the maximal elements of J (L) \ #i. Then i = FM =

F
J (using the

convention Ffg = > and
F
fg = ?).

EXAMPLE 29. Consider the distributive lattice L on the left of Figure 10.
J (L) is drawn in the middle, and O(J (L)) on the right.

0

a b

c

1

a b

c

;

#a #b

#c

#fa; cg

#fa; bg

Figure 10. Illustration of Example 29.

Birkho�'s and other representation theorems [Davey and Priestley, 1990;
Goldblatt, 1989; Sofronie-Stokkermans, 2000] allow to replace truth value
sets as signs with elements j of J (L).14 Formally, using interpretations
I� : �! O(J (L)), the following|quasi-classical|semantic conditions hold
provided that A_ and A^ are the lattice operations:

I� j= j:p i� j 2 I�(p)(44)

I� j= j:(' _  ) i� I� j= j:' or I� j= j: (45)

I� j= j:(' ^  ) i� I� j= j:' and I� j= j: (46)

14In general, the dual space of L may be more complicated. I use J (L), which is valid
for the case of �nite distributive lattices, by way of illustration.
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These give directly rise to almost classical tableau and sequent rule
schemata. An additional advantage is that J (L) is often much smaller
than L.

A logic solely based on lattice operators is not very interesting, but the
representation theorems hold as well, if one adds, for example, monotone
operationsm and anti-monotone operations a on J (L). These induce lattice
morphisms fm and anti-morphisms ga on L. The latter can be added to the
logical language as additional unary connectives Fm and Ga:

I� j= j:Fm(') i� I� j= m(j):'(47)

I� j= j:Ga(') i� I� 6j= a(j):'(48)

The last equivalence is realized in a rule like

j:Ga(')

a(j):'
:

Hence, the signs used in calculi are J (L) [ fj j j 2 J (L)g. Keeping
in mind that J (L) is isomorphic to the prime ideals of L ordered by set
inclusion via f : j 7! (L � "j) [Davey and Priestley, 1990, Prop. 9.4], one
can see that the duals of the family of regular signs (35) are exactly the
signs required for N = f0; 1

n�1 ; : : : ; 1g. In the general, non-linearly ordered
case, not all regular signs are required, because join-irreducible elements
alone suÆce to construct the dual representation.

To arrive at sound and complete calculi, two more ingredients are re-
quired: encoding validity by signed formulas and closure rule schemata.
Assume the designated values are D = f1g, then ' is valid i� I�(') = N for
all I� i� never I�(') 6= N =

F
J (L) i�

W
j2J (L) j:' has a closed tableau.

The single closure rule schema is obviously fj:'; j:'g.
The logics based on �nite chains and obtained from regular signs with

monotone and anti-monotone unary operators were investigated under the
label regular logic in [H�ahnle, 1991b; H�ahnle, 1994a]. It was suggested in
[Lehmke, 1995; Lehmke, 1996] to take signs from the dual space of a lattice;
the totally ordered chain [0; 1] is discussed in detail.

A systematic treatment of the idea to use dual spaces for lattice-based
logics is [Sofronie-Stokkermans, 1997]. In [Sofronie-Stokkermans, 1999b;
Sofronie-Stokkermans, to appear, 2000] this is further generalized to ordered
relational structures, which can be considered as classes of possible world
models, see also Bull and Segerberg's chapter in Volume 3 of this Handbook
and Section 10 below.

One can express (44){(48) along with the theory of partially ordered
signs in classical propositional (for �nite N) or in �rst-order logic [Sofronie-
Stokkermans, 1998; Beckert et al., 1999; Sofronie-Stokkermans, to appear,
2000]. For example, (45) becomes

(8j)(p'_ (j)$ p'(j) _ p (j)) :
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In [Sofronie-Stokkermans, 1999a] translations into classical logic of this
kind were used to show decidability of certain non-classical logics that hap-
pen to fall in decidable fragments of �rst-order logic. The idea is pushed one
step further in [Ganzinger and Sofronie-Stokkermans, 2000], where suitable
translations into of dual space representations classical logic are shown to
be a special case of the classical �rst-order logic with transitive relations
that can be eÆciently handled with so-called ordered chaining [Bachmair
and Ganzinger, 1998]. Thus, re�nements based on literal orderings and
selection functions that are available for classical logic become directly ap-
plicable to many-valued logics. For example, a stronger version of regular
negative hyperresolution as discussed below (56), is obtained. In addition,
highly sophisticated theorem provers for classical logic become applicable
to many-valued logics.

Recall that the many-valued quanti�ers 8 and 9 are de�ned via min and
max just like ^ and _ are. Given the above treatment of binary connectives
based on lattice operators, it is not surprising that quanti�ers � and �
de�ned via u and t in �nite (distributive) lattices possess elegant generic
tableau and sequent rules [H�ahnle, 1996a; Salzer, 1996b; H�ahnle, 1998].

The use of duality theory for automated deduction in many-valued log-
ics has just about started. One could try to base Sofronie-Stokkermans'
approach, for example, on Mart��nez' Priestley-type duality theory, which is
available for a wide class of algebraic structures related to many-valued logic,
including MV-algebras, linear Heyting algebras, and implicative lattices
[Mart��nez, 1990; Mart��nez, 1994; Mart��nez, 1996]. Interestingly, computa-
tion of the associated dual spaces can even largely be mechanized [Mart��nez
and Priestley, to appear, 2000].

6.6 Normal form computation

Many practically relevant calculi, such as resolution (see Section 6.8), are
only de�ned (or eÆcient) for formulas in conjunctive normal form.

Up to the right notion of literals, CNF is obviously achieved by repeated
application of Theorems 21 and 22, pushing quanti�ers in front, if necessary.
The details are straightforward and, for the monosigned case, can be found
in [Baaz and Ferm�uller, 1995b].

It is well-known that the naive computation of a CNF of a classical
propositional formula is in general exponential in size with respect to the
input. This can be avoided using structure preserving CNF transla-
tions [Tseitin, 1970; Plaisted and Greenbaum, 1986]. The basic idea is to
introduce a predicate p (x1; : : : ; xr) for each non-atomic subformula  of '
with free variables x1; : : : ; xr , and then replace each occurrence of  with its
predicate symbol. Of course, one must state that p and  are equivalent.
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For each  = �(�1; : : : ; �m) one obtains the formula

(8x1) � � � (8xr) (p (x1; : : : ; xr)$ � (p�1
; : : : ; p�m)) :(49)

Together with the negation of ', the conjunction of these lines states that
' is unsatis�able. As each formula (49) has constant depth two, its CNF is
of length linear in j'j (not constant, because of the free variables). There is
a linear number of subformulas of '. Together, one has a quadratic length,
satis�ability equivalent15 CNF of '. Exactly the same trick is used in the
proof of Theorem 16(1).

This idea works for signed formulas just as well, including optimizations
based on the polarity of subformula occurrences [H�ahnle, 1994d]. The role
of classical literals, of course, is taken over by signed atoms: a signed CNF
formula has the form (8x1) � � � (8xr)

VM
k=1

WJk
l=1 Skl:pkl, in which the Sj :pj

are signed atoms and fx1; : : : ; xtg are the free variables in the scope. For
any 1 � k �M , the expression

(8y1) � � � (8ym)(Sk1:pk1 _ � � � _ SkJk :pkJk)(50)

where fy1; : : : ; ymg are the free variables in the scope, is a signed clause.
Like in classical logic, the quanti�er pre�x is often not written explicitly
and a signed CNF formula is identi�ed with the set of its clauses.

Any signed formula in any �nite-valued �rst-order logic has an at most
polynomially larger signed CNF, which is satis�ability equivalent.

Signed clauses are used as if they were sets of signed atoms, which is
justi�ed by commutativity, associativity, and idempotency of disjunction.
As for sequents, various notations for signed clauses occur in the literature,
starting with [Lee and Chang, 1971; Morgan, 1976; Or lowska, 1978].

Like in classical logic, a signed clause is satis�able if at least one of its
literals is satis�able, a signed CNF formula is satis�able if all instances of
all its clauses are simultaneously satis�able. The empty signed clause
has no literals and is denoted with �. By de�nition, it is unsatis�able.

Exactly like the tableau and sequent rules (see Section 6.5), the transla-
tion process can be improved by working with dual representations in the
case of truth value lattices [Sofronie-Stokkermans, to appear, 2000].

In [Murray and Rosenthal, 1991b] signed negation normal form (NNF)
formulas are de�ned: these are negation-free propositional formulas con-
structed with ^, _ and with signed atoms as literals. Its relevance is based
on the following observation: if, for each connective � occurring in D:'
and all signs S of a family of signs complete with respect to D, the num-
ber of occurrences of subformulas in a CNF or DNF representation for
S:�(�1; : : : ; �m) is not greater than in S:�(�1; : : : ; �m) itself, then one ob-
tains a linear size signed NNF equivalent of D:' by repeated substitution

15The CNF of ' computed this way has not the same models as ', because the signature
was extended.
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of signed subformulas with their CNF or DNF equivalents. This generalizes
the well-known fact that classical NNF can be computed in linear time, if
no equivalence connectives are present in the input. There are calculi that
are specialized for signed NNF, see Section 6.9.

In [Thiele and Lehmke, 1994; Lehmke, 1996] it is observed that every
formula of in�nite-valued  Lukasiewicz logic can be expressed in signed NNF
provided that  Lukasiewicz sum � L and product � L are used instead of
classical disjunction and conjunction, but it can blow up a formula ex-
ponentially. They call this hierarchical normal form. Again, by using
abbreviations for complex subformulas, this can be improved to convert any
propositional  Lukasiewicz formula into a CNF over so-called bold clauses
(see end of Section 6.8).

An internal (in the sense of Section 2.4) DNF was obtained for  Lukasiewicz
logic in [Mundici, 1996] based on [Mundici, 1991], see also Section 4.1.
Clauses are based on � L instead of ^; as  Lukasiewicz product is not idem-
potent, a more complex notion of literal is required: formulas ' such that f'
is a strictly monotone McNaughton function in one variable. Satis�ability
of such functions can be characterized with a regular signed atom, that is,
a signed atom of the form "i:p or #i:p. As a consequence, the resolution
calculus of [Mundici and Olivetti, 1998] based on this notion of literal does
not go beyond signed resolution which is discussed in Section 6.8.

It is non-trivial to prove a McNaughton Theorem for the above notion of
literals, that is, to characterize the  Lukasiewicz formulas that are literals.
This is done in [Aguzzoli, 1998b; Aguzzoli, 1999].

6.7 Signed Clause Logic

By virtue of the results of Section 6.6, it is no loss of generality for the
purpose of validity checking of formulas in �nite-valued �rst-order logic to
work with signed CNF formulas.

Signed CNF formulas are generic or \logic-free" in the sense that their
syntax and semantics are �xed and independent of the logic, out of which the
translation started. Signed CNF formulas do not contain any many-valued
connective and are simply a generic and exible language for denoting many-
valued interpretations.

In addition, signed CNF formulas can be motivated from the point of view
of constraint programming (CP) and annotated logic programming
(ALP).

If N is equipped with an ordering, there is a natural notion of a Horn
formula. Recall that in classical logic a CNF formula is a Horn formula
i� each clause contains at most one positive literal. Signed atoms are, in
general, neither positive nor negative in any sense, but a natural notion
of polarity is present in regular signs (35): literals of the form "i:p are
positive while literals of the form "i:p are negative. With this convention,
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a regular Horn formula is de�ned exactly as in the classical case. Some
calculi based on this formula class are discussed in Section 7.2.

The particular case, when N is lattice-ordered and S is an order �lter
is investigated in annotated logic programming [Kifer and Subrahmanian,
1992] (there, S is called an annotation). Annotated logic programs can be
considered as particular signed CNF formulas, see Section 7.3.

On the other hand, S:p can be read as \p is constrained to values from
S" and, hence, as an instance of �nite-domain constraint programming [Lu
et al., 1997; Castell and Fargier, 1998; H�ahnle et al., 2000]. Applications
in this spirit are reported for Assumption-Based Reasoning [Haenni and
Lehmann, 1998a; Haenni and Lehmann, 1998b].

It is also possible to embed propositional signed CNF formulas into clas-
sical monadic �rst-order logic over �nite domains by representing a signed
atom S:p, where S = fi1; : : : ; irg, with the following classical formula:

(9p)(S(p)) ^ (8x)(S(x)$ (S(i1) _ � � � _ S(ir)))

6.8 Resolution

A resolution rule is a pair hC; 'i, where C is a non-empty set of formula
schemata, the premiss or parent formulas, and ' is a formula schema
called resolvent (of C). A termination rule is a non-empty set of formula
schemata. A resolution calculus RK is a �nite set of resolution rules and
a termination rule.

Each resolution calculus RK induces a provability relation `RK be-
tween sets of formulas 	 and formulas '.

(1) If ' 2 	, then 	 `RK '.

(2) If 	 `RK 'i for 1 � i � n, and there is an instance of a resolution
rule in RK with parent formulas '1; : : : ; 'n and resolvent ', then
	 `RK '.

If 	 `RK ' and ' is an instance of a formula schema in the termination
rule of RK, then 	 is refuted (in RK). Obviously, resolution calculi can be
considered as Hilbert calculi with an empty set of axioms (up to refutation).

The formula schemata in many-valued resolution calculi are typically
restricted to signed clauses of the form (50). In this case, the termination
rule contains exactly� and it is only possible to refute signed CNF formulas.
A resolution calculus is complete if every unsatis�able set of formulas can
be refuted and it is sound if only unsatis�able sets of formulas can be
refuted.

Only propositional calculi are discussed here, because lifting to �rst-order
logic is done exactly like in classical logic and does not provide any insights
speci�c to many-valued logic.
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Recall that classical resolution is based on combining clauses that contain
unsatis�able literal sets (closure rule schemata in a tableau framework).
Many-valued resolution does exactly the same:

S1:p _ C1 � � � Sm:p _ Cm
C1 _ � � � _ Cm

if
\

1�i�m

Si = ;(51)

Compare this to the tableau closure rule de�ned in Section 6.3. In con-
trast to classical logic, unsatis�able literal sets in general are required to
admit more than two elements.

EXAMPLE 30. The signed CNF formula � = ff0; 1
2g:p; f0; 1g:p; f

1
2 ; 1g:pg

is clearly unsatis�able, but there is no refutation, if (51) is restricted to
m � 2.

There is a complete binary resolution rule for signed logic, though:

S:p _ C S0:p _ C 0

(S \ S0):p _ C _ C 0
;:p _ C
C

(52)

Rule (51) can be simulated by several applications of rules (52). On
the other hand, (52) has (intermediate) resolvents which cannot be ob-
tained with (51). Let us call (51) many-valued hyperresolution and (52)
many-valued binary resolution. The literal (S \ S0):p in the binary rule
is called a residue, the rule on the right in (52) is called reduction rule.

Similar as for tableau and sequent calculi, historically the monosigned
restriction of (52) came �rst [Lee and Chang, 1971; Lee, 1972; Morgan,
1976; Baaz and Ferm�uller, 1992]. Or lowska [1978] and Schmitt [1986; 1989]
implicitly considered truth value sets as signs in a specialized context.

Rule (51) appeared �rst in [H�ahnle, 1993] and, independently, a close
variant in [Haenni and Lehmann, 1998b]; rule (52) is due to [Murray and
Rosenthal, 1991b; Murray and Rosenthal, 1993b]. All of the earlier systems
included a many-valued merging rule

S1:p _ � � � _ Sm:p _ C
(S1 [ � � � [ Sm):p _ C

(53)

but [H�ahnle, 1996b] proved that either of (51) and (52) alone is complete
with implicit merging of only identical literals.

It is easy to prove [Murray and Rosenthal, 1994; H�ahnle, 1996b] that
every CNF formula over signed atoms is logically equivalent to one in which
only regular signs (for any given total order) occur. Such a formula is called
a regular formula. Again using the trick to introduce abbreviations for
subformulas (see Section 6.6), one can even show that each signed CNF
formula can be reduced to a satis�ability equivalent regular formula, which
is only polynomially larger [Beckert et al., 2000b].
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In the case of monosigned and regular CNF formulas over a totally or-
dered truth value set, non-empty residues cannot occur, hence (52) simpli�es
to

S1:p _ C S2:p _ C 0

C _ C 0
if S1 \ S2 = ;(54)

which is called monosigned or regular binary resolution, depending
on the form of the signs. Completeness of binary resolution, as well as of
ordered resolution and hyperresolution, for monosigned CNF formulas is
shown in [Baaz and Ferm�uller, 1995b]. If N is totally ordered, one obtains
the hyperresolution-like re�nements (55) and (56) of regular binary resolu-
tion by combining several applications of rule (54) into one [H�ahnle, 1994d;
H�ahnle, 1996b].

"i1:p _ C1 � � � "im:p _ Cm #j:p _ C
C1 _ � � �Cm _ C

regular resolution
if

�
max

1�k�m
ik

�
> j(55)

Taking the maximal ik in the rule above is not strictly necessary: ad-
mitting any ik > j yields a sound and complete calculus, but may lead to
longer proofs. For regular formulas, (55) with m = 1 is the same as (54).

EXAMPLE 31. Let N = f0; 1
2 ; 1g and � the following regular formula:

f#0:p1 _ #
1
2 :p2; "

1
2 :p1 _ #0:p2; #0:p1 _ "1:p3;

"1:p2 _ "
1
2 :p3; "1:p2 _ #0:p3g

The last three clauses resolve to #0:p1_"1:p2 by (55), which in turn resolves
to #0:p1 with the �rst clause (by either rule (55) or (54)). From there, one
obtains #0:p2 with the second clause. In three more steps the empty clause
can be derived.

#i1:p _ C1 � � � #im:p _ Cm "j1:p _ � � � _ "jm:p _ C
C1 _ � � �Cm _ C

if m � 1; il < jl for 1 � l � m;
C1; : : : ; Cm; C contain only negative literals

regular negative hyperresolution

(56)

In [Sofronie-Stokkermans, 1998; Sofronie-Stokkermans, to appear, 2000]
it is shown that, if N is a distributive lattice and signs are its prime ideals
and their complements, then an analogue of rule (56) is complete, where
signs in positive literals are prime ideals and those in negative literals their
complements. The f-resolution rule of [Leach et al., 1998] is a special case
of Sofronie-Stokkermans' [to appear, 2000] framework.
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If N is a lattice, the following calculus is complete [Beckert et al., 1999]:

"i:p _ C "j:p _ C 0

C _ C 0

if i � j
lattice-regular binary resolution

"i:p _ C "j:p _ C 0

"(i t j):p _ C _ C 0

i; j incomparable
lattice-regular reduction

(57)

Note that, when N is totally ordered, the left rule of (57) is the same
as (54) for regular formulas.

Regarding techniques to prove completeness of the above-mentioned res-
olution calculi, one can say that semantic tree arguments [Robinson, 1968]
retain much of their clarity. The most straightforward approach is to use
jN j-ary semantic trees [H�ahnle, 1994d]. Just as in classical resolution theory,
more complex re�nements are often better handled by inductive construc-
tion of a proof, where the number of atoms or atom occurrences in a formula
supplies the induction parameter [H�ahnle, 1996b]. Alternatively, via trans-
lation of signed logics into classical �rst-order logic with transitive relations
[Ganzinger and Sofronie-Stokkermans, 2000] many completeness results are
inherited from classical logic. In fact, where this works, one usually obtains
strengthened versions (based on literal orderings and selection functions) of
the calculi discussed here.

The restriction of binary resolution to unit resolution (the case when
one input clause is a unit) is at the heart of the Davis{Putnam{Loveland
procedure [Davis et al., 1962], together with a case splitting rule (a so-
called pure rule that discards irrelevant clauses and is not needed for com-
pleteness, but for eÆciency, is not displayed):

S:p S0:p _ C
(S \ S0):p _ C

;:p _ C
C S1:p � � � Sr:p

(Sj)1�j�r generates 2N

(58)

This many-valued version was introduced for regular formulas (with total
order) in [H�ahnle, 1996b]. Regular-DPL was analyzed and improved in
[Many�a, 1996; Many�a et al., 1998; B�ejar and Many�a, 1999b].

Several resolution-based calculi were also given for logic programs based
on signed formulas. They are discussed in Section 7.

Lehmke, in [1995; 1996] describes a resolution system for so-called
weighted bold clauses. These are signed formulas over L0

 L, where the
formula part is a bold clause: a �nite multiset M of literals plus a \con-
junctive correction" Æ 2 IR that determines, whether M is interpreted as
� L or � L:

I (hM; Æi) = maxf0;minf1;
X
L2M

I(L)� Ægg :
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Signs are either prime �lters of [0; 1] (that is, open intervals of the form
(i; 1] and closed intervals of the form [i; 1]) or again bold clauses. In the �rst
case, the interpretation is as before, see De�nition 19. Otherwise, I j= ':'0

i� I('0) � I(').
Once again, the trick of introducing abbreviations for complex subfor-

mulas (see Section 6.6) is employed to show that any satis�ability prob-
lem of  Luksiewicz logic can be expressed with a �nite set of weighted bold
clauses (the necessity for bold clauses as signs comes from the abbrevia-
tions). A sound and complete resolution calculus for weighted bold clauses
exists [Lehmke, 1995]. Due to the many parameters of the language (con-
junctive correction, two kinds of signs), its rules are quite technical.

The non-clausal resolution rule for classical propositional logic takes
any two formulas ' and '0 as premisses, in which p 2 � occurs, and com-
putes the formula 'fp=0g_'0fp=1g as resolvent (the clausal rule is obtained,
if ' and '0 are clauses, p occurs positively in ' and negatively in '0). To-
gether with simpli�cation rules of the form p ^ 0 7! 0 etc., for getting rid
of 0 and 1, this is a sound and complete calculus for L0

c [Murray, 1982]. In
a �nite-valued logic L0 one can, in principle, use a straightforward gener-
alization: resolve formulas 'i, i 2 N , to

W
i2N 'ifp=ig. In practice, some

obstacles must be cleared away �rst:

(1) the truth values i might not be de�nable in L0;

(2) _ might not be de�nable in L0.

Truth values can be replaced by the elements of a suitable subalgebra of
the Lindenbaum algebra of L0, so-called veri�ers [Stachniak, 1988]. One
can show that a �nite, although in the worst case exponential in N , number
of veri�ers is suÆcient [Stachniak and O'Hearn, 1990]. The theory of many-
valued non-clausal resolution is fully developed in [Stachniak, 1996].

6.9 Other Calculi

One deduction method which, like non-clausal resolution, avoids to compute
any normal form altogether is the dissolution rule. It is available both
for classical [Murray and Rosenthal, 1993a] and �nite-valued logics [Murray
and Rosenthal, 1991b; Murray and Rosenthal, 1994].

Many-valued dissolution operates on formulas in signed NNF (see Sec-
tion 6.6). The dissolution rule selects in a signed NNF formula an implicitly
conjunctively connected pair of signed atoms S:p, S0:p, and restructures the
formula in such a way that at least one conjoint occurrence of S:p, S0:p is
replaced with (S \ S0):p. Producing ;:p leads to obvious simpli�cations like
in (52). Every unsatis�able signed NNF formula is reduced to the empty
formula by a �nite number of dissolution steps.
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A regular implicate of a signed NNF formula ' is a clause C of a regular
formula such that ' j= C. A regular prime implicate of ' is a regular
implicate C 0 of ' such that there is no regular implicate C 6= C 0 with C 0 j=
C. The set of prime implicates of a formula is important to know in many
applications of classical and many-valued logic, such as diagnosis, circuit
minimization, or truth maintenance systems. For some applications it is
crucial to avoid computing clause normal form [Ramesh et al., 1997a]. An
algorithm for computing regular prime implicates of signed NNF formulas
based on many-valued dissolution that avoids normal form is discussed in
[Ramesh and Murray, 1994; Ramesh and Murray, 1997].

A conjunctively connected pair S:p, S0:p of signed atoms with S 6= S0

in a signed NNF formula ' can be seen as a generalization of the tableau
closure rule and (52). The dual notion, a disjunctively connected pair such
that S \ S0 6= ;, indicates the presence of certain redundancies of ' in
representing f' (if I(p) 2 (S \S0)). Such a pair of signed atoms is called an
anti-link [Ramesh et al., 1997b]. Anti-links can be systematically removed
from formulas by a similar rule as dissolution. This can dramatically speed
up the computation of irredundant representations of f'. The signed NNF
case is handled in [Beckert et al., 1998]. An implementation is described in
[Gei�, 1997]. The technique of anti-links can improve the methods based
on dissolution mentioned above.

In contrast to dissolution, the so-called TAS method [Aguilera Vene-
gas et al., 1995] computes a simpli�ed DNF of a given formula in NNF.
The input formula is unsatis�able i� the result is the empty formula. Be-
fore each application of the distributive laws towards computing a DNF,
unitary models of subformulas are computed and used for simpli�cation.
The generalization of the TAS method to signed NNF formulas was done
in [Aguilera Venegas et al., 1997] and improved in [Aguilera Venegas et al.,
1999].

Both, dissolution and the TAS method can, in principle, be lifted to
�rst-order logic, although the technical diÆculties are considerable.

The connection method [Bibel, 1987] is another non-clausal deduction
system for full �rst-order logic closely related to tableaux. In [Lee, 1997] a
version of the connection method for propositional regular formulas is given.

In [Or lowska, 1991b] a relationship between certain non-classical logics
and relation algebras [Tarski, 1941] was established and the concept of re-
lational proof system was derived from it. There exist relational proof
systems in the spirit of [Rasiowa and Sikorski, 1963] for various many-valued
logics including generic ones for arbitrary �nite-valued logics [Morgan and
Or lowska, 1993; Or lowska, 1991a; Konikowska et al., 1998].

Algorithms based on local search outperform deductive decision proce-
dures for checking satis�ability of CNF formulas on some problem classes.
In particular, this holds for satis�able hard random 3-SAT instances, which
the fastest implementations of DPL cannot solve within a reasonable time
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limit [Selman et al., 1994].
Regular-GSAT [B�ejar and Many�a, 1999a] is an extension of the classical

GSAT procedure [Selman et al., 1992]. It works as follows: �rst, it tries
to �nd a satisfying interpretation for a regular formula � (with a total
order on truth values) performing a greedy local search through the space
of interpretations. It starts with a randomly generated interpretation I.
If I does not satisfy �, then it creates a set P � � � N , formed by those
variable-value pairs hp; ii that give rise to a maximal decrease (possibly zero
or negative) in the total number of unsatis�ed clauses of � when the truth
value of I at p is changed to i. Next, a propositional variable p0 appearing
in P and then a truth value i0 from fi j hp0; ii 2 Pg are randomly chosen.
Finally, I is updated to i0 at p0. Such changes are repeated until either a
satisfying interpretation is found or a preset maximum number of changes
is reached. The whole process is repeated up to �xed number of times, if
no satisfying interpretation is found before.

The superiority of classical local search algorithms over decision proce-
dures such as DPL for certain hard combinatorial problems was found for
Regular-GSAT and Regular-DPL [B�ejar and Many�a, 1999a] as well. There
is experimental evidence that Regular-GSAT outperforms other, includ-
ing classical, approaches on certain classes of problems [B�ejar and Many�a,
1999c].

7 LOGIC PROGRAMMING AND DEDUCTIVE DATABASES

This section requires familiarity with the basic notions of Logic Program-
ming as found, for example, in [Lloyd, 1987]. Once again, the discussion is
at the propositional level, because lifting to �rst-order is standard for signed
CNF formulas.

7.1 Signed Formula Logic Programs

Logic programs are obtained from classical CNF formulas by specifying a
preferred direction of evaluation within clauses, which are then called rule.
Syntactically, rules can be considered as sequents over literals, where the
succedent has length one or zero. Traditionally, rules are written in the
reverse direction of sequents.

Formally, a signed formula logic program16 (SFLP) [Lu, 1996] is a
�nite set of signed rules of the form

S:p S1:'1; : : : ; Sm:'m ;(59)

where S:p is a signed atom and the Si:'i are signed formulas of a �nite-
valued logic. A signed rule is satis�able i� S:p is satis�able or one of Sj :'j ,
16Not be confused with signed logic programs, a totally di�erent concept [Turner, 1994].
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1 � j � m, is satis�able. S:p is the head of the rule, S1:'1; : : : ; Sm:'m its
body, and Sj :'j its body literals.

In the light of the results on the existence of a signed CNF of Si:'i (see
Section 6.6), one may assume without loss of generality that the 'i are
atomic as well [Lu, 1996]. Similar as in classical logic, if S = ;, write

 S1:'1; : : : ; Sm:'m ;(60)

and call such a rule signed query. If m = 0, write

S:p(61)

and say signed fact. If m = 0 and S = ; one has the empty clause �.
As usual in logic programming, the goal is to prove P j=

V
L2QL for a logic

program P and literal set Q, and this is established by showing P [f Qg
to be unsatis�able.

The sign N is not excluded from SFLPs, but it is assumed that any
body literal of the form N :p is automatically deleted; this is justi�ed by the
reduction rule in (52).

Unrestricted SFLPs are not easier to solve than general signed CNF for-
mulas (and, hence, as classical CNF formulas): any signed clause (50) can
be rewritten into one of the signed rules

Sj :pj  S1:p1; : : : ; Sj�1:pj�1; Sj+1:pj+1; : : : ; Sm:pm

for 1 � j � m. So one cannot expect straight SLD-style (Prolog-like) or
unit resolution to be complete for SFLP as it is for classical logic programs.
SFLPs encompass the complexities of classical disjunctive logic program-
ming [Lobo et al., 1992] and more.

In this context, two directions for meaningful investigations were sug-
gested:

(1) de�ne a signed SLD-like resolution calculus for SFLPs, and character-
ize semantically the valid queries it approximates;

(2) restrict the language of SFLP so that complete calculi can be de�ned
(analogous to classical logic, where one works with de�nite or normal
logic programs).

The key tool for the �rst part are power interpretations, de�ned in Sec-
tion 6.2, with the small modi�cation that I+(p) = ; is admitted, hence,
I+ ! P(N). Following [Lu, 1996], we speak of an extended interpre-
tation. An extended interpretation that satis�es an SFLP P is called
extended model of P . Extended interpretations are naturally ordered
according to their \de�niteness": I+

1 � I+
2 i� I+

1 (p) � I+
2 (p) for all p 2 �.

Let I+ be the family of all extended interpretations (for �xed N and �),
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then hI+;�i is a bounded distributive lattice of �nite height generated by
\de�nite" extended interpretations I+

I
(p) = fI(p)g. Consider the interpre-

tation

EP (p) =
[
I+j=P

I+(p)(62)

de�ned for each SFLP P . One can show that it is the minimal extended
model of P with respect to � [Lu, 1996]. Moreover, EP can be e�ectively
computed:

S:p L L1; : : : ; S
0:p; : : : ; Lm

L L1; : : : ;
�
S \ S0

�
:p; : : : ; Lm

signed unit resolution

S:p S0:p
(S \ S0):p

signed unit reduction

(63)

Both rules are special cases of the left-hand side of (52).

THEOREM 32. For every SFLP P : EP j= S:p i� S:p can be derived from
P with rules (63).

The theorem follows immediately from Theorems 2.18 and 2.19 in [Lu,
1996], where also the top-down version of (63) was shown to be a complete
SLD-style resolution calculus for SFLP:17

S:p C  L1; : : : ; S
0:p; : : : ; Lm

 L1; : : : ;
�
S \ S0

�
:p; C; : : : ; Lm

signed SLD resolution

(64)

THEOREM 33. For every SFLP P and signed query  Q: EP j=
V
L2Q L

i� � can be derived from P starting with  Q and using rule (64).

EXAMPLE 34. For the SFLP P = ff1g:p f0g:q; f1g:p f1g:q; f1g:q  
f1g:pg, one has EP � N = f0; 1g. Nothing de�nite can be said about any
atom, indeed, no rule in (63) is applicable, and only the empty query suc-
ceeds with (64). This is not surprising, since P corresponds to a non-Horn
classical CNF formula.

If we add f0g:q to P , then EP (p) = f1g, but EP (q) = ;. This means P
is not satis�able by any standard interpretation; indeed, the corresponding
classical CNF formula is unsatis�able. EP , however, gives more information
than mere unsatis�ability, for example, EP 6j= f0g:q. It is possible to recon-
struct paraconsistent logic programming [Kifer and Lozinskii, 1992] within
SFLP [Lu, 1996].

17Theorems 5.4 and 5.8; there is a mistake in the statement of the latter, which is
corrected in Theorem 33 below.



ADVANCED MANY-VALUED LOGICS 361

Every SFLP is satis�ed by the trivial extended model that constantly
assigns ;.

For P 0 = ffa; 0g:p; fb; 0g:pg one has EP (p) = f0g, which is \de�nite".

Note, that SLD resolution is optimized for �rst-order logic and not very
eÆcient on the propositional level.

7.2 Regular Logic Programs

The second direction of research into SFLP starts by restricting the lan-
guage. The key property of classical de�nite logic programs is that they are
Horn formulas. If N is totally ordered, regular Horn formulas inherit many
properties of their classical counterparts, such as model theoretic character-
izations [H�ahnle, 1996b].

Complete re�nements of regular binary resolution (54) for regular Horn
formulas over a totally ordered truth value set are regular unit resolution
[H�ahnle, 1994d] (the case C = � in rule (54)) and also regular positive
unit resolution [Many�a, 1996] (where, in addition, the unit input clause
must be a positive literal).

A slightly di�erent strand of development, sometimes encountered under
the label fuzzy logic programming, is (selectively) represented by the
papers [Klawonn and Kruse, 1994; Escalada-Imaz and Many�a, 1995; Yasui
and Mukaidono, 1996; Vojt�a�s and Paulik, 1996; Vojt�a�s, 1998]. Signs are
used here in a more restrictive way in that they are attached to rules, not
to single literals. On the other hand, instead of the classical _, ^, and !,
connectives �t, �t, and !t based on various continuous t-norms over [0; 1]
are admitted. Most of the cited papers de�ne sound and complete versions
of SLD-resolution.

Another possibility to generalize is to consider non-linear orderings. [Beck-
ert et al., 1999] show that the rules below are complete for regular Horn
formulas, if N is a �nite upper semi-lattice.

"i:p "j:p _ C
C

if i � j
lattice-regular positive unit resolution

"i:p "j:p
"(i t j):p

i; j incomparable
lattice-regular unit reduction

(65)

The discussion on duality in Section 6.5 shows that for distributive lat-
tices further improvements are possible, for example, using only prime �lters
and their complements as signs [Sofronie-Stokkermans, 1998]. The opposite
direction, to consider more general orderings than lattices, requires more
thought: a core feature of any eÆcient deduction procedure for Horn for-
mulae is the possibility to represent the conjunction of two unit clauses as a
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single unit clause as witnessed by lattice-regular unit reduction (65). This
means that the set of signs must be closed under intersection:

For all i; j 2 N there is a k 2 N such that "i \ "j = "k(66)

Every non-empty, �nite partially ordered set satisfying (66) is, however,
already an upper semi-lattice. Therefore, it is inevitable to generalize the
language of signs if one wants to go beyond lattices. The most natural
choice is to work with upsets of N that need not be �lters, in other words,
signs of the form "S, where S � N . Details are in [Beckert et al., 1999].

We de�ned regular signs as the non-trivial order �lters of N generated by
single elements and their complements (35) and this is the de�nition most
of the work on regular signs is based upon. If N is totally ordered, then (35)
is equivalent to (in fact, this was the original de�nition in [H�ahnle, 1994a]):

S�regular = f"i j i 2 N; "i 6= Ng [ f#i j i 2 N; #i 6= Ng :(67)

The set of signs S�regular di�ers from Sregular in the non-linear case; it is
less expressive than the latter and not suitable for de�ning a Horn fragment,
because it is not closed under set complement. See also Table 1 below for
complexity results for associated satis�ability problems.

7.3 Annotated and Paraconsistent Logic Programs

An annotated logic program (ALP) [Kifer and Subrahmanian, 1992],
sometimes called paraconsistent logic program, has the same form as
(59), but all occurring signs are positive regular signs and N is a complete
lattice. It should be clear then, that an ALP is simply a regular Horn
formula (based on lattice-orders) in rule notation. In this sense, ALP is a
special case of SFLP [Lu et al., 1993; Lu et al., 1998].

It is possible to go the other way round: for a truth value set N , let 2n

be the inverted power set lattice of N , that is, ; is on top. Now each sign
S � N generates an order �lter in 2n that is comprised of all subsets of S,
that is, values of extended interpretations satisfying S [Lu, 1996].

Historically, ALPs preceded regular Horn formulas [Kifer and Lozinskij,
1989; Kifer and Lozinskii, 1992]. They were motivated by Belnap's para-
consistent logic [Belnap Jr., 1977], which is based on the truth sublattice
of FOUR discussed in Section 2.5. The logic based on this lattice was
modeled with Petri Nets [Murata et al., 1991]. Various calculi for ALPs
were developed and partly implemented [Blair and Subrahmanian, 1989;
Lu et al., 1991; Kifer and Subrahmanian, 1992; Messing and Stackelberg,
1995; Leach and Lu, 1996; Lu, 1996]. Non-monotonic ALP is considered in
[Bell et al., 1994], while [Lu and Rosenthal, 1997] is an overview of general-
ized logic programming.
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Remarkably, the general theory of annotated logic programs [Kifer and
Subrahmanian, 1992] allows for variables and function symbols to occur
in the signs, thus blurring the distinction between truth values and terms.
Variables in signs are also admitted in [H�ahnle et al., 2000].

7.4 Deductive Databases & Knowledge Representation

Relational databases correspond to recursion-free, safe Datalog logic pro-
grams (no function symbols) [Ullman, 1988]. Expressiveness of queries,
respectively, conciseness of the data can be improved by allowing recur-
sion or admitting function symbols or non-Horn rules. All of these drasti-
cally increase computational cost (the �rst two relaxations even imply un-
decidability), in contrast to SFLP and annotated logic programming ALP.
Therefore, signed logic techniques have been suggested to enhance deductive
database technology [Lakshmanan and Sadri, 1994; Subrahmanian, 1994;
Ng and Subrahmanian, 1993] and knowledge representation systems [Mess-
ing, 1997].

Deductive tasks in databases di�er from satis�ability checking: while con-
sistency of a database is important, it is often guaranteed by non-deductive
means and rarely performed.

More important tasks are query answering, updates, and query optimiza-
tion. Query answering means to decide whether a conjunction of atoms
logically follows from a given logic program. It is important for such algo-
rithms that they can take advantage from the fact that a logic program does
not change between subsequent queries, that is, there should be some sort
of compilation. This compilation process should be incremental in order to
allow database updates. As these requirements are ful�lled by standard
logic programming techniques, one looks for deductive algorithms in signed
logic that closely resemble those for classical logic programming [Leach and
Lu, 1996; Messing and Stackelberg, 1995; Messing, 1995]. Another topic
derived from classical database theory is the optimization of queries [Lak-
shmanan and Sadri, 1994].

The expert system architecture Milord II [Puyol-Gruart, 1996] makes
essential use of regular Horn formulas. Large knowledge bases are split into
modules, each equipped with a local many-valued logic [Agust��-Cullell et al.,
1991; Agust��-Cullell et al., 1994]. A mapping determines the global truth
degree from the truth degrees computed by each module.

In [Arieli and Avron, 1998] it is argued that the bilattice FOUR (Sec-
tion 2.5) plays a similar role as the two-valued Boolean algebra in the realm
of reasoning with incomplete and uncertain information, rather than Bel-
nap's [Belnap Jr., 1977] four-valued truth lattice.
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7.5 Many-Valued Semantics of Logic Programs

The knowledge lattice hfF; T;?;>g;�ki of the bilattice FOUR (De�ni-
tion 10) is a key tool for characterizing the declarative semantics of SLDNF-
resolution of general logic programs.

Observe that both sublattices of FOUR are compatible in the sense that
prime �lters/ideals (that is: regular signs) in one lattice have the same
status in the other. It is possible, therefore, to handle connectives from
both lattices with the same set of regular signs in FOUR. In fact, even
"kF and "kT suÆce.

The operational semantics of general logic programs P can be modeled
with the signed formula "kT :P , if the operators in P are de�ned by a suitable
FOUR-valued matrix. One possibility is: de�ne A (i; j) = T i� j �k i
and A (i; j) = F otherwise, that is, rules propagate knowledge and have
a two-valued de�nite result; combination of rules and body literals is done
simply by u in the truth lattice; to model negation as failure, think of
> to encompass both F and T and ? none of them. Now negation just
switches support of T and F , thus: A:(F ) = T , A:(T ) = F , and A:(i) = i
otherwise. It is straightforward to transform the signed formula "kT :P into
a regular Horn formula or annotated logic program over FOUR. At that
point, the results stated in Section 7.1 apply.

The model of classical general logic programming sketched above is es-
sentially due to [St�ark, 1991; Plaza, 1996]. The latter shows that SLDNF-
resolution is faithfully captured therein. The idea to use three- and four-
valued logics to model the semantics of logic programs with negation is due
to [Fitting, 1985; Kunen, 1987; Fitting, 1991a].

8 MANY-VALUED LOGIC IN CIRCUIT DESIGN

8.1 Usage of Many-Valued Logic in Circuit Design

The idea to generalize binary logic technology in hardware designs to many-
valued logic is natural and has been intensely explored for at least 30 years.
A closer look reveals that many-valued logic can be put to use in quite
di�erent ways:

Many-Valued Hardware. One can build genuinely many-valued hard-
ware that internally works typically with 2n voltage levels, where n � 2.
The most important advantage is that a higher integration can be achieved,
because a 2n-valued gate or cell is only slightly larger than a two-valued
one.

� Many-valued technology is used in various commercially available mem-
ory devices [Bauer et al., 1995]. Besides larger storage capacity on the
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same area, they o�er faster access as well. The need to map binary
addresses to many-valued cells a�ords slightly more complicated pe-
riphery, otherwise, existing manufacturing techniques scale up well. A
nice overview is [Gulak, 1998].

� The design of complex arithmetic and logic circuits has been proven
to be technologically feasible as well. In addition to smaller size, they
consume less power and have fewer internal connections [Kawahito
et al., 1994]. On the other hand, many-valued design tools of com-
parable quality to binary ones are not yet available. Together with
the higher complexity of many-valued circuits, this leads so far to
comparatively higher development cost. As a consequence, complex
many-valued circuits did not yet make a commercial impact, which
may change as physical barriers are in sight for binary technology.

Modeling below the Gate Level. Switch-level models (SLM) [Bryant,
1984; Hayes, 1986] are a well-established formal framework for modeling
properties of binary circuits on the transistor level in considerable detail.
SLMs are used to model phenomena such as propagation and resolution of
unde�ned values, hazard detection, degradation e�ects, varying capacities,
pull-up transistors or depletion mode transistors, see [Eveking, 1991] for a
very exhaustive list. It is important to note, however, that all dimensions
are symbolic values.

It has been demonstrated that many-valued logic is an appropriate model-
ing language at the switch-level [Hayes, 1986; Eveking, 1991], which makes
it possible to verify designs as well [Bryant and Seger, 1991; H�ahnle and
Kernig, 1993].

Representation, Minimization, Synthesis. Just as in the binary case,
it is important to represent, minimize and optimize many-valued functions,
that is, to express them in a given logical language with a minimal number
of connectives, which is the basis for a realization in hardware. For represen-
tation of binary and many-valued functions decision diagrams (Section 8.2)
are mostly used in modern design tools.

A large number of many-valued minimization methods can be found in
the literature. They fall into two categories:

� heuristic methods, for example, ESPRESSO-MV [Rudell and
Sangiovanni-Vincentelli, 1987]; [Rudell and Sangiovanni-Vincentelli,
1987]; these are used in practice, because

� systematic methods often cannot deal eÆciently enough with larger
designs [Sasao, 1999], but are successful in certain special contexts,
such as designs using �eld programmable gate arrays (FPGA).
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What seems surprising at �rst is that many-valued minimization can
be used for optimizing binary designs as well [Sasao, 1981; Sasao, 1993b].
For instance, a single 2n-valued signed atom can encode n binary literals.
Accordingly, a signed CNF formula (with truth values in f1; : : : ; 2ng) rep-
resents a so-called programmable logic array (PLA) with n-bit decoder.

It is outside the scope of this article to present technical details of many-
valued circuits. Instead, I would like to point out some connections between
many-valued switching theory and proof theory of many-valued logics.

8.2 Decision Diagrams

Decision diagrams (DD) are a family of data structures originally developed
for eÆcient representation and manipulation of Boolean formulas, but now
successfully used for many purposes in computer science, in particular in
circuit design tools [Burch et al., 1990]. A standard reference for binary
decision diagrams (BDD) is [Bryant, 1986], a survey of BDDs is contained
in [Bryant, 1992] and, more recently and exhaustively, in [Sasao and Fujita,
1996; Minato, 1996]. An introduction to BDDs from the point of view of
automated theorem proving is [Strother Moore, 1994]. DDs in many-valued
logic are discussed in [Kam et al., 1998].

BDDs are a representation of two-valued (Boolean) functions based on the
three-place if-then-else operator if i then j else k � (i^j)_(:i^k),
where

Aif-then-else(i; j; k) =

�
j if i = 1
k if i = 0

:

Every Boolean function can be expressed with a formula that contains
no connective but if-then-else, logical constants 0 and 1, and where vari-
ables occur exactly as the �rst argument of if-then-else connectives. For
instance,

p! q � if p then (if q then 1 else 0) else 1 :(68)

Such a representation is called an if-then-else normal form, a BDD,
or a Shannon tree. A systematic way to obtain a BDD representation
of a formula or logical function ' is provided by the so-called Shannon
expansion.18 Assume that p is a variable occurring in ', then:

' � if p then 'fp=1g else 'fp=0g :(69)

Recursive application of (69) to 'fp=ig (i = 0; 1) and the variables in it,
plus replacement of variable-free formulas with their valuation, obviously

18In the BDD and function minimization literature this equation is often attributed to
Shannon [1938] or Akers [1978], however, it appears already in [Boole, 1854]. Expansions
are sometimes called decomposition.
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yields a BDD representation of ', see Figure 11 (top right) for the example
in (68) in tree notation.

By de�nition of if-then-else, the right-hand side of the equivalence
(69) is valid i� the signed atom f1g:p and 'fp=1g are valid or the signed
atom f0g:p and 'fp=0g are valid.

Usually, BDDs are assumed to be reduced and ordered, abbreviated
ROBDD. Reduced means that the syntax tree of a BDD representation
is turned into a directed acyclic graph by identifying isomorphic subtrees
and applying the following simpli�cation rule, wherever possible:

(if i then j else j) � j :

Ordered means that relative to a given total ordering � on variables,
whenever q occurs in the body of if p ... then p � q must hold. An
important property of ROBDDs is that for a given variable ordering the
ROBDD representation of any formula is unique, rendering ROBDDs a
canonical normal form for Boolean functions. This property is crucial
for the implementation of BDD manipulation packages, because it allows
BDDs to be hashed, which helps to avoid redundant computations.

BDDs are extended to a many-valued decision diagram or MDD for
�nite-valued logics in a natural way using an (n+ 1)-ary switch connective
in n-valued logic:

Aswitch(i; j0; : : : ; jn�1) =

8>><>>:
j0 if i = 0
j1 if i = 1

n�1

� � � � � �
jn�1 if i = 1

Or lowska [1967] gave a proof procedure for propositional Post logic based
on an MDD-like structure, using a di�erent (and slightly cryptic) notation.
ROMDDs were de�ned �rst by [Thayse et al., 1979] and were rediscovered
in connection with the growing interest in BDD methods by [Srinivasan
et al., 1990], now called canonical function graph. Like their binary
counterparts n-valued MDDs are functionally complete, an ROMDD rep-
resentation is a canonical normal form for any n-valued function, and they
can be computed with the help of a generalized Shannon expansion:

' �

8>>>><>>>>:
switch i
case 0 : 'fp=0g;
case 1

n�1 : 'fp= 1
n�1g;

� � � � � �
case 1 : 'fp=1g

(70)

Obviously, the right-hand side of this equivalence is valid i� for some
i 2 N both the signed atom fig:p and the formula 'fp=ig are valid.
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Figure 11. Partitioning tableau rules and DDs.

DDs and partitioning DNF representations (De�nition 27) bear a close
relationship. Consider the partitioning tableau rule for f1g:(p! q) and the
ROBDD for p! q depicted in the top row of Figure 11. Edges correspond-
ing to then and else branches are labeled with 1 and 0, respectively, in
the ROBDD. An edge labeled with i going out of a node p can be seen as
an assertion of the truth value i to p, in other words, as the signed for-
mula fig:p. The following relationship between classical signed tableaux
with partitioning rules and (RO)BDDs holds [Posegga, 1993]: if B is the
set of signed atoms corresponding to the edges on a path ending with 1 in a
(RO)BDD for ', then there is an open branch in any tableau for f1g:' with
partitioning rules containing exactly B as signed atoms and vice versa.

This relationship generalizes to many-valued signed tableaux with par-
titioning rules and (RO)MDDs. Let B be the set of signed atoms corre-
sponding to edges on a path ending with j 2 S in a (RO)MDD for '. Then
there is an open branch in any signed tableau with partitioning rules for S:'
containing signed atoms B0 such that for each fig:p 2 B there is S0:p 2 B0

with i 2 S0.
Conversely, if B0 are the signed atoms on an open branch in a signed

tableau with partitioning rules for S:', then there is j 2 S and a path in a
(RO)MDD for ' ending with j and set B of signed atoms corresponding to
its edges, such that for each S0:p 2 B0 one has fig:p 2 B for some i 2 S0.

For instance, an ROMDD for p ! L q is displayed in Figure 11 (bottom
right|this time, variable q was expanded �rst); the paths ending with values
from f0; 1

2g correspond to the extensions of the partitioning tableau rule for
f0; 1

2g:(p! L q) depicted on the left.
The relationship between open tableau branches and paths in MDDs is

more straightforward, if one admits set-valued edges in DDs, which cor-
respond directly to atoms signed with truth value sets. Such diagrams,
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however, are not a canonical representation and, hence, less important in
practice.

Yet another way to look at DDs is as a non-clausal version of the (signed)
DPL procedure (58), whose splitting rule in the singleton sign case is exactly
generalized Shannon expansion (70). The main di�erence is that DPL-
proofs are trees and not DAGs.

We stress that DD methods are essentially con�ned to the ground case,
because total ordering of non-ground atoms is not compatible with applying
substitutions to them, hence the canonicity property is lost [Posegga and
Schmitt, 1995].

Implementations of MDDs are reported in [Srinivasan et al., 1990; Sasao,
1996; Kam et al., 1998].

8.3 Polynomial Expressions

The set of paths in a BDD or MDD can be seen as a Boolean polynomial
over signed atoms with truth values as coeÆcients. Let us write a signed
atom of the form fig:p as pi, \^" as \�", and \_" as \+". Then, by (69),
for example,

p! q � p1 � (1! q) + p0 � (0! q)

� p1 � (q1 � (1! 1) + q0 � (1! 0)) +

p0 � (q1 � (0! 1) + q0 � (0! 0))

� p1 � q1 � 1 + p1 � q0 � 0 + p0 � q1 � 1 + p0 � q0 � 1

(reduction: � p1 � q1 � 1 + p0 � 1 ) ;

where the last line can also be read o� the paths (ending with 1) in the
ROBDD in Figure 11. In switching theory [Hachtel and Somenzi, 1996;
Sasao, 1999], such a polynomial expression is known as sum-of-products
expression or SOP, the products pi11 � � � p

ik
k of the non-reduced form are

called minterm, and the coeÆcients 0, 1 discriminant. Many readers will
have realized that an SOP simply is a DNF.19.

Replacing disjunction \+" with exclusive or \�" yields a so-called
exclusive-or-of-products expressionESOP, which is of great practical
value [Hachtel and Somenzi, 1996; Sasao, 1999]. We saw that the Shannon
expansion yields SOP expressions. Because of p ^ q � 0 i� p � q � p _ q,
one obtains ESOP expressions in the same way. There are many kinds of
polynomial representations. Most of them, for example, general SOPs and
ESOPs are not canonical (that is, more than one (E)SOP has the same
ROBDD). On the other hand, certain restrictions of (E)SOPs are canoni-
cal: an ESOP, in which only positive signed atoms of the form p1 occur,

19(Signed) NNF formulas (Section 6.6) are known in switching theory as well under
the name factored expression.
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and where each product occurs at most once is called positive polarity
Reed-Muller (PPRM) expression and is of considerable practical interest
in circuit synthesis. The relevance of polynomial expressions comes from
the fact that they can be immediately realized with two-level networks. In
addition, many kinds of (E)SOP expressions can be read o� decision di-
agrams (based on suitable expansions), which gives directly a method for
synthesis of the corresponding circuits. One drawback is that the (E)SOPs
produced by DDs are not necessarily of minimal size.

In the many-valued case one may, of course, consider arbitrary signed
atoms S:p in minterms. Written pS, they are known in logic design under
the name set literal or universal literal [Sasao, 1981; Dueck and Butler,
1994]. On the other hand, there is no reason to restrict oneself to unary
functions as an expansion base for a polynomial representation: recall that
(70) can alternatively be written as

' � �i2N (pi � 'fp=ig) ;

which can be generalized to

' � �i2I(	i � 'i) ;(71)

for a certain base of Boolean-valued functions (	i)i2I over the variables of
' and certain many-valued functions 'i depending on the 	i. One needs, of
course, to impose restrictions on the 	i to make this work. Examples of gen-
eralized expansions are L�owenheim's orthonormal expansions, see [Brown,
1990]. Expansions for many-valued logic were investigated in many papers,
see [Perkowski, 1992] for an overview and attempt at systematizing the
plethora of existing expansions. The complexity of expressions in terms of
minimal length is compared in many papers.

Some expansions, for example (70), correspond to partitioning DNF rep-
resentations (De�nition 27), but in general, expansions are a much more
general mechanism. With DNF representations and, hence, tableau and
sequent rules, the usual point of view taken is that one eliminates a connec-
tive by applying it, whereas expansion schemata as used in switching theory
often eliminate a variable. Through many-valued cut rules both notions are
linked.

9 COMPLEXITY AND DECIDABILITY

As it is the case for classical logic and other non-standard logics, a variety
of complexity-related questions can be asked in the context of many-valued
logic. Some questions, such as the complexity of the sets of satis�able and
valid formulas in various logics, are completely standard; others, such as
the maximal size of DNF/CNF representations of many-valued operators,
only make sense in a many-valued context. We assume the reader to be
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familiar with standard concepts from complexity [Papadimitriou, 1994] and
recursion theory [Soare, 1987].

9.1 Satis�ability and Validity

Given an N -valued (propositional or �rst-order) logic L, a truth value
set D � N , denote with D-SATL the D-satis�able formulas and with
D-VALL, the D-valid formulas of L. Further, let SATL=f1g-SATL and
VALL=f1g-VALL.

THEOREM 35. SATL is NP-complete and VALL co-NP-complete, when-
ever L 2 fL0

c ;L
0
G
;L0

 L
;L0

�g for any choice of N .

Proof. (Sketch) For L0
c this is, of course, Cook's Theorem.

For hardness of the problems associated to a logic L0 2 fL0
G;L

0
 L;L

0
�g,

�rst observe that by virtue of equations (1), (3) one may assume that L0

contains all classical formulas ' 2 L0
c . Now it is suÆcient to de�ne for each

' 2 L0
c an L0-formula '� that restricts L0-interpretations of ' to values in

f0; 1g. Then ' 2 SATL0
c

i� '^'� 2 SATL0 . In the case of L0
 L, for example,

one can use '� =
V
p occurs in '(p _ :p), in the other logics similar formulas

work.
For �nite-valued logics, NP-, respectively, co-NP-easiness is straightfor-

ward, so assume N = [0; 1] for the remaining cases.
SATL0

c
=SATL0

�
=SATL0

G
is shown by giving straightforward polynomial-

size embeddings of the latter into the former [H�ajek, 1998].
VALL0

G
[Baaz et al., 1998a]: assume there is an interpretation I of ' 2 L0

G

over variables p1; : : : ; pm such that I(') < 1. There is a trivial order-
isomorphism omapping I(p1); : : : ; I(pm) into m + 2 = f0; 1

m+1 ; : : : ;
m
m+1 ; 1g,

All G�odel operations f have the property that f(i1; : : : ; i�(f)) 2 fi1; : : : ;
i�(f)g[ f0; 1g, hence, o(I)(') < 1; now it suÆces to guess such an interpre-
tation over m + 2 and check that o(I)(') < 1, which can obviously be done
in polynomial time.

VALL0
�

: there is a polynomial embedding of L0
� into L0

 L, see [Baaz et al.,

1998a].
VALL0

 L
, SATL0

 L
: an immediate consequence of Theorem 16(1). �

REMARK 36. Co-NP-completeness of VALL0

 L
was shown by Mundici [1987].

The polynomial embedding of MIP-representable logics described in Sec-
tion 4.2 also yields NP-easiness of G�odel logic and of the extension of
 Lukasiewicz logic that is characterized by piecewise linear functions with
rational coeÆcients (discussed at the end of Section 4.3). In [H�ajek, 1998]
also the complexity of the setsNnf0g-SATL andNnf0g-VALL is considered.

While the decision problems of propositional in�nite-valued  Lukasiewicz,
G�odel and product logic have the same complexity as two-valued logic, the
situation changes drastically in the �rst-order case:
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THEOREM 37. VALLG
is �1-complete and VALL is �2-complete, when-

ever L 2 fL L;L�g, if N = [0; 1].

The proofs are rather technical and must be omitted (they can be found in
[H�ajek, 1998]). �2-completeness of L L was �rst shown in [Scarpellini, 1962;
Ragaz, 1981]. An embedding of L L into LG [H�ajek, 1998] can be used to
show �2-completeness of the latter. �1-easiness follows from the existence
of a complete �rst-order axiomatization [H�ajek, 1998]. Surprisingly, VALLG
is not recursively enumerable anymore, for example, over the truth value
set N� = f 1

n+1 j n 2 INg [ f0g [Baaz et al., 1996]. So the order type of
the truth value set can drastically change the complexity of in�nite-valued
�rst-order logic.

More �ne-grained investigations were made into the complexity of satis�-
ability problems associated with signed CNF formulas (50). Let CNF-SAT
be the set of satis�able propositional signed formulas, let 2-CNF-SAT be
the restriction of CNF-SAT, where signed clauses contain exactly two signed
atoms, and let HORN-SAT be the satis�able regular Horn formulas (de�ned
in Section 7.2). If the truth value set N , together with a partial order, is
�xed, this is denoted with CNF-SATN , 2-CNF-SATN , and HORN-SATN .

Similar to the classical case, CNF-SAT is NP-complete, but some of its
sub-classes are polynomially solvable. NP-hardness of CNF-SAT is trivial,
because classical SAT is the same as CNF-SATf0;1g up to notation; NP-
easiness of the problem CNF-SAT for all �nite N is straightforward, see
above. Further results are summarized in Table 1 and are collected in
[Beckert et al., 2000b].

2-CNF-SATN for any jN j � 3 and, therefore, 2-CNF-SAT was shown
to be NP-hard in [Many�a, 1996; Many�a, 2000] (in contrast to classical
2-CNF-SAT that can be solved in linear time) by embedding the 3-colorability
problem of graphs. A direct embedding of classical CNF-SAT into
2-CNF-SAT is given in [Beckert et al., 1999].

Even regular 2-CNF-SAT is NP-complete, which can be shown by embed-
ding (general) 2-CNF-SAT into regular 2-CNF-SAT [Beckert et al., 2000a].
Under certain restrictions, however, membership in regular 2-CNF-SAT can
be checked in polynomial time: for totally orderedN , [Many�a, 1996; Many�a,
2000] gives a quadratic-time procedure by a version of signed DPL (58) for
regular formulas. A generalization is proven in [Beckert et al., 2000a] for
the case when N is a lattice and all occurring signs are of the form "i or #i.
A linear-time procedure for solving monosigned 2-CNF-SAT is described in
[Many�a, 2000].

If N is totally ordered, the problem of deciding whether a regular Horn
formula � is satis�able can be solved in time linear in j�j in case jN j is
�xed, and in j�j log j�j time, otherwise [H�ahnle, 1996b]. An algorithm for a
particular subclass of regular Horn formulas appeared before in [Escalada-
Imaz and Many�a, 1994].
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Table 1. Known complexity results for signed SAT problems

CNF 2-CNF HORN

classical NPC linear linear
[Even et al., 1976] [Dowling and Gallier, 1984]

monosigned NPC linear |
[Many�a, 2000]

regular, N totally ord. NPC polynomial j�j log j�j
[Many�a, 1996] [H�ahnle, 1996b]

regular, N distr. lattice,NPC NPC j�jjN j2

signs of form "i and "i [Beckert et al., 2000a] [Sofronie-Stokkermans, 1998]

regular, N lattice, NPC NPC polynomial

signs of form "i and "i [Beckert et al., 1999]

regular, N lattice, NPC polynomial |
signs of form "i and #i [Beckert et al., 2000a]

regular (arbitrary) NPC NPC |

signed (arbitrary) NPC NPC |
[Many�a, 1996]

If N is a �nite lattice, regular HORN-SAT is decidable in time linear
in the length of the formula and polynomial in the cardinality of N via
a reduction to classical HORN-SAT [Beckert et al., 1999]. For distribu-
tive lattices, the more precise bound j�j � jN j2 was found independently
in [Sofronie-Stokkermans, 1998], which contains also some results on de-
cidable �rst-order fragments of regular CNF formulas. A closer inspec-
tion of the proofs in the cited papers yields immediately that all regular
HORN-SATN versions have linear complexity.

If the partial order of N is no lattice, then regular Horn formulas need
to be based on signs of the form "S, where S � N (see end of Section 7.2).
This more general notion of regular HORN-SAT is still decidable in time
linear in the length of the formula, but exponential in the cardinality of N
[Beckert et al., 1999] provided that N possesses a maximal element.

If N is in�nite, then regular HORN-SAT is decidable provided that N
is a locally �nite lattice, that is, every sub-lattice generated by a �nite
subset is �nite [Beckert et al., 1999].

A set of on-line (that is: incremental) algorithms for Horn formulas with
numerical uncertainties has been proposed and studied in [Ausiello and
Giaccio, 1997]. The resulting complexities are (at most cubic) polynomials,
also in the in�nite-valued case.

The NP-complete satis�ability problems for regular formulas and Regular-
DPL exhibit the phase transition phenomena encountered in many decision
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procedures for NP-complete problems [Mitchell et al., 1992]: (i) there is a
sharp increase (phase transition) of the percentage of unsatis�able random
CNF-SAT instances around a certain point when the ratio c

v
between the

number c of clauses and the number v of variables is varied; (ii) there is
an easy-hard-easy pattern in the computational diÆculty of solving prob-
lem instances as c

v
is varied|the hard instances tend to be found near the

crossover point [Many�a et al., 1998; B�ejar and Many�a, 1999b].
The complexity of deciding logical consequence depends on the availabil-

ity and form of deduction theorems (such as Theorem 9) for a given logic.
On the CNF level, some authors used many-valued semantics to approx-

imate classical propositional consequence. In some cases this lead to poly-
nomial decision procedures and results of this kind were used in knowledge
representation [Patel-Schneider, 1990]. An overview of results in this area
is in [Cadoli and Schaerf, 1996].

9.2 Representations

The size of representations and tableau/sequent rules for many-valued op-
erators (see Section 6) is closely related to the deterministic complexity
of decision problems, because the size of rules determines the size of se-
quent/tableau proofs, and the latter immediately yield upper bounds of
the complexity of VAL and CNF-SAT by virtue of the Completeness The-
orem 25.

Representations (Theorem 21) and expansions (Section 8.2) do also de-
termine the size of various normal forms for many-valued logic formulas in
an essential way.

In [Rousseau, 1967; Rousseau, 1970; Zach, 1993; H�ahnle, 1994a; Baaz
and Ferm�uller, 1995b] the following results on the maximal size of signed
CNF-/DNF-representations of �nite-valued connectives � are stated and
proven:

n = jN j; r = �(�) DNF CNF
monosigned nr nr�1

general nr�1 nr�1

All bounds are tight. The r-ary  Lukasiewicz sum �r L serves in the proof
of all cases,; it is de�ned as �r L(p1; : : : ; pr) � p1 � L � � � � L pr.

The method described in Section 6.6 for translating formulas of any �nite-
valued logic into signed CNF limits the latter's size to be in O(nRj'j),
where R = maxf�(�) j � 2 �; � occurs in 'g [H�ahnle, 1994d]. For log-
ics de�ned by distributive lattices, up to exponentially better results are
possible by using the dual space representations discussed in Section 6.5.
General complexity results for this case and many concrete examples are in
[Sofronie-Stokkermans, to appear, 2000].
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The branching factor of signed tableau rules for quanti�ers (the number
of disjuncts in Theorem 22) is at most 2n�2. For the dual sequent rules the
slightly better bound 2n�1 can be obtained [Baaz and Ferm�uller, 1995b],
which is sharp as well.

A slightly di�erent question is to ask how many di�erent signs are needed
in general to build a sound and complete signed tableau or sequent calculus
for a given n-valued logic. It is shown in [Baaz et al., 1998b] for families of
signs ful�lling condition (40) that this number is logarithmic in n (and the
bound is tight).

One of the results relating to in�nite-valued  Lukasiewicz logic is that ev-
ery L0

 L-formula over just one variable can be polynomially translated into a
regular signed atom with respect to the natural order on N = [0; 1] [Mun-
dici and Olivetti, 1998]. The complexity of McNaughton functions in one
variable is investigated in [Aguzzoli, 1998a; Aguzzoli, 1999]. In [Mundici,
1987] it is shown that a L0

 L-formula ' is valid in in�nite-valued L0
 L i� it is

valid in (2(2j'j)2

+1)-valued L0
 L. This bound was later improved to (2j'j+1)

values [Aguzzoli and Ciabattoni, 2000; Ciabattoni, 2000b]. An analogous
result is established for logical consequence.

Space complexity of various kinds of MDDs (Section 8.2) is discussed,
for example, in [Sasao, 1993b], where further pointers to the literature can
be found. In fact, every known kind of MDD has exponential worst-case
space complexity. Increased space complexity is frequently traded in for
more eÆcient computation in practice.

The worst-case, best-case and relative space complexity of various kinds
of polynomial representations of �nite-valued functions is investigated in
many papers, for example, [Sasao and Butler, 1997].

10 INTERACTION WITH OTHER NON-CLASSICAL LOGICS

Interaction between many-valued and other non-classical logics can take
place in several ways. I start by mentioning general logical frameworks
such as Gabbay's labeled deductive systems (LDS) [Gabbay, 1996], which
can accommodate several non-classical logics, including MVL, at the same
time. The development of a general tableau-based deductive framework for
LDS was started in [D'Agostino and Gabbay, 1994].

Fibring of logics, suggested in [Pfalzgraf, 1991], and developed further
by Gabbay [1999], is a general methodology to break up logical systems
into simpler components and recombine them. This is exploited in [Beckert
and Gabbay, 1998] who provide precise conditions on logics that guarantee
modular combination of sound and complete tableau calculi.

The matrix-based semantics de�ned in Section 2.1 and used throughout
this article is a very straightforward and natural generalization of classical
semantics. Moreover, it is perfectly adequate for characterizing many-valued
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logics. There exist, however, several other kinds of semantics that not only
cover certain many-valued logics, but other logics (modal, relevant, etc.) as
well. Advantages of taking an alternative approach are that it admits a di-
rect comparative analysis of the logics in question and often gives additional
insights.

One semantical framework is the possible-translation semantics or
non-deterministic semantics of Carnielli [2000]. It works with sets of
matrices, and formulas are satis�able, if they are satis�able in certain sub-
sets of these matrices. There are logics that can be characterized by a �nite
subset of �nite matrices, even though there is no single �nite characteris-
tic matrix. Possible-translation semantics can be generalized to o�er an
alternative to logical �bring [Carnielli and Coniglio, 1999].

The so-called society semantics [Carnielli and Lima-Marques, 1999] is
an agent-oriented semantics and can be seen as a special case of possible-
translation semantics.

The book [Epstein, 1996] develops set-assignment semantics, an ad-
dition to matrix semantics that allows elegant characterization of a great
variety of non-classical logics, including modal logics, intuitionistic logic,
paraconsistent logics, and many-valued logics.

In parallel to the semantical frameworks just mentioned, there exist at
least two mainly proof theoretical frameworks that allow to compare a vari-
ety of non-classical logics, including many-valued ones. These are hyperse-
quent calculi (see Section 6.1) [Pottinger, 1983; Avron, 1987; Avron, 1996]
and display sequent calculi [Belnap, 1982]

On the other hand, many-valued logic can also be combined with other
logics in a \bottom-up" style, which sometimes allows to prove stronger re-
sults than can be obtained within general frameworks. Many-valued modal
logics of various sorts were considered in [Fitting, 1991b; Fitting, 1992; Itur-
rioz, 1993; Fitting, 1995; Baaz and Ferm�uller, 1996], many-valued temporal
logic in [Thiele and Kalenka, 1993; Baaz and Zach, 1994; Baaz et al., 1996],
sometimes with surprising results such as propositional in�nite-valued tem-
poral logic being undecidable [Wagner, 1997]. Sorted, many-valued higher-
order logic was used for modeling partial functions [Kerber and Kohlhase,
1994; Kerber and Kohlhase, 1997].

Consider signed formulas S:' in some many-valued logic L0 with truth
values N and family of signs S � 2N . It is straightforward to de�ne a two-
valued possible world semantics, if one considers S as the set of possible
worlds and by forcing ' in i, whenever S:' is satis�able in L0. The question,
of course, is: are there any interesting operators to relate possible worlds?
In some cases, this is indeed so, for example, the common possible worlds
semantics of G�odel, intuitionistic and certain temporal logics was used to
prove undecidability results about the latter [Baaz et al., 1996]. The paper
[Or lowska and Iturrioz, 1999] provides a link between  Lukasiewicz logic and
modal logic.
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The converse direction, from modal logic to MVL, is interesting as well,
because many-valued logics permit eÆcient deduction procedures (see Sec-
tion 6). Any modal logic with set of possible worlds N and accessibility
relation R � N �N can be trivially re-interpreted as a 2N -valued logic by
encoding a possible world interpretation I� : � � N ! f0; 1g as a many-
valued interpretation I : � ! 2N . For modal logics with the �nite model
property this construction yields �nite-valued proof systems characterizing
those modal logics [Caferra and Zabel, 1990]. More interesting results are
obtained from duality theory of distributive lattices: possible world frames
of certain modal logics turn out to be the dual spaces of suitable distribu-
tive lattices, not necessarily �nite. The technique explained in Section 6.5
due to Sofronie-Stokkermans [1999a; to appear, 2000] leads to proof theo-
retical characterization of such modal logics in terms of regular logic and,
ultimately, �rst-order classical logic.

Finally, an interesting connection is the usage of many-valued signs to
make deduction in intuitionistic and modal logic more eÆcient [Miglioli
et al., 1994; Miglioli et al., 1995; Avellone et al., 1999].

11 MVL RESOURCES

REMARK 38. In the present section I collected various resources to draw
upon for learning about MVL. For the reader's convenience URLs are sup-
plied, whenever appropriate. Information of this kind is likely to change, so
I maintain a web page20 containing this section in updated and expanded
form.

Books Classic, but dated, monographs on MVL in general are [Rosser and
Turquette, 1952; Rescher, 1969]; the same holds for the collections [Dunn
and Epstein, 1977; Rine, 1984].

[Malinowski, 1993] is recommended as a more recent and compact in-
troduction into MVL. Another concise introduction, strong on algebraic
aspects, is [Panti, 1998]. The volumes [Bolc and Borowik, 1992; Bolc and
Borowik, 2000] are comprehensive and fairly recent, but at least the �rst
part is, unfortunately, seriously awed by many inaccuracies, see [H�ajek and
Zach, 1994].

The book [Gottwald, 1989] is comprehensive, but only available in Ger-
man; a much expanded English edition [Gottwald, 2000] is likely to become
the standard monograph on MVL. The work [H�ajek, 1998] is broader than
its title may suggest|both books were of invaluable help in preparing this
chapter. Substantial bibliographies are contained in [Iturrioz, 2000; Iturrioz
et al., 2000; Gottwald, 2000]

20http://www.cs.chalmer.se/~reiner/mvl-web
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There are, of course, books on more specialized areas within MVL: Among
the many books on fuzzy logic I only mention [Nov�ak, 1989; Zimmermann,
1991; Gottwald, 1993; Kruse et al., 1994; H�ajek, 1998; Turunen, 1999] and
the collections [Marks, 1994; Klir and Yuan, 1996], which contain material
on fuzzy logic in the narrow sense. The de�nitive book on t-norm the-
ory is [Klement et al., 2000]. Deductive aspects of MVL are the topic
of [H�ahnle, 1994a; Stachniak, 1996; Baaz et al., to appear, 2000]. An
overview of algebraic structures related to many-valued logics is [Iturrioz
et al., 2000]. Algebraic aspects of  Lukasiewicz logic are treated in depth
in [Cignoli et al., 1999], while philosophical aspects of MVL are discussed
in [Zinov'ev, 1963; Haack, 1974; Haack, 1996]. For many-valued switching
theory look at [Muzio and Wesselkamper, 1986] and the collections [Sasao,
1993a; Sasao and Fujita, 1996].

Journals There is one journal publishing articles on all aspects of many-
valued logic: Multiple-Valued Logic: an International Journal21, published
by Gordon & Breach.

Journals with a strong emphasis on one or more aspects of MVL are Soft
Computing: A Fusion of Foundations, Methodologies and Applications22,
published by Springer-Verlag; Mathware & Soft Computing23, published by
Universitat Polit�ecnica de Catalunya; Fuzzy Sets and Systems24, published
by Elsevier.

Mainstream logic journals with an editorial interest in many-valued logic
include Studia Logica25, published by Kluwer; Journal of Applied Non-
Classical Logics26, published by Herm�es; Journal of Logic and Computa-
tion27, published by Oxford University Press; Journal of Language, Logic
and Computation28, published by Kluwer.

Organizations and Meetings IEEE Computer Society29 has a Techni-
cal Committee on MVL30 [Kameyama, 1997], which also organizes the only
annual conference devoted exclusively to MVL. The meeting is called In-
ternational Symposium on Multiple-Valued Logic, the proceedings are pub-
lished by the IEEE Computer Society Press. Papers in MVL are, of course,
also presented in other logic-related conferences31. A research network called

21http://www.gbhap-us.com/journals/733/733-top.htm
22http://link.springer.de/link/service/journals/00500/index.htm
23http://www.upc.es/ea-smi/mathware/
24http://www.elsevier.nl/inca/publications/store/5/0/5/5/4/5/
25http://kapis.www.wkap.nl/journalhome.htm/0039-3215
26http://www.editions-hermes.fr/periodiques/no.htm
27http://www3.oup.co.uk/logcom/
28http://kapis.www.wkap.nl/journalhome.htm/0925-8531
29http://www.computer.org
30http://wwwj3.comp.eng.himeji-tech.ac.jp/mvl/
31http://cm.bell-labs.com/cm/cs/who/libkin/lics/logic-confs.html
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Many-Valued Logics for Computer Science Applications32 sponsored as a
COST Action by the European Community existed between 1995 and 1999
[Tassart et al., 1995]. Its �nal report [Iturrioz, 2000] contains a bibliography
of recent work on MVL with over 600 entries.
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PREFACE TO THE SECOND EDITION

It is with great pleasure that we are presenting to the community the
second edition of this extraordinary handbook. It has been over 15 years
since the publication of the �rst edition and there have been great changes
in the landscape of philosophical logic since then.

The �rst edition has proved invaluable to generations of students and
researchers in formal philosophy and language, as well as to consumers of
logic in many applied areas. The main logic article in the Encyclopaedia
Britannica 1999 has described the �rst edition as `the best starting point
for exploring any of the topics in logic'. We are con�dent that the second
edition will prove to be just as good.!

The �rst edition was the second handbook published for the logic commu-
nity. It followed the North Holland one volume Handbook of Mathematical
Logic, published in 1977, edited by the late Jon Barwise. The four volume
Handbook of Philosophical Logic, published 1983{1989 came at a fortunate
temporal junction at the evolution of logic. This was the time when logic
was gaining ground in computer science and arti�cial intelligence circles.

These areas were under increasing commercial pressure to provide devices
which help and/or replace the human in his daily activity. This pressure
required the use of logic in the modelling of human activity and organisa-
tion on the one hand and to provide the theoretical basis for the computer
program constructs on the other. The result was that the Handbook of
Philosophical Logic, which covered most of the areas needed from logic for
these active communities, became their bible.

The increased demand for philosophical logic from computer science and
arti�cial intelligence and computational linguistics accelerated the devel-
opment of the subject directly and indirectly. It directly pushed research
forward, stimulated by the needs of applications. New logic areas became
established and old areas were enriched and expanded. At the same time, it
socially provided employment for generations of logicians residing in com-
puter science, linguistics and electrical engineering departments which of
course helped keep the logic community thriving. In addition to that, it so
happens (perhaps not by accident) that many of the Handbook contributors
became active in these application areas and took their place as time passed
on, among the most famous leading �gures of applied philosophical logic of
our times. Today we have a handbook with a most extraordinary collection
of famous people as authors!

The table below will give our readers an idea of the landscape of logic
and its relation to computer science and formal language and arti�cial in-
telligence. It shows that the �rst edition is very close to the mark of what
was needed. Two topics were not included in the �rst edition, even though
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they were extensively discussed by all authors in a 3-day Handbook meeting.
These are:

� a chapter on non-monotonic logic

� a chapter on combinatory logic and �-calculus

We felt at the time (1979) that non-monotonic logic was not ready for
a chapter yet and that combinatory logic and �-calculus was too far re-
moved.1 Non-monotonic logic is now a very major area of philosophi-
cal logic, alongside default logics, labelled deductive systems, �bring log-
ics, multi-dimensional, multimodal and substructural logics. Intensive re-
examinations of fragments of classical logic have produced fresh insights,
including at time decision procedures and equivalence with non-classical
systems.

Perhaps the most impressive achievement of philosophical logic as arising
in the past decade has been the e�ective negotiation of research partnerships
with fallacy theory, informal logic and argumentation theory, attested to by
the Amsterdam Conference in Logic and Argumentation in 1995, and the
two Bonn Conferences in Practical Reasoning in 1996 and 1997.

These subjects are becoming more and more useful in agent theory and
intelligent and reactive databases.

Finally, �fteen years after the start of the Handbook project, I would
like to take this opportunity to put forward my current views about logic
in computer science, computational linguistics and arti�cial intelligence. In
the early 1980s the perception of the role of logic in computer science was
that of a speci�cation and reasoning tool and that of a basis for possibly
neat computer languages. The computer scientist was manipulating data
structures and the use of logic was one of his options.

My own view at the time was that there was an opportunity for logic to
play a key role in computer science and to exchange bene�ts with this rich
and important application area and thus enhance its own evolution. The
relationship between logic and computer science was perceived as very much
like the relationship of applied mathematics to physics and engineering. Ap-
plied mathematics evolves through its use as an essential tool, and so we
hoped for logic. Today my view has changed. As computer science and
arti�cial intelligence deal more and more with distributed and interactive
systems, processes, concurrency, agents, causes, transitions, communication
and control (to name a few), the researcher in this area is having more and
more in common with the traditional philosopher who has been analysing

1I am really sorry, in hindsight, about the omission of the non-monotonic logic chapter.
I wonder how the subject would have developed, if the AI research community had had
a theoretical model, in the form of a chapter, to look at. Perhaps the area would have
developed in a more streamlined way!
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such questions for centuries (unrestricted by the capabilities of any hard-
ware).

The principles governing the interaction of several processes, for example,
are abstract an similar to principles governing the cooperation of two large
organisation. A detailed rule based e�ective but rigid bureaucracy is very
much similar to a complex computer program handling and manipulating
data. My guess is that the principles underlying one are very much the
same as those underlying the other.

I believe the day is not far away in the future when the computer scientist
will wake up one morning with the realisation that he is actually a kind of
formal philosopher!

The projected number of volumes for this Handbook is about 18. The
subject has evolved and its areas have become interrelated to such an extent
that it no longer makes sense to dedicate volumes to topics. However, the
volumes do follow some natural groupings of chapters.

I would like to thank our authors are readers for their contributions and
their commitment in making this Handbook a success. Thanks also to
our publication administrator Mrs J. Spurr for her usual dedication and
excellence and to Kluwer Academic Publishers for their continuing support
for the Handbook.

Dov Gabbay
King's College London
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ROBERT BULL AND KRISTER SEGERBERG

BASIC MODAL LOGIC

Historical Part

1 HISTORICAL OVERVIEW

It is popular practice to borrow metaphors between di�erent �elds of thought.
When it comes to evaluating modal logic it is tempting to borrow from the
anthropologists who seem to agree that our civilisation has lived through
two great waves of change in the past, the Agricultural Revolution and the
Industrial Revolution. Where we stand today, where the world is going, is
diÆcult to say. If there is a deeper pattern �tting all that is happening
today, then many of us do not see it. All we know, really, is that history is
pushing on.

The history of modal logic can be written in similar terms, if on a less
global scale. Already from the beginning|corresponding to the stage of
hunter-gatherer cultures in anthropology|insights into the logic of modality
has been gathered, by Aristotle, the Megarians, the Stoics, the medievals,
and others. But systematic work only began when pioneers found or forged
tools that enabled the to plough and cultivate where their predecessors
had had to be content to forage. This was the First Wave, and as with
agriculture it started in several places, more or less independently: C. I.
Lewis, Jan  Lukasiewicz, Rudolf Carnap. These cultures grew slowly, from
early this century till the end of the sixth decade, a period of more than 50
years. Then something happened that can well be described as a Second
Wave. What brought it out spectacularly was the achievements of the
teenage genius of Saul Kripke, but he was not alone, more strictly speaking
the �rst of his kind: the names of Arthur Prior, Stig Kanger, and Jaakko
Hintikka must also be mentioned, perhaps also those of J. C. C. McKinsey
and Alfred Tarski. Now modal logic became an industry. In the quarter of
a century that has passed since, this industry has seen steady growth and
handsome returns on invested capital.

Where we stand today is diÆcult to say. Is the picture beginning to
break up, or is it just the contemporary observer's perennial problem of
putting his own time into perspective? For a long while one attraction of
modal logic was that it was, comparatively speaking, so easy to do|now
it is becoming as diÆcult as the more mature branches of logic. And the
sheer bulk of published material is making it diÆcult to survey. But there is
also the increasing di�erentiation of interests and the subsequent tendency
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towards fragmentation. In addition to more traditional pursuits we are now
seeing phenomena as diverse as the application of modal predicate logic to
philosophical problems at a new level of sophistication (Fine [1977; 1977a;
1980]), the analysis of conditionals started by Stalnaker [1968], Lewis [1973],
the generalisation of model theory with modal notions (Mortimer [1974],
Bowen [1978]), in-depth studies of the so-called provability interpretation
(see Boolos [1979]; see also Craig Smory�nski's Chapter in this Handbook),
the advent of dynamic logic (see Pratt [1980] and David Harel's Chapter in
this Handbook) and Montague grammar (see Montague [1974]).

This is not the place to go deeply into the history of modal logic, even
though we will say something about it in the next few sections. A reader who
would like to know more about the beginnings of the discipline is referred to
Prior [1962], Kneale and Kneale [1962], and Lemmon [1977]. For the disci-
pline itself, as distinct from its history, the reader may consult a number of
textbooks or monographs, from E. J. Lemmon's and Dana Scott's fragment
Lemmon [1977], and Hughes and Cresswell [1996]. Sch�utte [1968], Makinson
[1971], Segerberg [1971], Snyder [1971], Zeman [1973], and Gabbay [1976]

to the recent and very readable Rautenberg [1979] and Chellas [1980]. No-
table journal collections of papers on modal logic include `Proceedings of a
colloquium on modal and many-valued logics' (Acta Philosophica Fennica,
16, 1963), `In memory of Arthur Prior' (Theoria, 36, 1970), and `Trends in
modal logic' (Studia Logica, 39, 1980). Good bibliographies of early work
are found in Feys [1965], Hughes and Cresswell [1996] and Zeman [1973].
Among survey papers from the last few years we recommend Montague
[1968], Belnap [1981], Bull [1982; 1983], and F�ollesdal [1989].

All writing of history is to some extent arbitrary. The historian, in his
quest for order, imposes structure. A favourite stratagem is the imposition
of n-chotomies. As long as the arbitrary element is recognised, the proce-
dure seems perfectly legitimate. This admitted we should like to impose
a trichotomy on early modal logic: modern modal logic derives from three
fountain-heads which may be classi�ed according to their relation to seman-
tics. The syntactic tradition is the oldest and is characterised by the lack of
explicit semantics. Then we have the algebraic tradition with a semantics of
sorts in algebraic terms. Finally there is the model theoretic tradition, the
youngest one, whose semantics is in terms of models. Possible worlds se-
mantics is the dominating kind of model theoretic semantics, perhaps even,
if we take advantage of the vagueness of this term and stretch it a little,
the only kind. In the next few sections we propose to give a brief account
of each of the three traditions.
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2 THE SYNTACTIC TRADITION

Modern modal logic began in 1912 when C. I. Lewis �led a complaint in
Mind to the e�ect that classical logic fails to provide a satisfactory analysis
of implication, `the ordinary \implies" of ordinary valid inference', [Lewis,
1912]. Roughly it is the paradoxes of material implication that Lewis worries
about, but his subtle argument goes beyond the vulgar objections, impli-
cation is not the only connective that worries him. In fact, his very �rst
analysis concerns disjunction. Consider, he says the following two proposi-
tions:

1. Either Caesar died, or the moon is made of green cheese.

2. Either Matilda does not love me, or I am beloved.

If we disregard the complication that there is also an exclusive reading of
`or', classical logic will consider that both these propositions are of the form

(i) A _ B.

Yet, Lewis argues, there are more important di�erences between the two.
For example, we know that (1) is true since we know that, as it happens,
Caesar is dead, but we know that (2) is true without knowing which of the
disjuncts is true. Thus (2) exhibits a `purely logical or formal character'
and an `independence of facts' that is lacking in (1).

This much all can agree. But disagreement arises over how to account for
the di�erence between (1) and (2). One possibility would be to hold that
while both (1) and (2) are of the same form, viz. (i) they di�er in that only
(2) satis�es the further condition

(ii) ` A _B,

where the turnstile ` stands for assertability or provability in some suitable
system. But Lewis embraces another possibility. The di�erence between
(1) and (2), he feels, is a di�erence in meaning. More speci�cally, he feels
that there is a connection between the disjuncts of (2) which is part of the
meaning of (2). On this view, the `or' of (1) and the `or' of (2) are di�erent
kinds of disjunction, and Lewis proposes to call the former extensional and
the latter intensional. While extensional disjunction is rendered by the
traditional, truth-value functional operator _, a novel sort of operator is
needed to render intensional disjunction. Lewis himself never introduced
a symbol for it, but E. M. Curley, in a recent historical study, uses the
symbol _ [Curley, 1975]. Thus, while (1) is of the form (i), we may say
that, according to Lewis, (2) is of the form

(iii) A_B.
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The same problem also concerns other connectives. In the case of implica-
tion there is, according to Lewis, an extensional kind which is adequately
rendered by the `arrow',!, the material implication of ordinary truth- value
functional logic. But there is also an intensional kind of implication, called
strict implication` by Lewis, and for this he introduces a new symbol, the
`�sh-hook', 3 . The latter is not found, nor de�nable, in classical logic, and
so Lewis proposes to develop a calculus of strict implication.

Thus there is a triad corresponding to (1){(iii), viz.,

(i0) A! B,

(ii0) ` A! B,

(iii0) A 3B.

(The condition A ` B is logically equivalent to (ii0); Lewis would also have
regarded the condition ` A 3B as equivalent to (ii0).) The reader should
notice the di�erence in theoretical status between ! and 3 on the one
hand, and ` on the other. In both cases the �rst two are, or name, op-
erators belonging to the object language, while the turnstile is part of the
metalanguage, standing for provability or deducibility. (Provability may of
course be seen as a special case of deducibility, viz. deducibility from the
empty set of premises.)

Evidently the crucial question is whether the logical di�erence between
(1) and (2) should be expressed in the object language or not|is it a feature
about logic or in logic? Gerhard Gentzen is often regarded as having opted
for the former alternative (although see [Shoesmith and Smiley, 1978, p.
33f] concerning the historicity of this view). It is hard to say whether Lewis
was aware that there was a choice. However, looking back on his work we
must represent him as having favoured (iii) over (ii) and (iii0) over (ii0) as
the logical form of certain propositions. he has been much criticised for this.
It has been maintained that his whole enterprise rests on a violation of the
use/mention distinction and is hopelessly confused. this is not the place to
go into that discussion, all we can do is to refer the reader to [Scott, 1971]

which contains what is probably the deepest discussion of this matter and
certainly the most constructive one.

The method chosen by Lewis in his search for a calculus of strict im-
plication was the axiomatic one. Lewis' intuitive understanding of logical
necessity, logical possibility and related notions was of course (at least) as
good as any man', but he never tried to give it direct systematic expression;
what there is, is what is implicit in the axiom systems, plus scattered infor-
mal remarks. In other words, there is no formal semantics in Lewis' work;
semantics is left at an informal level. In mathematics, there is an important
and time-honoured way to proceed, ultimately going back on Euclid. In the
case of logic the method may be described as follows. A formal language
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is de�ned. Formulas from this language are understood to be meaningful.
A number of them are somehow selected for testing against one's intuition.
Some are accepted as valid, some are rejected as nonvalid, some may be
diÆcult to decide. The valid ones one tires to axiomatise so as to give a
�nite description of an in�nite scene. In Lewis' case, the �rst e�ort was
presented in [Lewis, 1918], a calculus which has since become known as the
Survey System. however, if your semantics is only intuitive, as Lewis' was,
and consequently vague, then you have a completeness problem: even if you
are satis�ed that the theses of your system are acceptable, how do you know
that your axiom system captures as theses all the formulas that you would
�nd acceptable? The answer is that you do not, and it did not take long
for other systems to emerge with, apparently, as good a claim as the Survey
System to the title conferred upon it in [Lewis, 1918] as the System of Strict
Implication. In [Lewis and Langford, 1959] several more were de�ned and
others hinted at. here Lewis himself de�ned �ve systems called S1, S2, S3,
S4, and S5, the survey system coinciding with S3. Later S6 was introduced
by Miss Alban and S7 by Halld�en, but in e�ect there were contemplated
already by Lewis [Alban, 1943; Halld�en, 1949]. The series of S-systems has
been extended even further, but those mentioned are the principal ones.

Of modal logicians working in the same vein as Lewis, Oskar Becker is
remembered for his early treatise [Becker, 1930], but perhaps it is g. H. Von
Wright who should be named the second most important author in the syn-
tactic tradition. In his inuential monograph [von Wright, 1951] he remarks
that, strictly speaking, modal logic is the logic of the modes of being. In
this work and the related paper [von Wright, 1951a], Von Wright sets out to
explore modal logic in a wider sense, the logic of the modes of knowledge,
belief, norms and similar concepts; this wider sense of the term has since
gained currency. These two works marked the beginning of much work in
epistemic, doxastic, and deontic logic. Some studies of the same kind had
already been published, such as [Mally, 1926] and [Hofstadter and McKin-
sey, 1955] (see [Follesdal and Hilpinen, 1971] or Von Wright [1968; 1981] for
more of the prehistory of deontic logic), but Von Wright's work becomes
seminal, especially in deontic logic. (For epistemic and doxastic logic the
real trigger was a book written some ten years later by Von Wright's one
time student Jaakko Hintikka, but this work [Hintikka, 1962] was written
in what we call the model theoretic tradition and so does not belong in this
section.)

There are two other subtraditions that should be mentioned under the
present heading. One is the development of entailment and relevance logic
associated with the names of Alan Ross Anderson and Nuel D. Belnap. This
movement concentrated on C. I. Lewis' concern to develop a logic of strict
implication, that is, to give a syntactic characterisation of `the ordinary
\implies" of ordinary valid inference'. Early contributions in the axiomatic
style were given by [Church, 1951a] and [Ackerman, 1956], but it was only
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with Anderson and Belnap and their many students that the project got
o� the ground. Algebraic and model theoretic semantics came later to this
kind of logic than to modal logic, and it is perhaps fair to say that the
e�orts towards �nding an explicit semantics have led to results that are
less natural than in modal logic. This may have to do with the fact that
while model logicians aim at improving classical logic, entailment/relevance
logicians wish to replace it. Students interested in this subtradition will �nd
the powerful tome [Anderson and Belnap, 1975] a rich source of information.
(Cf. also Dunn, in a later volume of this Handbook.)

The other subtradition that should be mentioned is that of proof the-
ory. Gentzen methods have never really ourished in modal logic, but
some work has been done, mostly on sequent formulations. Early ref-
erences are [Curry, 1950; Ridder, 1955; Kanger, 1957; Ohnishi and Mat-
sumoto, 1957/59]. A monograph in this tradition is [Zeman, 1973]. In
the �eld of natural deduction [Fitch, 1952] would seem to be the pio-
neer with [Prawitz, 1965] the classical reference. the recent interest in
the provability interpretation of modal logic has spurred renewed inter-
est in the proof theory of particular systems (for example [Boolos, 1979;
Leivant, 1981]). In Section 9 we return to this topic.

Finally, let it be remarked that the syntactic tradition in Lewis' spirit
is by no means dead. For a recent declaration of allegiance to it by a
distinguished logician, see [Grzegoczyk, 1981].

3 THE ALGEBRAIC TRADITION

That classical logic is truth-functional is enormously impressive! As shown
by the existence of intuitionistic and other dissenting logics, it is by no means
self-evident that it should be possible to understand the usual propositional
operators in terms of simple truth-conditions (the familiar truth-tables).
But given the success of classical logic it is natural to ask if the same treat-
ment can be extended to other operators of interest, for example, modal
ones. It is immediately clear that such an extension is not straight-forward,
if it exists at all. There are four unary truth-functions (identity, negation,
tautology, and contradiction), so if necessity or possibility is to be truth-
functional, it would have to be one of them, which is absurd.

But if one insists, nevertheless, that it must be possible to give a truth-
functional analysis of `necessary' and `possible'? Bright idea: perhaps there
are more truth-values than the ordinary two|three, say. This idea occurred
to Jan  Lukasiewicz around 1918. His �rst e�ort was to supplement the
ordinary truth-values 1 (truth) and 0 (falsity) with a third truth-value 1

2
(possibility (of some kind)). his new truth-tables were as follows:
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^ 1 1
2 0

1 1 1
2 0

1
2

1
2

1
2 0

0 0 0 0

_ 1 half 0

1 1 1 1
1
2 1 1

2
1
2

0 1 1
2 0

! 1 1
2 0

1 1 1
2 0

1
2 1 1 1

2
0 1 1 1

:

1 0
1
2

1
2

0 1

�

1 1
1
2 0
0 0

�

1 1
1
2 1
0 0

With 1 singled out as the sole designated truth value, the concept of validity
is clear: a formula is valid if and only if it takes the value 1 under all
(three- valued) truth-value assignments to its propositional letters. Let
the resulting logic be called  L3. it is an immediate corollary that  L3 is a
subsystem of the classical propositional calculus; for if everything to do with
the new truth-value 1

2 is deleted from the truth-tables, then we get the old,
classical ones back.

Exactly what sort of possibility would 1
2 represent? the inspiration for his

new logic  Lukasiewicz had got from Aristotle's discussion of the theoretical
status of propositions concerning the future. It is an interesting suggestion
that a new truth-value is needed to analyse propositions of type `there will
be a sea-battle tomorrow'; for it might be held that there are points in time
when such propositions are meaningful, yet neither true nor false. In other
words, if one is not a determinist|and  Lukasiewicz de�nitely was not one|
then one will agree that there spare propositions P such that, today, P is
possible and also :P is possible; that is, that both �P and �:P are true.
This is in agreement with  Lukasiewicz' matrix, for if P has value 1

2 , then
�P and �:P take the value 1. So far, so good, but here a diÆculty lurks.
For under the matrix �(P ^:P ) gets the value 1 which is absurd intuitively:
whatever the future may bring, it will not be both a sea-battle and not a
sea-battle tomorrow. The counter-example is agrant, and it is interesting
that  Lukasiewicz was not moved by it. What is at issue is evidently whether
one can accept a modal logic which validates all instances of the type

�A ^ �B ! �(A ^B):

Our counter-example would appear to settle this question in the negative|
cf. [Lewis and Langford, 1959, p. 167]|but  Lukasiewicz was not impressed.
In a paper published only a few years before his death he states that he can-
not �nd any example that refutes the schema in question: `on the contrary,
all seem to support its correctness' [ Lukasiewicz, 1953]. He goes on to in-
timate that when people disagree over questions of this sort, they have
di�erent concepts of necessity and possibility in mind.
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Once invented, this game admits of endless variation. Even among three-
valued logics,  L3 is not the only possibility, and there is literally no end to
how many truth-values you may introduce.  Lukasiewicz himself extended
his ideas �rst to n-valued logic, for any �nite n, and then to in�nitely-
valued logic, where in�nite could mean either denumerably in�nite or even
non-denumerably in�nite. In this way the notion of matrix was developed.
([Malinowski, 1977] is a compact and informative reference on  Lukasiewicz
and his work. For  Lukasiewicz's own papers non-Polish speaking readers
are referred to the collections [ Lukasiewicz, 1970] and [McCall, 1967].)

A matrix is given if you have (i) a set of objects, called truth-values,
(ii) a subset of these, called the designated truth-values, and (iii) for every
n-ary propositional operator ? in your object language, a truth-table for
? (essentially, an n-place function from truth-values to truth-values). In
tuple talk, if ?0; : : : ; ?k�1 are all your propositional operators, the matrix
can be thought of as a (k + 2)-tuple hA;D;M(?0); : : : ;M(?k�1)i, where A
is a non-empty set, D a non-empty subset of A, and, for each i < k;M(?i)
is a function from the Cartesian product Ani to A, where ni is the arity of
?i. It is easy to see how this can be generalised to any number of operators.

Opinions may be divided over what philosophical importance to attach
to the logics that  Lukasiewicz introduce. However, there can be no doubt
that he started or tied in with a line of development which is of great
mathematical importance. the matrices that he invented became generalised
in two steps. the �rst one seems like a mere change of terminology: the
introduction of the concept of an algebra as a tuple hA; f0; : : : ; fk�1i, where
A is a non-empty set and f0; : : : ; fk�1 are operations on A; that is, for each
i < k there is a non-negative number ni such that fi is a function from Ani

to A. As before, the generalisation to in�nitely many functions is obvious.
The connection with the concept of matrix is patent. Roughly speaking, it
is only the set of designated elements that has been omitted; and as far as
logic is concerned, that concept is needed for the de�nition of validity, not
for the assignment of values of A to formulas. The most important thing
about the new de�nition of algebra is perhaps that it encourages the study
of these structures independently of their connection with logic.

The second step of generalisation was to consider classes of algebras
rather than one matrix or algebra at the time. Thus, whereas at �rst al-
gebraic structures (matrices) were introduced in order to study logic, later
on logic was used to study algebra. The person who more than anyone
deserves credit for this whole development is Alfred Tarski, a student and
collaborator of  Lukasiewicz. Some papers by Tarski written jointly with
J. C. C. McKinsey or Bjarni J�onsson rank with the most important in the
history of modal logic.

Among early results stemming from the algebraic tradition are that Lewis'
�ve systems are distinct [Parry, 1934]; the analysis of S2 and S4 along with
a proof that they are decidable [McKinsey, 1941]; that no logic between S1
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and S5, inclusively, can be viewed as an n-valued logic, for any �nite n
[Dugundj, 1940]; that even though S5 is not a �nitely-valued logic, all its
proper extensions are [Scroggs, 1951].

It does not seem as if anyone had ever worked out exactly what the
relation is between abstract algebras and the intended applications. But the
idea must have been something like this. We are told to think of the elements
of a matrix as truth-values, but in the case of an algebra one should perhaps
rather think of the elements as propositions (identifying propositions that
are logically equivalent). The class of all propositions, if it exists, would
presumably form one gigantic, complicated, universal algebra. But in a
given context only a subclass of propositions are at issue, and they will
form a simpler, more manageable algebra.

A particularly interesting paper with implications for modal logic is
[J�onsson and Tarski, 1951]. If it had been widely read when it was pub-
lished, the history of modal logic might have looked di�erent. the scope of
the paper is quite broad, but we should like to mention one or two results
of particular relevance to modern modal logic. First, according to M. H.
Stone's famous representation theorem, every Boolean algebra is isomorphic
to a set of algebra. In other words, if A = hA; 0; 1;�;\;[i is any Boolean
algebra, then there exists a certain set U and a set B of subsets of U , closed
under the Boolean operations, such that A is isomorphic to the Boolean al-
gebra B = hB;?; U;�;\;[i. (See [Rasiowa and Sikorski, 1963] for a good
presentation of this and related results.) J�onsson and Tarski extend this
result to Boolean algebras with operations (that is, functions from An to
A, for any n). If this does not sound too exciting, wait.

Suppose that U is any non-empty set, and let F be a family of subsets
of U closed under the Boolean operations. Let l;m : F ! F be functions
satisfying the following conditions:

(l1) lU = U; (m1) m? = ?;
(l2) l(X \ Y ) = lX \ lY; (m2) m(X [ Y ) = mX [mY;
(lm) mX = U � l(U �X); (ml) lX = U �m(U �X):

Then, according to J�onsson and Tarski, there exists a uniquely de�ned
binary relation R on U|that is R � U � U|such that

(lR) lX = fx 2 U : 8y(xRy) y 2 X)g;
(mR) mX = fx 2 U : 9y(xRy&y 2 X)g;

moreover, of the following conditions, (i1), (i2), and (i3) are mutually equiv-
alent, for i = r; s; t:

(r1) (8X 2 F )(lX � X),

(r2) (8X 2 F )(X �mX),
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(r3) R is reexive with �eld U ;

(s1) (8X;Y 2 F )(Y [ lX = U i� X [ lY = U),

(s2) (8X;Y 2 F )(Y \mX = ? i� X \mY = ?),

(s3) R is symmetric;

(t1) (8X 2 F )(lX � llX),

(t2) (8X 2 F )(mmX �mX),

(t3) R is transitive.

Conversely, if R is any binary relation on U , then (lR) and (mR) de�ne
functions l;m : F ! F such that again (i1), (i2), and (i3) are mutually
equivalent, for i = r; s; t.

Putting all this together we arrive at the following picture. If we are
analysing a class of propositions satisfying certain conditions, then we may
try to cast them as an algebra B = hB; 0; 1;�;\;[l;mi where hB; 0; 1;�;
\;[i is a Boolean algebra and l and m are two additional unary opera-
tions. (If an element a 2 B is taken to represent a proposition, then la
and ma would represent the propositions `a is necessary and `a is possible',
respectively.) By the representation theorem, there exists a set U such that
B is isomorphic to an algebra A = hA;?; U;�;\;[l;mi, where A is a set
of subsets of U and �;\;[, are the usual set theoretical operations. Note
that it is not claimed that every subset of U corresponds to a proposition,
but that the converse claim is made: to every proposition a 2 B a subset
kak � U corresponds. Under the intended interpretation it seems reason-
able that l and m should satisfy conditions (l1), (l2), (lm) and (m1), (m2),
(ml) above. Consequently J�onsson's and Tarksi's result applies, and so l
and m are completely determined by a certain binary relation R. Thus A is
completely determined by U;R, and P , where P is the set of elements kPk
such that P is an atomic proposition. In this sense, A is equivalent to the
triple hU;R; P i. Moreover, in the special case that the closure of P under l
and m equals Bu;A is in the same sense equivalent to the pair hU;Ri. In
view of later developments this is a striking result.

The reader is asked to keep the following observations in mind when
readings Sections 4 and 10 below: for all a; b 2 B and x 2 U ,

x 2 k � ak if x 62 kak;
x 2 ka \ bk i� x 2 jjak and x 2 kbk;
x 2 ka [ bk i� x 2 kak or x 2 kbk;
x 2 klak i� 8y 2 U(xRy ! y 2 kak);
x 2 kmak i� 9y 2 U(xRy&y 2 kak):
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4 THE MODEL THEORETIC TRADITION

If algebraic semantics is discounted, then Rudolf Carnap was the �rst to
provide a semantics for modal logic. Three of the all time greats came
together in him. From Frege he got his interest in semantics and, more
speci�cally, learnt to distinguish between intension and extension; and he
attributes to Leibniz the notion that necessity is to be analysed as truth in
all possible worlds. Moreover, he credits Wittgenstein with some ideas that
formed the starting point for part of his own work (Carnap [1942; 1947]).

By a state-description let us understand a set of atomic propositions
(propositional letters). If S is a state-description, then we may say what it
means that a formula A holds in S, which in symbols we write �S A:

�S P i� P 2 S; if P is an atomic proposition;
�S :A i� not �S A;
�S A ^ B i� �S A and �S B;
�S A _ B i� �S A or �S B;
�S A! B i� if �S A then �S B:

If one is considering a de�nite collection C of state-descriptions, then also
the following conditions become meaningful:

�S �A i�, for all T 2 C;�T A;
�S �A i�, for some T 2 C;�T A:

Let us say that a formula is valid in C if it holds in every state description
in C, and simply valid if it is valid in every collection of state-descriptions.
this de�nition singles out a well-de�ned subset from the set of all formulas.
Interestingly enough, this subset is the same as the set of theses of Lewis'
system S5. Is this a coincidence? On the surface of it, Carnap's character-
isation of S5 looks very di�erent from the original one due to Lewis.

This still does not look like modern modal logic: possible worlds are
missing. According to Hintikka [1975], `Carnap came extremely close to
the basic ideas of possible-worlds semantics, and yet apparently did not
formulate them, not even to himself'. this is drawing a very �ne line, at
least on the level of propositional logic. Carnap does talk about possible
worlds. He is quite clear that he wants to latch on to Leibniz' suggestion that
a necessary truth is one that holds in all possible worlds. Moreover, he says
that his state-descriptions `represent' possible worlds, which would seem to
indicate that the former are (partial) descriptions of the latter. Thus from a
formal point of view|Hintikka agrees with this|instead of the collections
of state-descriptions that appear in the preceding paragraph, we could just
as well have collections of possible worlds, provided only that we �nd a way
of dealing with the �rst clause in the de�nition of `holds in'. One virtue
of state- descriptions, not shared by possible worlds, is that it is at once
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clear what it means that a given atomic proposition hold in a given state-
description. What we need, it seems, is a new primitive to perform this
service. This leads us to re-cast Carnap's semantics in the following terms.
We call hU; V i a Carnap-model if U is any set (of possible worlds) and V (the
valuation) is a function assigning to each atomic proposition P and possible
world x a truth-value V (P; x) which is either T (truth) or F (falsity). In
the de�nition of `holds at' the �rst clause is replaced by this condition:

�x P i� V (P; x) = T; if P is an atomic proposition.

The other conditions are changed accordingly. In particular, those concern-
ing the modal formulas become

�x �A i� 8y 2 U �y A;
�x �A i� 9y 2 U �y A:

All this is no improvement on Carnap, but it brings us into line with modern
terminology. It should be added that the picture of Carnap given here is
a pale one since so much of importance in his work is found at the level of
predicate logic, which is not considered in this article.

The next step of importance within the semantic tradition was taken
by Arthur Prior. both Lewis and Carnap had been concerned with the
analysis of modal concepts in the strict sense, but, as remarked in Section
2, some authors have also tried to model concepts which are called modal
in the wide sense (imperative, deontic, etc.). The e�orts of the latter had
been syntactic, but Prior, whose interests lay in temporal notions, gave an
algebraic avoured analysis which in e�ect was a model theoretic one. In
his book, Prior [1957], he models time as the set ! of natural numbers.
Thus instead of Carnap models we now meet with structures h!; V i which
we might call Prior models and in which the unspeci�ed collection U of
possible worlds of a Carnap model hU; V i is replaced by the special set !
representing a set of points of time.

With the help of Prior models many new operators are de�nable. In
[Prior, 1957] attention is focused on the operators de�ned by the conditions

�t �A i� 8u = t �u A;
�t �A i� 9u = t �u A:

Later Prior was to consider also the related operators de�ned by the condi-
tions

�t �A i� 8u > t �u A;
�t �A i� 9u > t �u A:

There is almost no end to the number of new operators thus de�nable.
Already in [Prior, 1957] one �nds conditions like

�t �A i� �t A and �t+1 A;
�t �A i� �t A or �t+1 A;
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and later developments have seen a host of others.

Once Prior had shown how to do tense logic, much activity followed. For
example, it is natural to study Prior models in which the set ! of natural
numbers is replace by the set � of all integers, or the set � of rational
numbers, or the set � of real numbers. Much attention was also devoted to
studying the interaction of several temporal and other operators in multi-
modal systems. (One among many good references in tense logic is [Rescher
and Urquhart, 1971].) Prior's work paved the way for Kamp [1968] where
for the �rst time exact de�nitions of the notion of tense were o�ered. For
example, according to Kamp, an n-place tense in discrete time is a function
f from (B�)n to B�; and an n-ary operators ? will express this tense if, for
all t 2 �,

�t ?(A0; : : : ; An�1) i� t 2 f(fu :�u A0g; : : : ; fu :�u An�1):

With Kamp [1968] tense logic achieved a new level of sophistication.
However, much of the early interest concerned more basic problems, for
example, that of characterising the operators de�ned by the �rst of the
three de�nitions given above. This logic, the so-called Diodorean logic, is
not as strong as S5, yet stronger than S4, as pointed out by Hintikka,
Dummett and others. Its true identity was �nally settled by S. A. Kripke
and R. A. Bull, independently [Bull, 1965]. For an entertaining account of
this, see [Prior, 1967, Chapter 2].

All of this is sorted out in the chapter on tense logic (see the chapter
by Burgess in a later volume of this Handbook. What is important here
is that Prior replaces Carnap's unordered set of possible worlds (actually,
state-descriptions) by an ordered set of possible worlds (actually, points of
time). In order to stress this di�erence we should perhaps have introduced
the Prior models as triples h!;5; V i, where 5 is the ordinary less-than-
or-equal-to ordering of the natural numbers. Thus in retrospect it seems
that Carnap and Prior between them supplied all the necessary ingredients
for modal logic as we know it at present. Already J�onsson and Tarski
had explored the mathematics that is needed, and in Carnap and Prior
there was suÆcient philosophical underpinning to get modern modal logic
going. The modern notion of a model is a triple hU;R; V i, where U is a
set (of possible worlds, or, more neutrally, indices, or even just points), R a
binary relation on U (the accessibility relation (Geach) or the alternativeness
relation (Hintikka)), and V a valuation. As we say the elements U and V
were contributed by Carnap, and the relation R is obtained by generalising
ever so slightly over Prior: instead of working with his special cases, we keep
as the one general requirement that R is a binary relation, not necessarily
an ordering.

But this is not the way history is usually written. So-called possible
worlds semantics or Kripke semantics is commonly attributed to S. A.
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Kripke, who laid down the foundations of modern propositional and pred-
icate modal logic in several inuential papers (Kripke [1959; 1963; 1963a;
1965]). Relatively less inuential were the papers by Jaakko Hintikka and
Stig Kanger (Hintikka [1957; 1961; 1963]; Kanger [1957; 1957a; 1957b;
1957c]). Actually the three seem to have been independent of one another;
but Kanger published �rst. Kanger's writings are diÆcult to decipher, and
this fact, paired with the unassuming mode of their publication, may have
been what has deprived him of some of the recognition due to him (cf. Hin-
tikka's generous review, [Hintikka, 1969a]). Hintikka has had more impact,
especially on the philosophers.

The reason his work has been less important for the formal development
of modal logic than that of Kripke is perhaps his style of presentation which
tones down mathematical aspects and skips proofs.

5 OTHER TRADITIONS

In the preceding sections we have described what seems to us to be the main
developments in early modal logic. no history is ever complete, and starts
not recorded here have been made without their developing into what we
regard as a major tradition. In this section we will briey mention �ve or
six such starts.

First there is the so-called provability interpretation(s) of modal logic, the
embryo of which is found in [G�odel, 1933]. In view of recent development
one may perhaps say that this is expanding into a new tradition right now.
Via Montague [1963], Friedman [1975] and Solovay [1976] it has begun to
generate a literature of its won. For more information on this, see [Boolos,
1979] and Smory�nski's chapter in a later volume of this Handbook.

Another start, more suggestive than seminal, was made by J. C. C. McK-
insey who described what is now known as McKinsey's syntactic interpreta-
tion of modal logic [McKinsey, 1945]; McKinsey's idea was perhaps foreshad-
owed in Fitch [1937; 1939], it is taken up again in [Morgan, 1979]. A third
start was made by Alonzo Church in a series of papers ([1946; 1951; 1973{
74]); recent contributions to this area are Parsons [1982] and C. A. Anderson
[1980]. (Cf. also his chapter in volume 4 of this Handbook.) A fourth start
worth mentioning was made with the appearance of Arthur Prior's three-
valued modal logic Q. many-valued modal logic is not a vast �eld and in any
case mainly falls under what we have called the algebraic tradition, but Q,
�rst de�ned in [Prior, 1957], seems to be of particular philosophical interest;
see, for example, [Fine, 1977].

Finally there ought to be a tradition called intuitionistic modal logic,
but it is debatable whether today even a subtradition can be found under
that heading. Perhaps Ditch [1948], Curry [1950] and Prawitz [1965] can
be regarded as starts, but they are not very illuminating as analyses of
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modality; and work on semantics has, to date, been in the classical spirit
(Bull [1965a], Fischer Servi [1977; 1981]). Why intuitionistically minded lo-
gicians have not been attracted to this area is not clear, and surely it would
be interesting to see an intuitionistic-logical analysis of knowledge (includ-
ing extra-mathematical knowledge), obligation, imperative, perception, and
other notions which are modal in the wide sense.

Systematic Part

6 LOGICS AND DEDUCIBILITY RELATIONS

In the preceding sections our primary concern has been historical. It is now
time to being a more systematic exposition. In this section we will give
a number of concepts which are useful when it comes to classifying modal
logics. First we give a family of (more or less) traditional de�nitions, and
then we develop similar de�nitions of a slightly more general nature.

Modal logics are often de�ned as sets of formulas of a certain kind. One
might begin by de�ning a logic as a set L of formulas satisfying the following
conditions:

(tf) A 2 L, whenever A is a tautology in the sense of classical proposi-
tional logic;

(mp) if A! B 2 L and A 2 L, then B 2 L;

(sb) if A 2 L, then sA 2 L, if sA is the result of uniform substitution of
formulas for propositional letters in A.

Then one might perhaps go on to say that a logic L is classical modal if it
contains the formulas

K. �(P ! Q)! (�P ! �Q),

�. �T ,

(where P;Q are two propositional letters and T is either primitive or some
chosen tautology) and in addition is closed under replacement of tautological
equivalents:

(rte) If A and B are tautologically equivalent and C and C� are identi-
cal except that one occurrence of A in C has been replaced by an
occurrence of B to give C�, then C 2 L i� C� 2 L.

This is a very weak conception of classical modal logic (incidentally, di�er-
ing from that in [Segerberg, 1971]), and usually one would require much
more, for example, closure under congruence (cgr), monotonicity (mon), or
necessitation (nec):
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(cgr) if A$ B 2 L, then �A$ �R 2 L;

(mon) if A! B 2 L, then �A! �B 2 L;

(nec) if A 2 L, then �A 2 L.

A modal logic satisfying (cgr) ((mon), (nec)) would be called congruen-
tial (regular, normal). Moreover, a modal logic would be quasi-congruential
(quasi-regular, quasi-normal) if it contained some congruential (regular, nor-
mal) modal logic. (A logic containing a classical modal logic is of course
itself classical modal.) Notice that normality implies regularity implies con-
greuentiality. If � is the only non-Boolean operator, then congruentality
implies replacement of tautological equivalents. (Our terminology is not
completely standard, but at lest the de�nitions of `logic', `regular', `nor-
mal', and `quasi-normal' appear to be.)

So far tradition. however, there is also a more roundabout way to arriving
at similar de�nitions which begins with deducibility relations instead of with
logics. It may be instructive to o�er these slightly more general de�nitions as
well. In this paper|and here we o�er less than full generality|a deducibility
relation R is a set of ordered pairs h�; Ai, where � is a set of formulas and
A is a formula. If h�; Ai 2 R we say that � yields A and write � `R A, or
even � ` A when suppression of the subscript does not lead to confusion.
If � ` A and � = ? we write ` A and say that A is a thesis of R. The
set of theses of R is denoted by Th R. We usually write A0; : : : ; An�1 `
B instead of fA0; : : : ; An�1g ` B; also A0; : : : ; An�1;� ` B instead of
fA0; : : : ; An�1g;� ` B. If A ` B and B ` A we write A a` B.

Common conditions on deducibility relations re reexivity (RX), (left)
monotonicity (LM), cut (CUT), and substitutivity (SB):

(RX) A ` A;

(LM) if � ` A and � � �, then � ` A;

(CUT) if � ` C and C;� ` A, then � ` A;

(SB) if � ` A, then s� ` sA, if s� and sA are the result of uniform
substitution in � and A, respectively, of formulas for propositional
letters.

A deducibility relation is Boolean if it also satis�es the conditions in Table
1 (we assume a truth-value functionally complete set of Boolean opera-
tors). A deducibility relation is compact if, wherever � ` B, there are some
A0; : : : ; An�1 2 �, for some n = 0, such that A0; : : : ; An�1 ` B. Notice that
two compact Boolean deducibility relations coincide if they agree on their
theses: ThR = ThR0 implies that R = R0.

The concepts de�ned above for logics may now be given analogous def-
initions in the context of deducibility relations. �rst, let us say that a
deducibility relation is n-modal if
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(n-M) if � tautologically implies A, then �n� ` �n��nA, provided that
� 6= ?.

Table 1.

(^ E) If � ` A ^ B, then � ` A and � ` B.
(^ I) If � ` A and � ` B, then � ` A ^ B.
(_ E) If � ` A _ B and A;� ` C and B;� ` C, then � ` C.
(_I) If � ` A or � ` B, then � ` A _ B.
(!E) If � ` A! B and � ` A, then � ` B.
(! I) If A;� ` B, then � ` A! B.
(:E) If � ` :A and � ` A, then � ` B.
(:I) If A;� ` :A, then � ` :A.
(RAA) If :A;� ` A, then � ` A.

(Here �nA is the formula consisting of the formula A preceded by a
string of n occurrences of �, while �n� = f�nB : B 2 �g. Let us say that
a Boolean deducibility relation is modal if it is 1-modal, and strongly modal
if it is n- modal for all n.)

Next, let us say that a deducibility relation is classical if it is closed under
the following condition of replacement under tautological equivalents:

(RTE) If A and B are tautologically equivalent, and C and C� are identi-
cal except that one occurrence of A in C has been replaced by an
occurrence of B to give C�, then C a` C�.

Finally, let us say that a deducibility relation is congruential (regular, nor-
mal) if it satis�es (CGR)((SC1), (SC2)):

(CGR) If A a` B, then �A a` �B;

(SC1) If � ` A, then �� ` �A, provided that � 6= ?;

(SC2) If � ` A, then �� ` �A.

(Conditions (SC1) and (SC2) are due to Dana Scott, whence the notation.)
Let us now review the situation. It is readily seen that every Boolean

deducibility relation R determines a unique logic, viz. Th R. Conversely,
every logic L determines a compact Boolean deducibility relation Rel L in
a natural manner: � ` B i� there are A0; : : : ; An�1 2 �, for some n = 0,
such that ((A0 ^ : : : ^ An�1)! B) 2 L. Note that

L= Th Rel L, for every logic L,
R= Rel Th R, for every compact, Boolean deducibility relation R.

Moreover, note that if L is classical modal (and also congruential, regular,
or normal, respectively), in the sense of logics, then so is Rel L, in the sense
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of deducibility relations; and if a compact Boolean deducibility relation is
classical modal (and also congruential, regular, or normal, respectively), in
the sense of deducibility relations, then so is Th R, in the sense of logics.
In view of a preceding remark we know that Rel L is the only compact
deducibility relation with L as its set of theses. Therefore, evidently, if, as
in this paper, one is only interested in compact deducibility relations, it is
harmless to restrict oneself to the study of logics; which is what one has
usually done traditionally.

For some recent works in which deducibility is seen as primary, rather
than thesishood, see [Scott, 1971; Kuhn, 1977; Shoesmith and Smiley, 1978;
Gabbay, 1981; Segerberg, 1982]. Ultimately this approach seems to derive
from two quite di�erent sources, Gentzen and Tarski.

7 A CATALOGUE OF MODAL LOGICS

Almost all recent work in modal logic has been concerned with normal
logics. At least from a technical point of view, non-normal, regular or
quasi-regular logics|a class which includes S2, S3, S6 and S7|seem to
o�er little of interest beyond what normal logics o�er, and for that reason
we will not treat them here but refer the reader to [Kripke, 1965] and
[Lemmon, 1957; Lemmon, 1966]. Among logics that are not even quasi-
regular, the congruential merit some attention, and in Section 21 below
some are implicit. But with this exception the purview of this paper is
normal modal logics.

Over the years an almost astronomical number of modal logics have been
put forward. Under such circumstances, naming or identifying logics be-
comes a problem. The best nomenclature is perhaps the one proposed by
E. J. Lemmon in [Lemmon, 1977], and here we will usually employ a variant
of it. The smallest normal logic we designate by `K' (in honour of Kripke
who, curiously enough, seems never to have dealt with this particular logic).
If `Xo', . . . , `Xm�1' name any formulas, then `KX0; : : : ;Xm�1' is the Lem-
mon code for the smallest normal logic that contains X0; : : : ;Xm�1. Note
that, by de�nition, this logic is closed under substitution.

Lemmon's convention presupposes that formulas have names. Here is a
list of formulas with names that either are more or less standard, or else in
the opinion of the authors deserves to be:
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D. �P ! �P ,
T. �P ! P ,
4. �P ! ��P ,
E. �P ! ��P ,
B. P ! ��P ,
Tr. �P $ P ,
V. �P ,
M. ��P ! ��P ,
G. ��P ! ��P ,
H. (�P ^ �Q)! (�(P ^Q) _ �(P ^ �Q) _ �(Q ^ �P )),
Grz. �(�(P ! �P )! P )! P ,
Dum. �(�(P ! �P )! P )! (��P ! P ),
W. �(�P ! P )! �P .

the following remarks will make it easier to remember these names. `D'
stands for deontic, `T' comes from `t', a name invented by Feys, 4 is the
characteristic axiom of Lewis' S4, `E' stands for Euclidean, `B' for Brouwer,
`Tr' for trivial, `V' for verum, `M' for McKinsey, `F' for Geach, `H' for
Hintikka, `Grz' for Grzegoczyk, `Dum' for Dummett, and `W' for (anti-
)well-ordered. The strangest of these names is perhaps `B' for Brouwer, as
the father of mathematical intuitionism was never known to harbour much
sympathy for logic, let alone modal logic. The name hails back to Oskar
Becker who saw a similarity between the logic KTB and intuitionistic logic
[Becker, 1930].

Of the many logics that can be de�ned in terms of the above formulas
we list the following:

KT = T = the G�odel/Feys/Von Wright system,
KT4 = S4
KT4B = KT4E = S5
KD = deontic T,
KD4 = deontic S4,
KD4E = deontic S5,
KTB = the Brouwer system (`the em Brouwersche system'),
KT4M = S4.1,
KT4G = S4.2,
KT4H = S4.3,
KT4Dum = D = Prior's Diodorean logic,
KT4Grz = KGrz = Grzegoczyk's system,
K4W = KW = L�ob's system,
KTr = KT4BM = the trivial system,
KV = the verum system.

There is no upper bound to the number of normal modal logics, and
many| perhaps too many|have found their way into the literature. But
the given catalogue includes many of the most studied systems.
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If the inconsistent logic, the set of all formulas, is accepted as a normal
modal logic|and under the de�nition given here it must be|then the set
of all normal modal logics forms a distributive lattice under the operations
g.l.b. (L, L0) = the greatest normal logic to be contained in both L and L0

(which is the same as L \L0) and l.u.b. (L;L0) = the smallest normal logic
to extend both L and L0 (which is not the same as L[L0). Much e�ort has
gone into exploring the nature of this enormously complicated lattice. Early
contributions were made by Scroggs who mapped out all the extensions
o f S5 [Scroggs, 1951]; by Bull who did the same for the extensions of
S4.3 [Bull, 1966]; by Makinson who showed that the trivial system and the
verum system are the two dual atoms of this lattice [Makinson, 1971]; and
by McKinsey and Tarski who showed that there are non-normal extensions
of S4 [McKinsey and Tarski, 1948]. Kit Fine and Wim Block have done
more than anyone else to complete the picture, and some of their work is
described below. Schumm [1981] sums up some of the things that are known
about the elements of the big lattice. Readers interested in the geography
of modal logic are also referred to Hansson and G�ardenfors [1973].

8 SEMANTIC TABLEAUX AND HINTIKKA SYSTEMS

The deductive systems given in the preceding sections are of so-called Hilbert
type, strict on rules and soft on axioms. Most of the deductive systems in
the modal logic literature are of this type. From a metamathematical point
of view such systems have much to o�er. But if one's interest lies in prov-
ing theorems in a system rather than about it, then they are not terribly
accommodating. Yet in modal logic they have had relatively little competi-
tion from other kinds of deductive systems. The most common system of a
di�erent kind is no doubt the procedure due to Hintikka and Kripke (similar
ideas in a less developed form are found in [Guillaume, 1958]). Hintikka's
work on model system [1957; 1961; 1962; 1963] and Kripke's on semantic
tableaux [1963; 1963a] were independent, and even though the two methods
are equivalent they are not identical. It would take us too far here to dis-
cuss both, and here we will follow Hintikka. For classical logic the general
references are the classic works [Beth, 1959] and [Hintikka, 1955] as well
as the later monograph [Smullyan, 1968]. an elementary and particularly
readable account is given in [Je�rey, 1990].

We de�ne a set � of formulas as downward saturated if it satis�es the
following conditions:



BASIC MODAL LOGIC 21

(C:) If :A 2 �, then A 62 Sigma.
(C^) If A ^ B 2 �, then A 2 � and B 2 Sigma.
(C_) If A _ B 2 �, then A 2 � or B 2 �,
(C!) If A! B 2 �, then A 2 � only if B 2 �.
(C::) If ::A 2 �, then A 2 �.
(C:^) If :(A ^ B) 2 �, then :A 2 � or :B 2 �.
(C:_) If :(A _ B) 2 �, then :A 2 � and :B 2 �.
(C: !) If :(A! B) 2 �, then A 2 � and :B 2 �.

The seven last conditions de�ne an e�ective procedure: given any �nite
set � it is possible to add a �nite number of new formulas to it to obtain a
set �� which satis�es all the conditions except perhaps (C:); this would be
to embed � in ��. Notice that �� is downwards saturated only if also (C:)
holds. The latter condition is evidently of a di�erent character from the
others: they prescribe membership under some conditions, whereas (C:)
proscribes it under all. That is to say, (C:) is a consistency condition.

We are now able to de�ne a deducibility relation as follows: � ` B if and
only if the set �[f:Bg cannot be embedded in a downwards saturated set.
Speci�cally, if � is �nite,

(*) A0; : : : ; An�1 ` B i�, for every downwards saturated set �,
if A0; : : : ; An�1 2 �, then :B 62 �.

The reason this deducibility relation is of interest is that it coincides with
classical logic: � ` A i� � tautologically implies A. Furthermore, by the
compactness theorem of classical propositional logic, � ` B only if for some
n = 0 and some A0; : : : ; An�1 2 � we have A0; : : : ; An�1 ` B.

The question arises, how to extend this analysis to modal logic. From
a syntactic point of view, all that would be needed is two additional rules,
(C�) and (C:�) of a similar kind. By `similar' is meant that the rules
would have to be such that the Augmented set of rules would again de�ne
a (not necessarily e�ective) procedure. It turns out that in order to do
this we have to widen the perspective. What both Hintikka and Kripke did
was to consider not just downward saturated sets (respectively, semantic
tableaux) but systems of such sets (respectively, tableaux). Let us call a
triple h�0; U;Ri a Hintikka system if the following is true. First, U is a set of
downward saturated sets of which �0 is one; and R is a binary relation over
U (called the alternativeness relation by Hintikka) which generates U from
�0 in the sense that, for each � 2 U , there are some sets �1;�2; : : : ;�k 2 U ,
for some k = 0, such that �iR�i+1, for all k < k, and �k = �. Second, for
every � 2 U the following conditions are satis�ed:

(C�) If �A 2 �, then A 2 �0, for all �0 2 U such that �R�0.

(C:�) If :�A 2 �, then :A 2 �0, for some �0 2 U such that �R�0.
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We are now able to de�ne a deducibility relation for modal logic: � ` A
i� the set � [ f:Ag cannot be embedded in a Hintikka system (in the
obvious sense: there is no Hintikka system h�0; U;Ri such that �[f:Ag �
�0). As Hintikka and Kripke proved (and, in e�ect, Kanger had proved
before them), the deducibility relation thus introduced will coincide with
the famous modal logics T, S4, and S5, respectively, if special conditions
are placed on the alternativeness relation, viz. reexivity; reexivity and
transitivity; reexivity, transitivity, and symmetry; respectively. These are
no doubt the most celebrated of all results in modal logic, and much of the
success of the new semantics is probably due to the fact that the three most
important systems of modal logic can be given such a simple characterisation
in these new terms. Other conditions than those mentioned can also be
considered, and it turns out that for practically all systems in the literature
that have been proposed for their philosophical virtues, a similar model
theoretic characterisation is possible.

What we have so far is just a procedure. Primarily it is a disproof pro-
cedure (successful if an appropriate Hintikka system is found). Secondarily
it is also (the beginning of) a proof procedure (successful if it can be shown
that no appropriate Hintikka system can be found). In general neither pro-
cedure need be e�ective, though, for the new rule (C:�) may introduce
new formula sets, and the implicit procedure may therefore not terminate.
In other words, given some conditions on the alternativeness relation and
formulas A0; : : : ; An�1; B, there is no guarantee that one will ever be able
to settle the question whether A0; : : : ; An�1 ` B (even though, as it turns
out, in many cases such a guarantee can be given).

From a philosophical point of view it should be noted that what we have
above is not yet a semantics in any but a combinatorial sense of the word. As
in the case of Carnap|there is of course a close connection between state-
descriptions and a downward saturated set|a real semantics is obtained if
possible worlds are postulated and downward saturated sets are identi�ed
as partial descriptions of them.

We shall append two observations which are of some interest. Let us say
that a set of formulas is upward saturated if the converses of the above C-
conditions for the classical operators are satis�ed, and maximal consistent
if it is saturated both upward and downward. The �rst observation is a
familiar one: we again get classical propositional logic by stipulating that
� ` B i� � [ f:Bg cannot be embedded in a maximal consistent set.
Speci�cally, if � is �nite,

(x) A0; : : : ; An�1 ` B i�, for every maximal consistent set �, if A0; : : : ;
An�1 2 �, then B 2 �.

This statement, which is nothing but the famous Lindenbaum's Lemma,
should be compared to (*) above.
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Suppose now that we call a set h�0; U;Ri of maximal consistent sets a
Henkin system if U is a set of maximal consistent sets of which �0 is one,
and R is a binary relation on U such that (C�) and (C:�) as well as their
converses are satis�ed by every � 2 U . Then once again we get a deducibil-
ity relation by stipulating that � ` A i� �[f:Ag cannot be embedded in a
Henkin system (in the obvious sense: there is no Henkin system h�0; U;Ri
such that �[g:Ag � �0). This suggests the second observation, viz. that
the relation between downward saturated sets and maximal consistent sets
in classical logic is, in some sense, the same as that between Hintikka sys-
tems and Henkin systems in modal logic. In fact, Henkin systems have
been more used than Hintikka systems in the study of modern modal logic.
They were introduced independently by Makinson [1966], Cresswell [1967],
Sch�utte [1968] and perhaps others. Dana Scott had similar ideas a little
earlier and exerted a powerful inuence even though he did not publish;
cf. Kaplan [1966]and Lemmon [1966; 1977]. Another early reference in this
context is [Bayart, 1959].

9 NATURAL DEDUCTION IN MODAL LOGIC

Seen in a grand perspective, the Hintikka/Kripke deductive technique is
an extension to modal logic of ideas introduced into the study of classical
logic by P. Hertz and G. Gentzen. However, some have proposed a more
straightforward extension of those ideas. In this section we will consider to
what extent such an e�ort is likely to succeed.

Perhaps the most important work in the latter tradition is Prawitz [1965].
We will begin by giving a standard system of natural deduction for classical
propositional logic which is similar to one found there. First there are the
inference rules listed in Table 2. here `E' and `I' stand for `elimination' and
`introduction' respectively, while `RAA' is short for `reductio ad absurdum'.

Next we should give the deduction rules, that is, rules which legislate how
inference rules may be used to produce deductions. But deduction rules
are cumbersome to state in full detail. Therefore we will make a short-cut.
(Readers who are led stray by this short-cut should consult [Prawitz, 1965].)

As usual, � ` A is de�ne to mean that there is a deduction where A
is the conclusion (`the bottom formula') and where � contains all premises
(`undischarged top formulas'). It is immediate that the deducibility relation
` will satisfy the common conditions (RX), (LM), (CUT), and (SB) de�ned
in Section 6. Now we declare|this is the short-cut|that the deduction
rules are exactly what it takes to make certain that the conditions of Table
1 of the same section to be satis�ed; thus ` is a Boolean deducibility relation.
Notice that there is a one-to-one correspondence between the conditions of
Table 1 and the inference rules of Table 2. In order to stress the connection
we have used the same name for both condition and inference rule: in e�ect
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Table 2.

(^E)
A ^ B
A

A ^ B
B

(^I)
A B

A ^ B
(_E)

(A) (B)
A _ B C C

c

(_I
A

A _ B
B

A _ B

(! E)
A! B A

B
(! I)

(A)
B

A! B

(:E)
:A A

B
(:I)

(A)
:A
:A

(RAA)
(:A)
A

A

the condition explains how the inference rule is to be applied. This is needed,
especially in the case of the so-called improper inference rules, that is, those
containing parentheses: (_E) (!I), (:I), (RAA). What is at issue here is
on exactly what premises a conclusion depends, and this can be gathered
from the observations.

The interest in the system thus presented is that the deducibility relation
it de�nes coincides with that of classical logic: � ` A i� � tautologically
implies A. In order to generalise it to modal logic, the most direct course
is to try and devise rules for � of the same kind as those governing the
classical operators; in other words, to force the classical pattern on the
modal operator. Thus one elimination and one introduction rule are called
for, and their form is obvious:

(� E)
�A

A
(�I)

A

�A

This is what Prawitz does. he considers (� E) a proper rule, which means
that

(�E) If � ` �A, then � ` A.

By contrast, (�I) is very much improper: taking it as a proper rule would
literally trivialise modal logic. That is, if one accepts

(� I) If � ` A, then � ` �A,
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then the resulting deducibility relation coincides with the trivial system
de�ned in Section 7. Thus in all interesting cases the deduction rule for
(�I) will have to contain some proviso if the trivial system is to be avoided.
Prawitz discusses two possibilities. In one case every premise must be of
the form �A, in the other of the form either �A or :�A. If we adopt
the convention according to which ?n� = f?nA : A 2 �g, where ? is any
unary propositional operator, then we can give Prawitz's rules the following
formulation:

(� I)S4 If � ` A, then � ` �A, provided that, for some set �, � = ��.

(�I)S5 If � ` A, then � ` �A, provided that, for some sets �0 and �1,
� = ��0 [ :��1.

The indexing of the rules is not fortuitous: Prawitz's two systems really
coincide with Lewis' S4 and S5. However, it has proved diÆcult to extend
this sort of analysis to the great multitude of other systems of modal logic.
it seems fair to say that a deductive treatment congenial to modal logic is
yet to be found, for Hilbert systems are not suited for the purpose of actual
deduction, and in Hintikka/Kripke systems the alternativeness relation in-
troduces an alien element which, moreover, can become quite unmanageable
in special cases.

The situation has given rise to various suggestions. One is that the
Gentzen format, which works so well for truth-functional operators, should
not be expected to work for intensional operators, which are far from truth-
functional. (But then Gentzen works well for intuitionistic logic which is not
truth-functional either.) Another suggestion is that the great proliferation
of modal logics is an epidemy from which modal logic ought to be cured:
Gentzen methods work for the important systems, and the other should
be abolished. `No wonder natural deduction does not work for unnatural
systems!' We will now present a deductive system which explores a third
alternative: trying to achieve generality at the expense of modifying the
Gentzen format (there will be no special E- or I-rules for �). As far as we
know, this system is new; there is a forerunner for some special cases in
Segerberg [Segerberg, 1989].

Let us begin by trying to learn from the success of the Hintikka/Kripke
venture. This success can perhaps be attributed to a certain division of
labour: n Hintikka systems of downward saturated sets the classical con-
ditions govern the relationship between the sets. How can this feature be
imitated in the setting of natural deduction? The crux of the matter seems
to be that any classically valid argument should remain valid in any modal
context; the diÆculty is to explicate the italicised phrase. The solution
seems to be to require that whenever � tautologically implies A, then also
�n� ` �nA. This condition we recognise from Section 6 where it was in-
troduced as the condition that the deducibility relation be strongly modal.
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The condition of strong modality may of course be adopted as a new
rule in a sequent formulation of our logic. But as a proof-theoretic analy-
sis such a move would not go very far: sequent theories, it would appear,
are most naturally understood as meta-logics( theories about deductive sys-
tems). However that may be, here is the promised system. First there are
the inference rules list in Table 3. For each rule in the old system there
are now in�nitely many rules. It is almost as if each power of � would be
an independent operator. As before, we do not state the deduction rules
but are content to make a number of observations from which they can be
reconstructed. We introduce the convention

n
p

� = fA : �nA 2 �g:

Table 3.

(^E)n
�n(A ^B)

�nA

�n(A ^ B)

�nB
(^I)n

�nA�nB

�n(A ^ B

(_E)
(a)n (b)n

�n(A _ B) C C

�nB

(_I)n
�nA

�n(A _ B)

�nB

�n(A _ B)

(! E)n
�n(A! B)�nA

�nB
(! I)n

(A)n
B

�n(A! B)

(:E)n
�n(:A)�nA

�nB
(:I)n

(A)n
:A
�n:A

(RAA)n
(:A)n
A

�nA

Notice that the new rules (Table 3) have `( )n', where the old (Table 2)
have `( )'. this new notation also is explained by the observations listed in
Table 4. It is easy to check that the deducibility relation de�ned by this
system is classical if � is the only non-Boolean operator. Nor is it diÆcult
to prove that it also satis�es Scott's Rule (SC2): if � ` A, then �� ` �A.
In fact, the system coincides with the minimal normal system K.

The given system looks more complicated than the Hilbert type formula-
tion of K in Section 6. But for deductive purposes it may be an alternative.
If one would like to general modal logic within this framework, di�erent
logics would have to be characterised by special axioms. This means giving
up the idea of �nding characteristic rules for those systems. This is perhaps
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Table 4.
(^E)n If � ` �n(A ^ B), then � ` �nA and � ` �nB.
(^I)n If � ` �nA and � ` �nB, then � ` �n(A ^ B).

(_E)n If � ` �n(A _ B) and n
p

�; A ` C and n
p

�; B ` C,
then � ` �nC.

(_In If � ` �nA or � ` �nB, then � ` �n(A _B).
(! E)n If � ` �n(A! B) and � ` �nA, then � ` �nB.

(! I)n If n
p

�; A ` B, then � ` �n(A! B).
(:E)n If � ` �n(:A) and � ` �nA, then � ` �nB.

(:I)n If n
p

�; A ` :A, then � ` �n:A.

(RAA)n If n
p

�;:A ` A, then � ` �nA.

a price worth paying, for|as remarked before|only exceptional systems
would seem to be characterisable in terms of reasonably simple rules.

The same point can perhaps be put in the following way. When we go
to systems of traditional modal logic stronger than K, we should like to
preserve classicalness, usually also Scott's Rule. The best way to do this
appears to be to add more in the way of axioms rather than rules. In this
manner, modal propositional logics become a bit like theories of ordinary
predicate logic. Let � be any set of modal formulas closed under substitution
(that is, A� 2 � whenever A� is a substitution instance of some A 2 �).
Then we de�ne L(�) as the logic got by adopting � as a set of new axioms:
� ` A in L(�) i� �[� ` A in the basic system. It is obvious that L(�) will
always be classical. Moreover, if � is closed also under necessitation (that
is, if �� � �), then L(�) is a normal logic. In this fashion we preserve
more of the Gentzen/Prawitz avour than the Hintikka/Kripke procedure
does, while retaining full generality.

10 MODAL ALGEBRAS, FRAMES, GENERAL FRAMES

The sections which follow survey the mainstream of technical modal logic.
It is felt that the major results have been fairly represented. However, the
selection of secondary results has been decidedly subjective, and another
writer might well have chosen di�erent topics. The best uni�ed and detailed
presentation in the area is [Goldblatt, 1976], which extends his PhD thesis of
1974 to account for the work of other logicians of that period. A good picture
of an earlier stage is given in [Segerberg, 1971]. The startling di�erence
of content between these two `monographs' reects the great increase of
mathematical sophistication in technical modal logic at that time. This
trend was led by Kit Fine, S. K. Thomason and R. I. Goldblatt. A more
recent exploitation of algebra in the work of W. J. Blok will not be discussed
in detail in this survey.
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A modal algebra A = hA; 0; 1;�;\;[; l;mi consists of a set A including 0
and 1, with functions �;\;[; l;m on it which satis�es the conditions that
hA;�; 1;�;\;[i is a Boolean algebra and

l1 = 1; l(a \ b) = la \ lb;ma = �l� a;
or, equivalently, that

m0 = 0;m(a[ b) = ma [mb; la = �m� a:
A valuation v on A is a function from the propositional formulas to the
elements of the algebra which satis�es the conditions

v(:A) = �v(A);
v(A ^ B) = v(A) \ v(B);
v(A _ B) = v(A) [ v(B);
v(�A) = lv(A);
v(�A) = mv(A):

An algebraic `model' hA; vi is a modal algebra with a valuation on it, and A
is true or veri�ed in this `model' i� v(A) = 1 A formula is true in a modal
algebra i� it is true in all `models' on that algebra (cf. Section 3).

A frame F = hW;Ri consists of a set W and a binary relation R on
W . A valuation V on F is a function such that V (A; x) 2 fT; Fg for each
propositional formula A and x 2W , which satis�es the conditions

V (:A; x) = T i� V (A; x) = F;
V (A ^B; x) = T i� V (A; x) = T and V (B; x) = T;
V (A _B; x) = T i� V (A; x) = T or V (B; x) = T;
V (�A; x) = T i� 8y(xRy ! V (A; y) = T );
V (�A; x) = T i� 9y(xRy ^ V (A; y) = T ):

A model hF; V i is a frame with a valuation on it, and A is satis�ed in it i�

V (A; x) = T for some x 2 W;
and is true or veri�ed in it i�

V (A; x) = T for each x 2 @:

A formula is true or veri�ed in a frame i� it is true in all models on that
frame. (Cf. Section 4.)

A modal logic is normal i� it includes all tautologies and the axiom

` �(P ! Q)! (�P ! �Q);

and is closed under the rules of substitution for variables, modus ponens,
and necessitation,

if ` A then ` �A:
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An alternative to this axiom and necessitation is to take

` �(P ! P )
` (�P ^�Q)! �(P ^Q)

and the rule
if ` A! B then ` �A! �B;

from which
` �(P ^Q)! (�P ^�Q)

is derivable. (Cf. Section 6.) The minimal normal modal logic is called
K, and its formulas are true in every modal logic and frame. Well-known
formulas which are true in every modal algebra satisfying a corresponding
equation, and every frame satisfying a corresponding �rst-order condition
on its relation, are shown in Table 5. Here a � b is an abbreviation for
a \ b = a or a [ b = b. It is convenient to label the extension of K with
certain axioms by concatenating K with their labels, so that the extension
of K with T and 4 is KT4, except that KT has usually been replaced by
S. (Cf. Section 7.) Note that the modal algebras verifying S4 satisfy la �
and lla = la, being the closure algebras or interior algebras of McKinsey
and Tarski [1944].

When added to K4, the formulas in Table 4 are true in every transitive
frame satisfying the corresponding condition on its relation. (Here the con-
dition for �3 is known as connectedness, and the condition for M asserts
that after each point x there is a `second last' point y.) (Of these formu-
las, M was introduced in [McKinsey, 1945], �3 in [Dummett and Lemmon,
1959], and Grz in [Sobinci�nski, 1964], where it is shown that T and M are
derivable in K4G4z. In fact 4 is derivable in KGrz by [van Benthem and
Blok, 1978].)

A frame F = hW;Ri determines a modal algebra F+ with carrier B(W ),
where 0 = ; and 1 = W;�;\;[ are the usual set-theoretic operations,
B(W ) is the set of subsets of W , and

lRa = fx : 8y(xRy ! y 2 a)g;
mRa = fx : 9y(xRy ^ y 2 a)g:

Writing v(A) for fx : V (A; x) = Tg, each valuation V on F determines a
subset fv(A) : A a formulag of B(W ). This subset is in fact the carrier of a
subalgebra of F+. For many purposes this is the most important point of a
valuation, so that it is often preferable to consider general frames hW;R; P i,
where P is the carrier of a subalgebra of hW;Ri+. A formula is true or ver-
i�ed in a general frame hW;R; P i i� it is true in each model hW;R; V i for
which v is a function into P . (General frames were introduced in [Thoma-
son, 1972], though they are foreshadowed in [Makinson, 1970] and in the
secondary models of [Bull, 1969; Fine, 1970] and [Kaplan, 1970] for modal
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logics with propositional quanti�ers.) The construction + can be extended
to general frames F = hW;R; P i by taking the carrier of F+ to be P instead
of B(W ).

Table 5.

Label Formula Equation Condition on R
T �P ! P la � a 8x(xRx)
B ��P ! P mla � a 8x8y(xRy! yRx)
4 �P ! ��P la � lla 8x8y8z((xRy ^ yRz)! xRz)

Table 6.

Label Formula Condition on R
�3 �(�P ! �Q) _�(�Q! �P ) 8x8y8z((xRy ^ xRz)!

(yRz _ zRy))
M ��P ! ��P 8x9y(xRy ^ 8z8w((yRz ^ yRw)

! z = �w))
Grz �(�(P ! �P )! P )! P There is no in�nite chain x0; x1;

x2; : : : with xiRxi+1 and
xi 6= xi+1, for all i.

A modal algebra A determines a general frame A+ = hWA; RA; PAi,
where WA is the set of ultra�lters of A,

xRAy i� 8a(a 2 y !ma 2 x)

or, equivalently,
xRAy i� 8a(la 2 x! a 2 y);
PA = ffx : a 2 xg : a 2 Ag;

i.e. for each element of the modal algebra we take the set of ultra�lters x
containing it. (The �lters of A are the subsets F of A which satisfy the
conditions

1 2 F and not 0 2 F;
if a; b 2 F then a \ b 2 F;
if a 2 F and a � b then b 2 F;

and the ultra�lters F also satisfy

for each a 2 A; either a 2 F of � a 2 F

note that also not both a 2 F and �a 2 F .) Here we write A] for the
underlying frame hWA; RAi. Note that if A is �nite then PA is B(WA), and
A+ and A] coincide.
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Clearly a formula is true in a model hF; V i i� it is true in the algebraic
`model' hF+; vi and hence true in F i� it is true in F+, since they have the
same valuations. It can also be shown that a formula is true in an algebraic
`model' hA; vi i� it is true in hA]; V i, where

V (A; x) = T i� v(A) 2 x:
(These constructions and results are due to Lemmon [1966], though they
would also have been easy consequences of [J�onsson and Tarski, 1951].) In
fact, each modal algebra A is isomorphic to (A+)+ by similar arguments.
Let us consider the properties of A+. A set X � A has the f.i.p. (�nite
intersection property) i�

a1 \ : : : \ an 6= 0; for each a1; : : : ; an 2 X:
Each set X with the f.i.p. can easily be extended to a �lter, which can in
turn be extended to a maximal �lter by Zorn's Lemma. Conversely each
subset of a �lter has the f.i.p. As a lemma, if X has the f.i.p. but X [f�ag
does not, then a 2 F , for each �lter F with X � F . It follows immediately
that each maximal �lter is an ultra�lter. As a second lemma following from
the �rst, b 2 F , for each ultra�lter F with X � F , i�

a1 \ : : : \ an � b; for some a1; : : : ; an 2 X:
In both the results above we are concerned with the function � : A! PA

with
�(a) = fF : F an ultra�lter on A with a 2 Fg:

The crucial point is to show that

9G(FRAG ^G 2 �(a)) i� F 2 �(ma);

in order to establish the properties of V (�A; x) on A+, and the properties
of mRA in (A+)+. This is immediate from left to right, using the de�nition

FRAG i� 8b(b 2 G!mb 2 F ):

Going from right to left, suppose that the left-had side is false, so that

8G(FRAG! �a 2 G);

for the ultra�lter F . Using the alternative de�nition

FRAG if f8b(lb 2 F ! b 2 G)

and taking X = fb : lb 2 Fg, each ultra�lter G with X � G has �a 2 G.
Applying the second lemma above to X it is easy to show that l(�a) 2 F ,
and hence not F 2 �(ma), as required.
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However, (F+)+ is not in general `isomorphic' to F, for a general frame
F. Therefore we need a subclass of the general frames which will include all
the general frames A+ and be closed under this pair of operations. In the
terminology of [Goldblatt, 1976], given a general frame hW;R; P i write

Px = fS 2 P : x 2 Sg;
MPx = fmRS : x 2 S ^ S 2 Pg:

Then Thomason [1972] de�nes the conditions

if Px = Py then x = y (1-re�nement);
if MPy � Px then xRy (2-re�nement);

and calls a general frame re�ned when it satis�es both of them. In e�ect
a general frame hW;R; P i has enough propositions in P to determine W
when it is 1-re�ned, and enough propositions in P to determine R when
it is 2-re�ned. (Kit Fine independently introduced analogous conditions
di�erentiated, tight, and natural for models.) Clearly each general frame
A+ determined by a modal algebra A is re�ned.

As Thomason [1972] shows, for each general frame hW;R; P i there is a
re�ned general frame for which precisely the same formulas are true. One
�rst replaces R by R0 with

xR0y i� (8S 2 P )(y 2 S !mRS 2 x);

so that hW;R; ; P i+ is the same as hW;R; P i+ but 2-re�nement is satis�ed.
Then an equivalence relation w is de�ned on W by taking

x w y i� (8S 2 P )(x 2 S � y 2 S):

This is a congruence on hW;R0; P i in the sense that

if x1 w x2 and y1 w y2 then x1R
0y1 = x2R

0y2:

Now the quotient general frame hW= w; R0= w; P= wi with

W= w= f[x] : x 2 Wg;
[x]R; = w [y] i� xR0y;
P= w= ff[x] : x 2 Sg : S 2 Pg;

is re�ned, and hW= w; R0= w; P= wi+ is isomorphic to hW;R0; P i+. Thus
these two steps yield a re�ned general frame with an associated modal al-
gebra which is isomorphic to that for the given general frame.

Fine [1975] introduces saturation or compactness conditions on models
analogous to \F 6= ?, for each ultra�lter F of hW;R; P i+, and

\fmRS : S 2 Fg �mR(\F ) (2-saturation):
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Since each x 2W generates an ultra�lter Px, this �rst condition is equiv-
alent to

F = Px; for some x�W (1-saturation)

for each ultra�lter F of hW;R; P i+. Note that applying 2-saturation to the
ultra�lter Px yields

if MPy � Px then 9z(xRz ^ Pz = Py) (20-saturation):

In Goldblatt [1976] it is shown that 20-saturation is equivalent to 2-saturation
in the presence of 1-saturation, and equivalent to 2-re�nement in the pres-
ence of 1-re�nement. Goldblatt [1976] then introduces the descriptive gen-
eral frames as the re�ned general frames which also satisfy 1-saturation
and, hence, 2-saturation. For each modal algebra A the general frame A+
is descriptive. To see that 1-saturation is satis�ed we must consider each
ultra�lter F of hWA; RA; PAi+, i.e. of PA with members

�(a) = fF : F an ultra�lter of A with a 2 Fg;
for each a 2 A. The required x 2WA with F = PAx is fa : �(a) 2 Fg.

It can also be shown that each descriptive general frame F is `isomorphic'
to (F+)+, so that the descriptive frames are the required `duals' of the modal
algebras. In Goldblatt [1976] this duality is expressed in terms of category
theory, which involves the appropriate morphisms between structures as
well as the structures themselves. The appropriate frame morphisms are
a slight extension of the pseudo-epimorphisms of Segerberg [1968], which
have to be onto. Given frames F = hW;Ri and F0 = hW 0; R0i; � : W ! W 0

is a frame morphism i�

if xRy then �(x)R0�(y);
if �(x)R0z then 9y(xRy ^ �(y) = z):

Frame morphisms are extended to models hW;R; V i and general frames
hW;R; P i by taking

v(P ) = ��1[v0(P )] = fx 2W : �(x) 2 v0(P )g;
for each propositional variable P ,

if S 2 P 0 then ��1[S] = fx 2W : �(x) 2 Sg 2 P:
As in Segerberg [1968],

V (A; x) = T i� V 0(A0; �(x)) = T;

by an easy induction on the construction of A. The induction basis uses
the condition above on V 0. For the step on �, the �rst condition on frame
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morphisms shows that if V (�B; x) = F , then V 0(�B; �(x)) = F , and the
second condition shows that if V 0(�B; �(x)) = F then V (�B; x) = F .

Now the descriptive frames F and (F+)+ can be shown to be frame isomor-

phic. For each descriptive frame F = hW;R; P i, the function � : W !WF
+

with
�(x) = Px; for each x 2W;

is a one-one frame morphism from F onto (F+)+. To see this, � is one-
one because F is 1-re�ned, and not because F is 1-saturated. Also, by the
de�nition of lR and 2-re�nement, xRy i� (8S 2 P )((S 2 Py !mRS 2 Px)
i� PxRF+Py i� �(x)RF+�(y). To complete the proof that F and (F+)+ are
frame isomorphic, i.e. that � and ��1 are general frame morphisms, it can
be shown that S 2 P i� �[S] 2 PF+.

To establish the category-theoretic contravariant duality, correspondences
must be established between homomorphisms of modal algebras and general
frame morphisms of descriptive general frames, with the functions applied
in opposite directions. Given general frames F = hU;R; P i;G = hV; S;Qi
and a general frame morphism � : F! G, de�ne �+ : G+ ! F+ by

�+(S) = ��1[S]; for each S 2 Q;

where ��1[S] 2 P by the third condition. It is easy to show that �+

is a homomorphism. Given modal algebras A;B and a homomorphism
 : A! B, de�ne  + : B+ ! A+ by

 +(x) = fa 2 A :  (a) 2 xg; for each x 2 WB:

This set is an ultra�lter in WA, and  + satis�es the conditions on general
frame morphisms. For the �rst condition, if xRBy and la 2  +(x) then
a 2  +(y). For the second condition, if  +(x)RAz then fa : Bla 2 xg [
f (b) : b 2 zg can be shown to have the f.i.p. Therefore it can be extended
to an ultra�lter y, which satis�es xRBy and  +(y) = z. For the third
condition, if

S = fF : F an ultra�lter of A with a 2 Fg

in PA, then

 �1+ [S] = fG : G an ultra�lter of B with  (a) 2 Gg

in PB.
The category of modal algebras is a variety, and varieties are characterised

by being closed under homomorphic images, subalgebras and direct prod-
ucts. So what are the corresponding constructions in the contravariantly
dual category of descriptive frames? Frame-morphic images correspond to
sub- algebras.
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Subframes correspond to homomorphic images, where hW 0; R0; P 0i is a
subframe of hW;R; P i i� W 0 is a subset of W satisfying the condition

if x 2 W 0 and xRy then y 2 W 0;

R0 is the restriction of R to W 0, and P 0 is fS \W 0 : S 2 Pg. The generated
submodels hWx; Rx; Vxi of Segerberg [1970] are a special case of subframes.
Here, for x 2 W ,

Wx = fyn : XRy1 ^ : : : ^ yn�1Ryn; for some y1; : : : ; yn�1g;

and Rx; Vx are the restrictions of R; V to RWx. (In the context of Segerberg
[1970] R is transitive, so that it suÆces to take Wx = fy : xRyg.) Clearly
a formula is true in hW;R; V i i� it is true in all the generated submod-
els hWx; Rx; Vxi, a surprisingly important fact as we shall see. Note that
if hW;R; P i is re�ned or descriptive, then so is each hWx; Rx; Pxi. For
1-saturation use the fact that the ultra�lters of hWx; Rx; Pxi+ are the re-
strictions of the ultra�lters of hW;R; P i+ to subsets of Wx.

Disjoint unions correspond to direct products, in which we consider a
set of general frames hWi; Ri; Pii, for i 2 I , for which each Wi and Wj are
disjoint. (This can always be achieved by attaching indices.) The disjoint
union hW;R; P i then has W = [i2IWi; R = [i2IRi, and

S 2 P i� S \Wi 2 Pi; for each i 2 I:

It is easy to show that if each hWi; Ri; Pii is re�ned, then so is their disjoint
union. Goldblatt [1976, Section 9] shows that the disjoint union preserves
1-saturation if I is �nite, but not if it is in�nite. The attempt to characterise
the class of descriptive frames in terms dual to the usual characterisation
of varieties fails in view of this point. (Category-theoretic duality is not
always as good as it might sound!)

Section 12 of [Goldblatt, 1976] solves this problem by using another char-
acterisation of varieties, as being closed under homomorphic images, sub-
algebras, �nite direct products, and unions of chains. Onto inverse limits
correspond to unions of chains, where the inverse limit of a directed set of
descriptive frames is a complex construction set out in Section 11 of [Gold-
blatt, 1976].

Another important construction in varieties is Birkho�'s subdirect prod-
uct, A being a subdirect product of the modal algebras Ai with i 2 I i�
it is isomorphic to a subalgebra of their direct product which has the fol-
lowing property. Since A is a subalgebra of �i2IAi, there is a one{one
homomorphism � from A into �i2IAi. For each i 2 I there is a projection
�i from �i2IAi onto Ai. The condition on the subdirect product is that
the homomorphisms �i Æ � from A into each Ai be onto, so that each Ai is
a homomorphic image of A. Using this condition it is easy to show that a
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formula is true in A i� it is true in each Ai. Each homomorphic image of a
modal algebra A is isomorphic to a quotient A=F , where F is an open �lter
of A, i.e. a �lter satisfying the condition

if a 2 F then la 2 F:

The quotient is de�ned by taking the equivalence relation

a ' b i� (�a)[) \ (a [ (�b)) 2 F

and then taking A=F to be f[a] : a 2 Ag with l[a] = [la], etc. In view of
this we can restrict attention to Ai's of the form A=Fi for Fi an open �lter
of A.

Birkho� de�ned a modal algebra A to be subdirectly reducible i� it is a
subdirect product of quotients A=Fi with Fi nontrivial, and showed that
every modal algebra is subdirectly reducible to subdirectly irreducible al-
gebras. If some nonunit element a of A is in every nontrivial open �lter F
then [a] = [1] in each A=Fi, so that A cannot be a subalgebra of �i2IA=Fi.
Thus v is subdirectly irreducible already. Otherwise each non-unit member
a of A lies outside some nontrivial open �lter, and applying Zorn's Lemma
yields a (nontrivial) maximal open �lter Fa among those not containing
a. Now A is subdirectly reducible to the A=Fa's, noting that if b 6= c and
a = ((�b) [ c) \ (b [ (�c)) 6= 1 then [b] 6= [c] in A=Fa. Here each A=Fa is
subdirectly irreducible, since [a] 2 F for each nontrivial �lter F of A=Fa by
the maximality of Fa among the open �lters of A not containing a.

In view of Birkho�'s theorem, we can restrict attention to modal algebras
with some nonunit element in every nontrivial open �lter, when verifying
formulas in a modal logic. (The importance of this result in modal logic
lies in its use in the recent work of W. J. Blok.) In a closure or interior
algebra, an open �lter is determined by its open elements, so that a closure
or interior algebra is subdirectly irreducible i� it has a maximum nonunit
open element, or equivalently, a minimum nonzero closed element. In such
an algebra,

if la [ lb = 1 then la = 1 or lb = 1;

a condition we shall use later. It is easy to see that a modal algebra hW;Ri+
is subdirectly reducible to the algebras hWx; Rxi+ for x 2 W , which are
subdirectly irreducible.

In view of the contravariant duality between modal algebras and descrip-
tive general frames, what theorem for the latter corresponds to Birkho�'s
Theorem? Note that the lack of a disjoint union of in�nitely many descrip-
tive frames will block a dualisation of Birkho�'s proof. Let us say that a
general frame F is the subdirect sum of general frames Fi with i 2 I i� it is
a frame-morphic image of their disjoint union �i2IFi which has the follow-
ing property. Since F is a frame- morphic image of �i2IFi there is a frame
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morphism � from �i2IFi onto F. For each i 2 I there is embedding frame
morphism �i from Fi into �i2IFi. The condition on the subdirect sums is
that the frame morphisms � Æ �i from each Fi into F be embedding, so that
each Fi is isomorphic to a subframe of F. In view of this we can restrict
attention to Fi's which are subframes of F. Again it is easy to show that
a formula is true in F i� it is true in each Fi. Say that a general frame is
subdirectly reducible i� it is a subdirect sum of its proper subframes. Then
it is clear that a general frame is subdirectly reducible to its generated sub-
frames, and that these are subdirectly irreducible. So although the disjoint
union of descriptive frames is not usually descriptive, Birkho�'s deep result
for modal algebras is analogous to the easy, known result that a formula is
true in a descriptive general frame i� it is true in its generated subframes,
which are again descriptive!

11 CANONICAL STRUCTURES

So far we have not constructed any modal algebras or frames. given a normal
modal logic L, de�ne an equivalence relation 'L on formulas by taking

B 'L C i� `L B � C:

Then the canonical modal algebra AL is constructed by taking

AL = f[B]L : B a formulag;
0 = [P ^ :P ]L and 1 = [(:P ) _ P )]L;

�[B]L = [:B]L;
[B]

L
\ [C]L = [B ^ C]L;

[B]L [ [C]L = [B _ C]L;
l[B]L = [�B]L;
m[B]L = [�B]L:

That AL is indeed a modal algebra is easily shown using the de�ning axioms
and rules of normal modal logics. De�ning a valuation vL by

vL(B) = [B]L; for each formulaB;

we have
vL(B) = 1 i� B 2 L;

so that the canonical algebraic `model' hAL; vLi characterises the normal
modal logic L. Further, for each valuation v on AL; v(B) is [C]L for some
substitution instance C of B, so that B is true in AL i� it is in l.

Given a normal modal logic L, a set X of formulas is inconsistent i� `L
:(A1^: : :^An), for someA1; : : : ; An 2 X , and is consistent otherwise. (Note
the analogy between consistency and the f.i.p. The existence of maximal
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consistent sets is proved with Zorn's Lemma, just as for that of maximal
�lters. However, if L has only countably many propositional variables, then
a more elementary construction due to Henkin can be used.) De�ne the
canonical frame hWL; RLi by taking WL to be the set of maximal consistent
set of formulas, and taking

FRLG i� 8A(A 2 G! �A 2 F )

or, equivalently,
FRLG i� 8A(�A 2 F ! A 2 G):

Note the analogy with the construction of the frame A] from a modal algebra
A. De�ne a valuation VL by taking

VL(B;F ) = T i� B 2 F; for each formula B;

a de�nition which is shown to be sound by an induction on the construction
of B. For the induction step on B = �C it must be shown that

9G(FRLG ^G 2 vL(C)) i� F 2 vL(�C):

This proof is exactly analogous to the one used when showing that (A+)+

is isomorphic to A, using the de�ning axioms and rules of normal modal
logics. Now

vL(B;F ) = T; for each F 2 WL; i� B 2 L;
since each consistent set of formulas can be extended to a member of WL,
so that the canonical model hWL; RL; VLi characterises the normal modal
logic L. Taking

PL = fvL(B) : B a formulag
gives the canonical general frame hWL; RL; PLi. For each valuation V on
this frame, v(B) is vL(C), for some substitution instance C of B, so that B
is true in hWL; RL; PLi i� it is in L. In fact hWL; RL; PLi is AL+ , so that it
has a descriptive general frame characterising l.

It does not follow that the canonical frame hWL; RLi itself characterises
the normal modal logic L. Nonetheless, in a number of cases it can be shown
that RL satis�es some condition for frames to verify l, so that hWL; RLi
does characterise L. In particular, the canonical frames for KT, KB, K4,
and the logics obtained by combining these axioms, satisfy the �rst-order
conditions on R given in Section 10. (These completeness proofs were given
independently in [Lemmon, 1977], written in 1966, and in [Makinson, 1966].)
These partial results suggest a number of important problems which have
provided the main motivation for modal logic in the 1970s. Under what
conditions is a formula true on the underlying frame hW;Ri when it is true
on a model hW;R; V i or a general frame hW;R; P i? Are there logics which
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are not characterised by the ordinary frames which verify them? What is
the relationship between modal axioms and �rst-order conditions on R in
the frames hW;Ri? Are there formulas not characterised by the class of
frames satisfying some �rst- order condition? Generalising the problem of
completeness, often a problem can be easily solved for descriptive general
frames by their duality with the variety of modal algebras, an the diÆculty
lies in transferring the problem to the underlying frames. We shall return
to answers to these questions after studying various particular logics which
have attracted attention.

12 THE F. M. P. AND FILTRATIONS

A logic L is said to have the f.m.p. (�nite model property) i�, for each for-
mula ;`L A i� A is true in each �nite modal algebra or frame which veri�es
the formulas of L. Thus in showing that L has the f.m.p. we must �nd,
for each nonthesis A, a �nite modal algebra or frame which veri�es L but
does not verify A. Note that modal algebras and frames are interchange-
able here. For if F is a �nite frame, then of course F+ is a �nite modal
algebra, and if A is a �nite modal algebra, then A] = A+ is a �nite frame.
The f.m.p. is important, among other reasons, for giving decidability to a
�nitely axiomatised normal modal logic. For as Harrop pointed out, we can
construct the countably many �nite models in some order, checking each
one for verifying the �nitely many axioms and the given formula A. Again
a problem of independence is raised, which will be considered in a later
section: are there logics which are characterised by frames, but not by the
�nite frames which verify them? (The position of the logics characterised
by one �nite model in the lattice of modal logics is investigated in detail in
[Blok, 1980]. The normal modal logics immediately below these, which also
have the f.m.p., are the subject of [Block, 1980a].)

We now consider a pair of methods for constructing �nite modal alge-
bras and frames from given structures, both known as �ltration. Con-
sider an algebraic `model' hA; vi and a formula A with v(A) 6= 1. Let
fA1; : : : ; Ang be a �nite set of formulas including A and closed under sub-
formulas, and let hB; 0; 1;�;\;[i be the subalgebra of hA; 0; 1;�;\;[i gen-
erated by fv(A1); : : : ; v(An)g, noting that it is non-trivial and �nite. (Usu-
ally A1; : : : ; An are A and its subformulas, but sometimes some larger set
is preferable.) This Boolean algebra is extended to a �nite modal algebra
B = hB; 0; 1;�;\; l0;m0i by taking

l0b = [fla 2 B : a 2 B ^ a � bg;
m0b = \fmc 2 B : c 2 B ^ b � cg;

(In the case of a closure or interior algebra A;m is determined by the closed
elements of A and l by the open elements. Therefore it suÆces to take l0b
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to be the union of the open elements of B contained by b, and take m0b to
be the intersection of the closed elements of B containing b.) In particular,

if lb 2 B then l0b = lb;
if mb 2 B then m0b = mb;

for each b 2 B. Now B is indeed a modal algebra, satisfying

l01 = 1 and l0(a \ b) = l0a \ l0b;
m00 = 0 and m0(a [ b) = m0a [m0b;

using distibutivity and the fact that A satis�es these conditions. Construct a
valuation w onB by taking w(P ) = v(P )\B, for each propositional variable
P in A1; : : : ; An, and applying the de�ning conditions for valuations. We
now have

a(Ai) = v(Ai) for i = 1; : : : ; n;

so that w(A) 6= 1 in the �ltered algebraic `model' hB; wi.
It is not in general true that hB; wi, let alone B, veri�es a logic L ver-

i�ed by A. Nonetheless, in a number of cases it can be shown that each
�ltration B of A satis�es some condition for modal algebras to verify L.
In particular, �ltrations of algebraic `models' verifying KT, KB, Kr, and
the logics obtained by combining these axioms, again satisfy the equations
given in Section 10. It follows that these logics have the f.m.p. and are
decidable, being characterised by the �ltrations of their canonical modal al-
gebras. (This technique was introduced in [McKinsey, 1941], and extended
in [Lemmon, 1966], to establish many decidability results.)

Now consider a model hW;R; V i and a formula A with v(A) 6= W . Again
let fA1; : : : ; Ang be a �nite set of formulas including A and closed under
subformulas. De�ne an equivalence relation ' on W by taking

x ' y i� V (Ai; x) = V (Ai; y); for i = 1; : : : ; n;

so that W is partitioned into a �nite set W 0 of equivalence classes [x] under
'. Consider �nite frames hW 0; R0i satisfying the conditions

if xRy then [x]R0[y];
if [x]R; [y] then [if V (Ai; x) = T; for Ai = �Aj ;

then V (Aj ; y) = T ]; for i = 1; : : : ; n:

(A suitable condition in terms of � could equally well be used.) There are
a number of relations R0 on W 0 which satisfy these conditions, e.g. �R with

[x] �R[y] i� [if V (Ai; x) = T; for Ai = �Aj ;
then V (Aj ; y) = T ]; for i = 1; : : : ; n:

This relation satis�es the �rst conditions, since if xRy then the right-hand
side of the de�ning condition holds for all formulas B = �C. This is in fact
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the largest such relation R0. The smallest is the intersection R of all such
relations, which again satis�es the two conditions. Construct a valuation V 0

on hW 0; R0i by taking V ; (P; [x]) = V (P; x) for each propositional variable
P in A1; : : : ; An, and applying the de�ning conditions for valuations. It can
now be shown that

V 0(Ai; [x]) = V (Ai; x); for i = 1; : : : ; n;

by induction on the construction of formulas, so that v0(A) 6= W 0 in the
�ltered model hW 0; R0; V 0i. for the induction step on �, consider Ai = �Aj .
If V (�Aj ; x) = T and [x]R0[y] then V (Aj ; y) = T by the second condition on
R0, and V 0(Aj [y]) = T by the induction hypothesis. Applying this to each
[y] we have V 0(�Aj ; [x]) = T . If V 0(�Aj ; [x]) = T and xy, then [x]R0[y] by
the �rst condition on R, so that V 0(Aj ; [y]) = T and V (Aj ; y) = T by the
induction hypothesis. Applying this to each y we have V (�Aj ; x) = T .

Again it is not in general true that hW 0; R0; V 0i, let alone hW 0; R0i, veri�es
a logic L veri�ed by hW;R; V i. Nonetheless, in a number of cases it can be
shown that R0 satis�es some condition for frames to verify L. In particular
�ltrations hW 0; �R; �V i of models verifying KT, KB, K4, and the logics
obtained by combining these axioms, again satisfy the �rst- order conditions
on R given in Section 10. This gives alternative proofs of the decidability
of these logics. (The construction hW 0; �R; �V i was introduced in [Lemmon,
1977] and was generalised to hW 0; R0; V 0i in [Segerberg, 1968].) In many
more cases a further step after �ltration, or a variation on the construction
hW 0; �R; �V i to suit the axioms involved, will yield a �nite frame hW 0; R0i
verifying the logic concerned. We shall see some of these techniques in the
following sections.

13 UNRAVELLING AND BULLDOZING

(The technique of unravelling was introduced in [Dummett and Lemmon,
1959] and used extensively in [Sahlqvist, 1975], apparently without knowl-
edge of the earlier paper.) Consider a frame hW;Ri which is generated by
w0 2 W , so that w0Rw1; : : : ; wn�1Rwn, for some w1; : : : ; wn�1, for each
other wn 2 W . Construct a new frame hW �; R�i by taking

hw0; : : : ; wni 2 W � i�
w1; : : : ; wn 2W and w0Rw1; : : : ; wn�1Rwn;
hw0; : : : ; wmiR�hw0; : : : ; wni i�
hw0; : : : ; wn = hw0; : : : ; wmi � hwni:

Thus R has been unravelled in the sense that if un�1Rwn and vn�1Rwn then
wn is replaced by hw0; : : : ; un�1; wni and hw0; : : : ; vn�1; wni with hw0; : : : ;
un�1iR�hw0; : : : ; un�1; wni and hw0; : : : ; vn�1iR�hw0; : : : ; vn�1; wni.
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Unravelling is extended to models hW;R; V i by taking V �(P; hw0; : : : ;
wni) = V (P;wn) for each propositional variable P , and applying the de�n-
ing conditions for valuations. It is easy to show that

V �(A; hw0; : : : ; wni) = V (A;wn); for each formula A;

by induction on the construction of A. Since K is characterised by the �nite
frames using �ltrations, it is now characterised by the unravelled frames.
Note that these unravelled frames are irreexive, asymmetrical, and intran-
sitive. Therefore none of these conditions characterise a proper extension
of K.

A frame hW;Ri could be de�ned to be a tree i� there is w0 2W and a rela-
tion S on W satisfying the conditions, for each wn 2W other than w0, only
one wn�1 2 W with wn�1Swn, for some w1; : : : ; 2wn�1 2 W ; there is only
one wn�1 2 W with wn�1Swn' and wmRwn if wmSwm+1; : : : ; wn�1Swn,
for some Rwm+1; : : : ; wn�1 2 W . A tree could be reexive or irreexive.
Then trees cold be obtained by taking the transitive closures of unravelled
frames, with or without the reexive closure as required. (Sahlqvist [1975]

uses a more general notion of tree, and proves a number of results concerning
them.)

The clusters of a transitive frame hW;Ri are de�ned in [Segerberg, 1971]

to be the equivalence classes of W under the equivalence relation

x ' y i� (xRy ^ yRx) _ x = y:

Clusters are divided into three kinds: proper, with at least two elements,
all reexive; simple, with one reexive element; and degenerate with one
irreexive element. Note that when a nondegenerate cluster is unravelled,
it will give rise to many branches of hW �; R�i in which the members of
the cluster are repeated. Thus unravelling imposes asymmetry on frames,
sometimes without losing the property of characterising a given logic.

Another technique for removing nondegenerate clusters and so imposing
asymmetry is the bulldozing of Segerberg [1970]. Let us suppose that the
logic concerned is an extension of K4 which has countably many propo-
sitional variables P0; P1; P2; : : : and consider a generated transitive frame
hW;Ri. Construct a new frame hW 0; R0i by �rst replacing each nondegen-
erate cluster C of W by

C0 = fhx; ii : x 2 C ^ i = 0; 1; 2; : : :g;

and replacing each degenerate cluster C = fxg of W by fhx; 0ig, to obtain
W 0. De�ne R0 on W 0 by taking

hx; iiR0hy; ji i� either not x ' y and xRy
orx ' y and i < j or x ' y and i = j and xrCy;
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where rC is an arbitrary strict ordering of the proper cluster C with x; y 2 C.
Thus each nondegenerate cluster C of W is `bulldozed' into an in�nite set
C0 on which R0 is a strict linear ordering. In hC0; R0i a copy hy; ji of y
occurs after each copy hx; ii of x, for each x; y 2 C. If hW;Ri is reexive, so
that there are no degenerate clusters, modify the construction as follows to
make hW 0; R0i reexive as well. Form C0 as above only for proper clusters
C, and replace simple clusters C = fxg by C0 = (hx; 0i); and add the clause
`or x = y' to the right- hand side of the de�nition of R0

0. In this case each
proper cluster C is `bulldozed' into an in�nite set C0 on which R0 is a linear
ordering.

Bulldozing is extended to models hW;R; V i by taking

V 0(pj ; hx; ii) = V (Pj ; x); for j = 0; 1; 2; : : : ;

and applying the de�ning conditions for valuations. Now

V 0(A; hx; ii) = V (A; x); for each formula A

by induction on the construction of A. (For the induction step on�; V 0(�B;
hx; ii) = F i� V 0(B; hy; ji) = F , for some hy; ji 2 W 0 with hx; iiR0hy; ji,
i� V (B; y) = F , for some y 2 W with hx; iiR0hy; ji, (by the induction
hypothesis) i� V (B; y) = F , for some y 2 W with xRy, (by the de�nition
of R0 if not x ' y, and by a remark above if x ' y) i� V (�B; x) = F .)

Now consider any normal modal logic L containing S4.3. First we shall
use

`L �(�A! �B) _�(�B ! �A)

to show that the canonical frame hWL; RLi is connected with

8x8y8z((xRLy ^ xRLz)! (yRLz _ zRLy)):

Let us suppose that we have maximal consistent sets F;G;H of L with
FRLG;
FRLH but not GRLH and not HRLG, and obtain a contradiction. Since
not GRLH there is some �A 2 G with not A 2 H , and since not HRLG
there is some �B 2 H with not B 2 G. Just as maximal �lters are ultra�l-
ters, it can be shown that a maximal consistent set F satis�es

A 2 F or :A 2 F; for each formula A:

It is easy to deduce that

if A _ B 2 F then A 2 F or B 2 F; for all formulas A;B:

Therefore

`L �(�A! �B) _�(�B ! �A)
implies �(�A! �B) 2 F or �(�B ! �A) 2 F
implies �A;�A! �B 2 G or squareB;�B ! �A 2 H
implies �B 2 G or �A 2 H
implies B 2 G or A 2 H
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(since `L �P ! P )|the required contradiction.

The canonical frame for L is also reexive and transitive. Clearly its
generated subframes hWL; RLxi satisfy 8y8z(yRz _ zRy), and bulldozing
adds

8y8z(y 6= z ! :(yRz ^ zRy))

to these conditions in hW 0
lz ; R

0
Lxi, so that R0

Lx is a linear ordering in the
full sense. Often such frames still verify L, so that they characterise it, in
particular when L is S4.3 itself. (Segerberg [1970] proves the analogous
result for extensions L of K4.3, using �ltrations of the canonical frame
which are connected although the canonical frame itself is not. Many other
results along these lines are obtained in [Segerberg, 1970; Segerberg, 1971]

and [Sahlqvist, 1975].)

14 S4.1 AND S4GRZ

(K4.1 = K4M and S4.1 = KT4M were shown to be characterised by
frames satisfying the appropriate conditions in [Lemmon, 1977], written in
1966, and S4.1 was shown to be characterised by the appropriate �nite
frames in [Segerberg, 1968]. Independently Bull [1967] gave an algebraic
proof of the f.m.p. for S4.1, and described a characteristic frame for it. The
extension S4 Grz of S4.1 was shown to be characterised by the appropriate
�nite frames in [Segerberg, 1971].)

Bull [1967] begins by showing that S4.1 can also be axiomatised by ex-
tending S4 with either of the rules

if ` �A;` �B then ` �(A ^ B);
if ` �A; then ` ��A:

Although a �ltration B of the canonical modal algebra for S4.1 may not
verify these rules, an extension B+ of B an be constructed which does.
(Thinking in terms of hW;Ri+, where R satis�es the conditions in Section
10 for verifying S4.1, we need to isolate the R-last points of W . This is
achieved by the following trick.) Taking aB = [f(mb� b) : b 2 Bg, where
the join and m are that of AS4:1, we shall consider separately what happens
in aB and what happens in �aB (the set of R-last points, in e�ect). Let
hB+; 0; 1;�;\;[; l0;m0i be the �ltration of AS4:1 generated by B [ faBg,
and de�ne

l+b = (l0b \ aB) [ (b� aB);
m+b = (m0b \ aB) [ (b� aB);

for each b 2 B+. The required modal algebraB+ is hB+; 0; 1;�;\;[; l+;m+i.
The canonical modal algebra AS4:1 and the �ltrations of it are closure or
interior algebras, and it can be shown that B+ is as well. Using the fact
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that AS4:1 veri�es the �rst rule above, it can be shown that l+aB = 0. From
this it follows that

if l=b = 0 then l+m+b = 0;

so that the second rule above is indeed veri�ed by B+. Finally it can be
shown that l+b = lb and m+b = mb if these are in B, so that B+ rejects
the given formula A rejected by B. Thus S4.1 is characterised by these
�nite closure or interior algebras B+.

For the reexive and transitive frames which verify S4, the condition
given in Section 10 for hW;Ri to verify M becomes

8x9y(xRy ^ 8z(yRz ! y = z));

i.e. that each point x has an R-last point y after it. For �nite frames
it suÆces that each �nal cluster be simple. It is well-known that in S4
the only non-equivalent formulas obtained by applying :;�;� to P are P
itself, �P;���P;��P and ��P;���P;�P , and the negations of these.
Thus in S4.1 there are only 10 of these `modalities'. In forming a �ltration
hW 0; �R; �V i let us take fA1; : : : ; Ang to be the �nite closure of A and its
subformulas under these modalities of S4.1. Now these �ltrations of the
canonical model hWS4:1; RS4:1; VS4:1i have all their �nal clusters simple,
and so characterise S4.1. For consider [F ]; [G] 2W 0

S4:1 in a �nal cluster of
such a frame hW 0

S4:1;
�RS4:1i, with Ai 2 F . Since [F ] is in a �nal cluster, for

each [H ] with [F ]RS4:1[H ] we have [H ]RS4:1[F ], and so �Ai 2 H . Therefore
��Ai 2 F , as well as ��Ai ! ��Ai 2 F , so that ��Ai 2 F . Now there
must be an H with [F ] �RS4:1[H ] and �Ai 2 H . But since R is transitive
and this is a �nal cluster, [H ] �RS4:1[G] and so Ai 2 G. We have shown that
if Ai 2 F then Ai 2 G, so that extending the argument yields

Ai 2 F i� Ai 2 G; for i = 1; : : : ; n;

i.e. [F ] = [G], as required.
For �nite reexive and transitive frames, to satisfy the condition given in

Section 10 for hW;Ri to satisfy Grz, it suÆces that each cluster be simple.
Unfortunately �ltrations hW 0; �R; �V i of the canonical model for S4 Grz may
not have this property, and it is necessary to replace �R by a suitable asym-
metric R0. Given a cluster C of reexive, transitive hW 0

Grz
; �RGrz; �VGrzi, say

that x 2 C is `virtually last' in C i� there is some Fx 2 x with

8G((FxRGrzG ^ [G] 2 C)! x = [G]):

It is clear that the member of a simple cluster of this frame is virtually
last. In [Segerberg, 1971, Chapter II, Section 3], it is shown by a diÆcult
argument that each proper cluster has a virtually last element as well.

Assuming this result, de�ne R0
Grz

on W 0
Grz

by taking xR0
Grz

y i� either
not x ' y and x �RGrzy or x ' y and xrCy, where rC is an arbitrary ordering
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of C in which the rC -last member of �nite C is virtually last in C. Now
R0
Grz
� �RGrz, and hW 0

Grz
; R0

Grz
i has only simple clusters and so veri�es

S4Grz. De�ne V 0
Grz

on hW 0
Grz

; R0
Grz
i by taking V 0

Grz
(P; [F ]) = VGrz(P; F )

for each propositional variable P in fA1; : : : ; Ang, and applying the de�ning
conditions for valuations. It can be shown that

V 0Grz(A; [F ]) = �VGrz(Ai; [F ]); for i = 1; : : : ; n;

by induction on their construction, so that hW 0
Grz

; R0
Grz

; V 0
Grz
i rejects the

given formula as well. For the induction step on �, consider Ai = �Aj , one
direction being easy with R0

Grz
� �RGrz. For the diÆcult direction take x

to be a cluster C with y virtually last in C, and then

�VGrz(�Aj ; x) = F
implies �VGrz(�Aj ; y) = F
implies VGrz(�Aj ; Fy) = F and
8G((FyRGrzG ^ [G] 2 C)! y = [G])

implies VGrz(Aj ; G) = F; for some G with either
FyRGrzG and not [G] 2 C or y = [G] 2 C;

implies V 0
Grz

(Aj ; [G]) = F and either not y ' [G]
and y �RGrz[G] or y ' [G] and yrC [G]

implies V 0
Grz

(Aj ; [G]) = F and xR0
Grz

y and yR0
Grz

[G]
implies V 0

Grz
(�Aj ; x) = F:

With what natural axiom can S4.1 be extended to S4Grz? Clearly we
need a formula A such that S4A is characterised by the �nite reexive-and-
transitive frames in which all but the �nal clusters are simple. Segerberg
[1971, Chapter II, Section 3] shows that

Dum:��P ! (�(�(P ! �P )! P )! P )

(i.e. ��P ! Grz) has this property, so that S4Grz is S4.1Dum.

15 THE TRANSITIVE LOGICS OF FINITE DEPTH

Given a frame hW;Ri, say that x1; : : : ; xr 2 W form a chain i� xiRxi+1
and xi 6= xi+1 and not xi+1Rxi, for i = 1; : : : ; r � 1. (Thus x1; : : : ; xr
come from a chain of distinct clusters. We include hx1i as a chain.) Say
that x1 has a rank r in hW;Ri i� there is a chain hx1; : : : ; xri but no chain
hx1; : : : ; xr ; xr+1i. And say that hW;Ri itself has rank r i� each element
in it has a rank which is � r, and some element in it has rank r. In this
section (which is derived from work in [Segerberg, 1971]) we study normal
extensions of K4 with characteristic frames of �nite depth in this sense.

De�ne formulas Bn, for n = 1; 2; 3; : : : by taking

B1 = B = ��P1 ! P1;
Bn+1 = �(�Pn+1 ^ :Bn)! Pn+1:
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Then transitive hW;Ri veri�es Bn i� it has rank � n. For it is easy to show
that hW;R; V i rejects Bn at x0 2 W i� there exists x1; : : : ; xn 2 W with
xiRxi+1 and

V (Pn�i; xi) = F;
v(Bn�i; xi) = F;
v(�Pn�i; xi+1) = T;

for i = 0; : : : ; n � 1, by induction from n � 1 to 0. And it can be checked
that these conditions can hold i� x0; : : : ; xn satisfy the conditions for being
a chain.

We shall see that any normal logic L which contains K4Bn has the
f.m.p. Consider a formula A with propositional variables from P1; : : : ; Pm,
and take r to be maximum of m and n. Taking Lr to be the restriction of L
to P1; : : : ; Pr, it is clear that `L A i� `Lr A. Suppose that A is a nonthesis
of both logics. The canonical general frame hWLr ; RLr ; PLr i veri�es L and
rejects A, and we shall see that it is �nite.

Firstly hWLr ; RLr i has rank � n. For if it has a chain F0; : : : ; Fn then
there must be formulas A1; : : : ; An with

�An�1 2 Fi+1 and not An�1 2 Fi; for i = 0; : : : ; n� 1:

Then it is easy to show that the formula B0n obtained from Bn by sub-
stituting Ai for Pi; i = 1; : : : ; n, has not B0n 2 F0, in contradiction to the
properties of WLr .

Now WLr has �nitely many maximal consistent sets of rank i, by induc-
tion from i = 1 to i = n. Say that a formula is modally atomic i� it is a
propositional variable or of the form �C or �C. Since a maximal consistent
set F , like an ultra�lter, satis�es the conditions

:A 2 F i� not A 2 F;
A ^B 2 F i� A 2 F and B 2 F;
A _B 2 F i� A 2 F or B 2 F;

it is determined by its modally atomic formulas. Note that if F is a maximal
consistent set in WLr of rank i then �C 2 F i�

C 2 \fG : F ' G _ (FRLrG ^G has rank < i)g

and �C 2 F i�

C 2 [fG : F ' G _ (FRLrG ^G has rank < i)g:

By the induction hypothesis there are �nitely many sets of maximal consis-
tent sets G with (FRLrG ^G has rank < i). There are �nitely many ways
of allocating P1; : : : ; Pr to the maximal consistent sets G with F ' G. Once
these items are �xed, the members of each maximal consistent set in the
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cluster including F are determined (by an easy induction on the construc-
tion of formulas). In particular the number of maximal consistent sets in
the cluster is at most the number of ways of allocating P1; : : : ; Pr to those
sets. It follows that there are �nitely many possible sets of modally atomic
formulas for F , and hence �nitely many maximal consistent sets F of rank
i in hWLr ; RLr i.

16 THE NORMAL EXTENSIONS OF S4.3

(Bull [1966] gives an algebraic proof that every normal extension of 4.3
has the f.m.p. Fine [1971] gives a frame-theoretic proof, together with a
description of the lattice of these logics. Both proofs are rather elegant.)

Let L be any normal modal logic containing S4.3. by what we have seen
in Section 10, l is characterised by the subdirectly irreducible closure or
interior algebras which verify it. Let A be such an algebra. Since A veri�es
�(�P ! �Q) _�(�Q! �P ) and satis�es the condition

if la [ lb = 1 then la = 1 or lb = 1;

it is well-connected in the sense that

la � lb or lb � la:
It also satis�es the condition

if la < lb then l(a [ (�lb)) = la;

where la < lb is (la � lb) ^ la 6= lb. This is shown by �rst applying the
same argument to �(�P ! �Q) _�(�(�P ! �Q)! �Q), which can be
shown to be a thesis of S4.3, so that lb � la or l((�lb) [ la) � la. But if
la < lb then not lb � la, and in any interior algebra it can be shown that
la � l((�lb) [ la) = l((�lb) [ a). dualising these results, we have

ma �mb or mb �ma; if mb <ma then m(a�mb) = ma;

for each a; b 2 A.
Given a nonthesis A of l and an algebraic `model' hA; vi which rejects it,

let A1; : : : ; Am be A and its subformulas and let B = hB; 0; 1;�;\;[i be
the �nite subalgebra of hA; 0; 1;�;\;[i generated by fv(A1); : : : ; v(Am)g.
Take W to be the set fb1; : : : ; bng of atoms of the atomic Boolean algebra
B and de�ne R on W by taking

biRbj i� bi �mbj:
Now hW;Ri+ is a �nite closure or interior algebra, such that there is an
isomorphism � from B onto the underlying Boolean algebra of hW;Ri+ on
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B(W ). (Note that hW;Ri+ is not a �ltration of A in the usual sense.)
De�ne a valuation V 0 on hW;Ri by taking

v; (P ) = �v(P ); for each propositional variable P in A;

and applying the conditions on valuations. We have

v0(Ai) = �v(Ai); for i = 1; : : : ; n;

because � is a Boolean isomorphism and

x 2 �(mb) i� 9y(xRy ^ y 2 �(b));

for each b 2 B. For taking b = x1 [ : : : [ xr for atoms x1; : : : ; xr of B, we
have

x 2 �(mb)
i� x �m(x1 [ : : : [ xr)
i� x �mx1 [ : : : [mxr
i� x �m(x1 or : : : x �mxr
i� xRx1 or : : : or xRxr
i� 9y(xRy ^ y 2 �(b)):

In particular hW;Ri+ rejects A.
To show that hW;Ri+ veri�es L, it is suÆcient to construct an embedding

homomorphism � from hW; ri+ into A. Suppose that b1; : : : ; bn are indexed
so that, in their indexed order, mbk)1) = : : : = mbk(2)�1 < : : : < mbk(s) =
: : : = mbk(s+1)�1 in A, where 1 = k(1) < : : : < k(s + 1) = n + 1. Set
bk(0) = 0 and note that mbk(1)�mbk(0); : : : ;mbk(s)�mbk(s�1) is a disjoint
cover of 1. De�ne � by taking

�(�) = 0;

for i = 1; : : : ; s,

�(fbk(i)g) = mbk(i) = bk(i)+1 [ : : : [ bk(i+1)�1 �mbk(i�1);
for i = 1; : : : ; s and k(i) + j = k(i) + 1; : : : ; k(i+ 1)� 1,

�(fbk(i)+jg) = bb(i)+j �mbk(i+1);
�(fbi(1; : : : ; bi(r)g) = �(fbi(1)g) [ : : : [ �(fbi(r)g):

It is clear that � is an embedding homomorphism of the underlying Boolean
algebras. It can also be shown that

m�(fbk(i)g) = m(bl(i) �mbk(i�1));
m�(fbk(i)+jg) = �(fb1; : : : ; bk(i+1)�1g);

for i = 1; : : : ; s and k(i) + j = k(i); : : : ; k(i + 1) � 1. (The second result
uses the �rst and the lemma of the �rst paragraph.) But fb1; : : : ; bk(i+1)�1g
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is the closure of fbk(i)+jg in hW;Ri+, so that � is now easily seen to be a
homomorphism w.r.t. m as well.

Alternatively, L is characterised by the generated submodels hWLx; RLx; VLxi
of its canonical model. We know from Section 13 that these satisfy the con-
dition

8y8z(yRLxz _ zRLxy):

So, given a nonthesis A of L, let hW;R; V i be a model which satis�es this
condition and rejects A. Let fA1; : : : ; Ang be �A and its subformulas, and
consider the �ltration hW ; �R; �V i determined by this set of formulas.

Let us �rst try to prove that �nite hW 0; �Ri veri�es each formula veri�ed by
hW;R; V i and, hence, L, which would establish the f.m.p. for L. We must
�rst reduce any model hW 0; �R; V 00i to hW 0; �R; �V i. Say a subset of W 0 is
de�nable in hW; �R; �V i i� it is �v(B), for some formula B; that hW 0; �PR; v00i
is a de�nable variant of hW 0; �R; �V i i� �v00(P ) is de�nable in hW 0; �R; �V i,
for each propositional variable P ; and that hW 0; �R; �V i is di�erentiated i�
f[w]g is de�nable, for each [w] 2 W 0 (cf. 1- re�nement). It is easy to show
that �nite hW 0; �R; �V i is di�erentiated; that therefore each hW 0; �R; V 00i is a
de�nable variant of it' and that therefore if hW 0; �R; �V i veri�es L then so

does each �W 0; �R; V 00. To show that hW 0; �R; �V i veri�es L, it would clearly
suÆce to show that

if xRy then [x] �R[y];
if [x] �R[y] then 9z(xRz ^ z 2 [y]):

The �rst condition is of course true, but unfortunately it is quite possible
that the second could fail.

In view of this set-back, let us try to eliminate elements � for which the
second condition fails. given �; � 2 W 0, de�ne � sub � to hold i�

9x(x 2 � ^ 8y(y 2 � ! :xRy)):

Note that if this holds then yRx, since hW;Ri is connected and so � �R�. Say
that � is eliminable` i� there is some � with � �R� and � sub �. (Note the
similarity of the conditions `virtually last' and `eliminable' on the members
of a cluster in a �ltration.) Take U to be the set of noneliminable elements
of V , and form hU; �R; �V i by restricting �R; �V to U . It is easy to show that

�V (Ai; [x]) = T i� Ai 2 x; for i = 1; : : : ; n and each [x] 2 U;

once the lemma of the following paragraph is proved. It follows that hU; �R; �V i
rejects the given formula A and is di�erentiated.

The lemma is that, for each formula �B in fA1; : : : ; Ang, if �B 2 x then
there is some y with B 2 y such that [x] �R[y] and y is not eliminable. This
is done by constructing a sequence �0; �1; �2; : : : in W 0 by taking �0 = [x],
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and for each i = 1; 2; 3; : : :,

�2i�1 is some [z] with B 2 z and not [z] sub �2i�2;
�2i is some [z] with [z] �R�2i�1 and �2i�1 sub [z]:

It is easy to see that B 2 �2i�1 and �B 2 �2i, for i = 1; 2; 3; : : :. It can
be shown that this sequence must terminate, but that it cannot terminate
at any �2i. the required y is the z with B 2 z such that the sequence
terminates at �2j�1 = [z].

To complete the argument it will suÆce to set up a frame morphism �
from some de�nable variant of hW;R; V i onto hU; �R; �V i. Fro then hU; �R; �V i
will verify L, as shown in Section 10, and so will each variant of di�erentiated
hU; �R; �V i, as in the original `proof'. De�ne � : W ! U by taking

�(x) = [x]; if [x] 2 U;
= the �rst element in some arbitrary ordering of U which is

�R-�rst in f� : [x] �R�g; otherwise

|noting that � is onto U . If xRy then [x] �R[y] and [y] �R�(y) yield �(x) �R�(y).
If �(x) �R�(y) then we must have some z 2 �(y) with xRz, otherwise �(y)
sub �(x) and �(y) would be eliminable. Now �(y) = �(z) and xRz as re-
quired. Thus � is an onto frame morphism. De�ne a valuation V 0 on hW;Ri
by taking V 0(P; x) = �V (P; �(x), for each propositional variable P , and ap-
plying the conditions on valuations. Then it is easy to show that hW;R; V 0i
is a de�nable variant of hW;R; V i and to extend � to a morphism of models.

(What is the relationship between these two proofs? Take hW;R; V i to
be a generated sub model of the canonical model of L, and take hA; vi to be
hhW;Ri+; vi, for the same valuation. Thus A is indeed a subdirectly irre-
ducible closure or interior algebra verifying L. Relabelling the �nite frame
hW;Ri of the �rst proof as hW 0; R0i;W 0 is the usual set obtained from
fv(A1); : : : ; v(An)g in a �ltration, but from

�R0 _ i� 8x(x 2 �! 9y(xRy ^ y 2 �)):

Since a one{one homomorphism � from hW 0; R0i+ into hW;Ri+ is the dual
of a frame morphism � from hW;Ri onto hW 0; R0i, we would expect that
all the elements in W 0 are noneliminable. To see that this is indeed true,
suppose that �R0� and � sub � and try to obtain a contradiction. In this
case there is some x 2 � with 8y(y 2 � ! :xRy) by the de�nition of
� sub �. then the de�nition of �R0� give us some y 2 � with xRy|
the required contradiction. Unfortunately, the other condition on frame
morphisms, that if xRy then [x]R0[y], is not satis�ed by this construction.
and indeed the frame morphism � of which � i the dual, is not �(x) = [x],
for each x 2 W , but a more complicated function which can be constructed
from the de�nition of � above.)
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Say that a nonempty sequence of positive integers is a list. A �nite frame
hW;Ri which veri�es S4.3 must consist of a �nite chain of �nite clusters, so
that it is described by the list of numbers of elements in successive clusters.
Say that a list t contains a list s = hA1; : : : ; ami when there is a subsequence
hbi1 ; : : : ; bimi of t with a1 � bi1 ; : : : ; am � bim . And that t = hb1; : : : ; bni
covers s i� t contains s and am � bn. Given �nite frames hW;Ri and hU; Si
which verify S4.3, described by lists t and s, it is easy to show that if t
covers than in each in�nite sequence t1; t2; t3; : : : of lists there is an in�nite
subsequence ti1 ; ti2 ; ti3 ; : : :, such that if h < k then tih is covered by tik .
From this it is easy to deduce that there is no in�nite increasing sequence
L1 � L2 � L3 � : : : of normal modal logics containing S4.3. For take Ai
to be a formula in Li+1 but not in Li, and take ti to be the list describing a
suitable �nite frame which rejects Ai. Then the result yields a tj with i < j
which covers ti, and now Ai is also not in Lj with i+1 � j, a contradiction.

17 THE PRETABULAR EXTENSIONS OF S4

(A normal modal logic is said to be tabular i� it is characterised by a single
�nite structure, and to be pretabular i� all its proper extensions are tabular.
Thus the well-known [Scroggs, 1951] shows that S5 = S4B is a pretabular
logic. Maksimova [1975] and [Esaia and Meskhi, 1977] independently prove
the very pretty result that there are precisely �ve pretabular extensions of
S4. The work of the last four sections provides the background needed for
[Esaia and Meskhi, 1977]. The pretabular extensions of K4 are a much
more diÆcult topic, dealt with by [Block, 1980a]. This paper takes as its
starting point the very strong results of [J�onsson, 1967] on the subdirectly
irreducible algebras in a variety.)

Consider the �nite, generated, reexive-and-transitive frames hW;Ri.
Which parameters of these frames can be left unrestricted by the formu-
las that they verify? It turns out that there are precisely �ve of them.

1. The maximum number of points in any �nal cluster.

2. the maximum number of points in any non-�nal cluster.

A cluster [z] is a successor of [x] i� xRz but [x] 6= [z], and an immediate
success for i�, further, there is no cluster [y] such that [z] is a successor of
[y] and [y] is a successor of [x]. Say that the external branching of a cluster
is the number of �nal clusters which are immediate successors of it. And
that the internal branching of a cluster is the number of non-�nal clusters
which are immediate successors of it.

3. The maximum of the external branching of the clusters.

4. The maximum of the internal branchings of the clusters.
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5. The maximum number of clusters in any chain of cluster, i.e. the rank
of hW;Ri in the sense of Section 15.

It is clear that once all �ve parameters are bounded, the class of reexive-
and- transitive frames satisfying those bounds is �nite. Thus if L is deter-
mined by such a class of frames then it is determined by a single �nite frame,
namely the �nite disjoint union of these �nite frames.

For each of the �ve parameters, given a �nite frame hW;Ri of the kind
being considered, a frame hWi; Rii of a certain kind can be constructed,
which has the same value of that parameter. The constructions needed are
subframes and frame-morphic images. We saw in Section 10 that a class
of frames verifying a normal modal logic L is closed under them. The �ve
kinds of simple frames and their constructions are as follows.

1. hW1; R1i has one cluster. Take the largest �nal cluster of hW;Ri,
which is a subframe and has the required properties.

2. hW2; R2i has two clusters, of which the �nal one is simple. Take
the largest non�nal cluster [x] of hW;Ri and form hWx; Rxi. Take
W2 = [x] [ f!g and de�ne R2 on it by taking xR2y i� x ' y _ y = !.
De�ne a frame morphism �2 from Wx onto W2 by taking �2(y) = y if
x ' y; �2(y) = ! otherwise.

3. hW3; R3i has W3 = f0; 1; : : : ; ng with xR3y i� x = y _ x = 0.
Take [x] to have the maximal external branching in hW;Ri with �nal
clusters [y1]; : : : ; [yn] immediately succeeding it. Form hWx; Rxi and
de�ne a frame morphism �3 from WX onto W3 by taking �3(y) = 0 if
y 2 [x]; �3(y) = i if y 2 [yi], for i = 1; : : : ; n; �3(y) = 1 otherwise.

4. hW4; R4i has W4 = f0; 1; : : : ; n; !g with xR4y i� x = y _ x = 0_ y =
!. Take [x] to have the maximal internal branching in hW;Ri, with
non�nal clusters [y1]; : : : ; [yn] immediately succeeding it. For hWx; Rxi
and de�ne a frame morphism �4 from Wx onto W4 by taking �4(y) = 0
if y 2 [x]; �4(y) = i if y 2 [yi], for i = 1; : : : ; n; �4(y) = ! otherwise.

5. hW5; R5i has W5 = f2; : : : ; ng with iR5 if i � j. Suppose that
hW;Ri has rank n, with a maximal chain hx1; : : : ; xni. De�ne a frame
morphism �5 from W onto W5 by taking �5(y) = i if xi ' y, for
i = 1; : : : ; n� 1; �5(y) = n otherwise.

Each of these �ve sets of simple frames characterises a normal modal
logic, as follows:

1. S4B, known as S5.

2. S4:3B2M

3. S4GrzB2.
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4. S4GrzB3 plus ���P ! ��P .

5. S4 � 3Grz.

For each of these extensions of S4Bn or S4 � 3 has the f.m.p. by Sections
15 and 16, and it is easy to check the class of �nite generated frames which
veri�es each logic. Any pretabular extension L of S4 must be one of these
logics. For pretabular L must have the f.m.p. with a class of �nite frames in
which one of the �ve parameters is not bounded, as we saw above. Its class
of �nite frames must therefore include one of the �ve sets of simple frames.
Therefore L must be contained in one of the �ve corresponding logics. But
every proper extension of pretabular L must be tabular, so that L has to
be identical with one of these logics.

Finally it can be shown that any nontabular logic is contained in a pretab-
ular logic, and hence in one of these �ve. But these �ve logics are pairwise
incomparable, so that they must all be pretabular logics.

18 THE TRANSITIVE LOGICS OF FINITE WIDTH

(The work of this section is taken from Fine [1974a; 1974b], which extend
the ideas of [Fine, 1971] to a wider set of logics.)

Given a frame hW;Ri say that points x; y 2 W are incomparable i�
x 6= y and not xRy and not yRx. The frame hW;Ri is of width n if it has n
pairwise incomparable points but does not have n+ 1 incomparable points.
(In particular, for transitive frames, hW;Ri is connected i� it is of width 1.)
For i = 1; : : : ; n take In to be the formula

n̂

i=0

P !
_

0�i6=j�n
�(Pi ^ (Pj _ �Pj)):

It is easy to see that a generated frame veri�es In i� it is of width � n.
Various of the nice properties of the connected frames break down at

greater widths. As an example of this, there is an in�nite increasing chain
of normal extensions of S4I2. Indeed there are continuum many distinct nor-
mal extensions of S4I2. This is shown by de�ning certain frames F1;F2;F3; : : :
of width 2, and proving that distinct subsets of this set of frames char-
acterise distinct logics. Each frame Fn = hWn; Rni is de�ned by taking
Wn = f0; : : : ; 2n+ 4g and taking Rn to be the restriction to Wn of R with

iRj i� either i = 0
or i is odd, j is odd, and i > j
or i is odd, j is even, and i > j + 2
or i is odd, j is odd, and i > j + 4

For example, F2 is depicted in Figure 1.
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Figure 1.

The result will follow if it can be shown that each Fn rejects a formula
:An which is veri�ed by every other Fm. In each case An is taken to be the
frame formula for Fn, in the following sense.

The frame formula AF for any �nite reexive-and-transitive frame
F = hf0; : : : ; rg; Ri generated by 0 is the conjunction of the formulas P0
and

�(P0 _ : : : _ Pr);
�(Pi ! :Pj); for each i 6= j;
�(Pi ! �Pj); whenever iRj;
�(Pi ! :�Pj); whenever not iRj:

In general, frame formulas have the property that AF can be satis�ed in a
frame S = hU; Si i�, for some u 2 U , there is a frame morphism � from
Su onto F. We know from Section 10 that if this condition holds then each
formula satis�ed in F can be satis�ed at u in F. but AF is satis�ed in F

when V is de�ned on f)0; : : : ; rg by taking

V (Pi;j) = T i� i = j; for each i = 0; : : : ; r;

which yields V (AF; 0) = T . For the converse, suppose that there is a u 2 U
and a valuation V 0 on S with V 0(AF; u) = T . Then de�ne a function �
from Uu into f0; : : : ; rg by taking

�(x) = i i� V 0(Pi; x) = T;

for each x with uSx and i = 0; : : : ; r. It is straightforward to show, using
the construction of AF, that is � is an onto frame morphism.

Therefore, to show that :An is veri�ed by Fm, i.e. An is not satis�ed
by Fm, it suÆces to show that there is no frame morphism from Fm;k onto
Fn unless m = n and k = 0. Clearly, if m < n or 1 � k � 2n + 6 then
Fm;k does not have enough points for there to be a frame morphism from
it onto Fn. (Compare F2;k with F0.) So suppose that m > n and k = 0 or
k � 2n + 7, and that � is a frame morphism from Fm;k onto Fn, and try
to obtain a contradiction. Firstly it can be shown that �(1) and �(2) are
distinct �nal points of Fn, say �(1) = 1 and �(2) = 2. Then it can be shown
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that �(i) = i, for i � 1, in Fm;k, by induction on odd or even i = 1; 2; : : :.
Now i = 2n+ 5 or i = 2n+ 6 is in Fm;k but not in Fn, so that Fn does not
have enough points for � to map Fm;k but not in Fn, so that Fn does not
have enough points for � to map Fm;k into it. (Compare F1;0;F2;7;F2;8 with
F0.) (Check why this argument cannot be used on a connected frame!)

Nonetheless, each normal extension of K4In is characterised by the tran-
sitive frames of width � n which verify it. The proof of this major result is
diÆcult, and all that will be given here is a brief glance at the ideas involved.
Let L be any normal extension of K4In. the big di�erence from the second
half of Section 16 is that we are working with in�nite hWLr ; RLr ; FLr i in-
stead of with a �nite �ltration of hWL; RL; VLi. (Here Lr is the restriction of
L to the propositional variables P1; : : : ; Pr.) Therefore the problem comes
at a di�erent point. It is now immediate that hWLr ; RLr ; VLr i veri�es L,
but since this di�erentiated model is not �nite, it is no longer true that each
variant of it is de�nable. (Note that just as the canonical general frame is
re�ned, the canonical model is not only di�erentiated but natural. That
is, it satis�es the condition that if V (�A; x) = T ! V (A; y) = T , for each
formula A, then xRy.)

As before it is necessary to eliminate certain points from the given frame.
Say x 2 WLr is eliminable i�, for each formula A,

if V (a; x) = T then 9y(xRLry ^ :yRLrx ^ VLr (A; y) = T ):

A reduced canonical model is not formed on the noneliminable points.
It must be shown that there are enough noneliminable points, i.e. that
if VLr (A; x) = T then there is some noneliminable y with xRLry and
VLr (A; y) = T , and that hey are de�nable. The proof that the reduced
canonical frame veri�es L, because the de�nable variants of the reduced
canonical model do, uses the facts that hWLr ; RLr ; VLr i id natural and that
hWLr ; RLr i has no in�nite ascending R-chains. (So does the proof of the
de�nability of the noneliminable points.) So a crucial step in the argument
is the lengthy proof that a di�erentiated model which is transitive and of
�nite width has no such chains.

19 THE VEILED RECESSION FRAME

The recession frame h!;Ri is de�ned on ! = f0; 1; 2; : : :g by taking

mRn i� m � n+ 1 for each m;n 2 !:
Thus R is reexive, and transitive for increasing numbers, but is not tran-
sitive for decreasing numbers, when only mRn i� m = n + 1. For any
valuation V on h!;Ri,

v(�A) = [m;1) = fn : m � ng and v(��A) = [m+ 1;1);
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where [m�1;1) is the `largest unbroken interval in v(A)'. It is easy to verify
that the recession frame veri�esKT � 3. The veiled recession frame h!;R; P i
is the general frame de�ned on the recession frame by taking P to consist of
the �nite and co�nite subsets of !. (Co�nite subsets are the complements of
the �nite ones.) In fact Blok has shown that it characterises KT � 3M plus
�(P ! �P )! (�P ! P ) and two further axioms, all of which correspond
to certain �rst-order conditions on frames; see [van Benthem, 1978]. The
recession frame was introduced in [Makinson, 1969] to show that a certain
logic does not have the f.m.p. the veiled recession frame was introduced in
[Thomason, 1974] to show that a certain logic is not characterised by frames.
Two similar but sharper examples were produced in [van Benthem, 1978].
These four results are discussed in this section. Thomason [1972a] uses the
�nite fragments of the recession frame with one point added. It shows that
a certain formula (10) is veri�ed by any frame verifying a certain in�nite set
of axioms, of which each �nite subset is veri�ed by a frame rejecting (10).
It follows that whatever �nitary rules are used, a logic with these axioms
is not characterised by the frames which verify it. Finally Blok [1980] uses
variations on the veiled recession frame to show that there is a continuum of
distinct extensions of KT which are all veri�ed by the same class of frames!
This paper takes as its starting point the very strong results of [J�onsson,
1967] on the subdirectly irreducible algebras in a variety.

These results are usually described as incompleteness theorems, but they
are better thought of as showing the independence of various notions of
consequence. In each case we have a logic L and a formula F . Firstly
there is modal logical consequence L ` F , using the rules of normal modal
logics. then for each class S of structures there is a corresponding notion
of semantic consequence, with L � F i� F is veri�ed by each structure in
S which veri�es L. We know from Sections 10, 11, 12 that �nite semantic
consequence is as strong as (frame) semantic consequence, which is as strong
as general (frame) semantic consequence, which is equivalent to algebraic
`semantic' consequence and modal logical consequence. The problem is to
show that these relative strengths are strict. The method is to show by
example that some formula F is a consequence of L in the �rst sense but
not in the second sense.

In order to show that �nite semantic consequence is strictly stronger than
semantic consequence, take L to be KT plus

(�P ^ :�2P )! �(�2P ^ :�3P );

and take F to be 4. If the recession frame veri�es this formula, it will show
that 4 is not a semantic consequence of this l. It is clear that if a valuation
V on h!;Ri rejects this formula m then

V (�P;m) = T; V (�2P;m) = F;
V (�2P;m+ 1) = F or V (�3P;m+ 1) = T:
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In the second case, (m + 1)Rm yields V (�P;m) = T and a contradiction.
The �rst case requires some n with m � n such that V (�P; n) = F , and
some k with n < k + 1 such that V (P; k) = F . Now m � k + 1 and so
V (�P;m) = F , another contradiction.

To show that 4 is a �nite semantic consequence of this L, it is suÆcient
to show that if a model hW;R; V i verifying L rejects 4 then W is in�nite.
But in a model which rejects 4 we have v(�2P ) � v(�P ), which serves as
the induction basis for an inductive proof that v(�n+1P ) � v(�nP ), for
n � 1. The induction step uses the fact that

if v(�kP )� v(�k+1P ) 6= 0;
then v(�k+1P )� v(�k+2P ) 6= 0;

from the veri�cation of (�P ^:�2P );�(�2P ^ :�3P ). The argument can
be sharpened to prove the existence of an in�nite ascending R-chain if

(P ^ �2Q)! (�Q _ �2(Q ^ �P ))

is added to L. For suppose that hW;Ri veri�es this formula and rejects
4, having x; y; z 2 W such that xRy and yRz but not xRz. Then tak-
ing v(P ) = fxg and v(Q) = fzg we have V (P; x) = T; V (�2Q; x) =
T; V (�Q; x) = F , so that V (�2(Q^�P ); x) = T . It follows that V (�P; z) =
T , which can only hold if zRx. This fact, that if xRy and yRz but not xRz
then zRx, can be used to construct an in�nite ascending R-chain from the
decreasing sequence v(�P ); v(�2P ); v(�P ); : : : of subsets of W .

Note that this additional formula is also veri�ed by the recession frame.
For if V (P;m) = T; V (�2Q;m) = T; V (�Q;m) = F then V (Q;m� 2) = T ,
V (Q^�P;m� 2) = T , and V (�2(Q^�P );m) = T . To show that semantic
consequence is strictly stronger than general semantic consequence, it only
remains to �nd a formula A which is veri�ed by the veiled recession frame
but is rejected by any frame with an in�nite ascending R-chain. Thomason
[1974] does give a complicated formula A with this property. Now, for
each frame verifying the extension of KT with the two formulas of recent
paragraphs, rejection of 4 implies the rejection of A, so that veri�cation of
A requires the veri�cation of 4. Taking L to be the extension of KT with
the two stated formulas and A; 4 is a semantic consequence of L but not a
general semantic consequence of it.

Another proof that semantic consequence is strictly stronger than general
semantic consequence goes as follows. Take L to be KT � 3M plus

�(P ! �P )! (�P ! P );

and take F to be P ! �P . This formula reduces the modal operators to
triviality, with the corresponding condition on R that if xRy then x = y.
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De�ne xRny on a frame hW;Ri, for n � 0, taking

xR0y i� x = y;
xR1y i� xRy;
xRn+1y i� xRz1; : : : ; znRy; for some z1; : : : ; zn 2 W:

Given a frame hW;Ri and x; y 2W such that xRy but not yRnx, for n � 0,
de�ne V on hW;Ri by taking V (P; z) = T i� yRnz, for some n � 0. it is
easy to show that V (�(P ! �P ); x) = T , V (�P ! P; x) = F . Therefore
in any frame hW;Ri which veri�es �(P ! �P )! (�P ! P ) we have

(*) if xRy then yRnx, for some n � 0.

It can be shown that any reexive frame hW;Ri which veri�es �3 satis�es
the condition

8x8y8z((xRy ^ xRz)! (8u(yRu! zRu) _ 8v(zRv ! yRv)):

Call this condition strong connectedness, noting that connectedness is the
special case with u = y and v = z, and that this condition can be derived
from the ordinary one and transitivity. It can be shown that if a reex-
ive, strongly connected frame hW;Ri satis�es condition (�), then it veri�es
�(P ! �P ) ! (�P ! P ). As an application of this result, the recession
frame veri�es this formula. Thus the veiled recession frame veri�es L but
not P ! �P .

Suppose that hW;Ri is a reexive, strongly connected frame which satis-
�es condition (*). It can be shown that if hW;Ri also veri�es M then xRy
implies x = y, so that any frame which veri�es L also veri�es P ! �P . For
given any x 2W , de�ne

Sn = fy : yRnx ^ :9m(m < n ^ yRmx)g;
for n � 0, and de�ne V on hW;Ri by taking

V (P; y) = T i� 9m(y 2 S2m); for each y 2 W:
Now it can be shown that V (��P; x) = T , so that V (��P; x) = T by the
veri�cation of M . From this it can be deduced that V (�P; x) = T . Finally
we suppose that xRy and x 6= y, and obtain a contradiction. For in this case
we have V (P; y) = T , so that y 2 S2m, for some m � 1, and there are some
z1; : : : ; z2m�1 2W with yRz1; : : : ; z2m�1Rx and not z1Rx. Thus xRy; xRx;
yRz1 but not xRz1; xRx but not yRx|which contradicts strong connect-
edness when we put x for z; z1 for u, and x for v.

A third proof that semantic consequence is strictly stronger than general
semantic consequence takes L to be KT plus

�(�(P ! �P )! �3P )! P
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and takes F to be 4 again. for it can be shown that the veiled recession frame
veri�es this axiom of L, but that each frame which veri�es it is transitive.
The interest of this example lies in the fact that the extension of S4 with
this axiom is precisely S4Grz.

Given a frame hW;Ri, consider the evaluation of any formula A in any
model on hW;Ri. Our de�nition of valuations determines V (A; x) in terms
of �rst-order logic applied to propositions of the form yRz and V (P; y) = T
for propositional variables P . Replace each yRz by an atomic proposition
R(y; z), and each V (P; y) = T by an atomic proposition P (y). Now the
truth of A in hW;Ri can be expressed by a formula in second-order predicate
logic with unary predicate parameters P;Q, etc. and one binary parameter
R. This formula is known as the standard translation ST (A) of A. As we
have seen, ST (A) is often equivalent to a �rst-order predicate formula in
R alone, but this is not always the case. If we take some axiom system
for second-order predicate logic then we can introduce yet another notion
of consequence. Say that F is a second-order logical consequence of L i�
ST (F ) is derivable from the standard translations of the formulas of L. In
fact whenever we have shown that F is a semantic consequence of L, we
have used an argument in some unspeci�ed, informal second-order logic to
show that F is a second-order logical consequence of L. Clearly semantic
consequence is as strong as second-order logical consequence, which is as
strong as modal logical consequence.

Van Benthem [1978; 1979a] discuss whether second-order logical conse-
quence is strictly stronger than modal logical consequence. History added
point to this question, in that transitivity was derived from ST (GRz) before
4 was derived in KG4z. Of course the answer will depend on the axiomati-
sation used for second-order predicate logic. For example, close inspection
of the informal argument for P ! �P being a second-order logical conse-
quence of KT�3M plus �(P ! �P ) ! (�P ! P ), shows that it involves
an Axiom of Choice. It turns out that if this is dropped, then a second-order
derivation is no longer possible. Consider the axiomatic second-order logic
with just the weak second-order substitution axiom

8PA! SBP (A); for �rst-order formulas B:

(Here SBP (A) is obtained from A by substituting Stx(B) for P (t) throughout,
under suitable conditions.) the proof that P ! �P is not a general semantic
consequence of this modal logic used the veiled recession frame, for which
the possible values of formulas are the �nite and co�nite subsets of !. It can
be shown that these are precisely the subsets of ! de�nable by �rst-order
formulas with = and R as their only predicate parameters. Since these
are the subsets of ! to which the weak second-order substitution axiom
applies, the same argument shows that P ! �P is not a second-order
logical consequence of this modal logic.
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The normal modal logic k plus �(�P ! P ) ! P is easily shown to be
inconsistent. De�ne a general frame h! [ f1g; R; P i by taking

xRy i� x > y _ x =1;
and taking P to consist of the �nite subsets of ! and their complements
in ! [ f1g. Then it is easy to show that �(�P ! P ) ! P is satis�ed
at 1 by each valuation on h! [ f1g; R; P i (but not of course veri�ed). So
consider the non-normal logic K plus �(�P ! P ), from which the rule
of necessitation has been dropped. Now P ^ :P is a second- order logical
consequence of this logic, but not a modal logical consequence of it. Van
Benthem [1979a] shows how to adopt this argument to give a normal modal
logic L and a formula F , such that F is a second-order logical consequence
of L but not a modal logical consequence of it.

20 INDEPENDENCE RESULTS ABOVE S4

None of the logics used in the previous section is an extension of S4 (though
KT � 3M plus �(P ! �P ) ! (�P ! P ) is a very strong logic in a sense,
with no frames between it and triviality). Further, the methods of that
section cannot be applied to extensions of S4, since transitivity reduces the
recession frame to a frame verifying S5. For independence results above S4
we turn to a brief description of the complicated constructions of [Fine, 1972;
Fine, 1974a].

In showing that �nite semantic consequence is strictly stronger than se-
mantic consequence, L is taken to be S4 plus a certain axiom Y ! Z, and
F is taken to e :Y . The frame used to show that :Y is not a consequence
of S4 plus Y ! Z consists of three chains of points ai; bi; ci, for i � 0, with
R a lattice on them, and a �nal related pair of points d; e. This frame is
illustrated in Figure 2 with R going from left to right. The points in these
chains are described by corresponding formulas Ai; Bi; Ci, for i � 0, with
A0 = P;B0 = Q;C0 = R. Each Ai+1 is

�Ai ^ �Bi ^ :�Ci;
expressing the fact that

ai+1Rai ^ ai+1Rbi ^ :ai+1Rci
and similarly for Bi+1; Ci+1. (Remember the frame formulas of the �rst half
of Section 18.) Because of this construction there are theses of S4 describing
the relations between the points. For example, not aiRbi and not aiRci,
and `S4 �(Ai ! (:�Bi ^ :�Ci)).

The formula Y is simply a description of a0; b0; c0; d in these terms, so
that if V is de�ned on this frame by taking V (P ) = fa0g; V (Q) = fb0g,
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V (R) = fc0g; V (S) = fdg, then V (Y; d) = T . Thus V (:Y; d) = F and :Y
is rejected on this frame as required. but it is also true that if V is a valuation
on this frame with V (Y; x) = T then x is d or e and V (P ); V (Q); V (R) are
a permutation of faig; fbig; fcig, for some i � 0. The formula Z describes
a property of four such points, so that again V (Z; x) = T . Thus V (Y !
Z; x) = T , for each x 2W and each valuation V , so that this frame veri�es
Y ! Z as required.

d Æ

e Æ

: : : Æ Æ Æ a0

: : : Æ Æ Æ b0

: : : Æ Æ Æ c0

Figure 2.

These formulas also have the property that any frame hW;Ri which ver-
i�es Y ! Z and has a valuation V which satis�es Y must be in�nite. First
it can be shown that if V (Y; x) = T then V (�Ai; x) = T , for i � 0, by
an induction on i. The induction basis with i = 0 uses V (Y; x) = T , the
induction step fro i = 1 uses V (Y ! Z; x) = T , and the other induction
steps use theses of S4 as above and V (Y 0 ! Z 0; x) = T , for substitution
instances Y 0; Z 0 of Y; Z. Then it can be shown that `S4 Ai ! Ai�j , for
each 0 < j < i, by an induction using theses of S4 above. It follows that
there must be points ai with xRai and V (Ai; ai) = T , for i � 0, and with
ai 6= aj , for i 6= j. Thus any �nite frame which veri�es S4 plus Y ! Z
must reject :Y , for otherwise it would satisfy Y and be in�nite.

A similar strategy is used to show that semantic consequence is strictly
stronger than general semantic consequence. At �rst sight Fine [1974] is
not about general semantic consequence at all. Instead hW;R; V i strongly
veri�es A i� all substitution instances of A are true in hW;R; V i. But
this is clearly equivalent to A being true on hW;R; P i, where P = fv(B) :
B a formulag. Unfortunately there are a number of omissions and other
typographical slips in this paper. See Bull [1982; 1983]. Again L is S4 plus
certain axioms E ! F and H , and the other formula is :E. The underlying
frame used in showing that :E is not a general semantic consequence of this
logic has two descending R-chains of points bm; cm, for m � 0, with R a
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lattice on them. It also has a sequence of unrelated points am linked to
an ascending R-chain of points dm, for m � 0. (Note that because of the
unrelated am's, this frame is not of �nite width.) This frame is illustrated in
Figure 3 with R going from left to right. (As the page is �nite, the ascending
and descending parts have been overlapped. Each dn should be linked to
its an from the left, so that dmRan for each m � n.) The points in the �rst
three sequences are described by corresponding formulas Am; Bm; Cm, for
m � 0, with B0 = Q0; B1 = Q1; C0 = R0; C1 = R1. Each Am is

�Bm+1 ^ �Cm+1 ^ :�B)m + 2 ^ :�Cm+2;

expressing the fact that

amRbm+1 ^ amRcm+1 ^ :amRbm+2 ^ :amRcm+2;

and so on. Because of this construction there are theses of S4 describing
the relations between the points. For example, bi+1Rbi but not bi+1Rci,
and

`S4 �(Bi+1 ! (�Bi ^ :�Ci)):

: : : Æ Æ Æ Æ b0

: : : Æ Æ Æ Æ c0

: : : Æ Æ Æ a0

d0 Æ Æ Æ : : :

Figure 3.

The formula E is a description, from the viewpoint of d0, of the frame
given in Figure 4, together with the fact that there is an R-chain after it.
Thus E is rejected at d0 on this frame by taking

v(P0) = fd2m : m � 0g; V (P1) = fd2m+1 : m � 0g;
V (Q0) = fb0g; V (Q1) = fb1g;
V (R0) = fc0g; V (R1) = fc1g:

But it is also true that if V is a valuation on this frame with V (E; x) = T
then V must give the propositional variables values which are points in this
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con�guration. Thus x must be some dn. The formula F describes the R-
chain beginning at d1 from the viewpoint of d0, so that again V (F; x) = T .
Thus V (E ! F; x) = T , for each x 2W and each valuation V , so that this

b1 Æ Æ b0

d0 Æ Æ a0

c1 Æ Æ c0

Figure 4.

frame veri�es E ! F .
These formulas also have the property that any frame hW;Ri which veri-

�es E ! F and has a valuation V which satis�es E at x 2 W must have an
in�nite ascending R-chain after x. To see this, write En; Fn for the formulas
obtained from E;F by replacing A0; A1 with An; An+1, and so on. It can
be shown by an induction on n that there is an R-chain hx = y0; : : : ; yni
such that V (En; yn) = T , for n � 0. (Think of y0; : : : ; yn as dm; : : : ; dm+n.)
The inductions step uses V (En ! Fn; yn) = T and these of S4 as above.
The crucial point is that

Fn = �((P0 _ P1) ^ :�An ^ �An+1)

sends us from yn with V (Fn; yn) = T to some yn+1 with ynRyn+1 and
V (�An+1;
yn+1) = T . Using this in�nite ascending R-chain after x, it is easy to
reject

H = S ^�(S ! �((:S ^ T ) ^ �((:S ^ :T ) ^ �S)))

at x with a suitable valuation. Thus any frame which veri�es S4 plus E ! F
and H must reject :E.

Finally, consider again the frame illustrated in Figure 4 above, and the
valuation V on it used to satisfy E at d0. This valuation determines a
general frame on it, in which P is the set of values v(B) of all formulas B.
We already know that E ! F is veri�ed by this general frame and that :E
is rejected by it, so it only remains to show that it veri�es H . Suppose then
that V (:H 0; x) = T , for some x 2 W , and some substitution instance H 0

of H , and try to obtain a contradiction. It is clear that x must be dm, for
some m � 0, for H can only be rejected on a proper cluster or an in�nite
ascending R-chain. Note that H 0 is constructed from three incompatible
propositions a;:A ^ B;:A ^ :B. Further, A and B are constructed from
propositional variables and formulas �C1; : : : ;�Ck with :;^;_. Note that
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after some dn, the formulas �C1; : : : ;�Ck must have �xed truth values
V (�Ci; dj). Consider j1; j2; j3 with n � j1; j2; j3 and

V (A; dj1 ) = V (:A ^ B; dj2) = V (:A ^ :B; dj3 ) = T:

At least one pair of these j's must have an even di�erence, e.g. j2 and j3.
In this case

V (:A ^ :B; dj2) = V (:A ^ B; dj2 ) = T;

using the construction of each V (Pi; dj) an the fact about each V (�Ci; dj).
But this contradicts the mutual incompatibility of these three formulas.

21 NEIGHBOURHOOD FRAMES

A neighbourhood frame hU;Ni consists of a set U and a function N : U !
B(B(U)). Thus each value N(x) of N is a subset of B(U), the subsets of U
in N(x) being known as the neighbourhoods of x. Valuations V and models
on hU;Ni are de�ned as for ordinary frames except that

V (�A; x) = T i� V (A) 2 N(x):

The canonical neighbourhood model hUL; NL; VLi for a logic L is de�ned as
for ordinary frames except that

S 2 N(F ) i� 9A(�A 2 F ^ S = fG : A 2 Gg):

Satisfaction, veri�cation, and neighbourhood semantic consequence are de-
�ned s for ordinary frames. The minimal normal modal logic K is charac-
terised by the class of neighbourhood frames hU;Ni in which each N(x) is
a �lter on U . Such a neighbourhood frame is said to be normal, and deter-
mines a modal algebra on B(U). Each ordinary frame hW;Ri determines a
normal neighbourhood frame hW;Ni by taking

N(x) = fS : fy : xRyg � Sg; for each x 2 W:

Here hW;Ni veri�es the same formula as hW;Ri. Also each normal neigh-
bourhood frame hU;Ni determines an ordinary frame hU;Ri by taking

xRy i� y 2 \N(x); for each x; y 2 U:

But here hU;Ri may not be equivalent to hU;Ni, so that we must ask
whether semantic consequence is strictly stronger than normal neighbour-
hood semantic consequence.

(Neighbourhood frames seem to have been created independently by
Dana Scott and Montague. See [Segerberg, 1971] for a full discussion of
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them. Gerson [1975] established that normal neighbourhood semantic con-
sequence was strictly stronger than general semantic consequence, while
Gerson [1976; 1975a] established that ordinary semantic consequence was
strictly stronger than it.)

In showing that normal neighbourhood semantic consequence is strictly
stronger than general semantic consequence, the arguments of Thomason
[1974] and Fine [1974] can be taken over with only slight alterations. These
come when showing that each normal neighbourhood frame which veri�es
the logic concerned also veri�es the other formula 4 or E. For the �rst case,
if hU;Ni veri�es S. K. Thomason's axiom

(P ^ �2Q)! (�Q _ �2(Q ^ �P ));

and there are R;S; T � U with R � mS and S � mT but not R � mT ,
then T \mR is nonempty. Now the proof that, if hW;Ri veri�es Makinson's
axiom

(�P ^ :�2P )! �(�2P ^ :�3P )

but rejects 4 then it must be in�nite, can be sharpened as follows. If hU;Ni
veri�es both these axioms but rejects 4 then U contains an in�nite sequence
of distinct subsets W1;W2;W3; : : : with Wi �mWj if i < j. S. K. Thoma-
son's second axiom A can be rejected on any hU;Ni with this property, so
that if a normal neighbourhood frame veri�es the logic of [Thomason, 1974]

then it veri�es 4.
For the second case, suppose that hU;Ni veri�esE ! F and has valuation

V which satis�es RE at u 2 U . Then it can be shown that U contains an
in�nite sequence of distinct subsets W1;W2;W3; : : : with u 2Wi, for i � 0,
and Wi � mWj if i < j, taking Wi = v(Ei), for i � 0. Using this �nite
sequence of sets it is easy to reject :H with V at u, so that if a normal
neighbourhood frame veri�es S4 plus E ! F and H then it veri�es :E.

Gerson [1976] uses a minor variation on the logic L of the `noncompact-
ness' proof in [Thomason, 1972a]. A very complicated argument shows that
this logic is veri�ed by a certain normal neighbourhood frame, which is
largely determined by an ordinary frame consisting of all �nite fragments of
the recession frame, with one point added. A further three points are then
added and their neighbourhoods speci�ed. Otherwise the argument is like
that of [Thomason, 1972a]. Gerson [1975a] uses a version L0 of the logic L
of [Fine, 1974], with E ! Fn for n � 1. That any ordinary frame which
veri�es L0 also veri�es :E goes as before. A complicated argument shows
that L0 is veri�ed by a certain normal neighbourhood frame, which is largely
determined by an ordinary frame similar to that of [Fine, 1974] illustrated
above. The di�erence is that the in�nite ascending R-chain of dm's has
been replaced by an in�nity of �nite ascending R-chains hdm;1; : : : ; dm;mi
for m � 1. A further two points are then added and their neighbourhood
speci�ed. Otherwise the argument is fairly similar to that of [Fine, 1974].
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22 ELEMENTARY EQUIVALENCE AND D-PERSISTENCE

Consider the �rst-order predicate logic with binary predicate constants =
and R. Write F � A i� the formula A of predicate logic is true of the frame
F, and similarly for F � �, where � is a set of predicate formulas. A class
X of frames is elementary i�

X = fF : F � Ag; for some formula A of predicate logic;

�-elementary i� it is an intersection of elementary classes, �-elementary i�
it is a union of elementary classes, and ��-elementary i� it is an intersection
of �- elementary classes. Note that X is �-elementary i� it is axiomatic,
with

X = fF : F � �g; for some set � of formulas of predicate logic:

And X is ��-elementary i� it is closed under elementary equivalence, where
F and G are elementarily equivalent i�

F � A i� G � A; for each formula A of predicate logic.

The importance of elementarily equivalent frames for modal logic lies in the
following lemma. Given a general frame F = hW;R; P i, there is a general
frame F0 = hW 0:R0; P 0i such that F0 is 1- and 20-saturated (see Section 10),
F+ and F0+ are isomorphic, hW;Ri and hW 0; R0i are elementarily equivalent,
and there is a frame morphism from hW 0; R0i onto (F+)].

Alternatively, consider modal logic as usual, again writing hF; V i � A i�
the formula A of modal logic is true in the model hF; V i, and so on. A class
X of frames is modal elementary i�

X = fF : F � Ag; for some formula A of modal logic;

and is modal axiomatic i�

X = fF : F � �g; for some set � of formulas of modal logic:

Again modal axiomatic is equivalent to modal �-elementary. A set � of
formulas of modal logic is c-persistent i� hWK�; RK�i � � (the canonical
frame for the normal modal logic K plus �), d-persistent i� if hF; P i � �
then F � �, for each descriptive general frame hv; P i, and r-persistent i�
if hF; P i � � then F � �, for each re�ned general frame hF; P i. Note that
r-persistent implies d-persistent, implies c-persistent, implies characterised
by frames. Many proofs that a logic is characterised by frames involve c-
persistence. However K plus �(�P ! P )! �P is characterised by frames
but is not c-persistent (see [Segerberg, 1971; van Benthem, 1979]).

A class of frames veri�es a d-persistent set of formulas i� it is closed
under subframes, frame-morphic images, disjoint unions, and both it and
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its complement are closed under the construction (F+)]. We know from
Section 10 that the class of frames verifying a set of formulas is closed
under subframes and frame-morphic images, and that any frame F is frame-
isomorphic to a subframe of (F+)]. The latter point can be extracted from
the proof hat a descriptive fame F is isomorphic to (F+)+, and shows that
the complement of a class of frames verifying a set of formulas is closed under
the construction (F+)]. It is easy to show that the class of frames verifying
a set of formulas is closed under disjoint unions. If a frame F veri�es a set
� of formulas then so do the modal algebra F+ and the descriptive general
frame (F+)+, by Section 10. If � is a d-persistent set of formulas then (F+)]
also veri�es �, so that the class of frames verifying a d-persistent set of
formulas is closed under the construction (F+)].

Conversely, suppose that a class X of frames satis�es these closure con-
ditions. Consider the class

X+ = fF+ : F 2 Xg
of modal algebras and the set

� = fA : F+ � A; for each F+ 2 X+g
of formulas. If F 2 X then F+ � � and so F � � by Section 10. For the
other direction, suppose that F � � and so F+ � �. The set � of formulas is
closely analogous to the set of equations in modal algebra veri�ed by X+,
so that the set of all modal algebras verifying � is the variety generated
by X+. Using a theorem of Birkho�'s on varieties, a modal algebra F+

veri�es � i� it is a homomorphic image of a subalgebra of a direct prod-
uct of modal algebras fF+i : i 2 Ig in X+. Checking the de�nition of
the disjoint union �i2IFi 2 X , the direct product �i2IF+i is isomorphic
to (�i2IFi)+. Taking the carrier of the subalgebra to be P , this subalge-
bra is h�i2IFi; P i+. Thus there is a homomorphism from h�i2IFi;i+ onto
F+. As in Section 10, we can dualise from the category of modal algebras
to the category of descriptive frames, with homomorphic images going to
subframes and subalgebras going to frame-morphic images. Thus (F+)+ is
frame-isomorphic to a subframe of (h�i2IFi; P i+)+, and (h�i2IFi; P i+)+
is a frame-morphic image of ((�i2Fi)+)+, and (h�i2IF;P i+)+ is a frame-
morphic image of ((�i2IFi)+)+. Going to the underlying frames, (F+)] is
frame-isomorphic to a subframe of a frame-morphic image of ((�i2IFi)+] .
Since �i2IFi 2 X and X is closed under subframes, frame-morphic images,
and the construction (F+)], we have (F+)] 2 X . Since the complement of
X is also closed under the construction (F+)], we have F 2 X . Thus F � �
i� F 2 X , so that X is the class of frames verifying �.

It remains to show that � is d -persistent. Supposing that a descriptive
frame hF; P i veri�es �, and repeating the previous argument with hF; P i+
in place of F+, wills how that (hF; P i+)] 2 X . But the descriptive frame
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hF; P i is frame-isomorphic to (hF; P i+)+ by Section 10, so that going to the
underlying frames yields that F is frame-isomorphic to (hF; P i+)]. Thus
F 2 X and, hence, F veri�es �, so that � is d- persistent.

Consider a set of formulas � characterised by the class X of frames which
verify it. Then � is d-persistent i� X is closed under the construction (F+)].
If � is d-persistent then one direction of the result applies, and yields X
closed under the construction (F+)]. If X is the class of frames verifying �
and is closed under the construction (F+)], then the other direction of the
result applies. In this case it yields that X is the class of frames verifying
some d-persistent set of formulas. Inspection of the proof shows that this
is the set of semantic consequences of �. But since � is characterised by
frames, it equals its set of semantic consequences so that � is a d-persistent
set of formulas.

Combining our lemmas elementary equivalence and d-persistence yields
two important theorems. Firstly, if a set � of formulas is characterised
by the class X of frames which verify it and X is closed under elementary
equivalence, then � is d-persistent. For then X is closed under the construc-
tion (F+)] by the �rst lemma, and so � is d-persistent by the second lemma.
Secondly, given a class X of frames closed under elementary equivalence,
X is modal axiomatic i� it is closed under subframes, frame -morphic im-
ages, disjoint unions, and its complement is closed under the construction
(F+)]. We have already seen that a modal axiomatic class of frames has
these closure properties. If X is closed under elementary equivalence and
these conditions then it satis�es all the closure properties of the theorem on
d-persistent sets, using the �rst lemma. Thus X is modal axiomatic; indeed
it is determined by a d-persistent set of formulas.

The presentation here has followed the elegant van Benthem [1979]. The
�rst paper in this area was the important [Fine, 1975]. It de�ned notions of
modal saturation and persistence, and introduced the lemma on classes of
frames closed under elementary equivalence. (It worked in terms of models
rather than of general frames, but the analogy is close.) It proved the slightly
weaker result, that if a set � of formulas is characterised by the class X of
frames which verify it and X is closed under elementary equivalence, then
� is c-persistent. The theorem giving the closure conditions for a class X
of frames, which is closed under elementary equivalence, to be axiomatic, is
Goldblatt's contribution to Goldblatt and Thomason [1975]. The proof was
roughly similar to the one here but more complicated. It woo started with
the duality between varieties of modal algebras and classes of descriptive
frames, and used Fine's lemma and the properties of (F+)] to bridge the
gap between the frames and descriptive frames. Fine [1975] used classical
modal theory to show that if a set � of formulas is r-persistent then the
classX of frames which verify � is �-elementary (and of course characterises
the normal modal logic K plus �). It also gives counter-examples to the
converse of both its theorems. In the second case the counter-example is



70 ROBERT BULL AND KRISTER SEGERBERG

S4 �3M. We know that it is characterised by the elementary class of frames
determined by certain conditions. and it is veri�ed by the re�ned general
frame h!;�; P i, where P is the set of �nite and co�nite subsets of !, but
h!;�i rejects M .

23 MODAL ELEMENTARY AND AXIOMATIC CLASSES

The main construction for this topic is the ultraproduct of frames. Consider
frames FihWi; Rii for i 2 I , and an ultra�lter G on I . Remember that the
members f of the direct product �i2IWi are the functions f : I ! [i2IWi

such that f(i) 2 Wi, for each i 2 I . De�ne an equivalence relation ' on
�i2IWi by taking

f ' g i� fi : f(i) = g(i)g 2 G
and consider the equivalence classes [f ] under '. The ultraproduct FG =
�i2IFi=G = hWG; RGi is de�ned by taking

WG =
Q
i2IWi=G = f[f ] : f 2 Qi2IWig;

[f ]RG[g] i� fi : f(i)Rig(ig 2 G:

To extend this de�nition to general frames hFi; Pii, for i 2 I , it can �rst be
shown that

if f ' g then fi : f(i) 2 S(i)g 2 G � fi : g(i) 2 S(i)g 2 G;
S ' T i� 8f(fi : f(i) 2 S(i)g 2 G � fi : f(i) 2 T (i)g 2 G);

for f; g 2 �i2IWi and S; T 2 �i2IPi. This justi�es de�ning

[S] = f[f ] : fi : f(i) 2 S(i)g 2 Gg;

for each S 2 �i2IPi, and taking

PG =

(
[S] : S 2

Y
i2I

Pi

)
:

Here the de�nition of a general frame requires that PG be a subalgebra of
(�i2IFi=G)+. for the case mRG we need

mRG [S] = [mS];

where

(mS)(i) = mRi(S(i)); for each i 2 I;
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for each S 2 �i2IPi. We have

[f ] 2mRG [S]
i� [f ]RG[g]; for some [g] 2 [S];
i� fi : f(i)Rig(i)g 2 G and fi : g(i) 2 S(i)g 2 G;

for some g 2 �i2IWi;
i� fi : f(i)Rug(u) ^ g(i) 2 S(i)g 2 G; for some g 2 �i2IWi;
i� fi : f(i) 2mRi(S(i))g 2 G
i� fi : f(i) 2 (mS)(i)g 2 G
i� [f ] 2 [mS]:

Given a valuation Vi on each general frame Fi = hWi; Ri; Pii, for each
i 2 I , de�ne a valuation VG on FG = hWG; RG; PGi by taking

VG(P; [f ]) = T i� [f ] 2 [VG(P )] i� fi : Vi(P; f(i)) = Tg 2 G;

for each propositional variable P , and apply the de�ning conditions for
valuations. Then the argument like that of the previous paragraph shows
that

VG(A; [f ]) = T i� fi : Vi(A; f(i)) = Tg 2 G;
for each formula A. It is now easy to show that

FG � A i� fi : Fi � Ag 2 G:

Going from left to right, note that if not fi : Fi � Ag 2 G then fi : not Fi �
Ag 2 G, since G is an ultra�lter. Now use valuations Vi and points f(i)
with Vi(A; f(i)) = F , for each i in the member of G. Note that taking
Pi = B(Wi), for each i 2 I , does not yield PG = B(�i2IWi=G), so that
�i2IhFi;B(Wi)i=G is not the same as �i2IFi=G. Therefore this result for
ultraproducts of general frames yields only

if FG � A then fi : Fi = Ag 2 G;

for ultraproducts of ordinary frames. (As we shall note later, M is a coun-
terexample to the converse.) It follows that if X is a modal elementary class
of frames, then its complement is closed under ultraproducts. Similarly, if
X is a modal axiomatic class of frames than its complement is closed under
ultrapowers. Here an ultrapower FI=G is the ultraproduct �i2IFi=G for
which Fi = F, for each i 2 I .

Classical model theory proves the following characterisations of the var-
ious kinds of elementary classes. A class X of frames is elementary i� X
and �X are closed under frame isomorphism and ultraproducts. Class X is
�-elementary i� X is closed under frame isomorphism and ultraproducts,
and �X is closed under ultrapowers. Class X is �- elementary i� X is
closed under ultrapowers, and �X is closed under frame isomorphism and
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ultraproducts. Class X is ��- elementary i� X and �X are closed under
isomorphism and ultrapowers. Combining the results so far, it is easy to
show that a modal elementary class of frames is elementary if it is closed
under ultraproducts. And a modal axiomatic class is �-elementary i� it is
closed under ultraproducts.

Further, a class X of frames closed under frame isomorphism, subframes,
disjoint unions, and ultrapowers is also closed under ultraproducts. for,
given Fi 2 X , for i 2 I , it is easy to show that �i2IFi=G is isomorphic
to a subframe of (�i2IFi)I=G. Now it is easy to show that for a modal
elementary class X of frames, all the following conditions are equivalent:
X is elementary, X is �-elementary, X is �-elementary,X is ��- elemen-
tay, X is closed under ultrapowers, X is closed under ultraproducts. For
a modal axiomatic class X of frames, the conditions elementary and �-
elementary are equivalent, and the following conditions are equivalent: X
is �-elementary, X is ��-elementary.X is closed under ultrapowers, X is
closed under ultraproducts.

Ultraproducts of frames were introduced in [Goldblatt, 1975], and are
described in detail in [Goldblatt, 1976]. Goldblatt [1975] obtained some of
the results above, and gave a complicated example of frames which verify M
but have an ultraproduct which does not. It follows that the class of frames
verifying M is not (�rst-order) axiomatic, although [Fine, 1975] shows that
KM is characterised by the class of frames verifying it. (Therefore this class
of frames is characterised by some formula of second-order predicate logic, as
in the last part of Section 19.) This result was also proved independently in
[van Benthem, 1975], by a direct method. Van Benthem [1976] proved more
of the results above, the published version using Goldblatt's ultraproducts.
The picture was completed in [Goldblatt, 1976], where there is also a more
detailed explanation of the ultraproduct of frames which verify M .

24 TWO FURTHER RESULTS

We have found closure conditions for a modal axiomatic class of frames,
provided that it is closed under elementary equivalence and, hence, includes
enough saturated frames. Can closure conditions for axiomatic classes of
frames still be found when this condition is dropped? A rather compli-
cated answer is provided in [Goldblatt and Thomason, 1975] (originally
part of [Thomason, 1975]). given a frame hW;Ri, choosing a general frame
hW;R; P i represents a choice of which `propositions' are to be considered.
In then forming hU; Si = (hW;R; P i+)], the members of U are the ultra-
�lters on P , representing `states-of-a�airs', i.e. maximal consistent sets of
`propositions'. The natural de�nition of S on these `states-of-a�airs' is, as
usual,

uSv i� (8X 2)(X 2 v !mRX 2 u):
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Under what conditions will hU; si again verify the formulas veri�ed by
hW;Ri? Firstly, there must be no `new propositions' in hU; Si, i.e.

(8Y � U)(9X 2 P )(Y = �(X));

where �(X) = fu 2 U : X 2 ug, or

(8Y � U)(9X 2 P )(u 2 Y ! X 2 u):

Secondly, to carry out the necessary induction step on the value of �A, we
must have

(8u 2 U)(8X 2 P )(mRX 2 u! (9v 2 u)(uSv ^X 2 v)):

If hU; Si satis�es these conditions for the carrier P of some subalgebra of
hW;Ri+, then we say that hU; Si is SA-based on hW;Ri.

It can be shown, by a fairly diÆcult proof, that hU; Si is frame- isomorphic
to a frame SA-based n hW;Ri i� hU; Si+ is a homomorphic image of a
subalgebra of hW;Ri+. now a class of frames is modal axiomatic if it is closed
under frame isomorphism, nontrivial disjoint unions, and the construction
of hU; Si SA-based on hW;Ri. It is easy to show that a modal axiomatic
class is closed under these conditions. For the converse, suppose that a class
X of frames is closed under these conditions. As in the theorem in Section
23 on the closure conditions for the class of frames verifying a d-persistent
set of formulas, we take

X+ = fF+ : F 2 Xg;
� = fA : F+ � A ^ F+ 2 X+g;

and show that X is the class of frames verifying �. Again F+ veri�es � i�
it is a homomorphic image of a subalgebra for a direct product of modal
algebras fF+i : i 2 Ig in X+, where the direct product is isomorphic to
(�i2IFi)+ for �i2IFi 2 X . by the lemma stated above F must be SA-based
on �i2IFi, and so F 2 X . Thus if F � � then F 2 x, and the converse is
clear.

We are familiar with the duality between modal algebras and descriptive
frames, and with the fact that we must shift from frames to descriptive
frames before a duality can be established. Can we, as an alternative, shift
to some other kind of algebra and then establish a duality with frames
proper? This is done in [Thomason, 1975]. The appropriate algebras are
the complete atomic modal algebras, i.e. modal algebras based on complete
atomic Boolean algebras with

l \ fbi : i 2 Ig = \flbi : i 2 Ig;
m [ fbi : i 2 Ig = [fmbi : i 2 Ig:
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An atom of a Boolean algebra B = hB; 0; 1;�;\;[i is an element a 2 B
with

a � b _ a \ b = 0; for each b 2 B:
Then B is atomic i�

8b9a(a an atom ^ a � b);
and is complete i� it is closed under the operations \ and [ for arbitrary
subsets fbi : i 2 Ig of B. In a complete atomic Boolean algebra, each
element b is determined by the set of atoms a with a � b. the appropri-
ate morphisms for the category of complete atomic modal algebras are the
complete homomorphisms, i.e. the homomorphisms � with

�([fbi : i 2 Ig) = [f�(bi) : i 2 Ig:
this category is dual to the category of frames and frame morphisms. As
far as the structures go, for each frame F the usual modal algebra F+ on
B(W ) is complete and atomic. For each complete atomic modal algebra A
with set of atoms At(A), we take the frame A+ = hAt(A); Ri with

xRy i� x �my; for each x; y 2 At(A):

For the morphisms, given frames F = hW;Ri;F0 = hW 0; R0i and a frame
morphism  : F! F0, de�ne  + : F0+ ! F+ by taking

 +(S) =  �1[S]; for each S 2 B(W 0)

as before. In the other direction a new de�nition is needed. given complete
atomic modal algebras A; B and a complete homomorphism � : A ! B,
de�ne �+ : B+ ! A+ by taking

�+(y) = x i� y � �(x); for each x 2 At(A; y 2 At(B):

To see that this de�nition is valid, note that f�(x) : x 2 At(A)g is a
disjoint cover of B, since At(A) is a disjoint cover of A and � is a complete
homomorphism. It can be checked that each frame F is `isomorphic' to
(F+)+, sand that each complete atomic modal algebra A is isomorphic to
(A+)+, so that these categories are contravariantly dual to each other.
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M. ZAKHARYASCHEV, F. WOLTER, AND A. CHAGROV

ADVANCED MODAL LOGIC

This chapter is a continuation of the preceding one, and we begin it at the
place where the authors of Basic Modal Logic left us about �fteen years
ago. Concluding his historical overview, Krister Segerberg wrote: \Where
we stand today is diÆcult to say. Is the picture beginning to break up,
or is it just the contemporary observer's perennial problem of putting his
own time into perspective?" So, where did modal logic of the 1970s stand?
Where does it stand now? Modal logicians working in philosophy, computer
science, arti�cial intelligence, linguistics or some other �elds would probably
give di�erent answers to these questions. Our interpretation of the history
of modal logic and view on its future is based upon understanding it as part
of mathematical logic.

Modal logicians of the First Wave constructed and studied modal systems
trying to formalize a few kinds of necessity-like and possibility-like opera-
tors. The industrialization of the Second Wave began with the discovery
of a deep connection between modal logics on the one hand and relational
and algebraic structures on the other, which opened the door for creating
many new systems of both arti�cial and natural origin. Other disciplines|
the foundations of mathematics, computer science, arti�cial intelligence,
etc.|brought (or rediscovered1) more. \This framework has had enormous
inuence, not only just on the logic of necessity and possibility, but in other
areas as well. In particular, the ideas in this approach have been applied
to develop formalisms for describing many other kinds of structures and
processes in computer science, giving the subject applications that would
have probably surprised the subject's founders and early detractors alike"
[Barwise and Moss 1996]. Even two or three mathematical objects may lead
to useful generalizations. It is no wonder then that this huge family of logics
gave rise to an abstract notion (or rather notions) of a modal logic, which
in turn put forward the problem of developing a general theory for it.

Big classes of modal systems were considered already in the 1950s, say
extensions of S5 [Scroggs 1951] or S4 [Dummett and Lemmon 1959]. Com-
pleteness theorems of Lemmon and Scott [1977],2 Bull [1966b] and Segerberg
[1971] demonstrated that many logics, formerly investigated \piecewise",
have in fact very much in common and can be treated by the same meth-
ods. A need for a uniting theory became obvious. \There are two main
lacunae in recent work on modal logic: a lack of general results and a lack
of negative results. This or that logic is shown to have such and such a prop-
erty, but very little is known about the scope or bounds of the property.

1One of the celebrities in modal logic|the G�odel{L�ob provability logic GL|was �rst
introduced by Segerberg [1971] as an \arti�cial" system under the name K4W.

2This book was written in 1966.
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Thus there are numerous results on completeness, decidability, �nite model
property, compactness, etc., but very few general or negative results", wrote
Fine [1974c]. The creation of duality theory between relational and algebraic
semantics ([Lemmon 1966a,b], [Goldblatt 1976a,b]), originated actually by
J�onsson and Tarski [1951], the establishment of the connection between
modal logics and varieties of modal algebras ([Kuznetsov 1971], Maksimova
and Rybakov [1974], [Blok 1976]), and between modal and �rst and higher
order languages ([Fine 1975b], [van Benthem 1983]) added those mathemat-
ical ingredients that were necessary to distinguish modal logic as a separate
branch of mathematical logic.

On the other hand, various particular systems became subjects of more
special disciplines, like provability logic, deontic logic, tense logic, etc., which
has found reection in the corresponding chapters of this Handbook.

In the 1980s and 1990s modal logic was developing both \in width"
and \in depth", which made it more diÆcult for us to select material for
this chapter. The expansion \in width" has brought in sight new interest-
ing types of modal operators, thus demonstrating again the great expres-
sive power of propositional modal languages. They include, for instance,
polyadic operators, graded modalities, the �xed point and di�erence op-
erators. We hope the corresponding systems will be considered in detail
elsewhere in the Handbook; in this chapter they are briey discussed in the
appendix, where the reader can �nd enough references.

Instead of trying to cover the whole variety of existing types of modal
operators, we decided to restrict attention mainly to the classes of normal
(and quasi-normal) uni- and polymodal logics and follow \in depth" the
way taken by Bull and Segerberg in Basic Modal Logic, the more so that
this corresponds to our own scienti�c interests.

Having gone over from considering individual modal systems to big classes
of them, we are certainly interested in developing general methods suitable
for handling modal logics en masse. This somewhat changes the standard
set of tools for dealing with logics and gives rise to new directions of research.
First, we are almost completely deprived of proof-theoretic methods like
Gentzen-style systems or natural deduction. Although proof theory has
been developed for a number of important modal logics, it can hardly be
extended to reasonably representative families. (Proof theory is discussed
in the chapter Sequent systems for modal logics in a later volume of this
Handbook; some references to recent results can be found in the appendix.)

In fact, modern modal logic is primarily based upon the frame-theoretic
and algebraic approaches. The link connecting syntactical representations
of logics and their semantics is general completeness theory which stems
from the pioneering results of Bull [1966b], Fine [1974c], Sahlqvist [1975],
Goldblatt and Thomason [1974]. Completeness theorems are usually the
�rst step in understanding various properties of logics, especially those that
have semantic or algebraic equivalents. A classical example is Maksimova's
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[1979] investigation of the interpolation property of normal modal logics
containing S4, or decidability results based on completeness with respect to
\good" classes of frames. Completeness theory provides means for axiom-
atizing logics determined by given frame classes and characterizes those of
them that are modal axiomatic.

Standard families of modal logics are endowed with the lattice structure
induced by the set-theoretic inclusion. This gives rise to another line of
studies in modal logic, addressing questions like \what are co-atoms in the
lattice?" (i.e., what are maximal consistent logics in the family?), \are there
in�nite ascending chains?" (i.e., are all logics in the family �nitely axioma-
tizable?), etc. From the algebraic standpoint a lattice of logics corresponds
to a lattice of subvarieties of some �xed variety of modal algebras, which
opens a way for a fruitful interface with a well-developed �eld in universal
algebra.

A striking connection between \geometrical" properties of modal formu-
las, completeness, axiomatizability and

T
-prime elements in the lattice of

modal logics was discovered by Jankov [1963, 1969], Blok [1978, 1980b]
and Rautenberg [1979]. These observations gave an impetus to a project
of constructing frame-theoretic languages which are able to characterize
the \geometry" and \topology" of frames for modal logics ([Zakharyaschev
1984, 1992], [Wolter 1996c]) and thereby provide new tools for proving their
properties and clarifying the structure of their lattices.

One more interesting direction of studies, arising only when we deal with
big classes of logics, concerns the algorithmic problem of recognizing prop-
erties of (�nitely axiomatizable) logics. Having undecidable �nitely axiom-
atizable logics in a given class [Thomason 1975a; Shehtman 1978c], it is
tempting to conjecture that non-trivial properties of logics in this class are
undecidable. However, unlike Rice's Theorem in recursion theory, some
important properties turn out to be decidable, witness the decidability of
interpolation above S4 [Maksimova 1979]. The machinery for proving the
undecidability of various properties (e.g. Kripke completeness and decid-
ability) was developed in [Thomason 1982] and [Chagrov 1990b,c].

Thomason [1982] proved the undecidability of Kripke completeness �rst
in the class of polymodal logics and then transferred it to that of unimodal
ones. In fact, Thomason's embedding turns out to be an isomorphism from
the lattice of logics with n necessity operators onto an interval in the lattice
of unimodal logics, preserving many standard properties [Kracht and Wolter
1999]. Such embeddings are interesting not only from the theoretical point
of view but can also serve as a vehicle for reducing the study of one class of
logics to another. Perhaps the best known example of such a reduction is
the G�odel translation of intuitionistic logic and its extensions into normal
modal logics above S4 [Maksimova and Rybakov 1974; Blok 1976; Esakia
1979a,b]. We will take advantage of this translation to give a brief survey of
results in the �eld of superintuitionistic logics which actually were always
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studied in parallel with modal logics (see also Section 5 of Intuitionistic
Logic in volume 7 of this Handbook).

Listed above are the most important general directions in mathemati-
cal modal logic we are going to concentrate on in this chapter. They, of
course, do not cover the whole discipline. Other topics, for instance, modal
systems with quanti�ers, the relationship between the propositional modal
language and the �rst (or higher) order classical language, or proof theory
are considered in other chapters of this Handbook.

It should be emphasized once again that the reader will �nd no discus-
sions of particular modal systems in this chapter. Modal logic is presented
here as a mathematical theory analyzing big families of logics and thereby
providing us with powerful methods for handling concrete ones. (In some
cases we illustrate technically complex methods by considering concrete log-
ics; for instance Rybakov's [1994] technique of proving the decidability of
the admissibility problem for inference rules is explained only for GL.)

1 UNIMODAL LOGICS

We begin by considering normal modal logics with one necessity operator,
which were introduced in Section 6 of Basic Modal Logic. Recall that each
such logic is a set of modal formulas (in the language with the primitive
connectives ^, _, !, ?, �) containing all classical tautologies, the modal
axiom

�(p! q)! (�p! �q);

and closed under substitution, modus ponens and necessitation '=�'.

1.1 The lattice NExtK

First let us have a look at the class of normal modal logics from a purely
syntactic point of view. Given a normal modal logic L0, we denote by
NExtL0 the family of its normal extensions. NExtK is thus the class of all
normal modal logics. Each logic L in NExtL0 can be obtained by adding
to L0 a set of modal formulas � and taking the closure under the inference
rules mentioned above; in symbols this is denoted by

L = L0 � �:

Formulas in � are called additional (or extra) axioms of L over L0. Formulas
' and  are said to be deductively equivalent in NExtL0 if L0�' = L0� .
For instance, �p ! p and p ! �p are deductively equivalent in NExtK,
both axiomatizing T, however (�p! p)$ (p! �p) 62 K. (For more infor-
mation on the relation between these formulas see [Chellas and Segerberg
1994] and [Williamson 1994].)
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We distinguish between two kinds of derivations from assumptions in a
logic L 2 NExtK. For a formula ' and a set of formulas �, we write � `L '
if there is a derivation of ' from formulas in L and � with the help of only
modus ponens. In this case the standard deduction theorem|�;  `L ' i�
� `L  ! '|holds. The fact of derivability of ' from � in L using both
modus ponens and necessitation is denoted by � `�L '; in such a case we
say that ' is globally derivable3 from � in L. For this kind of derivation
we have the following variant of the deduction theorem which is proved by
induction on the length of derivations in the same manner as for classical
logic.

THEOREM 1 (Deduction). For every logic L 2 NExtK, all formulas '
and  , and all sets of formulas �,

�;  `�L ' i� 9m � 0 � `�L ��m ! ';

where ��m = �0 ^ � � � ^�m and �n is  pre�xed by n boxes.

It is to be noted that in general no upper bound for m can be computed
even for a decidable L (see Theorem 194). However, if the formula

tran = ��np! �n+1p

is in L|such an L is called n-transitive|then we can clearly take m = n.
In particular, for every L 2 NExtK4, �;  `�L ' i� � `�L �+ ! ', where
�+ =  ^� . Moreover, a sort of conversion of this observation holds.

THEOREM 2. The following conditions are equivalent for every logic L in
NExtK:

(i) L is n-transitive, for some n < !;
(ii) there exists a formula �(p; q) such that, for any ',  and �,

�;  `�L ' i� � `�L �( ; '):

Proof. The implication (i) ) (ii) is clear. To prove the converse, observe
�rst that �(p; q) `�L �(p; q) and so �(p; q); p `�L q. By Theorem 1, we then
have �(p; q) `�L ��np! q, for some n. Let q = �n+1p. Then

�(p;�n+1p) `�L ��np! �n+1p:

And since p `�L �n+1p, �(p;�n+1p) 2 L. Consequently, tran 2 L. �

REMARK. Note also that (i) is equivalent to the algebraic condition: the
variety of modal algebras for L has equationally de�nable principal congru-
ences. For more information on this and close results consult [Blok and
Pigozzi 1982].

3This name is motivated by the semantical characterization of `�
L

to be given in
Theorem 19.
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The sum L1�L2 and intersection L1 \L2 of logics L1; L2 2 NExtL0 are
clearly logics in NExtL0 as well. The former can be axiomatized simply by
joining the axioms of L1 and L2. To axiomatize the latter we require the
following de�nition. Given two formulas '(p1; : : : ; pn) and  (p1; : : : ; pm)
(whose variables are in the lists p1; : : : ; pn and p1; : : : ; pm, respectively),
denote by '_ the formula '(p1; : : : ; pn) _  (pn+1; : : : ; pn+m).

THEOREM 3. Let L1 = L0 � f'i : i 2 Ig and L2 = L0 � f j : j 2 Jg.
Then

L1 \ L2 = L0 � f�m'i _�n j : i 2 I; j 2 J; m; n � 0g:

Proof. Denote by L the logic in the right-hand side of the equality to be
established and suppose that � 2 L1\L2. Then for some m;n � 0 and some
�nite I 0 and J 0 such that all '0i and  0j , for i 2 I 0, j 2 J 0, are substitution
instances of some 'i0 and  j0 , for i0 2 I , j0 2 J , we have

��m
^
i2I0

'0i ! � 2 L0; ��n
^
j2J0

 0j ! � 2 L0;

from which ^
i2I0;j2J0

0�k;l�m+n

(�k'0i _�l 0j)! � 2 L0

and so � 2 L because �k'0i_�l 0j is a substitution instance of �k'i0_�l j0 .
Thus, L1 \ L2 � L. The converse inclusion is obvious. �

Although the sum of logics di�ers in general from their union, these two
operations have a few common important properties.

THEOREM 4. The operation � is idempotent, commutative, associative
and distributes over \; the operation \ distributes over (in�nite) sums, i.e.,

L \
M
i2I

Li =
M
i2I

(L \ Li):

It follows that hNExtL0;�;\i is a complete distributive lattice, with L0
and the inconsistent logic, i.e., the set For of all modal formulas, being its
zero and unit elements, respectively, and the set-theoretic � its correspond-
ing lattice order. Note, however, that � does not in general distribute over
in�nite intersections of logics. For otherwise we would have

(K�:�?)�
\

1�n<!
(K��n?) =

\
1�n<!

(K�:�?��n?);

which is a contradiction, since the logic in the left-hand side is consistent
(D, to be more precise), while that in the right-hand side is not.
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If we are interested in �nding a simple (in one sense or another) syntactic
representation of a logic L 2 NExtL0, we can distinguish �nite, recursive
and independent axiomatizations of L over L0. The former two notions
mean that L = L0 � �, for some �nite or, respectively, recursive �, and
a set of axioms � is independent over L0 if L 6= L0 � � for any proper
subset � of �. In the case when L0 is K or any other �nitely axiomatizable
over K logic, we may omit mentioning L0 and say simply that L is �nitely
(recursively, independently) axiomatizable.

It is fairly easy to see that L is not �nitely axiomatizable over L0 i�
there is an in�nite sequence of logics L1 � L2 � : : : in NExtL0 such that
L =

L
i>0 Li. This observation is known as Tarski's criterion. (It is worth

noting that �nite axiomatizability is not preserved under \. For example,
using Tarski's criterion, one can show that D \ (K � �p _ �:p) is not
�nitely axiomatizable.) The recursive axiomatizability of a logic L, as was
observed by Craig [1953], is equivalent to the recursive enumerability of L.
As for independent axiomatizability, an interesting necessary condition can
be derived from [Kleyman 1984]. Suppose a normal modal logic L1 has an
independent axiomatization. Then, for every �nitely axiomatizable normal
modal logic L2 � L1, the interval of logics

[L2; L1] = fL 2 NExtK : L2 � L � L1g

contains an immediate predecessor of L1. Using this condition Chagrov and
Zakharyaschev [1995a] constructed various logics in NExtK4, NExtS4 and
NExtGrz without independent axiomatizations.

To understand the structure of the lattice NExtL0 it may be useful to
look for a set � of formulas which is complete in the sense that its formulas
are able to axiomatize all logics in the class, and independent in the sense
that it contains no complete proper subsets. Such a set (if it exists) may be
called an axiomatic basis of NExtL0. The existence of an axiomatic basis
depends on whether every logic in the class can be represented as the sum
of \indecomposable" logics. A logic L 2 NExtL0 is said to be

L
{irreducible

in NExtL0 if for any family fLi : i 2 Ig of logics in NExtL0, L =
L

i2I Li
implies L = Li for some i 2 I . L is

L
{prime if for any family fLi : i 2 Ig,

L �Li2I Li only if there is i 2 I such that L � Li. It is not hard to see
(using Theorem 4) that a logic is

L
{irreducible i� it is

L
{prime. This does

not hold, however, for the dual notions of
T

{irreducible and
T

{prime logics.
We have only one implication in general: if L is

T
{prime (i.e.,

T
i2I Li � L

only if Li � L, for some i 2 I) then it is
T

{irreducible (i.e., L =
T
i2I Li

only if L = Li, for some i 2 I). A formula ' is said to be prime in NExtL0
if L0 � ' is

L
{prime in NExtL0.

PROPOSITION 5. Suppose a set of formulas � is complete for NExtL0
and contains no distinct deductively equivalent in NExtL0 formulas. Then
� is an axiomatic basis for NExtL0 i� every formula in � is prime.
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Although the de�nitions above seem to be quite simple, in practice it
is not so easy to understand whether a given logic is

L
{ or

T
{prime, at

least at the syntactical level. However, these notions turn out to be closely
related to the following lattice-theoretic concept of splitting for which in the
next section we shall provide a semantic characterization.

A pair (L1; L2) of logics in NExtL0 is called a splitting pair in NExtL0
if it divides the lattice NExtL0 into two disjoint parts: the �lter NExtL2
and the ideal [L0; L1]. In this case we also say that L1 splits and L2 cosplits
NExtL0.

THEOREM 6. A logic L1 splits NExtL0 i� it is
T
{prime in NExtL0, and

L2 cosplits NExtL0 i� it is
L

{prime in NExtL0. Moreover, the following
conditions are equivalent:

(i) (L1; L2) is a splitting pair in NExtL0;
(ii) L1 is

T
{prime in NExtL0 and L2 =

TfL 2 NExtL0 : L 6� L1g;
(iii) L2 is

L
{prime in NExtL0 and L1 =

LfL 2 NExtL0 : L 6� L2g.
Splittings were �rst introduced in lattice theory by Whitman [1943] and

McKenzie [1972] (see also [Day 1977], [Jipsen and Rose 1993]). Jankov
[1963, 1968b, 1969], Blok [1976] and Rautenberg [1977] started using split-
tings in non-classical logic.

A few standard normal modal logics are listed in Table 1. Note that
our notations are somewhat di�erent from those used in Basic Modal logic.
(A� was introduced by Artemov; see [Shavrukov 1991]. The formulas Bn
bounding depth of frames are de�ned in Section 15 of Basic Modal Logic.)

1.2 Semantics

The algebraic counterpart of a logic L 2 NExtK is the variety of modal
algebras validating L (for de�nitions consult Section 10 of Basic Modal
Logic). Conversely, each variety (equationally de�nable class) V of modal
algebras determines the normal modal logic LogV = f' : 8A 2 V A j= 'g.
Thus we arrive at a dual isomorphism between the lattice NExtK and the
lattice of varieties of modal algebras, which makes it possible to exploit the
apparatus of universal algebra for studying modal logics.

It is often more convenient, however, to deal not with modal algebras
directly but with their relational representations discovered by J�onsson and
Tarski [1951] and now known as general frames. Each general frame F =
hW;R; P i is a hybrid of the usual Kripke frame hW;Ri and the modal algebra

F+ = hP; ;;W;�;\;[;�;�i

in which the operations� and � are uniquely determined by the accessibility
relation R: for every X 2 P � 2W ,

�X = fx 2W : 8y (xRy ! y 2 X)g; �X = ���X:
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Table 1. A list of standard normal modal logics.

D = K��p! �p

T = K��p! p

KB = K� p! ��p

K4 = K��p! ��p

K5 = K� ��p! �p

Altn = K��p1 _�(p1 ! p2) _ � � � _�(p1 ^ � � � ^ pn ! pn+1)

D4 = K4� �>
S4 = K4��p! p

GL = K4��(�p! p)! �p

Grz = K��(�(p! �p)! p)! p

K4:1 = K4���p! ��p

K4:2 = K4� �(p ^�q)! �(p _ �q)
K4:3 = K4��(�+p! q) _�(�+q ! p)

S4:1 = S4���p! ��p

S4:2 = S4� ��p! ��p

S4:3 = S4��(�p! q) _�(�q ! p)

Triv = K4��p$ p

Verum = K4��p
S5 = S4� p! ��p

K4B = K4� p! ��p

A� = GL���p! �(�+p! q) _�(�+q ! p)

Dum = S4��(�(p! �p)! p)! (��p! p)

K4BWn = K4�Vni=0 �pi ! W0�i6=j�n �(pi ^ (pj _ �pj))
K4BDn = K4�Bn
K4n;m = K4��np! �mp; for 1 � m < n
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So, using general frames we can take advantage of both relational and alge-
braic semantics. To simplify notation, we denote general frames of the form
F =



W;R; 2W

�
by F = hW;Ri. Such frames will be called Kripke frames.

Given a class of frames C, we write LogC to denote the logic determined by
C, i.e., the set of formulas that are valid in all frames in C; it is called the
logic of C. If C consists of a single frame F, we write simply LogF.

Basic facts about duality between frames and algebras can be found in
the chapters Basic Modal Logic and Correspondence Theory in this volume.
Here we remind the reader of the de�nitions that will be important in what
follows.

A frame G = hV; S;Qi is said to be a generated subframe of a frame
F = hW;R; P i if V � W is upward closed in F, i.e., x 2 V and xRy imply
y 2 V , S = R � V and Q = fX \ V : X 2 Pg. The smallest generated
subframe G of F containing a set X � W is called the subframe generated
by X . A frame F is rooted if there is x 2 W|a root of F|such that the
subframe of F generated by fxg is F itself.

A map f from W onto V is a reduction (or p-morphism) of a frame
F = hW;R; P i to G = hV; S;Qi if the following three conditions are satis�ed
for all x; y 2 W and X 2 Q

(R1) xRy implies f(x)Sf(y);

(R2) f(x)Sf(y) implies 9z 2 W (xRz ^ f(z) = f(y));

(R3) f�1(X) 2 P .

The operations of reduction and generating subframes are relational coun-
terparts of the algebraic operations of forming subalgebras and homomor-
phic images, respectively, and so preserve validity.

A frame F = hW;R; P i is di�erentiated if, for any x; y 2W ,

x = y i� 8X 2 P (x 2 X $ y 2 X):

F is tight if

xRy i� 8X 2 P (x 2 �X ! y 2 X):

Those frames that are both di�erentiated and tight are called re�ned. A
frame F is said to be compact if every subset X of P with the �nite in-
tersection property (i.e., with

TX 0 6= ; for any �nite subset X 0 of X ) has
non-empty intersection. Finally, re�ned and compact frames are called de-
scriptive. A characteristic property of a descriptive F is that it is isomorphic
to its bidual (F+)+. The classes of all di�erentiated, tight, re�ned and de-
scriptive frames will be denoted by DF , T , R and D, respectively.

When representing frames in the form of diagrams, we denote by � ir-
reexive points, by Æ reexive ones, and by

�� ��ÆÆ two-point clusters. An arrow
from x to y means that y is accessible from x. If the accessibility relation
is transitive, we draw arrows only to the immediate successors of x.
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� Æ � � �- - -! + 1 ! 2 1 0� � �
transitive

nontransitive

Figure 1.

EXAMPLE 7. (Van Benthem 1979) Let F = hW;R; P i be the frame whose
underlying Kripke frame is shown in Fig. 1 (! + 1 sees only ! and the
subframe generated by ! is transitive) and X � W is in P i� either X is
�nite and ! =2 X or X is co�nite in W and ! 2 X . It is easy to see that
P is closed under \, � and �. Clearly, F is re�ned. Suppose X is a subset
of P with the �nite intersection property. If X contains a �nite set then
obviously

TX 6= ;. And if X consists of only in�nite sets then ! 2 TX .
Thus, F is descriptive.

A frame F is said to be {-generated, { a cardinal, if its dual F+ is
a {-generated algebra.4 Each modal logic L is determined by the free
�nitely generated algebras in the corresponding variety, i.e., by the Tarski{
Lindenbaum (or canonical) algebras AL(n) for L in the language with n <
! variables. Their duals are denoted by FL(n) = hWL(n); RL(n); PL(n)i
and called the universal frames of rank n for L. Analogous notation and
terminology will be used for the free algebras AL({) with { generators.
Note that hWL({); RL({)i is (isomorphic to) the canonical Kripke frame
for L with { variables (de�ned in Section 11 of Basic Modal Logic) and
PL({) is the collection of the truth-sets of formulas in the corresponding
canonical model. Unless otherwise stated, we will assume in what follows
that the language of the logics under consideration contains ! variables.

An important property of the universal frame of rank { for L is that
every descriptive {0-generated frame for L, {0 � {, is a generated subframe
of FL({). Thus, the more information about universal frames for L we have,
the deeper our knowledge about the structure of arbitrary frames for L and
thereby about L itself.

Although in general universal frames for modal logics are very compli-
cated, considerable progress was made in clarifying the structure of the
upper part (points of �nite depth) of the universal frames of �nite rank
for logics in NExtK4. The studies in this direction were started actually
by Segerberg [1971]. Shehtman [1978a] presented a general method of con-
structing the universal frames of �nite rank for logics in NExtS4 with the
�nite model property. Later similar results were obtained by other authors;
see e.g. [Bellissima 1985]. The structure of free �nitely generated algebras

4An algebra is said to be {-generated if it contains a set X of cardinality � { such
that the closure of X under the algebra's operations coincides with its universe.
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for S4 was investigated by Blok [1976].
Let us try to understand �rst the constitution of an arbitrary transitive

re�ned frame F = hW;R; P i with n generators G1; : : : ; Gn 2 P . De�ne V
to be the valuation of the set of variables � = fp1; : : : ; png in F such that
x j= pi i� x 2 Gi. Say that points x and y are �-equivalent, x �� y in
symbols, if the same variables in � are true at them; for X;Y � W we
write X �� Y if every point in X is �-equivalent to some point in Y and
vice versa. Let d(F) denote the depth5 of F; if F is of in�nite depth, we
write d(F) =1. For d < d(F), W=d and W>d are the sets of all points in F
of depth d and > d, respectively; W<d, W�d, etc. are de�ned analogously.
F�d is the subframe of F generated by W�d. The set of all successors
(predecessors) of points in a set X � W is denoted by X " (respectively,
X#); in the transitive case X" = X" [X and X# = X# [ X are then the
upward and downward closure operations. A set X is said to be a cover for
a set Y in F if Y � X#. A point x is called an atom in F if fxg 2 P .

THEOREM 8. Suppose F = hW;R; P i is a transitive re�ned n-generated
frame, for some n < !. Then

(i) each cluster in F contains � 2n points;
(ii) for every �nite d � d(F), W=d is a cover for W�d and contains at

most cn(d) distinct clusters, where

cn(1) = 2n + 22
n � 1; cn(m+ 1) = cn(1) � 2cn(1)+���+cn(m);

(iii) every point of �nite depth in F is an atom.

Proof. (i) follows from the di�erentiatedness of F and the obvious fact that
precisely the same formulas (in p1; : : : ; pn) are true under V at �-equivalent
points in the same cluster.

The proof of (ii) proceeds by induction on d. Let x 2 W>d. Since F is
transitive and W�d is �nite (by the induction hypothesis), there exists a
non-empty upward closed in W>d set X (i.e., X = X" \W>d) such that

x 2 X#, points in X see exactly the same points of depth � d and either

(1) 8u; v 2 X9w 2 u" \X w �� v
or

(2) 8u; v 2 X (u �� v ^ :uRv):

Such a set X is called d-cyclic; it is nondegenerate if (1) holds and degenerate
otherwise. One can readily show that the same formulas are true at �-
equivalent points in X . Since F is re�ned, X is then a cluster of depth
d+ 1. Thus, W>d �W=d+1#. The upper bound for the number of distinct

5In Section 15 of Basic Modal Logic d(F) was called the rank of F.
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clusters of depth d + 1 follows from the di�erentiatedness of F and the
de�nition of d-cyclic sets.

To establish (iii), for every point x of depth d + 1 one can construct
by induction on d a formula (expressing the de�nition of the d-cyclic set
containing x) which is true in F under V only at x. For details consult
[Chagrov and Zakharyaschev 1997]. �

It is fairly easy now to construct the (generated) subframe F<1
K4

(n) of
the universal frame of rank n for K4 consisting of �nite depth points. In-
deed, FK4(n) is n-generated, re�ned and so has the form as described in
Theorem 8. On the other hand, it is universal and contains any n-generated
descriptive frame as a generated subframe, which means roughly that it con-
tains all possible points of �nite depth that can exist in n-generated re�ned
frames.

More precisely, assuming that each point is assigned the set of variables
in � that are true at it, we begin constructing a frame GK4(n) by putting
at depth 1 in it 2n non-�-equivalent degenerate clusters and 22

n � 1 non-
�-equivalent non-degenerate clusters with � 2n non-�-equivalent points.
Suppose that G�d

K4
(n) is already constructed. Then for every antichain a of

clusters in G�d
K4

(n) containing at least one cluster of depth d and di�erent

from a singleton with a non-degenerate cluster, we add to G�d
K4

(n) copies
of all 2n + 22

n � 1 clusters of depth 1 so that they would be inaccessible
from each other and could see only the clusters in a and their successors.
And for every singleton a = fCg with a non-degenerate cluster C, we add

to G�d
K4

(n) copies of those clusters of depth 1 which are not �-equivalent to
any subset of C (otherwise the frame will not be re�ned) so that again they
would be mutually inaccessible and could see only C and its successors in
G
�d
K4

(n).
Let NK4(n) = hGK4(n);UK4(n)i be the resulting model (the relational

component of GK4(n) is completely determined by the construction and its
set of possible values is the collection of the truth-sets of formulas in GK4(n)
under UK4(n)). It is not hard to show that GK4(n) is atomic. Moreover, for
every point x in this frame one can construct a formula '(p1; : : : ; pn) such
that x 6j= ' and, for any frame F, F 6j= ' i� there is a generated subframe of F
reducible to the subframe of GK4(n) generated by x. It follows in particular

that GK4(n) is re�ned. Thus, every G
�d
K4

(n) is a generated subframe of
FK4(n). On the other hand, by Theorem 8, FK4(n) contains no clusters of

depth � d di�erent from those in G�d
K4

(n) and so F<1
K4

(n) is isomorphic to
GK4(n). It worth noting also that, since K4 has the �nite model property,
it is characterized by F<1

K4
(n), and so FK4(n) is isomorphic to the bidual of

F<1
K4

(n).
The universal frame FL(n) for an arbitrary consistent logic L in NExtK4

is a generated subframe of FK4(n). It can be constructed by removing
from FK4(n) those points at which some formulas in L are refuted (under
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VK4(n)). For example, F<1
S4

(n) is obtained by removing from F<1
K4

(n)
all irreexive points and their predecessors. In other words, F<1

S4
(n) can

be constructed in the same way as F<1
K4

(n) but using only non-degenerate

clusters. F�2
S4

(1) (the corresponding model, to be more exact) is shown in
Fig. 2, where ~ denotes the cluster with two points at one of which p1 is
true. To construct F<1

Grz
(n) and F<1

GL
(n), we take only simple clusters and

degenerate clusters, respectively.
In general, this method of constructing universal frames does not work

for logics with nontransitive frames. However, using the fact that K is
characterized by the class of �nite intransitive irreexive trees (see Section
13 of Basic Modal Logic), in the same manner as above one can construct
an intransitive irreexive model characterizing K and such that FK(n) is
isomorphic to the bidual of the frame associated with this model.

Let us consider now the semantical meaning of splittings. In view of the
following observation we focus attention only on splittings by the logics of
�nite rooted frames.

THEOREM 9. If L1 splits NExtL0 and L0 has the �nite model property
then L1 = LogF, for some �nite rooted frame F validating L0.

Proof. Since L2 in the splitting pair (L1; L2) is a proper extension of L0,
there is a �nite frame G such that G j= L0 and G 6j= L2. It follows that
LogG � L1. As we shall see later (Corollary 86), every extension of a
tabular logic is also tabular. So L1 = LogF for some �nite F j= L0. And
since L1 is

T
{prime, F must be rooted. �

We say that a frame F splits NExtL0 if LogF splits NExtL0. The logic L2
of the splitting pair (LogF; L2) is denoted by L0=F and called the splitting
of NExtL0 by F. This notation reects the fact that L2 is the smallest logic
in NExtL0 which is not validated by F.

EXAMPLE 10. We show that D = K=�. Recall that D = K � �> is
characterized by the class of serial frames (in which every point has a suc-
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cessor). So if � j= L then L � Log�; otherwise no frame for L has a dead
end, which means that �> 2 L and D � L. The inconsistent logic For can
be represented as D=Æ.

To illustrate some applications of splittings we require a few de�nitions.
Given L 2 NExtL0, we say that the axiomatization problem for L above
L0 is decidable if the set f' : L0 � ' = Lg is recursive. L is strictly
Kripke complete above L0 if no other logic in NExtL0 has exactly the same
Kripke frames as L. If all frames in a set F split NExtL0, we call the logicLfL0=F : F 2 Fg the union-splitting of NExtL0 and denote it by L0=F .

EXAMPLE 11. Grz is not a splitting of NExtS4. However, it is a union-

splitting: Grz = S4=f
�� ��ÆÆ ;�� ��ÆÆ

Æ
6
g. S4:1 = S4=

�� ��ÆÆ . A frame may split the
lattice NExtL0=F but not NExtL0: e.g. Æ splits NExtK=� but does not
split NExtK.

THEOREM 12. Suppose L 2 NExtL0 and L = (: : : (L0=F1)= : : : )=Fn, for
a sequence F1; : : : ;Fn of sets of �nite rooted frames.

(i) If F =
Sn
i=1Fi is �nite and L is decidable then the axiomatization

problem for L above L0 is decidable. More precisely,

f' : L0 � ' = Lg = f' 2 L : 8F 2 F F 6j= 'g:

(ii) If L is Kripke complete then L is strictly Kripke complete above L0.
(iii) The immediate predecessors of L in NExtL0 are precisely the logics

L \ LogF, for F 2 F such that F is not a reduct of a generated subframe of
another frame in F .

Proof. (i) is left to the reader as an easy exercise.
(ii) Let L0 be a logic in NExtL0 with the same Kripke frames as L. Then

obviously L0 � L. On the other hand, the frames in F do not validate L0

and so L � L0.
(iii) If L0 is an immediate predecessor of L in NExtL0 then F j= L0, for

some F 2 F . Therefore, L0 � L\LogF � L and so L0 = L\LogF. Suppose
now that F is not a reduct of a generated subframe of another frame in F
and L \ LogF � L0 � L. Then L0 � LogF0 for some F0 2 F , and hence
F0 = F, L0 = L \ LogF. �

As follows from Theorem 12 and Example 10, For has exactly two imme-
diate predecessors in NExtK: Verum = Log� and Triv = LogÆ (and each
consistent normal modal logic is contained in one of them). This result is
known as Makinson's [1971] Theorem. Moreover, the axiomatization prob-
lem for For is decidable, i.e., there is an algorithm which decides, given a
formula ' whether K � ' is consistent. Likewise, since D = K � �> is
decidable, there is an algorithm recognizing, given ', whether D = K� '.
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We shall see later in Section 4.4 that in fact not so many properties of logics
are decidable (e.g. the axiomatization problem for K�:�> is undecidable;
see Theorem 207) and that Theorem 12 (i) provides the main method for
proving decidability results of this type.

To determine whether a �nite rooted frame F = hW;Ri splits NExtL0,
we need the formulas de�ned below:

�F = fpx ! �py : x; y 2W; xRyg [
fpx ! :�py : x; y 2W; :xRyg [
fpx ! :py : x; y 2W; x 6= yg;

�F =
^

�F; ÆF = �F ^
_
fpx : x 2Wg:

The meaning of ÆF is explained by the following lemma, in which

�<!' = f�n' : n < !g:
LEMMA 13. For any �nite F with root r, the set of formulas fprg[�<!ÆF
is satis�able in a frame G i� there is a generated subframe H of G reducible
to F. Moreover, if F is cycle free (i.e., contains no path from a point to
itself) then ! can be replaced by n = d(F) + 1.

Proof. ()) Suppose fprg [�<!ÆF is satis�ed at a point u in G. It is not
hard to check that the map f de�ned by f(v) = x i� v j= px is a reduction of
the subframe H of G generated by u to F. If F is cycle free and fprg[�<!ÆF
is satis�ed at u then d(H) = d(F). For otherwise an ascending chain of n+1
points starts from u and so F must contain a cycle.

(() Let f be a reduction of H to F. De�ne a valuation in G so that
v j= px i� v 2 f�1(x). The reader can readily verify that under this
valuation fprg [�<!ÆF is true at any point in f�1(r). �

LEMMA 14. For every logic L 2 NExtK and every �nite rooted frame F,
F j= L i� 8n < ! ��nÆF ! :pr 62 L.

Proof. The implication ()) follows from Lemma 13. Suppose now that
��nÆF ! :pr 62 L, for every n < !. Then the set fprg [ �<!ÆF is L-
consistent and so it is satis�ed in a frameG for L. By Lemma 13, a generated
subframe of G is reducible to F, and hence F j= L. �

We are now in a position to characterize �nite frames that split NExtL0
and to axiomatize splittings.

THEOREM 15. Suppose F is a �nite frame with root r and L0 2 NExtK.
Then F splits NExtL0 i� there is n < ! such that, for every frame G j= L0,
��nÆF^pr is satis�able in G only if ��mÆF^pr is satis�able in G for every
m > n. In this case L0=F = L0 ���nÆF ! :pr.



ADVANCED MODAL LOGIC 99

Proof. ()) Suppose otherwise and consider a sequence fGn : n < !g of
frames for L0 such that ��nÆF ^ pr is satis�able in Gn but ��mÆF ^ pr is
not satis�ed, for some m > n. By Lemma 14, the former condition impliesT
n<! LogGn � LogF, while the latter means that F 6j= LogGn, for every

n < !, contrary to LogF being
T

{prime.
(() We show that L0=F = L0 � ��nÆF ! :pr. Suppose L 6� LogF.

Then, by Lemma 14, there is m < ! such that ��mÆF ! :pr 2 L. It
follows that ��nÆF ! :pr 2 L and so L0 ���nÆF ! :pr � L. �

For more general versions of this criterion consult [Kracht 1990] and
[Wolter 1993].

COROLLARY 16 (Rautenberg 1980). Suppose that L0 2 NExt(K� tran),
for some n < !. Then every �nite rooted frame F for L0 splits NExtL0 and
L0=F = L0 ���nÆF ! :pr.

In particular, every transitive �nite rooted frame splits NExtK4. This
result may also be obtained using the fact that all �nite subdirectly irre-
ducible algebras split the lattice of subvarieties of a variety with equationally
de�nable principal congruences (see [Blok and Pigozzi 1982]). However, not
every frame splits NExtK.

THEOREM 17 (Blok 1978). A �nite rooted frame F splits NExtK i� it is
cycle free. In this case K=F = K���nÆF ! :pr, where n = d(F).

Proof. That frames with cycles do not split NExtK follows from the fact
that K is characterized by cycle free �nite rooted frames. And the converse
is an immediate consequence of Lemma 13 and Theorem 15. �

An element x 6= 0 of a complete lattice L is called an atom in L if the zero
element 0 in L is the immediate predecessor of x, i.e., there is no y such that
0 < y < x. Splittings turn out to be closely related to the existence of atoms
in �nitely generated free algebras; see [Blok 1976], [Bellissima 1984, 1991]
and [Wolter 1997c]. We demonstrate the use of splittings by the following

THEOREM 18 (Blok 1980a). The lattice NExtK has no atoms.

Proof. If a logic L is an atom in NExtK, it is
L

{prime. It follows that L
cosplits NExtK and the logic L0 = LogF in the splitting pair (L0; L) has no
proper predecessor that splits NExtK. Add a new irreexive root to F. By
Theorem 17, the resulting frame G splits NExtK, and clearly LogG � LogF,
which is a contradiction. �

A logic is linked with its semantics via completeness theorems. The most
general completeness theorem states that every consistent normal modal
logic is characterized by the class of (descriptive) frames validating it. Or,
if we want to characterize the consequence relations `L and `�L, we can use
the following
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THEOREM 19. (i) For L 2 NExtK, � `L ' i� for any model M based on
a frame for L and any point x in M, x j= � implies x j= '.

(ii) For L 2 NExtK, � `�L ' i� for any model M based on a frame for
L, M j= � implies M j= '.

However, usually more speci�c completeness results are required. What
is the \geometry" of frames for a given logic? Are Kripke or even �nite
frames enough to characterize it? Questions of this sort will be addressed
in the next several sections.

1.3 Persistence

The structure of Kripke frames for many standard modal logics can be
described by rather simple conditions on the accessibility relation which
are expressed in the �rst order language with equality and a binary (ac-
cessibility) predicate R. (This observation was actually the starting point
of investigations in Correspondence Theory studying the relation between
modal and �rst (or higher) order languages; see Chapter 4 of this volume.)
Moreover, in many cases it turns out that the universal frame FL(!) for such
a logic L also satis�es the corresponding �rst order condition �. Since � says
nothing about sets of possible values in PL(!), it follows immediately that
the canonical (Kripke) frame �FL(!) also satis�es � and so characterizes
L. Thus we obtain a completeness theorem of the form:

' 2 L i� F j= ' for every Kripke frame F satisfying �.

This method of establishing Kripke completeness, known as the method
of canonical models, is based essentially upon two facts: �rst, that L is
characterized by its universal frame FL(!) and second, that L is \persistent"
under the transition from FL(!) to its underlying Kripke frame. Of course,
instead of FL(!) we can take any other class of frames C with respect to
which L is complete and try to show that L is C{persistent in the sense
that, for every F = hW;R; P i in C, if F j= L then �F = hW;Ri validates L
as well.

PROPOSITION 20. If a logic is both C{complete and C{persistent, then it
is complete with respect to the class f�F : F 2 Cg of Kripke frames.

It follows in particular that L is Kripke complete whenever it is DF{,
or R{, or D{persistent. Since every descriptive frame for L is a generated
subframe of a suitable universal frame for L, L is D{persistent i� it is
persistent with respect to the class of its universal frames. It is an open
problem, however, whether canonicity, i.e., FL(!){persistence, implies D{
persistence. Here are two simple examples.

THEOREM 21 (van Benthem 1983). A logic is persistent with respect to
the class of all general frames i� it is axiomatizable by a set of variable free
formulas.
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It is easily checked that a Kripke frame validates Altn i� no point in it
has more than n distinct successors (see [Segerberg 1971]).

THEOREM 22 (Bellissima 1988). Every L 2 NExtAltn is DF{persistent,
for any n < !.

Proof. The proof is based on the fact that, for any di�erentiated frame
F = hW;R; P i, any �nite X � W , and any y 2 X , there is Y 2 P such
that X \ Y = fyg. It follows that at most n distinct points are accessible
from every point in a di�erentiated frame for L; in particular, Altn is DF{
persistent. Suppose now that a formula ' 2 L is refuted at a point x under a
valuation V in �F, F a di�erentiated frame for L. Let X be the set of points
accessible from x in � md(') steps.6 Since X is �nite, there is a valuation
U in F such that U(p) \X = V(p), for every variable p. Consequently, ' is
false in F at x under U, which is a contradiction. �

The proof of Fine's [1974c] Theorem that all logics of �nite width, i.e.,
logics in NExtK4BWn, for n < !, are Kripke complete (a sketch can be
found in Section 18 of Basic Modal Logic) may also be regarded as a proof
of persistence. Recall that a point x in a transitive frame F = hW;R; P i
is called non-eliminable (relative to R) if there is X 2 P such that x 2 X
but no proper successor of x is in X (in other words, x is maximal in
X); in this case we write x 2 maxRX . Denote by Wr the set of all non-
eliminable points in F and put Fr = hWr; Rr; Pri, where Rr = R � Wr,
Pr = fX \Wr : X 2 Pg. (Fine called the frame Fr reduced.)

THEOREM 23 (Fine 1985). Let F = hW;R; P i be a transitive descriptive
frame and x 2 X 2 P . Then (i) there exists a point y 2 maxRX \ x" and
(ii) Fr is a re�ned frame whose dual F+r is isomorphic to F+.

Proof. (i) Suppose otherwise, i.e., there is no maximal point in X \ x".
Let Y be a maximal chain of points in X \ x" (that it exists follows from
Zorn's Lemma) and X = fZ 2 P : 9y 2 Y y" \ Y � Zg. Clearly, X is
non-empty and has the �nite intersection property (because X \ x" has no
maximal point). By compactness, we then have a point z in

TX which, by
tightness, is maximal in Y , contrary to X \ x" having no maximal point.
(ii) is a consequence of (i). �

It follows that to establish the Kripke completeness of a logic L 2 NExtK4
it is enough to show that it is persistent with respect to the class

RE = fFr : F a �nitely generated descriptive frameg:

That is what Fine [1974c] actually did for logics of �nite width.

6Here md('), the modal degree of ', is the length of the longest chain of nested modal
operators in '.
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THEOREM 24 (Fine 1974c). All logics of �nite width are RE{persistent
and so Kripke complete.

Let us return, however, to the method of canonical models. Having tried
it for a number of standard systems, Lemmon and Scott [1977] found a
rather general suÆcient condition for its applicability and put forward a
conjecture concerning a further extension (which was proved by Goldblatt
[1976b]). This direction of completeness (and correspondence) theory culmi-
nated in the theorem of Sahlqvist [1975] who proved an optimal (in a sense)
generalization of the condition of [Lemmon and Scott 1977]. To formulate it
we require the following de�nition. Say that a formula is positive (negative)
if it is constructed from variables (negated variables) and the constants >,
? using ^, _, � and �.

THEOREM 25 (Sahlqvist 1975). Suppose ' is a formula which is equivalent
in K to a formula of the form �k( ! �), where k � 0, � is positive and
 is constructed from variables and their negations, ? and > with the help
of ^, _, � and � in such a way that no  's subformula of the form  1 _ 2
or � 1, containing an occurrence of a variable without :, is in the scope of
some �. Then one can e�ectively construct a �rst order formula �(x) in R
and = having x as its only free variable and such that, for every descriptive
or Kripke frame F and every point a in F,

(F; a) j= ' i� F j= �(x)[a]:

(Here (F; a) j= ' means that ' is true at a in F under any valuation.)

Proof. We present a sketch of the proof found by Sambin and Vaccaro
[1989]. Given a formula '(p1; : : : ; pn), a frame F = hW;R; P i and sets
X1; : : : ; Xn 2 P , denote by '(X1; : : : ; Xn) the set of points in F at which '
is true under the valuation V de�ned by V(pi) = Xi, i.e., '(X1; : : : ; Xn) =
V('). Using this notation, we can say that

(F; x) j= '(p1; : : : ; pn) i� 8X1; : : : ; Xn 2 P x 2 '(X1; : : : ; Xn):

EXAMPLE 26. Let us consider the formula �p ! p and try to extract a
�rst order equivalent for it in the class of tight frames directly from the
equivalence above and the condition of tightness. For every tight frame
F = hW;R; P i we have:

(F; x) j= �p! p i� 8X 2 P x 2 (�X ! X)
i� 8X 2 P (x 2 �X ! x 2 X)
i� 8X 2 P (x" � X ! x 2 X):

To eliminate the variable X ranging over P , we can use two simple obser-
vations. The �rst one is purely set-theoretic:
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(3) 8X 2 P (Y � X ! x 2 X) i� x 2
\
fX 2 P : Y � Xg:

And the second one is just a reformulation of the characteristic property of
tight frames:

(4)
\
fX 2 P : x" � Xg = x":

With the help of (3) and (4) we can continue the chain of equivalences above
with two more lines:

(F; x) j= �p! p i� : : :
i� x 2 TfX 2 P : x" � Xg
i� x 2 x":

Thus, F j= �p! p i� 8x x 2 x" i� 8x xRx.

The proof of Sahlqvist's Theorem is a (by no means trivial) generalization
of this argument. De�ne by induction x"0= fxg, x"n+1= (x"n)", and notice
that in (4) we can replace x" by any term of the form x1"n1 [ � � � [ xk"nk ,
thus obtaining the equality

(5)
\
fX 2 P : x1"n1 [ � � � [ xk"nk� Xg = x1"n1 [ � � � [ xk"nk

which holds for every descriptive frame F = hW;R; P i, all x1; : : : ; xk 2 W
and all n1; : : : ; nk � 0.

A frame-theoretic term x1"n1 [ � � �[xk"nk with (not necessarily distinct)
world variables x1; : : : ; xk will be called an R-term. It is not hard to see
that for any R-term T , the relation x 2 T on F = hW;R; P i is �rst order
expressible in R and =. Consequently, we obtain

LEMMA 27. Suppose '(p1; : : : ; pn) is a modal formula and T1; : : : ; Tn are
R-terms. Then the relation x 2 '(T1; : : : ; Tn) is expressible by a �rst order
formula (in R and =) having x as its only free variable.

Syntactically, R-terms with a single world variable correspond to modal
formulas of the form �m1p1 ^ � � � ^ �mkpk with not necessarily distinct
propositional variables p1; : : : ; pk. Such formulas are called strongly positive.
By induction on the construction of ', one can prove the following

LEMMA 28. Suppose '(p1; : : : ; pn) is a strongly positive formula containing
all the variables p1; : : : ; pn and F = hW;R; P i is a frame. Then one can
e�ectively construct R-terms T1; : : : ; Tn (with one variable x) such that for
any x 2 W and any X1; : : : ; Xn 2 P ,

x 2 '(X1; : : : ; Xn) i� T1 � X1 ^ � � � ^ Tn � Xn:

Now, trying to extend the method of Example 26 to a wider class of
formulas, we see that it still works if we replace the antecedent �p in �p! p
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with an arbitrary strongly positive formula  . As to generalizations of the
consequent, let us take �rst an arbitrary formula � instead of p and see
what properties it should satisfy to be handled by our method.

Thus, for a modal formula ( ! �)(p1; : : : ; pn) with strongly positive  
and a descriptive frame F = hW;R; P i, we have:

(F; x) j=  ! � i� 8X1; : : : ; Xn 2 P (x 2  (X1; : : : ; Xn)!
x 2 �(X1; : : : ; Xn))

i� 8X1; : : : ; Xn 2 P (T1 � X1 ^ � � � ^ Tn � Xn !
x 2 �(X1; : : : ; Xn))

i� 8X1; : : : ; Xn�1 2 P (T1 � X1 ^ � � � ^ Tn�1 � Xn�1 !
8Xn 2 P (Tn � Xn ! x 2 �(X1; : : : ; Xn))):

(3) does not help us here, but we can readily generalize it to

8X 2 P (Y � X ! x 2 �(: : : ; X; : : : )) i�

x 2
\
f�(: : : ; X; : : : ) : Y � X 2 Pg:(6)

So

(F; x) j=  ! � i� 8X1; : : : ; Xn�1 2 P (T1 � X1 ^ � � � ^ Tn�1 � Xn�1 !
x 2

\
f�(X1; : : : ; Xn) : Tn � Xn 2 Pg):

But now (4) and (5) are useless. In fact, what we need is the equality\
f�(: : : ; X; : : : ) : T � X 2 Pg =

�(: : : ;
\
fX 2 P : T � Xg; : : : )(7)

which, with the help of (5), would give us

(8)
\
f�(: : : ; X; : : : ) : T � X 2 Pg = �(: : : ; T; : : : ):

Of course, (7) is too good to hold for an arbitrary �, but suppose for a
moment that our � satis�es it. Then we can eliminate step by step all the
variables X1; : : : ; Xn like this:

(F; x) j=  ! � i� 8X1; : : : ; Xn�1 2 P (T1 � X1 ^ � � � ^ Tn�1 � Xn�1 !
x 2 �(X1; : : : ; Xn�1; Tn))

i� : : : (by the same argument)

i� x 2 �(T1; : : : ; Tn):

And the last relation can be e�ectively rewritten in the form of a �rst order
formula �(x) in R and = having x as its only free variable. So, �nally we
shall have F j=  ! � i� 8x �(x).
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Now, to satisfy (7), � should have the property that all its operators
distribute over intersections. Clearly,! and : are not suitable for this goal.
But all the other operators turn out to be good enough at least in descriptive
and Kripke frames. So we can take as � any positive modal formula. The
main property of a positive formula '(: : : ; p; : : : ) is its monotonicity in every
variable p which means that, for all sets X , Y of worlds in a frame, X � Y
implies '(: : : ; X; : : : ) � '(: : : ; Y; : : : ).

To prove that all positive formulas satisfy (7) in Kripke frames and de-
scriptive frames, recall that � distributes over arbitrary intersections in
any frame. As to �, we have the following lemma in which a family X of
non-empty subsets of some space W is called downward directed if for all
X;Y 2 X there is Z 2 X such that Z � X \ Y .

LEMMA 29 (Esakia 1974). Suppose F = hW;R; P i is a descriptive frame.
Then for every downward directed family X � P ,

�
\
X2X

X =
\
X2X

�X:

Using Esakia's Lemma, by induction on the construction of ' one can
prove

LEMMA 30. Suppose that F = hW;R; P i is a Kripke or descriptive frame
and '(p; : : : ; q; : : : ; r) is a positive formula. Then for every Y �W and all
U; : : : ; V 2 P ,\

f'(U; : : : ; X; : : : ; V ) : Y � X 2 Pg =

'(U; : : : ;
\
fX 2 P : Y � Xg; : : : ; V ):(9)

It follows from this lemma and considerations above that Sahlqvist's The-
orem holds for formulas ' =  ! � with strongly positive  and positive
�. The remaining part of the proof is purely syntactic manipulations with
modal and �rst order formulas.

Notice that using the monotonicity of positive formulas, equivalence (6)
can be generalized to the following one: for every F = hW;R; P i, every
positive �i(: : : ; p; : : : ) and every xi 2 W ,

8X 2 P (Y � X !
_
i�n

xi 2 �i(: : : ; X; : : : )) i�

_
i�n

xi 2
\
f�i(: : : ; X; : : : ) : Y � X 2 Pg:(10)

Say that a modal formula  is untied if it can be constructed from negative
formulas and strongly positive ones using only ^ and �. If �(p1; : : : ; pn) is
negative then :�(p1; : : : ; pn) is clearly equivalent in K to a positive formula;
we denote it by ��(:p1; : : : ;:pn).
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LEMMA 31. Let  (p1; : : : ; pn) be an untied formula and F = hW;R; P i a
frame. Then for every x 2 W and all X1; : : : ; Xn 2 P ,
x 2  (X1; : : : ; Xn) i� 9y1; : : : ; yl(#^

^
i�n

Ti � Xi^
^
j�m

zj 2 �j(X1; : : : ; Xn))

where the formula in the right-hand side, e�ectively constructed from  , has
only one free individual variable x, # is a conjunction of formulas of the form
uRv, Ti are suitable R-terms and �j(p1; : : : ; pn) are negative formulas.

We are ready now to prove Sahlqvist's Theorem. To construct a �rst order
equivalent for �k( ! �) supplied by the formulation of our theorem, we
observe �rst that one can equivalently reduce  to a disjunction  1_� � �_ m
of untied formulas, and hence �k( ! �) is equivalent in K to the formula

�k( 1 ! �) ^ � � � ^�k( m ! �):

So all we need is to �nd a �rst order equivalent for an arbitrary formula
�k( ! �) with untied  and positive �. Let p1; : : : pn be all the variables
in  and � and F = hW;R; P i a descriptive or Kripke frame. Then, for any
x 2 W , we have:

(F; x) j= �k( ! �) i� 8X1; : : : ; Xn 2 P x 2 �k( ! �)(X1; : : : ; Xn)

(by Lemma 31) i� 8X1; : : : ; Xn 2 P 8y (xRky ! (9y1; : : : ; yl (# ^^
i�n

Ti � Xi ^
^
j�m

zj 2 �j(X1; : : : ; Xn))!

y 2 �(X1; : : : ; Xn)))

i� 8X1; : : : ; Xn 2 P 8y; y1; : : : ; yl (#0 ^
^
i�n

Ti � Xi ^
^
j�m

zj 2 �j(X1; : : : ; Xn)! y 2 �(X1; : : : ; Xn))

where #0 = xRky ^ #. Let �j(p1; : : : ; pn) = ��j (:p1; : : : ;:pn). We continue
this chain of equivalences as follows:

i� 8y; y1; : : : ; yl (#0 ! 8X1; : : : ; Xn 2 P (
^
i�n

Ti � Xi !
_

j�m+1

zj 2 �j(X1; : : : ; Xn)))

(where �m+1(p1; : : : ; pn) = �(p1; : : : ; pn) and zm+1 = y)

i� 8y; y1; : : : ; yl (#0 !
_

j�m+1

zj 2 �j(T1; : : : ; Tn));

as follows from (10), Lemma 30 and equality (5). It remains to use Lemma 27.
�
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The formulas ' de�ned in the formulation of Theorem 25 are called
Sahlqvist formulas. It follows from this theorem that if L is a D{persistent
logic and � a set of Sahlqvist formulas then L�� is alsoD{persistent. More-
over, L� � is elementary (in the sense that the class of Kripke frames for
it coincides with the class of all models for some set of �rst order formulas
in R and =) whenever L is so.

Other proofs of Sahlqvist's Theorem were found by Kracht [1993] and
J�onsson [1994] (the latter is based upon the algebraic technique developed in
[J�onsson and Tarski 1951]). Venema [1991] extended Sahlqvist's Theorem to
logics with non-standard inference rules, like Gabbay's [1981a] irreexivity
rule. In [Chagrov and Zakharyaschev 1995b] it is shown that there is a
continuum of Sahlqvist logics above S4 and that not all of them have the
�nite model property (above T such a logic was constructed by Hughes
and Cresswell [1984]). As we shall see later in this chapter, there are even
undecidable �nitely axiomatizable Sahlqvist logics in NExtK. It would be
of interest to �nd out whether such logics exist above K4 or S4.

Kracht [1993] described syntactically the set of �rst order equivalents of
Sahlqvist formulas. To formulate his criterion we require the fragment S of
�rst order logic de�ned inductively as follows. Formulas of the form xRmy
are in S for all variables x; y and every m < !; besides, if �; �0 are in S then
the formulas

8x 2 y"m �; 9x 2 y"m �; � ^ �0; and � _ �0

are also in S. For simplicity we assume that all occurrences of quanti�ers
in a formula bind pairwise distinct variables. Call a variable y in a formula
� 2 S inherently universal if either all occurences of y are free in � or �
contains a subformula 8y 2 x"m �0 which is not in the scope of 9.
THEOREM 32 (Kracht 1993). For every �rst order formula �(x) (in R and
=) with one free variable x, the following conditions are equivalent:

(i) �(x) is classically equivalent to a formula �0(x) 2 S such that any sub-
formula of the form yRmz of �0(x) contains at least one inherently universal
variable;

(ii) �(x) corresponds to a Sahlqvist formula in the sense of Theorem 25.

Condition (i) is satis�ed, for example, by the formula

8u 2 x" 8v 2 x" 9z 2 u" vRz

which corresponds to ��p! ��p. On the other hand,

�(x) = 9y 2 x" 8z 2 y" zR0y

does not satisfy (i). In fact, even relative to S4 the condition expressed by
�(x) does not correspond to any Sahlqvist formula. Notice, however, that
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S4 � ��p ! ��p is a D-persistent logic whose frames are precisely the
transitive and reexive frames validating 8x�(x).

We conclude this section by mentioning two more important results con-
necting persistence and elementarity (the idea of the proof was discussed in
Section 22 of Basic Modal Logic.)

THEOREM 33.

(i) (Fine 1975b, van Benthem 1980) If a logic L is characterized by a �rst
order de�nable class of Kripke frames then L is D{persistent.

(ii) (Fine 1975b) If L is R-persistent then the class of Kripke frames for
L is �rst order de�nable.

It is an open problem whether every D{persistent logic is determined by
a �rst order de�nable class of Kripke frames; for more information about
this and related problems consult [Goldblatt 1995].

1.4 The degree of Kripke incompleteness

All known logics in NExtK of \natural origin" are complete with respect
to Kripke semantics. On the other hand, there are many examples of \ar-
ti�cial" logics that cannot be characterized by any class of Kripke frames
(see Sections 19, 20 of Basic Modal Logic or the examples below). To un-
derstand the phenomenon of Kripke incompleteness Fine [1974b] proposed
to investigate how many logics may share the same Kripke frames with a
given logic L. The number of them is called the degree of Kripke incom-
pleteness of L. Of course, this number depends on the lattice of logics under
consideration. The degree of Kripke incompleteness of logics in NExtK was
comprehensively studied by Blok [1978]. In this section we present the main
results of that paper following [Chagrov and Zakharyaschev 1997].

By Theorem 12, all Kripke complete union-splittings of NExtK have
degree of incompleteness 1. And it turns out that no other union-splitting
exists.

THEOREM 34 (Blok 1978). Every union-splitting of NExtK has the �nite
model property.

Proof. Let F be a class of �nite rooted cycle free frames. We prove that
L = K=F has the �nite model property using a variant of �ltration, which
is applied to an n-generated re�ned frame F = hW;R; P i for L refuting a
formula '(p1; : : : ; pn) under a valuation V.

Since F is di�erentiated, for every m � 1 there are only �nitely many
points x in F such that x j= �m? ^ :�m�1?; we shall call them points of
type m. Given � � Sub', Sub' the set of all subformulas in ', we put
m� = m if m is the minimal number such that a point in F is of type � m
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Figure 3.

whenever x j= � and the formulas in Sub'�� are false at x (under V); if
no such m exists, we put m� = 0. Let

k = maxfm� : � � Sub'g; � = Sub(' ^�k?):

Now we divide F into two parts: W1 consisting of points of type � k and
W2 = W �W1. For x; y 2 W , put x � y if either x; y 2 W1 and x = y
or x; y 2 W2 and exactly the same formulas in � are true at x and y. Let
N = hG;Ui be the smallest �ltration (see Section 12 of Basic Modal Logic)
of M = hF;Vi through � with respect to �. Since W1 is �nite, G is also
�nite and, by the Filtration Theorem, (M; x) j=  i� (N; [x]) j=  , for every
 2 �. So it remains to show that G j= L. Notice that [x] in G is of type
m � k i� x has type m in F. Moreover, there is no [x] of type l > k. For
otherwise x 6j= �k? and m� = 0 for � = f 2 Sub' : x j=  g, which
means that arbitrary long chains (of not necessarily distinct points) start
from [x], contrary to [x] being of type l. Thus G consists of two parts:
points of type � k, which form the generated subframe hW1; R �W1i of F,
and points involved in cycles. Since F j= L and frames in F are cycle free,
it follows from Lemma 13 and Theorem 17 that G j= L. �

THEOREM 35 (Blok 1978). If a logic L is inconsistent or a union-splitting
of NExtK, then L is strictly Kripke complete. Otherwise L has degree of
Kripke incompleteness 2@0 in NExtK.

Proof. That For is strictly complete follows from Example 10 and Theo-
rem 12. Suppose now that a consistent L is not a union-splitting and L0 is
the greatest union-splitting contained in L. Since L0 has the �nite model
property, there is a �nite rooted frame F = hW;Ri for L0 refuting some
' 2 L and such that every proper generated subframe of F validates L.
Clearly, F is not cycle free. Let x1Rx2R : : : RxnRx1 be the shortest cycle
in F and k = md(') + 1. We construct a new frame F0 by extending the
cycle x1; : : : ; xn; x1 as is shown in Fig. 3 ((a) for n = 1 and (b) for n > 1).
More precisely, we add to F copies x1i ; : : : ; x

k
i of xi for each i 2 f1; : : : ; ng,

organize them into the nontransitive cycle shown in Fig. 3 and draw an
arrow from xji to y 2 W �fx1; : : : ; xng i� xiRy. Denote the resulting frame
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by F0 = hW 0; R0i and let x0 = xkn. By the construction, F is a reduct of F0.
Therefore, for every models M = hF;Vi and M0 = hF0;V0i such that

V0(p) = V(p) [ fxji : xi 2 V(p); j < kg

and for every x 2 W ,  2 Sub', we have (M; x) j=  i� (M0; x) j=  . So we
can hook some other model on x0, and points in W will not feel its presence
by means of ''s subformulas. The frame to be hooked on x0 depends on
whether � j= L or Æ j= L. We consider only the former alternative.

Fix some m > jW 0j. For each I � ! � f0g, let FI = hWI ; RI ; PI i be the
frame whose diagram is shown in Fig. 4 (d0 sees the root of F0, all points
ei and e0j and is seen from x0; the subframes in dashed boxes are transitive,
e0i 2 WI i� i 2 I , and PI consists of sets of the form X [ Y such that X
is a �nite or co�nite subset of WI � fb; ai : i < !g and Y is either a �nite
subset of fai : i < !g or is of the form fbg[Y 0, where Y 0 is a co�nite subset
of fai : i < !g. It is not hard to see that the points ai, c, ei and e0i are
characterized by the variable free formulas

�0 = �(Æm ^ �(Æm�1 ^ � � � ^ �Æ0) : : : ) ^ :�2(Æm ^ �(Æm�1 ^ � � � ^ �Æ0) : : : );

�i+1 = ��i ^ :�2�i;  = �2�0 ^ :��0;
�0 = �; �i+1 = ��i ^ :�2�i; �0i+1 = ��i ^ :�+�i+1;

(in the sense that x j= �i i� x = ai, etc.), where

Æ0 = ��?; Æ1 = �Æ0 ^ :Æ0; Æ2 = �Æ1 ^ :Æ1 ^ :�+Æ0;

Æk+1 = �Æk ^ :Æk ^ :�+Æk�1 ^ � � � ^ :�+Æ0:
De�ne LI to be the logic determined by the class of frames for L and FI ,
i.e., LI = L \ LogFI . Since :(�0i ^ �m+6:') 2 LJ � LI for i 2 I � J (' is
refuted at the root of F0), jfLI : I � ! � f0ggj = 2@0 .
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Let us show now that LI has the same Kripke frames as L. Since LI � L,
we must prove that every Kripke frame for LI validates L. Suppose there
is a rooted Kripke frame G such that G j= LI but G 6j=  , for some  2 L.
Since  is in L, it is valid in all frames for L, in particular, � j=  . And
since  62 LI ,  is refuted in FI . Moreover, by the construction of FI , it
is refuted at a point from which the root of F0 can be reached by a �nite
number of steps. Therefore, the following formulas are valid in FI and so
belong to LI and are valid in G:

(11) : !
l_
i=0

�i;

(12) : !
l̂

i=0

�i( ! �(�0(�0p! p)! p));

where p does not occur in  and l is a suÆciently big number so that
any point in FI is accessible by � l steps from every point in the selected
cycle and every point at which  may be false, and �0� = �(��0 ! �).
According to (11), G contains a point at which  is true. By the construction
of , this point has a successor y at which, by (12), �0(�0p ! p) ! p is
true under any valuation in G and y j= ��0. De�ne a valuation U in G

by taking U(p) = y". Then y j= �0(�0p ! p), from which y j= p and so
y 2 y". Now de�ne another valuation U0 so that U0(p) = y" �fyg. Since
y is reexive, we again have y j= �0(�0p ! p), whence y j= p, which is a
contradiction. �

This construction can be used to obtain one more important result.

THEOREM 36 (Blok 1978). Every union-splitting K=F has { � @0 imme-
diate predecessors in NExtK, where { is the number of frames in F which
are not reducts of generated subframes of other frames in F . Every consis-
tent logic di�erent from union-splittings has 2@0 immediate predecessors in
NExtK. (For has 2 immediate predecessors in NExtK.)

Proof. The former claim follows from Theorem 12. To establish the latter,
we continue the proof of Theorem 35. One can show that L is �nitely
axiomatizable over LI (the proof is rather technical, and we omit it here).
Then, by Zorn's Lemma, NExtLI contains an immediate predecessor L0I of
L. Besides, LI � LJ = L whenever I 6= J . Indeed,

LI � LJ = (L \ LogFI)� (L \ LogFJ) = L \ (LogFI � LogFJ)

and if i 2 I � J then, for every � 2 L and a suÆciently big l,

:
l_

k=0

�k�0i ! � 2 LogFI ; :�0i 2 LogFJ ;
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from which � 2 LogFI �LogFJ and so L � LogFI �LogFJ . It follows that
L0I 6= L0J whenever I 6= J . �

It is worth noting that tabular logics, proper extensions of D and ex-
tensions of K4 are not union-splittings in NExtK. Similar results hold
for the lattices NExtD and NExtT, where every consistent logic has de-
gree of incompleteness 2@0 (see [Blok 1978, 1980b]). It would be of interest
to describe the behavior of this function in NExtK4, NExtGL, NExtS4,
NExtGrz (where Theorem 34 does not hold and where every tabular logic
has �nitely many immediate predecessors) and other lattices of logics to be
considered later in this chapter.

1.5 Stronger forms of Kripke completeness

In the two preceding sections we were considering the problem of charac-
terizing logics L 2 NExtK by classes of Kripke frames. The same problem
arises in connection with the two consequence relations `L and `�L as well.
Theorem 19 shows a way of introducing the corresponding concepts of com-
pleteness.

With each Kripke frame F let us associate a consequence relation j=F by
putting, for any formula ' and any set � of formulas, � j=F ' i� (M; x) j= �
implies (M; x) j= ' for every model M based on F and every point x in F.
Clearly, a modal logic L is Kripke complete i�, for any �nite set of formulas
� and any formula ', � 6`L ' only if there is a Kripke frame F for L such
that � 6j=F '. Now, let us call L strongly Kripke complete7 if this implication
holds for arbitrary sets �. In other words, L is strongly complete if every L-
consistent set of formulas holds at some point in a model based on a Kripke
frame for L. Another reformulation: L is strongly complete i� L is Kripke
complete and the relation

Tfj=F: F is a Kripke frame for Lg is �nitary. It
follows from the construction of the canonical models that every canonical
(in particular, D{persistent) logic is strongly complete, which provides us
with many examples of such logics in NExtK.

By Theorem 33, all logics characterized by �rst order de�nable classes
of Kripke frames are strongly complete. The converse does not hold: there
exist strongly complete logics which are not canonical. The simplest is the
bimodal logic of the frame hR; <;>i; see Example 144 below. By applying
the Thomason simulation (to be introduced in Section 2.3) to this logic
we obtain a logic in NExtK with the same properties; see Theorem 123.
Moreover, in contrast to D{persistence, strong Kripke completeness is not
preserved under �nite sums of logics (see [Wolter 1996b]). It is an open
problem, however, whether such logics exist in NExtK4.

7Fine [1974c] calls such logics compact, which does not agree with the use of this term
by Thomason [1972].
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Perhaps the simplest examples of Kripke complete logics which are not
strongly complete are GL and Grz (use Theorem 58 and the fact that these
logics are not elementary; see Correspondence Theory). It is much more
diÆcult to prove that the McKinsey logic K���p! ��p is not strongly
complete; the proof can be found in [Wang 1992]. For other examples of
modal logics that are not strongly complete see Section 3.4. It is worth
noting also that, as was shown in [Fine 1974c], every �nite width logic in a
�nite language turns out to be strongly Kripke complete, though this is not
the case for logics in an in�nite language, witness

GL:3 = GL��(�+p! q) _�(�+q ! p):

For the consequence relation `�L, we should take the \global" version j=�
F

of j=F. Namely, we put � j=�
F ' if M j= � implies M j= ' for any model M

based on F. A modal logic L is called globally Kripke complete if for any
�nite set of formulas � and any formula ', � 6`�L ' only if there is a frame
F for L such that � 6j=�

F '. L is strongly globally complete if this holds for
arbitrary (not only �nite) �. We also say that L has the global �nite model
property if for every �nite � and every ', � 6`�L ' only if there is a �nite
frame F for L such that � 6j=�

F '.
The global �nite model property (FMP, for short) of many standard logics

can be proved by �ltration. Say that a logic L strongly admits �ltration if for
every generated submodel M of the canonical model ML and every �nite set
of formulas � closed under subformulas, there is a �ltration of M through
� based on a frame for L.

PROPOSITION 37 (Goranko and Passy 1992). If L strongly admits �ltra-
tion then L has global FMP.

Proof. Suppose that � 6`�L ', � �nite. Then �<!
V

� 6`L ' and so the
set � = �<!

V
� [ f:'g is L-consistent. It remains to �ltrate through

Sub� [ Sub' the submodel of ML generated by a maximal L-consistent
set containing �. �

It follows in particular that K, T, D, KB have global FMP.

PROPOSITION 38. Suppose L is globally complete (has global FMP) and
� is a �nite set of variable free formulas. Then L � � is globally complete
(has global FMP) as well.

Proof. Let L0 = L � � and � 6`�L0 ', � �nite. Then � [ � 6`�L ' and so
there exists a (�nite) Kripke frame F for L such that � [� 6j=�

G '. Since �
contains no variables, F j= L0. �

For n-transitive logics L the global consequence relation `�L is reducible to
the \local" `L and so L is Kripke complete (has FMP, is strongly complete)
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i� L is globally complete (has global FMP, is strongly globally complete). In
general the global properties are stronger than the \local" ones. Although
L is globally complete (has global FMP) only if L is complete (has FMP),
the converse does not hold (see [Wolter 1994a] and [Kracht 1999]).

EXAMPLE 39. Let L = Alt3 � p! ��p� (�p^:p)! :(�q ^ �:q). A
Kripke frame F validates L i� no point in F has more than three successors,
F is symmetric, and irreexive points in it have at most one successor. By
Proposition 22, L is Kripke complete. The class of Kripke frames for L is
closed under (not necessarily generated) subframes. So, by Proposition 59
to be proved below, L has FMP. We show now that it does not have global
FMP. To this end we require the formulas:

�1 = q1 ^ :q2 ^ :q3; �2 = :q1 ^ q2 ^ :q3; �3 = :q1 ^ :q2 ^ q3;

' = �p ^ :p ^ �1;  =
^
f�i ! ��i+1 : i = 1; 2g ^ �3 ! ��1:

Let F = hW;Ri, where W = ! and

R = fhm;mi : m > 0g [ fhm;m+ 1i : m < !g [ fhm;m� 1i : m > 0g:

We then have  6j=�
F :'. In fact, ' is true at 0 and  is true everywhere

under the valuation V de�ned by V(p) = W � f0g and V(qi) = f3n + i :
n < !g. Clearly, F j= L and so  6`�L :'. Suppose now that (N; x0) j= '
and N j=  , for a model N based on a Kripke frame G = hV; Si for L. Then
we can �nd a sequence xj , j < !, such that xjSxj+1 and x3j+i j= �i+1, for
j < ! and i = 1; 2; 3. The reader can verify that all points xj are distinct.

Let us consider now the algebraic meaning of the notions introduced
above. A logic L is Kripke complete i� the variety AlgL of modal algebras
for L is generated by the class KrL = fF+ : F is a Kripke frame for Lg. By
Birkho�'s Theorem (see e.g. [Mal'cev 1973]), this means that

AlgL = HSPKrL;

(i.e., AlgL is obtained by taking the closure of KrL under direct prod-
ucts, then the closure of the result under (isomorphic copies of) subalgebras
and �nally under homomorphic images). Clearly, L is globally complete i�
precisely the same quasi-identities hold in KrL and AlgL. And since the
quasi-variety generated by a class of algebras C is SPPUC (where PU denotes
the closure under ultraproducts; see [Mal'cev 1973]), L is globally complete
i�

AlgL = SPPUKrL:

Goldblatt [1989] calls the variety AlgL complex if AlgL = SKrL, or,
equivalently, if AlgL = SPKrL (this follows from the fact that the dual of
the disjoint union of a family of Kripke frames fFi : i 2 Ig is isomorphic
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to the product
Q
i2I F

+
i ). We say a logic L is {-complex, { a cardinal, if

every modal algebra for L with � { generators is a subalgebra of F+ for
some Kripke frame F j= L. As was shown in [Wolter 1993], this notion turns
out to be the algebraic counterpart of both strong completeness and strong
global completeness of logics in in�nite languages with { variables.

THEOREM 40. For every normal modal logic L in an in�nite language
with { variables the following conditions are equivalent:

(i) L is strongly Kripke complete;
(ii) L is globally strongly complete;
(iii) L is {-complex.

Proof. (i) ) (iii) Suppose the cardinality of A 2 AlgL does not exceed {.
Denote by L the algebra of modal formulas over { propositional variables
and take some homomorphism h from L onto A. For each ultra�lter r in
A, the set h�1(r) is maximal L-consistent. Since L is strongly complete,
there is a model Mr = hFr;Vri with root xr based on a Kripke frame
Fr for L and such that (Mr; xr) j= h�1(r). Without loss of generality we
may assume that the frames Fr for distinct r are disjoint. Let F be the
disjoint union of all of them. De�ne a homomorphism V from L into F+ by
taking

V(p) =
[
fVr(p) : r is an ultra�lter in Ag:

Then V(L) is a subalgebra of F+ 2 AlgL isomorphic to A.
The implication (iii) ) (ii) is trivial. To prove (ii) ) (i), consider an

L-consistent set of formulas � of cardinality � { and put

� = fpg [ f�n(p! ') : n < !; ' 2 �g;

where the variable p does not occur in formulas from �. It is easily checked
that all �nite subsets of � are L-consistent, so � is L-consistent too. It
follows that fp ! ' : ' 2 �g 6`�L :p. And since L is globally strongly
complete, there exists a model M based on a Kripke frame for L such that
M j= fp ! ' : ' 2 �g and (M; x) j= p, for some x. But then (M; x) j= �.

�

1.6 Canonical formulas

The main problem of completeness theory in modal logic is not only to �nd
a suÆciently simple class of frames with respect to which a given logic L is
complete but also to characterize the constitution of frames for L (in this
class). The �rst order approach to the characterization problem, discussed
in Section 1.3 in connection with Sahlqvist's Theorem, comes across two
obstacles. First, there are formulas whose Kripke frames cannot be de-
scribed in the �rst order language with R and =. The best known example
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is probably the L�ob axiom

la = �(�p! p)! �p:

F j= la i� F is transitive, irreexive (i.e., a strict partial order) and Noethe-
rian in the sense that it contains no in�nite ascending chain of distinct
points. And as is well known, the condition of Noetherianness is not a �rst
order one. The second obstacle is that this approach deals only with log-
ics that are Kripke complete; it does not take into account sets of possible
values.

There is another, purely frame-theoretic method of characterizing the
structure of frames. For instance, a frame G validates K=F i� G does
not contain a generated subframe reducible to F. It was shown in [Za-
kharyaschev 1984, 1988, 1992] that in a similar manner one can describe
transitive frames validating an arbitrary modal formula. It is not clear
whether characterizations of this sort can be extended to the class of all
frames (an important step in this direction would be a generalization to
n-transitive frames). That is why all frames in this section are assumed to
be transitive. First we illustrate this method by a simple example.

EXAMPLE 41. Suppose a frame F = hW;R; P i refutes la under some
valuation. Then the set V = fx 2 W : x 6j= lag is in P and V � V #. It
follows from the former that G = hV;R�V; fX \ V : X 2 Pgi is a frame|
we call it the subframe of F induced by V . And the latter condition means
that G is reducible to the single reexive point Æ which is the simplest
refutation frame for la. Moreover, one can readily check that the converse
also holds: if there is a subframe G of F reducible to Æ then F 6j= la.

This example motivates the following de�nitions. Given frames F =
hW;R; P i and G = hV; S;Qi, a partial (i.e., not completely de�ned, in
general) map f from W onto V is called a subreduction of F to G if it
satis�es the reduction conditions (R1){(R3) for all x and y in the domain
of f and all X 2 Q. The domain of f will be denoted by domf . In other
words, an f -subreduct of F is a reduct of the subframe of F induced by
domf . A frame G = hV; S;Qi is a subframe of F = hW;R; P i if V �W and
the identity map on V is a subreduction of F to G, i.e., if S = R � V and
Q � P . Note that a generated subframe G of F is not in general a subframe
of F, since V may be not in P .

Thus, the result of Example 41 can be reformulated like this: F 6j= la i�
F is subreducible to Æ.

A subreduction f of F to G is called co�nal if

domf" � domf#:
This important notion can be motivated by the following observation: F
refutes �> i� F is co�nally subreducible to � (a plain subreduction is not
enough).
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THEOREM 42. Every refutation frame F = hW;R; P i for '(p1; : : : ; pn) is
co�nally subreducible to a �nite rooted refutation frame for ' containing at
most c' = 2n � (cn(1) + � � �+ cn(2jSub'j)) points.8

Proof. Suppose ' is refuted in F under a valuation V. Without loss
of generality we can assume F to be generated by V(p1); : : : ;V(pn). Let
X1; : : : ; Xm be all distinct maximal 0-cyclic sets in F. Clearly, m � cn(1)
but unlike Theorem 8, F is not in general re�ned and so these sets are
not necessarily clusters of depth 1. However, they can be easily reduced
to such clusters. De�ne an equivalence relation � on W by putting x � y
i� x = y or x; y 2 Xi, for some i 2 f1; : : : ;mg, and x �� y (as before
� = fp1; : : : ; png). Let [x] be the equivalence class under � generated by
x and [X ] = f[x] : x 2 Xg, for X 2 P . By the de�nition of cyclic sets,
xRy i� [x] � [y]#. So the map x 7! [x] is a reduction of F to the frame
F01 = hW 0

1; R
0
1; P

0
1i which results from F by \folding up" the 0-cyclic sets Xi

into clusters of depth 1 and leaving the other points untouched: W 0
1 = [W ],

[x]R01[y] i� [x] � [y]# and P 01 = f[X ] : X 2 Pg. (Roughly, we re�ne that
part of F which gives points of depth 1.) Put V0

1(pi) = [V(pi)]. Then by
the Reduction (or P-morphism) Theorem, we have x j=  i� [x] j=  , for
every  2 Sub'.

Let X be the set of all points in F01 of depth > 1 having Sub'-equivalent
successors of depth 1. It is not hard to see that X 2 P 01. Denote by
F1 = hW1; R1; P1i the subframe of F01 induced by W 0

1�X and let V1 be the
restriction of V0

1 to F1. By induction on the construction of  2 Sub' one
can readily show that  has the same truth-values at common points in F01
and F1 (under V0

1 and V1, respectively) and so F1 6j= '. The partial map
x 7! [x], for [x] 2 W1, is a co�nal subreduction of F to F1.

Then we take the maximal 1-cyclic sets in F1, \fold" them up into clusters
of depth 2 and remove those points of depth > 2 that have Sub'-equivalent
successors of depth 2. The resulting frame F2 will be a co�nal subreduct of
F1 and so of F as well. After that we form clusters of depth 3, and so forth.
In at most 2jSub'j steps of that sort we shall construct a co�nal subreduct
of F refuting ' and containing � c' points. It remains to select in it a
suitable rooted generated subframe. �

For the majority of standard modal axioms the converse also holds.
However, not for all. The simplest counterexample is the density axiom
den = ��p! �p. It is refuted by the chain H of two irreexive points but
becomes valid if we insert between them a reexive one. In fact, F 6j= den

i� there is a subreduction f of F to H such that f(x") = fag, for no point
x in domf"�domf , where a is the �nal point in H.

Loosely, every refutation frame for formulas like la can be constructed by
adding new points to a frame G that is reducible to some �nite refutation

8The function cn(m) was de�ned in Section 1.2.
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frame of �xed size. For formulas like �> we have to take into account the
co�nality condition and do not put new points \above" G. And formulas
like den impose another restriction: some places inside G may be \closed"
for inserting new points. These \closed domains" can be singled out in the
following way.

Suppose N = hH;Ui is a model and a an antichain in H. Say that a is
an open domain in N relative to a formula ' if there is a pair ta = (�a;�a)
such that �a [�a = Sub',

V
�a !

W
�a 62 K4 and

� � 2 �a implies  2 �a,

� � 2 �a i� a j= �+ for all a 2 a.
Otherwise a is called a closed domain inN relative to '. A reexive singleton
a = fag is always open: just take

ta = (f 2 Sub' : a j=  g; f 2 Sub' : a 6j=  g):

It is easy to see also that antichains consisting of points from the same
clusters are open or closed simultaneously; we shall not distinguish between
such antichains.

For a frame H and a (possibly empty) set D of antichains in H, we say a
subreduction f of F to H satis�es the closed domain condition for D if

(CDC) :9x 2 domf"� domf 9d 2 D f(x") = d".
Notice that the co�nal subreduction f of F to the resulting �nite rooted
frame H in the proof of Theorem 42 satis�es (CDC) for the set D of closed
domains in the corresponding model N on H refuting '. Indeed, every
x 2 domf"� domf has a Sub'-equivalent successor y 2 domf , and so an
antichain d such that f(x") = d" is open, since we can take

td = (f 2 Sub' : y j=  g; f 2 Sub' : y 6j=  g):

On the other hand, we have

PROPOSITION 43. Suppose N = hH;Ui is a �nite countermodel for '
and D the set of all closed domains in N relative to '. Then F 6j= '
whenever there is a co�nal subreduction f of F to H satisfying (CDC) for
D. Moreover, if ' is negation free (i.e., contains no ?, :, �) then a plain
subreduction satisfying (CDC) for D is enough.

Proof. If f is co�nal and F = hW;R; P i then we can assume domf" = W .
De�ne a valuation V in F as follows. If x 2 domf then we take x j= p i�
f(x) j= p, for every variable p in '. If x 62 domf then f(x") 6= ;, since f is
co�nal. Let a be an antichain in H such that a" = f(x"). By (CDC), a is
an open domain in N, and we put y j= p i� p 2 �a, for every y 62 domf such
that f(y") = f(x"). One can show that V is really a valuation in F and,
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for every  2 Sub', x j=  i� f(x) j=  in the case x 2 domf , and x j=  
i�  2 �a, where a is the open domain in N associated with x, in the case
x 62 domf .

If ' is negation free and f is a plain subreduction then f(x") may be
empty. In such a case we just put x j= p, for all variables p. �

Now let us summarize what we have got. Given an arbitrary formula
', we can e�ectively construct a �nite collection of �nite rooted frames
F1; : : : ;Fn (underlying all possible rooted countermodels for ' with � c'
points) and select in them sets D1; : : : ;Dn of antichains (open domains in
those countermodels) such that, for any frame F, F 6j= ' i� there is a co�nal
subreduction of F to Fi, for some i, satisfying (CDC) for Di. If ' is negation
free then a plain subreduction satisfying (CDC) is enough.

This general characterization of the constitution of refutation transitive
frames can be presented in a more convenient form if with every �nite rooted
frame F = hW;Ri and a set D of antichains in F we associate formulas
�(F;D;?) and �(F;D) such that G 6j= �(F;D;?) (G 6j= �(F;D)) i� there is
a co�nal (respectively, plain) subreduction of G to F satisfying (CDC) for
D. For instance, one can take

�(F;D;?) =
^
aiRaj

'ij ^
n̂

i=0

'i ^
^
d2D

'd ^ '? ! p0

where a0; : : : ; an are all points in F and a0 is its root,

'ij = �+(�pj ! pi);

'i = �+((
^

:aiRak
�pk ^

n̂

j=0;j 6=i
pj ! pi)! pi;

'd = �+(
^

ai2W�d"
�pj ^

n̂

i=0

pi !
_
aj2d

�pj);

'? = �+(

n̂

i=0

�+pi ! ?):

�(F;D) results from �(F;D;?) by deleting the conjunct '?. �(F;D;?) and
�(F;D) are called the canonical and negation free canonical formulas for F
and D, respectively. It is not hard to check that if �(F;D;?) is refuted in
G = hV; S;Qi under some valuation then the partial map de�ned by x 7! ai
if the premise of �(F;D;?) is true at x and pi false is a co�nal subreduction
of G to F satisfying (CDC) for D; and conversely, if f is such a subreduction
then the valuation U de�ned by U(pi) = V � f�1(ai) refutes �(F;D;?) at
any point in f�1(a0).
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THEOREM 44. There is an algorithm which, given a formula ', returns
canonical formulas �(F1;D1;?); : : : ; �(Fn;Dn;?) such that

K4� ' = K4� �(F1;D1;?)� � � � � �(Fn;Dn;?):

So the set of canonical formulas is complete for the class NExtK4. If ' is
negation free then one can use negation free canonical formulas.

It is not hard to see that K4�' is a splitting of NExtK4 i� ' is deduc-
tively equivalent in NExtK4 to a formula of the form �(F;D];?), where D]

is the set of all antichains in F (in this caseK4=F = K4��(F;D];?)). Such
formulas are known as Jankov formulas (Jankov [1963] introduced them for
intuitionistic logic), or frame formulas (cf. [Fine 1974a]), or Jankov{Fine
formulas. Since GL is not a union-splitting of NExtK4, this class of logics
has no axiomatic basis.

We conclude this section by showing in Table 2 canonical axiomatizations
of some standard modal logics in the �eld of K4. For brevity we write
�(F;?) instead of �(F; ;;?) and �](F;?) instead of �(F;D];?). Each � in
the table is to be replaced by both Æ and �.

For more information about the canonical formulas the reader is referred
to [Zakharyaschev 1992, 1997b].

1.7 Decidability via the �nite model property

Although, for cardinality reason, there are \much more" undecidable logics
than decidable ones, almost all \natural" propositional systems close to
those we deal with in this chapter turn out to be decidable. Relevant and
linear logics are probably the best known among very few exceptions (see
[Urquhart 1984], [Lincoln et al. 1992]).

The majority of decidability results in modal logic was obtained by means
of establishing the �nite model property. FMP by itself does not ensure yet
decidability (there is a continuum of logics with FMP); some additional con-
ditions are required to be satis�ed. For instance, to prove the decidability
of S4 McKinsey [1941] used two such conditions: that the logic under con-
sideration is characterized by an e�ective class of �nite frames (or algebras,
matrices, models, etc.) and that there is an e�ective (exponential in the case
of S4) upper bound for the size of minimal refutation frames. Under these
conditions, a formula belongs to the logic i� it is validated by (�nite) frames
in a �nite family which can be e�ectively constructed. Another suÆcient
condition of decidability is provided by the following well known

THEOREM 45 (Harrop 1958). Every �nitely axiomatizable logic with FMP
is decidable.

Here we need not to know a priori anything about the structure of frames
for a given logic. This information is replaced by checking the validity of its
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Table 2. Canonical axioms of standard modal logics

D4 = K4� �(�;?)
S4 = K4� �(�)
GL = K4� �(Æ)
Grz = K4� �(�)� �(

�� ��ÆÆ )

K4:1 = K4� �(�;?)� �(
�� ��ÆÆ ;?)

Triv = K4� �(�)� �(
�� ��ÆÆ )� �( Æ

Æ
6)

Verum = K4� �(Æ)� �( �
�
6)

S5 = S4� �( Æ
Æ
6)

K4B = K4� �( �
�
6) (4 axioms)

A� = GL� �( �
� �
AAK ���

1 2

; ff1g; f1; 2gg)

K4:2 = K4� �( �
�
�

6
6

;?)� �( Æ
�
6;?)� �( �

� �
AAK ���

;?) (8 axioms)

K4:3 = K4� �( �
� �
AAK ��� ) (6 axioms)

Dum = S4� �( Æ

�� ��ÆÆ Æ
AAK ��� )� �(

�� ��ÆÆ
Æ
6

)

K4BWn = K4� �( �

n+1z }| {� � � � �
@@I ��� ) (2n+ 4 axioms)

K4BDn = K4� �( �
�

�

6

...
6

0

1

n

) (2n+1 axioms)

K4n;m = K4� �( �
�

�

6

...
6

0

1

m

;D])
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axioms in �nite frames, and the restriction of the size of refutation frames
is replaced by constructing all possible derivations: in a �nite number of
steps we either separate a tested formula from the logic or derive it. Note
that unlike the previous case now we cannot estimate the time required to
complete this algorithm.

The condition of �nite axiomatizability in Harrop's Theorem cannot be
weakened to that of recursive axiomatizability. For there is a logic of depth
3 in NExtK4 (i.e., a logic in NExtK4BD3) with an in�nite set of inde-
pendent axioms; so the logic of depth 3 axiomatizable by some recursively
enumerable but not recursive sequence of formulas in this set is undecid-
able and has FMP. On the other hand there are examples of undecidable
logics characterized by decidable classes of �nite frames (see e.g. [Chagrov
and Zakharyaschev 1997]). Yet one can generalize Harrop's Theorem in
the following way. A logic is decidable i� it is recursively enumerable and
characterized by a recursive class of recursive algebras. However, this cri-
terion is absolutely useless in its generality. In this connection we note two
open problems posed by Kuznetsov [1979]. Is every �nitely axiomatizable
logic characterized by recursive algebras? Is every �nitely axiomatizable
logic, characterized by recursive algebras, decidable? (That �nite axiom-
atizability is essential here is explained by the following fact: if a lattice
of logics contains a logic with a continuum of immediate predecessors then
there is no countable sequence of algebras such that every logic in the lattice
is characterized by one of its subsequences. For details see [Chagrov and
Zakharyaschev 1997].)

FMP of almost all standard systems was proved using various forms of
�ltration (consult Section 12 Basic Modal Logic and [Gabbay 1976]). How-
ever, the method of �ltration is rather capricious; one needs a special craft
to apply it in each particular case (for instance, to �nd a suitable \�lter").
In this and two subsequent sections we discuss other methods of proving
FMP which are applicable to families of logics and provide in fact suÆcient
conditions of FMP. (It is to be noted that the families of Kripke complete
logics considered in Section 1.3 contain logics without FMP.) A pair of such
conditions was already presented in Basic Modal Logic:

THEOREM 46 (Segerberg 1971). Each logic in NExtK4 characterized by a
frame of �nite depth (or, which is equivalent, containing K4BDn, for some
n < !) has FMP.

THEOREM 47 (Bull 1966b, Fine 1971). Each logic in NExtS4:3 has FMP
and is �nitely axiomatizable (and so decidable).

The former result, covering a continuum of logics, follows immediately
from the description of �nitely generated re�ned frames forK4 in Section 1.2
and the latter is a consequence of Theorem 52 and Example 54 below. It
is worth noting also that since FL(n) is �nite for every logic L 2 NExtK4
of �nite depth and every n < !, there are only �nitely many pairwise
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non-equivalent in L formulas with n variables. Logics with this property
are called locally tabular (or locally �nite). Moreover, as was observed by
Maksimova [1975a], the converse is also true: if L 2 NExtK4 has frames
of any depth < ! then the formulas in the sequence '1 = p, 'n+1 =
p _ �(p ! �'n) are not equivalent in L. Thus, a logic in NExtK4 is
locally tabular i� it is of �nite depth. For L 2 NExtS4 this criterion can be
reformulated in the following way: L is not locally tabular i� L � Grz:3,
where Grz:3 = S4:3�Grz. Likewise, L 2 NExtGL is not locally tabular i�
L � GL:3. Nagle and Thomason [1985] showed that all normal extensions
of K5 are locally tabular.

Uniform logics Fine [1975a] used a modal analog of the full disjunctive
normal form for constructing �nite models and proving FMP of a family
of logics in NExtD (containing in particular the McKinsey system K �
��p ! ��p which had resisted all attempts to prove its completeness by
the method of canonical models and �ltration). Let us notice �rst that every
formula '(p1; : : : ; pm) is equivalent in K either to ? or to a disjunction
of normal forms (in the variables p1; : : : ; pm) of degree md('), which are
de�ned inductively in the following way. NF0, the set of normal forms of
degree 0, contains all formulas of the form :1p1 ^ � � � ^ :mpm, where each
:i is either blank or :. NFn+1, the set of normal forms of degree n + 1,
consists of formulas of the form

� ^ :1��1 ^ � � � ^ :k��k ;
where � 2 NF0 and �1; : : : ; �k are all distinct normal forms in NFn. Put
NF =

S
n<!NFn. Using the fact that

Wf�� : � 2 NFng 2 D it is not hard
to see also that in D every formula ' with md(') � n is equivalent either
to ? or to a disjunction of normal forms of degree n such that at least one
of :1; : : : ;:k in the inductive step of the de�nition above is blank. Such
normal forms are called D-suitable.

It should be clear that, for any distinct �0; �00 2 NFn, :(�0 ^ �00) 2 K.
Consequently, for every � 2 NFn and every '(p1; : : : ; pm) with md(') � n,
we have either � ! ' 2 K or � ! :' 2 K.

With each D-suitable normal form � we associate a model M� = hF�;V�i
on a frame F� = hW�; R�i by taking

W� = f>g [ f�0 2 NF : �0 <n �; for some n � 0g;
�0 < �00 i� ��0 is a conjunct of �00;

�0R��00 i� either �0 > �00 or md(�0) = 0 and �00 = >;
V�(p) = f�0 2W� : p is a conjunct of �0g:

According to the de�nition, > is the reexive last point in F� and so F� is
serial. By a straightforward induction on the degree of �0 2 W� one can
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readily show that (M�; �
0) j= �0. It follows immediately that D has FMP.

Indeed, given ' 62 D, we reduce :' to a disjunction of D-suitable normal
forms with at least one disjunct �, and then (M�; �) j= �.

It turns out that in the same way we can prove FMP of all logics in
NExtD axiomatizable by uniform formulas, which are de�ned as follows.
Every ' without modal operators is a uniform formula of degree 0; and if
' =  (1�1; : : : ;m�m), where i 2 f�;�g, md( (p1; : : : ; pm)) = 0 and
�1; : : : ; �m are uniform formulas of degree n, then ' is a uniform formula
of degree n+1. A remarkable property of uniform formulas is the following:

PROPOSITION 48. Suppose ' is a uniform formula of degree n and M,
N are models based upon the same frame and such that, for some point x,
(M; y) j= p i� (N; y) j= p for every y 2 x"n and every variable p in '. Then
(M; x) j= ' i� (N; x) j= '.

Given a logic L, we call a normal form � L-suitable if F� j= L.

THEOREM 49 (Fine 1975a). Every logic L 2 NExtD axiomatizable by
uniform formulas has FMP.

Proof. It suÆces to prove that each formula ' with md(') � n is equivalent
in L either to ? or to a disjunction of L-suitable normal forms of degree n.
And this fact will be established if we show that every D-suitable normal
form � such that � ! ? 62 L is L-suitable. Suppose otherwise. Let � be an
L-consistent and D-suitable normal form of the least possible degree under
which it is not L-suitable. Then there are a uniform formula  2 L of some
degree m and a model M = hF�;Vi such that (M; �) 6j=  .

For every variable p in  , let �p = f�0 2 � "m: (M; �0) j= pg and let
Æp =

W
�p (if �p = ; then Æp = ?). Observe that for every �0 2 �"m we

have (M�; �
0) j= Æp i� �0 2 �p i� (M; �0) j= p. Therefore, by Proposition 48,

the formula  0 which results from  by replacing each p with Æp is false
at � in M�. Now, if md( 0) > n then m > n and so Æp = ? for every p
in  , i.e.,  0 is variable free. But then  0 is equivalent in D to > or ?,
contrary to F� 6j=  0 and L being consistent. And if md( 0) � n then either
� !  0 2 K, which is impossible, since (M�; �) 6j= � !  0, or � ! : 0 2 K,
from which  0 ! :� 2 K and so :� 2 L, contrary to � being L-consistent.

�

Logics with ��-axioms Another result, connecting FMP of logics with
the distribution of � and � over their axioms, is based on the following

LEMMA 50. For any ' and  , �'$ � 2 S5 i� ��'$ �� 2 K4.
Proof. Suppose ��'! �� 62 K4. Then there is a �nite model M, based
on a transitive frame, and a point x in it such that x j= ��' and x 6j= �� .
It follows from the former that every �nal cluster accessible from x, if any,
is non-degenerate and contains a point where ' is true. The latter means
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that x sees a �nal cluster C at all points of which  is false. Now, taking the
generated submodel of M based on C, we obtain a model for S5 refuting
�'! � . The rest is obvious, since �p$ ��p is in S5 and K4 � S5. �

Formulas in which every occurrence of a variable is in the scope of a
modality �� will be called ��-formulas.

THEOREM 51 (Rybakov 1978). If a logic L 2 NExtK4 is decidable (or
has FMP) and  is a ��-formula then L� is also decidable (has FMP).

Proof. Let  =  0(���1; : : : ;���n), for some formula  0(q1; : : : ; qn). If
'(p1; : : : ; pm) 2 L� then there exists a derivation of ' in L� in which
substitution instances of  contain no variables di�erent from p1; : : : ; pm.
Each of these instances has the form  0(���01; : : : ;���

0
n), where every �0i is

some substitution instance of �i containing only p1; : : : ; pm. By Lemma 50
and in view of the local tabularity of S5 (it is of depth 1), there are �nitely
many pairwise non-equivalent in K4 substitution instances of ���i of that
sort (the reader can easily estimate the number of them). So there exist
only �nitely many pairwise non-equivalent in K4 substitution instances of
 containing p1; : : : ; pm, say  1; : : : ;  k, and we can e�ectively construct
them. Then, by the Deduction Theorem,

' 2 L�  i�  1; : : : ;  k `�L ' i� �+( 1 ^ � � � ^  k)! ' 2 L

and so L� is decidable (or has FMP) whenever L is decidable (has FMP).
�

It should be noted that by adding to L with FMP in�nitely many ��-
formulas we can construct an incomplete logic. For a concrete example see
[Rybakov 1977]. By adding a variable free formula to a logic in NExtK with
FMP one can get a logic without FMP. However, K � ', ' variable free,
has FMP, as can be easily shown by the standard �ltration through the set
Sub'[Sub , where  62 K�'. In�nitely many variable free formulas can
axiomatize a normal extension of K4 without FMP (for a concrete example
see [Chagrov and Zakharyaschev 1997]).

1.8 Subframe and co�nal subframe logics

A very useful source of information for investigating various properties of
logics in NExtK4 is their canonical axioms. Notice, for instance, that the
canonical axioms of all logics in Table 2, save A� and K4n;m, contain no
closed domains. Canonical and negation free canonical formulas of the form
�(F) and �(F;?) are called subframe and co�nal subframe formulas, respec-
tively, and logics in NExtK4 axiomatizable by them are called subframe and
co�nal subframe logics. The classes of such logics will be denoted by SF
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and CSF . Subframe and co�nal subframe logics in NExtK4 were studied
by Fine [1985] and Zakharyaschev [1984, 1988, 1996].

THEOREM 52. All logics in SF and CSF have FMP.

Proof. Suppose L = K4� f�(Fi;?) : i 2 Ig and ' 62 L. By Theorem 44,
without loss of generality we may assume that ' is a canonical formula,
say, �(F;D;?). Now consider two cases. (1) For no i 2 I , F is co�nally
subreducible to Fi. Then F j= L, F 6j= �(F;D;?), and we are done. (2) F
is co�nally subreducible to �(Fi;?), for some i 2 I . In this case we have
�(F;D;?) 2 K4� �(Fi;?) � L, which is a contradiction. Indeed, suppose
G 6j= �(F;D;?). Then there is a co�nal subreduction of G to F. And since
the composition of (co�nal) subreductions is again a (co�nal) subreduction,
G is co�nally subreducible to Fi, which means that G 6j= �(Fi;?). Subframe
logics are treated analogously. �

The names \subframe logic" and \co�nal subframe logic" are explained
by the following frame-theoretic characterization of these logics. A subframe
G = hV; S;Qi of a frame F is called co�nal if V "� V # in F. Say that a class
C of frames is closed under (co�nal) subframes if every (co�nal) subframe
of F is in C whenever F 2 C.
THEOREM 53. L 2 NExtK4 is a (co�nal) subframe logic i� it is charac-
terized by a class of frames that is closed under (co�nal) subframes.

Proof. Suppose L 2 CSF . We show that the class of all frames for L is
closed under co�nal subframes. Let G j= L and H be a co�nal subframe
of G. If H 6j= �(F;?), for some �(F;?) 2 L, then (since G is co�nally
subreducible to H) G 6j= �(F;?), which is a contradiction. So H j= L.

Now suppose that L is characterized by some class of frames C closed
under co�nal subframes. We show that L = L0, where

L0 = K4� f�(F;?) : F 6j= Lg:

If F is a �nite rooted frame and F 6j= L then �(F;?) 2 L, for otherwise
G 6j= �(F;?) for some G 2 C, and hence there is a co�nal subframe H of
G which is reducible to F; but H 2 C and so, by the Reduction Theorem,
F is a frame for L, which is a contradiction. Thus, L0 � L. To prove the
converse, suppose �(F;D;?) 2 L. Then F 6j= L, and hence �(F;?) 2 L0,
from which �(F;D;?) 2 L0.

Subframe logics are considered in the same way. �

It follows in particular that SF � CSF (K4:1 and K4:2 are co�nal
subframe logics but not subframe ones). One can easily show also that
CSF is a complete sublattice of NExtK4 and SF a complete sublattice of
CSF .
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EXAMPLE 54. Every normal extension of S4:3 is axiomatizable by canon-
ical formulas which are based on chains of non-degenerate clusters and so
have no closed domains. Therefore, NExtS4:3 � CSF .

The classes SF and CSF � SF contain a continuum of logics. And
yet, unlike NExtK or NExtK4, their structure and their logics are not so
complex. For instance, it is not hard to see that every logic in CSF is
uniquely axiomatizable by an independent set of co�nal subframe formulas
and so these formulas form an axiomatic basis for CSF .

The concept of subframe logic was extended in [Wolter 1993] to the class
NExtK by taking the frame-theoretic characterization of Theorem 53 as
the de�nition. Namely, we say that L 2 NExtK is a subframe logic if the
class of frames for L is closed under subframes. In other words, subframe
logics are precisely those logics whose axioms \do not force the existence of
points". For example, K, KB, K5, T, and Altn are subframe logics. To
give a syntactic characterization of subframe logics we require the following
formulas.

For a formula ' and a variable p not occurring in ', de�ne a formula 'p

inductively by taking

qp = q ^ p; q an atom;
( � �)p =  p � �p; for � 2 f^;_;!g;
(� )p = �(p!  p) ^ p

and put 'sf = p! 'p.

LEMMA 55. For any frame F, F j= 'sf i� ' is valid in all subframes of F.

Proof. It suÆces to notice that if M is a model based on F, M0 a model
based on the subframe of F induced by fy : (M; y) j= pg and (M; x) j= q i�
(M0; x) j= q, for all variables q, then (M; x) j= 'p i� (M0; x) j= '. �

PROPOSITION 56. The following conditions are equivalent for any modal
logic L:

(i) L is a subframe logic;
(ii) L = K� f'sf : ' 2 �g, for some set of formulas �;
(iii) L is characterized by a class of frames closed under subframes.

Proof. The implication (i) ) (iii) is trivial; (iii) ) (ii) and (ii) ) (i) are
consequences of Lemma 55. �

It follows that the class of subframe logics forms a complete sublattice of
NExtK. However, not all of them have FMP and even are Kripke complete.

EXAMPLE 57. Let L be the logic of the frame F constructed in Example 7.
Since every rooted subframe G of F is isomorphic to a generated subframe
of F, L is a subframe logic. We show that L has the same Kripke frames
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as GL:3. Suppose G is a rooted Kripke frame for GL:3 refuting ' 2 L.
Then clearly G contains a �nite subframe H refuting '. Since H is a �nite
chain of irreexive points, it is isomorphic to a generated subframe of F,
contrary to F 6j= '. Thus G j= L. Conversely, suppose G is a Kripke
frame for L. Then G is irreexive. For otherwise G refutes the formula
' = �2(�p ! p) ^ �(�p ! p) ! �p, which is valid in F. Let us show
now that G is transitive. Suppose otherwise. Then G refutes the formula
�p! �(�p_ (�q ! q)), which is valid in F because ! is a reexive point.
Finally, since G j= ', G is Noetherian and since F is of width 1, we may
conclude that G j= GL:3. It follows that the subframe logic L is Kripke
incomplete. Indeed, it shares the same class of Kripke frames with GL:3
but �p! ��p 2 GL:3� L.

The following theorem provides a frame-theoretic characterization of those
complete subframe logics in NExtK that are elementary, D{persistent and
strongly complete. Say that a logic L has the �nite embedding property if
a Kripke frame F validates L whenever all �nite subframes of F are frames
for L.

THEOREM 58 (Fine 1985). For each Kripke complete subframe logic L the
following conditions are equivalent:

(i) L is universal;9

(ii) L is elementary;
(iii) L is D{persistent;
(iv) L is strongly Kripke complete;
(v) L has the �nite embedding property.

Proof. The implications (i) ) (ii) and (iii) ) (iv) are trivial; (ii) )
(iii) follows from Fine's [1975b] Theorem formulated in Section 1.3 and
(v) ) (i) from [Tarski 1954]. Thus it remains to show that (iv) ) (v).
Suppose F is a Kripke frame with root r such that F 6j= L but all �nite
subframes of F validate L. Then it is readily checked that all �nite subsets of
� = fprg[�<!�F are L-consistent. Hence the whole set � is L-consistent.
On the other hand, similarly to the proof of Lemma 13 one can show that
� is satis�able in a Kripke frame i� the frame is subreducible to F. So �
cannot be satis�ed in a Kripke frame for L and L is not strongly complete.

�

A similar criterion for the co�nal subframe logics in NExtK4 can be
found in [Zakharyaschev 1996]. Note, however, that they are not in general
universal and certainly do not have the �nite embedding property, but (ii),
(iii) and (iv) are still equivalent.

PROPOSITION 59. Every subframe logic L 2 NExtAltn has FMP.

9I.e., universal is the class of Kripke frames for L considered as models of the �rst
order language with R and =.
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Proof. Suppose ' 62 L. By Theorem 22, there is a Kripke frame F for L
refuting ' at a point x. Denote by X the set of points in F accessible from
x by � md(') steps. Clearly, X is �nite and the subframe of F induced by
X validates L and refutes '. �

To understand the place of incomplete logics in the lattice of subframe
logics we call a subframe logic L strictly sf-complete if it is Kripke complete
and no other subframe logic has the same Kripke frames as L. Example 57
shows that GL:3 is not strictly sf-complete. However, the logics T, S4
and Grz turn out to be strictly sf-complete. The following result clari�es
the situation. It is proved by applying the splitting technique to lattices of
subframe logics.

THEOREM 60. A subframe logic L containing K4 is strictly sf-complete
i� L 6� GL:3. All subframe logics in NExtAltn are strictly sf-complete.
A subframe logic is tabular i� there are only �nitely many subframe logics
containing it.

1.9 More suÆcient conditions of FMP

As follows from Theorem 52, a logic in NExtK4 does not have FMP only if
at least one of its canonical axioms contains closed domains. We illustrate
their role by a simple example.

EXAMPLE 61. Consider the logic L = K4:3� �](F;?) and the formula
�(F;?), where F is the frame depicted in Fig. 5 (a). The frame G in
Fig. 5 (b) separates �(F;?) from L. Indeed, F is a co�nal subframe of G
and so G 6j= �(F;?). To show that G j= �](F;?), suppose f is a co�nal
subreduction of G to F. Then f�1(1) contains only one point, say x; f�1(0)
also contains only one point, namely the root of G. So the in�nite set of
points between x and the root is outside domf , which means that f does
not satisfy (CDC) for ff1gg. On the other hand, if H is a �nite refutation
frame of width 1 for �(F;?) then H contains a generated subframe reducible
to F, from which H 6j= L. Thus, L fails to have FMP. In the same manner
the reader can prove that A� in Table 2 does not have FMP either.
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We show now two methods developed in [Zakharyaschev 1997a] for es-
tablishing FMP of logics whose canonical axioms contain closed domains.
One of them uses the following lemma, which is an immediate consequence
of the refutability criterion for the canonical formulas.

LEMMA 62. Suppose �(F;D) and �(G;E) (�(F;D;?) and �(G;E;?)) are
canonical formulas such that there is a (co�nal) subreduction f of G to F
satisfying (CDC) for D and an antichain e � domf " is in E whenever
f(e") = d" for some d 2 D. Then �(G;E) 2 K4 � �(F;D) (respectively,
�(G;E;?) 2 K4� �(F;D;?)).

THEOREM 63. L = K4� f�(Fi;Di;?) : i 2 Ig � f�(Fj ;Dj) : j 2 Jg has
FMP provided that either all frames Fi, for i 2 I [ J , are irreexive or all
of them are reexive.

Proof. Suppose all Fi are irreexive and �(G;E;?) is an arbitrary canon-
ical formula. We construct from G a new �nite frame H by inserting into it
new reexive points. Namely, suppose e is an antichain in G such that e 62 E.
Suppose also that C1; : : : ; Cn are all clusters in G such that e � Ci" and
e \ Ci = ;, for i = 1; : : : ; n, but no successor of Ci possesses this property.
Then we insert in G new reexive points x1; : : : ; xn so that each xi could
see only the points in e and their successors and could be seen only from the
points in Ci and their predecessors. The same we simultaneously do for all
antichains e in G of that sort. The resulting frame is denoted by H. Since
no new point was inserted just below an antichain in E, H 6j= �(G;E;?).

Suppose now that �(G;E;?) 62 L and show that H j= L. If this is not so
then either H 6j= �(Fi;Di;?), for some i 2 I , or H 6j= �(Fj ;Dj), for some
j 2 J . We consider only the former case, since the latter one is treated
similarly. Thus, we have a co�nal subreduction f of H to Fi satisfying
(CDC) for Di. Since Fi is irreexive, no point that was added to G is in
domf . So f may be regarded as a co�nal subreduction of G to Fi satisfying
(CDC) forDi. We clearly may assume also that the subframe ofG generated
by domf is rooted. Let e be an antichain in G belonging to domf" and such
that f(e") = d" for some d 2 Di. If e 62 E then there is a reexive point
x in H such that x 2 domf" and x sees only e" and, of course, itself. But
then f(x") = f(e") = d" and so, by (CDC), x 2 domf , which is impossible.
Therefore, e 2 E and so, by Lemma 62, �(G;E;?) 2 L, contrary to our
assumption.

In the case of reexive frames irreexive points are inserted. �

EXAMPLE 64. According to Theorem 63, the logic

L = K4� �( �
� �
AAK ���

1 2

; ff1g; f1; 2gg)
has FMP. However, Artemov's logic A� = L � GL does not enjoy this
property. So FMP is not in general preserved under sums of logics.
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The scope of the method of inserting points is not bounded only by canon-
ical axioms associated with homogeneous (irreexive or reexive) frames. It
can be applied, for instance, to normal extensions of K4 with modal reduc-
tion principles, i.e., formulas of the form Mp!Np, where M and N are
strings of � and � (for �rst order equivalents of modal reduction principles
see [van Benthem 1976]). One can show that each such logic is either of
�nite depth, or can be axiomatized by ��-formulas and canonical formulas
based upon almost homogeneous frames (containing at most one reexive
point), for which the method works as well. So we have

THEOREM 65. All logics in NExtK4 axiomatizable by modal reduction
principles have FMP and are decidable.

One of the most interesting open problems in completeness theory of
modal logic is to prove an analogous theorem for logics in NExtK or to
construct a counter-example. It is unknown, in particular, whether the
logics of the form K��mp! �np have FMP; the same concerns the logics
K� tran.

The second method of proving FMP uses the more conventional technique
of removing points. Suppose that L = K4 � f�(Gi;Di;?) : i 2 Ig and
� = �(H;E;?) 62 L. Then there exists a frame F for L such that F 6j= �,
i.e., there is a co�nal subreduction h of F to H satisfying (CDC) for E.
Construct the countermodel M = hF;Vi for � as it was done in Section 1.6.
Without loss of generality we may assume that domh" = domh# = F and
that F is generated by the sets V(pi), pi a variable in �.

Actually, the step-wise re�nement procedure with deleting points having
Sub�-equivalent successors, used in the proof of Theorem 42, establishes
FMP of L when all Di are empty, i.e., L is a co�nal subframe logic. To
tune it for L with non-empty Di, we should follow a subtler strategy of
deleting points, preserving those that are \responsible" for validating the
axioms of L. Suppose we have already constructed a model M0

n = hF0n;V0
ni

by \folding up" n� 1-cyclic sets into clusters of depth n (we use the same
notations as in the proof of Theorem 42). Now we throw away points of two
sorts.

First, for every proper cluster C of depth n such that some x 2 C has
a Sub�-equivalent successor of depth < n, we remove from C all points
except x. Second, call a point x of depth > n redundant in M0

n if it has
a Sub�-equivalent successor of depth � n and, for every i 2 I and every
co�nal subreduction g of (F0n)�n to the subframe of Gi generated by some
d 2 Di such that d � g(x") and g satis�es (CDC) for Di, there is a point
y 2 x " of depth � n such that g(y ") = d". Let X be the maximal
set of redundant points in M0

n which is upward closed in (W 0
n)>n. We

de�ne Mn+1 = hFn+1;Vn+1i as the submodel of M0
n resulting from it by

removing all points in X as well. Since all deleted points have Sub�-
equivalent successors, Mn+1 6j= �. And since we keep in Fn+1 points which
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violate (CDC) for Di of possible co�nal subreductions to Gi, Fn+1 j= L.
So FMP of L will be established if we manage to prove that this process
eventually terminates.

EXAMPLE 66. Let L = S4 � �(G; ff1; 2gg;?), where G is Æ
Æ Æ
Æ

AAK ���

61
2

, and
assume that our \algorithm", when being applied to F, � and L, works
in�nitely long. Then the frame F! = hW!; R!i, where

W! =
[

0<i<!

W�i
i ; R! =

[
0<i<!

R�ii ; Fi = hWi; Ri; Pii ;

is of in�nite depth. By K�onig's Lemma, there is an in�nite descending
chain : : : xiR!xi�1 : : : R!x2R!x1 in F! such that xi is of depth i. Since
there are only �nitely many pairwise non-Sub�-equivalent points, there
must be some n > 0 such that, for every k � n, each point in C(xk) has a

Sub�-equivalent successor in F<kk . And since F�11 is �nite, there is m � n
starting from which all xi see the same points of depth 1. Let us consider
now Fm and ask why points in the m-cyclic set X , folded at step m + 1
into C(xm+1), were not removed at step m. X is upward closed in W>m

m

and every point in it has a Sub�-equivalent successor in F�mm . So the only
reason for keeping some x 2 X is that F�mm is co�nally subreducible to G�1,
x sees inverse images of both points in G�1 but none of its successors in
F�mm does. By the co�nality condition, these inverse images can be taken

from F
�1
1 . But then they are also seen from xm, which is a contradiction.

Thus sooner or later our algorithm will construct a �nite frame separating
L from �, which proves that L has FMP.

The reason why we succeeded in this example is that inverse images of
points in the closed domain f1; 2g can be found at a �xed �nite depth in
F!, and so points violating (CDC) for it can also be found at �nite depth
(that was not the case in Example 61). The following de�nitions describe a
big family of frames and closed domains of that sort.

A point x in a frame G is called a focus of an antichain a in G if x 62 a
and x" = fxg [ a". Suppose G is a �nite frame and D a set of antichains
in G. De�ne by induction on n notions of n-stable point in G (relative to
D) and n-stable antichain in D. A point x is 1-stable in G i� either x is of
depth 1 in G or the cluster C(x) is proper. A point x is n + 1-stable in G
(relative to D) i� it is not m-stable, for any m � n, and either there is an
n-stable point in G (relative to D) which is not seen from x or x is a focus
of an antichain in D containing an n�1-stable point and no n-stable point.
And we say an antichain d in D is n-stable i� it contains an n-stable point
in the subframe G0 of G generated by d (relative to D) and no m-stable
point in G0 (relative to D), for m > n. A point or an antichain is stable if
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Figure 6.

it is n-stable for some n. It should be clear that if a point in an antichain
is stable then the rest points in the antichain are also stable.

EXAMPLE 67.

(1) Suppose G is a �nite rooted generated subframe of one of the frames
shown in Fig. 6 (a){(c). Then, regardless of D, each point in G di�er-
ent from its root is n-stable, where n is the number located near the
point. Every antichain d in G, containing at least two points, is also
n-stable, with n being the maximal degree of stability of points in d.

(2) If G is a rooted generated subframe of the frame depicted in Fig. 6 (d)
and D is the set of all two-point antichains in G then every point in
G is n-stable (relative to D), where n stays near the point. However,
for D = ; no point in G, save those of depth 1, is stable.

(3) If G is a �nite tree of clusters then every antichain in G, di�erent
from a non-�nal singleton, is either 1- or 2-stable in G regardless of
D. Every antichain containing a point x with proper C(x) is 1- or
2-stable as well, whatever G and D are.

(4) Every antichain is stable in every irreexive frame G relative to the
set D] of all antichains in G. However, this is not so if G contains
reexive points (for reexive singletons are open domains and do not
belong to D]).

The suÆcient condition of FMP below is proved by arguments that are
similar to those we used in Example 66.

THEOREM 68. If L = K4�f�(Gi;Di;?) : i 2 Ig and there is d > 0 such
that, for any i 2 I, every closed domain d 2 Di is n-stable in Gi (relative
to Di), for some n � d, then L has FMP.

Example 67 shows many applications of this condition. Moreover, using
it one can prove the following
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THEOREM 69. Every normal extension of S4 with a formula in one vari-
able has FMP and is decidable.

Note that, as was shown by Shehtman [1980], a formula with two variables
or an in�nite set of one-variable formulas can axiomatize logics in NExtS4
without FMP (and even Kripke incomplete).

1.10 The reduction method

That a logic does not have FMP (or is Kripke incomplete) is not yet an
evidence of its undecidability: it is enough to recall that the majority of
decidability results for classical theories was proved without using any ana-
logues of the �nite model property (see e.g. [Rabin 1977], [Ershov 1980]).
The �rst example of a decidable �nitely axiomatizable modal logic without
FMP was constructed by Gabbay [1971].

It seems unlikely that the methods of classical model theory can be ap-
plied directly for proving the decidability of propositional modal logics.
However, sometimes it is possible to reduce the decision problem for a given
modal logic L to that for a knowingly decidable �rst or higher order theory
whose language is expressive enough for describing the structure of frames
characterizing L. The most popular tools used for this purpose are B�uchi's
[1962] Theorem on the decidability of the weak monadic second order theory
of the successor function on natural numbers and Rabin's [1969] Tree The-
orem. Below we illustrate the use of Rabin's Theorem following [Gabbay
1975] and [Cresswell 1984].

Let !� be the set of all �nite sequences of natural numbers and � the
lexicographic order on it. For x 2 !� and i < !, put ri(x) = x � i, where
� denotes the usual concatenation operation. Besides, de�ne the following
predicates <i on !�, for 0 � i � 2,

x <i y i� y = x � (3n+ i) for some n < !:

It follows from [Rabin 1969] that the monadic second order theory S!S
of the model h!�; fri : i < !g; f<i: 0 � i � 2g;�; ;i (; denotes the empty
sequence) is decidable.

The theory S!S has a very strong expressive power which makes it pos-
sible to e�ectively describe semantical de�nitions of many modal (as well as
some other) logics and thereby prove their decidability. In this way Gabbay
[1975] established the decidability of, for instance,

K��m�p! �p; K� �m�p! �p;

K��mp! �np; K� �mp! �np:

By Sahlqvist's Theorem, all these logics are Kripke complete; however, we
do not know whether they have FMP. General frames can also be described
by means of S!S.



ADVANCED MODAL LOGIC 135

EXAMPLE 70. The frame F = hW;R; P i constructed in Example 7 can
be represented in the language of S!S as follows. Let us encode each n < !
by the sequence h3ni, while ! and ! + 1 by r1(;) and r2(;), respectively.
Then we have

x 2W i� ; <0 x _ x = r1(;) _ x = r2(;);
xRy i� (; <0 x ^ ; <0 y ^ y � x ^ x 6= y) _

(x = r1(;) ^ ; <0 y) _ x = y = r1(;) _
(x = r2(;) ^ y = r1(;));

X 2 P i� 8x (x 2 X ! x 2W ) ^ ((Fin(X) ^ r1(;) =2 X) _
8Y (8y (y 2 Y $ (y 2W ^ y =2 X))! Fin(Y ) ^ r1(;) =2 Y ));

where x = y means x � y ^ y � x and

Fin(X) = 9x8y (y 2 X ! y � x):

It follows that the logic LogF is decidable. Indeed, for every formula
'(p1; : : : ; pn), we have ' 2 LogF i� the second order formula

8x8X1; : : : ; Xn (X1 2 P ^ � � � ^Xn 2 P ^ x 2W ! ST ('(X1; : : : ; Xn)))

belongs to S!S. Here ST ('(X1; : : : ; Xn)), the standard translation of ', is
de�ned inductively in the following way (see also Correspondence Theory):

ST (X) = x 2 X; ST (?) = ?;
ST (X � Y ) = ST (X)� ST (Y ); for � 2 f^;_;!g;

ST (�X) = 8y (xRy ! ST (X)fy=xg):
Recall that, as was shown in Example 57, LogF is Kripke incomplete.

Also, it is not hard to �nd examples of applications of this technique
for proving the decidability of �nitely axiomatizable quasi-normal unimodal
and normal polymodal (in particular, tense) logics which do not have Kripke
frames at all; perhaps, the simplest one is Solovay's logic S.

Sobolev [1977a] found another way of proving decidability by applying
methods of automata theory on in�nite sequences. Using the results of
[B�uchi and Siefkes 1973] he showed that all �nitely axiomatizable superin-
tuitionistic logics of �nite width (see Section 3.4) containing the formula

(((p! q)! p)! p) _ (((q ! p)! q)! q):

are decidable. By the preservation theorem of Section 3.3, this result can
be transferred to the corresponding extensions of S4.

If a logic is known to be complete with respect to a suitable class of
frames, the methods discussed above are usually applicable to it in a rather
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straightforward manner. A relative disadvantage of this approach is that the
resulting decision algorithms inherit the extremely high complexity of the
decision algorithms for S!S or other \rich theories" used to prove decidabil-
ity. On the other hand, the logic S, for instance, turns out to be decidable
by an algorithm of the same complexity as that for GL (see Example 75),
in particular, the derivability problem in S is PSPACE-complete. The
logic of the frame F in Example 7 is \almost trivial"|it is polynomially
equivalent to classical propositional logic, which follows from the fact that
every formula ' refutable by F can be also refuted in F under a valua-
tion giving the same truth-value to all variables in ' at all points i such
that jSub'j < i < ! (see Section 4.6). Actually, this sort of decidability
proofs (ignoring \inessential" parts of in�nite frames) was used already by
Kuznetsov and Gerchiu [1970] for studying some superintuitionistic logics.

Recently more general semantical methods of obtaining decidability re-
sults without turning to \rich theories" have been developed. We demon-
strate them in the next section by establishing the decidability of all �nitely
axiomatizable logics in NExtK4:3, which according to Example 61 do not
in general have FMP. We show, however, that those logics are complete
with respect to recursively enumerable classes of recursive frames in which
the validity of formulas can be e�ectively checked|it was this rather than
the �niteness of frames that we used in the proof of Harrop's Theorem. In
Section 2.5 this result will be extended to linear tense logics which in general
are not even Kripke complete. Our presentation follows [Zakharyaschev and
Alekseev 1995].

1.11 Logics containing K4:3

Each logic in L 2 NExtK4:3 is represented in the form

L = K4:3� f�(Fi;Di;?) : i 2 Ig;

where all Fi are chains of clusters. So our decidability problem reduces to
�nding an algorithm which, given such a representation with �nite I and
a canonical formula �(F;D;?) built on a chain of clusters F, could decide
whether �(F;D;?) 2 L. Recall also that, by Fine's [1974c] Theorem, logics
of width 1 are characterized by Kripke frames having the form of Noetherian
chains of clusters.

LEMMA 71. For any Noetherian chain of clusters G and any canonical
formula �(F;D;?), G 6j= �(F;D;?) i� there is an injective10 co�nal subre-
duction g of G to F satisfying (CDC) for D.

Proof. If G 6j= �(F;D;?) then there is a co�nal subreduction f of G to
F satisfying (CDC) for D. Clearly, f�1(x) is a singleton if x is irreexive.

10That is g(x) 6= g(y), for every distinct x; y 2 domg.
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Suppose now that x is a reexive point in F. Since G contains no in�nite
ascending chains, f�1(x) has a �nite cover and so there is a reexive point
ux 2 f�1(x) such that f�1(x) � ux#. Fix such a ux for each reexive x and
de�ne a partial map g by taking

g(y) =

8<
:

f(y) if either f(y) is irreexive or
f(y) is reexive and y = uf(y)

unde�ned otherwise.

One can readily check that g is the injective co�nal subreduction we need.
The converse is trivial. �

Roughly, every Noetherian chain of clusters refuting �(F;D;?) results
from F by inserting some Noetherian chains of clusters just below clusters
C(x) in F such that fxg 62 D. We show now that if �(F;D;?) is not in
L 2 NExtK4:3 then it can be separated from L by a frame constructed
from F by inserting in open domains between its adjacent clusters either
�nite descending chains of irreexive points possibly ending with a reexive
one or in�nite descending chains of irreexive points.

Let C(x0); : : : ; C(xn) be all distinct clusters in F ordered in such a way
that C(x0) � C(x1)# � � � � � C(xn)#. Say that an n-tuple t = h�1; : : : ; �ni
is a type for �(F;D;?) if either �i = m or �i = m+, for some m < !, or
�i = !, with �i = 0 if fxig 2 D. Given a type t = h�1; : : : ; �ni for �(F;D;?),
we de�ne the t-extension of F to be the frame G that is obtained from F

by inserting between each pair C(xi�1), C(xi) either a descending chain of
m irreexive points, if �i = m < !, or a descending chain of m + 1 points
of which only the last (lowest) one is reexive, if �i = m+, or an in�nite
descending chain of irreexive points, if �i = !. It should be clear that
G 6j= �(F;D;?).

LEMMA 72. If L 2 NExtK4:3 and �(F;D;?) 62 L then �(F;D;?) is
separated from L by the t-extension of F, for some type t for �(F;D;?).

Proof. By Lemma 71, we have a Noetherian chain of clusters G for L and
an injective co�nal subreduction f of G to F satisfying (CDC) for D. By
the Generation Theorem, we may assume that f maps the root of G to the
root of F. Let G0 be the subframe of G obtained by removing from G all
those points that are not in domf but belong to clusters containing some
points in domf . The very same map f is an injective co�nal subreduction
of G0 to F satisfying (CDC) for D, and so G0 6j= �(F;D;?). Since G0 is a
reduct of G, G0 j= L.

Let C(x0); : : : ; C(xn) be all distinct clusters in G0 such that

domf =

n[
i=0

C(xi); C(x0) � C(x1)# � � � � � C(xn)#:
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By induction on i we de�ne a sequence of frames G0 � � � � � Gn such that
(a) f is an injective co�nal subreduction of Gi to F satisfying (CDC) for
D, (b) between C(xi�1) and C(xi) the frame Gi contains either a �nite
descending chain of irreexive points possibly ending with a reexive one
or an in�nite descending chain of irreexive points, and (c) Gi j= L.

Suppose Gi�1 has been already constructed and Ci is the chain of clusters
located between C(xi�1) and C(xi). Three cases are possible. (1) Ci is a
�nite chain of irreexive points. Then we put Gi = Gi�1. (2) Ci contains
a non-degenerate cluster C(x) having �nitely many distinct successors in
Ci and all of them are irreexive. Then Gi results from Gi�1 by removing
from Ci all points save x and those successors. Gi is a reduct of Gi�1
and so conditions (a){(c) are satis�ed. (3) Suppose (1) and (2) do not
hold. Then Ci contains an in�nite descending chain Y of irreexive points
accessible from all other points in Ci. In this case Gi is obtained from Gi�1
by removing all points in Ci save those in Y . Clearly, Gi satis�es (a) and
(b). To prove (c) suppose Gi 6j= �(H;E;?) for some �(H;E;?) 2 L. Then
there is an injective co�nal subreduction g of Gi to H satisfying (CDC) for
E. Consider g as a co�nal subreduction of Gi�1 to H and show that it also
satis�es (CDC) for E. Indeed, (CDC) could be violated only by a point in
z 2 Ci � Y such that g(z") = w", for some fwg 2 E. Since g�1(w) is a
singleton and Y � z", there is y 2 Y such that g(y") = w" and y 62 domg,
contrary to g satisfying (CDC) for E as a subreduction of Gi to H. �

Thus, a frame separating �(F;D;?) 62 L from L 2 NExtK4:3 can be
found in the recursively enumerable class of t-extensions of F, t being a
type for �(F;D;?). Moreover, given a formula �(H;E;?) and a type t
for �(F;D;?), one can e�ectively check whether �(H;E;?) is valid in the
t-extension of F. Indeed, let k be the number of irreexive points in H,
t = h�1; : : : ; �ni, and G the t-extension of F. Construct a co�nal subframe
Gk of G by \cutting o�" the in�nite descending chains inserted in F (if any)
just below their k + 1th points, and let X be the set of all these k + 1th
points. Clearly, Gk is �nite. It is now an easy exercise to prove the following

LEMMA 73. G 6j= �(H;E;?) i� there is an injective co�nal subreduction f
of Gk to H satisfying (CDC) for E and such that X \ domf = ;.

As a consequence we obtain

THEOREM 74. All �nitely axiomatizable normal extensions of K4:3 are
decidable.

1.12 Quasi-normal modal logics

All logics we have considered so far were normal, i.e., closed under the
rule of necessitation '=�'. McKinsey and Tarski [1948] noticed, however,
that by adding to S4 the McKinsey axiom ma = ��p ! ��p and taking
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the closure under modus ponens and substitution we obtain a logic|let us
denote it by S4:10|which is not normal in that sense. To understand why
this is so, consider the frame F shown in Fig. 7. One can easily construct
a model on F such that 0 6j= �ma (0 sees a �nal proper cluster). On the
other hand, ma and all its substitution instances are true at 0 (0 sees a
�nal simple cluster), from which S4:10 � f' : 0 j= 'g and so �ma 62 S4:10.

A set of modal formulas containing K and closed under modus ponens
and substitution was called by Segerberg [1971] a quasi-normal logic. The
minimal quasi-normal extension of a logic L with formulas 'i, i 2 I , will be
denoted by L + f'i : i 2 Ig (i.e., the operation + presupposes taking the
closure under modus ponens and substitution only). ExtL is the class of all
quasi-normal logics above L. It is easy to see that a quasi-normal logic is
normal i� it is closed under the congruence rule p$ q=�p$ �q.

Quasi-normal logics, introduced originally as some abstract (though nat-
ural) generalization of normal ones, attracted modal logicians' attention
after Solovay [1976] constructed his provability logics GL and S. The for-
mer one treats � as \it is provable in Peano Arithmetic" and describes
those properties of G�odel's provability predicate that are provable in PA; it
is normal. The latter characterizes the properties of the provability predi-
cate that are true in the standard arithmetic model, and in view of G�odel's
Incompleteness Theorem it cannot be normal. (For a detailed discussion of
provability logic consult Modal Logic and Self-reference.) Solovay showed
in fact that

S = GL+�p! p:

At �rst sight S may appear to be inconsistent: L�ob's axiom requires frames
to be irreexive, while �p ! p is refuted in them. And indeed, no Kripke
frame validates both these axioms (in particular no consistent extension of
S is normal).

Having the algebraic semantics for normal modal logics, it is fairly easy to
construct an adequate algebraic semantics for a consistent L 2 ExtK. Let
M be a normal logic contained in L (for instance the greatest one, which is
called the kernel of L) and AM its Tarski{Lindenbaum algebra (in Section
11 of Basic Modal Logic it was called the canonical modal algebra for M).
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The set

r = f[']M : ' 2 Lg

is clearly a �lter in AM . By the well known properties of the Tarski{
Lindenbaum algebras, we then obtain the following completeness result:
' 2 L i� under every valuation in AM the value of ' belongs to r. Struc-
tures of the form hA;ri, where A is a modal algebra and r a �lter in A, are
known as modal matrices. Thus, every quasi-normal logic is characterized
by a suitable class of modal matrices. It is not hard to see that L is normal
i� it is characterized by a class of modal matrices with unit �lters.

Now, going over to the dual (Stone{J�onsson{Tarski representation) A+
of A in a modal matrix hA;ri and taking r+ to be the set of ultra�lters in
A containing r, we arrive at the general frame A+ with the set of distin-
guished points (or actual worlds) r+. A formula ' is regarded to be valid
in hA+;r+i i� under any valuation in A+, ' is true at all points in r+.

Taking into account the Generation Theorem, we can conclude that ev-
ery quasi-normal modal logic is characterized by a suitable class of rooted
general frames in which the root is regarded to be the only actual world.
It follows in particular that, as was �rst observed by McKinsey and Tarski
[1948],

K4+ f�'i : i 2 Ig = K4� f�'i : i 2 Ig:

However, one cannot replace here K4 by K or T. Note also that as was
shown by Segerberg [1971], K, T and some other standard normal logics
are not �nitely axiomatizable with modus ponens and substitution as the
only postulated inference rules. Duality theory between modal matrices and
frames with distinguished points can be developed along with duality theory
for normal logics (for details see [Chagrov and Zakharyaschev 1997]). Kripke
frames with distinguished points were used for studying quasi-normal logics
by Segerberg [1971]. Modal matrices were considered by Blok and K�ohler
[1983] (under the name of �ltered algebras), Chagrov [1985b], and Shum
[1985].

EXAMPLE 75. Consider the (transitive) frame G = hV; S;Qi whose un-
derlying Kripke frame is shown in Fig. 7 and Q consists of ;, V , all �-
nite sets of natural numbers and the complements to them in the space
V (so ! 2 X 2 Q i� there is n < ! such that m 2 X for all m � n).
Since G is irreexive and Noetherian, it validates GL. Moreover, we have
hG; !i j= �p! p; for if under some valuation ! j= �p then p must be true
at every point. It follows that G with actual world ! validates S. (The
reader can check that by making ! reexive we again obtain a frame for S.)

By inserting the \tail" G as in Fig. 7 into �nite rooted frames for GL
below their roots and using the fact that GL has FMP, one can readily
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show that, for every formula ',

' 2 S i�
^

� 2Sub'
(� !  )! ' 2 GL:

It follows in particular that S is decidable.

This example shows that the concepts of Kripke completeness and FMP
do not play so important role in the quasi-normal case: even simple logics
require in�nite general frames. One possible way to cope with them at
least in the transitive case is to extend the frame-theoretic language of the
canonical formulas to the class ExtK4.

Notice �rst that the canonical formulas, introduced in Section 1.6, cannot
axiomatize all logics in ExtK4. Indeed, hG; wi 6j= �(F;D;?) i� there is a
co�nal subreduction f of G to F satisfying (CDC) for D and the following
actual world condition as well:

(AWC) f(w) is the root of F.

Now, consider the frame hG; !i constructed in Example 75. Since each set
X 2 Q containing ! is in�nite and has a dead end, it is impossible to reduce
X to Æ or �, and so hG; !i validates all normal canonical formulas. On the
other hand, we clearly have hG; !i 6j= Bn for every n � 1. So the logics
K4BDn cannot be axiomatized by normal canonical formulas without the
postulated necessitation.

To get over this obstacle we have to modify the de�nition of subreduction
so that such sets as X above may be \reduced" at least to irreexive roots
of frames. Given a frame G = hV; S;Qi with an irreexive root u and a
frame F = hW;R; P i, we say a partial map f from W onto V is a quasi-
subreduction of F to G if it satis�es (R1) for all x; y 2 domf such that
f(x) 6= u or f(y) 6= u, (R2) and (R3).11 Thus, we may map all points in
the frame G in Fig. 7 to �, and this map will be a quasi-reduction of G to
� satisfying (AWC). Actually, every frame is quasi-reducible to �.

Now, given a �nite frame F with an irreexive root a0 and a set D of
antichains in F, we de�ne the quasi-normal canonical formula ��(F;D;?)
as the result of deleting �p0 from '0 in �(F;D;?) (which says that a0 is not
self-accessible); the quasi-normal negation free canonical formula ��(F;D)
is de�ned in exactly the same way, starting from �(F;D). It is not hard to
see that ��(F;D;?) (or ��(F;D)) is refuted in a frame hG; wi i� there is a
co�nal (respectively, plain) quasi-subreduction of G to F satisfying (CDC)
for D and (AWC). The following result is obtained by an obvious general-
ization of the proof of Theorem 44 to frames with distinguished points (for
details see [Zakharyaschev 1992]).

11Another possibility is to allow \reductions" of X to reexive points by relaxing (R2);
cf. Section 2.6.
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THEOREM 76. There is an algorithm which, given a modal (negation free)
formula ', constructs a �nite set � of normal and quasi-normal (negation
free) canonical formulas such that K4+ ' = K4+ �.

For example, S = K4 + �(Æ) + �(�). Since frames for S4 are reexive,
we have

COROLLARY 77. There is an algorithm which, given a modal formula ',
constructs a �nite set � of normal canonical formulas built on reexive
frames such that S4+ ' = S4+ �.

As a consequence we obtain

THEOREM 78 (Segerberg 1975). ExtS4:3 = NExtS4:3.

Proof. We must show that every logic L 2 ExtS4:3 is normal, i.e., ' 2 L
only if �' 2 L, for every '. Suppose otherwise. Then by Corollary 77,
there exists �(F;D;?) 2 L such that ��(F;D;?) 62 L. Let hG; wi be a
frame validating L and refuting ��(F;D;?). Since G j= S4:3, G is a chain
of non-degenerate clusters. And since it refutes �(F;D;?) there is a co�nal
subreduction f of G to F. It follows, in particular, that F is also a chain
of non-degenerate clusters and so D = ;. Let a be the root of F. De�ne a
map g by taking

g(x) =

8<
:

f(x) if x 2 domf
a if x 2 f�1(a)#� domf
unde�ned otherwise.

It should be clear that g co�nally subreduces G to F and g(w) = a. Conse-
quently, hG; wi 6j= �(F;?), which is a contradiction. �

Let us now briey consider quasi-normal analogues of subframe and co-
�nal subframe logics in NExtK4. Those logics that can be represented in
the form

(K4� f�(Fi) : i 2 Ig) + f�(Fj) : j 2 Jg+ f��(Fk) : k 2 Kg

are called (quasi-normal) subframe logics and those of the form

(K4� f�(Fi;?) : i 2 Ig) + f�(Fj ;?) : j 2 Jg+ f��(Fk;?) : k 2 Kg

are called (quasi-normal) co�nal subframe logics. The classes of quasi-
normal subframe and co�nal subframe logics are denoted by QSF and
QCSF , respectively. The example of S shows that Theorem 52 cannot
be extended to QSF and QCSF . Yet one can show that all �nitely axiom-
atizable logics in QSF and QCSF are decidable. We omit almost all proofs
and con�ne ourselves mainly to formulations of relevant results. For details
the reader is referred to [Zakharyaschev 1996].
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We use the following notation. For a frame F = hW;Ri with irreexive
root u and 0 < � < !, Fir� and Fr� denote the frames obtained from F

by replacing u with the descending chains 0; : : : ; � � 1 of irreexive and

reexive points, respectively; Fir(!+1)� =
D
W(!+1)� ; R

ir
(!+1)� ; P(!+1)�

E
is the

frame that results from F by replacing u with the in�nite descending chain
0; 1; : : : of irreexive points and then adding irreexive root !, with P(!+1)�
containing all subsets of W � fug, all �nite subsets of natural numbers
f0; 1; : : :g, all (�nite) unions of these sets and all complements to them in
the space W(!+1)� (see Fig. 8). Note that F is a quasi-reduct of every frame
of the form Fir� , Fr� or Fir(!+1)� .

The following theorem characterizes the canonical formulas belonging to
logics in QSF and QCSF .

THEOREM 79. Suppose L is a subframe or co�nal subframe quasi-normal
logic. Then

rm (i) for every �nite frame F with root u, �(F;D;?) 2 L i� hF; ui 6j= L;

rm (ii) for every �nite frame F with irreexive root u, ��(F;D;?) 2 L i�

hF; ui 6j= L, hFr1; 0i 6j= L and
D
Fir(!+1)� ; !

E
6j= L.

Proof. We prove only (() of (ii). Let G = hV; S;Qi refute ��(F;D;?) at
its root w and show that hG; wi 6j= L. We have a co�nal quasi-subreduction
f of G to F such that f(w) = u. Consider the set U = f�1(u) 2 Q. Without
loss of generality we may assume that U = U#. There are three possible
cases.

Case 1. The point w is irreexive and fwg 2 Q. Then the restriction of
f to domf� (U�fwg) is a co�nal subreduction of G to F satisfying (AWC)
and so hG; wi 6j= L.

Case 2. There is X � U such that w 2 X 2 Q and, for every x 2 X ,
there exists y 2 X \ x". Then the restriction of f to domf � (U �X) is a
co�nal subreduction of G to Fr1 satisfying (AWC) and so again hG; wi 6j= L.
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Case 3. If neither of the preceding cases holds then, for every X � U
such that w 2 X 2 Q, the set DX = X �X# of dead ends in X is a cover
for X , i.e., X � DX#, and w 2 X �DX 2 Q. Put

X0 = DU ; : : : ; Xn+1 = DU�(X0[���[Xn); : : : ; X! = U �
[
�<!

X�:

Each of these sets, save possibly X!, is an antichain of irreexive points
and belongs to Q. Besides, X� � Xn# =

S
n<��!X� for every n < � � !.

Therefore, the map g de�ned by

g(x) =

�
f(x) if x 2 V � U
� if x 2 X�; 0 � � � !

is a co�nal quasi-subreduction of G to Fir(!+1)� satisfying (AWC).

Now using the fact that
D
Fir(!+1)� ; !

E
6j= L and that the composition of

(co�nal) (quasi-) subreductions is again a (co�nal) (quasi-) subreduction, it
is not hard to see that hG; wi 6j= L. �

COROLLARY 80. All subframe and co�nal subframe quasi-normal logics
above S4 have FMP.

EXAMPLE 81. As an illustration let us use Theorem 79 to characterize
those normal and quasi-normal canonical formulas that belong to S. Clearly,
either �(Æ) or �(�) is refuted at the root of every rooted Kripke frame. So all
normal canonical formulas are in S. Every quasi-normal formula ��(F;D;?)
associated with F containing a reexive point is also in S, since ��(Æ) is
refuted at the roots of F, Fr1 and Fir(!+1)� . But no quasi-normal formula

��(F;D;?) built on irreexive F belongs to S, because Fir(!+1)� j= �(Æ) andD
Fir(!+1)� ; !

E
j= �(�), since f!g 62 P(!+1)� . Notice that incidentally we have

proved the following completeness theorem for S.

THEOREM 82. S is characterized by the class

f
D
Fir(!+1)� ; !

E
: F is a �nite rooted irreexive frameg:

Theorem 79 reduces the decision problem for a logic L in QSF or QCSF
to the problem of verifying, given a �nite frame F with root u, whether

hF; ui, hFr1; 0i and
D
Fir(!+1)� ; !

E
refute an axiom of L. The two former

frames present no diÆculties: they are �nite. As to the latter, it is not hard

to see that, for instance,
D
Fir(!+1)� ; !

E
6j= ��(G;?) i�

D
Fir� ; � � 1

E
, for some

� � jGj, is co�nally quasi-subreducible to G. Thus we obtain

THEOREM 83. All �nitely axiomatizable subframe and co�nal subframe
quasi-normal logics are decidable.
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One can also give a frame-theoretic characterization of the classes QSF
and QCSF similar to Theorem 53. Let us say that a frame F with actual
world u is a (co�nal) subframe of a frame G with actual world w if F is a
(co�nal) subframe of G and u = w.

THEOREM 84. L is a (co�nal) subframe quasi-normal logic i� L is charac-
terized by a class of frames with actual worlds that is closed under (co�nal)
subframes.

1.13 Tabular logics

Every logic L having the �nite model property can be represented as the in-
tersection of some tabular logics, that is logics characterized by �nite frames
(or models, algebras, matrices, etc.):

L =
\
fLogF : F is a �nite frame for Lg:

(It follows in particular that every fragment of L containing only those
formulas whose length does not exceed some �xed n < ! is determined
by a �nite frame; for that reason logics with FMP are also called �nitely
approximable.) In many respects tabular logics are very easy to deal with.
For instance, the key problem of recognizing whether a formula ' belongs
to a tabular L is trivially decided by the direct inspection of all possible
valuations of ''s variables in the �nite frame characterizing L. That is
why the question \is it tabular?" is one of the �rst items in the standard
\questionnaire" for every new logical system.

First results concerning the tabularity of modal logics were obtained by
G�odel [1932] and Dugundji [1940] who showed that intuitionistic proposi-
tional logic and all Lewis' modal systems S1{S5 are not tabular. (Note that
using the same method Drabb�e [1967] proved that the three non-normal
Lewis' systems S1{S3 cannot be characterized by a matrix with a �nite
number of distinguished elements). For arbitrary logics in ExtK one can
easily prove the following syntactical criterion of tabularity, which uses the
formulas

�n = :('1 ^ �('2 ^ �('3 ^ � � � ^ �'n) : : : ));

�n =

n�1̂

m=0

:�m(�'1 ^ � � � ^ �'n);

tabn = �n ^ �n;
where 'i = p1 ^ � � � ^ pi�1 ^ :pi ^ pi+1 ^ � � � ^ pn.

THEOREM 85. L 2 ExtK is tabular i� tabn 2 L, for some n < !.

Proof. A frame F = hW;Ri refutes �n at a point x1 i� a chain of length n
starts from x1, and F refutes �n at x1 i� there is a chain x1Rx2R : : : Rxm
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of length m < n such that xm is of branching n, i.e., xmRy1; : : : ; xmRyn
for some distinct y1; : : : ; yn. It follows that every rooted generated (by an
actual world) subframe of the canonical frame for L containing tabn has at
most 1 + (n� 1) + � � �+ (n� 1)n�2 points. �

As a consequence we immediately obtain

COROLLARY 86. Every tabular modal logic has �nitely many extensions
and all of them are also tabular.

The next theorem follows from general algebraic results of [Blok and
K�ohler 1983]; equally easy it can be proved using the characterization above.

THEOREM 87. Every tabular logic L 2 ExtK is �nitely axiomatizable.

Proof. According to Theorem 85, L is an extension of K+ tabn, for some
n < !. By Corollary 86, we have a chain

K+ tabn = L1 � L2 � � � � � Lk�1 � Lk = L

of quasi-normal logics such that fL0 2 ExtK : Li � L0 � Li+1g = ;, for
every i = 1; : : : ; k�1. It remains to notice that if L0 is �nitely axiomatizable,
L0 � L00 and there is no logic located properly between L0 and L00 then L00

is also �nitely axiomatizable (e.g. L00 = L0 + ', for any ' 2 L00 � L0). �

Theorem 12 provides us in fact with an algorithm to decide, given a
tabular logic L 2 NExtK4 and an arbitrary formula ', whetherK4�' = L.
Indeed, notice �rst that we have

THEOREM 88. Each �nitely axiomatizable logic L 2 NExtK4 of �nite
depth is a �nite union-splitting, i.e., can be represented in the form

L = K4� f�](Fi;?) : i 2 Ig

with �nite I.

Proof. Let L = K4� ' be a logic of depth n and let m be the number of
variables in '. We show that L coincides with the logic

L0 = K4� f�](G;?) : jGj �
n+1X
i=1

2mcm(i); G 6j= 'g

(cm(i) was de�ned in Section 1.2). The inclusion L � L0 is obvious. Suppose
' 62 L0. Then there is a rooted re�ned m-generated frame F for L0 refuting
'. Clearly, F is of depth � n, since otherwise �](G;?) is an axiom of L0

for every rooted generated subframe G of F of depth n + 1 and so F 6j= L0,
which is a contradiction. But then �](F;?) is an axiom of L0, contrary to
our assumption. �
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Thus, all tabular logics in NExtK4 are �nite union-splittings and so, by
Theorem 12, we obtain the following

THEOREM 89. Let L be a tabular logic in NExtK4.

(i) (Blok 1980c) L has �nitely many immediate predecessors and they are
also tabular.

(ii) The axiomatizability problem for L above K4 is decidable.

For logics in NExtK this is not the case, witness Theorems 36 and 205.
The tabularity criterion of Theorem 85 is not e�ective. Moreover, as we

shall see in Section 4.4, no e�ective tabularity criterion exists in general.
However, if we restrict attention to suÆciently strong logics, e.g. to the
class NExtS4, the tabularity problem turns out to be decidable. The key
idea, proposed by Kuznetsov [1971], is to consider the so called pretabular
logics.

A logic L 2 (N)ExtL0 is said to be pretabular in the lattice (N)ExtL0, if
L is not tabular but every proper extension of L in (N)ExtL0 is tabular. In
other words, a pretabular logic in (N)ExtL0 is a maximal non-tabular logic
in (N)ExtL0.

THEOREM 90. In the lattices ExtK and NExtK every non-tabular logic
is contained in a pretabular one.

Proof. By Theorem 85, a logic is non-tabular i� it does not contain the
formula tabn, for any n < !. It follows that the union of an ascending
chain of non-tabular logics is a non-tabular logic as well. The standard use
of Zorn's Lemma completes the proof. �

If there is a simple description of all pretabular logics in a lattice, we
obtain an e�ective (modulo the description) tabularity criterion for the lat-
tice. Indeed, take for de�niteness the lattice NExtK4. How to determine,
given a formula ', whether K4�' is tabular? We may launch two parallel
processes: one of them generates all derivations in K4� ' and stops after
�nding a derivation of tabn, for some n < !; another process checks if '
belongs to a pretabular logic in NExtK4 and stops if this is the case. The
termination of the �rst process means that K4�' is tabular, while that of
the second one shows that it is not tabular.

Unfortunately, it is impossible to describe in an e�ective way all pretab-
ular logics in (N)ExtK and even (N)ExtK4: Blok [1980c] and Chagrov
[1989] constructed a continuum of them. However, for smaller lattices like
NExtS4 or NExtGL such descriptions were found by Maksimova [1975b],
Esakia and Meskhi [1977] and Blok [1980c]. The �ve pretabular logics in
NExtS4 were presented in Section 17 of Basic Modal Logic. In NExtGL
the picture is much more complicated.
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THEOREM 91 (Blok 1980c, Chagrov 1989). The set of pretabular logics
in NExtGL is denumerable. It consists of the logics GL:3 = LogG! and
LogG!m;n, for m � 0, n � 1, where G! and G!m;n are the frames depicted in
Fig. 9. If hm;ni 6= hk; li then LogG!m;n 6= LogG!k;l.

Using this semantic description of pretabular logics in NExtGL, it is not
hard to �nd �nite sets of formulas axiomatizing them. Moreover, all of them
turn out to be decidable. For we have

THEOREM 92. Every non-tabular logic L 2 NExtK4 has a non-tabular
extension with FMP, and so every pretabular logic in NExtK4 has FMP.

Proof. Since L is non-tabular and characterized by the class of its rooted
�nitely generated re�ned frames, we have either a sequence Fi, i = 1; 2; : : : ,
of rooted �nite frames for L of depth i, or a sequence Fi of rooted �nite
frames for L of width � i. In both cases the logic LogfFi : i < !g � L is
non-tabular and has FMP. �

So we obtain the following result on the decidability of tabularity.

THEOREM 93. The property of tabularity is decidable in NExtS4, ExtS4,
NExtGL, ExtGL.

Since a logic in ExtK4 is locally tabular i� it is determined by a frame
of �nite depth, the property of local tabularity is decidable in the lattices
mentioned in Theorem 93 as well. However, this is not the case for ExtK4
itself.

1.14 Interpolation

One of the fundamental properties of logics is their capability to provide
explicit de�nitions of implicitly de�nable terms, which is known as the Beth
property (Beth [1953] proved it for classical logic). In the modal case we
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say a logic L has the Beth property if, for any formula '(p1; : : : ; pn; pn+1)
and variables p and q di�erent from p1; : : : ; pn,

'(p1; : : : ; pn; p) ^ '(p1; : : : pn; q)! (p$ q) 2 L

only if there is a formula  (p1; : : : pn) such that

'(p1; : : : ; pn; p)! (p$  (p1; : : : pn)) 2 L:

The Beth property turns out to be closely related to the interpolation prop-
erty which was introduced by Craig [1957] for classical logic. Namely, we
say that a logic L has the interpolation property if, for every implication
� ! � 2 L, there exists a formula , called an interpolant for � ! � in L,
such that � !  2 L,  ! � 2 L and every variable in , if any, occurs in
both � and �. While in abstract model theory interpolation is weaker than
Beth de�nability, for modal logics we have

THEOREM 94 (Maksimova 1992). A normal modal logic has interpolation
i� it has the Beth property.

Say also that a normal modal logic L has the interpolation property for
the consequence relation `�L, `�-interpolation for short, if every time when
� `�L �, there is a formula  such that � `�L ,  `�L � and Var �
Var� \ Var�. (Here Var' is the set of all variables in '.) It should be
clear that interpolation implies `�-interpolation.

By the end of the 1970s interpolation had been established for a good
many standard modal systems. The semantical proofs, sometimes rather
sophisticated, resemble the Henkin construction of the canonical models.
Here are two examples of such proofs (which are due to Maksimova [1982b]
and Smory�nski [1978]).

THEOREM 95 (Gabbay 1972). The logics K, K4, T, S4 have the inter-
polation property.

Proof. We consider only S4; for the other logics the proofs are similar.
Suppose � !  62 S4 and  ! � 62 S4 for any  whose variables occur in
both � and �, and show that in this case �! � 62 S4.

Let t = (�;�) be a pair of sets of formulas such that Var' � Var� if
' 2 � and Var' � Var� if ' 2 �. Say that t is inseparable if there are
no formulas 'i 2 �,  j 2 � and  with Var � Var� \ Var� such thatVn
i=1 'i !  2 S4,  ! Wm

i=1  i 2 S4. The pair t is called complete if for
every ' and  with Var' � Var� and Var � Var�, one of the formulas
' and :' is in � and one of  and : is in �.

LEMMA 96. Every inseparable pair t0 = (�0;�0) can be extended to a
complete inseparable pair.
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Proof. Let '1; '2; : : : and  1;  2; : : : be enumerations of all formulas whose
variables occur in � and �, respectively. De�ne pairs t0n = (�0n;�

0
n) and

tn+1 = (�n+1;�n+1) inductively by taking

t0n =

�
(�n [ f'ng;�n) if this pair is inseparable
(�n [ f:'ng;�n) otherwise,

tn+1 =

�
(�0n;�

0
n [ f ng) if this pair is inseparable

(�0n;�0
n [ f: ng) otherwise

and put t� = (��;��), where �� =
S
n<! �n, �� =

S
n<! �n. Clearly

t� is complete. Suppose it is separable, i.e., for some '1; : : : ; 'n 2 ��,
 1; : : : ;  m 2 �� and some  containing only those variables that occur in
both � and �, we have

Vn
i=1 'i !  2 S4 and  ! Wm

i=1  i 2 S4. Then
there is k < ! such that '1; : : : ; 'n 2 �k and  1; : : : ;  m 2 �k, which means
that tk is separable. So it remains to show that if t = (�;�) is inseparable,
Var' � Var� and Var � Var� then

� one of the pairs (� [ f'g;�) or (� [ f:'g;�) is inseparable and

� one of the pairs (�;� [ f g) or (�;� [ f: g) is inseparable.

We prove only the former claim. Suppose, on the contrary, that both pairs
are separable, i.e., there are formulas 1, 2 in variables occurring in both
� and � such that, for some '1; : : : ; 'n 2 �,  1; : : : ;  m 2 �, we have

'1 ^ � � � ^ 'n ^ '! 1 2 S4; 1 !  1 _ � � � _  m 2 S4;

'1 ^ � � � ^ 'n ^ :'! 2 2 S4; 2 !  1 _ � � � _  m 2 S4:
Then we obtain ('1 ^ � � � ^ 'n ^ ') _ ('1 ^ � � � ^ 'n ^ :')! 1 _ 2 2 S4,
1 _ 2 !  1 _ � � � _  m 2 S4, from which

'1 ^ � � � ^ 'n ! 1 _ 2 2 S4; 1 _ 2 !  1 _ � � � _  m 2 S4;

contrary to t being inseparable. �

Now we de�ne a frame F = hW;Ri by taking W to be the set of all
complete and inseparable pairs and, for t1 = (�1;�1), t2 = (�2;�2) in W ,
t1Rt2i� �' 2 �1 implies ' 2 �2. Using the axioms �p! p and �p! ��p
of S4, one can readily check that R is a quasi-order on W , i.e., F j= S4.

De�ne a valuation V in F by taking for every variable p 2 Var(� ! �),
V(p) = f(�;�) 2 W : either p 2 � or p 2 Var� and p 62 �g. Put
M = hF;Vi. By induction on the construction of formulas ' and  with
Var' � Var�, Var � Var� one can show that for every t = (�;�) in F

(M; t) j= ' i� ' 2 �; (M; t) 6j=  i�  2 �:
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Indeed, the basis of induction follows from the de�nition of V and the
completeness and inseparability of t. The cases of the Boolean connectives
present no diÆculty. So suppose ' = �'1. If t j= �'1 then, for every
t0 = (�0;�0) 2 t", we have t0 j= '1 and so '1 2 �0. Suppose �'1 62 �. Then
:�'1 2 �. Consider the pair t0 = (�0;�0), where

�0 = f:'1g [ f� : �� 2 �g; �0 = f:� : :�� 2 �g;

and show that it is inseparable. Assume otherwise. Then there is  with
Var � Var� \ Var� such that, for some formulas ��1; : : : ;��n 2 �,
:��n+1; : : : ;:��m 2 �,

:'1 ^ �1 ^ � � � ^ �n !  2 S4;  ! :�n+1 _ � � � _ :�m 2 S4:

It follows that

:�'1 ^��1 ^ � � � ^��n ! � 2 S4;

� ! :��n+1 _ � � � _ :��m 2 S4;
contrary to t being inseparable. Let t0 = (�0;�0) be a complete inseparable
extension of t0. By the de�nition of t0, we have tRt0 and so '1 2 �0, contrary
to :'1 2 �0 � �0 and t0 being inseparable.

Suppose now that �'1 2 �. Then for every t0 = (�0;�0) such that tRt0,
we have '1 2 � and so t0 j= '1. Consequently, t j= �'1. The formula  is
treated in the dual way.

To complete the proof it remains to observe that M 6j= �! �. �

This proof does not always go through for di�erent kinds of logics. How-
ever, sometimes suitable modi�cations are possible.

THEOREM 97. GL has the interpolation property.

Proof. Suppose �! � has no interpolant in GL. Our goal is to construct
a �nite irreexive transitive frame refuting �! �.

This time we consider �nite pairs t = (�;�) such that all formulas in �
and � are constructed from variables and their negations using ^, _, �, �.
Without loss of generality we will assume � and � to be formulas of that
sort. Say that t is separable if there is a formula  with Var � Var�\Var�
such that

V
� !  2 GL and  ! W

� 2 GL. It should be clear that if
t = (�;�) is a �nite inseparable pair then in the same way as in the proof of
Theorem 95 but taking only subformulas of � and � we can obtain a �nite
inseparable pair t? = (�?;�?) satisfying the conditions: for every ' 2 Sub�
and  2 Sub�, one of the formulas ' and :' (an equivalent formula of the
form under consideration, to be more precise) is in �? and one of  and : 
is in �?.
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Now we construct by induction a �nite rooted model for GL refuting
� ! �. As its root we take (f�g?; f�g?). If we have already put in our
model a pair t = (�;�) and it has not been considered yet, then for every
�' 2 � and every � 2 �, we add to the model the pairs

t1 = (f�;��;�:'; ' : �� 2 �g?; f�;�� : �� 2 �g?);

t2 = f�;�� : �� 2 �g?; f�;��;�: ;  : �� 2 �g?):
One can readily show that if t is inseparable then t1 and t2 are also in-
separable. Put tR0t1 and tR0t2. The process of adding new pairs must
eventually terminate, since each step reduces the number of formulas of the
form �' and � in the left and right parts of pairs. Let W be the set of
all pairs constructed in this way and R the transitive closure of R0. Clearly,
the resulting frame F = hW;Ri validates GL. De�ne a valuation V in F by
taking, for each variable p,

V(p) = f(�;�) 2 W : p 2 �g:

As in the proof of Theorem 95, it is easily shown that � ! � is refuted in
F under V. �

To clarify the algebraic meaning of interpolation we require the following
well known proposition.

PROPOSITION 98. If r is a normal �lter12 in a modal algebra A then the
relation �r, de�ned by a �r b i� a $ b 2 r, is a congruence relation.
The map r 7!�r is an isomorphism from the lattice of normal �lters in A
onto the lattice of congruences in A.

Denote by A=r the quotient algebra A=�r and let kakr = fb : a �r bg.
Say that a class C of algebras is amalgamable if for all algebras A0, A1,

A2 in C such that A0 is embedded in A1 and A2 by isomorphisms f1 and f2,
respectively, there exist A 2 C and isomorphisms g1 and g2 of A1 and A2
into A with g1(f1(x)) = g2(f2(x)), for any x in A0. If in addition we have

gi(x) � gj(y) implies 9z 2 A0 (x �i fi(z) and fj(z) �j y)

for all x 2 Ai, y 2 Aj such that fi; jg = f1; 2g, then C is called superamal-
gamable. Here Ai is the universe of Ai and �i its lattice order.

THEOREM 99 (Maksimova 1979). L has the interpolation property i� the
variety AlgL of modal algebras for L is superamalgamable. L has the `�-
interpolation property i� AlgL is amalgamable.

12A �lter r is normal (or open, as in Section 10 of Basic Modal Logic) if �a 2 r
whenever a 2 r.
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Proof. We prove only the former claim. ()) Suppose L has the interpo-
lation property and A0, A1, A2 are modal algebras for L such that A0 is
a subalgebra of both A1 and A2. With each element a 2 Ai, i = 0; 1; 2,
we associate a variable pia in such a way that, for a 2 A0, p

0
a = p1a = p2a.

Denote by Li the language with the variables pia, for a 2 Ai, i = 0; 1; 2, and
let L = L1 [ L2. We will assume that L is the language of L.

Fix the valuation Vi of Li in Ai, de�ned by Vi(p
i
a) = a, and put

�i = f' 2 ForLi : Vi(') = >g:
Let � be the closure of �1 [ �2 [ L under modus ponens. We show that,
for every ' 2 ForLi,  2 ForLj such that fi; jg = f1; 2g,
(13) '!  2 � i� 9� 2 ForL0 ('! � 2 �i and �!  2 �j):

Suppose '!  2 �. Then there exist �nite sets �i � �i and �j � �j such
that ^

�i ^ '! (
^

�j !  ) 2 L:
Since L has interpolation, there is a formula � 2 ForL0 such that^

�i ^ '! � 2 L;
^

�j ! (�!  ) 2 L;

from which ' ! � 2 �i and � !  2 �j . The converse implication is
obvious.

Now construct an algebra A by taking the set fk'k : ' 2 �g as its
universe, where k'k = f : ' $  2 �g, k'k ^ k k = k' ^  k and
�k'k = k � 'k, for � 2 f:;�g. One can readily prove that A 2 AlgL.
De�ne maps gi from Ai into A by taking gi(a) = kpiak. It is not diÆcult to
show that gi is an embedding of Ai in A. And for a 2 A0, we have

g1(a) = kp0ak = g2(a):

It remains to check the condition for superamalgamability: Suppose a 2 Ai,
b 2 Aj , fi; jg = f1; 2g, and gi(a) � gj(b). Then gi(a) ! gj(b) = > and

so kpia ! pjbk = >, i.e., pia ! pjb 2 �. By (13), we have � 2 ForL0 with
V(�) = c such that a �i c �j b.

(() Assuming AlgL to be superamalgamable, we show that L has the
interpolation property. To this end we require

LEMMA 100. Suppose A0 is a subalgebra of modal algebras A1 and A2,
a 2 A1, b 2 A2 and there is no c 2 A0 such that a �1 c �2 b. Then
there are ultra�lters r1 in A1 and r2 in A2 such that a 2 r1, b 62 r2 and
r1 \ A0 = r2 \ A0.

Suppose '(p1; : : : ; pm; q1; : : : ; qn) and  (q1; : : : ; qn; r1; : : : ; rl) are formu-
las for which there is no �(q1; : : : ; qn) such that '! � 2 L and �!  2 L.
We show that in this case there exists an algebra A 2 VarL refuting '!  .
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Let A00, A
0
1 and A02 be the free algebras in AlgL generated by the sets

fc1; : : : ; cng, fa1; : : : ; am; c1; : : : ; cng and fc1; : : : ; cn; b1; : : : ; blg, respectively.
According to this de�nition, A00 is a subalgebra of both A01 and A02. By
Lemma 100, there are ultra�lters r1 in A01 and r2 in A02 such that we have
'(a1; : : : ; am; c1; : : : ; cn) 2 r1 and  (c1; : : : ; cn; b1; : : : ; bl) 62 r2. De�ne
normal �lters

r�i = fa 2 A0i : 8m < ! �ma 2 rig
and put A1 = A01=r�1, A2 = A02=r�2. Construct an algebra A0 by taking
A0 = fkakr�

1
: a 2 A00g. By the de�nition, A0 is a subalgebra of A1, i.e., is

embedded in A1 by the map f1(x) = x. One can show that A0 is embedded
in A2 by the map f2(kxkr1) = kxkr�

2
. Then there are an algebra A for L

and isomorphisms g1 and g2 of A1 and A2 into A satisfying the conditions
of superamalgamability. De�ne a valuation V in A by taking V(pi) =
g1(kaikr1), V(qj) = g1(kcjkr1) = g2(kcjkr2) and V(rk) = g2(kbkkr2).
Then V(') 6� V( ) because otherwise there would exist fi; jg = f1; 2g and
z 2 A0 such that V(') �i fi(z) and fj(z) �j V( ). Thus, A 6j= '!  and
so '!  62 L. �

Using this theorem Maksimova [1979] discovered a surprising fact: there
are only �nitely many logics in NExtS4 with the interpolation property
(not more than 38, to be more exact) and all of them turned out to be
union-splittings. By Theorem 12, we obtain then

THEOREM 101 (Maksimova 1979). There is an algorithm which, given a
modal formula ', decides whether S4� ' has interpolation.

We illustrate this result by considering a much simpler class of logics.

THEOREM 102. Only four logics in NExtS5 have the interpolation prop-
erty: S5 itself, the logic of the two-point cluster, Triv and For.

Proof. We have already demonstrated how to prove that a logic has inter-
polation. So now we show only that no logic L in NExtS5 di�erent from
those mentioned in the formulation has the interpolation property. Suppose
on the contrary that L has interpolation. We use the amalgamability of the
variety of modal algebras for L to show that an arbitrary big �nite cluster
is a frame for L, from which it will follow that L = S5.

Figure 10 demonstrates two ways of reducing the three-point cluster to
the two-point one. By the amalgamation property, there must exist a clus-
ter reducible to the two depicted copies of the two-point cluster, with the
reductions satisfying the amalgamation condition. It should be clear from
Fig. 10 that such a cluster contains at least four points. By the same scheme
one can prove now that every n-point cluster validates L. �

It would be naive to expect that such a simple picture can be extended
to classes like NExtK4 or NExtK. Even in NExtGL the situation is quite
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Figure 10.

di�erent from that in NExtS4: Maksimova [1989] discovered that there is
a continuum of logics in NExtGL having the interpolation property. This
result is based upon the following observation. For L 2 NExtK4, we call a
formula �(p) conservative in NExtL if

�+(�(?) ^ �(p) ^ �(q)) ! �(p! q) ^ �(�p) 2 L:
For example, in NExtS4 conservative are ��p ! ��p, ��p $ ��p, and
�p$ �p.

THEOREM 103 (Maksimova 1987). If L 2 NExtK4 has the interpolation
property and formulas �i, for i 2 I, are conservative in NExtL, then the
logic L� f�i : i 2 Ig also has the interpolation property.

Proof. Suppose '!  2 L�f�i : i 2 Ig. Then there is a �nite J � I , say
J = f1; : : : ; lg, such that ' !  2 L� f�i : i 2 Jg and so, as follows from
the de�nition of conservative formulas and the Deduction Theorem for K4,

�+
l̂

j=1

(�j(?) ^ �j(p1) ^ � � � ^ �j(pn))! ('!  ) 2 L;

where p1; : : : ; pm; pm+1; : : : ; pk and pm+1; : : : ; pk; pk+1; : : : ; pn are all the
variables in ' and  , respectively. Consequently

�+
l̂

j=1

(�j(?) ^ �j(p1) ^ � � � ^ �j(pk)) ^ '!

(�+
l̂

j=1

(�j(pm+1) ^ � � � ^ �j(pn))!  ) 2 L:
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Since L has the interpolation property, there is �(pm+1; : : : ; pk) such that

�+
l̂

j=1

(�j(?) ^ �j(p1) ^ � � � ^ �j(pk)) ^ '! � 2 L;

�+
l̂

j=1

(�j(pm+1) ^ � � � ^ �j(pn))! (�!  ) 2 L:

Then we obtain ' ! � 2 L� f�i : i 2 Ig and � !  2 L� f�i : i 2 Ig,
i.e., � is an interpolant for '!  in L� f�i : i 2 Ig. �

Using the formulas

�i = �+(�i+1>^�i+2? ! �i+1p _�i+1:p)
which are conservative in NExtGL, one can readily construct a continuum
of logics in this class with the interpolation property. The set of logics in
NExtGL without interpolation is also continual.

In general, an interpolant  for an implication � ! � 2 L depends on
both � and �. Say that a logic L has uniform interpolation if, for any
�nite set of variables � and any formula �, there exists a formula  such
that Var � � and � !  2 L,  ! � 2 L whenever Var� \ Var� � �
and � ! � 2 L. In this case  is called a post-interpolant for � and
�. Roughly speaking, a logic has uniform interpolation if we can choose
an interpolant for � ! � 2 L independly from the actual shape of �.
Uniform interpolation was �rst investigated by Pitts [1992] who proved that
intuitionistic logic enjoys it. It is fairly easy to �nd multiple examples
of modal logics with uniform interpolation by observing that any locally
tabular logic with interpolation has uniform interpolation as well. Indeed,
for every formula � and every set of variables �, we can de�ne a post-
interpolant  as the conjunction of a maximal set of pairwise non-equivalent
in L formulas 0 such that Var0 � � and �! 0 2 L (which is �nite in view
of the local tabularity of L). It follows, for instance, that S5 has uniform
interpolation. In general, however, interpolation does not imply uniform
interpolation: [Ghilardi and Zawadowski 1995] showed that S4 does not
enjoy the latter, witness the following formula without a post-interpolant
for frg in S4

p ^�(p! �q) ^�(q ! �p) ^�(p! r) ^�(q ! :r):
Only a few positive results on the uniform interpolation of modal logics
are known: Shavrukov [1993] proved it for GL, Ghilardi [1995] for K, and
Visser [1996] for Grz.

A property closely related to interpolation is so called Halld�en com-
pleteness. A logic L is said to be Halld�en complete if ' _  2 L and
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Var' \ Var = ; imply ' 2 L or  2 L. Since every variable free for-
mula is equivalent in D either to > or to ?, L 2 ExtD is Halld�en complete
whenever it has interpolation. K, K4, GL are examples of Halld�en incom-
plete logics with interpolation: each of them contains �> _ :�> but not
�> and :�>. On the other hand, S4:3 is a Halld�en complete logic (see
[van Benthem and Humberstone 1983]) without interpolation (see [Maksi-
mova 1982a]). Actually, there is a continuum of Halld�en complete logics in
NExtS4 (see [Chagrov and Zakharyaschev 1993]).

Halld�en completeness has an interesting lattice-theoretic characteriza-
tion.

THEOREM 104 (Lemmon 1966c). A logic L 2 ExtK is Halld�en complete
i� it is

T
-irreducible in ExtL.

Since the lattice ExtS5 is linearly ordered by inclusion, all logics above
S5 are Halld�en complete. There are various semantic criteria for Halld�en
completeness (see e.g. [Maksimova 1995]). Here we note only the following
generalization of the result of [van Benthem and Humberstone 1983].

THEOREM 105. Suppose a logic L 2 ExtK is characterized by a class C
of descriptive rooted frames with distinguished roots. Then L is Halld�en
complete i�, for all frames hF1; d1i and hF2; d2i in C, there is a frame hF; di
for L reducible13 to both hF1; d1i and hF2; d2i.

For more results and references on Halld�en completeness consult [Chagrov
and Zakharyaschev 1991].

2 POLYMODAL LOGICS

So far we have con�ned ourselves to considering modal logics with only one
necessity operator. From a theoretical point of view this restriction is not
such a great loss as it may seem at �rst sight. In fact, really important
concepts of modal logic do not depend on the number of boxes and can
be introduced and investigated on the basis of just one. We shall give a
precise meaning to this claim in Section 2.3 below where it is shown that
polymodal logic is reduced in a natural way to unimodal logic. However,
there are at least two reasons for a detailed discussion of polymodal logic
in this chapter.

First, a number of interesting phenomena are easily missed in unimodal
logic and actually appear in a representative form only in the polymodal
case. For example, with the exception of NExtK4.3 and QCSF all known
general decidability results in unimodal logic have been obtained by proving
the �nite model property. In fact, nearly all natural classes of logics in
NExtK turned out to be describable by their �nite frames. The situation

13By reductions that map d to di.
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drastically changes with the addition of just one more box. Even in the
case of linear tense logics or bimodal provability logics one has to start with
a thorough investigation of their in�nite frames: FMP becomes a rather
rare guest. While the result on NExtK4.3 indicated the need for general
methods of establishing decidability without FMP, this need becomes of
vital importance only in the context of polymodal logic.

The second reason is that various applications of modal logic require
polymodal languages. For example, in tense logic we have two necessity-
like operators �1 and �2. One of them, say the former, is interpreted as \it
will always be true" and the other as \it was always true". Kripke frames for
tense logics are structures hW;R1; R2i with two binary relations R1 and R2

such that R2 coincides with the converse R�11 of R1 (which reects the fact
that a moment x is earlier than y i� y is later than x). The characteristic
axioms connecting the two tense operators are

p! �1�2p and p! �2�1p:

For more information about tense systems consult Basic Tense Logic.

Another example is basic temporal logic in which we have two necessity-
like operators: one of them|usually called Next|is interpreted by the
successor relation in ! and the other by its transitive and reexive clo-
sure. Details can be found in [Segerberg 1989]. Propositional dynamic logic
PDL and its extensions, like deterministic PDL, can also be regarded as
polymodal logics (see Dynamic Logic).

A number of provability logics use two or more modal operators; see e.g.
Boolos [1993]. In GLB, for instance, we have one operator �1 understood
as provability in PA and another operator �2 interpreted as !-provability
in PA. The unimodal fragments of GLB coincide with GL. The axioms
connecting �1 and �2 are

�1p! �2p and �1p! �2�1p:

In epistemic logics we need an operator �i for each agent i; �i' is inter-
preted as \agent i believes (or knows) '". One possible way to axiomatize
the logic of knowledge with m agents is to take the axioms of S5 for each
agent without any principles connecting di�erent �i and �j . We denote
the resultant logic by

Nm
i=1 S5. Often

Nm
i=1 S5 is extended by the common

knowledge operator C with the intended meaning

C' = E' ^ E2' ^ � � � ^ En' ^ : : : ; where E' =
Vm
i=1�i'

(see e.g. [Halpern and Moses 1992] and [Meyer and van der Hoek 1995]).

The reader will �nd more items for this list in other chapters of the
Handbook.
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From the semantical point of view, many standard polymodal logics
can be obtained by applying Boolean or various natural closure opera-
tors to the accessibility relations of Kripke frames. For instance, in frames
hW;R1; : : : ; Rni for epistemic logic the common knowledge operator is in-
terpreted by the transitive closure of R1[� � �[Rn. Tense frames result from
usual hW;Ri by adding the converse of R. Humberstone [1983] and Goranko
[1990a] study the bimodal logic of inaccessible worlds determined by frames
of the form



W;R;W 2 �R�. This list of examples can be continued; for a

general approach and related topics consult [Goranko 1990b; Gargov et al.
1987; Gargov and Passy 1990].

Let us see now how polymodal logics in general �t into the theory de-
veloped so far. We begin by demonstrating how the concepts introduced in
the unimodal case transfer to polymodal logic and showing that a few gen-
eral results|like Sahlqvist's and Blok's Theorems|have natural analogues
in polymodal logic. We hope to convince the reader that up to this point
no new diÆculties arise when one switches from the unimodal language to
the polymodal one. After that, in Section 2.2, we start considering subtler
features of polymodal logics.

2.1 From unimodal to polymodal

Let LI be the propositional language with a �nite number of necessity op-
erators �i, i 2 I . A normal polymodal logic in LI is a set of LI -formulas
containing all classical tautologies, the axioms �i(p ! q) ! (�ip ! �iq)
for all i 2 I , and closed under substitution, modus ponens and the rule of
necessitation '=�i' for every i 2 I . If the language is clear from the con-
text, we call these logics just (normal) modal logics and denote by NExtL
the family of all normal extensions of L (in the language LI ). The smallest
normal modal logic with n necessity operators is denoted by Kn (K = K1,
of course).

Given a logic L0 in LI and a set of LI -formulas �, we again denote by
L0 � � the smallest normal logic (in LI) containing L0 [ �. A number
of other notions and results also transfer in a rather straightforward way,
e.g. Theorems 4 and 6, Proposition 5 and all concepts involved in their
formulations. More care has to be taken to generalize Theorems 1, 2 and
3. Denote by M�

I the set of non-empty strings (words) over f�i : i 2 Ig
which do not contain any �i twice and put

�I' =
^
fM' : M 2M�

Ig; ��mI ' =
^
f�nI' : n � mg:

In the language LI the operator �I serves as a sort of surrogate for � in
K. For example, the following polymodal version of Theorem 1 holds.

THEOREM 106 (Deduction). For every modal logic L in LI , every set of
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LI-formulas �, and all LI-formulas ' and  ,

�;  `�L ' i� 9m � 0 � `�L ��mI  ! ':

Theorems 2 and 3 can be reformulated analogously by replacing � with
�I (a logic L in LI is n-transitive if it contains ��nI p! �n+1I p).

Basic semantic concepts are lifted to the polymodal case in a straight-
forward manner. The algebraic counterpart of L 2 NExtKn is the vari-
ety of Boolean algebras with n unary operators validating L. A structure
F = hW; hRi : i 2 Ii; P i is called a (general polymodal) frame whenever
every hW;Ri; P i, for i 2 I , is a unimodal frame. We then put

�iX = fx 2 W : 8y (xRiy ! y 2 X)g:

Di�erentiated, re�ned and descriptive frames and the truth-preserving op-
erations can also be de�ned in the same component-wise way. For instance,
a frame F = hW; hRi : i 2 Ii; P i is di�erentiated if all the unimodal frames
hW;Ri; P i, for i 2 I , are di�erentiated. F = hW; hRi : i 2 Ii; P i is a (gen-
erated) subframe of G = hV; hSi : i 2 Ii; Qi if all hW;Ri; P i are (generated)
subframes of hV; Si; Qi, and f is a reduction of F to G if f is a reduction of
hW;Ri; P i to hV; Si; Qi, for every i 2 I .

There are some exceptions to this rule. A point r is called a root of F if it
is a root of the unimodal frame hW;Si2I Rii. This does not mean that r is a
root of all unimodal reducts of F. Another important exception: as before,
a polymodal frame is {-generated if the algebra F+ is {-generated; however,
this does not mean that the unimodal reducts of F are {-generated.

Splittings and the degree of Kripke incompleteness The seman-
tic criterion of splittings by �nite frames given in Theorem 15 transfers to
polymodal logics by replacing � with �I . Again, all �nite rooted frames
split NExtL0, if L0 is an n-transitive logic in LI . Notice, however, that
n-transitivity is a rather strong condition in the polymodal case. For ex-
ample, it is easily checked that the fusion S5 
 S5 as well as the minimal
tense logic K4:t containing K4 are not n-transitive, for any n < ! (see
Sections 2.2 and 2.4 for precise de�nitions). In fact, only Æ splits the lattice
NExt(S5
 S5) and only � splits NExtK4:t (see [Wolter 1993] and [Kracht
1992], respectively).

Call a frame hW; hRi : i 2 Iii cycle free if the unimodal frame hW;Si2I Rii
is cycle free. Kracht [1990] showed that precisely the �nite cycle free frames
split NExtKn.

It is not diÆcult now to extend Blok's result on the degree of Kripke
incompleteness to the polymodal case. Note, however, that the degree of
incompleteness of For in NExtKn is 2@0 whenever n � 2. So, we do not have
a polymodal analog of Makinson's Theorem. (An example of an incomplete
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maximal consistent logic in NExtK2 is the logic determined by the tense
frame C(0; Æ) introduced in Section 2.5).

THEOREM 107. Let n > 1. If L is a union-splitting of NExtKn, then L is
strictly Kripke complete. Otherwise L has degree of Kripke incompleteness
2@0 in NExtKn.

Sahlqvist's Theorem and persistence The proof of the following poly-
modal version of Sahlqvist's Theorem is a straightforward extension of the
proof in the unimodal case. Say that ' is a Sahlqvist formula (in LI ) if the
result of replacing all �i and �i, i 2 I , in ' with � and �, respectively, is
a unimodal Sahlqvist formula.

THEOREM 108. Suppose that ' is equivalent in NExtKn to a Sahlqvist
formula. Then Kn � ' is D-persistent, and one can e�ectively construct a
�rst order formula �(x) in R1; : : : ; Rn and = such that, for every descriptive
or Kripke frame F and every point a in F, (F; a) j= ' i� F j= �(x)[a].

Bellissima's result on the DF -persistence of all logics in NExtAltn has
a polymodal analog as well. Denote by

N
i2I Altn the smallest polymodal

logic in LI containing Altn in all its unimodal fragments. It is easy to see
that every L 2 NExt

N
i2I Altn is DF-persistent and so Kripke complete.

However, in contrast to the lattice NExtAlt1|which is countable and all
logics in which have FMP (see [Segerberg 1986] and [Bellissima 1988])|
the lattice NExt(Alt1 
 Alt1) is rather complex: as was shown by Grefe
[1994], it contains logics without FMP (even without �nite frames at all)
and uncountably many maximal consistent logics.

Some FMP results Fine's Theorem on uniform logics can be extended
to a suitable class of polymodal logics in LI , namely those logics that con-
tain �i>, for all i 2 I , and are axiomatizable by formulas ' in which all
maximal sequences of nested modal operators coincide with respect to the
distribution of the indices i of �i and �i, i 2 I .

Now consider a result of Lewis [1974] which we have not proved in its
unimodal formulation. Call a normal polymodal logic non-iterative if it is
axiomatizable by formulas without nested modalities. Examples of non-
iterative logics are T = K��p! p, Altm 
Altn and K2 ��2p! �1p.

THEOREM 109 (Lewis 1974). All non-iterative normal logics have FMP.

Proof. Suppose the axioms of L = Kn � � have no nested modal op-
erators and ' 62 L. By a '-description we mean any set of subformulas
of ' together with the negations of the remaining formulas in Sub'. For
each L-consistent '-description � select a maximal L-consistent set ��

containing �. Denote by W the (�nite) set of the selected �� and de�ne
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F = hW; hRi : i 2 Iii and M = hF;Vi by taking

��Ri�	 i� �i
^

	 2 ��

and V(p) = f�� 2 W : p 2 ��g. It is easily proved that (M;��) j=  i�
 2 ��, for all subformulas  of ' and �� 2 W . Hence F 6j= '. It is also
easy to see that for all truth-functional compounds  of subformulas in ',

(14) (M;��) j= �i i� �i 2 ��:

Consider now a model M0 = hF;V0i and � 2 �. For each variable p put

 p =
_n^

� : �� 2 V(p)
o

and denote by �0 the result of substituting  p for p, for each p in �. Then
M0 j= � i� M j= �0. In view of (14), we have M j= �0 because �0 has no
nested modalities. Therefore, F j= � and so F j= L. �

Tabular Logics Needless to say that all polymodal tabular logics are
�nitely axiomatizable and have only �nitely many extensions. (The proof is
the same as in the unimodal case.) A more interesting observation concerns
the complexity of polymodal logics whose unimodal fragments are tabular
or pretabular. In fact, it is not diÆcult to construct two tabular unimodal
logics L1 and L2 such that their fusion L1 
 L2 has uncountably many
normal extensions (see e.g. [Grefe 1994]). However, those logics are DF -
persistent and so Kripke complete. Wolter [1994b] showed that the lattice

NExtT can be embedded into the lattice NExt(Log Æ
Æ
6
 S5) in such a way

that properties like FMP, decidability and Kripke completeness are reected
under this embedding. It follows that almost all \negative" phenomena of
modal logic are exhibited by bimodal logics one unimodal fragment of which
is tabular and the other pretabular.

2.2 Fusions

The simplest way of constructing polymodal logics from unimodal ones is
to form the fusions (alias independent joins) of them. Namely, given two
unimodal logics L1 and L2 in languages with the same set of variables and
distinct modal operators �1 and �2, respectively, the fusion L1 
 L2 of
L1 and L2 is the smallest bimodal logic to contain L1 [ L2. If �1 and
�2 axiomatize L1 and L2, then L1 
 L2 is axiomatized by �1 [ �2, i.e.,
L1 
 L2 = K2 � �1 � �2. So the fusions are precisely those bimodal logics
that are axiomatizable by sets of formulas each of which contains only one
of �1, �2. From the model-theoretic point of view this means that a frame
hW;R1; R2; P i validates L1 
 L2 i� hW;Ri; P i j= Li for i = 1; 2.
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PROPOSITION 110 (Thomason 1980). If logics L1 and L2 are consistent,
then L1 
 L2 is a conservative extension of both L1 and L2.

Proof. Suppose for de�niteness that ' 62 L1, for some formula ' in the
language of L1, and consider the Tarski{Lindenbaum algebras

AL1(!) =


A;^A;:A;�1

�
and AL2(!) =



B;^B ;:B ;�2

�
:

The Boolean reducts of them are countably in�nite atomless Boolean alge-
bras which are known to be isomorphic (see e.g. [Koppelberg 1988]). So we
may assume that A = B, ^A = ^B , :A = :B . Since the algebra AL1(!)
refutes ',



A;^A;:A;�1;�2

�
is then an algebra for L1
L2 refuting '. �

Having constructed the fusion of logics, it is natural to ask which of
their properties it inherits. For example, the �rst order theory of a single
equivalence relation has the �nite model property and is decidable, but the
theory of two equivalence relations is undecidable and so does not have the
�nite model property (see [Janiczak 1953]). So neither decidability nor the
�nite model property is preserved under joins of �rst order theories. On
the other hand, as was shown by Pigozzi [1974], decidability is preserved
under fusions of equational theories in languages with mutually disjoint sets
of operation symbols.

For modal logics we have:

THEOREM 111. Suppose L1 and L2 are normal unimodal consistent logics
and P is one of the following properties: FMP, (strong) Kripke complete-
ness, decidability, Halld�en completeness, interpolation, uniform interpola-
tion. Then L = L1 
 L2 has P i� both L1 and L2 have P.
Proof. We outline proofs of some claims in this theorem; the reader can
consult [Fine and Schurz 1996], [Kracht and Wolter 1991], and [Wolter
1997b] for more details.

The implication ()) presents no diÆculties. So let us concentrate on
((). With each formula ' of the form �i we associate a new variable
q' which will be called the surrogate of '. For a formula ' containing
no surrogate variables, denote by '1 the formula that results from ' by
replacing all occurrences of formulas �2 , which are not within the scope
of another �2, with their surrogate variables q�2 . So '1 is a unimodal
formula containing only �1. Denote by �1(') the set of variables in '
together with all subformulas of �2 2 Sub'. The formula '2 and the set
�2(') are de�ned symmetrically.

Suppose now that both L1 and L2 are Kripke complete and ' 62 L. To
prove the completeness of L we construct a Kripke frame for L refuting
'. Since we know only how to build refutation frames for the unimodal
fragments of L, the frame is constructed by steps alternating between �1

and �2. First, since L1 is complete, there is a unimodal model M based
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on a Kripke frame for L1 and refuting '1 at its root r. Our aim now is
to ensure that the formulas of the form �2 have the same truth-values as
their surrogates q�2 . To do this, with each point x in M we can associate
the formula

'x =
^
f 2 �1(') : (M; x) j=  1g ^

^
f: :  2 �1('); (M; x) 6j=  1g;

construct a model Mx based on a frame for L2 and satisfying '2x at its
root y, and then hook Mx to M by identifying x and y. After that we can
switch to �1 and in the same manner ensure that formulas �1 have the
same truth-values as q�1 at all points in every Mx. And so forth.

However, to realize this quite obvious scheme we must be sure that 'x
is really satis�able in a frame for L2, which may impose some restrictions
on the models we choose. First, one can show that in the construction
above it is enough to deal with points x accessible from r by at most m =
md(') steps. Let X be the set of all such points. Now, a suÆcient and
necessary condition for 'x to be L- (and so L2-) consistent can be formulated
as follows. Call a �1(')-description the conjunction of formulas in any
maximal L-consistent subset of �1(') [ f: :  2 �1(')g. It should be
clear that 'x is L-consistent i� it is a �1(')-description. Denote by �1(')
the set of all �1(')-descriptions. It follows that all 'x, for x 2 X , are

L-consistent i� (M; r) j= ��m1 (
W

�1('))1. In other words, we should start

with a model M satisfying '1 ^ ��m1 (
W

�1('))1 at its root r. Of course,

the subsequent models Mx, for x 2 X , must satisfy '2x ^��m2 (
W

�2('x))2,
where �2('x) is the set of all �2('x)-descriptions, etc.

In this way we can prove that Kripke completeness is preserved under
fusions. The preservation of strong completeness and FMP can be estab-
lished in a similar manner. The following lemma plays the key role in the
proof of the preservation of the four remaining properties.

LEMMA 112. The following conditions are equivalent for every ':

(i) ' 2 L1 
 L2;

(ii) ��m1 (
W

�1('))1 ! '1 2 L1, where m = md(');

(iii) ��m2 (
W

�2('))2 ! '2 2 L2.

For Kripke complete L1 and L2 this lemma was �rst proved by Fine and
Schurz [1996] and Kracht and Wolter [1991]; actually, it is an immediate
consequence of the consideration above. The proof for the arbitrary case is
also based upon a similar construction combined with the algebraic proof
of Proposition 110; for details see [Wolter 1997b].

Now we show how one can use this lemma to prove the preservation
of the remaining properties. De�ne a1(') to be the length of the longest
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sequence �2;�1;�2; : : : of boxes starting with �2 such that a subformula
of the form �2(: : :�1(: : :�2(: : : : : : ))) occurs in '. The function a2(') is
de�ned analogously by exchanging �1 and �2, and a(') = a1(') + a2(').
It is easy to see that

a(') > a(
_

�1(')) or a(') > a(
_

�2(')):

The preservation of decidability, Halld�en completeness, interpolation, and
uniform interpolation can be proved by induction on a(') with the help
of Lemma 112. We illustrate the method only for Halld�en completeness.
Notice �rst that, modulo the Boolean equivalence, we have_

�1(' _  ) =
_

�1(') ^
_

�1( ) ^
^

�(';  );

where

�(';  ) = f�1 ! :�2 : �1 2 �1('); �2 2 �1( ); �1 ! :�2 2 Lg:
Suppose both L1 and L2 are Halld�en complete. By induction on n = a('_ )
we prove that '_ 2 L implies ' 2 L or  2 L whenever ' and  have no
common variables. The basis of induction is trivial. So suppose a('_ ) =
n > 0 and '_ 2 L. We may also assume that a('_ ) > a(

W
�1('_ )):

By the induction hypothesis, it follows that �(';  ) = ;. Hence, up to the
Boolean equivalence,

W
�1('_ ) =

W
�1(')^W�1( ) and, by Lemma 112,

��m1 (
_

�1('))1 ^��m1 (
_

�1( ))1 ! (' _  )1 2 L1;

for m = md(' _  ). Then

(��m1 (
_

�1('))1 ! '1) _ (��m1 (
_

�1( ))1 !  1) 2 L1
and, by the Halld�en completeness of L1, one of the disjuncts in this formula
belongs to L1. By Lemma 112, this means that ' 2 L or  2 L. �

REMARK. This theorem can be generalized to fusions of polymodal logics
with polyadic modalities.

Note that in languages with �nitely many variables both GL:3 and K
are strongly complete but GL:3 
K is not strongly complete even in the
language with one variable (see [Kracht and Wolter 1991]).

It is natural now to ask whether there exist interesting axioms ' contain-
ing both �1 and �2 and such that (L1
L2)�' inherits basic properties of
L1; L2 2 NExtK. Let us start with the observation that even such a simple
axiom as �1p $ �2p destroys almost all \good" properties because (i) we
can identify the logic (L1
L2)��1p$ �2p with the sum of the translation
of L1 and L2 into a common unimodal language and (ii) such properties as
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FMP, decidability, and Kripke completeness are not preserved under sums
of unimodal logics (see Example 64 and [Chagrov and Zakharyaschev 1997]).
Even for the simpler formula �2p! �1p no general results are available. To
demonstrate this we consider the following way of constructing a bimodal
logic Lu for a given L 2 NExtK:

Lu = (L
 S5)��2p! �1p:

The modal operator �2 in Lu is called the universal modality. Its meaning
is explained by the following lemma:

LEMMA 113 (Goranko and Passy 1992). For every normal unimodal logic
L and all unimodal formulas ' and  ,

' `�L  i� `Lu �2'!  :

Proof. Follows immediately from Theorem 19 (ii), since

hW;R; P i j= L i� hW;R;W �W;P i j= Lu;

for every frame hW;R; P i and every unimodal logic L. �

The universal modality is used to express those properties of frames F =
hW;R;W �W i that cannot be expressed in the unimodal language. For
example, F validates �2(p! �1p)! :p i� it contains no in�nite R-chains.
Recall that there is no corresponding unimodal axiom, sinceK is determined
by the class of frames without in�nite R-chains. We refer the reader to
[Goranko and Passy 1992] for more information on this matter.

THEOREM 114 (Goranko and Passy 1992). For any L 2 NExtK,
(i) L is globally Kripke complete i� Lu is Kripke complete;
(ii) L has global FMP i� Lu has FMP.

Proof. We prove only (i). Suppose that Lu is Kripke complete and ' 6`�L  .
Then by Lemma 113, �2'!  62 Lu and so �2'!  is refuted in a Kripke
frame F = hW;R1; R2i for Lu. We may assume that R2 = W �W . But
then ' `�L  is refuted in hW;R1i. Conversely, suppose that L is globally
Kripke complete and ' 62 Lu, for a (possibly bimodal) formula '. Using
the properties of S5 it is readily checked that ' is (e�ectively) equivalent
in Ku to a formula '0 which is a conjunction of formulas  of the form

 = �0 _ �2�1 _�2�2 _�2�3 _ � � � _�2�n

such that �0; : : : ; �n are unimodal formulas in the language with �1. Let
 be a conjunct of '0 such that  62 Lu. Then :�1 6`�L �i, for every
i 2 f0; 2; 3; : : : ; ng. Since L is globally complete, we have Kripke frames
hWi; Rii for L refuting :�1 `�L �i, for i 2 f0; 2; : : : ; ng. Denote by hW;Ri
the disjoint union of those frames. Then hW;R;W �W i is a Kripke frame
for Lu refuting '. �
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We have seen in Section 1.5 that there are Kripke complete logics (logics
with FMP) which do not enjoy the corresponding global property. In view
of Theorem 114, we conclude that neither FMP nor Kripke completeness is
preserved under the map L 7! Lu.

Another interesting way of adding to fusions new axioms mixing the
necessity operators is to use the so called inductive (or Segerberg's) axioms.
First, we extend the language LI with m necessity operators by introducing
the operators E and C and then let

ind = fEp$
^
i2I
�ip; Cp! ECp; C(p! Ep)! (p! Cp)g:

Now, given L 2 NExtKm, we put

LECm = (L
KE 
 S4C)� ind;

where KE and S4C are just K and S4 in the languages with E and C, re-
spectively. The following proposition explains the meaning of the inductive
axioms.

PROPOSITION 115. A frame hW;R1; : : : ; Rm; RE ; RCi validates LECm
i� hW;R1; : : : ; Rmi j= L, RE = R1 [ � � � [ Rm and RC is the transitive
reexive closure of RE.

EXAMPLE 116. The logic (Alt1 � D)EC1 is determined by the frame
h!; S;�i in which S is the successor relation in !. (Here we omit writing
RE because RE = S.) For details consult [Segerberg 1989].14

No general results are known about the preservation properties of the
map L 7! LECm. In fact, it is easy to extend the counter-examples for the
map L 7! Lu to the present case (see [Hemaspaandra 1996]). However, at
least in some cases|especially those that are of importance for epistemic
logic|the logic LECm enjoys a number of desirable properties.

THEOREM 117 (Halpern and Moses 1992). For every m � 1, the logics
(
Nm

i=1K)ECm, (
Nm

i=1 S4)ECm and (
Nm

i=1 S5)ECm have FMP.

Proof. We consider only L = (
Nm

i=1 S5)ECm. The proof is by �ltration
and so the main diÆculty is to �nd a suitable \�lter". Suppose that ' 62 L
and let M = hhW;R1; : : : ; Rm; RE ; RCi ;Ui be the canonical model for L.
Denote by �: the closure of a set of formulas � under negations and de�ne
a �lter � = �:

1 [ �:
2 [ �:

3 , where �1 = Sub', �2 = f�i : E 2 �:
1 g

and �3 = fEC ;�iC : C 2 �:
1 g. Certainly, � is �nite and closed under

subformulas. Now, we �lter M through �, i.e., put W � = f[x] : x 2 Wg,
14Krister Segerberg kindly informed us that this result was independently obtained by

D. Scott, H. Kamp, K. Fine and himself.
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where [x] consists of all points that validate the same formulas in � as x,
and

[x]Ri[y] i� 8�i 2 � ((M; x) j= �i ! (M; y) j= �i );

R�E = R�1 [ � � � [ R�m;
and R�C is the transitive and reexive closure of R�E . A rather tedious
inductive proof shows that hW �; R�1; : : : ; R

�
m; R

�
E ; R

�
Ci refutes ' under the

valuation U�(p) = f[x] : x j= pg, p a variable in '. For details we refer the
reader to [Halpern and Moses 1992] and [Meyer and van der Hoek 1995].

�

It would be of interest to look for big classes of logics L for which LECm
inherits basic properties of L.

2.3 Simulation

In the preceding section we saw how results concerning logics in NExtK can
be extended to a certain class of polymodal logics. More generally, we may
ask whether|at least theoretically|polymodal logics are reducible to uni-
modal ones. The �rst to attack this problem was Thomason [1974b, 1975c]
who proved that each polymodal logic L can be embedded into a unimodal
logic Ls in such a way that L inherits almost all interesting properties of
Ls. Using this result one can construct unimodal logics with various \nega-
tive" properties by presenting �rst polymodal logics with the corresponding
properties, which is often much easier. It was in this way that Thomason
[1975c] constructed Kripke incomplete and undecidable unimodal calculi.
Kracht [1996] strengthened Thomason's result by showing that his embed-
ding not only reects but also (i) preserves almost all important properties
and (ii) induces an isomorphism from the lattice NExtK2 onto the interval
[Sim;K��?], for some normal unimodal logic Sim. Thus indeed, in many
respects polymodal logics turn out to be reducible to unimodal ones.

Below we outline Thomason's construction following [Kracht 1999] and
[Kracht and Wolter 1999]. To de�ne the unimodal \simulation" Ls of a
bimodal logic L, let us �rst transform each bimodal frame into a unimodal
one.
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So suppose F = hW;R1; R2; P i is a bimodal frame. Construct a unimodal
frame Fs = hW s; Rs; P si|the simulation of F|by taking

W s = W � f1; 2g [ f1g;
Rs = fhhx; 1i ; hx; 2ii : x 2Wg [

fhhx; 2i ; hx; 1ii : x 2Wg [
fhhx; 1i ;1i : x 2 Wg [
fhhx; 1i ; hy; 1ii : x; y 2W;xR1yg [
fhhx; 2i ; hy; 2ii : x; y 2W;xR2yg;

P s = f(X � f2g) [ (Y � f1g) [ Z : X;Y 2 P;Z � f1gg:
This construction is illustrated by Fig. 11. One can easily prove that Fs is a
Kripke (di�erentiated, re�ned, descriptive) frame whenever F is so. Notice
also that if W = ; then Fs �= �. Now, given a bimodal logic L, de�ne the
simulation Ls of L to be the unimodal logic

LogfFs : F j= Lg:
To formulate the translation which embeds L into Ls we require the follow-
ing formulas and notations:

 = �? �' = �( ! ')
� = ��? ��' = �(�! ')
� = : ^ :� ��' = �(� ! '):

� , �� and �� are de�ned dually. Observe that the formula  is true in Fs

only at 1, � is true precisely at the points in the set fhx; 1i : x 2 Wg, and
� is true at the points fhx; 2i : x 2 Wg and only at them. Put

ps = p;
(:')s = � ^ :'s;
(' ^  )s = 's ^  s;
(�1')s = ��'

s;
(�2')s = ������'

s:

By an easy induction on the construction of ' one can prove

LEMMA 118. Let M = hF;Vi be a bimodal model, X = fx : x j= �g and
let Ms = hFs;Vsi be a model such that Vs(p) \ X = V(p) � f1g, for all
variables p. Then for every bimodal formula ',

(M; x) j= ' i� (Ms; hx; 1i) j= 's;
M j= ' i� Ms j= �! 's;
F j= ' i� Fs j= �! 's:

Using this lemma, both consequence relations `L and `�L can be reduced
to the corresponding consequence relations for Ls.
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PROPOSITION 119. Let L be a bimodal logic, � a set of bimodal formulas
and ' a bimodal formula. Then

� `L ' i� �! �s `Ls �! 's;
� `�L ' i� �! �s `�Ls �! 's;

where �! �s = f�! Æ : Æ 2 �sg.
To axiomatize Ls, given an axiomatization of L, we require the following

formulas:
(a) �! (�p$ �p); � ^ �p! ���p;

(b) �! (��p$ ��p);

(c) � ! (��p$ ��p);

(d) � ^ p! ����p; � ^ p! ����p;

(e) � ^ �p! �������p:

Let Sim = K � f(a); : : : ; (e)g. Obviously, Fs is a frame for Sim whenever
F is a bimodal frame. Consider now a di�erentiated frame F = hW;R; P i
for Sim which contains only one point where  is true. (Actually, every
rooted di�erentiated frame for Sim satis�es this condition.) Construct a
bimodal frame Fs = hV;R1; R2; Qi, called the unsimulation of F, in the
following way. Put V = fx 2 W : x j= �g, V � = fx 2 W : x j= �g and
U = fx 2 W : x j= g. Since  _ � _ � 2 K, we have W = V [ V � [ U . It
is not hard to verify using (b) and (c) (and the di�erentiatedness of F) that
for every x 2 V there exists a unique x� 2 V � such that xRx�, and for every
y 2 V � there exists yÆ 2 V such that yRyÆ. By (d), x = x�Æ. Finally, we
put R1 = R \ V 2, R2 = fhx; yi 2 V 2 : x�Ry�g and Q = fX \ V : X 2 Pg.
It is easily proved that Fs is a bimodal frame. The name unsimulation is
justi�ed by the following lemma.

LEMMA 120. For every di�erentiated bimodal frame F, (Fs)s �= F.

Now we have:

THEOREM 121. For every bimodal logic L = K2 ��,

Ls = Sim� �! �s:

Proof. Clearly, Sim� � ! �s � Ls. Assume that the converse inclusion
does not hold. Then there exists a rooted di�erentiated F such that F 6j= Ls

but F j= Sim � � ! �s. By Lemma 120, (Fs)
s 6j= Ls. By the de�nition

of Ls, we then conclude that Fs 6j= L. And by Proposition 119, we have
(Fs)

s 6j= �! �s, from which F 6j= �! �s. �

Given L 2 [Sim;K��?], the logic Ls = f' : �! 's 2 Lg is called the
unsimulation of L.
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LEMMA 122. If L is determined by a class C of frames in which  is true
only at one point then Ls = LogfFs : F 2 Cg.

We are in a position now to formulate the main result of this section.

THEOREM 123 (Kracht 1999). The map L 7! Ls is an isomorphism from
the lattice NExtK2 onto the interval [Sim;K1 � �?]. The inverse map
is L 7! Ls. Both these maps preserve tabularity, (global) FMP, (global)
Kripke completeness, decidability, interpolation, strong completeness, R-
and D-persistence, elementarity.

Proof. To prove the �rst claim it suÆces to show that (Ls)
s = L for every

L 2 [Sim;K � �?]. That L � (Ls)
s is clear. Consider the set C of all

di�erentiated frames Fs such that F j= L and  is true only at one point in
F. By Lemma 122, C characterizes Ls. It is not diÆcult to show now that
the class fF+s : F 2 Cg is closed under subalgebras, homomorphic images
and direct products; so it is a variety. Consequently, C is (up to isomorphic
copies) the class of all di�erentiated frames for Ls.

Take a di�erentiated frame F for (Ls)
s. Then Fs j= Ls. So there exists

Gs 2 C which is isomorphic to Fs. Hence (Fs)
s �= (Gs)

s and F j= L, since
G j= L. It follows that Ls is determined by fFs : F 2 Cg whenever L is
determined by C.

The preservation of tabularity, (global) FMP, (global) Kripke complete-
ness, and strong completeness under both maps is proved with the help of
Lemma 122 and the observation above. It is also clear that L is decidable
whenever Ls is decidable. For the remaining (rather technical) part of the
proof the reader is referred to [Kracht 1999] and [Kracht and Wolter 1999].

�

Besides its theoretical signi�cance, this theorem can be used to transfer
rather subtle counter-examples from polymodal logic to unimodal logic. For
instance, Kracht [1996] constructs a polymodal logic which has FMP and is
globally Kripke incomplete. By Theorem 123, we obtain a unimodal logic
with the same properties.

2.4 Minimal tense extensions

Now let us turn to tense logics which may be regarded as normal bimodal
logics containing the axioms p ! �1�2p and p ! �2�1p. Usually studies
in Tense Logic concern some special systems representing various models of
time, like cyclic time, discrete or dense linear time, branching time, rela-
tivistic time, etc. Such systems are discussed in Basic Tense Logic, volume
6 of this Handbook (see also [Gabbay et al. 1994], [Goldblatt 1987] and [van
Benthem 1991]). However, as before our concern is general methods which
make it possible to obtain results not only for this or that particular system
but for wide classes of logics. This direction of studies in Tense Logic is quite
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new and actually not so many general results are available. In this and the
next section we consider two natural families of tense logics|the minimal
tense extensions of unimodal logics and tense logics of linear frames. Our
aim is to �nd out to what extent the theory developed for unimodal logics
in NExtK and especially NExtK4 can be \lifted" to these families.

The smallest tense logic K:t is determined by the class of bimodal Kripke
frames hW;R;R�1i in which R is the accessibility relation for �1 and R�1

for�2. Frames of this type are known as tense Kripke frames; general frames
of the form hW;R;R�1; P i will be called just tense frames. Notice that not
all unimodal general frames hW;R; P i can be converted into tense frames
hW;R;R�1; P i because P is not necessarily closed under the operation

�2X = fx 2 W : 9y 2 X xR�1yg:
For instance, in the frame F of Example 7 we have �2f! + 1g = f!g 62 P .

Each normal unimodal logic L = K�� in the language with �1 gives rise
to its minimal tense extension L:t = K:t��. From the semantical point of
view L:t is the logic determined by the class of tense frames hW;R;R�1; P i
such that hW;R; P i j= L. The formation of the minimal tense extensions
is the simplest way of constructing tense logics from unimodal ones. Of
\natural" tense logics, minimal tense extensions are, for instance, the logics
of (converse) transitive trees, (converse) well-founded frames, (converse)
transitive directed frames, etc. The main aim of this section is to describe
conditions under which various properties of L are inherited by L:t.

Notice �rst that unlike fusions, L:t is not in general a conservative ex-
tension of L, witness L = LogF where F is again the frame constructed in
Example 7: one can easily check that K4:t � L:t. However, if L is Kripke
complete then L:t is a conservative extension of L and so L0:t = L:t implies
L0 � L. This example may appear to be accidental (as the �rst examples of
Kripke incomplete logics in NExtK). However, we can repeat (with a slight
modi�cation) Blok's construction of Theorem 35 and prove the following

THEOREM 124. If L is a union-splitting of NExtK or L = For, then
L0:t = L:t implies L0 = L. Otherwise there is a continuum of logics in
NExtK having the same minimal tense extension as L.

It is not known whether there exists L 2 NExtK4 such that L:t is not a
conservative extension of L.

Theorem 124 leaves us little hope to obtain general positive results for
the whole family of minimal tense extensions. As in the case of unimodal
logics we can try our luck by considering logics with transitive frames. So in
the rest of this section it is assumed that the unimodal and tense logics we
deal with contain K4 and K4:t, respectively, and that frames are transitive.
But even in this case we do not have general preservation results: Wolter
[1996b] constructed a logic L 2 NExtK4 having FMP and such that L:t is
not Kripke complete. However, the situation turns out to be not so hopeless
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if we restrict attention to the well-behaved classes of logics in NExtK4,
namely logics of �nite width, �nite depth and co�nal subframe logics. First,
we have the following results of [Wolter 1997a].

THEOREM 125. If L 2 NExtK4 is a logic of �nite depth then L:t has
FMP. If L 2 NExtK4 is a logic of �nite width then L:t is Kripke complete.

It is to be noted that tense logics of �nite depth are much more complex
than their unimodal counterparts. For example, there exists an undecidable
�nitely axiomatizable logic containingK4:t��1�1? (for details see [Kracht
and Wolter 1999]).

The minimal tense extensions of co�nal subframe logics were investigated
in [Wolter 1995, 1997a].

THEOREM 126. If L 2 NExtK4 is a co�nal subframe logic then
(i) L:t is Kripke complete;
(ii) L:t has FMP i� L is canonical;
(iii) L:t is decidable whenever L is �nitely axiomatizable.

Before outlining the idea of the proof we note some immediate conse-
quences for a few standard tense logics.

EXAMPLE 127. (i) The logic of the converse well-founded tense frames is
GL:t; it does not have FMP but is decidable. (ii) The logic of the converse
transitive trees is K4:3:t; it has FMP and is decidable. (iii) The logic of
the converse well-founded directed tense frames is GL:t �K4:2:t; it does
not have FMP and is decidable.

Proof. The proof of the negative part, i.e., that L:t does not have FMP if
L is not canonical, is rather technical; it is based on the characterization of
the canonical co�nal subframe logics of [Zakharyaschev 1996]. The reader
can get some intuition from the following example: neither Grz:t nor GL:t
has FMP. Indeed, the Grzegorczyk axiom

�2(�2(p! �2p)! p)! p

is refuted in h!;�;�i and so does not belong to Grz:t; however, it is valid
in all �nite partial orders. The argument for GL:t is similar: take the L�ob
axiom in �2 and the frame h!;>;<i.

We sketch now the proof of the positive part. For a tense Kripke frame
F = hW;R;R�1i, let rp be a partial function associating with some clusters
in F one of the frames

h!;>;<i or h!;�;�i:

We call it a replacement function for F and de�ne Frp to be the result of
replacing in F all clusters C in the domain of rp by (disjoint copies of)
rpC. Our �rst observation is that for each co�nal subframe logic L, L:t is
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determined by a set of frames of the form Frp such that F is of �nite depth.
Indeed, suppose ' 62 L:t and consider a countermodel M = hF;Vi for '
based on a descriptive �nitely generated tense frame F = hW;R;R�1; P i
for L:t. Say that a point x 2 W is non-eliminable (relative to ') if there
are a subformula  of ' and S 2 fR;R�1g such that x 2 maxSfy 2 W :
y j=  g or x 2 maxSfy 2 W : y j= : g. Denote by We the set of
non-eliminable points in W and construct a new model Me on the frame
Fe = hWe; R �We; R

�1 �Wei by taking Ve(p) = V(p) \We for all variables
p in '. Clearly, the Kripke frame Fe is of �nite depth (d(Fe) � 2l('),
to be more precise). Besides, using Theorem 23 one can easily show that
(Me; y) j=  i� (M; y) j=  , for all  2 Sub' and y 2 We. (Note that
Theorem 23 is applicable in this case, since hW;R; P i is descriptive whenever

W;R;R�1; P

�
is descriptive.) Moreover, the R-reduct hWe; R �Wei of Fe

is a co�nal subframe of the R-reduct hW;Ri of the underlying Kripke frame
of F. So Fe is a frame for L:t whenever L is canonical (= D-persistent).
However, this is not so if L is not canonical.

EXAMPLE 128. Consider the frame F = hW;R;R�1; P i, where hW;Ri is
the reexive point 1 followed by the chain h!;>i and P consists of all
co�nite sets containing1 and their complements. Then F j= GL:t but (for
an arbitrary ') Fe contains 1 and so Fe 6j= GL:t.

A rather tedious proof (see [Wolter 1997a]) shows, however, that there
exists a replacement function rp for Fe such that Frpe validates L:t and all
points in clusters from domrp are eliminable relative to R in F. (In the
example above we put rpf1g = h!;>;<i and 1 is eliminable relative to
R.) So let us assume that such rp is given and that its domain is empty if
L is canonical. De�ne a model Mrp

e = (Frpe ;V
rp) as follows. First we put

y 2 Vrp(p) whenever y 2 Ve(p) and y =2 domrp. Consider now a cluster
C = fa0; : : : ; am�1g in domrp. Vrp is de�ned in rpC by unravelling C into
the chain rpC; more precisely, we put

Vrp(p) \ rpC = fmj + i : j < !; ai 2 V(p)g:

Using the fact that domrp contains only R-eliminable points, one can show
by induction that, for every  2 Sub', (Me; y) j=  i� (Mrp

e ; y) j=  , if
C(y) does not belong to domrp, and

fn 2 rpC : (Mrp
e ; n) j=  g = fmj + i : j < !; (Me; ai) j=  g;

if a cluster C = fa0; : : : ; am�1g is in domrp. Thus Frpe refutes ', which
proves that L:t is Kripke complete.

To show that all canonical logics L:t do have FMP we reduce Frpe once
again. De�ne an equivalence relation � on We by induction on the R-depth
dR(x) of a point x in Fe. Suppose that dR(x) = dR(y) and � is already
de�ned for all points of R-depth < dR(x) and put x � y if the following
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conditions are satis�ed: (a) x j=  i� y j=  , for all  2 Sub' (x �' y, for
short), (b) if z is an R-successor of y and C(z) 6= C(y) then there exists an
R-successor z0 of x with C(z0) 6= C(x) such that z � z0 and vice versa, (c)
the cluster C(x) is degenerate i� C(y) is degenerate, (d) rpC(x) = rpC(y),
(e) for each z 2 C(x) there exists z0 2 C(y) such that z �' z0 and vice
versa.

Let [x] denote the equivalence class generated by x. De�ne a frame
G = hV; S; S�1i by taking V = f[x] : x 2 Weg, and [x]S[y] i� there are
x0 2 [x] and y0 2 [y] such that x0Ry0. Since Fe is of �nite depth, V is
�nite. Moreover, the map x 7! [x] is a reduction of the unimodal frame
hWe; R �Wei to hV; Si. It follows that G is a frame for L:t whenever L is
canonical. De�ne a valuation in G by putting [x] j= p i� x j= p, for all
x 2We and all variables p in '. Then one can show that [x] j=  i� x j=  ,
for all  2 Sub'. So G 6j= ', as required, which means that L:t has FMP.

To prove the decidability of a �nitely axiomatizable L:t we �rst show its
completeness with respect to a rather simple class of frames.

De�ne a replacement function rf for G as follows. For each cluster C in
Fe the set [C] = f[x] : x 2 Cg is a cluster in G, and moreover, every cluster
in G can be presented in this way. So we put rf [C] = rpC, for all clusters
[C] in G. Notice that by (d), rf is well-de�ned. It is easily shown now that
the R-reduct of Frpe is reducible to the R-reduct of Grf and that Grf refutes
'. Thus we obtain

LEMMA 129. For each co�nal subframe logic L,

L:t = LogfGrp : Grp j= L:t; G �nite, rp a replacement function for Gg:

So, to establish the decidability of a �nitely axiomatizable L:t it is enough
now to present an algorithm which is capable of deciding, given an rp for a
�nite G and ', whether Grp j= '. To this end we require the notion of a
cluster assignment t = ht1; t2i in a tense frameG, which is any function from
the set of clusters in G into the set fm; jg�fm; jg such that tC = (m;m) if C
is degenerate (here m and j are just two symbols; m stands for \maximal"
and j for \joker"). A valuation V in G is called '-good for (G; t) if the
following conditions hold:

� if t1C = j then C \maxR(V( )) = ;, for all  2 Sub';

� if t2C = j then C \maxR�1(V( )) = ;, for all  2 Sub' .

EXAMPLE 130. Let F be the frame constructed in Example 128 and sup-
pose that tf1g = (j;m). Then each valuation V in F is '-good for (G; t)
no matter what ' is, because 1 is eliminable relative to R. The point 1
is not R�1-eliminable, since 1 2 maxR�1(>).

Given a formula ', a �nite frame F and a replacement function rp for
F, we construct a �nite frame G = hV; S; S�1i with a cluster assignment
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t as follows. Let k be the number of variables in '. Then G is obtained
from Frp by replacing every rpC = h!;>;<i with a non-degenerate cluster
C 0 of cardinality 2k, S-followed by a chain of 2l(') irreexive points, and
by replacing every rpC = h!;�;�i with a non-degenerate cluster C 0 of
cardinality 2k, S-followed by a chain of 2l(') reexive points. The cluster
assignment t in G is de�ned by putting tC 0 = (j;m), for all new clusters
C 0 of cardinality 2k, and tC 0 = (m;m), for all the other clusters. It is
not diÆcult now to prove that Frp j= ' i� (G;U) j= ', for all '-good for
(G; t) valuations U in G. This equivalence provides an e�ective procedure
for deciding whether Frp j= '. �

Note that a similar technique can be used to prove completeness and
decidability of various tense logics that are not minimal tense extensions.
For instance, all logics of the form L:t � �2�2p ! �2�2p, where L is a
co�nal subframe logic, are complete and decidable if �nitely axiomatizable.

2.5 Tense logics of linear frames

One of the most important types of tense logics are logics characterized
by linear tense frames, i.e., transitive frames



W;R;R�1; P

�
such that, for

all x; y 2 W , xRy or xR�1y or x = y. For example, Bull [1968] and
Segerberg [1970] axiomatized the logics of the frames, hZ; <;>i, hQ; <;>i
and hR; <;>i (Z, Q and R are the sets of integer, rational and real numbers,
respectively).

Linear tense logics form the lattice NExtLin, where

Lin = K4:t� �1�2p _ �2�1p! p _ �1p _ �2p

is the tense logic determined by the class of all linearly ordered Kripke
frames



W;R;R�1

�
. As we saw in Section 1.11, even unimodal logics of

linear orders are rather non-trivial (for instance, they do not always enjoy
FMP). Yet they can be characterized by Kripke frames with a transpar-
ent structure, which yields a decision algorithm for those of them that are
�nitely axiomatizable. Tense logics of linear frames turn out to be even more
complicated. In fact, one can �nd almost all kinds of \monsters" among
them: uncountably many logics without Kripke frames, strongly complete
logics that are not canonical, canonical logics that are not R-persistent,
incomplete subframe logics, etc. Nevertheless, in this section we show that
these logics are quite manageable. Our exposition follows [Wolter 1996b, c],
where the reader can �nd the omitted details. All frames in this section are
assumed to be linear.

Given a �nite sequence F = hFi = hWi; Ri; Pii : 1 � i � ni of disjoint
frames, we denote by [F] = F1 � � � �� Fn the ordered sum of them, i.e., the
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frame


W;R;R�1; P

�
in which

W =

n[
i=1

Wi; R =

n[
i=1

Ri [
[

1�i<j�n
(Wi �Wj)

and P = fX1 [ � � � [ Xn : Xi 2 Pig. Each �nite frame can be represented
then as the ordered sum C1 � � � �� Cn of its clusters.

We begin our study by developing a language of \canonical formulas" for
axiomatizing logics in NExtLin and characterizing the constitution of their
frames. It will play the same role as the language of canonical formulas for
K4. With every �nite frame F = hW;R;R�1i = C1� � � ��Cn and a cluster
assignment t = (t1; t2) in it we associate the formula

�(F; t) = Æ(F; t) ^�1Æ(F; t) ^�2Æ(F; t)! :pr;
where r is an arbitrary �xed point in F and

Æ(F; t) =
^
fpx ! �1py : xRy;:(yRx)g ^^
fpx ! �2py : xR�1y;:(xRy)g ^^
fpx ! :py : x 6= yg ^

^
fpx ! :�2py : :(xRy)g ^^

fpx ! �1py : 9i � n (t1Ci = m ^ x; y 2 Ci ^ xRy)g ^^
fpx ! �2py : 9i � n (t2Ci = m ^ x; y 2 Ci ^ xR�1y)g ^_
fpy : y 2 Wg:

To explain the semantical meaning of these formulas, notice �rst that if
tC = (m;m) for all clusters C then G 6j= �(F; t) i� G is reducible to F; so
Lin��(F; t) is a splitting of NExtLin. Suppose now that tiC = j for some
i 2 f1; 2g and some cluster C in F. In this case G 6j= �(F; t) i� there exist
frames Gi, for 1 � i � n, such that G = G1� � � ��Gn and Gi 6j= �(Ci; t�Ci)
for all 1 � i � n. So it suÆces to examine the situation when G 6j= �(C; t)
for a cluster C. Assume for simplicity that G is a Kripke frame. Case 1:
tC = (j; j). Then G 6j= �(C; t) i� jGj � jCj. Case 2: tC = (m; j). Then C is
non-degenerate and G 6j= �(C; t) i� either G contains an R-�nal cluster of
cardinality � jCj or it has no R-�nal point at all. Case 3: tC = (j;m). This
is the mirror image of Case 2. Case 4: tC = (m;m). If C is an irreexive
point then G is an irreexive point as well whenever G 6j= �(C; t). If C is
non-degenerate and G 6j= �(C; t) then G satis�es the conditions of Cases 2
and 3.

EXAMPLE 131. Let � = �(Æ Æa b- ; t) where ta = (m; j) and tb = (j;m).
Then F 6j= � i� there exists a non-empty upward closed set X 2 P such
that 8x 2 X9y 2 X yRx, W �X 6= ; and 8x 2 W �X9y 2 W �X xRy.
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Hence hQ; <;>i 6j= � (take X = fy 2 Q :
p

2 < yg) but hR; <;>i j= �,
since the real line contains no gaps.

THEOREM 132. There is an algorithm which, given a formula ', returns
formulas �(F1; t1); : : : ; �(Fn; tn) such that

Lin� ' = Lin� �(F1; t1)� � � � � �(Fn; tn):

Proof. Let (Fi; ti), 1 � i � n, be the collection of all �nite frames with type
assignments such that, for each i, (a) there is a countermodel Mi = hFi;Vii
for ' in which Vi is '-good for (Fi; ti), (b) the depth of Fi does not exceed
4l(') + 1, and (c) no cluster in Fi contains more than 2v(') points, where
v(') is the number of variables in '.

Let F refute �(Gi; ti) under a valuation U. By the de�nition of (Fi; ti),
the modelMi refutes '. De�ne a valuation U0 in F by taking, for all variables
p in ',

U0(p) =
[
fU(px) : x 2 Vi(p)g:

It is not hard to show by induction that U0( ) =
SfU(px) : x 2 Vi( )g

for all  2 Sub', and so F refutes ' under U0. Thus F j= ' implies
F j= �(Fi; ti) for every i. The converse direction is rather technical; we
refer the reader to [Wolter 1996c]. �

\Canonical" axiomatizations of some standard linear tense logics are
shown in Table 3, where we use the following abbreviations. Given a �-
nite frame F = C1 � � � � � Cn, we write �((C1; tC1) � � � � � (Cn; tCn))
instead of �(F; t) and �(�; (C1; tC1)� � � �� (Cn; tCn)) instead of

�((C1; tC1)� � � �� (Cn; tCn))� �((Æ; (j; j)) � (C1; tC1)� � � �� (Cn; tCn)):

�((C1; tC1)� � � �� (Cn; tCn);�) is de�ned analogously.
Now we exploit the formulas �(F; t) to characterize the

T
-irreducible

logics in NExtLin. Recall that every logic L 2 NExtL0 is represented as

L =
\
fL0 � L : L0 is

\
-irreducibleg:

So such a characterization can open the door to a better understanding of
the structure of the lattice NExtLin. The

T
-irreducible logics will be de-

scribed semantically as the logics determined by certain descriptive frames.

DEFINITION 133.

(1) Denote by k the non-degenerate cluster with k > 0 points.

(2) Let !<(0) be the strictly ascending chain h!;<;>i of natural num-
bers, !<(1) the chain h!;�;�i, !<(2) the ascending chain of natural
numbers in which precisely the even points are reexive, !<(3) the
chain in which precisely the multiples of 3 are reexive, and so on;
!>(n) is the mirror image of !<(n).
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Table 3. Axiomatizations of standard tense logics

Ordt = Logfh�;<;>i : � an ordinalg =

Lin� �(�; (Æ; (j;m)))

Et = Lin� �1>� �2> =

Lin� �(�; (�; (m;m)))� �((�; (m;m));�)

On = Logh!n;<;>i =

Ordt � �((Æ; (m; j)) � � � �� (Æ; (m; j)))| {z }
n+1

��(�; (�; (m;m)))

RD = LogfG : 8x(:xRx! 9y(xRy ^ fz : xRzRyg = ;))g =

Lin� �(�; (�; (m;m)))� �(�; (�; (m;m))� (Æ; (m; j)))
LD = the mirror image of RD

Zt = LoghZ; <;>i=
RD� LD� �((Æ; (j; j)) � (Æ; (j;m)))�
�((Æ; (m; j))� (Æ; (j; j)))

Dsn = Lin��n+11 p! �n1p =

Lin� �(�; (�; (m;m)� � � �� (�; (m;m))| {z }
n+1

;�)

Qt = LoghQ; <;>i =

Ds1 �Et
Rt = LoghR; <;>i =

Qt � �((Æ; (m; j)) � (Æ; (j;m)))

Rdt = Logfh�;�;�i : � an ordinalg =

Lin� �(�; (2 ; (j;m)))



180 M. ZAKHARYASCHEV, F. WOLTER, AND A. CHAGROV

(3) C(0;1 ) is the mirror image of the frame introduced in Example 128,

i.e., C(0;1 ) = h!<(0) �1 ; P i, where P consists of all co�nite sets

containing1 and their complements. We generalize this construction
to chains !<(n) and clusters k . Namely, for n < !, k > 1 and

k = fa0; : : : ; ak�1g, we put

C(n;k ) = h!<(n)�k ; P i;

where P is the set of possible values generated by fXi : 0 � i � k�1g,
for Xi = faig [ fkj + i : j 2 !g, 0 � i � k � 1. C(k ; n) denotes the

mirror image of C(n;k ).

(4) C(0;1 ; 0) = h!<(0)�1 � !>(0); P i, where P consists of all co�nite

sets containing 1 and their complements.

It is easy to check that the frames de�ned in (3) and (4) are descriptive

and a singleton fxg is in P i� x 62 k .
For a class of frames C, we denote by C� the class of �nite sequences of

frames from C and let [C�] = f[F] : F 2 C�g. The class of �nite clusters
and the frames of the form (3) in De�nition 133 is denoted by B0; put also

B = fC(0;1 ; 0)g [ B0.
THEOREM 134. Each logic L 2 NExtLin is determined by a set C � [B�].
If L is �nitely axiomatizable then L = LogC for some set C � [B�0 ].

Proof. We explain the idea of the proof of the �rst claim. Suppose that
M = hF;Vi is a countermodel for � = �((C1; tC1)� � � �� (Cn; tCn)) based
on a descriptive frame F = hW;R;R�1; P i. We must show that there exists
G 2 [B�] refuting � and such that LogG � LogF. Consider the sets

Wi = fy 2W : (M; y) j=
_
fpx : x 2 Cigg:

One can easily show that Wi are intervals in F and F = F1 � � � �� Fn, for
the subframes Fi of F induced by Wi. Moreover, G = [G] is as required
if G = hG1; : : : ;Gni is a sequence in B� such that LogGi � LogFi, and
Gi 6j= �(Ci; tCi), for 1 � i � n. Frames Gi with those properties are
constructed in [Wolter96d]. �

EXAMPLE 135. The logic Qt is determined by the frames F 2 [B�] which
contain no pair of adjacent irreexive points, and Rt is determined by the
frames F 2 [B�] which contain neither a pair of adjacent irreexive points
nor a pair of adjacent non-degenerate clusters.

It is not diÆcult to show now that the logics LogF, for F 2 [B�], coincide
with the

T
-irreducible logics in NExtLin. Our �rst aim is achieved, and
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in the remaining part of this section we shall draw consequences of this
result. Using the same sort of arguments as in the proof of Theorem 126
and Kruskal's [1960] Tree Theorem one can prove

COROLLARY 136. (i) All �nitely axiomatizable logics in NExtLin are de-
cidable.

(ii) A logic L is �nitely axiomatizable whenever there exists n < ! such
that L 2 NExtDsn.

It follows in particular that all logics in NExtQt and all logics of reexive
frames are �nitely axiomatizable and decidable.

Now we formulate two corollaries concerning the Kripke completeness of
linear tense logics. First, it is not hard to see that every logic in NExtLin
characterized by an in�nite frame in [B�] is Kripke incomplete. Using this
observation one can prove

COROLLARY 137. Suppose L 2 NExtLin and there is a Kripke frame of
in�nite depth for L. Then there exists a Kripke incomplete logic in NExtL.

This result means in particular that in Tense Logic we do not have ana-
logues of the unimodal completeness results of Bull [1966b] and Fine [1974c].
However, if a logic is complete then it is determined by a simple class of
frames. Let K be the class frames containing �nite clusters and frames of
the form (2) in De�nition 133.

THEOREM 138. Each Kripke complete logic in NExtLin is determined by
a subset of [K�].

One of the main types of logics considered in conventional Tense Logic
are logics determined by strict linear orders, known also as time-lines. We
call them t-line logics. All logics in Table 3, save Rdt, are t-line logics.
T-line logics were de�ned semantically, and now we are going to determine
a necessary syntactic condition for a linear tense logic to be a t-line logic.

Given a frame F, we denote by FÆ the frame that results from F by
replacing its proper clusters with reexive points. Call L 2 NExtLin a
t-axiom logic if L is axiomatizable by a set of formulas of the form �(F; t)
in which F contains no proper clusters.

PROPOSITION 139. The following conditions are equivalent for all logics
L 2 NExtLin:

(i) L is a t-axiom logic;

(ii) FÆ j= L implies F j= L, for every F 2 [B�].

(iii) �(G; t) 2 L implies �(GÆ; t) 2 L,15 for every �nite G.

15We assume that tC = tÆ whenever Æ replaces C in G.
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Proof. The implications (i) ) (ii) and (iii) ) (i) are clear. To prove that
(ii) ) (iii), suppose �(GÆ; t) 62 L. Then there exists a frame F 2 [B�] for L
refuting �(GÆ; t). Without loss of generality we may assume that F contains
no proper clusters. By enlarging some clusters in F we can construct a frame
H 2 [B�] such that HÆ = F and H 6j= �(G; t). In view of (ii), H j= L and so
�(G; t) 62 L. �

It follows that the t-axiom logics form a complete sublattice of the lattice
NExtLin.

THEOREM 140.

(i) All �nitely axiomatizable t-axiom logics are Kripke complete.

(ii) All t-line logics are t-axiom logics.

Proof. (i) Suppose that L = Lin�f�(GÆi ; ti) : i 2 Ig, for some �nite set I .
By Theorem 134, L is determined by a subset of [B�0 ]. For F 2 [B�0 ], let kF be

the Kripke frame that results from F by replacing all C(n;k ) and C(k ; n)
with !<(n) and !>(n), respectively. Then we clearly have LogkF � LogF,
and F j= �(GÆ; t) i� kF j= �(GÆ; t). It follows that L is Kripke complete.
(ii) Suppose that L is a t-line logic. By Proposition 139 (3), it suÆces to
observe that F j= �(GÆ; t) i� F j= �(G; t), for all time-lines F and all �nite
G. �

So the fact that in Table 3 all t-line logics are axiomatized by canon-
ical formulas of the form �(GÆ; t) is no accident. Finding and verifying
axiomatizations of t-line logics becomes almost trivial now.

EXAMPLE 141. Let us check the axiomatization of Zt in Table 3. Put

L = RD� LD� �((Æ; (j; j)) � (Æ; (j;m)))� �((Æ; (m; j)) � (Æ; (j; j))):

By Theorem 140, L is complete. By Theorem 138, L is then determined by
a subset of [K�]. Clearly this set contains hZ;<;>i, possibly k for k > 0,

and nothing else. But the logic of k contains Zt, for all k > 0.

We conclude this section by discussing the decidability of properties of
logics in NExtLin. In Section 4.4 it will be shown that almost all interesting
properties of calculi are undecidable in NExtK and even in NExtS4. In
NExtLin the situation is di�erent, as was proved in [Wolter 1996c, 1997c].

THEOREM 142. (i) There are algorithms which, given a formula ', decide
whether Lin � ' has FMP, interpolation, whether it is Kripke complete,
strongly complete, canonical, R-persistent.

(ii) A linear tense logic is canonical i� it is D-persistent i� it is complete
and its frames are �rst order de�nable.
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(iii) If a logic in NExtLin has a frame of in�nite depth then it does not
have interpolation.

So NExtLin provides an interesting example of a rather complex lattice
of modal logics for which almost all important properties of calculi are
decidable. We shall not go into details of the proof here but discuss quite
natural criteria for canonicity and strong completeness of logics in NExtLin
required to prove this theorem. Denote by B+ the class of frames containing

B together with frames C(n1;k ; n2) de�ned as follows. Suppose k > 1,

n1; n2 < ! are such that n1 + n2 > 0 and k = fa0; : : : ; ak�1g. Then

C(n1;k ; n2) = h!<(n1)�k � !>(n2); P i;
where P is the set of possible values generated by fXi : 0 � i � k � 1g, for

Xi = faig [ fkj + i : j 2 !g [ fk�j� + i� : j 2 !g
and f0�; 1�; : : : ; n�; : : : g being the points in !>(n2).

Let F be the class of frames of the form

hf0; : : : ; n1g; <;>i�1 � hf0; : : : ; n2g; <;>i or hf0; : : : ; ng; <;>i :
THEOREM 143. (i) A logic L 2 NExtLin is canonical i� the underlying
Kripke frame of each frame F 2 [B�+] for L validates L as well.

(ii) A logic L 2 NExtLin is strongly complete i� for each frame F 2 [B�+]
validating L, there exists a Kripke frame G for L which results from F by
replacing

� every C(n;k ) with !<(n) or !<(n)�H�k , for some H 2 F , and
� every C(k ; n) with !>(n) or k �H� !>(n), for some H 2 F , and
� every C(n1;k ; n2) with !<(n1)�H� !

>(n2), for some H 2 F .

EXAMPLE 144. The logic Rt is not canonical because C(2;2 ) j= Rt but

!<(2)�2 6j= Rt. However, Rt is strongly complete, since F j= Rt whenever
G 2 [B�+] validates Rt and F is obtained from G as in the formulation of
Theorem 143 with H = � 2 F .

One can also use Theorem 143 to construct two strongly complete logics
L1; L2 2 NExtLin whose sum L1�L2 is not strongly complete (see [Wolter
1996b]).

2.6 Bimodal provability logics

Bimodal provability logics emerge when combinations of two di�erent prov-
ability predicates are investigated, for example, if �1 is understood as \it
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is provable in PA" and �2 as \it is provable in ZF". In contrast to the
situation in unimodal provability logic, where almost all provability pred-
icates behave like the necessity operator � in GL, there exist quite a lot
of di�erent types of bimodal provability logics. Various completeness re-
sults extending Solovay's completeness theorem for GL to the bimodal case
were established by Smory�nski [1985], Montagna [1987], Beklemishev [1994,
1996] and Visser [1995]. Here we will not deal with the interpretation of
modal operators as provability predicates but sketch some results on modal
logics containing the bimodal provability logic

CSM0 = (GL
GL)��1p! �2p��2p! �1�2p

(named so by Visser [1995] after Carlson, Smory�nski and Montagna). A
number of provability logics is included in this class, witness the list below.
(As in unimodal provability logic we have quasi-normal logics among them,
i.e., sets of formulas containing K2 and closed under modus ponens and
substitutions (but not necessarily under '=�i'). Recall that we denote by
L+ � the smallest quasi-normal logic containing L and �.)

� CSM1 = CSM0 � �2(�1p ! p). (This is PRLZF in [Smory�nski
1985] and F in [Montagna 1987].)

� NB1 = CSM0 � (:�1p ^�2p)! �2(�1q ! q).

� CSM2 = CSM1 + �1p ! p. (This is PRLZF + Reection�1
in

[Smory�nski 1985] and F1 in [Montagna 1987].)

� CSM3 = CSM2 + �2p ! p. (This is PRLZF + Reection�2
in

[Smory�nski 1985].)

� NB2 = NB1 +�2p! p+�2p! �1p.

A remarkable feature of CSM0 is that|like in GL|we have uniquely de-
termined de�nable �xed points.

THEOREM 145 (Smory�nski 1985). Let '(p) be a formula in which every
occurrence of p lies within the scope of some �1 or some �2. Then

(i) there exists a formula  containing only the propositional variables of
'(p) di�erent from p such that  $ '( ) 2 CSM0;

(ii) �1((p$ '(p)) ^ (q $ '(q)))! (p$ q) 2 CSM0.

In the remaining part of this section we are concerned with subframe
logics containing CSM0, the main result stating that those of them that
are �nitely axiomatizable are decidable. All the provability logics introduced
above turn out to be subframe logics, so we obtain a uniform proof of their
decidability. An interesting trait of subframe logics in ExtCSM0 is that
(as a rule) they are Kripke incomplete; in the list above such are CSMi,
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i = 1; 2; 3, and NBi, i = 1; 2. The proof extends the techniques introduced
by Visser [1995]; for details we refer the reader to [Wolter 1998].

First we develop|as was done for NExtK4 and NExtLin|a frame the-
oretic language for axiomatizing subframe logics in the lattice ExtCSM0.
A �nite frame G = hW;R1; R2i validates CSM0 i� both R1 and R2 are
transitive, irreexive, R2 � R1 and

8x; y; z (xR1y ^ yR2z ! xR2z):

In this section all (not only �nite) frames are assumed to satisfy these con-
ditions, save irreexivity.

A �nite frame F is called a surrogate frame if it has precisely one root
r and all points di�erent from r are R2-irreexive. Surrogate frames will
provide the language to axiomatize subframe logics in ExtCSM0. A normal
surrogate frame hW;R1; R2i is a surrogate frame in which the root r is
R1-irreexive. We write xRpi y i� xRiy and :yRix. Given a frame G =
hV; S1; S2; Qi for CSM0 and a surrogate frame F = hW;R1; R2i, a map h
from V onto W is called a weak reduction of G to F if for i 2 f1; 2g and all
x; y 2 V ,

� xSiy implies f(x)Rif(y),

� f(x)Rpi f(y) implies 9z 2 V (xSiz ^ f(z) = f(y)),

� f�1(X) 2 Q for all X �W .

(The standard de�nition of reduction is relaxed here in the second condi-
tion.) Each weak reduction to a CSM0-frames is a usual reduction, since in
this case Rpi = Ri. A frame G is said to be weakly subreducible to a surro-
gate frame F if a subframe of G is weakly reducible to F. To describe weak
subreducibility syntactically, with each surrogate frame F = hW;R1; R2i we
associate the formula

�(F) = Æ(F) ^�1Æ(F)! :pr;
where r is the root of F and

Æ(F) =
^
fpx ! �1py : xRp1y; x; y 2Wg ^^
fpx ! �2py : xRp2y; x; y 2Wg ^^
fpx ! :py : x 6= y; x; y 2 Wg ^^
fpx ! :�1py : :(xR1y); x; y 2 Wg ^^
fpx ! :�2py : :(xR2y); x; y 2 Wg:

LEMMA 146. For every surrogate frame F and every CSM0-frame G, we
have G 6j= �(F) i� G is weakly subreducible to F.
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Table 4. Axiomatizations of provability logics

CSM1 = CSM0 � �( �
�
6)

CSM0 +�1p! p = CSM0 + �(�)
CSM0 +�2p! p = CSM0 + �( Æ1 )

CSM0 +�2p! �1p = CSM0 + �( Æ1
1Æ
6)

NB1 = CSM0 � �( �
� �
@@I ���
-
1

1

)� �( �
� �
@@I ���1

)�

�( �
� �
@@I ���
-
1

1

)� �( �
� �
@@I ���
-
1

)

It follows immediately that CSM0��(F) and CSM0+�(F) are subframe
logics. Conversely, we have the following completeness result.

THEOREM 147.

(i) There is an algorithm which, given a formula ' such that CSM0 +'
is a subframe logic, returns surrogate frames F1; : : : ;Fn for which

CSM0 + ' = CSM0 + �(F1) + � � �+ �(Fn):

(ii) There is an algorithm which, given a formula ' such that CSM0 �'
is a subframe logic, returns normal surrogate frames F1; : : : ;Fn such
that

CSM0 � ' = CSM0 � �(F1)� � � � � �(Fn):

Table 4 shows axiomatizations of the logics introduced above by means of
formulas of the form �(F). In this section we adopt the convention that in
�gures we place the number 1 nearby an arrow from x to y if xR1y and
:xR2y. An arrow without a number means that xR2y (and therefore xR1y
as well).

The proof of decidability is based on the completeness of subframe logics
in ExtCSM0 with respect to rather simple descriptive frames. With every
surrogate frame F we associate a �nite set of frames

E(F) = fFA : A 2 SeqFg:
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Loosely, it is de�ned as follows. Let us �rst assume that the root r of F
is R2-irreexive. Then the frames in E(F) are the results of inserting an
in�nite strictly descending R1-chain, denoted by C(!), between each non-
degenerate R1-cluster C and its R1-successors. This de�nes R1 uniquely.
However, R2 may be de�ned in di�erent ways, since a point R2-seeing a
point in C need not (but may) R2-see certain points in the chain C(!).

To be more precise, the set SeqF consists of all sequences A of the form

A = hAx : xR1x; x 2W i.
where Ax is a subset of fy 2 W � C : yR2xg such that for all y and z,
y 2 Ax and zR1y imply z 2 Ax. For each non-degenerate R1-cluster C,
denote by C(!) the set f(n;C) : n 2 !g. Finally, given A 2 SeqF, we
construct FA = hV; S0; S1i as the frame satisfying the following conditions:

� V = W [SfC(!) : C a non-degenerate R1-cluster in Fg;
� Ri = Si \ (W �W ), for i 2 f1; 2g;
� S1 is de�ned so that C(!) becomes an in�nite descending chain be-

tween C and its immediate successors;

� for every non-degenerate R1-cluster C,

{ ((C(!) [ C)� (C(!) [ C)) \ S2 = ;,
{ for all y 2W � C and x 2 C(!), xS2y i� CR2y,

{ for all y 2W �C, C = fj : 0 � j � m� 1g and x 2 C(!), yS2x
i� 9i 2 !9j � m� 1 (x = (im+ j; C) ^ y 2 Aj),

{ for all x 2 C(!) and y 2 V � C, xS2y i� CS2y.

We illustrate this technical de�nition by a simple example.

EXAMPLE 148. Construct E(F) for the frame F in Fig. 12 (a). In this
case we have two R1-reexive points, namely c and d. So, SeqF consists of
pairs hAc; Adi. There are four di�erent pairs and so we have four frames
in E(F): the frame in Fig. 12 (b) is Fh;;;i and that in (c) is Fhfag;fbgi.
Fh;;fbgi is obtained from Fhfag;fbgi by omitting the R2-arrows starting from
a, save the arrow to c, and Fhfag;;i is obtained from Fhfag;fbgi by omitting
the R2-arrows starting from b, save the arrow to d.

Suppose now that the root r of F = hW;R1; R2i is R2-reexive. We de�ne
FA as in the previous case, but this time we also insert an in�nite strictly
descending R2-chain C(!) between r and its R1-successors.

We have de�ned the relational component of our frames and now turn to
their sets of possible values. Given FA = hV; S1; S2i and a non-degenerate
R1-cluster C = fj : 0 � j � m� 1g in F, let

PC = ffjg [ f(im+ j; C) : i 2 !g : j = 0; : : : ;m� 1g
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and denote by P the closure of

ffxg : x 2 V;:xS1xg [ fPC : C is a non-degenerate R1-cluster in Fg

under intersections and complements in V . The resultant general frame is
denoted by G(FA) = hV; S1; S2; P i. One can check that it is a descriptive
frame for CSM0. The following completeness result is proved similarly to
that in Section 2.4.

THEOREM 149.

(i) Each subframe logic in NExtCSM0 is determined by a set of frames
of the form G(FA), in which F is a normal surrogate frame and A 2
SeqF.

(ii) Each subframe logic in ExtCSM0 is determined by a set of frames with
distinguished worlds of the form hG(FA); ri in which F is a surrogate
frame with root r and A 2 SeqF.

As a consequence of Theorem 149 and the fact that, for each surrogate frame
F with root r and each A 2 SeqF, both the logics of G(FA) and hG(FA); ri
are decidable, we obtain

THEOREM 150. All �nitely axiomatizable subframe logics in ExtCSM0

are decidable.

We conjecture that the method above can be extended to logics without
the GL-axioms, i.e., all �nitely axiomatizable subframe logics containing

(K4
K4)��1p! �2p��2p! �1�2p

are decidable.
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2.7 Cartesian products of modal logics

Polymodal logics can be used for talking about multi-dimensional relational
structures such as Cartesian products of Kripke frames. The formation
of products is probably the most natural way of introducing a concept of
dimension in modal logic in order to reect interactions between modal
operators representing time, space, knowledge, actions, etc. Products of
modal logics (i.e., the sets of polymodal formulas that are valid in Carte-
sian products of Kripke frames for those logics) have been studied in both
pure modal logic (see e.g. [Segerberg 1973], [Shehtman 1978a], [Marx and
Venema 1997], [Gabbay and Shehtman 1998], [Kurucz 2000], [Wolter 2000])
and applications in computer science and arti�cial intelligence (see e.g. [Reif
and Sistla 1985], [Fagin et al. 1995], [Baader and Ohlbach 1995], [Finger
and Reynolds 1999], [Wolter and Zakharyaschev 1998, 1999b, 1999c, 2000])
since the 1970s. (Products of modal logics are also relevant to �nite vari-
able fragments of modal and intermediate predicate logics; see [Gabbay and
Shehtman 1993].)

The (Cartesian) product of two frames F1 = hW1; R1i and F2 = hW2; R2i
is the bimodal frame of the form

F1 � F2 = hW1 �W2; Rh; Rvi
in which, for all u1; u2 2W1 and v1; v2 2W2,

hu1; v1iRh hu2; v2i i� u1R1u2 and v1 = v2;

hu1; v1iRv hu2; v2i i� u1 = u2 and v1R2v2:

The subscripts h and v appeal to the geometrical intuition of considering Rh
as the \horizontal" accessibility relation in F1�F2 and Rv as the \vertical"
one.

Let L2 be the bimodal language with boxes � and � (and their duals

� and � ). Frames for this language will be denoted by F = hW;Rh; Rvi,
so that � and � are interpreted by the relations Rh and Rv, respectively.
Products are just special frames of this form.

Every product F = F1 � F2 satis�es the following two important proper-
ties: Rv ÆRh = Rh ÆRv and R�1v ÆRh � Rh ÆR�1v , known as commutativity
and the Church{Rosser property, respectively. F is commutative i� it vali-
dates the formula

com = ��p$ ��p;

and F is Church{Rosser i� it validates

chr = ��p! ��p:

It is to be noted, however, that these properties are not characteristic for
products: there are bimodal commutative and Church{Rosser frames that
are not (isomorphic to) products of any two frames.
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Given two classes of Kripke frames C1 and C2, we de�ne their (Cartesian)
product C1 � C2 by taking

C1 � C2 = fF1 � F2 : F1 2 C1;F2 2 C2g:
Let C1 and C2 be the classes of all Kripke frames for complete unimodal logics
L1 and L2. Their (Cartesian) product L1 � L2 is de�ned as the bimodal
logic Log(C1 � C2) in the language L2. It is easy to see that L1 � L2 is a
conservative extension of both L1 and L2, and that

L1 � L2 � (L1 
 L2)� com� chr:
In some important cases the converse inclusion also holds:

THEOREM 151 (Gabbay and Shehtman 1998). Suppose both L1 and L2
are axiomatized by variable free formulas and formulas of the form

�n�p! �mp:

Then
L1 � L2 = (L1 
 L2)� com� chr:

This theorem yields, for instance, axiomatizations for products of K, D,
K4, T, S4, S5. However there are many products of standard logics which
cannot be axiomatized in this canonical way, for instance, Grz�Grz (see
[Gabbay and Shehtman 1998]). Moreover, products of logics of linear frames
may be even not recursively enumerable, e.g. GL:3�GL:3 (see [Reynolds
and Zakharyaschev 2000]). (On the other hand, as was observed in [Gabbay
and Shehtman 1998], if classes C1; : : : ; Cn are elementary and recursive then
Log(C1 � � � � � Cn) is recursively axiomatizable.)

In contrast to the unimodal case, usually it is rather diÆcult to prove
positive results about products of even simple standard logics. Here we
illustrate one of the methods of establishing FMP and decidability developed
in [Wolter and Zakharyaschev 1998, 1999b] by applying it to S5�S5. Other
techniques|�ltration, �nite depth method, and mosaic|can be found in
[Gabbay and Shehtman 1998] and [Marx and Venema 1997].
S5�S5 is clearly determined by the class of products of universal frames

which will be called S5-rectangles. Suppose we are given a formula ' and
want to �nd out whether it is satis�able in some S5-rectangle.

Let us call a type for ' any subset t of Sub' such that

�  ^ � 2 t i�  2 t and � 2 t; for every  ^ � 2 Sub',

� : 2 t i�  =2 t; for every : 2 Sub'.

A type-cluster for ' is a set T of distinct types for ' such that

8t 2 T8� 2 Sub' (� 2 t$ 9t0 2 T  2 t0):
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Let Q be a non-empty set elements a in which are labelled by type-clusters
T for '. In other words, we can think of Q as consisting of pairs of the
form T a with pairwise distinct a.

A run through Q (or a Q-run, for short) is a function r from Q to the
set of types for ' such that

� r(T a) 2 T for every T a 2 Q, and

� 8T a 2 Q8� 2 Sub' (� 2 r(T a)$ 9scb 2 Q  2 r(scb)).

Say that Q is a quasimodel for ' if, for every T a 2 Q and every t 2 T , there
is a Q-run r coming through t, i.e., r(T a) = t. Q satis�es ' if ' belongs
to a type occurring in a type-cluster in Q.

One can readily show that a formula ' is satis�ed in an S5-rectangle i�
' is satis�ed in some quasimodel for '.

We prove now that every satis�able formula ' is satis�ed in a quasimodel
of some bounded size. Let Q be a quasimodel satisfying '. Construct a
subquasimodel Q0 of Q in the following way. To begin with, we put in Q0

an element a0 from Q labelled by a type-cluster T containing a type with
'. Then, for every t 2 T we take a run r coming through t, and for each
� 2 t select r(a) containing  and put in Q0 the element a together with
its copy a0 (labelled by the same type-cluster as a). Thus the resulting Q0

contains at most 2jSub'j �2 jSub'j elements. It is now easy to see that Q0 is
a quasimodel satisfying '. For suppose we have an element a 2 Q0 labelled
by T and a t 2 T . If a = a0 then, by the construction, we have a Q0-run
coming through t. Assume now that a 6= a0. We know that there is a Q-run
r0 through t. Let r0(a0) = t0. By the construction we have a Q0-run r00

through t0. But then the function r de�ned by

r(b) =

(
r0(b) if b = a

r00(b) otherwise,

for b 2 Q0, is a run in Q0 coming through t. Note that this gives us
22jSub'j �2 jSub'j runs in Q0 coming through all its types. As a consequence
we obtain:

THEOREM 152. Every formula satis�able in an S5-rectangle is satis�ed in
an S5-rectangle containing at most 23jSub'j �4 jSub'j2 points. Thus S5�S5
has FMP and is decidable.

Unfortunately, there is no general transfer theorem that could guarantee
the preservation of such properties of logics as decidability, axiomatizability,
or interpolation under the formation of products. If we consider only prod-
ucts of standard modal logics, then the results obtained so far can roughly be
described as follows (for more details consult [Spaan 1993], [Marx and Ven-
ema 1997], [Gabbay and Shehtman 1998], [Marx and Areces 1998], [Marx
1999], [Wolter 2000], [Reynolds and Zakharyaschev 2000]):
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� logics of the formK�L and S5�L are usually decidable (in particular,
for L 2 fK;T;K4;K4:3;S4;S5g);
� products of logics determined by in�nite linear orders are undecidable,

� the computational complexity of a decidable product is usually sub-
stantially higher than the complexity of its components; for example,
the satis�ability problem for S5� S5 is NEXPTIME-complete.

The decidability and FMP of logics like K4 � K4, S4 � S4, S4 � S4:3
remain challenging open problems of the �eld.

In higher dimensions|for n � 3|the �rst results related to products of
modal logics were obtained in the framework of algebraic logic: as follows
from [Maddux 1980] and [Johnson 1969], S5n is undecidable and not �nitely
axiomatizable. However, as we mentioned above, products like S5n and Kn

are recursively enumerable. It is worth noting that although Kn have FMP
for all n < ! [Gabbay and Shehtman 1998], this could imply the decidabiliy
of Kn only if the class of �nite frames for Kn were recursive. We could have
such a test if Kn were �nitely axiomatizable; however this is not the case
[Kurucz 2000]. To prove the decidability of Kn, it would also be enough
to show that it has the product FMP, i.e., it is characterized by the class
of products of n-many �nite frames. But this approach does not work
either: as has been shown by Hirsch et al. [2000], all logics L such that
Kn � L � S5n are undecidable, non �nitely axiomatizable, do not have the
product FMP, and it is undecidable whether a �nite frame is a frame for
L. (The only known example of a decidable higher dimensional product of
non-tabular logics is Altn [Gabbay and Shehtman 1998].)

3 SUPERINTUITIONISTIC LOGICS

Although C.I. Lewis constructed his �rst modal calculus S3 in 1918, it
was G�odel's [1933] two page note that attracted serious attention of math-
ematical logicians to modal systems. While Lewis [1918] used an abstract
necessity operator to avoid paradoxes of material implication, G�odel [1933]
and earlier Orlov [1928]16 treated � as \it is provable" to give a classical
interpretation of intuitionistic propositional logic Int by means of embed-
ding it into a modal \provability" system which turned out to be equivalent
to Lewis' S4.

Approximately at the same time G�odel [1932] observed that there are
in�nitely many logics located between Int and classical logic Cl, which|
together with the creation of constructive (proper) extensions of Int by
Kleene [1945] and Rose [1953] (realizability logic), Medvedev [1962] (logic

16Orlov's paper remained unnoticed till the end of the 1980s. It is remarkable also for
constructing the �rst system of relevant logic.
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of �nite problems), Kreisel and Putnam [1957]|gave an impetus to study-
ing the class of logics intermediate between Int and Cl, started by Umezawa
[1955, 1959]. G�odel's embedding of Int into S4, presented in an algebraic
form by McKinsey and Tarski [1948] and extended to all intermediate logics
by Dummett and Lemmon [1959], made it possible to develop the theories
of modal and intermediate logics in parallel ways. And the structural results
of Blok [1976] and Esakia [1979a,b], establishing an isomorphism between
the lattices ExtInt and NExtGrz, along with preservation results of Mak-
simova and Rybakov [1974] and Zakharyaschev [1991], transferring various
properties from modal to intermediate logics and back, showed that in many
respects the theory of intermediate logics is reducible to the theory of logics
in NExtS4.

To demonstrate this as well as some features of intermediate logics is
the main aim of this part. We will use the same system of notations as
in the modal case. In particular, ExtInt is the lattice of all logics of the
form Int + � (where � is an arbitrary set of formulas in the language of
Int and + as before means taking the closure under modus ponens and
substitution); we call them superintuitionistic logics or si-logics for short.
Basic facts about the syntax and semantics of Int and relevant references
can be found in Intuitionistic Logic, see volume 7 of this Handbook. A list
of some \standard" si-logics is given in Table 5.

3.1 Intuitionistic frames

As in the case of modal logics, the adequate relational semantics for si-logics
can be constructed on the base of the Stone representation of the algebraic
\models" for Int, known as Heyting (or pseudo-Boolean) algebras. It is hard
to trace now who was the �rst to introduce intuitionistic general frames|the
earliest references we know are [Esakia 1974] and [Rautenberg 1979]|but in
any case, having at hand [J�onsson and Tarski 1951] and [Goldblatt 1976a],
the construction must have been clear.

An intuitionistic (general) frame is a triple F = hW;R; P i in which R is a
partial order on W 6= ; and P , the set of possible values in F, is a collection
of upward closed subsets (cones) in W containing ; and closed under the
Boolean \, [, and the operation � (for !) de�ned by

X � Y = fx 2 W : 8y 2 x" (y 2 X ! y 2 Y )g:

If P contains all upward closed subsets in W then we call F a Kripke frame
and denote it by F = hW;Ri. An important feature of intuitionistic models
M = hF;Vi (V, a valuation in F, maps propositional variables to sets in P )
is that V('), the truth-value of a formula ', is always upward closed.

Every intuitionistic frame F = hW;R; P i gives rise to the Heyting algebra
F+ = hP;\;[;�; ;i called the dual of F. Conversely, given a Heyting algebra
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Table 5. A list of standard superintuitionistic logics

For = Int+ p

Cl = Int+ p _ :p
SmL = Int+ (:q ! p)! (((p! q)! p)! p)

KC = Int+ :p _ ::p
LC = Int+ (p! q) _ (q ! p)

SL = Int+ ((::p! p)! :p _ p)! :p _ ::p
KP = Int+ (:p! q _ r)! (:p! q) _ (:p! r)

BDn = Int+ bdn, where
bd1 = p1 _ :p1; bdn+1 = pn+1 _ (pn+1 ! bdn)

BWn = Int+
Wn
i=0(pi !

W
j 6=i pj)

BTWn = Int+
V
0�i<j�n :(:pi ^ :pj)!

Wn
i=0(:pi !

W
j 6=i :pj)

Tn = Int+
Vn
i=0((pi !

W
i6=j pj)!

W
i6=j pj)!

Wn
i=0 pi

Bn = Int+
Vn
i=0(:pi $

W
i6=j pj)!

Wn
i=0 pi

NLn = Int+ nfn, where
nf 0 = ?, nf1 = p, nf2 = :p, nf! = >
nf 2m+3 = nf2m+1 _ nf2m+2,
nf 2m+4 = nf2m+3 ! nf 2m+1

A = hA;^;_;!;?i, we construct its relational representation A+ = hW;Ri
by taking W to be the set of all prime �lters in A (a �lter r is prime if it
is proper and a _ b 2 r implies a 2 r or b 2 r), R to be the set-theoretic
inclusion � and

P = ffr 2W : a 2 rg : a 2 Ag:
It is readily checked that A+, the dual of A, is an intuitionistic frame,
A �= (A+)+ and A+ is di�erentiated, tight in the sense that

xRy i� 8X 2 P (x 2 X ! y 2 X);

and compact, i.e., for any families X � P and Y � fW �X : X 2 Pg,\
(X [ Y) = fx 2W : 8X 2 X8Y 2 Y (x 2 X ^ x 2 Y )g 6= ;

whenever
T

(X 0 [ Y 0) 6= ; for every �nite subfamilies X 0 � X , Y 0 � Y .
Frames with these three properties (actually di�erentiatedness follows from
tightness) are called descriptive. In the same way as in the modal case
one can prove that F is descriptive i� F �= (F+)+. Duality between the
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Figure 13.

basic truth-preserving operations on algebras and descriptive frames (the
de�nitions of generated subframes, reductions and disjoint unions do not
change) is also established by the same technique.

Since every consistent si-logic L is characterized by its Tarski{Lindenba-
um algebra AL, we conclude that L is characterized also by a class of intu-
itionistic frames, say by the dual of AL.

Re�ned �nitely generated frames for Int look similarly to those for K4:
the only di�erence is that now all clusters are simple and the truth-sets must
be upward closed. Fig. 13 showing (a) the free 1-generated Heyting algebra
AInt(1) and (b) its dual FInt(1) will help the reader to restore the details.
AInt(1) was �rst constructed by Rieger [1949] and Nishimura [1960]; it is
called the Rieger{Nishimura lattice. The formulas nfn de�ned in Table 5
and used for the construction are known as Nishimura formulas (see also
Section 3 of Intuitionistic Logic), in volume 7 of this Handbook.

At the algebraic level the connection between Int and S4 discovered by
G�odel is reected by the fact, established in [Mckinsey and Tarski 1946],
that the algebra of open elements (i.e., elements a such that �a = a) of
every modal algebra for S4 (known as a topological Boolean algebra; see
[Rasiowa and Sikorski 1963]) is a Heyting algebra and conversely, every
Heyting algebra is isomorphic to the algebra of open elements of a suitable
algebra for S4. We explain this result in the frame-theoretic language.

Given a frame F = hW;R; P i for S4 (which means that R is a quasi-
order on W ), we denote by �W the set of clusters in F|more generally,
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�X = fC(x) : x 2 Xg|and put C(x)�C(y) i� xRy,

�P = f�X : X 2 P ^X = �Xg = f�X : X 2 P ^X = X"g:

It is readily checked that the structure �F = h�W;�R;�P i is an intuition-
istic frame (for instance, �(X) � �(Y ) = �(�(�X [ Y ))); we call it the
skeleton of F. The skeleton of a model M = hF;Vi for S4 is the intuitionistic
model �M = h�F;�Vi, where �V(p) = V(�p).

Denote by T the G�odel translation pre�xing � to all subformulas of a
given intuitionistic formula.17 By induction on the construction of ' one
can easily prove the following

LEMMA 153 (Skeleton). For every model M for S4, every intuitionistic
formula ' and every point x in M,

(�M; C(x)) j= ' i� (M; x) j= T ('):

It follows that ' 2 Int implies T (') 2 S4. To prove the converse we
should be able to convert intuitionistic frames F into modal ones with the
skeleton (isomorphic to) F. This is trivial if F is a Kripke frame|we can
just regard it to be a frame for S4, which in view of the Kripke completeness
of both Int and S4, shows that T really embeds the former into the latter,
i.e.,

' 2 Int i� T (') 2 S4:
In general, the most obvious way of constructing a modal frame from an
intuitionistic frame F = hW;R; P i is to take the closure �P of P under the
Boolean operations \, [ and !. It is well known in the theory of Boolean
algebras (see [Rasiowa and Sikorski 1963]) that for every X � W , X is in
�P i�

X = (�X1 [ Y1) \ � � � \ (�Xn [ Yn)

for some X1; Y1; : : : ; Xn; Yn 2 P and n � 1. It follows that if X 2 �P then

�X = (X1 � Y1) \ � � � \ (Xn � Yn) 2 P � �P;

and so �P is closed under � in hW;Ri and P coincides with the set of
upward closed sets in �P . Thus, hW;R;�P i is a partially ordered modal
frame; we shall denote it by �F. Moreover, we clearly have F �= ��F. If
M = hF;Vi is an intuitionistic model then �M = h�F;Vi is a modal model
having M as its skeleton. So by the Skeleton Lemma,

(M; x) j= ' i� (�M; x) j= T (');

17The translation de�ned in [G�odel 1933] does not pre�x � to conjunctions and dis-
junctions. However this di�erence is of no importance as far as embeddings into logics
in NExtS4 are concerned.
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for every intuitionistic formula ' and every point x in F.
It is worth noting that if F = hW;Ri is a �nite intuitionistic Kripke frame

then �F is also a Kripke frame. However, for an in�nite F, �F is not in
general a Kripke frame, witness h!;�i.

The operator � is not the only one which, given an intuitionistic frame F,
returns a modal frame whose skeleton is isomorphic to F. As an example, we
de�ne now an in�nite class of such operators. For Kripke frames F = hW;Ri
and G = hV; Si, denote by F�G the direct product of F and G, i.e., the frame
hW � V;R� Si in which the relation R� S is de�ned component-wise:

hx1; y1i (R � S) hx2; y2i i� x1Rx2 and y1Sy2:

Let 0 < k � !. We will regard k to be the set f0; : : : ; k � 1g if k < ! and
f0; 1; : : :g if k = !. Denote by � k an operator which, given an intuitionistic
frame F = hW;R; P i, returns a modal frame � kF = hkW; kR; kP i such that

(i) hkW; kRi is the direct product of the k-point cluster


k; k2

�
and hW;Ri

(in other words, hkW; kRi is obtained from hW;Ri by replacing its every
point with a k-point cluster);

(ii) �� kF �= F;
(iii) I �X 2 kP , for every I � k and X 2 �P .

For instance, we can take kP to be the Boolean closure of the set

fI �X : I � k; X 2 �Pg:

For a Kripke frame F = hW;R;UpW i we can, of course, take kP = 2kW

and then � kF =


kW; kR; 2kW

�
.

3.2 Canonical formulas

The language of canonical formulas, axiomatizing all si-logics and charac-
terizing the structure of their frames, can be easily developed following
the scheme of constructing the canonical formulas for K4 outlined in Sec-
tion 1.6 and using the connection between modal and intuitionistic frames
established above. We con�ne ourselves here only to pointing out the dif-
ferences from the modal case and some interesting peculiarities; details can
be found in [Zakharyaschev 1983, 1989] and [Chagrov and Zakharyaschev
1997].

Actually, there are two important di�erences. First, in the de�nition of
subreduction of F = hW;R; P i to G the condition (R3) does not correspond
to the fact that all sets in P are upward closed. We replace it by the
following condition

(R30) 8X 2 Q f�1(X)# 2 P ,

where Q = fV � X : X 2 Qg and P = fW � X : X 2 Pg. For a
completely de�ned f satisfying (R1) and (R2) the condition (R30) is clearly



198 M. ZAKHARYASCHEV, F. WOLTER, AND A. CHAGROV

Æ

ÆÆ Æ
6

@
@

@
@

@
@I

�
�
�
�
�
��

0

:p! :q
:p! :r:p! :q _ :r

1 2 3:p
q
:q :p

r
:r p :p

G

Figure 14.

equivalent to (R3) and so every reduction is also a subreduction. If G is a
�nite Kripke frame then (R30) is equivalent to 8z 2 V f�1(z)# 2 P . G is
a subframe of F if �G is a subframe of �F and the identity map on V is a
subreduction of F to G. It is of interest to note that in the intuitionistic case
(co�nal) subreductions are dual to IC(N)-subalgebras of Heyting algebras
which preserve only implication, conjunction (and negation or ?) but do
not necessarily preserve disjunction.

Second, we have to change the de�nition of open domains. Now we say
an antichain a (of at least two points) is an open domain in an intuitionistic
model N relative to a formula ' if there ia a pair ta = (�a;�a) such that
�a [�a = Sub',

V
�a !

W
�a 62 Int and

�  2 �a i� a j=  for all a 2 a.

It is worth noting that in any intuitionistic model every antichain a is open
relative to every disjunction free formula '. Indeed, let �a be de�ned by
condition above and �a = Sub' � �a. It should be clear that  ^ � 2 �a
i�  2 �a and � 2 �a. And if  ! � 2 �a,  2 �a but � 2 �a then a j=  
for every a 2 a and b 6j= � for some b 2 a, whence b 6j=  ! �, which is a
contradiction. It follows that

V
�a !

W
�a 62 Int.

EXAMPLE 154. Let us try to characterize the class of intuitionistic refu-
tation frames for the Weak Kreisel{Putnam Formula

wkp = (:p! :q _ :r)! (:p! :q) _ (:p! :r):

First we construct its simplest countermodel; it is depicted in Fig. 14, where
by putting a formula to the left (right) of a point we mean that it is true
(not true) at the point. Then we observe that every frame F refuting wkp
is co�nally subreducible to the frame G underlying this countermodel by
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the map f de�ned as follows:

f(x) =

8>>>><
>>>>:

0 if x j= :p! :q _ :r, x 6j= (:p! :q) _ (:p! :r)
1 if x j= :p! :q _ :r, x j= :p and x j= q
2 if x j= :p! :q _ :r, x j= :p and x j= r
3 if x j= p or x j= :p ^ :q ^ :r
unde�ned otherwise.

However, the co�nal subreducibility to G is only a necessary condition for
F 6j= wkp, witness the frame having the form of the three-dimensional
Boolean cube with the top point deleted. The reason for this is that the
antichain f1; 2g is a closed domain in N: it is impossible to insert a point
a between 0 and f1; 2g and extend to it consistently the truth-sets for the
depicted formulas. Indeed, otherwise we would have a j= :p ! :q _ :r,
a 6j= :q _ :r and so a 6j= :p, i.e., there must be a point x 2 a" such that
x j= p, but such a point does not exist. In fact, F 6j= wkp i� there is a
co�nal subreduction of F to G satisfying (CDC) for ff1; 2gg.

Now, as in the modal case, with every �nite rooted intuitionistic frame
F = hW;Ri and a set D of antichains in it we can associate two formulas
�(F;D;?) and �(F;D), called the canonical and negation free canonical
formulas, respectively, so that G 6j= �(F;D;?) (G 6j= �(F;D)) i� there is a
(co�nal) subreduction of G to F satisfying (CDC) for D. For instance, if
a0; : : : ; an are all points in F and a0 is its root, then one can take

�(F;D;?) =
^
aiRaj

 ij ^
^
d2D

 d ^  ? ! p0;

where

 ij = (
^

:ajRak
pk ! pj)! pi;

 d =
^

ai2W�d"
(
^

:aiRak
pk ! pi)!

_
aj2d

pj ;

 ? =

n̂

i=0

(
^

:aiRak
pk ! pi)! ?:

�(F;D) is obtained from �(F;D;?) by deleting the conjunct  ?.

THEOREM 155. There is an algorithm which, given an intuitionistic ',
returns canonical formulas �(F1;D1;?); : : : ; �(Fn;Dn;?) such that

Int+ ' = Int + �(F1;D1;?) + � � �+ �(Fn;Dn;?):

So the set of intuitionistic canonical formulas is complete for ExtInt. If
' is negation free then one can use only negation free canonical formulas.
And if ' is disjunction free then all Di are empty.
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Table 6 and Theorem 156 show canonical axiomatizations of the si-logics
in Table 5. Using this \geometrical" representation it is not hard to see, for
instance, that SmL, known as the Smetanich logic, is the greatest consistent
extension of Int di�erent from Cl; it is the logic of the two-point rooted
frame. KC, the logic of the Weak Law of the Excluded Middle, is character-
ized by the class of directed frames. It is the greatest si-logic containing the
same negation free formulas as Int (see [Jankov 1968a]). LC, the Dummett
or chain logic, is characterized by the class of linear frames (see [Dum-
mett 1959]). BDn and BWn are the minimal logics of depth n and width
n, respectively (see [Hosoi 1967] and [Smory�nski 1973]). Finite frames for
BTWn contain � n top points [Smory�nski 1973] and �nite frames for Tn
are of branching � n, i.e., no point has more than n immediate successors.

THEOREM 156 (Nishimura 1960, Anderson 1972). Every extension L of
Int by formulas in one variable can be represented either as

L = Int+ nf2n = Int+ �](Hn;?)

or as

L = Int+ nf 2n�1 = Int+ �](Hn+1;?) + �](Hn+2;?);

where Hn, Hn+1, Hn+2 are the subframes of the frame in Fig. 13 generated
by the points n, n+1 and n+2, respectively, and �](F;?) is an abbreviation
for �(F;D];?), D] the set of all antichains in F.

Jankov [1969] proved in fact that logics of the form Int + �](F;?) and
only them are splittings of ExtInt. However, not every si-logic is a union-
splitting of ExtInt which means that this class has no axiomatic basis.

3.3 Modal companions and preservation theorems

The fact that the G�odel translation T embeds Int into S4 and the relation-
ship between intuitionistic and modal frames established in Section 3.1 can
be used to reduce various problems concerning Int (e.g. proving complete-
ness or FMP) to those for S4 and vice versa. Moreover, it turns out that
each logic in ExtInt is embedded by T into some logics in NExtS4, and for
each logic in NExtS4 there is one in ExtInt embeddable in it.

We say a modal logic M 2 NExtS4 is a modal companion of a si-logic L
if L is embedded in M by T , i.e., if for every intuitionistic formula ',

' 2 L i� T (') 2M:

If M is a modal companion of L then L is called the si-fragment of M
and denoted by �M . The reason for denoting the operator \modal logic
7! its si-fragment" by the same symbol we used for the skeleton operator is
explained by the following
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Table 6. Canonical axioms of standard superintuitionistic logics

For = Int+ �(Æ)

Cl = Int+ �( Æ
Æ
6)

SmL = Int+ �( Æ
Æ Æ
AAK ��� ) + �( Æ

Æ
Æ

6
6

)

KC = Int+ �( Æ
Æ Æ
AAK ���

;?)

LC = Int+ �( Æ
Æ Æ
AAK ���

)

SL = Int+ �]( Æ
Æ Æ
Æ

AAK ���

6

;?)

KP = Int+ �( Æ
Æ Æ Æ
@@I ���6
1 2

; ff1; 2gg;?) + �( Æ
Æ Æ Æ
@@I ���6
1 2

Æ
��� AAK

; ff1; 2gg;?)

BDn = Int+ �( Æ
Æ

Æ

6

...
6

0

1

n

)

BWn = Int+ �( Æ

n+1z }| {Æ � � � Æ
@@I ���

)

BTWn = Int+ �( Æ

n+1z }| {Æ � � � Æ
@@I ���

;?)

Tn = Int+ �]( Æ

n+1z }| {Æ � � � Æ
@@I ���

)

Bn = Int+ �]( Æ

n+1z }| {Æ � � � Æ
@@I ���

;?)
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THEOREM 157. For every M 2 NExtS4, �M = f' : T (') 2 Mg. More-
over, if M is characterized by a class C of modal frames then �M is char-
acterized by the class �C = f�F : F 2 Cg of intuitionistic frames.

Proof. It suÆces to show that f' : T (') 2 Mg = Log�C. Suppose that
T (') 2 M . Then F j= T (') and so, by the Skeleton Lemma, �F j= ' for
every F 2 C, i.e., ' 2 Log�C. Conversely, if �F j= ' for all F 2 C then, by
the same lemma, T (') is valid in all frames in C and so T (') 2M . �

Thus, � maps NExtS4 into ExtInt. The following simple observation
shows that actually � is a surjection. Given a logic L 2 ExtInt, we put

�L = S4� fT (') : ' 2 Lg:

THEOREM 158 (Dummett and Lemmon 1959). For every si-logic L, �L
is a modal companion of L.

Proof. Clearly, L � ��L. To prove the converse inclusion, suppose ' 62 L,
i.e., there is a frame F for L refuting '. Since F �= ��F, by the Skeleton
Lemma we have �F j= �L and �F 6j= T ('). Therefore, T (') 62 �L and so
' 62 ��L. �

Now we use the language of canonical formulas to obtain a general char-
acterization of all modal companions of a given si-logic L. Our presentation
follows [Zakharyaschev 1989, 1991]. Notice �rst that for every modal frame
G and every intuitionistic canonical formula �(F;D;?), G j= �(F;D;?) i�
�G j= �(F;D;?) and so S4� T (�(F;D;?)) = S4� �(F;D;?). The same
concern, of course, the negation free canonical formulas.

THEOREM 159. A logic M 2 NExtS4 is a modal companion of a si-logic
L = Int+ f�(Fi;Di;?) : i 2 Ig i� M can be represented in the form

M = S4� f�(Fi;Di;?) : i 2 Ig � f�(Fj ;Dj ;?) : j 2 Jg;

where every frame Fj , for j 2 J , contains a proper cluster.

Proof. (() We must show that for every intuitionistic formula ', ' 2 L
i� T (') 2M . Suppose that ' 62 L and F = hW;R; P i is a frame separating
' from L. We prove that �F separates T (') from M . As was observed
above, �F 6j= T (') and �F j= �(Fi;Di;?) for any i 2 I . So it remains to
show that �F j= �(Fj ;Dj ;?) for every j 2 J .

Suppose otherwise. Then, for some j 2 J , we have a subreduction f of
�F to Fj . Let a1 and a2 be distinct points belonging to the same proper
cluster in Fj . By the de�nition of subreduction, f�1(a1) � f�1(a2)# and
f�1(a2) � f�1(a1)#, and so there is an in�nite chain x1Ry1Rx2Ry2R : : :
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in �F such that fx1; x2; : : : g � f�1(a1) and fy1; y2; : : : g � f�1(a2). And
since R is a partial order, all the points xi and yi are distinct.

Since f�1(a1) 2 �P , there are Xi; Yi 2 P such that

f�1(a1) = (�X1 [ Y1) \ � � � \ (�Xn [ Yn):

And since f�1(a1)\f�1(a2) = ;, for every point yi there is some number ni
such that yi 2 Xni and yi 62 Yni . But then, for some distinct l and m, the
numbers nl and nm must coincide, and so if, say, ylRym then xm 62 Ynm and
xm 2 Xnl (for ylRxmRym, Xi = Xi ", Yi = Yi "). Therefore, xm 62 f�1(a1),
which is a contradiction.

The rest of the proof presents no diÆculties. �

This proof does not touch upon the co�nality condition. So along with
canonical formulas in Theorem 159 we can use negation free canonical for-
mulas. Thus, we have:

�S4 = �S4:1 = �Dum = �Grz = Int;

�S4:2 = �(S4:2�Grz) = KC;

�S4:3 = �(S4:3�Grz) = LC;

�S5 = �(S5�Grz) = Cl:

COROLLARY 160. The set of modal companions of every consistent si-
logic L forms the interval

��1(L) = [�L; �L� �(
�� ��ÆÆ )] = fM 2 NExtS4 : �L �M � �L�Grzg

and contains an in�nite descending chain of logics.

Proof. Notice �rst that �(F;D;?) and �(F;D) are in Grz i� F contains

a proper cluster. So ��1(L) � [�L, �L� �(
�� ��ÆÆ )]. On the other hand, the

si-fragments of all logics in the interval are the same, namely L. Therefore,
��1(L) = [�L; �L� �(

�� ��ÆÆ )]. Now, if L is consistent then �(Æ) 62 L and so
we have

�L � � � � � �L� �(Cn) � � � � � �L� �(C2) � �L� �(C1) = For;

where Ci is the non-degenerate cluster with i points. �

This result is due to Maksimova and Rybakov [1974], Blok [1976] and
Esakia [1979b].

Thus, all modal companions of every si-logic L are contained between the
least companion �L and the greatest one, viz., �L� �(

�� ��ÆÆ ), which will be
denoted by �L. Using Theorems 159 and 44, we obtain
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COROLLARY 161. There is an algorithm which, given a modal formula ',
returns an intuitionistic formula  such that �(S4� ') = Int+  .

The following theorem, which is also a consequence of Theorem 159,
describes lattice-theoretic properties of the maps �, � and �. Items (i),
(ii) and (iv) in it were �rst proved by Maksimova and Rybakov [1974], and
(iii) is due to Blok [1976] and Esakia [1979b] and known as the Blok{Esakia
Theorem.

THEOREM 162.

(i) The map � is a homomorphism of the lattice NExtS4 onto the lattice
ExtInt.

(ii) The map � is an isomorphism of ExtInt into NExtS4.

(iii) The map � is an isomorphism of ExtInt onto NExtGrz.

(iv) All these maps preserve in�nite sums and intersections of logics.

Now we give frame-theoretic characterizations of the operators � and �.
Note �rst that the following evident relations between frames for si-logics
and their modal companions hold:

F j= �M i� �F j= M; F j= L i� �F j= �L;

�F j= L i� F j= �L; F j= L i� � kF j= �L:

THEOREM 163 (Maksimova and Rybakov 1974). A si-logic L is charac-
terized by a class C of intuitionistic frames i� �L is characterized by the
class �C = f�F : F 2 Cg.

Proof. ()) It suÆces to show that any canonical formula �(F;D;?) 62 �L
is refuted by some frame in �C. Since F is partially ordered, �(F;D;?) 62 L,
i.e., there is F 2 C refuting �(F;D;?) and so �F 6j= �(F;D;?). (() is
straightforward. �

To characterize � we require

LEMMA 164. For any canonical formula �(F;D;?) built on a quasi-ordered
frame F, �(F;D;?) 2 S4 � �(�F;�D;?), where �D = f�d : d 2 Dg and
�d = fC(x) : x 2 dg.

Proof. Let G be a quasi-ordered frame refuting �(F;D;?). Then there is
a co�nal subreduction f of G to F satisfying (CDC) for D. The map h from
F onto �F de�ned by h(x) = C(x), for every x in F, is clearly a reduction
of F to �F. So the composition hf is a co�nal subreduction of G to �F, and
it is easy to verify that it satis�es (CDC) for �D. �
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THEOREM 165. A si-logic L is characterized by a class C of frames i� �L
is characterized by the class

S
0<k<! � kC, where � kC = f�kF : F 2 Cg.

Proof. ()) As was noted above, if F is a frame for L then � kF is a
frame for �L. So suppose that a formula �(F;D;?), built on a quasi-
ordered frame F = hW;Ri, does not belong to �L and show that it is
refuted by some frame in

S
0<k<! � kC. By Lemma 164, �(�F;�D;?) 62 �L

and so �(�F;�D;?) 62 L. Hence there is a frame G = hV; S;Qi in C
which refutes �(�F;�D;?). But then �G j= �L and �G 6j= �(�F;�D;?).
Let f be a subreduction of �G to �F satisfying (CDC) for �D and let
k = maxfjC(x)j : x 2 Wg. De�ne a partial map h from � kG = hkV; kS; kQi
onto F as follows: if x 2 V , y0 2W , f(x) = C(y0) and C(y0) = fy0; : : : ; yng
then we put h(hi; xi) = yi, for i = 0; : : : ; n. By the de�nition of � k, for any
i 2 f0; : : : ; ng we have

h�1(yi) = fhi; xi : x 2 f�1(C(y0))g = fig � f�1(C(y0)) 2 kQ:

Now, one can readily prove that h is a co�nal subreduction of � kG to F
satisfying (CDC) for D. So � kG 6j= �(F;D;?). (() is obvious. �

It is worth noting that this proof will not change if we put in it k = !.

COROLLARY 166. A logic L 2 ExtInt is characterized by a class C of
frames i� �L is characterized by the class �!C.

The following theorem provides a deductive characterization of the maps
� and �.

THEOREM 167. For every si-logic L and every modal canonical formula
�(F;D;?) built on a quasi-ordered frame F,

(i) �(F;D;?) 2 �L i� �(�F;�D;?) 2 L;
(ii) �(F;D;?) 2 �L i� either F is partially ordered and �(F;D;?) 2 L

or F contains a proper cluster.

Proof. (i) The implication ()) was actually established in the proof of
Theorem 165, and the converse one follows from Lemma 164.

(ii) Suppose �(F;D;?) 2 �L. Then either F is partially ordered, and so
�(F;D;?) 2 L, or F contains a proper cluster. The converse implication
follows from (i) and the fact that �(F;D;?) 2 Grz for every frame F with
a proper cluster. �

The results obtained in this section not only establish some structural
correspondences between logics in ExtInt and NExtS4 and their frames,
but may be also used for transferring various properties of modal logics
to their si-fragments and back. A few results of that sort are collected in
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Table 7. Preservation Theorem

Property of logics Preserved under
� � �

Decidability Yes Yes Yes
Kripke completeness Yes Yes No
Strong completeness Yes Yes No
Finite model property Yes Yes Yes
Tabularity Yes No Yes
Pretabularity Yes No Yes
D-persistence Yes Yes No
Local tabularity Yes No No
Disjunction property Yes Yes Yes
Halld�en completeness Yes No No
Interpolation property Yes No No
Elementarity Yes Yes No
Independent axiomatizability No Yes Yes

Table 7; we shall cite them as the Preservation Theorem. The preservation
of decidability follows from the de�nition of � and Theorem 167. That
� preserves Kripke completeness, FMP and tabularity is a consequence of
Theorem 157. The map � preserves Kripke completeness and FMP, since
we can de�ne � k in Theorem 165 so that � k hW;Ri = hkW; kRi; however,
� does not in general preserve the tabularity, because �Cl = S5 is not
tabular. The preservation of FMP and tabularity under � follows from
Theorem 163. On the other hand, Shehtman [1980] proved that � does not
preserve Kripke completeness (since � preserves it and Grz is complete,
this means in particular that Kripke completeness is not preserved under
sums of logics in NExtS4). Some other preservation results in Table 7 will
be discussed later. For references see [Chagrov and Zakharyaschev 1992,
1997].

3.4 Completeness

In this section we briey discuss the most important results concerning
completeness of si-logics with respect to various classes of Kripke frames.

Kripke completeness That not all si-logics are complete with respect
to Kripke frames was discovered by Shehtman [1977], who found a way
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to adjust Fine's [1974b] idea to the intuitionistic case (which was not so
easy because intuitionistic formulas do not \feel" in�nite ascending chains
essential in Fine's construction; see Section 20 of Basic Modal Logic). Note
however that Kuznetsov's [1975] question whether all si-logics are complete
with respect to the topological semantics (see Intuitionistic Logic, volume
7 of this Handbook) is still open.

As to general positive results, notice �rst that the Preservation Theorem
yields the following translation of Fine's [1974c] Theorem on �nite width
logics (si-logics of �nite width were studied by Sobolev [1977a]).

THEOREM 168. Every si-logic of width n (i.e., a logic in ExtBWn; see
Table 5) is characterized by a class of Noetherian Kripke frames of width
� n.

The translation of Sahlqvist's Theorem gives nothing interesting for si-
logics. A sort of intuitionistic analog of this theorem has been recently
proved by Ghilardi and Meloni [1997]. Here is a somewhat simpli�ed variant
of their result in which p, q, r, s denote tuples of propositional variables
and  , � tuples of formulas of the same length as r and s, respectively.

THEOREM 169 (Ghilardi and Meloni 1997). Suppose '(p; q; r; s) is an in-
tuitionistic formula in which the variables r occur positively and the vari-
ables s occur negatively, and which does not contain any !, except for
negations and double negations of atoms, in the premise of a subformula of
the form '0 ! '00. Assume also that  (p; q) and �(p; q) are formulas such
that p occur positively in  and negatively in �, while q occur negatively in
 and positively in �. Then the logic

Int+ '(p; q;  (p; q); �(p; q))

is canonical.

The preservation of D-persistence under � (see [Zakharyaschev 1996])
and the fact (discovered by Chagrova [1990]) that �L is characterized by an
elementary class of Kripke frames whenever L is determined by such a class
provide us with an intuitionistic variant of the Fine{van Benthem Theorem.

THEOREM 170. If a si-logic is characterized by an elementary class of
Kripke frames then it is D-persistent.

As in the modal case, it is unknown whether the converse of this theo-
rem holds. All known non-elementary si-logics, for instance the Scott logic
SL and the logics Tn of �nite n-ary trees (see [Rodenburg 1986]) are not
canonical and even strongly complete either, as was shown by Shimura
[1995]. (Actually he proved that no logic in the intervals [SL;SL+bd3] and
[Int;T2], save of course Int, is strongly complete.)

As far as we know, there are no examples of si-logics separating canonicity,
D-persistence and strong completeness. (Ghilardi, Meloni and Miglioli have
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recently showed that SL in any language with �nitely many variables is
canonical). Theorem 40 which holds in the intuitionistic case as well gives
an algebraic counterpart of strong Kripke completeness.

The �nite model property. The �rst example of an in�nitely axiomati-
zable si-logic without FMP was constructed by Jankov [1968b]|that was in
fact the starting point of a long series of \negative" results in modal logic.
A �nitely axiomatizable logic without FMP appeared two years later in
[Kuznetsov and Gerchiu 1970]. The reader can get some impression about
this and other examples of that sort by proving (it is really not hard) that

' = �( Æ
Æ Æ Æ Æ

Æ

@@IBBM��Æ���

61 2

) =2 L = Int+ bw4 + �( Æ
Æ Æ Æ Æ

Æ

@@IBBM ��Æ���

61 2

; ff1; 2gg)
but no �nite frame can separate ' from L. (Notice by the way that �L
is axiomatizable by Sahlqvist formulas; see [Chagrov and Zakharyaschev
1995b].)

FMP of a good many si-logics was proved using various forms of �ltration;
see e.g. [Gabbay 1970], [Ono 1972], [Smory�nski 1973], [Ferrari and Miglioli
1993]. As an illustration of a rather sophisticated selective �ltration we
present here the following

THEOREM 171 (Gabbay and de Jongh 1974). The logic Tn (see Table 5)
is characterized by the class of �nite n-ary trees.

Proof. First we prove that Tn is characterized by the class of �nite frames
of branching � n. Suppose ' 62 Tn and M = hF;Vi is a model for Tn
refuting '. Without loss of generality we may assume that F = hW;Ri is a
tree. Let � = Sub' and �x = f 2 � : x j=  g, for every point x in F.

Given x in F, put rg(x) = f[y] : y 2 x"g and say that x is of minimal range
if rg(x) = rg(y) for every y 2 [x] \ x". Since there are only �nitely many
distinct �-equivalence classes in M, every y 2 [x] sees a point z 2 [x] of
minimal range. Now we extract from M a �nite refutation frame G = hV; Si
for ' of branching � n. To begin with, we select some point x of minimal
range at which ' is refuted and put V0 = fxg.

Suppose Vk has already been de�ned. If jrg(x)j = 1 for every x 2 Vk, then

we put G = hV; Si, where V =
Sk
i=0 Vk and S is the restriction of R to V .

Otherwise, for each x 2 Vk with jrg(x)j > 1 and each [y] 2 rg(x) di�erent
from [x] and such that �z � �y for no [z] 2 rg(x)�f[x]g, we select a point
u 2 [y] \ x" of minimal range. Let Ux be the set of all selected points for x
and Vk+1 =

S
x Ux. It should be clear that �x � �u (and rg(x) � rg(u)), for

every u 2 Ux, and so the inductive process must terminate. Consequently
G 6j= '.
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It remains to establish that G j= Tn, i.e., G is of branching � n. Suppose
otherwise. Then there is a point x in G with m � n+1 immediate successors
x0; : : : ; xm, which are evidently in Ux because F is a tree. We are going to
construct a substitution instance of Tn's axiom bbn which is refuted at x
in M.

Denote by Æi the conjunction of the formulas in �xi . Since all of them
are true at xi in M, we have xi j= Æi; and since �i � �j for no distinct i and
j, we have xj 6j= �i if i 6= j. Put �i = Æi, for 0 � i < n, �n = Æn _ � � � _ Æm
and consider the truth-value of the formula  = bbnf�0=p0; : : : ; �n=png at
x in M.

Since xRxi for every i = 0; : : : ;m, we have x 6j= Wn
i=0 �i. Suppose that

x 6j= Vn
i=0((�i !

W
i6=j �j) !

W
i6=j �j). Then y j= �i !

W
i6=j �j and

y 6j= Wi6=j �j , for some y 2 x" and some i 2 f0; : : : ; ng, and hence y 6j= �i.
Since xi j= �i and xi 6j=

W
i6=j �j , y sees no point in [xi] and so y 6�� x (for

otherwise x would not be of minimal range). Therefore, �xj � �y for some
j 2 f0; : : : ;mg, and then y j= �j if j < n and y j= �n if j � n, which is a
contradiction.

It follows that x j= Vni=0((�i ! Wi6=j �j)! Wi6=j �j), from which x 6j=  ,
contrary to M being a model for bbn. It remains to notice that every �nite
frame of branching � n is a reduct of a �nite n-ary tree, which clearly
validates Tn. �

Another way of obtaining general results on FMP of si-logics is to trans-
late the corresponding results in modal logic with the help of the Preserva-
tion Theorem.

THEOREM 172. Every si-logic of �nite depth (i.e., every logic in ExtBDn,
for n < !) is locally tabular.

Note, however, that unlike NExtK4, the converse does not hold: the
Dummett logic LC, characterized by the class of �nite chains (or by the
in�nite ascending chain), is locally tabular. As we saw in Section 1.7, every
non-locally tabular in NExtS4 logic is contained in Grz.3, the only pre-
locally tabular logic in NExtS4. But in ExtInt this way of determining
local tabularity does not work:

THEOREM 173 (Mardaev 1984). There is a continuum of pre-locally tab-
ular logics in ExtInt.

Besides, it is not clear whether every locally tabular logic in ExtInt (or
NExtK4) is contained in a pre-locally tabular one.

An intuitionistic formula is said to be essentially negative if every occur-
rence of a variable in it is in the scope of some :. If ' is essentially negative
then T (') is a ��-formula, which yields
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THEOREM 174 (McKay 1971, Rybakov 1978). If a si-logic L is decidable
(or has FMP) and ' is an essentially negative formula then L+' is decidable
(has FMP).

Originally this result was proved with the help of Glivenko's Theorem
(see Section 7 in Intuitionistic Logic). Say that an occurrence of a variable
in a formula is essential if it is not in the scope of any :. A formula
' is mild if every two essential occurrences of the same variable in ' are
either both positive or both negative. Kuznetsov [1972] claimed (we have
not seen the proof) that all si-logics whose extra axioms do not contain
negative occurrences of essential variables have FMP. And Wro�nski [1989]
announced that if L is a decidable si-logic and ' a mild formula then L+'
is also decidable.

Subframe and co�nal subframe si-logics|that is logics axiomatizable by
canonical formulas of the form �(F) and �(F;?), respectively|can be char-
acterized both syntactically and semantically (see [Zakharyaschev 1996]).

THEOREM 175. The following conditions are equivalent for every si-logic
L:

(i) L is a (co�nal) subframe logic;

(ii) L is axiomatizable by implicative (respectively, disjunction free) for-
mulas;

(iii) L is characterized by a class of �nite frames closed under the formation
of (co�nal) subframes.

That all si-logics with disjunction free axioms have FMP was �rst proved
by McKay [1968] with the help of Diego's [1966] Theorem according to which
there are only �nitely many pairwise non-equivalent in Int disjunction free
formulas in variables p1; : : : ; pn (see also [Urquhart 1974]).

Since frames for Int contain no clusters, Theorem 58 and its analog for
co�nal subframe logics reduce in the intuitionistic case to the following
result which is due to Chagrova [1986], Rodenburg [1986], Shimura [1993]
and Zakharyaschev [1996].

THEOREM 176. All si-logics with disjunction free axioms are elementary
(de�nable by 89-sentences) and D-persistent.

Theorem 68 is translated into the intuitionistic case simply by replacing
K4 with Int, � with + and � with �. As a consequence we obtain, for
instance, that Ono's [1972] Bn and all other logics whose canonical axioms
are built on trees have FMP. Moreover, we also have

THEOREM 177 (Sobolev 1977b, Nishimura 1960). All si-logics with extra
axioms in one variable have FMP and are decidable.
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In fact Sobolev [1977b] proved a more general (but rather complicated)
syntactical suÆcient condition of FMP and constructed a formula in two
variables axiomatizing a si-logic without FMP (Shehtman's [1977] incom-
plete si-logic has also axioms in two variables).

Tabularity By the Blok{Esakia and Preservation Theorems, the situation
with tabular logics in ExtInt is the same as in NExtGrz. In particular,
L 2 ExtInt is tabular i� BDn + BWn � L for some n < ! i� L is not a
sublogic of one of the three pretabular logics in ExtInt, namely LC, BD2

and KC + bd3. (The pretabular si-logics were described by Maksimova
[1972].) The tabularity problem is decidable in ExtInt.

3.5 Disjunction property

One of the aims of studying extensions of Int, which may be of interest for
applications in computer science, is to describe the class of constructive si-
logics. At the propositional level a consistent logic L 2 ExtInt is regarded
to be constructive if it has the disjunction property (DP, for short) which
means that for all formulas ' and  ,

' _  2 L implies ' 2 L or  2 L.

That intuitionistic logic itself is constructive in this sense was proved in a
syntactic way by Gentzen [1934{1935]. However,  Lukasiewicz (1952) con-
jectured that no proper consistent extension of Int has DP.

A similar property was introduced for modal logics (see e.g. [Lemmon
and Scott 1977]): L 2 NExtK has the (modal) disjunction property if, for
every n � 1 and all formulas '1; : : : ; 'n,

�'1 _ � � � _�'n 2 L implies 'i 2 L, for some i 2 f1; : : : ; ng:
The following theorem (in a somewhat di�erent form it was proved in

[Hughes and Cresswell 1984] and [Maksimova 1986]) provides a semantic
criterion of DP.

THEOREM 178. Suppose a modal or si-logic L is characterized by a class C
of descriptive rooted frames closed under the formation of rooted generated
subframes. Then L has DP i�, for every n � 1 and all F1; : : : ;Fn 2 C with
roots x1; : : : ; xn, there is a frame F for L with root x such that the disjoint
union F1 + � � �+ Fn is a generated subframe of F with fx1; : : : ; xng � x".
Proof. We consider only the modal case. ()) Let FL = hWL; RL; PLi be a
universal frame for L, big enough to contain F1 + � � �+ Fn as its generated
subframe. Assuming that FL is associated with a suitable canonical model
for L, we show that there is a point x in FL such that x"= WL. The set

�0 = f:�' : 9y 2WL y 6j= 'g
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is L-consistent (for otherwise �'1_� � �_�'n 2 L for some '1; : : : ; 'n 62 L).
Let � be a maximal L-consistent extension of �0 and x the point in FL
where � is true. Then xRLy, for every y 2WL.

(() Suppose otherwise. Then there are formulas '1; : : : ; 'n 62 L such
that �'1 _ � � � _ �'n 2 L. Take frames F1; : : : ;Fn 2 C refuting '1; : : : ; 'n
at their roots, respectively, and let F be a rooted frame for L containing
F1+ � � �+Fn as a generated subframe and such that its root x sees the roots
of F1; : : : ;Fn. Then all the formulas �'1; : : : ;�'n are refuted at x and so
�'1 _ � � � _�'n 62 L, which is a contradiction. �

It should be clear that if we use only the suÆcient condition of The-
orem 178, the requirement that frames in C are descriptive is redundant.
Furthermore, it is easy to see that for L 2 NExtK4 we may assume n � 2.
And clearly a logic L 2 NExtS4 has DP i�, for all ' and  , �' _� 2 L
implies �' 2 L or � 2 L.

As a direct consequence of the proof above we obtain

COROLLARY 179. A modal or si-logic L has DP i� the canonical frame
FL = hWL; RLi contains a point x such that x"= WL.

Using the semantic criterion above it is not hard to show that DP is
preserved under �, � and �. It is also a good tool for proving and disproving
DP of logics with transparent semantics.

EXAMPLE 180.

(i) Let F1; : : : ;Fn be serial rooted Kripke frames. Then the frame ob-
tained by adding a root to F1 + � � � + Fn is also serial. Therefore, D
has DP. In the same way one can show that K, K4, T, S4, Grz, GL
and many other modal logics have DP.

(ii) Since no rooted symmetrical frame can contain a proper generated
subframe, no consistent logic in NExtKB has DP.

The �rst proper extensions of Int with DP were constructed by Kreisel
and Putnam [1957]: these were KP (now called the Kreisel{Putnam logic)
and SL (known as the Scott logic). We present here Gabbay's [1970] proof
that KP has DP.

THEOREM 181 (Kreisel and Putnam 1957). KP has DP.

Proof. Using �ltration one can show that KP is characterized by the class
of �nite rooted frames F = hW;Ri satisfying the condition

8x; y; z (xRy ^ xRz ^ :yRz ^ :zRy ! 9u (xRu ^ uRy ^ uRz ^
8v (uRv ! 9w (vRw ^ (yRw _ zRw))))):(15)
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If F is such a frame then for each non-empty X � W�1, the generated
subframe of F based on the set W � (W�1 �X)# is rooted; we denote its
root by r(X).

Let F1 = hW1; R1i and F2 = hW2; R2i be �nite rooted frames satisfying
(15). We construct from them a frame F = hW;Ri by taking

W = W1 [W2 [ U;
where U = fX1 [X2 : X1 �W�1

1 ; X2 �W�1
2 ; X1; X2 6= ;g, and

xRy i� (x; y 2 Wi ^ xRiy) _ (x; y 2 U ^ x � y) _
(x = X1 [X2 2 U ^ y 2Wi ^ r(Xi)Riy):

It follows from the given de�nition that F1 + F2 is a generated subframe of
F, W1 [W2 is a cover for F and W�1

1 [W�1
2 is its root. So our theorem

will be proved if we show that (15) holds.
Suppose x; y; z 2 W satisfy the premise of (15). Since (15) holds for F1

and F2, we can assume that x = X1 [X2 2 U . Let Y1 [ Y2 and Z1 [ Z2 be
the sets of �nal points in y" and z", respectively, with Yi; Zi �Wi. By the
de�nition of R, we have Yi; Zi � Xi. Consider u = (Y1 [ Z1) [ (Y2 [ Z2).
Clearly, xRu, uRy and uRz. Suppose now that v 2 u". Let w be any �nal
point in v". Then v 2 (Y1 [ Z1) [ (Y2 [ Z2) and so either yRw or zRw.

�

Other examples of constructive si-logics were constructed by Ono [1972]
and Gabbay and de Jongh [1974], namely, Bn and Tn. Anderson [1972]
proved that among the consistent si-logics with extra axioms in one variable
only those of the form Int + nf2n+2, for n � 5, have DP (for n = 6 the
proof was found by Wro�nski [1974]; see also [Sasaki 1992]). Finally, Wro�nski
[1973] showed that there is a continuum of si-logics with DP.

The additional axioms of logics in all these examples contained occur-
rences of _; on the other hand, known examples of si-logics with disjunction
free extra axioms, say LC, KC, Cl, BWn or BDn, were not constructive.
This observation led Hosoi and Ono [1973] to the conjecture that the dis-
junction free fragment of every consistent si-logic with DP coincides with
that of Int. We present a proof of this conjecture following [Zakharyaschev
1987].

First we describe the co�nal subframe logics in NExtS4 with DP, as-
suming that every such logic L is represented by its independent canonical
axiomatization

(16) L = S4� f�(Fi;?) : i 2 Ig:
All frames in the rest of this section are assumed to be quasi-ordered.

Say that a �nite rooted frame F with � 2 points is simple if its root cluster
and at least one of the �nal clusters are simple. Suppose F = hW;Ri is a
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simple frame, a0; a1; : : : ; am; am+1; : : : ; an are all its points, with a0 being
the root, C(a1); : : : ; C(am) all the distinct immediate cluster-successors of
a0, and an a �nal point with simple C(an). For every k = 1; : : : ; n, de�ne a
formula  k by taking

 k =
^

aiRaj ;i6=0
'ij ^

n̂

i=1

'i ^ '0? ! pk

where 'ij , 'i were de�ned in Section 3.2 and '0? = �(
Vn
i=1�pi ! ?).

Now we associate with F the formula (F) = �p0 _ � 1 if m = 1, and the
formula (F) = � 1 _ � � � _� m if m > 1.

LEMMA 182. For every simple frame F, (F) 2 S4� �(F;?).

Proof. It is enough to show that G 6j= (F) implies G 6j= �(F;?), for
any �nite G. So suppose (F) is refuted in a �nite frame G under some
valuation. De�ne a partial map f from G onto F by taking

f(x) =

8<
:

a0 if x 6j= (F)
ai if x 6j=  i, 1 � i � n
unde�ned otherwise.

One can readily check that f is a subreduction of G to F. However it is not
necessarily co�nal. So we extend f by putting f(x) = an, for every x of
depth 1 in G such that f(x#) = fa0g. Clearly, the improved map is still a
subreduction of G to F, and '0? ensures its co�nality. �

Using the semantical properties of the canonical formulas it is a matter
of routine to prove the following

LEMMA 183. Suppose i 2 f1; : : : ;mg and G is the subframe of F generated
by ai. Then �(G;?) 2 S4�  i.

We are in a position now to prove a criterion of DP for the co�nal sub-
frame logics in NExtS4.

THEOREM 184. A consistent co�nal subframe logic L 2 NExtS4 has the
disjunction property i� no frame Fi in its independent axiomatization (16)
is simple, for i 2 I.

Proof. ()) Suppose, on the contrary, that Fi is simple, for some i 2
I . Since the axiomatization (16) is independent, every proper generated
subframe of Fi validates L. By Lemma 182, (Fi) 2 L and so either p0 2 L
or  j 2 L. However, both alternatives are impossible: the former means
that L is inconsistent, while the latter, by Lemma 183, implies �(G;?) 2 L,
where G is the subframe of Fi generated by an immediate successor of Fi's
root.
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Figure 15.

(() Given two �nite rooted frames G1 and G2 for L, we construct the
frame F as shown in Fig. 15 and prove that F j= L. Suppose otherwise, i.e.,
there exists a co�nal subreduction f of F to Fi, for some i 2 I . Let xi be the
root of Fi. Since G1 and G2 are not co�nally subreducible to Fi and since
L is consistent, f�1(xi) = fxg. By the co�nality condition, it follows in
particular that y 2 domf . But then Fi is simple, which is a contradiction.
Thus, by Theorem 178, L has DP. �

Note that in fact the proof of ()) shows that if L 2 NExtS4, F is
a simple frame, �(F;?) 2 L and �(G;?) 62 L for any proper generated
subframe G of F then L does not have DP. Transferring this observation to
the intuitionistic case, we obtain

THEOREM 185 (Minari 1986, Zakharyaschev 1987). If a si-logic is consis-
tent and has DP then the disjunction free fragments of L and Int are the
same.

SuÆcient conditions of DP in terms of canonical formulas can be found
in [Chagrov and Zakharyaschev 1993, 1997].

Since classical logic is not constructive, it is of interest to �nd maximal
consistent si-logics with DP. That they exist follows from Zorn's Lemma.
Here is a concrete example of such a logic.

Trying to formalize the proof interpretation of intuitionistic logic, Med-
vedev [1962] proposed to treat intuitionistic formulas as �nite problems.
Formally, a �nite problem is a pair hX;Y i of �nite sets such that Y � X
and X 6= ;; elements in X are called possible solutions and elements in Y
solutions to the problem. The operations on �nite problems, corresponding
to the logical connectives, are de�ned as follows:

hX1; Y1i ^ hX2; Y2i = hX1 �X2; Y1 � Y2i ;

hX1; Y1i _ hX2; Y2i = hX1 tX2; Y1 t Y2i ;

hX1; Y1i ! hX2; Y2i =
D
XX1
2 ; ff 2 XX1

2 : f(Y1) � Y2g
E
;
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Figure 16.

? = hX; ;i :
Here X tY = (X�f1g)[ (Y �f2g) and XY is the set of all functions from
X into Y . Note that in the de�nition of ? the set X is �xed, but arbitrary;
for de�niteness one can take X = f;g.

Now we can interpret formulas by �nite problems. Namely, given a for-
mula ', we replace its variables by arbitrary �nite problems and perform
the operations corresponding to the connectives in '. If the result is a
problem with a non-empty set of solutions no matter what �nite problems
are substituted for the variables in ', then ' is called �nitely valid. One
can show that the set of all �nitely valid formulas is a si-logic; it is called
Medvedev's logic and denoted by ML.

In fact, ML can be de�ned semantically. Medvedev [1966] showed that
ML coincides with the set of formulas that are valid in all frames Bn having
the form of the n-ary Boolean cubes with the topmost point deleted; for
n = 1; 2; 3; 4, the Medvedev frames are shown in Fig. 16. Since Bn +Bm is
a generated subframe of Bn+m, ML has DP. Moreover, Levin [1969] proved
that it has no proper consistent extension with DP. The following proof of
this result is due to Maksimova [1986].

THEOREM 186 (Levin 1969). ML is a maximal si-logic with DP.

Proof. Suppose, on the contrary, that there exists a proper consistent
extension L of ML having DP. Then we have a formula ' 2 L�ML. We
show �rst that there is an essentially negative substitution instance '� of
' such that '� 62 ML. Since '(p1; : : : ; pn) 62 ML, there is a Medvedev
frame Bm refuting ' under some valuation V. With every point x in Bm

we associate a new variable qx and extend V to these variables by taking
V(qx) to be the set of �nal points in Bm that are not accessible from x. By
the construction of Bm, we have y j= :qx i� y 2 x", from which

V(
_

x2V(pi)
:qx) = V(pi):
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Let '� = '(
W
x2V(p1) :qx; : : : ;

W
x2V(pn) :qx). It follows that V('�) = V(')

and so '� 62ML.
Thus, we may assume that ' is an essentially negative formula. Since

KP �ML, ML contains the formulas

ndk = (:p! :q1 _ � � � _ :qk)! (:p! :q1) _ � � � _ (:p! :qk)

which, as is easy to see, belong to KP. Let us consider the logic

ND = Int+ fndk : k � 1g:
Using the fact that the outermost! in ndk can be replaced with$ and that
(:p ! :q) $ :(:p ^ q) 2 Int, one can readily show that every essentially
negative formula is equivalent in ND to the conjunction of formulas of the
form :�1_� � �_:�l. So L�ML contains a formula of the form :�1_� � �_:�l.
Since L has DP, :�i 2 L for some i. But then, by Glivenko's Theorem,
:�i 2ML, which is a contradiction. �

REMARK. ML is not �nitely axiomatizable, as was shown by Maksimova
et al. [1979]. Nobody knows whether it is decidable.

It turns out, however, that ML is not the unique maximal logic with DP
in ExtInt. Kirk [1982] noted that there is no greatest consistent si-logic
with DP. Maksimova [1984] showed that there are in�nitely many maximal
constructive si-logics, and Chagrov [1992a] proved that in fact there are
a continuum of them; see also Ferrari and Miglioli [1993, 1995a, 1995b].
Galanter [1990] claims that each si-logic characterized by the class of frames
of the form

hfW : W � f1; : : : ; ng; W 6= ;; jW j 62 Ng;�i ;

where n = 1; 2; : : : and N is some �xed in�nite set of natural numbers, is a
maximal si-logic with DP.

3.6 Intuitionistic Modal Logics

All modal logics we have dealt with so far were constructed on the classical
non-modal basis. It can be replaced by logics of other types. For instance,
one can consider modal logics based on relevant logic (see e.g. [Fuhrmann
1989]) or many-valued logics (see e.g. [Segerberg 1967], [Morikawa 1989],
[Ostermann 1988]), and many others. In this section we briey discuss
modal logics with the intuitionistic basis.

Unlike the classical case, the intuitionistic � and � are not supposed to
be dual, which provides more possibilities for de�ning intuitionistic modal
logics. For a non-empty set M of modal operators, let LM be the stan-
dard propositional language augmented by the connectives in M. By an



218 M. ZAKHARYASCHEV, F. WOLTER, AND A. CHAGROV

intuitionistic modal logic in the language LM we understand any subset of
LM containing Int and closed under modus ponens, substitution and the
regularity rule '!  = '! , for every  2 M.

There are three ways of de�ning intuitionistic analogues of (classical)
normal modal logics. First, one can take the family of logics extending the
basic system IntK� in the language L� which is axiomatized by adding to
Int the standard axioms of K

�(p ^ q)$ �p ^�q and �>:

An example of a logic in this family is Kuznetsov's [1985] intuitionistic
provability logic I4 (Kuznetsov used 4 instead of �), the intuitionistic
analog of the provability logic GL. It can be obtained by adding to IntK�

(and even to Int) the axioms

p! �p; (�p! p)! p; ((p! q)! p)! (�q ! p):

A model theory for logics in NExtIntK� was developed by Ono [1977],
Bo�zi�c and Do�sen [1984], Do�sen [1985a], Sotirov [1984] and Wolter and Za-
kharyaschev [1997, 1999a]; we discuss it below. Font [1984, 1986] considered
these logics from the algebraic point of view, and Luppi [1996] investigated
their interpolation property by proving, in particular, that the superamal-
gamability of the corresponding varieties of algebras is equivalent to inter-
polation.

A possibility operator � in logics of this sort can be de�ned in the classical
way by taking �' = :�:'. Note, however, that in general this � does not
distribute over disjunction and that the connection via negation between �
and � is too strong from the intuitionistic standpoint (actually, the situation
here is similar to that in intuitionistic predicate logic where 9 and 8 are not
dual.)

Another family of \normal" intuitionistic modal logics can be de�ned in
the language L� by taking as the basic system the smallest logic in L� to
contain the axioms

�(p _ q)$ �p _ �q and :�?;

it will be denoted by IntK�. Logics in NExtIntK� were studied by Bo�zi�c
and Do�sen [1984], Do�sen [1985a], Sotirov [1984] and Wolter [1997e].

Finally, we can de�ne intuitionistic modal logics with independent � and
�. These are extensions of IntK��, the smallest logic in the language L��
containing both IntK� and IntK�. Fischer Servi [1980, 1984] constructed a
logic in NExtIntK�� by imposing a weak connection between the necessity
and possibility operators:

FS = IntK�� � �(p! q)! (�p! �q)� (�p! �q)! �(p! q):
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A remarkable feature of FS is that the standard translation ST of modal
formulas into �rst order ones (see Correspondence Theory) not only embeds
K into classical predicate logic but also FS into intuitionistic �rst order
logic: ' belongs to the former i� ST (') is a theorem of the latter. According
to Simpson [1994], this result was proved by C. Stirling; see also Grefe [1997].

Various extensions ofFS were studied by Bull [1966a], Ono [1977], Fischer
Servi [1977, 1980, 1984], Amati and Pirri [1994], Ewald [1986], Wolter and
Zakharyaschev [1997], Wolter [1997e]. The best known one is probably the
logic

MIPC = FS��p! p��p! ��p� �p! ��p�
p! �p� ��p! �p� ��p! �p

introduced by Prior [1957]. Bull [1966a] noticed that the translation � de-
�ned by

(pi)
� = Pi(x), ?� = ?,

( � �)� =  � � ��, for � 2 f^;_;!g,
(� )� = 8x  �, (� )� = 9x  �

is an embedding of MIPC into the monadic fragment of intuitionistic pred-
icate logic. Ono [1977], Ono and Suzuki [1988], Suzuki [1990], and Bezhan-
ishvili [1998] investigated the relations between logics in NExtMIPC and
superintuitionistic predicate logics induced by that translation.

In what follows we restrict attention only to the classes of intuitionistic
modal logics introduced above. An interesting example of a system not
covered here was constructed by Wijesekera [1990]. A general model theory
for such logics is developed by Sotirov [1984] and Wolter and Zakharyaschev
[1997].

Let us consider �rst the algebraic and relational semantics for the logics
introduced above. All the semantical concepts to be de�ned below turn
out to be natural combinations of the corresponding notions developed for
classical modal and si-logics. For details and proofs we refer the reader to
Wolter and Zakharyaschev [1997, 1999a].

From the algebraic point of view, every logic L 2 NExtIntKM, for M �
f�;�g, corresponds to the variety of Heyting algebras with one or two
operators validating L. The variety of algebras for IntKM will be called the
variety of M-algebras.

To construct the relational representations of M-algebras, we de�ne a �-
frame to be a structure of the form hW;R;R�; P i in which hW;R; P i is an
intuitionistic frame, R� a binary relation on W such that

R ÆR� ÆR = R�

and P is closed under the operation

�X = fx 2 W : 8y 2W (xR�y ! y 2 X)g:
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A �-frame has the form hW;R;R�; P i, where hW;R; P i is again an intu-
itionistic frame, R� a binary relation on W satisfying the condition

R�1 ÆR� ÆR�1 = R�

and P is closed under

�X = fx 2 W : 9y 2 X xR�yg:

Finally, a ��-frame is a structure hW;R;R�; R�; P i the unimodal reducts
hW;R;R�; P i and hW;R;R�; P i of which are �- and �-frames, respectively.
(To see why the intuitionistic and modal accessibility relations are connected
by the conditions above the reader can construct in the standard way the
canonical models for the logics under consideration. The important point
here is that we take the Leibnizean de�nition of the truth-relation for the
modal operators. Other de�nitions may impose di�erent connecting condi-
tions; see below.)

Given a ��-frame F = hW;R;R�; R�; P i, it is easy to check that its dual

F+ = hP;\;[;!; ;;�;�i

is a ��-algebra. Conversely, for each ��-algebra A = hA;^;_;!;?;�;�i
we can de�ne the dual frame

A+ = hW;R;R�; R�; P i

by taking hW;R; P i to be the dual of the Heyting algebra hA;^;_;!;?i
and putting

r1R�r2 i� 8a 2 A (�a 2 r1 ! a 2 r2);

r1R�r2 i� 8a 2 A (a 2 r2 ! �a 2 r1):

A+ is a ��-frame and, moreover, A �= (A+)+. Using the standard technique
of the model theory for classical modal and si-logics, one can show that a
��-frame F is isomorphic to its bidual (F+)+ i� F = hW;R;R�; R�; P i is
descriptive, i.e., hW;R; P i is a descriptive intuitionistic frame and, for all
x; y 2W ,

xR�y i� 8X 2 P (x 2 �X ! y 2 X);

xR�y i� 8X 2 P (y 2 X ! x 2 �X):

Thus we get the following completeness theorem.

THEOREM 187. Every logic L 2 NExtIntK�� is characterized by a suit-
able class of (descriptive) ��-frames, e.g. by the class fA+ : A j= Lg.

Similar results hold for logics in NExtIntK� and NExtIntK�.
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As usual, by a Kripke frame we understand a frame hW;R;R�; R�; P i
in which P consists of all R-cones; in this case we omit P . An intuition-
istic modal logic L is D-persistent if the underlying Kripke frame of each
descriptive frame for L validates L. For example, FS as well as the logics

L(k; l;m; n) = IntK�� � �k�lp! �m�np; for k; l;m; n � 0

are D-persistent and so Kripke complete (see Wolter and Zakharyaschev
[1997]). Descriptive frames validating FS satisfy the conditions

xR�y ! 9z (yRz ^ xR�z ^ xR�z);

xR�y ! 9z (xRz ^ zR�y ^ zR�y);

and those for L(k; l;m; n) satisfy

xRk�y ^ xRm� y ! 9u (yRl�u ^ zRn�u):

It follows, in particular, that MIPC is D-persistent; its Kripke frames have
the properties: R� is a quasi-order, R� = R�1

�
and R� = RÆ(R�\R�). On

the contrary, I4 is not D-persistent, although it is complete with respect to
the class of Kripke frames hW;R;R�i such that hW;R�i is a frame for GL
and R the reexive closure of R�.

The next step in constructing duality theory of M-algebras and M-frames
is to �nd relational counterparts of the algebraic operations of forming ho-
momorphisms, subalgebras and direct products. Let F = hW;R;R�; R�; P i
be a ��-frame and V a non-empty subset of W such that

8x 2 V 8y 2 W (xR�y _ xRy ! y 2 V );

8x 2 V 8y 2W (xR�y ! 9z 2 V (xR�z ^ yRz)):

Then G = hV;R � V;R� � V;R� � V; fX \ V : X 2 Pgi is also a ��-frame
which is called the subframe of F generated by V . The former of the two
conditions above is standard: it requires V to be upward closed with respect
to both R and R�. However, the latter one does not imply that V is upward
closed with respect to R�: the frame G in Fig. 17 is a generated subframe
of F, although the set fx; zg is not an R�-cone in F. This is one di�erence
from the standard (classical modal or intuitionistic) case. Another one arises
when we de�ne the relational analog of subalgebras.

Given ��-frames F = hW;R;R�; R�; P i and G = hV; S; S�; S�; Qi, we
say a map f from W onto V is a reduction of F to G if f�1(X) 2 P for
every X 2 Q and, for all x; y 2W and u 2 V ,

xRy implies f(x)Sf(y),

xRy implies f(x)Sf(y), for  2 f�;�g,
f(x)Su implies 9z 2 f�1(u) xRz,
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f(x)S�u implies 9z 2 f�1(u) xR�z,

f(x)S�u implies 9z 2 W (xR�z ^ uSf(z)).

Again, the last condition di�ers from the standard one: given f(x)S�f(y),
in general we do not have a point z such that xR�z and f(y) = f(z), witness
the map gluing 0 and 1 in the frame F in Fig. 18 and reducing it to G.

Note that both these concepts coincide with the standard ones in classical
modal frames, where R and S are the diagonals. The relational counterpart
of direct products|disjoint unions of frames|is de�ned as usual.

THEOREM 188.

(i) If G is the subframe of a ��-frame F generated by V then the map h
de�ned by h(X) = X\V , for X an element in F+, is a homomorphism
from F+ onto G+.

(ii) If h is a homomorphism from a ��-algebra A onto a ��-algebra B
then the map h+ de�ned by h+(r) = h�1(r), r a prime �lter in B,
is an isomorphism from B+ onto a generated subframe of A+.

(iii) If f is a reduction of a ��-frame F to a ��-frame G then the map f+

de�ned by f+(X) = f�1(X), X an element in G+, is an embedding
of G+ into F+.

(iv) If B is a subalgebra of a ��-algebra A then the map f de�ned by
f(r) = r \ B, r a prime �lter in A and B the universe of B, is a
reduction of A+ to B+.

This duality can be used for proving various results on modal de�nability.
For instance, a class C of ��-frames is of the form C = fF : F j= �g, for
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some set � of L��-formulas, i� C is closed under the formation of generated
subframes, reducts, disjoint unions, and both C and its complement are
closed under the operation F 7! (F+)+ (see Wolter and Zakharyaschev
[1997]). Moreover, one can extend Fine's Theorem connecting the �rst order
de�nability and D-persistence of classical modal logics to the intuitionistic
modal case:

THEOREM 189. If a logic L 2 NExtIntK�� is characterized by an ele-
mentary class of Kripke frames then L is D-persistent.

These results may be regarded as a justi�cation for the relational seman-
tics introduced in this section. However, it is not the only possible one. For
example, Bo�zi�c and Do�sen [1984] impose a weaker condition on the con-
nection between R and R� in �-frames. Fisher Servi [1980] interprets FS
in birelational Kripke frames of the form hW;R; Si in which R is a partial
order, R Æ S � S ÆR, and

xRy ^ xSz ! 9u (ySu ^ zRu):

The intuitionistic connectives are interpreted by R and the truth-conditions
for � and � are de�ned as follows

�X = fx 2 W : 8y; z (xRySz ! z 2 Xg;
�X = fx 2W : 9y 2 X xSyg:

In birelational frames for MIPC S is an equivalence relation and

xSyRz ! 9u xRuSz:
These frames were independently introduced by L. Esakia who also estab-
lished duality between them and \monadic Heyting algebras".

There are two ways of investigating various properties of intuitionistic
modal logics. One is to continue extending the classical methods to logics
in NExtIntKM. Another one uses those methods indirectly via embeddings
of intuitionistic modal logics into classical ones. That such embeddings
are possible was noticed by Shehtman [1979], Fischer Servi [1980, 1984],
and Sotirov [1984]. Our exposition here follows Wolter and Zakharyaschev
[1997, 1999a]. For simplicity we con�ne ourselves only to considering the
class NExtIntK� and refer the reader to the cited papers for information
about more general embeddings.

Let T be the translation of L� into L�I� pre�xing �I to every subfor-
mula of a given L�-formula. Thus, we are trying to embed intuitionistic
modal logics in NExtIntK� into classical bimodal logics with the necessity
operators �I (of S4) and �. Say that T embeds L 2 NExtIntK� into
M 2 NExt(S4
K) (S4 in L�I

and K in L�) if, for every ' 2 L�,

' 2 L i� T (') 2M:
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In this case M is called a bimodal (or BM-) companion of L.
For every logic M 2 NExt(S4
K) put

�M = f' 2 L� : T (') 2Mg;
and let � be the map from NExtIntK� into NExt(S4
K) de�ned by

�(IntK� � �) = (Grz
K)�mix� T (�);

where � � L� and mix = �I��Ip $ �p. (The axiom mix reects the
condition R Æ R� Æ R = R� of �-frames.) Then we have the following
extension of the embedding results of Maksimova and Rybakov [1974], Blok
[1976] and Esakia [1979a,b]:

THEOREM 190.

(i) The map � is a lattice homomorphism from the lattice NExt(S4
K)
onto NExtIntK� preserving decidability, Kripke completeness, tabu-
larity and the �nite model property.

(ii) Each logic IntK��� is embedded by T into any logicM in the interval

(S4
K)� T (�) �M � (Grz 
K)�mix� T (�):

(iii) The map � is an isomorphism from the lattice NExtIntK� onto the
lattice NExt(Grz 
K)�mix preserving FMP and tabularity.

Note that Fischer Servi [1980] used another generalization of the G�odel
translation. She de�ned

T (�') = �T (');

T (�') = �I�T (')

and showed that this translation embeds FS into the logic

(S4
K)� ��Ip! �I�p� ��Ip! �I�p:

It is not clear, however, whether all extensions of FS can be embedded into
classical bimodal logics via this translation.

Let us turn now to completeness theory of intuitionistic modal logics. As
to the standard systems I4, FS, and MIPC, their FMP can be proved
by using (sometimes rather involved) �ltration arguments; see Muravit-
skij [1981], Simpson [1994] and Grefe [1997], and Ono [1977], respectively.
Further results based on the �ltration method were obtained by Sotirov
[1984] and Ono [1977]. However, in contrast to classical modal logic, only a
few general completeness results covering interesting classes of intuitionistic
modal logics are known. The proofs of the following two theorems are based
on the translation into classical bimodal logics discussed above.
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THEOREM 191. Suppose that a si-logic Int+ � has one of the properties:
decidability, Kripke completeness, FMP. Then the logics IntK� � � and
IntK� � ���p! p also have the same property.

Proof. It suÆces to show that there is a BM-companion of each of these
systems satisfying the corresponding property. Notice that

�((S4� T (�))
K) = IntK� � �;

�((S4� T (�))
 (K��p! p)) = IntK� � ���p! p:

So it remains to use the fact that if Int + � has one of the properties
under consideration then its smallest modal companion S4� T (�) has this
property as well (Table 7), and if L1, L2 are unimodal logics having one
of those properties then the fusion L1 
 L2 also enjoys the same property
(Theorem 111). �

Such a simple reduction to known results in classical modal logic is not
available for logics containing IntK4� = IntK� � �p ! ��p. However,
by extending Fine's [1974] method of maximal points to bimodal compan-
ions of extensions of IntK4� Wolter and Zakharyaschev [1999a] proved the
following:

THEOREM 192. Suppose L � IntK4� has a D-persistent BM-companion
M � (S4
K4)�mix whose Kripke frames are closed under the formation
of substructures. Then

(i) for every set � of intuitionistic negation and disjunction free formulas,
L� � has FMP;

(ii) for every set � of intuitionistic disjunction free formulas and every
n � 1,

L� ��
n_
i=0

(pi !
_
j 6=i

pj)

has the �nite model property.

One can use this result to show that the following (and many other)
intuitionistic modal logics enjoy FMP:

(1) IntK4�;

(2) IntS4� = IntK4� ��p! p (R� is reexive);

(3) IntS4:3� = IntS4� ��(�p! q) _�(�q ! p) (R� is reexive and
connected);

(4) IntK4� � p _�:�p (R� is symmetrical);
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(5) IntK4� ��p _�:�p (R� is Euclidean);

(6) IntK4� ��p _ :�p (xRy ^ xR�z ! yR�z).

We conclude this section with some remarks on lattices of intuitionis-
tic modal logics. Wolter [1997e] uses duality theory to study splittings of
lattices of intuitionistic modal logics. For example, he showed that each
�nite rooted frame splits NExt(L � ��np ! �n+1p), for L = IntK� and
L = FS, and each R�-cycle free �nite rooted frame splits the lattices of
extensions of IntK� and FS. No positive results are known, however, for
the lattice NExtIntK�. In fact, the behavior of �-frames is quite di�erent
from that of frames for FS. For instance, in classical modal logic we have
RGF = GRF , for each class of frames (or even �-frames) F , where G and R

are the operations of forming generated subframes and reducts, respectively.
But this does not hold for �-frames. More precisely, there exists a �nite
�-frame G such that RGfGg 6� GRfGg. In other terms, the variety of modal
algebras for K has the congruence extension property (i.e., each congruence
of a subalgebra of a modal algebra can be extended to a congruence of the
algebra itself) but this is not the case for the variety of �-algebras.

Vakarelov [1981, 1985] and Wolter [1997e] investigate how logics having
Int as their non-modal fragment are located in the lattices of intuitionistic
modal logics. It turns out, for instance, that in NExtIntK� the inconsistent
logic has a continuum of immediate predecessors all of which have Int as
their non-modal fragment, but no such logic exists in the lattice of extensions
of IntK�.

For a recent methodological approach to combining logics, see [Gabbay,
1988].

4 ALGORITHMIC PROBLEMS

All algorithmic results considered in the previous sections were positive:
we presented concrete procedures for deciding whether an arbitrary given
formula belongs to a given logic in some class or whether it axiomatizes
a logic with a certain property. What is the complexity of those decision
algorithms? Do there exist undecidable calculi18 and properties? These are
the main questions we address in this chapter.

4.1 Undecidable calculi

The �rst undecidable modal and si-calculi were constructed by Thomason
[1975c] (polymodal and unimodal), Isard [1977] (unimodal) and Shehtman

18By a calculus we mean a logic with �nitely many axioms (inference rules in our case
are �xed).
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[1978c] (superintuitionistic). However, we begin with the very simple exam-
ple of [Shehtman 1982] which is a modal reformulation of the undecidable
associative calculus T of [Tseitin 1958]. The axioms of T are

ac = ca; ad = da;

bc = cb; bd = db;

edb = be; eca = ae;

abac = abacc:

The reader will notice immediately an analogy between them and the axioms
of the following modal calculus with �ve necessity operators:

L = K5 � �1�3p$ �3�1p��1�4p$ �4�1p �
�2�3p$ �3�2p��2�4p$ �4�2p �
�5�4�2p$ �2�5p��5�3�1p$ �1�5p �
�1�2�1�3p$ �1�2�1�3�3p:

Moreover, it is not hard to see that words x, y in the alphabet fa; b; c; d; eg
are equivalent in T 19 i� f(x)p $ f(y)p 2 K5, where f is the natural
one-to-one correspondence between such words and modalities in language
f�1; : : : ;�5g under which, for instance, f(cadedb) = �3�1�4�5�4�2. It
follows immediately that L is undecidable. Using the undecidable associa-
tive calculus of Matiyasevich [1967], one can construct in the same way an
undecidable bimodal calculus having three reductions of modalities as its
axioms. It is unknown whether there is an undecidable unimodal calculus
axiomatizable by reductions of modalities.

Another simple way of proving undecidability, known as the domino or
tiling technique, was suggested by Harel [1983]. It is particularly useful in
the case of multi-dimensional modal logics, say Cartesian products.

Tiles can be thought of as 4-tuples of colours

t = hleft(t); right(t); up(t); down(t)i :

A �nite set T of tiles is said to tile N � N if there is a map � : N � N 7! T
such that for all i; j 2 N,

� up(�(i; j)) = down(�(i; j + 1)) and

� right(�(i; j)) = left(�(i+ 1; j)).

If we think of a tile as a physical 1 � 1-square with colours along its four
edges, then a tiling of N � N is just a way of placing an in�nite number of

19I.e., they can be obtained from each other by a �nite number of transformations of
the form w1ww2 ! w1vw2, where w = v or v = w is an axiom of T .
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tiles, each of a type from T , together to cover the �rst quarter of the in�nite
plane, with no rotation of the tiles allowed and the colours on adjacent edges
of adjacent tiles matching.

The tiling problem for N � N is formulated as follows: \given a �nite set
T of tiles, does T tile N � N?" Robinson [1971] proved that this problem is
undecidable (in fact, co-r.e.-complete).

We will demonstrate the use of tiling to show the undecidability of the
logic (K�K)u, i.e., the square of K (with boxes � and �) extended with
the universal modality � (see Section 2.2); this result is due to Spaan [1993].

Given a �nite set T of tiles, construct a formula 'T as the conjunction
of the following formulas:

�
W
t2T pt;

�
V
t6=t0 :(pt ^ pt0);

�
V
t2T (pt !

W
up(t)=down(t0)�pt0);

�
V
t2T (pt !

W
right(t)=left(t0)�pt0);

�(�>^ �>):

It is easily seen (see e.g. [Spaan 1993] or [Marx 1999]) that 'T is satis�able
in the product of two frames i� T tiles N � N. It follows that (K �K)u is
undecidable.

Thomason's simulation and the undecidable polymodal calculi mentioned
above provide us with examples of undecidable calculi in NExtK. However,
to �nd axioms of undecidable unimodal calculi with transitive frames, as
well as undecidable si-calculi, a more sophisticated construction is required.

Instead of associative calculi, let us use now Minsky machines with two
tapes (or register machines with two registers). A Minsky machine is a
�nite set (program) of instructions for transforming triples hs;m; ni of nat-
ural numbers, called con�gurations. The intended meaning of the current
con�guration hs;m; ni is as follows: s is the number (label) of the current
machine state and m, n represent the current state of information. Each
instruction has one of the four possible forms:

s! ht; 1; 0i ; s! ht; 0; 1i ;
s! ht;�1; 0i (ht0; 0; 0i); s! ht; 0;�1i (ht0; 0; 0i):

The last of them, for instance, means: transform hs;m; ni into ht;m; n� 1i
if n > 0 and into ht0;m; ni if n = 0. For a Minsky machine P , we shall
write P : hs;m; ni ! ht; k; li if starting with hs;m; ni and applying the
instructions in P , in �nitely many steps (possibly, in 0 steps) we can reach
ht; k; li.

We shall use the well known fact (see e.g. [Mal'cev 1970]) that the fol-
lowing con�guration problem is undecidable: given a program P and con-
�gurations hs;m; ni, ht; k; li, determine whether P : hs;m; ni ! ht; k; li.
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Figure 19.

With every programP and con�guration hs;m; ni we associate the transi-
tive frame F depicted in Fig. 19. Its points e(t; k; l) represent con�gurations
ht; k; li such that P : hs;m; ni ! ht; k; li; e(t; k; l) sees the points a0t , a

1
k, a2l

representing the components of ht; k; li. The following variable free formulas
characterize points in F in the sense that each of these formulas, denoted by
Greek letters with subscripts and/or superscripts, is true in F only at the
point denoted by the corresponding Roman letter with the same subscript
and/or superscript:

� = �>^��>; � = �?;  = �� ^ �� ^ :�2�;
Æ = : ^ �� ^ :�2�; Æ1 = �Æ ^ :�2Æ; Æ2 = �Æ1 ^ :�2Æ1;

1 = � ^ :�2 ^ :�Æ; 2 = �1 ^ :�21 ^ :�Æ;
�00 = � ^ �Æ ^ :�2 ^ :�2Æ;

�10 = �1 ^ �Æ1 ^ :�21 ^ :�2Æ1;
�20 = �2 ^ �Æ2 ^ :�22 ^ :�2Æ2;
�ij+1 = ��ij ^ :�2�ij ^

^
i6=k
:��k0 ;

where i 2 f0; 1; 2g, j � 0. The formulas characterizing e(t; k; l) are denoted
by �(t; �1k; �

2
l ), where

�(t; ';  ) =

t̂

i=0

��0i ^ :��0t+1 ^ �' ^ :�2' ^ � ^ :�2 :
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We require also formulas characterizing not only �xed but arbitrary con�g-
urations:

�1 = (��10 _ �10) ^ :��00 ^ :��20 ^ p1 ^ :�p1;
�2 = ��10 ^ :��00 ^ :��20 ^ �p1 ^ :�2p1;

�1 = (��20 _ �20) ^ :��00 ^ :��10 ^ p2 ^ :�p2;
�2 = ��20 ^ :��00 ^ :��10 ^ �p2 ^ :�2p2:

Now we are fully equipped to simulate the behavior of Minsky machines by
means of modal formulas. Let us consider for simplicity only tense logics
and observe that F satis�es the condition

8x8y9z (xRzR�1y _ xR�1zRy _ xRy _ xR�1y _ x = y):

So, for every valuation in F, a formula ' is true at some point in F i� the
formula

' = ���1' _ ��1�' _ �' _ ��1' _ '
is true at all points in F, i.e., the modal operator  can be understood
as \omniscience". Let � be a formula which is refuted in F and does not
contain p1 and p2. With each instruction I in P we associate a formula
AxI by taking:

AxI = :� ^�(t; �1; �1)! :� ^�(t0; �2; �1)
if I has the form t! ht0; 1; 0i,

AxI = :� ^�(t; �1; �1)! :� ^�(t0; �1; �2)
if I is t! ht0; 0; 1i,

AxI = (:� ^�(t; �2; �1)! :� ^�(t0; �1; �1)) ^
(:� ^��(t; �10; �1)! :� ^�(t00; �10; �1))

if I is t! ht0;�1; 0i (ht00; 0; 0i),
AxI = (:� ^�(t; �1; �2)! :� ^�(t0; �1; �1)) ^

(:� ^�(t; �1; �20)! :� ^�(t00; �1; �20))
if I is t! ht0; 0;�1i (ht00; 0; 0i). The formula simulating P as a whole is

AxP =
^
I2P

AxI:

Now, by induction on the length of computations and using the frame F in
Fig. 19 one can show that for every program P and con�gurations hs;m; ni,
ht; k; li, we have P : hs;m; ni ! ht; k; li i�

:� ^�(s; �1m; �2n)! :� ^�(t; �1k; �2l ) 2 K4:t�AxP:
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Thus, if the con�guration problem is undecidable for P then the tense
calculus K4:t � AxP is undecidable too. In the same manner (but using
somewhat more complicated frames and formulas) one can construct unde-
cidable calculi in NExtK4 and even ExtInt; for details consult [Chagrova,
1991] and [Chagrov and Zakharyaschev, 1997]. The following table presents
some "quantitative characteristics" of known undecidable calculi in various
classes of logics. Its �rst line, for instance, means that there is an undecid-
able si-calculus with axioms in 4 variables and the derivability problem in
it is undecidable in the class of formulas in 2 variables; = means that the
number of variables is optimal, and � indicates that the optimal number is
still unknown.

The number of variables in
Class of logics undecidable calculi separated formulas

ExtInt � 4; � 2 = 2
NExtS4 � 3; � 2 = 1

ExtS4 � 3 = 1
NExtGL = 1 = 1

ExtGL = 1 = 1
ExtS = 1 = 1

NExtK4 = 1 = 0
ExtK4 = 1 = 0

These observations follow from [Anderson, 1972; Chagrov, 1994; Sobolev,
1977a] and [Zakharyaschev, 1997a]. Say that a formula  is undecidable in
(N)ExtL if no algorithm can determine for an arbitrary given ' whether
 2 L+' (respectively,  2 L�'). For example, formulas in one variable,
the axioms of BWn and BDn are decidable in ExtInt. On the other hand,
there are purely implicative undecidable formulas in ExtInt, and

:(p ^ q) _ :(:p ^ q) _ :(p ^ :q) _ :(:p ^ :q)

is the shortest known undecidable formula in this class. Here are some modal
examples: the formula �(�2? ! �p _ �:p) is undecidable in NExtGL,
�+:�+p _�+:�+:�+p in ExtS, ? in ExtK4 and NExtK4:t; in NExtK
and NExtK4:t undecidable is the conjunction of axioms of any consistent
tabular logic in these classes. However, no non-trivial criteria are known for
a formula to be decidable; it is unclear also whether one can e�ectively
recognize the decidability of formulas in the classes ExtInt, (N)ExtS4,
(N)ExtGL, ExtS, (N)ExtK4.

4.2 Admissibility and derivability of inference rules

Another interesting algorithmic problem for a logic L is to determine whether
an arbitrary given inference rule '1; : : : ; 'n=' is derivable in L, i.e., ' is
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derivable in L from the assumptions '1; : : : ; 'n, and whether it is admissi-
ble in L, i.e., for every substitution s, 's 2 L whenever '1s; : : : ; 'ns 2 L.
(Note that derivability depends on the postulated inference rules in L,
while admissibility depends only on the set of formulas in L.) Admissible
and derivable rules are used for simplifying the construction of derivations.
Derivable rules, like the well known rule of syllogism

'!  ;  ! �

'! �
;

may replace some fragments of �xed length in derivations, thereby short-
ening them linearly. Admissible rules in principle may reduce derivations
more drastically. Since ' 2 L i� the rule >=' is derivable (or admissible)
in L, the derivability and admissibility problems for inference rules may be
regarded as generalizations of the decidability problem.

If the only postulated rules in L are substitution and modus ponens, the
Deduction Theorem reduces the derivability problem for inference rules in
L to its decidability:

'1; : : : ; 'n
 

is derivable in L i� '1 ^ � � � ^ 'n !  2 L:

However, if the rule of necessitation '=�' is also postulated in L, we have
only

'1; : : : ; 'n
 

is derivable in L i� '1; : : : ; 'n `�L  :

For n-transitive L this is equivalent to ��n('1 ^ � � � ^'n)!  2 L, and so
the derivability problem for inference rules in n-transitive logics is decidable
i� the logics themselves are decidable. In general, in view of the existential
quanti�er in Theorem 1, the situation is much more complicated.

Notice �rst that similarly to Harrop's Theorem, a suÆcient condition for
the derivability problem to be decidable in a calculus is its global FMP (see
Section 1.5). Thus we have

THEOREM 193. The derivability problem for inference rules in K, T, D,
KB is decidable.

Moreover, sometimes we can obtain an upper bound for the parameter
m in the Deduction Theorem, which also ensures the decidability of the
derivability problem for inference rules. One can prove, for instance, that
for K it is enough to take m = 2jSub'[Sub j. In general, however, the
derivability problem for inference rules in a logic L turns out to be more
complex than the decidability problem for L. (Recall, by the way, that there
are logics with FMP but not global FMP.)

THEOREM 194 (Spaan 1993). There is a decidable calculus in NExtK the
derivability problem for inference rules in which is undecidable.



ADVANCED MODAL LOGIC 233

Spaan proves this result by simulating in `�L, L the decidable logic de�ned
below, the tiling problem for N � N. The logic L is surprisingly simple:

L = Alt2 �
^

1�i�4
��pi !

_
1�i<j�4

��(pi ^ pj):

It is a subframe logic, so it is D-persistent and has FMP (because Alt2 � L;
see Theorem 22 and Proposition 59). Note also that the bimodal logic
Lu (see Section 2.2) is a complete and elementary subframe logic which
is undecidable because `�L is undecidable. Using this observation one can
construct a unimodal subframe logic in NExtK with the same properties.

Let us turn now to the admissibility problem. It is not hard to see that
the rules

(::p! p)! p _ :p
:p _ ::p and

:p! q _ r
(:p! q) _ (:p! r)

are admissible but not derivable in Int and �p ^ �:p=? is admissible but
not derivable in any extension of S4.3 save those containing ��p ! ��p,
in which it is derivable. (Recall that a logic L is said to be structurally
complete if every admissible inference rule in L is derivable in L. We have
just seen that Int as well as S4.3 are not structurally complete. For more
information on structural completeness see e.g. [Tsytkin 1978, 1987] and
[Rybakov 1995].) The following result strengthens Fine's [1971] Theorem
according to which all logics in ExtS4.3 are decidable.

THEOREM 195 (Rybakov 1984a). The admissibility problem for inference
rules is decidable in every logic containing S4.3.

An impetus for investigations of admissible inference rules in various
logics was given by Friedman's [1975] problem 40 asking whether one can
e�ectively recognize admissible rules in Int. This problem turned out to be
closely connected to the admissibility problem in suitable modal logics. We
demonstrate this below for the logic GL following [Rybakov 1987, 1989].

First we show that dealing with logics in NExtK, it is suÆcient to consider
inference rules of a rather special form. Let '(q1; : : : ; q2n+2) be a formula
containing no � and � and represented in the full disjunctive normal form.
Say that an inference rule is reduced if it has the form

'(p0; : : : ; pn;�p0; : : : ;�pn)=p0:

THEOREM 196. For every rule '= one can e�ectively construct a reduced
rule '0= 0 such that '= is admissible in a logic L 2 NExtK i� '0= 0 is
admissible in L.

Proof. Observe �rst that if ' and  do not contain p then '= is admissible
in L i� ' ^ ( $ p)=p is admissible in L. So we can consider only rules of
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the form '=p0. Besides, without loss of generality we may assume that '
does not contain �. With every non-atomic subformula � of ' we associate
the new variable p�. For convenience we also put p� = pi if � = pi and
p� = ? if � = ?. We show now that the rule

p' ^
^
fp� $ p�1 � p�2 : � = �1 � �2 2 Sub'; � 2 f^;_;!gg ^^

fp� $ �p�1 : � = ��1 2 Sub'g=p0
is admissible in L i� '=p0 is admissible in L. For brevity we denote the
antecedent of that rule by '00.

()) Since every substitution instance of '00=p0 is admissible in L, the
rule ' ^V�2 Sub'(�$ �)=p0 and so '=p0 are also admissible in L.

(() Suppose '=p0 is admissible in L and '00s is in L, for some substi-
tution s = f��=p� : � 2 Sub'g. By induction on the construction of �
one can readily show that �� $ �s 2 L. Therefore, �' $ 's 2 L. Since
'00s 2 L, we must have p's = �' 2 L, from which 's 2 L and so p0s 2 L.
Thus '00=p0 is admissible in L.

The rule '00=p0 is not reduced, but it is easy to make it so simply by
representing '00 in its full disjunctive normal form '0, treating subformulas
�pi as variables. �

From now on we will deal with only reduced rules di�erent from ?=p0
(which is clearly admissible in any logic). Let

W
j 'j=p0 be a reduced rule

in which every disjunct 'j is the conjunction of the form

(17) :0p0 ^ � � � ^ :mpm ^ :0�p0 ^ � � � ^ :m�pm;
where each :i and :j is either blank or :. We will identify such conjunc-
tions with the sets of their conjuncts. Now, given a non-empty set W of
conjunctions of the form (17), we de�ne a frame F = hW;Ri and a model
M = hF;Vi by taking

'iR'j i� 8k 2 f0; : : : ;mg(:�pk 2 'i ! :�pk 2 'j ^ :pk 2 'j) ^
9k 2 f0; : : : ;mg(:�pk 2 'j ^ �pk 2 'i);

V(pk) = f'i 2W : pk 2 'ig:
It should be clear that F is �nite, transitive and irreexive.

THEOREM 197. A reduced rule
W
j 'j=p0 is not admissible in GL i� there

is a model M = hF;Vi de�ned as above on a set W of conjunctions of the
form (17) and such that

(i) :p0 2 'i for some 'i 2W ;

(ii) 'i j= 'i for every 'i 2 W ;
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(iii) for every antichain a in F there is 'j 2 W such that, for every k 2
f0; : : : ;mg, 'j j= �pk i� 'i j= �+pk for some 'i 2 a.

Proof. ()) We are given that there are formulas  0; : : : ;  m in vari-
ables q1; : : : ; qn such that

W
j '

�
j 2 GL and p�0 62 GL, where by �� we

denote �f 0=p0; : : : ;  m=pmg. This is equivalent to MGL(n) j= Wj '�j and
MGL(n) 6j= p�0. De�ne W to be the set of those disjuncts 'j in

W
j 'j whose

substitution instances '�j are satis�ed in MGL(n). Clearly W 6= ;. Let us
check (i) { (iii).

(i) Take a point x in MGL(n) at which p�0 is false. As MGL(n) j= Wj '�j ,
we must have x j= '�i for some i. One of the formulas p�0 or :p�0 is a
conjunct of '�i . Clearly it is not p�0. Therefore, :p0 2 'i.

(ii) It suÆces to show that, for all 'i 2W and k 2 f0; : : : ;mg, 'i j= �pk
i� �pk 2 'i. Suppose 'i j= �pk. Then there is 'j 2 W such that
'iR'j and 'j j= pk. By the de�nition of V and R, this means that
pk 2 'j and �pk 2 'i. Conversely, suppose �pk 2 'i. Then x j= '�i
and in particular x j= �p�k for some x in MGL(n). Let y be a �nal
point in the set fz 2 x": z j= p�kg. Since MGL(n) is irreexive, we
have y j= p�k, y 6j= �p�k and y j= '�j for some 'j 2 W . It follows that
'iR'j and 'j j= pk, from which 'i j= �pk.

(iii) Let a be an antichain in F. For every 'i 2 a, let xi be a �nal point
in the set fy 2 WGL(n) : y j= '�i g. It should be clear that the
points fxi : 'i 2 ag form an antichain b in FGL(n) and so, by the
construction of FGL(n), there is a point y in FGL(n) such that y"= b".
Then the formula 'j 2 W we are looking for is any one satisfying
the condition y j= '�j , as can be easily checked by a straightforward
inspection.

(() The proof in this direction is rather technical; we con�ne ourselves to
just a few remarks. Let M be a model satisfying (i){(iii). To prove thatW
j 'j=p0 is not admissible in GL we require once again the n-universal

model MGL(n), but this time we take n to be the number of symbols in the
rule. By induction on the depth of points in M one can show that M is a
generated submodel of MGL(n).

Our aim is to �nd formulas  0; : : : ;  m such that MGL(n) j= Wj '�j and
MGL(n) 6j= p�0 (here again �� = �f 0=p0; : : : ;  m=pmg). Loosely, we need
to extend the properties of M to the whole model MGL(n). To this end
we can take the sets f'ig in FGL(n) and augment them inductively in such
a way that we could embrace all points in FGL(n). At the induction step
we use the condition (iii), and the required  0; : : : ;  m are constructed with
the help of (i) and (ii); roughly, they describe in MGL(n) the analogues of
the truth-sets in M of the variables in our rule. �
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A remarkable feature of this criterion is that it can be e�ectively checked.
Thus we have

THEOREM 198. There is an algorithm which, given an inference rule, can
decide whether it is admissible in GL.

In a similar way one can prove

THEOREM 199 (Rybakov 1987). The admissibility problem in Grz is de-
cidable.

We show now that the admissibility problem in Int can be reduced to
the same problem in Grz and so is also decidable. To this end we require
the following

THEOREM 200 (Rybakov 1984b). A rule '= is admissible in Int i� the
rule T (')=T ( ) is admissible in Grz.

As a consequence of Theorems 199 and 200 we obtain

THEOREM 201 (Rybakov 1984b). The admissibility problem in Int is de-
cidable.

Although there are many other examples of logics in which the admis-
sibility problem is decidable and the scheme of establishing decidability is
quite similar to the argument presented above,20 proofs are rather diÆcult
and only in few cases they work for big families of logics as in [Rybakov
1994]. Besides, all these results hold only for extensions of K4 and Int.
For logics with non-transitive frames, even for K, the admissibility problem
is still waiting for a solution. The same concerns polymodal, in particular
tense logics. Chagrov [1992b] constructed a decidable in�nitely axiomatiz-
able logic in NExtK4 for which the admissibility problem is undecidable.
It would be of interest to �nd modal and si-calculi of that sort.

A close algorithmic problem for a logic L is to determine, given an ar-
bitrary formula '(p1; : : : ; pn), whether there exist formulas  1, : : : ,  n
such that '( 1; : : : ;  n) 2 L. Note that an \equation" '(p1; : : : ; pn) has
a solution in L i� the rule '(p1; : : : ; pn)=? is not admissible in L. This
observation and Theorem 195 provide us with examples of logics in which
the substitution problem is decidable (see e.g. [Rybakov 1993]). We do not
know, however, if there is a logic such that the substitution problem in it is
decidable, while the admissibility one is not.

The inference rules we have dealt with so far were structural in the sense
that they were \closed" under substitution. An interesting example of a

20Quite recently S. Ghilardi [1999a,b] has found another way of recognizing admissibil-
ity of inference rules. He showed that certain si- and modal logics L (in particular, Int,
K4, S4, GL, Grz) have the following property. Given an L-consistent formula ', one can
e�ectively compute substitutions �1; : : : ; �n such that �i' 2 L for every i = 1; : : : ; n, and
if �' 2 L for some substitution �, then � is, up to provable equivalence, an instantiation
of some of the �i. A rule '= is then admissible in L i� �i 2 L for all i = 1; : : : ; n.
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nonstructural rule was considered by Gabbay [1981a]:

' _ (�p! p); where p 62 Sub'
'

:

It is readily seen that this rule holds in a frame F (in the sense that for every
formula ' and every variable p not occurring in ', ' is valid in F whenever
(�p ! p) _ ' is valid in F) i� F is irreexive and that K is closed under
it (since K is characterized by the class of irreexive frames). We refer the
reader to [Venema 1991] and [Marx and Venema 1997] for more information
about rules of this type.

4.3 Properties of recursively axiomatizable logics

Dealing with in�nite classes of logics, we can regard questions like \Is a
logic L decidable?", \Does L have FMP?", etc., as mass algorithmic prob-
lems. But to formulate such problems properly we should decide �rst how
to represent the input data of algorithms recognizing properties of logics.
One can, for instance, consider the class of recursively axiomatizable log-
ics (which, by Craig's [1953] Theorem, coincides with that of recursively
enumerable ones) and represent them as programs generating their axioms.
However, this approach turns out to be too general because the following
analog of the Rice{Uspenskij Theorem holds.

THEOREM 202 (Kuznetsov). No nontrivial property of recursively axiom-
atizable si-logics is decidable.

Of course, nothing will change if we take some other family of logics, say
NExtK4. The proof of this theorem (Kuznetsov left it unpublished) is very
simple; we give it even in a more general form than required.

PROPOSITION 203. Suppose L1 and L2 are logics in some family L, L1
is recursively axiomatizable, L1 � L2, L2 is �nitely axiomatizable (say, by
a formula ), and a property P holds for only one of L1, L2. Then no
algorithm can recognize P, given a program enumerating axioms of a logic
in L.
Proof. Let �0; �1; : : : be a recursive sequence of axioms for L1. Given an
arbitrary (Turing, Minsky, Pascal, etc.) program P having natural numbers
as its input, we de�ne the following recursive sequence of formulas (where
(n)1 and (n)2 are the �rst and second components of the pair of natural
numbers with code n under some �xed e�ective encoding):

�n =

�
�n if P does not come to a stop on input (n)1 in (n)2 steps
 otherwise.

This sequence axiomatizes L1 if P does not come to a stop on any input and
L2 otherwise. It is well known in recursion theory that the halting problem
is undecidable, and so the property P is undecidable in L as well. �
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The reader must have already noticed that this proof has nothing to
do with modal and si-logics; it is rather about e�ective computations. To
avoid this unpleasant situation let us con�ne ourselves to the smaller class
of �nitely axiomatizable modal and si-logics and try to �nd algorithms rec-
ognizing properties of the corresponding calculi. However, even in this case
we should be very careful. If arbitrary �nite axiomatizations are allowed
then we come across the following

THEOREM 204 (Kuznetsov 1963). For every �nitely axiomatizable si-logic
L (in particular, Int, Cl, inconsistent logic), there is no algorithm which,
given an arbitrary �nite list of formulas, can determine whether its closure
under substitution and modus ponens coincides with L.

Needless to say that the same holds for (normal) modal logics as well.
Fortunately, the situation is not so hopeless if we consider �nite axiomati-
zations over some basic logics. For instance, by Makinson's Theorem, one
can e�ectively recognize, given a formula ', whether the logic K�' is con-
sistent. Other examples of decidable properties in various lattices of modal
logics were presented in Theorems 89, 93, 101, and 142. In the next sec-
tion we consider those properties that turn out to be undecidable in various
classes of modal and si-calculi.

4.4 Undecidable properties of calculi

The �rst \negative" algorithmic results concerning properties of modal cal-
culi were obtained by Thomason [1982] who showed that FMP and Kripke
completeness are undecidable in NExtK, and consistency is undecidable in
NExtK:t. Later Thomason's discovery has been extended to other proper-
ties and narrower classes of logics. In fact, a good many standard properties
of modal and si-calculi (in reasonably big classes) proved to be undecidable;
decidable ones are rather exceptional.

In this section we present three known schemes of proving such kind of
undecidability results. Each of them has its advantages (as well as disad-
vantages) and can be adjusted for various applications. The �rst one is due
to Thomason [1982].

Let L(n) be a recursive sequence of normal bimodal calculi such that no
algorithm can decide, given n, whether L(n) is consistent. Such sequences,
as we shall see a bit later, exist even in NExtK4:t. Suppose also that L� is
a normal unimodal calculus which does not have some property, say, FMP,
decidability or Kripke completeness. Consider now the recursive sequence of
logics L(n)
L� with three necessity operators. If L(n) is inconsistent then
the fusion L(n)
L� is inconsistent too and so has the properties mentioned
above. And if L(n) is consistent then, in accordance with Proposition 110,
L(n) 
 L� is a conservative extension of both L(n) and L�, which means
that it is Kripke incomplete, undecidable and does not have FMP whenever
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L� is so. Consequently, the three properties under consideration cannot be
decidable in the class NExtK3, for otherwise the consistency of L(n) would
be decidable. By Theorem 123, these properties are undecidable in NExtK
as well. Note however that, since Thomason's simulation embeds polymodal
logics only into \non-transitive" unimodal ones, this very simple scheme
does not work if we want to investigate algorithmic aspects of properties of
calculi in NExtK4 and ExtInt.

To illustrate the second scheme let us recall the construction of the un-
decidable calculus in NExtK4:t discussed in Section 4.1. First, we choose a
Minsky program P and a con�guration a = hs;m; ni so that no algorithm
can decide, given a con�guration b, whether P : a! b. (That they exist is
shown in [Chagrov 1990b].) Then we put � = ? and add to K4:t � AxP
one more axiom

(:� ^�(s; �1m; �2n)! :� ^�(t; �1k; �2l ))! �;

where c = ht; k; li is an arbitrary �xed con�guration. The resulting calculus
is denoted by L(c). Suppose that P : a 6! c. Then one can readily check
that the new axiom is valid in the frame F shown in Fig. 19 and prove that
P : hs;m; ni ! ht0; k0; l0i i�

:� ^�(s; �1m; �2n)! :� ^�(t0; �1k0 ; �2l0) 2 L(c):

Therefore, L(c) is undecidable, consistent and does not have FMP. And if
P : a! c then L(c) is clearly inconsistent. It follows by the choice of P and
a that consistency, decidability and FMP are undecidable in NExtK4:t. In
fact, the argument will change very little if we take as � the axiom of some
tabular logic in NExtK4:t. So we obtain

THEOREM 205. The properties of tabularity and coincidence with an ar-
bitrary �xed tabular logic (in particular, inconsistent) are undecidable in
NExtK4:t

Moreover, these results (except the consistency problem, of course) can
be transferred to logics in NExtK. We demonstrate this by an example;
complete proofs can be found in [Chagrov 1996].

We require the frame which results from that in Fig. 19 by adding to it
a reexive point c0 and an irreexive one c1 so that c1 sees all other points
save a and b and is seen itself only from a and b. As before, we denote the
frame by F.

PROPOSITION 206. Let � be a formula refutable at some point in F dif-
ferent from c0 and �> 2 K � �. Then the problem of deciding, for an
arbitrary formula ', whether K� ' = K� � is undecidable.

Proof. It should be clear that � contains at least one variable, say r,
and there are points in F at which r has distinct truth-values (under the
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valuation refuting �); c0 and c1 are then the only points in F where the
formulas �0 = �3r _�3:r and

�1 = ��0 ^ (r _ �r _ �2r) ^ (:r _ �:r _ �2:r)

are true, respectively. Observe that from every point in F save c0 we can
reach all points in F by � 3 steps. So we can take  = ��3. The formulas
� and � should be replaced with � = ��1 ^ �2�1, � = ��1 ^ :�2�1 which
(under the valuation refuting �) are true only at a and b, respectively. Now
consider the logic

L(c) = K�AxP � (:� ^�(s; �1m; �2n)! :� ^�(t; �1k; �2l ))! �:

If P : a! c then L(c) = K� �. And if P : a 6! c then, using the fact that
the set of points in F where � is refutable coincides with the set of points
from which every point of the form e(x; y; z) is accessible by three steps,
one can show that F j= L(c) and so L(c) 6= K� �. �

Putting, for instance, � = �p $ p, we obtain then that the problem of
coincidence with LogÆ is undecidable in NExtK. Likewise one can prove the
following

THEOREM 207.

(i) If a consistent �nitely axiomatizable logic L is not a union-splitting of
NExtK then the axiomatization problem for L above K is undecidable.

(ii) The properties of tabularity and coincidence with an arbitrary �xed
consistent tabular logic are undecidable in NExtK.

(iii) The problem of coincidence with an arbitrary �xed consistent calculus
in NExtD4 or in NExtGL is undecidable in NExtK.

(iv) The properties of tabularity and coincidence with an arbitrary �xed
tabular (in particular, inconsistent) logic are undecidable in ExtK4.

Of the algorithmic problems concerning tabularity that remain open the
most intriguing are undoubtedly the tabularity and local tabularity prob-
lems in NExtK4. Note that a positive solution to the former implies a
positive solution to the latter.

Now we present the second scheme in a more general form used in [Cha-
grov 1990b] and [Chagrov and Zakharyaschev 1993]. Assume again that the
second con�guration problem is undecidable for P and a, and let � be a
formula such that L0�� has some property P , where L0 is the minimal logic
in the class under consideration. Associate with P , a and a con�guration
b formulas AxP and  (a; b) such that  (a; b) 2 L0 � AxP i� P : a ! b.
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Besides, � and AxP are chosen so that AxP 2 L0 � �. Now consider the
calculus

L(b) = L0 �AxP �  (a; b)! �� ;
where  is some formula such that  2 L0��. If P : a! b then we clearly
have L(b) = L0 � � and so L(b) has P ; but if P : a 6! b then the fact
that L(b) does not have P must be ensured by an appropriate choice of .
(In the considerations above we did not need , i.e., it was suÆcient to put
 = >). With the help of this scheme one can prove the following

THEOREM 208.

(i) The properties of decidability, Kripke completeness as well as FMP
are undecidable in the classes ExtInt, (N)ExtGrz, (N)ExtGL.

(ii) The interpolation property is undecidable in (N)ExtGL.

(iii) Halld�en completeness is undecidable in ExtInt, (N)ExtGrz, ExtS.

These and some other results of that sort can be found in [Chagrov
1990b,c, 1994, 1996], [Chagrova 1991], [Chagrov and Zakharyaschev 1993,
1995b].

The third scheme was developed in [Chagrova 1989, 1991] and [Chagrov
and Chagrova 1995] for establishing the undecidability of certain �rst order
properties of modal calculi (or formulas). The di�erence of this scheme from
the previous one is that now we use calculi of the form

L(b) = L0 �AxP �  (a; b) _ ;

where AxP satis�es one more condition besides those mentioned above:
it must be �rst order de�nable on Kripke frames for L0. If P : a ! b

then the formula AxP ^ ( (a; b) _ ) is equivalent to AxP in the class of
Kripke frames for L0 and so is �rst order de�nable on that class or its any
subclass. And if P : a 6! b then by choosing an appropriate  one can
show that AxP ^ ( (a; b)_ ) is not �rst order de�nable on, say, countable
Kripke frames for L0, as in [Chagrova 1989], or on �nite frames for L0, as in
[Chagrov and Chagrova 1995]. In this way the following theorem is proved:

THEOREM 209.

(i) No algorithm is able to recognize the �rst order de�nability of modal
formulas on the class of Kripke frames for S4 and even the �rst order
de�nability on countable (�nite) Kripke frames for S4. The properties
of �rst order de�nability and de�nability on countable (�nite) Kripke
frames of intuitionistic formulas are undecidable as well.

(ii) The set of modal or intuitionistic formulas that are �rst order de�nable
on countable (�nite) frames but are not �rst order de�nable on the
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class of all (respectively, countable) Kripke frames mentioned in (i) is
undecidable.

We conclude this section with two remarks. First, all undecidability
results above can be formulated in the stronger form of recursive insepa-
rability. For instance, the set of inconsistent calculi in NExtK4:t and the
set of calculi without FMP are recursively inseparable. And second, some
properties are not only undecidable but the families of calculi having them
are not recursively enumerable; for example, the set of consistent calculi in
NExtK4:t is not enumerable. However, for the majority of other properties
the problem of enumerability of the corresponding calculi is open.

4.5 Semantical consequence

So far we have dealt with only syntactical formalizations of logical entail-
ment. However, sometimes a semantical approach is preferable. Say that a
formula ' is a semantical consequence of a formula  in a class of frames
C if ' is valid in all frames in C validating  . (One can consider also the
local, i.e., point-wise variant of this relation.) Note that ' is a consequence
of  in the class of, say, Kripke frames for S4 i� ' is a consequence of
(�p ! �2p) ^ (�p ! p) ^  in the class of all Kripke frames. But the
consequence relation on �nite frames is not expressible by modal formulas
(as was shown in [Chagrov 1995], if (�p ! �2p) ^ ' is valid in arbitrarily
large �nite rooted frames then it is valid in some in�nite rooted frame as
well).

In parallel with constructing and proving the undecidability of modal and
si-calculi we can obtain the following

THEOREM 210. The semantical consequence relation in the class of all
(K4-, S4-, Int-) Kripke frames is undecidable. Moreover, if j= denotes one
of these relations then there is a formula  (a formula ') such that the set
f' :  j= 'g is undecidable.

In a sense, formulas  and ', for which f' :  j= 'g is undecidable are
analogous to undecidable calculi and formulas, respectively. However, this
analogy is far from being perfect: for every formula  , the sets f' :  ` 'g
and f' :  `� 'g are recursively enumerable, which contrasts with

THEOREM 211 (Thomason 1975a). There exists a formula  such that
f' :  j= 'g is a �1

1-complete set.

Unfortunately, Thomason's [1974b, 1975b, 1975c] results have not been
transferred so far to transitive frames, although this does not seem to be
absolutely impossible.

Chagrov [1990a] (see also [Chagrov and Chagrova 1995]) developed a tech-
nique for proving the analog of Theorem 210 for the consequence relation
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on all (K4-, S4-, GL-, Int-) �nite frames. Moreover, since this relation is
clearly enumerable, instead of \undecidable" one can use \not enumerable".

4.6 Complexity problems

Having proved that a given logic is decidable, we are facing the problem of
�nding an optimal (in one sense or another) decision algorithm for it. The
complexity of decision algorithms for many standard modal and si-logics is
determined by the size of minimal frames separating formulas from those
logics. For instance, as was shown by Ja�skowski (1936) and McKinsey
(1941), for every ' 62 S4 (or ' 62 Int) there is a frame F j= S4 with
� 2jSub'j points such that F 6j= '. The same upper bound is usually
obtained by the standard �ltration. Is it possible to reduce the exponential
upper bound to the polynomial one? This question was raised by Kuznetsov
[1975] for Int. It turned out, however, that it concerns not only Int. First,
Kuznetsov observed (for the proof see [Kuznetsov 1979]) that if the answer
to his question is positive, i.e., Int has polynomial FMP, then the problem
\Are Int and Cl polynomially equivalent?" has a positive solution as well.
(Logics L1 and L2 are polynomially equivalent if there are polynomial time
transformations f and g of formulas such that ' 2 L1 i� f(') 2 L2 and
' 2 L2 i� g(') 2 L1.) Then Statman [1979] showed that the problem \' 2
Int?" is PSPACE-complete and so Kuznetsov's problem is equivalent to
one of the \hopeless" complexity problems, namely \NP = PSPACE?".

Complexity function

For a logic L with FMP, we introduce the complexity function

fL(n) = max
l(')�n
'62L

min
Fj=L
F6j='

jFj ;

where l('), the length of ', is the number of subformulas in ' and jFj the
number of points in F. If there is a constant c such that

fL(n) � 2c�n (or fL(n) � nc or fL(n) � c � n);

L is said to have the exponential (respectively, polynomial or linear) �nite
model property. The following result shows that Int does not have polyno-
mial FMP.

THEOREM 212 (Zakharyaschev and Popov 1979). log2 fInt(n) � n.
Proof. The exponential upper bound is well known and to establish the
lower one it is suÆcient to use the formulas

�n =

n�1̂

i=1

((:pi+1 ! qi+1) _ (pi+1 ! qi+1)! qi)! (:p1 ! q1) _ (p1 ! q1):
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It is not hard to see that �n =2 Int and every refutation frame for �n contains
the full binary tree of depth n as a subframe. �

Likewise the same result can be proved for many other standard super-
intuitionistic and modal logics whose FMP is established by the usual �l-
tration and whose frames contain full binary trees of arbitrary �nite depth.
Such are, for instance, KC, SL, K4, S4, GL. In the case of K the length of
formulas that play the role of �n is not a linear but a square function of n,
which means that fK(n) � 2

p
c�n, for some constant c > 0, and so K does

not have polynomial FMP either. As was shown in [Zakharyaschev 1996],
all co�nal subframe modal and si-logics have exponential FMP. It seems
plausible that log2 fL(n) � n for every consistent si-logic L di�erent from
Cl and axiomatizable by formulas in one variable.

The construction of Theorem 212 does not work for logics whose frames
do not contain arbitrarily large full binary trees. Such are, for instance,
logics of �nite width or of �nite depth, and the following was proved in
[Chagrov 1983].

THEOREM 213.

(i) The minimal logics of width n < ! in the classes NExtK4, NExtS4,
NExtGrz, NExtGL, ExtInt have polynomial FMP.

(ii) Lin and all logics containing S4.3 have linear FMP.

(iii) The minimal logics of depth n in NExtGrz, NExtGL, ExtInt have
polynomial FMP, with the power of the corresponding polynomial �
n� 1.

(iv) The minimal logics of depth n in NExtK4, NExtS4 have polynomial
FMP, with the power of the corresponding polynomial � n.

Proof. (i) is proved by two �ltrations. First, with the help of the standard
�ltration one constructs a �nite frame separating a formula ' from the given
logic L and then, using the selective �ltration, extracts from it a polynomial
separation frame: it suÆces to take a point refuting ' and all maximal
points at which  is false, for some � 2 Sub' (in the intuitionistic case
 ! � 2 Sub' should be considered). (ii) is proved analogously.

To illustrate the proof of (iii) and (iv), we consider the minimal logic L of
depth 3 in NExtGL. Suppose ' =2 L. Then there is a transitive irreexive
model M of depth � 3 refuting ' at its root r. Let � i, for 1 � i � m, be
all \boxed" subformulas of '. For every i 2 f1; : : : ;mg, we choose a point
refuting  i, if it exists. And then we do the same in the set x", for every
chosen point x. Let M0 be the submodel formed by the selected points and
r. Clearly, it contains at most 1 +m+m2 points. And by induction on the
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- - -� � � - - � � �� � � � Æ � � �
a1 a2 a3 an b1 b2 bf(n)

Figure 20.

construction of formulas in Sub' one can easily show that M0 refutes ' at
r.

To prove the lower bound one can use the formulas

�n = :(

n̂

i=1

�(pi+1 ! pi) ^
n̂

i=1

�(qi+1 ! qi) ^
n̂

i=1

�(�> ^�+(:pi+1 ^ pi)) ^�(�?!
n̂

i=1

�(:qi+1 ^ qi)))

which are not in L and every separation frame for which contains the full
n-ary tree of depth 3, i.e., at least 1 + n+ n2 points. �

However, even if frames for a logic with FMP do not contain full �nite
binary trees its complexity function can grow very fast, witness the following
result of [Chagrov 1985a].

THEOREM 214. For every arithmetic function f(n), there are logics L of
width 1 in NExtK4 and of width 2 in ExtInt, NExtGrz, NExtGL having
FMP and such that fL(n) � f(n).

Proof. We construct a logic L 2 NExtK4:3 whose complexity function
grows faster than a given increasing arithmetic function f(n). De�ne L to
be the logic of all frames of the form shown in Fig. 20. To see that L satis�es
the property we need, consider the sequence of formulas

�1 = p1 _�(�p1 ! (�(�p! p)! p));

�i+1 = pi+1 _�(�pi+1 ! �i):

Since these formulas are refuted at points of the form aj in suÆciently large
frames depicted in Fig. 20, they are not in L. And since L contains the
formulas

:�n ! �(�f(n)�1> ^�f(n)?);

�n cannot be separated from L by a frame with � f(n) points. �

For logics of �nite depth this theorem does not hold, since according
to the description of �nitely generated universal frames in Section 1.2, for
every L 2 NExtK4BDk (k � 3), we have

fL(n) � 22�
��
2c � n

�
k � 2
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for some constant c > 0. And as was shown in [Chagrov 1985a], one cannot
in general reduce this upper bound.

THEOREM 215. For every k � 3, there are logics L of depth k in NExtGrz,
NExtGL, ExtInt such that

fL(n) � 22
��
�2
n
�

k � 2
:

Proof. We illustrate the proof for k = 3 in NExtGL. Let L be the logic
characterized by the class of rooted frames Fm for GL of depth 3 de�ned
as follows. Fm contains m dead ends, every non-empty set of them has a
focus, i.e., a point that sees precisely the dead ends in this set, and besides
the root there are no other points in Fm. It should be clear that L does not
contain the formulas

m =

n̂

i=1

�(pi+1 ! pi)!
n̂

i=1

��(pi ! pi+1):

On the other hand n is not refutable in a frame for L with < 2m points
because the following formulas are in L:

:m !
^

X�f1;:::;mg;X 6=;
�(
^
i2X

�Æi ^
^

i62X;1�i�m
:�Æi);

where Æi = p1 ^ � � � ^ pi ^ :pi+1 ^ � � � ^ :pm+1. �

Note, however, that the logics constructed in the proofs of the last two
theorems are not �nitely axiomatizable. We know of only one \very com-
plex" calculus with FMP.

THEOREM 216. log2 log2 fKP(n) � n.
For the proof see [Chagrov and Zakharyaschev 1997], where the reader

can �nd also some other results in this direction.

Relation to complexity classes

Let us return to the original problem of optimizing decision algorithms
for the logics under consideration. First of all, it is to be noted that there
is a natural lower bound for decision algorithms which cannot be reduced|
we mean the complexity of decision procedures for Cl. This is clear for
(consistent) modal logics on the classical base; and by Glivenko's Theorem,
every si-logic \contains" Cl in the form of the negated formulas. Thus,
if we manage to construct an e�ective decision procedure for some of our
logics then Cl can be decided by an equally e�ective algorithm. (We remind
the reader that all existing decision algorithms for Cl require exponential
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time (of the number of variables in the tested formulas). On the other
hand, only polynomial time algorithms are regarded to be acceptable in
complexity theory.)

So, when analyzing the complexity of decision algorithms for modal and
si-logics, it is reasonable to compare them with decision algorithms for Cl.
For example, if a logic L is polynomially equivalent to Cl then we can regard
these two logics to be of the same complexity. Moreover, provided that
somebody �nds a polynomial time decision procedure for Cl, a polynomial
time decision algorithm can be constructed for L as well. The following
theorem lists results obtained by [Ladner 1977], [Ono and Nakamura 1980],
[Chagrov 1983], and [Spaan 1993].

THEOREM 217. All logics mentioned in the formulation of Theorem 213
are polynomially equivalent to Cl.

Proof. We illustrate the proof only for the minimal logic L of depth 3 in
NExtGL using the method of [Kuznetsov 1979]. Suppose ' is a formula
of length n. By Theorem 213, the condition ' 62 L means that M 6j= ',
for some model M = hF;Vi based on a frame F for GL of depth � 3 and
cardinality � c � n2. We describe this observation by means of classical
formulas, understanding their variables as follows. Let x, y, z be names
(numbers) of points in F, for 1 � x; y; z � c � n2. With every pair hx; yi of
points in F we associate a variable pxy whose meaning is \x sees y". And
with every  2 Sub' and every x we associate a variable q x which means
\ is true at x". Denote by � the conjunction

q'1 ^ q'2 ^ � � � ^ q'c�n2 :
It means that ' is true in M. And let � be the conjunction of the following
formulas under all possible values of their subscripts:

:pxx; pxy ^ pyz ! pxz; q: x $ :q x ;

q ^�x $ q x ^ q�x ; q _�x $ q x _ q�x ; q� x $
c�n2^
y=1

(pxy ! q y ):

(The �rst two formulas say that R is irreexive and transitive and the rest
simulate the truth-relation in M.) Finally, we de�ne a formula saying that
our frame is of depth � 3:

 =
^

1�x;y;z;u�c�n2
:(pxy ^ pyz ^ pzu):

The formula �^^:� is of length� 50(c�n2)5 and can be clearly constructed
by an algorithm working at most polynomial time in the length of '. It is
readily seen that ' 62 L i� � ^  ^ :� is satis�able in Cl. Thus we have
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polynomially reduced the derivability problem in L to that in Cl. Since the
converse reduction is trivial, L and Cl are polynomially equivalent. �

The reader must have noticed that Theorem 217 lists almost all logics
known to have polynomial FMP. Kuznetsov [1975] conjectured that every
calculus having polynomial FMP is polynomially equivalent to Cl. This
conjecture is closely related to some problems in the complexity theory of
algorithms. We remind the reader that NP is the class of problems that
can be solved by polynomial time algorithms on nondeterministic (Turing)
machines. An NP -complete problem is a problem in NP to which all other
problems in NP are polynomially reducible. (For more detailed de�nitions
consult [Garey and Johnson 1979].) The most popular NP -complete prob-
lem is the satis�ability problem for Boolean formulas, i.e., the nonderiv-
ability problem for Cl. So the nonderivability problem for all logics listed
Theorem 217 is NP -complete and Kuznetsov's conjecture is equivalent to
a positive solution to the problem whether the nonderivability problem for
every calculus with polynomial FMP is NP -complete.

Note that if coNP = NP (for the de�nition of the class coNP see
[Garey and Johnson 1979]; we just mention that the derivability problem
in Cl is coNP -complete) then Kuznetsov's conjecture does hold. But
since \coNP = NP ?" belongs to the list of \unsolvable" problems un-
der the current state of knowledge, it may be of interest to �nd out whether
Kuznetsov's conjecture implies coNP = NP .

Another complexity class we consider here is the class PSPACE of
problems that can be solved by polynomial space algorithms. A typical
example of a PSPACE-complete problem is the truth problem for quan-
ti�ed Boolean formulas. The following theorem (which summarizes results
obtained by Ladner [1977], Statman [1979], Chagrov [1985a], Halpern and
Moses [1992] and Spaan [1993]) lists some PSPACE-complete logics.

THEOREM 218. The nonderivability problem (and so the derivability prob-
lem) in the following logics is PSPACE-complete: Int, KC, K, K
K,
S4, S4
 S4, S5
 S5, GL, Grz, K:t and K4:t.

It follows in particular that complexity is not preserved under the for-
mation of fusions of logics (under the assumption NP 6= PSPACE),
since nonderivability in S5 is NP -complete. For more information on the
preservation of complexity under fusions consult [Spaan 1993].

Finally we note that the nonderivability problem in logics with the univer-
sal modality or common knowledge operator is mostly even EXPTIME-
complete, witness Ku [Spaan 1993] and S4EC2 [Halpern and Moses 1992].
The complexity of the nonderivabilty problem for Cartesian products of
many standard modal logics is NEXPTIME-hard; S5�S5 and K�S5
are examples of NEXPTIME-complete logics (see [Marx 1999]). (Note,
by the way, that the known upper bound for K�K is non-elementary.)



ADVANCED MODAL LOGIC 249

5 APPENDIX

We conclude this chapter with a (by no means complete) list of references for
those directions of research in modal logic that were not considered above:

� Congruential logics. These are modal logics that do not necessar-
ily contain the distribution axiom �(p ! q) ! (�p ! �q) but are
closed under modus ponens and the congruence rule p$ q=�p$ �q.
Segerberg [1971] and Chellas [1980] de�ne a semantics for these logics;
Lewis [1974] proves FMP of all congruential non-iterative logics and
Surendonk [1996] shows that they are canonical. Do�sen [1988] consid-
ers duality between algebras and neighbourhood frames and Kracht
and Wolter [1999] study embeddings into normal bimodal logics.

� Modal logics with graded modalities. The truth-relation for their pos-
sibility operators �n is de�ned as follows: x j= �np i� there exist at
least n points accessible from x at which p holds. An early reference
is [Fine 1972]; more recent are [van der Hoek 1992] (applications to
epistemic logic) and [Cerrato 1994] (FMP and decidability).

� Modal logics with the di�erence operator or with nominals (or names).
The semantics of nominals is similar to that of propositional variables;
the di�erence is that a nominal is true at exactly one point in a frame.
For the di�erence operator [6=], we have x j= [6=]p i� p is true every-
where except x. De Rijke [1993], Blackburn [1993] and Goranko and
Gargov [1993] study the completeness and expressive power of systems
of that sort. Closely related to the di�erence operator is the modal
operator [i] for inaccessible worlds: x j= [i]p i� p is true in all worlds
which are not accessible from x, see [Humberstone 1983] and [Goranko
1990a].

� Modal logics with dyadic or even polyadic operators. For duality theory
in this case see [Goldblatt 1989]. An extensive study of Sahlqvist-
type theorems with applications to polyadic logics is [Venema 1991].
For connections with the theory of relational algebras see [Mikulas
1995] and [Marx 1995]. In those dissertations the reader can �nd also
recent results on arrow logic, i.e., a certain type of polyadic logic which
is interpreted in Kripke frames built from arrows. An embedding
of polyadic logics into polymodal logics is discussed in [Kracht and
Wolter 1997].

� Bisimulations. Bisimulations were introduced in modal logic by van
Benthem [1983] to characterize its expressive power; see also [de Rijke
1996]. Visser [1996] used bisimulations to prove uniform interpolation.
Recently, bisimulations have attracted attention because they form a
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common tool in modal logic and process theory. We refer the reader
to collection [Ponse et al. 1996] for information on this subject.

� Modal logics with �xed point operators, i.e., modal logics enriched by
operators forming the least and greatest �xed points of monotone
formulas. These systems are also called modal �-calculi. Under this
name they were introduced and studied by Kozen [1983, 1988]; see
also [Walukiewicz 1993, 1996] and [Bosangue and Kwiatkowska 1996].

� Proof theory. Early references to studies of sequent calculi and natural
deduction systems for a few modal logics can be found in Basic Modal
Logic. More recently, (non-standard) sequent calculi for modal log-
ics have been considered by Do�sen [1985b], Masini [1992] and Avron
[1996]; see also collection [Wansing 1996] and the chapter Sequent
systems for modal logics later in this Handbook. For natural deduc-
tion systems see Borghuis [1993]; tableau systems for modal and tense
logics were constructed in [Fitting 1983], [Rautenberg 1983], [Gore
1994] and [Kashima 1994]. Orlowska [1996] develops relational proof
systems. Display calculi for modal logics were introduced by Belnap
[1982]; see also [Wansing 1994] and collection [Wansing 1996].

� Description logic, a formalism closely related to modal logic, was de-
signed in arti�cial intelligence by Brachman and Schmolze [1985] as
a means for knowledge representation and reasoning (for a survey
see [Donini et al. 1996]). Schild [1991] was the �rst to observe that
the basic description logic ALC is just a terminological variant of the
polymodal K. Recently, in order to represent dynamic and intensional
knowledge, combinations of description and modal logics have been
introduced, see e.g. Baader and Ohlbach [1995], Baader and Laux
[1995], and Wolter and Zakharyaschev [1998, 1999b,c].
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JAMES W. GARSON

QUANTIFICATION IN MODAL LOGIC

0 INTRODUCTION

0.1 An Outline of this Chapter

The novice may wonder why quanti�ed modal logic (QML) is considered
diÆcult. QML would seem to be easy: simply add the principles of �rst-
order logic to propositional modal logic. Unfortunately, this choice does
not correspond to an intuitively satisfying semantics. From the semantical
point of view, we are confronted with a number of decisions concerning the
quanti�ers, and these in turn prompt new questions about the semantics
of identity, terms, and predicates. Since most of the choices can be made
independently, the number of interesting quanti�ed modal logics seems be-
wilderingly large.

The main purpose of this chapter is to try to make sense of this seemingly
chaotic terrain. Section 1 provides a review of the major systems. Section
2 explains the diÆculties in completeness proofs for QMLs, and presents
strategies for overcoming them. Section 3 shows that some systems of QML
behave like second-order logics; they have strong expressive powers and so
are incomplete. The Appendix lists rules, systems, and semantical condi-
tions covered in this chapter.

Free logic serves, in one way or another, as the foundation for most of
the systems we will study. We will argue in Section 1.2.1.2 that allegiance
to �rst-order logic is a source of ad hoc stipulations in semantics for QML.
However, when the principles of free logic are adopted, complications can
be avoided. Since free logic is such a crucial foundation for QML, we will
give a brief description of it here. The reader who knows about free logic,
or who wants to read Bencivena's chapter (in Volume 7 of this Handbook)
on the topic, may skip section 0.2. Since free logics are usually formulated
using = in QML in any case, we will briey discuss identity in intensional
logics in Section 0.3.

0.2 A Short Review of Free Logic

One oddity of �rst-order logic with identity is that it seems to provide
an argument for the existence of God. From the provable identity g = g
we may derive, 9xx = g by Existential Generalisation. If g abbreviates
`God', then 9xx = g reads `God exists'. This anomaly is connected with
the basic assumption made in the semantics for quanti�cational logic that
every constant (such as g) refers to an object in the domain of quanti�cation.
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Figure 1. Roadmap

Explanation of the quanti�ed Modal Logic Roadmap

This tree represents the structure of the discussion of quanti�ed modal logic in

this chapter. Each node contains a number indicating the section of this chapter

where a topic is discussed. Branches from each node are labelled with the main

options which one can choose at that point. The `leaves' of the tree are labelled

with the name used in this chapter of the system which results from choosing the

options on all branches leading to it. Beneath the name of each system is the

name of an author associated with the system. The references in the bibliography

associated with his name contain a description of the system in question.
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There are a number of ways for a believer in the principles of �rst-order
logic to handle this problem. One popular tactic is to count `God' as a de�-
nite description IxGx, whereGx is interpreted to be true only of God. Then
`God exists' translates to 9yy = IxGx. By Russell's theory of descriptions,
this amounts to 9z(9yy = z ^Gz ^ 8x(Gx! x = z)), which is not a theo-
rem. However, this reply depends on a debatable assumption, namely that
for every name which may fail to refer, we can �nd a predicate (or open sen-
tence) which picks out that referent uniquely. Kripke [1972] presents strong
evidence that we cannot �nd such uniquely identifying predicates. Even
if we could solve this problem, the use of Russell's theory causes another
problem. We want to be able to say that `Pegasus has wings' is true, but
that `Pegasus is a hippopotamus' is false. If we translated `Pegasus' away in
these two sentences according to Russell's theory of descriptions, we obtain
sentences of the shapes W (IxPx) and H(IxPx), which are both false since
Pegasus does not exist. We do no better translating these sentences by
8x(Px!Wx) and 8x(Px! Hx), because in this case both are vacuously
true, since nothing satis�es the predicate P .

Free logic avoids these diÆculties by dropping the assumption that ev-
ery name must refer to an object in the domain of quanti�cation. As a
result, the principles for the quanti�ers are somewhat weaker. Let us as-
sume that we have a primitive predicate E, whose extension is the domain
of quanti�cation. The revised axiom of Existential Generalisation becomes:

(FEG) (Pt ^ Et)! 9xPx:
The proof we gave for 9xx = g in �rst-order logic is now blocked. Using
(FEG), we may obtain 9xx = g from g = g only if we have already proven
Eg, and Eg expresses what we are trying to prove.

A complete system MFL of minimal free logic with identity can be con-
structed by de�ning 9x and :8x: and adding the following rules to propo-
sitional logic plus identity theory:

(FUI)
8xPx

Et! Pt
for any term t

(FUG)
` A! (Et! Pt)

` A! 8xPx
t is a term that does not appear in A! 8xPx.

In these rules, and throughout this chapter, A and Px are w�s, x is any
variable, and Pt is the result of substituting the term t properly for all
occurrences of x in Px. It is an easy exercise to show that Et is equivalent
in MFL to 9xx = t (where x is not t). So we could have de�ned Et
as 9xx = t, and avoided the introduction of a special predicate letter E.
However, in some intensional logics, there is no way to de�ne Et in terms
of the rest of the primitive vocabulary, and so we have prepared for this by
assuming that E is primitive.
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0.3 Identity in Intensional Logics

The failure of the substitution of identical terms is a familiar criterion for
identifying intensional expressions. For example, the invalidity of the fa-
mous argument:

Scott is the author of Waverley
King George wonders whether Scott is Scott
King George wonders whether Scott is the author of Waverley

serves as evidence that `King George wonders whether' is intensional. It
should not surprise us, then, if we need to limit the rule of substitution of
identities in intensional logics. One simple way to enforce the desired re-
striction is to allow substitution in atomic sentences only, as in the following
system ID for identity:

(= In) t = t (= Out)
t = t0

Pt! Pt0
where Pt is an atom.

Although the restriction to atomic sentences may seem strong, it has no
e�ect whatsoever in �rst-order logic, because (= Out) insures the substitu-
tion of identities in all extensional sentences. However, in intensional logics,
it does not guarantee substitution of identical terms which lie in the scope
of intensional operators.

Some may object to the view that the substitution of identicals fails.
Russell, for example, gave an explanation of the invalidity of the argument
about the author of Waverley which did not require any restrictions on the
rule of substitution. Russell claimed that the description `the author of
Waverley', does not count as a term. When the description is eliminated
according to his theory, the �rst premise of the argument no longer has the
form of an identity. This tactic does not work, however, for arguments such
as the following where there are no descriptions to eliminate:

Cicero is Tully.
King George knows that Cicero is Cicero.
King George knows that Cicero is Tully.

One reaction to this sort of example is to argue that the failure of the rule
of substitution is a sign that the expression being substituted is not really a
term. So the invalidity of the last argument shows that `Cicero' and `Tully'
are not terms, and must be translated using corresponding descriptions:
IxCx and IxTx. When this is done, the �rst premise of the argument
no longer has the form of an identity, and so does not count as a case of
substitution.

Notice, however, that adherence to the principle of unrestricted substitu-
tion leads us to a position similar to the one which resulted from adherence
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to the classical rules for quanti�ers, we conclude that many of the expres-
sions which we would ordinarily count as terms, must be treated instead as
descriptions. We were forced before to deny the termhood of expressions
which might fail to denote, and now we are compelled to deny it of ex-
pressions which might have synonyms. Since we have little guarantee that
a given expression avoids either defect, we feel pressure, as Quine did, to
claim that no expression of English should be rendered as a constant in
�rst-order logic.

Given the simplicity of the alternative rules, the insistence on the classical
rules for quanti�ers and the unrestricted substitution of identities is, in
our opinion, a prejudice, and one which blocks a natural exposition of an
adequate foundation for quanti�ed modal logics.

1 A TAXONOMY OF QUANTIFIED INTENSIONAL LOGIC

One of the most signi�cant points of di�erence between semantical treat-
ments of QML concerns the domain of quanti�cation. Some systems quan-
tify over objects, while others quanti�er over what Carnap [1947] called
individual concepts. The second approach is more general, but it is also
more abstract, and more diÆcult to motivate. So we will open this account
of QML with systems that use the objectual interpretation.

1.1 Some Semantical Preliminaries

Before we begin, it will be helpful to de�ne a few semantical ideas which
we will use throughout this chapter. We assume that a quanti�ed modal
language is constructed from predicate letters, the primitive predicate con-
stantE, terms (which include in�nitely many variables) the logical constants
:;!;�;=, and a quanti�er 8x for each of the variables x. The predicate
letters come equipped with integers indicating their arity. The propositional
variables are taken to be 0-ary predicate letters, and well-formed formulas
are de�ned in the usual way. Given a set D, the extensions of terms and
predicate letters are de�ned just as they are in �rst-order logic. The exten-
sion of a term is some member of D, and the extension of an i-ary predicate
letter is a set of i-length sequences of members of D. Given a set W of
indices (typically, possible worlds), the intension of an expression is simply
a function which takes each member of W into an appropriate extension for
that expression. Carnap's individual concepts are simply term intensions,
that is, functions from the set of possible worlds into the domain of objects.

Throughout this chapter, a Q-model hW;R;D;Q; ai will contain a set W
of possible worlds, a binary relation R on W , a nonempty set D of possible
objects, some item Q which determines the domain of quanti�cation, and
an assignment function a, which interprets the terms (including variables)
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and predicate letters by assigning them the corresponding kind of intensions
with respect to W and D. If the quanti�er rules of a system are based on free
logic, then there will be a predicate letter E in the language. To ensure that
E receives the proper interpretation as picking out the quanti�er domain,
we will assume that a Q-model for a language that contains E always meets
the condition that a(E) is Q.

In some semantics, the terms are rigid designators, that is, their exten-
sions are the same in all possible worlds. Usually such terms are assigned
no intensions, but given extensions directly. However, in order to keep the
description of a model as consistent as possible, we will assume that terms
always have intensions, and that terms which are rigid designators simply
meet the added condition that their intensions are constant functions.

The symbol = will always be interpreted as contingent identity. This
means that t = t0 is ruled true in a world just in case t and t0 have the
same extension in that world. The truth value of a sentence A on a model
hW;R;D;Q; ai at world w of W (written a(A)(w)) will be de�ned by induc-
tion on the shape of A using the standard clauses for atomic sentences, :;!
and �. When we present a given approach to the quanti�ers, we usually
will need only to say what Q is like, and to give the truth clause for the
quanti�er.

The quanti�ed modal logics we are going to discuss are all extensions of
propositional modal logics which are adequate with respect to some class of
Kripke frames. For example, we will consider extensions of S4, which are
adequate (semantically consistent and complete) with respect to the class
R(S4) of Kripke frames hW;Ri that are reexive and transitive. Usually we
will not care which propositional modal logic is chosen as the foundation for
our quanti�ed logic. We will assume that some propositional modal logic
has already been chosen, and that the frame of any Q-model is in R(S).
When we need to be explicit, we will talk of S-models, and mean models
whose Kripke frames are in the set R(S). The notions of Q-satis�ability
and Q-validity are determined by the concept of a Q-model exactly as in
propositional modal logic.

1.2 The Objectual Interpretation

1.2.1 Rigid Terms. Kripke's historic paper [1963] serves as an excellent
starting point for a discussion of logics with the objectual interpretation.
One reason is that he made the important simplifying assumption that all
terms of the language are rigid designators. Systems that allow nonrigid
terms are, as we shall see, rather complicated, and so we will begin, as
Kripke did, by assuming that the intension of every term is a constant
function. This assumption validates the following two rules which we refer
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to together as (RT) (for rigid terms).

(RT)
t = t0

�t = t0
:t = t0

�:t = t0

The rigidity condition reects the view that proper names have extensions,
but no intensions. Since (RT) guarantees the substitution of identity in all
contexts, it sits well with those who object to restrictions on substitution
of identities.

Kripke's paper also lays out two important options concerning the quan-
ti�er domains. The simplest of the two, the �xed domain approach, assumes
a single domain of quanti�cation which contains, presumably, all the possi-
ble objects. The world-relative interpretation, on the other hand, assumes
that the domain of quanti�cation contains only the objects that exist in a
given world, and so the domain varies from one world to another.

1.2.1.1 Fixed Domains: The System Q1. Although the �xed domain ap-
proach is less general, it is attractive from the semantical point of view
because we need only add the familiar machinery for 8x to the semantics
of a modal logic in the following way. A �xed domain objectual model with
rigid terms (or Q1-model) is a sequence hW;R;D;Q1; ai, where the domain
of quanti�cation Q1 is D, the set of possible objects, and where a meets
the condition (aRT), which guarantees that the term intensions are constant
functions.

(aRT) a(t)(w) is a(t)(w0) for all w;w0 in W:

The truth value of a sentence on a model is then de�ned using the following
clause for the quanti�er:

(Q1) a(8xA)(w) is T i� for all d in Q1; a(d=x)(A)(w) is T:

(Here a(d=x) is the assignment like a save that a(x) = d.)
For each propositional modal logic S, let the formal system Q1-S consist

of the principles of S, rules for �rst-order logic (ID), (RT), and the Barcan
formula (BF):

(BF) 8x�A! �8xA:
One satisfying feature of the �xed domain account is that most proposi-
tional modal logics S for which we can show completeness with respect to
a set R(S) of Kripke frames, have the feature that the system Q1-S is se-
mantically consistent and complete with respect to Q1-S-validity. There
are exceptions, however. For example, Cresswell [1995] explains that when
R(S) is convergent, completeness of Q1-S may fail.
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1.2.1.2 World-Relative Domains.

1.2.1.2.1 The Motivation for World-relative Domains. The �xed domain
interpretation is satisfying from the formal point of view, but it is not an
accurate account of the semantics of quanti�er expressions of natural lan-
guage. We do not think that `There is a man who signed the Declaration of
Independence' is true, at least not if we read `there is' in the present tense.
Nevertheless, this sentence was true in 1777, which shows that the domains
of the present tense quanti�ers changes to reect which objects exist at
di�erent times. The domain varies along other dimensions as well. For ex-
ample, when I announce to my class that everyone did well on the midterm,
it is understood that I am not praising the whole human race. Time, place,
speaker, and even topic of discussion play a role in determining the domain
in ordinary communication. There are also strong reasons for rejecting �xed
domains in modal languages. On the �xed domain interpretation, the sen-
tence 8x�9y(y = x) (which reads `everything exists necessarily') is valid,
but we would not ordinarily count this as a logical truth because we assume
that di�erent things exist in the di�erent possible worlds.

The defender of the �xed domain interpretation can respond to these ob-
jections by insisting that the domain of 8x contains merely possible objects.
Expressions whose domain depends on the context, can then be de�ned us-
ing 8x and predicate letters. For example, the present tense quanti�er can
be de�ned using 8x and a predicate letter that reads `presently exists'.

One diÆculty with this proposal is that it requires the invention of pred-
icates for all the di�erent subdomains which we may ever intend for quan-
ti�er expressions, and it forces us to represent simple expressions of natural
language di�erently in di�erent contexts of their use. It would be more
satisfying if we could specify semantics for intensional logic which admits
the context dependence of the domain.

1.2.1.2.2 World-Relative Models: Q1R- Semantics. Let us de�ne a world-
relative objectual model with rigid terms (or Q1R-model) as a sequence
hW;R;D;Q1R; ai, where Q1R is a function that assigns a subset D(w) to
D to each possible world w, and where a meets condition (aRT). The truth
clause for the quanti�er reads as follows:

(Q1R) a(8xA)(w) is T i� for every d in D(w); a(d=x)(A)(w) is T:

An adequate logic Q1R for Q1R-validity can generally be formulated by
adding the principles MFL of free logic, rules ID for (intensional) identity,
and (RT) to the underling modal logic.

1.2.1.2.3 Methods for Preserving Classical Quanti�er Rules. The world-
relative interpretation of the quanti�ers virtually demands the adoption
of free logic. I say `virtually' because there are systems which use �rst-
order rules with the world-relative interpretation; however, they have serious
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limitations. To appreciate the diÆculties in trying to maintain the standard
rules, notice �rst that the sentence 9x(x = t) is true at a world on a model
just in case the extension of t is in the domain of that world. However,
9x(x = t) is a theorem of �rst-order logic, and so it follows that every term
t of the language must refer to an object that exists in every possible world.
This leads to two diÆculties. First, there may not be any one object that
exists in all the worlds. Second, the whole motivation for the world relative
approach was to reect the idea that objects in one world may not exist in
another; but if standard rules are used, no terms may refer to such objects.

1.2.1.2.3.1 Eliminate terms: the system QK. Kripke [1963] gives an example
of a system for the world-relative interpretation which keeps the classical
rules. The system QK has no terms other than variables. On a semantics
where variables are given extensions in the domain, the validity of 9xx = y
would demand that the extension of y be a member of every possible world.
Kripke avoids this diÆculty by giving sentences with free variables the clo-
sure interpretation. So 9xx = y has the semantical e�ect of 8y9xx = y,
which is valid in free logic. From the semantical point of view, then, Kripke's
system, has no terms at all, because the variables are really disguised uni-
versal quanti�ers. Although Kripke has shown that modal extensions of
�rst-order logic with the world-relative interpretation are possible, his sys-
tem underscores a theme which we have been developing throughout this
chapter, namely that adoption of the classical rules forces us into an inade-
quate account of terms. Another oddity of Kripke's system is that he must
weaken the necessitation rule: `if A is a theorem, then so is �A'. Otherwise
we would be able to derive �9xx = y which, since it is given the closure
interpretation, says that any object of one domain exists in all the others.
The rule is repaired by restricting it to closed sentences.

1.2.1.2.3.2 Nested domains and truth value gaps. There is a second problem
with using classical logic with the world- relative interpretation which has
exerted pressure on the way semantics for quanti�ed modal logics is formu-
lated. The principles of classical logic, along with the (unrestricted) rule of
necessitation entail (CBF), the converse of the Barcan Formula.

(CBF) �8xA! 8x�A:
It is not diÆcult to show that every world-relative model of (CBF) must
meet condition (ND) (for `nested domains').

(ND) If wRw0 then D(w) is a subset of D(w0):

To see this, notice that �8x9yy = x is Q1R-relative valid, and entails
8x�9yy = x by (CBF). Our desire to avoid 8x�9yy = x was one of the
things which prompted the world-relative interpretation, for 8x�9yy = x
claims that any object which exists in the real world must also exist in all
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worlds which are possible relative to ours. Certainly, we want to allow that
there are possible worlds where at least one of the things of our world fails
to exist.

If R is symmetric, then it follows from (ND) that all worlds accessible
from ours have exactly the same domains. This result is reected in the
fact that the Barcan Formula (BF) is provable in systems as strong as B
which use the standard quanti�er rules. In models of S5 where all worlds
are accessible from each other, (ND) demands that all domains be the same,
in direct conict with our intention to distinguish the domains.

Despite these diÆculties in using classical principles with an unrestricted
necessitation rule, several authors have de�ned systems which preserve the
classical rules. Typically, their systems simply adopt (ND). Yet other ad-
justments must be made, however, to preserve classical logic. The sentence
8xPx ! Pt, for example, is not valid on a model where the extension of t
at a world w is outside D(w), and the extension of P at w is D(w). One
simple way to restore validity to the rule of Universal Instantiation is to
stipulate that the terms are local, that is, the extension of a term at a world
must be in the domain D(w) of that world. However, there are serious
problems with this. According to this view, `Pegasus' and possibly `God'
cannot count as terms since their extensions are not in the real world. As
we have argued in Section 0.2, there are good reasons for wanting to count
these as terms. Furthermore, we have been assuming that terms are rigid,
so terms must have the same referent in all worlds. So the demand that
terms be local entails that any term must have an extension which exists in
all the worlds. In fact, the only objects at which the domains might vary
are ones which are never named in any world. This undercuts the whole
point of introducing world-relative domains, namely to accommodate terms
that refer to things that may not exist in other possible worlds.

The consequences of having terms that are both local and rigid are disas-
trous. There is another related idea, however, that looks as though it might
work. If we assume that predicate letters are local, i.e. that their extensions
at a world must contain only objects that exist at that world, then we will
ensure that the classical sentence Ft! 9xFx (hence 8xPx! Pt) is valid.
The reason is that from the truth of Ft, it follows that t refers to an exist-
ing object, and from this it follows that 9xFx is true. Nevertheless, local
predicates set up other anomalies, and they do not lead to the validation of
the classical rules. To see why, consider :Ft ! 9x:Ft. From the truth of
:Ft, it does not follow that the extension of t is an existing object, and so it
does not follow that 9x:Ft is true. Not only do we fail to validate the rule
of Existential Generalisation, but the valid principles cannot be expressed
as axiom schemata. (We cannot write Pt ! 9xPx for arbitrary sentences
Pt, because some of these instances are valid, and others are not.) In case
we are using axioms and a rule of substitution of formulas for atoms, the
problem re-emerges in the failure of the rule of substitution. Either way,
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the use of local predicates leads to serious formal diÆculties.
There is a somewhat more plausible way to ensure the classical principles.

A Strawsonian treatment would rule that a sentence has no truth value when
it contains a term that does not refer to an existing object. Following this
idea, we allow terms to refer to objects outside of the domain of a given
world, but rule that sentences which contain such terms lack truth values.
Valid sentences are then de�ned as ones which are never false. As a result,
8xPx! Pt is valid, since any assignment that gives t an extension outside
the domain for a world leaves the whole conditional without a value, and
assignments that give t an extension inside the domain will make Pt true if
8xPx is true.

1.2.1.2.3.2.1 The systems GKc and GKs. When truth value gaps are intro-
duced, we are faced with a number of options concerning the truth clause
for �. On at least one of these options we may drop the nesting condition
(ND) if we like and still obtain the classical rules. However, there are pres-
sures that make us want to keep it. Suppose we are evaluating �Ft at w
and the referent of t is in the domain D(w) of w. Then we expect to give
�Ft a truth value on the basis of the values Ft has in the worlds accessible
from w. Unless we adopt (ND), there is no guarantee that t refers to an
existing object in all accessible worlds, and so Ft may be unde�ned in some
of them. Adopting the nesting condition ensures that we will always deter-
mine a value for �Pt at w on the basis of the values which Ft is bound to
have in all accessible worlds. If we drop (ND), however, there are two ways
to determine the value of �Ft at w depending on whether the failure of Ft
to be de�ned in an accessible world should make �Ft false or not. On the
�rst option, Gabbay's GKc [Gabbay, 1976, pp. 75 �.], the necessitation
rule must be restricted so that we can no longer derive (CBF). On the sec-
ond option, GKs, (CBF) is derivable, but the truth of (CBF) in a model
no longer entails (ND). Either way, the rules of the underlying modal logic
must be changed.

1.2.1.2.3.2.2 The system QPL. For these reasons, the more popular choice
[Hughes and Cresswell, 1968] has been to assume (ND) and to de�ne satis-
�ability as follows. A QPL-satis�able set is one where none of its sentences
is false in any world on some Q1R-model that meets (ND), and where any
sentence which contains a term t with extension a(t)(w) 62 D(w) has no
truth value at w.
QPL-semantics is attractive from a purely formal point of view because

we have relatively simple completeness proofs for systems that result from
adding the principles of (classical) predicate logic to certain propositional
modal logics, provided, that is, that the language omits =. Proofs are
available, for example, for M and S4. In case the modality is as strong
as B, the domains become rigid, and the completeness proof is carried out
using methods developed for systems that validate the Barcan Formula.
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1.2.1.2.4 Conclusion: We Should Adopt Free Logic. The appeal of simple
completeness proofs should not blind us to the fact that the stipulations
required in order to preserve the classical principles do not always sit well
with our intuitions. Our conclusion, then, is that there is little reason
to attempt to preserve the classical rules in formulating systems with the
objectual interpretation and world-relative domains. The principles of free
logic are much better suited to the task. As we will see in Section 2, results
for systems based on free logic are actually not that diÆcult, especially
when identity is not present.

1.2.2 Non-rigid terms and world-relative domains

1.2.2.1 The System Q3. There are two important reasons why the as-
sumption that all terms are rigid designators should be rejected. First,
expressions like `the tallest man' clearly refer to di�erent objects in di�er-
ent worlds. If we want to count descriptions among our terms, as we do
on a Strawsonian account, we cannot accept the rigidity condition. Second,
David Lewis [1968] contends that it makes no sense to talk of identity of
objects across possible worlds. Objects from two di�erent worlds are never
identical, although it may make sense to talk of the counterpart of an ob-
ject in another world. On counterpart theory, then, it is impossible for the
intension of any term to be a constant function. Since it is important that
a logical theory not rule out reasonable positions, we would like to relax
the restriction that terms are rigid. Let us de�ne a Q3-model, then, as a
Q1R-model which (possibly) fails to meet condition (aRT).

Something unexpected happens when we relax the assumption that terms
are rigid. The rule (FUI) of instantiation for free logic is no longer Q3-valid.
In order to see why, notice that the sentence (�t = t^Et) ! 9x�x = t is a
consequence of (FUI). Since �t = t is also provable there, we obtain (E�).

(E�) Et! 9x�x = t:

If t reads `the author of \Counterpart Theory" ', then (E�) says that
if the author of `Counterpart Theory' exists, then there is someone who
is necessarily the author of `Counterpart Theory'. Intuitively, (E�) is un-
acceptable, and it is not diÆcult to back up this insight with a formal
counter-example. Let us imagine a model with two worlds, r (real) and u
(unreal) whose domains both contain two objects, namely David Lewis and
Saul Kripke. Assume that both worlds are accessible from themselves and
each other. Imagine that the extension of t at the real world r is Lewis,
but that it is Kripke in the unreal world u. On this model, 9x�x = t is
false in r because neither Lewis nor Kripke is the extension of t in both
worlds. Nevertheless, Et is true in r since the extension of t in the real
world, namely David Lewis, is in the domain of r.

This counterexample helps us appreciate the subtle reason why (FUI) has
broken down. There is no question that David Lewis exists, and there is no
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question that the author of `Counterpart Theory' is identical to the author
of `Counterpart Theory' in any world we choose. However, the claim that
any one person counts as the author of `Counterpart Theory' in all worlds
seems false. One way to help diagnose this situation is to reformulate Q3
semantics in an equivalent, but more complex way. Replace each object
with the constant function which takes any world to that object. Seen this
way, the items in our domain(s) are all intensions of rigid terms. The rule
of instantiation is no longer valid because the domain of quanti�cation in-
cludes only constant term intensions, whereas terms may have nonconstant
intensions.

The rules of free logic would be Q3-valid if we were to interpret the
primitive predicate E so that Et is true in world w i� the extension a(t)(w)
of t 2 D(w) and a(t) is a constant function. Notice, however, that the
extension of E must contain term intensions, and not objects, if it is to
do this job. As a result, E is an intensional predicate, which means that
substitution of identity does not hold for its term position. Substitution
fails because E `David Lewis' is presumably true, while E `the author of
\Counterpart Theory" ' is not, even though `David Lewis' and `the author
of \Counterpart Theory" ' refer to the same thing in the real world.

Aldo Bressan [1973] has championed the view that even scienti�c lan-
guage requires intensional predicates. His more general semantics de�nes
the extension of a one-place predicate at a possible world as a set of individ-
ual concepts (i.e. term intensions) not a set of objects. As a result, he has
no diÆculty accommodating a primitive predicate which expresses rigidity.

Hintikka [1970] chose more modest methods. He showed how to formulate
a correct rule of instantiation for Q3 that does not require an intensional
existence predicate. Notice that the sentence 9x�x = t is true in a model
at world w i� the intension of t has the same value in all worlds accessible
from w. Similarly, 9x��x = t is true at w just in case the intension of
t is constant in all worlds accessible from those worlds. While there is no
one sentence that expresses that a term is rigid, a sentence of the shape
9x i x = t, where i is a string of i boxes, guarantees that the intension of
t is constant across enough worlds so that i Ft follows from 8x i Fx when
Ft is atomic. This idea is generalised in Hintikka's formulation (HUI) of a
valid rule of universal instantiation for nonrigid terms.

(HUI)
8xPx

(9x i x = t ^ : : : ^ 9x k x = t)! Pt
where i; : : : ; k is a list of integers which records for each occurrence of
x in Px, the number of boxes whose scope includes that occurrence.

In modal logic as strong as S4, this rule can be simpli�ed considerably
because there 9x i x = t is equivalent to 9x�x = t. Thomason [1970]

demonstrates the adequacy of Q3{S4, using (TUI) as the instantiation rule.
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(TUI)
8xPx

9x�x = t! Pt

Completeness proofs for the weaker modalities have never been published
as far as I know. Perhaps researchers have been daunted by the complexity
of Hintikka's rule. It is interesting to note that even in the context of
S4, Thomason was forced to adopt other complex rules for identity and
the quanti�er. Parsons [1975] has given a weak completeness result for a
system that uses more standard rules, but he also shows that, in general,
Thomason's rules cannot be simpli�ed in the obvious way.

1.2.2.2 A Classical Logic with Local Terms: The System Q3L. There is a
simple way to avoid the complicated instantiation rule needed in Q3. If
we add the assumption that terms are local, that is, that the extension of
a term at a world w is always in that world's domain, then we restore the
classical quanti�er rules. A Q3 model with local terms (Q3L-model) is a
Q3-model which meets condition (L)

(L) a(t)(w) 2 D(w) for all w in W , and all terms t.

This condition could not be sensibly imposed for systems with rigid terms
because then, any object referred to by a term would have to exist in all
the domains. However, when terms are nonrigid, the domains can change
as long as the extension of the terms change in corresponding ways.

There is an important application of Q3L which Cocchiarella discusses
in his chapter in Volume 3.4. If � is to capture logical necessity, then we
may think of possible worlds w as predicate logic models hDw; awi, each
equipped with its own domain Dw, and assignment function aw. We expect
an assignment function aw of a model hDw; awi to give extensions to the
terms (and predicate letters) in the corresponding domain Dw. So it is
only natural in this case to adopt nonrigid terms, world-relative domains,
the objectual interpretation, and local terms.

If we interpret �A to mean that A is true in all models, then Q3L-
semantics cannot be axiomatised. However, if we give �A the generalised
interpretation where �A is true i� it is true on all models in an arbitrarily
selected set of models, then Q3L is axiomatised by adding the principles of
predicate logic to S5.

A more general account stipulates that �A is true on a model U just
in case A is true in all models U 0 suitably related to U . In this case the
underlying modality depends on the conditions we adopt on the accessi-
bility relation between models. If we take this option, however, and the
accessibility relation is not symmetric, then we are forced to assume nested
domains (ND), in order to preserve the classical quanti�er rules. Bowen
[1979] investigates systems of this kind. Even if we are willing to give up
the nesting condition, problems arise. Suppose we are evaluating 8x�Fx
in a world w where object o exists, and w0 is an accessible world where o



QUANTIFICATION IN MODAL LOGIC 281

does not exist. To determine the value of 8x�Fx, we need to �nd the value
of �Fx when x refers to o. This requires that we �nd the value of Fx in
world w0 where o does not exist. At this point we are faced with the same
options we described in Section 1.2.1.2.3.2. We may use truth value gaps,
or we may rule that Fx in this case is false. As we pointed out, both choices
have disadvantages.

Despite its application to certain notions of logical necessity, the local
term condition (L) is not usually acceptable. In ordinary reasoning, we
would �nd the assumption that anything that exists in the real world exists
in all worlds possible relative to our is quite implausible. For this reason,
we are still interested in Q3 without local terms, even though the rules may
be diÆcult.

1.3 The Conceptual Interpretation

The systems we have discussed so far are not especially satisfying. We have
good reasons for wanting to allow nonrigid terms in our language, and yet
the rules we need for Q3 are quite complex, unless we move to a language
with a primitive intensional predicate that expresses rigidity. On the other
had, systems with local variables, like Q3L, have limited applications. One
account of our diÆculties, as we explained earlier, is that our terms can be
assigned any intension, while the domain(s) of quanti�cation contain only
constant intensions. Perhaps allowing nonrigid intensions in our domain
might result in a better match between the quanti�ers and the terms, and
so yield simpler rules.

Though it may seem philosophically dangerous to quantify over individual
concepts, there are intuitions concerning tense and modality that support
this choice. For example, imagine that our possible worlds are now states
of the universe at a given time. The extension of a term at a given time
will turn out to be a temporal slice of some thing, `frozen' as it is at that
instant. Notice that things, since they change, cannot be identi�ed with
term extensions. Instead, things are world-lines, or functions from times
into time slices, and so they correspond to term intensions or individual
concepts. Since our ontology takes things, not their slices as ontologically
basic, it is only natural to quantify over term intensions in temporal logic.
Our reluctance to quantify over individual concepts may be an accident of
nomenclature. The so called `objects' of a temporal semantics are not the
familiar things of our world, while the formal entities that do correspond to
things are misleadingly called `individual concepts'.

1.3.1. Fixed Domains: The System QC.

Let us now formulate what we will call the conceptual interpretation of the
quanti�er. A conceptual model (orQC-model) is a sequence hW;R;D;QC; ai
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where QC is the set of functions from W into D. The truth clause for the
quanti�er reads as follows:

(QC) a(8xA)(w) is T i� for every f in QC; a(f=x)(A)(w) is T .

Here `a(f=x)' represents the assignment function identical to a except that
the intension of x on a(f=x) is function f .

Although the conceptual interpretation is designed to satisfy reasonable
intuitions, there are a number of problems with it. One formal diÆculty
is that no (consistent) system is complete for this semantics. Whenever
we interpret the domain of any quanti�er as a set of all functions, we run
the risk that the language will have the expressive power of second-order
arithmetic, with the result that G�odel's Theorem applies. As we will show
in Section 3, that is exactly what happens with QC.

There are also intuitive diÆculties. First, notice that 9x�x = t is QC-
valid, and yet we have given an intuitive counterexample to it in Section
1.2.2.1. We do now want to say that there is something which is necessarily
the author of `Counterpart Theory', because no one thing is the author of
that paper in all possible worlds. However, on the conceptual interpretation,
9x�x = t is true as long as we can �nd some term intension which matches
that of t in all possible worlds, and the term intension of t so quali�es. This
shows that the conceptual interpretation di�ers from our ordinary reading
of the quanti�er. Another QC-valid sentence which may tantalise some
readers is 9x�9yy = x, which claims that there is something (God?) which
necessarily exists. However the QC-validity of this sentence will do little to
satisfy those who still search for an ontological argument for the existence
of God. Any term intension will do to satisfy �9yy = x, simply because
any term intension has the property that there is a term intension (namely
itself) which agrees with it in accessible worlds.

1.3.2. World-relative Domains: The System Q2.

The reader may think that we can repair these problems by introducing
world-relative domains. Let us investigate the situation, then, when a Q2-
model is a sequence hW;R;D;Q2; ai, where Q2 is a function that assigns
a domain D(w) to each world w. The quanti�er truth clause now reads as
follows.

(Q2) a(8xA)(w) is T i� for every function f : W ! D,
if f(w) 2 D(w); a(f=x)(A)(w) is T .

Unfortunately, the problems we mentioned still remain. First, the incom-
pleteness result still applies to the new semantics. Second, although both
9x�x = t and 9x�9yy = x are no longer valid, they still do not receive
their intuitive interpretations. For example, 9x�9yy = x will turn out to
be true on every model where the domains of the worlds all contain at least
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one object. In that case, any function that picks a member of D(w) for each
world w will satisfy �9yy = x, and so verify 9x�9yy = x.

1.4 The Substantial Interpretation

As we showed in the last section, the conceptual interpretation of the quan-
ti�ers does not match the interpretation which we give to quanti�er expres-
sions in ordinary language. The sentence 9x�9yy = x, which we interpret
as making the very strong claim that some thing must exist in every possible
world, is valid on the conceptual interpretation as long as no possible world
has an empty domain. The di�erence between our intuitive understanding
of 9x�9yy = x, and the conceptual interpretation is that the existence of a
term intension that (say) picks out David Lewis in this world, a rock in an-
other, a blade of grass in another, and so on, counts to verify 9x�9yy = x.
On the other hand, our intuitions demand that any term intension that
veri�es 9x�9yy = x must be coherent in some sense; our concept of a thing
brings with it some notion of what it would be like in other worlds. Only
certain collections of objects, (and certainly not a collection consisting of
David Lewis, a rock, a blade of grass, etc.) could count as the manifestations
of a thing, and so only these collections should count to verify 9x�9yy = x.

In order to do justice to these intuitions, we must restrict the domain
of quanti�cation to the term intensions that reect `the way things are'
across possible worlds. Thomason [1969] suggests that the domain should
contain only constant functions. The idea is that for 9x�9yy = x to be
true there must be one thing, identical across possible worlds, which exists
in each one. This proposal is simply Q3, the objectual interpretation with
non-rigid terms. We have already discussed some of the formal diÆculties
with this option in Section 1.2.2. There are also intuitive objections similar
to the ones which we used in arguing against systems with rigid terms.
First, Thomason's account of substances is incompatible with counterpart
theory, for on that view, the domains of the possible worlds are disjoint,
and so there cannot be any constant term intensions to �ll the domain of
the quanti�er. Second, in temporal logic, where objects are time slices, we
do not want a thing to consist of the same time slice across di�erent times.
The slices of a thing picked out at di�erent times may be quite di�erent,
but the world line composed of the slices still represents one uni�ed thing.

1.4.1. The System QS.

If we are to accommodate a variety of conceptions about what things are
like, we should not assume that they are the constant term intensions (Q3),
nor that they are all the term intensions (Q2). To be completely general,
we introduce a set of term intensions for each world, to serve as its domain
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of quanti�cation, and we will make no stipulations about what these sets
contain. Let us now give a formal account of this approach.

A world-relative substantial model (or QS-model) is a sequence hW;R;D;
QS; ai, where QS is a function that assigns to each world w a set S(w) of
functions from W into D. (We call S(w) the set of substances for world w.)
The truth clause for the quanti�er reads as follows:

(QS) a(8xA)(w) is T i� for every member f of S(w),
a(f=x)(A)(w) is T .

It is not diÆcult to see that 9x�9yy = x is not valid on this semantics, for
it would only be true in world w if there were a substance f in S(w0) in
every world w0 accessible from w.

Complete systems for QS can be constructed as long as we are willing to
introduce the intensional predicate constant E to represent which functions
count s substances in each possible world. An adequate system for this
semantics very often results from adding the rules of MFL, and the rules
ID for (intensional) identity to the underlying modal logic. As we will
explain in Section 2.2.4, more general quanti�er rules may be needed for
weaker modal logics.

We should note an important restriction on the rule of substitution of
identities in QS. The constant E is an intensional predicate, and this means
that substitution of term identities does not hold in its term position. When
we formulate the rule of substitution for identities, we must make it clear
that we do not consider Et to be an atomic sentence, for otherwise we would
be able to deduce Et0 from t = t0 and Et.

1.4.2. Fully Intensional Predicates: The System B1.

During our discussion of Q3, we pointed out that one way to simplify the
instantiation rule is to introduce an intensional predicate E to the language.
A predicate is intensional when its extension at a world w contains term
intensions, and not objects as we ordinarily expect. To be more careful,
the extension of an n-ary intensional predicate letter at a world is a set of
n-length sequences of term intensions.

Bressan [1973] presents a beautifully general modal logic, with descrip-
tions and quanti�ers for all types, which assumes that predicate letters are
intensional in this sense. Clearly, such a strong language cannot be axioma-
tised. However, Parks [1976] has axiomatised the �rst-order fragment B1
of Bressan's system, using the substantial interpretation of the quanti�er.
B1 uses S5 as its modal foundation, and a �xed domain of substances. For
this reason B1 validates classical quanti�er rules and the Barcan Formula.
However, more general languages with weaker modalities and world-relative
domains of substances can be constructed using Bressan's more general
treatment of predicates. In fact, we can add such predicate letters to QS
without causing any major complications. All we need to do is adjust the
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rule of substitution of identities for those predicate letters so that substitu-
tion of one term for another is not allowed unless we already have a sentence
which informs us that their intensions (not just their extensions at a given
world) are the same. In weaker modal logics, this requires that we introduce
a symbol for strong identity, interpreted so that a strong identity is true just
in case the anking terms have the same intensions. Once this symbol is
available, we simply adopt a rule of substitution of strong identities for term
positions of the intensional predicate letters.

2 COMPLETENESS IN QUANTIFIED INTENSIONAL LOGIC

2.1 Why Completeness is Hard to Prove in Quanti�ed Modal

Logic

Completeness proofs in QML are quite a bit harder than completeness proofs
for propositional modal logic or �rst-order logic. One reason that proofs
are diÆcult is that sometimes there are none to �nd, as is the case of the
conceptual interpretation Q2. Even when a system is complete, the proof
may be elusive, and diÆcult to formulate in a simple way. Another problem
is lack of generality: a proof strategy may only work when the underlying
modal logic is fairly strong (for example, as strong as S4), or when ad hoc
conditions are placed on the models.

One of the best ways to understand the methods used in completeness
proofs for QML is to locate the main diÆculty which arises if we simply try
to `paste together' proofs for quanti�cational logic and propositional modal
logic. In order to uncover the problem, let us review the crucial steps in the
completeness proofs in each kind of logic.

2.1.1. Completeness Proofs for Propositional Modal Logics

The most powerful method for proving completeness of a propositional
modal logic S is to use maximally consistent sets. Completeness follows if
we can show that any S-consistent set is S-satis�able. (A set is S-consistent
i� there is no proof of a contradiction from the sentences in that set.) We
begin by extending a given S-consistent set H to a maximally consistent
set r (for real world) by Lindenbaum's Lemma. Then we build what we
will call the standard model hW;R; ai for S. The set W of possible world
of the model is taken to be the set of all maximally consistent sets of S,
(on occasion, W contains just some of the maximally consistent sets related
in some way to r). The relation R (of accessibility) is usually de�ned so
that wRw0 i� if �A 2 w, then A 2 w0. Finally, the assignment function a
is de�ned for propositional variables p so that a(p)(w) is T i� p 2 w. The
central lemma (TL) (for Truth Lemma) in the proof shows that membership
in w and truth in w on the standard model amount to the same thing.
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(TL) a(A)(w) is T i� A 2 w.

Once (TL) is shown, it follows that all members of H are true at r on the
standard model. We can also prove that hW;Ri 2 R(S) (the set of Kripke
frames that corresponds to S), and so the standard model S-satis�es H .

The proof of (TL) is an induction on the construction of A, and the only
really interesting case is when A has the shape �B. (The case for propo-
sitional variables is trivial given the de�nition of the standard model, and
cases for : and! simply depend on corresponding properties of maximally
consistent sets w : :B 2 w i� B 62 w, and B ! C 2 w i� either B 62 w or
C 2 w.) The proof of the case for � takes the following form.

a(�A)(w) is T i� if wRw0 then a(A)(w0) is T
(1) i� if wRw0 then A 2 w0
(2) i� �A 2 w.

The only diÆcult part is to show the equivalence of (1) and (2). The infer-
ence from (2) to (1) is a simple consequence of the way we de�ned R. In
order to show that (1) implies (2), we show (:�) instead.

(:�) if �B 62 w, then there is a maximally consistent set w0 such
that wRw0 and B 62 w0.

The proof of (:�) makes a second use of the Lindenbaum Lemma. Given
that �B 62 w, we show the consistency of the set w� = fA : �A 2
wgSf:Bg. Then we use the Lindenbaum Lemma to extend w� to a max-
imally consistent set w0. The set w0 is such that wRw0 because for each
sentence �A in w, A 2 w0; it does not contain B since it is consistent and
contains :B.

2.1.2. Completeness of First-order Logic

In this section we will give a quick review of a completeness proof for PL,
�rst-order logic with identity. Again we show that any PL- consistent set is
PL-satis�able by �rst extending H to a maximally consistent set r, written
in language L. We then construct a model hD; ai from r as follows. The
assignment function a is de�ned so that the extension a(t) of t is ft0 : t =
t0 2 rg, the equivalence class of terms ruled identical in r. The domain D
contains a(t) for each term t. The assignment function a is de�ned for i-ary
predicate letters F so that hd1; : : : ; dii is a member of a(F ) just in case
Ft1; : : : ; ti 2 r and a(tj) is dj for each of the tj of t1; : : : ; ti.

Given the presence of principles of identity, it is not diÆcult to show that
(TL) holds for atomic sentences on this model. In order to establish (TL)
for all sentences, we must be sure that the set r meets one further condition
concerning the quanti�er, namely (8x).

(8x) a(8xPx) is T i� 8xPx 2 r.
The proof of (8x) will be ensured if we can show that r is omega-complete
(OC).
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(OC) If r ` Pt, for every term t of L, then
r ` 8xPx,for any variable x.

(Here we write `r ` A' for `A is provable from the set of hypotheses r'.)
Notice that (OC) is equivalent to (OC0).

(OC0) If r
Sf:8xPxg is consistent, then

for some term t of L; r
Sf:Ptg is consistent.

There are maximally consistent sets that are not omega-complete, so
when we extend H to r using the Lindenbaum procedure, we must take
special steps to guarantee (OC). Remember that the Lindenbaum method
for extending a consistent set to a maximally consistent one begins by or-
dering the w�s. A series of sets M0 = H;M1; : : : ; is then formed by letting
Mi+1 be the result of adding the i+ 1th w� to Mi, i� doing so would leave
Mi+1 consistent. (Otherwise Mi+1 is Mi.) The maximally consistent set
desired is the union of all the Mi. To ensure a set is omega-complete during
this construction, we do the following. If Mi is the ith set formed in that
construction, and :8xPx is the i + 1th sentence in our ordering of all the
well-formed formulas, and if adding :8xPx to Mi would yield a consistent
set, then we form Mi+1 from Mi by adding both :8xPx, and a sentence of
the form :Pt, where t is a term that is new to :8xPx and Mi. It is not too
hard to see that adding this second sentence to Mi+1 cannot cause Mi+1

to become inconsistent, as long as Mi plus :8xPx was already consistent
as we have assumed. (The reason is that if Mi+1 = Mi

Sf:8xPx;:Ptg
were inconsistent, then Mi

Sf:8xPxg ` Pt. Since t is foreign to both
Mi and :8xPx, it follows by the rule of Universal Generalisation that
Mi

Sf:8xPxg ` 8xPx, which entails that Mi

Sf:8xPxg is inconsistent,
contrary to our assumption.) We can also see from the second formulation
(OC0) of omega-completeness that the result of the construction is omega-
complete, and so a saturated set. (A saturated set is a maximally consistent
set that is omega-complete.)

Now suppose we use this construction to produce a saturated extension
r of H . As a result, we can show that (8x) holds in the model constructed
from r by the following reasoning.

a(8xPx) is T i� for all d in D; a(d=x)(Px) is T
(1) i� for all terms t; a(a(t)=x)(Px) is T
(2) i� for all terms t; a(Pt) is T
(3) i� for all terms t; P t 2 w
(4) i� 8xPx 2 w.

The equivalence between (1) and (2) is proven by a straightforward induc-
tion on the length of Px. The equivalence of (2) and (3) is the result of the
hypothesis of the induction; (3) entails (4) because r is omega-complete;
and (4) entails (3) because of the rule of Universal Instantiation.

Now that we have �nished the proof of the case for 8x, we have a proof of
(TL). It follows that the PL-model we have de�ned satis�es all the sentences
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of r and, hence, all sentences of our original set H . We conclude that any
PL-consistent set is PL-satis�able.

2.1.3. The DiÆculties in Quanti�ed Modal Logics

Notice that the method we described for constructing a saturated set for
�rst-order logic requires that we have an in�nite set of terms of L which are
foreign to H . Since we may have in�nitely many sentences :8xPx to add,
we need in�nitely many `instances' :Pt where t is new to the construction.
As a result, the set w which we constructed using this method, contains an
in�nite set of terms of L which did not appear in H .

Now let us imagine that we hope to prove completeness of a modal logicQ,
which adds principles of �rst-order logic to the propositional modal logic S.
We begin with an Q-consistent set H which we hope to show is Q-satis�able
by extending H to a saturated set r written in language L. We then hope to
construct the standard model, which will make all sentences of H true at r.
DiÆculties arise when we try to prove (TL), for there is a conict between
what we need to ensure (8x) and (�) together. Condition (8x) demands
that the set W of possible worlds be the set of saturated sets in language L,
for the terms of L (actually their equivalence classes) determine the domain
of the quanti�cation of our model. On the other hand, the proof of condition
(�) requires the following. From a given possible world w which contains
:�B, we must be able to construct a saturated set in language L which is
an extension of w� = fA : �A 2 wg [ f:Bg. The problem is that in order
to extend w� to a saturated set in L, we must �nd an in�nite set of terms of
L that do not appear in w�. However, the world w contains �(Pt! Pt) for
each term t of L, with the result that all formulas Pt! Pt appear in w�. So
there are no terms of L foreign to w�. If we attempt to remedy the problem
at this point by constructing a world w0 from W � in a larger language L0,
then we �nd ourselves in a vicious circle. Now we must prove property (8x)
for L0 instead of L. This forces us to de�ne W as the set of all saturated
sets in language L0, so that when we want to extend w� to a saturated set,
we must �nd in�nitely many terms of L0 foreign to w�. However, w is now
a saturated set in language L0, and contains �(Pt ! Pt) for all terms t of
L0. Again, we have no guarantee that there are any terms of L0 which do
not appear in w�.

2.2 Strategies for Quanti�ed Modal Logic Completeness Proofs

In this section, we will illustrate four di�erent strategies for obtaining com-
pleteness proofs in QML. Each of them has its strengths and weaknesses.
Ideally, we would like to �nd a completely general completeness proof. The
proof would demonstrate completeness of the most general semantics we
have considered, namely QS. The proofs for all less general systems would
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then fall out of the general proof just as proofs for the stronger proposi-
tional modal logics result from the completeness proof for K. This would
help clarify and unify quanti�ed modal logic. The strategy we present in
Section 2.2.4 comes closest to providing such a general proof. However any
such method will face some limitations for the reasons discussed at the end
of Section 2.2.1.

2.2.1. Strategy 1: Extend w� to a saturated set without using any new terms
(completeness of Q1)

The completeness proof forQ1 given by Thomason [1970] is worth reviewing
because it illustrates an important strategy for overcoming the problem
which we outlined in Section 2.1.3. Remember our diÆculty was that we
needed a way to extend a consistent set w� to a saturated one, but we
did not have an in�nite set of terms missing from w� in order to carry
out the construction. The system Q1 uses �xed domains, the objectual
interpretation, and rigid terms. It veri�es classical quanti�er principles
and the Barcan Formula. When these are present, it turns out that w�

is already omega-complete in the case of most modal logics. Since any
consistent omega-complete set can be extended to a saturated set in the
same language [Henkin, 1949], we can extend w� to a saturated set without
needing any extra terms.

The details of this reasoning are given in the following lemmas.

LEMMA 1. If w is omega-complete, then so is w [ f , provided f is �nite.

Proof. Suppose that w is omega-complete. To show that w [ f is also
omega-complete, let us assume that w[f ` Pt for all terms t. It follows that
w ` ^f ! Pt for all terms t, where ^f is the conjunction of the members
of f . Since w is omega-complete, it follows that w ` 8x(^f ! Px) for
any choice of variable x we like. If we choose a variable x foreign to ^f ,
it follows that w ` ^f ! 8xPx, and so w [ f ` 8xPx. By principles of
quanti�cational logic, we can replace the variable x of 8xPx for any other
variable. It follows, then, that whenever w [ f ` Pt for all terms t, then
w [ f ` 8xPx, and so w [ f is omega-complete. �

LEMMA 2. Any consistent omega-complete set w can be extended to a
saturated set written in the same language.

Proof. We construct a saturated extension of w using a variant of the
method described in Section 2.1.2. Suppose that the set Mi plus :8xPx is
consistent, so that we are to form Mi+1 by adding :8xPx and an instance
:Pt to Mi. Ordinarily, we would choose a term t foreign to both Mi and
:8xPx in order to ensure that adding :Pt will not cause Mi+1 to become
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inconsistent. In this case, however, we must use a term t which may already
appear in w. When w is omega-complete as we have assumed, it follows by
Lemma 1 that Mi is omega-complete as well. (Mi is formed by adding
only �nitely many sentences to w.) Since Mi

Sf:8xPxg is consistent, it
follows by formulation (OC0) of omega- completeness that Mi [ f:Ptg is
consistent for some term t of L. So :Pt can be consistently added to Mi

for this choice of t, and since :Pt entails :8xPx, the result of adding both
these sentences to Mi remains consistent. Once we ensure that instances
:Pt are consistently added in this way, it is a simple matter to verify that
the union of the Mi is a saturated extension of w. �

LEMMA 3. If w is a saturated set which contains :�B, then w� = fA :
�A 2 wgSf:Bg is consistent and omega-complete.

Proof. We can show that w� is consistent just as we do in propositional
modal logic. By Lemma 1, w� is omega-complete if fA : �A 2 wg is.
Assume now that fA : �A 2 wg ` Pt for every term t. By principles of the
modal logic K;w ` �Pt for each term t, and since w is omega-complete,
it follows that w ` 8x�Px. By the Barcan Formula, it follows that w `
�8xPx. Since w is maximal, �8xPx 2 w, and so 8xPx 2 fA : �A 2 wg.
It follows that fA : �A 2 wg ` 8xPx. �

LEMMA 4. If w is a saturated set that contains :�B then w� = fA : �A 2
wgSf:Bg can be extended to a saturated set written in the same language.

Proof. By Lemma 3, w� is consistent and omega-complete. By Lemma 2,
it can be extended to a saturated set in the same language. �

Now let us assume that the system Q1 results from adding rules of clas-
sical logic, rules (ID) for identity, and (RT) for rigid terms to propositional
modal logic S. To show completeness, we prove, as usual, that every Q1-
consistent set is Q1-satis�able. Given a consistent set, we extend it to a
saturated set r written in language L in the usual way. We then construct
the standard Q1-model hW;R;D;Q1; ai as follows. W is the set of all sat-
urated sets that contain t = t0 just in case t = t0 2 r. R is de�ned in the
usual way. The extension a(t)(w) of term t is ft0 : t = t0 2 rg. D is the set
of all term extensions. Sequence hd1; : : : ; dii 2 a(F )(w) i� Ft1; : : : ; ti 2 w
and a(tj)(w) is dj for the dj of d1; : : : ; di. For most modal logics, we may
show that hW;Ri 2 R(S) just as we did in the completeness proof for S, and
so once we prove the truth lemma (TL), we will know that the sentences of
H are all true at r on this model. It will follow that H is Q1-satis�able.

The interesting cases in the proof of (TL), concern � and 8x. The proof
of (8x) can be carried out along the lines we speci�ed in Section 2.1.2. To
establish (�), it is crucial to show (:�).
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(:�) if :�B 2 w, then there is a member w0 of W such that wRw0 and
:B 2 w0.

By Lemma 4, we know that we can construct a saturated extension w0 of
fA : �A 2 wgSf:Bg. We can show that this w0 is a member of W if we
can show that t = t0 2 w0 i� t = t0 2 r. Since w is a member of W , we
already know that t = t0 2 w i� t = t0 2 r. Notice that if t = t0 2 w, then
by (RT), �(t = t0) 2 w, and t = t0 2 w0. If t = t0 62 w, then :t = t0 is,
and so by (RT) �:t = t0 2 w, and :t = t0 2 w0. It follows that w0 contains
exactly the identities of r and so is a member of W . Since fA : �A 2 wg is
a subset of w0, we know that wRw0, and so we have completed the proof of
(:�).

Strategy 1 has important limitations. First, the method depends on
using �rst-order logic and the Barcan Formulas, so it is not applicable to
systems that give a more general account of the quanti�ers. Second, the
completeness result is blocked for certain underlying modal logics S. We
illustrate the problem with modal logics where R is convergent.

In proving that the standard model is convergent for propositional modal
logics, one assumes wRw0 and wRw00, establishes the consistency of fA :
�A 2 w0g [ fA : �A 2 w00g, and then employs the Lindenbaum Lemma
to extend this set to a maximally consistent set w000 such that w0Rw000 and
w00Rw000. In the case of a quanti�ed modal logic, we must know that fA :
�A 2 w0g [ fA : �A 2 w00g is omega-complete as well as consistent before
Lemma 2 can be used to extend it to a saturated set. However, there is no
guarantee that fA : �A 2 w0g [ fA : �A 2 w00g will be omega-complete.
It will not be, for example, if fA : �A 2 w0g contains each of Pt1; P t3; : : :,
and fA : �A 2 w00g contains � 8xPx; P t2; P t4; : : :, and t1; t2; : : : is a list of
all terms of L. Under these circumstances fA : �A 2 w0g [ fA : �A 2 w00g
contains f� 8xPx; P t1; P t2; P t3; : : :g and so is not omega- complete.

DiÆculties of this kind can be expected whenever the proof that hW;Ri 2
R(S) for the propositional modal logic S rests on proving the existence
of a consistent set, and then extending it to a maximally consistent set
by the Lindenbaum Lemma. (Convergence and density are two conditions
where this technique is typically used.) In this kind of case, the proof that
hW;Ri 2 (S) may fail for the quanti�cational logic when a consistent set
formed fails to be omega-complete.

The problem does not arise for most modal logics. Strategy 1 works to
show completeness, for example, for systems whose corresponding conditions
on R are preserved under subsets. (Conditions are preserved under subsets
i� when the conditions hold for hW;Ri they also hold for hW 0; R0i, where
W 0 is a subset of W and R0 is R restricted to W 0.) Conditions preserved
under subsets include the universal conditions, i.e. conditions on R that can
be expressed with universal quanti�ers alone. However, for systems whose
conditions are not preserved under subsets, strategy 1 does not necessarily
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yield a completeness result. This failure is directly related to the fact that
system Q1-S is not complete for a semantics with convergent R [Cresswell,
1995].

2.2.2. Strategy 2: Build the set of possible worlds all in one construction
(completeness for Q1{S5)

Gallin [1975, p. 25 �.] o�ers another strategy for proving completeness of
S5 systems that contain classical principles and the Barcan Formula. It is a
clever technique which has applications to systems with weaker rules. Gallin
avoids the complication we encountered in extending w� to a saturated set
by de�ning the set of worlds of his standard model so that all the worlds w
are saturated and already satisfying condition (:�S5).

(:�S5) If :�A 2 w, then there is a world w0 such that :A 2 w0.
In S5, this condition is suÆcient for demonstrating the case of (TL) for
formulas that begin with �.

Gallin shows how to build a whole collection W of saturated sets from
a consistent set H , using a variation of the Lindenbaum construction. The
sets in W are the possible worlds of the standard model. In order to co-
ordinate the construction properly, let W be a sequence w0; w1; w2; : : : of
possible worlds. W is constructed from a consistent set H , using a series
W0;W1;W2; : : :. Each of the Wi contains a sequence w0; w1; w2; : : : of con-
sistent sets, each of which is on its way to becoming saturated as we move
to larger Wj . The Wi are also arranged so that eventually, (:�S5) is met
for each formula A.

To de�ne the Wi, we need a generalisation of the notion of consistency.
We say that a sequence W of sets is consistent just in case no �nite subset
f of any of the sets w in W is such that � ^ f ` p ^ :p. A formula A can
be consistently added to world w of sequence W just in case doing so would
leave the sequence W consistent. This de�nition of consistency ensures not
only that adding A to a world w leaves w consistent, but that adding A is
also consistent with all the facts about all the other worlds.

Now we are ready to de�ne the series W0;W1;W2; : : :. We let W0 be
the sequence such that its �rst world w0 is H , and all the other worlds
w1; w2; : : : are empty. We then order the pairs hi; Ai consisting of integers
i and formulas A, and for each pair hi; Ai, we pick a term t(i; A), which is
foreign to H , and all sentences of previous pairs in the ordering. For each
Wj , we de�ne Wj+1 as follows. We consider the j + 1th pair hi; Ai in the
ordering and we add A to world wi of Wj i� H can be consistently added
to wi of Wj . (Otherwise we set Wj+1 equal to Wj .) In case A has the
shape :8xPx, we also add :Pt, where t is t(i; A). In case A has the shape
:�A, we also �nd the �rst empty set in the sequence Wj+1, and we add
:A to it. There is such an empty set in Wj+1, because we have only added
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�nitely many formulas to this point, and W0 contained an in�nite sequence
of empty sets. It is also clear that adding this formula could not cause Wj+1

to become inconsistent.

Once the Wj have been de�ned this way, we let W be the sequence we get
by letting the ith world of Wj be the union over all the sets w0; w1; w2; : : : ;
which were the ith worlds of W0;W1;W2; : : :. It is not diÆcult to prove
that each of the worlds of W is a saturated set that meets property (:�S5).
Notice, however, that because of the special de�nition Gallin uses for consis-
tency, the demonstration that these sets are saturated requires the Barcan
Formula and classical principles for the quanti�ers.

Gallin claims that this proof is signi�cantly easier than the method we
presented as strategy 1. We do not agree with Gallin's' taste in simplicity.
However, this strategy is quite interesting, and it can be modi�ed for use
with weaker rules as [Menzel, 1991] shows.

2.2.3. Strategy 3: Allow the language to vary across possible worlds

The second strategy we are going to discuss is illustrated by a completeness
proof [Garson, 1978] for QS, the most general semantics we have described.
The same idea will be used to sketch the proof of the completeness for QPL
along the lines of Hughes and Cresswell [1968, p. 147 �.] and Gabbay [1976,
p. 46 �.].

2.2.3.1 Completeness of QS. In systems with world-relative domains, the
Barcan Formula is not valid, and so we no longer know that fA : �A 2 wg
is omega-complete. Notice, however, that since the domain of quanti�cation
varies from one possible world to the next, we are free to select a di�erent
language for each of the saturated sets which are in W in the standard
model. When it comes time to construct a saturated set from w�, we simply
build a saturated set in a language larger than the one in which w is written.

Since QS is based on free logic, we have to readjust our de�nition of
omega-completeness and, hence, our de�nition of saturation. An omega-
complete set for free logic in language L is any set that meets condition
(FOC).

(FOC) If w ` Et ! Pt for every term t of L, then w ` 8xPx for any
variable x.

A free logic saturated set for L is simply any maximally consistent set w
for which (FOC) holds. It is easy to prove that a consistent set written
in language L can be extended to a set which is free logic saturated for
a language with in�nitely many more terms than L. To provide the proof
simply replace `(Et! Pt)' for `Pt' in the corresponding proof for �rst-order
logic (see Section 2.1.2).
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Let QS be the logic that results from adding the principles of MFL and
ID to certain propositional modal logics S. We will explain more about
which logics these are later. We will demonstrate the completeness of QS
with respect to the set of all QS-models (world relative substantial models
for S). See Section 1.4.1 for the de�nition of a QS-model.

As usual we assume that set H is consistent in QS, and we extend H to a
free logic saturated set r written in a language L. At this point, however, we
consider a larger language L+, which contains in�nitely many terms which
are not in L. We then de�ne the set W of possible worlds for our standard
QS-model hW;R;D; S; ai as the set of all free logic saturated sets written in
some language L0 such that there are in�nitely many terms of L+ that do not
appear in L0. The idea behind this is to guarantee that whenever w 2 W ,
there will be in�nitely many terms foreign to w� = fA : �A 2 wgSf:Bg
so that w� can be extended to a saturated set in language L+. The other
parts of the de�nition of the standard QS-model are straightforward. R is
de�ned in the usual way: wRw0 i� if �A 2 w, then A 2 w0. The intension
a(t) of a term t given by a is de�ned so that a(t)(w) is ft : t = t0 2 wg,
the equivalence class of terms ruled identical in w. S is de�ned so that
s 2 S(w) i� s is a(t) for some term t such that Et 2 w. The domain of
possible objects D is simply the set of all term extensions in all the possible
worlds. The intension a(F ) of an i-ary predicate letter F is given as one
would expect: hd1; : : : ; dii 2 a(F )(w) i� Ft1; : : : ; ti 2 w and each of the
a(tj)(w) is dj . The intension a(E) is S.

Because the members of w are free logic saturated sets written in di�erent
languages, we cannot prove the Truth Lemma (TL) for this standard model.
If t does not appear in Lw, the language in which the saturated set w is
written, then a(:Ft)(w) is T , but :Ft 62 w. However, there is a weaker
formulation (wTL) which will still serve our purposes.

(wTL) If A is a sentence of Lw, then a(A)(w) is T i� A 2 w.

The proof of (WTL) for cases other than � and 8x is straightforward.
The crucial step in the case for � is to demonstrate (:�).

(:�) If �B is a sentence of Lw, then if :�B 2 w then there is a w0 in
W such that wRw0 and :B 2 w0.

We begin the proof by assuming that �B is a sentence of Lw, and that
:�B 2 w. We construct w� = fA : �A 2 wgSf:Bg which we show to be
consistent in the usual way. Since w is a member of W , there must be an
in�nite set N of terms of L+ that do not appear in w. By the de�nition
of w�, it is clear that none of these terms appear in w� either. We could
construct a free logic saturated set w0 from w� using these terms. However,
if w0 is to be a member of W , there must be an in�nite set of terms of L+

foreign to w0. In order to ensure that we do not `use up' all the terms in our
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construction of w0, we divide N into two in�nite sets N1 and N2. We use
N1 to extend w� to a free logic saturated set w0, and we leave N2 in reserve
to ensure that w0 2 W . When w0 is constructed in this way, we can easily
prove that wRw0, and that :B 2 w0, and so we have �nished the proof of
(:�).

We would have skipped the case for 8x if it were not for one ticklish
point. Along the way, we need to show (ES).

(ES) a(t0) 2 S(w) i� Et0 2 w.

((ES) is also needed to show the case of formulas with the shape Et.)
The proof of (ES) would seem to be trivial given our de�nition of S(w),

but it is not. The trouble comes in showing (ES) from left to right. Suppose
that a(t0) 2 S(w). Then by the de�nition of S(w), there is a term t such that
a(t0) is at a(t) and Et 2 w. For ordinary predicates, this would be enough to
ensure that Et0 2 w, for when a(t)(w) is a(t0)(w), we have that t = t0 2 w,
and so can substitute t0 for t. Remember, however, that E is an intensional
predicate for which the rule of substitution of identities does not hold, so
this reasoning will not work. We must �nd some other way to ensure that
Et0 2 w. Things look bad when we realise that t0 may not even be in the
language Lw, in which case Et0 62 w. Luckily, our de�nition of the standard
model ensures that whenever a(t) is a(t0) then t and t0 are the same term.
The reason is that when t 62 Lw, it follows that a(t)(w) = ft0 : t = t0 2 wg
is empty. For any pair of distinct terms t; t0 we choose, we can always �nd
a language Lw such that t is in Lw and t0 is not. It follows that the only
way that a(t) and a(t0) can be identical is if t is identical to t0. We have
that Et 2 w, so we conclude that Et0 2 w and our proof of (ES) is �nished.

Once Lemma (wTL) is established in this way, the completeness of QS is
shown fairly easily. We have already extended the QS-consistent set H to a
free logic saturated set r, and since there were in�nitely many terms foreign
to r in L+, it turns out that r 2W . By (wTL), it follows that all members
of r (and so all members of H) are true at r on the standard model, and so
H is QS-satis�able.

Although this proof is satisfying because it shows completeness for a
system with a very general treatment of the quanti�ers, it does not count as
the general sort of completeness proof which we desire. The reason is that
the strategy does not work to establish completeness of systems that use less
general treatments of the quanti�ers. For example, we might hope to show
the completeness of the objectual interpretation with world relative domains
and rigid terms by considering the system which results from adding (RT)
to QS. We would hope that (RT) would ensure that terms are rigid on
our standard model, with the result that all members of S(w) are constant
functions.

However, these hopes cannot be realised using the present de�nition of
the standard model. In order to ensure that (wTL) holds for sentences
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t = t0, we are virtually forced into de�ning a(t)(w) as ft : t = t0 2 wg. If
any term t is rigid on this model, it would follow that a(t)(w) is a(t)(w0),
and so that w and w0 share exactly the same identities. Because every
saturated set for L contains t = t for every term t of L, it follows that w
and w0 must be written in languages with the same terms. However, the
strategy of this completeness proof depends on allowing our languages to
shift from one saturated set to the next. Using similar reasoning, we can
see that it is pointless to hope for a completeness proof for systems with
�xed domains using the standard model of this section.

There is another respect in which the variable language strategy lacks
generality. The method does not work for all propositional modal logics S.
(Garson's [1978] claim to the contrary is an error.) The reason is that when
possible worlds are written in di�erent languages, we lose an important
property (�) which is needed in showing that hW;Ri on the standard model
is in R(S).

(�) If wRw0 and A 2 w0, then �A 2 w.

This property fails if term t is in the language of w0, but not the language
of w, and A is (say) Ft. The sentence �Ft cannot be in w because it is not
in the language of w.

For many modal logics (for example, D, M, and S4), we do not need
(�) in order to show that hW;Ri 2 R(S). However, for systems like B, the
property seems indispensable. There are tricks one can use to overcome the
diÆculty for individual systems, but the changing language strategy does
not provide a proof that is general with respect to the underlying modal
logic.

2.2.3.2 Completeness of QPL without identity. When = is absent from our
language, the problems we described in extending the completeness proof
of QS to systems that use the objectual interpretation can be overcome,
at least for some of the propositional modal logics. We will illustrate this
by sketching the proof for QPL with respect to a QPL-semantics, where
we use the objectual interpretation, world-relative domains, the nesting
condition (ND), and truth value gaps. (See Section 1.2.1.2.3.2). We will be
assuming that the underlying modal logic S does not require property (�)
for its completeness proof. Remember that the system QPL simply results
from adding the rules of �rst-order logic to S. Since we are using classical
principles, we de�ne the standard model using the ordinary de�nition of
saturation. Since identity is absent, we may simply let the extension of a
term (at any world) be itself. This ensures the rigidity of the terms, and
so the objectual interpretation for the domains. It is easy to arrange that
domains are nested in the standard model by de�ning R so that wRw0 i�
w0 contains the terms of w, and if �A 2 w, then A 2 w0. This calls for no
changes in the proof of the case for �.
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It is particularly convenient that we are allowed truth value gaps in this
semantics, since we may consider each world w as de�ning the class of
sentences de�ned at w. The formal neatness of truth value gaps at this point
suggests that their introduction was not designed to meet philosophical
intuitions, but rather to avoid formal complications in the completeness
proof.

2.2.4. Strategy 4: Rede�ne Saturation

Thomason's [1970] proof of the completeness of Q3 is the inspiration for the
next strategy we are going to present. At the risk of repetition, we will give
a second completeness proof for QS. Once we have presented the details, we
will show how to modify the proof to obtain completeness results for Q3,
and several other systems.

Strategy 4 follows the outlines of strategy 1; however, the concept of
omega-completeness is adjusted to reect the fact that the Barcan Formula
and classical principles of quanti�cation are no longer available. As we have
already pointed out, w� is not omega-complete in logics that lack the Barcan
Formula. However, w� has a weaker property which ensures that w� can be
extended to a set that has a correspondingly weaker form of saturation, a
form which nevertheless ensures a proof of the quanti�er case of the Truth
Lemma.

Although this strategy turns out to be quite powerful, it has the disad-
vantage that we must reformulate the quanti�cational principles in a more
general, and more complex way. In order to help simplify our presentation,
we will adopt a few abbreviations. We use ` 3 ' for strict implication, so
that `A 3B' abbreviates `�(A! B)'. We will be working constantly with
formulas that have the shape (GF), where parentheses are to be restored
from right to left.

(GF) A1 ! A2 3 : : : 3Ai 3B.

(For example, A ! B 3C 3D amounts to A ! (B 3 (C 3D)), or A !
�(B ! �(C ! D)).) We will use `G(B)' to represent any sentence with
shape (GF), and G(C) will be the sentence that results from replacing C
for B in G(B). Using this notation, we may now present two general rules
for the quanti�ers.

(GUI)
G(8xPx)

G(Et! Pt)

(GUG)
` G(Et! Pt)

where t does not appear in G(8xPx):` G(8xPx)
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We should make clear that G(A) may represent a sentence where any of
the arrows (whether ! or 3 ) is missing in the pattern (GF). So all of the
following, for example, are instances of the rule (GUI).

8xPx
Et! Pt

A! 8xPx
A! Et! Pt

A 38xPx
A 3Et! Pt

A 3B 38xPx
:

A 3B 3Et! Pt

The reader can verify that (GUI) and (GUG) are QS-valid.
The system (GS) consists of (GUI), (GUG), (=In), (=Out), and prin-

ciples for propositional modal logics S. The quanti�er rules (GUI) and
(GUG) appear to be very odd and cumbersome. However, GS has a simple
and natural reformulation in natural deduction format. The propositional
modal logic K may be formulated by introducing boxed subproofs:

�

Together with introduction and elimination rules for �:

(�In) �
...
A

�A

(�Elim) �A
...

�
...
A

(See [Konyndyk, 1986, p. 34 �].)

When natural deduction rules are employed, GS may be reformulated using
the standard free logic rules (FUI) and (FUG), with the understanding that
these apply within any subproof. It is a straightforward matter to show that
this natural deduction formulation is equivalent to GS.

Another feature of GS is evidence for its naturalness. One would hope
to construct a quanti�ed modal logic with �xed domains by adding Et as
an axiom, thus ensuring that the free logic rules collapse to their classical
counterparts. In QS, the addition of Et entails (CBF), but (BF) is indepen-
dent, and must be added as a separate axiom. However, when Et is added
to GS, both the Barcan Formula (BF) and its converse (CBF) are provable.
It is pleasing that the generalised rules are symmetrical with respect to the
adoption of the Barcan Formula and its converse.
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The concept of omega-completeness which corresponds to the rules of GS
is (GOC) (for general omega-completeness).

(GOC) If w ` G(Et! Pt) for every term t of L,
then w ` G(8xPx), for any variable x.

A GOC set is just a set with property (GOC), and a set is generally saturated
(for language L) just in case it is a maximally consistent GOC set.

Our next task is to state and prove analogues of Lemmas 1{4 of Section
2.2.1 for general omega-completeness and general saturation.

LEMMA G1. If w is GOC, then so is w
S
f , provided that f is �nite.

Proof. Suppose that w is GOC, and assume that for all terms t; w
S
f `

G(Pt). It follows that w ` ^f ! G(Pt). By propositional logic, this
sentence is equivalent to one with the shape (GF), so we know that w `
^f ! G(8xPx), and hence that w

S
f ` G(8xPx). �

LEMMA G2. Any consistent set w with property (GOC) can be extended to
a generally saturated set written in the same language.

Proof. If :G(8xPx) is the candidate for addition to Mi in the Linden-
baum construction, and if Mi

Sf:G(8xPx)g is consistent, then we add
both :G(8xPx) and :G(Et ! Pt) to Mi to form Mi+1, for some term t
which leaves Mi+1 consistent. There is such a term because w is GOC and
so, by Lemma G1, Mi+1 is GOC. This construction preserves consistency,
and results in a GOC set, and so it yields a generally saturated set. �

LEMMA G3. If w is a generally saturated set that contains :�B, then
w� = fA : �A 2 wgSf:Bg is consistent and GOC.

Proof. The consistency of w� is proven in the standard way. To show that
w� is GOC, assume that w� ` G(Et ! Pt) for any term t of L. It follows
that fA : �A 2 wg ` :B ! G(Et ! Pt). By principles of propositional
modal logic K, w ` �(:B ! G(Et! Pt)), and so w ` :B 3G(Et! Pt)
for every term t of L. Since w is GOC, w ` :B 3G(8xPx), and since w is
maximal, :B 3G(8xPx) 2 w. As a result, :B ! G(8xPx) 2 fA : �A 2
wg, and so w� ` G(8xPx). �

LEMMA G4. If w is generally saturated and contains :�B, then w� = fA :
�A 2 wgSf:Bg can be extended to a generally saturated set written in the
same language.

Proof. By Lemmas G2 and G3. �
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2.2.4.1 Completeness of GS. Now that we have proven Lemmas G1{G4, only
a few details need to be mentioned to �nish a completeness proof forGS. We
begin with a GS-consistent set, and we extend it to a generally saturated
set r written in language L. (To do so, we merely generalise the standard
construction so that when :G(8xPx) is added, then so is :G(Et ! Pt),
where t is new to the construction.) We de�ne the standard GS-model so
that W is the set of all generally saturated sets for L. Items R;D; S and a
are de�ned in exactly the way as they were in Section 2.2.1. We may also
prove the stronger truth lemma (TL) in a straightforward way. The case
for � requires that we show that if :�A 2 w, then there is a w0 in W such
that wRw0 and :A 2 w0, but this is easily established using Lemma G4.

To prove the case for 8x we notice �rst that all generally saturated sets
are free logic saturated, because free logic omega-completeness (FOC) is a
special case of (GOC) when G(Et ! Pt) is Et ! Pt. So we will have no
diÆculty proving that a(8xPx)(w) is T i� 8xPx 2 w as long as we can
show (ES).

(ES) a(t) 2 S(w) i� Et 2 w.

In order to show (ES) in Section 2.2.3.1, we proved that if t and t0 are
distinct, then so are their intensions a(t) and a(t0). We can show this is true
of the standard GS-model as follows. In all the systems we are considering,
the sentence :t = t0 is consistent if t and t0 are distinct. So there is a
generally saturated set in W that contains :t = t0, and the extensions of t
and t0 di�er there.

This method of proving completeness has a number of advantages. Since
all our sets are generally saturated in the same language, we no longer
face the diÆculties noted in Section 2.2.3 in showing that hW;Ri 2 R(S).
Property (�) now holds, and so the proof proceeds exactly the way it does in
propositional modal logics. However, there are still modal logics for which
the method does not apply. The proof is still blocked, for example, when
R is convergent for reasons similar to the ones we explained at the end of
Section 2.2.1. Sets we can show to be consistent which we would hope to
extend to a generally saturated set by Lemma G2 need not be GOC.

Although strategy 4 does not solve the completeness problem for all un-
derlying propositional modal logics, it can be generalised in another way.
Once a completeness proof is available for GS, the method may be modi�ed
to obtain completeness results for extensions of GS that correspond to less
general treatments of the terms and the quanti�ers. A number of variations
on this theme will be explored in the next sections.

Despite its generality, there is another problem with this method. The
systems we have proven complete use the generalised quanti�er rules (GUI)
and (GUG). We would like to be able to show completeness for logics which
use the more modest principles (FUI) and (FUG) of free logic. However, this
is not always possible. Parsons [1975] has shown that (GUI) is independent
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from the free logic rules in Q3. One reason for the sporadic nature of
published completeness results is that certain systems are complete only
when the generalised quanti�er rules are chosen. Determining the conditions
under which the generalised rules are necessary is an interesting topic for
future research.

2.2.4.2 Rigid Terms: Completeness of GQ1R. One advantage of strategy
4 is that it can be used to obtain completeness proofs for a variety of log-
ics that use the objectual interpretation, even if they contain identity. A
simple formulation of a system GQ1R which is complete for the objectual
interpretation results from adding the rules (RT) and (=E) to GS to ensure
that all the terms are rigid.

(=E)
t = t0

Et! Et0

Remember that E is an intensional predicate in GS, and so the rule of
substitution does not apply to it. However, once the terms are rigid, sub-
stitution of identicals is valid in all contexts, and so (=E) is valid.

It is not diÆcult to show the completeness of GQ1R for the objectual
interpretation with rigid terms and world relative domains. Only one change
in the de�nition of the standard model is required, along with a simple
adjustment to the proof of (TL). We begin with a consistent set H , which
we extend to r, a generally saturated set in L. We then de�ne the standard
model as before, except we ensure the rigidity of all the terms by restricting
W to sets that contain exactly the identities of r. We must adjust the proof
of the case for � because we will need to know that w� can be extended
to a set that contains the same identities as r. However, this can be shown
using virtually the same argument we gave in Section 2.2.1, using the fact
that (RT) is provable in GQ1R. Because our terms are rigid, the proof of
(ES) is simpli�ed. Since substitution now holds in the term slot of E, the
proof that Et 2 w i� a(t) 2 S(w) no longer requires a demonstration that
the intensions of t and t0 are identical only if t and t0 are identical.

Since all term intensions are rigid on this standard model, and since our
domains contain only term intension, we can modify the model by replacing
each constant term intension in a domain D(w) with its value. The result
is a Q1R-model which satis�es r and hence, H .

2.2.4.3 Fixed Domains: Completeness of GQ1. It is a simple matter to
verify that adding (CBF) (the converse of the Barcan Formula) to GS
ensures that the standard model meets the nesting condition (ND).

(CBF) �8xPx! 8x�Px.

(ND) If wRw0 then D(w) is a subset of D(w0).
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The relationship between (CBF) and (ND) can be appreciated better when
it is pointed out that (BF) is equivalent (in free logic plus modal logic K)
to (�E).

(�E) 8x�Ex.

Objection to (�E) prompted our interest in logics with world relative do-
mains. It is not hard to see that any model that satis�es (�E) meets the
nesting condition.

Presence of the Barcan Formula (BF) forces the `converse' condition
(CND) on the standard model.

(BF) 8x�Px! �8xPx
(CND) If wRw0 then D(w0) is a subset of D(w).

Let us restrict the domain W of the standard model so that it contains
only worlds such that rRiw, where Ri is the result of composing R with
itself i times, and R0 is the identity relation. It follows from the presence
of both (BF) and (CBF) that the domains of the standard model are all
identical, and so can be collapsed into one. So we may use strategy 4 to give
a completeness proof for a semantics with a �xed domain of the quanti�er,
but with a possibly wider domain for the terms.

In order to prove completeness for GQ1, we need only ensure that the
terms are all given extensions in the domain of quanti�cation. The standard
model meets this condition when (E) is added to GS, and so we have an
easy completeness proof of GQ1 = GQ1R + (E).

(E) Et

It is interesting to note that both (BF) and (CBF) are derivable as soon
as (E) is added to GS. In free logic, the addition of Et would restore the
classical quanti�er rules, and so allow us to prove (CBF); but (BF) is still
independent. It is pleasing that the generalised rules are symmetrical with
respect to the adoption of the Barcan Formula and its converse.

2.2.4.4 Nonrigid Terms: Completeness of Q3. Something like strategy 4
was invented by Thomason to prove completeness of Q3{S4. The system
he showed complete is necessarily based on the generalised quanti�er rules.
We will use strategy 4 here to prove completeness of several kinds of Q3
logics. In our discussion of systems with the objectual interpretation and
non-rigid terms (Section 1.2.2), we pointed out that quanti�er rules are
quite complicated unless we introduce a primitive predicate that expresses
that a term intension is a constant function. We have been presuming
all along that there is a primitive predicate E in our language which is
interpreted so that a(E) is S, the set of `real' substances. So we will begin
with proofs for systems with arbitrarily strong modal logic and a primitive
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existence predicate. Later we will show how to modify the proof for systems
as strong as S4, so that the inclusion of a primitive predicate is not needed.

There is a problem which arises when we allow non-rigid terms with the
objectual interpretation which draws our attention to a step in the proof
of (TL) which we have so far ignored. Let us look at the reasoning we will
need to carry out the proof of the case for the quanti�er.

a(8xPx)(w) is T i� for all d in D(w); a(d=x)(Px)(w) is T
(1) i� for all t, if a(t)(w) 2 D(w),

then a(a(t)(w)=x)(Px)(w) is T
(2) i� for all t, if a(t)(w) 2 D(w),

then a(Pt)(w) is T
i� for all t; (Et! Pt) 2 w
i� 8xPx 2 w.

The proof that (1) and (2) are equivalent requires the proof of (SL) (for
Substitution Lemma).

(SL) a(a(t)(w)=x)(Px)(w) is a(Pt)(w).

Unfortunately, (SL) is not always true if t is non-rigid. It is false, for
example, for Pt = �Ft on the following model. The set of worlds W
contains (the real) world r, and (an unreal) world u, and they are both
accessible from themselves and each other. The domain D contains two
objects d, for (David Lewis) and s (for Saul Kripke). The term t (read `the
author of \Counterpart Theory" ') has d as its extension in the real world,
and s as its extension in the unreal world u. The extension of F (read `is
author of \Counterpart Theory" ') contains d in r, and s in u. Notice now
that a(a(t)(u)=x)(�Fx)(u) is a(s=x)(�Fx)(u), which is false, since s is not
in the extension of F in both worlds. However a(�Ft)(u) is true because
the extension of t is in the extension of F in each world. We see that (SL)
fails for reasons closely related to the fact that substitution of identities fails
for non-rigid terms.

We did not face this problem for systems with rigid terms, because (SL)
is true when a(t) is a constant function. The problem did not arise with the
substantial interpretation because there the lemma we need (SSL) concerns
substitution of intensions and is readily proven.

(SSL) a(a(t)=x)(Px)(w) is a(Pt)(w).

Thomason tackles the problem posed by the failure of (SL) in a direct
way. He stipulates that variables are rigid designators and uses variables,
not terms, to �x the domains of his standard model. The extension a(t)(w)
is set to fx : x = t 2 wg, and the domain D(w) contains the extensions of
all terms t such that Et 2 w. By adding the rules (RV), to the system, he
can ensure that the standard model has rigid variables, using the methods
we outlined in Section 2.2.4.2.
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(RV)
x = y

�x = y

:x = y

�:x = y

x = y

Ex! Ey

However, the use of rigid variables leads to further complications. In order
to establish the case for identity in (TL), we need to know that if a(t)(w)
is a(t0)(w) then t = t0 2 w. The identity of a(t)(w) only establishes that
x = t 2 w i� x = t0 2 w, for all variables x. To show that t = t0 2 w,
we need to know that there is some variable y such that y = t 2 w. This
requires us to restrict the set W of possible worlds of our model to those
that meet condition (V).

(V) For all w in W , and all terms t of L, there is a y such that y = t 2 w.

In order to meet condition (V) when it comes time to extend w� to a set in
W , Thomason added the following rule to this system.

(G=)
` G(:y = t)

` G(p ^ :p)
The rule (G=) ensures that we can consistently add a sentence of the form
y = t for each of the terms t during the construction of a saturated set, and
to do so without extending the language.

The system Q3 which we can show to be complete using this method is
composed of GS, (RV), and (G=).

The system Thomason [1970] showed to be complete lacked the primitive
existence predicate E, and was built on S4. In S4, the sentence 9x�x = t is
true in the standard model just in case the intension of t is rigid. Also, the
replacement of Et with 9x�x = t in the rules of free logic results in valid
quanti�er rules. It follows that if S is S4 or stronger, we can formulate
a complete system for Q3- S without a primitive existence predicate by
replacing Et with 9x�x = t in the rules of Q3-S.

3 UNAXIOMATISABILITY OF SOME QUANTIFIED INTENSIONAL
LOGICS

3.1 Introduction

Certain quanti�ed modal languages are capable of expressing statements of
arithmetic. These systems cannot be axiomatised, for if they were, they
would be adequate for arithmetic, which is impossible by G�odel's Theorem.
In this section we will give examples of three quanti�ed modal logics which
are incomplete for this reason. First, we review Scott's result (reported in
[Kamp, 1977]) that predicate tense logic is incomplete if time is described
by the reals. Next we will discuss unaxiomatisability results [Fine, 1970]

for propositional modal logics with quanti�ers over propositional variables.
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Finally, we will show that Q2 cannot be formalised, at least not if the
underlying modal logic is S4.3 or weaker. (This is Kripke's result reported
in [Kamp, 1977].) The rest of this section contains preliminary material
which we need later. A reader with a background in mathematical logic
will probably want to skip to Section 3.2.

3.1.1 Languages that express arithmetic

The languagePA (for Peano Arithmetic) contains quanti�ers, =, a constant
0, and function symbols 0, +, �. A model hD; ai of PA consists of a non-
empty domain D (of quanti�cation), and an assignment function a that
assigns to 0 a unary function a(0) from D to D, and to both + and �, binary
functions a(+) and a(�) from D �D to D. A model is the standard model
of arithmetic i� D is the set of integers 0; 1; 2; : : : ; a(0) is the function that
takes each integer into its successor, a(+) is the addition function, and a(�)
is multiplication.

Now suppose we have a language L which includes the symbols of PA
and which contains a sentence SMA which is true on a model just in case
it is the standard model of arithmetic. It follows that the valid sentences
of L cannot be formalised. The reason is that the sentence A of arithmetic
is true on the standard model just in case SMA ! A is a valid sentence
of L. So any axiomatisation of L would provide a way to formalise the true
sentences of arithmetic, and this, G�odel showed, cannot be done.

There is no need for SMA to pick out the standard model exactly. (In
fact, it cannot.) It is easy to see that the same sentences are true on any pair
of isomorphic models. So L will be unaxiomatisable as long as it contains
a sentence SMA which is true only on models of PA that are isomorphic to
the standard model. (To avoid talking all the time of isomorphic models,
we will mean by a `standard model' any model isomorphic to the standard
one.)

We do not need 0;0 ;+ and � in the language in order to obtain this kind of
incompleteness result. It is well known that constants and function symbols
are eliminable in favour of corresponding predicate letters. For example, we
may introduce the predicate Z for zero, and the sentence 9!xZx which
ensures that the extension of Z is a singleton. (We use 9!xPx to abbreviate
9x(Px ^ 8y(Py ! x = y)), where y is chosen new to Px.) We may then
conjoin 9!xZx to SMA, and replace each sentence P0 of SMA involving
0, with 8x(Zx ! Px), which says the same thing. To eliminate 0, we
introduce a binary predicate letter N , and we add 9!yNxy to ensure that the
extension of N is a unary function. We then replace axioms Px0 involving
0, with 8y(Nxy ! Py). By introducing ternary predicates, for + and �,
and performing the same manoeuvre, we can complete the elimination of
function symbols. It follows that any language which contains �rst-order
logic with identity and contains a sentence SMA which is true only on a
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standard model is incomplete, (if it is consistent). (In the case of a language
that uses predicate letters, Z;N; T; P for arithmetic, hD; ai counts as a
standard model i� a is a function over these predicate letters which assigns
them extensions, and hD; ai is isomorphic to another model of the same
kind whose domain is the integers and which gives Z;N; T; P the extension
zero, the successor function, plus, and times.)

3.2 Incompleteness of Predicate Tense Logic with Real Time

It is crucial in physics that we represent moments of time using numbers.
If time is atomic, and there is a �rst moment, then the set of times looks
like the integers of the standard model of arithmetic. We are more likely to
think of time as dense, and so represent it using the rationals, or the reals.

Scott showed that if time is mathematical in any of these senses, then
predicate tense logic is incomplete. (The result is reported in [Kamp, 1977].)
When we assume that the Kripke frame hW;Ri of any tense logic model
hW;R;D; ai is such that W is the set of integers, and R the relation `less
than', then we can �nd a sentence SMA which is true only on standard
models. Even when we consider frames hW;Ri where W is the set of ratio-
nals or reals, the same argument can be constructed.

3.2.1 Syntax and Semantics of Predicate Tense Logic

Let us de�ne T1 (tense predicate logic like Q1) in the following way. The
syntax of T1 involves an alphabet which includes symbols of �rst-order
logic, and two sentential operators G and H (read `it will always be that'
and `it was always the case that'). The more familiar operators F and P
(read `it will be that' and `it was the case that') are de�ned by F =df :G:,
and P =df :H:.

To formulate the semantics of T1 let us de�ne a T1-model as a sequence
hW;R;D; ai, where hW;Ri is like the integers in that sense that W is the
set consisting of 0; 1; 2; : : :, and R is `less than'. The quanti�er of T1 is
interpreted with a �xed domain D, so its truth clause is (Q1).

(Q1) a(8xPx)(w) is T i� for all d in D; a(d=x)(Px)(w) is T .

The truth clauses for G and H read as follows.

(G) a(GA)(w) is T i� if wRw0, then a(A)(w0) is T .

(H) a(HA)(w) is T i� if w0Rw, then a(A)(w0) is T .

For the moment, we will assume that terms are all rigid designators, so
a(t)(w) is a(t)(w0) for all w;w0 in W . This restriction can be relaxed with-
out changing the essentials of the incompleteness proof. Notice, then, that
semantics for T1 is exactly like Q1, except that in T1 we have two inten-
sional operators.
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3.2.2 The Expressive Capabilities of T1

If we had quanti�ers and predicate letters in T1 whose domain were the
set W of times, then the unaxiomatisability of T1 would be easy to show.
In that case, sentences valid in T1 would be those that are valid on all
frames hW;Ri where W is the integers. We could then construct the sen-
tence Q consisting of the axioms of (�rst-order) arithmetic using predicate
letters Z;N; P; T . (See [Boolos and Je�rey, 1989, p. 161] for these axioms.)
Sentence Q would serve as the sentence which expresses that a model is
standard.

Our problem is, however, that W is not the domain of quanti�cation in
T1. The quanti�ers range instead, over the domain D of objects. Never-
theless, it is possible to �nd a sentence of T1 that sets up a correspondence
between members of W and members of D so that sentences that express
properties of the domain D reect corresponding properties in the set of
worlds W . In order to show how this correspondence is brought about, let
us �rst give a few de�nitions and facts concerning the things that T1 can
express.

First, we will de�ne two operators A, and S (read `it is always the case
that' and `it is sometimes the case that') as follows.

AA = A ^GA ^HA; SA = A _ FA _ PA:

Since W in every model of T1 is the set of integers, it is easy to verify the
following facts about all models of T1.

FACT 1. AA is true at w i� A is true at every time w0 in W .

FACT 2. SA is true at w i� A is true at some time w0 in W .

Now let us introduce the predicate letter E (read `exists'). We will use
the following two sentences to ensure that every member of D is in the
extension of E at some time, and that the extension of E is always either a
singleton or empty.

(F1) 8xS(Ex ^H:Ex ^G:Ex)
(Everything exists at exactly one time.)

(F2) A8x8y((Ex ^ Ey)! x = y)
(No two things exist at the same time.)

Any model that makes both of these sentences true sets up a function from
D into W , because for each member d of D, we know there is exactly one
integer td of W at which d exists.

Now let us introduce the following abbreviation.

(<) x < y =df S(Ex ^ FEy).
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The sentence S(Ex^ FEy) is true at t for a just in case there is some time
where a(x) exists, and a later time where a(y) exists. Since (F1) guarantees
that an object exists at only one time, it follows that the pair d; d0 satis�es
the extension of < at any time just in case the integer td where d exists is
less than the integer td0 where d0 exists. So < sets up an ordering on D that
corresponds to the relation `less than' on the integers. Actually, < does
not express all the facts about `less than' on the integers, because (F1) and
(F2) do not guarantee that something exists at every time. The extension
of < corresponds to `less than' restricted to WD the set of those times when
objects exist. We could set up a one-one correspondence between W and D
by adding the sentence A9xEx, but this will block the proof for the case of
the rationals and the reals, as we will see.

3.2.3 Unaxiomatisability of T1

Now let us introduce an equivalence that �xes the extension of predicate N
as the successor function, and guarantees that every object in the ordering
set up by < has a successor.

(F3) xNy $ x < y ^ 8z((:z = y ^ x < z)! y < z),

(F4) 9y(Ey ^ xNy).

If (F3) and (F4) are both true at any time t of W , then the pair hd; d0i is in
the extension of N at t just in case the corresponding times td; td0 are such
that td0 is the successor of td in WD (the set of times where objects exist).

We may also de�ne Z (read `is zero'), and guarantee that zero exists as
follows.

(F5) Zx$ 8y:y < x

(F6) 9x(Ex ^ Zx).

These two sentences ensure that there is a least member t0 in the set WD
of times at which objects exist.

Let SMA be the conjunction of (F1){(F6) and Q�, the result of eliminat-
ing 0;0 ;+ and � in favour of predicate letters Z;N; P and T in the axioms
Q of �rst-order arithmetic. We claim that SMA expresses that a model is
standard in the following sense.

LEMMA 5. For any model hW;R;D; ai of T1, and any w inW , a(SMA)(w)
is T only if hD; a(w)i is standard.
Here a(w) is the function that gives to each predicate letter F , the extension
a(F )(w), that F receives on a at world w.



QUANTIFICATION IN MODAL LOGIC 309

Proof. Let us imagine a model hW;R;D; ai that satis�es SMA at w. As we
said, the truth of (F1) and (F2) sets up a correspondence between objects
of D and a subset WD of W . (F3) ensures that a pair of objects hd; d0i is
in the extension of < just in case the corresponding numbers td; td0 bear
the relation `less than'. (F4) and (F5) ensure that there is a successor for
any number ti of the series, and (F6) ensures that there is a least member
t0 in the series. It follows from this that the objects of D correspond to a
sequence w0; w1; w2; w3; : : : of numbers of W ordered by `less than', with a
�rst member w0. Furthermore, the extension of N picks out the successor
function on this ordering. Given that the sentence Q is satis�ed, we also
know the extensions of P and T at w must be plus and times. It follows
then that hD; a(w)i is a standard model of arithmetic. �

Let us suppose that A is any sentence of arithmetic, and that A� is the
result of eliminating 0;0 ;+; � in favour of predicate letters Z;N; P; T in the
usual way. We may now show that T1 is incomplete on the basis of the
following theorem.

THEOREM 1. SMA ! A� is T1-valid i� A is true on the standard model
of arithmetic.

Proof. (left to right) Let hW;R;D; ai be a T1-model such that W is
the integers (rationals, reals), R is the ordering `less than' on W;D is the
integers, and d 2 a(E)(w) i� d = w, and a(E)(w) is the empty set if w
is not an integer. On this model a(SMA(w) is T , for any w in W . By
the T1-validity of SMA ! A�, it follows that a(A�)(w) is T . Notice that
A� contains no intensional operators, and so its value is determined by the
extensions of Z;N; P; T exactly as it would be on the extensional model
hD; a(w)i. Since this is a standard model, A must be true on the standard
model of arithmetic.

(right to left) Suppose that A is true on the standard model for arithmetic
and suppose that a(SMA)(w) is T at any w in W , on a model of T1. By
Lemma 5, hD; a(w)i is standard, and so a(A�)(w) is T . We conclude that
SMA ! A� is T1-valid. �

Notice that Theorem 1 can be proved as long as we begin with any frame
hW;Ri which contains a substructure which is isomorphic to the integers
ordered by `less than'. It follows that T1 is incomplete with respect to
the integers, the rationals, the reals, and virtually any other conceivable
numerical account of time. It is also clear that the same argument works
for logics that have world-relative domains. In this case, we are already
supplied with a primitive predicate E which picks out things that exist at
a given time, and the same argument can be carried out for this E.
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3.3 Incompleteness of Second-Order Propositional Modal

Logics

Fine [1970] shows that second-order propositional modal logic (SOPML)
is incomplete when the modality is S4.2 or less. SOPML is ordinary
propositional modal logic, except we introduce quanti�ers which bind the
propositional variables. Here, we will give an incompleteness result for a
somewhat di�erent system called SOMA (for Second-Order Modal Arith-
metic), assuming that the modality is S4.3 or less. SOMA is SOPML
supplemented with a propositional constant 0, and connectives 0;+, and �,
of arities 1, 2, 2 respectively. The unaxiomatisability of SOMA is easier to
prove than it is for SOPML, because SOMA already contains the notation
for arithmetic. In the case of SOPML, we need to show how to get the
e�ect of the binary function symbols + and �. The proof of SOMA allows
us to display the main strategy used in the proof for SOPML, without
having to cover this less central detail. Another reason for concentrating
on SOMA is that its relatively easy incompleteness result provides a quick
proof of the incompleteness of Q2, which we give in Section 3.4.

3.3.1 The Intuitions behind the Proof

We know that a system is incomplete as long as it contains a sentence that
expresses that its models contain a standard model of arithmetic. It is
well known that any model of both the axioms of �rst-order arithmetic Q,
and (MI) (the second-order axiom of mathematical induction) is a standard
model. (See, for example [Boolos and Je�rey, 1989, Ch. 18].)

(MI) 8P ((P0 ^ 8x(Px! Px0))! 8xPx).

Q can be expressed in �rst-order logic; however, (MI) requires quanti�cation
over a monadic predicate letter. So any extension of �rst-order logic that
can achieve the e�ect of quanti�cation over monadic predicates will express
arithmetic, and so be incomplete.

The idea behind the incompleteness proof for SOMA, then, is to show
that quanti�cation over propositional variables in modal logic can be used
to get the e�ect of both quanti�cation over worlds and quanti�cation over
predicates of worlds. To see how this is done, think of the intensions of
propositional variables as truth sets. (The truth set of a propositional vari-
able is just the set of worlds where it is true.) So quanti�cation over propo-
sitional variables amounts to quanti�cation over truth sets, that is, over
properties of worlds. We also need to be able to quantify over objects of W
if were are to express the axioms of arithmetic. This is done in SOMA by
�nding a way to say that an intension contains a single world. Then quan-
ti�cation over all singleton sets of worlds amounts to quanti�cation over the
individual worlds themselves.
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3.3.2 The Expressive Resources of SOMA

We turn now to the details involved in showing that SOMA can express
arithmetic. To �x our later discussion, we will give the semantics for SOMA
here. A model hW;R; ai of SOMA assigns to each propositional variable
p a subset a(p) of W , called the truth set of p. It also assigns to 0;+, and
�, functions that take us from subsets of W into new subsets of W in the
case of 0 and from subsets of W �W to W in the case of + and �. Since we
are proving incompleteness for SOMA-S4.3, we will assume that hD;Ri is
reexive, transitive and connected.

The clauses for sentences with shapes A0; A+B, and A �B are as follows

a(A0) = a(0)(a(A))
a(A+B) = a(+)(a(A); a(B))
a(A � B) = a(�)(a(A); a(B))

and the clauses for :;!, and � are given in the usual way.
For the quanti�er we have the following.

(8p) w 2 a(8pPp) i� for every subset s of W , w 2 a(s=p)(Pp)

Here a(s=p) is the assignment just like a save that a(s=p)(p) is s.
Most of the properties we can express in SOMA only apply to a portion

of the model hW;R; ai. It will turn out, however, that this is enough for
our purposes. We de�ne the future of model hW;R; ai at w, as the model
hW f;Rf; afi, where Wf is fw0 : wRw0g and Rf and af are R and a re-
stricted to Wf. The future at w, then, contains just those worlds accessible
from w, and the portions of R and a which concern these worlds. For con-
venience, we will also call hW f; afi the future of hW;R; ai at w, where in
this case, af(0); af(+) and af(�) are restricted to singleton sets of Wf. We
are going to show how to construct a sentence which is true at w just in
case the future hW f; afi at w is a standard model of arithmetic.

In order to get the e�ect of quanti�cation over objects of W , let us present
a sentence Ip of SOMA whose truth at w ensures that the intension of p is
a singleton in the future at w.

(I) Ip =df �p ^ 8q(�(p! q) _�(p! :q)).
There is an interesting intuition behind this de�nition. Ip says that the
sentences entailed by p form a maximally consistent set, for the �rst conjunct
says that p is consistent, and the second, that p entails any sentence or its
negation. Given that worlds are maximally consistent sets, it follows that
p could only be true at one world.

Let us show now that Ip actually has this intended e�ect. The �rst
conjunct ensures that there is a world accessible from w where p is true, so
we know that af(p) contains at least one member of Wf. Notice next that
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�(p ! q) ensures that every world accessible from w 2 af(p) only if it is
in af(q), and so that af (p) is a subset of af (q). The e�ect of the second
conjunct of Ip, then, is to ensure that for any subset of Wf we choose, af(p)
will be a subset of either it or its complement. It follows that af (p) must
be a singleton, for suppose there were two distinct members w;w0 of af(p).
Then the subset s such that w 2 s and w0 62 s would have to include all the
members of af (p), or its complement would. In either case, one of w;w0

would have to be missing from af (p).
Since we have a way to express uniqueness of an intension, we can quantify

both over worlds and their properties. In order to enforce the structure of
the standard model on the future of w, we will need to express properties
about the relation R. The abbreviation (�) shows how to do this.

(�) p � q =df �(p! �q)

It is a simple matter to verify that whenever the intensions of p and q are
singletons in the future of w, then p � q is true at w just in case wpRwq,
where wp and wq are the worlds at which p and q are true in the future of
w.

Now let us de�ne identity in SOMA.

(=) p=q =df �(p$ q).

It is easy to see that �(p$ q) is true at w, just in case a(p) and a(q) agree
on members in Wf. So p = q is true at w i� af(p) is af(q).

We may de�ne `<' from `�' in the usual way.

(<) p < q =df p � q ^ :p = q.

In order to write (MI) in SOMA, we need a way to express that a world
has a property. We know that �(p! q) is true at w just in case the truth
set of p is a subset of the truth set of q in the future of w. So in case the
intension of p is a singleton containing wp;�(p! q) says that the world wp
is in the intension of q. Therefore, we will adopt the following abbreviation.

(is) p is q =df �(p! q).

3.3.3 Incompleteness of SOMA

Now we are ready to formulate arithmetic in SOMA. Let SMA be the
conjunction of the following sentences.

1. I0 ^ 0

2. 8pIp0

3. 8p8q((Ip ^ Iq)! (p0 = q0 ! p = q))
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4. 8q(Iq ! :q < 0)

5. 8p8q((Ip ^ Iq)!
(p0 = q ! (p < q ^ 8r((p < r ^ :r = q)! q < r)))

6. 8p8qI(p+ q)

7. 8p8qI(p � q)
8. 8p(Ip! p+ 0 = p)

9. 8p8q((Ip ^ Iq)! p+ q0 = (p+ q)0)

10. 8p(Ip! p � 0� = p)

11. 8p8q((Ip ^ Iq)! p � q0 = (p � q) + p)

(MII) 8p((0 is p ^ 8q(Iq ! (q is p! q0 is p))! 8r(Ir ! r is p)).

Sentences (3){(5) establish the proper relationship between zero, the succes-
sor function and the relation Rf which is expressed by �. Sentences (8){(11)
are the axioms of Q, with propositional quanti�ers restricted to I. (MII) is
our formulation of the second-order axiom of mathematical induction.

Our next task is to convince you that SMA is true at w just in case the
future at w contains a standard model of arithmetic, in the sense of the
following lemma.

LEMMA 6. a(SMA)(w) is T on hW;D; ai i� the future hWf, Rf, afi of
hW;D; ai at w is such that hWf, afi is a standard model of arithmetic and
af(0) is a singleton containing w, and Rf is `less than or equal to' on Wf.

Proof. (left to right) Let a numeral be a sentence 0i composed of the
propositional constant 0, followed by i primes (0). Sentences (1) and (2) of
SMA guarantee that the intension of any numeral is a singleton set in the
future of w. The second conjunct of (1) establishes that w is in a(0), and so
af(0) is a singleton containing w. Now let wi be the singleton which is in
the extension of numeral 0i. Sentence (3) guarantees that wi is not wj for i
not equal to j, and so wi is not wi+1. (MII) ensures that every member of
Wf is wi for some numeral 0i, and so there is a one-one mapping between
numerals and Wf. By sentences (4) and (5), we know that the wi form
a sequence such that w0Rfw1; w1Rfw2 : : :, with w0 as the least member.
By the reexivity and transitivity of Rf and (5) we may show further that
i is less than or equal to j i� wiRfwj . So Rf is `less than or equal to'.
Sentences (6) and (7) ensure that the intensions of (p + q) and (p � q) are
functions that range over singletons only. The remaining sentences (8){(11)
ensure that af(+) and af(�) correspond to addition and multiplication. We
conclude that hW f; afi is indeed a standard model of arithmetic, and af(0)
is indeed a singleton containing zero.
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(right to left) Suppose that hW f;Rf; afi is the future of hW;R; ai at w,
and suppose that hW f; afi is a standard model. Suppose that af(0) is a
singleton containing w, and that Rf is `less than or equal to'. Since af is
standard, we know that af(0) = fwg contains the representative of zero on
this model. It follows that wRfw0 for every w0 in W . Therefore, the future
of hW;R; ai at w just is hW;R; ai. Now the reader can verify that sentences
(1){(11) and (MII) are all true at w on hW;R; ai, and so a(SMA)(w) is T .
This completes the proof of Lemma 6. �

Now we must check that sentences of arithmetic are true just in case
their translations into SOMA are true in the future of a given w. We de-
�ne A� for sentences A of arithmetic as the result of replacing variables and
quanti�ers of A with prepositional quanti�ers restricted to I , and replac-
ing identity in A with the corresponding sentence of SOMA according to
de�nition (=).

LEMMA 7. If hWf, afi is the future of hW;R; ai at w, and hWf, afi is
a standard model of arithmetic, then A is true on the standard model i�
w 2 a(A�) on hW;R; ai.

Proof. The proof is by induction on the structure of A. The non-trivial
cases occur when A has the shapes 8xPx, and t = s. The case for the
quanti�er runs as follows.

8xPx is true in arithmetic.
i� Pn is true on the standard model for every numeral n
i� w 2 a(Pn) in the future of w, for every numeral n
i� w 2 a(Pq) in the future of w for all q such that af(q) is a singleton
i� w 2 a(8p(Ip! Pp)).

The case for identity requires �rst that we show that the extension of
any term t in the standard model of arithmetic corresponds to af(t) in
hW f; afi. This is easily shown by induction on the structure of t. The rest
of this case proceeds as follows.

t = s is true in arithmetic
i� a0(t) is a0(s), for the a0 of the standard model
i� af(t) is af(s) in the future of w
i� a(t)(w0) is a(s)(w0) for w0 in W f
i� w0 2 a(t$ s) for w0 in W f
i� w 2 a(�t$ s)

This completes the proof of Lemma 7. �

We are now ready to prove the incompleteness of SOMA, using the
following theorem.
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THEOREM 2. A is true on the standard model of arithmetic i� SMA! A�

is S.3-valid in SOMA.

Proof. (left to right) Suppose that A is true on the standard model of
arithmetic. Let hW;R; ai by any S4.3-model of SOMA. Let w be any
world in W , and suppose that w 2 a(SMA). It follows by Lemma 6 that
hW f; afi is a standard model of arithmetic, where hW f;Rf; af i is the
future of hW;R; ai at w. It follows by Lemma 7 that w is in a(A�). We
conclude that (SMA! A�) is S4.3-valid in SOMA.

(right to left) Suppose that (SMA ! A�) is S4.3-valid in SOMA. Let
hW;R; ai be the SOMA model such that W is the integers, R is the relation
`equal or less than', the intension of 0 is the singleton containing zero, and
the intensions of 0;+, and � are the successor function, plus, and times,
de�ned on singleton sets of members of W . hW;Ri is clearly reexive,
transitive and connected, so hW;R; ai is and S4.3-model. By Lemma 6,
0 2 a(SMA), and so by the validity of (SMA! A�); 0 2 a(A�). However,
the future of hW;R; ai at zero is a standard model of arithmetic, and so by
Lemma 7, A is a true sentence of arithmetic. �

Theorem 2 establishes that SOMA with modality of strength S4.3 is
incomplete. It follows also that SOMA is incomplete for all weaker logics
(down to K). The reason is that when the following sentences of SOMA
are true at w in a model of SOMA, then Rf in the future of w must be
reexive, transitive, and connected.

8p(�p! p)
8p(�p! ��p)
8p8q((�p ^ �q)! (�(p ^ q) _ �(p ^ �q) _ �q ^ �p)))

So by adding these sentences to SMA, we may carry out the proof of The-
orem 2 for any system weaker than S4.3.

3.4 Incompleteness of Q2

The proof of the incompleteness of SOMA can be used to show that Q2
cannot be axiomatised as long as the propositional modal logic is S4.3 or
weaker. This is done by showing that there is a transformation � that
takes us from sentences of SOMA to sentences of Q2, so that A is valid
in SOMA just in case A� is valid in Q2. It follows that since SOMA can
express arithmetic for modalities S4.3 or less, then so can Q2.

The idea behind the transformation is to mimic propositional variables p
of SOMA, whose intensions amount to functions from W into (T; F ), using
corresponding individual variables xp, whose intensions take us from W to
D. We will arbitrarily select a term t whose extension at a world w picks
out the object of D which plays the role of the truth value T for that world.
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Then we will represent that p is true at world w, using the Q2 sentence
xp = t.

To simplify the proof, we will assume �rst that Q2� is Q2 with func-
tion symbols 0;0 ;+; �. These symbols can be eliminated later in favour of
predicate letters of Q2. We de�ne A� for any sentence A of SOMA, as
the Q2�-sentence that results from replacing each variable p of A with a
corresponding variable xp of Q2, and replacing each propositional variable
p with the sentence xp = t. (Of course, we must be sure that the xp and t
are distinct variables.)

Let us prove the following lemma about this transformation.

LEMMA 8. If hW;R; ai is a model of SOMA, and hW;R;D;Q2; a0i is a
model of Q2�, and w0 2 a(p) i� a0(xp)(w0) = a0(t)(w0), for all w0 in W ,
and D(w0) contains two members for all w0 such that wRw0, then w 2 a(A)
i� a(A�)(w) is T .

Proof. The proof of Lemma 8 is straightforward induction on the structure
of A. �

Now we may show how to set up a correspondence between sentences of
SOMA and Q2�, according to the following theorem.

THEOREM 3. A is valid in SOMA i� 9x9y�:x = y ! A� is Q2�-valid.

Proof. (left to right) Assume that A is valid in SOMA, and consider a
Q2�-model hW;R;D;Q2; a0i such that 9x9y�:x = y is true at any w in
W . Then D(w0) contains two objects for every w0 such that wRw0. Build
a SOMA model hW;R; ai such that w0 is in a0(p) i� a0(xp)(w0) is a(t)(w0).
We have met the conditions for Lemma 8, and so by the validity of A we
conclude that a0(A�)(w) is T .

(right to left) Now assume that 9x9y:x = y ! A� is Q2-valid. Let
hW;R; ai be any SOMA-model, and w any member of W . Now de�ne a
Q2- model hW;R;D;Q2; a0i as follows. Let D contain the objects T; F , and
let D(w0) be D for each w0 in W . Let a0(t)(w0) be T for all w0 in W , and let
a0(xp)(w0) be T if w0 is in a(p), and F otherwise. The value of a(9x9y:x =
y)(w) is T , and so, by the validity of 9x9y:x = y ! A�; a(A�)(w) is T .
Since the conditions for Lemma 8 are met, we conclude that w is in a(A).

�

Theorem 3 establishes that Q2� is incomplete for all modalities S4.3 or
weaker. It follows that Q2 is also incomplete, because function symbols of
sentences of Q2� can be eliminated for corresponding predicate letters of
Q2. The same sort of argument can be used to show the unaxiomatisability
of QC, where we have a single domain of quanti�cation. In fact, the proof
is easier, since we need only the sentence 9x9y:x = y to ensure that the
domain contains two objects.
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3.5 Systems as Strong as S5

It is interesting to ask whether these results apply to Q2 and SOMA for
modalities as strong as S5. The answer is that they do not. Kripke has
shown (see [Kamp, 1977]) that Q2S5 is axiomatisable, and Fine [1970] even
shows that SOPML-S5 is decidable. The reason that the proof strategy
that we have used does not work for S5 in that our method depends on our
ability to build the structure of the standard model of arithmetic within
the kinds of Kripke frames with which we were supplied. In the case of S5,
however, the frames are equivalence classes, and there is no way to develop
the ordering we need to construct the standard model.
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APPENDIX

List of Rules

Page

269 (FUI)
8xPx

for any term t
Et! Pt

269 (FUG)
` A! (Et! Pt)

where t is any term not in A! 8xPx
` A! 8xPx

270 (=In) t = t

270 (=Out)
t = t0

where Pt is an atom
Pt! Pt0

273 (RT)
t = t0

�t = t0
:t = t0

�:t = t0

273 (BF) 8x�A! �8xA

275 (CBF) �8xA! 8x�A

278 (HUI)
8xPx

(9x i x = t ^ : : : ^ 9x k x = t)! Pt
where i; : : : ; k is a list of integers which records for each
occurrence of x in Px, the number of boxes whose scope
includes that occurrence.

280 (TUI)
8xPx

9x�x = t! Pt

297 (GUI)
G(8xPx)

G(Et! Pt)

297 (GUG)
` G(Et! Pt)

` G(8xPx)
where t does not appear in G(8xPx).
Here G(B) is any sentence with the shape A1 ! A2 3 : : :
3Ai 3B and G(C) is the result of replacing C for B in

G(B).
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Page

301 (=E)
t = t0

Et! Et0

302 (E) Et

303 (RV)
x = y

�x = y

:x = y

�:x = y

x = y

Ex! Ey

304 (G=)
` G(:y = t)

` G(p ^ :p)
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List of Systems

PL = Predicate Logic, First-order Logic (without identity).
S = an arbitrarily selected propositional modal logic as strong or
stronger than K.

269 MFL = (FUI) + (FUG) Minimal Free Logic

270 ID = (=In) + (=Out) Intensional Identity Theory

273 Q1 = S + PL + ID + (RT) + (BF).

274 Q1R = S + MFL + ID + (RT).

275 QK = S + PL with no terms. The necessitation rule is
restricted to apply only to closed sentences.

277 QPL = S + PL.

282 Q2 cannot be axiomatised, unless modality is as strong as S5.

284 QS = S + MFL + ID.

284 B1{S5 = S + PL + (BF) + ID + axiom of substitution for strong
identities.

298 GS = S + (GUI) + (GUG) + ID.

301 GQ1R = GS + (RT) + (=E).

302 GQ1 = GQ1R + (E).

304 Q3 = S + GS + (RV) +(G=).

304 Q3{S4 = S4 + GS with 9x�x = t for Et + (RV) + (G=).
(Thomason's Q3 [1970] also contains rules for descriptions,
and the axiom 9x9yx = y to guarantee that every domain contains
at least one individual.)
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List of Conditions on Models

A model has the form hW;R;D;Q; ai
hW;Ri is the Kripke frame,
D is the domain of possible objects,
a is the assignment function, that gives terms and predicate letters
their intensions over W and D,
Q is an item that details the nature of the quanti�er domain(s).

For free logic with primitive predicate E we have a(E) is Q.

The truth value a(A)(w) of formula A at world w is de�ned
recursively by the following clauses.

(:) a(:A)(w) is T i� a(A)(w) is not T ,
(!) a(A! B)(w) is T i� a(A)(w) is F or a(A)(w) is T ,
(�) a(�A)(w) is T i� if wRw0 then a(A)(w0) is T
and another clause for the quanti�er which di�ers in di�erent semantics.

To describe a semantics for quanti�er modal logic, we give a
description of Q, list any other conditions on the model and then
give the truth clause for the quanti�er.

273 Q1
A Q1-model has Q = Q1 = D, and meets (aRT).
(aRT) a(t)(w) is a(t)(w0) for all w;w0 in W ,
(Q1) a(8xA)(w) is T i� for all d in Q1, a(d=x)(A)(w) is T .

274 Q1R
A Q1R-model has Q = Q1R a function that assigns subsets D(w) to
the worlds w of W , and it meets (aRT).
(Q1R) a(8xA)(w) is T i� for every d in D(w); a(d=x)(A)(w) is T .

277 QPL
A QPL-model is Q1R-model that meets (ND). Truth values are
calculated using (TG) (truth value gaps).
(ND) If wRw0, then D(w) is a subset of D(w0).
(TG) If a(t)(w) 62 D(w), then any sentence Pt containing t has no

truth value.
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277 GK
A GK-model is a Q1R-model. Truth values are calculated using (TG).
For GKc, use clause (�c) for �. For GKs, use (�s).
(�c) a(�A)(w) is T i� if wRw0, then A has a value at w and

a(A)(w0) is T .
(�s) a(�A)(w) is T i� if wRw0 and A has a value at w, then

a(A)(w0) is T .

278 Q3
A Q3-model has Q = Q1R = a function that assigns a domain D(w) to
each possible world. It need not meet condition (aRT). The
quanti�er clause is (Q1R).

280 Q3L
A Q3L-model is Q3-model that meets condition (L) (local terms).
(L) a(t)(w) 2 D(w) for all w in W , and all terms t.

281 QC
A QC-model has Q = QC = the set of all functions from W into D.
(QC) a(8xA)(w) is T i� for every f in QC, a(f=x)(A(w) is T .

282 Q2
A Q2-model has Q = Q2 = Q1R = a function that assigns a domain
D(w) for each of the possible worlds w.
(Q2) a(8xA)(w) is T i� for every function f from W into
D; a(f=x)(A)(w) is T .

284 QS
A QS-model has Q = QS = a function that assigns to each world w a
subset S(w) of the set QC of all functions from W into D.
(QS) a(8xA)(w) is T i� for every member f of S(w),
a(f=x)(A)(w) is T .

Department of Philosophy, University of Houston, USA.

BIBLIOGRAPHY

[Boolos and Je�rey, 1989] G. Boolos and R. Je�rey. Computability and Logic, 3rd edi-
tion. Cambridge University Press, (1st edition 1974), 1989.

[Bowen, 1979] K. Bowen. Model Theory for Modal Logic. Reidel, Dordrecht, 1979.
[Bressan, 1973] A. Bressan. A General Interpreted Modal Calculus. Yale University

Press, 1973.
[Carnap, 1947] R. Carnap. Meaning and Necessity. University of Chicago Press, 1947.
[Cresswell, 1995] M. J. Cresswell. Incompleteness and the Barcan formula. Journal of

Philosophical Logic, 24:379{403, 1995.



QUANTIFICATION IN MODAL LOGIC 323

[Fine, 1970] K. Fine. Propositional quanti�ers in modal logic. Theoria, 36:336{346,
1970.

[Gabbay, 1976] D. M. Gabbay. Investigations in Modal and Tense Logics with Applica-
tions to Problems in Philosophy and Linguistics. Reidel, Dordrecht, 1976.

[Gallin, 1975] D. Gallin. Intensional and Higher-Order Modal Logic. North-Holland,
Amsterdam, 1975.

[Garson, 1978] J. Garson. Completeness of some quanti�ed modal logics. Logique et
Analyse, 21:153{164, 1978.

[Henkin, 1949] L. Henkin. The completeness of the �rst-order functional calculus. Jour-
nal of Symbolic Logic, 14:159{166, 1949.

[Hintikka, 1970] J. Hintikka. Existential and uniqueness presuppositions. In Philosoph-
ical Problems in Logic. D. Reidel, Dordrecht, 1970.

[Hughes and Cresswell, 1968] G. Hughes and H. Cresswell. An Introduction to Modal
Logic. Methuen, London, 1968.

[Kamp, 1977] H. Kamp. Two related theorems by D. Scott and S. Kripke, 1977. Xerox.
[Konyndyk, 1986] K. Konyndyk. Introductory Modal Logic. University of Notre Dame

Press, Notre Dame, Indiana, 1986.
[Kripke, 1963] S. Kripke. Semantical considerations in modal logic. Acta Philosophica

Fennica, 16:83{94, 1963.
[Kripke, 1972] S. Kripke. Naming and necessity. In D. Davidson and G. Harman, editors,

Semantics of Natural Language. Reidel, Dordrecht, 1972.
[Lewis, 1968] D. Lewis. Counterpart theory and quanti�ed modal logic. Journal of

Philosophy, 65:113{126, 1968.
[Menzel, 1991] C. Menzel. The true modal logic. Journal of Philosophical Logic, 20:331{

374, 1991.
[Parks, 1976] Z. Parks. Investigations into quanti�ed modal logic. Studia Logica, 35:109{

125, 1976.
[Parsons, 1975] C. Parsons. On modal quanti�er theory with contingent domains (ab-

stract). Journal of Symbolic Logic, 40:302, 1975.
[Thomason, 1969] R. Thomason. Modal logic and metaphysics. In K. Lambert, editor,

The Logical Way of Doing Things. Yale University Press, 1969.
[Thomason, 1970] R. Thomason. Some completeness results for modal predicate calculi.

In K. Lambert, editor, Philosophical Problems in Logic. D. Reidel, Doredrecht, 1970.

EDITOR'S NOTE

The following recent book is of interest:

BIBLIOGRAPHY

[Fitting and Mendelsohn, 1999] M. Fitting and R. L. Mendelsohn. First-order Modal
Logic. Kluwer Academic Publishers, 1999.





JOHAN VAN BENTHEM

CORRESPONDENCE THEORY

1 INTRODUCTION TO THE SUBJECT

Correspondences

When possible worlds semantics arrived around 1960, one of its most charm-
ing features was the discovery of simple connections between existing inten-
sional axioms and ordinary properties of the alternative relation among
worlds. Decades of syntactic labour had produced a jungle of intensional
axiomatic theories, for which a perspicuous semantic setting now became
available. For instance, typical completeness theorems appeared such as the
following:

A modal formula is a theorem of S4 if and only if it is true in
all reexive, transitive Kripke frames.

Indeed, S4 may also be shown to be the modal logic of the partial orders;
which matches the most famous modal logic with perhaps the most basic
type of classical relational structure. Such matchings extend to logics higher
up in the S4-spectrum. For instance, S4.2 with its additional axiom

��p! ��p

is complete with respect to those frames which are reexive, transitive and
directed, or conuent:

8xyz((Rxy ^Rxz)! 9u(Ryu ^Rzu))

Again, the latter condition is a `diamond property' of classical fame.

Completeness results such as these have inspired a ourishing area of
intensional Completeness Theory, witness the classic [Segerberg, 1971]. It
took modal logicians some time, however, to realise that there are also direct
semantic equivalences involved here, having nothing to do with deduction in
modal logics. Indeed, the whole present Correspondence Theory arose out
of simple observations such as the following, made in the early seventies.

EXAMPLE 1. The T -axiom �p ! p is true in a Kripke frame hW;Ri if
and only if R is reexive.

Here, `true in a frame' means true in all worlds, under all assignments to
the proposition letters.



326 JOHAN VAN BENTHEM

Proof. `)': Consider any w 2 W . If �p ! p is true in hW;Ri, then, in
particular, it is true at w under the assignment V with

V (p) = fv 2W j Rwvg:

Thus, �p will be at w true by de�nition | and, hence, also p: i.e. Rww.
`(': By reexivity, truth at all R-alternatives implies actual truth. �

EXAMPLE 2. The S4-axiom �p! ��p is equivalent to transitivity.

Proof. By an analogous argument. �

EXAMPLE 3. The S4.2-axiom ��p! ��p de�nes directedness.

Proof. `)': Consider arbitrary w; v; u 2 W such that Rwv;Rwu. Let the
assignment V have

V (p) = fs 2W j Rvsg:
Immediately, this gives truth of �p at v. Therefore, ��p is true at w,
whence ��p must hold as well. It follows that �p is true at u; i.e. u has
some R-successor in V (p) | whence v; u share a common R-successor.

`(': If ��p is true at W , say because of some v with Rwv verifying �p,
then �p will be true at all R-successors of w. For, all of these share at least
one successor with v, by directedness. �

Not all correspondences are equally simple. For instance, S4.2 has a
companion logic S4.1 obtained by enriching S4 with the `McKinsey Axiom'
��p! ��p. This converse of the S4.2 axiom turns out to be much more
complex. A well-known completeness theorem says that S4.1 axiomatises
the modal theory of those Kripke frames which are reexive, transitive as
well as atomic:

8x9y(Rxy ^ 8z(Ryz! z = y)):

(Notice that we need identity here, in addition to the predicate constant R.)
We shall see later in Section 2.2 that the S4.1 axioms together (just) manage
to de�ne the above threefold relational condition, but that the McKinsey
Axiom does not de�ne atomicity on its own (it is weaker). Indeed, this
simple modal principle does not possess a �rst-order relational equivalent
at all | a discovery made independently by several people around 1975.

Modal Formulas as Conditions on the Alternative Relation

The general picture emerging here is that of modal axioms expressing certain
`classical' constraints on the alternative relation in frames where they are
valid. With hindsight, this observation is hardly surprising. After all, given



CORRESPONDENCE THEORY 327

some valuation, the clauses of the basic Kripke truth de�nition amount to a
translation from modal formulas into classical ones involving R. Thus, e.g.,

�p! p becomes 8y(Rxy ! Py)! Px
�p! ��p becomes 8y(Rxy ! Py)!

! 8y(Rxy ! 8z(Ryz! Pz));

while the McKinsey Axiom ��p! ��p becomes

8y(Rxy ! 9z(Ryz ^ Pz))! 9y(Rxy ^ 8z(Ryz! Pz)):

Here the parameter `x' refers to the current world of evaluation, while unary
predicate constants P (Q; : : :) denote the sets of worlds where the corre-
sponding proposition letter p (q; : : :) holds.

Let us pause, to realise how, by this simple observation alone, many estab-
lished results about classical predicate logic can be transferred straightaway
to modal logic. For instance, for Kripke frames plus a �xed assignment
(the modal `models' of Section 2.1), Compactness and L�owenheim{Skolem
results are immediate. If, e.g. a set of modal formulas is �nitely satis�able in
Kripke models (given suitable assignments), then its classical transcription
will be �nitely satis�ed too. Hence, by ordinary compactness, the latter set
is simultaneously satis�ed in some structure hW;R;P;Q; : : :i: which forms
a Kripke frame cum assignment verifying the original set.

But, this perspective is not quite the one we need.
In the evaluation of modal formulas according to the above truth def-

inition, two factors are intermingled: the relational pattern of the worlds
and the particular `facts', i.e. the assignment. But the latter | the par-
ticular denotations of constants P;Q; : : : | is not relevant to the role of
modal formulas as relational constraints. Indeed, these may even obscure
the issue. When, e.g. V (p) equals W; �p ! p holds in all worlds | but
this observation is completely uninformative about the true content of this
axiom (viz. reexivity).

In order to arrive at the proper perspective, one simply abstracts from
the e�ects of particular assignments, by means of a universal quanti�cation
over the unary predicates in the preceding translation. Thus, for instance,

�(p _ q)! (�p _�q)

now becomes

8P8Q (8y(Rxy ! (Py _Qy))! (8y(Rxy ! Py)_
_8y(Rxy ! Qy))):

Notice that modal formulas now get second-order transcriptions, as opposed
to the earlier �rst-order ones.
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The parameter `x' has remained: the present relational conditions are still
`local' in some actual world. A `global' condition is obtained by perform-
ing one more universal quanti�cation, this time with respect to this world
parameter. The distinction is not without importance. The local version is
more suitable for the original Kripke structures hW;R;w0i, in which some
`actual world' w0 �gured prominently, as well as for `non- normal' modal se-
mantics, in which certain worlds are distinguished from others. The global
reading is the more common one, however, which will be predominant in
the sequel.

Again, the very point of view embodied in the above translation is sig-
ni�cant | even though some of the earlier transfer phenomena are lost.
What is lost, for instance, are most useful forms of compactness, as well as
the L�owenheim{Skolem property. There is no automatic guarantee through
second-order logic that, if a modal formula is true in some uncountable
Kripke frame (i.e. under all valuations) it will be true in its countable
elementary subframes (again, under all valuations). Still, this very phe-
nomenon will be used to drive a wedge between `essentially �rst-order' and
`essentially second-order' modal axioms in Section 2.2. Moreover, not all
is lost. The above transcriptions are very simple second-order formulas,
viz. so-called �1

1-sentences, with all second-order quanti�ers occurring in
a universal pre�x in front of a �rst-order matrix. From classical logic, we
still now a few things about �1

1-sentences, that will turn out useful. (Cf.
the chapters on Higher Order Logic and Algorithms in Volume 1 of this
Handbook for background.)

One such thing is involved in the following obvious question. In the light
of earlier examples of correspondence, the present second-order transcrip-
tions are exceedingly cumbersome. Compare, e.g. for the T -axiom �p! p,

8xRxx with 8x8P (8y(Rxy! Py)! Px):

Yet it was the discovery of the former simple �rst-order equivalents that
motivated the above investigation in the �rst place. Now for some modal
formulas, the second-order complexity may be unavoidable | witness the
example of McKinsey's Axiom. But at least, there arises an obvious basic

Query: Which modal formulas de�ne �rst- order relational conditions |
and how do they manage it?

By the above perspective, classical sources provide one immediate answer.
A �1

1-sentence is �rst-order de�nable if and only if it is preserved under the
formation of ultraproducts, a fundamental construction in classical model
theory. Through the above transcription, the same criterion applies to
modal formulas. (The technical ins and outs of this point, as well as of
related ones in this introduction, are postponed until the relevant sections:
Sections 2.1 and 2.2 in this case.)
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Modal Correspondence Theory

The preceding query has been the starting point for a systematic study of
classical de�nability of modal formulas, when viewed as relational principles.
Now the mentioned ultraproduct characterisation is a very abstract, global
one, rather removed from the actual business of �nding correspondences.
Also historically, it is a rather late development | and we shall therefore
turn to more concrete themes, as they evolved.

At �rst sight, proving �rst-order de�nability seems a simple matter: just
�nd an equivalent, and show that it works. Still, there is the question
how much system there is to this activity. For instance, Examples 1{3
exhibited regularities in their proofs. And indeed, closer inspection reveals
that reexivity, transitivity and directedness may be obtained from the
second-order transcriptions of the S4.2-axioms through certain substitutions
of `minimal' de�nable assignments.

The heuristics behind this method is simply this. If, e.g. �p! p is true
at x, then the most `parsimonious' way of verifying the antecedent (i.e. by
having V (p) = fy j Rxyg) carries maximal information about the whole
implication. This essentially, is why the substitution of Rxu for Pu in

8x8P (8y(Rxy! Py)! Px)

yields the equivalent formula

8x(8y(Rxy ! Rxy)! Rxx):

By the universal validity of the antecedent, the latter may be simpli�ed to
the usual statement of reexivity. A completely analogous line of thought
produces transitivity from the transcription of �p ! ��p. Some com-
plications arise with antecedents as in ��p ! ��p; but the general idea
remains the same. In this way, one discovers a large recursive class of modal
formulas with e�ectively obtainable �rst-order equivalents.

Nevertheless, this method of substitutions also has de�nite limits. No-
tably, it does not work for all �rst-order de�nable modal formulas | as
will be proved in Section 2.2 for the case of S4.1. In connection with this
matter, the exact combinatorial complexity of the set of �rst-order de�nable
modal formulas is still unknown | but there are reasons for fearing that
it is not even arithmetically de�nable (let alone, recursive or recursively
enumerable).

Disproving �rst-order de�nability is a more diÆcult matter. Indeed, how
should one go about this at all? The common pattern in all examples in the
literature comes to this: �nd some semantic preservation property of �rst-
order sentences, which is lacked by the modal formula under consideration.
Thus, e.g. the earliest published contribution by the present author was an
example showing how the McKinsey Axiom sins against the L�owenheim{



330 JOHAN VAN BENTHEM

Skolem theorem. It holds in a certain uncountable Kripke frame (to be
presented in Section 2.2.) without holding in any of a certain group of its
countable elementary subframes. A classical example of this phenomenon
occurs when Dedekind Continuity (itself a �1

1-property) is added to the
�rst-order ordering theory of the rationals. The resulting �1

1-sentence has
uncountable models (notably, the reals); but, it even lacks countable models
altogether.

The modal examples of `essentially second-order' axioms to be found in
Section 2.2 will serve to delimit the range of the above method of substi-
tutions. As so often, the McKinsey Axiom again provides an illuminating
example. The above heuristics of `minimal veri�cation' typically fails for
antecedents such as ��p, expressing some dependency | and �rst-order
failure is immediate.

Besides the modal half of the story, so to speak, there also exists the
opposite direction, looking from classical formulas to modal ones. Again,
this inspires a basic

Query. Which �rst-order relational conditions are modally de�nable?

The `positive' side of this matter again concerns the establishing of valid
equivalences. Thus, for instance, how does one �nd a modal de�nition for
such a classical favourite as connectedness

8xyz((Rxy ^Rxz)! (Ryz _Rzy)))?

This time, the heuristics consists in imagining a situation where the property
fails, together with a way of `maximally exploiting' this failure through
modal formulas. In the above particular case, supposing that Rxy;Rxz;
:Ryz;:Rzy, one sets �p true at y (with p false at z) and �q true at z
(with q false at y). This has the e�ect of verifying the following formula at
x:

�(�p ^ :q) ^ �(�q ^ :p):
Now, the original property itself will correspond to the negation of this
modal `failure description', i.e.

:(�(�p ^ :q) ^ �(�q ^ :p)):

By some familiar equivalence transformations, this becomes

�(�p! q) _�(�q ! p);

a principle known from the literature as Geach's Axiom.
It remains to be shown, of course, that conversely, failure of this axiom

implies failure of connectedness; but this is immediate. In order to cross-
check, one might also apply the earlier method of substitutions to (some
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suitable transform of) the Geach Axiom: and indeed, connectedness will
ensue.

The `negative' side again consists of disproofs. Here as well, these turn out
to possess a particular interest | as we are forced to contemplate `typical
behaviour' of modal formulas. A standard example is the following. Al-
though reexivity was modally de�nable, irreexivity turns out intractable:
8x:Rxx. But, failed attempts are no de�nite refutations. What we need
is some semantic property of modal formulas, as relational conditions on
Kripke frames, which is not shared by this particular �rst-order sentence.

At this point, the modal model theory of Section 2.1 comes in. There,
one �nds that the following mappings play a fundamental role in the trans-
mission of modal truth between Kripke frames: a p-morphism is a function
f from a frame hW;R1i to a frame hW2; R2i which

1. preserves R1, and

2. `almost' preserves R2, in the following sense:
`If R2f(w)v, then there exists some u 2 W1 such that (a) R1wu and
(b) f(u) = v'.

Under di�erent names, this notion has had a career in standard logic already,
e.g. the `Mostowski collapse' in set theory is of this kind.

For the purposes of the present example, it need only be recorded that
subjective p-morphisms preserve truth of modal formulas on Kripke frames.
But then, irreexivity may be dismissed: it holds in the frame of the natural
numbers with the usual order, but it fails in its p-morphic image (!) arising
from the contraction to one single reexive point.

This example will have given a taste of the actual �eld-work in this area
of Correspondence Theory. There also arises the more general question,
of course, whether some combination of modally valid preservation require-
ments manages to characterise all and only the modally de�nable �rst-order
sentences. This is indeed the case, and an elegant result to this e�ect |
involving p-morphisms as well as other basic constructions, will be proved
in Section 2.4.

The preceding survey by no means exhausts the range of questions that
can be investigated in Correspondence Theory | but it does convey the
spirit.

Correspondence and Completeness

Three pillars of wisdom support the edi�ce of Modal Logic. There is the
ubiquitous Completeness Theory, the present Correspondence, or, more gen-
erally, De�nability Theory | and �nally, the Duality Theory between Kripke
frames and `modal algebras' (cf. Section 2.3 below) has become an area of its
own. Connections between the latter two will become apparent as Section
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2 unfolds | in particular, the above-mentioned characterisation of modally
de�nable �rst-order sentences will be obtained as a consequence of the clas-
sic Birkho� Theorem of Universal Algebra, applied to modal algebra.

The relation between correspondence and completeness is less vital to
subsequent developments. Moreover, it turns out to be rather complex |
and indeed, only partially understood. Nevertheless, for those readers who
are familiar with the basic notions of Completeness Theory, the following
sketch of issues may serve to bring questions of correspondence closer to
traditional concerns.

The early completeness theorems in modal logic were brought under one
heading in [Segerberg, 1971]: `modal logic L is determined by a class R of
Kripke frames', i.e. L axiomatises the modal theory of R (on the basis of
the minimal logic K).

As before, two perspectives emerge here. First, one may start with a
given class R, asking for a recursive axiomatisation L of its modal theory.
In general, there is no guarantee for success here; but there is one helpful
observation involving �rst-order de�nability.

FACT 4. If R is elementary (i.e. de�ned by a single �rst-order sentence),
then its modal theory is recursively axiomatisable.

Proof. Let � = �(R;=) de�ne R. A modal formula ' belongs to the
theory of R if and only if it holds in all frames in R. This may be restated
as follows:

� � 8x8P1 : : :8Pn�(');

where �(') is the earlier �rst-order translation of ', while p1; : : : ; pn are
the proposition letters occurring in the latter formula. Now, the predicate
variables P1; : : : ; Pn do not occur in the �rst-order sentence �, and, there-
fore the above implication is equivalent to � � 8x�('). But this is an
ordinary �rst-order implication. So, since the latter notion is recursively
axiomatisable, the same must be true for membership of the modal theory
of R.

Axiomatisable, yes, but axiomatisable on the basis of the minimal modal
logic K? Even this is true, choosing a suitable recursive set of axioms as in
the proof of Craig's Theorem in classical logic and noticing that K contains
modus ponens (which is all that is needed). �

Thus, in retrospect, the earlier completeness theorems for reexive, transi-
tive orders (and other elementary classes) were quite predictable.

The direction from classes of frames to logics is not the current one in
modal logic; being more appropriate to areas such as tense logic, where
temporal structures often precede temporal theories. Usually, one already
possesses a certain logic L, asking for a classR of Kripke frames with respect
to which it is complete. (Notice that, if any class R suÆces, then the whole
class of Kripke frames validating L will.)
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Nowadays, we know that not all modal logics are in fact complete in
the above sense, contrary to earlier expectations. This is the content of
the celebrated `modal incompleteness theorems' in [Fine, 1974; Thomason,
1974]. But it has been hoped that, at least, all �rst-order de�nable axiom
sets are complete. (Indeed, a defective proof to this e�ect has circulated.)
Even this more modest expectation was frustrated in [van Benthem, 1978]:

FACT 5. The modal logic L with characteristic axioms

�p! p
��p! ��p
(�p ^�(p! �p))! p

is �rst-order de�nable: its frames are just those satisfying the condition

8xy(Rxy $ x = y):

But the characteristic axiom of the modal theory of the latter class of frames,
viz. �p$ p, is not minimally derivable from L.

The relevant correspondence will be proved in Section 2.2. For the mo-
ment, it may be noticed that the third axiom de�nes a notion of `safe return':
from any R-successor of a world x, one can always return to x by following
some �nite R-chain of R-successors of x.

The relevant argument is highly nontrivial, far outside the range of our
earlier method of substitutions. Nevertheless, even the latter has its rele-
vance for completeness theory, as we shall see presently.

What the modal incompleteness theorems show is that the minimal modal
logic K is to weak to produce all modally valid inferences. But of course,
there may be stronger reasonable `base logics'. One particular example
arises from the method of substitutions. For instance, in proving the equiv-
alence of substitution instances with more current �rst-order conditions,
one uses an extremely natural second-order logic K2 with the following
deductive apparatus:

Some �rst-order base complete with respect to modus ponens,
similar axioms for the second-order quanti�ers;

with the following form of `�rst-order instantiation' allowed for �rst-order
formulas  

8x'(X)! '( ):

Through the earlier second-order transcription, K2 may be used as a modal
base logic.

Here is an example of some fame. In the metamathematics of arithmeti-
cal provability (cf. [Boolos, 1979] or Smory�nski's in a later volume of this
Handbook), the following two modal axioms are basic:

�p! ��p; �(�p! p)! �p (`L�ob's Axiom'):
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The semantic import of the latter will be established in Section 2.2: it
holds in those Kripke frames whose alternative relation is transitive, while
possessing a well-founded converse. Moreover, transitivity is K2-derivable
from L�ob's Axiom, by the substitution of

Rxu ^ 8y(Ruy! Rxy) for Pu:

(The antecedent becomes universally valid, while the consequent expresses
transitivity.) An advantage of K2 over K? No, around 1975, Dick de Jongh
and Giovanni Sambin found a K-deduction for the �rst axiom from the
second after all. The two deductions are related, but systematic connections
between K-deductions and K2-deductions have not been explored up to
date.

Nevertheless, K2 is non-conservative over K in the modal realm. In [van
Benthem, 1979b] we �nd the following incompleteness theorem.

FACT 6. The modal axiom

��?_�(�(�p! p)! p);

with ? the falsum, de�nes the same class of Kripke frames as ��? _ �?.
But, the latter formula is not K-derivable from the former | even though
it is K2-derivable.

Again, there is a correspondence involved here. But the idea is illustrated
by a simple K2-deduction at the back of this result:

1. 8P (8y(Rxy ! (8z(Ryz! Pz)! Py))! Px) (0�(�p! p)! p0),

2. 8y(Rxy ! (8z(Ryz ! z 6= x)! y 6= x)) ! x 6= x (x 6= u for Pu),

3. :8y(Rxy ! (8z(Ryz! z 6= x)! y 6= x)),

4. 9y(Rxy ^ 8z(Ryz! z 6= x) ^ y = x),

5. Rxx ^ 8z(Rxz ! z 6= x)

6. x 6= x: a contradiction (?).

That K2, in its turn, must be modally incomplete (as is any proposed
recursively axiomatised base logic) follows from the general incompleteness
results in [Thomason, 1975].

First-order de�nability does not imply completeness. But, when a modal
logic is both �rst-order de�nable and complete, it enjoys a very pleasant
form of the latter property | viz. with respect to the underlying frame of
its own Henkin model. (`First-order de�nability plus completeness imply
canonicity': cf. [Fine, 1975; van Benthem, 1980].) Such canonical modal
logics will be characterised semantically in Section 2.4: notice that many
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of the familiar text book examples are of this kind. In fact, a canonical
completeness proof, such as that for S4, often proceeds by means of �rst-
order conditions on the Henkin model, induced by the corresponding axioms.

The relation between these familiar `Henkin arguments' and the above
method of substitutions is at present still rather mysterious. Sahlqvist [1975]

contains many examples of parallels; but Fine [1975] presents a problem.
The modal formula

��(p _ q)! �(�p _�q)
axiomatises a canonical modal logic, without being �rst-order de�nable.
Thus, we are still far from complete clarity in the area between completeness
and correspondence.

Variations and Generalisations

Logical model theory may be viewed as a marriage between ontology and
language (or `mathematics' and `linguistics'). Accordingly, the semantics of
propositional modal logic, our paradigm example up till now, exhibits the
familiar triangle

language structures
interpretation

Or, from the above translational point of view, the components are

prima facie language representation language
translation

All these `degrees of freedom' may be varied in intensional logic | and thus
there appears a whole family of `correspondence theories'. We shall explore
some examples of recognised importance in Section 3. Here, let us just think
about the various possibilities and their implications.

Even within the domain of propositional modal logic, alternatives have
been proposed for Kripke-type relational semantics. Jennings, Johnstone
and Schotch [1980] contains the proposal to work with ternary alternative
relations, employing the following notion of necessity:

�' is true at x if 8yz(Rxyz ! '(y) _ '(z)):

Their motivation was, amongst others, to create room for `non-cumulation'
of necessities: the `Aggregation Axiom'

�p ^�q ! �(p ^ q)
will no longer be valid. What happens to earlier correspondences in this new
light? Old boundaries start shifting; e.g. �p! p remains �rst-order de�n-
able, but �p ! ��p becomes essentially second-order on this semantics.
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This is compensated for by the phenomenon of formerly unexciting prin-
ciples, such as the Aggregation Axiom (which was trivially valid before)
springing into unexpected bloom:

EXAMPLE 7. �p ^�q ! �(p ^ q) de�nes

8xyz(Rxyz! (y = z _ Rxyy _Rxzz)):

Proof. `)': Suppose the condition fails at x; y; z. Setting

V (p) = W = fzg; V (q) = W � fyg;
will then verify �p;�q at x, while �(p ^ q) is falsi�ed (by Rxyz).

`(': Suppose that �p;�q hold at x, and consider Rxyz. Either y = z,
whence y veri�es both p and q (by Rxyy and the truth de�nition), or Rxyy,
implying the same conclusion, or Rxzz, in which case z veri�es both p and
q. So, �(p ^ q) holds at x. �

As for the general theorems, forming the backbone of the subject, nothing
essential changes in this ternary semantics.

This example changed both the structures and the form of the truth
de�nition. What may not be generally realised is the variety o�ered even
when �xing the two parameters of `language' and `structures'. Therefore, a
short digression is undertaken here.

The Kripke truth de�nition is not sacrosanct | other clauses would have
been quite imaginable. Thus, for instance, we may make the following

OBSERVATION 8. The truth de�nition `�' is true at x if 8y((Rxy _
Ryx) ! '(y))' yields as a modal base logic KB; i.e. the minimal logic
K plus the Brouwer Axiom p! ��p.

Proof. The Brouwer Axiom de�nes symmetry of the alternative relation; as
may be seen by substituting u = x for Pu. And indeed KB is complete with
respect to the class of symmetric Kripke frames. Hence, any non-theorem
' of KB is falsi�ed on some symmetric frame hW;Ri. But, on symmetric
frames R coincides with the relation �xy. (Rxy _ Ryx) (i.e. R united with
its converse �R); whence ' also fails by the new evaluation.

Conversely, if ' has a counter-example hW;Ri under the new truth de�-
nition, then it has hW;R [ �Ri for an ordinary symmetric counter-example;
whence it is outside of KB. �

Thus, there is a possible trade-o� between truth de�nition and require-
ments on the alternative relation. The exact extent of this phenomenon
remains to be investigated. Notice for example how KB is equally well
generated by the following truth de�nition:

�' is true at x if 8y((Rxy ^ Ryx)! '(y)):
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The general principle behind such examples is this.

FACT 9. If C(R) is any condition on R, and (x; y) some formula in R;=
such that

1. If C(R) is satis�ed, then R and �xy:(x; y) coincide,

2. �xy:(x; y) satis�es C,

then the modal logic determined by (the Kripke frames obeying) C may
also be generated without conditions through the truth de�nition

�' is true at x if 8y((x; y)! '(y)):

This rather subversive shift in perspective will not be investigated in this
contribution. At this point, it merely serves to remind us that not a single
aspect of the semantic enterprise is immune to revision.

Leaving the realm of modal logic, of the many intensional candidates for
a correspondence perspective, only a few have been explored up to date. In
Section 3, some important examples are reviewed briey, viz. tense logic,
conditional logic and intuitionistic logic. These illustrate, in ascending or-
der, certain diÆculties which tend to make Correspondence Theory rather
more diÆcult (often also: more exciting) in many cases. These diÆcul-
ties have to do with `pre-conditions' on the alternative relation (not very
serious), and the phenomenon of `admissible assignments' (rather more seri-
ous), to be explained in due course. Nevertheless, for instance, Intuitionistic
Correspondence Theory will turn out to possess also some elegant features
lacked by its modal predecessor.

A few examples, even without proof, will render the above remarks more
concrete. In tense logic, the correspondence runs between temporal axioms
and properties of the temporal order (`before', `earlier than').

EXAMPLE 10 (`Hamblin's Axiom'). (p^Hp)! FHp de�nes discreteness
of Time:

8x9y>x8z<y (z = x _ z < x):

In the logic of counterfactual conditionals, conditional inferences are re-
lated to the behaviour of the comparative similar ordering C among alter-
native worlds.

EXAMPLE 11 (Stalnaker's Axiom of `Conditional Excluded Middle').
(p) q) _ (p) :q) de�nes linearity of alternative worlds:

8xyz(y = z _ Cxyz _ Cxzy):

Finally, in intuitionistic logic, (`intermediate') axioms impose constraints
upon the possible growth patterns of stages of knowledge.
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EXAMPLE 12 (`Weak Excluded Middle'). :p _ ::p de�nes `local conver-
gence' of growing stages, i.e. directedness:

8xyz((x � y ^ x � z)! 9u(y � u ^ z � u)):

Proofs, and further explorations are postponed until the relevant sections.
At this stage, the experienced reader may predict that two nuts will be
especially diÆcult to crack for any Correspondence Theory.

The �rst of these concerns the earlier tacit restriction to propositional
logic: what happens in the predicate case? In Section 2.5 we shall see that
no essential problems seem to arise | although the �eld remains largely
unexplored.

A more formidable problem arises when the truth de�nition for the in-
tensional operators itself becomes of higher-order complexity. In that case,
e.g. a search for possible �rst-order equivalents of intensional axioms seems
rather pointless. This eventuality arises when disjunction is evaluated bar-
wise in Beth semantics for intuitionistic logic (i.e. ' _  is true at x if
the '-worlds and  -worlds together form a barrier intersecting each branch
passing through x).

The last word has not been said here, however. Philosophically, it seems
a rather unsatisfactory division of semantic labour to let the truth de�nition
absorb structural complexity (in this case: the second-order behaviour of
branches). The latter should be located where it belongs, viz. in the struc-
tures themselves. And indeed, the Beth semantics admits of a two-sorted
�rst-order reformulation in terms of nodes and paths, which generates a
Correspondence Theory of the usual kind.

All this is not to say that there are no limits to the useful application of
a correspondence perspective. But, these are to be found in philosophical
relevance, rather than technical impossibility. One should study correspon-
dences only as long as they serve the purpose of semantic enlightenment |
which is the shedding of light upon one conceptual framework by relating
it systematically to another.

2 MODALITY

In this chapter, modal correspondence theory will be surveyed against the
background of modal model theory and modal algebra, whose basics are
explained. (Cf. the chapter by Bull and Segerberg in this volume for the
necessary background.)

2.1 Modal Model Theory

The basic structures of modal semantics are introduced: frames, models
and general frames. These may be studied either purely classically, or
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with a speci�cally modal purpose. In both cases, the emphasis is not upon
such structures in isolation, but upon their `categorial context': what are
their relations with other structures, and which of these relations are truth-
preserving? Thus, we will introduce the modal preservation operations of
generated subframe, disjoint union, p-morphic image and ultra�lter exten-
sion. Moreover, the fundamental classical formation of ultraproducts will be
used as well. All these notions will appear again and again in later sections.

Semantic structures. The structures used in the Kripke truth de�nition are
models M , i.e. triples hW;R; V i, where W is a nonempty set of worlds, R
is a binary alternative relation on W , and V is a valuation assigning sets of
worlds V (p) to proposition letters p. The notion explicated then becomes

M � '[w] : `' is true in M at w':

In our correspondence theory we also want to see the bare bones: a frame
F is a couple hW;Ri as above, but without a valuation. There is nothing
intrinsically `modal' about all this, of course. Frames are just the `directed
graphs' of Graph Theory.

In Sections 2.3 and 2.4, a third notion of modal structure will be required
as well | intermediate, in a sense between models and frames. A general
frame F is a couple hF;Wi, or alternatively, a triple hW;R;Wi such that
F = hW;Ri is a frame, and W is a set of subsets of W , closed under the
formation of complements, unions and modal projections. Formally,

if X 2W; then W �X 2W
if X;Y 2W; then X [ Y 2W
if X 2W; then �(X) =def fw 2W j 9v 2 X : Rwvg 2W:

The following example illustrates the e�ect of restricted sets W. Con-
sider the frame hN;�i, where N is the set of natural numbers. Its modal
theory contains such principles as �p! p;�p! ��p and Geach's Axiom:
together forming the logic S4.3. Typically left out is the McKinsey Axiom
��p! ��p; as it may be falsi�ed in some in�nite alternation of p;:p: say
by V (p) = f2n j n 2 Ng. But now, consider the structure hN;�;Wi, where
W consists of all �nite and all co�nite subsets of N . It is easily checked
that all three closure conditions obtain for W. Thus, we have a general
frame here. Its logic contains the earlier one (`a fortiori'); but it also adds
principles. Notably, the McKinsey Axiom can no longer be falsi�ed, as the
above `tell-tale' valuation is no longer admissible. Thus, S4.1 holds in this
general frame, although it does not in the underlying `full frame'. And fur-
ther increases in the modal theory are possible, by restricting W even more;
e.g. there is even a most austere choice, viz. W = f;; Ng, which yields a
general frame validating the `classical logic' with axiom �p $ p | which
was still invalid in the previous general frame. Thus, one single underlying
frame may still generate a hierarchy of modal logics.
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The original algebraic motivation for this notion (due to Thomason [1972])
will be given in Section 2.3. But here already, a direct logical reason may
be given. Kripke frames are so-called `standard models' for modal formulas,
considered as second-order �1

1-sentences: the universal predicate quanti�ers
range over all sets of possible worlds. An intermediate possibility would have
been to allow also `general models' in the sense of Henkin [1950]: in which
this second-order range may be restricted, say to some set W. Usually, such
ranges are to be closed under certain mild conditions of de�nability | in
order to verify reasonable forms of the universal instantiation (or `compre-
hension') axiom. This, of course, is precisely what happened in the above.
The uses of this notion lie partly in modal Completeness Theory, partly in
modal algebra. For the moment, it will not be a major concern.

Semantic questions. Given a formal language, interpreted in certain struc-
tures, a plethora of questions arises concerning the interplay between more
`linguistic' and more `structural' (or `mathematical') notions. We mention
only a few fundamental ones.

Arguably the `�rst question' of any model theory is that concerning the
relation between linguistic indistinguishability (equality of modal theories)
and structural indistinguishability (isomorphism) of semantic structures.
How far do the webs of language and ontology diverge? In classical logic, we
know that (�rst-order) elementary equivalence coincides with isomorphism
on the �nite structures, but no higher up: isomorphism then becomes by
far the �ner sieve.

Now, the modal language on models behaves like the �rst-order language
of the �rst translation in the introduction: nothing spectacular results. But
the second-order notion seems more interesting in this respect. (Equality of
second-order theories is quit`e strong: modulo the Axiom of Constructibility,
it even implies isomorphism in all countable frames; cf. [Ajtai, 1979]). From
Van Benthem [1985], which treats the analogous question for tense logic in
Chapter 2.2.1, we extract

THEOREM 13. Finite Kripke frames that are generated by a single point
(cf. below) are isomorphic if and only if they possess the same modal theory.
But, the countable Kripke frames Z�Z (the integers, with each point replaced
by a copy of the integers) and Q �Z (the rationals, treated likewise) possess
the same modal theory, without being isomorphic.

In tense logic, the latter result means that the formal language can-
not distinguish between locally discrete/globally discrete and locally dis-
crete/globally dense Time. (The latter may well be that of our World.)
In the context of modal logic, no such appealing interpretation is possible,
whence we forego further discussion of the above result.

From now on, we will con�ne attention to a single theme, which again,
is characteristic for much of what goes on in Model Theory.
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Truth-preserving operations. In evaluating the truth of a modal formula '
at a world w we only have to consider w itself, (possibly) its R-successors,
(possibly) their R-successors, etcetera. Thus, only that part of the frame is
involved which is `R-generated' by w, so to speak. In general, one never has
to look beyond R-closed environments of w: an observation summed up in
the following notion and result.

DEFINITION 14. M1 (= hW1; R1; V1i) is a generated submodel of M2 (=

hW2; R2; V2i) (notation: M1
�!M2) if

1. W1 �W2

2. R1 = R2 restricted to W1,

3. V1(p) = V2(p)\W1, for all proposition letters p; i.e. M1 is an ordinary
submodel of M2, which has the additional feature that

4. W1 is closed under passing to R2-successors.

The next result is the famous `Generation Theorem' of Segerberg [1971].

THEOREM 15. If M1
�! M2, then for all worlds w 2 W1 and all modal

formulas ', M1 � '[w] i� M2 � '[w].

This is what happens inside a single model. When comparisons are de-
sired between evaluation in distinct models, a more external connection is
required.

DEFINITION 16. A relation C is a zigzag connection between two models
M1;M2 if

1. domain (C) = W1, range (C) = W2,

(a) if Cwv and w0 2 W1 with R1ww
0, then Cw0v0 for some v0 2 W2

with R2vv
0 (`forth choice')

(b) If Cwv and v0 2 W2 with R2vv
0, then Cww0 for some w0 2 W1

with R1ww
0 (`back choice')

2. if Cwv, then w; v verify the same proposition letters.

Starting from the basic case (3), the back-and-forth clauses ensure that
evaluation of successive modalities in modal formulas yield the same results
on either side:

THEOREM 17. If M1 is zigzag-connected to M2 by C, then, for all worlds
w 2 W1; v 2W2 with Cwv, and all modal formulas ',

M1 � '[w] i� M2 � '[w]:

Notation. M1 !M2 for zigzag-connected models (by some C).



342 JOHAN VAN BENTHEM

By a result in Van Benthem [1976], the Generation Theorem and the
preceding `Zigzag Theorem' combined are characteristic for modal formulas
as �rst-order formulas in the sense of the introduction:

THEOREM 18. A �rst-order formula '(x) in the language with R;P;Q; : : :
is logically equivalent to some modal transcription if and only if it is invari-
ant for generated submodels and zigzag connections (in the above sense).

For the case of pure frames, the above notions and results lead to the
following three preservation results.

DEFINITION 19. F1 is a generated subframe of F2 (F1
�! F2) if

1. W1 �W2,

2. R1 = R2 restricted to W1,

3. W1 is R2-closed in W2.

In general logic, this type of situation is often described by saying that the
`converse frame' hW2; �R2i is an end extension of hW1; �R1i: the added worlds
all come `at the end'.

From Theorem 15 we derive preservation under generated subframes:

COROLLARY 20. If F1
�! F2, then F2 � ' implies F1 � ', for all modal

formulas '.

Here `F � '' means `' is true in F ', in the global second-order sense of
the introduction: at all worlds, under all valuations.

But Theorem 15 also has an `upward' directed moral.

DEFINITION 21. The disjoint union �fFiji 2 Ig of a family of frames
Fi = hWi; Rii is the disjoint union of the domains Wi, with the obvious
coordinate relations Ri.

Another direct application is preservation under disjoint unions:

COROLLARY 22. If Fi � ' (all i 2 I), then �fFiji 2 Ig � ', for all modal
formulas '.

Next, turning to Theorem 17, one now needs a connection between frames
which can be turned into a suitable zigzag relation between models over
them.

DEFINITION 23. A zigzag morphism from F1 to F2 is a function: W1 !
W2 satisfying

1. R1ww
0 implies R2f(w)f(w0),

i.e. f is an ordinary R-homomorphism; which has the additional back-
ward property that

2. if F2f(w)v, then there exists u 2 W1 with R1wu and f(u) = v.
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This notion was mentioned under its current, but rather uninformative
name of `p-morphism' in the introduction. Here is one more example:

the map from nodes to levels (counting from the top) is a zigzag
morphism from the in�nite binary tree (with the descendant
relation) onto the natural numbers (with the usual ordering).

Notice also that injective (1-1) zigzag morphisms are even just isomor-
phisms.

Theorem 17 now implies the `p-morphism' theorem of Segerberg [1971].

COROLLARY 24. If f is a zigzag morphism from F1 onto F2, then, for all
modal formulas '; F1 � ' implies F1 � '.

For more `local' versions of these results, the reader is referred to [van
Benthem, 1983].

More examples, and applications of Corollaries 20, 22, and 24 will be
found in Section 2.4. A quick impression may be gained from the following
sample observation (D. C. Makinson). The modal theory of any Kripke
frame is either contained in the classical modal logic (characteristic axiom
�p$ p) or the `absurd' modal logic (characteristic axiom �(p^ :p)). For,
any frame F either contains end points without R-successors, or it is serial
(8x9yRxy). In the former case, such an end point by itself forms a generated
subframe, and by Corollary 20, the logic of the frame is contained in that
of the subframe | which is the absurd one. In the latter case, contraction
to one single reexive point is a zigzag morphism, and by Corollary 24, the
logic of the frame is contained in that of the reexive point | which is the
classical one.

We conclude by noting that these three notions are easily adapted to
general frames, taking due precautions concerning the various sets W1;W2.
Here are the three necessary additions:

In 19: add `W1 = fX \W1 j X 2W2g'.
In 21: add `the new W2 remains essentially the old W1' (but for the

disjointness procedure used).
In 23: add the following `continuity requirement', reminiscent of topology:

`for all X 2W2; f
�1[X ] 2W1'.

These will be needed in the duality theory of Section 2.3.

Propositions and possible worlds. Another characteristic feature of modal
semantics is the analogy between propositions and sets of possible worlds;
as well as (moving up one stage in set-theoretic abstraction) that between
possible worlds and maximal sets of propositions. Indeed, many philosophers
would deny that there exist any di�erences here. Let us investigate.

The ideal setting here are general frames hW;R;Wi: the range is clearly
identi�able with a collection of `propositions' over W .
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Now, if worlds are to be considered as sets of propositions, then some ob-
vious desiderata govern the connection between a world w and propositions
X;Y associated with w:

1. X 2 w or Y 2 w if and only if X [ Y 2 w (`analysis')

2. X 62 w if and only if W �X 2 w (`decisiveness').

Accordingly, one considers only subsets w of W satisfying these two condi-
tions. These are precisely the so-called ultra�lters on W.

What about the alternative relation to be imposed?
Again, a common idea is that a world v is R-accessible to w if it `satis�es

all w's modal prejudices', i.e. whenever �' is true at w, ' should be true at
v. The same idea may be expressed as follows: whenever ' is true at v;�'
should be true at w. In the present context, this becomes the following
stipulation:

Rwv if for all X 2 v; �(X) 2 w:
In this process, no new propositions have been created, whence the former

propositions X now reappear as sets �X = fw j X 2 wg.
These considerations motivate

DEFINITION 25. The ultra�lter extension ue(G) of a general frame G =
hW;R;Wi is the general frame hue(W;W); ue(R;W); ue(W)i, with

1. ue(W;W) is the set of all ultra�lters on W,

2. ue(R;W)wv, if for each X 2W such that X 2 v; �(X) 2 w,

3. ue(W) is f �X j X 2Wg.

What this construction has done is to re-create G one level higher up in
the set-theoretic air, so to speak, and some calculation will prove

THEOREM 26. G and ue(G) verify the same modal formulas.

Still, not everything need have remained the same: the world pattern
of hW;Ri may di�er from that of hue(W;W); ue(R;W)i. First, each old
world w 2 W generates an ultra�lter fX 2 W j w 2 Xg and, hence,
a corresponding new world in ue(W;W). But, unless W satis�es certain
separation principles for worlds, di�erent old worlds may be identi�ed to a
single new one. (In the earlier example of hN;�; f;; Ngi, only a single new
world remains, where there used to be in�nitely many!) On the other hand,
the construction may also introduce worlds that were not there before. For
instance, on the earlier general frame hN;�, (co-)�nite setsi, the co-�nite
sets form an ultra�lter which induces a `point at in�nity' in the resulting
ultra�lter extension. Indeed, it is easily seen that the latter consists of
hN;�i followed by just that in�nite point.
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In Section 2.3, necessary and suÆcient conditions will be formulated guar-
anteeing that a general frame is `stable' under the construction of ultra�lter
extensions. In any case, it turns out that the process stabilises after one step
at the most. Now, these considerations also apply to `full' Kripke frames.

DEFINITION 27. The ultra�lter extension ue(F ) of a frame F = hW;Ri is
the frame hue(W ); ue(R)i, with

1. ue(W ) is the set of all ultra�lters on W ,

2. ue(R)wv if for each X �W such that X 2 v; �(X) 2 w.

This time, Theorem 26 does not hold, however. For, it only says that the
modal theory of the general frame hW;R; power set of W i coincides with
that of the induced general frame according to De�nition 25. Now, the
latter is, in general, a restriction of the full frame hue(W ); ue(R)i. Hence,
we can only conclude to anti-preservation under ultra�lter extensions:

COROLLARY 28. If ue(F ) � ', then F � ', for all modal formulas '.

Still, this structural notion can be made a little more familiar by connect-
ing it with previous model-theoretic operations. First, the above-mentioned
connection between old worlds and new worlds is 1-1 this time, and indeed
isomorphic (consider suitable singleton sets):

THEOREM 29. F lies isomorphically embedded in ue(F ).

In general, this cannot be strengthened to `embedded as a generated
subframe'. But, another connection with the earlier preservation notions
may be drawn from [van Benthem, 1979a].

THEOREM 30. ue(F ) is a zigzag-morphic image of some frame F 0 which
is elementarily equivalent to F .

Proof. One expands F to (F;X)X�W , and then passes on to a suitably
saturated elementary extension, by ordinary model theory. From the latter,
a canonical function from worlds to ultra�lters on F exists, which turns out
to be a zigzag morphism. �

Ultraproducts and de�nability. New, modally inspired notions concerning
frames have been forged in the above. But old classical constructions may
be considered as well. Of the various possibilities, only one is selected
here, viz. the formation of ultraproducts. (For many other examples, cf.
[van Benthem, 1985, Chapter I.2.1].) Its use has been indicated in the
introduction already.

The basic theory (and heuristics) of the notion of `ultraproduct' has been
given in the Higher Order Logic chapter in volume 1 of this Handbook. (Cf.
also [Chang and Keisler, 1973, Chapters 4.1 and 6.1].) We recall some of
its outstanding features and uses.
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DEFINITION 31. For any family of Kripke frames fFi j i 2 Ig with an
ultra�lter U on I , the ultraproduct �UFi is the frame hW;Ri with

1. W is the set of classes f�, for all functions f 2 �fWi j i 2 Ig, where
f� is the equivalence class of f in the relation f � g , fi 2 I j f(i) =
g(i)g 2 U ,

2. R is the set of couples hf�; g�i for which fi 2 I j Rif(i)g(i)g 2 U .

This de�nitional equivalence is lifted by induction to

THEOREM 32 (` Lo�s Equivalence'). For all ultraproducts, and all �rst-order
formulas '(x1; : : : ; xn),

�UFi � '[f1�; : : : ; f
n
�] i� fi 2 I j Fi � '[f1(i); : : : ; fn(i)]g 2 U:

Thus, in particular, all �rst-order sentences ' are preserved under ultra-
products in the following sense:

if Fi � '(all i 2 I); then �uFi � ':

Conversely, `Keisler's Theorem' tells us that this is also enough.

THEOREM 33. A class of Kripke frames is elementary if and only if both
that class and its complement are closed under the formation of ultraproducts
and isomorphic images.

Proof. Cf. [Chang and Keisler, 1973, Chapter 6.2]. �

A somewhat more liberal notion of de�nability, viz. by means of arbitrary
sets of �rst-order formulas, yields so-called �-elementary classes. Here the
relevant characterisation employs a special case of ultraproducts.

DEFINITION 34. An ultrapower �UF is an ultraproduct with in each co-
ordinate i the same frame F .

Notice that by the  Lo�s Equivalence, �UF is elementarily equivalent to
F , i.e. both frames possess the same �rst-order theory.

THEOREM 35. A class of Kripke frames is �-elementary if and only if it
is closed under the formation of ultraproducts and isomorphic images, while
its complement is closed under the formation of ultrapowers.

All these notions will be used in the modal correspondence theory of the
next section. In this connection, it should be observed that, as for the other
kinds of modal semantic structure, ultraproducts of models and of general
frames are easily de�ned using the above heuristics. These will not be used
in the sequel however. (Cf. [van Benthem, 1983].)
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The above de�nability question for classical model theory leads to a clear
modal task: `to characterise the modally de�nable classes of Kripke frames'.
In section 2.4 this matter will be investigated.

We have arrived at the interplay between classical and modal model the-
ory, which lies at the heart of modal correspondence theory.

2.2 Correspondence I: From Modal to Classical Logic

Through the translation given in the Introduction, modal formulas may be
viewed as de�ning constraints on the alternative relation in Kripke frames.
Some of these constraints are �rst-order de�nable, others are not. Examples
are presented of both, after which the former class is explored. A mathemat-
ical characterisation is given for it, in terms of ultrapowers, and methods
are developed for (dis-)proving membership of the class. The limits of these
methods are established as well.

First-order de�nability. The class of modal formulas to be studied here is
de�ned as follows.

DEFINITION 36. M1 consists of all modal formulas ' for which a �rst-
order sentence � (in R;=) exists such that

F � ' i� F � �; for all Kripke frames F:

Various examples of formulas in M1 have occurred in the Introduction.
For purposes of illustration, see Table 1 below.

As these are all rather easy to establish, some readers may desire a more
complex example. Here it is, straight from the incompleteness Example 5
in the Introduction.

THEOREM 37. The conjunction of the formulas �p! p;��p! ��p and
(�p ^�(p! �p))! p is in M1.

Proof. We shall show that this conjunction de�nes the same class as the
classical axiom �p$ p, i.e. 8xy(Rxy $ x = y).

The argument requires several stages.

1. �p! p imposes reexivity,

2. �p ^�(p! �p)! p says the following:
8xy(Rxy ! 9n9z1; : : : ; zn(Rxz1 ^ : : : ^Rxzn^
^Ryz1 ^ : : : ^ Rznx)).

In other words, from any R-successor y of x, one may return to x by way
of some �nite chain of R-successors of x. In case the chain is empty, this
reduces to just: Ryx.

This (second-order!) equivalence is proved as follows (I. L. Humberstone):
`)': Consider any y with Rxy. Let the good points be those R-successors z
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Table 1.

Modal formula Condition
�p! p 8xRxx
�p! ��p 8xy(Rxy ! 8z(Ryz ! Rxz))
��p! ��p 8xy(Rxy ! 8z(Rxz ! 9u(Ryu ^ Rzu)))
�(p _ q)! �p _�q 8xy(Rxy ! 8z(Rxz ! z = y))
�(�p! q) _�(�q ! p) 8xy(Rxy ! 8z(Rxz ! (Ryz _ Rzy)))
p! �p 8xy(Rxy ! y = x)
�? 8x:9yRxy
p! ��p 8xy(Rxy ! Ryx)

of x which can be reached from y through some �nite chain (possibly empty)
of R-successors of x. Then, set V (p) equal to the set of all R-successors of
good points. This assignment produces the following e�ects.

1. p is true at y (y being a successor of y, by reexivity), and, hence, �p
is true at x.

2. Any R-successor of x verifying p is itself a good point, whence all its
R-successors belong to V (p).

It follows that �(p ! �p) is true at x. Therefore, p itself must be true
at x: i.e. x is R-successor of some good point, which was precisely to be
proved.

`(': Truth of p in x is discovered by merely following the relevant chain.

3. Now, having secured reexivity and `safe return', we can �nd out what
the McKinsey Axiom says in the present context.

First, notice that all R-successors of any point x may be divided
up into concentric shells Sn(x), where Sn(x) consists of those R-
successors y of x which return to x by n R- arrows (between R-
successors of x) but no less. For instance, S0(x) only consists of x
itself, S1(x) contains immediate R- predecessors. Notice also that, if
y 2 Sn+1(x), then it must have some R-successor in Sn(x).

The McKinsey Axiom makes this whole hierarchy collapse. Set V (p) =
[fS2n(x) j n = 0; 1; 2; : : :g. Then ��p will be true at x, as follows
from the above picture. For, if Rxy, and y 2 Sn(x), then either n is
even | whence p holds at y (by de�nition) and so �p (by reexivity),
or n is odd | whence y has an R-successor in Sn�1(x) verifying p:
which again veri�es �p at y.

It follows that ��p must be true at x. So, �p holds at some R-
successor of x. Which one? In the present situation, this can only be
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x itself. But then again, this means that there can be no shells Sn(x)
with n odd. Thus, there is only S0(w) : 8y(Rxy ! y = x).

4. Combining (1) and (3), the required conclusion follows: the three
axioms together imply 8xy(Rxy $ y = x), and are obviously implied
by it. �

The very unexpectedness of this argument will have made it clear that
there is a creative side to establishing correspondences.

Global and local de�nability. Originally, Kripke introduced frames hW;R;w0i,
with a designated `actual world' w0. From that point of view, the study of
`local' equivalence becomes natural:

F � '[w] i� � �[w];

where the �rst-order formula � has one free variable now. The reader may
have noticed already that previous correspondence arguments often provide
local versions as well. For instance, we had

F � �p! p[w] i� F � Rxx[w]
F � �p! ��p[w] i� F � 8y(Rxy ! 8z(Ryz ! Rxz))[w]:

The local notion is the more informative one, in that local correspondence
of ' with �(x) implies global correspondence of ' with 8x�(x); but not
conversely. Indeed, [van Benthem, 1976] contains an example of a formula
in M1 which has no local �rst-order equivalent at all! On the other hand,
there are also circumstances under which the distinction collapses | e.g.
on the transitive Kripke frames (W. Dziobiak; cf. [van Benthem, 1981a]).

Finally, a word of warning. Local validity of, e.g. �p! ��p means `local
transitivity', no more. The frame hN; fh0; ni j n 2 Ng[fhn; n+1i j n 2 Ngi
is locally transitive in 0, without being transitive.

First-order unde�nability. There is a threshold of complexity below which
second-order phenomena do not occur.

THEOREM 38. All modal formulas without nestings of modal operators are
in M1.

Proof. Cf. [van Benthem, 1978]: a combinatorial classi�cation suÆces. �

EXAMPLE 39. L�ob's Axiom �(�p! p)! �p is outside of M1.

Proof. It suÆces to establish the following Claim: L�ob's Axiom de�nes
transitivity plus well-foundedness of the converse of the alternative relation
(i.e. there are no ascending sequences xRx1Rx2Rx3; : : :). For, by a well-
known classical compactness argument, the latter combination cannot be
�rst-order de�nable (e.g. notice that it holds in hN;>i, but not in its non-
isomorphic ultrapowers).

First, assume that L�ob's Axiom fails in F ; i.e. for some V and w,
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1. hF; V i � �(�p! p)[w], but

2. hF; V i 6� �p[w]

Also, assume transitivity of R: we will refute the well-foundedness of �R, by
constructing an endless ascending sequence of worlds wRw1Rw2 : : :.

Step 1: Chose any w1 with Rww1 where p fails (by (2)). By (1), �p! p
is true at w1, whence �p fails again.

Step 2: chose any w2 with Rw1w2 where p fails. By (1) and transitivity,
�p! p is true at w2, etcetera: an endless sequence is on its way.

Next, failure of either of the two relational conditions results in failure
of L�ob's Axiom. If transitivity fails, say Rwv;Rvu;:Rwu, then V (p) =
W � fv; ug veri�es �(�p! p) at w, while falsifying �p.

If well-foundedness fails, say wRw1Rw2; : : :, then V (p) = W � fw;w1;
w2; : : :g produces the same e�ect. �

More complex unde�nability arguments will be discussed later on.

First-order de�nability and ultraproducts. Modal formulas could be regarded
as �1

1-sentences, witness the Introduction. Now, for the latter sentences,
ultraproducts provide the touchstone for �rst-order de�nability:

THEOREM 40. A �1
1-sentence in R;= is �rst-order de�nable if and only

if it is preserved under ultraproducts.

Proof. `)': This follows from the  Lo�s Equivalence (cf. Section 2.1).

`(': Consider a typical such sentence:

8P1 : : :8Pn'(P1; : : : ; Pn; R;=) (' �rst-order):

Clearly it is preserved under isomorphisms (and so is its negation). More-
over, its negation (a `�1

1-sentence') is preserved under ultraproducts (cf.
[Chang and Keisler, 1973, Chapter 4.1], for the easy argument). So, given
the assumption on the sentence itself, Keisler's Theorem (33) applies. �

COROLLARY 41. A modal formula is in M1 if and only if it is preserved
under ultraproducts.

A second application says that no generalisation of our topic is obtained
by allowing arbitrary sets of de�ning �rst-order conditions.

COROLLARY 42. If a modal formula has a �-elementary de�nition, it has
an elementary de�nition.

Proof. �-elementary classes are closed under the formation of ultraprod-
ucts. �
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This characterisation of M1 is rather aspeci�c, as it holds for all �1
1-

sentences. Later on, we will exploit the speci�cally modal character of our
formulas to do better. Moreover, the characterisation is rather abstract,
as ultraproducts are hard to visualise. Therefore, we now turn to more
concrete methods for separating formulas inside M1 from those outside.

Formulas beyond M1: Compactness and L�owenheim{Skolem arguments. In
practice, non�rst-order de�nability often shows up in failure of the Com-
pactness and L�owenheim{Skolem theorems. The �rst was involved in the
example of L�ob's Axiom, the second will be presented now.

EXAMPLE 43 (McKinsey's Axiom). ��p! ��p is outside of M1.

Proof. Consider the following uncountably in�nite Kripke frame
F = hW;Ri:

cf �

�
a

�
bn

�
b0n

�
b1n

W = fag [ fbn; b0n; b1n j n 2 Ng [ fcf j f : N ! f0; 1gg
R = fha; bni; hbn; b0ni; hbn; b1ni; hb0n; b0ni; hb1n; b1ni j n 2 Ng[

fha; cf i j f : N ! f0; 1gg [ fhcf ; bf(n)n i j n 2 N; f : N ! f0; 1gg:
We observe two things.

1. F � ��p! ��p:

Thanks to the presence of the reexive endpoints b0n; b
1
n, the validity of

the McKinsey Axiom is obvious everywhere, except for a.
So, suppose that, under some valuation V;��p is true at a. By assump-

tion, �p is true at each bn, and hence p is true at b0n or b1n. Now, pick any

function f : N ! f0; 1g such that b
f(n)
n is a p-world (each n 2 N). Then

�p holds at cf , and hence ��p at a.
By the downward L�owenheim{Skolem theorem, F possesses a countable

elementary substructure F 0 whose domain contains (at least) a; bn; b
0
n; b

1
n

(all n 2 N). As F is uncountable, many worlds (cf ) must be missing in
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W 0. Fix any one of these, say cf0 . Notice, for a start, that c1�f0 cannot
be in W 0 either. (For, the existence of `complementary' c-worlds is �rst-
order expressible; and F 0 veri�es the same �rst-order formulas at each of its
worlds as F .) Now, setting

V (p) = fbf0(n)n j n 2 Ng

will verify ��p at a, while falsifying ��p. Thus, we have shown

2. F 0 2 ��p! ��p.

We may conclude that the McKinsey Axiom is not �rst-order de�nable
| not being preserved under elementary subframes. �

In practice, failure of L�owenheim{Skolem or compactness properties is an
infallible mark of being outside of M1. The reader may also think this to
be the case in theory, by the famous Lindstr�om Theorem. (Cf. Volume 1,
chapters by Hodges or van Benthem and Doets.) But there is a little-realised
problem: the Lindstr�om Theorem does not work for languages with a �xed
�nite vocabulary (cf. [van Benthem, 1976]). In our case of R;=, there do
exist proper extensions of predicate logic satisfying both the L�owenheim and
compactness properties. These are not modal examples, however | and it
may well be the case, for all we know, that a modal formula ' belongs to M1
if and only if the logic obtained by adding ' to the �rst-order predicate logic
in R;= as a propositional constant has the L�owenheim and compactness
properties. Indeed, up till now, all unde�nability arguments (including the
above) have always been found reducible to compactness arguments alone.

The �nal characterisation of M1. Corollary 41 may be improved by noting
the following fact about Kripke frames, connecting the modal and classical
notions of Section 2.1.

LEMMA 44. �UFi
�! �U � fFi j i 2 Ig.

Thus, ultraproducts are generated subframes of suitable ultrapowers.
A second idea comes from the preceding section: outside of M1, we

encountered non preservation under elementary equivalence, a notion tied
up with ultrapowers by the Keisler{Shelah Theorem (cf. [Chang and Keisler,
1973, Chapter 6.1]). We arrive at the main result of [van Benthem, 1976].

THEOREM 45. (i) A modal formula is in M1 if and only if (ii) it is pre-
served under ultrapowers if and only if (iii) it is preserved under elementary
equivalence.

Proof. (i) ) (iii) ) (ii) are immediate. (ii) ) (i): If ' is preserved under
ultrapowers, then, by Lemma 44, it is also preserved under ultraproducts
| because disjoint unions preserve modal truth (Corollary 22). Now apply
Corollary 41. �
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Again, this insight saves us some spurious generalisations. Besides `�-
elementary', there are two more levels in the de�nability hierarchy

elementary

�-elementary �-elementary

��- elementary

higher-order

A �-elementary class is de�ned by an in�nite disjunction of �rst-order sen-
tences (�-elementary classes by in�nite conjunctions). The prime example
of this phenomenon is �niteness. ��-elementary classes arise from in�nite
disjunctions of in�nite conjunctions, or vice versa: both cases (and all pur-
ported `higher' ones) collapse | and the hierarchy stops here, even in clas-
sical logic. The reason lies in the simple observation that a class of frames
is ��-elementary if and only if it is closed under elementary equivalence.

But the preceding result has a

COROLLARY 46. Modal formulas are either elementary, or essentially
higher-order.

Unfortunately, even this better characterisation does not yield much e�ec-
tive information concerning the members of M1. For, there are no syntactic
criteria for preservation under ultrapowers. From [van Benthem, 1983], we
will cite the catalogue of what little we know.

DIGRESSION 47.

1. �1
1-sentences in R;= of the purely universal form

8P1 : : :8Pm8x1 : : :8xn' (' quanti�er-free)

are preserved under ultraproducts. This tells us that p! �p, i.e.

8P8x(Px! 8y(Rxy ! Py))

must be in M1: but that was clear without such heavy artillery.

2. �1
1-sentences in R;= of the universal-existential form

8P1 : : :8Pm9x1 : : : 9xn' (' quanti�er-free)

are preserved under ultrapowers. This is of no help whatsoever, as
modal formulas have at least one universal �rst-order quanti�er (8x).

3. Further presents will not be forthcoming: any �1
1-sentence in R;= is

logically equivalent to one of the form

8P1 : : :8Pm8x1 : : :8xn9y1 : : : 9yn' (' quanti�er-free)

So, all complexity occurs at this level already.
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Thus, other ways are to be developed for describing M1 e�ectively.

The method of substitutions. There is a common syntactic pattern to many
examples of �rst- order de�nable modal formulas: certain antecedents, in
combination with certain consequents enable one to `read o�' equivalents.
Starting from the earlier examples �p ! p;��p ! ��p, one may notice
successively that conjunctions and disjunctions are admissible as well; as
long as one avoids �� or �(: : : _ : : :) combinations to the left.

A typical instance is the following result from [Sahlqvist, 1975]:

THEOREM 48. Modal formulas '!  are in M1, provided that

1. ' is constructed from the forms p;�p;��p; : : : ;?;>, using only ^;_
and �, while

2. ' is constructed from proposition letters, ?;>, using ^;_;� and �.

This theorem accounts for cases such as

�(p ^�q)! �(p _ �p _ q)
which de�nes

8xy(Rxy ! 8z(Rxz ! (z = y _Rzy _ Ryz))):

Proof. The heuristics of the Introduction works: for each `minimal veri�-
cation' of the antecedent, the consequent must hold. For further technical
information (e.g. the monotonicity of the consequent is vital too), cf. [van
Benthem, 1976], which also contains generalisations of the theorem. �

That �� is fatal, is shown by the McKinsey Axiom. The Fine Axiom
��(p _ q) ! �(�p _ �q) does the same for �(: : : _ : : :). Finally, the L�ob
Axiom (in the equivalent form �p! �(p^�:p)) demonstrates the danger
of `negative' parts in the consequent. Thus, in a sense, we have a `best
result' here.

Notice that the class described is rather typical for modal axioms, which
often assume this implicational form. Indeed, the most characteristic modal
axioms are even simply reduction principles of the form

(modal operators) p! (modal operators) p.

THEOREM 49. A modal reduction principle is in M1 if and only if it is
of one of the following four types:

1. ~Mp! � : : :�� : : :�p,

2. � : : :�� : : :�p! ~Mp,

3. � : : : (i times) : : :� ~Mp! ~N ~Mp (where length ( ~N) = i),
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4. ~N ~Mp! � : : : (i times) : : :� ~Mp (where length ( ~N) = i).

Proof. Cf. [van Benthem, 1976] for the rather laborious argument. �

Thus at least, important parts ofM1 have been classi�ed. This particular
theorem �nishes a project begun in [Fitch, 1973].

A general method of proof for Theorem 48 consists of the method of
substitutions, introduced in the introduction. Here we shall merely illustrate
how it works: a justi�cation may be found in [van Benthem, 1983].

EXAMPLE 50. Write ��p! ��p as

8P8x(9y(Rxy ^ 8z(Ryz! Pz))! 8u(Rxu! 9v(Ruv ^ Pv))):

Rewrite this to the equivalent

8xy(Rxy ! 8P (8z(Ryz! Pz)! 8u(Rxu! 9v(Ruv ^ Pv)))):

Substitute for P : �z:Ryz, to obtain

8xy(Rxy ! (8z(Ryz! Ryz)! 8u(Rxu! 9v(Ruv ^ Ryv)))):

This is equivalent to

8xy(Rxy ! 8u(Rxu! 9v(Ruv ^Ryv)));

i.e. directedness (conuence).

Write �(p ^�q)! �(p _ �p _ q) as

8xy(Rxy ! 8P ((Py ^ 8z(Ryz ! Qz))! 8u(Rxu! (Pu_
_9v(Ruv ^ Pv) _Qu)))):

Substitute for P : �z�y=z, and for Q : �z:Ryz, to obtain (an equivalent of)
the earlier connectedness.

Write �(p ^�p)! p as

8xy(Rxy ! 8P ((Py ^ 8z(Ryz! Pz))! Px)):

Substitute for P : �z �y=z _ Ryz, to obtain (an equivalent of)

8xy(Rxy ! (Ryx _ y = x)):

Write ��p! �p as

8x8P (8y(Rxy! 8z(Ryz ! Pz))! 8u(Rxu! Pu)):
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Substitute for P : �z � R2xz; i.e. �z � 9v(Rxv ^ Rvz), to obtain (modulo
logical equivalence)

8x8u(Rxu! 9v(Rxv ^ Rvu));

i.e., density of the alternative relation.

In general, substitutions will be disjunctions of forms Rnyz(n = 0; 1; 2; : : :);
the cases 0, 1 standing for =; R, respectively.

Despite these advances, the range of the method of substitutions has it
limits. To see this, here is an example of a formula in M1 with a quite
di�erent spirit.

EXAMPLE 51. The conjunction of the K4.1 axioms, i.e. �p ! ��p,
��p! ��p is in M1.

Proof. �p ! ��p de�ned transitivity and, therefore, it suÆces to prove
the following

Claim. On the transitive Kripke frames, McKinsey's Axiom de�nes atom-
icity:

8x9y(Rxy ^ 8z(Ryz! z = y)):

From right to left, the implication is clear. From left to right, however, the
argument runs deeper.

Assume that F is a transitive frame, containing a world w 2W such that

8y(Rwy ! 9z(Ryz ^ z 6= y)):

Using some suitable form of the Axiom of Choice (it is as serious as this
. . . ), �nd a subset X of w's R-successors such that

1. 8y 2 W (Rwy ! 9z 2 XRyz)

2. 8y 2 W (Rwy ! 9z 2 (W �X)Ryz).

Setting V (p) = X then falsi�es the McKinsey Axiom at w. �

This complexity is unavoidable. We can, for example, prove

THEOREM 52. (�p ! ��p) ^ (��p ! ��p) is not equivalent to any
conjunction of its �rst-order substitution instances.

Proof. Here is where the earlier general frame hN;�, �nite and co�nite
setsi comes in. First, an ordinary model-theoretic

Observation. The �nite and co�nite sets of natural numbers are precisely
those �rst-order de�nable in hN;�i, possibly using parameters.

Now, it was noticed already in Section 2.1 that the above formula holds
in this general frame | and hence so do all its �rst-order substitution
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instances. But the latter also hold in the full frame hN;�i. So, if our
formula were de�ned by them, it would also hold in the full frame: which
it does not. �

So, although he method of substitutions carves out a large, and important
part of M1, it does not fully describe the latter class.

The complexity of M1. The method of substitutions describes a part of M1
which may even be shown to be recursively enumerable (cf. [van Benthem,
1983]). But M1 overowed its boundaries. Indeed, there are reasons to
believe that M1 is not recursively enumerable | probably not even arith-
metically de�nable. For, in the general case of �1

1-sentences, we know

THEOREM 53. First-order de�nability of �1
1-sentences is not an arithmeti-

cal notion.

Proof. (Cf. [van Benthem, 1983] or the Higher Order Logic Chapter in
Volume 1 of this Handbook.) �

Other topics. Various other questions had to be omitted here. At least,
one example should be mentioned, viz. that of relative correspondences. On
several occasions, a restriction to transitive Kripke frames produced inter-
esting shifts: global and local �rst-order de�nability collapse, the McKinsey
Axiom becomes elementary, etc. A sample result is in [van Benthem, 1976].

THEOREM 54. On the transitive Kripke frames, all modal reduction prin-
ciples are �rst-order de�nable.

Thus, `pre-conditions' on the alternative relation are worth considering.
In areas such as tense logic, our temporal intuitions even require them.

2.3 Modal Algebra

An alternative to Kripke semantic structures is o�ered by so-called `modal
algebras', in which the modal language may be interpreted as well. The
realm of modal algebras has its own mathematical structure, with subalge-
bras, direct products and homomorphic images as key notions. Now, back-
and-forth connections may be established between these two realms, through
the Stone Representation. A categorial parallel emerges between the above
triad of notions and the basic triad of Section 2.1: zigzag-morphic images,
disjoint unions and generated subframes, respectively. Moreover, the earlier
`possible worlds construction' for ultra�lter extensions will be seen to arise
naturally from the Stone Representation.

The algebraic perspective. As in other areas of logic, the modal propositional
language may also be interpreted in algebraic structures. These assume the
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form of a Boolean Algebra (needed to interpret the propositional base)
enriched with a unary operation, in order to capture the modal operator.

DEFINITION 55. A modal algebra is a tuple

A = hA; 0; 1;+;0 ; �i;
where hA; 0; 1;+;0 i is a Boolean Algebra and � is a unary operator satisfying
the equations

1. (x+ y)� = x� + y�

2. 0� = 0.

Notice that � corresponds to possiblity (�): the necessity choice would
have yielded equations

10. (x � y)� = x� � y�

20. 1� = 1.

This algebraic perspective at once yields a completeness result.

THEOREM 56. A modal formula is derivable in the minimal modal logic K
if and only if it receives value 1 in all modal algebras under all assignments.

The concept of evaluation at the back of this goes as follows. Let V
assign A-values to proposition letters. Then, V may be lifted to all formulas
through the recursive clauses

V (:') = V (')0

V (' _  ) = V (') + V ( )
V (�') = V (')�; etc.

Thus, a modal formula is read as a `polynomial' in 0;+; �.
The proof of the completeness Theorem 56 comes cheap. First, one shows

by induction on the length of proofs that all K-theorems are `polynomials
identical to 1'. Conversely, one considers the so-called Lindenbaum Alge-
bra of the modal language, whose elements are equivalence classes of K-
provably equivalent modal formulas, with operations de�ned in the obvious
way through the connectives. The value 1 in this algebra is awarded to all
and only the K-theorems: hence non- theorems are disquali�ed as polyno-
mials identical to 1.

Such uses of modal algebra are a joy to some (cf. [Rasiowa and Sikorski,
1970]); to others they show that the algebraic approach is merely `syntax in
disguise'. After all, the above result may be viewed as a re-axiomatisation
of K, no more. For instance, notice that the hard work in the usual (Henkin
type) model-theoretic completeness theorems consists in showing that non-
theorems can be refuted in set-theoretic (Kripke)-models. To put this into
a slogan, which will become fully comprehensible at the end of this chapter:
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HENKIN = LINDENBAUM + STONE.

Nevertheless, the algebraic perspective has further uses, which are be-
ing discovered only gradually. First, notice that it o�ers a more general
framework than Kripke semantics. For the above Lindenbaum construction
to work, one only needs the principle of Replacement of Equivalents; i.e.
modally, closure under the rule

if ` '$  ; then ` �'$ � :

(Algebraically, this just amounts to an identity axiom.)
The above additional equations represent optional further choices.
But even in the realm of the above modal algebra, there exists a whole

discipline of universal algebraic notions and results, which turn out to be
applicable to modal logic in surprising ways. Two instructive references
are [Goldblatt, 1979] and [Blok, 1976]. Here we shall only skim the surface,
taking what is needed for the modal de�nability results of Section 2.4. Thus,
we shall need the following three fundamental algebraic notions.

DEFINITION 57. A1 is a modal subalgebra of A2 if A1 � A2, and the
operations of A2 coincide with those of A1 on A1.

DEFINITION 58. The direct product �fAi j i 2 Ig of a family of modal
algebras fAi j i 2 Ig consists of all functions in the Cartesian product
�fAi j i 2 Ig, with operations de�ned component-wise:

f + g = (f(i) +i g(i))i; f� = (f(i)�i )i; etc.

DEFINITION 59. A function f is a homomorphism from A1 to A2 if it
respects all operations:

f(a+1 b) = f(a) +2 f(b); f(a�1) = f(a)�2 ; etc.

These three operations are fundamental in algebra because they char-
acterise algebraic equational de�nability. This is the content of `Birkho�'s
Theorem':

A class of algebras is de�ned by the validity of a certain set of algebraic
equations (under all assignments) if and only if that class is closed under the
formation of subalgebras, direct products and homomorphic images. (For
a proof, cf. [Gr�atzer, 1968].) There is much more to Universal Algebra, of
course, but this is what we shall need in the sequel.

Kripke frames induce modal algebras. In order to tap the above resources,
a systematic connection is needed between the earlier semantic structures
and modal algebras.

To begin with, each Kripke frame F = hW;Ri gives rise to the following
modal algebra

A(F ) = hP (W );?;W;[;�; �i
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where � is the modal projection of 2.1:

�(X) = fw 2W j 9v 2 XRwvg (X �W ):

As for truth of modal formulas, it is immediate that a modal formula '
is true in F if and only if its corresponding modal equation a(') is identical
to 1 in the algebra A(F ). For instance, truth of

��(p _ q)! �(�p _�q);
or equivalently

:�:�:(p _ q) _ �(:�:p _ :�:q)
is equivalent to the validity of the identity

(x+ y)
0�0�0 + (x

0�0 + y
0�0)� = 1:

Thus, A maps single Kripke frames to modal algebras. But what happens
to the characteristic modal connections between frames, as in Section 2.1?
We shall take them one by one.

First, if F1 is a generated subframe of F2, then the obvious restriction
map sending X � W2 to X \W1 is a modal homomorphism from A(F2)
onto A(F1). (The key observation is that R2-closure of W1 guarantees
homomorphic respect for the projection operator �.) Next, the algebra
induced by a disjoint union �fFi j i 2 Ig is isomorphic, in a natural way,
to the direct product �fA(Fi) j i 2 Ig. One simply associates a set X of
worlds in the former with the function (X \Wi)i2I .

Finally, and this happy ending will be predictable by now, if F2 is a
zigzag-morphic image of F1 through f , then the stipulation

A(f)(X) =def f
�1[X ]

de�nes an isomorphism between A(F2) and a subalgebra of A(F1). (This
time, the two relational clauses in the de�nition of `zigzag morphism' ensure
that A(f) respects projections.) Notice the reversal in direction in the latter
case: this is a common phenomenon in these `categorial connections'.

Modal algebras induce Kripke structures. There is a road back. Conversely,
modal algebras may be `represented' as if they had come from an underlying
base frame. The idea of this so-called Stone Representation is as follows.
(It is due to J�onsson and Tarski around 1950.)

Worlds w are to be created such that an element a in the algebra may
be thought of as the set of w `in a'. But then, the desired correspondence
between algebraic and set-theoretic operations becomes:

no set w is in 0, all sets w are in 1;
w is in a+ b i� w is in a or w is in b;
w is in a0 i� w is not in a:
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Thus, as w searches through A `where it belongs', it picks out a set X such
that

0 62 X; 1 2 X;
a+ b 2 X i� a 2 X or b 2 X;
a0 2 X i� a 62 X:

Such sets X are called ultra�lters on A. Thus, let

W (A) = all ultra�lters on A:

A suitable alternative relation may be found through the same motivation
as in Section 2.1.

hw; vi 2 R(A) i� for each a 2 A; if a 2 v; then a� 2 w:

So, each modal algebra A induces a Kripke frame

F (A) = hW (A); R(A)i:

This time, truth in A and truth in F (A) need not correspond, however. For,
F (A) may harbour many more sets of worlds than just those corresponding
to the elements a of the algebra | and hence it contains additional potential
falsi�ers. Thus, the implication goes only one way. The equation t1 = t2 is
valid in A, where the polynomials t1; t2 correspond to the modal formulas
'1; '2, when '1 $ '2 is true in F (A). A complete equivalence is only
restored by changing F (A) to the general frame

F (A) = hW (A); R(A);W(A)i;

where W(A) consists of all sets of the form

fw 2W (A) j a 2 wg (a 2 A):

So, what we now get is a two-way connection between modal algebras and
general frames | and here lies the genesis of the latter notion. Two ways;
for, it is easily seen that all previous insights about the mapping A apply
equally well to general frames, instead of merely `full' frames.

Again, the interest of the present connection may be gauged by seeing
what happens to the three fundamental algebraic operations when trans-
lated through F into Kripke-semantic terms.

First, if A1 is a modal subalgebra of A2, then the obvious restriction map
sending ultra�lters w on A2 to ultra�lters w\A1 on A1 is a zigzag morphism
from F (A2) onto F (A1).

Next, the direct product of a family fAi j i 2 Ig has an F -image containing
the disjoint union �fF (Ai) j i 2 Ig. No isomorphism need obtain, however:
a slight aw in our correspondence.
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But �nally, if A2 is a homomorphic image of A1 through f , then the map
F (f), de�ned by setting

F (f)(w) =def f
�1[w];

sends A2-ultra�lters to A1-ultra�lters, in such a way that it embeds F (A2)
isomorphically as a generated subframe of F (A1).

Back and forth. So far, so good. Modal algebras induce general frames,
and these, in their turn, induce modal algebras. But, what happens on a
return-trip?

One case is simple, by construction:

THEOREM 60. A(F (A)) is isomorphic to A.

The converse direction is more diÆcult. (F (A(G)) need not be isomorphic
to F , for general frames G. This is precisely what we noted in connection
with `possible world constructions' in Section 2.1. But, as was announced
there, it can be ascertained which conditions on general frames G do guar-
antee such an isomorphism.

DEFINITION 61. A general frame G = hW;R;Wi is descriptive if it satis-
�es Leibniz' Principle for identity:

1. 8xy 2W (x = y $ 8Z 2W(x 2 Z $ y 2 Z))

as well as Leibniz' Principle for alternatives:

2. 8xy 2W (Rxy $ 8Z 2W(y 2 Z ! x 2 �(Z))):

Moreover, it should satisfy Saturation:

3. each subset of W with the �nite intersection property has a non-empty
total intersection.

The following basic result is in [Goldblatt, 1979].

THEOREM 62. F (A(G)) is isomorphic to G if and only if G is descriptive.

The standard examples of descriptive frames are the general frames de-
rived from Henkin models in modal completeness proofs, by taking for W
the range of modally de�nable sets of worlds. It may also be noticed that
general frames G which are themselves of the form F (A) are always de-
scriptive. Thus, for certain theoretical purposes, the `proper' bijective cor-
respondence may be said to be that between modal algebras and descriptive
frames, which are `stable' under the possible worlds construction described
in Section 2.1.

The categorial connection. The above connections between modal algebras
and Kripke structures run deeper than might appear at �rst sight. The
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general picture is that of two mathematical worlds, or `categories', which
turn out to be quite similar in structure:

hModal algebras, homomorphisms intoi
hGeneral frames, zigzag morphisms intoi:

The earlier considerations may be summed up in the following two schemata:

f
G1 G2

A(f)
A(G1) A(G2)

f
A1 A2

F (f)
F (A1) F (A2)

So, A;F are what a category theorist would call `contravariant' functors.
Therefore, information concerning the one category may sometimes be trans-
ferred to the other. Thus, a `categorial transfer' arises, of which we mention
a few phenomena. (The following passage can be skipped by readers unfa-
miliar with Category Theory or Universal Algebra).

The category of modal algebras has among its internal limit construc-
tions the formation of terminals (viz. the degenerate single point algebras)
and pull-backs. Hence, it is closed under �nite limits in general. Through
A;F , we may derive that the category of general frames is closed under
�nite co-limits, speci�cally under initials (allowing the empty frame) and
push-outs. (In this connection, the `adjointness' behaviour of A;F may be
investigated.) The preservation behaviour of modal formulas under such
limit constructions remains to be studied.

An algebraically well-motivated notion is that of a free algebra. What
corresponds to these in the realm of general frames? A surprising connec-
tion with modal completeness theory appears. The Stone representations
of free algebras are essentially Henkin general frames (proposition letters
correspond to free generators of the algebra). The latter structures were
characterised semantically in [Fine, 1975], in terms of certain `universal em-
bedding' properties with respect to zigzag morphisms. This turns out to
follow directly, as the dual of the `homomorphic extension' de�nition of free
algebras.

Our �nal example concerns another algebraic classic, the notion of a
subdirectly irreducible modal algebra (used with great versatility in [Blok,
1976]). These turn out to correspond almost (not quite) to rooted gen-
eral frames whose domain consists of one root world together with its R-
successors, their R-successors, etcetera. The famous Birkho� Theorem stat-
ing that

Every (modal) algebra is a subdirect product of subdirectly ir-
reducibles,
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may then be compared with the simple Kripke-semantic observation that

Every general frame is a zigzag-morphic image of the disjoint
union of its rooted generated subframes.

These examples will have made it clear how the categorial connection be-
tween modal algebra and possible worlds semantics can be a very rewarding
perspective.

2.4 From Classical to Modal Logic

Reversing the direction of the earlier correspondence study (Section 2.2),
there arises

DEFINITION 63. P1 is the set of all �rst-order sentences in R;= for which
a modal formula exists de�ning the same class of Kripke frames.

All earlier examples of formulas in M1 also provide examples for P1, of
course. Therefore, here are some more general results straightaway.

Some methods exist for proving the existence of modal de�nitions.

THEOREM 64. Each �rst-order sentence of the form 8xU', where U is a
(possibly empty) sequence of restricted universal quanti�ers, of the form

8u(Rvu! (with u; v distinct)

followed by a matrix ' of atomic formulas u = v;Ruv combined through
^;_, belongs to P1.

Proof. The relevant combinatorial argument is based on the heuristics
explained in the introduction. Cf. [van Benthem, 1976]. �

Some examples of formulas of this type are

reexivity: 8xRxx; transitivity: 8x8y(Rxy ! 8z(Ryz! Rxz))

and

connectedness: 8x8y(Rxy ! 8z(Rxz ! (Rzy _ Ryz))):

Disproving de�nability proceeds through counter-examples to preserva-
tion behaviour.

EXAMPLE 65.

1. 9xRxx is outside of P1.

It holds in hf0; 1g; fh1; 1igi; but not in its generated subframe hf0g;?i.
2. 8x8yRxy is outside of P1.
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It is preserved under generated subframes, but not under disjoint unions.
On hf0g; fh0; 0igi and hf1g; fh1; 1igi, the relation is universal; but not on
hf0; 1g; fh0; 0i; h1; 1igi.

3. 8x:Rxx is outside of P1.

It is preserved under generated subframes and disjoint unions; but not under
zigzag-morphic images, witness the Introduction.

4. 8x9y(Rxy ^ Ryy) is outside of P1.

It is preserved under all three operations mentioned up till now, but not
inversely under the formation of ultra�lter extensions. It can be shown to
hold in ue(hN;<i), while failing in hN;<i.

An important general result is casting its shadows here [Goldblatt and
Thomason, 1974]:

THEOREM 66. An elementary class of Kripke frames is modally de�nable
if and only if it is closed under the formation of generated subframes, disjoint
unions and zigzag-morphic images, while its complement is closed under the
formation of ultra�lter extensions.

Proof. This argument is given in heuristic outline here, as it is one of the
most elegant applications of algebraic results in modal semantics.

Evidently, modally de�nable classes of Kripke frames exhibit all the listed
closure phenomena: the surprising direction leads from `closure' to `de�n-
ability'.

First, notice that one closure condition can be added for free, by an
earlier result. Theorem 30 implies that our class R of frames is itself closed
under the formation of ultra�lter extensions: if F 2 R, then the relevant
elementary equivalent F 0 2 R (R being elementary), and hence so is its
zigzag-morphic image ue(F ).

Now the obvious strategy is to show that R equals MOD(Thmod(R)),
i.e. the class of Kripke frames verifying each modal formula which is valid
throughout R. The nontrivial inclusion here requires us to show that

if F � � Thmod(R); then F � 2 R; for every Kripke frame F �:

And here is where an excursion into the realm of modal algebra will help.
F � veri�es Thmod(R), and hence A(F �) veri�es the equational theory of the
class fA(G) j G 2 Rg. (Recall the earlier correspondence between modal
formulas and polynomials.) By Birkho�'s Theorem, in a suitable version,
this implies that A(F �) must be constructible as a homomorphic image of
some subalgebra of some direct product �fA(Gi) j i 2 Ig, with Gi 2 R. In
a picture,
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surjective
A(F �) A � �fA(Gi) j i 2 Ig:

homomorphism

Now the latter algebra is isomorphic to A(�fGi j i 2 Ig), by the earlier
duality. Moreover, the latter disjoint union belongs to R | by the given
closure conditions. So, the picture becomes, for some G 2 R:

surjective
A(F �) A � A(G):

homomorphism

Now, the transformation F turns this into the corresponding row

embedding as surjective
FA(F �) F (A) FA(G):

generated subframe zigzag morphism

But then, �nally, the following walk through the diagrams suÆces. G 2
R) FA(G) = ue(G) 2 R (by the above observation)) F (A) 2 R (closure
under zigzag images) ) FA(F �) 2 R (closure under generated subframes)
) F � 2 R (`anti-closure' under ultra�lter extensions). �

Actually, this result does not yet characterise P1, as it talks about modal
de�nability by any set, �nite or in�nite. The additional strengthenings
needed for zeroing in on P1 are hardly enlightening, however.

The result also says a little bit more. Adding closure under ultra�lter
extensions, while removing the condition of elementary de�nability, yields
a characterisation of those classes of Kripke frames de�nable by means of
a canonical modal logic in the sense of the Introduction (i.e. one which is
complete with respect to its Henkin frames). Moreover, the above proof
heuristics may also be used to formulate a general closure condition on
classes of Kripke frames necessary and suÆcient for de�nability by means
of just any set of modal formulas (`SA-constructions'; cf. [Goldblatt and
Thomason, 1974]).

As with the earlier ultrapower characterisation of M1, the above char-
acterisation gives no e�ective information concerning the formulas in P1.
What is needed are `preservation theorems' giving the syntactic cash value
of the given four closure conditions. Several of these have been given in [van
Benthem, 1976], extending earlier results, e.g. of Feferman and Kreisel.

Here is an idea. Preservation under generated subframes allows only
formulas constructed from atomic formulas and their negations, using

8;^;_ as well as restricted existential quanti�ers 9v(Ruv^ (u; v
distinct).



CORRESPONDENCE THEORY 367

Preservation under disjoint unions admits only one single universal quanti-
�er in front: all others are to be restricted to the form 8v(Ruv !). Finally,
preservation under zigzag images forbids the negations, and we are left with

THEOREM 67. A �rst-order sentence is preserved under the formation
of generated subframes, disjoint unions and zigzag-morphic images if and
only if it is equivalent to one of the form 8x�(x), where �(x) has been
constructed from atomic formulas using only conjunction, disjunction and
restricted quanti�ers.

Proof. By elementary chain constructions, as in [Chang and Keisler, 1973,
Chapter 3.1]. �

For preservation under ultra�lter extensions, only some partial results have
been found. (After all, the class of sentences preserved under such a complex
operation need not even be e�ectively enumerable.)

As for the total complexity of P1, this may well be considerable | as
was the case with M1. Are the two classes perhaps recursive in each other?

2.5 Modal Predicate Logic

As in much technical work in this area, modal propositional logic has been
studied up till now. Modal predicate logic, however important in philo-
sophical applications, is much less understood. (Cf. Chapter 2.5 in this
Handbook.) Nevertheless, in the case of Correspondence Theory, an excuse
for the neglect may be found in Theorem 69 below.

The un�nished state of the art shows already in the fact that no com-
monly accepted notion of semantic structure, or truth de�nition exists.
Hence, we �x one particular, reasonably motivated choice as a basis for
the following sketch of a predicate-logical variant of the earlier theory.

The language is the ordinary one of predicate logic, with added modal
operators. Structures are tuples

M = hW;R;D; V i;

where the skeleton hW;R;Di is a Kripke frame with a domain function D
assigning sets of individuals Dw to each world w 2 W . The valuation V
supplies the interpretation of the nonlogical vocabulary at each world.

The truth de�nition explicates the notion

`'(x) is true in M at w for d';

where the sequence d assigned to the free individual variables x comes from
Dw. Its key options are embodied in the clauses for the individual quanti-
�ers: these are to range over Dw, plus that for the modal operator:
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�'(x) is true at w for d if, for each R-alternative v for w such
that d is in Dv; '(x) is true at v for d.

Thus, necessity means `truth in all alternatives, where de�ned'.
As before, truth in a skeleton (at some world, for some sequence of in-

dividuals) means truth under all possible valuations. Again, in this way
modal axioms start expressing properties of R;D | and their interplay.

The relevant matching `working language' on the classical side will now
be a two-sorted one: one sort for worlds, another for individuals. Its basic
predicates are the two sortal identities, R between worlds, as well as the
sort-crossing Exw : `x is in the domain of w', or `x exists at w'.

EXAMPLE 68. The Barcan Formula 8x�Ax! �8xAx de�nes

8wv(Rwv ! 8x(Exv ! Exw)):

Proof. `(': Assume 8x�Ax at w, and consider any R-alternative v. For
all d 2 Dv; d 2 Dw (by the given condition), whence �Ad holds at w |
and, hence, Ad holds at v.

`)': The Barcan Formula will hold under the following particular assign-
ment: Vu(A; d) = 1 if Rwu and d 2 Dw.

This V veri�es the antecedent, and hence the consequent. The relational
condition follows. �

Thus, the Barcan Formula expresses an interaction between R and D.
This is not accidental. For pure R-principles, we have the following conser-
vation result.

THEOREM 69. There exists an e�ective translation from sentences ' of
modal predicate logic to formulas p(') of modal propositional logic such
that,

if ' is equivalent to some pure R;=-sentence �, then p(') al-
ready de�nes � in the sense of Section 2.2.

Proof. pmerely crosses out quanti�ers in some suitable way. For full details
(here and elsewhere) cf. [van Benthem, 1983]. �

Besides the Barcan Formula, there are three further fundamental `de
re/de dicto interchanges'. One of these provides a new example of non-�rst-
order de�nability.

EXAMPLE 70.

1. �8xAx! 8x�Ax is universally valid,

2. 9x�Ax! �9xAx de�nes 8wv(Rwv ! 8x(Exw ! Exv)),
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3. �9xAx! 9x�Ax de�nes an essentially higher-order condition onR;=
; E.

Despite the super�cial resemblance to the McKinsey Axiom of section
2.2., the proof for the latter result is quite di�erent from that of Example
43. Interested readers may notice that the above principle holds in worlds
with a �nite chain of overlapping two-element successors:

f1; 2g; f2; 3g; f3; 4g; : : : ; fn� 1; ng; fn; n+ 1g:
But, it may fail in the presence of in�nite such chains, and then compactness
lurks.

Further systematic reection on the above `positive' result yields a method
of substitutions again, with an outcome like that of Theorem 48:

THEOREM 71. Formulas of the form ' !  , with ' constructed from
atomic formulas pre�xed by a (possibly empty) sequence of 8;�, using only
^;_; 9 and �, and  constructed from atomic formulas using ^;_; 9;� as
well as 8;�, are all uniformly �rst-order de�nable.

The global mathematical characterisation of �rst-order de�nability re-
mains essentially the same in this area, whence it is omitted here.

Something which does not generalise easily, however, is the algebraic ap-
proach of Section 2.3. This is an endemic problem in classical (and intuition-
istic) logic already: elegant algebraization stops at the gates of predicate
logic. There could be an area of `modal cylindric algebra' of course (cf.
[Henkin et al., 1971]), but none exists yet. (For an interesting related area,
cf. the extension of modal propositional algebra to the modal program al-
gebra of dynamic logicians (cf. [Kozen, 1979] or the Dynamic Logic chapter
in volume 5 of this Handbook).) As a consequence, we still lack an elegant
characterisation of the modally de�nable fragment of the present two-sorted
�rst-order language.

What we do have, however, is such a characterisation for that same lan-
guage with parametrised predicate constants A(w;�) for the predicate con-
stants A(�) of the modal predicate logic. Thus, this is the appropriate
language for the �rst-order transcription of the above truth de�nition. The
Barcan Formula, for example, becomes

8x(Exw ! 8v((Ewv ^ Exv)! Avx))!
! 8v(Rwv ! 8x(Exv ! Avx)):

As in Theorem 18, two characteristic modal relations suÆce for char-
acterising the modal transcriptions among the class of all formulas of this
language. In order to end on an optimistic note, here is the relevant result.

First, modal predicate logic knows generated submodels, just as in Sec-
tion 2.1. Moreover, the earlier zigzag relations may be enriched so as to in-
corporate individual back-and-forth choices, as in the Ehrenfeucht{Fra��ss�e
approach to �rst-order de�nability.
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DEFINITION 72. A zigzag connection C between two models M1;M2 re-
lates �nite sequences (w; x) of equal length (w a world, x a sequence of
individuals in the domain of w) in such a way that

1. all such sequences occur: those from M1 in the domain, those from
M2 in the range of C

2. if C(w; x)(v; y) and w0 2 W1, with R1ww
0; x 2 Dw, then C(w0; x)(v0; y)

for some v0 2 W2 with R2vv
0; y 2 Dv0 ,

and analogously in the opposite direction (`world zigzag')

3. if C(w; x)(v; y) and d 2 Dw,
then C(w; x� d)(v; y� e) for some e 2 Dv,
and vice versa. (`individual zigzag')

4. if C(w; x)(v; y), then the map (x)i ! (y)i is a partial isomorphism
between hDw; Vwi and hDv ; Vvi.

Now, transcriptions of modal formulas are invariant for generated sub-
models and zigzag connections, in the obvious sense. E.g. the latter have
been made precisely in such a way that for modal ',

' is true at w for x i� ' is true at v for y, when C(w; x)(v; y):

THEOREM 73. A formula ' = '(w; x) of the two-sorted world/individual
language is (equivalent to the transcription of) a modal formula if and only
if it is invariant for generated submodels and zigzag connections.

Proof. This follows from the main proof in [van Benthem, 1981b]. �

On the whole, exciting technical results are yet scarce in modal predicate
logic | and Correspondence Theory is no exception.

2.6 Higher-Order Correspondence

Modal formulas de�ne second-order (�1
1) conditions on the alternative re-

lation in all cases, and �rst-order conditions in some. In the perspective of
abstract model theory, two possible generalisations arise here.

Instead of the �rst-order target language, one may consider suitable ex-
tensions. For instance, in Theorem 37, the relevant relational condition
was de�nable in L!1;!: �rst-order logic with countable conjunctions and
disjunctions. Not all modal formulas become de�nable here, however. E.g.
L�ob's Axiom de�ned a form of well-foundedness, which is known to be be-
yond L!1!, or indeed any language of the L1!-family. On the other hand,
this time for instance, the de�ning condition is already in `weak second-
order logic' L2, allowing quanti�cation over �nite sets of individuals. Thus,
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various wider classes of de�nability could be considered for modal formulas,
short of �1

1. And, in fact, even the latter case itself is interesting. Which
�1
1-sentences, for example, admit of modal de�nitions?
Given the general lack of semantic characterisations for such higher logics,

such characterisations for their modal fragments are also diÆcult to obtain.
One observation might be that both L!1! and L2 have the property of
invariance for partial isomorphism (cf. van Dalen's chapter in Volume 1 of
this Handbook). It will be of interest to study this preservation condition
on modal formulas. In fact, no counter-examples have been discovered yet;
but these do exist in tense logic. (The rationals hQ;<i and the reals hR;<i
are a classical example of partially isomorphic structures, but there exists a
tense-logical formula expressing Dedekind Completeness, which is valid on
the latter, though not on the former frame.)

On the other hand, the modal propositional language could itself be
strengthened, notably by the introduction of propositional quanti�ers 8p; 9p,
which have occurred in various places in the literature (cf. Garson's chapter
in Volume 3 of this Handbook). Thus, e.g. 8p(��p ! 9q��q) would be-
come an admissible formula, but also �9p�p! �8q��q. Actually, there is
a choice here, whether to allow the propositional quanti�ers in the scope of
modal operators or not. Henceforth, we consider the second, more restricted
option.

In the usual manner, a prenex hierarchy arises here, with all propositional
quanti�ers in front, of which the original modal formulas form the �1

1-part
(universal pre�x). The next simplest cases are �1

1 (existential pre�x) and
�1
2. In fact, the latter has a reasonable motivation through the modal `rules'

mentioned in Section 3.2 below.
It has been observed by Gabbay that the following rule de�nes irreex-

ivity of Kripke frames:

`if F � (�p ^ :p)! '[w] (with ' p-free), then F � '[w]':

The general pattern here is that of `F � '[w] only if F �  [w]', i.e. an
implication of two �1

1-formulas, which is �1
2. (It may be written either in

the form 89 or 98.)
Actually, the above speci�c example is already �1

1, as it amounts to
8pq((�p ^ :p) ! q) ! 8qq, i.e. 8p((�p ^ :p) ! ?) ! 8qq, i.e. 8p((�p ^
:p) ! ?) ! ?, i.e. 9p(�p ^ :p). Another relevant observation is that
implications of the above form 8 ! 8, if �rst-order de�nable at all, already
have a �rst-order de�nable consequent. We do not go into these speci�c
matters here, but note a general issue.

As often in higher-order logic, we are interested in hierarchy results. For
instance, how much power of �rst-order de�nability is added at each stage?
It is evident that �1

1-de�nability adds essentially just all negations of the
(local) principles in P1 (cf. Section 2.4), while �1

2 adds conjunctions and
disjunction across P1 and the latter `mirror image'.
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Query. Does the second-order prenex hierarchy induce an ascending cor-
responding hierarchy of modally de�nable �rst-order principles about the
alternative relation?

This possibly ascending hierarchy cannot exhaust all �rst-order princi-
ples, as higher-order modal formulas do retain one basic preservation prop-
erty: their local truth is invariant under passing to generated subframes.
(The Generation Theorem 15 yields this consequence all the way up, not
just for the original modal �1

1-formulas.) But then, we know what this
semantic constraint means in syntactic terms for �rst-order formulas (cf.
[van Benthem, 1976, Chapter 6]). These will be the `almost-restricted' ones
consisting of one universal quanti�er followed by a compound of atomic
formulas with negation, conjunction and restricted quanti�ers 9y(Rxy^).

The other preservation properties of Section 2.1 are lost, however. As
was observed earlier, irreexivity (8x:Rxx) becomes de�nable and, hence,
preservation under zigzag morphisms fails. Anti-preservation under ultra�l-
ter extensions fails, because the earlier example 8x9y(Rxy ^Ryy) becomes
de�nable as well. (A straightforward de�nition uses a propositional quan-
ti�er within a modal scope: �8p(�p ! p). But there is a nonembedded
substitute in the form of 9p(�p ^ 8q�(p! (�q ! q))).)

Thus, we arrive at the following

Question. Can every almost-restricted �rst-order formula 8x'(x) be de-
�ned at some level in the modal propositional quanti�er hierarchy?

Using `simulation' of restricted �rst-order quanti�cation by propositional
quanti�ers, one may indeed handle most obvious cases. Here is one illustra-
tion of the procedure

Example. Let '(x) be 9y(Rxy ^ 8z(Ryz ! (Rzz _ (Rzy ^ Rzx)))). The
idea is to de�ne fxg; fyg; fzg, in a sense, as far as necessary (i.e. on the set
consisting of x, its R-, R2- and R3-successors) | and then to express all
desired relations between these by means of modal formulas:

9px(px ^ 8qx(((px ^ qx) _ �(px ^ qx) _ ��(px ^ qx) _ ���(px ^
qx)) ! (�(px ! qx) ^ ��(px ! qx) ^ ���(px ! qx))) [this
makes px unique to the extent indicated] ^ 9py(�py^ [same
uniqueness statement] ^ 8pz((�(py ^ �pz)^ [same uniqueness
statement]) ! (8qz��(pz ! (�qz ! qz))[i.e. `Rzz'] _ ��(pz ^
�px ^ �py)[i.e. `Rzy ^ Rzx'])))).

Accordingly, our conjecture is that the above question has a positive
answer.

We conclude with one further

Question. Does the addition of propositional quanti�ers within modal
scopes add any power of expression?
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3 OTHER INTENSIONAL NOTIONS

Modal logic is only one branch, be it a paradigmatic one, of intensional logic
in general. But also in other intensional areas, a Correspondence Theory is
possible. In some cases, the generalisation runs smoothly: existing notions
and results may be applied at once, or after only minor modi�cation. A
case in point is tense logic, to be treated in Section 3.1. More challenging
generalisations arise when the relevant intensional semantics exhibit strong
peculiarities, diverging from the earlier modal case. Sometimes, these as-
sume the form of pre-conditions on the alternative relation; but maybe the
most important hurdle is when a restriction is proclaimed on `admissible as-
signments'. Both phenomena occur in conditional logic, the topic of Section
3.2. That, even under such circumstances, an interesting Correspondence
Theory may remain, is shown by the example of intuitionistic logic in Sec-
tion 3.3.

These two new features do not exhaust the possible semantic variation.
One may also move to the interplay of di�erent kinds of intensional op-
erators, for instance, using correspondence to connect di�erent alternative
relations.

Example. In dynamic logic, two modal operators �;�� �gure, which may
be provided with two alternative relations R;R�. (Recall that a means
`after every successful computation of a', while the intuitive meaning of a �

is to be: `after any �nite number of runs of a'.) Now, from a correspondence
point of view, the well-known Segerberg Axioms

��p! �p
��p! ���p
��(p! �p)! (�p! ��p)

de�ne precisely the condition that

R� coincides with the transitive closure of R.

The very exoticness of this example to many readers may help to show that
Correspondence Theory is omnipresent.

No systematic developments will be given in the following sections. Their
purpose is to convey an impression of notions and themes, through mainly
illustrative examples. Indeed, here is where the reader may wish to carry
on the torch herself.

3.1 Tense Logic

Traditionally, tense-logical structures have been taken to be temporal orders
hT;<i, where T consists of the points in Time, ordered by precedence <
(`earlier than', `before'). The simplest formal language to be chosen has
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been that of Prior, adding operators G (`it is always going to be'), H (`it
has always been') to some propositional base. We add F (`future'), P
(`past') as derived notions. (Cf. the chapter on Basic Tense logic in volume
6 for the necessary background in tense logic.)

Of the amazing diversity of `ontological' and `linguistic' questions con-
cerning this temporal semantics, only a few themes will be mentioned here.
(Cf. [van Benthem, 1985] for a varied exploration.)

Explaining philosophical dicta. In his famous paper `The Unreality of Time',
the philosopher McTaggart enunciated several temporal principles. One of
these reads [McTaggart, 1908]:

\If one of the determinations past, present and future can ever
be applied to (an event), then one of them has always been and
always will be applicable, though of course not always the same
one."

When translated into Priorean axioms, this becomes a list:

1. Pq ! H(Fq _ q _ Pq)
2. Pq ! GPq

3. q ! HFq

4. q ! GPq

5. Fq ! HFq

6. Fq ! G(Fq _ q _ Pq).
What do these principles mean? The answer may be obtained through the
method of substitutions (�tted to the temporal case | but such generali-
sations will be presupposed tacitly henceforth).

EXAMPLE 74.

1. de�nes left-connectedness: 8x8y < x8z < x(y < z _ z < y _ y = z);

2. de�nes transitivity: 8x8y < x8z > x y < z,

3. de�nes >,

4. de�nes >.

If G;H had been interpreted through di�erent relations <G; <H , then (3)
and (4) would have expressed that <H is the converse relation of <G.

5. de�nes transitivity again: 8x8y > x8z < x z < y,
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6. de�nes right-connectedness: 8x8y > x8z > x(y < z _ z < y _ y = z).

Thus, the McTaggart temporal picture is one of linear ow.

An incompleteness theorem. Simple transfer of earlier modal results es-
tablishes the seminal incompleteness result of [Thomason, 1972], in a very
simple version.

THEOREM 75. The tense logic axiomatised by

H(Hp! p)! Hp (L�ob's Axiom)
GFp! FGp (McKinsey Axiom)

is incomplete.

Proof. Speci�cally, this logic holds in no frame | and yet it is not incon-
sistent.

First, as to the former statement, recall from Section 2.2 that

1. L�ob's Axiom de�nes transitivity of > and well-foundedness of <.

By the former, < is transitive as well (transitivity is `independent of the
temporal direction', or isotropic (cf. [van Benthem, 1985])). Thus, in this
special case, Example 51 applies, and we have

2. McKinsey's Axiom de�nes atomicity: 8x9y > x8z > y z = y.

A consequence of the latter property is 8x9y > x y < y (cf. Example
65(4)). So, the temporal order must contain instantaneous loops : : : < y <
y < y < : : :, which contradicts well-foundedness. Therefore, our logic holds
in no frame.

Nevertheless, it does hold in a general frame, viz. an earlier example from
Section 2.1: hN;<;Wi, with

W = fX � N j X is �nite or N �X is �niteg:

The reason was that refutations for the McKinsey Axiom are no longer
`admissible', as these involve in�nite alterations. (Thomason gives a specu-
lation at this point concerning the Second Law of Thermodynamics: `event
patterns stabilise'.) But then, the logic cannot be inconsistent: its K-
theorems hold in all general frames where it is valid. �

Tense-logical axioms for the temporal order. In [van Benthem, 1985], the
following fundamental axioms are derived for any temporal order induced
by a comparative (in the linguistic sense) `earlier than'.

1. irreexivity: 8x :x < x (`no vortices in Time')
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2. transitivity: 8x8y > x8z > y z > x (`ow')

3. almost-connectedness: (`arrows are comparative yard sticks')
8x8y > x8z (x < z _ z < y)

A version of the latter principle may also be found as the key axiom in
Leibniz' relational theory of Space-Time (cf. [Winnie, 1977]).

Which tense-logical axioms correspond? From Section 2.4, we know that
(1) is unde�nable, (2) yields Gp ! GGp, while (3) just fails to fall under
Theorem 67. What the latter result does give is a correspondence between

8x8y > x8z > y8u > x(y < u _ u < z)

and
(F (p ^ Fq) ^ Fr)! (F (p ^ Fr) _ F (r ^ Fq)):

Another example concerns particular temporal orders. One can never
hope to fully de�ne such frames categorically by their tense-logical theories.
For, by the Generation Theorem, tense-logical formulas cannot distinguish
between one single, or several parallel ows of Time | which latter picture
is so familiar from contemporary science �ction. Still, if disjoint unions of
frames are disregarded, we have

THEOREM 76. hN;<i is de�ned categorically by the axioms

H(Hp! p)! Hp
Pp! H(Fp _ p _ Pp)
Fp! G(Fp _ p _ Pp)
FT
G(Gp! p)! (FGp! Gp)

The proof is omitted here.
But, e.g. the integers hZ;<i cannot be thus de�ned; as the contraction to

a single point remains a zigzag morphism preserving their theory. (hN;<i
was una�icted this time: in tense logic, zigzag morphism have two backward
relational clauses | whence, the earlier contraction fails to quality.)

Time and modality. Combined modal-tense logics with two alternative re-
lations R;< have been repeatedly proposed. For instance, in [White, 1981]

we �nd a logic with characteristic axioms

Gp! GGp; Fp! G(Fp _ p _ Pp); PT (D4.3)
Pq ! �Pq (`irrevocable past'):

This logic is claimed to be appropriate for an analysis of the famous Diodor-
ean `Master Argument', identifying possibility with actual or future truth |
a version of what was later to become known as the principle of Plenitude:
all metaphysical possibilities are eventually realised in this World.
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Our analysis of this claim runs as follows. Gp! GGp de�nes transitivity
for <, the McTaggart Axiom de�nes right-connectedness; while PT de�nes
left-succession: 8x9y y < x. The additional `mixing postulate' de�nes

8xy(Rxy ! 8z(z < x! z < y)):

Claim (1). 8xy(Rxy ! (y < x _ y = x _ x < y)).

Proof. Assume Rxy. Let z < x (by left-succession). Then z < y (`mix').
The conclusion follows by right-connectedness. �

Claim (2). 8xy(Rxy ! (x < y _ x = y)).

Proof. If Rxy and y < x, then y < y (`mix'): contra irreexivity. �

The outcome is this: without ever using transitivity, but with irreexiv-
ity (which is presupposed in White's whole set-up), a relational condition
follows which is indeed de�ned by the Diodorean challenge:

�p! (Fp _ p):

This is only one of the many possible semantics for temporal modalities,
of course. The correspondence aspect of, e.g. the Occamist `branching time'
of [Burgess, 1979] remains to be explored.

Alternative temporal ontologies. Recently `interval structures' have been
proposed as an alternative for the above traditional point ontology. From
the manifesto of [Humberstone, 1979], a picture emerges of triples

hI;�; <i;

where � is inclusion among intervals, and < total precedence.
Here again, correspondences prove useful in exploring proposed princi-

ples. The language has the ordinary tense-logic operators, as well as a
modality � (`in all subintervals'). In this notation, Humberstone's base
logic has for its basic axioms

1. Fp! �Fp

2. F�p! Fp

3. �F�p! (�p _ Fp).
By the earlier method of substitutions, equivalents may be found illumi-

nating these:

1. de�nes 8x8y>x8z�x y > z,
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a property known as left monotonicity,

2. de�nes 8x8y>x8z�y z > z,

its dual property of right monotonicity. Finally,

3. de�nes 8x8y � x8z > y (9u � z : u � x _ 9u � z : u > x),

a form of a principle known as convexity. (`Stretches of time should be
uninterrupted'.)

Starting from the other side, one may impose basic postulates on �; <,
asking for de�nitions in this `interval tense logic'. For <, these might be
the earlier-mentioned ones, for �, a minimum seems to be the requirement
of partial order, while monotonicity (and convexity) take care of minimal
connections between <;�. This would add only two axioms to the preceding
ones, viz. S4 for inclusion. The further condition of anti-symmetry is not
de�nable | as may be seen by noting that the map n 7! n (modulo 2)
is a �-zigzag morphism sending the anti-symmetric frame hZ;�i to the
non-antisymmetric one hf0; 1g; fh0; 0i; h0; 1i; h1; 0i; h1; 1igi.

Many more examples of further correspondences on top of this foundation
may be found in Chapter II.3.2 of [van Benthem, 1985].

3.2 Conditionals

From among the teeming multitude of `conditional logics', three specimens
have been included here. As no work of the present kind has been done in
this area at all, the following considerations are still very much �rst steps.
(Cf. the Conditional Logic chapter in volume 5 for a discussion of conditional
logics.)

Constructive implication

Perhaps the single most e�ective argument in favour of constructive, as op-
posed to classical implication is the natural deduction analysis. The natural
rules for !-introduction and !-elimination give us only a fragment of all
classical pure !-tautologies; axiomatised by

(A1) '! ( ! ')

(A2) ('! ( ! �))! (('!  )! ('! �))

plus the rule of modus ponens. A principle notably outside of this class is
Peirce's Law

(('!  )! ')! ':

But really, the same elegance shows up in the Henkin completeness proof.
In the usual proof, one starts from a given consistent set | and then has
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to extend this arbitrarily to just any maximally consistent one, in order to
`break down' implications according to the classical truth table. A canonical
model construction rather uses a unique natural model, viz. that consistent
set together with all its consistent extensions, exploiting the evident decom-
position rule

� ` '!  if and only if 8�0 � � : if �0 ` ', then �0 `  :
A perfect match arises with the following semantics. Structures are gen-

eral frames F = hW;R;Wi, where R corresponds to the above inclusion
relation, and W consists of all R-hereditary sets of worlds. (Propositions
represent R-cumulative knowledge on this view.)

A direct study of the above logic on these frames would yield rather
clumsy conditions. One case will be exhibited, as it illustrates a variant
concept of correspondence, viz. correspondence for rules rather than axioms.

EXAMPLE 77. Modus Ponens de�nes the condition `every world belongs
to some �nite R-loop'.

Proof. `(': Suppose that xRx1R : : :RxnRx. Let V (p); V (q) be R-heredit-
ary subsets of W , such that p; p! q hold at x. Then, successively, p; q hold
at x1; : : : ; xn, and �nally at x.

`)': Suppose that x belongs to no �nite R-loop. Set V (p) := the smallest
R-hereditary set containing x; V (q) = the R-hereditary closure of fy j Rxyg.
This veri�es p; p! q at x; without verifying q. �

What will be done instead is to postulate the partial order behaviour of
�: reexivity, transitivity and antisymmetry. Finer peculiarities of (A1),
(A2) remain undetectable below this threshold.

Further restrictions on R may now be imposed by stronger axioms; e.g.
we can see why Peirce's Law is characteristic for classical logic.

EXAMPLE 78. Peirce's Law de�nes the restriction to single points:

8xy(Rxy ! y = x):

Proof. `(': A simple calculation suÆces.
`)': Suppose that Rxy; x 6= y. Set V (q) = ?; V (p) = fz j Rxz ^ x 6= zg.

This makes (p ! q) ! p true at x (notice that p ! q is false at x itself),
while falsifying p. (By the way, that V is admissible, i.e. that V (p) is R-
hereditary, follows from the above general assumption.) �

But `intermediate' implication axioms exist as well.

EXAMPLE 79. The following principle

((p! q)! p)! (((q ! r)! q)! p)
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de�nes a maximal length 3 for R-chains:

8xy(Rxy ! 8z(Ryz! (x = y _ y = z _ 8u(Rzu! z = u)))):

Proof. Here is the relevant counter-example for the argument in the `)'-
direction. Assume that xRyRzRu, while x 6= y; y 6= z; z 6= u. Set V (r) =
;; V (q) = fv j Ruv ^ u 6= vg [ fv j Ryv ^ :Rvzg; V (p) = fv j Ryv ^ y 6= vg.
The principle will be falsi�ed at y. �

It has not been possible to �nd other types of intermediate example.
Hence, we conclude with a

Conjecture. All principles of pure constructive implication de�ne �rst-
order constraints on R; viz. restrictions to some �nite chain length.

Relevant implication

Of the various proposed semantics for relevance logic, here is a perspicu-
ous example from [Gabbay, 1976, Chapter 15]. Structures are now tuples
hW;R; V; 0i, where 0 is a special world providing a vantage point from which
to compare other worlds through the ternary relation R. Intuitively, Rabc
is to mean that b is `included' in c, at least from the perspective of a. (One
might think of, for example, `a-local inclusion': a \ b � a \ c.) No prior
conditions are imposed on this relation.

This is not to say that these are not to be found at all. For instance, it
may be shown that the mentioned local inclusion relation is characterised
by two betweenness axioms:

1. Rabc$ Rbac (interchanging boundaries)

2. (Rabc ^ Rdae ^ Rdbe)! Rdce

(I.e. if c 2 [a; b]; a 2 [d; e]; b 2 [d; e], then c 2 [d; e]: a form of convexity.)
The explication of implication reads as follows:

' !  is true at a i�, for all b; c such that Rabc, if ' is true at
b, then  is true at c.

As it stands, this de�nition makes no implication laws universally valid.
To obtain at least some indubitable principle, one therefore imposes a re-
striction on valuations. The most urgent case is that of p! p. On the above
bare semantics, it would correspond to 8xyz(Rxyz ! y = z), collapsing the
ternary relation. To avoid this, one again requires `cumulation':

valuations V are only to assign subsets X of W subject to the
constraint that 8xy 2W (R0xy ! (x 2 X ! y 2 X)).



CORRESPONDENCE THEORY 381

If this constraint is to extend automatically to sets X de�ned by complex
implicational formulas, then a mild form of transitivity is to be imposed on
the ternary relation after all:

8xyzu((R0xy ^Ryzu)! Rxzu):

Notice how this relates perspectives from di�erent vantage points.
But then, if reasonable forms of transitivity have become respectable, we

also add (�)8xyzu((R0xy ^ R0yz)! R0xz).
Now, at last, some genuine correspondences arise | of a `local' sort (cf.

Section 2.2).

EXAMPLE 80.

1. Modus Ponens de�nes R000,

2. Axiom A1 de�nes a curious form of `transitivity':
8xyzu((R0xy ^Ryzu)! R0xu).

Proof. (Case (1) only) `(': This direction is immediate.
`)': Let V (p) = f0g [ fx j R00xg; V (q) = fx j R00xg. By the above

principle (�), both assignments are admissible. Clearly, both p and p ! q
are true at 0, whence also q: i.e. R000. �

Obviously, the second principle is not very plausible | but then, neither
is (A1) for a relevance logician.

A more interesting phenomenon in relevance logic, from the present point
of view, is the treatment of negation. This formerly inconspicuous notion is
now interpreted using a `reversal operation' + on worlds:

:' is true at a i� ' is true at a+.

In this light, new combined correspondences appear, such as that between
Contraposition and the reversal law

8xy(R0xy ! R0y
+x+):

Correspondence Theory may be applied to any kind of semantic entity.

Counterfactual implication

Ramsey told us to evaluate conditionals as follows. Make the minimal ad-
justment of your stock of beliefs needed to accommodate the antecedent:
then see if the consequent follows. Various syntactic and semantic imple-
mentations of this view exist, of which that of [Lewis, 1973] has deservedly
won the greatest favour. A counterfactual ' !  is true in a world, on his
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account, if  is true in all worlds most similar to that world given that '
holds in them.

As the preceding account has some diÆculties in the in�nite case, let us
consider �nite models hW;C; V i, where C is a ternary relation of compara-
tive similarity:

Cxyz for: `y is closer to x than z is'.

Lewis gives three basic conditions on the relation `no closer':

1. transitivity: 8xyzu((:Cxyz ^ :Cxzu)! :Cxyu),

2. connectedness: 8xyz(:Cxyz _ :Cxzy),

3. egocentrism: 8xy(:Cxxy ! x = y).

Rewriting these for `closer', one �nds to one's surprise that (2) is rather
weak, being merely

20. asymmetry: 8xyz(Cxyz ! :Cxzy).

On the other hand, (1) becomes a strong principle

10. 8xyu(Cxyu! 8z(Cxyz _ Cxzu)),

which we knew as almost-connectedness back in Section 3.1.
From asymmetry and almost-connectedness, one may derive ordinary

transitivity and irreexivity, whence the three `comparative' axioms of Sec-
tion 3.1 emerge. These principles justify the appealing picture of `similarity
spheres' around the reference world x.

The tendency has been since 1973 to retain only transitivity and irreex-
ivity as fundamental pre-conditions on C, leaving various forms of connect-
edness as optional extras. Thus, one �nds an axiomatisation of this austere
minimal conditional logic in [Burgess, 1981].

The truth de�nition in this case may be taken to be the following:

' !  is true at w if w holds in all '-worlds C-closest to w:

Indeed, this clause veri�es the following list of principles without further
ado:

p ! p;
p ! q; p ! r ` p ! q ^ r;
p ^ q ! p;
p ! r; q ! r ` p _ q ! r:

It is only the last one which requires transitivity:

p ! q ^ r ` p ^ q ! r:
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Egocentrism is restored by adding the principle of Modus Ponens:

p ! q; p ` q

But, the original Lewis logic contained even further principles, such as the
formidable

((p _ q) ! p) _ :((p _ q) ! r) _ q ! r:

What does it express? As it happens, it restores almost-connectedness.

Proof. First, the axiom is valid under this additional assumption | by the
above discussion.

Next, suppose almost-connectedness fails; i.e. for some xyzu we have:
Cxyz;:Cxyu;:Cxuz. By transitivity, it follows that :Cxzu. Now, set
V (p) = fyg; V (q) = fz; ug; V (r) = fy; ug. Then z is q-closest among the
worlds falsifying r. The two p _ q-closest worlds y; u both verify r. Finally,
p fails in the p_ q-closest world u. Thus, Lewis' axiom has been refuted. �

Finally, to mention an example outside of Lewis' original logic, there is
the Stalnaker principle of `Conditional Excluded Middle':

p ! q ^ p !:q:

As was stated in the Introduction, this axiom even requires the similarity
order to be a linear one. In the present �nite case, this means that the
above truth de�nition reduces to:

' !  is true at w if  holds in the closest '-alternative to w:

And that was the original Stalnaker explication of conditionals.
The previous examples were all conditional axioms without nestings of
!. This is typical for most current logics in this area. Relational conditions

matching these have invariably been found to be �rst-order ones. Hence, in
view of Theorem 38, here is our

Conjecture. All counterfactual axioms without nestings of conditionals
are �rst-order de�nable.

The reason for this restriction lies in the motivation for the present area.
Entailment conditionals such as constructive implication, or modal entail-
ment have often been proposed out of dissatisfaction with classical `nested
principles', such as, say, p! (q ! p) or Peirce's Law. The non-nested clas-
sical fragment was not called into question. Counterfactual conditionals,
however, typically disobey classical implicational logic at the level of non-
nested inferences, such as the monotonicity rule from p! q to p ^ r ! q.

Nevertheless, there are intrinsic reasons to be found inside the above
semantics for considering nested axioms after all. For, one obvious omission
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in the above list of semantic conditions was the lack of index principles
relating the perspectives of di�erent worlds. For instance, when we read C
for a moment as relative proximity in Euclidean space, we �nd the following
Triangle Inequality

8xyz((Cxyz ^ Czxy)! Cyxz):

And there are other elegant principles of this kind.
Now, it is easily seen that such index principles are just what is involved

when nested counterfactuals are evaluated: the perspective starts shifting.
Thus, it will be rewarding to have correspondences here as well. One, not
too exciting example is the following. The Absorption Law

p ! (q ! r) ` (p ^ q) ! r

de�nes the index principle

8xyz(Cxyz ! 8u:Cyuz):

Better examples are still to be found. Indeed, e.g. the counterfactual logic of
Euclidean space, the most natural geometric representation of our similarity
pictures, is still a mystery.

3.3 Intuitionistic Logic

Constructive conditional logic is only a part of the full intuitionistic logic,
whose Kripke semantics extends the earlier constructive models. In this
section, a sketch will be given of an Intuitionistic Correspondence Theory.
(For details on intuitionistic logic, cf. van Dalen's chapter in volume 7 of
this Handbook.)

Kripke semantics, intermediate axioms and correspondence.

DEFINITION 81. An intuitionistic Kripke model M is a tuple hW;�; V i,
where � is a partial order (`possible growth') on W (`stages of knowledge').
The valuation V assigns �-closed subsets of W to proposition letters (`cu-
mulation of knowledge').

The truth de�nition has the following familiar pattern,

M 2 ?[w] for all w 2W;
M � '!  [w] if M �  [v] for all v � w such that M � '[v];
M � ' ^  [w] if M � '[w] and M �  [w];
M � ' _  [w] if M � '[w] or M �  [w]:

Negation is de�ned as usual (:' becoming '! ?).
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The pre-condition of partial order was motivated earlier on. But, other
choices may be defended as well. As is well-known, the above semantics was
derived from the modal one, through the G�odel translation g:

g(p) = �p
g('!  ) = �(g(')! g( ))
g(' ^  ) = g(') ^ g( )
g(' _  ) = g(') _ g( )
g(?) = ?:

Now, there is a whole range of modal logics whose `intuitionistic fragment'
(through g ) coincides with intuitionistic propositional logics. Amongst
others, we have the

THEOREM 82. Let X be any modal logic in the range from S4 to S4.Grz
= S4 plus the Grzegorczyk Axiom

�(�(p! �p)! p)! p:

Then, for all intuitionistic formulas '; ' is intuitionistically provable in
Heyting's logic if and only if g(') is a theorem of X.

The earlier modal correspondences yield a corresponding semantic range,
between `pre-orders' (reexive and transitive) and `trees':

EXAMPLE 83. Grzegorczyk's Axiom de�nes the combination of (i) reex-
ivity, (ii) transitivity, and (iii) well-foundedness in the following sense: `from
no w is there an ascending chain w = w1 � w2 � : : : with wi 6= wi+1(i =
1; 2; : : :)'.

Proof. This goes more or less like the closely related Axiom of L�ob. By the
way, notice that (iii) implies anti-symmetry. Note also that, semantically,
Grzegorczyk's axiom alone implies the S4-laws: syntactic derivations to
match were found around 1979 by W. J. Blok and E. Pledger. �

Thus, a case may also be made for the Tree of Knowledge as a basis for
intuitionistic semantics. Nevertheless, we shall stick to partial orders for a
start.

Above S4Grz, modal logics start producing greater g-fragments | the
so-called intermediate logics, ascending to full classical logic. Intermediate
axioms impose various restrictions on the pattern of growth for knowledge,
classical logic forcing the existence of single (`complete') nodes.

EXAMPLE 84. (i) Excluded Middle p _ :p de�nes 8x8y(x � y ! x = y).

Proof.`(' is immediate.
`)': Suppose x � y; x 6= y. (By anti-symmetry then y 6� x.) Set

V (p) = fz j y � zg. This falsi�es both p and :p at x. �



386 JOHAN VAN BENTHEM

(ii) Weak Excluded Middle :p _ ::p de�nes directedness.

Proof. `(': Suppose that :p fails at x; say p holds at y � x. Then
consider any z � x. As it shares a common successor with y, and V (p) is
�-hereditary, it has a successor verifying p, whence :p fails at z. So ::p
holds at x.

`)': Suppose that x � y; z, where y; z share no common successors. Set
V (p) = fu j z � ug. (Like above, this is a �-closed set.) Notice that
x; y 62 V (p). It follows that :p fails at x (consider z), but ::p fails as well
(consider y). �

(iii) Conditional Choice (p! q) _ (q ! p) de�nes connectedness.

Proof. `(': Suppose that p ! q fails at x; i.e. some y � x has p true,
but q false. Now consider any z � x such that q holds. Either z � x, but
then, by �-heredity, q is true at y (quod non), or y � z, and so, again by
�-heredity, p is true at z, i.e. q ! p is true at x.

`)': Let x � y; z with y 6� z; z 6� y. Set V (p) = fu j y � ug; V (q) = fu j
z � ug. Then p! q fails at x (watch y), and q ! p fails as well (watch z).

�

Much more forbidding principles than these have been proposed as inter-
mediate axioms. But surprisingly, these usually turned out to be �rst-order
de�nable:

EXAMPLE 85. (i) The Stability Principle (::p! p)! (p _ :p) de�nes

8x:9yz (x � y ^ x � z ^ :9u(y � u ^ z � u) ^
^ 8u(8s(u � s! 9t(s � t ^ z � t))! :9v(u � v ^ y � v))):

(ii) The Kreisel-Putnam Axiom (:p ! (q _ r)) ! ((:p ! q) _ (:p ! r))
de�nes

8x:9yz (x � y ^ x � z ^ :y � z ^ :z � y ^
^ 8u((x � u ^ u � y ^ u � z)! 9v(u � v ^ :y � v ^ :z � v))):

No matter how complex such axioms may seem at �rst sight, proofs of
the above assertions are quite simple exercises in `imagining what a counter-
example would look like'.

This recurrent experience led to the following conjecture in [van Benthem,
1976]:

All intermediate axioms express �rst-order constraints on growth
of knowledge.

Two conjectures refuted. The earlier hope was all but given up in the �rst
version of this chapter; as `Scott's Rule' turned out to be an essentially
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higher-order intermediate inference. The relevant argument was sharpened
somewhat by P. Rodenburg:

THEOREM 86. Scott's Axiom ((::p ! p) ! (p _ :p)) ! (:p _ ::p)
de�nes no �rst-order condition on partial orders.

Proof. An elaborate L�owenheim{Skolem argument works, in the spirit of
Example 43. As an illustration of the non-triviality of our present subject
matter, it follows here.

Step 1: Consider the following Kripke frame hW;�i:
�

� �
� � � �

dcX � � c
�
�
�
�
�
��

A
A
A
A
A
AA

X

W consists of the in�nite binary tree T , together with, for each node c in
T and each �-hereditary, co�nal set X in Tc (i.e. the subtree with root c),
some point dcX . � is the usual order on T , together with

� c � dcX � x, for all x 2 X
� dcX � dcX0 , if X 0 � X .

Claim. Scott's Axiom is true in hW;�i.
Proof. First, let c 2 T be a putative refutation. I.e., for some valuation
V ,

1. (::p! p)! p _ :p is true at c,

2. :p _ ::p is false at c.
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Then consider the node dcX , where X is the co�nal hereditary set

Tc \ (V (p) [ V (:p)):

One veri�es successively that ::p! p is true at dcX , whereas both p;:p are
false. (E.g. if p were true at dcX , then p is true throughout X , whence ::p is
true at c | whereas (2) says the opposite.) Thus, we have a contradiction
with (1).

A similar argument works for the case where c is of the form dcX itself.

Step 2: A matter of cardinality:

Claim. The above Kripke frame is uncountable.

Proof. In particular, there are 2@0 nodes of the form dcX . For, each subset
Y of N may be coded as follows, using (distinct) hereditary co�nal subsets
Y + of the in�nite binary tree. Let Y = fy1; y2; y3; : : :g.

��

�

�

�
�

�

Y + Y +

Y1
Y2

etc. going down the extreme right branch using the extreme left branches
to code y1; y2; y3; : : :.

For all nodes not arrived at in this way, one makes Y + co�nal by means
of the following stipulation:

�

� �

� �

Y +

� � y3, etc.

�
y1

�

Y +

�
y2

�

Y +

Step 3: Take any countable elementary substructure F of hW;�i containing
the original binary tree.
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Claim. Scott's Axiom may be falsi�ed in F .

Proof. Consider T as a double tree

� c0

c1� � c2

and again Tc2 a countable sequence of `trees on a string':

�c
2

� �

T1
� �

T3
� �

T3
Let DX1 ; DX2 ; : : : be an enumeration of the points dC0X remaining in F .
Notice that, for each i 2 N ,

1. �nite intersections Ti \X1 \ : : :\Xn are still hereditary co�nal in Ti,

2. the total intersection Ti \ fXj j j = 1; 2; : : :g is empty.

As for the latter observation, it suÆces to see that the assertion

8x9dC0X with dC0 6� x;

which holds in hW;�i, can be expressed in �rst-order terms in hW;�i; and,
hence, it has remained valid in the elementary substructure F .

Now, de�ne

X�
1 = X1

X�
n+1 = X1 \ : : :Xk for the smallest k such that Tn+1 \X1\
: : : \Xk

�
6= Tn+1 \X�

n:

Scott's Axiom may now be falsi�ed at c0, by setting

X� = [ fTi \X�
i j i = 1; 2; : : :g; V (p) = fy j 9x � y x 2 X�g:

to see this, notice, that successively,

1. each point dXi
has a successor (in Ti) outside of V (p),

2. (::p! p)! p _ :p holds at c0,
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3. :p _ ::p fails at c0.

We conclude that Scott's Axiom is not �rst-order de�nable | not being
preserved under elementary subframes. �

This complex behaviour disappears on better-behaved structures.

OBSERVATION 87. On trees, Scott's Axiom de�nes the �rst-order condi-
tion

8x:9yzu (x � y ^ x � z ^ z � u ^ z 6= u ^ :9v(y � v ^ z � v)):

This, and other experiences of its kind, led to a revised guess in the �rst
version of this chapter: On trees, all intermediate axioms express �rst-order
constraints on descendance. A proof sketch was added, involving semantic
tableaux as `patterns of falsi�cation', to be realised in trees.

This conjecture was `almost' refuted in [Rodenburg, 1982]. The semantic
tableau method runs into problems with disjunctions, and indeed we have
the following counter-example.

EXAMPLE 88. Consider the formula

� = ((:p ^ :q ^ :r) ! (p ^ q ^ r))! (:p ^ :q ^ :r)
with the simultaneous substitution of: p&q for p, p&:q for q, and :p&q for
r. This � is not �rst-order de�nable on partial orders. On suitably tree-like
structures, it expresses the lack of `3-forks' of immediate successors as well
as the absence of in�nite comb-like structures.

On trees, this negative example probably still works | but there is an
instructive diÆculty here. The class of trees itself has a higher-order de�-
nition; �1

1, to be precise. Therefore, current model-theoretic arguments for
disproving �rst-order de�nability (compactness, L�owenheim{Skolem) run
the risk of employing constructions leading outside of this class. Higher-
order preconditions are a problem for our Correspondence Theory.

To illustrate this from a purely classical angle, the reader may consider
a related problem, showing how soon the familiar methods of model theory
fail us. Finiteness is �rst-order unde�nable on partial orders, even on trees.
It is thus de�nable on linear trees, however, viz. by `every non-initial node
has an immediate predecessor'. What about the (at most) binary trees?
This intermediate case seems to be open.

The state of the subject. The progress of science is sometimes startling.
Where the �rst version of this chapter (1981) had some tentative examples,
enlightenment reigns in the report [Rodenburg, 1982]. Of its many topics,
only a few will be mentioned here.

First, there are several semantic options | as indicated above, ranging
from partial orders via `downward linear orders' to trees. But moreover,
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there is a legitimate choice of language. Despite appearances, it is the
disjunction clause which is now strongly constructive in intuitionistic Kripke
semantics. (`Choose now!' Classical logic would have a more humane clause
in this setting: ��(' _  ), i.e. `' or  eventually'.) Thus, it is of interest
to consider both the full language and its _-free fragment.

The semantic tableau method mentioned above, in combination with the
above counter-examples, has led to the results in the following scheme:

All formulas Partial Downward Trees
�rst-order de�nable orders linear orders

without _ YES YES YES
with _ NO NO ?

But there are also matters of `�ne structure'. For instance, Scott's Axiom
had only one proposition letter | and for such intuitionistic formulas we
have the beautiful Rieger{Nishimura lattice. Now, Scott's Axiom merely
seemed a �t candidate for a counter-example among the intermediate axioms
existing in the literature. Rodenburg has proved that it is also minimal
in the Rieger-Nishimura lattice with respect to non �rst-order de�nability.
(More precisely, an intuitionistic formula with one proposition letter is �rst-
order de�nable on the partial orders if and only if it is equivalent to one of
A1; : : : ; A9 in the lattice.)

In the counter-examples needed for the latter result, a uniform method
may be seen at work: compactness, in the form that sets of formulas which
are �nitely satis�able in �nite models are also simultaneously satis�able (in
some in�nite model). Now, indeed, intuitionistic truth has a close connec-
tion with truth in �nite submodels (cf. [Smory�nski, 1973]). Our question is
whether this may lead to the following improvement in the mathematical
characterisation of �rst-order de�nability as given in Section 2.2.

Conjecture. An intuitionistic formula ' is �rst-order de�nable if and only
if ' is preserved under ultraproducts of �nite frames.

Intuitionistic de�nability. As with the direction `from intensional to classi-
cal', the case `from classical to intuitionistic de�nability' shows many resem-
blances with our earlier modal study. For instance, a Goldblatt{Thomason
type characterisation was proved in [van Benthem, 1983] (cf. our earlier
Theorem 66):

A �rst-order constraint on the growth pattern is intuitionisti-
cally de�nable if and only if it is preserved under the formation
of generated subframes, disjoint unions, zigzag-morphic images,
�lter extensions and `�lter inversions'.
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Merely in order to illustrate this topic, which has a wider semantic sig-
ni�cance, here is a sketch of the representation theory in the background.

On the algebraic side, the intuitionistic language may be interpreted in
Heyting Algebras hA; 0; 1;+; �;)i satisfying suitable postulates. Now, each
Kripke (general) frame in the above sense induces such a Heyting Algebra,
through its �-hereditary sets, provided with suitable, obvious operations.
But also conversely, a �lter representation now takes Heyting Algebras to
Kripke general frames. Indeed, the earlier categorial duality (cf. Section
2.3) is again forthcoming.

The more general semantic interest of the construction is this. Despite
the super�cial similarity with structures consisting of the `complete' possi-
ble worlds, intuitionistic Kripke models should be regarded as patterns of
stages of partial information. This comes out quite nicely in the above rep-
resentation, where `worlds' are no longer complete ultra�lters, but merely
�lters (in the _-free case) or `splitting' �lters (for the full language). Filters
F merely satisfy the closure condition that

a; b 2 F i� a � b 2 F;

a minimal requirement on partial information. Also quite suggestively, the
`modal' alternative relation collapses into inclusion (`growth'):

8a) b 2 F 8a 2 F 0 : b 2 F 0 i� F � F 0:

The present-day supporters of `partial models' and `information semantics'
would do well to study intuitionistic logic.

Predicate logic. Again, correspondence phenomena do not stop at the fron-
tier of predicate logic. This will be illustrated by means of some intuition-
istic examples.

Kripke models M = hW;�; D; V i will now be of the usual variety; in
particular satisfying

1. 8xy(x � y ! Dw � Dv) (monotonicity)

2. 8xy(x � y ! 8~d 2 Dx(Vx(P; ~d) = 1! Vy(P; ~d) = 1) (heredity).

But other varieties, say with maps between the domains (cf. [Goldblatt,
1979]) would be suitable as well.

The `de re/de dicto' interchange principles of Section 2.5 now have their
obvious counterparts in the following quartetto:

1. :9xAx ! 8x:Ax,

2. 8x:Ax! :9xAx,

3. 9x:Ax ! :8xAx,
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4. :8xAx! 9x:Ax.

The �rst three of these are universally valid on the present semantics.
That they already hide quite some complexity is shown by the G�odel trans-
lation of (3):

�(9x�:�Ax! �:�8x�Ax);

or

�(9x��:Ax! ��9x�:Ax):

No wonder that (3), e.g. does not de�ne precisely the above monotonicity
constraint on domains | even though its modal cousin 9x�Ax ! �9xAx
did.

The �rst really complex principle in Section 2.5 was the converse impli-
cation �9xAx! 9x�Ax. We shall now investigate its intuitionistic cousin
(4) | a rejected classical law.

EXAMPLE 89.

1. :8xAx! 9x:Ax implies that all domains are equal:

8xy(x � y ! Dx = Dy)

2. On frames with constant �nite domain, :8xAx ! 9x:Ax expresses
the �rst-order condition that

8x (9!d d 2 Dx _ 8y(x � y ! 8z(x � z ! 9u(y � u ^ z � u)))):

Proof. Ad 1. Suppose that x � y, but Dx
�
6= Dy. Make A true at y for all

d 2 Dx, and similarly at all y0 � y. This stipulation de�nes an admissible
assignment verifying :8xAx at x, while falsifying 9x:Ax.

Ad 2. First, if jDxj = 1, then trivially, :8xAx ! 9x:Ax holds at x.
(Recall that all domains are equal.)

Next, if jDxj > 1, then one may argue as follows. If � is directed above
x in the above sense, then the assumption that 9x:Ax fails at x can be
exploited to show that :8xAx must fail as well.

For, let Dx = fd1; : : : ; dkg. By the assumption, Adi will be true at some
xi � x (1 � i � k). Then, by successive applications of directedness, there
will be found a common successor y � x1; : : : ; y � xk, where 8xAx is true
(by heredity). This falsi�es :8xAx at x.

If on the other hand, for some x; jDxj > 1 while � is not directed above
x, then, say, there exist x1 � x; x2 � x without common successors. Then
pick any object d 2 Dx, making A true at x1 and all its �- successors for
all objects except d; while making A true at x2 and all its �-successors for
d only. This assignment veri�es :8xAx at x, while falsifying 9x:Ax. �
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Thus, a classical quanti�er axiom may express an interesting purely rela-
tional constraint on �.

Now, intuitionists are fond of saying that (4) is valid for �nite domains:
as we have seen, however, it does impose constraints even then. They go on
to say that an extrapolation to the in�nite case would be illegitimate. At
least, our principle becomes much more complex then.

THEOREM 90. :8xAx! 9x:Ax is not �rst-order de�nable in general.

Proof. Consider the following structure, in which all worlds have a common
domain N .

�
� � � : : :  � � � � : : : �! (� < !1)
0 1 2 �1 0 +1

i.e. hW;�i has the relational pattern of

hN � (!1 �Z);�i:

Claim. :8xAx! 9x:Ax is true in this frame.

Proof. Starting from any world x, assume that 9x:Ax fails. Then, for
each n 2 N , An must hold at some (�n; kn) > x. As the co�nality of !1
exceeds !, there exists some � < !1 such that (�; 0) > (�n; kn)(n 2 N).
Now, by heredity, 8xAx must hold at (�; 0) | whence :8xAx is false at
x. �

Next, by the L�owenheim{Skolem theorem (as ever), this frame has count-
able elementary subframes. (Indeed, hIN;�i itself is one.) But in these, our
principle may be falsi�ed using some countable co�nal sequence x0; x1; : : :
making A0 true from x0 upward, A1 from x1 upward, etcetera. As in earlier
arguments, the conclusion of the theorem follows. �

To �nish this list of examples, it may be noted that a famous weaker
variant of the above axiom does indeed de�ne a �rst-order constraint.

EXAMPLE 91. Markov's Principle

8x(Ax _ :Ax) ^ ::9xAx ! 9xAx

de�nes the relational condition

8x9y � x 8z � y 8d(Edz ! Edx):

Correspondence Theory remains surprising.
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Post-Script: quantum logic.

Correspondences have not proved uniformly successful in intensional con-
texts. It seems only fair to �nish with a more problematic example.

A possible worlds semantics for quantum logic was proposed in [Gold-
blatt, 1974]. Kripke frames are now regarded as sets of `states' of some
physical system, provided with a relation of `orthogonality' (?). From its
physical motivation, two pre-conditions follow for ?, viz. irreexivity and
symmetry. But in addition, there is also a restriction to `admissible ranges'
for propositions, in the sense that these sets X �W are to be orthogonally
closed:

8x 2 (W �X)9y 2 (W �X)(:x?y ^ 8z 2 X y?z):

The key truth clauses are those for conjunction (interpreted as usual), and
negation, interpreted as follows:

:' is true at x if x is orthogonal to all '-worlds.

This semantics validates the usual principles for quantum logic, when _ is
de�ned in terms of :;^ by the De Morgan law. But, one key principle
remains invalid, viz. the ortho-modularity axiom

p$ (p ^ q) _ (p ^ :(p ^ q)):

This axiom has a natural motivation in the Hilbert Space semantics for
quantum logic | being the key stone in the representation of ortho-modular
lattices as subspace algebras of suitable vector spaces. Thus, a minimal
expectation would be that an enlightening correspondence is forthcoming
with some constraint on the orthogonality relation ?.

In reality, no such thing has happened. Quantum logicians pass onto
general frames, into whose very de�nition validity of ortho-modularity has
been built in. Despite this cover-up, the fact remains that the relational
possible worlds perspective fails to do its correspondence duties here. A
set-back, or an indication that facile over-applicability of Kripke semantics
need not be feared for?

4 CONCLUSION

At a purely technical level, Correspondence Theory is an applied subject.
Classical tools have been borrowed from model theory and universal algebra.
In return to these mother disciplines, the subject o�ers a good range of
(counter-)examples, as well as prospects for generalisability to other suitably
chosen fragments of higher-order logic. (Cf. [van Benthem, 1983].)

From a more philosophical point of view, the whole enterprise may be
described as �nding out what possible worlds semantics really does for us.
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It is one thing to make conceptual proposals, and another to really probe
their depths. The systematic study of connections between intensional and
classical perspectives upon possible world structures is an exploration of the
bene�ts gained by the semantics. This chapter started with the observa-
tion that `complex' modal axioms turned out to express `simple' classical
requirements (i.e. �rst-order ones). We have investigated the range and
limits of this, and related phenomena. Especially these limits have become
quite clear | and, with them, the limits of fruitful application of Kripke
semantics. This philosophical conclusion holds for all semantics, of course.
But we have earned the moral right to say it, through honest toil.
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APPENDIX (1997)

This chapter �rst appeared in 1984. In the meantime, Modal Logic has
evolved, but the basic structure of our original presentation remains valid.
Therefore, we have left the old text unchanged, and merely added a short
chronicle of further developments, including some answers to open ques-
tions. Generally speaking, correspondence methods have become a useful
technical tool in pure and applied Modal Logic, without forming a major re-
search area in their own right. A more principled motivation is given in van
Benthem [1996a], where correspondence analysis is viewed as a central part
in the philosophical quest for logical `core theories' of semantic phenomena
in language and computation. In particular, correspondences suggest the
introduction of new many-sorted models, inducing decidable geometries of
`states' and `paths' in the study of time and computation.
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Extensions to Other Branches of Intensional Logic

The �rst signi�cant extension of correspondence theory concerns Intuitionis-
tic Logic. This involves the new feature that all valuations must be restricted
to hereditary ones, leading only to formulas whose truth is preserved upward
in the relational ordering. Rodenburg [1986] investigates this area in detail.
In particular, he shows that the implication-conjunction fragment is totally
�rst-order, whereas disjunctions can lead to non-�rst-orderness. Moreover,
he introduces semantic tableau methods for explicit description of �rst-
order correspondents. A �nal interesting feature is Rodenburg's analysis of
intuitionistic Beth models which employ a second-order truth condition: a
disjunction is true when its disjuncts `bar' all future paths. These also turn
out to be amenable to correspondence analysis, over two-sorted frames with
both points and paths. Restricted valuations also occur with the ternary
relational models of Relevant Logic. A full correspondence analysis is given
in Kurtonina [1995], which analyses the special e�ects of working with fea-
tures like distinguished points (actual worlds), non-standard connectives
(including a new product conjunction), as well as the much poorer non-
Boolean fragments found in categorial logics for grammatical analysis (cf.
[van Benthem, 1991; Moortgat, 1996]). Further extensions have been made
to Epistemic Logic [van der Hoek, 1992] and Partial Logics [Thijsse, 1992;
Jaspars, 1994; Huertas, 1994]. Correspondence with restricted valuations for
`convex' propositions has also been proposed in standard Temporal Logic (cf.
van Benthem [1983; 1986; 1995b]). But also, most axioms for richer interval-
based versions have �rst-order `Sahlqvist forms' [Venema, 1991]. Zanardo
[1994] gives correspondences for modal-temporal models of branching space-
time. Finally, correspondence methods have turned out very useful in Alge-
braic Logic. Venema [1991], Marx and Venema [1996] present a systematic
study of relational algebra and cylindric algebra along these lines, pointing
out the Sahlqvist form of most familiar algebraic axioms, and calculating
their frame constraints on algebraic `atom structures'. This establishes a
much wider bridge between algebraic logic and modal logic than our earlier
duality.

Restricted Frame Classes

Correspondence behaviour may change on special frame classes. In this
chapter, we have looked at some e�ects of a restriction to transitive frames.
But one can also investigate non-�rst-order frame classes. Van Benthem
[1989a] considers �nite frames, where, amongst others, the McKinsey axiom
still de�nes a non-�rst-order condition. In this area, standard compactness-
based model-theoretic techniques no longer work, and they must be replaced
by a more careful combinatorial analysis with Ehrenfeucht-Fra��ss�e games of
model comparison. (More generally, the �nite model theory of modal logic
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is still undeveloped. Rosen [1995] proves some interesting transfer results,
showing better �nite model-theoretic behaviour than for �rst-order logic in
general.) Doets [1987] takes up modal Ehrenfeucht games in great depth,
investigating, amongst others, correspondence over countable and over well-
founded frames. (For instance, the so-called Fine Axiom turns out to be
�rst-order over countable frames.)

Complexity

This chapter contains some results on the (high) complexity of de�nabil-
ity problems for monadic �1

1�formulas. It turns out much harder to deal
with the modal fragment of these. A lower bound for the complexity of
�rst-orderness of modal formulas has been found in Chagrova [1991]: M1 is
undecidable. It seems likely that her methods (involving reductions of Min-
sky machine computation to correspondence statements) can also be made
to yield non-arithmetical complexity. Conversely, undecidability of modal
de�nability for �rst-order statements has been proved by Wolter [1993]: that
is, P1 is undecidable, too. A more general investigation of time and space
complexity for modal logics, and the `jumps' that may occur with di�erent
operator vocabularies, may be found in Spaan [1993]. It has improved de-
cidability results for the so-called `subframe logics' de�ned in Fine [1985],
as well as `transfer' of complexity bounds from components to compounds
in poly-modal logics (cf. [Kracht and Wolter, 1991]).

Correspondence and Completeness

The main business of modal logic has been the search for completeness the-
orems over various frame classes. Correspondence theory bypasses this de-
ductive information, focussing on direct semantic de�nability. Nevertheless,
Kracht [1993] shows how the two enterprises can be merged, by a suitably
generalized form of modal de�nability. Perhaps the most powerful result
of this kind is the generalized Sahlqvist Theorem in Venema [1991], which
shows that over suitably rich modal languages (possessing matched versions
for each modality accessing all directions of its alternative relation), and al-
lowing natural additional rules of inference beyond the minimal modal logic,
the correspondence and the completeness version of the Sahlqvist Theorem
converge in their proofs. The essential observation in the argument is as
follows. In standard Henkin models for these richer systems, unlike in the
standard case, all de�nable subsets employed in the correspondence proof
(such as singletons or successor sets) are modally de�nable. Direct frame
correspondences for modal rules of inference may be found in van Benthem
[1985]. Over frames, the latter correspond to non-�1

1 second-order formulas,
but except for a few scattered observations in the literature, correspondence
theory for modal rules of inference remains underexplored.
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Duality with Algebraic Logic

Algebraic methods have been invaluable in �nding key results on corre-
spondence, such as the Goldblatt-Thomason characterization of the modally
de�nable �rst- order formulas. Nevertheless, a purely model-theoretic re-
analysis has been given in van Benthem [1993b], revolving around saturated
models instead of descriptive frames. There is no de�nite preference here,
as it is precisely the interplay between algebraic and model-theoretic view-
points that remains fruitful. For new uses of correspondence methods in
algebraic logic, as well as new set-theoretic representations for Boolean al-
gebras with additional modal operators, see Marx [1995], Mikulas [1995].
For instance, Marx has an in-depth study of the duality between algebraic
amalgamation and logical interpolation. The latter methods no longer em-
ploy simple binary relations as in the J�onsson-Tarski Stone representation,
but more complex set-theoretic constructs. (Modal correspondences over
�nitary relations occur in van Benthem [1992], with a �nite neighbourhood
semantics for logic programs.) Developing a systematic correspondence the-
ory over such generalized relational structures then becomes the next chal-
lenge.

Extended Modal Logics

Perhaps the most striking development in modal logic over the past ten years
has been the systematic use of more powerful formalisms, with stronger
modal operators over relational frames. A straightforward step is `poly-
modal logic', which gives the same expressive power over frames with more
alternative relations. Examples of the latter trend are the indexed modali-
ties < i > of propositional dynamic logic (cf. [Harel, 1984; Goldblatt, 1987;
Harel et al., 1998]), or n-ary modalities accessing (n + 1)-ary alternative
relations, as happens in relevant or categorial logics (cf. [Dunn, 2001;
Kurtonina, 1995]). The correspondence theory of such extensions is straight-
forward, whereas there are interesting issues of `transfer' for axiomatic com-
pleteness, �nite model property, or computational complexity: cf. [Spaan,
1993; Fine and Schurz, 1996]. Transfer may depend very much on the con-
nections between the various modalities. A case in point is modal predicate
logic, whose theory has rapidly expanded over the past decade. Van Ben-
them [1993a] surveys some striking contributions by Ghilardi and Shehtman.

More interesting, from a correspondence point of view, is an increase in
expressive power over the original binary relational frames. For temporal
logic, the latter research line was initiated by Kamp's Theorem on functional
completeness of the fSince, Untilg language over continuous linear orders.
In modal logic, the �rst systematic work emanated from the `So�a School':
cf., e.g., [Gargov and Passy, 1990; Goranko, 1990], Vakarelov [1991; 1996].
These papers study addition of various new operators, such as a universal
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modality ranging over all worlds (relationally accessible or not), or various
operations on poly-modalities, such as `program intersection'. New frame
constructions were invented to deal with these, such as `duplication'. De
Rijke [1992] investigates the `di�erence modality' (\in at least one di�er-
ent world"), which has turned out to be useful and yet tractable. A more
general program for extending modal logic (viewed as a general `theory
of information') occurs in van Benthem [1990] but the technical perspec-
tive is also clear in the pioneering paper Gabbay [1981]. Finally, de Rijke
[1993] is an extensive model-theoretic investigation of de�nability and cor-
respondence for extended modal languages, producing generalized versions
for many results in this chapter (such as frame preservation theorems or ef-
fective correspondence algorithms). Still another angle on all this will follow
below.

Alternatives: Direct Frame Theory

One may also analyze the frame content of modal logics more directly in
terms of mathematical properties of graphs. Fine [1985] is a pioneer of
this trend, emphasizing the good behaviour of `subframe logics' which are
complete for frame classes that are closed under taking subframes. (Such
logics make no `existential commitments'.) First-orderness is not a promi-
nent consideration here: e.g., L�ob's Axiom de�nes a simple subframe logic.
Zakharyashev [1992; 1995] is a sophisticated study of modal logic from this
viewpoint. Nevertheless, his direct classi�cation of modal logics into three
stages of frame preservation behaviour may again be reected in second-
order syntax and hence result in a form of correspondence theory at that
higher level. A forthcoming monograph by Chagrov and Zakharyashev pro-
vides much more background, inluding references to earlier Russian sources
(going back to Jankov in the sixties). Another excellent source, for many
of the topics listed here, is the survey chapter [Chagrov et al., 1996].

Models, Bisimulation and Invariance

Another noticeable shift of emphasis in the current literature leads away
from frames to models as the primary objects of semantic interest. This
move makes all of basic modal logic �rst-order, via our standard transla-
tion. The main questions then address what makes modal logics special
as subspecies of �rst-order logic. In particular, what is the basic semantic
invariance for basic modal logic, which should play a role like Ehrenfeucht
games or `partial isomorphism' in �rst-order model theory? A key result
here is the semantic characterization of the modal fragment of �rst-order
logic (modulo logical equivalence) as precisely those formulas in one free
variable which are invariant for generated submodels and our `zigzag re-
lations' [van Benthem, 1976]. In modern jargon, this says that these for-
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mulas are precisely the ones invariant for bisimulation. The latter link
was also developed in Hennessy & Milner [1985], which matches modal for-
malisms in di�erent strengths with coarser or �ner process equivalences.
For up-to-date expositions of the resulting analogies between modal logics
and computational process theories, cf. [van Benthem and Bergstra, 1995;
van Benthem et al., 1994], as well as various contributions in the volume
[Ponse et al., 1995]. This development has led to a new look at connec-
tions between modal formalisms and �rst-order logic. For instance, there
are striking analogies between the meta-theories of both logics, whose pre-
cise extent and explanation is explored in de Rijke [1993], and Andr�eka,
van Benthem & N�emeti [1998]. In particular, the latter paper investigates
the hierarchy of �nite-variable fragments for �rst-order logic as a candi-
date for a general account of modal logic (cf. [Gabbay, 1981; van Benthem,
1991] for this view). Typically, modal formulas need only two variables over
worlds in their standard translation, temporal formulas only three, and so
on. Finite-variable fragments are natural, and may be considered as func-
tionally complete modal formalisms (cf. the insightful game-based analysis
of Kamp's Theorem in Immerman & Kozen [1987]). Nevertheless, Andr�eka,
van Benthem & N�emeti [1998] also turn up an array of negative proper-
ties, and eventually propose another classi�cation for modal languages in
terms of restricting atoms for bounded quanti�ers. The resulting `guarded
fragments' can be analyzed much like the basic modal language, includ-
ing analogous bisimulation techniques. In particular, these bisimulations
now relate �nite sequences of objects instead of single worlds, as in many-
dimensional modal logics (cf. [Marx and Venema, 1996] for the theory of such
formalisms). Their correspondence theory, taken with respect to natural
generalized frame conditions for arbitrary �rst-order relations, still remains
to be understood. [van Benthem, 1996b] is a general study of dynamic log-
ics for computation and cognition, pursued via these techniques. One of its
central concerns is expressive completeness of modal process logics vis-�a-vis
process equivalences like bisimulation.

Connections with Higher-Order Logic and Set Theory

From �rst-order correspondence, forays can be made into higher-order de-
�nability. Sometimes, this move is suggested by the modal language itself.
E.g., in propositional dynamic logic, program iteration naturally translates
into a countable disjunction of �nite repetitions. Thus, translation into
the in�nitary standard language L!1! seems the evident route. In�nitary
frame correspondences were briey considered in van Benthem [1983], and
their modal model theory is explored in [de Rijke, 1993; van Benthem and
Bergstra, 1995]. Of course, one may restore a balance here, and consider
an in�nitary modal counterpart of L!, allowing arbitrary set conjunctions
and disjunctions, which would be the most natural formalism invariant for
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bisimulation. Barwise and Moss [1995] take this line, linking up truth on
models and correspondence on frames. (Another perspective on in�nitary
modal logic is given in [Barwise and van Benthem, 1996].) Among a number
of original results, they prove that a modal formula has all its in�nitary sub-
stitution instances true in a model M i� it is true (in the usual second-order
sense) on the frame collapse of that model taken with respect to the maxi-
mal bisimulation over M . As a direct consequence, frame correspondences
for modal formulas imply model correspondences in in�nitary modal logic.
(The issue of good converses is still open). The original motivation for this
type of investigation was that it relates modal logics to (non-well-founded)
set theories. Linkages of this kind are further explored in d'Agostino [1995]

which also raises the issue of more complex correspondences for modal ax-
ioms. For instance, she shows that the second-order L�ob Axiom holds in a
frame i� that frame is transitive while its collapse with respect to the max-
imal bisimulation is irreexive. More generally, then, the interesting point
about many correspondences is not that they must always reduce modal
axioms to �rst-order ones, but rather the fact that they reformulate modal
principles to any more perspicuous classical formalism. Another natural
candidate of the latter kind is second-order monadic �1

1 logic (cf. [Doets
and van Benthem, 2001]). In particular, Doets [1989] shows how modal com-
pleteness theorems can sometimes be extended to cover this whole language.
Moreover, many e�ective translation methods (see below) turn out to work
for this broader language anyway. Finally, van Benthem [1989b] points out
how �rst-order correspondence theory, suitably restated for second-order
�1
1 formulas, is a natural generalization which handles so-called computable

forms of Circumscription in the AI literature (which involves reasoning from
a second-order `predicate-minimal' closure for �rst-order axioms; cf. [Lif-
shitz, 1985]).

Translations

Correspondence has become a conspicuous theme in the computational lit-
erature on theorem proving with intensional logics. A number of algorithms
have been proposed, some of them rediscoveries of the Substitution Method
and its ilk (cf. [Simmons, 1994]) and even much older results in second-
order logic [Doherty,  Lukasiewicz and Szalas, 1994], others working with new
`functional` translations better geared towards complete standard Skolem-
ization and Resolution (cf. Ohlbach [1991; 1993]). One interesting feature
of some of these algorithms is that they also produce useful equivalents for
second-order modal principles. For instance, the typically non-�rst-order
McKinsey Axiom gets a natural equivalent quantifying over both individ-
ual worlds and Skolem functions witnessing its (non-Sahlqvist) antecedent.
Finally, we mention the use of set-theoretic interpretations of the standard
translation in d'Agostino, van Benthem, Montanari & Policriti [1995], which
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read the universal modality as describing a power set. This translation also
works with an explicit axiom system for general frames plus one axiom stat-
ing that the relational successors of any point in a frame form a set. This
shift in perspective reduces theorem proving in modal logics to deduction in
weak computational set theories. Many of these translations can also be for-
mulated so as to deal with extended modal formalisms or larger fragments
of second-order logic.

Designing New Logics

Finally, correspondence techniques have been used in `deconstructing' stan-
dard logics and designing new ones. For instance, one can interpret �rst-
order predicate logic over possible worlds models (`labelled transition sys-
tems') with assignments replaced by abstract states connected by abstract
relations Rx modelling variable shifts. Then, standard predicate-logical
validities turn out to express interesting frame properties, constraining pos-
sible computations, e.g., by Church-Rosser conuence properties (which
match the �rst-order axiom 9y8x� ! 8x9y�). Moreover, one may want
to impose certain restrictions on admissible valuations, such as `hered-
ity constraints' for axioms Py ! 8xPy or Py ! [y=x]Px (van Benthem
[1997; 1996b] have details). These abstract models reect certain dependen-
cies between admissible object values that may exist for individual variables.
This theme is investigated more explicitly in [Alechina and van Benthem,
1993; Alechina, 1995], which design new generalized quanti�er logics over
`dependence models', �rst proposed by Michiel van Lambalgen | where
again the force of possible axioms is measured at least initially in terms of
(Sahlqvist) frame correspondences. Related modal approaches to �rst-order
logic are found in [Venema, 1991; Marx, 1995].

ADDED IN PRINT (1999)

Handbooks appear according to their own rhythms. Two years have elapsed
since the updates were written for this Appendix. Here are a few further
items of interest. D'Agostino [1998] contains new material on de�nability in
in�nitary modal logics, a topic also pursued further by Barwise and Moss.
Meyer Viol [1995] has examples of correspondence for intuitionistic predi-
cate logic showing how intermediate axioms can be quite surprising in their
content. Hollenberg [1998] is an extensive study of de�nability, invariance
and safety in modal process languages. Gerbrandy [1998] has interesting
theorems on modal de�nability and bisimulation invariance in a setting of
non-well-founded set theory, with applications to dynamic logic of epis-
temic updates. Gr�adel [1999] is an excellent survey of progress made on the
program of decidable guarded �rst-order languages extending modal logic,
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including also �xed-point operators. Van Benthem [1998] is an up-to-date
survey of the de�nability/correspondence paradigm, and the corresponding
`tandem approach' to modal and classical logics. Finally, two modern texts
on modal logic that take correspondence seriously are Blackburn, de Rijke
and Venema [1999] and van Benthem [1999].
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PREFACE TO THE SECOND EDITION

It is with great pleasure that we are presenting to the community the
second edition of this extraordinary handbook. It has been over 15 years
since the publication of the �rst edition and there have been great changes
in the landscape of philosophical logic since then.
The �rst edition has proved invaluable to generations of students and

researchers in formal philosophy and language, as well as to consumers of
logic in many applied areas. The main logic article in the Encyclopaedia
Britannica 1999 has described the �rst edition as `the best starting point
for exploring any of the topics in logic'. We are con�dent that the second
edition will prove to be just as good.!
The �rst edition was the second handbook published for the logic commu-

nity. It followed the North Holland one volume Handbook of Mathematical
Logic, published in 1977, edited by the late Jon Barwise. The four volume
Handbook of Philosophical Logic, published 1983{1989 came at a fortunate
temporal junction at the evolution of logic. This was the time when logic
was gaining ground in computer science and arti�cial intelligence circles.
These areas were under increasing commercial pressure to provide devices

which help and/or replace the human in his daily activity. This pressure
required the use of logic in the modelling of human activity and organisa-
tion on the one hand and to provide the theoretical basis for the computer
program constructs on the other. The result was that the Handbook of
Philosophical Logic, which covered most of the areas needed from logic for
these active communities, became their bible.
The increased demand for philosophical logic from computer science and

arti�cial intelligence and computational linguistics accelerated the devel-
opment of the subject directly and indirectly. It directly pushed research
forward, stimulated by the needs of applications. New logic areas became
established and old areas were enriched and expanded. At the same time, it
socially provided employment for generations of logicians residing in com-
puter science, linguistics and electrical engineering departments which of
course helped keep the logic community thriving. In addition to that, it so
happens (perhaps not by accident) that many of the Handbook contributors
became active in these application areas and took their place as time passed
on, among the most famous leading �gures of applied philosophical logic of
our times. Today we have a handbook with a most extraordinary collection
of famous people as authors!
The table below will give our readers an idea of the landscape of logic

and its relation to computer science and formal language and arti�cial in-
telligence. It shows that the �rst edition is very close to the mark of what
was needed. Two topics were not included in the �rst edition, even though
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they were extensively discussed by all authors in a 3-day Handbook meeting.
These are:

� a chapter on non-monotonic logic

� a chapter on combinatory logic and �-calculus

We felt at the time (1979) that non-monotonic logic was not ready for
a chapter yet and that combinatory logic and �-calculus was too far re-
moved.1 Non-monotonic logic is now a very major area of philosophi-
cal logic, alongside default logics, labelled deductive systems, �bring log-
ics, multi-dimensional, multimodal and substructural logics. Intensive re-
examinations of fragments of classical logic have produced fresh insights,
including at time decision procedures and equivalence with non-classical
systems.

Perhaps the most impressive achievement of philosophical logic as arising
in the past decade has been the e�ective negotiation of research partnerships
with fallacy theory, informal logic and argumentation theory, attested to by
the Amsterdam Conference in Logic and Argumentation in 1995, and the
two Bonn Conferences in Practical Reasoning in 1996 and 1997.

These subjects are becoming more and more useful in agent theory and
intelligent and reactive databases.

Finally, �fteen years after the start of the Handbook project, I would
like to take this opportunity to put forward my current views about logic
in computer science, computational linguistics and arti�cial intelligence. In
the early 1980s the perception of the role of logic in computer science was
that of a speci�cation and reasoning tool and that of a basis for possibly
neat computer languages. The computer scientist was manipulating data
structures and the use of logic was one of his options.

My own view at the time was that there was an opportunity for logic to
play a key role in computer science and to exchange bene�ts with this rich
and important application area and thus enhance its own evolution. The
relationship between logic and computer science was perceived as very much
like the relationship of applied mathematics to physics and engineering. Ap-
plied mathematics evolves through its use as an essential tool, and so we
hoped for logic. Today my view has changed. As computer science and
arti�cial intelligence deal more and more with distributed and interactive
systems, processes, concurrency, agents, causes, transitions, communication
and control (to name a few), the researcher in this area is having more and
more in common with the traditional philosopher who has been analysing

1I am really sorry, in hindsight, about the omission of the non-monotonic logic chapter.
I wonder how the subject would have developed, if the AI research community had had
a theoretical model, in the form of a chapter, to look at. Perhaps the area would have
developed in a more streamlined way!
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such questions for centuries (unrestricted by the capabilities of any hard-
ware).
The principles governing the interaction of several processes, for example,

are abstract an similar to principles governing the cooperation of two large
organisation. A detailed rule based e�ective but rigid bureaucracy is very
much similar to a complex computer program handling and manipulating
data. My guess is that the principles underlying one are very much the
same as those underlying the other.
I believe the day is not far away in the future when the computer scientist

will wake up one morning with the realisation that he is actually a kind of
formal philosopher!

The projected number of volumes for this Handbook is about 18. The
subject has evolved and its areas have become interrelated to such an extent
that it no longer makes sense to dedicate volumes to topics. However, the
volumes do follow some natural groupings of chapters.

I would like to thank our authors are readers for their contributions and
their commitment in making this Handbook a success. Thanks also to
our publication administrator Mrs J. Spurr for her usual dedication and
excellence and to Kluwer Academic Publishers for their continuing support
for the Handbook.

Dov Gabbay
King's College London
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DONALD NUTE AND CHARLES B. CROSS

CONDITIONAL LOGIC

Prior to 1968 several writers had explored the conditions for the truth or
assertability of conditionals, but this work did not result in an attempt to
provide formal models for the semantical structure of conditionals. It had
also been suggested that a proper logic for conditionals might be provided by
combining modal operators with material conditionals in some way, but this
suggestion never led to any widely accepted formal logic for conditionals.1

Then Stalnaker [1968] provided both a formal semantics for conditionals
and an axiomatic system of conditional logic. This important paper e�ec-
tively inaugurated that branch of philosophical logic which we today call
conditional logic. Nearly all the work on the logic of conditionals for the
next ten years, and a great deal of work since then, has either followed
Stalnaker's lead in investigating possible worlds semantics for conditionals
or posed problems for such an approach. But in 1978, Peter G�ardenfors
[1978] initiated a new line of inquiry focused on the use of conditionals to
represent policies for belief revision. Thus, two main lines of development
appeared, one an ontological approach concerned with truth or assertabil-
ity conditions for conditionals and the other an epistemological approach
focused on conditionals and change of belief.
With these two major lines of development, the material which has ap-

peared on conditionals is prodigious. Consequently, we have had to focus
upon certain aspects of conditional logic and to give other aspects less at-
tention. We have followed the trend set in the literature and given the
most attention to the analysis of so-called subjunctive conditionals as they
are used in ordinary discourse and to triviality results for the Ramsey test.
Accordingly, our discussion of conditionals and belief revision will be more
heavily technical than our discussion of subjunctive conditionals. Other top-
ics are discussed in less detail. Some of the important papers which it has
not been possible to review are included in the accompanying bibliography,
but the bibliography itself is far from complete.

1 ONTOLOGICAL CONDITIONALS

1.1 Introduction

Conditional logic is, in the �rst place, concerned with the investigation of
the logical and semantical properties of a certain class of sentences occurring

1Another suggestion which has never been fully developed (but see Hunter [1980; 1982]

is that an adequate theory of ordinary conditionals may be derived from relevance logic.
We will say no more about this suggestion than it seems to us that conditional logic and
relevance logic are concerned with very di�erent problems, and it would be a tremendous
coincidence if the correct logic for the conditionals of ordinary usage should turn out to
resemble some version of relevance logic at all closely.
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in a natural language. We will draw our examples from English, but much
of what we have to say can be applied, with due caution, to other natural
languages.
Paradigmatically, a conditional declarative sentence in English is one

which contains the words `if' and `then'. Examples include

1. If it is raining, then we are taking a taxi.

and

2. If I were warm, then I would remove my jacket.

We could delete the occurrences of `then' in (1) and (2) and we would still
have perfectly acceptable sentences of English. In the case of (2), we can
omit both `if' and `then' if we change the word order. Example (2) surely
says the same thing as

3. Were I warm, I would remove my jacket.

Other conditionals in which neither `if' nor `then' occur include

4. When I �nd a good man, I will praise him.

and

5. You will need my number should you ever wish to call me.

Notice that all of these examples involve two component sentences or clauses,
one expressing some sort of condition and another expressing some sort of
claim which in some way depends upon the condition. The conditional or
`if' part of a conditional sentence is called the antecedent, and the main or
`then' part its consequent even when `if' and `then' do not actually occur.
Notice that the antecedent precedes the consequent in (1){(4), but the con-
sequent comes �rst in (5). These examples should give the reader a fair idea
of the types of sentences with which conditional logic is concerned.
While the verbs in (1) are in the indicative mood, those in (2) are in

the subjunctive mood. Researchers often rephrase (2), forming a new con-
ditional in which the verbs contained in antecedent and consequent are in
the indicative mood. This practice implicitly assumes that (2) has the same
content as

6. If it were the case that I am warm, then it would be the case that I
remove my jacket.

Even without the rephrasing, it is sometimes said that `I am warm' is the
antecedent of both (2) and (6). Thus the mood of the verbs in the grammat-
ical antecedent and consequent of (2) are taken logically to be a component
of the conditional construction, while the logical antecedent and consequent
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are viewed as containing verbs in the indicative mood. Seen in this way, the
conditional constructions in (1) and (2) look quite di�erent and investigators
have as a consequence made a distinction between indicative conditionals
like (1) and subjunctive conditional like (2). This distinction is important
because it appears that these two kinds of conditionals have di�erent logical
and semantical properties.
Much of the work done in conditional logic has focused on conditionals

having antecedents and consequents which are false. Such conditionals are
called counterfactuals. In actual practice, little distinction is made between
counterfactuals and subjunctive conditionals which have true antecedents
or consequents. Authors frequently refer to conditionals in the subjunctive
mood as counterfactuals regardless of whether their antecedents or conse-
quents are true or false. Another special kind of conditional is the so-called
counterlegal conditional whose antecedent is incompatible with physical law.
An example is

7. If the gravitational constant were to take on a slightly higher value
in the immediate vicinity of the earth, then people would su�er bone
fractures more frequently.

Also recognized are counteridenticals like

8. If I were the pope, I would support the use of the pill in India.

and countertemporals like

9. If it were 3.00 a.m., it would be dark outside.

Analysis of these special conditionals may involve special diÆculties, but we
can say very little about these special problems in a paper of this length.
Two other interesting conditional constructions are the even-if construc-

tion used in

10. It would rain even if the shaman did not do his dance.

and the might construction used in

11. If you don't take the umbrella, you might get wet.

We might paraphrase (10) using the word `still' to get

12. It would still rain if the shaman did not do his dance.

even-if and might conditionals have somewhat di�erent properties from
those of other conditionals. It is believed by many, though, that these
two kinds of conditionals can be analyzed in terms of subjunctive condi-
tionals once we have an acceptable analysis of these. The strategy in this
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paper will be to concentrate on the many proposals for subjunctive condi-
tionals, returning later (briey) to the topics of indicative, even-if and might
conditionals.
We will use two di�erent symbols to represent indicative and subjunctive

conditionals. For indicative conditionals we will use the double arrow ),
and for the subjunctive conditional we will use the corner>. (Where context
makes our intention clear, we will sometimes use symbols and formulas
autonomously to refer to themselves.) With these devices we may represent
(1) as

13. It is raining ) I am taking a taxi.

and represent (2) as

14. I am warm > I remove my jacket.

Frequently we will have no particular antecedent or consequent in mind
as we discuss one or the other of these two kinds of conditionals and as
we examine forms which arguments involving these conditionals may take.
In these cases we will use standard notation for classical �rst-order logic
augmented by our symbols for indicative and subjunctive conditionals to
represent the forms of sentences and arguments under discussion. We as-
sume, as have nearly all investigators, that conditional have truth values
and may therefore appear as arguments for truth-functional operators.
Students in introductory symbolic logic courses are normally taught to

treat English conditionals as material conditionals. By material condition-
als we mean certain truth-functional compounds of simpler sentences. A
material condition � !  is true just in case � is false or  is true. There
can be little doubt that neither material implication nor any other truth
function can be used by itself to provide an adequate representation of the
logical and semantical properties of English conditionals or, presumably, the
conditionals of any other language.
Consider the following two examples.

15. If I were seven feet tall, then I would be over two meters tall.

16. If I were seven feet tall, then I would be less than two yards tall.

In fact one of the authors is more than two yards tall but less than two
meters tall, so for him the common antecedent and the two consequents
of (15) and (16) are all false. Yet surely (15) is true while (16) is false.
When both the antecedent and the consequent of an English subjunctive
conditional are false, the conditional may be either true or false. Now
consider two more examples.

17. If I were eight feet tall, I would be less than seven feet tall.
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18. If I were seven feet tall, I would be over six feet tall.

Here we have two conditionals each of which has a false antecedent and a
true consequent. but the �rst of these conditionals is false and the second
is true. The moral of these examples is that when the antecedent of an
English subjunctive conditional is false, the truth value of the conditional is
not determined by the truth values of the antecedent and the consequent of
the conditional alone. Some other factors must be involved in determining
the truth values of such conditionals.

But what about English conditionals with true antecedents? It is gen-
erally accepted that any conditional with a true antecedent and a false
consequent is false, but the situation is more controversial where the con-
ditionals with true antecedents and true consequents are concerned. Some
researchers have maintained that all such conditionals are true while oth-
ers have claimed that such conditionals are sometimes false. Later we will
consider some of the issues involved in this controversy. For now we simply
recognize that there are some very good reasons for rejecting the view that
all English conditionals can be represented adequately by material implica-
tion or by any other truth function.

1.2 Cotenability theories of conditionals

Chisholm [1946], Goodman [1955], Sellars [1958], Rescher [1964] and oth-
ers have proposed accounts of conditionals which share some important
features. Borrowing a term from Goodman, we can call these proposals
cotenability theories of conditionals. The basic idea which these proposals
share is that the conditional � >  is true in case �, together with some set
of laws and true statements, entails  .

A crucial problem for such an analysis is that of determining the appro-
priate set of true statements to involve in the truth condition for a particular
conditional. If the antecedent of the conditional is false, then of course its
negation is true. But any proposition together with its negation will entail
anything. The set of true statements upon which the truth of the condi-
tional is to depend must at least be logically compatible with the antecedent
of the conditional or the conditional will turn out to be trivially true on such
an account. But logical compatibility is not enough either. We can have a
true proposition � such that � and � are logically compatible but such that
� > :� is also true. Then we should not wish to include � in the set of
propositions upon which the evaluation of � >  depends. Goodman said
of such a � that it is not cotenable with �. So Goodman's ultimate position
is that � >  is true just in case  is entailed by � together with the set
of all physical laws and the set of all true propositions cotenable with �,
i.e. with the set of all true propositions such that no member of that set
counterfactually implies the negation of � and the negation of no member
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of that set is counterfactually implied by �. Such an account is obviously
circular since the truth conditions for counterfactuals are given in terms
of cotenability, while cotenability is de�ned in terms of the truth values of
various counterfactual conditionals.

Although this is certainly a serious problem, it is not the only problem
which theories of this type encounter. As a result of the role which law
plays in such a theory, all counterlegal conditionals are counted as trivially
true, and this is counterintuitive. Furthermore, even if we could provide a
noncircular account of cotenability, another problem arises for conditionals
which are not counterlegal. Suppose two true propositions � and � are each
cotenable with �, but that � ^ � is not. In selecting the set of propositions
upon which the evaluation of � >  shall rest we must omit either � or �
since otherwise our conditional will be trivially true once again. But which
of these two propositions shall we omit?

Most recent work in conditional logic is compatible with cotenability
theory even though no attempt is made to de�ne and use the notion of
cotenability. We might view the resultant theories at least in part as at-
tempts to determine, without ever specifying exactly what cotenability is,
the logical and semantical properties which conditionals must have if the
cotenability approach is essentially correct for conditionals without coun-
terlegal antecedents. Indeed, the vagueness deliberately built into many of
these recent theories suggests that our notion of cotenability, if we have
one, varies according to our purposes and the context in which we use a
conditional.2

1.3 Strict Conditionals

We have seen that the truth value of a conditional is not always determined
by the actual truth values of its antecedent and consequent, but perhaps
it is determined by the truth values which its antecedent and consequent
take in some other possible worlds. One way such an analysis might be
developed is suggested by the role laws play in the cotenability theories.
Perhaps we should look not only at the truth values of the antecedent and
the consequent in the actual world, but also at their truth values in all
possible worlds which have the same laws as does our own. When two
worlds obey the same physical laws, we can say that each is a physical
alternative of the other. The proposal, then, is that � >  is true if  is
true at every physical alternative to the actual world at which � is true.
Suppose we say a proposition is physically necessary if and only if it is true
at every physical alternative to the actual worlds, and suppose we express

2Bennett [1974] and Loewer [1978] arrive at opposite conclusions concerning the ques-
tion whether Lewis's semantics is compatible with cotenability theory. Their discussions
are instructive for other semantics as well.
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the claim that a proposition � is physically necessary by ��. Then the
proposal we are considering is that the following equivalence always holds:

19. (� >  )$ �(�!  ).

Another way of arriving at (19) is the following. English subjunctive
conditionals are not truth-functional because they say more than that the
antecedent is false or the consequent is true. The additional content is a
claim that there is some sort of connection between the antecedent and
the consequent. The kind of connection which seems to occur to people
most readily in this context is a physical or causal connection. How can we
represent this additional content in our formalization of English subjunctive
conditionals? One way is to interpret � >  as involving the claim that it
is physically impossible that � be true and  false. Once again we come up
with (19). A proposal resembling the one we have outlined can be found in
[Burks, 1951], although we do not wish to suggest that Burks arrived at his
account by exactly the same line of reasoning as we have suggested.
We can generalize the proposal represented by (19). We might suppose

that the basic form of (19) is correct but that the short of necessity in-
volved in English subjunctive conditionals is not pure physical necessity.
One reason for suspecting this is that the notion of cotenability has been
ignored. It is not simply a consequence of physical law that Jane would
develop hives if she were to eat strawberries; it is also in part a consequence
of her having a particular physical make-up. In evaluating the claim that
Jane would become ill if she were to eat strawberries, we do not count the
fact that in some worlds which share the same physical laws as our own but
in which Jane has a radically di�erent physical make-up, she is able to eat
strawberries with impunity, as a legitimate reason for rejecting this claim.
Another reason for seeking a di�erent kind of necessity for the analysis of
conditionals is that some conditionals may be true because of connections
between their antecedents and consequents which are not physical connec-
tions at all. Consider, for example, conditionals such as `If you deserted
your family you would be a cad', which seems to be founded on normative
rather than physical connections. The general theory we are considering,
then, is that English subjunctive conditionals are strict conditionals of some
sort, i.e. that their logical form is given by the equivalence (19). There re-
mains the problem of determining which kind of necessity is involved in
these conditionals.
Regardless of the kind of necessity we choose in such an analysis of condi-

tionals, we should expect our modal logic to have certain minimal properties.
By a modal logic we mean any set L of sentences formed from the symbols
of classical sentential logic together with the symbol � in the usual ways,
provided that L contains all tautologies and is closed under the rule modus
ponens. We should expect that for any tautology � our modal logic will con-
tain ��. We should also expect our modal logic to contain all substitution
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instances of the following thesis:

20. �(�!  )! (��! � ).

But when we de�ne our conditionals according to (19), our logic will then
also contain all substitution instances of the following theses:

Transitivity: [(� >  ) ^ (� > �)]! (� >  )

Contraposition: (� > : )! ( > :�)

Strengthening antecedents: (� >  )! [(� ^ �) >  ].

But none of these theses seem to be reliable for English subjunctive condi-
tionals. As a counterexample to Transitivity, consider the following condi-
tionals:

21. If Carter had not lost the election in 1980, Reagan would not have
been President in 1981.

22. If Carter had died in 1979, he would not have lost the election in 1980.

23. If Carter had died in 1979, Reagan would not have been President in
1981.

(21) and (22) are true, but is far from clear that (23) is true. As a coun-
terexample to Contraposition, consider:

24. If it were to rain heavily at noon, the farmer would not irrigate his
�eld at noon.

25. If the farmer were to irrigate his �eld at noon, it would not rain heavily
at noon.

And �nally, for Strengthening Antecedents, consider:

26. If the left engine were to fail, the pilot would make an emergency
landing.

27. If the left engine were to fail and the right wing were to shear o�, the
pilot would make an emergency landing.

Since even very weak modal logics will contain all substitution instances
of these three theses, and since most speakers of English �nd counterex-
amples of the sort we have considered convincing, most investigators are
convinced that English conditionals are not a variety of strict conditional.
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1.4 Minimal Change Theories

While treating ordinary conditionals as strict conditionals does not seem
too promising, investigators have still found the possible worlds semantics
often associated with modal logic very attractive. The basic intuition, that
a conditional is true just in case its consequent is true at every member of
some set of worlds at which its antecedent is true, may yet be salvageable.
We can avoid Transitivity, etc. if we allow that the set of worlds involved
in the truth conditions for di�erent conditionals may be di�erent. But we
do not wish to allow that this set of worlds be chosen arbitrarily for a given
conditional.

Stalnaker [1968] proposes that the conditional � >  is true just in case
 is true at the world most like the actual world at which � is true. Ac-
cording to Stalnaker, in evaluating a conditional we add the antecedent of
the conditional to our set of beliefs and modify our set of beliefs as little as
possible in order to accommodate the new belief tentatively adopted. Then
we consider whether the consequent of the conditional would be true if this
revised set of beliefs were all true. In the ideal case, we would have a belief
about every single matter of fact before and after this operation of adding
the antecedent of the conditional to our stock of beliefs. Possible worlds
correspond to these epistemically ideal situations. Stalnaker's assumption,
then, is that at least when the antecedent of a conditional is logically possi-
ble, there is always a unique possible world at which the antecedent is true
and which is more like the actual world than is any other world at which the
antecedent is true. We will call this Stalnaker's Uniqueness Assumption.

On some fairly reasonable assumptions about the notion of similarity of
worlds, Stalnaker's truth conditions generate a very interesting logic for con-
ditionals. Essentially these assumptions are that any world is more similar
to itself than is any other world, that the �-world closest to world i (that
is, the world at which � is true which is more similar to i than is any other
world at which � is true) is always at least as close as the �^ -world closest
to i, and that if the �- world closest to i is a  -world and the  -world closest
to i is a �-world, then the �-world closest to i and the  -world closest to i
are the same world.

The model theory Stalnaker develops is complicated by his use of the
notion of an absurd world, a world at which every sentence is true. This
invention is motivated by the need to provide truth conditions for condition-
als with impossible antecedents. Stalnaker's semantics can be simpli�ed by
omitting this device and adjusting the rest of the model theory accordingly.
When we do this, we produce what could be called simpli�ed Stalnaker
models. Such a model is an ordered quadruple hI; R; s; [ ]i where I is a set
of possible worlds, R is a binary reexive (accessibility) relation on I , s is
a partial world selection function which, when de�ned, assigns to sentence
� and a world i in I a world s(�; i) (the �-world closest to i), and [ ] is a



10 DONALD NUTE AND CHARLES B. CROSS

function which assigns to each sentence � a subset [�] of I (all those worlds
in I at which � is true). Stalnaker's assumptions about the similarity of
worlds become a set of restrictions on the items of these models:

(S1) s(�; i) 2 [�];

(S2) hi; s(�; i)i 2 R;

(S3) if s(�; i) is not de�ned then for all j 2 I such that hi; ji 2 R,
j 62 [�];

(S4) if i 2 [�] then s(�; i) = i;

(S5) if s(�; i) 2 [ ] and s( ; i) 2 [�], then s(�; i) = s( ; i);

(S6) i 2 [� >  ] if and only if s(�; i) 2 [ ] or s(�; i) is unde�ned.

Until otherwise indicated, we will understand by a conditional logic any
set L of sentences which can be constructed from the symbols of classi-
cal sentential logic together with the symbol >, provided that L contains
all tautologies and is closed under the inference rule modus ponens. The
conditional logic determined by Stalnaker's model theory is the smallest
conditional logic which is closed under the two inference rules

RCEC: from �$  , to infer (� > �)$ (� >  )

RCK: from (�1 ^ : : : ^ �n) !  , to infer [(� > �1) ^ : : : ^ (� > �n)] !
(� >  ), n � 0

and which contains all substitution instances of the theses

ID: � > �

MP: (� >  )! (�!  )

MOD: (:� > �)! ( > �)

CSO: [(� >  ) ^ ( > �)]! [(� > �)$ ( > �)]

CV: [(� >  ) ^ :(� > :�)]! [(� ^ �) >  ]

CEM: (� >  ) _ (� > : )

Together with modus ponens and the set of tautologies, these rules and
theses can be viewed as an axiomatization of Stalnaker's logic, which he
calls C2. While Stalnaker supplies a rather di�erent axiomatization for C2,
these rules and theses enjoy the advantage that they allow easy comparison
of C2 with other conditional logics. Several of these rules and theses are
due to Chellas [1975]. It can be shown that a sentence is a member of
C2 if and only if that sentence is true at every world in every simpli�ed
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Stalnaker model. Thus we say that the class of simpli�ed Stalnaker models
determines or characterizes the conditional logic C2. None of Transitivity,
Contraposition, and Strengthening Antecedents is contained in C2.
A variation of the semantics developed by Stalnaker treats the function

s as taking sets of worlds rather than sentences as arguments and values.
In this variation, s is a function which assigns to each subset A of I and
each member i of I a subset s(A; i) of I . Then � >  will be true at i just
in case s([�]; i) � [ ]. By setting our semantics up in this way, we ensure
that we can substitute one antecedent for another in a conditional provided
that the two antecedents are true at exactly the same worlds, and we can
do this without any additional restrictions on the function s. Since many
authors have called sets of worlds propositions, we could call Stalnaker's
original semantics a sentential semantics and the present variation on Stal-
naker's semantics a propositional semantics to represent this di�erence in
the kind of argument the function s takes. As we look at alternatives to
Stalnaker's semantics we will always consider the sentential forms of these
semantics although equivalent propositional forms will often be available.
Equivalence of the two versions of a particular semantics is guaranteed so
long as the conditional logic characterized by the sentential version is closed
under substitution of provable equivalents, i.e. so long as it is closed under
both RCEC and

RCEA: from �$  to infer (� > �)$ ( > �).

C2 is closed under RCEA as is any conditional logic closed under RCK
and containing all substitution instances of CSO. The di�erence between
sentential and propositional formulations of a particular kind of model the-
ory becomes important if we wish to consider conditional logics which are
not closed under RCEA. Reasons for considering such `non-classical' logics
are discussed in Section 1.7 below. For parallel development of sentential
and propositional versions of certain kinds of model theories for conditional
logics, see [Nute, 1980b].
Lewis [1973b; 1973c] questions Stalnaker's assumptions about the simi-

larity of worlds and thus his semantics for conditionals. It is Stalnaker's
Uniqueness Assumption which Lewis rejects. Lewis argues that there may
be no unique �- world which is closer to i than is any other �-world. As an
example, Lewis asks us to consider a straight line printed in a book and to
suppose that this line were longer than it is. No matter what greater length
we choose for the line, there is a shorter length which is still greater than
the actual length of the line. The conclusion is that worlds which di�er
from the actual world only in the length of the sample line may be more
and more like the actual world as the length of the line in those worlds
comes closer to the line's actual length. But none of these worlds is the
closest world at which the line is longer. In fact, examples of this sort can
also be o�ered against an assumption about similarity of worlds which is
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weaker than Stalnaker's Uniqueness Assumption. This assumption, which
Lewis calls the Limit Assumption, is that, at least for a sentence � which is
logically possible, there is always at least one �-world which is as much like
i as is any other �-world. Both the Uniqueness Assumption and the weaker
Limit Assumption are highly suspect.

If we follow Lewis's advice and drop the Uniqueness Assumption, we
must give up Conditional Excluded Middle (CEM). But this is exactly the
feature of Stalnaker's logic which is most often cited as objectionable. Both
disjuncts in CEM will be true if � is impossible and hence s is not de�ned
for � and the actual world. On the other hand, if � is possible, then  must
be either true or false at the nearest �-world. Lewis ([1973b], p. 80) o�ers
the following as a counterexample to CEM:

28a It is not the case that if Bizet and Verdi were compatriots, Bizet
would be Italian; and it is not the case that if Bizet and Verdi were
compatriots, Bizet would not be Italian; nevertheless, if Bizet and
Verdi were compatriots, Bizet either would or would not be Italian.

Lewis [1973b] admits that (28a) sounds, o�hand, like a contradiction, but
he insists that the cost of respecting this o�hand opinion is too high:

However little there is to choose for closeness between worlds
where Bizet and Verdi are compatriots by both being Italian
and worlds where they are compatriots by both being French,
the selection function still must choose. I do not think it can
choose|not if it is based entirely on comparative similarity, any-
how. Comparative similarity permits ties, and Stalnaker's selec-
tion function does not.3

Van Fraassen [1974] has employed the notion of supervaluation in defense
of CEM. The suggestion is that in actual practice we do not depend upon a
single world selection function s in evaluating conditionals. Instead we con-
sider a number of di�erent ways in which we might measure the similarity
of worlds, each with its appropriate world selection function. Each world
selection function provides a way of evaluating conditionals. A sentence
can also have the property that it is true regardless of which world selection
function we use. We can call such a sentence supertrue. If we accept Stal-
naker's semantics together with a multiplicity of world selection functions,
it turns out that every instance of CEM is supertrue even though it may be
the case that neither disjunct of some instance of CEM is supertrue. In fact,
all the members of C2 are supertrue when we apply Van Fraassen's method
of supervaluation, and the method mandates the following reinterpretation
of the Bizet-Verdi example:

3[Lewis, 1973b], p. 80.
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28b `If Bizet and Verdi were compatriots, Bizet would be Italian' is not
supertrue; and `If Bizet and Verdi were compatriots, Bizet would not
be Italian' is not supertrue; nevertheless, `If Bizet and Verdi were
compatriots, Bizet either would or would not be Italian' is supertrue.
(The relevant instance of CEM is also supertrue: `Either Bizet would
be Italian if Bizet and Verdi were compatriots, or Bizet would not be
Italian if Bizet and Verdi were compatriots.')

In the Bizet-Verdi example, what Lewis accounts for as a tie in comparative
world similarity, the method of supervaluation accounts for as a case of
indeterminacy in the choice of a closest compatriot-world.
Lewis [1973b] admits that o�hand opinion seems to favor CEM, but, Stal-

naker [1981a] shows that there is systematic intuitive evidence for CEM: the
apparent absence of scope ambiguities in conditionals where Lewis' theory
predicts we should �nd them. Consider the following dialogue (see [Stal-
naker, 1981a], pp. 93{95):

X: President Carter has to appoint a woman to the Supreme Court.

Y: Who do you think he has to appoint?

X: He doesn't have to appoint any particular woman; he just has to
appoint some woman or other.

There is a clear scope ambiguity in X's statement, and this scope ambiguity
explains why X's response to Y makes sense: Y reads X as having intended
`a woman' to have wide scope, and X's response corrects Y by making
it clear that X intended `a woman' to have narrow scope. Now compare
this dialogoue to another, in which necessity is replaced by the past-tense
operator:

X: President Carter appointed a woman to the Supreme Court.

Y: Who do you think he appointed?

X: He didn't appoint any particular woman; he just appointed some
woman or other.

In this case X's response does not make sense. There is no semantically
distinct narrow scope reading that X could have had in mind, so there is no
room for Y to have misunderstand X's statement. Finally, consider a dia-
logue involving a conditional instead of a necessity or past tense statement:

X: President Carter would have appointed a woman to the Supreme
Court last year if there had been a vacancy.

Y: Who do you think he would have appointed?
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X: He wouldn't have appointed any particular woman; he just would
have appointed some woman or other.

If Lewis' analysis of counterfactuals is correct, then in this dialogue, as in the
�rst dialogue, one should perceive an ambiguity in the scope of `a woman'
in X's statement, and X's response should make sense as a correction of Y's
misinterpretation. In fact there is no room for Y to have misunderstood X's
statement, and X's response simply doesn't make sense. In this respect, the
third dialogue parallels the second dialogue, not the �rst, and the apparent
lack of a scope ambiguity in X's statement in the third dialogue is evidence
for CEM.4

If Stalnaker's example does not convince one to accept CEM, it is quite
possible to formulate a logic and a semantics for conditionals which resem-
bles Stalnaker's but which does not include CEM. Lewis [1971; 1973b; 1973c]

suggests more than one way of doing this. The �rst way is to replace the
Uniqueness Assumption with the weaker Limit Assumption. Instead of look-
ing at the closest antecedent-world, we look at all closest antecedent-worlds.
These functions might better be called class selection functions rather than
world selection functions. It is also not necessary to incorporate the ac-
cessibility relation into our models for conditionals if we use class selection
functions since, if we make a certain reasonable assumption, we can de�ne
such a relation in terms of our class selection function. The assumption is
that if � is possible at all at i, then there is at least one closest �-world
for our selection function to pick out. Our models are then ordered triples
hI; f; [ ]i such that I and [ ] are as before and f is a function which assigns
to each sentence � and each world i in I a subset of I (all the �- worlds
closest to i). By restricting these models appropriately, we can characterize
a logic very similar to Stalnaker's C2. This logic, which Lewis calls VC, is
the smallest conditional logic which is closed under the same rules as those
listed for C2 and which contains all those theses used in de�ning C2 except
that we replace CEM with

CS: (� ^  )! (� >  ).

CS is contained by C2 although CEM is not contained by VC.5 A sentence
4A di�erent sort of argument for CEM can be found in [Cross, 1985], which adopts

Bennett's [1982] analysis of `even if' conditionals and argues for the validity of CEM
based on the intuitive validity of the following formulas:

(e � >  )! (� >  )
( ^ :(� > : )) ! (e � >  );

where (e � >  ) means `Even if �,  '. The argument turns on the fact that in any
system of conditional logic that includes classical propositional logic and RCEC, CEM is
a theorem i�

( ^ :(� > : ))! (� >  )

is a theorem.
5This and other independence results cited in this paper are provided in Nute [1979;
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is a member of VC if and only if it is true at every world in every class
selection function model which satis�es the following restrictions:

(CS1): if j 2 f(�; i) then j 2 [�];

(CS2): if i 2 [�] then f(�; i) = fig;

(CS3): if f(�; i) is empty then f( ; i) \ [�] is also empty;

(CS4): if f(�; i) � [ ] and f( ; i) � [�], then f(�; i) = f( ; i);

(CS5): if f(�; i) \ [ ] 6= ;, then f(� ^  ; i) � f(�; i);

(CS6): i 2 [� >  ] i� f(�; i) � [ ].

Although Lewis endorses VC as the proper logic for subjunctive con-
ditionals, he �nds the Limit Assumption and, hence, the version of class
selection function semantics we have developed, to be no more satisfactory
than the Uniqueness Assumption. Consequently, Lewis proposes an alter-
native semantics for subjunctive conditionals. This alternative is also based
on the similarity of worlds. The di�erence is in the way Lewis uses similarity
in giving the truth conditions for conditionals. A conditional � >  with
a logically possible antecedent � is true at a world i, according to Lewis, if
there is a � ^  -world which is closer to i than is any � ^ : -world. Lewis
uses nested systems of spheres in his models to indicate the relative sim-
ilarity of worlds. A system-of-spheres model is an ordered triple hI; $; [ ]i
such that I and [ ] are as before and $ is a function which assigns to each i
in I a nested set $i of subsets of I (the spheres about i). If there is some
sphere S about i such that j is in S but k isn't in S, then j is closer to or
more similar to i than is k. To characterize the logic VC, we must adopt
the following restrictions of system-of-spheres models:

(SOS1): fig 2 $i;

(SOS2): i 2 [� >  ] if and only if $i \ [�] is empty or there is an S 2 $i
such that S \ [�] is not empty and S \ [�] � [ ].

While Lewis rejects the Limit Assumption, it should be noted that in those
cases in which there is a closest �-world to i the conditions for a conditional
with antecedent � being true at i are exactly the same for system-of-spheres
models as for the type of class selection function model we examined earlier.
For this reason we classify Lewis's semantics as a minimal change semantics
to contrast it with other accounts which lack this feature.
Pollock [1976] also develops a minimal change semantics for conditionals.

In fact, Pollock's semantics is a type of class selection function semantics.
There are two primary reasons why Pollock rejects Lewis's semantics and the

1980b].
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conditional logic VC. First Pollock rejects the thesis CV, a thesis which is
unavoidable in Lewis's semantics. Second Pollock embraces the Generalized
Consequence Principle:

GCP: If � is a set of sentences such that � >  is true for each  2 �,
and if � entails �, then � > � is true.

GCP does not hold in all system-of-spheres models, but it does hold in all
class selection function models.6

The conditional logic SS which Pollock favors is the smallest conditional
logic closed under the rules listed for VC and containing all those theses
used in de�ning VC except that we replace CV with

CA: [(� >  ) ^ (� >  )]! [(� _ �) >  ].

This again gives us a weaker system since CA is contained by VC while
CV is not contained by SS. Obviously, SS is not determined by the class of
class selection function models which satisfy conditions (CS1){(CS6) since
this class of models characterizes the logic VC. Let's replace the condition
(CS5) with

(CS50) f(� _  ; i) � f(�; i) [ f( ; i).

Then SS is determined by the class of all class selection function models
which satisfy this new set of conditions.
One reason for Pollock's lack of concern for Lewis's counterexamples to

the Limit Assumption may be that Pollock conceives of what would count as
a minimal change quite di�erently from the way Lewis does. Pollock [1976]

o�ers a detailed account of the notion of a minimal change, an account

6To see how GCP might fail in Lewis's semantics, consider the example Lewis uses to
show that for a particular � there may be no �-world closest to i. The example, which we
considered earlier, involves a line printed on a page of [Lewis, 1973b]. Lewis invites us to
consider worlds in which this line is longer than its actual length, which we will suppose
to be exactly one inch. If the only way in which these worlds di�er from the actual world
is in the length of Lewis's line, then it is plausible that we rank these worlds in their
similarity to the actual world according to how close to one inch Lewis's line is in each
of these worlds. But no matter how close to one inch the line is, so long as it is longer
than one inch there will be another such world in which it is closer to an inch in length.
This means that for any length m greater than one inch, there is a world in which the
line is longer than one inch and in which the line does not have length m which is nearer
the actual world than is any world in which the line has length m. but then Lewis's
truth conditions for conditionals dictate that if the line were longer than one inch, its
length would not be m, and this is true for any length m greater than the actual length
of the line. then consider the set � of sentences of the form `Lewis's line is not length m'
where m ranges over every length greater than the actual length of Lewis's line. But �
entails the sentence `Lewis's line is not greater than one inch in length'. Applying GCP,
we conclude that if Lewis's line were greater than one inch in length, then it would not
be greater than one inch in length. This conclusion is not intuitively reasonable nor is it
true at any world in the system-of- spheres model which Lewis describes in his discussion.
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which is later modi�ed in [Pollock, 1981]. The later view, which avoids
many problems of the earlier view, will be discussed here.
While Stalnaker, Lewis and others maintain that the notions of similarity

of worlds and of minimal change are vague notions which may change given
di�erent purposes and contexts, thus accounting for the vagueness we often
�nd in the use of conditionals, Pollock claims that the similarity relation is
not vague but quite de�nite. Pollock's account rests upon his use of two
epistemological notions, that of a subjunctive generalisation and that of a
simple state of a�airs. Subjunctive generalisations are statements of the
form `Any F would be a G;. The truth of some subjunctive generalisations
like `Anyone who drank from the Chisholm's bottle would die' depends
upon contingent matters of fact, in this case the fact that Chisholm's bottle
contains strychnine and the fact that people have a certain physical make-
up. Other subjunctive generalisations like `Any creature with a physical
make up like ours who drank strychnine would die' do not depend for their
truth on contingent matters of fact in the same way. Pollock calls the
former `weak' subjunctive generalisations and the latter `strong' subjunctive
generalisations. Some subjunctive generalisations are supposed by Pollock
to be directly con�rmable by their instances, and these he calls basic. The
problem of con�rmation is discussed in [Pollock, 1984]. The second crucial
ingredient in Pollock's analysis is the notion of a simple state of a�airs. A
state of a�airs is simple if it can be known non-inductively to be the case
without �rst coming to know some other state(s) of a�airs which entail(s)
it.
The actual world is supposed by Pollock to be determined by the set

of true basic strong subjunctive generalisations together with the set of
true simple states of a�airs. The justi�cation conditions for a subjunctive
conditional � >  are stated in terms of making minimal changes in these
two sets in order to accommodate �. The �rst step is to generate all maximal
subsets of the set of true basic strong subjunctive generalisations which are
consistent with �. For each such maximally �-consistent set N of true basic
strong subjunctive generalisations, we then generate all sets of true simple
states of a�airs which are maximally consistent with N [ f�g. Finally, we
consider every possible world at which �, every member of some maximally
�-consistent set N of true basic strong subjunctive generalisations, and
every member of some set S of true basic strong subjunctive generalisations,
and every member of some set S of true simple states of a�airs maximally
consistent with N [ f�g are all true. If  is true at all such worlds, then
� >  is true at the actual world. The set of worlds determined by this
procedure serves as the value of a class selection function.
If we try to de�ne a relative similarity relation for worlds based upon

Pollock's analysis of minimal change, we come up with a partial order rather
than the `complete' order assumed by Lewis and, apparently, by Stalnaker.
Because we can have two worlds j and k such that their similarity to a



18 DONALD NUTE AND CHARLES B. CROSS

third world i is incomparable, the thesis CV does not hold for Pollock's
semantics.7 A simple model of Pollock's sort which rejects CV as well as
another thesis which has been attributed to Pollock's conditional logic SS
is developed in [Mayer, 1981].
Several authors have proposed theories which resemble Pollock's in im-

portant respects. One of these is Blue [1981] who suggests that we think
of subjunctive conditionals as metalinguistic statements about a certain se-
mantic relation between an antecedent set of sentences in an object language
and another sentence of the object language viewed as a consequent. A the-
ory (set of sentences of the object language) and the set of true basic (atomic
and negations of atomic) sentences of the language play roles similar to those
played by laws (true basic strong subjunctive generalisations) and simple
states of a�airs in Pollock's account. One problem with Blue's proposal is
that treating conditional metalinguistically as he does prevents iteration of
conditionals without climbing a hierarchy of metalanguages. Another prob-
lem concerns the role which temporal relations between the basic sentences
plays in his theory, a problem for other theories as well. (This problem is
discussed in Section 1.8 below.) For a more detailed discussion of Blue's
view, see [Nute, 1981c].
The similarity of an account like Pollock's or Blue's to the cotenability

theories of conditionals should be obvious. A conditional is true just in case
its consequent is entailed (Blue uses a somewhat di�erent relation) by its

7Pollock has o�ered various counterexamples to CV, the most recent of which involves
a circuit having among its components two light bulbs L1 and L2, three simple switches
A;B, and C, and a power source. These components are supposed to be wired together
in such a way that bulb L1 is lit exactly when switch A is closed or both switches B and
C are closed, while bulb L2 is lit exactly when switch A is closed or switch B is closed.
At the moment, both bulbs are unlit and all three switches are open. Then the following
conditionals are true:

(5a) :(L2 > :L1)

(5b) :[(L2 ^ L1) > :(B ^ C)]

The justi�cation for (5a) is that one way to bring it about that L2 (i.e. that bulb L2 is
lit) is to bring it about that A (i.e. that switch A is closed), but A > L1 is true. The
justi�cation for (5b) is that one way to make L1 and L2 both true is to close both B and
C. Pollock claims that the following counterfactual is also true:

(5c) L2 > :(B ^C)

If Pollock is correct, then these three counterfactuals comprise a counterexample to CV.
Pollock's argument for (5c) is that L2 requires only A or B, and to also make C the case is
a gratuitous change and should therefore not be allowed. But this is an oversimpli�cation.
It is not true that only A;B, and C are involved. Other changes which must be made
if L2 is to be lit include the passage of current through certain lengths of wire where no
current is now passing, etc. Which path would the current take if L2 were lit? We will
probably be forced to choose between current passing through a certain piece of wire or
switch C being closed. It is diÆcult to say exactly what the choices may be without a
diagram of the kind of circuit Pollock envisions, but without such a diagram it is also
diÆcult to judge whether closing switch C is gratuitous in the case of (5c) as Pollock
claims.
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antecedent together with some subset of the set of laws or theoretical truths
and some (cotenable) set of simple states of a�airs or basic sentences.

Veltman [1976] and Kratzer [1979; 1981] also propose theories of con-
ditionals which resemble Pollock's in important respects. We will discuss
Kratzer's view, although the two are similar. Kratzer suggests what can
be called a premise or a partition semantics for subjunctive conditionals.
Like Pollock, she associates with each world i a set Hi of propositions or
states of a�airs which uniquely determines that world. The set Hi is called
a partition for i or a precise set for i. Kratzer proposes that we evaluate a
subjunctive conditional � >  by considering �- consistent subsets of Hi.
� >  is true at a world i if and only if each �-consistent subset X of Hi

is contained in some �-consistent subset Y of H such that Y [ f�g entails
 . Kratzer points out that if every �- consistent subset of Hi is contained
in some maximally �- consistent subset of Hi, then this truth condition is
equivalent to the condition that � >  is true at i just in case  is entailed
by X [ f�g for every maximally �-consistent subset X of Hi.

If we assume that every �-consistent subset of Hi is contained in some
maximally �-consistent subset of Hi, the specialized version of Kratzer's
semantics we obtain looks very much like Pollock's. Lewis [1981a] notes
that this assumption plays the same role in premise semantics that the Limit
Assumption plays in class selection function semantics. In fact, Lewis shows
that on this assumption Kratzer's premise semantics is formally equivalent
to Pollock's semantics. Given this equivalence, these two semantics will
determine exactly the same conditional logic SS.

Even if we assume that the required maximal sets always exist and adopt
a version of premise semantics which is formally equivalent to Pollock's
semantics, Kratzer's position would still di�er radically from Pollock's since
she does not assign to laws and simple states of a�airs a privileged role
in her analysis. Nor does she prefer Blue's object language theory and
basic sentences for such a role. The set of premises which we associate
with a world and use in the evaluation of conditionals varies, according
to Kratzer, as the purposes and circumstances of the language users vary.
Thus Kratzer reintroduces the vagueness which so many investigators have
observed in ordinary usage and which Pollock and Blue would deny or at
least eliminate.

Apparently Kratzer does not accept the Limit Assumption, in her case
the assumption that the required maximal sets always exist. Yet in [Kratzer,
1981] she describes what she calls the most intuitive analysis of counterfac-
tuals, saying that

The truth of counterfactuals depends on everything which is the
case in the world under consideration: in assessing them, we
have to consider all the possibilities of adding as many facts to
the antecedent as consistency permits.
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This certainly suggests maximal antecedent-consistent subsets of a premise
set (the Limit Assumption) and a minimal change semantics. But if the
Limit Assumption is unacceptable, this initial intuition must be modi�ed.
Kratzer's modi�cation takes the form of the truth condition reported ear-
lier. Besides the Limit Assumption, Kratzer's semantics also fails to support
the GCP. One principle which does remain, a principle common to all the
semantics discussed in this section, is the thesis CS. Beginning with some
sort of minimalist intuition, all of these authors claim subjunctive condition-
als with true antecedents have the same truth values as their consequents.
When the antecedent of the conditional is true, the actual world is the
unique closest antecedent world and hence the only world to be considered
in evaluating the conditional.
If Lewis's counterexamples to the Limit Assumption are conclusive, we

must conclude that all the semantics for subjunctive conditionals which
we have discussed in this section must be inadequate except for Lewis'
system-of-spheres semantics and the general version of Kratzer's premise
semantics. And if the GCP is a principle which we wish to preserve, then
Lewis's semantics and Kratzer's semantics are also inadequate. Besides
these diÆculties, minimal change theories have been criticized because they
endorse the thesis CS. As was mentioned in Section 1.1, many researchers
claim that some conditionals with true antecedent and consequent are false.
For an excellent polemic against the minimal change theorists on this issue,
see [Bennett, 1974].

1.5 Small Change Theories

�Aqvist [1973] presents a very interesting analysis of conditionals in which
the conditionals in which the conditional operator is de�ned in terms of
material implication and some unusual monadic operators. Simplifying a
bit, �Aqvist's semantics involves ordered quintuplets hI; i; R; f; [ ]i such that
I and [ ] are as in other models we have discussed, i is a member of I; R is an
accessibility relation on I , and f is a function which assigns to each sentence
� a subset f(�) of [�] such that for every member j of f(�); hi; ji 2 R. A
sentence �� whose primary connective is the monadic star operator � is
true at a world j in I just in case j 2 f(�). The usual truth conditions
are provided for a necessity operator, so that �� is true at j in I just in
case for every world k such that hj; ki 2 R, � is true at k, i.e. just in case
k 2 [�]. Finally, a conditional � >  is true at a world j just in case
�(��!  ) is true at i. �Aqvist modi�es this semantics in an appendix. The
modi�cation involves a set of models of the sort described, each with the
same set of possible worlds, the same accessibility relation, and the same
valuation function, but each with its own designated world and selection
function. The resulting semantics turns out once again to be equivalent to
a version of class selection semantics.
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While the interesting formal details of �Aqvist's theory are quite di�erent
from those of other investigators, the most signi�cant feature of his account
may be his suggestion that a class selection function might properly pick
out for a sentence � and a world i all those �-worlds which are `suÆciently'
similar to i rather than only those �-worlds which are `most' similar to
i. By changing the intended interpretation for the class selection function,
we avoid the trivialisation of the truth conditions for conditionals in all
those cases where the Limit Assumption in either of its forms fails. At the
same time, class selection function semantics supports the GCP. �Aqvist's
suggestion looks very promising.
A similar approach is taken by Nute, [1975a; 1975b; 1980b], but the

semantics Nute proposes is explicitly a version of class selection function
semantics. This model theory di�ers from versions of class selection function
semantics we examined earlier in two important ways. First the intended
interpretation is di�erent, i.e. there is a di�erent informal explanation to
be given for the role which the class selection functions play in the models.
Second the restriction (CS2) is replaced by the weaker restriction

(CS20) if i 2 [�] then i 2 f(�; i).

The second change is related to the �rst. Surely any world is more similar
to itself than is any other. Thus, if f picks out for � and i the �-worlds
closest to i, and if i is itself a �-world, then f will pick out i and nothing
else for � and i. The objection to the thesis CS, though can be thought of
as a claim that there may be other worlds suÆciently similar to the actual
world so that in some cases we should consider these worlds in evaluating
conditionals with true antecedents. When we modify our earlier semantics
for Lewis's system VC by replacing (CS2) with (CS20), the resulting class
of models characterizes the logic which Lewis [1973b] calls VW. VW is the
smallest conditional logic which is closed under all the rules and contains
all the theses listed for VC except for the thesis CS. By weakening our
semantics further we can characterize a logic which is closed under all the
rules and contains all the theses of VW except CV. This, of course, would
give us a logic for which Pollock's SS would be a proper extension.
Although many count it as an advantage of small change class selection

function semantics that such theories allow us to avoid CS, it should be
noted that such semantics do not commit us to a rejection of CS. As we
have seen, both Lewis's VC and Pollock's SS are characterized by classes of
class selection function models. For those who favor CS, it is still possible
to avoid the diÆculties of the Limit Assumption and embrace the GCP by
adopting one of these versions of the class selection function semantics but
giving a small change interpretation of the selection functions upon which
such a semantics depends.
It is possible to avoid CS within the restrictions of a minimal change

semantics. We can do this by `coarsening' our similarity relation, to use



22 DONALD NUTE AND CHARLES B. CROSS

Lewis's phrase, counting worlds as equally similar to some third world de-
spite fairly large di�erences in these worlds. For example, we might count
some worlds other than i as being just as similar to i as is i itself. When we
do this for a minimal change version of class selection function semantics,
the formal results are exactly the same as those proposed earlier in this
section and the resulting logic is VW. Of course, we must still cope with
Lewis's objections to the Limit Assumption. But it is even possible to avoid
CS within Lewis's system-of-spheres semantics. All we need to do is replace
the restriction (SOS1) with the following:

(SOS10) i 2 \si.

The class of all those system-of-spheres models which satisfy (SOS10) and
(SOS2) determines the conditional logic VW. While such a concession to
the critics of CS is possible within the con�nes of Lewis's semantics, Lewis
does not favor such a move. We should also remember that the resulting
semantics still does not support the GCP.
Since we can formulate a kind of minimal change semantics which avoids

the controversial thesis CS, the only advantage we have shown for small
change theories is that they avoid the problems of the Limit Assumption
while giving support for the GCP. But this advantage may be illusory.
Loewer [1978] shows that for many versions of class selection function se-
mantics we can always view the selection function as picking out closest
worlds. For a model of such a semantics, we can de�ne a relative similarity
relation R between the worlds of the model in terms of the model's selec-
tion function f . It can then be shown that for a sentence � and a world
i; j 2 f(�; i) if and only if j is a �-world which is at least as close to i with
respect to R as is any other �-world. Consider such a model and consider a
proposition � which is true at world j just in case there are in�nitely many
worlds closer to i with respect to R than is j. There will be no �-world
closest to i. Consequently f(�; i) will be empty and any conditional with
� as antecedent will be trivially true. How seriously we view this example
depends upon our attitude toward the assumption that there exists a propo-
sition which has the properties attributed to �. If we take propositions to
be sets of worlds, then the existence of such a proposition is very plausible.
We should also note that this argument involves a not so subtle change in
our semantics. Until now we have been thinking of our selection functions
as taking sentences as arguments rather than propositions. If we restrict
ourselves to sentences it is very unlikely that our language for conditional
logic will contain a sentence which expresses the troublesome proposition.
Nevertheless, it is not entirely clear that every small change version of class
selection function semantics will automatically avoid the problems associ-
ated with the Limit Assumption.
There is another advantage which can be claimed for small change the-

ories which doesn't involve the logic of conditionals. If, for example, VW
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is the correct logic for conditionals, we have seen that it is possible to take
either the minimal change or the small change approach to semantics for
conditionals and still provide a semantics which determinesVW. But even if
agreement is reached about which sentences are valid, these two approaches
are still likely to result in di�erent assignments of truth values to contingent
conditional sentences. Suppose for example that Fred's lawn is just slightly
too short to come into contact with the blades of his lawnmower. Thus his
lawnmower will not cut the grass at present. Suppose further that the en-
gine on Fred's lawnmower is so weak that it will only cut about a quarter of
an inch of grass. If the height of the grass is more than a quarter of an inch
greater than the blade height, the mower will stall. Then is the following
sentence true or false?

29. If the grass were higher, Fred's mower would cut it.

On the minimal change approach, whether we use class selection function
semantics or system-of-spheres semantics, the answers to this question must
be `yes' for there will be worlds at which the lawn is higher than the blade
height but no more than a quarter inch higher than the blade height, which
are closer to the actual world than is any world at which the grass is more
than a quarter inch higher than the blade height. But the correct answer
to the question would seem to be `no'. If someone were to assert (29) we
would likely object, `Not if the grass were much higher'. This shows that
we are inclined to consider changes which are more than minimally small
in our evaluations of conditionals. We might avoid particular examples of
this sort by `coarsening' the similarity relation, but it may be possible to
generate such examples for any similarity relation no matter how coarse.
All of the small change theories we have considered propose semantics

which are at least equivalent to some version of class selection function se-
mantics. There is, however, at least one small change theory which does
not share this feature. Warmbr�od [1981] presents what he calls a pragmatic
theory of conditionals. This theory is based on similarity of worlds but in a
radically di�erent way than are any of the theories we have yet examined.
According to Warmbr�od, the set of worlds we use in evaluating a condi-
tional is determined not by the antecedent of that particular conditional
but rather by all the antecedents of conditionals occurring in the piece of
discourse containing that particular conditional. Thus a conditional is al-
ways evaluated relative to a piece of discourse rather than in isolation. For
any piece of discourse D and world i we select a set of worlds S which
satis�es the following conditions:

(W1) if � >  occurs in D and � is logically possible, then some world j in
S is a �-world;

(W2) for some � >  occurring in D; j 2 s if and only if j is at least as
close to i as are the closest �- worlds to i.
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Condition (W1) ensures that S is what Warmbr�od calls normal for D and
(W2) ensures that S is what Warmbr�od calls standard for some antecedent
occurring inD. (Warmbr�od formulates his theory in terms of an accessibility
relation, but the semantics provided here is formally equivalent.) Then a
conditional � >  is true at i with respect to D if and only if �!  is true
at every world in S. The resulting semantics resembles both class selection
function semantics and an analysis of conditionals as strict conditionals, but
it di�ers from each of these approaches in important respects.
Like other proposals which treat subjunctive conditionals as being strict

conditionals, Warmbr�od's theory validates Transitivity, Contraposition, and
Strengthening Antecedents. Warmbr�od argues that the evidence against
these theses can be explained away. Apparent counterexamples to transi-
tivity, for example, depend according to Warmbr�od on the use of di�erent
sets S in the evaluation of the sentences involved in the putative counterex-
amples. Consider the example (21){(23) in Section 1.3 above. According
to Warmbr�od, this example can be a counterexample to Transitivity only
if there is some set of worlds S which contains worlds at which Carter did
not lose in 1980, contains some worlds at which Carter died in 1979, which
is normal for these two antecedents, and for which the material conditional
corresponding to (21) and (22) are true at all members of S while the ma-
terial conditional corresponding to (23) is false at some world in S. But
this, Warmbr�od claims, is exactly what does not happen. The apparent
counterexample depends upon an equivocation, a shift of the set S during
the course of the argument.
Warmbr�od's theory has a certain attraction. It is certainly true that

Transitivity and other controversial theses are harmless in many contexts,
and it is certainly true that these theses are frequently used in ordinary
discourse. The problem is to provide an account of the di�erence between
those situations in which the thesis is reliable and those in which it is not.
Warmbr�od's strategy is to consider the thesis to be always reliable and then
to provide a way of falsifying the premises in unhappy cases. An alternative
approach is to count these theses as being invalid and then to look for those
features of context which sometimes allow us to use them with impunity.
We think the second strategy is safer. It is probably better to occasionally
overlook a good argument than it is to embrace a bad one. Or to put a bit
di�erently, it is better to force the argument to bear the burden of proof
rather than to consider it sound until proven unsound.
Another problem with Warmbr�od's theory is that it suggests that we

should �nd apparent counterexamples to certain theses which have until
now been considered uncontroversial. For example, we should �nd apparent
counterexamples for CA. (See [Nute, 1981b] for details.)
Warmbr�od's semantics also runs into diÆculty with the Limit Assump-

tion. The requirement (W2) that S be standard for some antecedent in D
involves the Limit Assumption explicitly. although Warmbr�od's semantics
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may tolerate small, non-minimal changes for some of the antecedents in a
piece of discourse, it demands that only minimal changes be considered for
at least one such antecedent. Of course, we might be able to modify (W2)
in such a way as to avoid this problem. There remains, though, the nagging
suspicion that none of the small change theories we have considered will in
the end be able to escape the Limit Assumption, with all its diÆculties, in
some form or other.

1.6 Maximal Change Theories

Both minimal change theories and small change theories of conditionals are
based on the premise that a conditional � >  is true at i just in case  
is true at some �- world(s) satisfying certain conditions. The di�erence,
of course, is that for the one approach it is suÆcient that  be true at
all closest �-worlds while the other requires that  be true at all �-worlds
which are reasonably or suÆciently close to i. There is a third type of theory
which shares the same basic premise as these two but which does not require
that the worlds upon which the evaluation of � >  at i depends be very
close or similar to i at all. According to this way of looking at conditionals,
all that is required is that the relevant worlds resemble i in certain very
minimal respects. Otherwise the relevant worlds may di�er from i to any
degree whatever. We might even think of this approach as requiring us
to consider worlds which di�er from i maximally except for the narrowly
de�ned features which must be shared with i.
One theory of this sort is developed by Gabbay [1972]. To facilitate com-

parison, we will simplify Gabbay's account of conditionals rather drastically.
When we do this, Gabbay's semantics for conditionals resembles the class
selection function semantics we have discussed, but there are some very im-
portant di�erences. A simpli�ed Gabbay model is an ordered triple hI; g; [ ]i
such that I and [ ] are as in earlier models, and g is a function which assigns
to sentences � and  and world i in I a subset g(�;  ; i) of I . A condi-
tional � >  is true at i in such a model just in case g(�;  ; i) � [� !  ].
The di�erence between this and class selection function semantics of the
sort we have seen previously is obvious: the selection function g takes both
antecedent and consequent as argument. This means that quire di�erent
sets of worlds might be involved in the truth conditions for two conditionals
having exactly the same antecedent. This change in the formal semantics
reects a di�erence in Gabbay's attitude toward conditionals and toward
the way in which we evaluate conditionals. When we evaluate � >  , we
are not concerned to preserve as much as we can of the actual world in en-
tertaining �; instead we are concerned to preserve only those features of the
actual world which are relevant to the truth of  , or perhaps to the e�ect
� would have on the truth of  . In actual practice the kind of similarity
which is required is supposed by Gabbay to be determined by �, by  , and
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also by general knowledge and particular circumstances which hold in i at
the time when the conditional is uttered. What this involves is left vague,
but it is not more vague than the notions of similarity assumed in earlier
theories.
When we modify Gabbay's semantics in this way, we must impose three

restrictions on the resulting models:

(G1) i 2 g(�;  ; i);

(G2) if [�] = [ ] and [�] = [�] then g(�; �; i) = g( ; �; i);

(G3) g(�;  ; i) = g(�;: ; i) = g(:�;  ; i).

With these restrictions Gabbay's semantics determines the smallest condi-
tional logic which is closed under RCEC and the following two rules:

RCEA: from �$  , to infer (� > �)$ ( > �).

RCE: from �!  , to infer � >  .

We will call this logic G. At the end of [Gabbay, 1972], a conjectured ax-
iomatisation of G is presented, but it was later shown to be unsound and
incomplete in [Nute, 1977], where the axiomatisation of G presented here
was conjectured to be sound and complete (see [Nute, 1980b]). Working
independently, David Butcher [1978] also disproved Gabbay's conjecture,
and proved the soundness and completeness of G for the Gabbay semantics
(see [Butcher, 1983a]).
It is obvious that G is the weakest conditional logic we have yet consid-

ered. We can characterize a stronger logic if we place additional restrictions
on our Gabbay models, but we may not be able to guarantee a suÆciently
strong logic without restricting our models to the point where they become
formally equivalent to models we examined earlier. Consider, for example
the theses

CC: [(� >  ) ^ (� > �)]! [� > ( ^ �)]

CM: [� > ( ^ �)]! [(� >  ) ^ (� > �)].

To ensure that our conditional logic contains CC and CM, we could impose
the following restriction on Gabbay's semantics:

(G4) g(�;  ; i) = g(�; �; i).

Once we do this we have eliminated the most distinctive feature of Gabbay's
semantics. According to David Butcher [1983a], it is possible to ensure CC
and CM by adopting conditions weaker than (G4). However, Butcher has
indicated that these conditions are problematic for other reasons.8

8Many of these isues are also discussed in Butcher [1978; 1983a].
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A rather di�erent and very specialized maximal change theory has been
developed in two di�erent forms by Fetzer and Nute [1979; 1980] and by
Nute [1981a]. Both forms of this theory are intended not as analyses of
ordinary subjunctive conditionals as they are used in ordinary discourse,
but rather as analyses of scienti�c, nomological, or causal conditionals, i.e.
of subjunctive conditionals as they are used in the very special circumstances
of scienti�c investigation. Formally the two theories propose class selection
function semantics for scienti�c conditionals, but the intended interpretation
is quite di�erent from that of any theory we have yet considered.

In the version of the theory developed by Fetzer and Nute the selection
function f is intended to pick out for a sentence � and a world i the set of
all those �-worlds at which all the individuals mentioned in � possess, in so
far as the truth of � will allow, all those dispositional properties which they
permanently possess in i. This forces us to ignore all features of worlds
except those assumed by the underlying theory of causality to a�ect the
causal eÆcacy of the situation, events, etc., described in �. We are forced,
in other words, to consider worlds which preserve only these features and
otherwise di�er maximally from the world at which the scienti�c conditional
is being evaluated. In this way we can ensure that the conditional in question
is true if but only if the antecedent and the consequent are related causally or
nomologically in an appropriate manner. Physical law statements are then
analysed as universal generalisations or sets of universal generalisations of
such scienti�c conditionals.

The view subsequently developed in [Nute, 1981a] departs a bit from the
requirement of maximal speci�city which we seek in our scienti�c pronounce-
ments and in doing so comes closer to representing a kind of conditional used
in ordinary discourse. Nute suggests that the selection function f selects
for a sentence � and a world i all those �-worlds at which all those indi-
viduals mentioned in � possess, so far as the truth of � allows, not only all
those dispositional properties which they permanently possess in i but also
all those dispositional properties which they accidentally or as a matter of
particular fact possess in i. For example, a particular piece of litmus paper
permanently possesses the tendency to turn red when dipped in an acidic
solution, since it could not lose this tendency and still be litmus paper, but
it only accidentally possesses the tendency to reect blue light, since it could
certainly lose this disposition through being dipped in acid and yet still be
litmus paper. Where it is impossible to accommodate � without giving up
some of the dispositional properties possessed by individuals mentioned in
�, preference is given to dispositions which are possessed permanently. On
this account, but not on the account developed by Fetzer and Nute con-
jointly, the following conditional is true where x is a piece of litmus paper
which is in fact blue:

30. If x were cut in half, it would be blue.
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Nute [1981a] suggests that many ordinary conditionals may have such truth
conditions, or may be abbreviations of other more explicit conditionals
which have such truth conditions.

Each of the theories presented in this section is in fact only a fragment
of a more complex theory. It is impossible to discuss the larger theories
in any greater detail and the reader is encouraged to consult the original
publications. What allows us to consider them under a single category is
their departure from the premise that the truth of a conditional depends
upon what happens in antecedent- worlds which are very much like the
actual world. Each of these theories assumes and even requires that the
divergence from the actual world be rather larger than minimal or small
change theories would indicate.

1.7 Disjunctive Antecedents

One thesis in particular has caused considerable controversy among the
investigators of conditional logic. This thesis is Simpli�cation of Disjunctive
Antecedents:

SDA: [(� _  ) > �]! [(� > �) ^ ( > �)].

The intuitive plausibility of SDA has been suggested in [Fine, 1975], in
[Nute, 1975b] and in [Ellis et al., 1977]. Unfortunately, any conditional
logic which contains SDA and which is also closed under substitution of
provable equivalents will also contain the objectionable thesis Strengthen-
ing Antecedents. If we add SDA to any of the logics we have discussed, then
Transitivity and Contraposition will be contained in the extended logic as
well.9 Ellis et al. suggest that the evidence for SDA is so strong and the
problems involved in trying to incorporate SDA into any account of condi-
tionals based upon possible worlds semantics is so great that the possibility
of an adequate possible worlds semantics for ordinary subjunctive condition-
als is quite eliminated. With all the problems which the various theories
encounter, the possible worlds approach has still proven to be a powerful
tool for the investigation of the logical and semantical properties of con-
ditionals and we should be unwilling to abandon it without �rst trying to
defend it against such a charge.

The �rst line of defence has been a `translation lore' approach to the
problem of disjunctive antecedents. It is �rst noted that, despite the in-
tuitive appeal of SDA, there are examples from ordinary discourse which
show that SDA is not entirely reliable. The following sentences comprise
one such example:

9As further evidence of the problematic character of SDA, David Butcher [1983b] has
shown that any logic containing SDA and CS will contain �! ��, where �� is de�ned
as :� > �.
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31a. If the United States devoted more than half of its national budget to
defence or to education, it would devote more than half of its national
budget to defence.

31b. If the United States devoted more than half of its national budget to
education, it would devote more than half of its national budget to
defence.

Contrary to what we should expect if SDA were completely reliable, it looks
very much as if (31a) is true even though (31b) cannot be true. Fine [1975],
Loewer [1976], McKay and Van Inwagen [1977] and others have suggested
that those examples which we take to be evidence for SDA actually have a
quite di�erent logical form from that which supporters of SDA suppose them
to have. While a sentence like (31a) really does have the form (� _  ) > �,
a sentence like

32. If the world's population were smaller or agricultural productivity
were greater, fewer people would starve.

has the quite di�erent logical form (� > �)^( > �). According to this sug-
gestion, the word `or' represents wide scope conjunction rather than narrow
scope disjunction in (32). Since we can obviously simplify a conjunction,
this confusion about the logical form of sentences like (32) results in the
mistaken commitment to a thesis like SDA.
This would be a neat solution to the problem if it would work, but the

translation lore approach has a serious aw. According to the translation
lorist, the two sentences (31a) and (32) have di�erent logical forms even
though they share the same surface or grammatical structure. We can
point out an obvious di�erence in surface structure since one of the apparent
disjuncts in the antecedent of (31a) is also the consequent of (31a), a feature
which (32) lacks. But we can easily produce examples where this is not the
case. Suppose after asserting (31a) a speaker went on to assert

33. So if the United States devoted over half its national budget to defence
or education, my Lockheed stock would be worth much more than it
is.

It would be very reasonable to accept this conditional but at the same time
to reject the following conditional:

34. So if the United States devoted over half of its national budget to
education, my Lockheed stock would be worth much more than it is.

The occurrence of the same component sentence in antecedent and conse-
quent is not a necessary condition for the failure of SDA and cannot be
used as a criterion for distinguishing those cases in which English condi-
tional with `or' in their antecedents are of the logical form (�_ ) > � from



30 DONALD NUTE AND CHARLES B. CROSS

those in which they are of the logical form (� > �) ^ ( > �). We cannot
decide on purely syntactical grounds which of the two possible symbolisa-
tions is proper for an English conditional with `or' in its antecedent. Loewer
[1976] suggests that this decision may be made on pragmatic grounds, but
it is diÆcult to see what the distinguishing criterion is to be except that
English conditionals with disjunctive antecedents are to be symbolized as
(� > �) ^ ( > �) when simpli�cation of their disjunctive antecedents is
legitimate and to be symbolized as (� _  ) > � when such simpli�cation
is not legitimate. Until Loewer's suggestion concerning the pragmatic pres-
sures which prompt one symbolisation rather than another can be provided
with suÆcient detail, the translation lore account of disjunctive conditional
does not provide us with an adequate solution to our problem.
We �nd an interesting variation on the translation lore solution in [Hum-

berstone, 1978] and in [Hilpinen, 1981]. Both suggest the use of an an-
tecedent forming operator like �Aqvist's �. We will discuss Hilpinen's theory
here since it di�ers the most from �Aqvist's view. Hilpinen's analysis uti-
lizes two separate operators which we can represent as If and Then. The If
operator attaches to a sentence � to produce an antecedent If �. the Then
operator connects an antecedent � and a sentence � to form a conditional
� Then �. The role of the dyadic truth functional connectives is expanded
so that _, for example, can connect two antecedents � and � to form a new
antecedent � _ �. An important di�erence between Hilpinen's If operator
and �Aqvist's � is that for �Aqvist �� is a sentence or proposition bearing a
truth value while for Hilpinen If � is not. Finally Hilpinen proposes that
sentences like (31a) be symbolized as If (� _  ) Then � while sentences
like (32) be symbolized as (If � _ If  ) Then �. Hilpinen then accepts a
rule similar to SDA for sentences having the latter form but not for sen-
tences having the former. This proposal allows us to incorporate a rule like
SDA into our conditional logic while avoiding Strengthening Antecedents,
etc., and, unlike other versions of the translation lore approach, Hilpinen's
proposal seems to suggest how it might be possible for sentences like (31a)
and (32) to have a legitimate scope ambiguity in their syntactical structure,
like the scope ambiguity in `President Carter has to appoint a woman'. In
fact, however, the ambiguity postulated by Hilpinen's proposal does not
seem simply to be a scope ambiguity. The sentence `President Carter has
to appoint a woman' is ambiguous with respect to the scope of the phrase
`a woman', but the phrase `a woman' has the same syntactical function and
the same semantics on both readings of the sentence. The same cannot be
said of the word `or' in Hilpinen's account of disjunctive antecedents: on one
resolution of the ambiguity, what `or' connects in examples like (31a) and
(32) are sentences; on the other resolution of the ambiguity, `or' connects
phrases that are not sentences. It is diÆcult to see how the ambiguity in
(31a) and (32) can be simply a scope ambiguity if `or' does not have the
same syntactical role in both readings of a given sentence.



CONDITIONAL LOGIC 31

Another approach to disjunctive antecedents is developed by Nute [1975b;
1978b] and [1980b]. Formally the problem with SDA is that it together with
substitution of provable equivalents results in Strengthening Antecedents
and other unhappy results. The translation lorist's suggestion is that we
abandon SDA. Nute's suggestion, on the other hand, is that we abandon
substitution of provable equivalents, at least for antecedents of subjunctive
conditionals. One fairly strong logic which does not allow substitution of
provably equivalent antecedents is the smallest conditional logic which is
closed under RCEC and RCK and contains ID, MP, MOD, CV, and SDA.
Logics of this sort have been called `non- classical' or `hyperintensional' to
contrast them with those intensional logics which are closed under substitu-
tion of provable equivalents. Classical logics (those closed under substitution
of provable equivalents) are preferred by most investigators.
Besides the fact that non-classical logics are much less elegant than clas-

sical logics, Nute's proposal has other very serious diÆculties. First, sub-
stitution of certain provable equivalents within antecedents appears to be
perfectly harmless. For example, we can surely substitute  _� for �_ in
(� _  ) > � with impunity. How are we to decide which substitutions are
to be allowed and which are not? Non-classical conditional logics which al-
low extensive substitutions are developed in Nute [1978b] and [1980b]. But
these systems are extremely cumbersome and there still is the extra-formal
problem of justifying the particular choice of substitutions which are to be
allowed in the logic. Second, we are still left with the apparent counterex-
amples to SDA like (31a). Nute suggests a pluralist position, maintaining
that there are actually several di�erent conditionals in common use. For
some of these conditionals SDA is reliable while for others it is not. The
conditional involved in (31a), it is claimed, is unusual and should not be
represented in the same way as other subjunctive conditionals. While there
is good reason to admit a certain pluralism, to admit, for example, the dis-
tinction between subjunctive and indicative conditionals, Nute's proposal
is little more than a new translation lore in disguise. The translation lore
we discussed earlier at least has the virtue that it attempts to explain the
perplexities surrounding disjunctive antecedents in terms of a widely ac-
cepted set of logical operators without requiring the recognition of any new
conditional operators. Non-classical logic appears to be a dead end so far
as the problem of disjunctive antecedents is concerned.
A completely di�erent solution is suggested in [Nute, 1980a], a solution

based upon the account of conversational score keeping developed in [Lewis,
1979b]. Basically, the proposal concerns the way in which the class selection
function (or the system-of-spheres if Lewis-style semantics is employed) be-
comes more and more de�nite as a linguistic exchange proceeds. During a
conversation, the participants tend to restrict the selection function which
they use to interpret conditionals in such a way as to accommodate claims
made by their fellow participants. This growing set of restrictions on the se-
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lection function forms part of what Lewis calls the score of the conversation
at any given stage. Some accommodations, of course, will not be forthcom-
ing since some participant will be unwilling to evaluate conditionals in the
way which these accommodations would require. Each restriction on the
selection function which the participants implicitly accept will also rule out
other restrictions which might otherwise have been allowed. Nute's sugges-
tion is that our inclination is to restrict the selection function in such a way
to make SDA reliable, but that this inclination can be overridden in cer-
tain circumstances by our desire to accommodate the utterance of another
speaker. When we hear the utterance of a sentence like (31a), for example,
we restrict our selection function so that SDA becomes unreliable for sen-
tences which have `the United States devotes more than half its national
budget to defence or education' as antecedent. Once (31a) is accommodated
in this way, this restriction on the selection function remains in e�ect so long
as the conversational context does not change. Nute completes his account
by formulating some `accommodation' rules for class selection functions.
By o�ering a pragmatic account of the way in which the selection function
becomes restricted during the course of a conversation, and by paying at-
tention to the inclination to restrict the selection function in such a way as
to make SDA reliable whenever possible, it may be possible to explain the
fact that SDA is usually reliable while at the same time avoiding the many
diÆculties involved in accepting SDA as a thesis of our conditional logic.
This proposal is similar in certain respects to Loewer's [1976]. Like

Loewer, Nute is recognising the important role which pragmatic features
play in our use of conditionals with disjunctive antecedents. However,
Nute's use of Lewis's notion of conversational score keeping results in an
account which provides more details about what these pragmatic features
might be than does Loewer's account. We also notice that Nute's sugges-
tions might provide the criterion which Loewer needs to distinguish those
conditionals which should be symbolized s (� _  ) > � from those which
should be symbolized as (� > �) ^ ( > �). But once the distinction is
explained in terms of the evolving restrictions on class selection functions,
there is no need to require that these conditionals be symbolized di�erently.
The point of Nute's theory is that all such conditionals have the same logical
form, but the reliability of SDA will depend on contextual features.
There is also considerable similarity between Nute's second proposal and

Warmbr�od's semantics for conditionals which was discussed in Section 1.5.
In fact, Warmbr�od's semantics is o�ered at least in part as an alternative
to Nute's proposed solution to the problem of disjunctive antecedents. The
important similarity between the two approaches is that both recognize
that the interpretation of a conditional is a function not of the conditional
alone but also of the situation within which the conditional is used. The
important di�erence is that Warmbr�od's semantics makes SDA, Transitivity,
Contraposition, Strengthening Antecedents, etc. valid and uses pragmatic



CONDITIONAL LOGIC 33

considerations to explain and guard us from those cases where it seems to
be a mistake to rely upon these principles, while Nute ultimately rejects
all of these principles, but uses pragmatic considerations to explain why it
is perfectly reasonable to use at least one of these theses, SDA, in many
situations.
Warmbr�od also o�ers a translation lore as part of his account. His sug-

gestion about the way in which we should symbolize English conditionals
with disjunctive antecedents is essentially that of Fine, Lewis, Loewer, and
others, but he o�ers purely syntactic criteria for determining which sym-
bolisation is appropriate in a particular case. His semantics is o�ered as
a justi�cation for his translation lore in an attempt to make his rules for
symbolisation appear less ad hoc. Warmbr�od points out some diÆculties
with Nute's rules of accommodation for class selection functions, and his
translation rules might be used as a model for improving the formulation
of Nute's rules. Nute's theory of disjunctive antecedents in terms of con-
versational score might also be proposed as an alternative justi�cation for
Warmbr�od's translation rules.

1.8 The Direction of Time

We turn now to a problem alluded to in Section 1.4, a problem which con-
cerns the role temporal relations play in the truth conditions for subjunctive
conditionals. Actually, there are two di�erent sets of problems to be consid-
ered. One of these involves the use of tensed language in conditionals and
the other does not depend essentially on the use of tense and conditionals
together. We will consider the latter set of problems in this section and save
problems concerning tense for the next section.
A particularly thorny problem for logicians working on conditionals has

to do with so-called backtracking conditionals, i.e. conditionals having an-
tecedents concerned with events or states of a�airs occurring or obtaining
at times later than those involved in the consequents of the conditional.
It is widely held that such conditionals are rarely true, and that when
they are true they usually involve much more complicated antecedents and
consequents than do the more usual true non-backtracking conditionals.
Consider, for example, the two conditionals:

35. If Hinckley had been a better shot, Reagan would be dead.

36. If Reagan were dead, Hinckley would have been a better shot.

The �rst of these two conditionals is an ordinary non-backtracking con-
ditional, while the second is a backtracking conditional. the �rst is very
plausible and perhaps true, while the second is surely false. The problem
with (36) which makes it so much less plausible than (35) is that Reagan
might have died subsequent to the assassination attempt from any number
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of causes which would not involve an improvement of Hinckley's aim. The
problem for the logician or semanticist is to explain why non-backtracking
conditionals are more often true than are backtracking conditionals.
The primary goal of Lewis [1979a] is to explain this phenomenon. Lewis's

proposal makes explicit, extensive use of the technical notion of a miracle.
In a certain sense miracles do not occur at all in Lewis's analysis: rather a
miracle occurs in one world relative to another world. No event ever occurs
in any world which violates the physical laws of that world, but events
can certainly occur in one world which violate the physical laws of some
other world. These are the kinds of miracles Lewis relies upon. Assuming
complete determinism, which Lewis does at least for the sake of argument,
any world which shares a common history with the actual world up to a
certain point in time but which diverges from the actual world after that
time cannot obey the same physical laws as does the actual worlds. Basically
Lewis proposes that the worlds most similar to the actual world in which
some counterfactual sentence � is true are those worlds which share their
history with the actual world up until a brief transitional period beginning
just prior to the times involved in the truth conditions for �. In the case
of (35) this might mean that everything happens exactly as it did except
that Hinckley miraculously aimed better than he actually did. this might
only require something as small as a neuron �ring at a slightly di�erent
time than it actually did. This is about as small a miracle as we could hope
for. Once this miracle occurs, events are assumed by Lewis to once again
follow their lawful course with the result, perhaps, that Reagan is mortally
wounded. In the case of (36), on the other hand, Reagan might be dead
if the FBI agent miraculously failed to jump in front of Reagan, if Reagan
miraculously moved in such a way that the bullet struck him di�erently,
or even if Reagan miraculously had a massive stroke at any time after the
assassination attempt. Even if events followed their lawful course after any
of these miracles, Hinckley's aim would not be improved.
Lewis notes that the vagueness of conditionals requires that there may be

various ways of determining the relative similarity of worlds, di�erent ways
being employed on di�erent occasions. There is one way of resolving vague-
ness which Lewis considers to be standard, and it is this way which provides
us with the explanation of (35) and (36) given above. This standard reso-
lution of vagueness is expressed in the following guidelines for determining
the relative similarity of worlds:

(L1) It is of the �rst importance to avoid big, complicated, varied, widespread
violations of law.

(L2) It is of the second importance to maximize the spatio- temporal re-
gion throughout which perfect match of particular fact prevails.
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(L3) It is of the third importance to avoid even small, simple, localized
violations of law.

(L4) It is of little or no importance to secure approximate similarity of
particular fact, even in matters that concern us greatly.

Lewis would maintain that application of these guidelines together with
his system-of-spheres semantics for subjunctive conditionals will have the
desired result of making (35) at least plausible while making (36) clearly
false.

One major objection to Lewis's account is that once we allow miracles
in order to produce a world which diverges from the actual world, there
is nothing in Lewis's guidelines to prevent us from allowing another small
miracle in order to get the worlds to converge once again. Since Lewis's
guidelines place a higher priority on maximising the area of perfect match
of particular facts over the avoidance of small, localized violations of law,
we should prefer a small convergence miracle to a future which is radically
di�erent. Lewis's response to such a suggestion is that divergence miracles
tend to be much smaller than convergence miracles or, what amounts to the
same thing, that past events are overdetermined to a greater extent than
are future events. If correct, then Lewis's guidelines would place greater im-
portance on avoidance of a large convergence miracle than on maximising
the area of perfect match of a particular fact. and careful consideration of
examples indicates that Lewis's suggestion is at least plausible, although no
conclusive argument has been provided. In [Nute, 1980b] examples of very
simple worlds are given in which convergence miracles could be quite small
and in which Lewis's guidelines would thus dictate that for some counter-
factual antecedents the nearest antecedent worlds are those in which such
small convergence miracles occur. In these examples, we get the (intu-
itively) wrong result when we apply Lewis's standard method for resolving
the vagueness of conditionals. Lewis [1979a] warns that his guidelines might
not work for very simple worlds, though, so the force of Nute's examples is
uncertain. Lewis's guidelines may give an adequate explanation for our use
of conditionals in the context of a complex world like the actual world, and
since our intuitions are developed for such a world they may be unreliable
when applied to very simple worlds.

If we consider Lewis's proposal in the context of a probabilistic world, we
discover that we no longer need employ the troublesome notion of a miracle.
Instead of a miracle, we can accommodate a counterfactual antecedent in a
probabilistic world by going back to some underdetermined state of a�airs
among the causal antecedents of the events or states of a�airs which must be
eliminated if the antecedent is to be true and change them accordingly. Since
these states of a�airs were underdetermined to begin with, they could have
been otherwise without any violation of the probabilistic laws governing the
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universe. But if we do this, Lewis's emphasis on maximising the spatio-
temporal area of perfect match of particular fact would require that we
always change a more recent rather than an earlier causal antecedent when
we have a choice. This consequence is very much like the Requirement
of Temporal Priority in [Pollock, 1976], a principle which is superseded
by the more complex account to be discussed below. Such a principle is
unacceptable. Suppose, for example, that Fred left his coat unattended in a
certain room yesterday. Today he returned to the room and found the coat
had not been disturbed. Suppose that both yesterday and earlier today a
number of people have been in the room who had an opportunity to take
the coat. Then a principle like Lewis's L2 or Pollock's RTP will dictate
that if the coat had been taken, it would have been taken today rather than
yesterday. Other things being equal, the later the coat is taken the greater
the area of perfect match of particular fact. But this is counterintuitive. (In
fact, experience teaches that unguarded objects tend to disappear earlier
rather than later.) While Lewis's theory is intended to explain why many
backtracking conditionals are false, a consequence of the theory is that some
very unattractive backtracking conditionals turn out to be true. In fact, this
particular problem plagues Lewis's analysis whether the world is determined
or probabilistic.
As it is presented, Lewis's account does rely upon miracles. As a result,

Lewis in e�ect treats all counterfactual conditionals as also being counter-
legals. This is the feature of his account which most writers have found
objectionable. Pollock, Blue, and others place a much higher priority on
preservation of all law than on preservation of particular fact no matter
how large the divergence of particular fact might be. Given such priorities,
and given a deterministic world of the sort Lewis supposes, any change in
what happens will result in a world which is di�erent at every moment in
the past and every moment in the future. If we adopt such a position, how
can we hope to explain the asymmetry between normal and backtracking
counterfactual conditionals?
Probably the most sophisticated attempt to deal with these problems

within the framework of a non-miraculous analysis of counterfactuals is
that developed by John Pollock [1976; 1981]. Pollock has re�ned his account
between 1976 and 1981, but we will try to explain what we take to be his
latest position on conditionals and temporal relations. Pollock says that a
state of a�airs P has historical antecedents if there is a set of true simple
states of a�airs � such that all times of members of � are earlier than the
time of P and � nominally implies P . � nominally implies P just in case
� together with the set of universal generalisations of material implications
corresponding to Pollock's true strong subjunctive generalisations entail P
(or entail a sentence � which is true just in case P obtains). Pollock next
de�nes a nomic pyramid which is supposed to be a set of states of a�airs
which contains every historical antecedent of each of its members. Then P
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undercuts another state of a�airsQ if and only if for every set � of true states
of a�airs such that � is a nomic pyramid and Q 2 �, � nominally implies
that P does not obtain. In revising his set S of true simple states of a�airs
to accommodate a particular counterfactual antecedent P , Pollock tells us
that we are to minimize the deletion of members of S which are not undercut
by P . (We hope the reader will forgive the vacillation here since Pollock
talks about entailment and other logical relations holding between states of
a�airs where most authors prefer to speak of sentences or propositions.)

Perhaps this procedure will give us the correct results for backtracking
and non-backtracking conditionals as Pollock suggests it will if the world is
deterministic, but problems arise if we allow the possibility that there may
be indeterministic states of a�airs which lack historical antecedents. Con-
sider a modi�ed version of an example taken from [Pollock, 1981]. Suppose
that protons sometimes emit photons when subjected to a strong magnetic
�eld under a set of circumstances C, but suppose also that protons never
emit photons under circumstances C if they are not also subjected to a
strong magnetic �eld. As a background condition, let us assume that cir-
cumstances C obtain. Now let � be true just in case a certain proton is
subjected to a strong magnetic �eld at time t and let  be true just in case
the same proton emits a photon shortly after t. Suppose that both � and  
are true. Assuming that no other states of a�airs nomologically relevant to
 obtain, we would intuitively say that :� > : is true, i.e. if the proton
hadn't been subjected to the magnetic �eld at t, then it would not have
emitted a proton shortly after t. But Pollock cannot say this. Since  has
no historical antecedents in Pollock's sense, it cannot be undercut by :�.
Because Pollock does not recognize historical antecedents of states of a�airs
when the nomological connection involved is merely probable, he must say
that :� >  is true.

Pollock's earlier account, which included the Requirement of Temporal
Priority, and Lewis's account with its principle L2, in either its original
miraculous formulation or the probabilistic, non-miraculous version, both
tend to make objectionable backtracking conditionals true when they are
intended to explain why they should be false. Blue [1981] includes a feature
in his analysis which produces the same result in much the same way. While
Pollock's latest theory of counterfactuals avoids examples like that of the
unattended coat, it nevertheless encounters new problems with backtracking
conditionals in the context of a probabilistic universe. It makes certain
backtracking counterfactuals false which our intuitions say are true while
making others true which appear to be false. Yet these are the only positive
proposals known to the authors at the time of this writing. Other work
in the area such as [Nute, 1980b] and [Post, 1981] is essentially critical.
An adequate explanation of the role the temporal order plays in the truth
conditions for conditionals is still a very live issue.



38 DONALD NUTE AND CHARLES B. CROSS

1.9 Tense

There are relatively few papers among the large literature on conditionals
which attempt an account of English sentences which involve both tense and
conditional constructions. Two of the earliest are [Thomason and Gupta,
1981] and [Van Fraassen, 1981]. Both of these papers attempt the obvious, a
fairly straightforward conjunction of tense and conditional operators within
a single formal language. Basic items in the semantics for this language
are a set of moments, an earlier-than relation on the set of moments which
orders moments into tree-like structures, and an equivalence relation which
holds between two moments when they are `co-present'. A branch on one
of these trees plays the role of a possible world in the semantics. Such a
branch is called a history, and sentences of the language are interpreted as
having truth values at a moment-history pair, i.e. at a moment in a history.
Note that a moment is not a clock time but rather a time-slice belonging
to each history that passes through it.
The tense operators in the language include two past-tense operators P

and H , two future-tense operators F and G, and a `settledness' or historical
necessity operator S. P� is true at moment i in history h just in case � is
true at some moment j in h where j is earlier than i. H� is true at some
moment i in h if and only if � is true at j in h for every moment j in h
which is earlier than i. F� is true at i in h if � is true at a moment later
than i in h, and G� is true at i in h if � is true at every moment later than i
in h. S� is true at i in h if and only if � is true at i in every history h0 which
contains i. For a further discussion of semantics for such tense operators,
see Burgess [1984] (Chapter 2.2 of this Handbook).
In both of these papers, that part of the semantics which is used to

interpret conditionals is patterned after the semantics of Stalnaker. A con-
ditional � >  is true at a moment i in a history h just in case  is true at
the pair hi0; h0i at which � is true which is closest or most similar to the pair
hi; hi. Much of the discussion in the two papers is devoted to the e�ort to
assure that certain theses which the authors favor are valid in their model
theories. The measures needed to ensure some of the desired theses within
the context of a Stalnakerian semantics are quite complicated, but the set
of theses that represents the most important contribution of the account of
[Thomason and Gupta, 1981], namely the doctrine of Past Predominance,
turns out to be quite tractable model theoretically.
According to Past Predominance, similarities and di�erences with respect

to the present and past have lexical priority over similarities and di�erences
with respect to the future in any evaluation of how close hi; hi is to hi0; h0i,
where i and i0 are co-present moments. This doctrine a�ects the interaction
between the settledness operator S and the conditional. For example, Past
Predominance implies the validity of the following thesis:

(:S:� ^ S )! (� >  ):
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This thesis is clearly operative in the reasoning that leads to the two-box
solution to Newcomb's Problem: `If it's not settled that I won't take both
boxes but it is settled that there is a million dollars in the opaque box, then
if I take both boxes there will (still) be a million dollars in the opaque box.'10

Cross [1990b] shows that since, concerning the selection of a closest moment-
history pair, Past Predominance places no constraints on what is true at past
or future moments, Past Predominance can be formalized and axiomatized
in terms of settledness and the conditional using ordinary possible worlds
models in which relations of temporal priority between moments are not
represented.
The issue of how the conditional interacts with tense operators, such as

P , H , F and G, is more problematic. The accounts presented by Thoma-
son and Gupta and by Van Fraassen adopt the hypothesis that English
sentences involving both tense and conditional constructions can be ade-
quately represented in a formal language containing a conditional operator
and the tense operators mentioned above. Nute [1983] argues that this is a
mistake. Consider an example discussed in [Thomason and Gupta, 1981]:

37. If Max missed the train he would have taken the bus.

According to Thomason and Gupta, this and other English sentences of
similar grammatical form are of the logical form P (� > F ). Nute argues
that this is not true. To see why, consider a second example. Suppose we
have a computer that upon request will give us a `random' integer between 1
and 12. Suppose further that what the computer actually does is increment
a certain location in memory by a certain amount every time it performs
other operations of certain sorts. When asked to return a random num-
ber, it consults this memory location and uses the value stored there in its
computation. Thus the `random' number one gets depends upon when one
requests it. We just now left the keyboard to roll a pair of dice. If anyone
cares, we rolled a 9. Consider the following conditional:

38. If we had used the computer instead of dice, we would have got a 5
instead of a 9.

It is certainly true that there is a time in the past such that if we had used the
computer at that time we would have got a 5, so a sentence corresponding
to (38) of the form P (� > F ) is certainly true. Yet (38) itself is not
true. Depending upon when we used the computer and what operations
the computer had performed before we used it, we could have obtained any
integer from 1 to 12.
Perhaps we are simply using the wrong combination of operators. In-

stead of P (� > F ), perhaps sentences like (37) and (38) are of the form
H(� > F ). A problem with this suggestion is that such conditionals do

10See [Gibbard and Harper, 1981].
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not normally concern every time prior to the time at which they are uttered
but only certain times or periods of time which are determined by context.
Suppose in a football game Walker carries the ball into the end zone for a
touchdown. During the course of his run, he came very close to the sideline.
Consider the conditional

39. If Walker had stepped on the sideline, he would not have scored.

Can this sentence be of the form H(� > F )? Surely not, for Walker could
have stepped on the sideline many times in the past, and probably did, yet
he did score on this particular play. Perhaps we can patch things up further
by introducing a new tense operator H� which has truth conditions similar
to H except that it only concerns times going a certain distance into the
past, the distance to be determined by context. Once again, Nute argues,
this will not work. Consider the conditional

40. If Fred had received an invitation, he would have gone to the party.

This sentence might very well be accepted even though Fred would not have
gone to the party had he received an invitation �ve minutes before the party
began. The period of time involved does not begin with the present moment
and extend back to some past moment determined by context. Indeed if
this were the case, for (40) to be true it would even have to be true that
Fred would have gone to the party if he had received an invitation after the
party ended.
It would seem, then, that if a context-dependent operator is to be the

solution to the problem Nute describes, then the contextually determined
period of time involved in the truth conditions for English sentences of
the sort we have been investigating must be some subset of past times,
but one that need not be a continuous interval extending back from the
present moment. This is the solution suggested by Thomason [1985].11

Nute [1991] argues for a di�erent approach: the introduction of a new tensed
conditional operator, i.e. an operator which involves in its truth conditions
both di�erences in time and di�erences in world.
Using a class selection function semantics for this task, we could let our

selection function f pick out for a sentence �, a moment or time i, and
a history or world h a set f(�; i; h) of pairs hi0; h0i of times and histories
at which � is true and which are otherwise similar enough to hi; hi for
our consideration. We would introduce into our formal language a new
conditional operator, say iPF i, and sentences of the form �iPF i would
be true in an appropriate model at hi; hi if and only if for every pair hi0; h0i 2

11The following example may be linguistic evidence for this sort of context-dependence
in tensed constructions not involving conditionals: a dean, worried about faculty absen-
teeism, asks a department chair, `Was Professor X always in his classroom last term?'
the correct answer may be `Yes' even though Professor X was not in his classroom at
times last term when his classes were not scheduled to meet.
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f(�; i; h) such that there is a time j in h0 which is copresent with i and later
than i0;  is true at hj; h0i. It appears that three more operators of this sort
will be needed, together with appropriate truth conditions. These operators
may be represented as iPP i, iFF i, and iFP i. These operators would be
used to represent sentences like

41. If Fred had gone to the party, he would have had to have received an
invitation.

42. If Fred were to receive an invitation, he would go to the party.

43. If Fred were to go to the party, he would have to have received an
invitation.

Notice that (41) and (43) are types of backtracking conditionals. Since
such conditionals are rarely true, we may use the operators iPP i and iFP i
infrequently. This may also account for the cumbersomeness of the English
locution which we must use to clearly express what is intended by (41) and
(43).
A number of other interesting problems concerning tense and conditionals

occur to us. One of these is the way in which the consequent may a�ect the
times included in the pairs picked by a class selection function. Consider
the sentences

44. If he had broken his leg, he would have missed the game.

45. If he had broken his leg, the mend would have shown on his X- ray.

The times at which the leg might have been broken varies in the truth
conditions for these two conditionals. This suggests that a semantics like
Gabbay's which makes both antecedent and consequent arguments for the
class selection function might after all be the preferred semantics. Another
possibility is that despite its awkwardness we must introduce some sort
of context-dependent tense operator like the operator H� discussed earlier.
When we represent (44) asH�(� > F ), H� has the whole of the conditional
within its scope and can consider the consequent in determining which times
are appropriate. A third possibility is that the consequent does not �gure
as an argument for the selection function but it does �gure as part of the
context which determines the selection function which is, in fact, used during
a particular piece of discourse. This sort of approach utilizes the concept
of conversational score discussed in Section 1.7 of this paper. One piece
of evidence in favor of this approach is the fact that it would be unusual
to assert both (44) and (45) in the same conversation. Whichever of these
two sentences was asserted �rst, the antecedent of the other would likely
be modi�ed in some appropriate way to indicate that a change in the times
to be considered was required. Besides these interesting puzzles, we need
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also to explain the fact that we maintain the distinction between indicative
and subjunctive conditionals involving present and past tense much more
carefully than we do where the future tense is concerned. These topics are
considered in more detail in [Nute, 1982 and 1991] and [Nute, 1991].

1.10 Other Conditionals

Besides the subjunctive conditionals we have been considering, we also want
an analysis for the might conditionals, the even-if conditionals, and the
indicative conditionals mentioned in Section 1.1. It is time we took another
look at these important classes of conditionals.
Most authors who discuss the might and the even-if conditional con-

structions propose that their logical structure can be de�ned by reference
to subjunctive conditionals. Lewis [1973b] and Pollock [1976] suggest that
English sentences having the form `If � were the case, then  might be the
case' should be symbolized as :(� > : ). Stalnaker [1981a] presents strong
linguistic evidence against this suggestion, but the suggestion has achieved
wide acceptance nonetheless.
Pollock [1976] also o�ers a symbolisation of even-if conditionals. English

sentences of the form `� even if  ', he suggests, should be symbolized as
� ^ ( > �). The adequacy of this suggestion may depend upon our choice
of conditional logic and particularly upon whether we accept the thesis CS.
If we accept both CS and Pollock's proposal, then `� even if  ' will be
true whenever both � and  are true. An alternative analysis of even-if
conditionals is developed in [Gardenf�ors, 1979]. Gardenf�ors's objection to
Pollock's proposal seems to be that a person who knows that both � and  
are true might still reject an assertion of the sentence `� even if  '. Normally,
says Gardenf�ors, one does not assert `� even if  ' when one knows that  
is true; an assertion of `� even if  ' presupposes that � is true and  is
false. Even when the presupposition that  is false truth turns out to be
incorrect, Gardenf�ors argues that there is a presumption that the falsity of  
would not interfere with the truth of �. Consequently, Gardenf�ors suggests
that `� even if  ' has the same truth conditions as ( > �) ^ (: > �).
Another suggestion comes from Jonathan Bennett [1982]. Bennett gives a
comprehensive account of even-if conditionals, �tting them into the context
of uses of `even' that don't involve `if', and uses of `if' that don't involve
`even'. That is, Bennett rejects the treatment of `even if' as an idiom with
no internal structure.
The �rst of three proposals we will consider concerning the analysis of

indicative conditionals, which can be found in [Lewis, 1973b; Jackson, 1987]

and elsewhere, is that indicative conditionals have the same truth condi-
tions as do material conditionals, paradoxes of implication and problems
with Transitivity, Contraposition, and Strengthening Antecedents notwith-
standing. It is diÆcult and perhaps impossible to �nd really persuasive
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counterexamples to Transitivity and Strengthening Antecedents using only
indicative conditionals, but apparent counterexamples to Contraposition are
easy to construct. Consider, for example, the following two sentences:

46. If it is after 3 o'clock, it is not much after 3 o'clock.

47. If it is much after 3 o'clock, it is not after 3 o'clock.

It is easy to imagine situations in which (46) would be true or appropriate,
but are there any situations in which (47) would be true or appropriate? An-
other problem with this analysis concerns denials of indicative conditionals.
Stalnaker [1975] o�ers an interesting example:

48. If the butler didn't do it, then Fred did it.

Being quite sure that Fred didn't do it, we would deny this conditional. At
the same time, we may believe that the butler did it, and therefore when
we hear someone say what we would express by

49. Either the butler did it or Fred did it.

We might respond, \Yes, one of them did it, but it wasn't Fred". Yet
(48) and (49) are equivalent if (48) has the same truth conditions as the
corresponding material conditional.
One possible response to these criticisms is that we must distinguish be-

tween the truth conditions for an indicative conditional and the assertion
conditions for that conditional. It may be that a conditional is true even
though certain conventions make it inappropriate to assert the conditional.
This might lead us to say that (47) is true even though it would be inappro-
priate to assert it. We might also attempt to explain away the paradoxes
of implication in this way, relying on the assumed convention that it is mis-
leading and therefore inappropriate to assert a weaker sentence � when we
are in a position to assert a stronger sentence  which entails �. For ex-
ample, it is inappropriate to assert � _  when one knows that � is true.
Just so, the argument goes, it is inappropriate to assert �)  when one is
in a position to assert either :� or  . and in general we may reject other
putative counterexamples to the proposal that indicative conditionals have
the same truth conditions as material conditionals by saying that in these
cases not all the assertion conditions are met for some conditional rather
than admit that the truth conditions for the conditional are not met. This
line of defence is suggested, for example, by [Grice, 1967; Lewis, 1973b;
Lewis, 1976] and by [Clark, 1971].
A second proposal is that indicative conditionals are Stalnaker condition-

als, i.e. that Stalnaker's world selection function semantics is the correct
semantics for indicative conditionals and Stalnaker's conditional logic C2
is the proper logic for these conditionals. This suggestion is found in [Stal-
naker, 1975] and in [Davis, 1979]. While both Stalnaker and Davis propose
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the same model theory for indicative and subjunctive conditionals, both
also suggest that the properties of the world selection function appropri-
ate to indicative conditionals are di�erent from those of the world selection
function appropriate to subjunctive conditionals.
The di�erence for Stalnaker has to do with the presuppositions involved

in the utterance of the conditional. During the course of a conversation, the
participants come to share certain presuppositions. In evaluating an indica-
tive conditional �)  , Stalnaker says that we look for the closest �-world
at which all of these presuppositions are true. In the case of a subjunctive
conditional, on the other hand, we may look outside this `context set' for the
closest �-world. Of course the overall closest �-world may not be a world at
which all of the presuppositions are true since making � true could tend to
make one of the presuppositions false. This means that di�erent worlds may
be chosen by the selection function used to evaluate indicative conditionals
and the selection function used to evaluate subjunctive conditionals.
While accepting Stalnaker's model theory for both indicative and sub-

junctive conditionals, Davis o�ers a di�erent distinction between the world
selection function appropriate to indicative conditionals and that the ap-
propriate to subjunctive conditionals. In fact, Davis claims that Stalnaker's
analysis of subjunctive conditionals is actually the correct analysis of in-
dicative conditionals. To evaluate an indicative conditional � !  , Davis
says we look at the �-world which bears the greatest overall similarity to the
actual world to see if it is a  -world. For a subjunctive conditional � >  ,
we look at the �- world which most resembles the actual world up until just
before what Davis calls the time of reference of �. Apparently, the time of
reference of � is the time at which events reported by � occur, or states of
a�airs described by � obtain, or etc.
A third proposal, due to Adams [1966; 1975b; 1975a; 1981], holds that

indicative conditionals lack truth conditions altogether. They do, however,
have probabilities and these probabilities are just the corresponding stan-
dard conditional probabilities. Thus pr(�)  ) = pr(� ^  )=pr(�), at least
in those cases where pr(�) is non-zero. We must remember that Adams
does not identify the probability of a conditional with the probability that
that conditional is true since he rejects the very notion of truth values for
conditionals. Adams proposes that an argument involving indicative con-
ditionals is valid just in case its structure makes it possible to ensure that
the probability of the conclusion exceeds any arbitrarily chosen value less
than 1 by ensuring that the probabilities of each of the premises exceeds
some appropriate value less than 1. In other words, we can push the prob-
ability of the conclusion arbitrarily high by pushing the probabilities of the
premises suitably high. When an argument is valid in this sense, Adams
says that the conclusion of the argument is `p-entailed' by its premises and
the argument itself is `p-sound'.
Since Adams rejects truth values for conditionals, conditionals can cer-
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tainly not occur as arguments for truth functions. Given his identi�cation
of the probability of a conditional with the corresponding standard con-
ditional probability, this further entails that conditionals may not occur
within the scope of the conditional operator. Adams attempts to justify this
consequence of this theory by suggesting that we don't really understand
sentences which involve the embedding of one conditional within another in
any case. This claim, though is far from obvious. Such sentences as

50. If this glass will break if it is dropped on the carpet, then it will break
if it is dropped on the bare wooden oor.

seem absolutely ordinary and at least as comprehensible as most other in-
dicative conditionals. the inability to handle such conditionals must count
as a disadvantage of Adams's theory.

In [Adams, 1977] it is shown that p-soundness is equivalent to soundness
in Lewis's system-of-spheres semantics. This implies that the proper logic
for indicative conditionals is the `�rst-degree fragment' of Lewis's VC. By
the �rst degree fragment of VC We mean the set of all those sentences in
VC within which no conditional operator occurs within the scope of any
other operator. Since the logic Adams proposes for indicative conditionals
can be supported by a semantics which also allows us to interpret sentences
involving iterated conditional operators, we will need very strong reasons
to accept Adam's account with its restrictions rather than some possible
worlds account like Lewis's.

In fact it may be possible to reconcile Lewis's view that the truth condi-
tions for indicative conditionals are the same as those for the corresponding
material conditionals with Adams work on the probabilities of condition-
als and p-entailment. Lewis [1973b] suggests that the truth conditions for
� )  are given by � !  while the assertion conditions for � )  are
given by the corresponding standard conditional probability. Jackson [1987]

also entertains such a possibility. If we accept this, then we might accept
Adams's theory as a basis for an adequate account of the logic of asser-
tion conditions for indicative conditionals. Since we would be assuming
that conditionals have truth values as well as probabilities, we could also
overcome the restrictions of Adams's theory and assign probabilities to con-
ditionals which have other conditionals embedded in them. One problem
with this approach, though, is that it would seem to require that we identify
the probability of a conditional with the probability that the conditional is
true. When we do this and also take the probability of a conditional to be
the corresponding standard conditional probability, serious problems arise
as is shown in [Lewis, 1976] and in [Stalnaker, 1976]. These diÆculties will
be discussed briey in Section 3.
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2 EPISTEMIC CONDITIONALS

The idea that there is an important connection between conditionals and
belief change seems to have been inspired by this suggestion of Frank Ram-
sey's:

If two people are arguing \if p will q?" and are both in doubt as
to p, they are adding p hypothetically to their stock of knowledge
and arguing on that basis about q.12

The issue of how, precisely, to formalize Ramsey's suggestion and extend
it from the case where p is in doubt to the general case has received a
great deal of attention|too much attention to permit an exhaustive survey
here. We will focus here on the G�ardenfors triviality result for the Ramsey
test (see [G�ardenfors, 1986]) and related results, and the implications of
these results for the project of formalizing the Ramsey test for conditionals.
Despite the narrowness of this topic our discussion will not mention all
worthy contributions to the subject.
Sections 2.1 and 2.2 provide a general framework for formalizing belief

change and the Ramsey test. Section 2.3 makes connections between this
framework and the literature on belief change and the Ramsey test. Sec-
tion 2.4 presents the Ramsey test itself, and Section 2.5 presents versions
of several triviality results found in the literature, including a version of
G�ardenfors' 1986 result that subsumes several of the de�nitions of triviality
found in the literature. Section 2.6 examines how triviality can be avoided,
and section 2.7 examines systems of conditional logic associated with the
Ramsey test. We will provide proofs for some of the results stated below
and in other cases refer the reader to the literature.

2.1 Languages

By a Boolean language we will mean any logical language containing at
least the propositional constant `?', the binary operator `^', and the unary
operator `:'. We will assume that `>' is de�ned as `:?' and that any
other needed Boolean operators are de�ned. We do not assume anything at
this stage about how the operators and propositional constant of a Boolean
language are interpreted, but it will turn out that in most cases `^', `:',
and `?' will receive classical truth-functional interpretations. We will use
the symbol ``' as a variable ranging over logical inference relations. E�ec-
tive immediately we will cease using quotes when mentioning formulas and
logical symbols.
We de�ne a language (whether Boolean or nonBoolean) to be of type L0

i� it contains the propositional constants > and ? but does not contain the

12[Ramsey, 1990], p. 155.
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binary conditional operator >. We next de�ne two language-types for doing
conditional logic. A language, whether Boolean or nonBoolean, is of type
L1 i� it contains > and ? and the only >-conditionals allowed as formulas
are �rst-degree or \at" conditionals, i.e. conditionals � >  where �;  are
conditional-free. We de�ne a language, whether Boolean or nonBoolean, to
be of type L2 (a \full" conditional language) i� it contains > and ? and
allows arbitrary nesting of conditionals in formulas.

2.2 A general framework for belief change

We will describe belief change using a framework that is related to the AGM
(Alchourr�on, G�ardenfors, Makinson) framework for belief revision.13 Our
framework extends that of AGM and is adapted (with further enrichment)
from the notion of an enriched belief revision model introduced in [Cross,
1990a].
For a given language L containing >;? as formulas, let wffL be the set

of all formulas of L and let KL be P(wffL) � f;g (where P(wffL) is the
powerset of wffL). For a given inference relation ` and set � of formulas
of L, de�ne Cn`(�) (the `-consequence set for �) to be f� : � ` �g, and
let TL;` = f� : � � wffL and Cn`(�) = �g be the set of all theories in L
with respect to `. A set � is `-consistent i� � 6` ?.
We next de�ne the notion of a belief change model :

(DefBCM) A belief change model on a language L containing >;? as for-
mulas is an ordered septuple

hK; I; `; K?; �; �; si

whose components are as follows:

1. K � KL and ` is a subset of P(wffL)�wffL;

2. I and K? are sets of formulas meeting the following require-
ments:

(a) K? 2 K;

(b) >;? 2 I;

(c) K? is the set of all formulas of L or a fragment of L;

(d) I is the set of all formulas of L or a fragment of L, and
I � K?.

(e) K � K? for all K 2 K.

3. � and � are binary functions mapping each K 2 K and each
� 2 I to sets K�

� and K�
�, respectively, where K

�
� � K? and

K�
� � K?;

13See [Alchourr�on et al., 1985] and [G�ardenfors, 1988].
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4. s is a function taking values in P(wffL), whereK � dom(s) �
P(wffL).

A classical belief change model is a belief change model de�ned on a Boolean
language whose logical consequence relation ` includes all classical truth-
functional entailments and respects the deduction theorem for the material
conditional. A deductively closed belief change model is a belief change
model for which K = Cn`(K) \K? and K�

� = Cn`(K
�
� ) \K? and K�

� =
Cn`(K

�
�) \ K? for all K 2 K and all � 2 I. Note that in a deductively

closed belief change model on language L, belief sets are theories in the
fragment of L represented by K? and not necessarily theories in L itself.

Informally, the items in a belief change model can be described as follows.
K represents the set of all possible belief states recognized by the model;
often K will be a subset of TL;` but not always. I represents the set of
all formulas eligible to serve as inputs for contraction and revision. ` is
an inference relation de�ned on L and will in most cases be an extension
of truth-functional propositional logic. K? contains all of the formulas of
that fragment of L from which the belief sets in K are constructed and
represents the absurd belief state; thus every belief set in K is a subset
of K?. For each K 2 K and each � 2 I, K�

� represents the result of
contracting K to remove � (if possible), whereas K�

� represents the result
of revising K to include � as a new belief. Revision is normally assumed
to involve not only adding the given formula to the given belief set but also
resolving any inconsistencies thereby created. For the sake of generality, we
have not stipulated that K�

� ; K
�
� 2 K, though this will usually be the case.

Finally, s is the support function for the model, which determines for each
belief state K (and perhaps for other sets, as well) the set of formulas of
L supported by K. For belief sets K in belief change models for which the
Ramsey test holds, s(K) will contain Ramsey test conditionals even if K
does not.

2.3 Comparisons

With an eye toward our presentation of the basic triviality result for the
Ramsey test we will briey review di�ering positions about the elements
making up a belief change model. The list of authors we mention here is
not exhaustive but constitutes a representative sample of the diversity of
positions taken with respect to belief change models and their elements in
discussions of the Ramsey test.

Belief states: the language of the model and the set K

Segerberg places no restrictions on the language in his discussion of the
triviality result in [Segerberg, 1989]. G�ardenfors ([1988] and elsewhere),
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Rott [1989], and Cross [1990a] all adopt a type-L2 language for their Ram-
sey test belief change models, whereas Makinson [1990], Morreau [1992],
Hansson ([1992], section III), Arl�o-Costa [1995], and Levi ([1996] and else-
where) restrict themselves to a type-L1 language. Hansson, Arl�o-Costa, and
Levi allow only the type-L0 formulas of a type-L1 language to belong to the
sets that individuate belief states. Makinson and Morreau, like G�ardenfors,
Rott, Segerberg, and Cross, do not restrict the membership of belief-state-
individuating sets to type-L0 formulas.
Most authors on the Ramsey test follow G�ardenfors in representing the

set of all possible belief states as a set of theories. One exception is Hans-
son [1992], who takes each possible belief state to be represented by a pair
consisting of a set of formulas and a revision operator that de�nes the dy-
namic properties of the belief state. For Hansson, the set of formulas in
question is a belief base, a set of conditional-free formulas that need not be
deductively closed. The belief base of a belief state is a (not necessarily
�nite) axiom set for the belief state, the idea being to allow di�erent belief
states to be associated with the same deductively closed theory. A belief
state in Hansson's model can still be individuated by means of its belief
base, however, because the revision operator of a belief state is a function
of that belief state's belief base. Morreau [1992] also gives a two-component
analysis of belief states, but in Morreau's analysis the two components are a
set of \worlds" (truth-value assignments to atomic formulas) and a selection
function (of the Stalnaker-Lewis variety) that determines which condition-
als are believed in the belief state. A third exception is Rott [1991], who
identi�es belief states with epistemic entrenchment relations and notes that
a nonabsurd belief set can be recovered from an epistemic entrenchment
relation that supports at least one strict entrenchment: the belief set will
be the set of all formulas strictly more entrenched than ?.
Among those authors who take belief states to be deductively closed the-

ories, most follow G�ardenfors in assuming that not every theory corresponds
to a possible belief state. On this issue Segerberg and Makinson are excep-
tions. In their respective extensions of G�ardenfors' basic triviality result
Segerberg and Makinson assume that revision is de�ned on all theories in a
given language rather than on a nonempty subset of the set of all theories
for that language.14

We note above that Hansson, Arl�o-Costa, and Levi allow only conditional-
free formulas into the sets that individuate belief states.15 Why exclude
conditionals from these sets? In Levi's view, the formulas eligible for mem-
bership in the theories that individuate belief states are precisely those
statements about which agents can be concerned to avoid error. Levi ar-
gues against including conditionals in the theories that individuate belief

14See [Segerberg, 1989] and [Makinson, 1990].
15See, for example, [Hansson, 1992], [Arl�o-Costa, 1995], [Levi, 1996], and [Arl�o-Costa

and Levi, 1996].
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states because in his view conditionals do not have truth conditions or
truth values and so are not sentences about which agents can be concerned
to avoid error.16 On Levi's view, a conditional � >  in a type-L1 lan-
guage is acceptable relative to a belief set K in a type-L0 language i� : is
not epistemically possible relative to the result of revising K to include �,
and the negated conditional :(� >  ) is acceptable relative to K i� : is
epistemically possible relative to the revision of K to include �. The part
of this view governing negated conditionals, the negative Ramsey test, will
be discussed later.17 An important consequence of Levi's view is the the-
sis that conditionals are \parasitic" on conditional-free statements in the
following sense: the set of conditionals supported by a given belief state
is determined by the conditional-free formulas accepted in that belief state
or a subset thereof. Hansson [1992] shows, however, that it is possible to
motivate a parasitic account of conditionals without taking a position on
whether conditionals have truth conditions or truth values.

G�ardenfors [1988] criticizes Levi's view of conditionals on the grounds
that it fails to account for iterated conditionals, a species of conditional
about which Levi has expressed skepticism, but Levi [1996] and Hans-
son [1992] show that iterated conditionals can be accounted for (if necessary)
even if conditionals do not have truth conditions or truth values. Levi [1996]

points out, however, that axiom schema (MP) fails to be valid in the sense
he favors if iterated conditionals are allowed.18 In this connection Levi ex-
ploits examples like the following, which was described by McGee [1985] as
a counterexample to modus ponens :

Opinion polls taken just before the 1980 election showed the
Republican Ronald Reagan decisively ahead of the Democrat
Jimmy Carter, with the other Republican in the race, John An-
derson, a distant third. Those apprised of the poll results be-
lieved, with good reason:

If a Republican wins the election, then if it's not Rea-
gan who wins it will be Anderson.

A Republican will win the election.

Yet they will not have good reason to believe

If it's not Reagan who wins, it will be Anderson.19

16See [Levi, 1988] and [Levi, 1996], for example. As Arl�o-Costa and Levi [1996] point
out, Ramsey agreed that conditionals lack truth conditions and truth values: this is clear
from the context of the quote from Ramsey with which we began Section 2.

17For the most recent account of Levi's views on this topic, see [Levi, 1996].
18See [Levi, 1996], pp. 105-112.
19[McGee, 1985], p. 462.
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Arl�o-Costa [1998] embraces iterated conditionals and uses McGee's example
to argue, via the Ramsey test, against the following principle of invariance
for iterated supposition.

(K�INV) If � 2 K 6= K?, then (K�
�)
�
 = K�

 .

Supposition, i.e. hypothetical revision of belief \for the sake of argument,"
is the notion of revision that Arl�o-Costa [1998] and Levi [1996] both asso-
ciate with Ramsey test conditionals. Since (K�INV) holds in any deduc-
tively closed classical belief change model that satis�es (K�3) and (K�4),
Arl�o-Costa takes McGee's example as evidence against (K�4) as a principle
governing supposition.

Contraction and revision inputs: the set I

G�ardenfors does not exclude conditionals from the class of formulas eligible
to be inputs for belief change in the models he formulates, but Morreau,
Arl�o-Costa, and Levi do. In Levi's case this restriction clearly follows from
his view that conditionals have neither truth conditions nor truth values,
and Arl�o-Costa appears to agree with this view. Morreau's exclusion of
conditionals as revision inputs appears to be an artifact of the nontriviality
theorem he proves for the Ramsey test ([Morreau, 1992], THEOREM 14,
p. 48) rather than indicative of a philosophical position about the status of
conditionals.

Logical consequence and support: ` and s

Most authors on the Ramsey test follow G�ardenfors in assuming a com-
pact background logic ` that includes all truth functional propositional
entailments while respecting the deduction theorem for the material con-
ditional, but there has been research on the Ramsey test in frameworks
where the background logic is nonclassical or not necessarily classical. For
example, Segerberg's triviality result in [Segerberg, 1989] assumes only the
minimal constraints of Reexiveness, Transitivity, and Monotony for `,20

and in [G�ardenfors, 1987] G�ardenfors credits Peter Lavers with having es-
tablished in an unpublished note a triviality result for the Ramsey test in
which ` is de�ned to be minimal logic21 instead of an extension of classical
truth-functional logic. Also, Cross and Thomason [1987; 1992] investigate a
four-valued system of conditional logic that is motivated by an application
of the Ramsey test in the context of the nonmonotonic logic of multiple
inheritance with exceptions in semantic networks.

20See the de�nition of a Segerberg belief change model near the end of section 2.3.
21Minimal logic has modus ponens as its only inference rule and every instance of the

following schemata as axioms:
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Levi [1988] introduces the function RL, which maps a conditional-free
belief set to a conditional-laden belief set via the Positive and Negative
Ramsey tests. Cross [1990a] formulates a version of the triviality result
proved in [G�ardenfors, 1986] in a framework where an extension ` of classical
logic is coupled with a not-necessarily-monotonic consequence operation
cl . Makinson [1990] does the same, calling his not-necessarily-monotonic
consequence operation C. Hansson [1992] makes use of a function s which
maps each belief state to the set of all formulas the belief state \supports."
Support functions are also adopted by Arl�o-Costa [1995] and by Arl�o-Costa
and Levi [1996]. Our view is that Levi's RL, Cross' cl , Makinson's C,
and Hansson's s should be regarded as variations on the same theoretical
construct, and we will follow Hansson in calling this construct a support
function and in using s to represent it. More on this in Section 2.6 below.
The following postulates are examples of requirements that might be

imposed on s. Assume a belief change model on a language L, and assume
that � ranges over dom(s), which always includes K as a subset:

(Identity over K) s(K) = K for all K 2 K.

(Monotonicity over K) For all H;K 2 K, if H � K then s(H) � s(K).

(Reexivity) � � s(�).

(Closure) Cn`[s(�)] = s(�).

(Consistency) If � is `-consistent then s(�) is `-consistent.

(Superclassicality) Cn`(�) � s(�).

(Transitivity) s(�) = s[s(�)].

(Reasoning by Cases) s(�[f�g)\ s(�[f:�g) � s(�) for all �; � such that
� [ f�g 2 dom(s) and � [ f:�g 2 dom(s).

(Conservativeness) L has type-L0 fragment L0 and for all � 2 wffL0 , � 2
s(�) i� � 2 Cn`(�).

None of G�ardenfors, Morreau, or Segerberg uses the notion of a support
function: they assume, in e�ect, that s(K) = K for all K 2 K.

1: (� ^  )! �:

2: (� ^  )!  :

3: �! (� _  ):
4:  ! (� _  ):
5: (�! �)! [( ! �)! ((� _  )! �)]:
6: (�!  )! [(�! �)! ((�! ( ^ �)]:
7: [�! ( ! �)]! [(�!  )! ( ! �)]:
8: �! ( ! �):

The formula :� is de�ned to be � ! ?. This axiomatization is found in [Segerberg,
1968].
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Contraction and revision: postulates for belief change

Since � and � are to represent functions legitimately describable as con-
traction and revision, respectively, it is appropriate to consider additional
conditions on these functions. Which additional conditions should be im-
posed is a matter of dispute, and some of the additional postulates that will
be under consideration are listed below. In the case of postulates (K+1),
(K�1), (K�2), (K�3), (K�4), (K�5), (K�6), (K�7), (K�8), (K�1), (K�2),
(K�3), (K�4), (K�5), (K�6), (K�7), (K�8), (K�L), (K�M), and (K�P) we
follow the labeling used in [G�ardenfors, 1988]. Please note that we have not
adopted any of the postulates given below in the de�nition of belief change
model . In each postulate, the variable K is understood to range over K;
also �;  are understood to range over I. We begin with a de�nition of a
third important belief change operation: expansion.

De�nition of and postulate for expansion

(Def+) K+
� = Cn`(K [ f�g) \K?.

(K+1) K+
� 2 K. (K+

� is a belief set.)

Postulates for contraction

(K�1) K�
� 2 K. (K�

� is a belief set.)

(K�2) K�
� � K.

(K�3) If � 62 K, then K�
� = K.

(K�4) If 6` �, then � 62 K�
� .

(K�4w) If 6` � and K 6= K?, then � 62 K
�
� .

(K�5) If � 2 K, then K � (K�
� )

+
� .

(K�6) If ` �$  , then K�
� = K�

 .

(K�7) K�
� \K

�
 � K

�
�^ .

(K�8) If � 62 K�
�^ , then K

�
�^ � K

�
� .

Postulates for revision

(K�1) K�
� 2 K. (K�

� is a belief set.)

(K�2) � 2 K�
�.
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(K�3) K�
� � K

+
� .

(K�4) If :� 62 K, then K+
� � K

�
�.

(K�4s) If :� 62 K, then K+
� = K�

�.

(K�4ss) If K+
� 6= K?, then K

+
� = K�

�.

(K�4w) If � 2 K 6= K?, then K � K�
�.

(K�5) K�
� = K? i� ` :�.

(K�5w) If K�
� = K?, then ` :�.

(K�5ws) If K�
� = K?, then Cn`(f�g) = K?.

(K�C) If K 6= K? and K�
� = K?, then ` :�.

(K�6) If ` �$  , then K�
� = K�

 .

(K�6s) If  2 K�
� and � 2 K�

 , then K
�
� = K�

 .

(K�7) K�
�^ � (K�

�)
+
 .

(K�7 0) K�
� \K

�
 � K

�
�_ .

(K�8) If : 62 K�
�, then (K�

�)
+
 � K

�
�^ .

(K�L) If :(� > : ) 2 K, then (K�
�)

+
 � K

�
�^ .

(K�M) If s(K) � s(K 0), then K�
� � K

0�
� .

(K�IM) If K 6= K? 6= K 0 and s(K) � s(K 0), then K 0�
� � K

�
�.

(K�T) If K 6= K?, then K
�
> = K.

(K�P) If :� 62 K, then K � K�
�.

(K�PI) If :� 62 K then K \ I � K�
� \ I.

(LI) K�
� = (K�

:�)
+
� .

A few other postulates will be identi�ed as needed.
Our treatment of contraction and revision is not general enough to in-

clude every treatment of contraction and revision as a special case. For
example, in the formalization of belief revision in [Morreau, 1992], the re-
vision operation is nondeterministic, i.e. its value for a given belief set K
and proposition � is a set of belief sets rather than a belief set. We will
not attempt to formalize nondeterministic contraction or revision. Also, for
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Levi, contraction and revision are to be evaluated by means of a measure
of informational value, which we do not explicitly formalize.
The contraction operation, which we include in every belief change model,

is not often used in the presentation of triviality results for the Ramsey test.
Exceptions to this pattern include Cross [1990a] and Makinson [1990], who
involve contraction explicitly in their respective formulations of triviality
results for the Ramsey test.

A catalog of belief change models

We conclude our discussion of comparisons by de�ning several categories of
belief change model that illustrate how the framework de�ned above can
be made to reect the di�ering assumptions of a subset of authors who
have written on belief revision and the Ramsey test. In associating a name
with a class of belief change models we do not claim that the person named
de�ned this class of models; rather, we claim that the belief change models
associated with this name are the appropriate counterpart in our framework
of models that the named person did de�ne in the context of work on the
Ramsey test. Note that postulates on contraction and revision are not part
of these de�nitions.

1. By a G�ardenfors belief change model (see, for example, [G�ardenfors,
1986], [G�ardenfors, 1987], and [G�ardenfors, 1988]) we will mean a de-
ductively closed classical belief change model hK; I; `; K?; �; �; si
de�ned on a type-L2 languageLwhere I = wffL = K?, and dom(s) =
K, and s satis�es Identity over K.

2. By a Segerberg belief change model (see [Segerberg, 1989]) we will
mean a belief change model hK; I; `; K?; �; �; si, de�ned on any
language, such that the following hold: K = TL;`; I = wffL = K?;
dom(s) =K; s satis�es identity over K; and Cn` meets the following
requirements, for all �; � � wffL:

(Reexivity for `) � � Cn`(�).

(Monotonicity for `) If � � �, then Cn`(�) � Cn`(�).

(Transitivity for `) Cn`(�) = Cn`[Cn`(�)].

3. By a Makinson belief change model (see [Makinson, 1990]) we will
mean a belief change model hK; I; `; K?; �; �; si de�ned on a type-
L1 language L and satisfying the following: K = f� : � � wffLand
s(�) = �g; I = wffL = K?, ` is classical propositional consequence;
dom(s) = P(wffL); and s satis�es Superclassicality, Transitivity, and
Reasoning by Cases.22

22Note that in a Makinson belief change model s satis�es both Reexivity and Closure.
Closure holds since Superclassicality and Transitivity for s imply that for each � � wffL,
we have s(�) � Cn`[s(�)] � s[s(�)] = s(�).
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4. By aMorreau belief change model (see [Morreau, 1992]) we will mean a
deductively closed classical belief change model hK; I; `; K?; �; �; si
de�ned on a type-L1 language L whose type-L0 fragment is L0 and
where the following hold: I = wffL0 ; K? = wffL; dom(s) = K; and
s satis�es Identity over K.

5. By a Hansson belief change model (see [Hansson, 1992], section 3) we
will mean a classical belief change model hK; I; `; K?; �; �; si de-
�ned on a type-L1 language L whose type-L0 fragment is L0 and where
the following hold: K � P(wffL0); I = wffL0 = K?; dom(s) = K;
and s satis�es Reexivity, Conservativeness, and Closure.

6. By an Arl�o-Costa/Levi belief change model (see [Arl�o-Costa, 1990],
[Arl�o-Costa, 1995], [Arl�o-Costa and Levi, 1996], and [Levi, 1996]) we
will mean a deductively closed classical belief change model hK; I; `
; K?; �; �; si de�ned on a type-L1 language L whose type-L0 frag-
ment is L0 and where the following hold: I = wffL0 = K?; dom(s) =
K; and s satis�es Reexivity, Conservativeness, and Closure.

As we have already noted, our belief change models do not capture every
feature of every belief revision model appearing in the literature on the
Ramsey test, and the models we associate with the names of authors in
some cases omit some of the structure that these authors include in their
own respective accounts of what constitutes a belief revision model. On
the other hand, we have stipulated more detail for the models we associate
with certain authors than do the authors themselves. For example, none
of G�ardenfors, Morreau, or Segerberg uses the notion of a support function
s in the sources cited above, and neither G�ardenfors, nor Makinson, nor
Segerberg restricts the applicability of contraction and revision to a subset
I of the set of formulas of the language on which the model is de�ned.
Finally, as was pointed out earlier, the contraction operation, which we
include in every belief change model, is not often discussed in connection
with the Ramsey test. In general, the stipulation of extra detail will serve
to highlight tacit assumptions and make comparisons easier.

2.4 The Ramsey test for conditionals

Ramsey's original suggestion can be put as follows: if an agent's beliefs
entail neither � nor :�, then the agent's beliefs support � >  i� his or her
initial beliefs together with � entail  , i.e.

(RTR) For all K 2 K and all � 2 I such that �; :� 62 K and all  2 K?,
� >  2 s(K) i�  2 K+

� .

This suggestion covers only the case in which the epistemic status of �
is undetermined. What about the case in which the agent's initial beliefs
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entail � and the case in which the agent's initial beliefs entail :�? Stalnaker
[1968] suggests the following rule for evaluating a conditional in the general
case:

First, add the antecedent (hypothetically) to your stock of be-
liefs; second, make whatever adjustments are required to main-
tain consistency (without modifying the hypothetical belief in
the antecedent); �nally, consider whether or not the consequent
is true.23

Stalnaker's proposal handles the general case by substituting the operation
of revision for that of expansion in Ramsey's original proposal. In our
framework Stalnaker's suggestion amounts to the following:

(RT) For all K 2 K and all � 2 I and all  2 K?, � >  2 s(K) i�
 2 K�

�.

Revision postulates (K�3) and (K�4) jointly entail

(K�4s) If :� 62 K then K+
� = K�

�.

Hence, if (K�3), (K�4) are assumed, then (RT) agrees with (RTR) in the case
where neither � nor :� belongs to K. That is, if (K�3) and (K�4) hold,
then (RT) can be considered an extension of Ramsey's original proposal.
In [Gardenf�ors, 1978] and in later writings G�ardenfors adopts Stalnaker's
version of the Ramsey test for type-L2 languages and assumes, in addition,
the following: every formula of a type-L2 language L is an eligible input for
revision and an eligible member of a belief set, i.e. I = wffL = K?, and a
conditional, like any other formula, is accepted with respect to (supported
by) a belief set K i� it belongs to K, i.e. s(K) = K for all K 2 K.
We have already noted that Levi, in contrast to G�ardenfors, excludes

conditionals as revision inputs and as members of belief sets. Levi's view
is that the conditional � >  in a type-L1 language expresses the attitude
of an agent for whom : is not epistemically possible relative to K�

�, and
the negated conditional :(� >  ) expresses the attitude of an agent for
whom : is epistemically possible relative to K�

�. Assuming a type-L1
language L with type-L0 fragment L0, and assuming that K � TL0;` and
I = wffL0 = K?, Levi's view amounts in our framework to the conjunction
of the following:

(PRTL) For all � 2 I and all  2 K? and all K 2 K such that K 6= K?,
� >  2 s(K) i�  2 K�

�.

(NRTL) For all � 2 I and all  2 K? and all K 2 K such that K 6= K?,
:(� >  ) 2 s(K) i�  62 K�

�.

23[Stalnaker, 1968], p. 44. (The page reference is to [Harper et al., 1981], where [Stal-
naker, 1968] is reprinted.)
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Note that in both (PRTL) and (NRTL), unlike in (RT), K is restricted
to `-consistent members of K. Note also that the adoption of (RT) (or of
(PRTL) without (NRTL)) places no constraints on how negated conditionals
are related to belief change.
Other versions of the Ramsey test appearing in the literature include the

following, due to Hans Rott, who, like G�ardenfors, assumes a language L
of type L2 and no restrictions on which formulas can appear as members of
belief sets or as revision inputs (i.e. I = wffL = K?):

(R1) For all K 2 K and all � 2 I and all  2 K?, � >  2 K i�
 2 K�

� and  62 K.

(R2) For all K 2 K and all � 2 I and all  2 K?, � >  2 K i�
 2 K�

� and  62 K�
:�.

(R3) For all K 2 K and all � 2 I and all  2 K?, � >  2 K i�
 2 (K�

 )
�
�.

Here we follow the labeling in [G�ardenfors, 1987]. The interest of (R1)-(R3)
stems in part from the fact that whereas (RT) can be used with (K�3) and
(K�4) to derive the following thesis (U), none of (R1)-(R3) can be so used:

(U) If � 2 K and  2 K, then � >  2 K.

Thesis (U) is related to the strong centering axiom CS of VC, and Rott
[1986] suggests that (U) should be rejected. Since none of (R1)-(R3) entails
(K�M), one of the assumptions of G�ardenfors' 1986 triviality result for the
Ramsey test, (R1)-(R3) might seem worth investigating as alternatives to
(RT), but G�ardenfors [1987] shows that (R1)-(R3) do not avoid the problem
faced by (RT). Consider the Weak Ramsey Test:

(WRT) For all K 2 K and all � 2 I and all  2 K? such that �_ 62 K,
� >  2 K i�  2 K�

�.

Each of (R1)-(R3) entails (WRT), and G�ardenfors [1987] proves a triviality
result that holds for any version of the Ramsey test which entails (WRT),
including (R1)-(R3) and (RT).24

2.5 Triviality results for the Ramsey test

The basic result

Many versions of the basic triviality result for the Ramsey test have ap-
peared in the literature, all of them variations on the result proved by
G�ardenfors [1986]. All proofs of the basic triviality result we know of ex-
ploit the same maneuver, however, one which Hansson [1992] makes explicit:

24See also [G�ardenfors, 1988], Chapter 7, Corollary 7.15
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in terms of our framework, the �nding of forking support sets within a belief
change model.

(DefFORK) A belief change model hK; I; `; K?; �; �; si will be said to
contain forking support sets i� there exist H; J;K 2 K, such that
H = Cn`(H) \K?, and J = Cn`(J) \K?, and K = Cn`(K) \
K? 6= K?, and H \I 6� J , and J \I 6� H , and s(H) � s(K), and
s(J) � s(K).

For G�ardenfors and Segerberg belief change models this condition can be
stated in the form in which Hansson originally formulated it:

PROPOSITION 1. A G�ardenfors or Segerberg belief change model hK; I; `;
K?; �; �; si contains forking support sets i� there exist H; J;K 2 K, where
H; J � K 6= K?, H 6� J , and J 6� H.

This proposition follows from the fact that in G�ardenfors and Segerberg
belief change models (i) s(K) = K = Cn`(K) for all K 2 K, and (ii) I and
K? both exhaust the formulas of the language of the model.
Next we present the main lemmas for the basic triviality result:

LEMMA 2. If (RT) holds in a belief change model, then so does (K�M).

Proof. Trivial; left to reader. �

Postulate (K�M) is a postulate of monotonicity for belief revision. We
discuss G�ardenfors' argument against (K�M) in Section 2.6 below.

LEMMA 3. No classical belief change model containing forking support sets
satis�es (K�2), (K�C), (K�P), and (K�M).

Proof. Assume for reductio that hK; I; `; K?; �; �; si is a classical belief
change model that contains forking support sets and satis�es (K�2), (K�C),
(K�P), and (K�M). For clarity, we follow the example of [Rott, 1989] in
numbering the steps in the reductio argument.

(1) H = Cn`(H)\K?, J = Cn`(J)\K?,
K = Cn`(K)\K? 6= K?, H \I 6� J ,
J \ I 6� H , and s(H); s(J) � s(K),
for some H; J;K 2 K

(DefFORK)

(2) � 2 (H \ I) � J , for some � (1)

(3)  2 (J \ I) � H , for some  (1)

(4) :(� ^  ) 2 I (2), (3), (DefBCM)

(5) ::(� ^  ) 62 H (3), classicality of `, fact
that H = Cn`(H) \K?

(6) H � H�
:(�^ ) (4), (5), (K�P)
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(7) � 2 H�
:(�^ ) (2), (6)

(8) ::(� ^  ) 62 J (2), classicality of `, fact
that J = Cn`(J) \K?

(9) J � J�:(�^ ) (4), (8), (K�P)

(10)  2 J�:(�^ ) (3), (9)

(11) H�
:(�^ ); J

�
:(�^ ) � K

�
:(�^ ) (1), (4), (K�M)

(12) �;  2 K�
:(�^ ) (7), (10), (11)

(13) :(� ^  ) 2 K�
:(�^ ) (4), (K�2)

(14) K�
:(�^ ) is `-inconsistent (12), (13), classicality of `

(15) K is `-consistent classicality of `, fact that
K = Cn`(K) \K? 6= K?

(16) ` ::(� ^  ) (14), (15), (K�C)

(17) 6` ::(� ^  ) (5), classicality of `, fact
that H = Cn`(H) \K?

Since (17) contradicts (16), this completes the proof. �

Lemmas 2 and 3 suÆce to prove the following:

THEOREM 4. No classical belief change model de�ned on a language of
type L1 or type L2 and containing forking support sets satis�es (K�2),
(K�C), (K�P), and (RT).

Note that we have not assumed that K is a set of theories either in the
language of the model or in the fragment thereof represented by K?. We
have not even assumed (K�1): that the sets produced by revision always
belong to K. It is however required that the belief sets H , J , and K used
in the proof be theories in the fragment of the language represented by K?.
Do we have a triviality result? Not yet: we do not yet have a criterion of

triviality. The following criteria have appeared in the literature:

1. A belief change model is G�ardenfors nontrivial i� there is a K 0 2 K
and �;  ; � 2 I such that :�;: ;:� 62 Cn`(K 0) and ` :(� ^  ) and
` :(� ^ �) and ` :( ^ �).

2. A belief change model is Rott nontrivial i� there is a K 0 2 K and
�;  2 I such that � 6`  and  6` � and �_ ;:�_ ; �_: ;:�_: 62
Cn`(K

0).

3. A belief change model is Segerberg nontrivial i� there exist �;  ; � 2 I
such that � 6`  and  6` � and Cn`f�;  ; �g = K? and Cn`(f�g),
Cn`(f g), Cn`(f�;  g) 2 K.

Recall that a support function s is monotone over K i� s(H) � s(K) for
all H;K 2 K such that H � K. A support function can be monotone
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over K even if it is a nonmonotonic consequence operation provided that
K does not exhaust dom(s). For example, s is monotone over K (but not
necessarily over dom(s)) in all Makinson belief change models, since in a
Makinson belief change model s(K) = K for all K 2 K. Recall that the
operation of expansion is de�ned by (Def+); it turns out that if (K+1) and
the monotonicity of s over K are assumed, then nontriviality by any of the
above criteria will imply the existence of forking support sets:

LEMMA 5. A classical belief change model de�ned on a language of type
L1 or L2 contains forking support sets if it satis�es (K+1) and its support
function is monotone over K and it is G�ardenfors nontrivial.25

Proof. Suppose that the model is G�ardenfors nontrivial; we will show that
it contains forking support sets. Let K 0, �,  , and � be as in the de�nition
of G�ardenfors nontriviality; also, let H = K 0+

�_ ; let J = K 0+
�_�; and let

K = K 0+
� . Then by (Def+) and the classicality of `, H = Cn`(H) \K?,

J = Cn`(J)\K?, andK = Cn`(K)\K? 6= K?. (Def+) and the classicality
of ` also imply that H; J � K, hence by the monotonicity of s we have that
s(H); s(J) � s(K). H\I 6� J holds because �_ 2 (H\I) � J ; J\I 6� H
holds because � _ � 2 (J \ I) � H . �

LEMMA 6. A classical belief change model de�ned on a language of type
L1 or L2 contains forking support sets if it satis�es (K+1) and its support
function is monotone over K and it is Rott nontrivial.26

Proof. Like the proof of Lemma 5, but let H = K 0+
�_ ; let J = K 0+

�_: , let

K = K 0+
:�, where K

0, �, and  are as in the de�nition of Rott nontriviality.
H \ I 6� J holds because � _  2 (H \ I) � J ; J \ I 6� H holds because
� _ : 2 (J \ I) � H . �

LEMMA 7. A classical belief change model de�ned on a language of type
L1 or L2 contains forking support sets if it satis�es (K+1) and its support
function is monotone over K and it is Segerberg nontrivial.

Proof. Like the proof of Lemma 5, but let H = Cn`(f�g), J = Cn`(f g),
K = Cn`(f�;  g), where �,  , and � are as in the de�nition of Segerberg
nontriviality. �

Theorem 4 and Lemmas 5, 6, and 7 immediately imply Theorem 8, the basic
triviality result for the Ramsey test:

THEOREM 8. No classical belief change model de�ned on a language of
type L1 or L2 that satis�es (K+1), (K�2), (K�C), (K�P), and (RT) and

25See [G�ardenfors, 1986].
26See [Rott, 1989].
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whose support function is monotonic over K is G�ardenfors nontrivial or
Rott nontrivial or Segerberg nontrivial.

The basic result of [G�ardenfors, 1986] can be derived by applying Theo-
rem 8 to G�ardenfors belief change models.

G�ardenfors [1987; 1988] notes that (K�P) and (K�2) can be replaced by
(K�4) in the triviality result he proves there, and this same replacement
can be made in Theorem 8, with a corresponding change in Lemma 3 and
its proof.27 As was mentioned in Section 2.3 above, Segerberg has proved
a version of the G�ardenfors result in which the constraints on ` are lim-
ited to Reexivity, Transitivity, and Monotonicity. The counterpart in our
framework of Segerberg's result is the following:

THEOREM 9. No Segerberg nontrivial Segerberg belief change model satis-
�es (K�M), (K�4ss), and (K�5ws).28

If contraction and revision are assumed to be related by the Levi Identity
(LI) in a deductively closed belief change model, then triviality results for
the Ramsey test can be formulated in terms of contraction rather than in
terms of revision. In particular, we have the following as a corollary of
Theorem 8:29

THEOREM 10. No deductively closed classical belief change model de�ned
on a language of type L1 or L2 that satis�es (K+1), (K�3), (K�4w), (LI),
and (RT) and whose support function is monotonic over K is G�ardenfors
nontrivial or Rott nontrivial or Segerberg nontrivial.

Proof. It suÆces to note that where ` is classical, we have the following:
(Def+) and (LI) jointly imply (K�2); (LI) and (K�4w) jointly imply (K�C);
(Def+), (K�3), and (LI) jointly imply (K�P). �

Makinson [1990] proves a variant of Theorem 10 for type-L1 languages that
replaces (K�4w) and weakens both (RT) and (LI) while making stronger
assumptions about s than merely that it is monotone over K:

THEOREM 11. Let hK; I; `; K?; �; �; si be a Makinson belief change
model de�ned on a language L of type L1. De�ne postulates (RTM), (K�4c),
and (MI) as follows:

(RTM) For all �;  2 wffL0 , where L0 is the type-L0 fragment of L,
� >  2 s(K) i�  2 K�

�.

27Steps (6), (9), and (13) must be di�erently justi�ed.
28See [Segerberg, 1989]. Segerberg's version of the G�ardenfors triviality result makes

no assumption about which operators are available in the language, hence � is used in
the de�nition of Segerberg nontriviality to play the role that :(� ^ ) plays in the proof
of Lemma 3. Also, Segerberg's result does not assume that the language contains both
> and ?, which we assume here in (DefBCM).

29A similar result is proved in [Cross, 1990a].
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(K�4c) If � 2 s(K�
� ), then � 2 s(;).

(MI) K�
:� � K

�
� � s(K

�
:� [ f�g).

Then we have the following:

(1) Limiting Case. If (RTM), (K�4c), and (MI) hold for K = K?, then
the model is trivial in the sense that s(;) = K?.

(2) Principal Case. If (RTM), (K�3), (K�4c), and (MI) hold for all K 2
K such that K 6= K?, then the model is trivial in the sense that
there are no conditional-free formulas � and  of L such that � ^
 62 s(;) and � 62 s(f g) and  62 s(f�g) and s[s(f�g)[ s(f g)] 6=
K?.

The Limiting Case generalizes Theorem 12 discussed below. It is the Prin-
cipal Case that more closely corresponds to Theorem 10. (K�4c) neither
entails nor is entailed by (K�4), its AGM counterpart, but (MI), which we
will refer to as Makinson's Inequality, is the result of weakening (LI), the
Levi Identity, to say that a revision of K to include � must lie \between"
K�
:� and s(K�

:� [ f�g). Since, as we have seen, (LI), (Def+), and (K�3)
entail (K�P), one might expect that replacing (LI) with (MI) would leave
(K�P) unsupported, but this is not the case: (MI), (Def+), and (K�3) al-
ready entail (K�P). Making up for the fact that (MI) is weaker than (LI)
are Makinson's strengthened assumptions about s: that it satis�es Super-
classicality, Transitivity, and Reasoning by Cases. Makinson [1990] points
out that these conditions are known not to imply that s is monotone over its
entire domain (P(wffL)), but since contraction and revision in a Makin-
son belief change model are de�ned only on K such that s(K) = K, s is
nevertheless monotone \where it counts", namely over the set K of belief
sets on which contraction and revision are de�ned. Several authors (e.g.
Grahne [1991], Hansson [1992], and Morreau [1992]) have concluded from
Makinson's result that nonmonotonic consequence does not provide a way
out of the G�ardenfors triviality result. In fact, adopting a nonmonotonic
consequence operation does provide a way out, provided that this conse-
quence relation plays the role of a support function s that is nonmonotonic
over the belief sets to which contraction and revision are applied. Indeed, it
is by adopting such support functions that Hansson, Arl�o-Costa and Levi
are able to make the Ramsey test nontrivial, though these authors do not
describe the support function as a consequence operation. (See also Sec-
tion 2.6 below.)

Theorem 8 and its variants pose a dilemma: which of an inconsistent set
of constraints on belief change models should be rejected? We return to
this later in Section 2.6 below.
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The problem with (K�5w)

In the version of Theorem 8 that G�ardenfors proves in [G�ardenfors, 1988],
postulate (K�C) is replaced by the stronger (K�5w), but Arl�o-Costa [1990]

proves that (K�5w) faces problems that have nothing to do with (K�P).
Arl�o-Costa's result, which is not so much a triviality result as an impossi-
bility result, can be formulated as follows in our framework:

THEOREM 12. There is no G�ardenfors belief change model de�ned on a
language of type L1 or L2 in which 6` ?, (K�5w), and (RT) hold.

Whereas G�ardenfors' results against the Ramsey test exploit the fact that
(RT) entails (K�M), Arl�o-Costa's result exploits the fact that (RT) entails
the following, which Arl�o-Costa calls \Unsuccess":

(US) If K = K?, then K
�
� = K?.

In other words, the Ramsey test requires revision into inconsistency if the
initial belief state is already inconsistent, regardless whether the revision in-
put is a consistent proposition. Contrary to this, (K�5w) prohibits revision
into inconsistency when the revision input is a consistent proposition, re-
gardless whether the initial belief state is consistent. The labeling of (US) as
a postulate of \unsuccess" is appropriate since (K�5w), which (US) contra-
dicts, follows from (Def+), (LI), and the Postulate of Success for contraction
(K�4).
Arl�o-Costa's result can be strengthened to include belief change models

in which s(K) = K does not always hold:

THEOREM 13. There is no deductively closed classical belief change model
de�ned on a language of type L1 or L2 whose support function satis�es
Reexivity and Closure and in which 6` ?, (K�5w), and (RT) hold.

Proof. Let a deductively closed classical belief change model on a language
of type L1 or L2 be given and suppose for reductio that 6` ?, that s satis�es
Reexivity and Closure, and that the model satis�es (K�5w) and (RT).
First we prove (US). Let K = K?; then we have

K � s(K) Reexivity of s
= Cn`[s(K)] Closure of s

Since ? 2 K? = K we have s(K) = wffL, by the classicality of `. Next,
let  2 K?, and let � 2 I. Since s(K) = wffL, we have � >  2 s(K).
Hence by (RT) we have B 2 K�

�. Thus K? � K�
�; the converse inclusion

holds by (DefBCM), so K�
� = K?, as required to show (US).

By (DefBCM) K? 2 K and :? 2 I; by (US) we have (K?)
�
:? = K?. By

hypothesis 6` ?, hence by the classicality of ` we have not only (K?)
�
:? =

K? but also 6` ::?, which contradicts (K�5w). �
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The Limiting Case of Theorem 11, like Theorem 13, is a strengthening of
Theorem 12. The problem posed by Theorems 12 and 13 can be solved by
retreating from (K�5w) to something weaker, such as the postulate (K�C)
mentioned in Theorem 8, or by restricting the applicability of the Ramsey
test, as Ar�o-Costa and Levi both do by adopting (PRTL) (see Section 2.4
above), which eliminates K? from the domain of belief sets to which the
Ramsey test can be applied.

The negative Ramsey test

Levi has argued (see, for example, [Levi, 1988] and [Levi, 1996]) that a
negated conditional :(� >  ) expresses the propositional attitude of an
agent for whom : is a serious (i.e. epistemic) possibility relative to K�

�.
Abstracting from Levi's requirements on what is allowed to be a revision
input, the result is this thesis, the negative Ramsey test:

(NRTL) For all � 2 I and all  2 K? and all K 2 K such that K 6= K?,
:(� >  ) 2 s(K) i�  62 K�

�.

Rott [1989] takes the view that adopting both the negative Ramsey test
and the Ramsey test amounts to an assumption of autoepistemic omni-
science. Given the view of G�ardenfors, Rott, and others that conditionals
and negated conditionals belong in belief sets along with other beliefs (so
that s satis�es Identity over K), the conjunction of (RT) and (NRTL) does
amount to a kind of epistemic omniscience. That is, if s satis�es Identity
over K, then \closing" each belief set under (RT) and (NRTL) amounts to
an idealization that parallels the idealization represented by \closing" each
belief set under `. On Levi's view, conditionals do not express propositions
and so are not objects of belief, thus on Levi's view the positive and negative
Ramsey tests cannot be said to represent an idealization concerning what
beliefs an agent holds. For Levi, what the positive and negative Ramsey
tests represent is not a pair of closure conditions on the unary propositional
attitude of belief but rather a de�nition of a binary propositional attitude
toward the antecedent and consequent of a conditional that an agent is said
to `accept'.
Regardless how the issue of autoepistemic omniscience is resolved, the

adoption of (NRTL) has consequences. G�ardenfors, Lindstr�om, Morreau,
and Rabinowicz [1991] prove what they consider to be a triviality result
for (NRTL) with assumptions weaker than those needed for G�ardenfors'
1986 triviality result for (RT); in particular, (K�P) is not needed. In our
framework their result is equivalent to the following:

THEOREM 14. If hK; I; `; K?; �; �; si is a belief change model de�ned
on a language of type L1 or L2 for which both (NRTL) and (K�T) hold and
for which s satis�es Identity over K, then there are no K; K 0 2 K such
that K 6= K? 6= K 0 and K 0 6= K � K 0.
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The latter can be derived as a corollary of the following stronger result:

THEOREM 15. If hK; I; `; K?; �; �; si is a belief change model de�ned
on a language of type L1 or L2 for which both (NRTL) and (K�T) hold and
for which s is monotone over K, then there are no K; K 0 2 K such that
K 6= K? 6= K 0 and K 0 6= K � K 0.

Proof. Suppose that hK; I; `; K?; �; �; si is a belief change model de-
�ned on a language of type L1 or L2 such that s is monotone over K.
First we prove that (NRTL) implies (K�IM): assume (NRTL) and suppose

that K;K 0 2 K and � 2 I and K 6= K? 6= K 0 and s(K) � s(K 0), and let
 62 K�

�. Then by (NRTL) :(� >  ) 2 s(K), hence :(� >  ) 2 s(K 0). By
(NRTL) it follows that  62 K 0�

� , as required to establish (K�IM).
Now suppose for reductio that hK; I; `; K?; �; �; si satis�es both

(NRTL) and (K�T), that s is monotone over K, and there are K; K 0 2 K
such that K 6= K? 6= K 0 and K 0 6= K � K 0. Since K � K 0 we have
s(K) � s(K 0) by the monotonicity of s. By (DefBCM) we know that
> 2 I, so we have K 0�

> � K�
> by (K�IM). But K�

> = K and K 0�
> = K 0 by

(K�T), hence K 0 � K, which contradicts K 0 6= K � K 0, completing the
reductio. �

Note that neither theorem assumes that all members of K must be de-
ductively closed, nor does either result include any assumption about `.
In [G�ardenfors et al., 1991] Theorem 14 is presented as a triviality result
because the authors maintain that a model of belief change is trivial if it
contains no consistent, conditional-laden belief sets K; K 0 such that K is a
proper subset of K 0. As Rott [1989], Morreau [1992], and Hansson [1992]

point out, however, it is a substantive (and, they argue, mistaken) assump-
tion to hold that principles of belief revision that are justi�ed in the context
of conditional-free belief sets (e.g. the closure of K under expansions) can
be carried over without modi�cation to conditional-laden belief sets. More
on this in Section 2.6 below. One might therefore respond to Theorem 14
by questioning the criterion of triviality: perhaps a model of belief change
whose belief sets are conditional-laden should not be classi�ed as trivial
simply because it contains no consistent K; K 0 such that K is a proper
subset of K 0, even though a belief change model with conditional-free belief
sets would be trivial in that case. But if the criterion of triviality espoused
by G�ardenfors, et al [1991] is appropriate for conditional-free belief sets,
then what about Theorem 15, which does cover belief change models with
conditional-free belief sets? Our discussion in Section 2.6 below may appear
to suggest that the problem raised by Theorems 14 and 15 might ultimately
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be solved by giving up the monotonicity of s over K, but even that is not
guaranteed to be enough. Consider this result:30

THEOREM 16. No classical belief change model de�ned on a language of
type-L1 or type-L2 that satis�es (K�T), (PRTL), and (NRTL), and whose
support function satis�es Conservativeness and Closure, is G�ardenfors non-
trivial or Rott nontrivial or Segerberg nontrivial.

Proof. By Lemmas 5, 6, and 7, it suÆces to show that no classical belief
change model de�ned on a language of type-L1 or type-L2 that satis�es
(K�T), (PRTL), and (NRTL), and whose support function satis�es Conser-
vativeness and Closure, contains forking support sets.
Consider a classical belief change model hK; I; `; K?; �; �; si de�ned

on a language of type-L1 or type-L2 that satis�es (K�T), (PRTL), and
(NRTL), and whose support function satis�es Conservativeness and Closure.
Note �rst that since s satis�es Conservativeness and Closure, s must also
satisfy Consistency.
Suppose the model contains forking support sets. Then there exist H; J;

K 2 K such that H = Cn`(H) \ K?, and J = Cn`(J) \ K?, and K =
Cn`(K) \K? 6= K?, and H \ I 6� J , and J \ I 6� H , and s(H) � s(K),
and s(J) � s(K).
Since J \ I 6� H we have � 2 J but � 62 H for some conditional-free

�. By (K�T) we have H = H�
> and J = J�> and K = K�

>, hence � 2 J
�
>

and � 62 H�
>. By (PRTL) we have > > � 2 s(J), and by (NRTL) we have

:(> > �) 2 s(H). We also have > > � 2 s(K), since s(J) � s(K); hence
s(K) is not `-consistent. This contradicts the `-consistency of K, since s
satis�es Consistency. �

As Theorem 16 shows, (NRTL), (K�T) and (PRTL) cannot be nontrivially
combined, even in a broad category of models where s is not monotone
over K, unless we abandon the Rott, G�ardenfors, and Segerberg criteria of
nontriviality.

2.6 Resolving the conict

On giving up (RT)

G�ardenfors interprets Theorem 8 as forcing a choice between (K�P) and the
Ramsey test (RT), and he has argued (see, e.g., [G�ardenfors, 1986], pp. 86-
87 and [G�ardenfors, 1988], p. 59 and p. 159) that (K�M) and with it (RT)
should be rejected. In this connection he o�ers the following example:

Let us assume that Miss Julie, in her present state of belief K,
believes that her own blood group is O and that Johan is her

30The authors thank Horacio Arl�o-Costa for showing us the proof of this result in
correspondence.
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father, but she does not know anything about Johan's blood
group. Let A be the proposition that Johan's blood group is
AB and C the proposition that Johan is Miss Julie's father. If
she were to revise her beliefs by adding the proposition A, she
would still believe that C, that is, C 2 K�

A. But in fact she now
learns that a person with blood group AB can never have a child
with blood group O. This information, which entails C ! :A,
is consistent with her present state of belief K, and thus her
new state of belief, call it K 0, is an expansion of K. If she
then revises K 0 by adding the information that Johan's blood
group is AB, she will no longer believe that Johan is her father,
that is C 62 K 0�

A . Thus (K
�M) is violated. ([G�ardenfors, 1986],

pp. 86-87)

The example assumes that s satis�es Identity over K, so let us assume that
as well. In reply to G�ardenfors one might say that if (RT) and Identity over
K are assumed, then the presence of conditionals in belief sets prevents
this example from being a counterexample to (K�M): if (RT) and Identity
over K are assumed, then since we have C 2 K�

A and C 62 K 0�
A it follows

that A > C 2 K and A > C 62 K 0, in which case K 6� K 0, i.e. K 0 is not
an expansion of K. But to accept this, G�ardenfors argues, would violate
certain intuitions:

[I]f we assume (RT) and not only (K�M), then Miss Julie would
have believed A > C in K. But then the information that a
person with blood group AB can never have a child with blood
group O, would contradict her beliefs in K, which violates our
intuitions that this information is indeed consistent with her
beliefs in K. ([G�ardenfors, 1986], p. 87)

Let B stand for the statement that a person with blood group AB can never
have a child with blood group O. G�ardenfors has claimed in a context where
s satis�es Identity over K that if (RT) holds, then Miss Julie's beliefs in
K contradict B, but this claim requires further justi�cation: how exactly
does K contradict B? We might suppose that B entails L(C ! :A),
where L is an alethic nomological necessity operator expressing the modal
force of B. Assuming (RT) and Identity over K, the question whether K
contradicts B depends on whether the set fC; B; A > Cg is consistent, and
this can be assumed to depend on whether the set fC; L(C ! :A); A > Cg
is consistent. But the latter set is consistent if the semantics for > is
not tied to nomological necessity. For example, given a selection function
semantics for> and an accessibility relation semantics for L, all of C, A > C,
and L(C ! :A) can be true at possible world w if none of the A-worlds
selected relative to w happen to be nomologically accessible at w.31 So in

31For a less abstract version of essentially this point, see [Cross, 1990a], pp. 229-232.
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order to sustain G�ardenfors' claim in the passage cited above, the claim
that K contradicts B if (RT) holds (and if s satis�es Identity), we would
have to assume the right sort of semantic connection between Ramsey test
conditionals and the nomological modality in B, but the case for assuming
that connection is not at all obvious: Ramsey test conditionals, after all, are
epistemic. And ifK indeed does not contradictB, then the same conditional
that prevents the example from being a counterexample to (K�M) makes
the example a counterexample to (K�P): since K 0 = K�

B , and since C 2 K
�
A

but C 62 K 0�
A , it follows that if (RT) holds, then A > C 2 K 6� K�

B 63 A > C
even though :B 62 K.
So it might be argued that the presence of Ramsey test conditionals in

belief sets will render (K�M) intuitively innocuous while providing perfectly
reasonable counterexamples to (K�P). Still, the arguments in favor of (K�P)
seem strong. One argument appeals to the Bayesian model of rationality.
Suppose that an agent's belief state is represented as a probability function
P . According to Bayesian doctrine, upon becoming certain of � a rational
agent in belief state P revises her belief state by conditionalizing on �,
assuming P (�) > 0. If this doctrine is correct and if an agent's belief
set consists of those statements to which she assigns unit probability, then
(K�P) reduces to a theorem of probability theory: if P (:�) 6= 1 and P ( ) =
1, then P ( j�) = 1. A second argument appeals to the doctrine that
revision can be de�ned in terms of contraction and expansion via the Levi
Identity (LI), which prescribes the following: to revise with �, �rst contract
relative to :� and then expand with �. If ` is classical and if (LI), (Def+),
and (K�3) hold, then (K�P) follows, the role of (K�3) being to require any
contraction ofK to be vacuous if the proposition contracted does not belong
toK: if one does not believe a given proposition then no prior belief need be
discarded when one contracts one's beliefs to exclude that proposition|it
is already excluded.
As Theorem 10 shows, we can incorporate the second of these arguments

for (K�P) directly into the triviality result by recasting Theorem 8 in terms
of an inconsistency between (RT), (LI), and postulates (K+1), (K�3), and
(K�4w). (K�3) deals with what is in some sense the degenerate case of
contraction: contraction with respect to an absent proposition. Postulate
(K�4w) is similarly weak: it requires only that a contraction should really
be a contraction in any case where a logically contingent proposition is
contracted from a logically consistent belief set. Both postulates are very
weak constraints on contraction, and their weakness makes the case against
(RT) seem strong, as long as we assume that s satis�es Identity over K or
at least Monotonicity over K.
Is there a weakened version of (RT) that is compatible with the other

postulates mentioned in Theorem 8? Lindstr�om and Rabinowicz [1992]

show that there is. They suggest replacing (RT) with a condition whose
counterpart in our framework is the following:
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(SRT) For all K 2 K and all � 2 I and all  2 K?, � >  2 s(K) i�
 2 K 0�

� for all K 0 2 K such that K � K 0.

Like G�ardenfors, Lindstr�om and Rabinowicz do not distinguish between K
and s(K), and in a context where this distinction is not made (i.e where
s satis�es Identity over K), replacing (RT) with (SRT) has the e�ect of
excluding from belief sets many of the conditionals that must be present in
them if (RT) and Identity overK are assumed. For example, in G�ardenfors'
Miss Julie case, (RT) and Identity over K force the conclusion that A >
C 2 K and A > C 62 K 0�

A , since C 2 K�
A and C 62 K 0�

A , giving us a
counterexample to (K�P) since :B 62 K and K 0 = K�

B. If (SRT) and
Identity over K are assumed instead, then the falsity of (K�P) no longer
follows. The question whether A > C belongs to K depends not simply
on K�

A but on the revision behaviour of all belief sets that include K as a
subset, and similarly for the question whether A > C belongs to K 0.

On giving up (K�P)

Should the Ramsey test be preserved at the expense of (K�P)? The answer
is certainly yes if the Ramsey test is applied to the notion of theory change
to which Katsuno and Mendelzon in [Katsuno and Mendelzon, 1992] attach
the label update. They write:

: : : [U]pdate, consists of bringing the knowledge base up to date
when the world described by it changes. For example, most
database updates are of this variety, e.g. \increase Joe's salary
by 5%". Another example is the incorporation into the knowl-
edge base of changes caused in the world by the actions of a
robot.32

Update, according to Katsuno and Mendelzon, contrasts with revision:33

: : : [R]evision, is used when we are obtaining new information
about a static world. For example, we may be trying to diag-
nose a faulty circuit and want to incorporate into the knowledge
base the results of successive tests, where newer results may con-
tradict old ones. We claim the AGM postulates describe only
revision.34

Katsuno and Mendelzon represent knowledge bases as formulas � and in-
troduce a binary modal connective to represent the update operation. Fol-
lowing [Grahne, 1991] we will use the symbol `Æ' for this operation; then the

32[Katsuno and Mendelzon, 1992], p. 183.
33See also [Winslett, 1990].
34Ibid.
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formula � Æ � is the knowledge base that results from updating knowledge
base � with new information �.
Grahne [1991] provides an interpretation of the Ramsey test in terms of

update. Given a type-L2 language that includes the binary connective `Æ'
Grahne simply adds to Lewis' system VCU the following (validity preserv-
ing) rule of inference:

RR: From �! (� >  ) infer (� Æ �) !  , and from (� Æ �) !  infer
�! (� >  ).

Grahne calls the resulting logical system VCU2. In Grahne's framework,
the formula �Æ� is true in possible world w i� w belongs to the set of closest
worlds to w0 in which � is true for at least one world w0 in which � is true.
Grahne proves soundness, completeness, decidability, and nontriviality

results for VCU2, and he notes that VCU2 fails to satisfy the following
principle:

(U�4s) If 6` :(� ^ �), then ` (� Æ �)$ (� ^ �).

(U�4s) states that if � is consistent with knowledge base �, then the result
of updating � with � is a formula logically equivalent to �^�. Grahne cites
the following example to illustrate the failure of (U�4s), which is the update
counterpart of revision postulate (K�4s):

A room has two objects in it, a book and a magazine. Suppose
p1 means that the book is on the oor, and p2 means that the
magazine is on the oor. Let the knowledge base be (p1 _ p2) ^
:(p1 ^ p2), i.e. either the book or the magazine is on the oor,
but not both. Now we order a robot to put the book on the oor,
that is, our new piece of knowledge is p1. If this change is taken
as a revision [so that (K�4s) is assumed], then we �nd that since
the knowledge base is consistent with p1, our new knowlege base
will be equivalent to p1 ^ :p2, i.e. the book is on the oor and
the magazine is not.

But the above change is inadequate. After the robot moves the
book to the oor, all we know is that the book is on the oor;
why should we conclude that the magazine is not on the oor?35

That is, upon updating to include p1, we should give up something we
believed in our initial epistemic state, namely :(p1 ^ p2), even though the
new information p1 is consistent with our initial epistemic state. Apparently,
then, we have made a belief change using a method that does not satisfy
an appropriate counterpart of (K�P). Isaac Levi disagrees. The mechanism
which underlies update is imaging : the \image" of a set S of possible worlds

35[Grahne, 1991], pp. 274{275.
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under � is the set of worlds each of which is one of the closest �-worlds to
some world belonging to S. Levi [Levi, 1996] argues that while imaging may
be useful for describing how changes over time in the state of a system (such
as the room in Grahne's example) are regulated, such changes are not an
example of belief change. We may, of course, have beliefs about how changes
in a system over time are regulated, but an analysis of Grahne's example
along the lines recommended by Levi would show it to be a straightforward
case in which belief revision took place via expansion: if t is a time before
the book was moved and t0 is a time just after the book is moved and
if propositional variables p1 and p2 are replaced by formulas containing
predicates P1 and P2, where Piu means that pi is true at time u, then our
initial epistemic state can be represented as (P1t_ P2t)^:(P1t^ P2t), and
upon learning of the change in the position of the book our new epistemic
state is (P1t _ P2t) ^ :(P1t ^ P2t) ^ P1t0.

On giving up (K+1)

G�ardenfors interprets Theorem 8 as forcing a choice between (RT) and
(K�P), but Rott [1989], Morreau [1992], and Hansson [1992] have argued
that (K+1) is the real culprit.
Postulates (K�3) and (K�4) entail (K�4s): if � is consistent with K,

then a revision to accept � should be the result of expanding K with �.
Rott [1989] argues that (K�4s), while �ne for belief revision in a type-L0
language, is an inappropriate requirement on belief revision in a language
with Ramsey test conditionals. Once (K�4s) is rejected in the context of
Ramsey test conditionals, Rott argues, (K+1) is robbed of any intuitive
basis: the only reason for thinking that belief change models should be
closed under expansion would be the assumption that expansion is a species
of revision. Why think that expansion is a species of revision in the �rst
place? One could justify (K�4s) as the qualitative analog of the Bayesian
doctrine that upon becoming certain of � a rational agent whose belief
state is represented by probability function P revises her belief state by
conditionalizing on � if P (�) > 0. This doctrine supports (K�4s) because if
P (�) > 0, then the set f : P ( j�) = 1g is precisely the result of expanding
the set f : P ( ) = 1g with �. But, Morreau [1992] counters, Bayesian
doctrine supports (K�4s) in this way only for belief sets over a type-L0
language.
Still, one might argue, regardless whether revision ever leads from a belief

set to one of its expansions, should not the expansion of every belief set in
a belief change model be available in the model as a possible starting point
for revision? Not so, argues Morreau [1992]: a belief change model over
which (RT) holds and in which belief sets contain conditionals incorporates
the idealizing assumption that the conditionals an agent believes form a
complete and correct record of how the agent would revise his or her beliefs.
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Not just any collection of theories in a conditional language can be the belief
sets of a Ramsey test respecting belief change model because not just any
theory will conform to the idealization. Morreau interprets the G�ardenfors
triviality result as showing in particular that the idealization required by
the Ramsey test cannot be achieved in a nontrivial belief change model that
respects (K+1) while incorporating conditionals in belief sets.
But are there in fact nontrivial belief change models containing conditional-

laden belief sets in which (RT) holds but (K+1) does not? Morreau's Exam-
ple 6 ([Morreau, 1992], p. 41), which we adapt to our framework, con�rms
that there are. Let L be a type-L1 language and let L0 be its type-L0 frag-
ment. Assume that L0 contains at least two distinct atomic formulas. Let
`0 be truth-functional consequence, and assume (Def+), and let K0 be the
set of all `0-theories in L0. De�ne a belief revision operation ? as follows
for all � 2 K0 and all formulas � of L0:

�?� =

8<
:
� if ? 2 �;
�+� if ? 62 � and :� 62 �;
Cn`0(f�g) otherwise.

Let I0 = wffL0 = K?0 ; let dom(s0) = K0; and let s0(K) = K for all
K 2 K0. Letting the contraction operation (�0) be arbitrary, note that
hK0; I0; `0; K?0 ; �0; ?; s0i satis�es (K+1), (K�2), (K�C), and (K�P), but
not (RT). Using K0 and ? we construct a second, Ramsey test supporting
belief change model with conditional-laden belief sets as follows: for each
� 2 K0, let K� = Cn`0(�[f� >  :  2 �?�g). LetK = fK� : � 2 K0g; let
(K�)

�
� = K�?

�
; let I = wffL0 (as before); let K? = wffL; let dom(s) =K;

and let s(K) = K for allK 2 K. Letting contraction (�) again be arbitrary,
hK; I; `0; K?; �; �; si satis�es (K�2), (K�C), and (RT), but this model,
unlike the �rst, does not satisfy (K+1) or (K�P).36 For example, let A; B
be distinct atomic formulas of L0, and let �0 = Cn`0(fBg); thus �

0 2 K0.
Since :A 62 �0, we have that �0?A = �0+A = Cn`0(fA; Bg). Accordingly,
A > B 2 K�0 2 K, but note that (K�0)

+
:A does not belong to K, for there

is no � 2 K0 such that both :A and A > B belong to K�.
The second belief change model constructed above is the result of closing

the �rst model under the Ramsey test (restricted to non-nested condition-
als), and both models are G�ardenfors nontrivial. The G�ardenfors nontriv-
iality of the second model is established by KCn`0 (;)

, which belongs to K,
and A^:B, B ^:A, and A^B which belong to L. In addition to this ex-
ample Morreau provides a general recipe for constructing nontrivial models
of belief revision in a type-L1 language L whose type-L0 fragment is L0 and
where (K�1), (K�2), (K�C), (RT), and (K�PI) hold and I = wffL0 .

36The model does satisfy a weakened version of (K�P), however, as Morreau points
out:

(K�PI) For all � 2 I, if :� 62 K then K \ I � K�

� \ I.
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Where does the triviality proof break down when applied to Morreau's
example? Hansson [1992] proves a theorem that provides the answer: Mor-
reau's example is one of a set of belief change models in which forking
support sets cannot be constructed. The counterpart of Hansson's theorem
in our framework is the following:

THEOREM 17. Suppose that hK; I; `; K?; �; �; si is a belief change model
de�ned on a language L of type L1 or L2 and that ` includes all truth-
functional entailments and respects the deduction theorem for the material
conditional. Suppose also that dom(s) = K, that s(K) � wffL for all
K 2 K, and that s satis�es the following for all K 2 K, all � 2 I and all
 ; � 2 K?:

1. If � � s(K) and � `  then  2 s(K).

2. If K is `-consistent and  2 s(K), then : 62 s(K).

3. If K is `-consistent and 6` :� and � >  ; � > � 2 s(K), then
6` :( ^ �).

4. If � > ( ^ �) 2 wffL and  2 s(K) and � 62 s(K) and :� 62 s(K),
then � > ( ^ �) 2 s(K).

Suppose that K1; K2; K 2 K � fK?g and that s(K1) and s(K2) are both
subsets of s(K). Then either s(K1) � s(K2) or s(K2) � s(K1).

Conditions 1 and 2 are equivalent to Closure and Consistency for s, re-
spectively. Note that the Ramsey test itself is not assumed: the point is
that simply having conditionals in a belief change model that meets these
four conditions ensures that forking support sets cannot be constructed.

On giving up the monotonicity of s over K

Rott [1989; 1991] suggests that nonmonotonic reasoning may provide a so-
lution to the dilemma posed by the G�ardenfors triviality result, and Cross
[1990a] argues that G�ardenfors' triviality result should be interpreted as
showing not that the Ramsey test should be abandoned but that, given
the Ramsey test, s must be nonmonotonic over K, i.e. for some H;K 2 K
H � K but s(H) 6� s(K).37 Makinson counters in [Makinson, 1990] with a
triviality result for models in which s is permitted to be nonmonotonic, but
Makinson's result does not bear on the suggestion endorsed by Cross and
by Rott. More on this below.
Other authors have brought nonmonotonic reasoning into the discussion

of the Ramsey test without advertising it as such. For example, in [Hansson,
1992] Hansson writes:

37Since the monotonicity of s is not assumed in Theorem 13, however, it is clear that
the problem for (RT) posed by (K�5) cannot be solved by making s nonmonotonic.
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: : : the addition of an indicative sentence that is compatible with
all previously supported indicative sentences typically withdraws
the support of conditional sentences that were previously sup-
ported.38

The type-L1 statements that are in Hansson's sense supported by a given \in-
dicative" (i.e. conditional-free) belief baseK represent what Cross (and pos-
sibly Rott) would classify as the nonmonotonic consequences of K. Hansson
and Cross both think of the sets that individuate belief states as belief bases
and de�ne contraction and revision as operations on these sets, but Cross'
belief bases di�er from Hansson's in two respects: �rst, whereas Hansson's
belief bases are conditional-free, Cross' are not; secondly, whereas Hansson's
belief bases are not closed under ` or closed under s, in Cross' enriched be-
lief revision models belief bases are closed under `, though not under s.
That is, for Hannson, belief states are individuated in terms of sets that
function as belief bases with respect to both ` and s, whereas for Cross, be-
lief states are individuated in terms of sets that function as belief bases only
with respect to s. For Hansson, belief bases need not be closed under ` and
are never closed under s. Makinson [1990], like Cross [1990a], supplements
the classical ` with a not-necessarily-monotonic s,39 and like Cross, Makin-
son explicitly advertises s as a consequence operation. But in Makinson's
discussion revision and contraction are de�ned only on K that are closed
under s, and the proof of Makinson's triviality theorem, whose counterpart
here is Theorem 11 above, requires a belief change model containing three
belief sets closed under s. Makinson's triviality result does not apply to
belief change models in which K contains no K such that s(K) = K, and
such authors as Arl�o-Costa and Levi (see [Levi, 1988], [Arl�o-Costa, 1995],
and [Arl�o-Costa and Levi, 1996]) avoid Makinson's triviality result precisely
by requiring s(K) 6= K for all K 2 K.

As we noted above, Hansson does not explicitly speak of the support
function as a consequence operation, nor does Arl�o-Costa or Levi. Yet,
if one looks at the conditions that Hansson, Arl�o-Costa, and Levi place
on the support function, mirrored here in the de�nitions of Hansson and
Arl�o-Costa/Levi belief change models as the requirements of Reexivity,
Conservativeness, and Closure, it seems natural to think of s as a non-
monotonic consequence operation. But if we do think of s in a Hansson or
Arl�o-Costa/Levi belief change model as a nonmonotonic consequence oper-
ation, what sort of nonmonotonic reasoning does it represent? In [Moore,
1983] Robert Moore distinguishes two types of nonmonotonic reasoning:

By default reasoning, we mean drawing plausible inferences from
less than conclusive evidence in the absence of any information

38[Hansson, 1992], p. 526.
39Makinson uses the symbol C and Cross the symbol cl for s.



76 DONALD NUTE AND CHARLES B. CROSS

to the contrary. The examples about birds being able to y are
of this type.40

He continues:

Default reasoning is nonmonotonic because, to use a term from
philosophy, it is defeasible. Its conclusions are tentative, so,
given better information, they may be withdrawn.41

Default reasoning, according to Moore, contrasts with autoepistemic rea-
soning , or reasoning about one's state of belief. Moore writes:

Autoepistemic reasoning is nonmonotonic because the meaning
of an autoepistemic statement is context-sensitive; it depends
on the theory in which the statement is embedded.42

For example, if }� is de�ned as being accepted in belief state K just in case
:� is not accepted in K, then }� is an autoepistemic statement in Moore's
sense. If the support function s in a belief change model is thought of as a
nonmonotonic consequence operation, then how should s be classi�ed with
respect to Moore's distinction? It depends on the properties s is assumed
to have.
If a belief change model satis�es some version of the Ramsey test (e.g.

(RT), (PRTL), or (NRTL)), then the support function of that model is at
least a form of autoepistemic reasoning. This is clear since the acceptabil-
ity of a Ramsey test conditional for a given agent is in part a function of
the agent's current epistemic state, and this holds true regardless whether
conditionals themselves are objects of belief.43 Moreover, the context sen-
sitivity to which Moore refers in the passage just quoted is clearly present
in the support function of any belief change model that satis�es (RT), and
indeed this context sensitivity was exploited by Morreau [1992] in his con-
struction of a nontrivial Ramsey test, by Lindstr�om and Rabinowicz [1995]

and Lindstr�om [1996] in a proposed indexical interpretation of condition-
als,44 by Hansson [1992] in his accounts of type-L1 conditionals and iterated
conditionals, respectively, and by Boutilier and Goldszmidt [1995] in their
account of the revision of conditional belief sets.
Given a support function s for a belief change model that satis�es a ver-

sion of the Ramsey test, can s be not only a mechanism for autoepistemic
reasoning but a mechanism for default reasoning, too? This depends on
whether s can be used to make ampliative inferences to conclusions that

40[Moore, 1983], p. 273.
41[Moore, 1983], p. 274.
42[Moore, 1983], p. 274.
43Rott [1989] and Morreau [1992] explicitly adopt the view that Ramsey test condi-

tionals are autoepistemic.
44See also [D�oring, 1997].
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are not epistemically context-sensitive from premises that are not epistem-
ically context-sensitive. Since Hansson, Arl�o-Costa, and Levi assume that
s satis�es Conservativeness, it is clear that for them s is an operation of
autoepistemic reasoning but not an operation of default reasoning: s(K)
will contain conditionals, i.e. autoepistemic statements, that are not logical
consequences of K, but no conditional-free formula gets into s(K) with-
out being a logical consequence of K, which is itself conditional-free for
any K 2 dom(s) according to Hansson, Arl�o-Costa, and Levi. Cross and
Makinson, on the other hand, do not require the support function to satisfy
Conservativeness; accordingly, they allow belief change models in which s
supports default reasoning. No distinction between s(K) and K exists for
Morreau, G�ardenfors, and Segerberg, hence the issue of the status of s does
not arise in their respective cases.

2.7 Logics for Ramsey test conditionals

G�ardenfors [1978] proves the soundness and completeness of David Lewis'
system of conditional logic VC with respect to an epistemic, Ramsey test
semantics for the conditional. Several other authors have proposed variants
of G�ardenfors' Ramsey test semantics, including variants that generalize
G�ardenfors' semantics, but it will be convenient for our purposes to adopt
formalisms similar to those of [Arl�o-Costa, 1995] and [Arl�o-Costa and Levi,
1996].

Primitive belief revision models

Since the conditional is to be given a semantics in terms of belief revision,
the notion of a belief set must be de�ned in terms that do not assume a
logic for the conditional. To this end we de�ne primitive belief sets , primitive
expansion, and primitive belief revision models .
For a Boolean languageL of type L1 or L2 let a primitive belief set de�ned

on this language be any set K of formulas of L meeting three requirements:

(pBS1) K 6= ;;

(pBS2) if � 2 K and  2 K, then � ^  2 K;

(pBS3) if � 2 K and �!  is a truth-functional tautology, then  2 K.

If K � K 0 and K, K 0 are both primitive belief sets, then K 0 is a primitive
expansion of K. The operation of primitive expansion is de�ned as follows:

(DEF+) K+
� = f : �!  2 Kg.

It is easy to see that if K is a primitive belief set, then so is K+
� . Finally,

let us de�ne the notion of a primitive belief revision model on L:
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(DefpBRM) A primitive belief revision model (or pBRM) on a Boolean lan-
guage L is an ordered quadruple hK; �; K?; si whose components
are as follows:

1. K? = wffL0 , where L0 is L or a fragment of L;

2. K is a nonempty set of primitive belief sets de�ned on L0,
and if K 2 K then K contains every primitive expansion of
K on L0;

3. � is a function mapping eachK 2 K and each formula � 2 K?

to a primitive belief set K�
� belonging to K;

4. s is a function mapping each K 2 K to a primitive belief set
s(K) of formulas of L, where s satis�es the following:

(a) if � 2 K? and � 2 s(K) then � 2 K;

(b) K � s(K) if K? 6= K 2 K.

Note that while K and s(K) must both be primitive belief sets, they need
not be primitive belief sets of the same language. When referring to the
belief revision postulates (K�1), (K�2), etc., in the context of primitive
belief revision models we will assume that � and  range over K?.
A primitive belief revision model hK; �; K?; si de�ned on a Boolean

language L is a G�ardenfors pBRM i� L is of type L2 and K? = wffL and
s is the identity function on K and s satis�es the following unrestricted
version of the positive Ramsey test:

(pRTG) For all K 2 K, if �;  2 K?, then (� >  ) 2 s(K) i�  2 K�
�.

A primitive belief revision model hK; �; K?; si de�ned on a Boolean lan-
guage L is an Arl�o-Costa/Levi pBRM i� L is of type L1 and K? is the set
of all formulas of the largest conditional-free fragment of L and s satis�es
the following versions of both the positive and negative Ramsey tests:

(pPRT) For all K 2 K such that K 6= K?, if �;  2 K?, then (� >  ) 2
s(K) i�  2 K�

�.

(pNRT) For all K 2 K such that K 6= K?, if �;  2 K?, then :(� >  ) 2
s(K) i�  62 K�

�.

Positive and negative validity

In [Arl�o-Costa, 1995] (and in [Arl�o-Costa and Levi, 1996], with Isaac Levi)
Arl�o-Costa distinguishes between positive and negative concepts of valid-
ity. The concepts are distinct in Arl�o-Costa/Levi pBRMs, though not in
G�ardenfors pBRMs.
A formula � is positively valid (PV) relative to hK; �; K?; si, where the

latter is a primitive belief revision model, i� � 2 s(K) for all K such that
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K? 6= K 2 K; and � is positively valid relative to a set of belief revision
models i� � is positively valid relative to each member of the set. � is
negatively valid (NV) relative to hK; �; K?; si i� :� 62 s(K) for each K
such that K? 6= K 2 K; and � is negatively valid relative to a set of belief
revision models i� � is negatively valid relative to each member of the set.
Notions of entailment can be associated with positive and negative valid-

ity, respectively. Given a set � of formulas of a type-L1 or type-L2 language
L, and a formula � of L, � positively entails � (� j=+ �) with respect to
a primitive belief revision model hK; �; K?; si i� � 2 s(K) for every K
such that � � s(K) and K? 6= K 2 K. By contrast, � negatively entails �
(� j=� �) with respect to a primitive belief revision model hK; �; K?; si i�
there is no K such that K? 6= K 2 K and � [ f:�g � s(K).
In a G�ardenfors pBRM, positive and negative validity coincide:

PROPOSITION 18. Relative to any G�ardenfors pBRM de�ned on a lan-
guage L of type L2, a formula � of L is positively valid i� � is negatively
valid.

Proof. Let hK; �; K?; si be a G�ardenfors pBRM de�ned on a languageL of
type L2, and let � be a formula of L. First, suppose that � is positively valid
relative to hK; �; K?; si and choose an arbitraryK such thatK? 6= K 2 K.
Then � 2 s(K), but since s(K) = K 6= K? we have :� 62 s(K), as required.
Conversely, assume that � is negatively valid relative to hK; �; K?; si and
choose an arbitrary K such that K? 6= K 2 K. Assume for reductio that
� 62 s(K). Since s is the identity function, we have that � 62 K, in which
case K+

:� 6= K?. Since K is closed under primitive expansions, we have in

addition that K+
:� 2 K. Thus, :� 2 s(K+

:�) and K? 6= K+
:� 2 K, which is

contrary to the negative validity of �. �

Positive and negative validity do not coincide in Arl�o-Costa/Levi pBRMs,
however. The negative Ramsey test prevents it. Consider the following pair
of lemmas regarding the thesis (CS):

LEMMA 19. For any type-L1 language L, if �,  are conditional-free, then
(� ^  )! (� >  ) is negatively valid in an Arl�o-Costa/Levi pBRM de�ned
on L i� the model satis�es (K�4w).

The latter is equivalent to Observation 4.7 of [Arl�o-Costa and Levi,
1996].

LEMMA 20. For any type-L1 language L containing at least one atomic
formula � other than > and ?, there are conditional-free � and  such that
(� ^  ) ! (� >  ) is not positively valid in any Arl�o-Costa/Levi pBRM
de�ned on L that satis�es (K�3) and contains a primitive belief set K where
:�; � 62 K.

Proof. Suppose L is a type-L1 language containing at least one atomic
formula � di�erent from > and ?, and consider an Arl�o-Costa/Levi pBRM
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hK; �; K?; si de�ned on L that satis�es (K�3) and contains a primitive
belief set K such that :�; � 62 K. Suppose for reductio that (�^ )! (� >
 ) is positively valid for all conditional-free � and  . Then, in particular
(> ^ �) ! (> > �) is positively valid relative to hK; �; K?; si. By (K�3)
we have K�

> � K+
> = K. Since, in addition, :�; � 62 K we have that

:�; � 62 K�
>. Since � 62 K�

>, it follows by the Negative Ramsey test that
:(> > �) 2 s(K), hence by the positive validity of (> ^ �) ! (> > �)
relative to hK; �; K?; si we have that :(> ^ �) 2 s(K). Since :(> ^ �) is
conditional-free, it follows that :(> ^ �) 2 K. Since primitive belief sets
are deductively closed, we have :� 2 K, contrary to assumption. �

The proof just given is derived from that given by Arl�o-Costa for Observa-
tion 3.14 in [Arl�o-Costa, 1995]. Finally, we state the following obvious but
necessary lemma:

LEMMA 21. For some type-L1 language L, there is an Arl�o-Costa/Levi
pBRM de�ned on L that satis�es (K�3) and (K�4w) and also contains a
primitive belief set K where :�; � 62 K for some conditional-free formula �
of L.

These three lemmas suÆce to show the following:

THEOREM 22. There are Arl�o-Costa/Levi pBRMs relative to which at
least some formulas of the form (� ^  ) ! (� >  ) are negatively valid
but not positively valid.

Interestingly, despite Theorem 22, f� ^  g j=+ � >  holds relative to
every Arl�o-Costa/Levi pBRM that satis�es (K�4w).45

Belief revision models for VC

G�ardenfors provides an epistemic semantics for VC based on negative va-
lidity. He begins with a minimal conditional logic CM de�ned as follows:

Axiom schemata

Taut: All truth-functional tautologies;

CC: [(� >  ) ^ (� > �)]! [� > ( ^ �)];

CN: � > >.

Rules of inference

Modus Ponens From � and �!  to infer  ;

RCM: From  ! � to infer (� >  )! (� > �).

45See OBSERVATION 3.15 in [Arl�o-Costa, 1995].
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G�ardenfors [1978] proves a soundness/completeness theorem for CM that
is equivalent to the following:

THEOREM 23. A formula of any type L2 language is a theorem of CM i�
it is negatively valid in every G�ardenfors pBRM.

G�ardenfors then proves the following:

THEOREM 24. A formula is a theorem of VC i� it is derivable from CM
together with (ID), (CSO0 ), (CS), (MP), (CA), and (CV) as additional
axiom schemata:

ID: � > �

CSO 0 : [(� >  ) ^ ( > �)]! [(� > �)! ( > �)]

CS: (� ^  )! (� >  )

MP: (� >  )! (�!  )

CA: [(� > �) ^ ( > �)]! [(� _  ) > �]

CV: [(� >  ) ^ :(� > :�)]! [(� ^ �) >  ]

An epistemic semantics for VC is obtained by restricting attention to
G�ardenfors pBRMs that satisfy constraints corresponding to axioms ID,
CSO 0, CS, MP, CA, and CV. G�ardenfors [1978] proves lemmas equivalent
to the following:

LEMMA 25. WhereM is any G�ardenfors pBRM,

1. all instances of ID are negatively valid in M i�M satis�es (K�2);

2. all instances of CSO 0 are negatively valid inM i�M satis�es (K�6s);

3. all instances of CS are negatively valid inM i�M satis�es (K�4w);

4. all instances of MP are negatively valid inM i�M satis�es (K�3);

5. if M satis�es (K�2), (K�6s), (K�4w), and (K�3), then all instances
of CA are negatively valid inM if M satis�es (K�7);

6. if all instances of ID, CSO 0 , CS, and MP are negatively valid inM,
then M satis�es (K�7) if all instances of CA are negatively valid in
M;

7. if M satis�es (K�2), (K�6s), (K�4w), and (K�3), then all instances
of CV are negatively valid inM if M satis�es (K�L);

8. if all instances of ID, CSO 0 , CS, and MP are negatively valid inM,
then M satis�es (K�L) if all instances of CV are negatively valid in
M.
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Theorem 24 and Lemma 25 allow the soundness and completeness result of
Theorem 23 to be extended to yield the following:

THEOREM 26. A formula is a theorem of VC i� it is negatively valid in
all G�ardenfors pBRMs that satisfy (K�2), (K�3), (K�4w), (K�6s), (K�7),
and (K�L).

This theorem shows that if VC is translated into a theory of belief re-
vision on G�ardenfors pBRMs using that version of the Ramsey test which
is built into the notion of a G�ardenfors pBRM, then the resulting theory
of belief revision is de�ned by (K�1) (which is built into the de�nition of a
pBRM), (K�2), (K�3), (K�4w), (K�6s), (K�7), and (K�L). The absence of
(K�5w) should not be surprising, given Theorem 13. Since in a G�ardenfors
pBRM (K�3), (K�4w), and (DEF+) imply (K�T), and since (K�T) together
with (DEF+), (K�6s) and (K�8) imply (K�P), and given Theorem 8, the
absence of (K�8) should not be surprising.

A conditional logic that approximates AGM belief revision

Whereas G�ardenfors [1978] sets out to �nd epistemic models for Lewis's
system VC of conditional logic, Arl�o-Costa [1995] sets out to �nd a system
of conditional logic whose primitive belief revision models are de�ned at
least approximately by the AGM belief revision postulates for transitive
relational partial meet contraction (see [G�ardenfors, 1988], Chapters 3{4).
The result is the system EF , which is de�ned only on languages of type
L1 (languages of at conditionals). EF has the following axioms and rules,
where �;  ; and � are conditional free:

Axiom schemata

Taut: All truth-functional tautologies

ID: � > �

MP: (� >  )! (�!  )

CC: [(� >  ) ^ (� > �)]! [� > ( ^ �)]

CA: [(� > �) ^ ( > �)]! [(� _  ) > �]

CV: [(� >  ) ^ :(� > :�)]! [(� ^ �) >  ]

CN: � > >

CD: :(� > ?) for all non-tautologous �.
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Rules of inference

Modus Ponens: From � and �!  to infer  .

RCM: From  ! � to infer (� >  )! (� > �).

RCEA: From �$  to infer (� > �)$ ( > �).

One obvious di�erence between VC and Arl�o-Costa's EF is that EF is
de�ned for type L1 languages only whereas VC is de�ned for type L2 lan-
guages. Another di�erence is that CS, an axiom of VC, is not a theorem
of EF . A third di�erence is that CD, an axiom of EF , is not a theorem of
VC.
Arl�o-Costa's epistemic semantics for EF is crucially di�erent from

G�ardenfors' epistemic semantics for VC in that the semantics of EF is
de�ned in terms of positive validity over Arl�o-Costa/Levi pBRMs rather
than in terms of negative validity over G�ardenfors pBRMs. Positive and
negative validity coincide in G�ardenfors pBRMs (see Proposition 18) but
not in Arl�o-Costa/Levi pBRMs (see Theorem 22). Which notion of validity
should then be adopted? Arl�o-Costa and Levi argue that positive validity
should be adopted rather than negative validity both because positive valid-
ity is more intuitive and because in Arl�o-Costa/Levi models, which satisfy
the Negative Ramsey Test favored by Arl�o-Costa and Levi, the inference
rule modus ponens does not preserve negative validity.46

Consider a type-L1 language L; relative to L the logical system Flat CM
is the smallest set of formulas of L that contains all instances of the axiom
schemata of G�ardenfors'CM and is closed under the rules ofCM. Note that
EF is an extension of Flat CM. Arl�o-Costa [1995] proves the completeness
of EF with respect to an epistemic semantics (based on positive validity)
by proving a result equivalent to Theorem 31 below. We begin with a series
of results to be used as lemmas for Theorem 31:47

THEOREM 27. A formula of any type L1 language L is a theorem of Flat
CM i� it is positively valid in every Arl�o-Costa/Levi pBRM de�ned on L.

THEOREM 28. Let CM+ be the result of extending Flat CM by adding
the rule (RCEA) (restricted to the conditionals of a type-L1 language). A
formula is derivable in CM+ i� it is positively valid in the class of all Arl�o-
Costa/Levi pBRMs that satisfy (K�6).

THEOREM 29. Let CMU+ be the result of extending CM+ by adding
:(� > ?) for every non-tautologous conditional-free �. A formula is deriv-
able in CMU+ i� it is positively valid in the class of all Arl�o-Costa/Levi
pBRMs that satisfy (K�6) and (K�C).

46See [Arl�o-Costa and Levi, 1996], pp. 239-240.
47Our formulation of these results reects the organization found in [Arl�o-Costa and

Levi, 1996].
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LEMMA 30. Where M is any Arl�o-Costa/Levi pBRM,

1. all instances of ID are positively valid in M i�M satis�es (K�2);

2. all instances of MP are positively valid in M i�M satis�es (K�3);

3. all instances of CA are positively valid in M i�M satis�es (K�70);

4. if all instances of ID are positively valid in M, then all instances of
CV are positively valid inM ifM satis�es (K�8);

Theorems 27, 28, and 29, together with Lemma 30 and the fact that (K�7)
and (K�70) are equivalent in any pBRM that satis�es (K�2) and (K�6), yield
the following completeness theorem for EF :48

THEOREM 31. A formula of any type L1 language L is a theorem of EF i�
it is positively valid in every Arl�o-Costa/Levi pBRM de�ned on L satisfying
(K�2), (K�3), (K�C), (K�6), (K�7), and (K�8).

Postulates (K�1), (K�2), (K�3), (K�4), (K�5), (K�6), (K�7), and (K�8)
jointly capture that notion of revision that is derivable via the Levi Identity
(LI) from the AGM notion of transitively relational partial meet contraction
(AGM Revision, for short).49 Since (K�1) holds in all pBRMs, EF comes
very close to capturing AGM Revision, but (K�1) and the postulates men-
tioned in Theorem 31 de�ne a notion of revision (EF Revision, for short)
that is strictly weaker than AGM revision in two respects.
First, whereas AGM revision includes (K�4), EF revision does not. It

turns out that (K�4) does not correspond to the positive validity of any type-
L1 formula. Still, (K�4) does correspond to a certain positive entailment,
as Arl�o-Costa [1995] shows:

PROPOSITION 32. IfM is an Arl�o-Costa/Levi pBRM de�ned on a type-
L1 language L, then M satis�es (K�4) i�

f�!  ; :(> > :�)g j=+ � >  

holds in M for all conditional-free formulas � and  of L.

This result is equivalent to OBSERVATION 3.16 of [Arl�o-Costa, 1995].
Note that Proposition 32 does not establish conditions for the positive va-
lidity of

(�!  )! [:(> > :�)! (� >  )]:

But if nesting of conditionals is allowed, then (K�4) can be associated with
the positive validity of nested conditionals of the form [(� !  ) ^ :(> >

48Arl�o-Costa [1995] notes that Theorems 27 and 29 and Lemma 30 suÆce to yield
completeness theorem for the type-L1 fragment of David Lewis' system VW.

49See, for example, [G�ardenfors, 1988], Chapters 3 and 4.
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:�)] > (� >  ) (see THEOREM 8.1 and OBSERVATION 8.3 in [Arl�o-
Costa, 1995]). In general, � [ f�g j=+  is not equivalent to � j=+ � >  
in an Arl�o-Costa/Levi pBRM, but this equivalence does hold for certain �
and  when � = ; (see OBSERVATION 3.17 of [Arl�o-Costa, 1995]).

A second di�erence between EF revision and AGM revision is this: where-
`as AGM Revision includes (K�5), which entails (K�5w), EF revision in-
cludes neither (K�5) nor (K�5w) but instead includes (K�C). The only dif-
ference between (K�5w) and (K�C) is that (K�5w) places a constraint on
the revision of all belief sets that (K�C) places just on the revision of consis-
tent belief sets. In particular, where � is nontautologous, (K�5w) requires
(K?)

�
� to be distinct from K? (and therefore, actually, a contraction of

K?), whereas (K
�C) implies no such requirement. Theorem 29 reveals that

(K�C) is secured in Arl�o-Costa/Levi pBRMs via (pNRT) and the positive
validity of negated conditionals of the form :(� > ?), where � is nontau-
tologous. These negated conditionals also belong to K?, of course, but
allowing K to take K? as a value in (pNRT) is not an option. Allowing
K to take K? as a value in (pPRT) also does not help: Theorem 13 shows
that (K�5w) and a consistent underlying logic cannot be combined with the
positive Ramsey test in that case. Still, leaving aside the revision of K?,
it is true, as Arl�o-Costa [1995] has shown, that AGM revision of nonabsurd
belief sets can be speci�ed in terms of positive validity in a type-L2 lan-
guage or in terms of positive validity and positive entailment in a type-L1
language.

3 OTHER TOPICS

Our discussion of the major kinds of conditionals is far from exhaustive.
We have looked at several di�erent approaches to the problem of providing
an adequate formal semantics and logic for various kinds of conditionals
without being able to demonstrate that one approach is clearly superior
to all the others. Furthermore, there are many problems involved in the
analysis of conditionals which we either have not discussed at all or have
only just mentioned in passing. In this section we will look at several of
these, giving each the very briefest attention.

One issue which has received much attention is the relationship between
conditionals and probability. Stalnaker [1970] proposed that the probabil-
ity that a conditional is true should be identical with the standard con-
ditional probability. Lewis demonstrates in [Lewis, 1976], however, that
this assumption can only be true if we restrict our probability functions to
those which assign only a small �nite number of distinct values to propo-
sitions. Stalnaker [1976] provides a di�erent proof for a similar result, a
proof which does not depend upon certain assumptions which Lewis used
and which some investigators have questioned. Van Fraassen [1976] avoids
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these Triviality Results for a weakened, non-classical version of Stalnaker's
conditional logic C2. Lewis [1976] shows, however, that we can embrace
a result which resembles Stalnaker's while avoiding the Triviality Result.
Lewis's suggestion depends upon a technique which he calls imaging. This
technique, which provides an alternative method for determining condi-
tional probabilities, requires that in conditionalising a probability assign-
ment with respect to �, i.e. in modifying the assignment in a way which
produces a new assignment which assigns probability 1 to �, all the proba-
bility which was originally assigned to each :�-world i would be transferred
to the �-world closest to i. Lewis demonstrates that if we accept Stal-
naker's semantics and if we assign conditional probabilities in this new,
non-standard way, then the probability that a conditional is true turns
out to be identical with the conditional probability even when the prob-
abilities of truth for conditionals take on in�nitely many di�erent values.
Lewis's imaging techniques can be adapted to semantics other than Stal-
naker's. Nute [1980b] adapts Lewis's imaging technique to class selection
function semantics, producing a notion of subjunctive probability which
di�ers from both the standard conditional probability and the probabil-
ity that the corresponding conditional is true. While promising in some
ways, Nute's account is extremely cumbersome. G�ardenfors [1982] presents
a generalized form of imaging and shows that conditional probability can-
not be described even in terms of generalized imaging. Other papers on
conditionals and probability include [D�oring, 1994; Fetzer and Nute, 1979;
Fetzer and Nute, 1980; H�ajek, 1994; Hall, 1994; Lance, 1991; Lewis, 1981b;
Lewis, 1986; McGee, 1989; Nute, 1981a; Stalnaker and Je�rey, 1994]. For
a careful and comprehensive survey of results relating the probabilities of
conditionals to conditional probabilities see [H�ajek and Hall, 1994].
The relationship between causation and conditionals has certainly not

been overlooked either. Many authors like Jackson [1977] and Kvart [1980;
1986] assign a special role to causation in their analyses of counterfactual
conditionals. Others like Lewis [1973a] and Swain [1978] attempt to provide
analyses of causation in terms of counterfactual dependence. Still others like
Fetzer and Nute [1979; 1980] have tried to develop a semantics for a special
kind of causal conditional. These special causal conditionals have then been
employed in the formulation of a single-case propensity interpretation of law
statements.
Conditional logic also has applications in deontic logic (see, for example,

[Hilpinen, 1981]), in decision theory (see, for example, [Gibbard and Harper,
1981; Stalnaker, 1981a]), and in nonmonotonic logic (for a summary of some
of this work, see [Nute, 1994]). In addition, there has been signi�cant at-
tention in recent years to the issue of whether so-called future indicative
conditionals (e.g. `If Oswald doesn't shoot President Kennedy, then some-
one else will') should be classi�ed as indicative or as subjunctive (see, for
example, [Bennett, 1988; Bennett, 1995; Dudman, 1984; Dudman, 1989;
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Dudman, 1994; Jackson, 1990]). For a careful and comprehensive review of
this and other recent topics of discussion see [Edgington, 1995]. It is not
possible in this essay to discuss or even to list all of the material that can
be found in the literature on conditional logic and its applications.

4 LIST OF SOME IMPORTANT RULES, THESES, AND LOGICS

In this section we collect some of the most important rules and theses of
conditional logic together with de�nitions for a few of the better known
conditional logics.

Rules

RCEC: from �$  , to infer (� > �)$ (� >  ).

RCK: from (�1 ^ : : : ^ �n)!  , to infer
[(� > �1)(^ : : : (� > �n)]! (� >  ); n � 0.

RCEA: from �$  , to infer (� > �) $ ( > �).

RCE: from �!  , to infer � >  .

RCM: from  ! �, to infer (� >  )! (� > �).

RR: from �! (� >  ) infer (� Æ �) !  , and from (� Æ �) !  infer
�! (� >  ).

Theses

Transitivity: [(� >  ) ^ (� > �)]! (� >  )
Contraposition: (� > : )! ( > :�)
Strengthening Antecedents: (� >  )! [(� ^ �) >  ]

ID: � > �

MP: (� >  )! (�!  )

MOD: (:� > �)! ( > �)

CSO: [(� >  ) ^ ( > �)]! [(� > �)$ ( > �)]

CSO 0 : [(� >  ) ^ ( > �)]! [(� > �)! ( > �)]

CV: [(� >  ) ^ :(� > :�)]! [(� ^ �) >  ]

CEM: (� >  ) _ (� > : )

CS: (� ^  )! (� >  )
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CC: [(� >  ) ^ (� > �)]! [� >  ^ �)]

CM: [� > ( ^ �)]! [(� >  ) ^ (� > �)]

CA: [(� >  ) ^ (� >  )]! [(� _ �) >  ]

SDA: [(� _  ) > �]! [(� > �) ^ ( > �)]

CN: � > >

CT: (:� > ?)! �

CU: :(� > ?)! ((� > ?) > ?)

CD: :(� > ?) for all non-tautologous �.

Recall that in Section 1 we de�ned a conditional logic as any collection L of
sentences formed in the usual way from the symbols of classical sentential
logic together with a conditional operator >, such that L is closed under
modus ponens and L contains every tautology. We now modify this de�-
nition as follows, adopting the terminology of Section 2, to take di�erent
language types for conditional logic into account: let a conditional logic on
a Boolean language L of type L1 or type L2 be any collection L of sen-
tences of L such that L is closed under modus ponens and L contains every
tautology.

Logics for full conditional languages
For a given Boolean language L of type L2, each of the following is the
smallest conditional logic on L closed under all the rules and containing all
the theses associated with it below.

CM: RCM, CC, CN

VW: RCEC, RCK; ID, MOD, CSO, MP, CV

SS: RCEC, RCK; ID, MOD, CSO, MP, CA, CS

VC: RCEC, RCK; ID, MOD, CSO, MP, CV, CS

VCU: RCEC, RCK; ID, MOD, CSO, MP, CV, CS, CT, CU

VCU2: RCEC, RCK, RR; ID, MOD, CSO, MP, CV, CS, CT, CU (with
Æ as an additional binary operator)

C2: RCEC, RCK; ID, MOD, CSO, MP, CV, CEM

Neither of VW and SS is an extension of the other, and neither of VCU
and C2 is an extension of the other. VCU2 is an extension of VCU, and
C2 and VCU are both extensions of VC, which is an extension of both
VW and SS. VW and SS are both extensions of CM. For the de�nitions



CONDITIONAL LOGIC 89

of several weaker conditional logics, see [Lewis, 1973b; Chellas, 1975; Nute,
1980b].

Logics for languages of \at" conditionals
If L is a Boolean language of type L1, then each of the following logics is
the smallest conditional logic on L closed under all the rules and containing
all the theses associated with it below.

Flat CM: RCM, CC, CN

Flat VW: RCEC, RCK; ID, MOD, CSO, MP, CV

Flat VC: RCEC, RCK; ID, MOD, CSO, MP, CV, CS

EF : RCM, RCEA, ID, MP, CC, CA, CV, CN, CD

Flat CM is contained in Flat VW, which is contained in both Flat VC
and EF , but neither of Flat VC and EF is contained in the other. For a
discussion of the logic of at conditionals aimed at being as true as possible
to Ramsey's ideas, see [Levi, 1996], Chapter 4.
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DYNAMIC LOGIC

PREFACE

Dynamic Logic (DL) is a formal system for reasoning about programs. Tra-
ditionally, this has meant formalizing correctness speci�cations and proving
rigorously that those speci�cations are met by a particular program. Other
activities fall into this category as well: determining the equivalence of pro-
grams, comparing the expressive power of various programming constructs,
synthesizing programs from speci�cations, etc. Formal systems too numer-
ous to mention have been proposed for these purposes, each with its own
peculiarities.
DL can be described as a blend of three complementary classical ingre-

dients: �rst-order predicate logic, modal logic, and the algebra of regular
events. These components merge to form a system of remarkable unity that
is theoretically rich as well as practical.
The name Dynamic Logic emphasizes the principal feature distinguishing

it from classical predicate logic. In the latter, truth is static: the truth value
of a formula ' is determined by a valuation of its free variables over some
structure. The valuation and the truth value of ' it induces are regarded
as immutable; there is no formalism relating them to any other valuations
or truth values. In Dynamic Logic, there are explicit syntactic constructs
called programs whose main role is to change the values of variables, thereby
changing the truth values of formulas. For example, the program x := x+1
over the natural numbers changes the truth value of the formula \x is even".
Such changes occur on a metalogical level in classical predicate logic. For

example, in Tarski's de�nition of truth of a formula, if u : fx; y; : : : g ! N

is a valuation of variables over the natural numbers N, then the formula
9x x2 = y is de�ned to be true under the valuation u i� there exists an
a 2 N such that the formula x2 = y is true under the valuation u[x=a], where
u[x=a] agrees with u everywhere except x, on which it takes the value a. This
de�nition involves a metalogical operation that produces u[x=a] from u for
all possible values a 2 N. This operation becomes explicit in DL in the form
of the program x := ?, called a nondeterministic or wildcard assignment .
This is a rather unconventional program, since it is not e�ective; however,
it is quite useful as a descriptive tool. A more conventional way to obtain
a square root of y, if it exists, would be the program

x := 0 ; while x2 < y do x := x+ 1:(1)

In DL, such programs are �rst-class objects on a par with formulas, complete
with a collection of operators for forming compound programs inductively
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from a basis of primitive programs. To discuss the e�ect of the execution of
a program � on the truth of a formula ', DL uses a modal construct <�>',
which intuitively states, \It is possible to execute � starting from the current
state and halt in a state satisfying '." There is also the dual construct [�]',
which intuitively states, \If � halts when started in the current state, then
it does so in a state satisfying '." For example, the �rst-order formula
9x x2 = y is equivalent to the DL formula <x := ?> x2 = y. In order to
instantiate the quanti�er e�ectively, we might replace the nondeterministic
assignment inside the < > with the while program (1); over N, the two
formulas would be equivalent.

Apart from the obvious heavy reliance on classical logic, computability
theory and programming, the subject has its roots in the work of [Thiele,
1966] and [Engeler, 1967] in the late 1960's, who were the �rst to advance
the idea of formulating and investigating formal systems dealing with prop-
erties of programs in an abstract setting. Research in program veri�cation
ourished thereafter with the work of many researchers, notably [Floyd,
1967], [Hoare, 1969], [Manna, 1974], and [Salwicki, 1970]. The �rst precise
development of a DL-like system was carried out by [Salwicki, 1970], follow-
ing [Engeler, 1967]. This system was called Algorithmic Logic. A similar
system, called Monadic Programming Logic, was developed by [Constable,
1977]. Dynamic Logic, which emphasizes the modal nature of the pro-
gram/assertion interaction, was introduced by [Pratt, 1976].

Background material on mathematical logic, computability, formal lan-
guages and automata, and program veri�cation can be found in [Shoen-
�eld, 1967] (logic), [Rogers, 1967] (recursion theory), [Kozen, 1997a] (formal
languages, automata, and computability), [Keisler, 1971] (in�nitary logic),
[Manna, 1974] (program veri�cation), and [Harel, 1992; Lewis and Papadim-
itriou, 1981; Davis et al., 1994] (computability and complexity). Much of
this introductory material as it pertains to DL can be found in the authors'
text [Harel et al., 2000].

There are by now a number of books and survey papers treating logics of
programs, program veri�cation, and Dynamic Logic [Apt and Olderog, 1991;
Backhouse, 1986; Harel, 1979; Harel, 1984; Parikh, 1981; Goldblatt, 1982;
Goldblatt, 1987; Knijnenburg, 1988; Cousot, 1990; Emerson, 1990; Kozen
and Tiuryn, 1990]. In particular, much of this chapter is an abbreviated
summary of material from the authors' text [Harel et al., 2000], to which we
refer the reader for a more complete treatment. Full proofs of many of the
theorems cited in this chapter can be found there, as well as extensive in-
troductory material on logic and complexity along with numerous examples
and exercises.
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1 REASONING ABOUT PROGRAMS

1.1 Programs

For us, a program is a recipe written in a formal language for computing
desired output data from given input data.

EXAMPLE 1. The following program implements the Euclidean algorithm
for calculating the greatest common divisor (gcd) of two integers. It takes
as input a pair of integers in variables x and y and outputs their gcd in
variable x:

while y 6= 0 do
begin
z := x mod y;
x := y;
y := z

end

The value of the expression x mod y is the (nonnegative) remainder obtained
when dividing x by y using ordinary integer division.

Programs normally use variables to hold input and output values and
intermediate results. Each variable can assume values from a speci�c do-
main of computation, which is a structure consisting of a set of data values
along with certain distinguished constants, basic operations, and tests that
can be performed on those values, as in classical �rst-order logic. In the
program above, the domain of x, y, and z might be the integers Z along
with basic operations including integer division with remainder and tests
including 6=. In contrast with the usual use of variables in mathematics, a
variable in a program normally assumes di�erent values during the course
of the computation. The value of a variable x may change whenever an
assignment x := t is performed with x on the left-hand side.
In order to make these notions precise, we will have to specify the pro-

gramming language and its semantics in a mathematically rigorous way. In
this section we give a brief introduction to some of these languages and the
role they play in program veri�cation.

1.2 States and Executions

As mentioned above, a program can change the values of variables as it
runs. However, if we could freeze time at some instant during the execu-
tion of the program, we could presumably read the values of the variables
at that instant, and that would give us an instantaneous snapshot of all
information that we would need to determine how the computation would
proceed from that point. This leads to the concept of a state|intuitively,
an instantaneous description of reality.
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Formally, we will de�ne a state to be a function that assigns a value to
each program variable. The value for variable x must belong to the domain
associated with x. In logic, such a function is called a valuation. At any
given instant in time during its execution, the program is thought to be
\in" some state, determined by the instantaneous values of all its variables.
If an assignment statement is executed, say x := 2, then the state changes
to a new state in which the new value of x is 2 and the values of all other
variables are the same as they were before. We assume that this change
takes place instantaneously; note that this is a mathematical abstraction,
since in reality basic operations take some time to execute.

A typical state for the gcd program above is (15; 27; 0; : : : ), where (say)
the �rst, second, and third components of the sequence denote the values
assigned to x, y, and z respectively. The ellipsis \: : : " refers to the values
of the other variables, which we do not care about, since they do not occur
in the program.

A program can be viewed as a transformation on states. Given an initial
(input) state, the program will go through a series of intermediate states,
perhaps eventually halting in a �nal (output) state. A sequence of states
that can occur from the execution of a program � starting from a particular
input state is called a trace. As a typical example of a trace for the program
above, consider the initial state (15; 27; 0) (we suppress the ellipsis). The
program goes through the following sequence of states:

(15,27,0), (15,27,15), (27,27,15), (27,15,15), (27,15,12), (15,15,12),
(15,12,12), (15,12,3), (12,12,3), (12,3,3), (12,3,0), (3,3,0), (3,0,0).

The value of x in the last (output) state is 3, the gcd of 15 and 27.

The binary relation consisting of the set of all pairs of the form (input
state, output state) that can occur from the execution of a program �, or
in other words, the set of all �rst and last states of traces of �, is called
the input/output relation of �. For example, the pair ((15; 27; 0); (3; 0; 0))
is a member of the input/output relation of the gcd program above, as is
the pair ((�6;�4; 303); (2; 0; 0)). The values of other variables besides x, y,
and z are not changed by the program. These values are therefore the same
in the output state as in the input state. In this example, we may think of
the variables x and y as the input variables , x as the output variable, and
z as a work variable, although formally there is no distinction between any
of the variables, including the ones not occurring in the program.

1.3 Programming Constructs

In subsequent sections we will consider a number of programming con-
structs. In this section we introduce some of these constructs and de�ne a
few general classes of languages built on them.
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In general, programs are built inductively from atomic programs and tests
using various program operators .

While Programs

A popular choice of programming language in the literature on DL is the
family of deterministic while programs. This language is a natural ab-
straction of familiar imperative programming languages such as Pascal or
C. Di�erent versions can be de�ned depending on the choice of tests allowed
and whether or not nondeterminism is permitted.
The language of while programs is de�ned inductively. There are atomic

programs and atomic tests, as well as program constructs for forming com-
pound programs from simpler ones.
In the propositional version of Dynamic Logic (PDL), atomic programs

are simply letters a; b; : : : from some alphabet. Thus PDL abstracts away
from the nature of the domain of computation and studies the pure interac-
tion between programs and propositions. For the �rst-order versions of DL,
atomic programs are simple assignments x := t, where x is a variable and t
is a term. In addition, a nondeterministic or wildcard assignment x := ? or
nondeterministic choice construct may be allowed.
Tests can be atomic tests , which for propositional versions are simply

propositional letters p, and for �rst-order versions are atomic formulas
p(t1; : : : ; tn), where t1; : : : ; tn are terms and p is an n-ary relation symbol
in the vocabulary of the domain of computation. In addition, we include
the constant tests 1 and 0. Boolean combinations of atomic tests are often
allowed, although this adds no expressive power. These versions of DL are
called poor test .
More complicated tests can also be included. These versions of DL are

sometimes called rich test . In rich test versions, the families of programs
and tests are de�ned by mutual induction.
Compound programs are formed from the atomic programs and tests by

induction, using the composition, conditional , and while operators. For-
mally, if ' is a test and � and � are programs, then the following are
programs:

� � ; �

� if ' then � else �

� while ' do �.

We can also parenthesize with begin : : : end where necessary. The gcd
program of Example 1 above is an example of a while program.
The semantics of these constructs is de�ned to correspond to the ordinary

operational semantics familiar from common programming languages.
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Regular Programs

Regular programs are more general than while programs, but not by much.
The advantage of regular programs is that they reduce the relatively more
complicated while program operators to much simpler constructs. The
deductive system becomes comparatively simpler too. They also incorporate
a simple form of nondeterminism.
For a given set of atomic programs and tests, the set of regular programs

is de�ned as follows:

(i) any atomic program is a program

(ii) if ' is a test, then '? is a program

(iii) if � and � are programs, then � ; � is a program;

(iv) if � and � are programs, then � [ � is a program;

(v) if � is a program, then �� is a program.

These constructs have the following intuitive meaning:

(i) Atomic programs are basic and indivisible; they execute in a single
step. They are called atomic because they cannot be decomposed
further.

(ii) The program '? tests whether the property ' holds in the current
state. If so, it continues without changing state. If not, it blocks
without halting.

(iii) The operator ; is the sequential composition operator. The program
� ; � means, \Do �, then do �."

(iv) The operator [ is the nondeterministic choice operator. The program
� [ � means, \Nondeterministically choose one of � or � and execute
it."

(v) The operator � is the iteration operator. The program � means,
\Execute � some nondeterministically chosen �nite number of times."

Keep in mind that these descriptions are meant only as intuitive aids. A
formal semantics will be given in Section 2.2, in which programs will be in-
terpreted as binary input/output relations and the programming constructs
above as operators on binary relations.
The operators [; ; ; � may be familiar from automata and formal language

theory (see [Kozen, 1997a]), where they are interpreted as operators on
sets of strings over a �nite alphabet. The language-theoretic and relation-
theoretic semantics share much in common; in fact, they have the same
equational theory, as shown in [Kozen, 1994a].
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The operators of deterministic while programs can be de�ned in terms
of the regular operators:

if ' then � else �
def
= '? ; � [ :'? ; �(2)

while ' do �
def
= ('? ; �)� ; :'?(3)

The class of while programs is equivalent to the subclass of the regular
programs in which the program operators [, ?, and � are constrained to
appear only in these forms.

Recursion

Recursion can appear in programming languages in several forms. Two such
manifestations are recursive calls and stacks . Under certain very general
conditions, the two constructs can simulate each other. It can also be shown
that recursive programs and while programs are equally expressive over
the natural numbers, whereas over arbitrary domains, while programs are
strictly weaker. While programs correspond to what is often called tail
recursion or iteration.

R.E. Programs

A �nite computation sequence of a program �, or seq for short, is a �nite-
length string of atomic programs and tests representing a possible sequence
of atomic steps that can occur in a halting execution of �. Seqs are denoted
�; �; : : : . The set of all seqs of a program � is denoted CS (�). We use
the word \possible" loosely|CS(�) is determined by the syntax of � alone.
Because of tests that evaluate to false, CS (�) may contain seqs that are
never executed under any interpretation.
The set CS (�) is a subset of A�, where A is the set of atomic programs

and tests occurring in �. For while programs, regular programs, or recur-
sive programs, we can de�ne the set CS (�) formally by induction on syntax.
For example, for regular programs,

CS (a)
def
= fag; a an atomic program or test

CS (skip)
def
= f"g

CS (fail)
def
= ?

CS (� ; �)
def
= f� ; � j � 2 CS (�); � 2 CS (�)g

CS (� [ �)
def
= CS (�) [ CS (�)

CS (��)
def
= CS (�)�

=
[
n�0

CS (�n);
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where

�0
def
= skip

�n+1
def
= �n ; �:

For example, if a is an atomic program and p an atomic formula, then
the program

while p do a = (p? ; a)� ; :p?

has as seqs all strings of the form

(p? ; a)n ; :p? = p?; a; p?; a; � � � ; p?; a| {z }
n

;:p?

for all n � 0. Note that each seq � of a program � is itself a program, and

CS (�) = f�g:

While programs and regular programs give rise to regular sets of seqs,
and recursive programs give rise to context-free sets of seqs. Taking this
a step further, we can de�ne an r.e. program to be simply a recursively
enumerable set of seqs. This is the most general programming language we
will consider in the context of DL; it subsumes all the others in expressive
power.

Nondeterminism

We should say a few words about the concept of nondeterminism and its
role in the study of logics and languages, since this concept often presents
diÆculty the �rst time it is encountered.
In some programming languages we will consider, the traces of a program

need not be uniquely determined by their start states. When this is possible,
we say that the program is nondeterministic. A nondeterministic program
can have both divergent and convergent traces starting from the same input
state, and for such programs it does not make sense to say that the program
halts on a certain input state or that it loops on a certain input state; there
may be di�erent computations starting from the same input state that do
each.
There are several concrete ways nondeterminism can enter into programs.

One construct is the nondeterministic or wildcard assignment x := ?. In-
tuitively, this operation assigns an arbitrary element of the domain to the
variable x, but it is not determined which one.1 Another source of non-
determinism is the unconstrained use of the choice operator [ in regular

1This construct is often called random assignment in the literature. This terminology
is misleading, because it has nothing at all to do with probability.
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programs. A third source is the iteration operator � in regular programs. A
fourth source is r.e. programs, which are just r.e. sets of seqs; initially, the
seq to execute is chosen nondeterministically. For example, over N, the r.e.
program

fx := n j n � 0g

is equivalent to the regular program

x := 0 ; (x := x+ 1)�:

Nondeterministic programs provide no explicit mechanism for resolving
the nondeterminism. That is, there is no way to determine which of many
possible next steps will be taken from a given state. This is hardly realistic.
So why study nondeterminism at all if it does not correspond to anything
operational? One good answer is that nondeterminism is a valuable tool that
helps us understand the expressiveness of programming language constructs.
It is useful in situations in which we cannot necessarily predict the outcome
of a particular choice, but we may know the range of possibilities. In reality,
computations may depend on information that is out of the programmer's
control, such as input from the user or actions of other processes in the
system. Nondeterminism is useful in modeling such situations.
The importance of nondeterminism is not limited to logics of programs.

Indeed, the most important open problem in the �eld of computational
complexity theory, the P=NP problem, is formulated in terms of nondeter-
minism.

1.4 Program Veri�cation

Dynamic Logic and other program logics are meant to be useful tools for
facilitating the process of producing correct programs. One need only look
at the miasma of buggy software to understand the dire need for such tools.
But before we can produce correct software, we need to know what it means
for it to be correct. It is not good enough to have some vague idea of what
is supposed to happen when a program is run or to observe it running on
some collection of inputs. In order to apply formal veri�cation tools, we
must have a formal speci�cation of correctness for the veri�cation tools to
work with.
In general, a correctness speci�cation is a formal description of how the

program is supposed to behave. A given program is correct with respect to
a correctness speci�cation if its behavior ful�lls that speci�cation. For the
gcd program of Example 1, the correctness might be speci�ed informally by
the assertion

If the input values of x and y are positive integers c and d,
respectively, then
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(i) the output value of x is the gcd of c and d, and

(ii) the program halts.

Of course, in order to work with a formal veri�cation system, these proper-
ties must be expressed formally in a language such as �rst-order logic.

The assertion (ii) is part of the correctness speci�cation because programs
do not necessarily halt, but may produce in�nite traces for certain inputs.
A �nite trace, as for example the one produced by the gcd program above on
input state (15,27,0), is called halting, terminating, or convergent. In�nite
traces are called looping or divergent. For example, the program

while x > 7 do x := x+ 3

loops on input state (8; : : : ), producing the in�nite trace

(8; : : : ); (11; : : : ); (14; : : : ); : : :

Dynamic Logic can reason about the behavior of a program that is man-
ifested in its input/output relation. It is not well suited to reasoning about
program behavior manifested in intermediate states of a computation (al-
though there are close relatives, such as Process Logic and Temporal Logic,
that are). This is not to say that all interesting program behavior is cap-
tured by the input/output relation, and that other types of behavior are
irrelevant or uninteresting. Indeed, the restriction to input/output rela-
tions is reasonable only when programs are supposed to halt after a �nite
time and yield output results. This approach will not be adequate for deal-
ing with programs that normally are not supposed to halt, such as operating
systems.

For programs that are supposed to halt, correctness criteria are tradition-
ally given in the form of an input/output speci�cation consisting of a formal
relation between the input and output states that the program is supposed
to maintain, along with a description of the set of input states on which
the program is supposed to halt. The input/output relation of a program
carries all the information necessary to determine whether the program is
correct relative to such a speci�cation. Dynamic Logic is well suited to this
type of veri�cation.

It is not always obvious what the correctness speci�cation ought to be.
Sometimes, producing a formal speci�cation of correctness is as diÆcult as
producing the program itself, since both must be written in a formal lan-
guage. Moreover, speci�cations are as prone to bugs as programs. Why
bother then? Why not just implement the program with some vague spec-
i�cation in mind?

There are several good reasons for taking the e�ort to produce formal
speci�cations:
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1. Often when implementing a large program from scratch, the program-
mer may have been given only a vague idea of what the �nished prod-
uct is supposed to do. This is especially true when producing software
for a less technically inclined employer. There may be a rough infor-
mal description available, but the minor details are often left to the
programmer. It is very often the case that a large part of the pro-
gramming process consists of taking a vaguely speci�ed problem and
making it precise. The process of formulating the problem precisely
can be considered a de�nition of what the program is supposed to do.
And it is just good programming practice to have a very clear idea of
what we want to do before we start doing it.

2. In the process of formulating the speci�cation, several unforeseen cases
may become apparent, for which it is not clear what the appropriate
action of the program should be. This is especially true with error
handling and other exceptional situations. Formulating a speci�cation
can de�ne the action of the program in such situations and thereby
tie up loose ends.

3. The process of formulating a rigorous speci�cation can sometimes sug-
gest ideas for implementation, because it forces us to isolate the issues
that drive design decisions. When we know all the ways our data are
going to be accessed, we are in a better position to choose the right
data structures that optimize the tradeo�s between eÆciency and gen-
erality.

4. The speci�cation is often expressed in a language quite di�erent from
the programming language. The speci�cation is functional|it tells
what the program is supposed to do|as opposed to imperative|how
to do it. It is often easier to specify the desired functionality indepen-
dent of the details of how it will be implemented. For example, we
can quite easily express what it means for a number x to be the gcd
of y and z in �rst-order logic without even knowing how to compute
it.

5. Verifying that a program meets its speci�cation is a kind of sanity
check. It allows us to give two solutions to the problem|once as a
functional speci�cation, and once as an algorithmic implementation|
and lets us verify that the two are compatible. Any incompatibilities
between the program and the speci�cation are either bugs in the pro-
gram, bugs in the speci�cation, or both. The cycle of re�ning the
speci�cation, modifying the program to meet the speci�cation, and
reverifying until the process converges can lead to software in which
we have much more con�dence.
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Partial and Total Correctness

Typically, a program is designed to implement some functionality. As men-
tioned above, that functionality can often be expressed formally in the form
of an input/output speci�cation. Concretely, such a speci�cation consists
of an input condition or precondition ' and an output condition or post-
condition  . These are properties of the input state and the output state,
respectively, expressed in some formal language such as the �rst-order lan-
guage of the domain of computation. The program is supposed to halt in a
state satisfying the output condition whenever the input state satis�es the
input condition. We say that a program is partially correct with respect to
a given input/output speci�cation ';  if, whenever the program is started
in a state satisfying the input condition ', then if and when it ever halts,
it does so in a state satisfying the output condition  . The de�nition of
partial correctness does not stipulate that the program halts; this is what
we mean by partial.

A program is totally correct with respect to an input/output speci�cation
';  if

� it is partially correct with respect to that speci�cation; and

� it halts whenever it is started in a state satisfying the input condition
'.

The input/output speci�cation imposes no requirements when the input
state does not satisfy the input condition '|the programmight as well loop
in�nitely or erase memory. This is the \garbage in, garbage out" philosophy.
If we really do care what the program does on some of those input states,
then we had better rewrite the input condition to include them and say
formally what we want to happen in those cases.

For example, in the gcd program of Example 1, the output condition  
might be the condition (i) stating that the output value of x is the gcd of
the input values of x and y. We can express this completely formally in
the language of �rst-order number theory. We may try to start o� with the
input speci�cation '0 = 1 (true); that is, no restrictions on the input state
at all. Unfortunately, if the initial value of y is 0 and x is negative, the �nal
value of x will be the same as the initial value, thus negative. If we expect
all gcds to be positive, this would be wrong. Another problematic situation
arises when the initial values of x and y are both 0; in this case the gcd is
not de�ned. Therefore, the program as written is not partially correct with
respect to the speci�cation '0;  .

We can remedy the situation by providing an input speci�cation that
rules out these troublesome input values. We can limit the input states to
those in which x and y are both nonnegative and not both zero by taking
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the input speci�cation

'1 = (x � 0 ^ y > 0) _ (x > 0 ^ y � 0):

The gcd program of Example 1 above would be partially correct with respect
to the speci�cation '1;  . It is also totally correct, since the program halts
on all inputs satisfying '1.
Perhaps we want to allow any input in which not both x and y are zero.

In that case, we should use the input speci�cation '2 = :(x = 0 ^ y = 0).
But then the program of Example 1 is not partially correct with respect to
'2;  ; we must amend the program to produce the correct (positive) gcd on
negative inputs.

1.5 Exogenous and Endogenous Logics

There are two main approaches to modal logics of programs: the exoge-
nous approach, exempli�ed by Dynamic Logic and its precursor Hoare Logic
[Hoare, 1969], and the endogenous approach, exempli�ed by Temporal Logic
and its precursor, the invariant assertions method of [Floyd, 1967]. A logic
is exogenous if its programs are explicit in the language. Syntactically, a
Dynamic Logic program is a well-formed expression built inductively from
primitive programs using a small set of program operators. Semantically, a
program is interpreted as its input/output relation. The relation denoted
by a compound program is determined by the relations denoted by its parts.
This aspect of compositionality allows analysis by structural induction.
The importance of compositionality is discussed in [van Emde Boas,

1978]. In Temporal Logic, the program is �xed and is considered part of the
structure over which the logic is interpreted. The current location in the
program during execution is stored in a special variable for that purpose,
called the program counter, and is part of the state along with the values
of the program variables. Instead of program operators, there are temporal
operators that describe how the program variables, including the program
counter, change with time. Thus Temporal Logic sacri�ces compositional-
ity for a less restricted formalism. We discuss Temporal Logic further in
Section 14.2.

2 PROPOSITIONAL DYNAMIC LOGIC (PDL)

Propositional Dynamic Logic (PDL) plays the same role in Dynamic Logic
that classical propositional logic plays in classical predicate logic. It de-
scribes the properties of the interaction between programs and propositions
that are independent of the domain of computation. Since PDL is a sub-
system of �rst-order DL, we can be sure that all properties of PDL that we
discuss in this section will also be valid in �rst-order DL.
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Since there is no domain of computation in PDL, there can be no notion
of assignment to a variable. Instead, primitive programs are interpreted as
arbitrary binary relations on an abstract set of states K. Likewise, primi-
tive assertions are just atomic propositions and are interpreted as arbitrary
subsets of K. Other than this, no special structure is imposed.

This level of abstraction may at �rst appear too general to say anything
of interest. On the contrary, it is a very natural level of abstraction at which
many fundamental relationships between programs and propositions can be
observed.

For example, consider the PDL formula

[�](' ^  ) $ [�]' ^ [�] :(4)

The left-hand side asserts that the formula ' ^  must hold after the ex-
ecution of program �, and the right-hand side asserts that ' must hold
after execution of � and so must  . The formula (4) asserts that these
two statements are equivalent. This implies that to verify a conjunction of
two postconditions, it suÆces to verify each of them separately. The asser-
tion (4) holds universally, regardless of the domain of computation and the
nature of the particular �, ', and  .

As another example, consider

[� ; �]' $ [�][�]':(5)

The left-hand side asserts that after execution of the composite program
� ; �, ' must hold. The right-hand side asserts that after execution of the
program �, [�]' must hold, which in turn says that after execution of �,
' must hold. The formula (5) asserts the logical equivalence of these two
statements. It holds regardless of the nature of �, �, and '. Like (4), (5)
can be used to simplify the veri�cation of complicated programs.

As a �nal example, consider the assertion

[�]p $ [�]p(6)

where p is a primitive proposition symbol and � and � are programs. If this
formula is true under all interpretations, then � and � are equivalent in the
sense that they behave identically with respect to any property expressible
in PDL or any formal system containing PDL as a subsystem. This is because
the assertion will hold for any substitution instance of (6). For example,
the two programs

� = if ' then  else Æ

� = if :' then Æ else 

are equivalent in the sense of (6).
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2.1 Syntax

Syntactically, PDL is a blend of three classical ingredients: propositional
logic, modal logic, and the algebra of regular expressions. There are several
versions of PDL, depending on the choice of program operators allowed. In
this section we will introduce the basic version, called regular PDL. Varia-
tions of this basic version will be considered in later sections.
The language of regular PDL has expressions of two sorts: propositions

or formulas ';  ; : : : and programs �; �; ; : : : . There are countably many
atomic symbols of each sort. Atomic programs are denoted a; b; c; : : : and
the set of all atomic programs is denoted �0. Atomic propositions are
denoted p; q; r; : : : and the set of all atomic propositions is denoted �0. The
set of all programs is denoted � and the set of all propositions is denoted
�. Programs and propositions are built inductively from the atomic ones
using the following operators:

Propositional operators:

! implication
0 falsity

Program operators:

; composition
[ choice
� iteration

Mixed operators:

[ ] necessity
? test

The de�nition of programs and propositions is by mutual induction. All
atomic programs are programs and all atomic propositions are propositions.
If ';  are propositions and �; � are programs, then

'!  propositional implication
0 propositional falsity
[�]' program necessity

are propositions and

� ; � sequential composition
� [ � nondeterministic choice
�� iteration
'? test

are programs. In more formal terms, we de�ne the set � of all programs
and the set � of all propositions to be the smallest sets such that
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� �0 � �

� �0 � �

� if ';  2 �, then '!  2 � and 0 2 �

� if �; � 2 �, then �;�, � [ �, and �� 2 �

� if � 2 � and ' 2 �, then [�]' 2 �

� if ' 2 � then '? 2 �:

Note that the inductive de�nitions of programs � and propositions � are
intertwined and cannot be separated. The de�nition of propositions de-
pends on the de�nition of programs because of the construct [�]', and the
de�nition of programs depends on the de�nition of propositions because of
the construct '?. Note also that we have allowed all formulas as tests. This
is the rich test version of PDL.
Compound programs and propositions have the following intuitive mean-

ings:

[�]' \It is necessary that after executing �, ' is true."

�;� \Execute �, then execute �."

� [ � \Choose either � or � nondeterministically and execute it."

�� \Execute � a nondeterministically chosen �nite number of
times (zero or more)."

'? \Test '; proceed if true, fail if false."

We avoid parentheses by assigning precedence to the operators: unary
operators, including [�], bind tighter than binary ones, and ; binds tighter
than [. Thus the expression

[�;�� [ �]' _  

should be read

([(�; (��)) [ (�)]') _  :

Of course, parentheses can always be used to enforce a particular parse of an
expression or to enhance readability. Also, under the semantics to be given
in the next section, the operators ; and [ will turn out to be associative, so
we may write � ; � ;  and �[ � [  without ambiguity. We often omit the
symbol ; and write the composition � ; � as ��.
The propositional operators ^, _, :, $, and 1 can be de�ned from !

and 0 in the usual way.
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The possibility operator < > is the modal dual of the necessity operator
[ ]. It is de�ned by

<�>'
def
= :[�]:':

The propositions [�]' and <�>' are read \box � '" and \diamond � ',"
respectively. The latter has the intuitive meaning, \There is a computation
of � that terminates in a state satisfying '."
One important di�erence between < > and [ ] is that <�>' implies that

� terminates, whereas [�]' does not. Indeed, the formula [�]0 asserts
that no computation of � terminates, and the formula [�]1 is always true,
regardless of �.
In addition, we de�ne

skip
def
= 1?

fail
def
= 0?

if '1 ! �1 j � � � j 'n ! �n �
def
= '1?;�1 [ � � � [ 'n?;�n

do '1 ! �1 j � � � j 'n ! �n od
def
= (

n[
i=1

'i?;�i)
�; (

n̂

i=1

:'i)?

if ' then � else �
def
= if '! � j :'! � �

= '?;� [ :'?;�

while ' do �
def
= do '! � od

= ('?;�)�;:'?

repeat � until '
def
= �;while :' do �

= �; (:'?;�)�;'?

f'g � f g
def
= '! [�] :

The programs skip and fail are the program that does nothing (no-
op) and the failing program, respectively. The ternary if-then-else op-
erator and the binary while-do operator are the usual conditional and
while loop constructs found in conventional programming languages. The
constructs if-j-� and do-j-od are the alternative guarded command and it-
erative guarded command constructs, respectively. The construct f'g�f g
is the Hoare partial correctness assertion. We will argue later that the for-
mal de�nitions of these operators given above correctly model their intuitive
behavior.

2.2 Semantics

The semantics of PDL comes from the semantics for modal logic. The
structures over which programs and propositions of PDL are interpreted
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are called Kripke frames in honor of Saul Kripke, the inventor of the formal
semantics of modal logic. A Kripke frame is a pair

K = (K; mK);

where K is a set of elements u; v; w; : : : called states and mK is a meaning
function assigning a subset of K to each atomic proposition and a binary
relation on K to each atomic program. That is,

mK(p) � K; p 2 �0

mK(a) � K �K; a 2 �0:

We will extend the de�nition of the function mK by induction below to give
a meaning to all elements of � and � such that

mK(') � K; ' 2 �
mK(�) � K �K; � 2 �:

Intuitively, we can think of the set mK(') as the set of states satisfying the
proposition ' in the model K, and we can think of the binary relation mK(�)
as the set of input/output pairs of states of the program �.
Formally, the meanings mK(') of ' 2 � and mK(�) of � 2 � are de�ned

by mutual induction on the structure of ' and �. The basis of the induction,
which speci�es the meanings of the atomic symbols p 2 �0 and a 2 �0, is
already given in the speci�cation of K. The meanings of compound propo-
sitions and programs are de�ned as follows.

mK('!  )
def
= (K �mK(')) [mK( )

mK(0)
def
= ?

mK([�]')
def
= K � (mK(�) Æ (K �mK(')))

= fu j 8v 2 K if (u; v) 2 mK(�) then v 2 mK(')g

mK(�;�)
def
= mK(�) ÆmK(�)(7)

= f(u; v) j 9w 2 K (u;w) 2 mK(�) and (w; v) 2 mK(�)g

mK(� [ �)
def
= mK(�) [mK(�)

mK(�
�)

def
= mK(�)

� =
[
n�0

mK(�)
n(8)

mK('?)
def
= f(u; u) j u 2 mK(')g:

The operator Æ in (7) is relational composition. In (8), the �rst occurrence
of � is the iteration symbol of PDL, and the second is the reexive transitive
closure operator on binary relations. Thus (8) says that the program �� is
interpreted as the reexive transitive closure of mK(�).
We write K; u � ' and u 2 mK(') interchangeably, and say that u satis�es

' in K, or that ' is true at state u in K. We may omit the K and write u � '
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when K is understood. The notation u 2 ' means that u does not satisfy
', or in other words that u 62 mK('). In this notation, we can restate the
de�nition above equivalently as follows:

u � '!  
def
() u � ' implies u �  

u 2 0

u � [�]'
def
() 8v if (u; v) 2 mK(�) then v � '

(u; v) 2 mK(��)
def
() 9w (u;w) 2 mK(�) and (w; v) 2 mK(�)

(u; v) 2 mK(� [ �)
def
() (u; v) 2 mK(�) or (u; v) 2 mK(�)

(u; v) 2 mK(�
�)

def
() 9n � 0 9u0; : : : ; un u = u0; v = un;

and (ui; ui+1) 2 mK(�); 0 � i � n� 1

(u; v) 2 mK('?)
def
() u = v and u � ':

The de�ned operators inherit their meanings from these de�nitions:

mK(' _  )
def
= mK(') [mK( )

mK(' ^  )
def
= mK(') \mK( )

mK(:')
def
= K �mK(')

mK(<�>')
def
= fu j 9v 2 K (u; v) 2 mK(�) and v 2 mK(')g

= mK(�) ÆmK(')

mK(1)
def
= K

mK(skip)
def
= mK(1?) = �; the identity relation

mK(fail)
def
= mK(0?) = ?:

In addition, the if-then-else, while-do, and guarded commands inherit
their semantics from the above de�nitions, and the input/output relations
given by the formal semantics capture their intuitive operational meanings.
For example, the relation associated with the program while ' do � is the
set of pairs (u; v) for which there exist states u0; u1; : : : ; un, n � 0, such
that u = u0, v = un, ui 2 mK(') and (ui; ui+1) 2 mK(�) for 0 � i < n, and
un 62 mK(').
This version of PDL is usually called regular PDL and the elements of

� are called regular programs because of the primitive operators [, ;, and
�, which are familiar from regular expressions. Programs can be viewed
as regular expressions over the atomic programs and tests. In fact, it can
be shown that if p is an atomic proposition symbol, then any two test-free
programs �; � are equivalent as regular expressions|that is, they represent
the same regular set|if and only if the formula <�>p$ <�>p is valid.
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EXAMPLE 2. Let p be an atomic proposition, let a be an atomic program,
and let K = (K; mK) be a Kripke frame with

K = fu; v; wg

mK(p) = fu; vg

mK(a) = f(u; v); (u;w); (v; w); (w; v)g:

The following diagram illustrates K.

s s

s

u v

w

�
�

�
�p

�
�
�
�7

-S
S
S
So

w
a

a a

In this structure, u � <a>:p^<a>p, but v � [a]:p and w � [a]p. Moreover,
every state of K satis�es the formula

<a�>[(aa)�]p ^ <a�>[(aa)�]:p:

2.3 Computation Sequences

Let � be a program. Recall from Section 1.3 that a �nite computation
sequence of � is a �nite-length string of atomic programs and tests rep-
resenting a possible sequence of atomic steps that can occur in a halting
execution of �. These strings are called seqs and are denoted �; �; : : : . The
set of all such sequences is denoted CS (�). We use the word \possible" here
loosely|CS(�) is determined by the syntax of � alone, and may contain
strings that are never executed in any interpretation. The formal de�nition
of CS (�) was given in Section 1.3.
Note that each �nite computation sequence � of a program � is itself

a program, and CS (�) = f�g. Moreover, the following proposition is not
diÆcult to prove by induction on the structure of �:

PROPOSITION 3.

mK(�) =
[

�2CS(�)

mK(�):

2.4 Satis�ability and Validity

The de�nitions of satis�ability and validity of propositions come from modal
logic. Let K = (K; mK) be a Kripke frame and let ' be a proposition. We
have de�ned in Section 2.2 what it means for K; u � '. If K; u � ' for some
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u 2 K, we say that ' is satis�able in K. If ' is satis�able in some K, we say
that ' is satis�able.
If K; u � ' for all u 2 K, we write K � ' and say that ' is valid in K. If

K � ' for all Kripke frames K, we write � ' and say that ' is valid.
If � is a set of propositions, we write K � � if K � ' for all ' 2 �. A

proposition  is said to be a logical consequence of � if K �  whenever
K � �, in which case we write � �  . (Note that this is not the same as
saying that K; u �  whenever K; u � �.) We say that an inference rule

'1; : : : ; 'n
'

is sound if ' is a logical consequence of f'1; : : : ; 'ng.
Satis�ability and validity are dual in the same sense that 9 and 8 are

dual and < > and [ ] are dual: a proposition is valid (in K) if and only if its
negation is not satis�able (in K).

EXAMPLE 4. Let p; q be atomic propositions, let a; b be atomic programs,
and let K = (K;mK) be a Kripke frame with

K = fs; t; u; vg

mK(p) = fu; vg

mK(q) = ft; vg

mK(a) = f(t; v); (v; t); (s; u); (u; s)g

mK(b) = f(u; v); (v; u); (s; t); (t; s)g:

The following �gure illustrates K.
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The following formulas are valid in K.

p $ [(ab�a)�]p

q $ [(ba�b)�]q:

Also, let � be the program

� = (aa [ bb [ (ab [ ba)(aa [ bb)�(ab [ ba))�:

Thinking of � as a regular expression, � generates all words over the alpha-
bet fa; bg with an even number of occurrences of each of a and b. It can be
shown that for any proposition ', the proposition '$ [�]' is valid in K.
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EXAMPLE 5. The formula

p ^ [a�]((p! [a]:p) ^ (:p! [a]p)) $ [(aa)�]p ^ [a(aa)�]:p

is valid. Both sides assert in di�erent ways that p is alternately true and
false along paths of execution of the atomic program a.

2.5 Basic Properties

THEOREM 6. The following are valid formulas of PDL:

(i) <�>(' _  ) $ <�>' _ <�> 

(ii) [�](' ^  ) $ [�]' ^ [�] 

(iii) <�>' ^ [�] ! <�>(' ^  )

(iv) [�]('!  ) ! ([�]'! [�] )

(v) <�>(' ^  ) ! <�>' ^ <�> 

(vi) [�]' _ [�] ! [�](' _  )

(vii) <�>0 $ 0

(viii) [�]' $ :<�>:'.

(ix) <� [ �>' $ <�>' _ <�>'

(x) [� [ �]' $ [�]' ^ [�]'

(xi) <� ; �>' $ <�><�>'

(xii) [� ; �]' $ [�][�]'

(xiii) <'?> $ (' ^  )

(xiv) ['?] $ ('!  ).

THEOREM 7. The following are sound rules of inference of PDL:

(i) Modal generalization (GEN):

'

[�]'

(ii) Monotonicity of <�>:

'!  

<�>'! <�> 
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(iii) Monotonicity of [�]:

'!  

[�]'! [�] 

The converse operator � is a program operator with semantics

mK(�
�) = mK(�)

� = f(v; u) j (u; v) 2 mK(�)g:

Intuitively, the converse operator allows us to \run a program backwards;"
semantically, the input/output relation of the program �� is the output/input
relation of �. Although this is not always possible to realize in practice, it is
nevertheless a useful expressive tool. For example, it gives us a convenient
way to talk about backtracking, or rolling back a computation to a previous
state.

THEOREM 8. For any programs � and �,

(i) mK((� [ �)
�) = mK(�

� [ ��)

(ii) mK((� ; �)
�) = mK(�

� ; ��)

(iii) mK('?
�) = mK('?)

(iv) mK(�
��) = mK(�

��)

(v) mK(�
��) = mK(�).

THEOREM 9. The following are valid formulas of PDL:

(i) ' ! [�]<��>'

(ii) ' ! [��]<�>'

(iii) <�>[��]' ! '

(iv) <��>[�]' ! '.

The iteration operator � is interpreted as the reexive transitive closure
operator on binary relations. It is the means by which iteration is coded in
PDL. This operator di�ers from the other operators in that it is in�nitary
in nature, as reected by its semantics:

mK(�
�) = mK(�)

� =
[
n<!

mK(�)
n

(see Section 2.2). This introduces a level of complexity to PDL beyond the
other operators. Because of it, PDL is not compact: the set

f<��>'g [ f:'; :<�>'; :<�2>'; : : : g(9)
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is �nitely satis�able but not satis�able. Because of this in�nitary behavior,
it is rather surprising that PDL should be decidable and that there should
be a �nitary complete axiomatization.

The properties of the � operator of PDL come directly from the properties
of the reexive transitive closure operator � on binary relations. In a nut-
shell, for any binary relation R, R� is the � -least reexive and transitive
relation containing R.

THEOREM 10. The following are valid formulas of PDL:

(i) [��]' ! '

(ii) ' ! <��>'

(iii) [��]' ! [�]'

(iv) <�>' ! <��>'

(v) [��]' $ [����]'

(vi) <��>' $ <����>'

(vii) [��]' $ [���]'

(viii) <��>' $ <���>'

(ix) [��]' $ ' ^ [�][��]'.

(x) <��>' $ ' _ <�><��>'.

(xi) [��]' $ ' ^ [��]('! [�]').

(xii) <��>' $ ' _ <��>(:' ^ <�>').

Semantically, �� is a reexive and transitive relation containing �, and
Theorem 10 captures this. That �� is reexive is captured in (ii); that it
is transitive is captured in (vi); and that it contains � is captured in (iv).
These three properties are captured by the single property (x).

Reexive Transitive Closure and Induction

To prove properties of iteration, it is not enough to know that �� is a
reexive and transitive relation containing �. So is the universal relation
K�K, and that is not very interesting. We also need some way of capturing
the idea that �� is the least reexive and transitive relation containing �.
There are several equivalent ways this can be done:
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(RTC) The reexive transitive closure rule:

(' _ <�> )!  

<��>'!  

(LI) The loop invariance rule:

 ! [�] 

 ! [��] 

(IND) The induction axiom (box form):

' ^ [��]('! [�]') ! [��]'

(IND) The induction axiom (diamond form):

<��>' ! ' _ <��>(:' ^ <�>')

The rule (RTC) is called the reexive transitive closure rule. Its importance
is best described in terms of its relationship to the valid PDL formula of
Theorem 10(x). Observe that the right-to-left implication of this formula is
obtained by substituting <��>' for R in the expression

' _ <�>R ! R:(10)

Theorem 10(x) implies that <��>' is a solution of (10); that is, (10) is valid
when <��>' is substituted for R. The rule (RTC) says that <��>' is the
least such solution with respect to logical implication. That is, it is the least
PDL-de�nable set of states that when substituted for R in (10) results in a
valid formula.
The dual propositions labeled (IND) are jointly called the PDL induction

axiom. Intuitively, the box form of (IND) says, \If ' is true initially, and if,
after any number of iterations of the program �, the truth of ' is preserved
by one more iteration of �, then ' will be true after any number of iterations
of �." The diamond form of (IND) says, \If it is possible to reach a state
satisfying ' in some number of iterations of �, then either ' is true now, or
it is possible to reach a state in which ' is false but becomes true after one
more iteration of �."
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Note that the box form of (IND) bears a strong resemblance to the in-
duction axiom of Peano arithmetic:

'(0) ^ 8n ('(n)! '(n+ 1)) ! 8n '(n):

Here '(0) is the basis of the induction and 8n ('(n) ! '(n + 1)) is the
induction step, from which the conclusion 8n '(n) can be drawn. In the
PDL axiom (IND), the basis is ' and the induction step is [��]('! [�]'),
from which the conclusion [��]' can be drawn.

2.6 Encoding Hoare Logic

The Hoare partial correctness assertion f'g� f g is encoded as '! [�] 
in PDL. The following theorem says that under this encoding, Dynamic
Logic subsumes Hoare Logic.

THEOREM 11. The following rules of Hoare Logic are derivable in PDL:

(i) Composition rule:

f'g � f�g; f�g � f g

f'g � ; � f g

(ii) Conditional rule:

f' ^ �g � f g; f:' ^ �g � f g

f�g if ' then � else � f g

(iii) While rule:

f' ^  g � f g

f gwhile ' do � f:' ^  g

(iv) Weakening rule:

'0 ! '; f'g � f g;  !  0

f'0g � f 0g
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3 FILTRATION AND DECIDABILITY

The small model property for PDL says that if ' is satis�able, then it is
satis�ed at a state in a Kripke frame with no more than 2j'j states, where
j'j is the number of symbols of '. This result and the technique used to
prove it, called �ltration, come directly from modal logic. This immedi-
ately gives a naive decision procedure for the satis�ability problem for PDL:
to determine whether ' is satis�able, construct all Kripke frames with at
most 2j'j states and check whether ' is satis�ed at some state in one of
them. Considering only interpretations of the primitive formulas and prim-

itive programs appearing in ', there are roughly 22
j'j

such models, so this
algorithm is too ineÆcient to be practical. A more eÆcient algorithm will
be described in Section 5.

3.1 The Fischer{Ladner Closure

Many proofs in simpler modal systems use induction on the well-founded
subformula relation. In PDL, the situation is complicated by the simultane-
ous inductive de�nitions of programs and propositions and by the behavior
of the � operator, which make the induction proofs somewhat tricky. Never-
theless, we can still use the well-founded subexpression relation in inductive
proofs. Here an expression can be either a program or a proposition. Either
one can be a subexpression of the other because of the mixed operators [ ]

and ?.
We start by de�ning two functions

FL : � ! 2�

FL2 : f[�]' j � 2 	; ' 2 �g ! 2�

by simultaneous induction. The set FL(') is called the Fischer{Ladner
closure of '. The �ltration construction for PDL uses the Fischer{Ladner
closure of a given formula where the corresponding proof for propositional
modal logic would use the set of subformulas.
The functions FL and FL2 are de�ned inductively as follows:

(a) FL(p)
def
= fpg, p an atomic proposition

(b) FL('!  )
def
= f'!  g [ FL(') [ FL( )

(c) FL(0)
def
= f0g

(d) FL([�]')
def
= FL2([�]') [ FL(')

(e) FL2([a]')
def
= f[a]'g, a an atomic program
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(f) FL2([� [ �]')
def
= f[� [ �]'g [ FL2([�]') [ FL2([�]')

(g) FL2([� ; �]')
def
= f[� ; �]'g [ FL2([�][�]') [ FL2([�]')

(h) FL2([��]')
def
= f[��]'g [ FL2([�][��]')

(i) FL2([ ?]')
def
= f[ ?]'g [ FL( ).

This de�nition is apparently quite a bit more involved than for mere subex-
pressions. In fact, at �rst glance it may appear circular because of the rule
(h). The auxiliary function FL2 is introduced for the express purpose of
avoiding any such circularity. It is de�ned only for formulas of the form
[�]' and intuitively produces those elements of FL([�]') obtained by
breaking down � and ignoring '.

LEMMA 12.

(i) If [�] 2 FL('), then  2 FL(').

(ii) If [�?] 2 FL('), then � 2 FL(').

(iii) If [� [ �] 2 FL('), then [�] 2 FL(') and [�] 2 FL(').

(iv) If [� ; �] 2 FL('), then [�][�] 2 FL(') and [�] 2 FL(').

(v) If [��] 2 FL('), then [�][��] 2 FL(').

Even after convincing ourselves that the de�nition is noncircular, it may
not be clear how the size of FL(') depends on the length of '. Indeed,
the right-hand side of rule (h) involves a formula that is larger than the
formula on the left-hand side. However, it can be shown by induction on
subformulas that the relationship is linear:

LEMMA 13.

(i) For any formula ', #FL(') � j'j.

(ii) For any formula [�]', #FL2([�]') � j�j.

3.2 Filtration

Given a PDL proposition ' and a Kripke frame K = (K; mK), we de�ne a
new frame K=FL(') = (K=FL('); mK=FL(')), called the �ltration of K by
FL('), as follows. De�ne a binary relation � on states of K by:

u � v
def
() 8 2 FL(') (u 2 mK( ), v 2 mK( )):
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In other words, we collapse states u and v if they are not distinguishable by
any formula of FL('). Let

[u]
def
= fv j v � ug

K=FL(')
def
= f[u] j u 2 Kg

mK=FL(')(p)
def
= f[u] j u 2 mK(p)g; p an atomic proposition

mK=FL(')(a)
def
= f([u]; [v]) j (u; v) 2 mK(a)g; a an atomic program.

The map mK=FL(') is extended inductively to compound propositions and
programs as described in Section 2.2.
The following key lemma relates K and K=FL('). Most of the diÆculty in

the following lemma is in the correct formulation of the induction hypotheses
in the statement of the lemma. Once this is done, the proof is a fairly
straightforward induction on the well-founded subexpression relation.

LEMMA 14 (Filtration Lemma). Let K be a Kripke frame and let u; v be
states of K.

(i) For all  2 FL('), u 2 mK( ) i� [u] 2 mK=FL(')( ).

(ii) For all [�] 2 FL('),

(a) if (u; v) 2 mK(�) then ([u]; [v]) 2 mK=FL(')(�);

(b) if ([u]; [v]) 2 mK=FL(')(�) and u 2 mK([�] ), then v 2 mK( ).

Using the �ltration lemma, we can prove the small model theorem easily.

THEOREM 15 (Small Model Theorem). Let ' be a satis�able formula of
PDL. Then ' is satis�ed in a Kripke frame with no more than 2j'j states.

Proof. If ' is satis�able, then there is a Kripke frame K and state u 2 K
with u 2 mK('). Let FL(') be the Fischer-Ladner closure of '. By the
�ltration lemma (Lemma 14), [u] 2 mK=FL(')('). Moreover, K=FL(') has
no more states than the number of truth assignments to formulas in FL('),
which by Lemma 13(i) is at most 2j'j. �

It follows immediately that the satis�ability problem for PDL is decidable,
since there are only �nitely many possible Kripke frames of size at most 2j'j

to check, and there is a polynomial-time algorithm to check whether a given
formula is satis�ed at a given state in a given Kripke frame. A more eÆcient
algorithm exists (see Section 5).
The completeness proof for PDL also makes use of the �ltration lemma

(Lemma 14), but in a somewhat stronger form. We need to know that it
also holds for nonstandard Kripke frames as well as the standard Kripke
frames de�ned in Section 2.2.
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A nonstandard Kripke frame is any structure N = (N;mN) that is a
Kripke frame in the sense of Section 2.2 in every respect, except thatmN(�

�)
need not be the reexive transitive closure of mN(�), but only a reexive,
transitive binary relation containing mN(�) satisfying the PDL axioms for
� (Axioms 17(vii) and (viii) of Section 4.1).

LEMMA 16 (Filtration for Nonstandard Models). Let N be a nonstandard
Kripke frame and let u; v be states of N.

(i) For all  2 FL('), u 2 mN( ) i� [u] 2 mN=FL(')( ).

(ii) For all [�] 2 FL('),

(a) if (u; v) 2 mN(�) then ([u]; [v]) 2 mN=FL(')(�);

(b) if ([u]; [v]) 2 mN=FL(')(�) and u 2 mN([�] ), then v 2 mN( ).

4 DEDUCTIVE COMPLETENESS OF PDL

4.1 A Deductive System

The following list of axioms and rules constitutes a sound and complete
Hilbert-style deductive system for PDL.

Axiom System 17.

(i) Axioms for propositional logic

(ii) [�]('!  ) ! ([�]'! [�] )

(iii) [�](' ^  ) $ [�]' ^ [�] 

(iv) [� [ �]' $ [�]' ^ [�]'

(v) [� ; �]' $ [�][�]'

(vi) [ ?]' $ ( ! ')

(vii) ' ^ [�][��]' $ [��]'

(viii) ' ^ [��]('! [�]') ! [��]'

In PDL with converse �, we also include

(ix) ' ! [�]<��>'

(x) ' ! [��]<�>'
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Rules of Inference

(MP)
'; '!  

 

(GEN)
'

[�]'

2

The axioms (ii) and (iii) and the two rules of inference are not particular
to PDL, but come from modal logic. The rules (MP) and (GEN) are called
modus ponens and (modal) generalization, respectively.

Axiom (viii) is called the PDL induction axiom. Intuitively, (viii) says:
\Suppose ' is true in the current state, and suppose that after any number
of iterations of �, if ' is still true, then it will be true after one more iteration
of �. Then ' will be true after any number of iterations of �." In other
words, if ' is true initially, and if the truth of ' is preserved by the program
�, then ' will be true after any number of iterations of �.

We write ` ' if the proposition ' is a theorem of this system, and say
that ' is consistent if 0 :'; that is, if it is not the case that ` :'. A set
� of propositions is consistent if all �nite conjunctions of elements of � are
consistent.

The soundness of these axioms and rules over Kripke frames can be es-
tablished by elementary arguments in relational algebra using the semantics
of Section 2.2.

We write ` ' if the formula ' is provable in this deductive system. A
formula ' is consistent if 0 :', that is, if it is not the case that ` :'; that
a �nite set � of formulas is consistent if its conjunction

V
� is consistent;

and that an in�nite set of formulas is consistent if every �nite subset is
consistent.

Axiom System 17 is complete: all valid formulas of PDL are theorems.
This fact can be proved by constructing a nonstandard Kripke frame from
maximal consistent sets of formulas, then using the �ltration lemma for
nonstandard models (Lemma 16) to collapse this nonstandard model to a
�nite standard model.

THEOREM 18 (Completeness of PDL). If � ' then ` '.

In classical logics, a completeness theorem of the form of Theorem 18 can
be adapted to handle the relation of logical consequence ' j=  between
formulas because of the deduction theorem, which says

' `  , ` '!  :

Unfortunately, the deduction theorem fails in PDL, as can be seen by tak-
ing  = [a]p and ' = p. However, the following result allows Theorem
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18, as well as the deterministic exponential-time satis�ability algorithm de-
scribed in the next section, to be extended to handle the logical consequence
relation:

THEOREM 19. Let ' and  be any PDL formulas. Then

' j=  , j= [(a1 [ � � � [ an)
�]'!  ;

where a1; : : : ; an are all atomic programs appearing in ' or  . Allowing
in�nitary conjunctions, if � is a set of formulas in which only �nitely many
atomic programs appear, then

� j=  , j=
^
f[(a1 [ � � � [ an)

�]' j ' 2 �g !  ;

where a1; : : : ; an are all atomic programs appearing in � or  .

5 COMPLEXITY OF PDL

The small model theorem (Theorem 15) gives a naive deterministic algo-
rithm for the satis�ability problem: construct all Kripke frames of at most
2j'j states and check whether ' is satis�ed at any state in any of them.
Although checking whether a given formula is satis�ed in a given state of
a given Kripke frame can be done quite eÆciently, the naive satis�ability
algorithm is highly ineÆcient. For one thing, the models constructed are
of exponential size in the length of the given formula; for another, there

are 22
O(j'j)

of them. Thus the naive satis�ability algorithm takes double
exponential time in the worst case.

There is a more eÆcient algorithm [Pratt, 1979b] that runs in determinis-
tic single-exponential time. One cannot expect to improve this signi�cantly
due to a corresponding lower bound.

THEOREM 20. There is an exponential-time algorithm for deciding whether
a given formula of PDL is satis�able.

THEOREM 21. The satis�ability problem for PDL is EXPTIME-complete.

COROLLARY 22. There is a constant c > 1 such that the satis�ability
problem for PDL is not solvable in deterministic time cn= logn, where n is
the size of the input formula.

EXPTIME -hardness can be established by constructing a formula of PDL
whose models encode the computation of a given linear-space-bounded one-
tape alternating Turing machineM on a given input x of length n overM 's
input alphabet. Since the membership problem for alternating polynomial-
space machines is EXPTIME -hard [Chandra et al., 1981], so is the satis�-
ability problem for PDL.
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It is interesting to compare the complexity of satis�ability in PDL with the
complexity of satis�ability in propositional logic. In the latter, satis�ability
is NP -complete; but at present it is not known whether the two complexity
classes EXPTIME and NP di�er. Thus, as far as current knowledge goes,
the satis�ability problem is no easier in the worst case for propositional logic
than for its far richer superset PDL.

As we have seen, current knowledge does not permit a signi�cant di�er-
ence to be observed between the complexity of satis�ability in propositional
logic and in PDL. However, there is one easily veri�ed and important be-
havioral di�erence: propositional logic is compact , whereas PDL is not.

Compactness has signi�cant implications regarding the relation of logical
consequence. If a propositional formula ' is a consequence of a set � of
propositional formulas, then it is already a consequence of some �nite subset
of �; but this is not true in PDL.

Recall that we write � � ' and say that ' is a logical consequence of � if
' satis�ed in any state of any Kripke frame K all of whose states satisfy all
the formulas of �. That is, if K � �, then K � '.

An alternative intepretation of logical consequence, not equivalent to
the above, is that in any Kripke frame, the formula ' holds in any state
satisfying all formulas in �. Allowing in�nite conjunctions, we might write
this as �

V
�! '. This is not the same as � � ', since �

V
�! ' implies

� � ', but not necessarily vice versa. A counterexample is provided by
� = fpg and ' = [a]p. However, if � contains only �nitely many atomic
programs, we can reduce the problem � � ' to the problem �

V
�0 ! ' for

a related �0, as shown in Theorem 19.

Under either interpretation, compactness fails:

THEOREM 23. There is an in�nite set of formulas � and a formula ' such
that �

V
� ! ' (hence � � '), but for no proper subset �0 � � is it the

case that �0 � ' (hence neither is it the case that �
V
�0 ! ').

As shown in Theorem 19, logical consequences � � ' for �nite � are no
more diÆcult to decide than validity of single formulas. But what if � is
in�nite? Here compactness is the key factor. If � is an r.e. set and the logic
is compact, then the consequence problem is r.e.: to check whether � � ',
the �nite subsets of � can be e�ectively enumerated, and checking � � '
for �nite � is a decidable problem.

Since compactness fails in PDL, this observation does us no good, even
when � is known to be recursively enumerable. However, the following
result shows that the situation is much worse than we might expect: even
if � is taken to be the set of substitution instances of a single formula of
PDL, the consequence problem becomes very highly undecidable. This is a
rather striking manifestation of PDL's lack of compactness.
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Let ' be a given formula. The set S' of substitution instances of ' is
the set of all formulas obtained by substituting a formula for each atomic
proposition appearing in '.

THEOREM 24. The problem of deciding whether S' �  is �1
1-complete.

The problem is �1
1-hard even for a particular �xed '.

6 NONREGULAR PDL

In this section we enrich the class of regular programs in PDL by introducing
programs whose control structure requires more than a �nite automaton.
For example, the class of context-free programs requires a pushdown au-
tomaton (PDA), and moving up from regular to context-free programs is
really going from iterative programs to ones with parameterless recursive
procedures. Several questions arise when enriching the class of programs
of PDL, such as whether the expressive power of the logic grows, and if
so whether the resulting logics are still decidable. It turns out that any
nonregular program increases PDL's expressive power and that the validity
problem for PDL with context-free programs is undecidable. The bulk of
the section is then devoted to the diÆcult problem of trying to characterize
the borderline between decidable and undecidable extensions. On the one
hand, validity for PDL with the addition of even a single extremely simple
nonregular program is already �1

1-complete; but on the other hand, when
we add another equally simple program, the problem remains decidable.
Besides these results, which pertain to very speci�c extensions, we discuss
some broad decidability results that cover many languages, including some
that are not even context-free. Since no similarly general undecidability
results are known, we also address the weaker issue of whether nonregular
extensions admit the �nite model property and present a negative result
that covers many cases.

6.1 Nonregular Programs

Consider the following self-explanatory program:

while p do a ; now do b the same number of times(11)

This program is meant to represent the following set of computation se-
quences:

f(p? ; a)i ; :p? ; bi j i � 0g:

Viewed as a language over the alphabet fa; b; p;:pg, this set is not regular,
thus cannot be programmed in PDL. However, it can be represented by the
following parameterless recursive procedure:
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proc V f
if p then f a ; call V ; b g
else return
g

The set of computation sequences of this program is captured by the context-
free grammar

V ! :p? j p?aV b:

We are thus led to the idea of allowing context-free programs inside the
boxes and diamonds of PDL. From a pragmatic point of view, this amounts
to extending the logic with the ability to reason about parameterless recur-
sive procedures. The particular representation of the context-free programs
is unimportant; we can use pushdown automata, context-free grammars, re-
cursive procedures, or any other formalism that can be e�ectively translated
into these.
In the rest of this section, a number of speci�c programs will be of interest,

and we employ special abbreviations for them. For example, we de�ne:

a�ba�
def
= faibai j i � 0g

a�b�
def
= faibi j i � 0g

b�a�
def
= fbiai j i � 0g:

Note that a�b� is really just a nondeterministic version of the program
(11) in which there is simply no p to control the iteration. In fact, (11)
could have been written in this notation as (p?a)�:p?b�.2 In programming
terms, we can compare the regular program (ab)� with the nonregular one
a�b� by observing that if a is \purchase a loaf of bread" and b is \pay
$1.00," then the former program captures the process of paying for each
loaf when purchased, while the latter one captures the process of paying for
them all at the end of the month.
It turns out that enriching PDL with even a single arbitrary nonregular

program increases expressive power.
If L is any language over atomic programs and tests, then PDL + L is

de�ned exactly as PDL, but with the additional syntax rule stating that for
any formula ', the expression <L>' is a new formula. The semantics of
PDL+ L is like that of PDL with the addition of the clause

mK(L)
def
=

[
�2L

mK(�):

2It is noteworthy that the results of this section do not depend on nondeterminism.
For example, the negative Theorem 28 holds for the deterministic version (11) too. Also,
most of the results in this section involve nonregular programs over atomic programs
only, but can be generalized to allow tests as well.
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Note that PDL + L does not allow L to be used as a formation rule for
new programs or to be combined with other programs. It is added to the
programming language as a single new stand-alone program only.
If PDL1 and PDL2 are two extensions of PDL, we say that PDL1 is as

expressive as PDL2 if for each formula ' of PDL2 there is a formula  of
PDL1 such that � '$  . If PDL1 is as expressive as PDL2 but PDL2 is not
as expressive as PDL1, we say that PDL1 is strictly more expressive than
PDL2.
Thus, one version of PDL is strictly more expressive than another if any-

thing the latter can express the former can too, but there is something the
former can express that the latter cannot.
A language is test-free if it is a subset of ��0 ; that is, if its seqs contain

no tests.

THEOREM 25. If L is any nonregular test-free language, then PDL+L is
strictly more expressive than PDL.

We can view the decidability of regular PDL as showing that propositional-
level reasoning about iterative programs is computable. We now wish to
know if the same is true for recursive procedures. We de�ne context-free
PDL to be PDL extended with context-free programs, where a context-free
program is one whose seqs form a context-free language. The precise syntax
is unimportant, but for de�niteness we might take as programs the set of
context-free grammars G over atomic programs and tests and de�ne

mK(G)
def
=

[
�2CS(G)

mK(�);

where CS (G) is the set of computation sequences generated by G as de-
scribed in Section 1.3.

THEOREM 26. The validity problem for context-free PDL is undecidable.

Theorem 26 leaves several interesting questions unanswered. What is the
level of undecidability of context-free PDL? What happens if we want to
add only a small number of speci�c nonregular programs? The �rst of these
questions arises from the fact that the equivalence problem for context-free
languages is co-r.e.-complete, or complete for �0

1 in the arithmetic hierarchy.
Hence, all Theorem 26 shows is that the validity problem for context-free
PDL is �0

1-hard, while it might in fact be worse. The second question is far
more general. We might be interested in reasoning only about determin-
istic or linear context-free programs,3 or we might be interested only in a
few special context-free programs such as a�ba� or a�b�. Perhaps PDL

3A linear program is one whose seqs are generated by a context-free grammar in
which there is at most one nonterminal symbol on the right-hand side of each rule. This
corresponds to a family of recursive procedures in which there is at most one recursive
call in each procedure.
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remains decidable when these programs are added. The general question
is to determine the borderline between the decidable and the undecidable
when it comes to enriching the class of programs allowed in PDL.
Interestingly, if we wish to consider such simple nonregular extensions

as PDL + a�ba� or PDL + a�b�, we will not be able to prove undecid-
ability by the technique used for context-free PDL in Theorem 26, since
standard problems that are undecidable for context-free languages, such as
equivalence and inclusion, are decidable for classes containing the regular
languages and the likes of a�ba� and a�b�. Moreover, we cannot prove
decidability by the technique used for PDL in Section 3.2, since logics like
PDL+a�ba� and PDL+a�b� do not enjoy the �nite model property. Thus,
if we want to determine the decidability status of such extensions, we will
have to work harder.

THEOREM 27. There is a satis�able formula in PDL + a�b� that is not
satis�ed in any �nite structure.

For PDL+ a�ba�, the news is worse than mere undecidability:

THEOREM 28. The validity problem for PDL+ a�ba� is �1
1-complete.

The �1
1 result holds also for PDL extended with the two programs a�b�

and b�a�.
It is easy to show that the validity problem for context-free PDL in its

entirety remains in �1
1. Together with the fact that a�ba� is a context-

free language, this yields an answer to the �rst question mentioned earlier:
context-free PDL is �1

1-complete. As to the second question, Theorem 28
shows that the high undecidability phenomenon starts occurring even with
the addition of one very simple nonregular program.
We now turn to nonregular programs over a single letter. Consider the

language of powers of 2:

a2
� def

= fa2
i

j i � 0g:

Here we have:

THEOREM 29. The validity problem for PDL+ a2
�
is undecidable.

It is actually possible to prove this result for powers of any �xed k � 2.
Thus PDL with the addition of any language of the form fak

i

j i � 0g for
�xed k � 2 is undecidable. Another class of one-letter extensions that has
been proven to be undecidable consists of Fibonacci-like sequences:

THEOREM 30. Let f0; f1 be arbitrary elements of N with f0 < f1, and let
F be the sequence f0; f1; f2; : : : generated by the recurrence fi = fi�1+fi�2

for i � 2. Let aF
def
= fafi j i � 0g. Then the validity problem for PDL+ aF

is undecidable.

In both these theorems, the fact that the sequences of a's in the pro-
grams grow exponentially is crucial to the proofs. Indeed, we know of no
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undecidability results for any one-letter extension in which the lengths of
the sequences of a's grow subexponentially. Particularly intriguing are the
cases of squares and cubes:

a�
2 def

= fai
2

j i � 0g;

a�
3 def

= fai
3

j i � 0g:

Are PDL+ a�
2

and PDL+ a�
3

undecidable?
There is a decidability result for a slightly restricted version of the squares

extension, which seems to indicate that the full unrestricted version PDL+
a�

2

is decidable too. However, we conjecture that for cubes the problem is
undecidable. Interestingly, several classical open problems in number theory
reduce to instances of the validity problem for PDL+a�

3

. For example, while
no one knows whether every integer greater than 10000 is the sum of �ve
cubes, the following formula is valid if and only if the answer is yes:

[(a�
3

)5]p ! [a10001a�]p:

(The 5-fold and 10001-fold iterations have to be written out in full, of

course.) If PDL+ a�
3

were decidable, then we could compute the answer in
a simple manner, at least in principle.

6.2 Decidable Extensions

We now turn to positive results. Theorem 27 states that PDL+ a�b� does
not have the �nite model property. Nevertheless, we have the following:

THEOREM 31. The validity problem for PDL+ a�b� is decidable.

When contrasted with Theorem 28, the decidability of PDL + a�b� is
very surprising. We have two of the simplest nonregular languages|a�ba�

and a�b�|which are extremely similar, yet the addition of one to PDL
yields high undecidability while the other leaves the logic decidable.
Theorem 31 was proved originally by showing that, although PDL+a�b�

does not always admit �nite models, it does admit �nite pushdown models,
in which transitions are labeled not only with atomic programs but also with
push and pop instructions for a particular kind of stack. A close study of
the proof (which relies heavily on the idiosyncrasies of the language a�b�)
suggests that the decidability or undecidability has to do with the manner
in which an automaton accepts the languages involved. For example, in
the usual way of accepting a�ba�, a pushdown automaton (PDA) reading
an a will carry out a push or a pop, depending upon its location in the
input word. However, in the standard way of accepting a�b�, the a's are
always pushed and the b's are always popped, regardless of the location; the
input symbol alone determines what the automaton does. More recent work,
which we now set out to describe, has yielded a general decidability result
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that con�rms this intuition. It is of special interest due to its generality,
since it does not depend on speci�c programs.
Let M = (Q; �; �; q0; z0; Æ) be a PDA that accepts by empty stack. We

say thatM is simple-minded if, whenever Æ(q; �; ) = (p; b), then for each q0

and 0, either Æ(q0; �; 0) = (p; b) or Æ(q0; �; 0) is unde�ned. A context-free
language is said to be simple-minded (a simple-minded CFL) if there exists
a simple-minded PDA that accepts it.
In other words, the action of a simple-minded automaton is determined

uniquely by the input symbol; the state and stack symbol are only used to
help determine whether the machine halts (rejecting the input) or continues.
Note that such an automaton is necessarily deterministic.
It is noteworthy that simple-minded PDAs accept a large fragment of the

context-free languages, including a�b� and b�a�, as well as all balanced
parenthesis languages (Dyck sets) and many of their intersections with reg-
ular languages.

THEOREM 32. If L is accepted by a simple-minded PDA, then PDL+L is
decidable.

We can obtain another general decidability result involving languages
accepted by deterministic stack automata. A stack automaton is a one-way
PDA whose head can travel up and down the stack reading its contents,
but can make changes only at the top of the stack. Stack automata can
accept non-context-free languages such as a�b�c� and its generalizations
a�1 a

�
2 : : : a

�
n for any n, as well as many variants thereof. It would be nice

to be able to prove decidability of PDL when augmented by any language
accepted by such a machine, but this is not known. What has been proven,
however, is that if each word in such a language is preceded by a new symbol
to mark its beginning, then the enriched PDL is decidable:

THEOREM 33. Let e 62 �0, and let L be a language over �0 that is accepted
by a deterministic stack automaton. If we let eL denote the language feu j
u 2 Lg, then PDL+ eL is decidable.

While Theorems 32 and 33 are general and cover many languages, they
do not prove decidability of PDL + a�b�c�, which may be considered the
simplest non-context-free extension of PDL. Nevertheless, the constructions
used in the proofs of the two general results have been combined to yield:

THEOREM 34. PDL+ a�b�c� is decidable.

As explained, we know of no undecidabile extension of PDL with a poly-
nomially growing language, although we conjecture that the cubes extension
is undecidable. Since the decidability status of such extensions seems hard
to determine, we now address a weaker notion: the presence or absence of
a �nite model property. The technique used in Theorem 27 to show that
PDL+ a�b� violates the �nite model property does not work for one-letter
alphabets. Nevertheless, we now state a general result leading to many one-
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letter extensions that violate the �nite model property. In particular, the
theorem will yield the following:

PROPOSITION 35 (squares and cubes). The logics PDL+ a�
2

and PDL+

a�
3

do not have the �nite model property.

PROPOSITION 36 (polynomials). For every polynomial of the form

p(n) = cin
i + ci�1n

i�1 + � � �+ c0 2 Z[n]

with i � 2 and positive leading coeÆcient ci > 0, let Sp = fp(m) j m 2
Ng \ N. Then PDL+ aSp does not have the �nite model property.

PROPOSITION 37 (sums of primes). Let pi be the i
th prime (with p1 = 2),

and de�ne

Ssop
def
= f

nX
i=1

pi j n � 1g:

Then PDL+ aSsop does not have the �nite model property.

PROPOSITION 38 (factorials). Let Sfac
def
= fn! j n 2 Ng. Then PDL+aSfac

does not have the �nite model property.

The �nite model property fails for any suÆciently fast-growing integer
linear recurrence, not just the Fibonacci sequence, although we do not know
whether these extensions also render PDL undecidable. A kth-order integer
linear recurrence is an inductively de�ned sequence

`n
def
= c1`n�1 + � � �+ ck`n�k + c0; n � k;(12)

where k � 1, c0; : : : ; ck 2 N, ck 6= 0, and `0; : : : ; `k�1 2 N are given.

PROPOSITION 39 (linear recurrences). Let Slr = f`n j n � 0g be the set
de�ned inductively by (12). The following conditions are equivalent:

(i) aSlr is nonregular;

(ii) PDL+ aSlr does not have the �nite model property;

(iii) not all `0; : : : ; `k�1 are zero and
Pk
i=1 ci > 1.

7 OTHER VARIANTS OF PDL

7.1 Deterministic Programs

Nondeterminism arises in PDL in two ways:

� atomic programs can be interpreted in a structure as (not necessarily
single-valued) binary relations on states; and
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� the programming constructs � [ � and �� involve nondeterministic
choice.

Many modern programming languages have facilities for concurrency and
distributed computation, certain aspects of which can be modeled by non-
determinism. Nevertheless, the majority of programs written in practice are
still deterministic. Here we investigate the e�ect of eliminating either one
or both of these sources of nondeterminism from PDL.
A program � is said to be (semantically) deterministic in a Kripke frame

K if its traces are uniquely determined by their �rst states. If � is an
atomic program a, this is equivalent to the requirement that mK(a) be a
partial function; that is, if both (s; t) and (s; t0) 2 mK(a), then t = t0. A
deterministic Kripke frame K = (K; mK) is one in which all atomic a are
semantically deterministic.
The class of deterministic while programs , denoted DWP, is the class of

programs in which

� the operators [, ?, and � may appear only in the context of the
conditional test, while loop, skip, or fail;

� tests in the conditional test and while loop are purely propositional;
that is, there is no occurrence of the < > or [ ] operators.

The class of nondeterministic while programs, denoted WP, is the same,
except unconstrained use of the nondeterministic choice construct [ is al-
lowed. It is easily shown that if � and � are semantically deterministic in
K, then so are if ' then � else � and while ' do �.
By restricting either the syntax or the semantics or both, we obtain the

following logics:

� DPDL (deterministic PDL), which is syntactically identical to PDL,
but interpreted over deterministic structures only;

� SPDL (strict PDL), in which only deterministic while programs are
allowed; and

� SDPDL (strict deterministic PDL), in which both restrictions are in
force.

Validity and satis�ability in DPDL and SDPDL are de�ned just as in PDL,
but with respect to deterministic structures only. If ' is valid in PDL, then
' is also valid in DPDL, but not conversely: the formula

<a>' ! [a]'(13)

is valid in DPDL but not in PDL. Also, SPDL and SDPDL are strictly less
expressive than PDL or DPDL, since the formula

<(a [ b)�>'(14)
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is not expressible in SPDL, as shown in [Halpern and Reif, 1983].

THEOREM 40. If the axiom scheme

<a>' ! [a]'; a 2 �0(15)

is added to Axiom System 17, then the resulting system is sound and com-
plete for DPDL.

THEOREM 41. Validity in DPDL is deterministic exponential-time com-
plete.

Now we turn to SPDL, in which atomic programs can be nondetermin-
istic but can be composed into larger programs only with deterministic
constructs.

THEOREM 42. Validity in SPDL is deterministic exponential-time com-
plete.

The �nal version of interest is SDPDL, in which both the syntactic restric-
tions of SPDL and the semantic ones of DPDL are adopted. The exponential-
time lower bound fails here, and we have:

THEOREM 43. The validity problem for SDPDL is complete in polynomial
space.

The question of relative power of expression is of interest here. Is DPDL <
PDL? Is SDPDL < DPDL? The �rst of these questions is inappropriate,
since the syntax of both languages is the same but they are interpreted over
di�erent classes of structures. Considering the second, we have:

THEOREM 44. SDPDL < DPDL and SPDL < PDL.

In summary, we have the following diagram describing the relations of
expressiveness between these logics. The solid arrows indicate added expres-
sive power and broken ones a di�erence in semantics. The validity problem
is exponential-time complete for all but SDPDL, for which it is PSPACE -
complete. Straightforward variants of Axiom System 17 are complete for
all versions.

SDPDL

DPDLSPDL

PDL

�
�
��3

�
�
��3

Q
Q

Q
Q

k

k

7.2 Representation by Automata

A PDL program represents a regular set of computation sequences. This
same regular set could possibly be represented exponentially more succinctly
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by a �nite automaton. The di�erence between these two representations cor-
responds roughly to the di�erence between while programs and owcharts.

Since �nite automata are exponentially more succinct in general, the
upper bound of Section 5 could conceivably fail if �nite automata were
allowed as programs. Moreover, we must also rework the deductive system
of Section 4.1.

However, it turns out that the completeness and exponential-time decid-
ability results of PDL are not sensitive to the representation and still go
through in the presence of �nite automata as programs, provided the de-
ductive system of Section 4.1 and the techniques of Sections 4 and 5 are
suitably modi�ed, as shown in [Pratt, 1979b; Pratt, 1981b] and [Harel and
Sherman, 1985].

In recent years, the automata-theoretic approach to logics of programs
has yielded signi�cant insight into propositional logics more powerful than
PDL, as well as substantial reductions in the complexity of their decision
procedures. Especially enlightening are the connections with automata on
in�nite strings and in�nite trees. By viewing a formula as an automaton and
a treelike model as an input to that automaton, the satis�ability problem
for a given formula becomes the emptiness problem for a given automaton.
Logical questions are thereby transformed into purely automata-theoretic
questions.

We assume that nondeterministic �nite automata are given in the form

M = (n; i; j; Æ);(16)

where n = f0; : : : ; n� 1g is the set of states, i; j 2 n are the start and �nal
states respectively, and Æ assigns a subset of �0 [ f'? j ' 2 �g to each
pair of states. Intuitively, when visiting state ` and seeing symbol a, the
automaton may move to state k if a 2 Æ(`; k).

The fact that the automata (16) have only one accept state is without
loss of generality. If M is an arbitrary nondeterministic �nite automaton
with accept states F , then the set accepted by M is the union of the sets
accepted by Mk for k 2 F , where Mk is identical to M except that it
has unique accept state k. A desired formula [M]' can be written as a
conjunction

^
k2F

[Mk]'

with at most quadratic growth.

We now obtain a new logic APDL (automata PDL) by de�ning � and
� inductively using the clauses for � from Section 2.1 and letting � =
�0 [ f'? j ' 2 �g [ F , where F is the set of automata of the form (16).
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Axioms 17(iv), (v), and (vii) are replaced by:

[n; i; j; Æ]' $
^
k2n

�2Æ(i;k)

[�][n; k; j; Æ]'; i 6= j(17)

[n; i; i; Æ]' $ ' ^
^
k2n

�2Æ(i;k)

[�][n; k; i; Æ]':(18)

The induction axiom 17(viii) becomes

(
^
k2n

[n; i; k; Æ]('k !
^
m2n

�2Æ(k;m)

[�]'m)) ! ('i ! [n; i; j; Æ]'j):(19)

These and other similar changes can be used to prove:

THEOREM 45. Validity in APDL is decidable in exponential time.

THEOREM 46. The axiom system described above is complete for APDL.

7.3 Converse

The converse operator � is a program operator that allows a program to be
\run backwards":

mK(�
�)

def
= f(s; t) j (t; s) 2 mK(�)g:

PDL with converse is called CPDL.

The following identities allow us to assume without loss of generality that
the converse operator is applied to atomic programs only.

(� ; �)� $ �� ; ��

(� [ �)� $ �� [ ��

��� $ ��
�
:

The converse operator strictly increases the expressive power of PDL,
since the formula <��>1 is not expressible without it.

THEOREM 47. PDL < CPDL.

Proof. Consider the structure described in the following �gure:

s

s s
6
a

t

s u
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In this structure, s � <a�>1 but u 2 <a�>1. On the other hand, it can be
shown by induction on the structure of formulas that if s and u agree on
all atomic formulas, then no formula of PDL can distinguish between the
two. �

More interestingly, the presence of the converse operator implies that the
operator <�> is continuous in the sense that if A is any (possibly in�nite)
family of formulas possessing a join

W
A, then

W
<�>A exists and is logically

equivalent to <�>
W
A. In the absence of the converse operator, one can

construct nonstandard models for which this fails.

The completeness and exponential time decidability results of Sections
4 and 5 can be extended to CPDL provided the following two axioms are
added:

' ! [�]<��>'

' ! [��]<�>':

The �ltration lemma (Lemma 14) still holds in the presence of �, as does
the �nite model property.

7.4 Well-foundedness

If � is a deterministic program, the formula '! <�> asserts the total cor-
rectness of � with respect to pre- and postconditions ' and  , respectively.
For nondeterministic programs, however, this formula does not express the
right notion of total correctness. It asserts that ' implies that there exists
a halting computation sequence of � yielding  , whereas we would really
like to assert that ' implies that all computation sequences of � terminate
and yield  . Let us denote the latter property by

TC ('; �;  ):

Unfortunately, this is not expressible in PDL.

The problem is intimately connected with the notion of well-foundedness .
A program � is said to be well-founded at a state u0 if there exists no in�nite
sequence of states u0; u1; u2; : : : with (ui; ui+1) 2 mK(�) for all i � 0. This
property is not expressible in PDL either, as we will see.

Several very powerful logics have been proposed to deal with this situa-
tion. The most powerful is perhaps the propositional �-calculus, which is
essentially propositional modal logic augmented with a least �xpoint op-
erator �. Using this operator, one can express any property that can be
formulated as the least �xpoint of a monotone transformation on sets of
states de�ned by the PDL operators. For example, the well-foundedness of
a program � is expressed
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�X:[�]X(20)

in this logic.
Two somewhat weaker ways of capturing well-foundedness without re-

sorting to the full �-calculus have been studied. One is to add to PDL an
explicit predicate wf for well-foundedness:

mK(wf �)
def
= fs0 j :9s1; s2; : : : 8i � 0 (si; si+1) 2 mK(�)g:

Another is to add an explicit predicate halt, which asserts that all com-
putations of its argument � terminate. The predicate halt can be de�ned
inductively from wf as follows:

halt a
def
() 1; a an atomic program or test;(21)

halt�;�
def
() halt� ^ [�]halt�;(22)

halt� [ �
def
() halt� ^ halt�;(23)

halt��
def
() wf � ^ [��]halt�:(24)

These constructs have been investigated under the various names loop,
repeat, and �. The predicates loop and repeat are just the complements
of halt and wf , respectively:

loop�
def
() :halt�

repeat�
def
() :wf �:

Clause (24) is equivalent to the assertion

loop��
def
() repeat� _ <��>loop�:

It asserts that a nonhalting computation of �� consists of either an in�-
nite sequence of halting computations of � or a �nite sequence of halting
computations of � followed by a nonhalting computation of �.
Let RPDL and LPDL denote the logics obtained by augmenting PDL with

the wf and halt predicates, respectively.4 It follows from the preceding
discussion that

PDL � LPDL � RPDL � the propositional �-calculus:

Moreover, all these inclusions are known to be strict.
The logic LPDL is powerful enough to express the total correctness of

nondeterministic programs. The total correctness of � with respect to pre-
condition ' and postcondition  is expressed

TC ('; �;  )
def
() ' ! halt� ^ [�] :

4The L in LPDL stands for \loop" and the R in RPDL stands for \repeat." We retain
these names for historical reasons.
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Conversely, halt can be expressed in terms of TC :

halt� , TC (1; �;1):

THEOREM 48. PDL < LPDL.

THEOREM 49. LPDL < RPDL.

It is possible to extend Theorem 49 to versions CRPDL and CLPDL

in which converse is allowed in addition to wf or halt. Also, the proof
of Theorem 47 goes through for LPDL and RPDL, so that <a�>1 is not
expressible in either. Theorem 48 goes through for the converse versions
too. We obtain the situation illustrated in the following �gure, in which the
arrows indicate < and the absence of a path between two logics means that
each can express properties that the other cannot.

PDL

LPDL

RPDL

CPDL

CLPDL

CRPDL

�
�
�3

�
�
�3

�
�
�3

�
�
�3

Q
Q

Qk

Q
Q

Qk

Q
Q

Qk

The �ltration lemma fails for all halt and wf versions as in Theorem 48.
However, satis�able formulas of the �-calculus (hence of RPDL and LPDL)
do have �nite models. This �nite model property is not shared by CLPDL
or CRPDL.

THEOREM 50. The CLPDL formula

:halt a� ^ [a�]halta��

is satis�able but has no �nite model.

As it turns out, Theorem 50 does not prevent CRPDL from being decid-
able.
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THEOREM 51. The validity problems for CRPDL, CLPDL, RPDL, LPDL,
and the propositional �-calculus are all decidable in deterministic exponen-
tial time.

Obviously, the simpler the logic, the simpler the arguments needed to
show exponential time decidability. Over the years all these logics have
been gradually shown to be decidable in exponential time by various authors
using various techniques. Here we point to the exponential time decidabil-
ity of the propositional �-calculus with forward and backward modalities,
proved in [Vardi, 1998b], from which all these can be seen easily to follow.
The proof in [Vardi, 1998b] is carried out by exhibiting an exponential time
decision procedure for two-way alternating automata on in�nite trees.
As mentioned above, RPDL possesses the �nite (but not necessarily the

small and not the collapsed) model property.

THEOREM 52. Every satis�able formula of RPDL, LPDL, and the propo-
sitional �-calculus has a �nite model.

CRPDL and CLPDL are extensions of PDL that, like PDL+ a�b� (Theo-
rems 27 and 31), are decidable despite lacking a �nite model property.
Complete axiomatizations for RPDL and LPDL can be obtained by em-

bedding them into the �-calculus (see Section 14.4).

7.5 Concurrency

Another interesting extension of PDL concerns concurrent programs. One
can de�ne an intersection operator \ such that the binary relation on states
corresponding to the program �\� is the intersection of the binary relations
corresponding to � and �. This can be viewed as a kind of concurrency
operator that admits transitions to those states that both � and � would
have admitted.
Here we consider a di�erent and perhaps more natural notion of concur-

rency. The interpretation of a program will not be a binary relation on
states, which relates initial states to possible �nal states, but rather a rela-
tion between a states and sets of states. Thus mK(�) will relate a start state
u to a collection of sets of states U . The intuition is that starting in state
u, the (concurrent) program � can be run with its concurrent execution
threads ending in the set of �nal states U . The basic concurrency opera-
tor will be denoted here by ^, although in the original work on concurrent
Dynamic Logic [Peleg, 1987b; Peleg, 1987c; Peleg, 1987a] the notation \ is
used.
The syntax of concurrent PDL is the same as PDL, with the addition of

the clause:

� if �; � 2 �, then � ^ � 2 �.

The program � ^ � means intuitively, \Execute � and � in parallel."
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The semantics of concurrent PDL is de�ned on Kripke frames K = (K;mK)
as with PDL, except that for programs �,

mK(�) � K � 2K :

Thus the meaning of � is a collection of reachability pairs of the form (u; U),
where u 2 K and U � K. In this brief description of concurrent PDL, we
require that structures assign to atomic programs sequential, non-parallel,
meaning; that is, for each a 2 �0, we require that if (u; U) 2 mK(a), then
#U = 1. The true parallelism will stem from applying the concurrency op-
erator to build larger sets U in the reachability pairs of compound programs.
For details, see [Peleg, 1987b; Peleg, 1987c].
The relevant results for this logic are the following:

THEOREM 53. PDL < concurrent PDL.

THEOREM 54. The validity problem for concurrent PDL is decidable in
deterministic exponential time.

Axiom System 17, augmented with the following axiom, can be be shown
to be complete for concurrent PDL:

<� ^ �>' $ <�>' ^ <�>':

8 FIRST-ORDER DYNAMIC LOGIC (DL)

In this section we begin the study of �rst-order Dynamic Logic. The main
di�erence between �rst-order DL and the propositional version PDL dis-
cussed in previous sections is the presence of a �rst-order structure A, called
the domain of computation, over which �rst-order quanti�cation is allowed.
States are no longer abstract points, but valuations of a set of variables over
A, the carrier of A. Atomic programs in DL are no longer abstract binary
relations, but assignment statements of various forms, all based on assign-
ing values to variables during the computation. The most basic example of
such an assignment is the simple assignment x := t, where x is a variable
and t is a term. The atomic formulas of DL are generally taken to be atomic
�rst-order formulas.
In addition to the constructs of PDL, the basic DL syntax contains in-

dividual variables ranging over A, function and predicate symbols for dis-
tinguished functions and predicates of A, and quanti�ers ranging over A,
exactly as in classical �rst-order logic. More powerful versions of the logic
contain array and stack variables and other constructs, as well as primi-
tive operations for manipulating them, and assignments for changing their
values. Sometimes the introduction of a new construct increases expressive
power and sometimes not; sometimes it has an e�ect on the complexity of
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deciding satis�ability and sometimes not. Indeed, one of the central goals
of research has been to classify these constructs in terms of their relative
expressive power and complexity.
In this section we lay the groundwork for this by de�ning the various

logical and programming constructs we shall need.

8.1 Basic Syntax

The language of �rst-order Dynamic Logic is built upon classical �rst-order
logic. There is always an underlying �rst-order vocabulary �, which involves
a vocabulary of function symbols and predicate (or relation) symbols. On
top of this vocabulary, we de�ne a set of programs and a set of formulas .
These two sets interact by means of the modal construct [ ] exactly as
in the propositional case. Programs and formulas are usually de�ned by
mutual induction.
Let � = ff; g; : : : ; p; r; : : : g be a �nite �rst-order vocabulary. Here f

and g denote typical function symbols of �, and p and r denote typical
relation symbols. Associated with each function and relation symbol of �
is a �xed arity (number of arguments), although we do not represent the
arity explicitly. We assume that � always contains the equality symbol =,
whose arity is 2. Functions and relations of arity 0; 1; 2; 3 and n are called
nullary, unary, binary, ternary, and n-ary, respectively. Nullary functions
are also called constants. We shall be using a countable set of individual
variables V = fx0; x1; : : : g.
We always assume that � contains at least one function symbol of positive

arity. A vocabulary � is polyadic if it contains a function symbol of arity
greater than one. Vocabularies whose function symbols are all unary are
called monadic.
A vocabulary � is rich if either it contains at least one predicate symbol

besides the equality symbol or the sum of arities of the function symbols is at
least two. Examples of rich vocabularies are: two unary function symbols, or
one binary function symbol, or one unary function symbol and one unary
predicate symbol. A vocabulary that is not rich is poor . Hence a poor
vocabulary has just one unary function symbol and possibly some constants,
but no relation symbols other than equality. The main di�erence between
rich and poor vocabularies is that the former admit exponentially many
pairwise non-isomorphic structures of a given �nite cardinality, whereas the
latter admit only polynomially many.
We say that the vocabulary � is mono-unary if it contains no function

symbols other than a single unary one. It may contain constants and pred-
icate symbols.
The de�nitions of DL programs and formulas below depend on the vocab-

ulary �, but in general we shall not make this dependence explicit unless
we have some speci�c reason for doing so.
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Atomic Formulas and Programs

In all versions of DL that we will consider, atomic formulas are atomic formu-
las of the �rst-order vocabulary �; that is, formulas of the form r(t1; : : : ; tn),
where r is an n-ary relation symbol of � and t1; : : : ; tn are terms of �.
As in PDL, programs are de�ned inductively from atomic programs using

various programming constructs. The meaning of a compound program is
given inductively in terms of the meanings of its constituent parts. Di�erent
classes of programs are obtained by choosing di�erent classes of atomic
programs and programming constructs.
In the basic version of DL, an atomic program is a simple assignment

x := t, where x 2 V and t is a term of �. Intuitively, this program assigns
the value of t to the variable x. This is the same form of assignment found
in most conventional programming languages.
More powerful forms of assignment such as stack and array assignments

and nondeterministic \wildcard" assignments will be discussed later. The
precise choice of atomic programs will be made explicit when needed, but
for now, we use the term atomic program to cover all of these possibilities.

Tests

As in PDL, DL contains a test operator ?, which turns a formula into a pro-
gram. In most versions of DL that we shall discuss, we allow only quanti�er-
free �rst-order formulas as tests. We sometimes call these versions poor test .
Alternatively, we might allow any �rst-order formula as a test. Most gen-
erally, we might place no restrictions on the form of tests, allowing any DL
formula whatsoever, including those that contain other programs, perhaps
containing other tests, etc. These versions of DL are labeled rich test as
in Section 2.1. Whereas programs can be de�ned independently from for-
mulas in poor test versions, rich test versions require a mutually inductive
de�nition of programs and formulas.
As with atomic programs, the precise logic we consider at any given time

depends on the choice of tests we allow. We will make this explicit when
needed, but for now, we use the term test to cover all possibilities.

Regular Programs

For a given set of atomic programs and tests, the set of regular programs is
de�ned as in PDL (see Section 2.1):

� any atomic program or test is a program;

� if � and � are programs, then � ; � is a program;

� if � and � are programs, then � [ � is a program;

� if � is a program then �� is a program.
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While Programs

Much of the literature on DL is concerned with the class of while programs
(see Section 2.1). Formally, deterministic while programs form the subclass
of the regular programs in which the program operators [, ?, and � are
constrained to appear only in the forms

skip
def
= 1?

fail
def
= 0?

if ' then � else �
def
= ('?;�) [ (:'?;�)(25)

while ' do �
def
= ('?;�)�;:'?(26)

The class of nondeterministic while programs is the same, except that we
allow unrestricted use of the nondeterministic choice construct [. Of course,
unrestricted use of the sequential composition operator is allowed in both
languages.
Restrictions on the form of atomic programs and tests apply as with

regular programs. For example, if we are allowing only poor tests, then
the ' occurring in the programs (25) and (26) must be a quanti�er-free
�rst-order formula.
The class of deterministic while programs is important because it cap-

tures the basic programming constructs common to many real-life imper-
ative programming languages. Over the standard structure of the natural
numbers N, deterministic while programs are powerful enough to de�ne all
partial recursive functions, and thus over N they are as as expressive as reg-
ular programs. A similar result holds for a wide class of models similar to
N, for a suitable de�nition of \partial recursive functions" in these models.
However, it is not true in general that while programs, even nondetermin-
istic ones, are universally expressive. We discuss these results in Section
12.

Formulas

A formula of DL is de�ned in way similar to that of PDL, with the addition
of a rule for quanti�cation. Equivalently, we might say that a formula of DL
is de�ned in a way similar to that of �rst-order logic, with the addition of a
rule for modality. The basic version of DL is de�ned with regular programs:

� the false formula 0 is a formula;

� any atomic formula is a formula;

� if ' and  are formulas, then '!  is a formula;

� if ' is a formula and x 2 V , then 8x ' is a formula;
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� if ' is a formula and � is a program, then [�]' is a formula.

The only missing rule in the de�nition of the syntax of DL are the tests.
In our basic version we would have:

� if ' is a quati�er-free �rst-order formula, then '? is a test.

For the rich test version, the de�nitions of programs and formulas are mu-
tually dependent, and the rule de�ning tests is simply:

� if ' is a formula, then '? is a test.

We will use the same notation as in propositional logic that :' stands
for ' ! 0. As in �rst-order logic, the �rst-order existential quanti�er 9 is
considered a de�ned construct: 9x ' abbreviates :8x :'. Similarly, the
modal construct < > is considered a de�ned construct as in Section 2.1, since
it is the modal dual of [ ]. The other propositional constructs ^, _, $ are
de�ned as in Section 2.1. Of course, we use parentheses where necessary to
ensure unique readability.
Note that the individual variables in V serve a dual purpose: they are

both program variables and logical variables.

8.2 Richer Programs

Seqs and R.E. Programs

Some classes of programs are most conveniently de�ned as certain sets of
seqs. Recall from Section 2.3 that a seq is a program of the form �1; � � � ;�k,
where each �i is an assignment statement or a quanti�er-free �rst-order
test. Each regular program � is associated with a unique set of seqs CS (�)
(Section 2.3). These de�nitions were made in the propositional context, but
they apply equally well to the �rst-order case; the only di�erence is in the
form of atomic programs and tests.
Construing the word in the broadest possible sense, we can consider a pro-

gram to be an arbitrary set of seqs. Although this makes sense semantically|
we can assign an input/output relation to such a set in a meaningful way|
such programs can hardly be called executable. At the very least we should
require that the set of seqs be recursively enumerable, so that there will be
some e�ective procedure that can list all possible executions of a given pro-
gram. However, there is a subtle issue that arises with this notion. Consider
the set of seqs

fxi := f i(c) j i 2 Ng:

This set satis�es the above restriction, yet it can hardly be called a program.
It uses in�nitely many variables, and as a consequence it might change a
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valuation at in�nitely many places. Another pathological example is the set
of seqs

fxi+1 := f(xi) j i 2 Ng;

which not only could change a valuation at in�nitely many locations, but
also depends on in�nitely many locations of the input valuation.
In order to avoid such pathologies, we will require that each program use

only �nitely many variables. This gives rise to the following de�nition of
r.e. programs, which is the most general family of programs we will consider.
Speci�cally, an r.e. program � is a Turing machine that enumerates a set of
seqs over a �nite set of variables. The set of seqs enumerated will be called
CS (�). By FV (�) we will denote the �nite set of variables that occur in
seqs of CS (�).
An important issue connected with r.e. programs is that of bounded mem-

ory. The assignment statements or tests in an r.e. program may have in-
�nitely many terms with increasingly deep nesting of function symbols (al-
though, as discussed, these terms only use �nitely many variables), and
these could require an unbounded amount of memory to compute. We de-
�ne a set of seqs to be bounded memory if the depth of terms appearing in
it is bounded. In fact, without sacri�cing computational power, we could
require that all terms be of the form f(x1; : : : ; xn) in a bounded-memory
set of seqs.

Arrays and Stacks

Interesting variants of the programming language we use in DL arise from
allowing auxiliary data structures. We shall de�ne versions with arrays and
stacks , as well as a version with a nondeterministic assignment statement
called wildcard assignment .
Besides these, one can imagine augmenting while programs with many

other kinds of constructs such as blocks with declarations, recursive pro-
cedures with various parameter passing mechanisms, higher-order proce-
dures, concurrent processes, etc. It is easy to arrive at a family consisting
of thousands of programming languages, giving rise to thousands of logics.
Obviously, we have had to restrict ourselves. It is worth mentioning, how-
ever, that certain kinds of recursive procedures are captured by our stack
operations, as explained below.

Arrays

To handle arrays, we include a countable set of array variables

Varray = fF0; F1; : : : g:

Each array variable has an associated arity, or number of arguments, which
we do not represent explicitly. We assume that there are countably many
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variables of each arity n � 0. In the presence of array variables, we equate
the set V of individual variables with the set of nullary array variables; thus
V � Varray.
The variables in Varray of arity n will range over n-ary functions with

arguments and values in the domain of computation. In our exposition,
elements of the domain of computation play two roles: they are used both
as indices into an array and as values that can be stored in an array. One
might equally well introduce a separate sort for array indices; although
conceptually simple, this would complicate the notation and would give no
new insight.
We extend the set of �rst-order terms to allow the unrestricted occurrence

of array variables, provided arities are respected.
The classes of regular programs with arrays and deterministic and nonde-

terministic while programs with arrays are de�ned similarly to the classes
without, except that we allow array assignments in addition to simple as-
signments. Array assignments are similar to simple assignments, but on the
left-hand side we allow a term in which the outermost symbol is an array
variable:

F (t1; : : : ; tn) := t:

Here F is an n-ary array variable and t1; : : : ; tn; t are terms, possibly in-
volving other array variables. Note that when n = 0, this reduces to the
ordinary simple assignment.

Recursion via an Algebraic Stack

We now consider DL in which the programs can manipulate a stack. The
literature in automata theory and formal languages often distinguishes a
stack from a pushdown store. In the former, the automaton is allowed to
inspect the contents of the stack but to make changes only at the top. We
shall use the term stack to denote the more common pushdown store, where
the only inspection allowed is at the top of the stack.
The motivation for this extension is to be able to capture recursion.

It is well known that recursive procedures can be modeled using a stack,
and for various technical reasons we prefer to extend the data-manipulation
capabilities of our programs than to introduce new control constructs. When
it encounters a recursive call, the stack simulation of recursion will push the
return location and values of local variables and parameters on the stack.
It will pop them upon completion of the call. The LIFO (last-in-�rst-out)
nature of stack storage �ts the order in which control executes recursive
calls.
To handle the stack in our stack version of DL, we add two new atomic

programs

push(t) and pop(y);
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where t is a term and y 2 V . Intuitively, push(t) pushes the current value
of t onto the top of the stack, and pop(y) pops the top value o� the top of
the stack and assigns that value to the variable y. If the stack is empty, the
pop operation does not change anything. We could have added a test for
stack emptiness, but it can be shown to be redundant. Formally, the stack
is simply a �nite string of elements of the domain of computation.

The classes of regular programs with stack and deterministic and non-
deterministic while programs with stack are obtained by augmenting the
respective classes of programs with the push and pop operations as atomic
programs in addition to simple assignments.

In contrast to the case of arrays, here there is only a single stack. In fact,
expressiveness changes dramatically when two or more stacks are allowed.
Also, in order to be able to simulate recursion, the domain must have at least
two distinct elements so that return addresses can be properly encoded in
the stack. One way of doing this is to store the return address itself in unary
using one element of the domain, then store one occurrence of the second
element as a delimiter symbol, followed by domain elements constituting
the current values of parameters and local variables.

The kind of stack described here is often termed algebraic, since it con-
tains elements from the domain of computation. It should be contrasted
with the Boolean stack described next.

Parameterless Recursion via a Boolean Stack

An interesting special case is when the stack can contain only two distinct
elements. This version of our programming language can be shown to cap-
ture recursive procedures without parameters or local variables. This is
because we only need to store return addresses, but no actual data items
from the domain of computation. This can be achieved using two values, as
described above. We thus arrive at the idea of a Boolean stack.

To handle such a stack in this version of DL, we add three new kinds of
atomic programs and one new test. The atomic programs are

push-1 push-0 pop;

and the test is simply top?. Intuitively, push-1 and push-0 push the
corresponding distinct Boolean values on the stack, pop removes the top
element, and the test top? evaluates to true i� the top element of the stack
is 1, but with no side e�ect.

With the test top? only, there is no explicit operator that distinguishes
a stack with top element 0 from the empty stack. We might have de�ned
such an operator, and in a more realistic language we would certainly do
so. However, it is mathematically redundant, since it can be simulated with
the operators we already have.
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Wildcard Assignment

The nondeterministic assignment x := ? is a device that arises in the study
of fairness; see [Apt and Plotkin, 1986]. It has often been called random
assignment in the literature, although it has nothing to do with randomness
or probability. We shall call it wildcard assignment . Intuitively, it operates
by assigning a nondeterministically chosen element of the domain of com-
putation to the variable x. This construct together with the [ ] modality
is similar to the �rst-order universal quanti�er, since it will follow from the
semantics that the two formulas [x := ?]' and 8x ' are equivalent. How-
ever, wildcard assignment may appear in programs and can therefore be
iterated.

8.3 Semantics

In this section we assign meanings to the syntactic constructs described
in the previous sections. We interpret programs and formulas over a �rst-
order structure A. Variables range over the carrier of this structure. We
take an operational view of program semantics: programs change the values
of variables by sequences of simple assignments x := t or other assignments,
and ow of control is determined by the truth values of tests performed at
various times during the computation.

States as Valuations

An instantaneous snapshot of all relevant information at any moment during
the computation is determined by the values of the program variables. Thus
our states will be valuations u; v; : : : of the variables V over the carrier of
the structure A. Our formal de�nition will associate the pair (u; v) of such
valuations with the program � if it is possible to start in valuation u, execute
the program �, and halt in valuation v. In this case, we will call (u; v) an
input/output pair of � and write (u; v) 2 mA(�). This will result in a Kripke
frame exactly as in Section 2.
Let A = (A; mA) be a �rst-order structure for the vocabulary �. We

call A the domain of computation. Here A is a set, called the carrier of
A, and mA is a meaning function such that mA(f) is an n-ary function
mA(f) : A

n ! A interpreting the n-ary function symbol f of �, and mA(r)
is an n-ary relation mA(r) � An interpreting the n-ary relation symbol r
of �. The equality symbol = is always interpreted as the identity relation.
For n � 0, let An ! A denote the set of all n-ary functions in A. By

convention, we take A0 ! A = A. Let A� denote the set of all �nite-length
strings over A.
The structure A determines a Kripke frame, which we will also denote

by A, as follows. A valuation over A is a function u assigning an n-ary
function over A to each n-ary array variable. It also assigns meanings to
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the stacks as follows. We shall use the two unique variable names STK and
BSTK to denote the algebraic stack and the Boolean stack, respectively.
The valuation u assigns a �nite-length string of elements of A to STK and
a �nite-length string of Boolean values 1 and 0 to BSTK . Formally:

u(F ) 2 An ! A; if F is an n-ary array variable,
u(STK ) 2 A�;

u(BSTK ) 2 f1;0g�:

By our convention A0 ! A = A, and assuming that V � Varray, the indi-
vidual variables (that is, the nullary array variables) are assigned elements
of A under this de�nition:

u(x) 2 A if x 2 V:

The valuation u extends uniquely to terms t by induction. For an n-ary
function symbol f and an n-ary array variable F ,

u(f(t1; : : : ; tn))
def
= mA(f)(u(t1); : : : ; u(tn))

u(F (t1; : : : ; tn))
def
= u(F )(u(t1); : : : ; u(tn)):

The function-patching operator is de�ned as follows: if X and D are sets,
f : X ! D is any function, x 2 X , and d 2 D, then f [x=d] : X ! D is the
function de�ned by

f [x=d](y)
def
=

�
d; if x = y
f(y); otherwise.

We will be using this notation in several ways, both at the logical and
metalogical levels. For example:

� If u is a valuation, x is an individual variable, and a 2 A, then u[x=a]
is the new valuation obtained from u by changing the value of x to a
and leaving the values of all other variables intact.

� If F is an n-ary array variable and f : An ! A, then u[F=f ] is the
new valuation that assigns the same value as u to the stack variables
and to all array variables other than F , and

u[F=f ](F ) = f:

� If f : An ! A is an n-ary function and a = a1; : : : ; an 2 An and
a 2 A, then the expression f [a=a] denotes the n-ary function that
agrees with f everywhere except for input a, on which it takes the
value a. More precisely,

f [a=a](b) =

�
a; if b = a

f(b); otherwise.
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We call valuations u and v �nite variants of each other if

u(F )(a1; : : : ; an) = v(F )(a1; : : : ; an)

for all but �nitely many array variables F and n-tuples a1; : : : ; an 2 An.
In other words, u and v di�er on at most �nitely many array variables, and
for those F on which they do di�er, the functions u(F ) and v(F ) di�er on
at most �nitely many values.
The relation \is a �nite variant of" is an equivalence relation on valua-

tions. Since a halting computation can run for only a �nite amount of time,
it can execute only �nitely many assignments. It will therefore not be able
to cross equivalence class boundaries; that is, in the binary relation seman-
tics given below, if the pair (u; v) is an input/output pair of the program
�, then v is a �nite variant of u.
We are now ready to de�ne the states of our Kripke frame. For a 2 A,

let wa be the valuation in which the stacks are empty and all array and
individual variables are interpreted as constant functions taking the value
a everywhere. A state of A is any �nite variant of a valuation wa. The set
of states of A is denoted SA.
Call a state initial if it di�ers from some wa only at the values of indi-

vidual variables.
It is meaningful, and indeed useful in some contexts, to take as states the

set of all valuations. Our purpose in restricting our attention to states as
de�ned above is to prevent arrays from being initialized with highly com-
plex oracles that would compromise the value of the relative expressiveness
results of Section 12.

Assignment Statements

As in Section 2.2, with every program � we associate a binary relation

mA(�) � SA � SA

(called the input/output relation of p), and with every formula ' we associate
a set

mA(') � SA:

The sets mA(�) and mA(') are de�ned by mutual induction on the structure
of � and '.
For the basis of this inductive de�nition, we �rst give the semantics of

all the assignment statements discussed earlier.

� The array assignment F (t1; : : : ; tn) := t is interpreted as the binary
relation

mA(F (t1; : : : ; tn) := t)
def
= f(u; u[F=u(F )[u(t1); : : : ; u(tn)=u(t)]]) j u 2 S

Ag:
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In other words, starting in state u, the array assignment has the ef-
fect of changing the value of F on input u(t1); : : : ; u(tn) to u(t), and
leaving the value of F on all other inputs and the values of all other
variables intact. For n = 0, this de�nition reduces to the following
de�nition of simple assignment:

mA(x := t)
def
= f(u; u[x=u(t)]) j u 2 SAg:

� The push operations, push(t) for the algebraic stack and push-1 and
push-0 for the Boolean stack, are interpreted as the binary relations

mA(push(t))
def
= f(u; u[STK=(u(t) � u(STK ))]) j u 2 SAg

mA(push-1)
def
= f(u; u[BSTK=(1 � u(BSTK ))]) j u 2 SAg

mA(push-0)
def
= f(u; u[BSTK=(0 � u(BSTK ))]) j u 2 SAg;

respectively. In other words, push(t) changes the value of the alge-
braic stack variable STK from u(STK ) to the string u(t) � u(STK ),
the concatenation of the value u(t) with the string u(STK ), and ev-
erything else is left intact. The e�ects of push-1 and push-0 are
similar, except that the special constants 1 and 0 are concatenated
with u(BSTK ) instead of u(t).

� The pop operations, pop(y) for the algebraic stack and pop for the
Boolean stack, are interpreted as the binary relations

mA(pop(y))
def
= f(u; u[STK=tail(u(STK ))][y=head(u(STK );

u(y))])u 2 SAg

mA(pop)
def
= f(u; u[BSTK=tail(u(BSTK ))]) j u 2 SAg;

respectively, where

tail(a � �)
def
= �

tail(")
def
= "

head(a � �; b)
def
= a

head("; b)
def
= b

and " is the empty string. In other words, if u(STK ) 6= ", this opera-
tion changes the value of STK from u(STK ) to the string obtained by
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deleting the �rst element of u(STK ) and assigns that element to the
variable y. If u(STK ) = ", then nothing is changed. Everything else
is left intact. The Boolean stack operation pop changes the value of
BSTK only, with no additional changes. We do not include explicit
constructs to test whether the stacks are empty, since these can be
simulated. However, we do need to be able to refer to the value of the
top element of the Boolean stack, hence we include the top? test.

� The Boolean test program top? is interpreted as the binary relation

mA(top?)
def
= f(u; u) j u 2 SA; head(u(BSTK )) = 1g:

In other words, this test changes nothing at all, but allows control to
proceed i� the top of the Boolean stack contains 1.

� The wildcard assignment x :=? for x 2 V is interpreted as the relation

mA(x := ?)
def
= f(u; u[x=a]) j u 2 SA; a 2 Ag:

As a result of executing this statement, x will be assigned some arbi-
trary value of the carrier set A, and the values of all other variables
will remain unchanged.

Programs and Formulas

The meanings of compound programs and formulas are de�ned by mutual
induction on the structure of � and ' exactly as in the propositional case
(see Section 2.2).

Seqs and R.E. Programs

Recall that an r.e. program is a Turing machine enumerating a set CS (�)
of seqs. If � is an r.e. program, we de�ne

mA(�)
def
=

[
�2CS(�)

mA(�):

Thus, the meaning of � is de�ned to be the union of the meanings of the seqs
in CS (�). The meaning mA(�) of a seq � is determined by the meanings of
atomic programs and tests and the sequential composition operator.
There is an interesting point here regarding the translation of programs

using other programming constructs into r.e. programs. This can be done
for arrays and stacks (for Booleans stacks, even into r.e. programs with
bounded memory), but not for wildcard assignment. Since later in the book
we shall be referring to the r.e. set of seqs associated with such programs, it
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is important to be able to carry out this translation. To see how this is done
for the case of arrays, for example, consider an algorithm for simulating the
execution of a program by generating only ordinary assignments and tests.
It does not generate an array assignment of the form F (t1; : : : ; tn) := t,
but rather \remembers" it and when it reaches an assignment of the form
x := F (t1; : : : ; tn) it will aim at generating x := t instead. This requires
care, since we must keep track of changes in the variables inside t and
t1; : : : ; tn and incorporate them into the generated assignments.

Formulas

Here are the semantic de�nitions for the constructs of formulas of DL. The
semantics of atomic �rst-order formulas is the standard semantics of classical
�rst-order logic.

mA(0)
def
= ?(27)

mA('!  )
def
= fu j if u 2 mA(') then u 2 mA( )g(28)

mA(8x ')
def
= fu j 8a 2 A u[x=a] 2 mA(')g(29)

mA([�]')
def
= fu j 8v if (u; v) 2 mA(�) then v 2 mA(')g:(30)

Equivalently, we could de�ne the �rst-order quanti�ers 8 and 9 in terms
of the wildcard assignment:

8x ' $ [x := ?]'(31)

9x ' $ <x := ?>':(32)

Note that for deterministic programs � (for example, those obtained by
using the while programming language instead of regular programs and
disallowing wildcard assignments), mA(�) is a partial function from states
to states; that is, for every state u, there is at most one v such that (u; v) 2
mA(�). The partiality of the function arises from the possibility that � may
not halt when started in certain states. For example, mA(while 1 do skip)
is the empty relation. In general, the relation mA(�) need not be single-
valued.
If K is a given set of syntactic constructs, we refer to the version of

Dynamic Logic with programs built from these constructs as Dynamic Logic
with K or simply as DL(K). Thus, we have DL(r:e:), DL(array), DL(stk),
DL(bstk), DL(wild), and so on. As a default, these logics are the poor-test
versions, in which only quanti�er-free �rst-order formulas may appear as
tests. The unadorned DL is used to abbreviate DL(reg), and we use DL(dreg)
to denote DL with while programs, which are really deterministic regular
programs. Again, while programs use only poor tests. Combinations such
as DL(dreg+wild) are also allowed.
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8.4 Satis�ability and Validity

The concepts of satis�ability, validity, etc. are de�ned as for PDL in Section
2 or as for �rst-order logic under the standard semantics.

Let A = (A;mA) be a structure, and let u be a state in SA. For a
formula ', we write A; u � ' if u 2 mA(') and say that u satis�es ' in A.
We sometimes write u � ' when A is understood. We say that ' is A-valid
and write A � ' if A; u � ' for all u in A. We say that ' is valid and write
� ' if A � ' for all A. We say that ' is satis�able if A; u � ' for some A; u.

For a set of formulas �, we write A � � if A � ' for all ' 2 �.
Informally, A; u � [�]' i� every terminating computation of � starting

in state u terminates in a state satisfying ', and A; u � <�>' i� there exists
a computation of � starting in state u and terminating in a state satisfying
'. For a pure �rst-order formula ', the metastatement A; u � ' has the
same meaning as in �rst-order logic.

9 RELATIONSHIPS WITH STATIC LOGICS

9.1 Uninterpreted Reasoning

In contrast to the propositional version PDL discussed in Sections 2{7, DL
formulas involve variables, functions, predicates, and quanti�ers, a state is
a mapping from variables to values in some domain, and atomic programs
are assignment statements. To give semantic meaning to these constructs
requires a �rst-order structure A over which to interpret the function and
predicate symbols. Nevertheless, we are not obliged to assume anything
special about A or the nature of the interpretations of the function and
predicate symbols, except as dictated by �rst-order semantics. Any conclu-
sions we draw from this level of reasoning will be valid under all possible
interpretations. Uninterpreted reasoning refers to this style of reasoning.

For example, the formula

p(f(x); g(y; f(x))) ! <z := f(x)>p(z; g(y; z))

is true over any domain, irrespective of the interpretations of p, f , and g.

Another example of a valid formula is

z = y ^ 8x f(g(x)) = x

! [while p(y) do y := g(y)]<while y 6= z do y := f(y)>1:

Note the use of [ ] applied to < >. This formula asserts that under the
assumption that f \undoes" g, any computation consisting of applying g
some number of times to z can be backtracked to the original z by applying
f some number of times to the result.
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We now observe that three basic properties of classical (uninterpreted)
�rst-order logic, the L�owenheim{Skolem theorem, completeness, and com-
pactness, fail for even fairly weak versions of DL.
The L�owenheim{Skolem theorem for classical �rst-order logic states that

if a formula ' has an in�nite model then it has models of all in�nite car-
dinalities. Because of this theorem, classical �rst-order logic cannot de�ne
the structure of elementary arithmetic

N = (!; +; �; 0; 1; =)

up to isomorphism. That is, there is no �rst-order sentence that is true in a
structure A if and only if A is isomorphic to N. However, this can be done
in DL.

PROPOSITION 55. There exists a formula �N of DL(dreg) that de�nes N
up to isomorphism.

The L�owenheim{Skolem theorem does not hold for DL, because �N has
an in�nite model (namely N), but all models are isomorphic to N and are
therefore countable.
Besides the L�owenheim{Skolem Theorem, compactness fails in DL as well.

Consider the following countable set � of formulas:

f<while p(x) do x := f(x)>1g [ fp(fn(x)) j n � 0g:

It is easy to see that � is not satis�able, but it is �nitely satis�able, i.e. each
�nite subset of it is satis�able.
Worst of all, completeness cannot hold for any deductive system as we

normally think of it (a �nite e�ective system of axioms schemes and �nitary
inference rules). The set of theorems of such a system would be r.e., since
they could be enumerated by writing down the axioms and systematically
applying the rules of inference in all possible ways. However, the set of valid
statements of DL is not recursively enumerable. In fact, we will describe in
Section 10 exactly how bad the situation is.
This is not to say that we cannot say anything meaningful about proofs

and deduction in DL. On the contrary, there is a wealth of interesting and
practical results on axiom systems for DL that we will cover in Section 11.
In this section we investigate the power of DL relative to classical static

logics on the uninterpreted level. In particular, rich test DL of r.e. programs
is equivalent to the in�nitary language L!ck

1 !
. Some consequences of this

fact are drawn in later sections.
First we introduce a de�nition that allows to compare di�erent variants

of DL. Let us recall from Section 8.3 that a state is initial if it di�ers from
a constant state wa only at the values of individual variables. If DL1 and
DL2 are two variants of DL over the same vocabulary, we say that DL2 is as
expressive as DL1 and write DL1 � DL2 if for each formula ' in DL1 there is
a formula  in DL2 such that A; u � ' $  for all structures A and initial
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states u. If DL2 is as expressive as DL1 but DL1 is not as expressive as DL2,
we say that DL2 is strictly more expressive than DL1, and write DL1 < DL2.
If DL2 is as expressive as DL1 and DL1 is as expressive as DL2, we say that
DL1 and DL2 are of equal expressive power, or are simply equivalent, and
write DL1 � DL2. We will also use these notions for comparing versions of
DL with static logics such as L!!.
There is a technical reason for the restriction to initial states in the

above de�nition. If DL1 and DL2 have access to di�erent sets of data types,
then they may be trivially incomparable for uninteresting reasons, unless
we are careful to limit the states on which they are compared. We shall see
examples of this in Section 12.
Also, in the de�nition of DL(K) given in Section 8.4, the programming

language K is an explicit parameter. Actually, the particular �rst-order
vocabulary � over which DL(K) and K are considered should be treated as
a parameter too. It turns out that the relative expressiveness of versions of
DL is sensitive not only to K, but also to �. This second parameter is often
ignored in the literature, creating a source of potential misinterpretation of
the results. For now, we assume a �xed �rst-order vocabulary �.

Rich Test Dynamic Logic of R.E. Programs

We are about to introduce the most general version of DL we will ever
consider. This logic is called rich test Dynamic Logic of r.e. programs , and
it will be denoted DL(rich-test r:e:). Programs of DL(rich-test r:e:) are r.e.
sets of seqs as de�ned in Section 8.2, except that the seqs may contain tests
'? for any previously constructed formula '.
The formal de�nition is inductive. All atomic programs are programs and

all atomic formulas are formulas. If ';  are formulas, �; � are programs,
f�n j n 2 !g is an r.e. set of programs over a �nite set of variables (free or
bound), and x is a variable, then

� 0

� '!  

� [�]'

� 8x '

are formulas and

� � ; �

� f�n j n 2 !g

� '?
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are programs. The set CS (�) of computation sequences of a rich test r.e.
program � is de�ned as usual.
The language L!1! is the language with the formation rules of the �rst-

order language L!!, but in which countably in�nite conjunctions and dis-
junctions

V
i2I 'i and

W
i2I 'i are also allowed. In addition, if f'i j i 2 Ig

is recursively enumerable, then the resulting language is denoted L!ck
1 !

and
is sometimes called constructive L!1!.

PROPOSITION 56. DL(rich-test r:e:) � L!ck
1 !

.

Since r.e. programs as de�ned in Section 8.2 are clearly a special case
of general rich-test r.e. programs, it follows that DL(rich-test r:e:) is as ex-
pressive as DL(r:e:). In fact they are not of the same expressive power.

THEOREM 57. DL(r:e:) < DL(rich-test r:e:).

Henceforth, we shall assume that the �rst-order vocabulary � contains
at least one function symbol of positive arity. Under this assumption, DL
can easily be shown to be strictly more expressive than L!!:

THEOREM 58. L!! < DL.

COROLLARY 59.

L!! < DL < DL(r:e:) < DL(rich-test r:e:) � L!ck
1 !
:

The situation with the intermediate versions of DL, e.g.DL(stk), DL(bstk),
DL(wild), etc., is of interest. We deal with the relative expressive power of
these in Section 12.

9.2 Interpreted Reasoning

Arithmetical Structures

This is the most detailed level we will consider. It is the closest to the actual
process of reasoning about concrete, fully speci�ed programs. Syntactically,
the programs and formulas are as on the uninterpreted level, but here we
assume a �xed structure or class of structures.
In this framework, we can study programs whose computational behav-

ior depends on (sometimes deep) properties of the particular structures over
which they are interpreted. In fact, almost any task of verifying the correct-
ness of an actual program falls under the heading of interpreted reasoning.
One speci�c structure we will look at carefully is the natural numbers

with the usual arithemetic operations:

N = (!; 0; 1; +; �; =):

Let � denote the (�rst-order-de�nable) operation of subtraction and let
gcd(x; y) denote the �rst-order-de�nable operation giving the greatest com-
mon divisor of x and y. The following formula of DL is N-valid, i.e., true in
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all states of N:

x = x0 ^ y = y0 ^ xy � 1 ! <�>(x = gcd(x0; y0))(33)

where � is the while program of Example 1 or the regular program

(x 6= y?; ((x > y?;x := x� y) [ (x < y?; y := y � x)))�x = y?:

Formula (33) states the correctness and termination of an actual program
over N computing the greatest common divisor.
As another example, consider the following formula over N:

8x � 1 <(if even(x) then x := x=2 else x := 3x+ 1)�>(x = 1):

Here = denotes integer division, and even( ) is the relation that tests if its
argument is even. Both of these are �rst-order de�nable. This innocent-
looking formula asserts that starting with an arbitrary positive integer and
repeating the following two operations, we will eventually reach 1:

� if the number is even, divide it by 2;

� if the number is odd, triple it and add 1.

The truth of this formula is as yet unknown, and it constitutes a problem
in number theory (dubbed \the 3x + 1 problem") that has been open for
over 60 years. The formula 8x � 1 <�>1, where � is

while x 6= 1 do if even(x) then x := x=2 else x := 3x+ 1;

says this in a slightly di�erent way.
The speci�c structure N can be generalized, resulting in the class of arith-

metical structures . Briey, a structure A is arithmetical if it contains a
�rst-order-de�nable copy of N and has �rst-order de�nable functions for
coding �nite sequences of elements of A into single elements and for the
corresponding decoding.
Arithmetical structures are important because (i) most structures aris-

ing naturally in computer science (e.g., discrete structures with recursively
de�ned data types) are arithmetical, and (ii) any structure can be extended
to an arithmetical one by adding appropriate encoding and decoding capa-
bilities. While most of the results we present for the interpreted level are
given in terms of N alone, many of them hold for any arithmetical structure,
so their signi�cance is greater.

Expressive Power over N

The results of Corollary 59 establishing that

L!! < DL < DL(r:e:) < DL(rich-test r:e:)
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were on the uninterpreted level, where all structures are taken into account.
Thus �rst-order logic, regular DL, and DL(rich-test r:e:) form a sequence
of increasingly more powerful logics when interpreted uniformly over all
structures.

What happens if one �xes a structure, say N? Do these di�erences in
expressive power still hold? We now address these questions.

First, we introduce notation for comparing expressive power over N. If
DL1 and DL2 are variants of DL (or static logics, such as L!!) and are
de�ned over the vocabulary of N, we write DL1 �N DL2 if for each ' 2 DL1
there is  2 DL2 such that N � ' $  . We de�ne <N and �N from �N in
a way analogous to the de�nition of < and � from �.

It turns out that over N, DL is no more expressive than �rst-order logic
L!!. This is true even for �nite-test DL. The result is stated for N, but is
actually true for any arithmetical structure.

THEOREM 60. L!! �N DL �N DL(r:e:).

The signi�cance of this result is that in principle, one can carry out all
reasoning about programs interpreted over N in the �rst-order logic L!!
by translating each DL formula into an equivalent �rst-order formula. The
translation is e�ective. Moreover, Theorem 60 holds for any arithmetical
structure containing the requisite coding power. As mentioned earlier, every
structure can be extended to an arithmetical one.

However, the translation of Theorem 60 produces unwieldly formulas hav-
ing little resemblance to the original ones. This mechanism is thus some-
what unnatural and does not correspond closely to the type of arguments
one would �nd in practical program verication. In Section 11, a remedy is
provided that makes the process more orderly.

We now observe that over N, DL(rich-test r:e:) has considerably more
power than the equivalent logics of Theorem 60. This too is true for any
arithmetical structure.

THEOREM 61. Over N, DL(rich-test r:e:) de�nes precisely the �1
1 (hyper-

arithmetic) sets.

Theorems 60 and 61 say that over N, the languagesDL and DL(r:e:) de�ne
the arithmetic (�rst-order de�nable) sets and DL(rich-test r:e:) de�nes the
hyperarithmetic or �1

1 sets. Since the inclusion between these classes is
strict|for example, �rst-order number theory is hyperarithmetic but not
arithmetic|we have

COROLLARY 62. DL(r:e:) <N DL(rich-test r:e:).
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10 COMPLEXITY OF DL

This section addresses the complexity of �rst-order Dynamic Logic.
Since all versions of DL subsume �rst-order logic, the truth, satis�ability,

or validity of a given formula can be no easier to establish than in L!!.
Also, since DL(r:e:) is subsumed by L!ck

1 !
, these questions are no harder

to establish than in L!ck
1 !

. These bounds hold for both uninterpreted and
interpreted levels of reasoning.

10.1 The Uninterpreted Level

In this section we discuss the complexity of the validity problem for DL. By
the remarks above, this problem is between �0

1 and �1
1. That is, as a lower

bound it is undecidable and can be no better than recursively enumerable,
and as an upper bound it is in �1

1. This is a rather large gap, so we
are still interested in determining more precise complexity bounds for DL
and its variants. An interesting related question is whether there is some
nontrivial5 fragment of DL that is in �0

1, since this would allow a complete
axiomatization.
In the following, we consider these questions for full DL(reg), but we

also consider two important subclasses of formulas for which better upper
bounds are derivable:

� partial correctness assertions of the form  ! [�]', and

� termination or total correctness assertions of the form  ! <�>',

where ' and  are �rst-order formulas. The results are stated for regu-
lar programs, but they remain true for the more powerful programming
languages too. They also hold for deterministic while programs.
We state the results without mentioning the underlying �rst-order vo-

cabulary �. For the upper bounds this is irrelevant. For the lower bounds,
we assume the � contains a unary function symbol and ternary predicate
symbols.

THEOREM 63. The validity problem for DL is �1
1-hard, even for formulas

of the form 9x [�]', where � is a regular program and ' is �rst-order.

THEOREM 64. The validity problem for DL and DL(rich-test r:e:), as well
as all intermediate versions, is �1

1-complete.

To soften the negative avor of these results, we now observe that the spe-
cial cases of unquanti�ed one-program DL(r:e:) formulas have easier validity
problems (though, as mentioned, they are still undecidable).

5Nontrivial here means containing L!! and allowing programs with iteration. The
reason for this requirement is that loop-free programs add no expressive power over �rst-
order logic.



168 DAVID HAREL, DEXTER KOZEN, AND JERZY TIURYN

THEOREM 65. The validity problem for the sublanguage of DL(r:e:) con-
sisting of formulas of the form <�>', where ' is �rst-order and � is an r.e.
program, is �0

1-complete.

It is easy to see that the result holds for formulas of the form  ! <�>',
where  is also �rst-order. Thus, termination assertions for nondeterminis-
tic programs with �rst-order tests (or total correctness assertions for deter-
ministic programs), on the uninterpreted level of reasoning, are recursively
enumerable and therefore axiomatizable. We shall give an explicit axioma-
tization in Section 11.
We now turn to partial correctness.

THEOREM 66. The validity problem for the sublanguage of DL(r:e:) con-
sisting of formulas of the form [�]', where ' is �rst-order and � is an r.e.
program, is �0

2-complete. The �0
2-completeness property holds even if we

restrict � to range over deterministic while programs.

Theorem 66 extends easily to partial correctness assertions; that is, to
formulas of the form  ! [�]', where  is also �rst-order. Thus, while
�0
2 is obviously better than �1

1, it is noteworthy that on the uninterpreted
level of reasoning, the truth of even simple correctness assertions for simple
programs is not r.e., so that no �nitary complete axiomatization for such
validities can be given.

10.2 The Interpreted Level

The characterizations of the various versions of DL in terms of classical static
logics established in Section 9.2 provide us with the precise complexity of
the validity problem over N.

THEOREM 67. The N-validity problem for DL(dreg) and DL(rich-test r:e:),
as well as all intermediate versions, when de�ned over the vocabulary of N,
is hyperarithmetic (�1

1) but not arithmetic.

10.3 Spectral Complexity

We now introduce the spectral complexity of a programming language. As
mentioned, this notion provides a measure of the complexity of the halting
problem for programs over �nite interpretations.
Recall that a state is a �nite variant of a constant valuation wa for some

a 2 A (see Section 8.3), and a state w is initial if it di�ers from wa for
individual variables only. Thus, an initial state can be uniquely de�ned
by specifying its relevant portion of values on individual variables. For
m 2 N, we call an initial state w an m-state if for some a 2 A and for
all i � m, w(xi) = a. An m-state can be speci�ed by an (m + 1)-tuple of
values (a0; : : : ; am) that represent values of w for the �rst m+1 individual
variables x0; : : : ; xm. Call an m-state w = (a0; : : : ; am) Herbrand-like if the
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set fa0; : : : ; amg generates A; that is, if every element of A can be obtained
as a value of a term in the state w.
We are now ready to de�ne the notion of a spectrum of a programming

language. Let K be a programming language and let � 2 K and m � 0.
The mth spectrum of � is the set

SPm(�)
def
= fpAwqA is a �nite �-structure, w is an m-state in A;

and A; w � <�>1g:

The spectrum of K is the set

SP (K)
def
= fSPm(�) j � 2 K; m 2 Ng:

Given m � 0, observe that structures in S
�[fc0;::: ;cmg
n can be viewed as

structures of the form Aw for a certain �-structure A and an m-state w in
A. This representation is unique.
In this section we establish the complexity of spectra; that is, the com-

plexity of the halting problem in �nite interpretations. Let us �x m � 0,
a rich vocabulary �, and new constants c0; : : : ; cm. Since not every binary
string is of the form pAq for some �-structure A and m-state w in A, we
will restrict our attention to strings that are of this form. Let

H�
m

def
= fpAq j A 2 S

�[fc0;::: ;cmg
n for some n � 1g:

It is easy to show that the language H�
m is in LOGSPACE for every

vocabulary � and m � 0.
We are now ready to connect complexity classes with spectra. Let K be

any programming language and let C � 2f0;1g
�
be a family of sets. We say

that SP (K) captures C, denoted SP (K) � C, if

� SP (K) � C, and

� for every X 2 C and m � 0, if X � H�
m, then there is a program

� 2 K such that SPm(�) = X .

For example, if C is the class of all sets recognizable in polynomial time,
then SP (K) � P means that

� the halting problem over �nite interpretations for programs from K
is decidable in polynomial time, and

� every polynomial-time-recognizable set of codes of �nite interpreta-
tions is the spectrum of some program from K.

We conclude this section by characterizing the spectral complexity of
some of the programming languages introduced in Section 8.
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THEOREM 68. Let � be a rich vocabulary. Then

(i) SP(dreg) � LOGSPACE.

(ii) SP(reg) � NLOGSPACE.

Moreover, if � is mono-unary, then SP(dreg) captures LOGSPACE and
SP(reg) captures NLOGSPACE.

THEOREM 69. Over a rich vocabulary �, SP(dstk) and SP(stk) capture
P.

THEOREM 70. If � is a rich vocabulary, then SP(darray) and SP(array)
capture PSPACE.

11 AXIOMATIZATION OF DL

11.1 Uninterpreted Reasoning

Recall from Section 10.1 that validity in DL is �1
1-complete, but only r.e.

when restricted to simple termination assertions. This means that termina-
tion (or total correctness when the programs are deterministic) can be fully
axiomatized in the standard sense. This we do �rst, and we then turn to
the problem of axiomatizing full DL.

Since the validity problem for such termination assertions is r.e., it is of
interest to �nd a nicely-structured complete axiom system. We propose the
following.

Axiom System S1

Axiom Schemes

� all instances of valid �rst-order formulas;

� all instances of valid formulas of PDL;

� '[x=t]! <x := t>'; where ' is a �rst-order formula.

Inference Rules

� modus ponens:

'; '!  
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We denote provability in Axiom System S1 by
S̀1
.

THEOREM 71. For any DL formula of the form '! <�> , for �rst-order
' and  and program � containing �rst-order tests only,

� '! <�> ,
S̀1
'! <�> :

Given the high undecidability of validity in DL, we cannot hope for a
complete axiom system in the usual sense. Nevertheless, we do want to
provide an orderly axiomatization of valid DL formulas, even if this means
that we have to give up the �nitary nature of standard axiom systems.
Below we present a complete in�nitary axiomatization S2 of DL that

includes an inference rule with in�nitely many premises. Before doing so,
however, we must get a certain technical complication out of the way. We
would like to be able to consider valid �rst-order formulas as axiom schemes,
but instantiated by general formulas of DL. In order to make formulas
amenable to �rst-order manipulation, we must be able to make sense of
such notions as \a free occurrence of x in '" and the substitution '[x=t].
For example, we would like to be able to use the axiom scheme of the
predicate calculus 8x '! '[x=t], even if ' contains programs.
The problem arises because the dynamic nature of the semantics of DL

may cause a single occurrence of a variable in a DL formula to act as both
a free and bound occurrence. For example, in the formula <while x �
99 do x := x+ 1>1, the occurrence of x in the expression x+1 acts as both
a free occurrence (for the �rst assignment) and as a bound occurrence (for
subsequent assignments).
There are several reasonable ways to deal with this, and we present one for

de�niteness. Without loss of generality, we assume that whenever required,
all programs appear in the special form

<z := x ; � ; x := z>'(34)

where x = (x1; : : : ; xn) and z = (z1; : : : ; zn) are tuples of variables, z := x
stands for

z1 := x1 ; � � � ; zn := xn

(and similarly for x := z), the xi do not appear in �, and the zi are new
variables appearing nowhere in the relevant context outside of the program
�. The idea is to make programs act on the \local" variables zi by �rst
copying the values of the xi into the zi, thus freezing the xi, executing the
program with the zi, and then restoring the xi. This form can be easily
obtained from any DL formula by consistently changing all variables of any
program to new ones and adding the appropriate assignments that copy and
then restore the values. Clearly, the new formula is equivalent to the old.
Given a DL formula in this form, the following are bound occurrences of
variables:
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� all occurrences of x in a subformula of the form 9x ';

� all occurrences of zi in a subformula of the form (34) (note, though,
that zi does not occur in ' at all);

� all occurrences of xi in a subformula of the form (34) except for its
occurrence in the assignment zi := xi.

Every occurrence of a variable that is not bound is free. Our axiom
system will have an axiom that enables free translation into the special
form discussed, and in the sequel we assume that the special form is used
whenever required (for example, in the assignment axiom scheme below).

As an example, consider the formula:

8x (<y := f(x); x := g(y; x)>p(x; y)) !

<z1 := h(z); z2 := y; z2 := f(z1); z1 := g(z2; z1); x := z1;

y := z2>p(x; y):

Denoting <y := f(x);x := g(y; x)>p(x; y) by ', the conclusion of the im-
plication is just '[x=h(z)] according to the convention above; that is, the
result of replacing all free occurrences of x in ' by h(z) after ' has been
transformed into special form. We want the above formula to be considered
a legal instance of the assignment axiom scheme below.

Axiom System S2

Axiom Schemes

� all instances of valid �rst-order formulas;

� all instances of valid formulas of PDL;

� <x := t>'$ '[x=t];

� ' $ b', where b' is ' in which some occurrence of a program � has
been replaced by the program z := x; �0; x := z for z not appearing
in ', and where �0 is � with all occurrences of x replaced by z.

Inference Rules

� modus ponens:

'; '!  
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� generalization:

'

[�]'
and

'

8x '

� in�nitary convergence:

'! [�n] ; n 2 !

'! [��] 

Provability in Axiom System S2, denoted by
S̀2
, is the usual concept for

systems with in�nitary rules of inference; that is, deriving a formula using
the in�nitary rule requires in�nitely many premises to have been previously
derived.
Axiom System S2 consists of an axiom for assignment, facilities for propo-

sitional reasoning about programs and �rst-order reasoning with no pro-
grams (but with programs possibly appearing in instantiated �rst-order
formulas), and an in�nitary rule for [��]. The dual construct, <��>, is
taken care of by the \unfolding" validity of PDL:

<��>' $ (' _ <�;��>'):

THEOREM 72. For any formula ' of DL,

� ' ,
S̀2
':

11.2 Interpreted Reasoning

Proving properties of real programs very often involves reasoning on the
interpreted level, where one is interested in A-validity for a particular struc-
ture A. A typical proof might use induction on the length of the computation
to establish an invariant for partial correctness or to exhibit a decreasing
value in some well-founded set for termination. In each case, the problem
is reduced to the problem of verifying some domain-dependent facts, some-
times called veri�cation conditions . Mathematically speaking, this kind of
activity is really an e�ective transformation of assertions about programs
into ones about the underlying structure.
For DL, this transformation can be guided by a direct induction on pro-

gram structure using an axiom system that is complete relative to any given
arithmetical structure A. The essential idea is to exploit the existence, for
any given DL formula, of a �rst-order equivalent in A, as guaranteed by
Theorem 60. In the axiom systems we construct, instead of dealing with
the �1

1-hardness of the validity problem by an in�nitary rule, we take all
A-valid �rst-order formulas as additional axioms. Relative to this set of
axioms, proofs are �nite and e�ective.
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For partial correctness assertions of the form ' ! [�] with ' and  
�rst-order and � containing �rst-order tests, it suÆces to show that DL
reduces to the �rst-order logic L!!, and there is no need for the natural
numbers to be present. Thus, Axiom System S3 below works for �nite
structures too. Axiom System S4 is an arithmetically complete system for
full DL that does make explicit use of natural numbers.

It follows from Theorem 66 that for partial correctness formulas we can-
not hope to obtain a completeness result similar to the one proved in Theo-
rem 71 for termination formulas. A way around this diÆculty is to consider
only expressive structures.

A structure A for the �rst-order vocabulary � is said to be expressive
for a programming language K if for every � 2 K and for every �rst-order
formula ', there exists a �rst-order formula  L such that A �  L $ [�]'.
Examples of structures that are expressive for most programming languages
are �nite structures and arithmetical structures.

Axiom System S3

Axiom Schemes

� all instances of valid formulas of PDL;

� <x := t>'$ '[x=t] for �rst-order '.

Inference Rules

� modus ponens:

'; '!  

 

� generalization:

'

[�]'
:

Note that Axiom System S3 is really the axiom system for PDL from
Section 4 with the addition of the assignment axiom. Given a DL formula '
and a structure A, denote by A

S̀3 ' provability of ' in the system obtained
from Axiom System S3 by adding the following set of axioms:

� all A-valid �rst-order sentences.
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THEOREM 73. For every expressive structure A and for every formula �
of DL of the form '! [�] , where ' and  are �rst-order and � involves
only �rst-order tests, we have

A � � , A
S̀3
�:

Now we present an axiom system S4 for full DL. It is similar in spirit to
S3 in that it is complete relative to the formulas valid in the structure under
consideration. However, this system works for arithmetical structures only.
It is not tailored to deal with other expressive structures, notably �nite ones,
since it requires the use of the natural numbers. The kind of completeness
result stated here is thus termed arithmetical.
As in Section 9.2, we state the results for the special structure N, omit-

ting the technicalities needed to deal with general arithmetical structures.
The main di�erence is that in N we can use variables n, m, etc., know-
ing that their values will be natural numbers. We can thus write n + 1,
for example, assuming the standard interpretation. When working in an
unspeci�ed arithmetical structure, we have to precede such usage with ap-
propriate predicates that guarantee that we are indeed talking about that
part of the domain that is isomorphic to the natural numbers. For example,
we would often have to use the �rst-order formula, call it nat(n), which
is true precisely for the elements representing natural numbers, and which
exists by the de�nition of an arithmetical structure.

Axiom System S4

Axiom Schemes

� all instances of valid �rst-order formulas;

� all instances of valid formulas of PDL;

� <x := t>'$ '[x=t] for �rst-order '.

Inference Rules

� modus ponens:

'; '!  

 

� generalization:

'

[�]'
and

'

8x '
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� convergence:

'(n+ 1)! <�>'(n)

'(n)! <��>'(0)

for �rst order ' and variable n not appearing in �.

REMARK 74. For general arithmetical structures, the +1 and 0 in the rule
of convergence denote suitable �rst-order de�nitions.

As in Axiom System S3, denote by A
S̀4
' provability of ' in the system

obtained from Axiom System S4 by adding all A-valid �rst-order sentences
as axioms.

THEOREM 75. For every formula � of DL,

N � � , N
S̀4
�:

The use of the natural numbers as a device for counting down to 0 in
the convergence rule of Axiom System S4 can be relaxed. In fact, any well-
founded set suitably expressible in any given arithmetical structure suÆces.
Also, it is not necessary to require that an execution of � causes the truth
of the parameterized '(n) in that rule to decrease exactly by 1; it suÆces
that the decrease is positive at each iteration.
In closing, we note that appropriately restricted versions of all axiom

systems of this section are complete for DL(dreg). In particular, as pointed
out in Section 2.6, the Hoare while-rule

' ^ � ! [�]'

'! [while � do �](' ^ :�)

results from combining the generalization rule with the induction and test
axioms of PDL, when � is restricted to appear only in the context of a while
statement; that is, only in the form (�?; p)�; (:�)?.

12 EXPRESSIVENESS OF DL

The subject of study in this section is the relative expressive power of lan-
guages. We will be primarily interested in comparing, on the uninterpreted
level, the expressive power of various versions of DL. That is, for program-
ming languages P1 and P2 we will study whether DL(P1) � DL(P2) holds.
Recall from Section 9 that the latter relation means that for each formula
' in DL(P1), there is a formula  in DL(P2) such that A; u � '$  for all
structures A and initial states u.
Studying the expressive power of logics rather than the computational

power of programs allows us to compare, for example, deterministic and
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nondeterministic programming languages. Also, we will see that the answer
to the fundamental question \DL(P1) � DL(P2)?" may depend crucially on
the vocabulary over which we consider logics and programs. For this reason
we always make clear in the theorems of this section our assumptions on
the vocabulary.

THEOREM 76. Let � be a rich vocabulary. Then

(i) DL(stk) � DL(array).

(ii) DL(stk) � DL(array) i� P = PSPACE.

Moreover, the same holds for deterministic regular programs with an alge-
braic stack and deterministic regular programs with arrays.

THEOREM 77. Over a monadic vocabulary, nondeterministic regular pro-
grams with a Boolean stack have the same computational power as nonde-
terministic regular programs with an algebraic stack.

Now we investigate the role that nondeterminism plays in the expressive
power of logics of programs. As we shall see, the general conclusion is that
for a programming language of suÆcient computational power, nondeter-
minism does not increase the expressive power of the logic.
We start our discussion of the role of nondeterminism with the basic

case of regular programs. Recall that DL and DDL denote the logics of
nondeterministic and deterministic regular programs, respectively.
We can now state the main result that separates the expressive power of

deterministic and nondeterministic while programs.

THEOREM 78. For every vocabulary containing at least two unary function
symbols or at least one function symbol of arity greater than one, DDL is
strictly less expressive than DL; that is, DDL < DL.

It turns out that Theorem 78 cannot be extended to vocabularies con-
taining just one unary function symbol without solving a well known open
problem in complexity theory.

THEOREM 79. For every rich mono-unary vocabulary, the statement
\DDL is strictly less expressive than DL" is equivalent to LOGSPACE 6=
NLOGSPACE.

We now turn our attention to the discussion of the role nondeterminism
plays in the expressive power of regular programs with a Boolean stack.
For a vocabulary containing at least two unary function symbols, nondeter-
minism increases the expressive power of DL over regular programs ` with
a Boolean stack.
For the rest of this section, we let the vocabulary contain two unary

function symbols.

THEOREM 80. For a vocabulary containing at least two unary function
symbols or a function symbol of arity greater than two, DL(dbstk) < DL(bstk).
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It turns out that for programming languages that use suÆciently strong
data types, nondeterminism does not increase the expressive power of
Dynamic Logic.

THEOREM 81. For every vocabulary,

(i) DL(dstk) � DL(stk);

(ii) DL(darray) � DL(array).

We will discuss the role of unbounded memory of programs for the ex-
pressive power of the corresponding logic. However, this result depends on
assumptions about the vocabulary �.
Recall from Section 8.2 that an r.e. program � has bounded memory if

the set CS (�) contains only �nitely many distinct variables from V , and
if in addition the nesting of function symbols in terms that occur in seqs
of CS (�) is bounded. This restriction implies that such a program can be
simulated in all interpretations by a device that uses a �xed �nite number
of registers, say x1; : : : ; xn, and all its elementary steps consist of either
performing a test of the form

r(xi1 ; : : : ; xim )?;

where r is an m-ary relation symbol of �, or executing a simple assignment
of either of the following two forms:

xi := f(xi1 ; : : : ; xik ) xi := xj :

In general, however, such a device may need a very powerful control (that
of a Turing machine) to decide which elementary step to take next.
An example of a programming language with bounded memory is the

class of regular programs with a Boolean stack. Indeed, the Boolean stack
strengthens the control structure of a regular program without introducing
extra registers for storing algebraic elements. It can be shown without
much diÆculty that regular programs with a Boolean stack have bounded
memory. On the other hand, regular programs with an algebraic stack or
with arrays are programming languages with unbounded memory.
For monadic vocabularies, the class of nondeterministic regular programs

with a Boolean stack is computationally equivalent to the class of nonde-
terministic regular programs with an algebraic stack. For deterministic
programs, the situation is slightly di�erent.

THEOREM 82.

(i) For every vocabulary containing a function symbol of arity greater than
one, DL(dbstk) < DL(dstk) and DL(bstk) < DL(stk).

(ii) For all monadic vocabularies, DL(bstk) � DL(stk).
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(iii) For all mono-unary vocabularies, DL(dbstk) � DL(dstk).

(iv) For all monadic vocabularies containing at least two function symbols,
DL(dbstk) < DL(dstk).

Regular programs with a Boolean stack are situated between pure regu-
lar programs and regular programs with an algebraic stack. We start our
discussion by comparing the expressive power of regular programs with and
without a Boolean stack. The only known de�nite answer to this problem is
given in the following result, which covers the case of deterministic programs
only.

THEOREM 83.

(i) Let the vocabulary be rich and mono-unary. Then

DL(dreg) � DL(dstk) , LOGSPACE = P :

(ii) If the vocabulary contains at least one function symbol of arity greater
than one or at least two unary function symbols, then DL(dreg) <
DL(dbstk).

It is not known whether Theorem 83(ii) holds for nondeterministic pro-
grams, and neither is its statement known to be equivalent to any of the
well known open problems in complexity theory. In contrast, it follows
from Theorems 83(i) and 82(iii) that for rich mono-unary vocabularies,
DL(dreg) � DL(dbstk) if and only if LOGSPACE = P . Hence, this prob-
lem cannot be solved without solving one of the major open problems in
complexity theory.
The wildcard assignment statement x :=? discussed in Section 8.2 chooses

an element of the domain of computation nondeterministically and assigns
it to x. It is a device that represents unbounded nondeterminism as opposed
to the binary nondeterminism of the nondeterministic choice construct [.
The programming language of regular programs augmented with wildcard
assignment is not an acceptable programming language, since a wildcard
assignment can produce values that are outside the substructure generated
by the input.
Our �rst result shows that wildcard assignment increases the expressive

power in quite a substantial way; it cannot be simulated even by r.e. pro-
grams.

THEOREM 84. Let the vocabulary � contain two constants c1; c2, a binary
predicate symbol p, the symbol = for equality, and no other function or
predicate symbols. There is a formula of DL(wild) that is equivalent to no
formula of DL(r:e:), thus DL(wild) 6� DL(r:e:).
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It is not known whether any of the logics with unbounded memory are
reducible to DL(wild).
When both wildcard and array assignments are allowed, it is possible to

de�ne the �niteness of (the domain of) a structure, but not in the logics
with either of the additions removed. Thus, having both memory and non-
determinism unbounded provides more power than having either of them
bounded.

THEOREM 85. Let vocabulary � contain only the symbol of equality. There
is a formula of DL(array+wild) equivalent to no formula of either DL(array)
or DL(wild).

13 VARIANTS OF DL

In this section we consider some restrictions and extensions of DL. We are
interested mainly in questions of comparative expressive power on the un-
interpreted level. In arithmetical structures these questions usually become
trivial, since it is diÆcult to go beyond the power of �rst-order arithmetic
without allowing in�nitely many distinct tests in programs (see Theorems
60 and 61). In regular DL this luxury is not present.

13.1 Algorithmic Logic

Algorithmic Logic (AL) is the predecessor of Dynamic Logic. The basic
system was de�ned by [Salwicki, 1970] and generated an extensive amount
of subsequent research carried out by a group of mathematicians working
in Warsaw. Two surveys of the �rst few years of their work can be found
in [Banachowski et al., 1977] and [Salwicki, 1977].
The original version of AL allowed deterministic while programs and

formulas built from the constructs

�' [ �' \ �'

corresponding in our terminology to

<�>' <��>'
^
n2!

<�n>';

respectively, where � is a deterministic while program and ' is a quanti�er-
free �rst-order formula.
In [Mirkowska, 1980; Mirkowska, 1981a; Mirkowska, 1981b], AL was ex-

tended to allow nondeterministic while programs and the constructs

r�' ��'

corresponding in our terminology to

<�>' halt(�) ^ [�]' ^ <�>';
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respectively. The latter asserts that all traces of � are �nite and terminate
in a state satisfying '.
A feature present in AL but not in DL is the set of \dynamic terms" in

addition to dynamic formulas. For a �rst-order term t and a deterministic
while program �, the meaning of the expression �t is the value of t after
executing program �. If � does not halt, the meaning is unde�ned. Such
terms can be systematically eliminated; for example, P (x; �t) is replaced
by 9z (<�>(z = t) ^ P (x; z)).
The emphasis in the early research on AL was in obtaining in�nitary

completeness results, developing normal forms for programs, investigating
recursive procedures with parameters, and axiomatizing certain aspects of
programming using formulas of AL. As an example of the latter, the algo-
rithmic formula

(while s 6= " do s := pop(s))1

can be viewed as an axiom connected with the data structure stack. One
can then investigate the consequences of such axioms within AL, regarding
them as properties of the corresponding data structures.
Complete in�nitary deductive systems for �rst-order and propositional

versions are given in [Mirkowska, 1980; Mirkowska, 1981a;Mirkowska, 1981b].
The in�nitary completeness results for AL are usually proved by the alge-
braic methods of [Rasiowa and Sikorski, 1963].
[Constable, 1977], [Constable and O'Donnell, 1978] and [Goldblatt, 1982]

present logics similar to AL and DL for reasoning about deterministic while
programs.

13.2 Well-Foundedness

As in Section 7 for PDL, we consider adding to DL assertions to the e�ect
that programs can enter in�nite computations. Here too, we shall be inter-
ested both in LDL and in RDL versions; i.e., those in which halt� and wf �,
respectively, have been added inductively as new formulas for any program
�. As mentioned there, the connection with the more common notation
repeat� and loop� (from which the L and R in the names LDL and RDL
derive) is by:

loop�
def
() :halt�

repeat�
def
() :wf �:

We now state some of the relevant results. The �rst concerns the addition
of halt�:

THEOREM 86. LDL � DL.

In contrast to this, we have:
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THEOREM 87. LDL < RDL.

Turning to the validity problem for these extensions, clearly they cannot
be any harder to decide than that ofDL, which is �1

1-complete. However, the
following result shows that detecting the absence of in�nite computations
of even simple uninterpreted programs is extremely hard.

THEOREM 88. The validity problems for formulas of the form ' ! wf�
and formulas of the form ' ! halt�, for �rst-order ' and regular �, are
both �1

1-complete. If � is constrained to have only �rst-order tests then the
' ! wf� case remains �1

1-complete but the ' ! halt� case is r.e.; that
is, it is �0

1-complete.

We just mention here that the additions to Axiom System S4 of Section
11 that are used to obtain an arithmetically complete system for RDL are
the axiom

[��]('! <�>') ! ('! :wf �)

and the inference rule

'(n+ 1)! [�]'(n); :'(0)

'(n)! wf �

for �rst-order ' and n not occurring in �.

13.3 Probabilistic Programs

There is wide interest recently in programs that employ probabilistic moves
such as coin tossing or random number draws and whose behavior is de-
scribed probabilistically (for example, � is \correct" if it does what it is
meant to do with probability 1). To give one well known example taken
from [Miller, 1976] and [Rabin, 1980], there are fast probabilistic algorithms
for checking primality of numbers but no known fast nonprobabilistic ones.
Many synchronization problems including digital contract signing, guaran-
teeing mutual exclusion, etc. are often solved by probabilistic means.
This interest has prompted research into formal and informal methods

for reasoning about probabilistic programs. It should be noted that such
methods are also applicable for reasoning probabilistically about ordinary
programs, for example, in average-case complexity analysis of a program,
where inputs are regarded as coming from some set with a probability dis-
tribution.
[Kozen, 1981d] provided a formal semantics for probabilistic �rst-order

while programs with a random assignment statement x :=?. Here the term
\random" is quite appropriate (contrast with Section 8.2) as the statement
essentially picks an element out of some �xed distribution over the domain
D. This domain is assumed to be given with an appropriate set of measur-
able subsets. Programs are then interpreted as measurable functions on a
certain measurable product space of copies of D.
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In [Feldman and Harel, 1984] a probabilistic version of �rst-order Dy-
namic Logic, Pr(DL), was investigated on the interpreted level. Kozen's
semantics is extended as described below to a semantics for formulas that
are closed under Boolean connectives and quanti�cation over reals and inte-
gers and that employ terms of the form Fr(') for �rst-order '. In addition,
if � is a while program with nondeterministic assignments and ' is a for-
mula, then f�g' is a new formula.
The semantics assumes a domain D, say the reals, with a measure space

consisting of an appropriate family of measurable subsets of D. The states
�; �; : : : are then taken to be the positive measures on this measure space.
Terms are interpreted as functions from states to real numbers, with Fr(')
in � being the frequency (or simply, the measure) of ' in �. Frequency is
to positive measures as probability is to probability measures. The formula
f�g' is true in � if ' is true in �, the state (i.e., measure) that is the result
of applying � to � in Kozen's semantics. Thus f�g' means \after �, '"
and is the construct analogous to <�>' of DL.
For example, in Pr(DL) one can write

Fr(1) = 1 ! f�gFr(1) � p

to mean, \� halts with probability at least p." The formula

Fr(1) = 1 ! [i := 1;x := ?;while x > 1=2 do (x := ?; i := i+ 1)]

8n ((n � 1! Fr(i = n) = 2�n) ^

(n < 1! Fr(i = n) = 0))

is valid in all structures in which the distribution of the random variable
used in x := ? is a uniform distribution on the real interval [0; 1].
An axiom system for Pr(DL) was proved in [Feldman and Harel, 1984]

to be complete relative to an extension of �rst-order analysis with inte-
ger variables, and for discrete probabilities �rst-order analysis with integer
variables was shown to suÆce.

14 OTHER APPROACHES

Here we discuss briey some topics closely related to Dynamic Logic.

14.1 Logic of E�ective De�nitions

The Logic of E�ective De�nitions (LED), introduced by [Tiuryn, 1981a],
was intended to study notions of computability over abtract models and to
provide a universal framework for the study of logics of programs over such
models. It consists of �rst-order logic augmented with new atomic formulas
of the form � = �, where � and � are e�ective de�nitional schemes (the
latter notion is due to [Friedman, 1971]):
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if '1 then t1
else if '2 then t2

else if '3 then t3
else if : : :

where the 'i are quanti�er-free formulas and ti are terms over a bounded
set of variables, and the function i 7! ('i; ti) is recursive. The formula
� = � is de�ned to be true in a state if both � and � terminate and yield
the same value, or neither terminates.

Model theory and in�nitary completeness of LED are treated in [Tiuryn,
1981a].

E�ective de�nitional schemes in the de�nition of LED can be replaced
by any programming language K, giving rise to various logical formalisms.
The following result, which relates LED to other logics discussed here, is
proved in [Meyer and Tiuryn, 1981; Meyer and Tiuryn, 1984].

THEOREM 89. For every vocabulary L, LED � DL(r:e:).

14.2 Temporal Logic

Temporal Logic (TL) is an alternative application of modal logic to program
speci�cation and veri�cation. It was �rst proposed as a useful tool in pro-
gram veri�cation by [Pnueli, 1977] and has since been developed by many
authors in various forms. This topic is surveyed in depth in [Emerson, 1990]

and [Gabbay et al., 1994].

TL di�ers from DL chiey in that it is endogenous ; that is, programs
are not explicit in the language. Every application has a single program
associated with it, and the language may contain program-speci�c state-
ments such as atL, meaning \execution is currently at location L in the
program." There are two competing semantics, giving rise to two di�er-
ent theories called linear-time and branching-time TL. In the former, a
model is a linear sequence of program states representing an execution se-
quence of a deterministic program or a possible execution sequence of a
nondeterministic or concurrent program. In the latter, a model is a tree of
program states representing the space of all possible traces of a nondetermin-
istic or concurrent program. Depending on the application and the seman-
tics, di�erent syntactic constructs can be chosen. The relative advantages
of linear and branching time semantics are discussed in [Lamport, 1980;
Emerson and Halpern, 1986; Emerson and Lei, 1987; Vardi, 1998a].
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Modal constructs used in TL include

2' \' holds in all future states"
3' \' holds in some future state"e' \' holds in the next state"
'until \there exists some strictly future point t at which  will be

satis�ed and all points strictly between the current state
and t satisfy '"

for linear-time logic, as well as constructs for expressing

\for all traces starting from the present state : : : "
\for some trace starting from the present state : : : "

for branching-time logic.
Temporal logic is useful in situations where programs are not normally

supposed to halt, such as operating systems, and is particularly well suited
to the study of concurrency. Many classical program veri�cation methods
such as the intermittent assertions method are treated quite elegantly in
this framework.
Temporal logic has been most successful in providing tools for proving

properties of concurrent �nite state protocols, such as solutions to the din-
ing philosophers and mutual exclusion problems, which are popular ab-
stract versions of synchronization and resource management problems in
distributed systems.
The induction principle of TL takes the form:

' ^ 2('! e') ! 2':(35)

Note the similarity to the PDL induction axiom (Axiom 17(viii)):

' ^ [��]('! [�]') ! [��]':

This is a classical program veri�cation method known as inductive or in-
variant assertions.
The operators e, 3, and 2 can all be de�ned in terms of until:e' , :(0until:')

3' , ' _ (1until')

2' , ' ^ :(1until:');

but not vice-versa. It has been shown in [Kamp, 1968] and [Gabbay et al.,
1980] that the until operator is powerful enough to express anything that
can be expressed in the �rst-order theory of (!;<). It has also been shown
in [Wolper, 1981; Wolper, 1983] that there are very simple predicates that
cannot be expressed by until; for example, \' is true at every multiple
of 4."
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The until operator has been shown to be very useful in expressing prop-
erties of programs that are not properties of the input/output relation, such
as: \If process p requests a resource before q does, then it will receive it
before q does." Indeed, much of the research in TL has concentrated on
providing useful methods for proving these and other kinds of properties
(see [Manna and Pnueli, 1981; Gabbay et al., 1980]).

Concurrency and Nondeterminism

Unlike DL, TL can be applied to programs that are not normally supposed
to halt, such as operating systems, because programs are interpreted as
traces instead of pairs of states.
Up to now we have only considered deterministic, single-process pro-

grams. There is no reason however not to apply TL to nondeterministic and
concurrent (multiprocessor) systems, in which next states are not unique.
The computation is no longer a single trace, but many di�erent traces are
possible. We can assemble them all together to get a computation tree in
which each node represents a state accessible from the start state.
As above, an invariance property is a property of the form 2'. However,

the dual 3 of the operator 2 de�ned in this way does not really capture
what we mean by eventuality or liveness properties. We would like to be
able to say that every possible trace in the computation tree has a state
satisfying '. For instance, a nondeterministic program is total if there is no
chance of an in�nite trace out of the start state s; that is, every trace out
of s satis�es 3halt. The dual 3 of 2 as de�ned by 3' = :2:' does not
really express this. It says instead

s � 3' , there is some node t in the tree below s such that t � ':

This is not a very useful statement.
One way to �x this is to introduce the branching time operator A that

says, \For all traces in the tree : : : ," and then use 2, 3 in the sense of
linear TL applied to the trace quanti�ed by A. The dual of A is E, which
says, \There exists a trace in the tree : : : ." Thus, in order to say that
the computation tree starting from the current state satis�es a safety or
invariance property, we would write

A2';

which says, \For all traces � out of the current state, � satis�es 2'," and
to say that the tree satis�es an eventuality property, we would write

A3';

which says, \For all traces � out of the current state, � satis�es 3'; that is,
' occurs somewhere along the trace �." The logic with the linear temporal
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operators augmented with the trace quanti�ers A and E is known as CTL; see
[Emerson, 1990; Emerson and Halpern, 1986; Emerson and Halpern, 1985;
Emerson and Lei, 1987; Emerson and Sistla, 1984].

Complexity and Deductive Completeness

A useful axiomatization of linear-time TL without the until operator is given
by the axioms

2('!  ) ! (2'! 2 )

2(' ^  ) $ 2' ^ 2 

3' $ ' _ e3'e(' _  ) $ e' _ e e(' ^  ) $ e' ^ e 
' ^ 2('! e') ! 2'

8x '(x) ! '(t) (t is free for x in ')

8x 2' ! 28x '

and rules

'; '!  

 

'

2'

'

8x '
:

Compare the axioms of PDL (Axioms 17). The propositional fragment of
this deductive system is complete for linear-time propositional TL, as shown
in [Gabbay et al., 1980].
[Sistla and Clarke, 1982] and [Emerson and Halpern, 1985] have shown

that the validity problem for most versions of propositional TL is PSPACE -
complete for linear structures and EXPTIME -complete for branching struc-
tures.

Embedding TL in DL

TL is subsumed by DL. To embed propositional TL into PDL, take an atomic
program a to mean \one step of program p." In the linear model, the TL
constructs e', 2', 3', and 'until are then expressed by [a]', [a�]',
<a�>', and <(a;'?)�; a> , respectively.

14.3 Process Logic

Dynamic Logic and Temporal Logic embody markedly di�erent approaches
to reasoning about programs. This dichotomy has prompted researchers
to search for an appropriate process logic that combines the best features
of both. An appropriate candidate should combine the ability to reason
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about programs compositionally with the ability to reason directly about
the intermediate states encountered during the course of a computation.
[Pratt, 1979c], [Parikh, 1978b], [Nishimura, 1980], and [Harel et al.,

1982b] all suggested increasingly more powerful propositional-level formalisms
in which the basic idea is to interpret formulas in traces rather than in
states. In particular, [Harel et al., 1982b] present a system called Process
Logic (PL), which is essentially a union of TL and test-free regular PDL.
That paper proves that the satis�ability problem is decidable and gives a
complete �nitary axiomatization.
Syntactically, we have programs �; �; : : : and propositions ';  ; : : : as in

PDL. We have atomic symbols of each type and compound expressions built
up from the operators !, 0, ;, [, �, ? (applied to Boolean combinations of
atomic formulas only), !, and [ ]. In addition we have the temporal oper-
ators �rst and until. The temporal operators are available for expressing
and reasoning about trace properties, but programs are constructed com-
positionally as in PDL. Other operators are de�ned as in PDL (see Section
2.1) except for skip, which is handled specially.
Semantically, both programs and propositions are interpreted as sets of

traces. We start with a Kripke frame K = (K;mK) as in Section 2.2, where
K is a set of states s; t; : : : and the function mK interprets atomic formulas
p as subsets of K and atomic programs a as binary relations on K. The
temporal operators are de�ned as in TL.
Trace models satisfy (most of) the PDL axioms. As in Section 14.2, de�ne

halt
def
() e0

�n
def
() 3halt

inf
def
() :�n;

which say that the trace is of length 0, of �nite length, or of in�nite length,
respectively. De�ne two new operators [[ ]] and << >>:

[[�]]'
def
() �n! [�]'

<<�>>'
def
() :[[�]]:' , �n ^ <�>':

The � operator is the same as in PDL. It can be shown that the two PDL
axioms

' ^ [�][��]' $ [��]'

' ^ [��]('! [�]') ! [��]'

hold by establishing that[
n�0

mK(�
n) = mK(�

0) [ (mK(�) Æ
[
n�0

mK(�
n))

= mK(�
0) [ ((

[
n�0

mK(�
n)) ÆmK(�)):
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As mentioned, the version of PL of [Harel et al., 1982b] is decidable (but,
it seems, in nonelementary time only) and complete. It has also been shown
that if we restrict the semantics to include only �nite traces (not a necessary
restriction for obtaining the results above), then PL is no more expressive
than PDL. Translations of PL structures into PDL structures have also been
investigated, making possible an elementary time decision procedure for
deterministic PL; see [Halpern, 1982; Halpern, 1983]. An extension of PL in
which �rst and until are replaced by regular operators on formulas has been
shown to be decidable but nonelementary in [Harel et al., 1982b]. This logic
perhaps comes closer to the desired objective of a powerful decidable logic
of traces with natural syntactic operators that is closed under attachment
of regular programs to formulas.

14.4 The �-Calculus

The �-calculus was suggested as a formalism for reasoning about programs
in [Scott and de Bakker, 1969] and was further developed in [Hitchcock and
Park, 1972], [Park, 1976], and [de Bakker, 1980].
The heart of the approach is �, the least �xpoint operator, which cap-

tures the notions of iteration and recursion. The calculus was originally
de�ned as a �rst-order-level formalism, but propositional versions have be-
come popular.
The � operator binds relation variables. If '(X) is a logical expression

with a free relation variable X , then the expression �X:'(X)represents the
least X such that '(X) = X , if such an X exists. For example, the reexive
transitive closure R� of a binary relation R is the least binary relation
containing R and closed under reexivity and transitivity; this would be
expressed in the �rst-order �-calculus as

R�
def
= �X(x; y):(x = y _ 9z (R(x; z) ^X(z; y))):(36)

This should be read as, \the least binary relation X(x; y) such that either
x = y or x is related by R to some z such that z and y are already related
by X ." This captures the usual �xpoint formulation of reexive transitive
closure. The formula (36) can be regarded either as a recursive program
computing R� or as an inductively de�ned assertion that is true of a pair
(x; y) i� that pair is in the reexive transitive closure of R.
The existence of a least �xpoint is not guaranteed except under certain

restrictions. Indeed, the formula :X has no �xpoint, therefore �X::X does
not exist. Typically, one restricts the application of the binding operator �X
to formulas that are positive or syntactically monotone in X ; that is, those
formulas in which every free occurrence of X occurs in the scope of an even
number of negations. This implies that the relation operator X 7! '(X)
is (semantically) monotone, which by the Knaster{Tarski theorem ensures
the existence of a least �xpoint.
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The �rst-order �-calculus can de�ne all sets de�nable by �rst-order in-
duction and more. In particular, it can capture the input/output relation
of any program built from any of the DL programming constructs we have
discussed. Since the �rst-order �-calculus also admits �rst-order quanti�-
cation, it is easily seen to be as powerful as DL.
It was shown by [Park, 1976] that �niteness is not de�nable in the �rst-

order �-calculus with the monotonicity restriction, but well-foundedness is.
Thus this version of the �-calculus is independent of L!ck

1 !
(and hence of

DL(r:e:)) in expressive power. Well-foundedness of a binary relation R can
be written

8x (�X(x):8y (R(y; x)! X(y))):

A more severe syntactic restriction on the binding operator �X is to
allow its application only to formulas that are syntactically continuous in
X ; that is, those formulas in which X does not occur free in the scope of
any negation or any universal quanti�er. It can be shown that this syntactic
restriction implies semantic continuity, so the least �xpoint is the union of
?, '(?), '('(?)); : : : . As shown in [Park, 1976], this version is strictly
weaker than L!ck

1 !
.

In [Pratt, 1981a] and [Kozen, 1982; Kozen, 1983], propositional ver-
sions of the �-calculus were introduced. The latter version consists of
propositional modal logic with a least �xpoint operator. It is the most
powerful logic of its type, subsuming all known variants of PDL, game
logic of [Parikh, 1983], various forms of temporal logic (see Section 14.2),
and other seemingly stronger forms of the �-calculus ([Vardi and Wolper,
1986b]). In the following presentation we focus on this version, since it has
gained fairly widespread acceptance; see [Kozen, 1984; Kozen and Parikh,
1983; Streett, 1985b; Streett and Emerson, 1984; Vardi and Wolper, 1986b;
Walukiewicz, 1993; Walukiewicz, 1995; Walukiewicz, 2000; Stirling, 1992;
Mader, 1997; Kaivola, 1997].
The language of the propositional �-calculus, also called the modal �-

calculus , is syntactically simpler than PDL. It consists of the usual propo-
sitional constructs ! and 0, atomic modalities [a], and the least �xpoint
operator �. A greatest �xpoint operator dual to � can be de�ned:

�X:'(X)
def
() :�X::'(:X):

Variables are monadic, and the � operator may be applied only to syntac-
tically monotone formulas. As discussed above, this ensures monotonicity
of the corresponding set operator. The language is interpreted over Kripke
frames in which atomic propositions are interpreted as sets of states and
atomic programs are interpreted as binary relations on states.
The propositional �-calculus subsumes PDL. For example, the PDL for-

mula <a�>' for atomic a can be written �X:(' _ <a>X). The formula



DYNAMIC LOGIC 191

�X:<a>[a]X , which expresses the existence of a forced win for the �rst
player in a two-player game, and the formula �X:[a]X , which expresses
well-foundedness and is equivalent to wf a (see Section 7), are both inex-
pressible in PDL, as shown in [Streett, 1981; Kozen, 1981c]. [Niwinski, 1984]

has shown that even with the addition of the halt construct, PDL is strictly
less expressive than the �-calculus.
The propositional �-calculus satis�es a �nite model theorem, as �rst

shown in [Kozen, 1988]. Progressively better decidability results were ob-
tained in [Kozen and Parikh, 1983; Vardi and Stockmeyer, 1985; Vardi,
1985b], culminating in a deterministic exponential-time algorithm of [Emer-
son and Jutla, 1988] based on an automata-theoretic lemma of [Safra, 1988].
Since the �-calculus subsumes PDL, it is EXPTIME -complete.
In [Kozen, 1982; Kozen, 1983], an axiomatization of the propositional �-

calculus was proposed and conjectured to be complete. The axiomatization
consists of the axioms and rules of propositional modal logic, plus the axiom

'[X=�X:'] ! �X:'

and rule

'[X= ] !  

�X:' !  

for �. Completeness of this deductive system for a syntactically restricted
subset of formulas was shown in [Kozen, 1982; Kozen, 1983]. Completeness
for the full language was proved by [Walukiewicz, 1995; Walukiewicz, 2000].
This was quickly followed by simpler alternative proofs by [Ambler et al.,
1995; Bonsangue and Kwiatkowska, 1995; Hartonas, 1998]. [Brad�eld, 1996]

showed that the alternating �=� hierarchy (least/greatest �xpoints) is strict.
An interesting open question is the complexity of model checking : does a
given formula of the propositional �-calculus hold in a given state of a
given Kripke frame? Although some progress has been made (see [Bhat
and Cleaveland, 1996; Cleaveland, 1996; Emerson and Lei, 1986; Sokolsky
and Smolka, 1994; Stirling and Walker, 1989]), it is still unknown whether
this problem has a polynomial-time algorithm.
The propositional �-calculus has become a popular system for the spec-

i�cation and veri�cation of properties of transition systems, where it has
had some practical impact ([Ste�en et al., 1996]). Several recent papers
on model checking work in this context; see [Bhat and Cleaveland, 1996;
Cleaveland, 1996; Emerson and Lei, 1986; Sokolsky and Smolka, 1994;
Stirling and Walker, 1989]. A comprehensive introduction can be found
in [Stirling, 1992].

14.5 Kleene Algebra

Kleene algebra (KA) is the algebra of regular expressions. It is named for
the mathematician S. C. Kleene (1909{1994), who among his many other
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achievements invented regular expressions and proved their equivalence to
�nite automata in [Kleene, 1956].
Kleene algebra has appeared in various guises and under many names

in relational algebra [Ng, 1984; Ng and Tarski, 1977], semantics and logics
of programs [Kozen, 1981b; Pratt, 1988], automata and formal language
theory [Kuich, 1987; Kuich and Salomaa, 1986], and the design and analysis
of algorithms [Aho et al., 1975; Tarjan, 1981; Mehlhorn, 1984; Iwano and
Steiglitz, 1990; Kozen, 1991b]. As discussed in Section 13, Kleene algebra
plays a prominent role in dynamic algebra as an algebraic model of program
behavior.
Beginning with the monograph of [Conway, 1971], many authors have

contributed over the years to the development of the algebraic theory; see
[Backhouse, 1975; Krob, 1991; Kleene, 1956; Kuich and Salomaa, 1986;
Sakarovitch, 1987; Kozen, 1990; Bloom and �Esik, 1992; Hopkins and Kozen,
1999]. See also [Kozen, 1996] for further references.

A Kleene algebra is an algebraic structure (K; +; �; �; 0; 1) satisfying the
axioms

�+ (� + ) = (� + �) + 

�+ � = � + �

�+ 0 = �+ � = �

�(�) = (��)

1� = �1 = �

�(� + ) = �� + �

(�+ �) = � + �

0� = �0 = 0

1 + ��� = 1 + ��� = ��(37)

� + � �  ! ��� � (38)

� + � �  ! ��� � (39)

where � refers to the natural partial order on K:

� � �
def
() �+ � = �:

In short, a KA is an idempotent semiring under +; �; 0; 1 such that ��� is the
least solution to �+�x � x and ��� is the least solution to �+x� � x. The
axioms (37){(39) say essentially that � behaves like the asterate operator
on sets of strings or reexive transitive closure on binary relations. This
particular axiomatization is from [Kozen, 1991a; Kozen, 1994a], but there
are other competing ones.
The axioms (38) and (39) correspond to the reexive transitive closure

rule (RTC) of PDL (Section 2.5). Instead, we might postulate the equivalent
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axioms

� �  ! �� � (40)

� �  ! �� � ;(41)

which correspond to the loop invariance rule (LI). The induction axiom
(IND) is inexpressible in KA, since there is no negation.
A Kleene algebra is �-continuous if it satis�es the in�nitary condition

��� = sup
n�0

��n(42)

where

�0
def
= 1 �n+1

def
= ��n

and where the supremum is with respect to the natural order �. We can
think of (42) as a conjunction of the in�nitely many axioms ��n � ���,
n � 0, and the in�nitary Horn formula

(
^
n�0

��n � Æ) ! ��� � Æ:

In the presence of the other axioms, the *-continuity condition (42) im-
plies (38){(41) and is strictly stronger in the sense that there exist Kleene
algebras that are not *-continuous [Kozen, 1990].
The fundamental motivating example of a Kleene algebra is the family of

regular sets of strings over a �nite alphabet, but other classes of structures
share the same equational theory, notably the binary relations on a set.
In fact it is the latter interpretation that makes Kleene algebra a suitable
choice for modeling programs in dynamic algebras. Other more unusual
interpretations are the min;+ algebra used in shortest path algorithms (see
[Aho et al., 1975; Tarjan, 1981; Mehlhorn, 1984; Kozen, 1991b]) and KAs of
convex polyhedra used in computational geometry as described in [Iwano
and Steiglitz, 1990].
Axiomatization of the equational theory of the regular sets is a central

question going back to the original paper of [Kleene, 1956]. A completeness
theorem for relational algebras was given in an extended language by [Ng,
1984; Ng and Tarski, 1977]. Axiomatization is a central focus of the mono-
graph of [Conway, 1971], but the bulk of his treatment is in�nitary. [Redko,
1964] proved that there is no �nite equational axiomatization. Schematic
equational axiomatizations for the algebra of regular sets, necessarily rep-
resenting in�nitely many equations, have been given by [Krob, 1991] and
[Bloom and �Esik, 1993]. [Salomaa, 1966] gave two �nitary complete axiom-
atizations that are sound for the regular sets but not sound in general over
other standard interpretations, including relational interpretations. The ax-
iomatization given above is a �nitary universal Horn axiomatization that
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is sound and complete for the equational theory of standard relational and
language-theoretic models, including the regular sets [Kozen, 1991a; Kozen,
1994a]. Other work on completeness appears in [Krob, 1991; Bo�a, 1990;
Bo�a, 1995; Archangelsky, 1992].
The literature contains a bewildering array of inequivalent de�nitions of

Kleene algebras and related algebraic structures; see [Conway, 1971; Pratt,
1988; Pratt, 1990; Kozen, 1981b; Kozen, 1991a; Aho et al., 1975; Mehlhorn,
1984; Kuich, 1987; Kozen, 1994b]. As demonstrated in [Kozen, 1990], many
of these are strongly related. One important property shared by most of
them is closure under the formation of n � n matrices. This was proved
for the axiomatization above in [Kozen, 1991a; Kozen, 1994a], but the idea
essentially goes back to [Kleene, 1956; Conway, 1971; Backhouse, 1975].
This result gives rise to an algebraic treatment of �nite automata in which
the automata are represented by their transition matrices.
The equational theory of Kleene algebra is PSPACE -complete [Stock-

meyer and Meyer, 1973]; thus it is apparently less complex than PDL, which
is EXPTIME -complete (Theorem 21), although the strict separation of the
two complexity classes is still open.

Kleene Algebra with Tests

From a practical standpoint, many simple program manipulations such as
loop unwinding and basic safety analysis do not require the full power of
PDL, but can be carried out in a purely equational subsystem using the
axioms of Kleene algebra. However, tests are an essential ingredient, since
they are needed to model conventional programming constructs such as
conditionals and while loops and to handle assertions. This motivates
the de�nition of the following variant of KA introduced in [Kozen, 1996;
Kozen, 1997b].
A Kleene algebra with tests (KAT) is a Kleene algebra with an embedded

Boolean subalgebra. Formally, it is a two-sorted algebra

(K; B; +; �; �; ; 0; 1)

such that

� (K; +; �; �; 0; 1) is a Kleene algebra

� (B; +; �; ; 0; 1) is a Boolean algebra

� B � K.

The unary negation operator is de�ned only on B. Elements of B are
called tests and are written ';  ; : : : . Elements of K (including elements of
B) are written �; �; : : : . In PDL, a test would be written '?, but in KAT
we dispense with the symbol ?.
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This deceptively concise de�nition actually carries a lot of information.
The operators +; �; 0; 1 each play two roles: applied to arbitrary elements of
K, they refer to nondeterministic choice, composition, fail, and skip, respec-
tively; and applied to tests, they take on the additional meaning of Boolean
disjunction, conjunction, falsity, and truth, respectively. These two usages
do not conict|for example, sequential testing of two tests is the same as
testing their conjunction|and their coexistence admits considerable econ-
omy of expression.
For applications in program veri�cation, the standard interpretation would

be a Kleene algebra of binary relations on a set and the Boolean algebra
of subsets of the identity relation. One could also consider trace models,
in which the Kleene elements are sets of traces (sequences of states) and
the Boolean elements are sets of states (traces of length 0). As with KA,
one can form the algebra n � n matrices over a KAT (K; B); the Boolean
elements of this structure are the diagonal matrices over B.
KAT can express conventional imperative programming constructs such

as conditionals and while loops as in PDL. It can perform elementary
program manipulation such as loop unwinding, constant propagation, and
basic safety analysis in a purely equational manner. The applicability of
KAT and related equational systems in practical program veri�cation has
been explored in [Cohen, 1994a; Cohen, 1994b; Cohen, 1994c; Kozen, 1996;
Kozen and Patron, 2000].
There is a language-theoretic model that plays the same role in KAT that

the regular sets play in KA, namely the algebra of regular sets of guarded
strings, and a corresponding completeness result was obtained by [Kozen
and Smith, 1996]. Moreover, KAT is complete for the equational theory
of relational models, as shown in [Kozen and Smith, 1996]. Although less
expressive than PDL, KAT is also apparently less diÆcult to decide: it is
PSPACE -complete, the same as KA, as shown in [Cohen et al., 1996].
In [Kozen, 1999a], it is shown that KAT subsumes propositional Hoare

Logic in the following sense. The partial correctness assertion f'g � f g is
encoded in KAT as the equation '� = 0, or equivalently '� = '� . If a
rule

f'1g �1 f 1g; : : : ; f'ng �n f ng

f'g � f g

is derivable in propositional Hoare Logic, then its translation, the universal
Horn formula

'1�1 1 = 0 ^ � � � ^ 'n�n n = 0 ! '� = 0;

is a theorem of KAT. For example, the while rule of Hoare logic (see Section
2.6) becomes

�'�' = 0 ! '(��)�� �' = 0:
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More generally, all relationally valid Horn formulas of the form

1 = 0 ^ � � � ^ n = 0 ! � = �

are theorems of KAT [Kozen, 1999a].
Horn formulas are important from a practical standpoint. For example,

commutativity conditions are used to model the idea that the execution of
certain instructions does not a�ect the result of certain tests. In light of this,
the complexity of the universal Horn theory of KA and KAT are of interest.
There are both positive and negative results. It is shown in [Kozen, 1997c]

that for a Horn formula �! ' over *-continuous Kleene algebras,

� if � contains only commutativity conditions �� = ��, the universal
Horn theory is �0

1-complete;

� if � contains only monoid equations, the problem is �0
2-complete;

� for arbitrary �nite sets of equations �, the problem is �1
1-complete.

On the other hand, commutativity assumptions of the form �' = '�, where
' is a test, and assumptions of the form  = 0 can be eliminated without
loss of eÆciency, as shown in [Cohen, 1994a; Kozen and Smith, 1996]. Note
that assumptions of this form are all we need to encode Hoare Logic as
described above.
In typed Kleene algebra introduced in [Kozen, 1998; Kozen, 1999b], ele-

ments have types s! t. This allows Kleene algebras of nonsquare matrices,
among other applications. It is shown in [Kozen, 1999b] that Hoare Logic is
subsumed by the type calculus of typed KA augmented with a typecast or
coercion rule for tests. Thus Hoare-style reasoning with partial correctness
assertions reduces to typechecking in a relatively simple type system.

14.6 Dynamic Algebra

Dynamic algebra provides an abstract algebraic framework that relates to
PDL as Boolean algebra relates to propositional logic. A dynamic algebra
is de�ned to be any two-sorted algebraic structure (K; B; �), where B =
(B; !; 0) is a Boolean algebra, K = (K; +; �; �; 0; 1) is a Kleene algebra
(see Section 14.5), and � : K � B ! B is a scalar multiplication satisfying
algebraic constraints corresponding to the dual forms of the PDL axioms
(Axioms 17). For example, all dynamic algebras satisfy the equations

(��) � ' = � � (� � ')

� � 0 = 0

0 � ' = 0

� � (' _  ) = � � ' _ � �  ;
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which correspond to the PDL validities

<� ; �>' $ <�><�>'

<�>0 $ 0

<0?>' $ 0

<�>(' _  ) $ <�>' _ <�> ;

respectively. The Boolean algebra B is an abstraction of the formulas of
PDL and the Kleene algebra K is an abstraction of the programs.
The interaction of scalar multiplication with iteration can be axiomatized

in a �nitary or in�nitary way. One can postulate

�� � ' � ' _ (�� � (:' ^ (� � ')))(43)

corresponding to the diamond form of the PDL induction axiom (Axiom
17(viii)). Here ' �  in B i� ' _  =  . Alternatively, one can postulate
the stronger axiom of �-continuity :

�� � ' = sup
n
(�n � '):(44)

We can think of (44) as a conjunction of in�nitely many axioms �n � ' �
�� � ', n � 0, and the in�nitary Horn formula

(
^
n�0

�n � ' �  ) ! �� � ' �  :

In the presence of the other axioms, (44) implies (43) [Kozen, 1980b], and
is strictly stronger in the sense that there are dynamic algebras that are not
*-continuous [Pratt, 1979a].
A standard Kripke frame K = (U; mK) of PDL gives rise to a *-continuous

dynamic algebra consisting of a Boolean algebra of subsets of U and a Kleene
algebra of binary relations on U . Operators are interpreted as in PDL,
including 0 as 0? (the empty program), 1 as 1? (the identity program), and
� �' as <�>'. Nonstandard Kripke frames (see Section 3.2) also give rise to
dynamic algebras, but not necessarily *-continuous ones. A dynamic algebra
is separable if any pair of distinct Kleene elements can be distinguished by
some Boolean element; that is, if � 6= �, then there exists ' 2 B with
� � ' 6= � � '.
Research directions in this area include the following.

� Representation theory. It is known that any separable dynamic alge-
bra is isomorphic to some possibly nonstandard Kripke frame. Un-
der certain conditions, \possibly nonstandard" can be replaced by
\standard," but not in general, even for *-continuous algebras [Kozen,
1980b; Kozen, 1979c; Kozen, 1980a].
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� Algebraic methods in PDL. The small model property (Theorem 15)
and completeness (Theorem 18) for PDL can be established by purely
algebraic considerations [Pratt, 1980a].

� Comparative study of alternative axiomatizations of �. For example,
it is known that separable dynamic algebras can be distinguished from
standard Kripke frames by a �rst-order formula, but even L!1! cannot
distinguish the latter from �-continuous separable dynamic algebras
[Kozen, 1981b].

� Equational theory of dynamic algebras. Many seemingly unrelated
models of computation share the same equational theory, namely that
of dynamic algebras [Pratt, 1979b; Pratt, 1979a].

In addition, many interesting questions arise from the algebraic viewpoint,
and interesting connections with topology, classical algebra, and model the-
ory have been made [Kozen, 1979b; N�emeti, 1980].

15 BIBLIOGRAPHICAL NOTES

Systematic program veri�cation originated with the work of [Floyd, 1967]

and [Hoare, 1969]. Hoare Logic was introduced in [Hoare, 1969]; see [Cousot,
1990; Apt, 1981; Apt and Olderog, 1991] for surveys.
The digital abstraction, the view of computers as state transformers that

operate by performing a sequence of discrete and instantaneous primitive
steps, can be attributed to [Turing, 1936]. Finite-state transition systems
were de�ned formally by [McCulloch and Pitts, 1943]. State-transition se-
mantics is based on this idea and is quite prevalent in early work on pro-
gram semantics and veri�cation; see [Hennessy and Plotkin, 1979]. The
relational-algebraic approach taken here, in which programs are interpreted
as binary input/output relations, was introduced in the context of DL by
[Pratt, 1976].
The notions of partial and total correctness were present in the early work

of [Hoare, 1969]. Regular programs were introduced by [Fischer and Ladner,
1979] in the context of PDL. The concept of nondeterminism was introduced
in the original paper of [Turing, 1936], although he did not develop the idea.
Nondeterminism was further developed by [Rabin and Scott, 1959] in the
context of �nite automata.
[Burstall, 1974] suggested using modal logic for reasoning about pro-

grams, but it was not until the work of [Pratt, 1976], prompted by a sug-
gestion of R. Moore, that it was actually shown how to extend modal logic
in a useful way by considering a separate modality for every program. The
�rst research devoted to propositional reasoning about programs seems to
be that of [Fischer and Ladner, 1977; Fischer and Ladner, 1979] on PDL. As
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mentioned in the Preface, the general use of logical systems for reasoning
about programs was suggested by [Engeler, 1967].

Other semantics besides Kripke semantics have been studied; see [Berman,
1979; Nishimura, 1979; Kozen, 1979b; Trnkova and Reiterman, 1980; Kozen,
1980b; Pratt, 1979b]. Modal logic has many applications and a vast liter-
ature; good introductions can be found in [Hughes and Cresswell, 1968;
Chellas, 1980]. Alternative and iterative guarded commands were stud-
ied in [Gries, 1981]. Partial correctness assertions and the Hoare rules
given in Section 2.6 were �rst formulated by [Hoare, 1969]. Regular ex-
pressions, on which the regular program operators are based, were intro-
duced by [Kleene, 1956]. Their algebraic theory was further investigated
by [Conway, 1971]. They were �rst applied in the context of DL by [Fis-
cher and Ladner, 1977; Fischer and Ladner, 1979]. The axiomatization
of PDL given in Axioms 17 was formulated by [Segerberg, 1977]. Tests
and converse were investigated by various authors; see [Peterson, 1978;
Berman, 1978; Berman and Paterson, 1981; Streett, 1981; Streett, 1982;
Vardi, 1985b]. The continuity of the diamond operator in the presence of
reverse is due to [Trnkova and Reiterman, 1980].

The �ltration argument and the small model property for PDL are due
to [Fischer and Ladner, 1977; Fischer and Ladner, 1979]. Nonstandard
Kripke frames for PDL were studied by [Berman, 1979; Berman, 1982],
[Parikh, 1978a], [Pratt, 1979a; Pratt, 1980a], and [Kozen, 1979c; Kozen,
1979b; Kozen, 1980a; Kozen, 1980b; Kozen, 1981b].

The axiomatization of PDL used here (Axiom System 17) was introduced
by [Segerberg, 1977]. Completeness was shown independently by [Gabbay,
1977] and [Parikh, 1978a]. A short and easy-to-follow proof is given in
[Kozen and Parikh, 1981]. Completeness is also treated in [Pratt, 1978;
Pratt, 1980a; Berman, 1979; Nishimura, 1979; Kozen, 1981a].

The exponential-time lower bound for PDL was established by [Fischer
and Ladner, 1977; Fischer and Ladner, 1979] by showing how PDL formulas
can encode computations of linear-space-bounded alternating Turing ma-
chines.

Deterministic exponential-time algorithms were �rst given in [Pratt, 1978;
Pratt, 1979b; Pratt, 1980b].

Theorem 24 showing that the problem of deciding whether � j=  , where
� is a �xed r.e. set of PDL formulas, is �1

1-complete is due to [Meyer et al.,
1981].

The computational diÆculty of the validity problem for nonregular PDL
and the borderline between the decidable and undecidable were discussed in
[Harel et al., 1983]. The fact that any nonregular program adds expressive
power to PDL, Theorem 25, �rst appeared explicitly in [Harel and Singer-
man, 1996]. Theorem 26 on the undecidability of context-free PDL was
observed by [Ladner, 1977].
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Theorems 27 and 28 are from [Harel et al., 1983]. An alternative proof of
Theorem 28 using tiling is supplied in [Harel, 1985]; see [Harel et al., 2000].
The existence of a primitive recursive one-letter extension of PDL that is
undecidable was shown already in [Harel et al., 1983], but undecidability for
the particular case of a2

�
, Theorem 29, is from [Harel and Paterson, 1984].

Theorem 30 is from [Harel and Singerman, 1996].

As to decidable extensions, Theorem 31 was proved in [Koren and Pnueli,
1983]. The more general results of Section 6.2, namely Theorems 32, 33,
and 34, are from [Harel and Raz, 1993], as is the notion of a simple-minded
PDA. The decidability of emptiness for pushdown and stack automata on
trees that is needed for the proofs of these is from [Harel and Raz, 1994].
A better bound on the complexity of the emptiness results can be found in
[Peng and Iyer, 1995].

A suÆcient condition for PDL with the addition of a program over a single
letter alphabet not to have the �nite model property is given in [Harel and
Singerman, 1996].

Completeness and exponential time decidability for DPDL, Theorem 40
and the upper bound of Theorem 41, are proved in [Ben-Ari et al., 1982]

and [Valiev, 1980]. The lower bound of Theorem 41 is from [Parikh, 1981].
Theorems 43 and 44 on SDPDL are from [Halpern and Reif, 1981; Halpern
and Reif, 1983].

That tests add to the power of PDL is proved in [Berman and Paterson,
1981]. It is also known that the test-depth hierarchy is strict [Berman,
1978; Peterson, 1978] and that rich-test PDL is strictly more expressive
than poor-test PDL [Peterson, 1978; Berman, 1978; Berman and Paterson,
1981]. These results also hold for SDPDL.

The results on programs as automata (Theorems 45 and 46) appear
in [Pratt, 1981b]. Alternative proofs are given in [Harel and Sherman,
1985]; see [Harel et al., 2000]. In recent years, the development of the
automata-theoretic approach to logics of programs has prompted renewed
inquiry into the complexity of automata on in�nite objects, with consid-
erable success. See [Courcoubetis and Yannakakis, 1988; Emerson, 1985;
Emerson and Jutla, 1988; Emerson and Sistla, 1984; Manna and Pnueli,
1987; Muller et al., 1988; Pecuchet, 1986; Safra, 1988; Sistla et al., 1987;
Streett, 1982; Vardi, 1985a; Vardi, 1985b; Vardi, 1987; Vardi and Stock-
meyer, 1985; Vardi and Wolper, 1986b; Vardi and Wolper, 1986a; Arnold,
1997a; Arnold, 1997b]; and [Thomas, 1997]. Especially noteworthy in this
area is the result of [Safra, 1988] involving the complexity of converting a
nondeterministic automaton on in�nite strings into an equivalent determin-
istic one. This result has already had a signi�cant impact on the complexity
of decision procedures for several logics of programs; see [Courcoubetis and
Yannakakis, 1988; Emerson and Jutla, 1988; Emerson and Jutla, 1989]; and
[Safra, 1988].
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Intersection of programs was studied in [Harel et al., 1982a]. That the ax-
ioms for converse yield completeness for CPDL is proved in [Parikh, 1978a].
The complexity of PDLwith converse and various forms of well-foundedness

constructs is studied in [Vardi, 1985b]. Many authors have studied logics
with a least-�xpoint operator, both on the propositional and �rst-order lev-
els ([Scott and de Bakker, 1969; Hitchcock and Park, 1972; Park, 1976;
Pratt, 1981a; Kozen, 1982; Kozen, 1983; Kozen, 1988; Kozen and Parikh,
1983; Niwinski, 1984; Streett, 1985a; Vardi and Stockmeyer, 1985]). The
version of the propositional �-calculus presented here was introduced in
[Kozen, 1982; Kozen, 1983].
That the propositional �-calculus is strictly more expressive than PDL

with wf was show in [Niwinski, 1984] and [Streett, 1985a]. That this logic
is strictly more expressive than PDL with halt was shown in [Harel and
Sherman, 1982]. That this logic is strictly more expressive than PDL was
shown in [Streett, 1981].
The wf construct (actually its complement, repeat) is investigated in

[Streett, 1981; Streett, 1982], in which Theorems 48 (which is actually due to
Pratt) and 50{52 are proved. The halt construct (actually its complement,
loop) was introduced in [Harel and Pratt, 1978] and Theorem 49 is from
[Harel and Sherman, 1982]. Finite model properties for the logics LPDL,
RPDL, CLPDL, CRPDL, and the propositional �-calculus were established
in [Streett, 1981; Streett, 1982] and [Kozen, 1988]. Decidability results were
obtained in [Streett, 1981; Streett, 1982; Kozen and Parikh, 1983; Vardi and
Stockmeyer, 1985]; and [Vardi, 1985b]. Deterministic exponential-time com-
pleteness was established in [Emerson and Jutla, 1988] and [Safra, 1988]. For
the strongest variant, CRPDL, exponential-time decidability follows from
[Vardi, 1998b].
Concurrent PDL is de�ned and studied in [Peleg, 1987b]. Additional ver-

sions of this logic, which employ various mechanisms for communication
among the concurrent parts of a program, are considered in [Peleg, 1987c;
Peleg, 1987a]. These papers contain many results concerning expressive
power, decidability and undecidability for concurrent PDL with communi-
cation.
Other work on PDL not described here includes work on nonstandard

models, studied in [Berman, 1979; Berman, 1982] and [Parikh, 1981]; PDL
with Boolean assignments, studied in [Abrahamson, 1980]; and restricted
forms of the consequence problem, studied in [Parikh, 1981].
First-order DL was de�ned in [Harel et al., 1977], where it was also �rst

named Dynamic Logic. That paper was carried out as a direct continuation
of the original work of [Pratt, 1976].
Many variants of DL were de�ned in [Harel, 1979]. In particular, DL(bstk)

is very close to the context-free Dynamic Logic investigated there.
Uninterpreted reasoning in the form of program schematology has been

a common activity ever since the work of [Ianov, 1960]. It was given con-
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siderable impetus by the work of [Luckham et al., 1970] and [Paterson and
Hewitt, 1970]; see also [Greibach, 1975]. The study of the correctness of
interpreted programs goes back to the work of Turing and von Neumann,
but seems to have become a well-de�ned area of research following [Floyd,
1967], [Hoare, 1969] and [Manna, 1974].
Embedding logics of programs in L!1! is based on observations of [En-

geler, 1967]. Theorem 57 is from [Meyer and Parikh, 1981]. Theorem 60
is from [Harel, 1979] (see also [Harel, 1984] and [Harel and Kozen, 1984]);
it is similar to the expressiveness result of [Cook, 1978]. Theorem 61 and
Corollary 62 are from [Harel and Kozen, 1984].
Arithmetical structures were �rst de�ned by [Moschovakis, 1974] under

the name acceptable structures . In the context of logics of programs, they
were reintroduced and studied in [Harel, 1979].
The �1

1-completeness of DL was �rst proved by Meyer, and Theorem
63 appears in [Harel et al., 1977]. An alternative proof is given in [Harel,
1985]; see [Harel et al., 2000]. Theorem 65 is from [Meyer and Halpern,
1982]. That the fragment of DL considered in Theorem 66 is not r.e., was
proved by [Pratt, 1976]. Theorem 67 follows from [Harel and Kozen, 1984].
The name \spectral complexity" was proposed by [Tiuryn, 1986], al-

though the main ideas and many results concerning this notion were already
present in [Tiuryn and Urzyczyn, 1983] (see [Tiuryn and Urzyczyn, 1988]

for the full version). This notion is an instance of the so-called second-order
spectrum of a formula. First-order spectra were investigated by [Sholz,
1952], from which originates the well known Spectralproblem. The reader
can �nd more about this problem and related results in the survey pa-
per by [B�orger, 1984]. The notion of a natural chain is from [Urzyczyn,
1983]. The results presented here are from [Tiuryn and Urzyczyn, 1983;
Tiuryn and Urzyczyn, 1988]. A result similar to Theorem 69 in the area
of �nite model theory was obtained by [Sazonov, 1980] and independently
by [Gurevich, 1983]. Higher-order stacks were introduced in [Engelfriet,
1983] to study complexity classes. Higher-order arrays and stacks in DL

were considered by [Tiuryn, 1986], where a strict hierarchy within the class
of elementary recursive sets was established. The main tool used in the
proof of the strictness of this hierarchy is a generalization of Cook's auxil-
iary pushdown automata theorem for higher-order stacks, which is due to
[Kowalczyk et al., 1987].
[Meyer and Halpern, 1982] showed completeness for termination asser-

tions (Theorem 71). In�nitary completeness for DL (Theorem 72) is based
upon a similar result for Algorithmic Logic (see Section 13.1) by [Mirkowska,
1971]. The proof sketch presented in [Harel et al., 2000] is an adaptation of
Henkin's proof for L!1! appearing in [Keisler, 1971].
The notion of relative completeness and Theorem 73 are due to [Cook,

1978]. The notion of arithmetical completeness and Theorem 75 is from
[Harel, 1979].
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The use of invariants to prove partial correctness and of well-founded sets
to prove termination are due to [Floyd, 1967]. An excellent survey of such
methods and the corresponding completeness results appears in [Apt, 1981].

Some contrasting negative results are contained in [Clarke, 1979], [Lipton,
1977], and [Wand, 1978].

Many of the results on relative expressiveness presented herein answer
questions posed in [Harel, 1979]. Similar uninterpreted research, comparing
the expressive power of classes of programs (but detached from any sur-
rounding logic) has taken place under the name comparative schematology
quite extensively ever since [Ianov, 1960]; see [Greibach, 1975] and [Manna,
1974].

Theorems 76, 79 and 83(i) result as an application of the so-called spectral
theorem, which connects expressive power of logics with complexity classes.
This theorem was obtained by [Tiuryn and Urzyczyn, 1983; Tiuryn and
Urzyczyn, 1984; Tiuryn and Urzyczyn, 1988]. A simpli�ed framework for
this approach and a statement of this theorem together with a proof is given
in [Harel et al., 2000].

Theorem 78 appears in [Berman et al., 1982] and was proved indepen-
dently in [Stolboushkin and Taitslin, 1983]. An alternative proof is given
in [Tiuryn, 1989]. These results extend in a substantial way an earlier and
much simpler result for the case of regular programs without equality in
the vocabulary, which appears in [Halpern, 1981]. A simpler proof of the
special case of the quanti�er-free fragment of the logic of regular programs
appears in [Meyer and Winklmann, 1982]. Theorem 79 is from [Tiuryn and
Urzyczyn, 1984].

Theorem 80 is from [Stolboushkin, 1983]. The proof, as in the case
of regular programs (see [Stolboushkin and Taitslin, 1983]), uses Adian's
result from group theory ([Adian, 1979]). Results on the expressive power
of DL with deterministic while programs and a Boolean stack can be found
in [Stolboushkin, 1983; Kfoury, 1985]. Theorem 81 is from [Tiuryn and
Urzyczyn, 1983; Tiuryn and Urzyczyn, 1988].

[Erimbetov, 1981; Tiuryn, 1981b; Tiuryn, 1984; Kfoury, 1983; Kfoury
and Stolboushkin, 1997] contain results on the expressive power of DL over
programming languages with bounded memory. [Erimbetov, 1981] shows
that DL(dreg) < DL(dstk). The main proof technique is pebble games on
�nite trees.

Theorem 83 is from [Urzyczyn, 1987]. There is a di�erent proof of this
result, using Adian structures, which appears in [Stolboushkin, 1989]. The-
orem 77 is from [Urzyczyn, 1988], which also studies programs with Boolean
arrays.

Wildcard assignments were considered in [Harel et al., 1977] under the
name nondeterministic assignments. Theorem 84 is from [Meyer and Win-
klmann, 1982]. Theorem 85 is from [Meyer and Parikh, 1981].
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In our exposition of the comparison of the expressive power of logics,
we have made the assumption that programs use only quanti�er-free �rst-
order tests. It follows from the results of [Urzyczyn, 1986] that allowing full
�rst-order tests in many cases results in increased expressive power. [Urzy-
czyn, 1986] also proves that adding array assignments to nondeterministic
r.e. programs increases the expressive power of the logic. This should be
contrasted with the result of [Meyer and Tiuryn, 1981; Meyer and Tiuryn,
1984] to the e�ect that for deterministic r.e. programs, array assignments
do not increase expressive power.
[Makowsky, 1980] considers a weaker notion of equivalence between logics

common in investigations in abstract model theory, whereby models are
extended with interpretations for additional predicate symbols. With this
notion it is shown in [Makowsky, 1980] that most of the versions of logics
of programs treated here become equivalent.
Algorithmic logic was introduced by [Salwicki, 1970]. [Mirkowska, 1980;

Mirkowska, 1981a; Mirkowska, 1981b] extended AL to allow nondeterminis-
tic while programs and studied the operatorsr and �. Complete in�nitary
deductive systems for propositional and �rst-order versions were given by
[Mirkowska, 1980; Mirkowska, 1981a; Mirkowska, 1981b] using the algebraic
methods of [Rasiowa and Sikorski, 1963]. Surveys of early work in AL can
be found in [Banachowski et al., 1977; Salwicki, 1977]. [Constable, 1977;
Constable and O'Donnell, 1978; Goldblatt, 1982] presented logics similar to
AL and DL for reasoning about deterministic while programs.
Nonstandard Dynamic Logic was introduced by [N�emeti, 1981] and

[Andr�eka et al., 1982a; Andr�eka et al., 1982b] and studied in [Csirmaz,
1985]. See [Makowsky and Sain, 1986] for more information and further
references.
The halt construct (actually its complement, loop) was introduced in

[Harel and Pratt, 1978], and the wf construct (actually its complement,
repeat) was investigated for PDL in [Streett, 1981; Streett, 1982]. Theorem
86 is from [Meyer and Winklmann, 1982], Theorem 87 is from [Harel and
Peleg, 1985], Theorem 88 is from [Harel, 1984], and the axiomatizations of
LDL and PDL are discussed in [Harel, 1979; Harel, 1984].
Dynamic algebra was introduced in [Kozen, 1980b] and [Pratt, 1979b]

and studied by numerous authors; see [Kozen, 1979c; Kozen, 1979b; Kozen,
1980a; Kozen, 1981b; Pratt, 1979a; Pratt, 1980a; Pratt, 1988; N�emeti, 1980;
Trnkova and Reiterman, 1980]. A survey of the main results appears in
[Kozen, 1979a].
The PhD thesis [Ramshaw, 1981] contains an engaging introduction to

the subject of probabilistic semantics and veri�cation. [Kozen, 1981d] pro-
vided a formal semantics for probabilistic programs. The logic Pr(DL) was
presented in [Feldman and Harel, 1984], along with a deductive system that
is complete for Kozen's semantics relative to an extension of �rst-order anal-
ysis. Various propositional versions of probabilistic DL have been proposed
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in [Reif, 1980; Makowsky and Tiomkin, 1980; Feldman, 1984; Parikh and
Mahoney, 1983; Kozen, 1985]. The temporal approach to probabilistic ver-
i�cation has been studied in [Lehmann and Shelah, 1982; Hart et al., 1982;
Courcoubetis and Yannakakis, 1988; Vardi, 1985a]. Interest in the subject
of probabilistic veri�cation has undergone a recent revival; see [Morgan et
al., 1999; Segala and Lynch, 1994; Hansson and Jonsson, 1994; Jou and
Smolka, 1990; Baier and Kwiatkowska, 1998; Huth and Kwiatkowska, 1997;
Blute et al., 1997].
Concurrent DL is de�ned and studied in [Peleg, 1987b]. Additional ver-

sions of this logic, which employ various mechanisms for communication
among the concurrent parts of a program, are also considered in [Peleg,
1987c; Peleg, 1987a].
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HENRY PRAKKEN & GERARD VREESWIJK

LOGICS FOR DEFEASIBLE ARGUMENTATION

1 INTRODUCTION

Logic is the science that deals with the formal principles and criteria of
validity of patterns of inference. This chapter surveys logics for a particu-
lar group of patterns of inference, namely those where arguments for and
against a certain claim are produced and evaluated, to test the tenability of
the claim. Such reasoning processes are usually analysed under the common
term `defeasible argumentation'. We shall illustrate this form of reasoning
with a dispute between two persons, A and B. They disagree on whether
it is morally acceptable for a newspaper to publish a certain piece of infor-
mation concerning a politician's private life.1 Let us assume that the two
parties have reached agreement on the following points.

(1) The piece of information I concerns the health of person P ;

(2) P does not agree with publication of I ;

(3) Information concerning a person's health is information concerning
that person's private life

A now states the moral principle that

(4) Information concerning a person's private life may not be published if
that person does not agree with publication.

and A says \So the newspapers may not publish I" (Fig. 1, page 220).
Although B accepts principle (4) and is therefore now committed to (1-4),
B still refuses to accept the conclusion that the newspapers may not publish
I . B motivates his refusal by replying that:

(5) P is a cabinet minister

(6) I is about a disease that might a�ect P 's political functioning

(7) Information about things that might a�ect a cabinet minister's polit-
ical functioning has public signi�cance

Furthermore, B maintains that there is also the moral principle that

(8) Newspapers may publish any information that has public signi�cance

1Adapted from [Sartor, 1994].
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(3) Information
concerning a
person's health
is information
concerning that
person's private
life.

(1) I concerns
the health of P .

I concerns the
private life of
P .

(2) P does not
permit

publication of
I .

I concerns the
private life of P
and P does not
permit
publication of
I .

(4) Information
concerning a

person's private
life may not be

published
against that
person's will.

The newspapers
may not publish

I .

Figure 1. A's argument.

B concludes by saying that therefore the newspapers may write about P 's
disease (Fig. 2, page 221). A agrees with (5{7) and even accepts (8) as a
moral principle, but A does not give up his initial claim. (It is assumed that
A and B are both male.) Instead he tries to defend it by arguing that he
has the stronger argument: he does so by arguing that in this case

(9) The likelihood that the disease mentioned in I a�ects P 's functioning
is small.

(10) If the likelihood that the disease mentioned in I a�ects P 's functioning
is small, then principle (4) has priority over principle (8).

Thus it can be derived that the principle used in A's �rst argument is
stronger than the principle used by B (Fig. 3, page 222), which makes
A's �rst argument stronger than B's, so that it follows after all that the
newspapers should be silent about P 's disease.
Let us examine the various stages of this dispute in some detail. Intu-

itively, it seems obvious that the accepted basis for discussion after A has
stated (4) and B has accepted it, viz. (1,2,3,4), warrants the conclusion that
the piece of information I may not be published. However, after B's coun-
terargument and A's acceptance of its premises (5-8) things have changed.
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(5) P is a
cabinet
minister.

(6) I is about a
disease that

might a�ect P 's
political

functioning.

I is about a
disease that
might a�ect a
cabinet
minister's
political
functioning.

(7) Information
about things
that might

a�ect a cabinet
minister's
political

functioning has
public

signi�cance.

I has public
signi�cance.

(8) Newspapers
may publish

any information
that has public

signi�cance.

The
newspapers

may publish I .

Figure 2. B's argument.

At this stage the joint basis for discussion is (1-8), which gives rise to two
conicting arguments. Moreover, (1-8) does not yield reasons to prefer one
argument over the other: so at this point A's conclusion has ceased to be
warranted. But then A's second argument, which states a preference be-
tween the two conicting moral principles, tips the balance in favour of his
�rst argument: so after the basis for discussion has been extended to (1-10),
we must again accept A's moral claim as warranted.

This chapter is about logical systems that formalise this kind of reasoning.
We shall call them `logics for defeasible argumentation', or `argumentation
systems'. As the example shows, these systems lack one feature of `stan-
dard', deductive logic (say, �rst-order predicate logic, FOL). The notion of
`warrant' that we used in explaining the example is clearly not the same
as �rst-order logical consequence, which has the property of monotonicity:
in FOL any conclusion that can be drawn from a given set of premises,
remains valid if we add new premises to this set. So according to FOL, if
A's claim is implied by (1{4), it is surely also implied by (1{8). From the
point of view of FOL it is pointless for B to accept (1{4) and yet state a
counterargument; B should also have refused to accept one of the premises,
for instance, (4).
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(9) The likelihood that
the disease mentioned in
I a�ects P 's functioning
is small.

(10) If the likelihood that the disease
mentioned in I a�ects P 's functioning
is small, then principle (4) has priority

over principle (8).

Principle (4) has priority
over principle (8).

Figure 3. A's priority argument.

Does this mean that our informal account of the example is misleading,
that it conceals a subtle change in the interpretation of, say, (4) as the
dispute progresses? This is not so easy to answer in general. Although
in some cases it might indeed be best to analyse an argument move like
B's as a reinterpretation of a premise, in other cases this is di�erent. In
actual reasoning, rules are not always neatly labelled with an exhaustive
list of possible exceptions; rather, people are often forced to apply `rules of
thumb' or `default rules', in the absence of evidence to the contrary, and
it seems natural to analyse an argument like B's as an attempt to provide
such evidence to the contrary. When the example is thus analysed, the
force of the conclusions drawn in it can only be captured by a consequence
notion that is nonmonotonic: although A's claim is warranted on the basis
of (1{4), it is not warranted on the basis of (1{8).

Such nonmonotonic consequence notions have been studied over the last
twenty years in an area of arti�cial intelligence called `nonmonotonic reason-
ing' (recently the term `defeasible reasoning' has also become popular), and
logics for defeasible argumentation are largely a result of this development.
Some might say that the lack of the property of monotonicity disquali�es
these notions from being notions of logical consequence: isn't the very idea
of calling an inference `logical' that it is (given the premises) beyond any
doubt? We are not so sure. Our view on logic is that it studies criteria
of warrant, that is, criteria that determine the degree according to which
it is reasonable to accept logical conclusions, even though some of these
conclusions are established non-deductively: sometimes it is reasonable to
accept a conclusion of an argument even though this argument is not strong
enough to establish its conclusion with absolute certainty.

Several ways to formalise nonmonotonic, or defeasible reasoning have
been studied. This chapter is not meant to survey all of them but only dis-
cusses the argument-based approach, which de�nes notions like argument,
counterargument, attack and defeat, and de�nes consequence notions in
terms of the interaction of arguments for and against certain conclusions.
This approach was initiated by the philosopher John Pollock [1987], based
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on his earlier work in epistemology, e.g. [1974], and the computer scientist
Ronald Loui [1987]. As we shall see, argumentation systems are able to
incorporate the traditional, monotonic notions of logical consequence as a
special case, for instance, in their de�nition of what an argument is.

The �eld of defeasible argumentation is relatively young, and researchers
disagree on many issues, while the formal meta-theory is still in its early
stages. Yet we think that the �eld has suÆciently matured to devote a
handbook survey to it.2 We aim to show that there are also many similarities
and connections between the various systems, and that many di�erences
are variations on a few basic notions, or are caused by di�erent focus or
di�erent levels of abstraction. Moreover, we shall show that some recent
developments pave the way for a more elaborate meta-theory of defeasible
argumentation.

Although when discussing individual systems we aim to be as formal as
possible, when comparing them we shall mostly use conceptual or quasi-
formal terms. We shall also report on some formal results on this compar-
ison, but it is not our aim to present new technical results; this we regard
as a task for further research in the �eld.

The structure of this chapter is as follows. In Section 2 we give an
overview of the main approaches in nonmonotonic reasoning, and argue
why the study of this kind of reasoning is relevant not only for arti�cial
intelligence but also for philosophy. In Section 3 we give a brief conceptual
sketch of logics for defeasible argumentation, and we argue that it is not ob-
vious that they need a model-theoretic semantics. In Section 4 we become
formal, studying how semantic consequence notions for argumentation sys-
tems can be de�ned given a set of arguments ordered by a defeat relation.
This discussion is still abstract, leaving the structure of arguments and the
origin of the defeat relation largely unspeci�ed. In Section 5 we become
more concrete, in discussing particular logics for defeasible argumentation.
Then in Section 6 we discuss one way in which argumentation systems can
be formulated, viz. in the form of rules for dispute. We end this chapter in
Section 7 with some concluding remarks, and with a list of the main open
issues in the �eld.

2 NONMONOTONIC LOGICS: OVERVIEW AND PHILOSOPHICAL
RELEVANCE

Before discussing argumentation systems, we place them in the context of
the study of nonmonotonic reasoning, and discuss why this study deserves
a place in philosophical logic.

2For a survey of this topic from a computer science perspective, see [Ches~nevar et al.,
1999].
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2.1 Research in nonmonotonic reasoning

Although this chapter is not about nonmonotonic logics in general, it is still
useful to give a brief impression of this �eld, to put systems for defeasible
argumentation in context. Several styles of nonmonotonic logics exist. Most
of them take as the basic `nonstandard' unit the notion of a default, or
defeasible conditional or rule: this is a conditional that can be quali�ed
with phrases like `typically', `normally' or `unless shown otherwise' (the
two principles in our example may be regarded as defaults). Defaults do
not guarantee that their consequent holds whenever their antecedent holds;
instead they allow us in such cases to defeasibly derive their consequent, i.e.,
if nothing is known about exceptional circumstances. Most nonmonotonic
logics aim to formalise this phenomenon of `default reasoning', but they do
so in di�erent ways.
Firstly, they di�er in whether the above quali�cations are regarded as

extra conditions in the antecedent of a default, as aspects of the use of a
default, or as inherent in the meaning of a defeasible conditional operator.
In addition, within each of these views on defaults, nonmonotonic logics
di�er in the technical means by which they formalise it. Let us briey
review the main approaches. (More detailed overviews can be found in e.g.
[Brewka, 1991] and [Gabbay et al., 1994].)

Preferential entailment

Preferential entailment, e.g. [Shoham, 1988], is a model-theoretic approach
based on standard �rst-order logic, which weakens the standard notion of
entailment. The idea is that instead of checking all models of the premises
to see if the conclusion holds, only some of the models are checked, viz. those
in which as few exceptions to the defaults hold as possible. This technique
is usually combined with the `extra condition' view on defaults, by adding
a special `normality condition' to their antecedent, as in

(1) 8x:Birds(x) ^ :ab1(x) � Canfly(x)

Informally, this reads as `Birds can y, unless they are abnormal with respect
to ying'. Let us now also assume that Tweety is a bird:

(2) Bird(Tweety)

We want to infer from (1) and (2) that Canfly(Tweety), since there is no
reason to believe that ab1(Tweety). This inference is formalised by only
looking at those models of (1,2) where the extension of the abi predicates
are minimal (with respect to set inclusion). Thus, since on the basis of
(1) and (2) nothing is known about whether Tweety is an abnormal bird,
there are both FOL-models of these premises where ab1(Tweety) is satis�ed
and FOL-models where this is not satis�ed. The idea is then that we can
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disregard the models satisfying ab1(Tweety), and only look at the models
satisfying : ab1(Tweety); clearly in all those models Canfly(Tweety) holds.
The defeasibility of this inference can be shown by adding ab1(Tweety)

to the premises. Then all models of the premises satisfy ab1(Tweety),
and the preferred models are now those in which the extension of ab1
is fTweetyg. Some of those models satisfy Canfly(Tweety) but others
satisfy :Canfly(Tweety), so we cannot any more draw the conclusion
Canfly(Tweety).
A variant of this approach is Poole's [1988] `abductive framework for de-

fault reasoning'. Poole also represents defaults with normality conditions,
but he does not de�ne a new semantics. Instead, he recommends a new way
of using �rst-order logic, viz. for constructing `extensions' of a theory. Es-
sentially, extensions can be formed by adding as many normality statements
to a theory as is consistently possible. The standard �rst-order models of a
theory extension correspond to the preferred models of the original theory.

Intensional semantics for defaults

There are also intensional approaches to the semantics of defaults, e.g. [Del-
grande, 1988; Asher & Morreau, 1990]. The idea is to interpret defaults in a
possible-worlds semantics, and to evaluate their truth in a model by focus-
ing on a subset of the set of possible worlds within a model. This is similar
to the focusing on certain models of a theory in preferential entailment. On
the other hand, intensional semantics capture the defeasibility of defaults
not with extra normality conditions, but in the meaning of the conditional
operator. This development draws its inspiration from the similarity se-
mantics for counterfactuals in conditional logics, e.g. [Lewis, 1973]. In these
logics a counterfactual conditional is interpreted as follows: ' )  is true
just in case  is true in a subset of the possible worlds in which ' is true, viz.
in the possible worlds which resemble the actual world as much as possible,
given that in them ' holds. Now with respect to defeasible conditionals the
idea is to de�ne in a similar way a possible-worlds semantics for defeasi-
ble conditionals. A defeasible conditional ' )  is roughly interpreted as
`in all most normal worlds in which ' holds,  holds as well'. Obviously,
if read in this way, then modus ponens is not valid for such conditionals,
since even if ' holds in the actual world, the actual world need not be a
normal world. This is di�erent for counterfactual conditionals, where the
actual world is always among the worlds most similar to itself. This dif-
ference makes that intensional defeasible logics need a component that is
absent in counterfactual logics, and which is similar to the selection of the
`most normal' models in preferential entailment: in order to derive default
conclusions from defeasible conditionals, the actual world is assumed to be
as normal as possible given the premises. It is this assumption that makes
the resulting conclusions defeasible: it validates modus ponens for those
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defaults for which there is no evidence of exceptions.

Consistency and non-provability statements

Yet another approach is to somehow make the expression possible of consis-
tency or non-provability statements. This is, for instance, the idea behind
Reiter's [1980] default logic, which extends �rst-order logic with constructs
that technically play the role of inference rules, but that express domain-
speci�c generalisations instead of logical inference principles. In default
logic, the Tweety default can be written as follows.

Bird(x) : Canfly(x)=Canfly(x)

The middle part of this `default' can be used to express consistency state-
ments. Informally the default reads as `If it is provable that Tweety is a
bird, and it is not provable that Tweety cannot y, then we may infer that
Tweety can y'. To see how this works, assume that in addition to this
default we have a �rst-order theory

W = fBird(Tweety);8x:Penguin(x) � :Canfly(x)g

Then (informally) since Canfly(Tweety) is consistent with what is known,
we can apply the default to Tweety and defeasibly derive Canfly(Tweety)
from W . That this inference is indeed defeasible becomes apparent if
Penguin(Tweety) is also added to W : then :Canfly(Tweety) is classi-
cally entailed by what is known and the consistency check for applying
the default fails, for which reason Canfly(Tweety) cannot be derived from
W [ fPenguin(Tweety)g.
This example seems straightforward but the formal de�nition of default-

logical consequence is tricky: in this approach, what is provable is deter-
mined by what is not provable, so the problem is how to avoid a circular
de�nition. In default logic (as in related logics) this is solved by giving
the de�nition a �xed-point appearance; see below in Section 5.4. Simi-
lar equilibrium-like de�nitions for argumentation systems will be discussed
throughout this chapter.

Inconsistency handling

It has also been proposed to formalise defeasible reasoning as strategies
for dealing with inconsistent information, e.g. by Brewka [1989]. In this
approach defaults are formalised with ordinary material implications and
without normality conditions, and their defeasible nature is captured in
how they are used by the consistency handling strategies. In particular,
in case of inconsistency, alternative consistent subsets (subtheories) of the
premises give rise to alternative default conclusions, after which a choice
can be made for the subtheory containing the exceptional rule.
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In our birds example this works out as follows.

(1) bird � canfly

(2) penguin � : canfly

(3) bird

(4) penguin

The set f(1); (3)g is a subtheory supporting the conclusion canfly, while
f(2); (4)g is a subtheory supporting the opposite. The exceptional nature
of (2) over (1) can be captured by preferring the latter subtheory.

Systems for defeasible argumentation

Argumentation systems are yet another way to formalise nonmonotonic rea-
soning, viz. as the construction and comparison of arguments for and against
certain conclusions. In these systems the basic notion is not that of a de-
feasible conditional but that of a defeasible argument. The idea is that the
construction of arguments is monotonic, i.e., an argument stays an argu-
ment if more premises are added. Nonmonotonicity, or defeasibility, is not
explained in terms of the interpretation of a defeasible conditional, but in
terms of the interactions between conicting arguments: in argumentation
systems nonmonotonicity arises from the fact that new premises may give
rise to stronger counterarguments, which defeat the original argument. So
in case of Tweety we may construct one argument that Tweety ies because
it is a bird, and another argument that Tweety does not y because it is a
penguin, and then we may prefer the latter argument because it is about a
speci�c class of birds, and is therefore an exception to the general rule.
Argumentation systems can be combined with each of the above-discussed

views on defaults. The `normality condition' view can be formalised by re-
garding an argument as a standard derivation from a set of premises aug-
mented with normality statements. Thus a counterargument is an attack
on such a normality statement. A variant of this method can be applied to
the use of consistency and nonprovability expressions. The `pragmatic' view
on defaults (as in inconsistency handling) can be formalised by regarding
arguments as a standard derivation from a consistent subset of the premises.
Here a counterargument attacks a premise of an argument. Finally, the `se-
mantic' view on defaults could be formalised by allowing the construction
of arguments with inference rules (such as modus ponens) that are invalid
in the semantics. In that case a counterargument attacks the use of such
an inference rule.
It is important to note, however, that argumentation systems have wider

scope than just reasoning with defaults. Firstly, argumentation systems
can be applied to any form of reasoning with contradictory information,
whether the contradictions have to do with rules and exceptions or not. For
instance, the contradictions may arise from reasoning with several sources
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of information, or they may be caused by disagreement about beliefs or
about moral, ethical or political claims. Moreover, it is important that sev-
eral argumentation systems allow the construction and attack of arguments
that are traditionally called `ampliative', such as inductive, analogical and
abductive arguments; these reasoning forms fall outside the scope of most
other nonmonotonic logics.
Most argumentation systems have been developed in arti�cial intelligence

research on nonmonotonic reasoning, although Pollock's work, which was
the �rst logical formalisation of defeasible argumentation, was initially ap-
plied to the philosophy of knowledge and justi�cation (epistemology). The
�rst arti�cial intelligence paper on argumentation systems was [Loui, 1987].
One domain in which argumentation systems have become popular is legal
reasoning [Loui et al., 1993; Prakken, 1993; Sartor, 1994; Gordon, 1995;
Loui & Norman, 1995; Prakken & Sartor, 1996; Freeman & Farley, 1996;
Prakken & Sartor, 1997a; Prakken, 1997; Gordon & Karacapilidis, 1997].
This is not surprising, since legal reasoning often takes place in an adver-
sarial context, where notions like argument, counterargument, rebuttal and
defeat are very common. However, argumentation systems have also been
applied to such domains as medical reasoning [Das et al., 1996], negotiation
[Parsons et al., 1998] and risk assessment in oil exploration [Clark, 1990].

2.2 Nonmonotonic reasoning: arti�cial intelligence or logic?

Usually, nonmonotonic logics are studied as a branch of arti�cial intelligence.
However, it is more than justi�ed to regard these logics as also part of
philosophical logic. In fact, several issues in nonmonotonic logic have come
up earlier in philosophy. For instance, in the context of moral reasoning,
Ross [1930] has studied the notion of prima facie obligations. According to
Ross an act is prima facie obligatory if it has a characteristic that makes the
act (by virtue of an underlying moral principle) tend to be a `duty proper'.
Ful�lling a promise is a prima facie duty because it is the ful�llment of a
promise, i.e., because of the moral principle that one should do what one
has promised to do. But the act may also have other characteristics which
make the act tend to be forbidden. For instance, if John has promised a
friend to visit him for a cup of tea, and then John's mother suddenly falls
ill, then he also has a prima facie duty to do his mother's shopping, based,
say, on the principle that we ought to help our parents when they need it.
To �nd out what one's duty proper is, one should `consider all things', i.e.,
compare all prima facie duties that can be based on any aspect of the factual
circumstances and �nd which one is `more incumbent' than any conicting
one. If we qualify the all-things-considered clause as `consider all things
that you know', then the reasoning involved is clearly nonmonotonic: if we
are �rst only told that John has promised his friend to visit him, then we
conclude that Johns' duty proper is to visit his friend. But if we next also
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hear that John's mother has become ill, we conclude instead that John's
duty proper is to help his mother.

The term `defeasibility' was �rst introduced not in logic but in legal phi-
losophy, viz. by Hart [1949] (see the historical discussion in [Loui, 1995]).
Hart observed that legal concepts are defeasible in the sense that the con-
ditions for when a fact situation classi�es as an instance of a legal concept
(such as `contract'), are only ordinarily, or presumptively, suÆcient. If a
party in a law suit succeeds in proving these conditions, this does not have
the e�ect that the case is settled; instead, legal procedure is such that the
burden of proof shifts to the opponent, whose turn it then is to prove addi-
tional facts which, despite the facts proven by the proponent, nevertheless
prevent the claim from being granted (for instance, insanity of one of the
contracting parties). Hart's discussion of this phenomenon stays within
legal-procedural terms, but it is obvious that it provides a challenge for
standard logic: an explanation is needed of how proving new facts without
rejecting what was proven by the other party can reverse the outcome of a
case.

Toulmin [1958], who criticised the logicians of his days for neglecting
many features of ordinary reasoning, was aware of the implications of this
phenomenon for logic. In his well-known pictorial scheme for arguments
he leaves room for rebuttals of an argument. He also urges logicians to
take the procedural aspect (in the legal sense) of argumentation seriously.
In particular, Toulmin argues that (outside mathematics) an argument is
valid if it can stand against criticism in a properly conducted dispute, and
the task of logicians is to �nd criteria for when a dispute has been conducted
properly.

The notion of burden of proof, and its role in dialectical inquiry, has also
been studied by Rescher [1977], in the context of epistemology. Among other
things, Rescher claims that a dialectical model of scienti�c reasoning can
explain the rational force of inductive arguments: they must be accepted
if they cannot be successfully challenged in a properly conducted scienti�c
dispute. Rescher thereby assumes that the standards for constructing in-
ductive arguments are somehow given by generally accepted practices of
scienti�c reasoning; he only focuses on the dialectical interaction between
conicting inductive arguments.

Another philosopher who has studied defeasible reasoning is John Pollock.
Although his work, to be presented below, is also well-known in the �eld of
arti�cial intelligence, it was initially a contribution to epistemology, with,
like Rescher, much attention for induction as a form of defeasible reasoning.

As this overview shows, a logical study of nonmonotonic, or defeasible
reasoning fully deserves a place in philosophical logic. Let us now turn to
the discussion of logics for defeasible argumentation.
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3 SYSTEMS FOR DEFEASIBLE ARGUMENTATION: A
CONCEPTUAL SKETCH

In this section we give a conceptual sketch of the general ideas behind
logics for defeasible argumentation. These systems contain the following �ve
elements (although sometimes implicitly): an underlying logical language,
de�nitions of an argument, of conicts between arguments and of defeat
among arguments and, �nally, a de�nition of the status of arguments, which
can be used to de�ne a notion of defeasible logical consequence.

Argumentation systems are built around an underlying logical language
and an associated notion of logical consequence, de�ning the notion of an
argument. As noted above, the idea is that this consequence notion is
monotonic: new premises cannot invalidate arguments as arguments but
only give rise to counterarguments. Some argumentation systems assume
a particular logic, while other systems leave the underlying logic partly or
wholly unspeci�ed; thus these systems can be instantiated with various al-
ternative logics, which makes them frameworks rather than systems. The
notion of an argument corresponds to a proof (or the existence of a proof)
in the underlying logic. As for the layout of arguments, in the literature on
argumentation systems three basic formats can be distinguished, all famil-
iar from the logic literature. Sometimes arguments are de�ned as a tree of
inferences grounded in the premises, and sometimes as a sequence of such
inferences, i.e., as a deduction. Finally, some systems simply de�ne an ar-
gument as a premises - conclusion pair, leaving implicit that the underlying
logic validates a proof of the conclusion from the premises. One argumenta-
tion system, viz. Dung [1995], leaves the internal structure of an argument
completely unspeci�ed. Dung treats the notion of an argument as a primi-
tive, and exclusively focuses on the ways arguments interact. Thus Dung's
framework is of the most abstract kind.

p q r s

t

:t
p q r s

t

:dp; q; r; s=te

Figure 4. Rebutting attack (left) vs. undercutting attack (right).

The notions of an underlying logic and an argument still �t with the
standard picture of what a logical system is. The remaining three elements
are what makes an argumentation system a framework for defeasible argu-
mentation.
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Figure 5. Direct attack (left) vs. indirect attack (right).

The �rst is the notion of a conict between arguments (also used are
the terms `attack' and `counterargument'). In the literature, three types of
conicts are discussed. The �rst type is when arguments have contradictory
conclusions, as in `Tweety ies, because it is a bird' and `Tweety does not
y because it is a penguin' (cf. the left part of Fig. 4). Clearly, this form
of attack, which is often called rebutting an argument, is symmetric. The
other two types of conict are not symmetric. One is where one argument
makes a non-provability assumption (as in default logic) and another ar-
gument proves what was assumed unprovable by the �rst. For example,
an argument `Tweety ies because it is a bird, and it is not provable that
Tweety is a penguin', is attacked by any argument with conclusion `Tweety
is a penguin'. We shall call this assumption attack. The �nal type of conict
(�rst discussed by Pollock [1970]) is when one argument challenges, not a
proposition, but a rule of inference of another argument (cf. the right part
of Fig. 4). After Pollock, this is usually called undercutting an inference.
Obviously, a rule of inference can only be undercut if it is not deductive.
Non-deductive rules of inference occur in argumentation systems that allow
inductive, abductive or analogical arguments. To consider an example, the
inductive argument `Raven 101 is black since the observed ravens raven1
. . . raven100 were black' is undercut by an argument `I saw raven102, which
was white'. In order to formalise this type of conict, the rule of inference
that is to be undercut (in Fig. 4: the rule that is enclosed in the dotted box,
in at text written as p; q; r; s=t) must be expressed in the object language:
dp; q; r; s=te) and denied: :dp; q; r; s=te.3

Note that all these senses of attack have a direct and an indirect ver-
sion; indirect attack is directed against a subconclusion or a substep of an
argument, as illustrated by Figure 5 for indirect rebutting.

The notion of conicting, or attacking arguments does not embody any
form of evaluation; evaluating conicting pairs of arguments, or in other

3Ceiling brackets around a meta-level formula denote a conversion of that formula to
the object language, provided that the object language is expressive enough to enable
such a conversion.
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words, determining whether an attack is successful, is another element of
argumentation systems. It has the form of a binary relation between argu-
ments, standing for `attacking and not weaker' (in a weak form) or `attacking
and stronger' (in a strong form). The terminology varies: some terms that
have been used are `defeat' [Prakken & Sartor, 1997b], `attack' [Dung, 1995;
Bondarenko et al., 1997] and `interference' [Loui, 1998]. Other systems do
not explicitly name this notion but leave it implicit in the de�nitions. In
this chapter we shall use `defeat' for the weak notion and `strict defeat' for
the strong, asymmetric notion. Note that the several forms of attack, re-
butting vs. assumption vs. undercutting and direct vs. indirect, have their
counterparts for defeat.

Argumentation systems vary in their grounds for the evaluation of ar-
guments. In arti�cial intelligence the speci�city principle, which prefers
arguments based on the most speci�c defaults, is by many regarded as very
important, but several researchers, e.g. Vreeswijk [1989], Pollock [1995] and
Prakken & Sartor [1996], have argued that speci�city is not a general prin-
ciple of common-sense reasoning but just one of the many standards that
might or might not be used. Moreover, some have claimed that general,
domain-independent principles of defeat do not exist or are very weak,
and that information from the semantics of the domain will be the most
important way of deciding among competing arguments [Konolige, 1988;
Vreeswijk, 1989]. For these reasons several argumentation systems are
parametrised by user-provided criteria. Some, e.g. Prakken & Sartor, even
argue that the evaluation criteria are debatable, just as the rest of the do-
main theory is, and that argumentation systems should therefore allow for
defeasible arguments on these criteria. (Our example in the introduction
contains such an argument, viz. A's use of a priority rule (10) based on the
expected consequences of certain events. This argument might, for instance,
be attacked by an argument that in case of important oÆcials even a small
likelihood that the disease a�ects the oÆcial's functioning justi�es publica-
tion, or by an argument that the negative consequences of publication for
the oÆcial are small.)

The notion of defeat is a binary relation on the set of arguments. It is
important to note that this relation does not yet tell us with what argu-
ments a dispute can be won; it only tells us something about the relative
strength of two individual conicting arguments. The ultimate status of
an argument depends on the interaction between all available arguments:
it may very well be that argument B defeats argument A, but that B is
in turn defeated by a third argument C; in that case C `reinstates' A (see
Figure 6).4 Suppose, for instance, that the argument A that Tweety ies
because it is a bird is regarded as being defeated by the argument B that

4While in �gures 4 and 5 the arrows stood for attack relations, from now on they will
depict defeat relations.
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A B C

Figure 6. Argument C reinstates argument A.

Tweety does not y because it is a penguin (for instance, because conicting
arguments are compared with respect to speci�city). And suppose that B
is in turn defeated by an argument C, attacking B's intermediate conclu-
sion that Tweety is a penguin. C might, for instance, say that the penguin
observation was done with faulty instruments. In that case C reinstates
argument A.

Therefore, what is also needed is a de�nition of the status of arguments
on the basis of all the ways in which they interact. Besides reinstatement,
this de�nition must also capture the principle that an argument cannot be
justi�ed unless all its subarguments are justi�ed (by Vreeswijk [1997] called
the `compositionality principle'). There is a close relation between these
two notions, since reinstatement often proceeds by indirect attack, i.e., at-
tacking a subargument of the attacking argument. (Cf. Fig. 5 on page 231.)
It is this de�nition of the status of arguments that produces the output
of an argumentation system: it typically divides arguments in at least two
classes: arguments with which a dispute can be `won' and arguments with
which a dispute should be `lost'. Sometimes a third, intermediate category
is also distinguished, of arguments that leave the dispute undecided. The
terminology varies here also: terms that have been used are justi�ed vs.
defensible vs. defeated (or overruled), defeated vs. undefeated, in force vs.
not in force, preferred vs. not preferred, etcetera. Unless indicated other-
wise, this chapter shall use the terms `justi�ed', `defensible' and `overruled'
arguments.

These notions can be de�ned both in a `declarative' and in a `procedu-
ral' form. The declarative form, usually with �xed-point de�nitions, just
declares certain sets of arguments as acceptable, (given a set of premises
and evaluation criteria) without de�ning a procedure for testing whether an
argument is a member of this set; the procedural form amounts to de�n-
ing just such a procedure. Thus the declarative form of an argumentation
system can be regarded as its (argumentation-theoretic) semantics, and the
procedural form as its proof theory. Note that it is very well possible that,
while an argumentation system has an argumentation-theoretic semantics,
at the same time its underlying logic for constructing arguments has a
model-theoretic semantics in the usual sense, for instance, the semantics
of standard �rst-order logic, or a possible-worlds semantics of some modal
logic.

In fact, this point is not universally accepted, and therefore we devote a
separate subsection to it.
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Semantics: model-theoretic or not?

A much-discussed issue is whether logics for nonmonotonic reasoning should
have a model-theoretic semantics or not. In the early days of this �eld it
was usual to criticise several systems (such as default logic) for the lack of
a model-theoretic semantics. However, when such semantics were provided,
this was not always felt to be a major step forward, unlike when, for instance,
possible-worlds semantics for modal logic was introduced. In addition, sev-
eral researchers argued that nonmonotonic reasoning needs a di�erent kind
of semantics than a model theory, viz. an argumentation-theoretic seman-
tics. It is here not the place to decide the discussion. Instead we con�ne
ourselves to presenting some main arguments for this view that have been
put forward.

Traditionally, model theory has been used in logic to de�ne the meaning
of logical languages. Formulas of such languages were regarded as telling
us something about reality (however de�ned). Model-theoretic semantics
de�nes the meaning of logical symbols by de�ning how the world looks like if
an expression with these symbols is true, and it de�nes logical consequence,
entailment, by looking at what else must be true if the premises are true.
For defaults this means that their semantics should be in terms of how
the world normally, or typically looks like when defaults are true; logical
consequence should, in this approach, be determined by looking at the most
normal worlds, models or situations that satisfy the premises.

However, others, e.g. Pollock [1991, p. 40], Vreeswijk [1993a, pp. 88{9]

and Loui [1998], have argued that the meaning of defaults should not be
found in a correspondence with reality, but in their role in dialectical inquiry.
That a relation between premises and conclusion is defeasible means that
a certain burden of proof is induced. In this approach, the central notions
of defeasible reasoning are notions like attack, rebuttal and defeat among
arguments, and these notions are not `propositional', for which reason their
meaning is not naturally captured in terms of correspondence between a
proposition and the world. This approach instead de�nes `argumentation-
theoretic' semantics for such notions. The basic idea of such a semantics is
to capture sets of arguments that are as large as possible, and adequately
defend themselves against attacks on their members.

It should be noted that this approach does not deny the usefulness of
model theory but only wants to de�ne its proper place. Model theory should
not be applied for things for which it is not suitable, but should be reserved
for the initial components of an argumentation system, the notions of a
logical language and a consequence relation de�ning what an argument is.

It should also be noted, however, that some have proposed argumenta-
tion systems as proof theories for model-theoretic semantics of preferential
entailment (in particular Ge�ner & Pearl [1992]). In our opinion, one crite-
rion for success of such model-theoretic semantics of argumentation systems
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is whether natural criteria for model preference can be de�ned. For certain
restricted cases this seems possible, but whether this approach is extend-
able to more general argumentation systems, for instance, those allowing
inductive, analogical or abductive arguments, remains to be investigated.

4 GENERAL FEATURES OF ARGUMENT-BASED SEMANTICS

Let us now, before looking at some systems in detail, become more formal
about some of the notions that these systems have in common. We shall
focus in particular on the semantics of argumentation systems, i.e., on the
conditions that sets of justi�ed arguments should satisfy. In line with the
discussion at the end of Section 3, we can say that argumentation systems
are not concerned with truth of propositions, but with justi�cation of ac-
cepting a proposition as true. In particular, one is justi�ed in accepting a
proposition as true if there is an argument for the proposition that one is
justi�ed in accepting. Let us concentrate on the task of de�ning the notion
of a justi�ed argument. Which properties should such a de�nition have?
Let us assume as background a set of arguments, with a binary relation

of `defeat' de�ned over it. Recall that we read `A defeats B' in the weak
sense of `A conicts with B and is not weaker than B'; so in some cases it
may happen that A defeats B and B defeats A. For the moment we leave
the internal structure of an argument unspeci�ed, as well as the precise
de�nition of defeat.5 Then a simple de�nition of the status of an argument
is the following.

DEFINITION 1. Arguments are either justi�ed or not justi�ed.

1. An argument is justi�ed if all arguments defeating it (if any) are not
justi�ed.

2. An argument is not justi�ed if it is defeated by an argument that is
justi�ed.

This de�nition works well in simple cases, in which it is clear which argu-
ments should emerge victorious, as in the following example.

EXAMPLE 2. Consider three arguments A, B and C such that B defeats
A and C defeats B:

A B C

5This style of discussion is inspired by Dung [1995]; see further Subsection 5.1 below.
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A concrete version of this example is

A = `Tweety ies because it is a bird'
B = `Tweety does not y because it is a penguin'
C = `The observation that Tweety is a penguin is unreliable'

C is justi�ed since it is not defeated by any other argument. This makes
B not justi�ed, since B is defeated by C. This in turn makes A justi�ed:
although A is defeated by B, A is reinstated by C, since C makes B not
justi�ed.
In other cases, however, De�nition 1 is circular or ambiguous. Especially

when arguments of equal strength interfere with each other, it is not clear
which argument should remain undefeated.

EXAMPLE 3. (Even cycle.) Consider the arguments A and B such that A
defeats B and B defeats A.

A B

A concrete example is

A = `Nixon was a paci�st because he was a quaker'
B = `Nixon was not a paci�st because he was a republican'

Can we regard A as justi�ed? Yes, we can, if B is not justi�ed. Can we
regard B as not justi�ed? Yes, we can, if A is justi�ed. So, if we regard
A as justi�ed and B as not justi�ed, De�nition 1 is satis�ed. However, it
is obvious that by a completely symmetrical line of reasoning we can also
regard B as justi�ed and A as not justi�ed. So there are two possible `status
assignments' to A and B that satisfy De�nition 1: one in which A is justi�ed
at the expense of B, and one in which B is justi�ed at the expense of A.
Yet intuitively, we are not justi�ed in accepting either of them.
In the literature, two approaches to the solution of this problem can be

found. The �rst approach consists of changing De�nition 1 in such a way
that there is always precisely one possible way to assign a status to argu-
ments, and which is such that with `undecided conicts' as in our example
both of the conicting arguments receive the status `not justi�ed'. The sec-
ond approach instead regards the existence of multiple status assignments
not as a problem but as a feature: it allows for multiple assignments and
de�nes an argument as `genuinely' justi�ed if and only if it receives this
status in all possible assignments. The following two subsections discuss
the details of both approaches.
First, however, another problem with De�nition 1 must be explained,

having to do with self-defeating arguments.

EXAMPLE 4. (Self-defeat.) Consider an argument L, such that L defeats
L. Suppose L is not justi�ed. Then all arguments defeating L are not
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L

Figure 7. A self-defeating argument.

justi�ed, so by clause 1 of De�nition 1 L is justi�ed. Contradiction. Suppose
now L is justi�ed. Then L is defeated by a justi�ed argument, so by clause 2
of De�nition 1 L is not justi�ed. Contradiction.

Thus, De�nition 1 implies that there are no self-defeating arguments. Yet
the notion of self-defeating arguments seems intuitively plausible, as is il-
lustrated by the following example.

EXAMPLE 5. (The Liar.) An elementary self-defeating argument can be
fabricated on the basis of the so-called paradox of the Liar . There are many
versions of this paradox. The one we use here, runs as follows:

Dutch people can be divided into two classes: people who always
tell the truth, and people who always lie. Hendrik is a Dutch
monk, and of Dutch monks we know that they tend to be con-
sistent truth-tellers. Therefore, it is reasonable to assume that
Hendrik is a consistent truth-teller. However, Hendrik says he
is a lier. Is Hendrik a truth-teller or a lier?

The Liar-paradox is a paradox, because either answer leads to a contradic-
tion.

1. Suppose that Hendrik tells the truth. Then what Hendrik says must
be true. So, Hendrik is a lier. Contradiction.

2. Suppose that Hendrik lies. Then what Hendrik says must be false.
So, Hendrik is not a lier. Because Dutch people are either consistent
truth-tellers or consistent liers, it follows that Hendrik always tells the
truth. Contradiction.

From this paradox, a self-defeating argument L can be made out of (1):
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Hendrik says:
\I lie"

Dutch monks
tend to be
consistent
truth-tellers

Hendrik is a
Dutch monk

Hendrik is a
consistent
truth-teller

Hendrik lies

Hendrik is not
a consistent
truth-teller

If the argument for \Hendrik is not a consistent truth-teller" is as strong as
its subargument for \Hendrik is a consistent truth-teller," then L defeats
one of its own sub-arguments, and thus is a self-defeating argument.

In conclusion, it seems that De�nition 1 needs another revision, to leave
room for the existence of self-defeating arguments. Below we shall not
discuss this in general terms since, perhaps surprisingly, in the literature it
is hard to �nd generally applicable solutions to this problem. Instead we
shall discuss for each particular system how it deals with self-defeat.

4.1 The unique-status-assignment approach

The idea to enforce unique status assignments basically comes in two vari-
ants. The �rst de�nes status assignments in terms of some �xed-point
operator, and the second involves a recursive de�nition of a justi�ed argu-
ment, by introducing the notion of a subargument of an argument. We �rst
discuss the �xed-point approach.

Fixed-point de�nitions

This approach, followed by e.g. Pollock [1987; 1992], Simari & Loui [1992]

and Prakken & Sartor [1997b], can best be explained with the notion of
`reinstatement' (see above, Section 3). The key observation is that an ar-
gument that is defeated by another argument can only be justi�ed if it is
reinstated by a third argument, viz. by a justi�ed argument that defeats its
defeater. This idea is captured by Dung's [1995] notion of acceptability .

DEFINITION 6. An argument A is acceptable with respect to a set S of
arguments i� each argument defeating A is defeated by an argument in S.

The arguments in S can be seen as the arguments capable of reinstating A
in case A is defeated.
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However, the notion of acceptability is not suÆcient. Consider in Exam-
ple 3 the set S = fAg. It is easy to see that A is acceptable with respect
to S, since all arguments defeating A (viz. B) are defeated by an argument
in S, viz. A itself. Clearly, we do not want that an argument can rein-
state itself, and this is the reason why a �xed-point operator must be used.
Consider the following operator from [Dung, 1995], which for each set of
arguments returns the set of all arguments that are acceptable to it.

DEFINITION 7. (Dung's [1995] grounded semantics.) Let Args be a set of
arguments ordered by a binary relation of defeat,6 and let S � Args. Then
the operator F is de�ned as follows:

� F (S) = fA 2 Args j A is acceptable with respect to Sg

Dung proves that the operator F has a least �xed point. (The basic idea is
that if an argument is acceptable with respect to S, it is also acceptable with
respect to any superset of S, so that F is monotonic.) Self-reinstatement
can then be avoided by de�ning the set of justi�ed arguments as that least
�xed point. Note that in Example 3 the sets fAg and fBg are �xed points
of F but not its least �xed point, which is the empty set. In general we
have that if no argument is undefeated, then F (;) = ;.

These observations allow the following de�nition of a justi�ed argument.

DEFINITION 8. An argument is justi�ed i� it is a member of the least
�xed point of F .

It is possible to reformulate De�nition 7 in various ways, which are either
equivalent to, or approximations of the least �xed point of F . To start
with, Dung shows that it can be approximated from below, and when each
argument has at most �nitely many defeaters even be obtained, by iterative
application of F to the empty set.

PROPOSITION 9. Consider the following sequence of arguments.

� F 0 = ;

� F i+1 = fA 2 Args j A is acceptable with respect to F ig.

The following observations hold [Dung, 1995].

1. All arguments in [1i=0(F
i) are justi�ed.

2. If each argument is defeated by at most a �nite number of arguments,
then an argument is justi�ed i� it is in [1i=0(F

i)

6As remarked above, Dung uses the term `attack' instead of `defeat'.
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In the iterative construction �rst all arguments that are not defeated by any
argument are added, and at each further application of F all arguments that
are reinstated by arguments that are already in the set are added. This is
achieved through the notion of acceptability. To see this, suppose we apply
F for the ith time: then for any argument A, if all arguments that defeat
A are themselves defeated by an argument in F i�1, then A is in F i.
It is instructive to see how this works in Example 2. We have that

F 1 = F (;) = fCg
F 2 = F (F 1) = fA;Cg
F 3 = F (F 2) = F 2

Dung [1995] also shows that F is equivalent to double application of a
simpler operator G, i.e. F = G Æ G. The operator G returns for each set
of arguments all arguments that are not defeated by any argument in that
set.

DEFINITION 10. Let Args be a set of arguments ordered by a binary
relation of defeat. Then the operator G is de�ned as follows:

� G(S) = fA 2 ArgsjA is not defeated by any argument in Sg

The G operator is in turn very similar to the one used by Pollock [1987;
1992]. To see this, we reformulate G in Pollock's style, by considering
the sequence obtained by iterative application of G to the empty set, and
de�ning an argument A to be justi�ed if and only if at some point (or
\level") m in the sequence A remains in Gn for all n � m.

DEFINITION 11. (Levels in justi�cation.)

� All arguments are in at level 0.

� An argument is in at level n+1 i� it is not defeated by any argument
in at level n.

� An argument is justi�ed i� there is an m such that for every n � m,
the argument is in at level n.

As shown by Dung [1995], this de�nition stands to De�nition 10 as the
construction of Proposition 9 stands to De�nition 7. Dung also remarks
that De�nition 11 is equivalent to Pollock's [1987; 1992] de�nition, but as
we shall see below, this is not completely accurate.
In Example 2, De�nition 11 works out as follows.

level in
0 A;B;C
1 C
2 A;C
3 A;C
. . . .
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C is in at all levels, while A becomes in at 2 and stays in at all subsequent
levels.

And in Example 3 both A and B are in at all even levels and out at all
odd levels.

level in
0 A;B
1
2 A;B
3
4 A;B
. . . .

The following example, with an in�nite chain of defeat relations, gives
another illustration of De�nitions 7 and 11.

EXAMPLE 12. (In�nite defeat chain.) Consider an in�nite chain of argu-
ments A1; : : : ; An; : : : such that A1 is defeated by A2, A2 is defeated by A3,
and so on.

A1 A2 A3 A4 A5
: : :

The least �xed point of this chain is empty, since no argument is undefeated.
Consequently, F (;) = ;. Note that this example has two other �xed points,
which also satisfy De�nition 1, viz. the set of all Ai where i is odd, and the
set of all Ai where i is even.

Defensible arguments

A �nal peculiarity of the de�nitions is that they allow a distinction between
two types of arguments that are not justi�ed. Consider �rst again Exam-
ple 2 and observe that, although B defeats A, A is still justi�ed since it is
reinstated by C. Consider next the following extension of Example 3.

EXAMPLE 13. (Zombie arguments.) Consider three arguments A, B and
C such that A defeats B, B defeats A, and B defeats C.

A B C

A concrete example is
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A = `Dixon is no paci�st because he is a republican'
B = `Dixon is a paci�st because he is a quaker, and he has no gun

because he is a paci�st'
C = `Dixon has a gun because he lives in Chicago'

According to De�nitions 8 and 11, neither of the three arguments are justi-
�ed. For A and B this is since their relation is the same as in Example 3,
and for C this is since it is defeated by B. Here a crucial distinction between
the two examples becomes apparent: unlike in Example 2, B is, although
not justi�ed, not defeated by any justi�ed argument and therefore B retains
the potential to prevent C from becoming justi�ed: there is no justi�ed ar-
gument that reinstates C by defeating B. Makinson & Schlechta [1991]

call arguments like B `zombie arguments':7 B is not `alive', (i.e., not justi-
�ed) but it is not fully dead either; it has an intermediate status, in which
it can still inuence the status of other arguments. Following Prakken &
Sartor [1997b], we shall call this intermediate status `defensible'. In the
unique-status-assignment approach it can be de�ned as follows.

DEFINITION 14. (Overruled and defensible arguments.)

� An argument is overruled i� it is not justi�ed, and defeated by a
justi�ed argument.

� An argument is defensible i� it is not justi�ed and not overruled.

Self-defeating arguments

Finally, we must come back to the problem of self-defeating arguments.
How does De�nition 7 deal with them? Consider the following extension of
Example 4.

EXAMPLE 15. Consider two arguments A and B such that A defeats A
and A defeats B.

A B

Intuitively, we want that B is justi�ed, since the only argument defeating
it is self-defeating. However, we have that F (;) = ;, so neither A nor B are
justi�ed. Moreover, they are both defensible, since they are not defeated by
any justi�ed argument.

How can De�nitions 7 and 11 be modi�ed to obtain the intuitive result
that A is overruled and B is justi�ed? Here is where Pollock's deviation
from the latter de�nition becomes relevant. His version is as follows.

7Actually, they talk about `zombie paths', since their article is about inheritance
systems.
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DEFINITION 16. (Pollock, [1992])

� An argument is in at level 0 i� it is not self-defeating.

� An argument is in at level n + 1 i� it is in at level 0 and it is not
defeated by any argument in at level n.

� An argument is justi�ed i� there is an m such that for every n � m,
the argument is in at level n.

The additions i� it is not self-defeating in the �rst condition and i� it is in
at level 0 in the second make the di�erence: they render all self-defeating
arguments out at every level, and incapable of preventing other arguments
from being out.
Another solution is provided by Prakken & Sartor [1997b] and Vreeswijk

[1997], who distinguish a special `empty' argument, which is not defeated
by any other argument and which by de�nition defeats any self-defeating
argument. Other solutions are possible, but we shall not pursue them here.

Recursive de�nitions

Sometimes a second approach to the enforcement of unique status assign-
ments is employed, e.g. by Prakken [1993] and Nute [1994]. The idea is to
make explicit that arguments are usually constructed step-by-step, proceed-
ing from intermediate to �nal conclusions (as in Example 13, where A has
an intermediate conclusion `Dixon is a paci�st' and a �nal conclusion `Dixon
has no gun'). This approach results in an explicitly recursive de�nition of
justi�ed arguments, reecting the basic intuition that an argument cannot
be justi�ed if not all its subarguments are justi�ed. At �rst sight, this re-
cursive style is very natural, particularly for implementing the de�nition in
a computer program. However, the approach is not so straightforward as it
seems, as the following discussion aims to show.
To formalise the recursive approach, we must make a �rst assumption

on the structure of arguments, viz. that they have subarguments (which
are `proper' i� they are not identical to the entire argument). Justi�ed
arguments are then de�ned as follows. (We already add how self-defeating
arguments can be dealt with, so that our discussion can be con�ned to the
issue of avoiding multiple status assignments. Note that the explicit notion
of a subargument makes it possible to regard an argument as self-defeating
if it defeats one of its subarguments, as in Example 5.)

DEFINITION 17. (Recursively justi�ed arguments.) An argument A is
justi�ed i�

1. A is not self-defeating; and

2. All proper subarguments of A are justi�ed; and
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3. All arguments defeating A are self-defeating, or have at least one
proper subargument that is not justi�ed.

How does this de�nition avoid multiple status assignments in Example 3?
The `trick' is that for an argument to be justi�ed, clause (2) requires that
it have no (non self-defeating) defeaters of which all proper subarguments
are justi�ed. This is di�erent in De�nition 1, which leaves room for such
defeaters, and instead requires that these themselves are not justi�ed; thus
this de�nition implies in Example 3 that A is justi�ed if and only if B
is not justi�ed, inducing two status assignments. With De�nition 17, on
the other hand, A is prevented from being justi�ed by the existence of a
(non-selfdefeating) defeater with justi�ed subarguments, viz. B (and likewise
for B).

The reader might wonder whether this solution is not too drastic, since
it would seem to give up the property of reinstatement. For instance, when
applied to Example 2, De�nition 17 says that argument A is not justi�ed,
since it is defeated by B, which is not self-defeating. That B is in turn
defeated by C is irrelevant, even though C is justi�ed.

However, here it is important that De�nition 17 allows us to distinguish
between two kinds of reinstatement. Intuitively, the reason why C defeats
B in Example 2, is that it defeats B's proper subargument that Tweety is
a penguin. And if the subarguments in the example are made explicit as
follows, De�nition 17 yields the intuitive result. (As for notation, for any
pair of arguments X and X�, the latter is a proper subargument of the
�rst.)

EXAMPLE 18. Consider four arguments A, B, B� and C such that B
defeats A and C defeats B�.

A B�

B

C

According to De�nition 17, A and C are justi�ed and B and B� are not
justi�ed. Note that B is not justi�ed by Clause 2. So C reinstates A not
by directly defeating B but by defeating B's subargument B�.

The crucial di�erence between the Examples 2 and 3 is that in the latter
example the defeat relation is of a di�erent kind, in that A and B are in
conict on their �nal conclusions (respectively that Nixon is, or is not a
paci�st). The only way to reinstate, say, the argument A that Nixon was a
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paci�st is by �nding a defeater of B's proper subargument that Nixon was
a republican (while making the subargument relations explicit).
So the only case in which De�nition 17 does not capture reinstatement is

when all relevant defeat relations concern the �nal conclusions of the argu-
ments involved. This might even be regarded as a virtue of the de�nition, as
is illustrated by the following modi�cation of Example 2 (taken from [Nute,
1994]).

EXAMPLE 19. Consider three arguments A, B and C such that B defeats
A and C defeats B. Read the arguments as follows.

A = `Tweety ies because it is a bird'
B = `Tweety does not y because it is a penguin'
C = `Tweety might y because it is a genetically altered penguin'

Note that, unlike in Example 2, these three arguments are in conict on
the same issue, viz. on whether Tweety can y. According to De�nitions 7
and 11 both A and C are justi�ed; in particular, A is justi�ed since it is
reinstated by C. However, according to De�nition 17 only C is justi�ed,
since A has a non-self-defeating defeater, viz. B. The latter outcome might
be regarded as the intuitively correct one, since we still accept that Tweety
is a penguin, which blocks the `birds y' default, and C allows us at most
to conclude that Tweety might y.
So does this example show that De�nitions 7 and 11 must be modi�ed?

We think not, since it is possible to represent the arguments in such a way
that these de�nitions give the intuitive outcome. However, this solution
requires a particular logical language, for which reason its discussion must
be postponed (see Section 5.2, p. 269).
Nevertheless, we can at least conclude that while the indirect form of

reinstatement (by defeating a subargument) clearly seems a basic principle
of argumentation, Example 19 shows that with direct reinstatement this is
not so clear.
Unfortunately, De�nition 17 is not yet fully adequate, as can be shown

with the following extension of Example 3. It is a version of Example 13
with the subarguments made explicit.

EXAMPLE 20. (Zombie arguments 2.) Consider the arguments A�, A, B
and C such that A� and B defeat each other and A defeats C.

A�

A

B C
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A concrete example is

A� = `Dixon is a paci�st because he is a quaker'
B = `Dixon is no paci�st because he is a republican'
A = `Dixon has no gun because he is a paci�st'
C = `Dixon has a gun because he lives in Chicago'

According to De�nition 17, C is justi�ed since its only defeater, A, has a
proper subargument that is not justi�ed, viz. A�. Yet, as we explained
above with Example 13, intuitively A should retain its capacity to prevent
C from being justi�ed, since the defeater of its subargument is not justi�ed.
There is an obvious way to repair De�nition 17: it must be made ex-

plicitly `three-valued' by changing the phrase `not justi�ed' in Clause 3 into
`overruled',8 where the latter term is de�ned as follows.

DEFINITION 21. (Defensible and overruled arguments 2.)

� An argument is overruled i� it is not justi�ed and either it is self-
defeating, or it or one of its proper subarguments is defeated by a
justi�ed argument.

� An argument is defensible i� it is not justi�ed and not overruled.

This results in the following de�nition of justi�ed arguments.

DEFINITION 22. (Recursively justi�ed arguments|revised.) An argu-
ment A is justi�ed i�

1. A is not self-defeating; and

2. All proper subarguments of A are justi�ed; and

3. All arguments defeating A are self-defeating, or have at least one
proper subargument that is overruled.

In Example 20 this has the following result. Note �rst that none of the
arguments are self-defeating. Then to determine whether C is justi�ed,
we must determine the status of A. A defeats C, so C is only justi�ed
if A is overruled. Since A is not defeated, A can only be overruled if its
proper subargument A� is overruled. No proper subargument of A� is
defeated, but A� is defeated by B. So if B is justi�ed, A� is overruled. Is
B justi�ed? No, since it is defeated by A�, and A� is not self-defeating
and has no overruled proper subarguments. But then A is not overruled,
which means that C is not justi�ed. In fact, all arguments in the example
are defensible, as can be easily veri�ed.

8Makinson & Schlechta [1991] criticise this possibility and recommend the approach
with multiple status assignments.
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Comparing �xed-point and recursive de�nitions

Comparing the �xed-point and recursive de�nitions, we have seen that in
the main example where their outcomes di�er (Example 19), the intuitions
seem to favour the outcome of the recursive de�nitions (but see below, p.
269). We have also seen that the recursive de�nition, if made `three-valued',
can deal with zombie arguments just as well as the �xed-point de�nitions.
So must we favour the recursive form? The answer is negative, since it also
has a problem: De�nitions 17 and 22 do not always enforce a unique status
assignment. Consider the following example.

EXAMPLE 23. (Crossover defeat.)9 Consider four argumentsA�; A;B�; B
such that A defeats B� while B defeats A�.

A�

A

B�

B

De�nition 17 allows for two status assignments, viz. one in which only A�

and A are justi�ed, and one in which only B� and B are justi�ed. In
addition, De�nition 22 also allows for the status assignment which makes all
arguments defensible. Clearly, the latter status assignment is the intuitively
intended one. However, without �xed-point constructions it seems hard to
enforce it as the unique one.

Note, �nally, that in our discussion of the non-recursive approach we
implicitly assumed that when a proper subargument of an argument is de-
feated, thereby the argument itself is also defeated (see e.g. Example 2).
In fact, any particular argumentation system that has no explicitly recur-
sive de�nition of justi�ed arguments should satisfy this assumption. By
contrast, systems that have a recursive de�nition, can leave defeat of an ar-
gument independent from defeat of its proper subarguments. Furthermore,
if a system has no recursive de�nition of justi�ed arguments, but still dis-
tinguishes arguments and subarguments for other reasons (as e.g. [Simari &
Loui, 1992] and [Prakken & Sartor, 1997b]), then a proof is required that
Clause 2 of De�nition 17 holds. Further illustration of this point must be
postponed to the discussion of concrete systems in Section 5.

9The name `crossover' is taken from Hunter [1993].
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Unique status assignments: evaluation

Evaluating the unique-status-assignment approach, we have seen that it
can be formalised in an elegant way if �xed-point de�nitions are used, while
the, perhaps more natural attempt with a recursive de�nition has some
problems. However, regardless of its precise formalisation, this approach has
inherent problems with certain types of examples, such as the following.

EXAMPLE 24. (Floating arguments.) Consider the arguments A;B;C and
D such that A defeats B, B defeats A, A defeats C, B defeats C and C
defeats D.

A

B

C D

Since no argument is undefeated, De�nition 8 tells us that all of them are
defensible. However, it might be argued that for C and D this should be
otherwise: since C is defeated by both A and B, C should be overruled.
The reason is that as far as the status of C is concerned, there is no need
to resolve the conict between A and B: the status of C `oats' on that of
A and B. And if C should be overruled, then D should be justi�ed, since
C is its only defeater.

A variant of this example is the following piece of default reasoning. To
analyse this example, we must again make an assumption on the structure
of arguments, viz. that they have a conclusion.

EXAMPLE 25. (Floating conclusions.)10 Consider the arguments A�, A,
B� and B such that A� and B� defeat each other and A and B have the
same conclusion.

A� B�

BA

An intuitive reading is

10The term `oating conclusions' was coined by Makinson & Schlechta [1991].
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A� = Brygt Rykkje is Dutch because he was born in Holland
B� = Brygt Rykkje is Norwegian because he has a Norwegian name
A = Brygt Rykkje likes ice skating because he is Dutch
B = Brygt Rykkje likes ice skating because he is Norwegian

The point is that whichever way the conict between A� and B� is decided,
we always end up with an argument for the conclusion that Brygt Rykkje
likes ice skating, so it seems that it is justi�ed to accept this conclusion
as true, even though it is not supported by a justi�ed argument. In other
words, the status of this conclusion oats on the status of the arguments
A� and B�.
While the unique-assignment approach is inherently unable to capture

oating arguments and conclusions, there is a way to capture them, viz. by
working with multiple status assignments. To this approach we now turn.

4.2 The multiple-status-assignments approach

A second way to deal with competing arguments of equal strength is to let
them induce two alternative status assignments, in both of which one is
justi�ed at the expense of the other. Note that both these assignments will
satisfy De�nition 1. In this approach, an argument is `genuinely' justi�ed i�
it receives this status in all status assignments. To prevent terminological
confusion, we now slightly reformulate the notion of a status assignment.

DEFINITION 26. A status assignment to a set X of arguments ordered
by a binary defeat relation is an assignment to each argument of either
the status `in' or the status `out' (but not both), satisfying the following
conditions:

1. An argument is in if all arguments defeating it (if any) are out.

2. An argument is out if it is defeated by an argument that is in.

Note that the conditions (1) and (2) are just the conditions of De�nition 1.
In Example 3 there are precisely two possible status assignments:

A B A B

Recall that an argumentation system is supposed to de�ne when it is jus-
ti�ed to accept an argument. What can we say in case of A and B? Since
both of them are `in' in one status assignment but `out' in the other, we must
conclude that neither of them is justi�ed. This is captured by rede�ning
the notion of a justi�ed argument as follows:
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DEFINITION 27. Given a set X of arguments and a relation of defeat on
X , an argument is justi�ed i� it is `in' in all status assignments to X .

However, this is not all; just as in the unique-status-assignment approach,
it is possible to distinguish between two di�erent categories of arguments
that are not justi�ed. Some of those arguments are in no extension, but
others are at least in some extensions. The �rst category can be called the
overruled , and the latter category the defensible arguments.

DEFINITION 28. Given a set X of arguments and a relation of defeat onX

� An argument is overruled i� it is `out' in all status assignments to X ;

� An argument is defensible i� it is `in' in some and `out' in some status
assignments to X .

It is easy to see that the unique-assignment and multiple-assignments
approaches are not equivalent. Consider again Example 24. Argument
A and B form an even loop, thus, according to the multiple-assignments
approach, either A and B can be assigned `in' but not both. So the above
defeat relation induces two status assignments:

A

B

C D and

A

B

C D

While in the unique-assignment approach all arguments are defensible, we
now have that D is justi�ed and C is overruled.
Multiple status assignments also make it possible to capture oating con-

clusions. This can be done by de�ning the status of formulas as follows.

DEFINITION 29. (The status of conclusions.)

� ' is a justi�ed conclusion i� every status assignment assigns `in' to an
argument with conclusion ';

� ' is a defensible conclusion i� ' is not justi�ed, and a conclusion of a
defensible argument.

� ' is an overruled conclusion i� ' is not justi�ed or defensible, and a
conclusion of an overruled argument.
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Changing the �rst clause into `' is a justi�ed conclusion i� ' is the conclu-
sion of a justi�ed argument ' would express a stronger notion, not recognising
oating conclusions as justi�ed.
There is reason to distinguish several variants of the multiple-status-

assignments approach. Consider the following example, with an `odd loop'
of defeat relations.

EXAMPLE 30. (Odd loop.) Let A;B and C be three arguments, repre-
sented in a triangle, such that A defeats C, B defeats A, and C defeats B.

A B

C

In this situation, De�nition 27 has some problems, since this example has
no status assignments.

1. Assume that A is `in'. Then, since A defeats C, C is `out'. Since C is
`out', B is `in', but then, since B defeats A, A is `out'. Contradiction.

2. Assume next that A is `out'. Then, since A is the only defeater of C,
C is `in'. Then, since C defeats B, B is `out'. But then, since B is
the only defeater of A, A is `in'. Contradiction.

Note that a self-defeating argument is a special case of Example 30, viz. the
case where B and C are identical to A. This means that sets of arguments
containing a self-defeating argument might have no status assignment.

To deal with the problem of odd defeat cycles, several alternatives to
De�nition 26 have been studied in the literature. They will be discussed in
Section 5, in particular in 5.1 and 5.2.

4.3 Comparing the two approaches

How do the unique- and multiple-assignment approaches compare to each
other? It is sometimes said that their di�erence reects a di�erence between
a `sceptical' and `credulous' attitude towards drawing defeasible conclusions:
when faced with an unresolvable conict between two arguments, a sceptic
would refrain from drawing any conclusion, while a credulous reasoner would
choose one conclusion at random (or both alternatively) and further explore
its consequences. The sceptical approach is often defended by saying that
since in an unresolvable conict no argument is stronger than the other,
neither of them can be accepted as justi�ed, while the credulous approach
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has sometimes been defended by saying that the practical circumstances
often require a person to act, whether or not s/he has conclusive reasons to
decide which act to perform.

In our opinion this interpretation of the two approaches is incorrect.
When deciding what to accept as a justi�ed belief, what is important is
not whether one or more possible status assignments are considered, but
how the arguments are evaluated given these assignments. And this evalua-
tion is captured by the quali�cations `justi�ed' and `defensible', which thus
capture the distinction between `sceptical' and `credulous' reasoning. And
since, as we have seen, the distinction justi�ed vs. defensible arguments can
be made in both the unique-assignment and the multiple-assignments ap-
proach, these approaches are independent of the distinction `sceptical' vs.
`credulous' reasoning.

Although both approaches can capture the notion of a defensible argu-
ment, they do so with one important di�erence. The multiple-assignments
approach is more convenient for identifying sets of arguments that are com-
patible with each other. The reason is that while with unique assignments
the defensible arguments are defensible on an individual basis, with multiple
assignments they are defensible because they belong to a set of arguments
that are `in' and thus can be defended simultaneously. Even if two defensi-
ble arguments do not defeat each other, they might be incompatible in the
sense that no status assignment makes them both `in', as in the following
example.

EXAMPLE 31. A and B defeat each other, B defeats C, C defeats D.

A B C D

This example has two status assignments, viz. fA;Cg and fB;Dg. Accord-
ingly, all four arguments are defensible. Note that, although A and D do not
defeat each other, A is in i� D is out. So A and D are in some sense incom-
patible. In the unique-assignment approach this notion of incompatibility
seems harder to capture.

As we have seen, the unique-assignment approach has no inherent dif-
�culty to recognise `zombie arguments'; this problem only occurs if this
approach uses a recursive two-valued de�nition of the status of arguments.
As for their outcomes, the approaches mainly di�er in their treatment of

oating arguments and conclusions. With respect to these examples, the
question easily arises whether one approach is the right one. However, we
prefer a di�erent attitude: instead of speaking about the `right' or `wrong'
de�nition, we prefer to speak of `senses' in which an argument or conclusion
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can be justi�ed. For instance, the sense in which the conclusion that Brygt
Rykkje likes ice skating in Example 25 is justi�ed is di�erent from the sense
in which, for instance, the conclusion that Tweety ies in Example 2 is
justi�ed: only in the second case is the conclusion supported by a justi�ed
argument. And the status of D in Example 24 is not quite the same as
the status of, for instance, A in Example 2. Although both arguments
need the help of other arguments to be justi�ed, the argument helping A is
itself justi�ed, while the arguments helping D are merely defensible. In the
concluding section we come back to this point, and generalise it to other
di�erences between the various systems.

4.4 General properties of consequence notions

We conclude this section with a much-discussed issue, viz. whether any
nonmonotonic consequence notion, although lacking the property of mono-
tonicity, should still satisfy other criteria. Many argue that this is the case,
and much research has been devoted to formulating such criteria and de-
signing systems that satisfy them; see e.g. [Gabbay, 1985; Makinson, 1989;
Kraus et al., 1990]. We, however, do not follow this approach, since we think
that it is hard to �nd any criterion that should really hold for any argumen-
tation system, or nonmonotonic consequence notion, for that matter. We
shall illustrate this with the condition that is perhaps most often defended,
called cumulativity . In terms of argumentation systems this principle says
that if a formula ' is justi�ed on the basis of a set of premises T , then
any formula  is justi�ed on the basis of T if and only if  is also justi�ed
on the basis of T [ f'g. We shall in particular give counterexamples to
the `if' part of the biconditional, which is often called cautious monotony .
This condition in fact says that adding justi�ed conclusions to the premises
cannot make other justi�ed conclusions unjusti�ed.
At �rst sight, this principle would seem uncontroversial. However, we

shall now (quasi-formally) discuss reasonably behaving argumentation sys-
tems, with plausible criteria for defeat, and show by example that they do
not satisfy cautious monotony and are therefore not cumulative. These ex-
amples illustrate two points. First they illustrate Makinson & Schlechta's
[1991] remark that systems that do not satisfy cumulativity assign facts
a special status. Second, since the examples are quite natural, they illus-
trate that argumentation systems should assign facts a special status and
therefore should not be cumulative.
Below, the �! symbols stand for unspeci�ed reasoning steps in an argu-

ment, and the formulas stand for the conclusion drawn in such a step.

EXAMPLE 32. Consider two (schematic) arguments

A : p �! q �! r �! :q �! s
B : �! :s



254 HENRY PRAKKEN & GERARD VREESWIJK

Suppose we have a system in which self-defeating arguments have no capac-
ity to prevent other arguments from being justi�ed. Assume also that A is
self-defeating, since a subconclusion, :q, is based on a subargument for a
conclusion q. Assume, �nally, that the system makes A's subargument for
r justi�ed (since it has no non-selfdefeating counterarguments). Then B is
justi�ed. However, if r is now added to the `facts', the following argument
can be constructed:

A0 : r �! :q �! s

This argument is not self-defeating, and therefore it might have the capacity
to prevent B from being justi�ed.

EXAMPLE 33. Consider next the following arguments.

A is a two-step argument p �! q �! r
B is a three-step argument s �! t �! u �! :r

And assume that conicting arguments are compared on their length (the
shorter, the better). Then A strictly defeats B, so A is justi�ed. Assume,
however, also that B's subargument

s �! t �! u

is justi�ed, since it has no counterarguments, and assume that u is added
to the facts. Then we have a new argument for :r, viz.

B0 : u �! :r

which is shorter than A and therefore strictly defeats A.
Yet another type of example uses numerical assessments of arguments.

EXAMPLE 34. Consider the arguments

A : p �! q �! r
B : s �! :r

Assume that in A the strength of the derivation of q from p is 0.7 and that
the strength of the derivation of r from q is 0.85, while in B the strength of
the derivation of :r from s is 0.8. Consider now an argumentation system
where arguments are compared with respect to their weakest links. Then
B strictly defeats A, since B's weakest link is 0.8 while A's weakest link
is 0.7. However, assume once more that A's subargument for q is justi�ed
because it has no counterargument, and then assume that q is added as a
fact. Then a new argument

A0 : q �! r

can be constructed, with as weakest link 0.85, so that it strictly defeats B.
The point of these examples is that reasonable argumentation systems

with plausible criteria for defeat are conceivable which do not satisfy cu-
mulativity, so that cumulativity cannot be required as a minimum require-
ment for justi�ed belief. Vreeswijk [1993a, pp. 82{8] has shown that other
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properties of nonmonotonic consequence relations also turn out to be coun-
terintuitive in a number of realistic logical scenario's.

5 SOME ARGUMENTATION SYSTEMS

Let us, after our general discussions, now turn to individual argumentation
systems and frameworks. We shall present them according to the conceptual
sketch of Section 3, and also evaluate them in the light of Section 4.

5.1 The abstract approach of Bondarenko, Dung, Kowalski and
Toni

Introductory remarks

We �rst discuss an abstract approach to nonmonotonic logic developed in
several articles by Bondarenko, Dung, Toni and Kowalski (below called the
`BDKT approach'). Historically, this work came after the development by
others of a number of argumentation systems (to be discussed below). The
major innovation of the BDKT approach is that it provides a framework
and vocabulary for investigating the general features of these other systems,
and also of nonmonotonic logics that are not argument-based.

The latest and most comprehensive account of the BDKT approach is
Bondarenko et al. [1997]. In this account, the basic notion is that of a set
of \assumptions". In their approach the premises come in two kinds: `ordi-
nary' premises, comprising a theory , and assumptions , which are formulas
(of whatever form) that are designated (on whatever ground) as having de-
fault status. Inspired by Poole [1988], Bondarenko et al. [1997] regard non-
monotonic reasoning as adding sets of assumptions to theories formulated
in an underlying monotonic logic, provided that the contrary of the assump-
tions cannot be shown. What in their view makes the theory argumentation-
theoretic is that this provision is formalised in terms of sets of assumptions
attacking each other. In other words, according to Bondarenko et al. [1997]

an argument is a set of assumptions. This approach has especially proven
successful in capturing existing nonmonotonic logics.

Another version of the BDKT approach, presented by Dung [1995], com-
pletely abstracts from both the internal structure of an argument and the
origin of the set of arguments; all that is assumed is the existence of a set
of arguments, ordered by a binary relation of `defeat'.11 This more abstract
point of view seems more in line with the aims of this chapter, and there-
fore we shall below mainly discuss Dung's version of the BDKT approach.
As remarked above, it inspired much of our discussion in Section 4. The

11BDKT use the term `attack', but to maintain uniformity we shall use `defeat'.
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assumption-based version of Bondarenko et al. [1997] will be briey outlined
at the end of this subsection.

Basic notions

As just remarked, Dung's [1995] primitive notion is a set of arguments
ordered by a binary relation of defeat. Dung then de�nes various notions of
so-called argument extensions, which are intended to capture various types
of defeasible consequence. These notions are declarative, just declaring
sets of arguments as having a certain status. Finally, Dung shows that
many existing nonmonotonic logics can be reformulated as instances of the
abstract framework.
Dung's basic formal notions are as follows.

DEFINITION 35. An argumentation framework (AF) is a pair (Args, de-
feat), where Args is a set of arguments, and defeat a binary relation on
Args.

� An AF is �nitary i� each argument in Args is defeated by at most a
�nite number of arguments in Args.

� A set of arguments is conict-free i� no argument in the set is defeated
by an argument in the set.

One might think of the set Args as all arguments that can be constructed
in a given logic from a given set of premises (although this is not always
the case; see the discussions below of `partial computation'). Unless stated
otherwise, we shall below implicitly assume an arbitrary but �xed AF.

Dung interprets defeat , like us, in the weak sense of `conicting and not
being weaker'. Thus in Dung's approach two arguments can defeat each
other. Dung does not explicitly use the stronger (and asymmetric) notion
of strict defeat, but we shall sometimes use it below.
A central notion of Dung's framework is acceptability, already de�ned

above in De�nition 6. We repeat it here. It captures how an argument that
cannot defend itself, can be protected from attacks by a set of arguments.

DEFINITION 36. An argument A is acceptable with respect to a set S of
arguments i� each argument defeating A is defeated by an argument in S.

As remarked above, the arguments in S can be seen as the arguments
capable of reinstating A in case A is defeated. To illustrate acceptability,
consider again Example 2, which in terms of Dung has an AF (called `TT'
for `Tweety Triangle') with Args = fA;B;Cg and defeat = f(B;A); (C;B)g
(B strictly defeats A and C strictly defeats B). A is acceptable with respect
to fCg, fA;Cg, fB;Cg and fA;B;Cg, but not with respect to ; and fBg.
Another central notion is that of an admissible set.
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DEFINITION 37. A conict-free set of arguments S is admissible i� each
argument in S is acceptable with respect to S.

Intuitively, an admissible set represents an admissible, or defendable,
point of view. In Example 2 the sets ;, fCg and fA;Cg are admissible but
all other subsets of fA;B;Cg are not admissible.

Argument extensions

In terms of the notions of acceptability and admissibility several notions
of `argument extensions' can be de�ned, which are what we above called
`status assignments'. The following notion of a stable extension is equivalent
to De�nition 26 above.

DEFINITION 38. A conict-free set S is a stable extension i� every argu-
ment that is not in S, is defeated by some argument in S.

In Example 2, TT has only one stable extension, viz. fA;Cg. Consider
next an AF called ND (the Nixon Diamond), corresponding to Example 3,
with Args = fA;Bg, and defeat = f(A;B); (B;A)g. ND has two stable
extensions, fAg and fBg.
Since a stable extension is conict-free, it reects in some sense a coherent

point of view. It is also a maximal point of view, in the sense that every
possible argument is either accepted or rejected. In fact, stable semantics
is the most `aggressive' type of semantics, since a stable extension defeats
every argument not belonging to it, whether or not that argument is hostile
to the extension. This feature is the reason why not all AF's have stable
extensions, as Example 30 has shown.
To give such examples also a multiple-assignment semantics, Dung de�nes

the notion of a preferred extension.

DEFINITION 39. A conict-free set is a preferred extension i� it is a max-
imal (with respect to set inclusion) admissible set.

Let us go back to De�nition 26 of a status assignment and de�ne a partial
status assignment in the same way as a status assignment, but without the
condition that it assigns a status to all arguments. Then it is easy to verify
that preferred extensions correspond to maximal partial status assignments.

Dung shows that every AF has a preferred extension. Moreover, he shows
that stable extensions are preferred extensions, so in the Nixon Diamond and
the Tweety Triangle the two semantics coincide. However, not all preferred
extensions are stable: in Example 30 the empty set is a (unique) preferred
extension, which is not stable. Preferred semantics leaves all arguments in
an odd defeat cycle out of the extension, so none of them is defeated by an
argument in the extension.
Preferred and stable semantics are an instance of the multiple-status-

assignments approach of Section 4.2: in cases of an irresolvable conict as
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in the Nixon diamond, two incompatible extensions are obtained. Dung
also explores the unique-status-assignment approach, with his notion of a
grounded extension, already presented above as De�nition 7. To build a
bridge between the various semantics, Dung also de�nes `complete seman-
tics'.

DEFINITION 40. An admissible set of arguments is a complete extension
i� each argument that is acceptable with respect to S belongs to S.

This de�nition implies that a set of arguments is a complete extension i�
it is a �xed point of the operator F de�ned in De�nition 7. According to
Dung, a complete extension captures the beliefs of a rational person who
believes everything s/he can defend.

Self-defeating arguments

How do Dung's various semantics deal with self-defeating arguments? It
turns out that all semantics have some problems. For stable semantics they
are the most serious, since an AF with a self-defeating argument might have
no stable extensions. For preferred semantics this problem does not arise,
since preferred extensions are guaranteed to exist. However, this semantics
still has a problem, since self-defeating arguments can prevent other argu-
ments from being justi�ed. This can be illustrated with Example 15 (an
AF with two arguments A and B such that A defeats A and A defeats B).
The set fBg is not admissible, so the only preferred extension is the empty
set. Yet intuitively it seems that instead fBg should be the only preferred
extension, since B's only defeater is self-defeating. It is easy to see that
the same holds for complete semantics. In Section 4.1 we already saw that
this example causes the same problems for grounded semantics, but that
for �nitary AF's Pollock [1987] provides a solution. Both Dung [1995] and
Bondarenko et al. [1997] recognise the problem of self-defeating arguments,
and suggest that solutions in the context of logic programming of Kakas
et al. [1994] could be generalised to deal with it. Dung also acknowledges
Pollock's [1995] approach, to be discussed in Subsection 5.2.

Formal results

Both Dung [1995] and Bondarenko et al. [1997] establish a number of re-
sults on the existence of extensions and the relation between the various
semantics. We now summarise some of them.

1. Every stable extension is preferred, but not vice versa.

2. Every preferred extension is a complete extension, but not vice versa.

3. The grounded extension is the least (with respect to set inclusion)
complete extension.
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4. The grounded extension is contained in the intersection of all preferred
extensions (Example 24 is a counterexample against `equal to'.)

5. If an AF contains no in�nite chains A1; : : : ; An; : : : such that each
Ai+1 defeats Ai then AF has exactly one complete extension, which is
grounded, preferred and stable. (Note that the even loop of Example 3
and the odd loop of Example 30 form such an in�nite chain.)

6. Every AF has at least one preferred extension.

7. Every AF has exactly one grounded extension.

Finally, Dung [1995] and Bondarenko et al. [1997] identify several conditions
under which preferred and stable semantics coincide.

Assumption-based formulation of the framework

As mentioned above, Bondarenko et al. [1997] have developed a di�erent
version of the BDKT approach. This version is less abstract than the one
of Dung [1995], in that it embodies a particular view on the structure of
arguments. Arguments are seen as sets of assumptions that can be added
to a theory in order to (monotonically) derive conclusions that cannot be
derived from the theory alone. Accordingly, Bondarenko et al. [1997] de-
�ne a more concrete version of Dung's [1995] argumentation frameworks as
follows:

DEFINITION 41. Let L be a formal language and ` a monotonic logic
de�ned over L. An assumption-based framework with respect to (L;`) is a
tuple hT;Ab; i where

� T;Ab � L

� is a mapping from Ab into L, where � denotes the contrary of �.

The notion of defeat is now de�ned for sets of assumptions (below we leave
the assumption-based framework implicit).

DEFINITION 42. A set of assumptions A defeats an assumption � i� T [
A ` �; and A defeats a set of assumptions � i� A defeats some assumption
� 2 �.

The notions of argument extensions are then de�ned in terms of sets of
assumptions. For instance,

DEFINITION 43. A set of assumptions � is stable i�

� � is closed, i.e., � = f� 2 AbjT [� ` �g

� � does not defeat itself
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� � defeats each assumption � 62 �

A stable extension is a set Th(T [�) for some stable set � of assumptions.

As remarked above, Bondarenko et al.'s [1997] main aim is to reformu-
late existing nonmonotonic logics in their general framework. Accordingly,
what an assumption is, and what its contrary is, is determined by the choice
of nonmonotonic logic to be reformulated. For instance, in applications of
preferential entailment where abnormality predicates abi are to be min-
imised (see Section 2.1), the assumptions will include expressions of the
form :abi(c), where :abi(c) = abi(c). And in default logic (see also Sec-
tion 2.1), an assumption is of the form M' for any `middle part' ' of a
default, where M' = :'; moreover, all defaults ': =� are added to the
rules de�ning ` as monotonic inference rules ';M =�.

Procedure

The developers of the BDKT approach have also studied procedural forms
for the various semantics. Dung et al. [1996; 1997] propose two abstract
proof procedures for computing admissibility (De�nition 37), where the sec-
ond proof procedure is a computationally more eÆcient re�nement of the
�rst. Both procedures are based upon a proof procedure originally intended
for computing stable semantics in logic programming. And they are both
formulated as logic programs that are derived from a formal speci�cation.
The derivation guarantees the correctness of the proof procedures. Further,
Dung et al. [1997] show that both proof procedures are complete. Here, the
�rst procedure is discussed.
It is de�ned in the form of a meta-level logic program, of which the top-

level clause de�nes admissibility. This concept is captured in a predicate
adm:

(1) adm(�0;�) ! [�0 � � and � is admissible]

� and �0 are sets of assumptions, where `� is admissible' is a low-level
concept that is de�ned with the help of auxiliary clauses. In this manner,
(1) provides a speci�cation for the proof procedure. Similarly, a top-level
predicate defends is de�ned

defends(D;�) ! [D defeats �0 ��, for every �0 that defeats �]

The proof procedure that Dung et al. propose can be understood in
procedural terms as repeatedly adding defences to the initially given set of
assumptions �0 until no further defences need to be added. More precisely,

given a current set of assumptions �, initialised as �0, the proof
procedure repeatedly
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1. �nds a set of assumptions D such that defends(D;�);

2. replaces � by � [D

until D = �, in which case it returns �.

Step (1) is non-deterministic, since there might be more than one set of
assumptions D defending the current �. The proof procedure potentially
needs to explore a search tree of alternatives to �nd a branch which termi-
nates with a self-defending set. The logic-programming formulation of the
proof procedure is:

adm(�;�)  � defends(�;�)
adm(�;�0 )  � defends(D;�); adm(� [D;�0 )

The procedural characterisation of the proof procedure is obtained by ap-
plying SLD resolution to the above clauses with a left-to-right selection rule,
with an initial query of the form adm(�0;�) with �0 as input and � as
output.
The procedure is proved correct with respect to the admissibility se-

mantics, but it is shown to be incorrect for stable semantics in general.
According to Dung et al., this is due to the above-mentioned `epistemic
aggressiveness' of stable semantics, viz. the fact that a stable extension de-
feats every argument not belonging to it. Dung et al. remark that, besides
being counterintuitive, this property is also computationally very expen-
sive, because it necessitates a search through the entire space of arguments
to determine, for every argument, whether or not it is defeated. Subse-
quent evaluation by Dung et al. of the proof procedure has suggested that
it is the semantics, rather than the proof procedure, which was at fault,
and that preferred semantics provides an improvement. This insight is also
formulated by Dung [1995].
Finally, it should be noted that recently, Kakas & Toni [1999] have de-

veloped proof procedures in dialectical style (see Section 6 below) for the
various semantics of Bondarenko et al. [1997] and for Kakas et al. [1994]'s
acceptability semantics.

Evaluation

As remarked above, the abstract BDKT approach was a major innovation in
the study of defeasible argumentation, in that it provided an elegant general
framework for investigating the various argumentation systems. Moreover,
the framework also applies to other nonmonotonic logics, since Dung and
Bondarenko et al. extensively show how many of these logics can be trans-
lated into argumentation systems. Thus it becomes very easy to formulate
alternative semantics for nonmonotonic logics. For instance, default logic,
which was shown by Dung [1995] to have a stable semantics, can very easily
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be given an alternative semantics in which extensions are guaranteed to ex-
ist, like preferred or grounded semantics. Moreover, the proof theories that
have been or will be developed for the various argument-based semantics
immediately apply to the systems that are an instance of these semantics.
Because of these features, the BDKT framework is also very useful as guid-
ance in the development of new systems, as, for instance, Prakken & Sartor
have used it in developing the system of Subsection 5.7 below.
On the other hand, the level of abstractness of the BDKT approach (es-

pecially in Dung's version) also leaves much to the developers of particular
systems. In particular, they have to de�ne the internal structure of an
argument, the ways in which arguments can conict, and the origin of the
defeat relation. Moreover, it seems that at some points the BDKT approach
needs to be re�ned or extended. We already mentioned the treatment of
self-defeating arguments, and Prakken & Sartor [1997b] have extended the
BDKT framework to let it cope with reasoning about priorities (see Sub-
section 5.7 below).

5.2 Pollock

John Pollock was one of the initiators of the argument-based approach to
the formalisation of defeasible reasoning. Originally he developed his theory
as a contribution to philosophy, in particular epistemology. Later he turned
to arti�cial intelligence, developing a computer program called OSCAR,
which implements his theory. Since the program falls outside the scope of
this handbook, we shall only discuss the logical aspects of Pollock's system;
for the architecture of the computer program the reader is referred to e.g.
Pollock [1995]. The latter also discusses other topics, such as practical
reasoning, planning and reasoning about action.

Reasons, arguments, conict and defeat

In Pollock's system, the underlying logical language is standard �rst-order
logic, but the notion of an argument has some nonstandard features. What
still conforms to accounts of deductive logic is that arguments are sequences
of propositions linked by inference rules (or better, by instantiated inference
schemes). However, Pollocks's formalism begins to deviate when we look
at the kinds of inference schemes that can be used to build arguments. Let
us �rst concentrate on linear arguments; these are formed by combining
so-called reasons. Technically, reasons connect a set of propositions with a
proposition. Reasons come in two kinds, conclusive and prima facie reasons.

Conclusive reasons still adhere to the common standard, since they are
reasons that logically entail their conclusions. In other words, a conclusive
reason is any valid �rst-order inference scheme (which means that Pollock's
system includes �rst-order logic). Thus, examples of conclusive reasons are
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fp; qg is a conclusive reason for p ^ q
f8xPxg is a conclusive reason for Pa

Prima facie reasons, by contrast have no counterpart in deductive logic;
they only create a presumption in favour of their conclusion, which can be
defeated by other reasons, depending on the strengths of the conicting
reasons. Based on his work in epistemology, Pollock distinguishes several
kinds of prima facie reasons: for instance, principles of perception, such
as12

dx appears to me as Y e is a prima facie reason for believing dx
is Y e.

(For the objecti�cation-operator d� e see page 231 and page 265.)

Another source of prima facie reasons is the statistical syllogism, which
says that:

If (r > 0:5) then dx is an F and prob(G=F ) = re is a prima
facie reason of strength r for believing dx is a Ge.

Here prob(G=F ) stands for the conditional probability of G given F .

Prima facie reasons can also be based on principles of induction, for
example,

dX is a set of m F 's and n members of X have the property
G (n=m > 0:5)e is a prima facie reason of strength n=m for
believing dall F 's have the property Ge.

Actually, Pollock adds to these de�nitions the condition that F is pro-
jectible with respect to G. This condition, introduced by Goodman, 1954, is
meant to prevent certain `unfounded' probabilistic or inductive inferences.
For instance, the �rst observed person from Lanikai, who is a genius, does
not permit the prediction that the next observed Lanikaian will be a ge-
nius. That is, the predicate `intelligence' is not projectible with respect to
`birthplace'. Projectibility is of major concern in probabilistic reasoning.

To give a simple example of a linear argument, assume the following set
of `input' facts INPUT = fA(a), prob(B=A) = 0:8, prob(C=B) = 0:7g. The
following argument uses reasons based on the statistical syllogism, and the
�rst of the above-displayed conclusive reasons.

12When a reason for a proposition is a singleton set, we drop the brackets.
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1. hA(a);1i (A(a) is in INPUT)
2. h dprob(B=A) = 0:8e;1i (dprob(B=A) = 0:8e is in INPUT)
3. hA(a)^ dprob(B=A) = 0:8e;1i (1,2 and fp; qg is a conclusive reason

for p ^ q)
4. hB(a); 0:8i (3 and the statistical syllogism)
5. h dprob(C=B) = 0:7e;1i (lceilprob(C=B) = 0:7e is in INPUT)
6. hB(a) ^ dprob(C=B) = 0:7e; 0:8i (4,5 and fp; qg is a conclusive reason

for p ^ q)
7. hC(a); 0:7i (6 and the statistical syllogism)

So each line of a linear argument is a pair, consisting of a proposition
and a numerical value that indicates the strength, or degree of justi�cation
of the proposition. The strength 1 at lines 1,2 and 5 indicates that the
conclusions of these lines are put forward as absolute facts, originating from
the epistemic base `INPUT'. At line 4, the weakest link principle is applied,
with the result that the strength of the argument line is the minimum of the
strength of the reason for B(a) (0.8) and the argument line 3 from which
C(a) is derived with this reason (1). At lines 6 and 7 the weakest link
principle is applied again.
Besides linear arguments, Pollock also studies suppositional arguments.

In suppositional reasoning, we `suppose' something that we have not inferred
from the input, draw conclusions from the supposition, and then `discharge'
the supposition to obtain a related conclusion that no longer depends on
the supposition. In Pollock's system, suppositional arguments can be con-
structed with inference rules familiar from natural deduction. Accordingly,
the propositions in an argument have sets of propositions attached to them,
which are the suppositions under which the proposition can be derived from
earlier elements in the sequence.
The following de�nition (based on [Pollock, 1995]) summarises this infor-

mal account of argument formation.

DEFINITION 44. In OSCAR, an argument based on INPUT is a �nite se-
quence �1; : : : ; �n, where each �i is a line of argument. A line of argument
�i is a triple hXi; pi; �ii, where Xi, a set of propositions, is the set of sup-
positions at line i, pi is a proposition, and �i is the degree of justi�cation of
� at line i. A line of argument is obtained from earlier lines of argument
according to one of the following rules of argument formation.

Input. If p is in INPUT and � is an argument, then for any X it holds
that �; hX; p;1i is an argument.

Reason. If � is an argument, hX1; p1; �1i; : : : ; hXn; pn; �ni are members of
�, and fp1; : : : ; png is a reason of strength � for q, and for each i,
Xi � X , then �; hX; q;minf�1; : : : �n; �gi is an argument.

Supposition. If � is an argument, X a set of propositions and p 2 X , then
�; hX; p;1i is also an argument.
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Conditionalisation. If � is an argument and some line of � is hX [
fpg; q; �i, then �; hX; (p � q); �i is also an argument.

Dilemma. If � is an argument and some line of � is hX; p_q; �i, and some
line of � is hX [ fpg; r; �i, and some line of � is hX [ fqg; r; �i, then
�; hX; r;minf�; �; �gi is also an argument.

Pollock [1995] notes that other inference rules could be added as well.
It is the use of prima facie reasons that makes arguments defeasible,

since these reasons can be defeated by other reasons. This can take place in
two ways: by rebutting defeaters, which are at least as strong reasons with
the opposite conclusion, and by undercutting defeaters, which are at least
as strong reasons of which the conclusion denies the connection that the
undercut reason states between its premises and its conclusion. A typical
example of rebutting defeat is when an argument using the reason `Birds y'
is defeated by an argument using the reason `Penguins don't y'. Pollock's
favourite example of an undercutting defeater is when an object looks red
because it is illuminated by a red light: knowing this undercuts the reason
for believing that this object is red, but it does not give a reason for believing
that the object is not red.
Before we can explain how Pollock formally de�nes the relation of de-

feat among arguments, some extra notation must be introduced. In the
de�nition of defeat among arguments, Pollock uses a, what may be called,
objecti�cation operator, d� e. (This operator was also used in Fig. 4 on
page 230 and in the prima facie reasons on page 263.) With this operator,
expressions in the meta-language are transformed into expressions in the
object language. For example, the meta-level rule

fp; qg is a conclusive reason for p

may be transformed into the object-level expression

dfp; qg is a conclusive reason for pe:

If the object language is rich enough, then the latter expression is present in
the object language, in the form (p^q) � p. Evidently, a large fraction of the
meta-expressions cannot be conveyed to the object language, because the
object language lacks suÆcient expressibility. This is the case, for example,
if corresponding connectives are missing in the object language.
Pollock formally de�nes the relation of defeat among arguments as fol-

lows.

Defeat among arguments. An argument � defeats another argument �
if and only if:

1. �'s last line is hX; q; �i and is obtained by the argument formation
rule Reason from some earlier lines hX1; p1; �1i; : : : ; hXn; pn; �ni
where fp1; : : : ; png is a prima facie reason for q; and
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2. �'s last line is hY; r; �i where Y � X and either:

(a) r is :q and � � �; or

(b) r is :dfp1; : : : ; png >> qe and � � �.

(1) determines the weak spot of �, while (2) determines whether that weak
spot is (2a) a conclusion (in this case q), or (2b) a reason (in this case
fp1; : : : ; png >> q). For Pollock, (2a) is a case of rebutting defeat , and 2b is
a case of undercutting defeat : if � undercuts the last reason of �, it blocks
the derivation of q, without supporting :q as alternative conclusion. The
formula dfp1; : : : ; png >> qe stands for the translation of `fp1; : : : ; png is a
prima facie reason for q' into the object language.

Pollock leaves the notion of conicting arguments implicit in this de�ni-
tion of defeat. Note also that a defeater of an argument always defeats the
last step of an argument; Pollock treats `subargument defeat' by a recursive
de�nition of a justi�ed argument, i.e., in the manner explained above in
Section 4.1.

Suppositional reasoning

As noted above, the argument formation rules supposition, conditionalisa-
tion and dilemma can be used to form suppositional arguments. OSCAR is
one of the very few nonmonotonic logics that allow for suppositional reason-
ing. Pollock �nds it necessary to introduce suppositional reasoning because,
in his opinion, this type of reasoning is ubiquitous not only in deductive,
but also in defeasible reasoning. Pollock mentions, among other things, the
reasoning form `reasoning by cases', which is notoriously hard for many non-
monotonic logics. An example is `presumably, birds y, presumably, bats
y, Tweety is a bird or a bat, so, presumably, Tweety ies'. In Pollock's
system, this argument can be formalised as follows.

EXAMPLE 45. Consider the following reasons.

(1) Bird(x) is a prima facie reason of strength � for Flies(x)
(2) Bat(x) is a prima facie reason of strength � for Flies(x)

And consider INPUT = fBird(t) _ Bat(t)g. The conclusion Flies(t) can
be defeasibly derived as follows.

1. h;; Bird(t) _ Bat(t);1i (Bird(t) _ Bat(t) is in INPUT)
2. hfBird(t)g; Bird(t);1i (Supposition)
3. hfBird(t)g; Flies(t); �i (2 and prima facie reason (1))
4. hfBat(t)g; Bat(t);1i (Supposition)
5. hfBat(t)g; Flies(t); �i (4 and prima facie reason (2))
6. h;; Flies(t);minf�; �gi (3,5 and Dilemma)
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At line 1, the proposition Bird(t) _ Bat(t) is put forward as an absolute
fact. At line (2), the proposition Bird(t) is temporarily supposed to be
true. From this assumption, at the following line the conclusion Flies(t) is
defeasibly derived with the �rst prima facie reason. Line (4) is an alterna-
tive continuation of line 1. At line (4), Bat(t) is supposed to be true, and
at line (5) it is used to again defeasibly derive Flies(t), this time from the
second prima facie reason. Finally, at line (6) the Dilemma rule is applied
to (3) and (5), discharging the assumptions in the alternative suppositional
arguments, and concluding to Flies(t) under no assumption.

According to Pollock, another virtue of his system is that it validates the
defeasible derivation of a material implication from a prima facie reason.
Consider again the `birds y' reason (1), and assume that INPUT is empty.

1. hfBird(t)g; Bird(t);1i (Supposition)
2. hfBird(t)g; Flies(t); �i (1 and prima facie reason (1))
3. h;; Bird(t) � Flies(t); �i (2 and Conditionalisation)

Pollock regards the validity of these inferences as desirable. On the other
hand, Vreeswijk has argued that suppositional defeasible reasoning, in the
way Pollock proposes it, sometimes enables incorrect inferences. Vreeswijk's
argument is based on the idea that the strength of a conclusion obtained by
means of conditionalisation is incomparable to the reason strength of the
implication occurring in that conclusion. For a discussion of this problem
the reader is further referred to Vreeswijk [1993a, pp. 184{7].
Having seen how Pollock de�nes the notions of arguments, conicting

arguments, and defeat among arguments, we now turn to what was the
main topic of Section 4 and the main concern of Dung [1995], de�ning the
status of arguments.

The status of arguments

Over the years, Pollock has more than once changed his de�nition of the
status of arguments. One change is that while earlier versions (e.g. Pol-
lock, 1987) dealt with (successful) attack on a subargument in an implicit
way via the de�nition of defeat, the latest version makes this part of the
status de�nition, by explicitly requiring that all subarguments of an `unde-
feated' argument are also undefeated (cf. Section 4.1). Another change is
in the form of the status de�nition. Earlier Pollock took the unique-status-
assignment approach, in particular, the �xed-point variant of De�nition 16
which, as shown by Dung [1995], (almost) corresponds to the grounded
semantics of De�nition 7. However, his most recent work is in terms of
multiple status assignments, and very similar to the preferred semantics of
De�nition 39. Pollock's thus combines the recursive style of De�nition 17
with the multiple-status-assignments approach. We present the most recent
de�nition, of [Pollock, 1995]. To maintain uniformity in our terminology, we
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state it in terms of arguments instead of, as Pollock, in terms of an `inference
graph'. To maintain the link with inference graphs, we make the de�nition
relative to a closed set of arguments, i.e., a set of arguments containing all
subarguments of all its elements.
Since we deviate from Pollock's inference graphs, we must be careful in

de�ning the notion of subarguments. Sometimes a later line of an argu-
ment depends on only some of its earlier lines. For instance, in Example 45
line (5) only depends on (4). In fact, the entire argument (1-6) has three
independent, or parallel subarguments, viz. a lineair subargument (1), and
two suppositional subarguments (2,3) and (4,5). Pollock's inference graphs
nicely capture such dependencies, since their nodes are argument lines and
their links are inferences. However, with our sequential format of an ar-
gument this is di�erent, for which reason we cannot de�ne a subargument
as being any subsequence of an argument. Instead, they are only those
subsequences of A that can be transformed into an inference tree.

DEFINITION 46 (subarguments). An argument A is a subargument of an
argument B i� A is a subsequence of B and there exists a tree T of argument
lines such that

1. T contains all and only lines from A; and

2. T 's root is A's last element; and

3. l is a child of l0 i� l was inferred from a set of lines one of which was
l0.

A proper subargument of A is any subargument of A unequal to A.

Now we can give Pollock's [1995] de�nition of a status assignment.

DEFINITION 47. An assignment of `defeated' and `undefeated' to a closed
set S of arguments is a partial defeat status assignment i� it satis�es the
following conditions.

1. All arguments in S with only lines obtained by the input argument
formation rule are assigned `undefeated';

2. A 2 S is assigned `undefeated' i�:

(a) All proper sub-arguments of A are assigned `undefeated'; and

(b) All arguments in S defeating A are assigned `defeated'.

3. A 2 S is assigned `defeated' i�:

(a) One of A's proper sub-arguments is assigned `defeated';

or

(b) A is defeated by an argument in S that is assigned `undefeated'.
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A defeat status assignment is a maximal (with respect to set inclusion)
partial defeat status assignment.

Observe that the conditions (2a) and (3a) on the sub-arguments of A
make the weakest link principle hold by de�nition.
The similarity of defeat status assignments to Dung's preferred exten-

sions of De�nition 39 shows itself as follows: the conditions (2b) and (3b)
on the defeaters of A are the analogues of Dung's notion of acceptability,
which make a defeat status assignment an admissible set; then the fact
that a defeat status assignment is a maximal partial assignment induces the
similarity with preferred extensions.
It is easy to verify that when two arguments defeat each other (Exam-

ple 3), an input has more than one status assignment. Since Pollock wants
to de�ne a sceptical consequence notion, he therefore has to consider the
intersection of all assignments. Pollock does so in a variant of De�nitions 27
and 28.

DEFINITION 48. (The status of arguments.) Let S be a closed set of
arguments based on INPUT. Then, relative to S, an argument is undefeated
i� every status assignment to S assigns `undefeated' to it; it is defeated
outright i� no status assignment to S assigns `undefeated' to it; otherwise
it is provisionally defeated.

In our terms, `undefeated' is `justi�ed', `defeated outright' is `overruled',
and `provisionally defeated' is `defensible'.

Direct vs. indirect reinstatement

It is now the time to come back to the discussion in Section 4.1 on rein-
statement. Example 19 showed that there is reason to invalidate the direct
version of this principle, viz. when the conicts are about the same issue.
We remarked that the explicitly recursive De�nition 17 of justi�ed argu-
ments indeed invalidates direct reinstatement while preserving its indirect
version. However, we also promised to explain that both versions of rein-
statement can be retained if Example 19 is represented in a particular way.
In fact, Pollock (personal communication) would represent the example as
follows:

(1) Being a bird is a prima facie reason for being able to y
(2a) Being a penguin is an undercutting reason for (1)
(2b) Being a penguin is a defeasible reason for not being able to y
(3) Being a genetically altered penguin is an undercutting reason for (2b)
(4) Tweety is a genetically altered penguin

It is easy to verify that De�nitions 47 and 48, which validate both direct and
indirect of reinstatement, yield the intuitive outcome, viz. that it is neither
justi�ed that Tweety can y, nor that it cannot y. A similar representation
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is possible in systems that allow for abnormality or exception clauses, e.g. in
[Ge�ner & Pearl, 1992; Bondarenko et al., 1997; Prakken & Sartor, 1997b].

Self-defeating arguments

Pollock has paid much attention to the problem of self-defeating arguments.
In Pollock's system, an argument defeats itself i� one of its lines defeats
another of its lines. Above in Section 4.1 we already discussed Pollock's
treatment of self-defeating arguments within the unique-status-assignment
approach. However, he later came to regard this treatment as incorrect,
and he now thinks that it can only be solved in the multiple-assignment
approach (personal communication).
Let us now see how Pollock's De�nitions 47 and 48 deal with the problem.

Two cases must be distinguished. Consider �rst two defeasible arguments A
and B rebutting each other. Then A and B are `parallel' subarguments of a
deductive argument A+B for any proposition. Then (if no other arguments
interfere with A or B) there are two status assignments, one in which A
is assigned `undefeated' and B assigned `defeated', and one the other way
around. Now A+B is in both of these assignments assigned `defeated', since
in both assignments one of its proper subarguments is assigned `defeated'.
Thus the self-defeating argument A+ B turns out to be defeated outright,
which seems intuitively plausible.
A di�erent case is the following, with the following reasons

(1) p is a prima facie reason of strength 0.8 for q
(2) q is a prima facie reason of strength 0.8 for r
(3) r is a conclusive reason for d:(p >> q)e

and with INPUT = fpg. The following (linear) argument can be con-
structed.

1. hp;1i (p is in INPUT)
2. hq; 0:8i (1 and prima facie reason (1))
3. hr; 0:8i (2 and prima facie reason (2))
4. h:(p >> q); 0:8i (3 and conclusive reason (3))

Let us call this argument A, with proper subarguments A1; A2; A3 and A4,
respectively. Observe �rst that, according to Pollock's de�nition of self-
defeat, A4 is self-defeating. Further, according to Pollock's earlier approach
with De�nition 16, A4 is, as being self-defeating, overruled, or `defeated',
while A1, A2 and A3 are justi�ed, or `undefeated'. Pollock now regards this
outcome as incorrect: since A4 is a deductive consequence of A3, A3 should
also be `defeated'.
This result is obtained with De�nitions 47 and 48. Firstly, A1 is clearly

undefeated. Consider next A2. This argument is undercut by A4, so if A4

is assigned `undefeated', then A2 must be assigned `defeated'. But then A4
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must also be assigned `defeated', since one of its proper subarguments is
assigned `defeated'. Contradiction. If, on the other hand, A4 is assigned
`defeated', then A2 and so A3 must be assigned `undefeated'. But then A4

must be assigned `undefeated'. Contradiction. In conclusion, no partial
status assignment will assign a status to A4 and, consequently, no status
assignment will assign a status to A2 or A3 either. And since this implies
that no status assignment assigns the status `undefeated' to any of these
arguments, they are by De�nition 48 all defeated outright.

Two remarks about this outcome can be made. Firstly, it might be
doubted whether A2 should indeed be defeated outright, i.e., overruled. It
is not self-defeating, its only defeater is self-defeating, and this defeater is
not a deductive consequence of A2's conclusion. Other systems, e.g. those
of Vreeswijk (Section 5.5) and Prakken & Sartor (Section 5.7), regard A2

as justi�ed. In these systems Pollock's intuition about A3 is formalised
by regarding A3 as self-defeating because its conclusion deductively, not
just defeasibly, implies a conclusion incompatible with itself. This makes it
possible to regard A3 as overruled but A2 as justi�ed.

Furthermore, even if Pollock's outcome is accepted, the situation is not
quite the same as with the previous example. Consider another defeasible
argument B which rebuts and is rebutted by A3. Then no assignment
assigns a status to B either, for which reason B is also defeated outright.
Yet this shows that the `defeated outright' status of A2 is not the same
as the `defeated outright' status of an argument that has an undefeated
defeater: apparently, A2 is still capable of preventing other arguments from
being undefeated. In fact, the same holds for arguments involved in an odd
defeat cycle (as in Example 30).

In conclusion, Pollock's de�nitions leave room for a fourth status of ar-
guments, which might be called `seemingly defeated'. This status holds for
arguments that according to De�nition 48 are defeated outright but still
have the power to prevent other arguments from being ultimately unde-
feated. The four statuses can be partially ordered as follows: `undefeated'
is better than `provisionally defeated' and than `seemingly defeated', which
both in turn are better than `defeated outright'. This observation applies
not only to Pollock's de�nition, but to all approaches based on partial status
assignments, like Dung [1995] preferred semantics.

However, this is not yet all: even if the notion of seeming defeat is made
explicit, there still is an issue concerning oating arguments (cf. Exam-
ple 24). To see this, consider the following extension of Example 30 (for-
mulated in terms of [Dung, 1995]).

EXAMPLE 49. Let A;B and C be three arguments, represented in a tri-
angle, such that A defeats C, B defeats A, and C defeats B. Furthermore,
let D and E be arguments such that all of A, B and C defeat D, and D
defeats E.
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Figure 8. Partial ordering of defeat statuses.
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B

C D E

The di�erence between Example 24 and this example is that the even de-
feat loop between two arguments is replaced by an odd defeat loop between
three arguments. One view on the new example is that this di�erence is
inessential and that, for the same reasons as why in Example 24 the argu-
ment D is justi�ed, here the argument E is ultimately undefeated: although
E is strictly defeated by D, it is reinstated by all of A, B and C, since all
these arguments strictly defeat D. On this account De�nitions 47 and 48
are awed since they render all �ve arguments defeated outright (and in
our terms seemingly defeated). However, an alternative view is that odd
defeat loops are of an essentially di�erent kind than even defeat loops, so
that our analysis of Example 24 does not apply here and that the outcome
in Pollock's system reects a aw in the available input information rather
than in the system.

Ideal and resource-bounded reasoning

We shall now see that De�nition 48 is not yet all that Pollock has to say
on the status of arguments. In the previous section we saw that the BDKT
approach leaves the origin of the set of `input' arguments unspeci�ed. At
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this point Pollock develops some interesting ideas. At �rst sight it might
be thought that the set S of the just-given de�nitions is just the set of all
arguments that can be constructed with the argument formation rules of
De�nition 44. However, this is only one of the possibilities that Pollock
considers, in which De�nition 48 captures so-called ideal warrant .

DEFINITION 50. (Ideal warrant.) Let S be the set of all arguments based
on INPUT. Then an argument A is ideally warranted relative to INPUT i�
A is undefeated relative to S.

Pollock wants to respect that in actual reasoning the construction of argu-
ments takes time, and that reasoners have no in�nite amount of time avail-
able. Therefore, he also considers two other de�nitions, both of which have
a computational avour. To capture an actual reasoning process, Pollock
makes them relative to a sequence S of closed �nite sets S0 � : : : � Si : : :
of arguments. Let us call this an argumentation sequence. Such a sequence
contains all arguments constructed by a reasoner, in the order in which
they are produced. It (and any of its elements) is based on INPUT if all its
arguments are based on INPUT.13

Now the �rst `computational' status de�nition determines what a rea-
soner must believe at any given time.

DEFINITION 51. (Justi�cation.) Let S be an argumentation sequence
based on INPUT, and Si an element of S. Then an argument A is justi�ed
relative to INPUT at stage i i� A is undefeated relative to Si.

In this de�nition the set Si contains just those arguments that have ac-
tually been constructed by a reasoner. Thus this de�nition captures the
current status of a belief; it may be that further reasoning (without adding
new premises) changes the status of a conclusion.

This cannot happen for the other `computational' consequence notion
de�ned by Pollock, called warrant. Intuitively, an argument A is warranted
i� eventually in an argumentation sequence a stage is reached where A
remains justi�ed at every subsequent stage. To de�ne this, the notion of a
`maximal' argumentation sequence is needed, i.e., a sequence that cannot
be extended. Thus it contains all arguments that a reasoner with unlimited
resources would construct (in a particular order).

DEFINITION 52. (Warrant.) Let S be a maximal argumentation sequence
S0 � : : : � Si : : : based on INPUT. Then an argument A is warranted
(relative to INPUT) i� there is an i such that for all j > i, A is undefeated
relative to Sj .

The di�erence between warrant and ideal warrant is subtle: it has to do
with the fact that, while in determining warrant every set Sj � Si that

13Note that we again translate Pollock's inference graphs into (structured) sets of
arguments.
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is considered is �nite, in determining ideal warrant the set of all possible
arguments has to be considered, and this set can be in�nite.

EXAMPLE 53. (Warrant does not entail ideal warrant.) Suppose A1; A2;
A3; : : : are arguments such that every Ai is defeated by its successor Ai+1.
Further, suppose that the arguments are produced in the order A2; A1; A4;
A3; A6; A5; A8; : : : Then

Stage Produced Justi�ed
1 A2 A2

2 A2; A1 A2

3 A2; A1; A4 A2; A4

4 A2; A1; A4; A3 A2; A4

5 A2; A1; A4; A3; A6 A2; A4; A6

6 A2; A1; A4; A3; A6; A5 A2; A4; A6

7 A2; A1; A4; A3; A6; A5; A8 A2; A4; A6; A8

...
...

...

From stage 1, A2 is justi�ed and stays justi�ed. Thus, A2 is warranted. At
the same time, however, A2 is not ideally warranted, because there exist
two status assignments for all Ai's. One assignment in which all and only
all odd arguments are `in', and one assignment in which all and only all odd
arguments are `out'. Hence, according to ideal warrant, every argument is
only provisionally defeated. In particular, A2 is provisionally defeated. A
remarkable aspect of this example is that, eventually, every argument will
be produced, but without reaching the right result for A2.

EXAMPLE 54. (Ideal warrant does not imply warrant.) Suppose that A,
B1, B2, B3, . . . and C1, C2, C3, . . . are arguments such that A is defeated
by every Bi, and every Bi is defeated by Ci. Further, suppose that the
arguments are produced in the order A;B1; C1; B2; C2; B3; C3; . . . Then

Stage Produced Justi�ed
1 A A
2 A;B1 B1

3 A;B1; C1 A;C1

4 A;B1; C1; B2 C1; B2

5 A;B1; C1; B2; C2 A;C1; C2

6 A;B1; C1; B2; C2; B3 C1; C2; B3

...
...

...

Thus, in this sequence, A is provisionally defeated. However, according to
the de�nition of ideal warrant, every Bi is defeated by Ci, so that A remains
undefeated.

Although the notion of warrant is computationally inspired, as Pollock
observes there is no automated procedure that can determine of any war-
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ranted argument that it is warranted: even if in fact a warranted argument
stays undefeated after some �nite number n of computations, a reasoner
can in state n not know whether it has reached a point where the argument
stays undefeated, or whether further computation will change its status.

Pollock's reasoning architecture

We now discuss Pollock's reasoning architecture for computing the ideally
warranted propositions, i.e. the propositions that are the conclusion of an
ideally warranted argument. (According to Pollock, ideal warrant is what
every reasoner should ultimately strive for.) In deductive logic such an ar-
chitecture would be called a `proof theory', but Pollock rejects this term.
The reason is that one condition normally required of proof theories, viz.
that the set of theorems is recursively enumerable, cannot in general be
satis�ed for a defeasible reasoner. Pollock assumes that a reasoner reasons
by constantly updating its beliefs, where an update is an elementary transi-
tion from one set of propositions to the next set of propositions. According
to this view, a reasoner would be adequate if the resulting sequence is a
recursively enumerable approximation of ideal warrant. However, this is
impossible. Ideal warrant contains all theorems of predicate logic, and it is
known that all theorems of predicate logic form a set that is not recursive.
And since in defeasible reasoning some conclusions depend on the failure
to derive other conclusions, the set of defeasible conclusions is not recur-
sively enumerable. Therefore, Pollock suggests an alternative criterion of
adequacy. A reasoner is called defeasibly adequate if the resulting sequence
is a defeasibly enumerable approximation of ideal warrant.

DEFINITION 55. A set A is defeasibly enumerable if there is a sequence of
sets fAig1�i such that for all x

1. If x 2 A, then there is an N such that x 2 Ai for all i > N .

2. If x =2 A, then there is an M such that x =2 Ai for all i > M .

If A is recursively enumerable, then a reasoner who updates his beliefs in
Pollock's way can approach A `from below': the reasoner can construct
sets that are all supersets of the preceding set and subsets of A. However,
when A is only defeasibly enumerable, a reasoner can only approach A from
below and above simultaneously, in the sense that the sets Ai the reasoner
constructs may contain elements not contained in A. Every such element
must eventually be taken out of the Ai's, but there need not be any point
at which they have all been removed.
To ensure defeasible adequacy, Pollock introduces the following three

operations:

1. The reasoner must adopt beliefs in response to constructing argu-
ments, provided no counterarguments have already been adopted for
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any step in the argument. If a defeasible inference occurs, a check
must be made whether a counterargument for it has not already been
adopted as a belief.

2. The reasoner must keep track of the bases upon which its beliefs are
held. When a new belief is adopted that is a defeater for a previous
inference step, then the reasoner must retract that inference step and
all beliefs inferred from it.

3. The reasoner must keep track of defeated inferences, and when a de-
feater is itself retracted (2), this should reinstate the defeated infer-
ence.

To achieve the functions just described, Pollock introduces a so-called
ag-based reasoner. A ag-based reasoner consists of an inference engine
that produces all arguments eventually, and a component computing the
defeat status of arguments.

LOOP BEGIN

make-an-inference

recompute-defeat-statuses

END

The procedure recompute-defeat-statuses determines which arguments are
defeated outright, undefeated and provisionally defeated at each iteration
of the loop. That is, at each iteration it determines justi�cation.
Pollock then identi�es certain conditions under which a ag-based rea-

soner is defeasibly adequate. For these conditions, the reader is referred to
[Pollock, 1995, ch. 4].

Evaluation

Pollock's theory of defeasible reasoning is based on more than thirty years
of research in logic and epistemology. This large time span perhaps ex-
plains the richness of his theory. It includes both linear and suppositional
arguments, and deductive as well as non-deductive (mainly statistical and
inductive) arguments, with a corresponding distinction between two types
of conicts between arguments. Pollock's de�nition of the status of ar-
guments takes the multiple-status-assignments approach, being related to
Dung's preferred semantics. This semantics can deal with certain types of
oating statuses and conclusions, but we have seen that certain other types
are still ignored. In fact, this seems one of the main unsolved problems in
argument-based semantics. An interesting aspect of Pollock's work is his
study of the resource-bounded nature of practical reasoning, with the idea
of partial computation embodied in the notions of warrant and especially



LOGICS FOR DEFEASIBLE ARGUMENTATION 277

justi�cation. And for arti�cial intelligence it is interesting that Pollock has
implemented his system as a computer program.
Since Pollock focuses on epistemological issues, his system is not im-

mediately applicable to some speci�c features of practical (including legal)
reasoning. For instance, the use of probabilistic notions seems to make it
diÆcult to give an account of reasoning with and about priority relations
between arguments (see below in Subsection 5.7). Moreover, it would be
interesting to know what Pollock would regard as suitable reasons for nor-
mative reasoning. It would also be interesting to study how, for instance,
analogical and abductive arguments can be analysed in Pollock's system as
giving rise to prima facie reasons.

5.3 Inheritance systems

A forerunner of argumentation systems is work on so-called inheritance sys-
tems, especially of Horty et al., e.g. [1990], which we shall briey discuss.
Inheritance systems determine whether an object of a certain kind has a cer-
tain property. Their language is very restricted. The network is a directed
graph. Its initial nodes represent individuals and its other nodes stand for
classes of individuals. There are two kinds of links,! and 6!, depending on
whether something does or does not belong to a certain class. Links from
an individual to a class express class membership, and links between two
classes express class inclusion.
A path through the graph is an inheritance path i� its only negative link

is the last one. Thus the following are examples of inheritance paths.

P1: Tweety ! Penguin ! Bird ! Canfly

P2: Tweety ! Penguin 6! Canfly

Another basic notion is that of an assertion, which is of the form x! y
or x 6! y, where y is a class. Such an assertion is enabled by an inheritance
path if the path starts with x and ends with the same link to y as the
assertion. Above, an assertion enabled by P1 is Tweety ! Canfly, and an
assertion enabled by P2 is Tweety 6! Canfly.
As the example shows, two paths can be conicting. They are compared

on speci�city, which is read o� from the syntactic structure of the net,
resulting in relations of neutralisation and preemption between paths. The
assignment of a status to a path (whether it is permitted) is similar to the
recursive variant of the unique-status-assignment approach of De�nition 17.
This means that the system has problems with Zombie paths and oating
conclusions (as observed by Makinson & Schlechta [1991]).
Although Horty et al. present their system as a special-purpose for-

malism, it clearly has all the elements of an argumentation system. An
inheritance path corresponds to an argument, and an assertion enabled by
a path to a conclusion of an argument. Their notion of conicting paths
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corresponds to rebutting attack. Furthermore, neutralisation and preemp-
tion correspond to defeat, while a permitted path is the same as a justi�ed
argument.
Because of the restricted language and the rather complex de�nition of

when an inheritance path is permitted, we shall not present the full system.
However, Horty et al. should be credited for anticipating many distinc-
tions and discussions in the �eld of defeasible argumentation. In particular,
their work is a rich source of benchmark examples. We shall discuss one of
them.

EXAMPLE 56. Consider four argumentsA;B;C andD such that B strictly
defeats A, D strictly defeats C, A and D defeat each other and B and C
defeat each other.

A

B C

D

Here is a natural-language version (due to Horty, personal communication),
in which the defeat relations are based on speci�city considerations.

A = Larry is rich because he is a public defender, public defenders are
lawyers, and lawyers are rich;

B = Larry is not rich because he is a public defender, and public
defenders are not rich;

C = Larry is rich because he lives in Brentwood, and people who live
in Brentwood are rich;

D = Larry is not rich because he rents in Brentwood, and people who
rent in Brentwood are not rich.

If we apply the various semantics of the BDKT approach to this example,
we see that since no argument is undefeated, none of them is in the grounded
extension. Moreover, there are preferred extensions in which Larry is rich,
and preferred extensions in which Larry is not rich. Yet it might be argued
that since both arguments that Larry is rich are strictly defeated by an
argument that Larry is not rich, the sceptical conclusion should be that
Larry is not rich. This is the outcome obtained by Horty et al. [1990]. We
note that if this example is represented in the way Pollock proposes for
Example 19 (see page 269 above), this outcome can also be obtained in the
BDKT approach.
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5.4 Lin and Shoham

Before the BDKT approach, an earlier attempt to provide a unifying frame-
work for nonmonotonic logics was made by Lin & Shoham [1989]. They show
how any logic, whether monotonic or not, can be reformulated as a system
for constructing arguments. However, in contrast with the other theories
in this section, they are not concerned with comparing incompatible argu-
ments, and so their framework cannot be used as a theory of defeat among
arguments.
The basic elements of Lin & Shoham's abstract framework are an un-

speci�ed logical language, only assumed to contain a negation symbol, and
an also unspeci�ed set of inference rules de�ned over the assumed language.
Arguments can be constructed by chaining inference rules into trees.
Inference rules are either monotonic or nonmonotonic. For instance,

Penguin(a)! Bird(a)
Penguin(a);:ab(penguin(a))! :Fly(a)

are monotonic rules, and

True) :ab(penguin(a))
True) :ab(bird(a))

are nonmonotonic rules. Note that these inference rules are, as in default
logic, domain speci�c. In fact, Lin & Shoham do not distinguish between
general and domain-dependent inference rules, as is shown by their recon-
struction of default logic, to be discussed below.
Although the lack of a notion of defeat is a severe limitation, in captur-

ing nonmonotonic consequence Lin & Shoham introduce a notion which for
defeasible argumentation is very relevant viz. that of an argument struc-
ture.

DEFINITION 57. (argument structures) A set T of arguments is an argu-
ment structure if T satis�es the following conditions:

1. The set of `base facts' (which roughly are the premises) is in T ;

2. Of every argument in T all its subarguments are in T ;

3. The set of conclusions of arguments in T is deductively closed and
consistent.

Note that the notion of a `closed' set of arguments that we used above
in Pollock's De�nition 47 satis�es the �rst two but not the third of these
conditions. Note also that, although argument structures are closed under
monotonic rules, they are not closed under defeasible rules.
Lin & Shoham then reformulate existing nonmonotonic logics in terms of

monotonic and nonmonotonic inference rules, and show how the alternative
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sets of conclusions of these logics can be captured in terms of argument
structures with certain completeness properties. Bondarenko et al. [1997]

remark that structures with these properties are very similar to their stable
extensions.
The claim that existing nonmonotonic logics can be captured by an argu-

ment system is an important one, and Lin & Shoham were among the �rst
to make it. The remainder of this section is therefore devoted to showing
with an example how Lin & Shoham accomplish this, viz. for default logic
[Reiter, 1980].
In default logic (see also Subsection 2.1), a default theory is a pair � =

(W;D), where W is a set of �rst-order formulas, and D a set of defaults.
Each default is of the form A : B1; : : : ; Bn=C, where A, Bi and C are �rst-
order formulas. Informally, a default reads as `If A is known, and B1; : : : ; Bn
are consistent with what is known, then C may be inferred'. An extension of
a default theory is any set of formulas E satisfying the following conditions.
E = [1i=0, where

E0 = W;

Ei+1 = Th(Ei) [ fC j A : B1; : : : ; Bn=C 2 D

where A 2 Ei and :B1; : : : :Bn =2 Eg

We now discuss the correspondence between default logic and argument
systems by providing a global outline of the translation and proof. Lin &
Shoham perform the translation as follows. Let � = (W;D) be a closed
default theory. De�ne R(�) to be the set of the following rules:

1. True is a base fact.

2. If A 2W , then A is a base fact of R(�).

3. If A1; : : : ; An, and B are �rst-order sentences and B is a consequence
of A1; : : : ; An in �rst-order logic, then A1; : : : ; An ! B is a monotonic
rule.

4. If A is a �rst-order sentence, then :A! ab(A) is a monotonic rule.

5. If A : B1; : : : ; Bn=C is a default in D, then

A;:ab(B1); : : : ;:ab(Bn)! C

is a monotonic rule.

6. If B is a �rst-order sentence, then True) :ab(B) is a nonmonotonic
rule.

Lin & Shoham proceed by introducing the concept of DL-complete argu-
ment structures.
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DEFINITION 58. An argument structure T of R(�) is said to be DL-
complete if for any �rst-order sentence A, either ab(A) or :ab(A) is in
W�(T).

Thus, a DL-complete argument structure is explicit about the abnormal-
ity of every �rst-order sentence. For DL-complete argument structures, the
following lemma is established.

LEMMA 59. If T is a DL-complete argument structure of R(�), then for
any �rst-order sentence A, ab(A) 2 W�(T ) i� :A 2 W�(T ).

On the basis of this result, Lin & Shoham are able to establish the fol-
lowing correspondence between default logic and argument systems.

THEOREM 60. Let E be a consistent set of �rst-order sentences. E is an
extension of � i� there is a DL-complete argument structure T of R(�)
such that E is the restriction of W�(T ) to the set of �rst-order sentences.

This theorem is proven by constructing extensions for given argument
structures and vice versa. If E is an extension of �, Lin & Shoham de�ne
T as the set of arguments with all nodes in E0, where

E0 = E [ fab(B) j :B 2 Eg [ f:ab(B) j :B =2 Eg

and prove that W�(T ) = E0. Conversely, for a DL-complete argument
structure T of R(�), Lin & Shoham prove that the �rst-order restriction E
of W�(T ) is a default extension of �. This is proven by induction on the
de�nition of an extension.

Two features in the translation are worth noticing. First, default logic
makes a distinction between meta-logic default rules and �rst-order logic,
while argument systems do not. Second, the notion of groundedness of
default extensions corresponds to that of an argument in argument systems,
and the notion of �xed points in default logic corresponds to that of DL-
completeness of argument structures.

Lin & Shoham further show that, for normal default theories, the trans-
lation can be performed without second-order predicates, such as ab. This
result however falls beyond the scope of this chapter.

5.5 Vreeswijk's Abstract Argumentation Systems

Like the BDKT approach and Lin & Shoham [1989], Vreeswijk [1993a; 1997]

also aims to provide an abstract framework for defeasible argumentation.
His framework builds on the one of Lin & Shoham, but contains the main
elements that are missing in their system, namely, notions of conict and
defeat between arguments. As Lin & Shoham, Vreeswijk also assumes an
unspeci�ed logical language L, only assumed to contain the symbol ?, de-
noting `falsum' or `contradiction,' and an unspeci�ed set of monotonic and
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nonmonotonic inference rules (which Vreeswijk calls `strict' and `defeasi-
ble'). This also makes his system an abstract framework rather than a
particular system. A point in which Vreeswijk's work di�ers from Lin &
Shoham is that Vreeswijk's inference rules are not domain speci�c but gen-
eral logical principles.

DEFINITION 61. (Rule of inference.) Let L be a language.

1. A strict rule of inference is a formula of the form �1; : : : ; �n ! �
where �1; : : : ; �n is a �nite, possibly empty, sequence in L and � is a
member of L.

2. A defeasible rule of inference is a formula of the form �1; : : : ; �n ) �
where �1; : : : ; �n is a �nite, possibly empty, sequence in L and � is a
member of L.

A rule of inference is a strict or a defeasible rule of inference.

Another aspect taken from Lin & Shoham is that in Vreeswijk's frame-
work, arguments can also be formed by chaining inference rules into trees.

DEFINITION 62. (Argument.) Let R be a set of rules. An argument
has premises , a conclusion, sentences (or propositions), assumptions , sub-
arguments , top arguments , a length, and a size. These are abbreviated by
corresponding pre�xes. An argument � is

1. A member of L; in that case,

prem(�) = f�g, conc(�) = �, sent(�) = f�g, asm(�) = ;,
sub(�) = f�g, top(�) = f�g, length(�) = 1, and size(�) =
1;

or

2. A formula of the form �1; : : : ; �n ! � where �1; : : : ; �n is a �nite,
possibly empty, sequence of arguments, such that conc(�1) = �1 ; : : : ;
conc(�n) = �n for some rule �1; : : : ; �n ! � in R, and � =2 sent(�1)[
: : : [ sent(�n)|in that case,

prem(�) = prem(�1) [ : : : [ prem(�n),
conc(�) = �,
sent(�) = sent(�1) [ : : : [ sent(�n) [ f�g,
asm(�) = asm(�1) [ : : : [ asm(�n),
sub(�) = sub(�1) [ : : : [ sub(�n) [ f�g,
top(�) = f�1 ; : : : ; �n ! � j �1 2 top(�1) ; : : : ; �n 2 top(�n)g[
f�g,
length(�) = maxflength(�1) ; : : : ; length(�n)g+ 1, and
size(�) = size(�1) + : : :+ size(�n) + 1;
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or

3. A formula of the form �1; : : : ; �n ) � where �1; : : : ; �n is a �nite,
possibly empty, sequence of arguments, such that conc(�1) = �1 ; : : : ;
conc(�n) = �n for some rule �1; : : : ; �n ) � in R, and � =2 sent(�1)[
: : : [ sent(�n); for assumptions we have

asm(�) = asm(�1) [ : : : [ asm(�n) [ f�g;

premises, conclusions, and other attributes are de�ned as in (2).

Arguments of type (1) are atomic arguments; arguments of type (2) and (3)
are composite arguments. Thus, atomic arguments are language elements.
An argument � is said to be in contradiction if conc(�) = ?. An argument
is defeasible if it contains at least one defeasible rule of inference; else it is
strict .

Unlike Lin & Shoham, Vreeswijk assumes an ordering on arguments,
indicating their di�erence in strength (on which more below).
As for conicts between arguments, a di�erence from all other systems of

this section (except [Verheij, 1996]; see below in subsection 5.10) is that a
counterargument is in fact a set of arguments: Vreeswijk de�nes a set � of
arguments incompatible with an argument � i� the conclusions of � [ f�g
give rise to a strict argument for ?. Sets of arguments are needed because
the language in Vreeswijk's framework is unspeci�ed and therefore lacks the
expressive power to `recognise' inconsistency. The consequence of this lack of
expressiveness is that a set of arguments �1; : : : ; �n that is incompatible with
� , cannot be joined to one argument � that contradicts, or is inconsistent,
with � . Therefore, it is necessary to take sets of arguments into account.
Vreeswijk has no explicit notion of undercutting attacks; he claims that

this notion is implicitly captured by his notion of incompatibility, viz. as
arguments for the denial of a defeasible conditional used by another argu-
ment. This requires some extra assumptions on the language of an abstract
argumentation system, viz. that it is closed under negation (:), conjunction
(^), material implication (�), and defeasible implication (>). For the latter
connective Vreeswijk de�nes the following defeasible inference rule.

'; ' >  )  

With these extra language elements, it is possible to express rules of infer-
ence (which are meta-linguistic notions) in the object language. Meta-level
rules using ! (strict rule of inference) and ) (defeasible rule of inference)
are then represented by corresponding object language implication symbols
� and >. Under this condition, Vreeswijk claims to be able to de�ne re-
butting and undercutting attackers in a formal fashion. For example, let
� and � be arguments in Vreeswijk's system with conclusions ' and  ,
respectively. Let '1; : : : ; 'n ) ' be the top rule of �.
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Rebutting attack. If  = :', then Vreeswijk calls � a rebutting attacker
of �. Thus, the conclusion of a rebutting attacker contradicts the
conclusion of the argument it attacks.

Undercutting attack. If  = :('1^: : :^'n > '), i.e. if  is the negation
of the last rule of � stated in the object language, then � is said to be
an undercutting attacker of �. Thus, the conclusion of an undercutting
attacker contradicts the last inference of the argument it attacks.

Vreeswijk's notion of defeat rests on two basic concepts, viz. the above-
de�ned notion of incompatibility and the notion of undermining. An argu-
ment is said to undermine a set of arguments, if it dominates at least one
element of that set. Formally, a set of arguments � is undermined by an
argument � if � < � for some � 2 �. If a set of arguments is undermined
by another argument, it cannot uphold or maintain all of its members in
case of a conict.
Vreeswijk then de�nes the notion of a defeater as follows:

DEFINITION 63. (Defeater.) Let P be a base set, and let � be an argu-
ment. A set of arguments � is a defeater of � if it is incompatible with �
and not undermined by it; in this case � is said to be defeated by �, and
� defeats �. � is a minimal defeater of � if all its proper subsets do not
defeat �.

As for the assessment of arguments, Vreeswijk's declarative de�nition,
(which he says is about \warrant") is similar to Pollock's de�nition of a de-
feat status assignment: both de�nitions have an explicit recursive structure
and both lead to multiple status assignments in case of irresolvable con-
icts. However, Vreeswijk's status assignments cannot be partial, for which
reason Vreeswijk's de�nition is closer to stable semantics than to preferred
semantics.

DEFINITION 64. (Defeasible entailment.) Let P be a base set. A relation
j� between P and arguments based on P is a defeasible entailment relation
if, for every argument � based on P , we have P j� � (� is in force on the
basis of P ) if and only if

1. The set P contains �; or

2. For some arguments �1; : : : ; �n we have P j� �1; : : : ; �n and �1; : : : ;
�n ! �; or

3. For some arguments �1; : : : ; �n we have P j� �1; : : : ; �n and �1; : : : ;
�n ) � and every set of arguments � such that P j� � does not
defeat �.

In the Nixon Diamond of Example 3 this results in `the Quaker argument
is in force i� the Republican argument is not in force'. To deal with such
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circularities Vreeswijk de�nes for every j� satisfying the above de�nition an
extension

(1) � = f� jP j� �g

On the basis of De�nition 64 it can be proven that (1) is stable, i.e., it can
be proven that � =2 � i� �0 defeats � for some �0 � �. With equally strong
conicting arguments, as in the Nixon Diamond, this results in multiple
stable extensions (cf. De�nition 38).
Just as in Dung's stable semantics, in Vreeswijk's system examples with

odd defeat loops might have no extensions. However, an exception holds
for the special case of self-defeating arguments, since De�nition 63 implies
that every argument of which the conclusion strictly implies ? is defeated
by the empty set.

Argumentation sequences

Vreeswijk extensively studies various other characterisations of defeasible
argumentation. Among other things, he develops the notion of an `argu-
mentation sequence'. An argumentation sequence can be regarded as a
sequence

�1 �! �2 �! : : : �! �n �! : : :

of Lin & Shoham's [1989] argument structures, but without the condition
that these structures are closed under deduction. Each following structure
is constructed by applying an inference rule to the arguments in the preced-
ing structure. An important addition to Lin & Shoham's notion is that a
newly constructed argument is only appended to the sequence if it survives
all counterattacks from the argument structure developed thus far. Thus
the notion of an argumentation sequence embodies, like Pollock's notion of
`justi�cation', the idea of partial computation, i.e., of assessing arguments
relative to the inferences made so far. Vreeswijk's argumentation sequences
also resemble BDKT's procedure for computing admissible semantics. The
di�erence is that BDKT adopt arguments that are defended (admissible se-
mantics), while Vreeswijk argumentation sequences adopt arguments that
are not defeated (stable semantics).
Vreeswijk also develops a procedural version of his framework in dialec-

tical style. It will be discussed below in Section 6.

Plausible reasoning

Vreeswijk further discusses a distinction between two kinds of nonmono-
tonic reasoning, `defeasible' and `plausible' reasoning. According to him,
the above de�nition of defeasible entailment captures defeasible reasoning,
which is unsound (i.e., defeasible) reasoning from �rm premises, like in
`typically birds y, Tweety is a bird, so presumably Tweety ies'. Plausible
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reasoning, by contrast, is sound (i.e., deductive) reasoning from uncertain
premises, as in `all birds y (we think), Tweety is a bird, so Tweety ies
(we think)' [Rescher, 1976]. The di�erence is that in the �rst case a default
proposition is accepted categorically, while in the second case a categorical
proposition is accepted by default. In fact, Vreeswijk would regard reason-
ing with ordered premises, as studied in many nonmonotonic logics, not as
defeasible but as plausible reasoning.
One element of this distinction is that for defeasible reasoning the order-

ing on arguments is not part of the input theory, reecting priority relations
between, or degrees of belief in premises, but a general ordering of types of
arguments, such as `deductive arguments prevail over inductive arguments'
and `statistical inductive arguments prevail over generic inductive argu-
ments'. Accordingly, Vreeswijk assumes that the ordering on arguments is
the same for all sets of premises (although relative to a set of inference rules).
Vreeswijk formalises plausible reasoning independent of defeasible reason-
ing, with the possibility to de�ne input orderings on the premises, and he
then combines the two formal treatments. To our knowledge, Vreeswijk's
framework is unique in treating these two types of reasoning in one formal-
ism as distinct forms of reasoning; usually the two forms are regarded as
alternative ways to look at the same kind of reasoning.
Evaluating Vreeswijk's framework, we can say that it has little attention

for the details of comparing arguments and that, as Pollock but in contrast
to BDKT, it formalises only one type of defeasible consequence, but that
it is philosophically well-motivated, and quite detailed with respect to the
structure of arguments and the process of argumentation.

5.6 Simari & Loui

Simari & Loui [1992] present a declarative system for defeasible argumenta-
tion that combines ideas of Pollock [1987] on the interaction of arguments
with ideas of Poole [1985] on speci�city and ideas of Loui [1987] on defaults
as twoplace meta-linguistic rules. Simari & Loui divide the premises into
sets of contingent �rst-order formulasKC , and necessary �rst-order formulas
KN , and one-directional default rules �, e.g.

KC = fP (a)g

KN = f8x:P (x) � B(x)g

� = fB(x) >�F (x); P (x) >�:F (x)g:

Note that Simari & Loui's default rules are not threeplace as Reiter's de-
faults, but twoplace. The set of grounded instances of �, i.e., of defeasible
rules without variables, is denoted by �#. The notion of argument that
Simari & Loui maintain is somewhat uncommon:
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DEFINITION 65. (Arguments.) Given a context K = KN [ KC and a
set � of defeasible rules we say that a subset T of �# is an argument for
h 2 SentC(L) in the context K, denoted by hT; hiK if and only if

1. K [ T j� h

2. K [ T j6� ?

3. 6 9T 0 � T : K [ T 0 j� h

An argument hT; h1iK is a subargument of an argument hS; h2iK i� T � S.

That K [ T j� h means that h is derivable from K [ T with �rst-order
inferences applied to �rst-order formulas and modus ponens applied to de-
faults. Thus, an argument T is a set of grounded instances of defeasible
rules containing suÆcient rules to infer h (1), containing no rules irrelevant
for inferring h (3), and not making it possible to infer ? (2). This notion
of argument is somewhat uncommon because it does not refer to a tree or
chain of inference rules. Instead, De�nition 65 merely demands that an
argument is a unordered collection of rules that together imply a certain
conclusion.
Simari & Loui de�ne conict between arguments as follows. An argument

hT; h1iK counterargues an argument hS; h2iK i� the latter has a subargu-
ment hS0; hiK such that hT; h1iK disagrees with hS0; hiK, i.e., K [ fh1; hg `
?.
Arguments are compared with Poole's [1985] de�nition of speci�city: an

argument A defeats an argument B i� A disagrees with a subargument
B� of B and A is more speci�c than B�. Note that this allows for sub-
argument defeat: this is necessary since Simari & Loui's de�nition of the
status of arguments is not explicitly recursive. In fact, they use Pollock's
theory of level-n arguments. Since they exclude self-defeating arguments by
de�nition, they can use the version of De�nition 11.
An important component of Simari & Loui's system is the �k-operator.

Of all the conclusions that can be argued, the �k-operator returns the con-
clusions that are supported by level-k arguments. Simari & Loui prove that
arguments for which �k = �k+1, are justi�ed. The main theorem of the
paper states that the set of justi�ed conclusions is uniquely determined, and
that a repeated application of the �-operator will bring us to that set.
A strong point of Simari & Loui's approach is that it combines the ideas

of speci�city (Poole) and level-n arguments (Pollock) into one system. An-
other strong point of the paper is that it presents a convenient calculus of
arguments, that possesses elegant mathematical properties. Finally, Simari
& Loui sketch an interesting architecture for implementation, which has a
dialectical form (see below, Section 6 and, for a full description, [Simari et
al., 1994; Garcia et al., 1998]). However, the system also has some limita-
tions. Most of them are addressed by Prakken & Sartor [1996; 1997b], to
be discussed next.
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5.7 Prakken & Sartor

Inspired by legal reasoning, Prakken & Sartor [1996; 1997b] have developed
an argumentation system that combines the language (but not the rest) of
default logic with the grounded semantics of the BDKT approach.14 Ac-
tually, Prakken & Sartor originally used the language of extended logic
programming, but Prakken [1997] generalised the system to default logic's
language. Below we present the latter version. The main contributions to
defeasible argumentation are a study of the relation between rebutting and
assumption attack, and a formalisation of argumentation about the criteria
for defeat. The use of default logic's language and grounded semantics make
Prakken & Sartor's system rather similar to Simari & Loui's. However, as
just noted, they extend and revise it in a number of respects, to be indicated
in more detail below.
As for the logical language, the premises are divided into factual knowl-

edge F , a set of �rst-order formulas subdivided into the necessary facts
Fn and the contingent facts Fc, and defeasible knowledge �, consisting of
Reiter-defaults. The set F is assumed consistent. Prakken & Sartor write
defaults as follows.

d: '1 ^ : : : ^ 'j^ � 'k ^ : : :^ � 'n )  

where d, a term, is the informal name of the default, and each 'i and  
is a �rst-order formula. The part � 'k ^ : : :^ � 'n corresponds to the
middle part of a Reiter-default. The symbol � can be informally read as
`not provable that'. For each � 'i in a default, :'i is called an assumption
of the default. The language is de�ned such that defaults cannot be nested,
nor combined with other formulas.
Arguments are, as in [Simari & Loui, 1992], chains of defaults `glued' to-

gether by �rst-order reasoning. More precisely, consider the set R consist-
ing of all valid �rst-order inference rules plus the following rule of defeasible
modus ponens (DMP):

d : '0 ^ : : : ^ 'j^ � 'k ^ : : :^ � 'm ) 'n;
'0 ^ : : : ^ 'j

'n

where all 'i are �rst-order formulas. Note that DMP ignores a default's
assumptions; the idea is that such an assumption is untenable, this will be
reected by a successful attack on the argument using the default.
An argument is de�ned as follows.

DEFINITION 66. (Arguments.) Let � be any default theory (Fc[Fn[�).
An argument based on � is a sequence of distinct �rst-order formulas and/or
ground instances of defaults ['1; : : : ; 'n] such that for all 'i:

14A forerunner of this system was presented in [Prakken, 1993].
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- 'i 2 �; or
- There exists an inference rule  1; : : : ;  m='i in R such that
 1; : : : ;  m 2 f'1; : : : ; 'i�1g

For any argument A

- ' 2 A is a conclusion of A i� ' is a �rst-order formula;
- ' 2 A is an assumption of A i� ' is an assumption of a default in A;

- A is strict i� A does not contain any default; A is defeasible otherwise.

The set of conclusions of an argument A is denoted by CONC(A) and the
set of its assumptions by ASS(A).

Note that unlike in Simari & Loui, arguments are not assumed consistent.
Here is an example of an argument:

[a, r1: a ^ � :b) c, c, a ^ c, r2: a ^ c) d; d; d _ e]

CONC(A) = fa; c; a ^ c; d; d _ eg and ASS(A) = fbg.
The presence of assumptions in a rule gives rise to two kinds of con-

icts between arguments, conclusion-to-conclusion attack and conclusion-
to-assumption attack.

DEFINITION 67. (Attack.) Let A and B be two arguments. A attacks B
i�

1. CONC(A) [ CONC(B) [ Fn ` ?; or

2. CONC(A) [ Fn ` :' for any ' 2 ASS(B).

Prakken & Sartor's notion of defeat among arguments is built up from two
other notions, `rebutting' and `undercutting' an argument. An argument A
rebuts an argument B i� A conclusion-to-conclusion attacks B and either
A is strict and B is defeasible, or A's default rules involved in the conict
have no lower priority than B's defaults involved in the conict. Identifying
the involved defaults and applying the priorities to them requires some
subtleties for which the reader is referred to Prakken & Sartor [1996; 1997b]

and Prakken [1997]. The source of the priorities will be discussed below.
An argument A undercuts an argument B precisely in case of the second

kind of conict (attack on an assumption). Note that it is not necessary
that the default(s) responsible for the attack on the assumption has/have
no lower priority than the default containing the assumption. Note also
that Prakken & Sartor's undercutters capture a di�erent situation than
Pollock's: their undercutters attack an explicit non-provability assumption
of another argument (in Section 3 called `assumption attack'), while Pol-
lock's undercutters deny the relation between premises and conclusion in a
non-deductive argument.
Prakken& Sartor's notion of defeat also di�ers from that of Pollock [1995].

An inessential di�erence is that their notion allows for `subargument defeat';
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this is necessary since their de�nition of the status of arguments is not ex-
plicitly recursive (cf. Subsection 4.1). More importantly, Prakken & Sartor
regard undercutting defeat as prior to rebutting defeat.

DEFINITION 68. (Defeat.) An argument A defeats an argument B i�
A = [] and B attacks itself, or else if

- A undercuts B; or

- A rebuts B and B does not undercut A.

As mentioned above in Subsection 4.1, the empty argument serves to ade-
quately deal with self-defeating arguments. By de�nition the empty argu-
ment is not defeated by any other argument.

The rationale for the precedence of undercutters over rebutters is ex-
plained by the following example.

EXAMPLE 69. Consider

r1 : � : Brutus is innocent) Brutus is innocent

r2 : ') : Brutus is innocent

Assume that for some reason r2 has no priority over r1 and consider the
arguments [r1] and [: : : ; r2].

15 Then, although [r1] rebuts [: : : ; r2], [r1] does
not defeat [: : : ; r2], since [: : : ; r2] undercuts [r1]. So [: : : ; r2] strictly defeats
[r1].

Why should this be so? According to Prakken & Sartor, the crux is to
regard the assumption of a rule as one of its conditions (albeit of a special
kind) for application. Then the only way to accept both rules is to believe
that Brutus is not innocent: in that case the condition of r1 is not satis�ed.
By contrast, if it is believed that Brutus is innocent, then r2 has to be
rejected, in the sense that its conditions are believed but its consequent
is not (`believing an assumption' here means not believing its negation).
Note that this line of reasoning does not naturally apply to undercutters
Pollock-style, which might explain why in Pollock's [1995] rebutting and
undercutting defeaters stand on equal footing.
Finally, we come to Prakken & Sartor's de�nition of the status of argu-

ments. As remarked above, they use the grounded semantics of De�nition 7.
However, they change it in one important respect. This has to do with the
origin of the default priorities with which conicting arguments are com-
pared.
In arti�cial intelligence research the question where these priorities can be

found is usually not treated as a matter of common-sense reasoning. Either
a �xed ordering is simply assumed, or use is made of a speci�city ordering,
read o� from the syntax or semantics of an input theory. However, Prakken

15We abbreviate arguments by omitting their conclusions and only giving the names
of their defaults. Furthermore, we leave implicit that r2's antecedent ' is derived by a
subargument of possibly several steps.
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& Sartor want to capture that in many domains of common-sense reasoning,
like the law or bureaucracies, priority issues are part of the domain theory.
This even holds for speci�city; although checking which argument is more
speci�c may be a logical matter, deciding to prefer the most speci�c argu-
ment is an extra-logical decision. Besides varying from domain to domain,
the priority sources can also be incomplete or inconsistent, in the same way
as `ordinary' domain information can be. In other words, reasoning about
priorities is defeasible reasoning. (This is why our example of the introduc-
tion contains a priority argument, viz. A's use of (9) and (10).) For these
reasons, Prakken & Sartor want that the status of arguments does not only
depend on the priorities, but also determines the priorities. Accordingly,
priority conclusions can be defeasibly derived within their system in the
same way as conclusions like `Tweety ies'.16

To formalise this, Prakken & Sartor need a few technicalities. First the
�rst-order part of the language is extended with a special twoplace predicate
�. That x � y means that y has priority over x. The variables x and y
can be instantiated with default names. This new predicate symbol should
denote a strict partial order on the set of defaults that is assumed by the
metatheory of the system. For this reason, the set Fn must contain the
axioms of a strict partial order:

transitivity : 8x; y; z. x � y ^ y � z � x � z
asymmetry : 8x; y. x � y � : y � x

For simplicity, some restrictions on the syntactic form of priority expressions
are assumed. Fc may not contain any priority expressions, while in the
defaults priority expressions may only occur in the consequent, and only
in the form of conjunctions of literals (a literal is an atomic formula or a
negated atomic formula). This excludes, for instance, disjunctive priority
expressions.
Next, the rebut and defeat relations must be made relative to an ordering

relation that might vary during the reasoning process.

DEFINITION 70. For any set S of arguments

- <S = fr < r0 j r � r0 is a conclusion of some A 2 Sg
- A (strictly) S-defeats B i�, assuming the ordering<S on �, A (strictly)
defeats B.

The idea is that when it must be determined whether an argument is ac-
ceptable with respect to a set S of arguments, the relevant defeat relations
are veri�ed relative to the priority conclusions drawn by the arguments in S.

16For some non-argument-based nonmonotonic logics that deal with this phenomenon,
see Grosof [1993], Brewka [1994a; 1996], Prakken [1995] and Hage [1997]; see also Gor-
don's [1995] use of [Ge�ner & Pearl, 1992].
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DEFINITION 71. An argument A is acceptable with respect to a set S of
arguments i� all arguments S-defeating A are strictly S-defeated by some
argument in S.

Note that this de�nition also replaces the second occurrence of defeat
in De�nition 6 with strict defeat. This is because otherwise it cannot be
proven that no two justi�ed arguments are in conict with each other.

Prakken & Sartor then apply the construction of Proposition 9 with Def-
inition 71. They prove that the resulting set of justi�ed arguments is unique
and conict-free and that, when S is this set, the ordering <S is a strict
partial order. They also prove that if an argument is justi�ed, all its sub-
arguments are justi�ed.

We illustrate the system with the following example.

EXAMPLE 72. Consider an input theory with empty Fc, Fn containing
the above axioms for �, and � containing the following defaults.

r0: ) a r4: ) r0 � r3
r1: a) b r5: ) r3 � r0
r2: � b) c r6: ) r5 � r4
r3: ) :a

The set of justi�ed arguments is constructed as follows (for simplicity we
ignore combinations of the listed arguments).

F 0 = ; <0 = ;
F 1 = f[]; [r6]g <1 = fr5 < r4g
F 2 = F 1 [ f[r4]g <2 = fr5 < r4; r0 < r3g
F 3 = F 2 [ f[r3]g <3 = <2

F 4 = F 3 [ f[r2]g <4 = <3

F 5 = F 4 <5 = <4

Kowalski & Toni [1996] propose an alternative formalisation of reasoning
about priorities, which does not require a change of the logic. They show
how within the BDKT approach priority statements can be encoded with
assumptions. This method requires that the notion of conicting rules
is expressed in the logical language of the system. Similar methods in
non-argument-based approaches have been proposed by Gordon [1995] and
Hage [1997].

Procedural form

Like several other systems, Prakken & Sartor de�ne a procedural version of
their system in dialectical form. Compared to the other systems, its main
feature is that it also covers debates about priorities. It will be discussed in
some detail in Section 6.
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Comparison with Simari & Loui [1992]

As remarked above, Prakken& Sartor's system is (in the version of [Prakken,
1997]) similar to Simari & Loui's. They both use the language of default
logic, and their notions of an argument are quite similar: in particular,
both systems use a modus ponens rule for defaults. Finally, both systems
use grounded semantics and both have a procedural version in dialectical
form. However, we have also seen that Prakken & Sartor extend Simari &
Loui's system in a number of respects: their defaults are not twoplace but
threeplace, which makes it possible to distinguish rebutting from assump-
tion attack; they allow for comparing arguments on any ground, and they
allow for debates on these grounds.

5.8 Nute's Defeasible Logic

A development closely related to defeasible argumentation is so-called `de-
feasible logic', initiated by Donald Nute, e.g. [1994].17 In both �elds the
notion of defeat is central. However, while in defeasible argumentation
defeat is among arguments, in defeasible logic it happens between rules.
Nevertheless, the approaches are suÆciently similar to warrant a discussion
of defeasible logic in this chapter.
In several publications Nute has developed a family of such logics. For

explanatory purposes we discuss the simplest version, described in [Nute &
Erk, 1995]. In a way this is unfair, since this version has a problem that
is absent in the other versions. However, it is instructive to see what the
problem is, and we shall indicate how Nute deals with it in his other work.
Nute's systems are based on the idea that defaults are not proposi-

tions but inference licenses. Thus Nute's defeasible rules are, like Re-
iter's defaults, one-directional. However, unlike Reiter's defaults they are
twoplace; assumption attacks are dealt with by an explicit category of de-
feater rules, which are comparable to Pollock's undercutting defeaters, al-
though in Nute's case they are, like his defeasible rules, not intended to
express general principles of inference but, as in default logic, domain spe-
ci�c generalisations.
As for the underlying logical language, since Nute's aim is to develop

a logic that is eÆciently implementable, he keeps the language as simple
as possible. It has three categories of one-direction rules, viz. strict rules
A ! p, defeasible rules A ) p and defeaters A ; p. In all three cases p is
a strong literal, i.e., an atomic proposition or a classically negated atomic
proposition, and A is a �nite set of strong literals. Defeaters must be read as
`if A then it might be that p'. Defeaters cannot be used to derive formulas;
they can only be used to block an application of a rule B ) :p. An example

17In fact, Nute [1994] also counts systems for defeasible argumentation as defeasible
logics.
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is `Genetically altered penguins might y', which undercuts `Penguins don't
y'. Thus Nute has, like Pollock, both rebutting and undercutting conicts
between arguments.
Arguments can be formed by chaining rules into trees, and conicting

arguments are compared with the help of an ordering on the rules. Actu-
ally, Nute does not work with an explicit notion of argument; instead he
incorporates it in two notions of derivability, strict (`) and defeasible (j�)
derivability, to be explained below. To capture non-derivability, Nute does
not use the familiar notions 6` (meaning `not `') and j6� (meaning `not j�').
Instead, his aim of designing a tractable system leads him to de�ne two no-
tions of demonstrable non-derivability a and �j, which require that a proof
of a formula fails after �nitely many steps.
As just stated, Nute's assessment of arguments is implicit in his de�ni-

tions of derivability. Nute has two core de�nitions, depending on when the
last rule of the tree is strict or defeasible. (He has similar rules for a and
�j.) The �rst de�nition detaches consequences of strict rules.

DEFINITION 73. (Strict derivability.) T ` p if

1. p 2 T , or

2. There is a A! p 2 T such that for every a 2 A, T ` a.

The second de�nition detaches consequences of defeasible rules, taking
into account all nonmonotonic proofs that derive the contrary:

DEFINITION 74. (Defeasible derivability.) T j� p if there is a rule A )
p 2 T such that

1. T a :p, and

2. for each a 2 A, T j� a, and

3. for each B ! :p 2 T there is b 2 B such that T �j b, and

4. for each C ) :p 2 T or C ; :p 2 T , either

(a) there is a c 2 C such that T �j c or

(b) A) p has higher priority than C ! :p (or than C ; :p).

Condition (1) says that the opposite of p must demonstrably be not strictly
derivable. This gives strict arguments priority over defeasible arguments.
For the rest, this de�nition has the recursive structure discussed above in
Section 4.1. There must be a defeasible rule for p which, �rstly, `�res', i.e.,
of which all antecedents are themselves defeasibly derivable (condition 2)
and which, secondly, is of higher priority than any conicting rule which
also �res: for any rule which is not lower, at least one antecedent must
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be demonstrably non-derivable (conditions 3{4). As a special case, condi-
tion (3) implicitly gives priority to strict rules over defeasible rules; for the
rest these priorities must be de�ned by the user (condition 4), although
Nute pays much attention to the speci�city criterion. Note that like Pol-
lock [1995], Nute applies priorities to decide whether undercutting attack
succeeds.

A literal can also be derived defeasibly from a strict rule, namely, when
one of its antecedents is itself derived defeasibly. When there is a strict rule
for p, the de�nition of defeasible derivability is simpler: since strict rules
have priority over the other two categories, condition 4 can be dropped. In
consequence, defeasible derivability from a strict rule can only be blocked
by derivability from a conicting strict rule.

Since De�nitions 73 and 74 have the recursive structure of De�nition 17,
they share with this de�nition the problem that multiple assignments are
not always avoided. Consider the following variant of Example 23.

EXAMPLE 75. Assume we have the following rules

1. ) p
2. p) q
3. ) :q
4. :q ) :p

Three status assignments satisfy the above de�nitions.

Status assignment 1: T j� p, T j� q, T �j :p, T �j :q;
Status assignment 2: T j� :p, T j� :q, T �j p, T �j q
Status assignment 3: T �j p, T �j q, T �j :p, T �j :q

Only the third assignment is intended by Nute. In his other work, e.g. [Nute,
1994], he reformulates De�nitions 73 and 74, and also the rules for �j, as
conditions on �nite proof trees for a formula. This solves the problem, since
for the unintended status assignments no proof trees can be constructed.
The crux is that �j must also be established by constructing a �nite proof
tree (being a �nite proof that a formula cannot be derived). And in the
above example this is impossible.

Another problem inherited from De�nition 17 is that Nute's system can-
not capture oating conclusions (cf. Example 24). This is since an inference
of p can only be blocked by a rule for :p if all antecedents for that rule are
derivable. Since Nute has no third category `defensible' in between `(demon-
strably) derivable' and `(demonstrably) not derivable', two rules that are in
an irresolvable conict do not give rise to conclusions and thus cannot block
other inferences.

Finally, Nute's system behaves in a somewhat peculiar way when a con-
ict involves strict rules, as in the following example:
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1. x has children) x is married

2. x lives alone ) x is a bachelor

3. x is married ! : x is a bachelor

In Nute's system only rules with directly contradicting heads are compared,
and since strict rules prevail over defeasible rules, the outcome is that x is a
bachelor, even if the �rst defeasible rule has priority over the second. This
seems counterintuitive. In [Simari & Loui, 1992] and [Prakken & Sartor,
1997b] this problem does not occur, since there (3) is in the necessary facts
Fn, which count in testing whether conclusions contradict each other, for
which reason the conict is recognised as being between (1) and (2). It
should be noted that in his most recent work Nute deals with this problem
[Nute, 1997].

Evaluation

Evaluating Nute's defeasible logic, we see that it is an instance of the
recursive-de�nition variant of the multiple-status-assignments approach,
without an intermediate notion of defensible arguments. Consequently, his
system has some problems with zombie arguments and oating conclusions.
On the positive side, Nute's system gives intuitive results for a large class of
benchmark examples and is, due to its simple language and its transparent
de�nitions, very suitable for implementation.

As for the relation with defeasible argumentation, although Nute never
introduced `argument' as a concept in his defeasible logics, his theory can
easily be recast in terms of arguments. One way to do this is to chain Nute's
rules into trees (analogously to Lin & Shoham or Vreeswijk) and call them
arguments (these trees must not be confused with the above-mentioned
proof trees, which are proofs that a formula is defeasibly derivable). With
this de�nition of arguments, De�nition 74 can be stated alternatively in
the way Vreeswijk de�nes defeat among arguments. A �rst conclusion that
may be drawn from such a translation is that Nute's logic for defeasible
reasoning is closely related to other approaches discussed here. This close
relation justi�es the discussion of defeasible logic in this chapter. For work
on formalising this relation see [Governatori & Maher, 2000]. Another con-
clusion is that arguments in Nute's logic defeat each other on the basis of
information in top-rules only. This is due to the fact that a strong literal in
Nute's system is defeasibly derivable only if the antecedent of the last rule
applied is defeasibly derivable. This is in contrast with Vreeswijk's theory,
in which arguments are compared and defeated in their entirety.
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5.9 Defeasible argumentation in reasoning about events
(Konolige, 1988)

Konolige's [1988] system ARGH (Argumentation with Hypotheses) was pre-
sented as a solution to the Yale Shooting Problem (YSP) [Hanks & McDer-
mott, 1987]. Although the resulting formalism is still rather rudimentary,
Konolige's discussion anticipates many issues and distinctions of later work,
so that ARGH can be regarded as one of the forerunners of the �eld of de-
feasible argumentation.

The YSP concerns reasoning about events. The main problem to be
dealt with is that sometimes the tendency of facts to `persist' over time
conicts with the change of these facts by certain events. Konolige uses
argumentation to allow various types of arguments based on considerations
of persistence or change, and to adjudicate between conicting arguments
by means of principles of defeat. One such principle says that arguments
based on change caused by events defeat arguments based on persistence.

The logical language of ARGH resembles McCarthy's [1969] situation
calculus, were properties are attached to situations and events bring us in
new situations, with new properties. This language is used for giving world
descriptions . An example of a world-description is

W = f p; q;:r; s j s0, s0 !� s1, p;:q j s1 g
The propositions
p, q, :r and s hold
at situation s0.

At situation
s0, action �
brings us to
situation s1.

At situation
s1, the propo-
sition p still
holds, but q
does not.

This scheme forms a single world description, consisting of three statements.
The second statement is an event description, connecting the two situation
descriptions that are stated on the �rst and the third line. Thus, typically,
the letters s0; s1; : : : denote situations , the letters p; q; r; : : : denote proposi-
tions or properties that hold at situations, the letters �; �; : : : denote actions
or events . In ARGH, a world description can be partial: in the example
above, neither :r, s, nor their negations are speci�ed at s1.

The purpose of argumentation in ARGH is to �ll in partially described
worlds as much as possible, by drawing conclusions regarding missing propo-
sitional values. Konolige considers three elementary types of inference rules
for constructing arguments (which because of their generality are compara-
ble to Pollock's notion of defeasible reasons).
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Notation Meaning
Forward persis-
tence:

p j si !persist p j si + 1 If p holds at si, then it is
likely that p holds at the
next situation si+1.

Backward per-
sistence:

p j si + 1 !persist p j si If p holds at si+1, then it
is likely that p is inherited
from the previous situation
si.

A p-establishing
action:

jsi !� p j si + 1 Doing � in si results in p at
si + 1, defeasibly.

Labels such as `persist', � and �, are not typed, that is, do not belong to a
certain class of actions or propositions.
The above notation is used as a basis for constructing compound argu-

ments and for performing defeasible reasoning. For example, the world

W = p j s1 Proposition p holds at s1
s1 !wait s2 !� s3 At s1, waiting brings us in s2; then,

performing � in s2, brings us in s3.

enables a number of arguments such as

Argument For
A p j s1 !persist p j s2 p j s2
B p j s2 !persist p j s3 p j s3
A;B A followed by B p j s3
B0 p j s2 !� :p j s3 :p j s3
A;B0 A followed by B0 :p j s3
C :p j s3 !persist :p j s2 :p j s2
A;B0;C A;B0 followed by C :p j s2

A;B and A;B0 are conicting arguments. An argument for :p j s2 is A;B
0,

followed by C (backward persistence). In this way, the arguments A and
A;B0;C compete for p.
To adjudicate among competing arguments, Konolige formulates a num-

ber of rules of defeat , such as the rule that event arguments have priority
over persistence arguments. However, he also observes that this priority
rule is defeasible, by giving an example in which backwards persistence is
stronger than that change-by-event. In fact, one of Konolige's main obser-
vations is that any general, domain-independent priority principle will be
very weak, and that information from the semantics of the domain will be
the most important way of deciding among competing arguments. Such se-
mantic information could, for instance, express the strength of the tendency
of certain facts to persist over time. For example, the fact that a house will
remain at its place is more likely to persist over time than the fact that
a car will remain at its place. Thus Konolige anticipates later research on
reasoning with and about domain speci�c priorities (see above, Section 5.7).
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Evaluation

Evaluating Konolige's formalism, we can say that it is tailored to one partic-
ular problem, viz. reasoning about a changing world. However, for defeasible
argumentation the main value of Konolige's system is not this application
but the fact that it was one of the earliest argument-based accounts of
defeasible reasoning, anticipating many of the issues arising in later work.

5.10 A brief overview of other work

We end this section with a brief overview of other work on logics for defea-
sible argumentation.

Loui [1987]

One of the initiators of the �eld of defeasible argumentation was Loui [1987].
On the basis of the same language as later used in [Simari & Loui, 1992],
Loui de�nes arguments as graphs in which the links are formed by �rst-order
inferences or default applications. Since defaults are twoplace, Loui only has
rebutting attack. In particular, an argument A is a counterargument of an
argument B if the root of A is inconsistent with some node in B. Loui orders
conicting arguments in terms of four syntactic speci�city criteria, and then
de�nes an argument A to be justi�ed i� it is undefeated (with respect to its
top node) and all its counterarguments (i.e., all argument attacking another
node of A) are defeated by a counterargument.
As this brief description shows, Loui's [1987] system already has all the

elements of an argumentation system. The ideas of this paper have been
very inuential, but the formalism has some technical aws, for which reason
it has not survived. His paper with Simari was Loui's own attempt to
overcome the aws. Loui's most recent work (e.g. [Loui & Norman, 1995;
Loui, 1998]) addresses the procedural aspects of argumentation.

Connection with truth-maintenance systems

Systems for defeasible argumentation are related to so-called truth-
maintenance systems (TMSs). A TMS is a bookkeeping system for a rea-
soning system, in which logical dependencies among propositional beliefs,
or assertions, are represented and maintained to preserve consistency of the
reasoning system. There exists several TMSs, such as Justi�cation-Based
[Doyle, 1979], Assumption-Based, [De Kleer, 1986] and Logic-Based TMSs.
Basically, in all TMSs all assertions are connected via a network of depen-
dencies and all TMSs do some form of dependency-directed backtracking.
In Justi�cation-Based TMSs, for example,

� The structure of the assertions themselves is left unspeci�ed. Each
supported belief (assertion) has a so-called justi�cation.
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� Each justi�cation has two parts:

1. An IN-List which supports beliefs held.

2. An OUT-List which supports beliefs not held.

� An assertion is connected to its justi�cation by an arrow; one assertion
can feed another justi�cation thus creating the network.

� Assertions may be labelled with a belief status.

� An assertion is valid if every assertion in its IN-List is believed and
none in its OUT-List are believed.

� An assertion is non-monotonic if the OUT-List is not empty or if any
assertion in the IN-List is non-monotonic.

Thus, the concepts and ideas are similar in spirit to those underlying ar-
gumentation systems. For instance, the issues of multiple and nonexisting
status assignments have been studied in the literature on Justi�cation-Based
TMSs as the issues of multiple and nonexisting labellings of a dependency
network. Since [Doyle, 1979], a variety of TMSs have been developed as
a means of implementing nonmonotonic reasoning. The relation between
TMSs and nonmonotonic reasoning is further discussed in [Martins & Rein-
frank, 1991]. Baker & Ginsberg [1989] establish a connection with argument
and debate.

Krause et al. [1995]

Recently, the system of Krause et al. [1995], further explored by Elvang-
G�ransson & Hunter [1995], has attracted some attention in the multi-agent
community, as a component of models of negotiation; cf. [Parsons et al.,
1998]. In this system, arguments are essentially a (Premises, Conclusion)
pair, where the conclusion follows from the set Premises according to a
system of intuitionistic logic. The conclusion of an argument can, as in Pol-
lock's system, have a degree of belief, which allows arguments to be ordered
using numerical (e.g. probabilistic) information. The only type of conict
is conclusion-to-conclusion attack. However, Krause et al. distinguish two
subtypes, \rebutting" and \undercutting" conict, with a deviating use
of the term `undercutter': in their terms, A undercuts B i� A rebuts (i.e.,
conclusion-to-conclusion-attacks) a subargument of B. (An argument (S; ')
is a subargument of an argument (T;  ) i� S � T .)
The main feature that sets this system apart from other systems, is the

de�nition of the status of arguments. Given rebutting and undercutting
relations between arguments, arguments are divided into the following cat-
egories (relative to a certain input theory �).
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DEFINITION 76. (Argument classes.)

� A1 is the class of all arguments that can be made from �.

� A2 is the class of all consistent arguments that can be made from �.

� A3 is the class of all consistent arguments from � without rebutting
arguments.

� A4 is the class of all consistent arguments from � without undercut-
ting arguments.

� A5 is the class of all arguments with empty set of Premises.

Observe that A5 � A4 � A3 � A2 � A1. (Note that rebutting an argu-
ment implies undercutting it.) Accordingly, arguments in smaller classes
are regarded as better than arguments in larger classes. Krause et al. also
consider a re�nement of this ordering in terms of the degrees of belief of
arguments.
In our opinion, a drawback of this de�nition is that it does not capture

reinstatement.

Argument-based proof theories for preferential entailment

Two argumentation-theoretic proof theories have been proposed for a
preferred-model semantics. As explained in Section 2, in preferential
entailment defaults are represented as �rst-order material implications with
special `normality conditions', as in

(1) 8x:Bird(x) ^ :ab1(x) � Canfly(x)
(2) 8x:Penguin(x) ^ :ab2(x) � :Canfly(x)

First-order theories containing such defaults are then semantically inter-
preted by only looking at those models where the extension of the abi
predicates are minimal (with respect to set inclusion), which captures the
assumption that the world is as normal as possible.
The proof-theoretic idea is that arguments are (in their simplest form)

a set of normality statements that can be added to a certain theory to
derive certain conclusions. (This is essentially a special case of Bondarenko
et al.'s [1997] assumption-based de�nition of an argument.) For instance,
suppose that the defaults (1) and (2) are part of a �rst-order theory

T = f1; 2g [ fPenguin(Tweety), 8x:Penguin(x) � Bird(x)g

ThenA = f:ab1(Tweety)g is an argument for the conclusion Canfly(Tweety),
since T [ A ` Canfly(Tweety), and B = f:ab2(Tweety)g is an argument
for :Canfly(Tweety), since T [B ` : Canfly(Tweety). In order to capture
oating conclusions (cf. Example 25), the general form of an argument is
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not that of a set but of a collection of sets of normality assumptions (an
alternative form is that of a disjunction of conjunctions of such assump-
tions). Conicting arguments can be compared in terms of an ordering of
the normality assumptions.

Baker & Ginsberg [1989]

Baker & Ginsberg [1989] have applied this idea to the semantics of so-called
prioritised circumscription. In their proof theory, an argument A rebuts
another argument B if A and B have contradictory conclusions, and if A's
least default is not inferior to B's least default, while A refutes B if in ad-
dition its least default has priority over the least default of B. A defeasible
proof then has a dialectical form, which form will be discussed in detail
in Section 6. Baker & Ginsberg prove that this proof theory is sound and
complete with respect to the model theory of prioritised circumscription.

Ge�ner & Pearl [1992]

Ge�ner & Pearl [1992] have proposed similar ideas, in a proof theory for
their \conditional entailment" (see also [Ge�ner, 1991], for an application to
logic programming's negation as failure). When representing default rules,
a minor di�erence with Baker & Ginsberg is that they use positive `appli-
cability' atoms Æi instead of negated abnormality atoms. In their preferred
model semantics they then prefer those models which make as few appli-
cability atoms false as possible. In ordering applicability atoms, Ge�ner
and Pearl de�ne a class of \admissible orderings" which, if respected by the
preference relation on models, reects the notion of speci�city. Although
this notion is the only source of priorities that Ge�ner & Pearl consider,
their formalism seems not to exclude orderings on the Æi's based on other
standards.

Ge�ner & Pearl's proof theory is sound and complete with respect to
conditional entailment. They also de�ne an architecture for (incompletely)
implementing the proof theory as a computer program, which has the di-
alectical avour that will be the topic of Section 6. Bondarenko et al. [1997]

conjecture that it computes the grounded semantics of De�nition 7.

Evaluation

The idea of providing a model-theoretic foundation for defeasible argumen-
tation is interesting, but as we remarked at the end of Section 3, a critical
test for such approaches is whether the resulting criteria for model pref-
erence are suÆciently natural. For certain restricted applications this test
might succeed, but it remains to be seen to what extent this approach can be
generalised; for instance, to argumentation systems that allow for inductive,
analogical or abductive arguments.
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Verheij [1996]

Verheij combines ideas of Lin & Shoham and Vreeswijk on the structure
of arguments with Pollock's partial status assignments into a formalism
called CumulA. This system has three distinctive features. The �rst is a
new type of argument called `coordinated argument', which combines two
arguments for the same conclusion. For instance, from the arguments `The
sun is shining. So, it is a beautiful day' and `The sky is blue. So, it is
a beautiful day' it is possible to construct a new argument `The sun is
shining; the sky is blue. So, it is a beautiful day'. Verheij stresses that this
is not the same as an ordinary argument with two premises: the semicolon
expresses that each premise on its own also supports the conclusion. With
coordinated arguments Verheij wants to capture the `accrual of arguments',
i.e., the phenomenon that a combination of arguments that are individually
defeated by another argument, possibly defeats that argument.

EXAMPLE 77. (Accrual of arguments.) Consider the arguments

A: Peter robbed a person, therefore Peter should be pun-
ished.

B: Peter injured a person, therefore Peter should be pun-
ished.

C: Peter is a minor o�ender and should therefore not be
punished.

D: Peter robbed a person. He injured that person too.
Therefore, Peter should be punished.

According to Verheij, it is conceivable that the coordination D of A and B
prevails over C, even if C would prevail over A and B when these are con-
sidered individually. Accordingly, Verheij allows that a status assignment
makes a coordinated argument `in' even when any of its components would
be `out' when present without the others. On the other hand, any status
assignment should make a coordinated argument `in' if already one of its
components is 'in'.

A second feature of CumulA is that it generalises other argumentation
systems by making defeat a relation between sets of arguments. Accord-
ing to Verheij this enables a more natural formalisation of certain types of
defeat. Verheij also argues that several types of defeat, such as Pollock's
undercutters, cannot be de�ned in terms of inconsistency between conclu-
sions of arguments. For this reason, in CumulA the relation of `defeat' is,
as in [Dung, 1995], a primitive notion and can be further de�ned in various
ways, which may but need not be triggered by inconsistency of conclusions.
Verheij claims that his treatment of defeaters is able to capture a wide range
of types of defeat proposed in the literature.
A �nal feature of CumulA is its further development of Lin & Shoham's

and Vreeswijk's notions of argument structures and sequences. In particular,
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Cumula models the replacement of a premise with an argument that has this
premise as conclusion. Such a move is very common in actual debates but
has not yet received much attention in the �eld of defeasible argumentation
(but see Loui, 1998). Verheij also develops an elegant notation that shows
how the status of arguments can change when more arguments are taken
into account (Figure 9).

C(A)

A C

;

A;B (C)

A;B C(B)

B

Figure 9. Stages of argumentation when C defeats A, C defeats
B, but fA;Bg defeats C. Each node represents a partial de-
feat status assignment (cf. De�nition 47), and reects a `stage'
in the argumentation process. Arguments between parentheses
have the status `defeated', the other arguments have the status
`undefeated'.

Other work

Finally, we mention other relevant work on logics for defeasible argumenta-
tion.
Marek et al. [1990; 1992] aim to capture the main existing nonmonotonic

logics in a general framework of so-called `nonmonotonic rule systems'. The
basic notion is not that of an argument but that of a (one-direction) rule.
They de�ne a notion of extensions of a given rule system as a set of formulas
that has certain closure and completeness properties with regard to rule
application. Bondarenko et al. [1997] prove that these extensions correspond
to stable semantics. Marek et al.'s ideas bear some resemblance to Lin &
Shoham's system. Both systems aim to be a general framework for capturing
nonmonotonic logics, both work with one-direction rules, and Marek et al.'s
notion of extensions is related to Lin & Shoham's notion of a complete
argument structure. Finally, neither have a mechanism of defeat among
arguments (or proofs).
Benferhat et al. [1993] study argumentative reasoning with inconsistent

databases. An argument for a formula is a consistent subset of a database
(which is a set of logical formulas) that classically entails the formula. Con-
icts between arguments are resolved with an ordering on the elements of
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the database. The approach and its relation with inconsistency handling
approaches (cf. Section 2.1) and other argumentation systems is further
investigated by Benferhat et al. [1995], Cayrol [1995] and Amgoud & Cay-
rol [1997].

The BDKT framework has triggered further work in the area of logic
programming. For instance, Dung [1993] has applied his own framework
to the semantics of extended logic programming. Thielscher [1996] has
de�ned a semantics and proof theory for drawing sceptical conclusions from
multiple status assignments, based on an adapted version of Dung's [1995]

framework. And Jakobovits [Jakobovits & Vermeir, 1999; Jakobovits, 2000]

has generalised Dung's version of the BDKT framework by de�ning several
weak notions of argument extensions, and examining the relation with the
various BDKT semantics.

Finally, Starmans [1996] carries the ideas of defeasible argumentation to
a multi-agent environment, where more than two parties participate in a
dispute. Part of this endeavour is to show that n-party disputes, where n �
3, involve a richer arsenal of speech acts (question, demand for clari�cation,
refusal of adduced evidence) and other types of attack than just rebutting
or undercutting counterarguments (such as such as just refusing to accept
a certain claim). As debate proceeds, on the basis of the individual theories
a so-called aggregated theory is formed, which contains the claims that are
supported collectively by the group of disputants. This process can be
constrained by so-called principles of preservation. Starmans discusses a
number of such principles analogous to choice principles in the theory of
social choice.

6 DIALECTICAL FORMS OF ARGUMENTATION SYSTEMS

So far mainly semantical aspects have been discussed, where the main focus
was on properties of sets of arguments. In this section we shall go deeper into
proof-theoretical, or procedural aspects of argumentation, where the chief
concern is to establish the status of individual arguments. Several argumen-
tation systems have been formulated in dialectical style [Baker & Ginsberg,
1989; Simari & Loui, 1992; Vreeswijk, 1993b; Simari et al., 1994; Dung, 1994;
Brewka, 1994b; Prakken & Sartor, 1996; Loui, 1998; Garcia et al., 1998;
Prakken, 1999; Kakas & Toni, 1999; Jakobovits, 2000]. (It should be noted
that Loui [1998] does not regard the dialectical style merely as a reformu-
lation of declarative nonmonotonic logics, but as a formalism in its own
right, capturing the \essentially constructive" nature of defeasible reason-
ing, which, Loui argues, cannot be captured by declarative formalisms.)

The common idea can be explained in terms of a dialogue game between
two players, a proponent and an opponent of an argument. A dialogue is an
alternating series of moves by the two players. The proponent starts with an
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argument to be tested, and each following move consists of an argument that
attacks the last move of the other party with a certain minimum force. The
initial argument provably has a certain status if the proponent has a winning
strategy, i.e., if he can make the opponent run out of moves whatever moves
the opponent makes. The exact rules of the game depend on the semantics
it is meant to capture. A natural idea here is that of dialectical asymmetry.
For instance, if the game reects sceptical reasoning, i.e., if it is meant to
test whether an argument is justi�ed, the proponent's arguments can be
required to be strictly defeating while the opponent's moves may be just
defeating. If, on the other hand, the game reects credulous reasoning,
these rules can be reversed (as suggested by Prakken [1999]).

Let us introduce the concept of dispute more formally by making use
of an adapted version of what is called a `dialogue' in [Prakken & Sartor,
1996] and `argument game' in [Loui, 1998]. It is meant to capture sceptical
reasoning.

DEFINITION 78. (Disputes.) A dispute on an argument A is a non-empty
sequence of argumentsmovei = (P layeri; Ai) (i > 0) with A1 = A, in which
one player, denoted by PRO, uses odd-numbered moves to try to establish
A and another player, denoted by CON, uses even-numbered moves to try
to prevent P layer1's success.

1. P layeri = PRO i� i is odd; and P layeri = CON i� i is even;

2. If P layeri = P layerj = PRO and i 6= j, then Ai 6= Aj ;

3. If P layeri = PRO (i > 1), then Ai strictly defeats Ai�1;

4. If P layeri = CON, then Ai defeats Ai�1.

The �rst condition stipulates that PRO begins and then the players take
turns, while the second condition prevents the proponent from repeating
its attacks. The remaining two conditions form the heart of the de�nition:
they state the burdens of proof for PRO and CON. Thus, PRO is required
to establish A while CON need only provide nuisance defeaters.

The various authors format their disputes in di�erent ways. Vreeswijk
[1993b; 1995] uses a format that displays the depth of the proof tree and is
able to represent exhaustive disputes. (See below.) Here we have instead
used a simpli�ed version of the format used by [Dung, 1994; Prakken &
Sartor, 1997b; Loui, 1998]. This format is simple and compact, but does
not represent the depth of the proof tree.

EXAMPLE 79. Let A;B;C and D be arguments such that B and D defeat
A, and C defeats B. Then a dispute on A may run as follows:

PRO: A, CON: B, PRO: C
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In this dispute PRO advances A as an argument supporting the main thesis.
(Arguments are conceived as primitive concepts here, so that the main thesis
is left unspeci�ed.) Both B and D defeat A, which means that CON has
two choices in response to A. CON chooses to respond with B in the second
move. Then C is the only argument defeating B, so that PRO has no choice
than to respond with C in the third move. There are no arguments against
C, so that CON cannot move and loses the dispute. As a result, A and C
are established, and B is overruled by C.

A dispute in which CON follows an optimal strategy is

PRO: A, CON: D

So in this game, under these rules, there is no winning strategy for player 1,
PRO. The only reason why PRO wins the �rst dispute is that CON chooses
the wrong argument, viz. B, in response to A. In fact, CON is in the
position to win every game, provided it chooses the right moves. In other
words, CON possesses a winning strategy.

The concept of dispute presently discussed can be characterised as a so-
called argument game. An argument game is a `one-dimensional' dispute
in which each player may respond only once to each argument advanced by
the opponent, and if that argument turns out to be ine�ective, that player
may not try a second reply to the same argument. Thus, no backtracking is
allowed. This fact makes argument games into what is oÆcially known as
two-player zero-sum games , including the concepts that come with it, the
most important of which is strategy.

Exhaustive dispute

The opposite of an argument game is a so-called exhaustive dispute. An
exhaustive dispute is a dialogue in which each player is allowed to try out
every possible rebuttal in reply to the arguments of its opponent. If a player
discovers that it has put forward the wrong argument, it can recover from its
mistake by trying another argument, provided there are such alternatives.

In displaying exhaustive disputes, we follow the format of Vreeswijk
[1993b; 1995], in which the depth of the proof tree is represented by vertical
bars in the left column:

1. j PRO : argument 1 [justi�cation]
2. jj CON : reply [justi�cation for reply]
3. jjj PRO : reply to reply � � �
4. jj CON : 2nd reply to argument 1 � � �
5. jjj PRO : reply to 2nd reply � � �
6. jjjj CON : reply to reply to 2nd reply � � �
...

...
...



308 HENRY PRAKKEN & GERARD VREESWIJK

With the arguments presented in Example 79, CON has two strategies: one
employing B and one employingD; let us refer to these strategies as strategy
B and strategy D, respectively. As remarked above, when the players are
engaged in an argument game, CON must choose between strategy B and
strategyD. What CON cannot do is deploying B and D one after the other.
In an exhaustive dispute, on the other hand, CON has the opportunity to
try both strategies in succession:

1. j PRO : A [A]
2. jj CON : B [B defeats A]
3. jjj PRO : C [C defeats B]
4. jj CON : D [D defeats A]

At line 1, PRO advances A as an argument supporting the main thesis. (The
main thesis is left unspeci�ed here.) Both B and D defeat A, so that CON
has two choices in response to A. CON chooses to respond with B at line 2.
C is the only argument defeating B, so that PRO responds with C at line 3.
There are no counterarguments to C, so that CON backtracks and searches
new counterarguments to A. CON �nds D as a new counterargument to A.
At line 4, CON advances D in reply to A. There are no arguments against
D, so that PRO cannot move and loses the dispute. As a result, we know
that A cannot be established as justi�ed.

Had CON responded with D instead of B at line 2, then the dispute
would be settled within 2 moves:

1. j PRO : A [A]
2. jj CON : D [D defeats C]

The choice and order of moves is determined by the players.

In the above de�nition as well as in most approaches a move consists of a
complete argument. This means that the search for an individual argument
is conducted in a `monological' fashion, determined by the nature of the
underlying logic; only the process of considering counterarguments is mod-
elled dialectically. A notable exception is [Loui, 1998], in which arguments
are constructed piecewise (beginning with the top-rule) and dialogue moves
consist of

- attacking the conclusion of an un�nished argument,

- challenging an un�nished argument, or
- extending an un�nished argument in a top-down fashion on request of
the opponent.

Another feature of Loui's protocol is that, to reect the idea of resource-
bounded reasoning, every move consumes resources except requests to the
opponent to extend un�nished arguments.
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Completeness results

An important objective in the dialectic approach is a correspondence be-
tween the various argument-based semantics and the di�erent forms of dis-
pute.
Dung [1994] establishes a correspondence between the semantics de�ned

in De�nition 7 (grounded semantics) and his notion of argument game.
Dung's game is similar to the one of De�nition 78, but it is di�erent in
two respects: it does not have the nonrepetition rule (2), and it allows
that PRO's moves are, like CON's moves, just defeating. On the other
hand, Prakken & Sartor[1997b] show that Dung's result also holds for Def-
inition 78. Thus they give a justi�cation to the nonrepetition rule and the
dialectical asymmetry, in the sense that these features make debate more
eÆcient while preserving semantical soundness of the game. Intuitively, this
is since the only e�ect of these features is the termination of dialogues that
could otherwise go on forever: thus they do not deny PRO any chance of
winning the debate.
As for some details, Dung's idea is to establish a mapping for which

� arguments in the set F 2i map to arguments for which PRO has a
winning strategy that results in an argument game of at most 2imoves

� arguments not in F 2i+1 map to arguments for which CON has a win-
ning strategy that results in an argument game of at most 2i + 1
moves

Another completeness result is established by Vreeswijk [1995], between
a particular form of exhaustive dispute and a variant of his argumentation
system with grounded instead of stable semantics (in the `levelled' form of
De�nition 11). Furthermore, Kakas & Toni [1999] de�ne dialectical ver-
sions of most of the assumption-based semantics proposed by Bondarenko
et al. [1997], while Jakobovits [2000] does the same for several of her gen-
eralisations of the BDKT semantics. Finally, Vreeswijk & Prakken [2000]

de�ne a dialectical version of preferred semantics, both for sceptical and for
credulous reasoning.

Disputes with defeasible priorities

Prakken & Sartor [1997b] extend their dialectical proof theory (see De�ni-
tion 78) to the case with defeasible priorities. The main problem is on the
basis of which priorities the defeating force of the moves should be deter-
mined. In fact, a few very simple conditions suÆce. CON may completely
ignore priorities: it suÆces that its moves ;-defeat PRO's previous move.
And for PRO only those priorities count that are stated by PRO's move
itself, i.e., moving with an argument A is allowed for PRO if A strictly A-
defeats CON's previous move; in addition, PRO has a new move available,
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viz. moving a priority argument A such that CON's last move does not
A-defeat PRO's previous move.
This results in the following change of conditions (3) and (4) of De�ni-

tion 78.

(3) If P layeri = PRO (i > 1), then

- Argi strictly Argi-defeats Argi�1; or
- Argi�1 does not Argi-defeat Ai�2.

(4) If P layeri = CON then Argi ;-defeats Argi�1.

Prakken & Sartor [1997b] show that their correctness and completeness
results also hold for this de�nition (although in this case dialectical asym-
metry is necessary). The main feature of their system that ensures this is
the following property of the defeat relation: if A S-defeats B and S0 � S,
then A S0-defeats B.
Consider by way of illustration the dialectical version of Example 72.

PRO1 : [r2: � b) c] CON1 : [r0: ) a, r1: a) b]
PRO2 : [r3: ) :a, r4: ) r0 � r3] CON2 : [r5: ) r3 � r0]
PRO3 : [r6: ) r5 � r4]

Here, PRO2 uses the �rst available type of move, while PRO3 uses the
second type.

7 FINAL REMARKS

As we remarked in the introduction, the �eld of defeasible argumentation
is still young, with a proliferation of systems and disagreement on many
issues. Nevertheless, we have also observed many similarities and connec-
tions between the various systems, and we have seen that a formal meta-
theory is emerging. In particular the BDKT approach has shown that
a unifying account is possible; not only has it shown that many di�er-
ences between argument-based systems are variations on just a few basic
themes, but also has it shown how many nonmonotonic logics can be re-
formulated in argument-based terms. And Pollock's work on partial com-
putation and adequacy criteria for defeasible reasoners paves the way for
more meta-theoretical research. This also holds for the work of Lin &
Shoham, Vreeswijk and Verheij on argumentation sequences, and for the
just-discussed work on argument games and disputes.
In addition, several di�erences between the various systems appear to be

mainly a matter of design, i.e., the systems are, to a large extent, trans-
latable into each other. This holds, for instance, for the conceptions of
arguments as sets (Simari & Loui), sequences (Prakken & Sartor) or trees
(Lin & Shoham, Nute, Vreeswijk), and for the implicit (BDKT, Simari &
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Loui, Prakken & Sartor), or explicit (Pollock, Nute, Vreeswijk) stepwise
assessment of arguments. Moreover, other di�erences result from di�erent
levels of abstraction, notably with respect to the underlying logical language,
the structure of arguments and the grounds for defeat. And some systems
extend other systems: for example, Vreeswijk extends Lin & Shoham by
adding the possibility to compare conicting arguments, and Prakken &
Sartor extend Simari & Loui with priorities from any source and with as-
sumption attack, and they extend both Simari & Loui and Dung [1995]

with reasoning about priorities. Finally, the declarative form of some sys-
tems and the procedural form of other systems are two sides of the same
coin, as are the semantics and proof theory of standard logic.

The main substantial di�erences between the systems are probably the
various notions of defeasible consequence described in Section 4, often re-
ecting a clash of intuitions in particular examples. Although the debate on
the best de�nitions will probably continue for some time, in our opinion the
BDKT approach has nevertheless shown that to a certain degree a unifying
account is possible here also. Moreover, as already explained at the end of
Section 4, some of the di�erent consequence notions are not mutually exclu-
sive but can be used in parallel, as capturing di�erent senses in which belief
in a proposition can be supported by a body of information. And each of
these notions may be useful in a di�erent context or for di�erent purposes.
Of course, in some cases this is otherwise. For instance, we would regard a
de�nition as awed if it does not capture indirect reinstatement (cf. p. 245).
However, in general the existence of di�erent de�nitions is not a problem
for, but a feature of the �eld of defeasible argumentation. An important
consequence of this is that the choice between the notions might depend
on pragmatic considerations, as is, for instance, the case in legal procedure
for the standards of proof. For example, the distinction in Anglo-Saxon
jurisdictions between `beyond reasonable doubt' in criminal cases and `on
the balance of probabilities' in civil cases is of a pragmatic nature; there
are no intrinsic reasons to prefer one standard over the other as being `the'
standard of rational belief.

Another important di�erence is that while some systems formalise `logi-
cally ideal' reasoners, other systems embody the idea of partial computation,
i.e., of evaluating arguments not with respect to all possible arguments but
only with respect to the arguments that have actually been constructed by
the reasoner (Pollock, Loui, Vreeswijk, Verheij). However, here, too, we can
say that these notions are not rivals, but capture di�erent senses of support
for beliefs, perhaps useful in di�erent contexts.

We end with listing some of the main open problems in defeasible argu-
mentation.

� Some examples do not receive a fully adequate treatment in any of
the semantics that we have discussed. This holds, for instance, for
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the `seemingly defeated' arguments discussed in Section 5.2, and for
Horty's example discussed in Section 5.3. And perhaps other `critical'
examples can be discovered.

� Verheij's work raises the question whether the conict types that have
been discussed in this chapter are all types of conict that can exist
between arguments.

� Another question raised by Verheij is what the best treatment is of
accrual of arguments.

� Our informal remarks on the relation between the various systems
should, where possible, be turned into a formal meta-theory of defea-
sible argumentation, making use of the work that has already been
done.

� The procedural form of defeasible argumentation must be further de-
veloped; most current systems only have a semantic form.

� The notion of partial computation should be further studied. This
notion is not only relevant for arti�cial intelligence but also for philos-
ophy. The essence of defeasible reasoning is that it is reasoning under
less than perfect conditions, where it is diÆcult or even impossible to
obtain complete and reliable information. Since these conditions are
very common in daily life, the correctness conditions for reasoning in
such circumstances should be of interest to any logician who wants to
study the formal structure of ordinary reasoning.

� Finally, it would be interesting to connect argumentation systems with
research in so-called `formal dialectics', which studies formal systems
of procedural rules for dialogues; see e.g. Hamblin [1971], MacKen-
zie [1979] and Walton & Krabbe [1995]. Both �elds would be enriched
by such a connection. The argument games discussed in Section 6
are, unlike those of formal dialectics, not rules for real discussions
between persons, but just serve as a proof theory for a (nonmono-
tonic) logic, i.e. they determine the (defeasible) consequences of a
given set of premises. The `players' of these argument games are not
real actors but stand for the alternate search for arguments and coun-
terarguments that is required by the proof theory. An embedding of
argumentation systems in formal dialectics would yield an account
of how their input theories are constructed dynamically during dis-
putes between real discussants, instead of given in advance and �xed.
On the other hand, argumentation systems could also enrich formal
dialectics, which lacks notions of counterargument and defeat; its un-
derlying logic is still deductive and its main dialectical speech act is
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asking for premises that support a certain claim; `real' counterargu-
ments are impossible. Defeasible argumentation can provide formal
dialectics with stronger dialectical features.

Some work of this nature has already been done, much of it in the
area of arti�cial intelligence and law [Loui, 1998; Hage et al., 1994;
Gordon, 1995; Loui & Norman, 1995; Starmans, 1996; Prakken & Sar-
tor, 1998; Lodder, 1999; Vreeswijk, 1999; Prakken, 2000]. Such work
could provide a key in meeting Toulmin's [1958] challenge to logicians
to study how the properties of disputational procedures inuence the
validity of arguments. Perhaps in 1958 Toulmin's challenge seemed
odd, but 40 years of work in logic, philosophy, arti�cial intelligence
and argumentation theory have brought an answer within reach.
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PREFERENCE LOGIC

1 INTRODUCTION

The study of general principles for preferences can, if we so wish, be traced
back to Book III of Aristotle's Topics. Since the early twentieth century
several philosophers have approached the subject of preferences with logi-
cal tools, but it is probably fair to say that the �rst complete systems of
preference logic were those proposed by S�oren Halld�en in 1957 and Georg
Henrik von Wright in 1963. [Rescher, 1968, pp. 287{288; Halld�en, 1967;
von Wright, 1963]. The subject also has important roots in utility theory
and in the theory of games and decisions.
Preferences and their logical properties have a central role in rational

choice theory, a subject that in its turn permeates modern economics, as well
as other branches of formalized social science. Some of the most important
recent developments in moral philosophy make essential use of preference
logic [Fehige and Wessels, 1998]. At the same time, preference logic has
turned out to be an indispensable tool in studies of belief revision and non-
monotonic logic [Rott, 1999]. Preference logic has become so integrated
into both philosophy and social science that we run the risk of taking it for
granted and not noticing its inuence.
This chapter is devoted to the philosophical foundations, rather than the

applications, of preference logic. The emphasis is on fundamental results
and their interpretation. Section 2 treats the basic case in which the objects
of preferences form a set of mutually exclusive alternatives. In Section 3,
such preferences are related to choice functions. In Section 4, the require-
ment of mutual exclusivity is relaxed. In Section 5, preferences are related
to monadic concepts such as `best', `good', and `ought'.

2 PREFERENCES OVER INCOMPATIBLE ALTERNATIVES

In most applications of preference logic, the objects that preferences refer to
are assumed to be mutually exclusive. This assumption will also be made
in the present section.

2.1 Preference, indi�erence, and other value concepts

From a logical point of view, the major value concepts of ordinary language
can be divided into two major categories. Themonadic (classi�catory) value
concepts, such as `good', `very bad', and `worst' report how we evaluate a
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single referent. The dyadic (comparative) value concepts, such as `better',
`worse', and equal in value to', indicate a relation between two referents.
In less colloquial contexts we can also �nd three-termed value predicates,
such as `if x, then y is better than z' (conditional preferences) and even
four-termed ones, such as `x is preferred to y more than z is preferred to
w' [Packard, 1987]. This chapter is primarily devoted to the dyadic value
concepts.
There are two fundamental comparative value concepts, namely `better'

(strict preference) and `equal in value to' (indi�erence) [Halld�en, 1957, p.
10]. The relations of preference and indi�erence between alternatives are
usually denoted by the symbols > and � or by the symbols P and I . Here,
the former notation will be used.
There is a long-standing philosophical tradition to take A > B to rep-

resent `B is worse than A' as well as `A is better than B'. [Brogan, 1919,
p. 97]. This is not in exact accordance with ordinary English. We tend to
use `better' when focusing on the goodness of the higher-ranked of the two
alternatives, and `worse' when empasizing the badness of the lower-ranked
one [Halld�en,p. 13; von Wright, 1963, p. 10; Chisholm and Sosa, 1966, p.
244]. However, the distinction between betterness and converse worseness
can only be made at the price of a much more complex formal structure.
The distinction does not seem to have enough philosophical signi�cance to
be worth this complexity, at least not in a general-purpose treatment of the
subject.
When describing the preferences of others, we tend to use the word `pre-

ferred'. The word `better' is used when we express our own preferences and
also when we refer to purportedly impersonal evaluations. Although these
are important distinctions, not very much has been made of them in pref-
erence logic. `Logic of preference' and `logic of betterness' are in practice
taken as synonyms.
The preferences studied in preference logic are the preferences of rational

individuals. Since none of us is fully rational, this means that we are deal-
ing with an idealization. If a proposed principle for preference logic does
not correspond to how we actually think and behave, the reason may be
either that the principle is wrong or that we are not fully rational when our
behaviour runs into conicts with it.
The objects of preference are represented by the relata of the preference

relation. (A and B in A > B.) In order to make the formal structure
determinate enough, every preference relation is assumed to range over a
speci�ed set of relata. As already indicated, in this section, the relata are
assumed to be mutually exclusive, i.e. none of them is compatible with,
or included in, any of the others. No further assumptions are made about
their internal structure. They may be physical objects, types or proper-
ties of such objects, states of a�airs, possible worlds|just about anything.
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Preferences over a set of mutually exclusive relata will be referred to as
exclusionary preferences.

The following four properties of the two exclusionary comparative rela-
tions will be taken to be part of the meaning of the concepts of (strict)
preference and of indi�erence:

(1) If A is better than B, then B is not better than A.

(2) If A is equal in value to B, then is B equal in value to A.

(3) A is equal in value to A.

(4) If A is better than B, then A is not equal in value to B.

It follows from (1) that preference is irreexive, i.e. that A is not better
than A. The following is a restatement of the four properties in formal
language.

DEFINITION 1. A (triplex) comparison structure is a triple hA; >;�i, in
which A is a set of alternatives, and > and � are relations in A such that
for all A;B 2 A:

(1) A > B ! :(B > A) (asymmetry of preference)

(2) A � B ! B � A (symmetry of indi�erence)

(3) A � A (reexivity of indi�erence)

(4) A > B ! :(A � B) (incompatibility of preference and indi�erence)

Furthermore:

A � B $ (A > B) _ (A � B) (weak preference)

The intended reading of � is `at least as good as' (or more precisely: `better
than or equal in value to'). As an alternative to �, it can also be denoted
`R'). Weak preference can replace (strict) preference and indi�erence as
primitive relations in comparison structures:

OBSERVATION 2. Let hA; >;�i be a triplex comparison structure, and
let � be the union of > and �. Then:

(1) A > B $ (A � B) & :(B � A)

(2) A � B $ (A � B) & (B � A)
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Proof.
Part 1: Left-to-right: From A > B it follows by the de�nition of �

that A � B. Furthermore, it follows from the asymmetry of preference
that :(B > A) and from the incompatibility of preference and indi�erence
that :(A � B), i.e., by the symmetry of indi�erence, :(B � A). Thus
:((B > A) _ (B � A)), i.e., by the de�nition of �, :(B � A). Right-to-
left: It follows from A � B, according to the de�nition of �, that either
A > B or A � B. By the same de�nition, it follows from :(B � A) that
:(B � A). By the symmetry of indi�erence, :(A � B), so that A > B may
be concluded.

Part 2: Left-to-right: It follows from A � B, by the de�nition of �, that
A � B. By the symmetry of indi�erence, A � B yields B � A so that, by
the de�nition of �, B � A. Right-to-left: It follows from the de�nition of �
and (A � B) & (B � A) that ((A > B)_ (A � B)) & ((B > A)_ (B � A)).
By the symmetry of indi�erence, ((A > B) _ (A � B)) & ((B > A) _ (A �
B)). By the asymmetry of preference, A > B is incompatible with B > A.
We may conclude that A � B. �

The choice of primitives (either � or both > and �) is a fairly inconsequen-
tial choice between formal simplicity (�) and conceptual clarity (> and �).
(Cf. [Burros, 1976].) The following is an alternative to De�nition 1.

DEFINITION 3. A (duplex) comparison structure is a pair hA;�i, in which
A is a set of alternatives and � a reexive relation on A. The derived
relations > and � are de�ned as follows:

A > B if and only if A � B and :(B � A)
A � B if and only if A � B and B � A

It will be seen that the de�ned relation � of De�nition 1 is reexive and
that the de�ned relations > and � of De�nition 3 satisfy conditions (1){
(4) of De�nition 7. It follows that the two de�nitions are interchangeable.
Given our de�nitions, the four conditions of De�nition 1 are in combination
equivalent to the reexivity of weak preference.
The relations> and� that are de�ned from� in the manner of De�nition

3 are called the strict part, respectively the symmetric part, of �.

NOTATIONAL CONVENTIONS N1:

(1) Chains of relations can be contracted. Hence, A � B � C abbreviates
(A � B) & (B � C), and A > B > C � D abbreviates (A >
B) & (B > C) & (C � D).

(2) >� stands for> repeated any �nite non-zero number of times (and sim-
ilarly for the other relations). Thus A >� C denotes that either A > C
or there are B1; :::Bn such that (A > B1) & (B1 > B2) &:::(Bn�1 >
Bn) & (Bn > C).
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2.2 Completeness

In most applications of preference logic, it is taken for granted that the
following property, called completeness or connectedness, should be satis�ed:

(A � B) _ (B � A), or equivalently:
(A > B) _ (A � B) _ (B > A)

As we will see later on, the assumption of completeness is often extremely
helpful in terms of simplifying the formal structure. In terms of interpre-
tation, however, it is much more problematic. In many everyday cases, we
do not have, and do not need, complete preferences. In the choice between
three brands of canned soup, A, B, and C, I clearly prefer A to both B and
C. As long as A is available I do not need to make up my mind whether I
prefer B to C, prefer C to B or consider them to be of equal value. Sim-
ilarly, a voter in a multi-party or multi-candidate election can do without
ranking the parties or candidates that she does not vote for.
From the viewpoint of interpretation, we can distinguish between three

major types of preference incompleteness. First, incompleteness may be
uniquely resolvable, i.e. resolvable in exactly one way. The most natural
reason for this to be the case is that incompleteness is due to lack of knowl-
edge or reection. Behind what we perceive as an incomplete preference
relation there may be a complete preference relation that we can arrive at
through observation, logical inference, or some other means of discovery.
Secondly, incompleteness may be multiply resolvable, i.e. possible to re-

solve in several di�erent ways. In this case it is genuinely undetermined
what will be the outcome of extending the relation to cover the previously
uncovered cases.
Thirdly, incompleteness may be irresolvable. The most natural reason for

this is that the alternatives di�er in terms of advantages or disadvantages
that we are unable to put on the same footing. I may be unable to say which
I prefer|the death of two speci�ed acquaintances or the death of a speci�ed
friend [Hansson, 1998a]. I may be unable to say which I prefer|the destruc-
tion of the pyramids in Giza or the extinction of the giant panda. I may
also be unable in many cases to compare monetary costs to environmental
damage.
It is established terminology to call two alternatives `incomparable' when-

ever the preference relation is incomplete with respect to them. The term
`incommensurable' `can be reserved for cases when the incompleteness is
irresolvable.

2.3 Transitivity and acyclicity

By far the most discussed logical property of preferences is the following:

A � B � C ! A � C (transitivity of weak preference)
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The corresponding properties of the other two relations are de�ned analo-
gously:

A � B � C ! A � C (transitivity of indi�erence)
A > B > C ! A > C (transitivity of strict preference)

A weak preference relation � is called quasi-transitive if its strict part > is
transitive.
`Mixed' transitivity properties can be also de�ned. The most important

of these are:

A � B > C ! A > C (IP-transitivity)
A > B � C ! A > C (PI-transitivity)

The relation � is acyclic if its strict part > satis�es the following property:

There is no series A1; : : : ; An of alternatives such that A1 > : : : >
An > A1.

These properties are logically related as follows:

OBSERVATION 4. Let hA;�i be a comparison structure such that � sat-
is�es transitivity (of weak preference). Then it also satis�es:

1. Transitivity of indi�erence.

2. Transitivity of strict preference.

3. IP-transitivity.

4. PI-transitivity.

Proof.
Part 1: Let A � B and B � C. Then A � B and B � C, and �-

transitivity yields A � C. Similarly, C � B and B � A, so that C � A.
Hence A � C.

Parts 2 and 3: Let A � B and B > C. Then A � B and B � C, and
�-transitivity yields A � C. Suppose that A > C is not the case. It then
follows from A � C that A � C, hence C � A. From this and A � B we
obtain that C � B, contrary to B > C. It follows from this contradiction
that A > C.

Part 4: Let A > B and B � C. Then A � B and B � C, and �-
transitivity yields A � C. Suppose that A > C is not the case. It then
follows from A � C that A � C, hence C � A. From this and B � C we
obtain that B � A, contrary to A > B. It follows from this contradiction
that A > C. �

OBSERVATION 5. Let hA;�i be a comparison structure such that � sat-
is�es quasi-transitivity (transitivity of >). Then it also satis�es acyclicity.
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Proof. Let > be transitive and suppose that A1 > :::An > A1. It follows
by repeated use of >-transitivity that A1 > A1, contrary to the asymmetry
of >. �

2.4 Anti-cyclic properties

Acyclicity implies each member of the following series of properties that are
speci�ed with respect to the number of elements of the prohibited cycles:

1-acyclicity prohibits A1 > A1

2-acyclicity prohibits A1 > A2 > A1

3-acyclicity prohibits A1 > A2 > A3 > A1

etc.

1-acyclicity is better known as irreexivity and 2-acyclicity as asymmetry.
Furthermore, just like the mixed transitivity properties referred to in the
previous subsection, we can introduce mixed variants of acyclicity. The
term anti-cyclic properties can be used for this more general category of
properties. The de�nition is as follows:

DEFINITION 6 (Hansson, 1993b). Let �1; :::�n be binary relations with
the common domain A. Then �1; :::�n-anticyclicity, denoted b�1:::�nc, is
the property that there is no series A1; :::An of elements of A such that
A1�1:::An�nA1.

Hence, irreexivity of a relation � can be written b�c, and asymmetry can
be written b��c. The following notation is convenient:

NOTATIONAL CONVENTIONS N2:

(1) � and 	 denote series of relation symbols.

(2) �n, with � a relation symbol and n � 1, denotes the repetition of � n
times. Similarly, �n denotes the repetition of � n times.

(3) In the notation of anti-cyclic properties, � is replaced by R, > by P ,
and � by I .

Hence, bP 3c denotes 3-acyclicity, and bP 2I2c denotes that there are no A1,
A2, A3, A4, such that A1 > A2 > A3 � A4 � A1.

Anticyclic properties are useful in preference logic. A major reason for
their usefulness is that if the weak preference relation is complete, then the
common transitivity properties are all equivalent to an anti-cyclic property.
To begin with, consider transitivity of weak preference. When � is com-
plete, then A � C is equivalent with :(C > A), and we have the following
equivalences:
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For all A, B, C: (A � B) & (B � C)! A � C
i�: For all A, B, C: (A � B) & (B � C)! :(C > A)
i�: For all A, B, C: :((A � B) & (B � C) & (C > A))
i�: bRRP c

Hence, transitivity of a complete relation is equivalent to the anticyclic
property bRRP c. The following more general translation rules can be used
to replace transitivity-related properties of a complete preference relation
by equivalent anticyclic properties.

OBSERVATION 7 (Hansson, 1993b). Let hA;�i be a comparison structure
such that � satis�es completeness. Then:

(T1) A�C ! A � C is equivalent to b�P c

(T2) A�C ! A > C is equivalent to b�Rc

(T3) A �n C ! A � C is equivalent to bInP c

(T4) A�C ! (A > B) _ (B > C) is equivalent to bRR�c

(T5) (A�B) & (C	D)! (A > D) _ (C > B) is equivalent to bR�R	c

Proof. T1 follows in the same way as the translation of �-transitivity
that was given in the text. So does T2; note that A > C is equivalent with
:(C � A).

For T3, we have the following series of equivalent statements:

For all A1,...An: A1 � A2 � :::: � An ! A1 � An.
For all A1,...An: A1 � A2 � :::: � An ! :(A1 > An) & :(An > A1).
For all A1,...An: :(A1 � A2 � :::: � An & (A1 > An)) and
:(A1 � A2 � :::: � An & (An > A1)).

For all A1,...An: :(An � An�1 � :::: � A1 > An) and
:(A1 � A2 � :::: � An > A1)
bInP c

For T4:

For all A, B, C: A�C ! (A > B) _ (B > C)
For all A, B, C: A�C ! :((B � A)&(C � B))
For all A, B, C: :((A�C) & (B � A) & (C � B))
For all A, B, C: :(C � B � A�C)
bRR�c

For T5:

For all A, B, C, D: (A�B) & (C	D)! (A > D) _ (C > B)
For all A, B, C, D: (A�B) & (C	D)! :((D � A) & (B � C))
For all A, B, C, D: :((A�B) & (C	D) & (D � A) & (B � C))
For all A, B, C, D: :((D � A) & (A�B) & (B � C) & (C	D))
bR�R	c �
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One important instance of T4 refers to the following property:

A > C ! (A > B) _ (B > C) (virtual connectivity)

It follows directly from T4 that virtual connectivity is equivalent to bRRP c,
or in other words to transitivity of �. Another important instance of T4 is
the translation of the following property:

A > B > C ! (A > D) _ (D > C) (semi-transitivity)

to bRRPP c. The following property:

(A > B) & (C > D)! (A > D) _ (C > B) (interval order property)

can be translated to bRPRP c, using T5. In summary, some of the major
transitivity-related properties can be translated as follows:

bRRP c A � B � C ! A � C (transitivity of weak preference)

bIIP c A � B � C ! A � C (transitivity of indi�erence)

bPPRc A > B > C ! A > C (transitivity of strict preference)

bIPRc A � B > C ! A > C (IP-transitivity)

bPIRc A > B � C ! A > C (PI-transitivity)

bRRPP c A > B > C ! (A > D) _ (D > C) (semi-transitivity)

bRPRP c (A > B) & (C > D) ! (A > D) _ (C > B) (interval order
property)

bPnc n-acyclicity

bP �c acyclicity

The major reason for undertaking these translations is that a series of sim-
ple derivation rules are available for proving the logical interrelations of
anticyclic properties.

OBSERVATION 8 (Hansson, 1993b). Let hA;�i be a comparison structure
such that � satis�es completeness. Then the following derivation rules hold
for anticyclic properties of �.

(DR1) b�	c i� b	�c.

(DR2) b�Rc i� b�P c & b�Ic.

(DR3) If b�nc, then b�c. (n � 1)

(DR4) If b�Ic, then b�c.
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(DR5) If b�Rc & b	P c, then b�	c.

Proof. The validity of DR1, DR2, and DR3 is obvious. For DR4, note that
A�A � A follows from A�A.
For DR5, suppose that b�Rc holds. We need to show that if b�	c is

violated, then so is b	P c. Suppose that (A�B) & (B	A). From A�B it
follows by b�Rc that B � A does not hold, thus A > B. We therefore have
(B	A) & (A > B), violating b	P c. �

Derivation rules DR1{DR5 have turned out to be suÆcient to prove the ma-
jor connections between the common transitivity-related properties. How-
ever, it remains an open issue how to construct a complete set of rules,
i.e. a set of rules that is suÆcient to prove all valid logical connections
between anticyclic properties involving a reexive relation � and its strict
and symmetric parts.
The proofs of the standard logical connections between the transitivity-

related properties of complete preference relations are quite simple:

OBSERVATION 9 (Sen 1969). Let hA;�i be a comparison structure such
that � satis�es completeness, and let > and � be the strict and symmetric
parts of �. Then:

(1) IP-transitivity and PI-transitivity are equivalent.

(2) IP-transitivity implies �-transitivity.

(3) >-transitivity and �-transitivity together imply PI-transitivity.

(4) >-transitivity and PI-transitivity together imply �-transitivity.

Proof.
Part 1: We can use DR1 and DR2 to show that bPIRc i� bPIIc& bPIP c,

i� bIPIc & bIPP c, i� bIPRc.
Part 2: From bIPRc we obtain bIPIc by DR2 and bIIP c by DR1.
Part 3: Let bPPRc and bIIP c. It follows from bPPRc by DR2 that

bPPIc, hence by DR1 bPIP c. Applying DR1 to bIIP c we obtain bPIIc,
and applying DR2 to bPIP c and bPIIc we obtain bPIRc.

Part 4: Let bPPRc and bPIRc. Applying DR1 to both of them we obtain
bRPP c and bRPIc. From this we obtain bRPRc by DR2 and bRRP c by
DR1. �

The following results refer to longer cycles:

OBSERVATION 10 (Hansson, 1993b). Let hA;�i be a comparison struc-
ture such that � satis�es completeness. Then:

(1) If b�PRc then b�nPRc for all n � 1.
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(2) If b�RP c then b�nRP c for all n � 1.

(3) If b�PRc and b	Rc, then b�n	Rc for all n � 1.

(4) If b�RP c and b	P c, then b�n	P c for all n � 1.

(5) For all n � 2: bRnP c i� bRRP c.

(6) If � contains at least one instance of P , then: If bRRP c then b�c

(7) If bPPRc then bPnRc for all n � 2.

(8) If bInP c with n � 2, then bIIP c.

(9) If bIPP c and bIIP c, then bInPP c and bIn+1P c for all n � 1.

(10) If bPPP c and bIPP c, then bIPnc and bPn+1c for all n � 2.

(11) If bRPRP c, then b(RP )nc for all n � 1.

(12) If bRRPP c, then bRmPnc for all m, n such that m � n and n � 2.

(13) If bRPRP c and bRRPP c, then bRkP lRmPnc for all k, l, m, n � 1
such that k +m � l + n.

Proof.
Part 1: The proof is by induction. Let b�PRc and b�kPRc. We are

going to show that b�k+1PRc. Through DR1, b�PRc yields bR�P c. We
can then apply DR5 to b�kPRc and bR�P c and obtain b�kPR�c, hence
through DR1 b�k+1PRc.

Part 2. This proof is similar to the previous one. Let b�RP c and
b�kRP c. We use DR1 to obtain bP�Rc, DR5 to obtain bP��kRc, and
�nally DR1 to obtain b�k+1RP c.

Part 3: Let b�PRc and b	Rc. DR1 yields bR�P c, and then DR5 can
be used to obtain b	R�c and DR1 to obtain b�	Rc. For induction, let
b�k	Rc. We can apply DR5 to b�k	Rc and bR�P c to obtain b�k	R�c,
and then use DR1 to obtain b�k+1	Rc.

Part 4: Let b�RP c and b	P c. We can use DR1 to obtain bP�Rc,
DR5 to obtain bP�	c and then DR1 to obtain b�	P c. For induction, let
b�k	P c. We can apply DR5 to bP�Rc and b�k	P c to obtain bP��k	c
and then DR1 to obtain b�k+1	P c.

Part 5: For one direction, let bRnP c with n � 2. Then DR1 yields
bRn�1PRc, and DR2 and DR4 yield bRn�1P c. By repetition, bR2P c will
be obtained. For the other direction, let bR2P c and bRkP c with k � 2.
DR1 yields bRPRc, and DR5 can be applied to bRPRc and bRkP c to
obtain bRPRkc. We can use DR1 to obtain bRk+1P c.
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Part 6: We are �rst going to show that if bRRP c then b�RP c where � is
a possibly empty sequence. To see that this holds if � is empty, use DR1 to
obtain bRPRc and then DR2 and DR4 to obtain bRP c. Next suppose that
b	RP c holds for all sequences with n elements, and let 	0 be a sequence
with n+1 elements. Then 	0 has one of the three forms 	R, 	I , and 	P ,
where 	 has n elements.
We can apply DR1 to b	RP c and obtain bP	Rc. Applying DR5 to this

and bRRP c we obtain bP	RRc. From DR1 follows bRP	Rc and then from
DR2 bRP	Ic and bRP	P c. DR1 yields b	RRP c, b	IRP c, and b	PRP c,
hence b	0RP c in all three cases. Hence, if bRRP c then b�RP c.
It follows by DR1 from b�RP c that bP�Rc. DR2 and DR4 can be used

to obtain bP�c. Since every sequence that contains at least one instance
of P is equivalent in the sense of DR1 to a sequence of the form bP�c, this
concludes the proof.

Part 7: The proof will be by induction. Let bPPRc and bP kRc with
k � 2. We can use DR1 to obtain bPRP c and then DR5 to obtain bP kPRc,
i.e. bP k+1Rc.

Part 8: Let bInP c. We can use DR1 to obtain bIIPIn�2c and then DR4
n� 2 times to obtain bIIP c.

Part 9: Let bIPP c and bIIP c. We are �rst going to show by induction
that bInPP c. Let bInPP c with n � 1. We can use DR1 to obtain bPIP c
and bPIIc and then DR2 to obtain bPIRc. From this and bInPP c we
obtain bPIInP c with DR5 and bIn+1PP c with DR1.
Next, let bIn+1P c with n � 1. We can use DR5 and combine this with

bPIRc to obtain bPIIn+1c, and DR1 yields bIn+2P c.
Part 10: Let bPPP c and bIPP c. We are �rst going to show by induction

that bIPnc for all n � 2. Let bIPnc and n � 2. DR1 yields bPPIc and
DR2 bPPRc, that can be combined with bIPnc to obtain, through DR5,
bPPIPn�1c, and then through DR1, bIPn+1c.
Next, we are going to show that bPn+1c for all n � 2. Let bPn+1c

and n � 2. Equivalently, bPnP c. Since we also have bPPRc, DR5 yields
bPPPnc, or equivalently bPn+2c.

Part 11: The proof proceeds by induction. It follows from DR3 that
bRP c. Let b(RP )nc with n � 2. Equivalently, b(RP )n�1RP c. From
bRPRP c it follows, via DR1, that bPRPRc. We can use DR5 and com-
bine this with b(RP )n�1RP c to obtain bPRP (RP )n�1Rc, and DR1 yields
bRPRP (RP )n�1c or equivalently b(RP )n+1c.

Part 12: Let bRRPP c. We are �rst going to show by induction that
bRnPnc for all n � 2. Let bRnPnc and n � 2. From bRRPP c follows
by DR1 that bPPRRc. DR5 yields bPPRRnPn�1c, and then DR1 yields
bRn+1Pn+1c.
Next, we are going to show that if bRnPnc and m � n, then bRmPnc.

Let bRnPnc. It follows from DR1 that bPnRnc, from repeated use of DR2
and DR4 that bPnRmc and then from DR1 that bRmPnc.
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Part 13: Let bRPRP c and bRRPP c. We are �rst going to show that
bRkP lRmPnc for all k, l, m, n � 1 such that k +m = l + n. The proof
will be by induction. We have bRPRP c, and for the induction step we need
to show that that if bRkP lRmPnc, then (A) bRk+1P lRmPn+1c and (B)
bRkP lRm+1Pn+1c. (There are two additional cases, but they can be ex-
cluded due to DR1.) For (A), use DR1 to obtain bPPRRc. We can use DR5
to combine bPPRRc and bRkP lRmPnc, and obtain bPPRRkP lRmPn�1c.
DR1 yields bRk+1P lRmPn+1c. For (B), apply DR1 to bRkP lRmPnc to
obtain bPnRkP lRmc. Then use DR5 to combine this with bRRPP c and
obtain bPnRkP lRm�1RRP c. DR1 yields bRkP lRm+1Pn+1c.
To complete the proof it is suÆcient to show that if bRkP lRmPnc, then

bRk�1P lRmPnc and bRkP lRm�1Pnc. Due to DR1 it is suÆcient to prove
one of these. Let bRkP lRmPnc. DR1 yields bP lRmPnRkc, DR2 and DR4
yield bP lRmPnRk�1c and then DR1 yields bRk�1P lRmPnc. �

2.5 Preference cycles exempli�ed

Part 6 of Observation 10 is particularly interesting since it shows that
bRRP c, transitivity of weak preference, implies all anticyclic properties that
can hold if � is reexive and has a non-empty domain. (Let �1; :::�n be a
series, each element of which is either � or �. Then A�1A:::A�nA�1 holds
for any A 2 A due to the reexivity of � and consequently of �. It follows
that b�1:::�nc does not hold.)
Should transitivity of weak preference hold, or at least some of the weaker

transitivity-related properties mentioned above? This is probably the most
debated issue in preference logic. Since completeness has mostly been as-
sumed to hold, this controversy can also be expressed in terms of anticyclic
properties: What types of cycles are acceptable? As we have just seen, the
controversial cycles are those that contain at last one instance of P . There-
fore, this is more precisely a matter of which if any P -containing cycles
should be allowed. All P -containing cycles contradict transitivity of weak
preference. In addition, IIP-cycles contradict transitivity of indi�erence,
PPR-cycles contradict transitivity of strict preference, etc. In what follows,
preferences with a P -containing cycle will be called cyclic preferences.
Quite a few examples of preference cycles have been proposed in the

literature for various philosophical purposes. Most of these examples belong
to the following four categories: InP-cycles with n � 2, IPIP-cycles, IPP-
cycles, and Pn-cycles with n � 3.
InP-cycles, with n � 2, are often used as arguments against transitivity.

The classic construction employs a series a objects that are so arranged that
we cannot distinguish between two adjacent members of the series, whereas
we can distinguish between members at greater distance [Armstrong, 1939;
Armstrong, 1948; Luce, 1954]. Let us think of 1000 cups of co�ee, numbered
C0, C1, C2,... up to C999. Cup C0 contains no sugar, cup C1 one grain of
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sugar, cup C2 two grains etc. Since I cannot taste the di�erence between
C999 and C998, they are equally good (or rather equally terrible) in my taste,
C999 � C998. For the same reason, we have C998 � C997, etc. all the way
up to C1 � C0, but clearly C0 > C999, so that we have an I999P-cycle.
With suitably adjusted thresholds of discrimination, it is also possible

to construct shorter cycles of the same kind, including IIP-cycles. Michael
Dummett [1984, p. 34] proposed that a subject may be incapable of distin-
guishing between wine A and wine B or between wine B and wine C, but
able to distinguish between A and C, and likes A better. A somewhat dif-
ferent construction of IIP-cycles has been ascribed to W. Armstrong [Lehrer
and Wagner, 1985]: A boy may be indi�erent between receiving a bicycle or
a pony, and also between receiving a bicycle with a bell and a pony, whereas
he prefers receiving a bicycle with a bell to receiving just a bicycle. The
reason is of course that the bell is too small an advantage to be signi�cant
in the uncertain choice beween a bicycle and a horse. A similar example
was proposed by Frank Restle [1961, pp. 62{63]: replace the pony by a trip
to Florida, the bicycle by a trip to California and the bell by a very small
amount of money.
An IPIP-cycle was constructed by Sven Danielsson [1998] through the

addition of one more alternative to Restle's example:

X A trip to California plus an apple
Y A trip to California
Z A trip to Florida
U A trip to Florida plus an apple

We can then have Z � X > Y � U > Z, i.e. an IPIP-cycle.
Next, let us turn to IPP-cycles. A simple way to construct an IPP-cycle

is to combine two IIP-cycles in di�erent dimensions. This was done by Ng
[1977], whose (unusually undramatic example) refers to three samples of
paper, x, y, and z. It can be observed that x is thicker than y, but no
di�erence in thickness can be observed between x and z (which is interme-
diate in thickness) or between z and y. Similarly, y is perceptibly whiter
than z, but there is no noticeable di�erence in whiteness between y and x
or between x and z. Assuming that I prefer thick white paper, `I prefer x to
y as I can observe that x is thicker than y but cannot observe any di�erence
in whiteness. Similarly, I prefer y to z. But I am indi�erent to the choice
between x and z' [Ng, 1977, p. 52].
Our next category is Pn-cycles with n > 3. To construct them, we

can make us of an IPn-cycle with n > 2. The construction method is
exempli�ed by the `lawn-crossing example' that has been much discussed in
the literature on utilitarianism [Harrison, 1953, p. 107; �Osterberg, 1989].
Let c0; :::c1000 denote the number of times that you cross a particular lawn.
A single crossing makes no (perceptible) di�erence in the condition of the
lawn, but it results in a perceptible time gain. Therefore, c1000 > c999 >
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::: > c2 > c1 > c0. However, a large number of crossings will cause a
complete damage of the lawn that is not outweighed by the total time gain.
Therefore, c0 > c1000, and we have a P1001-cycle (based on the I1000P-cycle
for the condition of the lawn).
A famous example by Warren S. Quinn [Quinn 1990] has the same struc-

ture. He assumed that a medical device has been implanted in the body of
a person (the self-torturer). The device has 1001 settings, from 0 (o�) to
1000. Each increase leads to a negligible increase in pain. Each week, the
self-torturer `has only two options|to stay put or to advance the dial one
setting. But he may advance only one step each week, and he may never
retreat. At each advance he gets $ 10,000. ' In this way he may `eventually
reach settings that will be so painful that he would then gladly relinquish
his fortune and return to 0' [Quinn, 1990, p. 79].
Our �nal category of cycles is PPP-cycles. They di�er from IPP-cycles

in being direct arguments against acyclicity. One way to construct a PPP-
cycle is to combine three IIP-cycles in the same way that two such cycles
were used to obtain an IPP-cycle. This was done by George Schumm [1987],
who invites us to consider a Mr. Smith who chooses between three boxes
of Christmas tree ornaments. Each box contains one red, one blue, and
one green ball. The balls of box 1 are denoted R1, B1, and G1, etc. in
the obvious way. `Suppose that any di�erence in color between R1 and R3

falls below Smith's threshold of discrimination, as does that between R3

and R2. But he can see a di�erence between R1 and R2, and he prefers
the former. Likewise, suppose that while Smith sees no di�erence between
B3 and B2, or between B2 and B1, he prefers the hue of B3 to that of B1.
Finally, although being unable to detect any di�erence between G2 and G1,
or between G1 and G3, he prefers G2 to G3... Smith prefers Box 1 to Box 2
since, to his eye, they contain equally attractive blue balls and green balls,
while Box 1 contains the prettier red ball. Analogously, he prefers Box 2 to
Box 3, and Box 3 to Box 1.'
Schumm argued that `given any proposed counterexample to the transi-

tivity of indi�erence... one can always construct, on the foregoing model, an
equally compelling counterexample to the transitivity of strict preference.
Thus, those who would have us shun the transitivity of indi�erence should
have the courage of their convictions to foresake both principles.'
R. G. Hughes [1980] constructed a PPP-cycle in a quite di�erent but not

less plausible way. In his example, a voter assesses three political candidates
A, B, and C, as follows: In terms of political views, A is better than the
other two, and B is better than C. In terms of honesty, C is better than
the other two, and B is better than A. A di�erence in corruptibility is
important to this voter only when it exceeds a critical level, but when it
does so, this issue becomes more important than all other considerations.
The di�erence between A and B and that between B and C are below this
critical level, but that between A and C is above it. (The voter therefore
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acts as if she were indi�erent between A and B, and also between B and
C, but prefers C to A, in terms of honesty.) Thus, the voter, both aspects
considered, prefers A to B, B to C, and C to A. (An example with the
same structure, that Hughes does not seem to have been aware of, can be
found in [Tversky, 1969, p. 321].)

2.6 Why cycles are problematic

At least some of the examples cited in the foregoing subsection can be used
to show that actual human beings may have cyclic preferences. It does not
necessarily follow, however, that the same applies to the idealized rational
agents of preference logic. Perhaps such patterns are due to irrationality or
to factors, such as lack of knowledge or discrimination, that prevent us from
being rational. There is a strong tradition, not least in economic applica-
tions, to regard full �-transitivity as a necessary prerequisite of rationality.
Some authors have argued for transitivity through direct appeal to in-

tuition. According to Savage, whenever I �nd a PPP-cycle among my own
preferences, `I feel uncomfortable in much the same way that I would do
when it is brought to my attention that some of my beliefs are logically
contradictory. Whenever I examine such a triple of preferences on my own
part, I �nd that it is not at all diÆcult to reverse one of them. In fact, I
�nd on contemplating the three alleged preferences side by side that at least
one of them is not a preference at all, at any rate not any more' [Savage,
1954, p. 21]. There is also some empirical evidence that when people are
faced with their own intransitivities, they tend to modify their preferences
to make them transitive [Tversky, 1969].
Two other, somewhat more substantial types of argument have been

put forward in favour of transitivity: The money-pump argument and the
choice-guidance argument.
The money-pump argument originates with F. P. Ramsey [1931, p. 182].

Ramsey pointed out that if a subject's relation of preference violates tran-
sitivity, then `[h]e could have a book made against him by a cunning better
and would then stand to lose in any event'. The non-probabilistic version
of this argument, the `money-pump', runs as follows:

`Suppose an individual prefers y to x, z to y, and x to z. It is
reasonable to assume that he is willing to pay a sum of money
to replace x by y. Similarly, he should be willing to pay some
amount of money to replace y by z and still a third amount to
replace z by x. Thus, he ends up with the alternative he started
with but with less money.' [Tversky, 1969, p. 45]

In order to see more in detail how the argument works, consider the following
example [Hansson, 1993a]. A certain stamp-collector has cyclic preferences
with respect to three stamps, denoted a, b, and c. She prefers a to b, b to c,
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and c to a. Following Ramsey, we may assume that there is an amount of
money, say 10 cents, that she is prepared to pay for exchanging b for a, c for
b, or a for c. She comes into a stamp shop with stamp a. The stamp-dealer
o�ers her to trade in a for c, if she pays 10 cents. She accepts the deal.
For a precise notation, let hx; vi denote that the collector owns stamp x

and has paid v cents to the dealer. She has now moved from the state ha; 0i
to the state hc; 10i.
Next, the stamp-dealer takes out stamp b from a drawer, and o�ers her

to swap c for b, against another payment of 10 cents. She accepts, thus
moving from the state hc; 10i to hb; 20i.
When she is just on her way out of the shop, the dealer calls her back, and

advises her that it only costs 10 cents to change back to a, the very stamp
that she had in her pocket when she entered the shop. Since she prefers it to
b, she pulls out a third dime, thus moving from hb; 20i to ha; 30i. Since her
original state was ha; 0i, this does not seem to be much of an achievement.
To summarize the argument, the following sequence of preferences caused

the trouble:

hc; 10i > ha; 0i
hb; 20i > hc; 10i
ha; 30i > hb; 20i

The trouble does not end here. Presumably, the sequence continues:

hc; 40i > ha; 30i
hb; 50i > hc; 40i
ha; 60i > hb; 50i
: : :

It the poor customer stays long enough in the stamp shop, she will be bereft
of all her money, to no avail.
The money-pump argument relies on the following two assumptions: (1)

The primary alternatives (the stamps) can be combined with some other
commodity (money) to form composite alternatives. (2) For every preferred
change of primary alternatives, there is some non-zero loss of the auxiliary
commodity (money) that is worth that change. The money-pump can be
used to extract money from a subject with cyclic preferences only if these
two conditions are satis�ed.
The money-pump presented above requires a Pn-cycle.There is also an-

other type of money-pump that can operate on any type of cyclic prefer-
ences. Let's go back to the stamp shop.
A new customer enters the shop. She is indi�erent between stamps a and

b, and also between stamps b and c, but prefers c to a. Contrary to the �rst
customer, she only has an IIP-cycle (intransitive indi�erence). Strangely
enough, just like the �rst customer she enters the shop carrying stamp a.
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Can the stamp-dealer extract money from this customer as well? It turns
out that he can, but he must apply a modi�ed strategy. The �rst move is
identical. He o�ers her to exchange stamp a for stamp c against a modest
fee of 10 cents (or whatever sum is small enough to make her accept the
deal). In this way, he makes her move from ha; 0i to hc; 10i. Next, he o�ers
to pay her 1 cent if she is willing to take stamp b instead of stamp c. Since,
presumably, the customer is absolutely indi�erent between b and c, she is|
or so we may expect|willing to accept this bid, thus moving from hc; 10i to
hb; 9i. After that he o�ers her another cent for changing to a, thus bringing
her to ha; 8i. Just like the previous customer, she has given away money to
no avail. The vicious sequence of preferences was:

hc; 10i > ha; 0i
hb; 9i > hc; 10i
ha; 8i > hb; 9i.

Presumably, the sequence continues:

hc; 18i > ha; 8i
hb; 17i > hc; 18i
ha; 16i > hb; 17i
: : :

In this way, the second customer, just like the �rst, will be ruined unless
her dealings with the cunning stamp-dealer are interrupted. In order for
this type of money-pump to operate we only need an R�P-cycle. Therefore,
this combination can be used as a fully general argument against all types
of cyclic preferences.
But how convincing are the money-pumps? It should be noted that they

rely on a particular way to combine preferences in two dimensions. A critic
can argue that the construction of preferences for the combined alternative
set (fha; 0i; hc; 10i;
hb; 20i; ha; 30i; hc; 40i; hb; 50i:::g in our �rst example) out of preferences over
the primary alternative set (fa; b; cg) should not be performed in the straight-
forward simple way that was indicated in the examples. When forming their
preferences over the new alternative sets created by the cunning dealer,
the collectors must consider the totality of the situation, and therefore|
according to the critic|they must construct these preferences in a way
that avoids the absurd result. Most of us would prefer hb; 20i to ha; 30i
in the �rst example, even if we would have preferred ha; 10i to hb; 0i. Ar-
guably, the example only works if the agent (the stamp-collector) can be
brought to make each decision in isolation, without taking into account the
total situation. What the example shows, it can be argued, is only that
a rational subject's preference-guided behaviour can be `manipulated' by
persons, institutions or impersonal conditions that control her agenda (de-
cision horizon). This may be seen as an extension of the well-known result



PREFERENCE LOGIC 337

from social decision theory that `[a] clever agenda setter, with knowledge of
all voters' preferences could design an agenda to reach virtually any point
in the alternative space' [McKelvey, 1979, p. 1087]; cf. [McKelvey, 1976;
McKelvey and Wendell, 1976; Plott, 1967]. Even if the logical structure of
our preferences is rational, agenda-setting mechanisms may very well drive
us to irrational behaviour.
The second major argument in favour of transitivity is the choice-guidance

argument. It is based on the assumption that the logical properties of pref-
erences should be compatible with their use as guides to choice or action.
It is easy to �nd examples of how cycles make preferences unsuitable as
guides for choices. Our �rst stamp-collector, who prefers stamp a to stamp
b, stamp b to stamp c, and stamp c to stamp a, cannot use these preferences
as a guide to choose one of these stamps.
However, the choice-guidance argument cannot be used directly against

all forms of cyclic preferences. Suppose that there is also a fourth stamp d,
that she prefers to all the other three. Then her preference relation can be
used without problem to guide a choice among the set fa; b; c; dg, in spite of
the cycle. Cycles among defeated elements do not prevent rational choice.
For a preference relation to be choice-guiding, it must supply at least

one alternative that is eligible, i.e. can reasonably be chosen. The minimal
formal criterion for eligibility is that the chosen alternative is no worse than
any other alternative:

Weak eligibility
There is at least one alternativeA such that for all B, :(B > A).

Let A be a weakly eligible alternative, and let B be an alternative that is
not (weakly) eligible. Furthermore, suppose that A and B are comparable,
i.e. that either A > B, A � B, or B > A.Then, by the de�nition of weak
eligibility, B > A does not hold. It would also be very strange for A and
B to be equal in value, i.e., for A � B to hold. If preferences are choice-
guiding, then two alternatives should not be considered to be of equal value
if one of them is eligible and the other is not. We may therefore conclude,
as a consequence of the principle of choice-guidance, that if A but not B
is weakly eligible, then A and B are not equal in value. In an equivalent
formulation:

Top-transitivity of weak eligibility
If A � B, and :(C > A) for all C, then :(C > B) for all C.

If the preference relation � is complete, then weak eligibility is equivalent
with the following condition:

Strong eligibility
There is at least one alternative A such that for all B, A � B.
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Top-transitivity can be rewritten as follows:

Top-transitivity of strong eligibility:
If A � B, and A � C for all C, then B � C for all C.

The sets of alternatives that our preferences refer to are not immutable.
To the contrary, new alternatives can become available, and old ones can
be lost. If no alternative is considered to be exempt from possibly being
lost in the future, then it may be a cost-minimizing strategy to pursue
one's deliberations until (weak or strong) eligibility holds for all non-empty
subsets of the original alternative set. A rationality criterion will be said to
hold restrictably for a set of alternatives if and only if it holds for all its non-
empty subsets. It must be emphasized that restrictability does not always
hold for rational preferences. The preference relation best suited for guiding
choices among a certain set of alternatives need not be a suitable guide for
choosing among a particular subset of that set. (For a counterexample, see
Subsection 3.1.)
As will be seen from the following theorem, if the eligibility properties

are required to hold restrictably, then we obtain rationality criteria of the
more well-known types, such as completeness, acyclicity, and various types
of transitivity.

THEOREM 11 (Hansson, 1997a). Let � be a relation over some �nite set
A with at least two elements.

1. It satis�es restrictable weak eligibility if and only if it satis�es bP �c
(acyclicity).

2. It satis�es restrictable strong eligibility if and only if it satis�es com-
pleteness and bP �c (acyclicity).

3. It satis�es restrictable top-transitive weak eligibility if and only if it
satis�es bP �c (acyclicity) and bPIRc (PI-transitivity).

4. It satis�es restrictable top-transitive strong eligibility if and only if it
satis�es completeness and bRRP c (transitivity).

Proof.
Part 1: For one direction, suppose that acyclicity does not hold. Then

there are A1; :::An 2 A such that A1 > A2 > ::: > An�1 > An and An > A1.
Weak eligibility is not satis�ed for the subset fA1; :::Ang of A.
For the other direction, suppose for reductio that acyclicity but not re-

strictable weak eligibility is satis�ed. We are going to show thatA is in�nite,
contrary to the assumptions. Since restrictable weak eligibility is violated,
there is some subset B of A for which weak eligibility does not hold. Let
A1 2 B. Since weak eligibility is not satis�ed, there is some A2 2 B such



PREFERENCE LOGIC 339

that A2 > A1. Similarly, there is some A3 such that A3 > A2, etc... If
any two elements on the list A1; A2; A3... are identical, then acyclicity is
violated. Thus, B is in�nite, and consequently so is A, contrary to the
conditions.

Part 2: For one direction, suppose that � satis�es restrictable strong
eligibility. To see that it satis�es completeness let A;B 2 A. Since strong
eligibility holds restrictably for A, strong eligibility holds for the subset
fA;Bg of A, so that either A � B or B � A. Since restrictable strong
eligibility implies restrictable weak eligibility, acyclicity follows from part 1.
For the other direction, suppose for reductio that � is complete and

acyclic but violates restrictable strong eligibility. There must be some subset
B of A for which strong eligibility does not hold. Let A1 2 B. There is then
some A2 2 B such that :(A1 � A2). By completeness, A2 > A1. Similarly,
there is some A3 2 B such that :(A2 � A3) and consequently A3 > A2,
etc. Suppose that any two elements of the list A1; A2; A3; ::: are identical.
Then acyclicity is violated. Thus B is in�nite, and so is A, contrary to the
conditions.

Part 3: First suppose that � satis�es restrictable top-transitive weak
eligibility. Acyclicity follows from part 1. For PI-transitivity, let A, B, and
C be three elements of A such that A > B and B � C. Suppose that
:(A > C). Then :(X > C) for all X 2 fA;B;Cg, and by top-transitive
weak eligibility for that set B � C yields :(X > B) for all X 2 fA;B;Cg,
contrary to A > B. We may conclude that A > C.
For the other direction, suppose that acyclicity and PI-transitivity are

satis�ed. It follows from part 1 that � satis�es restrictable weak eligibility.
For top-transitivity, let B be a subset of A and A and B two elements of
B such that A � B and that for all X 2 B, :(X > B). For reductio,
suppose that for some C 2 B, C > A. Then it follows from A � B and PI-
transitivity that C > B, contrary to the conditions. We may conclude that
:(X > A) holds for all X 2 B, so that top-transitivity of weak eligibility
holds for � in B. Since this applies to all subsets B of A, top-transitivity of
weak eligibility holds restrictably in A.

Part 4: First suppose that restrictable top-transitive strong eligibility is
satis�ed. Completeness follows from part 2. For transitivity, let A � B and
B � C. Since top-transitivity of strong eligibility holds restrictably for A,
top-transitive strong eligibility holds for fA;B;Cg. There are three cases:

Case i, A � B: By completeness, B � B, so that B � X for all X 2
fA;B;Cg. It follows from top-transitivity of strong eligibility, as applied to
fA;B;Cg, that A � X for all X 2 fA;B;Cg, so that A � C.

Case ii, A > B > C: Suppose that C > A. Then strong eligibility does
not hold for fA;B;Cg, contrary to the conditions. It follows that :(C > A)
and by completeness that A � C.

Case iii, A > B � C: Suppose that C � A. By completeness C � C,
so that C � X for all X 2 fA;B;Cg. By top-transitivity and B � C,
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B � X for all X 2 fA;B;Cg, so that B � A, contrary to A > B. By this
contradiction, :(C � A). By completeness, A � C.
For the other direction, suppose that completeness and transitivity are

satis�ed. Transitivity implies acyclicity, so that restrictable strong eligibility
follows from part 2. For top-transitivity, let B be a subset of A with A,
B 2 B and such that A � B and that A � C for all C 2 B. Then for all C,
B � A and A � C yield B � C, so that top-transitivity of strong eligibility
holds in B. Since this applies to all subsets B of A, top-transitivity of strong
eligibility holds restrictably in A. �

In summary, the twomajor anticyclic (and protransitive) arguments, money-
pumps and choice-guidance, both depend on manipulations of the alterna-
tive set. Money-pumps require the construction of composite alternative
sets and the choice-guidance argument depends on the restriction of alter-
native sets. Since neither of these manipulations is uncontroversial, we do
not have an uncontroversial argument in favour of preference transitivity.

2.7 Numerical representation

Preferences can be interpreted as expressions of value. A > B then means
that more value is assigned to A then to B, and A � B that the same
value is assigned to the two. Values, we may assume, can be adequately
expressed in numerical terms. Let u (as in utility) be a value function, that
assigns a real number to each element of the alternative set. We can then
construct a model of preference logic in the following way: (< is the set of
real numbers.)

Exact value representation
A > B i� u(A) > u(B), where u is a function from A to <.

Since completeness is assumed to hold, A � B is de�ned to hold if and
only if :(B > A). This construction has been characterized in terms of
postulates as follows:

THEOREM 12 (Roberts, 1979). Let hA;�i be a comparison structure such
that A is countable. Then the following two conditions are equivalent:

1. � is satis�es completeness and transitivity (bRRP c).

2. There is a function u from A to < such that A > B i� u(A) > u(B).

Proof. See [Roberts, 1979, pp. 109{110]. �

As can be seen from InP-cycles such as the `cups of co�ee' example men-
tioned in Subsection 2.5, the exact value representation of preferences is for
some purposes too demanding. If u(A) > u(B), but u(A)�u(B) is so small
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that it cannot be discerned, then we should not expect A > B to hold.
One interesting way to represent this feature is to introduce a �xed limit of
indiscernibility, such that A > B holds if and only if u(A)� u(B) is larger
than that limit. Such a limit is commonly called a just noticable di�erence
(JND).

JND representation
A > B i� u(A)� u(B) > Æ, where Æ is a positive real number.

THEOREM 13 (Scott and Suppes, 1958). Let hA;�i be a comparison struc-
ture such that A is �nite. Then the following two conditions are equivalent:

1. � satis�es completeness and the two properties
A > B > C ! (A > D) _ (D > C) (bRRPP c, semi-transitivity)
(A > B) & (C > D)! (A > D)_ (C > B) (bRPRP c, interval order
property)

2. There is a function u from A to < and a positive real number Æ such
that A > B i� u(A)� u(B) > Æ.

Proof. See [Scott and Suppes, 1958; Suppes and Zinnes, 1963] or [Roberts,
1979, p. 260{264]. �

A relation � that satis�es condition 1 of this theorem is called a semiorder.
Semiorders were introduced in [Luce, 1954]. The present axioms and the
above representation theorem were given in [Scott and Suppes, 1958]. The
theorem cannot in general be extended to in�nite alternative sets; for the
in�nite case see [Manders, 1981].

Semiorders can be generalized by relaxing the condition that the thresh-
old of discrimination be the same for all comparisons of alternatives:

Variable threshold representation
A > B i� u(A)� u(B) > �(A), where �(A) > 0 for all A.

Another interesting construction is to assign to each alternative an interval
instead of a single number. We then need two functions from A to <,
umax and umin, such that for all A 2 A, umax(A) � umin(A). Here, umax

represents, of course, the upper limit of the interval assigned to A, and
umin its lower limit. A > B holds if and only if all elements of the interval
assigned to A have higher value than all elements of the B interval:

Interval representation:
A > B i� umin(A) > umax(B)
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It is easy to see that the variable threshold representation and the interval
representation are equivalent. Just let:

u(A) = umax(A) and �(A) = umax(A)� umin(A).

The following representation theorem has been obtained for these construc-
tions:

THEOREM 14 (Fishburn, 1970a). Let hA;�i be a comparison structure.
Then the following two conditions are equivalent:

1. � satis�es completeness and:
(A > B) & (C > D)! (A > D)_ (C > B) (bRPRP c, interval order
property)

2. There is a function u from A to < and a function � from A to the
positive part of < such that for all A and B in A, A > B i� u(A) �
u(B) > �(A).

3. There are two functions umax and umin from A to < such that for all A
and B in A, umax(A) � umin(A) and A > B i� umin(A) > umax(B).

Proof. See [Fishburn, 1970a]. �

A relation � is called an interval order if it satis�es the conditions of The-
orem 14. Interval orders were introduced by Fishburn as a generalization
of semiorders [Fishburn, 1970a]. One further step of generalization can be
taken: We can let the threshold of discrimination depend on both relata.

Doubly variable threshold representation
A > B i� u(A) � u(B) > �(A;B), with �(A;B) > 0 for all A
and B.

THEOREM 15 (Abbas, 1995). Let hA;�i be a comparison structure such
that A is �nite. Then the following two conditions are equivalent:

1. � satis�es acyclicity (bP �c)

2. There is a function u from A to < and a function � from A � A to
the positive part of < such that A > B i� u(A)� u(B) > �(A;B).

Proof. See [Abbas, 1995]. �

Relations satisfying acyclicity, the condition referred to in Theorem 15, are
often called suborders [Fishburn, 1970b].
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3 PREFERENCE AND CHOICE

There is a strong tradition, particularly in economics, to equate preference
with choice. Preference is considered to be hypothetical choice, and choice
to be revealed preference. Given an alternative set A, we can represent
(hypothetical) choice as a function C that, for any given subset B of A,
turns out the chosen (`preferred') elements of B.
Subsection 3.1 introduces some rationality criteria for choice functions.

In Subsection 3.2 these are related to properties of the preference relation.

3.1 Postulates for choice functions

The formal de�nition of choice functions is as follows:

DEFINITION 16. C is a choice function for A if and only if it is a function
from and to }(A), such that for all B 2 }(A):

(1) C(B) � B, and

(2) if B 6= ;, then C(B) 6= ;.

A large number of rationality properties for preferences have been proposed.
Only three of the most important of these will be discussed here.

Cherno� (property �) [Cherno� 1954]
If B1 � B2 then B1 \ C(B2) � C(B1).

Amartya Sen has called Cherno� 'a very basic requirement of rational choice'
[Sen, 1969, p. 384]. It `states that if the world champion in some game is
Pakistani, then he must also be the champion in Pakistan'. However, it is
far from self-evident that this property should hold on all occasions. Two
types of examples showing this are well-known from the literature. First,
the alternative set may carry information, as in Amartya Sen's example:
`[G]iven the choice between having tea at a distant acquaintance's home
(x), and not going there (y), a person who chooses to have tea (x) may
nevertheless choose to go away (y), if o�ered|by that acquaintance|a
choice over having tea (x), going away (y), and having some cocaine (z)'
[Sen, 1993, p. 502]. See also [Kirchsteiger and Puppe, 1996]. Secondly,
choice may be positional. In a choice between a big apple, a small apple,
and an orange, you may choose the big apple, but in a choice between only
the two apples you may nevertheless opt for the smaller one [Anand, 1993,
p. 344], cf. [G�ardenfors, 1973].

Property �
If B1 � B2 and X;Y 2 C(B1), then X 2 C(B2) i� Y 2 C(B2)
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According to Sen, property � is `also appealing, though... perhaps somewhat
less intuitive than Property �'. It `states that if some Pakistani is a world
champion, then all champions of Pakistan must be champions of the world'
[Sen, 1969, p. 384]. Property � is not either unproblematic, as can be seen
from a modi�cation of Sen's cocaine example. I may be indi�erent between
staying for tea and going away (C(fx; yg) = fx; yg), but prefer to leave if
cocaine is o�ered (C(fx; y; zg) = fyg).

Expansion (property )
C(B1) \ ::: \ C(Bn) � C(B1 [ ::: [ Bn)

To see that expansion does not always hold, let B1 = fsmall apple; big appleg
and B2 = fsmall apple; orangeg. It may very well be that C(B1) = C(B2) =
fsmall appleg whereas C(B1 [ B2) = fbig appleg.

3.2 Connecting choice and preference

The most obvious way to construct a choice function out of a preference
relation � is to have the function always choose the elements that are best
according to �:

The best choice connection
C(B) = fX 2 B j (8Y 2 B)(X � Y )g

A choice function is relational if it is based on some preference relation
� in this way. It can be seen from the de�nition that � must then be
complete. (If it is incomplete, then there are elements X and Y such that
neither X � Y nor Y � X . It follows that C(fX;Y g) = ;, contrary to
De�nition 16.) It can also be seen that the connection does not work if
� violates acyclicity (bP �c). Let X1 > X2 > :::: > Xn > X1. Then it
holds for each Xk that there is some Xm such that Xm > Xk, so that
Xk =2 C(fX1; X2; ::::Xng). Hence C(fX1; X2; ::::Xng) = ;, again contrary
to De�nition 16. Indeed, these two conditions can also be shown to be
suÆcient for the workability of the best choice connection. The following
theorems show how various properties of choice functions correspond to
properties of underlying preference relations.

THEOREM 17. Let hA;�i be a comparison structure, and let C be the
function constructed from � according to the best choice connection. Then:

1. C is a choice function if and only if � satis�es completeness and
acyclicity.

Furthermore, if C is a relational choice function, then:

2. C satis�es Cherno� [Sen 1969 p. 384]
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3. C satis�es property � if and only if � satis�es PI-transitivity (bPIRc).
[Sen 1969 p. 384]

4. C satis�es property � if and only if � satis�es �-transitivity (bRRP c).
[Sen 1969 p. 385]

Proof.
Part 1: This is essentially a restatement of Theorem 11, part 2.
Part 2: Let B1 � B2 and X 2 B1 \ C(B2). Then it holds for all Y 2 B2

that X � Y , hence this holds for all Y in B1, hence X 2 C(B1).
Part 3: For one direction, let bPIRc be violated. Then there are X , Y ,

and Z such that X > Y � Z � X . It follows that C(fY; Zg) = fY; Zg,
Z 2 C(fX;Y; Zg) and Y =2 C(fX;Y; Zg), contrary to property �.
For the other direction, let property � be violated. Then there are al-

ternatives X and Y and sets B1 and B2 such that B1 � B2, X;Y 2 C(B1),
X 2 C(B2) and Y =2 C(B2). It follows from X;Y 2 C(B1) that Y � X ,
from Y =2 C(B2) that there is some Z 2 B2 such that Z > Y , and from
X 2 C(B2) that X � Z. Hence, Z > Y � X � Z, contrary to bPIRc.

Part 4: Due to Part 1 of the present theorem, it is suÆcient to show that
if R is complete and satis�es bP �c, then bPIRc and bRRP c are equivalent.
It follows from part 6 of Observation 10 that bRRP c implies bPIRc. For
the other direction, apply DR2 to bPIRc to obtain bPIP c, and then DR1
to obtain bPPIc. bP �c yields bPPP c that we can combine with bPPIc,
using DR2, to obtain bPPRc. Applying DR1 to bPPRc and bPIRc we
obtain bRPP c and bRPIc, and DR2 yields bRPRc. Finally, through DR1
we obtain bRRP c. �

THEOREM 18 (Sen, 1971). Let C be a choice function for A. Then the
following two conditions are equivalent:

(1) C satis�es Cherno� and Expansion.

(2) There is a relation � on A such that C coincides with the function
constructed from � via the best choice connection.

Proof.
1-to-2: Let � be the relation such that X � Y i� X 2 C(fX;Y g). For

one direction, let X 2 C(B) and B � A. We need to show that X � Y
for all Y 2 B. Suppose to the contrary that for some Y , :(X � Y ). Then
X =2 C(fX;Y g), and according to Cherno�, C(B)\fX;Y g � C(fX;Y g) =
fY g. Contradiction.
For the other direction, let X 2 C(fX;Y g) for all Y 2 B. It follows from

Expansion that X 2 C(B).
2-to-1. To prove that Cherno� holds, let B1 � B2 and X 2 B1 \ C(B2).

Then it holds for all Y 2 B2 that X � Y , hence this holds for all Y 2 B1,
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hence X 2 C(B1). To prove that Expansion holds, let X 2 C(B1) \ ::: \
C(Bn). Then it holds for all Y 2 B1 [ ::: [ Bn that X � Y . Hence,
X 2 C(B1 [ ::: [ Bn). �

For a more extensive review of connections between choice and preference,
the reader is referred to [Moulin, 1985]. For applications to epistemic choice
and preference, see [Rott, 1993; Rott, 1999].

The results that connect choice functions with preference relations are so
elegant that it may be somewhat unwelcome to question their meaningful-
ness. Nevertheless, the very idea of regarding choice as based on preference
is quite problematic. This can be seen in two ways. First, as we saw above,
the Cherno� property holds for all relational choice functions, but it nev-
ertheless has counterintuitive consequences in realistic cases. Secondly, on
a more basic, conceptual level, choices and preferences are entities of quite
di�erent categories. Preferences are states of mind. That I prefer x to y
means that I consider x to be better than y. Choices are actions. That I have
chosen x means that I have actually selected x (irrespectively of whether I
consider myself or anyone else to be better o� through this choice).

Obviously, examples can easily be found in which choice and preference
coincide, but there are also situations in which they clearly do not coincide.
(Cf. [Sen, 1973].) We can, for instance, make choices that are not guided
by preferences. A person may be indi�erent between two alternatives, but
still have to choose between them. This is exempli�ed by my recent choice
between a match with a red head and one with a black head. Although I
actually chose the red one, this does not mean that I prefer it, other than
in some technical sense of `prefer' that has been constructed to conciliate it
with choice. A similar situation obtains when we have to choose between
incommensurable alternatives. As was noted by Sen, it is particularly odd
in this latter case to claim that choice reveals preference [Sen, 1973].

Clearly, preference can be de�ned (technically) as binary choice, but then
diÆculties arise in `interpreting preference thus de�ned as preference in the
usual sense with the property that if a person prefers x to y then he must
regard himself to be better o� with x than with y' [Sen, 1973, p. 15].

4 PREFERENCES WITH COMPATIBLE RELATA

In the previous sections, we have studied preferences that refer to a set of
mutually exclusive alternatives that are taken as primitive units (exclusion-
ary preferences). In actual discourse on preferences, we often make state-
ments that transgress these limitations. In a discussion on musical pieces,
someone may express preferences for orchestral music over chamber music,
and also for Baroque over Romantic music. We may then ask her how she
rates Baroque chamber music versus orchestral music from the Romantic
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period. Assuming that these comparisons are all covered by one and the
same preference relation, some of the relata of this preference relation are
not mutually exclusive. Preferences with compatible relata may be called
combinative preferences.

In Subsection 4.1, the use of sentential representation for the relata of
combinative preferences is introduced, and in Subsection 4.2 some postulates
for this type of preferences are discussed. Subsections 4.3{4.7 are devoted to
the stepwise construction of a model in which preferences with compatible
relata are based on exclusionary preferences. Some logical properties emerg-
ing from this construction are discussed in Subsection 4.8. An alternative
construction of combinative preferences is discussed in Subsection 4.9.

4.1 Sentential representation

In non-regimented language, all sorts of abstract and concrete entities can
serve as the relata of preference relations. Thus, one may prefer butter to
margarine, democracy to tyranny, or Bartok's fourth string quartet to his
third. In spite of this, logical analyses of combinative preferences have been
almost exclusively concerned with relata that represent states of a�airs.

This practice is based on the assumption that combinative preferences
over other types of entities can be adequately expressed as preferences over
states of a�airs. R. Lee went as far as to saying that `all preferences can be
understood in terms of preference among states of a�airs or possible circum-
stances. A preference for bourbon, for example, may be a general preference
that one drink bourbon instead of drinking scotch' [von Wright, 1963, p.
12; von Wright, 1972, pp. 143{144; Trapp, 1985, p. 303]. It is probably
not quite as simple as that, but no other general-purpose representation
of combinative preferences seems to be available. Therefore, combinative
preferences will be taken to have states of a�airs as relata. States of a�airs,
in their turn, will be represented in the usual way by sentences in senten-
tial logic. The logical relationships among these sentences are assumed to
include classical sentential logic. These choices are in line with tradition in
philosophical logic.

Furthermore, it will be assumed that logically equivalent expressions can
be substituted for each other. This assumption makes way for certain
counter-intuitive inferences. Let p denote that you receive $100 tomorrow, q
that you receive $50 tomorrow, and r that you are robbed of all the money
that you own the day after tomorrow. Presumably, you prefer p to q. By
intersubstitutivity, you then also prefer (p&r) _ (p&:r) to q. However, the
direct translation of (p&r) _ (p&:r) into natural language does not seem
to be preferable to the direct translation of q into natural language. The
reason for this is that the disjunctive formulation of the comparison gives
the impression that each of the disjuncts is preferred to q [Hansson, 1998b].
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This and other counter-intuitive inferences can only be avoided by giv-
ing up intersubstitutivity, thereby losing much of the simplicity and logical
strength of the formal structure. It is, on balance, better for most purposes
to endure the somewhat strange consequences of intersubstitutivity than to
pay the high price for getting rid of them.
Sentences will be denoted by lower-case letters p, q... The relations of

weak preference, strict preference, and indi�erence will be denoted �, >,
and� as before, with indices added to distinguish between di�erent relations
whenever needed.

4.2 Preference postulates for sentences

The postulates for exclusionary preferences discussed in Subsections 2.2{
2.4 can also be applied to combinative preferences. We therefore have the
following properties:

p � p (reexivity)
(p � q) _ (q � p) (completeness)
p � q � r ! p � r (transitivity)

and the various anticyclic properties discussed in Subsection 2.4. Reexivity
is clearly a desirable property. Everything that we can compare|not only
complete alternatives|should be equal in value to itself. Completeness, on
the other hand, is even more problematic for combinative than for exclu-
sionary preferences. Even if your preferences are suÆciently developed to
cover all possible comparisons between complete alternatives, they do not in
general also cover all other possible comparisons. To see this, consider the
four meals that can be composed out of the two dishes and the two drinks
served at a small market stand. Suppose that you like each of the meals on
the following list better than all those below it:

hamburger and beer
sandwich and co�ee
sandwich and beer
hamburger and co�ee

It does not follow that you, in this context, prefer a meal with co�ee to a
meal with beer, or a meal with beer to a meal with co�ee, or that you are
indi�erent between these two (incomplete) alternatives. You may very well
lack a determinate preference between the two.
Some of the logical issues that arise in connection with combinative pref-

erences do not arise for exclusionary preferences, for the simple reason that
they are not de�ned for the latter. In particular, this applies to logical
principles that refer to negated or disjunctive states of a�airs.
S�oren Halld�en introduced the postulates (p � q) ! (:q � :p) and

(p > q) ! (:q > :p) [Halld�en, 1957, pp. 27{29 and 36]. von Wright used
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the phrase `the principle of contraposition' for the latter of the two principles
[von Wright, 1972, pp. 147{149]. A similar postulate, (p � q)! (:q � :p),
can be formed for weak preference. The term `contraposition' can be used
as a common term for all postulates of this general form. Thus, (p � q)!
(:q � :p) is contraposition of weak preference, (p � q) ! (:q � :p) is
contraposition of indi�erence, etc.
The principles of contraposition have a clear intuitive appeal. If you pre-

fer playing the piano to playing football, then not playing the piano should
be worse for you than not playing football. But convincing counterexamples
are not either diÆcult to �nd. Bengt Hansson provided an example against
contraposition of strict preference [Hansson, 1968, pp. 428{429]. Let p de-
note that you win the �rst prize and q that you win some prize. Then p > q
may reasonably hold, but it does not hold that :q > :p. To the contrary,
:p is preferable to :q, since it leaves open the possibility of winning some
other prize than the �rst prize. The same example can also be used against
contraposition of weak preference. (p � q holds, but not :q � :p.)
The following example can be used against contraposition of indi�erence

[Hansson, 1996a]. Let p denote that I have at least two copies of Rousseau's
Du contrat social on my bookshelf and q that I have at least one copy of it.
Since I need the book, but cannot use more than one copy, p and q are of
equal value, i.e. p � q. However, it does not hold that :q � :p. To the
contrary, :q is worse than :p, since it means that I am in the precarious
situation of not having access to Du contrat social.
The most widely quoted argument against contraposition was provided by

Chisholm and Sosa. They claimed that `although that state of a�airs con-
sisting of there being happy egrets (p) is better than that one that consists
of there being stones (q), that state of a�airs that consists of there being no
stones (:q) is no better, nor worse, than that state of a�airs consisting of
there being no happy egrets (:p)' [Chisholm and Sosa, 1966, p. 245]. More
will be said about this example in Subsection 4.5.
Halld�en also introduced the two principles (p > q)$ ((p&:q) > (q&:p))

and (p � q) $ ((p&:q) � (q&:p)) [Halld�en, 1957, p. 28]. They have
been accepted by von Wright. [von Wright 1963, pp. 24-25, 40, and 60.]
The postulate (p > q) $ ((p&:q) > (q&:p)) has been called conjunctive
expansion' [Jennings, 1967]. This term can be used for all relationships
of the same form. (Thus, (p � q) $ ((p&:q) � (q&:p)) is conjunctive
expansion of indi�erence, etc.)
Conjunctive expansion is based on the reasonable assumption that `when

one is to decide between two situations p and q, one does not actually
compare these alternatives, but the situation that p is true while q is not
on one hand and that q is true while p is not on the other' [Hansson, 1968,
p. 428]. However, as has been pointed out by several authors, conjunctive
expansion cannot hold unrestrictedly since it would involve preferences with
contradictory relata [Casta~neda, 1958; Chisholm and Sosa, 1966; Quinn,
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1974]. For concreteness, let p denote that a certain person is blind in her
left eye and q that she is blind in two eyes. It is clearly worse to be blind in
two eyes (q) than to be blind in the left eye (p). However, it does not follow
that being blind only in the left eye (p&:q) is better than contradiction
(q&:p).
Chisholm and Sosa chose to reject conjunctive expansion altogether, and

so did Quinn [Chisholm and Sosa, 1966, p. 245; Quinn, 1974, p. 125]. It
should be noted, however, that the arguments that led up to this conclusion
refer to examples in which one of the relata implies the other. This was
pointed out by Saito, who therefore claimed that conjunctive expansion of
indi�erence and strict preference hold `only when both p&:q and :p&q are
logically possible, i.e., p and q do not imply each other' [Saito, 1973, p. 388].
Cf. [Trapp, 1985, p. 318].
Intuitively, we would expect p _ q to be intermediate in value between p

and q. Suppose that I prefer that the painter paints the house white rather
than that she paints it yellow. Then the information that she painted it
either white or yellow should be at most as welcome as the information that
she painted it white, and at least as welcome as the information that she
painted it yellow. More generally speaking, the following should hold:

(p � q)! (p � (p _ q) � q) (disjunctive interpolation)

von Wright argued that `[d]isjunctive preferences are conjunctively distribu-
tive' in the sense that preferring p_q to r is essentially the same as preferring
p to r and also q to r [von Wright, 1963, p. 26]. See also [Hansson, 1968,
pp. 433{439]. This standpoint is expressed in the following two distributive
axioms:

((p _ q) � r)$ ((p � r) & (q � r)) (left disjunctive distribution of �)
(p � (q _ r))$ ((p � q) & (p � r)) (right disjunctive distribution of �)

Close connections hold between disjunctive distribution principles for �
and >:

OBSERVATION 19 (Bengt Hansson, 1968). Let � be a relation over a set
L of sentences that is closed under truth-functional operations. Let > be
the strict part of �. Furthermore, let � be complete. Then

(1) (p _ q) � r ! (p � r) & (q � r) is valid i� (p > q) _ (p > r) ! p >
(q _ r) is valid.

(2) (p � r) & (q � r)! (p_q) � r is valid i� p > (q_r) ! (p > q)_(p >
r) is valid.

(3) p � (q _ r) ! (p � q) & (p � r) is valid i� (p > r) _ (q > r) !
(p _ q) > r is valid.



PREFERENCE LOGIC 351

(4) (p � q) & (p � r)! p � (q_r) is valid i� (p_q) > r ! (p > r)_(q >
r) is valid.

If � is both complete and transitive, then:

(5) If (p � r) & (q � r) ! (p _ q) � r is valid, then so is p � (q _ r) !
(p � q) _ (p � r)

(6) If (p � q) & (p � r) ! p � (q _ r) is valid, then so is (p _ q) � r !
(p � r) _ (q � r)

Proof.
Part 1:
(p _ q) � r ! (p � r) & (q � r)
i� :((p � r) & (q � r))! :((p _ q) � r)
i� :(p � r) _ :(q � r)! :((p _ q) � r)
i� (r > p) _ (r > q)! r > (p _ q)
Substitution yields (p > q) _ (p > r)! p > (q _ r).
Parts 2-4 are proved in the same way as part 1.
Part 5: Suppose to the contrary that p � (q _ r) ! (p � q) _ (p � r)

does not hold. Then we have p � (q _ r) and, due to completeness, q > p
and r > p. Transitivity yields q > (q _ r) and r > (q _ r).
Due to part (2), since (p � r)&(q � r) ! (p _ q) � r is valid, so is

p > (q _ r) ! (p > q) _ (p > r). Applying the appropriate substitution
instance to q > (q_ r) we obtain (q > q)_ (q > r), and since > is irreexive
it follows that q > r. In the same way, r > (q _ r) yields r > q. Since > is
asymmetric, this is impossible, and we can conclude from the contradiction
that p � (q _ r) ! (p � q) _ (p � r).

Part 6: Suppose to the contrary that (p _ q) � r ! (p � r) _ (q � r)
does not hold. Then we have (p _ q) � r and, due to completeness, r > p
and r > q. Transitivity yields (p _ q) > p and (p _ q) > q.
Due to part (4), since (p � q) & (p � r) ! p � (q _ r) is valid, so is

(p _ q) > r ! (p > r) _ (q > r). Applying the appropriate substitution
instance to (p _ q) > p we obtain (p > p) _ (q > p), hence q > p. In the
same way, (p _ q) > q yields p > q. This contradiction concludes the proof.

�

The following argument against (p � q) & (p � r) ! p � (q _ r) was
proposed by Sven Danielsson and reported by Bengt Hansson [1968, p.
439]: A person who is away from home receives a letter. The following are
statements about the letter:

p the letter says that the family's dog is feeling well
q the letter says that his son is feeling well
r the letter says that his daughter is feeling well
s the letter says that his wife has been killed in an accident
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We can then reasonably expect to have p � (q_(r&s)) and p � ((q&s)_r)).
It follows from the postulate under discussion that p � (q_(r&s)_(q&s)_r),
or equivalently p � (q _ r), which is much less plausible. It should be
observed, though, that this argument depends on the substitution of q _ r
for the logically equivalent sentence q_(r&s)_(q&s)_r. This substitution,
rather than the application of disjunctive distribution, is the problematic
step.
A close connection has been shown to hold between disjunctive interpo-

lation and one direction of the disjunctive distribution principles:

OBSERVATION 20 (Bengt Hansson, 1968). Let � be a relation over a set
L of sentences that is closed under truth-functional operations. Consider
the following postulates:

(i) (p � r) & (q � r)! ((p _ q) � r)

(ii) (p � q) & (p � r)! (p � (q _ r))

(iii) If p � q then p � (p _ q) � q (disjunctive interpolation)

(1) If � is complete, and (i) and (ii) both hold, then so does (iii).
If � is complete and transitive, then (iii) holds if and only if both (i) and
(ii) hold.

Proof.
Part 1: Suppose to the contrary that (iii) does not hold. Then p � q,

and it follows from completeness that either q > (p _ q) or (p _ q) > p.
In the former case, it follows from (i) and part (2) of Observation 19 that
(q > p)_ (q > q), and by the irreexivity of > that q > p, contrary to p � q.
In the latter case, it follows from (ii) and part (4) of Observation 19 that
(p > p) _ (q > p), which is contradictory in the same way.

Part 2: Due to part 1, only one direction of the equivalence remains to
prove.
In order to prove (i), let (p � r) & (q � r). Due to completeness, either

p � q or q � p. In the former case, (iii) yields (p_q) � q, and with q � r and
transitivity we obtain (p_ q) � r. In the latter case, (iii) yields (p_ q) � p,
and with p � r and transitivity we again obtain (p _ q) � r.
In order to prove (ii), let (p � q) & (p � r). Due to completeness, either

q � r or r � q. In the former case, (iii) yields q � (q _ r), and with p � q
transitivity yields p � (q _ r). In the latter case, (iii) yields r � (q _ r), and
with p � r transitivity again yields p � (q _ r). �

4.3 Connecting the two levels

We can expect strong connections to hold between the preferences that
refer to a set of (mutually exclusive) alternatives and the preferences that
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refer to incomplete relata that are associated with those same alternatives.
In the formal representation, there are two major ways to construct these
connections.
One of these is the holistic approach, that takes preferences over wholes

for basic and uses them to derive combinative preferences. The other may
be called the aggregative approach. It takes smaller units (expressible as
incomplete relata) to be the fundamental bearers of value, and the values
of complete alternatives are obtained by aggregating these units. A pre-
cise aggregative model was developed by Warren Quinn, on the basis of
a proposal by Gilbert Harman. In Quinn's model, (intrinsic) values are
assigned to certain basic propositions, which come in groups of mutually
exclusive propositions. A conjunction of basic propositions is assigned the
sum of the intrinsic values of its conjuncts. Various proposals have been
made for the calculation of other truth-functional combinations of basic
propositions [Harman, 1967; Quinn, 1974; Old�eld, 1977; Carlson, 1997;
Danielsson, 1997].
The aggregative approach requires that there be isolable units of value

and that these can be aggregated in some exact way, such as arithmetic
addition. These conditions are satis�ed in some utilitarian theories of moral
betterness. This was indeed what Quinn had in mind; he considered it
`natural to suppose that the most evaluatively prior of all states of a�airs
are those which locate a speci�c sentient individual at a speci�c point along
an evaluatively relevant dimension such as happiness, virtue, wisdom, etc.
Thus for each pair consisting of an individual and a dimension there will
be a distinct basic proposition for each point on that dimension which that
individual may occupy' [Quinn, 1974, p. 131]. Cf. [Harman, 1967, p. 799].
The forms of utilitarianism that lend themselves to this mathematization

are not the only reasonable theories of moral value. Furthermore, there
are non-moral preference relations for which the aggregative approach does
not seem at all suitable. Although many di�erent factors may inuence
our judgment of the overall aesthetic value of a theatre performance, we
cannot expect its overall value to be derivable in a mechanical way (such
as addition) from these factors. The aesthetic value of the whole cannot
be reduced in a summative way into isolable constituents. An analogous
argument can be made against applying the aggregative approach to moral
value according to intuitionist moral theories. `The value of a whole must
not be assumed to be the same as the sum of the values of its parts' [Moore,
1903, p. 28].
The holistic approach avoids these diÆculties. Furthermore, it allows us

to make use of the results already obtained for exclusionary preferences.
An underlying exclusionary preference relation for (complete) alternatives
can be used to derive preferences over the incomplete relata associated with
these alternatives. Due to this, and to the implausibility in many cases
of the decomposition required in aggregative models, the holistic approach
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will be followed here. In other words, exclusionary preferences over a set
of (mutually exclusive) alternatives are taken to be basic, and from them
preferences over other relata can be derived.

This is not an unusual choice; the holistic approach has been chosen by
most philosophical logicians dealing with combinative preferences. It must
be borne in mind that it is a logical reconstruction rather than a faithful
representation of actual deliberative or evaluative processes. In everyday
life, combinative preferences do not seem to need the support of underlying
exclusionary preferences. I prefer chess to boxing simpliciter. Only as a
result of philosophical reection do I prefer certain alternatives in which I
watch or take part in chess to certain other such alternatives in which I watch
or take part in pugilism. [Pollock, 1983, esp pp. 413{414; Beck, 1941, esp. p.
12]. This assumption, and the additional assumption that preferences over
combinative relata can be reconstructed from the exclusionary preference
relation (although, of course, they did not originate that way) have been
made since they provide us with the basis for a series of fruitful formal
explications of preference.

4.4 Constructing the alternatives

What is the nature of the underlying alternatives that are used as a basis
for modelling combinative preferences? Clearly, to each such alternative
should be assigned a set of sentences, namely those sentences that hold in
that alternative. This can be achieved through the introduction of a function
that assigns a set of sentences to each alternative. However, an even simpler
construction is possible. We may assume that if two alternatives support
the same sentences, then they are treated in the same way by the preference
relation. Under this assumption, we can dispense with the function that was
just mentioned, and simplify the notation by identifying alternatives with
their supported sets of sentences.

We will therefore assume that there is a non-empty language L that is
closed under the truth-functional operations : (negation), _ (disjunction),
& (conjunction), ! (implication), and$ (equivalence). In order to express
the logical relations between sentences in the formal language, an operator
of logical consequence (Cn) will be used, such that for any set X of sen-
tences, Cn(X) is the set of logical consequences of X . Cn includes classical
sentential logic. (On consequence operators, see [Hansson, 1999a].)

Logically equivalent sets represent the same states of a�airs, i.e., if Cn(S)
= Cn(S0) for some S; S0 � L, then S and S0 represent the same state
of a�airs. Therefore, nothing is lost by requiring that all alternatives be
logically closed, i.e. that if A 2 A, then A = Cn(A). Clearly, the set of
alternatives should be non-empty (and arguably, it should have at least two
elements). This gives rise to the following de�nition:
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DEFINITION 21. A subset A of }(L) is a sentential alternative set (a set
of sentential alternatives) if and only if:

(1) A 6= ;, and

(2) If A 2 A, then A is consistent and logically closed (A = Cn(A)).

A comparison structure hA;�i is a sentential comparison structure if and
only if A is a sentential alternative set.

This de�nition allows for alternative sets such as fCn(fpg);Cn(fp; qg)g
in which one alternative is a proper subset of another. Such sets should
be excluded, and we also have reasons to exclude alternative sets such as
fCn(fpg);Cn(fqg)g in which two alternatives are logically compatible. Mu-
tual exclusivity is a characteristic feature of complete alternatives that dis-
tinguishes them from relata in general. These requirements can be summa-
rized as follows:

DEFINITION 22. A subset A of }(L) is a set of mutually exclusive alter-
natives if and only if:

(1) A 6= ;,

(2) If A 2 A, then A is consistent and logically closed (A = Cn(A)), and

(3) If A;A0 2 A and A 6= A0, then A [ A0 is inconsistent. (mutual exclu-
sivity)

This de�nition still allows for an alternative set such as the following:

fCn(fp; qg);Cn(fp;:qg);Cn(f:pg)g

For concreteness, consider the alternative set containing the following three
alternatives, referring to possible ways of spending an evening:

(1) Eating out (p) and going to the theatre (q).

(2) Eating out (p) and not going to the theatre (:q).

(3) Not eating out (:p).

This is a somewhat strange set of alternatives, since the third alternative is
less speci�ed than the other two. If neither Cn(f:p; qg) nor Cn(f:p;:qg)
has to be excluded from consideration, then the two of them should replace
Cn(f:pg). If only one of them is available, then that one alone should
replace Cn(f:pg). The outcome of amending the set of alternatives in
either of these ways is a new alternative set in which all alternatives have
been speci�ed in the same respects. This makes it possible to compare them
in a more uniform way. In the above case, such uniformity seems to be a
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prerequisite for exhaustiveness in deliberation. On the other hand, there
are also cases in which such exhaustiveness is not needed. This can be seen
from an alternative interpretation of the above example that was proposed
by Wlodek Rabinowicz. Let p denote that I go out and q that I wear a
tie. Then fCn(fp; qg);Cn(fp;:qg);Cn(f:pg)g is an adequate alternative
set, provided that q is value-relevant in the presence of p but not of :p.
When exhaustiveness of deliberation is required, then the alternative set
should satisfy the following condition:

DEFINITION 23. A subset A of }(L) is a set of contextually complete
alternatives if and only if:

(1) A 6= ;,

(2) If A 2 A, then A is consistent and logically closed (A = Cn(A)), and

(3) If p 2 A 2 A and A0 2 A, then either p 2 A0 or :p 2 A0. (relative
negation-completeness [Hansson, 1992])

OBSERVATION 24. Any set of contextually complete alternatives is also
a set of mutually exclusive alternatives.

Proof. Conditions (1) and (2) of De�nition 23 coincide with the equally
numbered conditions of De�nition 22. To see that condition (3) of De�nition
22 is satis�ed, let A;A0 2 A and A 6= A0. Without loss of generality, we
can assume that there is some p 2 A n A0. It follows from condition (3) of
De�nition 23 that :p 2 A0. Hence, fp;:pg � A [ A0, so that condition (3)
of De�nition 22 is satis�ed. �

In most applications of the holistic approach to combinative preferences, the
underlying alternatives have been possible worlds, represented by maximal
consistent subsets of the language [Rescher, 1967; �Aqvist, 1968; Cresswell,
1971; von Wright, 1972; van Dalen, 1974; von Kutschera, 1975; Trapp, 1985;
Hansson, 1989; Hansson, 1996a].

DEFINITION 25. A subset A of }(L) is a set of possible worlds if and only
if:

(1) A 6= ;,

(2) If A 2 A, then A is a maximal consistent subset of L.

OBSERVATION 26. Any set of possible worlds is a set of contextually
complete alternatives.

Proof. We need to show that if A is a maximal consistent subset of L, then
it is logically closed and satis�es relative negation-completeness. Both are
standard results. For logical closure, suppose to the contrary that p 2 Cn(A)
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and p =2 A. Then A [ fpg is a superset of A and a consistent subset of L,
contrary to the assumption that A is a maximal consistent subset of L.
Relative negation-completeness, follows from the well-known fact that if
p 2 L and A0 2 A, then either p 2 A0 or :p 2 A0. (Suppose not. Then due
to the logical closure of A, p =2 Cn(A0), hence A0 [ f:pg is a superset of A0

and a consistent subset of L.) �

Possible world modelling has the advantages of generality and logical beauty,
but it also has the disadvantage of cognitive unrealism. In practice, we are
not capable of deliberating on anything approaching the size of completely
determinate possible worlds. Instead, we restrict our deliberations to ob-
jects of manageable size. It can therefore be argued that a more realistic
holism should be based on smaller wholes, namely alternatives that cover
all the aspects under consideration|but not all the aspects that might have
been considered. This approach may be seen as an application of Simon's
`bounded rationality view'. Alternatives smaller than possible worlds are
referred to in decision theory as `small worlds' [Savage, 1954; Simon, 1957;
Toda and Shuford, 1965; Toda, 1976; Schoemaker, 1982; Humphreys, 1983;
Mendola, 1987; Hansson, 1993c; Hansson, 1996b].
In summary, we have the following series of increasingly general repre-

sentations of (holistic) alternatives:

Set of possible worlds
+

Contextually complete alternative set
+

Mutually exclusive alternative set
+

Sentential alternative set

The following notation will turn out to be useful:

DEFINITION 27. Let A be a set of sentential alternatives in L. The subset
LA of L is the set consisting exactly of (1) [A, and (2) the truth-functional
combinations of elements of [A.
LA is called the A-language. Its elements are the A-sentences.

DEFINITION 28. Let A be a set of sentential alternatives, and let p and q
be elements of [A. Then:

j=A q denotes that q 2 A for all A 2 A.
p j=A q denotes that q 2 A for all A 2 A such that p 2 A.
p and q are A-incompatible if and only if j=A :(p&q)

4.5 Comparing compatible alternatives

We have now constructed the holistic preference structure. Before connect-
ing it with combinative preferences, we need to have a closer look at the
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characteristic feature of combinative preferences|namely that they allow
for comparisons of compatible relata.
There is nothing strange or unusual with an utterance such as `It is better

to have a cat than to have a dog'|although it is possible to have both a
cat and a dog. We need to make the conventions explicit that guide our
understanding of such utterances. A child may very well protest against
the quoted sentence, saying: `No, it is better to have a dog, if you have a
cat too.' This we perceive as a sign that the child has misunderstood what
it means to make this comparison. But why is it so, and what is a correct
analysis?
There are at least two plausible answers to this question. According to

one approach, that we may call the adjustment account, having both a cat
and a dog is not under consideration. The sentence expresses a comparison
between cat-and-no-dog and dog-and-no-cat. As proposed by Casta~neda,
`[w]hen St. Paul said \better to marry than to burn" he meant \it is better
to marry and not to burn than not to marry and to burn" ' [Casta~neda,
1958, Cf. 1 Cor 7:9].
According to the other approach, that we may call the totality account,

the comparison is between all-ways-to-have-a-dog and all-ways-to-have-a-
cat. Since the alternatives in which one has both a dog and a cat are
elements of both these sets of alternatives, their inuence is cancelled out.
At �rst view, the di�erence between the adjustment and the totality

account may seem rather inconsequential. In the �rst approach, the cat-and-
dog cases are excluded for both relata, and in the second approach they are
included in both relata but their e�ects are cancelled out. The di�erence will
be more clearly seen when a third option is included in the comparison, such
as `having a canary'. First consider the totality account. When we compare
having a cat to having dog, the former alternative is represented by all-ways-
to-have-a-cat. Similarly, when we compare having a cat to having canary, it
is represented by all-ways-to-have-a-cat. The representation of having a cat
is una�ected by what we compare it to. Next, consider the totality account.
When we compare having a cat to having dog, the former alternative is
represented by cat-and-no-dog alternatives. Similarly, when we compare
having a cat to having canary, the former alternative is represented by
cat-and-no-canary alternatives. Hence, the representation of cat-owning
alternatives is constant according to the totality view, but according to the
adjustment account it di�ers depending on what comparison is being made.
It has been argued that the adjustment account is better suited to ex-

press ceteris paribus preferences, whereas the totality view is better suited
for decision-theoretical applications. The two approaches require di�erent
constructions and give rise to di�erent logical properties. The adjustment
approach will be developed in the rest of this subsection and in Subsections
4.6{4.8. We will return to the totality approach in Subsection 4.9.
Probably the �rst statement of the adjustment approach was given by
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Halld�en in his pioneering work on preference logic. He observed: `If we say
that it would be better if p than if q, then we mean that it would be better
if p&:q than if q&:p' [Halld�en, 1957, p. 28]. (Cf. Subsection 4.2.) The
same standpoint was taken by von Wright in his analysis of ceteris paribus
preference [von Wright, 1963, pp. 24{25; von Wright, 1972, pp. 146{147].
The following has become a standard procedure in preference logic:

TRANSLATION PROCEDURE 1 (Halld�en): The informal statement `p is
better than q' is translated into (p&:q) > (q&:p), and `p is equal in value
to q' is translated into (p&:q) � (q&:p).

This is by no means bad as a �rst approximation. It works in cases such
as the one just cited, when the alternatives are compatible and neither of
them logically implies the other. It also works when the alternatives are
logically incompatible. (Then p&:q is equivalent to p and q&:p to q.)

Halld�en's translation procedure runs into serious trouble when at least
one of p and q logically implies the other. Then it forces us to compare a
state of a�airs to a contradictory state of a�airs. This problem was observed
by Kron and Milovanovic, who decided to accept the translation procedure
but left as an open question `what it could mean to prefer a contradiction
to something else or to prefer a state of a�airs to a contradiction' [Kron and
Milovanovic, 1975, p. 187]. Cf. [Trapp, 1985, pp. 314{318]. The translation
procedure breaks down completely when a sentence p is compared to itself;
this comparison will be reduced to comparing logical contradiction to itself.
Arguably, logical contradiction is equal in value to itself, but this does not
seem to be the right reason why a non-contradictory statement p should be
equal in value to itself. The right reason must be concerned with comparing
p to itself, not contradiction to itself.

A remedy for this breakdown can be found simply by observing how
the problematic cases are treated in informal discourse. Let p denote `I
work hard and earn a lot of money' and q `I work hard'. A case can be
made for the viewpoint that p and q are incomparable. However, it should
be clear that if the comparison can be made in a meaningful way, then it
does not invoke the contradictory state of a�airs p&:q. Rather, the actual
comparison takes place between p and q&:p. It would seem correct to say
that since p&:q is contradictory, it is not used to replace p.

Similarly, a comparison between p and itself does not involve a compar-
ison between p&:p and itself. Since p&:p is contradictory, it is not used
to replace p. We are thus led to the following de�nition and translation
procedure:

DEFINITION 29 (Hansson, 1989). p=q (`p and if possible not q') is equal
to p if p&:q is logically contradictory, and otherwise it is equal to p&:q.
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TRANSLATION PROCEDURE 2: [Hansson 1989] The informal statement
`p is better than q' is translated into (p=q) > (q=p), and `p is equal in value
to q' is translated into (p=q) � (q=p).

This procedure yields the same result as Halld�en's in the two cases when the
latter turns out to be satisfactory, namely when p and q are incompatible
and when they are compatible and neither of them implies the other. In the
remaining cases, namely when one or both of p and q implies the other, the
second procedure yields an intuitively more reasonable result than Halld�en's
procedure.
However, we are not yet �nished. The use of logical contradiction in the

de�nition of = leads to undesired results. Let p denote `I go to the moon'
and q `I travel by spaceship'. A comparison between p and q will, according
to translation procedure 2, be conceived as a comparison between p&:q and
q&:p. However, p&:q is not a serious possibility, although it is clearly logi-
cally possible. The only reasonable way to perform this comparison (outside
of certain science �ction contexts) is to compare p to q&:p. More generally,
p=q should be de�ned as p not only when p&:q is logically impossible but
also when it is for other reasons not to be counted as possible, or more
precisely: not included in any element of the alternative set.

DEFINITION 30. p=Aq (`p and if A-possible not q') is equal to p&:q if
p 6j=A q. If p j=A q, then p=Aq is equal to p.

TRANSLATION PROCEDURE 3: The informal statement `p is better
than q' is translated into (p=Aq) > (q=Ap), and `p is equal in value to q' is
translated into (p=Aq) � (q=Ap).

This is the translation procedure that will be used in what follows.
We can now return to Chisholm's and Sosa's argument against contrapo-

sition, that was referred to in Subsection 4.2. They argued that `although
that state of a�airs consisting of there being happy egrets (p) is better than
that one that consists of there being stones (q), that state of a�airs that
consists of there being no stones (:q) is no better, nor worse, than that
state of a�airs consisting of there being no happy egrets (:p)' [Chisholm
and Sosa, 1966, p. 245].
Since stones and happy egrets can coexist, this is a comparison between

compatible alternatives. Therefore, we can apply translation procedure 3.
In other words, when comparing the existence of happy egrets with that of
stones, we should compare alternatives in which there are happy egrets but
no stones to alternatives in which there are stones but no happy egrets, i.e.,
p&:q to q&:p. Next, let us compare :q to :p. By the same argument,
this should be a comparison between, on the one hand, there being no
stones and not being no happy egrets and, on the other hand, there being
no happy egrets and not being no stones. This is, hidden behind double
negations, the same comparison between p&:q and q&:p that we have just



PREFERENCE LOGIC 361

made. Thus, from a logical point of view, it is unavoidable{once we have
accepted translation procedure 3|that p > q holds if and only if :q > :p.
What makes the example seem strange is that although we apply translation
procedure 3 spontaneously to p and q, unaided intuition halts before the
negated statements and does not perform the same operation.

4.6 Representation functions

As we have just seen, an informal comparison between the relata p and
q should be translated into a formal comparison between the relata p=Aq
and q=Ap. Therefore, it should be derivable from a comparison between
alternatives in which p=Aq is true and alternatives in which q=Ap is true. A
pair hA1; A2i of alternatives, such that p=Aq is true in A1 and q=Ap is true
in A2 will be called a representation of the pair hp=Aq; q=Api.

DEFINITION 31. Let A be a set of sentential alternatives. An element A
of A is a representation in A of a sentence x if and only if x 2 A.
An element hA;Bi of A�A is a representation in A of the pair hx; yi of

sentences if and only if x 2 A and y 2 B.
A sentence x or a pair hx; yi of sentences is representable in A if and only

if it has a representation in A.

More concisely, x is representable in A if and only if x 2 [A, and hx; yi if
and only if x; y 2 [A.
Not all representations of hp=Aq; q=Api need to be relevant to the com-

parison between p and q. Those that are relevant will be picked out by a
representation function.

DEFINITION 32 (Hansson, 1989). A representation function for a set A of
sentential alternatives is a function f such that:

(1) If hx; yi is representable in A, then f(hx; yi) is a non-empty set of
representations of hx; yi in A.

(2) Otherwise, f(hx; yi) = ;.

Representation functions provide a general format for deriving combinative
preference relations from exclusionary preference relations:

DEFINITION 33 (Hansson, 1989). Let � be a relation on the set A of
sentential alternatives, and f a representation function for A. The weak
preference relation �f , the f -extension of �, is de�ned as follows:

p �f q if and only if A � B for all hA;Bi 2 f(hp=Aq; q=Api).

>f is the strict part of �f , and �f its symmetric part.

For most purposes it can be assumed that a comparison between p and
q and one between q and p are based on comparisons between the same
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pairs of complete alternatives. This assumption corresponds to the following
symmetry property of representation functions:

DEFINITION 34. A representation function f for a set A of sentential
alternatives is symmetric if and only if for all sentences x; y 2 [A and all
elements A and B of A:

hA;Bi 2 f(hx; yi) if and only if hB;Ai 2 f(hy; xi)

Another plausible property of a representation function is that reexive
comparisons of states of a�airs (comparisons of a state of a�airs to itself)
should only be represented by reexive comparisons of complete alternatives
(comparisons of such an alternative to itself). This can also be required
for comparisons between states of a�airs that are coextensive, i.e. hold in
exactly the same alternatives:

DEFINITION 35. A representation function f for a set A of sentential
alternatives satis�es weak centering if and only if for all sentences x 2 [A
and all elements A1 and A2 of A:

If hA1; A2i 2 f(hx; xi), then A1 = A2.

Furthermore, it satis�es centring if and only if for all sentences x; y 2 [A:

If j=A x$ y, and hA1; A2i 2 f(hx; yi), then A1 = A2.

We should expect a derived combinative preference relation to say about the
complete alternatives exactly what the underlying exclusionary preference
relation says about them. If there is a sentence a that has A as its only
representation, and a sentence b that has B as its only representation, then
a �f b should hold if and only if A � B holds. Indeed, this condition holds
for all representation functions.

OBSERVATION 36 (Hansson, 1989). Let � be a relation on the set A of
sentential alternatives and f a representation function for A. Furthermore,
let A and B be elements of A, and a and b sentences such that A is the only
representation of a in A, and B the only representation of b in A. Then:

a �f b if and only if A � B.

COROLLARY: IfA is a mutually exclusive alternative set, andA = Cn(fag)
and B = Cn(fbg), then a �f b if and only if A � B.

Proof. Since A is the only representation of a in A, it is also the only
representation of a=Ab in A. Similarly, B is the only representation of b=

Aa in A. De�nition 32 yields f(ha=Ab; b=Aai) = fhA;Big. According to
De�nition 33, a �f b i� A � B. �



PREFERENCE LOGIC 363

4.7 Ceteribus paribus preferences

The more precise construction of a representation function will have to de-
pend on the type of preferences that we aim at representing. This subsection
is devoted to the construction of representation functions for ceteris paribus
preferences.
A recipe for this construction can be extracted from von Wright's early

work. He de�ned ceteris paribus preferences as follows:

`[A]ny given total state of the world, which contains p but not q,
is preferred to a total state of the world, which di�ers from the
�rst in that it contains q but not p, but otherwise is identical
with it.' [von Wright, 1963, p. 31]. Cf. [Quinn, 1974, p. 124;
von Wright, 1972, pp 140 and 147].

This recipe needs some modi�cations before it can be put to use. Where
von Wright refers to `p but not q', i.e. to p&:q, we should instead refer to
p=Aq, as explained in Subsection 4.5. Furthermore, von Wright's concept of
`identity' is problematic. It is more reasonable to require that the alterna-
tives are, given the di�erences required for them to represent the respective
sentences, as similar as possible in all other respects.
With these modi�cations, the quoted passage can be rephrased as follows:

Any given alternative which contains p=Aq is preferred to an
alternative which di�ers from the �rst in that it contains q=Ap,
but is otherwise as similar as possible it.

Before this recipe can be formalized, we need to operationalize `as similar as
possible'. In a follow-up article, von Wright attempted to solve this problem
(under another description) by means of an arithmetical count of di�erences
in terms of logically independent atomic states of the world [von Wright,
1972, pp. 146{147]. He assumed that there are n logically independent
states of a�airs p1,...pn, and 2n possible states of the world w1,...w2n that
can be compared in terms of the n atomic states. If two states of a�airs
q and r are molecular combinations of in all m out of the n atomic states,
then a ceteris paribus comparison of q and r keeps the other n �m states
constant.
Unfortunately, this simple construction is not as promising as it might

seem at �rst sight. Its major weakness is that the choice of atomic states can
be made in di�erent ways that give rise to di�erent relations of similarity.
For an example of this, consider the following four sentential alternatives:

(1a) Cn(fp; q1; q2; q3; q4; q5; q6; q7; q8; q9; q10g)

(1b) Cn(f:p; q1; q2; q3; q4; q5; q6; q7; q8; q9; q10g)

(2a) Cn(fp; r1; r2; r3; r4; r5; r6; r7; r8; r9; r10g)
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(2b) Cn(f:p;:r1;:r2;:r3;:r4;:r5;:r6;:r7;:r8;:r9;:r10g)

Intuitively, (1a) and (1b) seem to represent a ceteris paribus comparison
between p and , :p, whereas (2a) and (2b) do not. But suppose that
r1,...r10 are de�nable in terms of p, q1,... q10 as follows:

r1 $ (p$ q1)
: : :
r10 $ (p$ q10)

Then, in going from (1a) and (1b) to (2a) and (2b), we shift to another, ex-
pressively equivalent set of atomic sentences. Since there are no objectively
given logical atoms, there is in general ample scope for choosing among sets
of atomic sentences that are equivalent in terms of what can be expressed
in the language, but not in terms of von Wright's similarity measure.
It seems inescapable that a non-trivial explication of similarity will have

to make use of more information than what is inherent in the logic. Probably
the most transparent way to represent similarity is by means of a similarity
relation, as follows:

DEFINITION 37 (Williamson, 1988). For any set 	, the four-place relation
T is a similarity relation over 	 if and only if, for all U; V;W;X; Y; Z 2 	:

(T1) T (W;X; Y; Z) _ T (Y; Z;W;X) (completeness)

(T2) T (U; V;W;X) & T (W;X; Y; Z)! T (U; V; Y; Z) (transitivity)

(T3) T (X;X; Y; Z)

(T4) T (X;Y; Y; Y )! X = Y

(T5) T (X;Y; Y;X) (symmetry)

The strict part of T is de�ned as follows:

T̂ (W;X; Y; Z)$ T (W;X; Y; Z) & :T (Y; Z;W;X)

T (W;X; Y; Z) should be read `W is at least as similar to X as is Y to Z', and
T̂ (W;X; Y; Z) `W is more similar to X than is Y to Z'. This axiomatization
of the four-termed similarity relation was proposed by T. Williamson [1988],
see also [Hansson, 1992]. It is a generalization of a three-termed similarity
relation that was introduced earlier by David Lewis [Lewis, 1973a, pp. 48�;
1973b, p. 560; 1981]. Lewis's relation S(X;Y; Z) should be read `X is more
similar to Y than is Z'. It can be de�ned from the four-termed relation
through the relationship S(X;Y; Z)$ T (X;Y; Z; Y ).
(T1) and (T2) combine to say that similarity is a weak ordering (complete

and transitive). (T3) and (T4) combine to say that maximal similarity
obtains between two arguments if and only if they are identical, and (T5)
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states that the degree of similarity between two arguments does not depend
on the order in which they are taken.
How can similarity be used to explicate ceteris paribus preferences? Two

proposals are available in the literature. One of these is based on the intu-
ition that when comparing p and q we should look for pairs of alternatives
hA1; A2i that satisfy the following two conditions:

(1) The representation condition

A1 is a representation of p, and A2 a representation of q.

(2) The unfocused similarity condition

A1 and A2 are maximally similar to each other, as compared to
other pairs of alternatives that satisfy the representation condi-
tion.

These assumptions give rise to the following de�nition of ceteris paribus
preferences. It can be seen as a formalized version of the basic ideas behind
von Wright's explication of ceteris paribus preferences, as quoted above.

DEFINITION 38. Let A be a set of sentential alternatives and T a simi-
larity relation over A. Then f is the unfocused similarity-maximizing rep-
resentation function that is based on T , if and only if it is a representation
function and, for all x; y 2 [A and A;B 2 A:

hA;Bi 2 f(hx; yi) if and only if x 2 A, y 2 B, and T (A;B;A0; B0)
holds for all A0; B0 2 A such that x 2 A0 and y 2 B0.

Furthermore, if � is a reexive relation on A, then �f is an unfocused
similarity-maximizing preference relation if and only if it is based on an
unfocused similarity-maximizing representation function.

The adequacy criteria introduced in Subsection 4.6 are satis�ed by unfo-
cused similarity-maximizing representation functions.

OBSERVATION 39. Let A be a set of sentential alternatives and f an
unfocused similarity-maximizing representation function over A. Then f
satis�es centring and symmetry.

Proof.
Centering: Suppose to the contrary that centring does not hold for f .

Then, according to De�nition 35, there are A1; A2 2 A and x; y 2 [A
such that j=A x $ y, hA1; A2i 2 f(hx; yi), and A1 6= A2. It follows from
A1 6= A2, using (T4), that :T (A1; A2; A2; A2). On the other hand, ac-
cording to De�nition 38, it follows from x; y 2 A2 that T (A1; A2; A2; A2).
Contradiction.

Symmetry: Suppose to the contrary that symmetry is not satis�ed. Then
there are x; y 2 [A and A;B 2 A such that hA;Bi 2 f(hx; yi) and hB;Ai =2
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f(hy; xi). It follows by De�nition 38 from hB;Ai =2 f(hy; xi) that there are
A0; B0 2 A such that x 2 A0, y 2 B0, and :T (B;A;B0; A0).
On the other hand, it follows according to De�nition 38 from hA;Bi 2

f(hx; yi), x 2 A0, and y 2 B0, that T (A;B;A0; B0). We can use (T5)
to obtain T (B;A;A;B) and T (A0; B0; B0; A0). Two applications of (T2) to
T (B;A;A;B), T (A;B;A0; B0), and T (A0; B0; B0; A0) provide us with
T (B;A;B0; A0), contrary to what was just shown. This contradiction con-
cludes the proof. �

The other similarity-based approach to ceteris paribus preferences is based
on the assumption that there is a privileged alternative A0 that can serve
as a reference point. If the alternative set consists of possible worlds, then
the actual world can be used as such a reference point. This amounts to
the following alternative to (2):

(20) The focused similarity condition

A1 is maximally similar to A0, as compared to other alternatives
that satisfy the representation condition with respect to p. In
the same way, A2 is maximally similar to A0, as compared to
other alternatives that satisfy the representation condition with
respect to q.

This is an approach with some tradition in the literature on preference logic
[von Kutschera, 1975; Trapp, 1985; Hansson, 1989]. In the present formal
framework it can be expressed as follows:

DEFINITION 40. Let A be a set of sentential alternatives, A0 an element
of A, and T a similarity relation overA. Then f is the A0-focused similarity-
maximizing representation function that is based on T , if and only if it is a
representation function f such that, for all x; y 2 [A and A;B 2 A:

hA;Bi 2 f(hx; yi) if and only if x 2 A, y 2 B,
T (A;A0; A

0; A0) holds for all A
0 such that x 2 A0 2 A, and

T (B;A0; B
0; A0) holds for all B

0 such that y 2 B0 2 A.

Furthermore, if � is a reexive relation on A, then �f is an A0-focused
similarity-maximizing preference relation if and only if it is based on an
A0-focused similarity-maximizing representation function.

Perhaps surprisingly, from a formal point of view the focused approach can
be subsumed under the unfocused approach.

OBSERVATION 41 (Hansson, 1998b). Let hA;�i be a sentential compar-
ison structure such that A is �nite and that � is complete and transitive.
Then:

1. If �f is a focused similarity-maximizing preference relation, based
on hA;�i and a similarity relation T , then it is also an unfocused
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similarity-maximizing preference relation, based on hA;�i and an-
other similarity relation T 0.

2. The converse relationship does not hold in general.

Proof.

Part 1: Let �f be focused on A0. For each X 2 A, let Æ(X) be the

number of elements of Y in A such that T̂ (Y;A0; X;A0). Let T
0(X;Y; Z;W )

hold if and only if either X = Y or Æ(X)+Æ(Y ) � Æ(Z)+Æ(W ) and Z 6=W .
Then T 0 satis�es conditions (T1)-(T5) of De�nition ??. Furthermore, if x
and y are A-incompatible, then:

T 0(A;B;A0; B0) whenever x 2 A0 2 A and y 2 B0 2 A,
i� Æ(A) + Æ(B) � Æ(A0) + Æ(B0) whenever x 2 A0 2 A and y 2 B0 2 A,
i� Æ(A) � Æ(A0) whenever x 2 A0 2 A and Æ(B) � Æ(B0)
whenever y 2 B0 2 A,

i� T (A;A0; A
0; A0) whenever x 2 A

0 2 A and T (B;A0; B
0; A0)

whenever y 2 B0 2 A.

It follows that T 0 gives rise to the same preference relation via De�nition
38 as does T via De�nition 40.

Part 2: We are going to exhibit an unfocused similarity-maximizing
preference relation that cannot be reconstructed as a focused similarity-
maximizing preference relation. For that purpose, let � be transitive and
complete, and let p, q, and r be mutually exclusive relata. Let A =
fA;B;C;Dg be contextually complete, with r 2 A, p 2 B, q 2 C, and
r 2 D. Furthermore, let � be a weak ordering (complete and transitive)
over A, such that A > B > C > D. Let T be a similarity relation over A
such that similarity coincides with closeness in the following diagram:

A B C D

(The distances A � B, B � C, and C � D are the same.) Let f be the
unfocused representation function based on T in the manner of De�nition
38. Then p �f q and q �f r but not p �f r. It is easy to show that a
focused similarity-maximizing preference relation always satis�es transitiv-
ity for mutually exclusive relata, if the underlying exclusionary preference
relation is transitive. Therefore, �f cannot be reconstructed as focused. �

Due to its greater generality, the unfocused approach will be used in what
follows. To simplify the terminology, it will be called `similarity-maximizing'
rather than `unfocused similarity-maximizing'.
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4.8 Logical properties of combinative preferences

It is natural to ask to what extent various logical properties of the underlying
exclusionary preference relation � are reected in the logic of the derived
preference relation �f . More precisely, a logical property is transmitted by
f if and only if: If � has this property, then so does �f [Hansson, 1996a].
Reexivity is not transmitted by all representation functions, but it is

transmitted by a wide range of representation functions, including those
that are similarity-maximizing.

OBSERVATION 42 (Hansson, 1998b). Let � be a reexive relation on the
sentential alternative set A, and let f be a representation function for A.
Then �f is reexive if and only if for all sentences x and all elements A1

and A2 of A: If hA1; A2i 2 f(hx; xi), then A1 � A2.

COROLLARY. If f satis�es weak centring, then �f is reexive.

Proof. Immediate from De�nitions 33 and 35. �

Completeness of the exclusionary preference relation ((A � B) _ (B � A))
is not transmitted to similarity-maximizing preference relations. Indeed,
a fairly strong negative result can be obtained that holds for all types of
representation functions.

OBSERVATION 43 (Hansson, 1998b). Let f be a representation function
for the sentential alternative set A, such that there are two elements p and
q of [A and four pairwise distinct elements A1, A2, B1, and B2 of A such
that hA1; B1i 2 f(hp=Aq; q=Api) and hB2; A2i 2 f(hq=Ap; p=Aqi) Then there
is a complete relation � over A such that (p �f q)_ (q �f p) does not hold.

Proof. Let � be complete and such that A2 > B2 and B1 > A1. Then it
follows from hB2; A2i 2 f(hq=Ap; p=Aqi) and :(B2 � A2) that :(q �f p).
Similarly, it follows from hA1; B1i 2 f(hp=Aq; q=Api) and :(A1 � B1) that
:(p �f q). �

Transitivity is not in general transmitted by similarity-maximizing repre-
sentation functions, not even for pairwise incompatible relata.

OBSERVATION 44 (Hansson, 1998b). Let � be a transitive and complete
relation on the contextually complete alternative set A, and let f be a
representation function on A. Then p �f q �f r ! p �f r does not hold in
general if �f is similarity-maximizing, not even if p, q, and r are pairwise
incompatible.

Proof. See part 2 of the proof of Observation 41. �

We can now turn to such logical properties of combinative preferences that
cannot be transmitted since they are not de�ned for exclusionary prefer-
ences. The principles of contraposition and conjunctive expansion hold for
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�f , �f , and >f in the principal case when neither of the relata contextually
implies the other. These results apply to all preference relations that are
based on a representation function in the manner of De�nition 33.

OBSERVATION 45 (Hansson 1998b). Let � be a reexive relation on the
sentential alternative set A and f a representation function for A. Fur-
thermore, let p and q be elements of [A such that p 6j=A q and q 6j=A p.
Then:

(1) p �f q ! :q �f :p,

(2) p �f q ! :q �f :p, and

(3) p >f q ! :q >f :p.

Proof.
Part 1: Let p �f q, and let hA;Bi 2 f(h:q=A:p;:p=A:qi). It follows

from p 6j=A q that :q=A:p is equivalent to p=Aq, and from q 6j=A p that :p=

A:q is equivalent to q=Ap. Thus, hA;Bi 2 f(hp=Aq; q=Api). It follows from
p �f q that A � B. Since this holds for all hA;Bi 2 f(h:q=A:p;:p=A:qi),
we may conclude that :q �f :p.

Part 2: From part 1.
Part 3: Suppose that p >f q, i.e., p �f q and :(q �f p). It follows from

p �f q, in the same way as in part 1, that :q �f :p.
It follows from :(q �f p) that there is some A and some B such that

hB;Ai 2 f(hq=Ap; p=Aqi) and :(B � A). Then, hB;Ai 2 f(h:p=A:q;:q=

A:pi). From this and :(B � A) follows :(:p �f :q).
From :q �f :p and :(:p �f :q) it follows that :q >f :p. �

OBSERVATION 46 (Hansson, 1998b). Let � be a reexive relation on the
sentential alternative set A and f a representation function for A. Fur-
thermore, let p and q be elements of [A such that p 6j=A q and q 6j=A p.
Then:

(1) p �f q $ (p&:q) �f (q&:p),

(2) p �f q $ (p&:q) �f (q&:p), and

(3) p >f q $ (p&:q) >f (q&:p).

Proof. For all hA;Bi 2 A�A, hA;Bi 2 f(p=Aq; q=Api) i� hA;Bi 2 f(p&:q
=Aq&:p; q&:p=Ap&:qi). The proof proceeds as that of Observation 45. �

Disjunctive interpolation does not hold in general for similarity-maximizing
preference relations, but if p and q are A-incompatible then it holds for all
preference relations that are based on representation functions.
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OBSERVATION 47 (Hansson, 1998b). Let A be a sentential alternative
set, � a reexive relation on A and f a representation function on A. Let
p and q be A-incompatible elements of [A. Then:

(1) (p �f (p _ q))$ (p �f q)

(2) ((p _ q) �f p)$ (q �f p)

(3) (p �f q)! (p �f (p _ q) �f q)

Proof. For part 1, we have: f(hp=A(p_q); (p_q)=Api) = f(hp; qi) = f(hp=Aq;
q=Api). Part 2 is proved in the same way, and part 3 follows from parts 1
and 2. �

OBSERVATION 48 (Hansson, 1998b). Let � be a transitive and com-
plete relation on the contextually complete alternative set A. Let �f be a
similarity-maximizing extension of �. Then:

(1) (p �f q)! (p �f (p _ q)) does not hold in general.

(2) (p �f q)! ((p _ q) �f q) does not hold in general.

Proof.
Part 1: Let A = fA;B;Cg, with p;:q 2 A, :p; q 2 B, and p; q 2 C. Let

A > B > C. Let f be based on a similarity relation T such that for all
X , Y , Z, and W , if X 6= Y and Z 6= W then T (X;Y; Z;W ). Then f(hp
=Aq; q=Api) = fhA;Big and A � B, so that p �f q. However, it follows
from hC;Bi 2 f(hp=Ap _ q; p _ q=Api) and B > C that :(p �f (p _ q)).

Part 2: Let A = fA;B;Cg, with p; q 2 A, p;:q 2 B, and :p; q 2 C. Let
A > B > C. Let f be based on a similarity relation T such that for all
X , Y , Z, and W , if X 6= Y and Z 6= W then T (X;Y; Z;W ). Then f(hp
=Aq; q=Api) = fhB;Cig and B � C, so that p �f q. However, it follows
from hB;Ai 2 f(hp _ q=Aq; q=Ap _ qi) and A > B that :((p _ q) �f q). �

The properties of disjunctive distribution referred to in Subsection 4.2 do
not hold in general for similarity-maximizing preference relations [Hansson,
1998b]. However, the following much weaker properties for pairwise incom-
patible relata can be shown to hold:

OBSERVATION 49. Let � be a transitive and complete relation on the
contextually complete alternative set A. Let p; q; r 2 [A, and let �f be a
similarity-maximizing extension of �. Then:

(1) ((p _ q) �f r) ! (p �f r) _ (q �f r) holds if p, q, and r are pairwise
A-incompatible elements of A.
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(2) (p �f (q _ r)) ! (p �f q) _ (p �f r) holds if p, q, and r are pairwise
A-incompatible elements of A.

Proof.
Part 1: Let (p_q) �f r. Then there is at least one pair hX;Y i of elements

of A such that p_q 2 X , r 2 Y , and T (X;Y;X 0; Y 0) for all X 0; Y 0 2 A such
that p _ q 2 X 0 and r 2 Y 0. Clearly, either p 2 X or q 2 X .
If p 2 X , let hX 00; Y 00i be any pair such that p 2 X 00 and r 2 Y 00. Then

p _ q 2 X 00, and it follows that T (X;Y;X 00; Y 00). Since this holds for all
pairs hX 00; Y 00i with p 2 X 00 and r 2 Y 00, p �f r.
If q 2 X , then q �f r follows in the same way.
Part 2: Let p �f (q_r). Then there is at least one pair hX;Y i of elements

of A such that p 2 X , q_r 2 Y , and T (X;Y;X 0; Y 0) for all X 0; Y 0 2 A such
that p 2 X 0 and q _ r 2 Y 0. Clearly, either q 2 Y or r 2 Y .
If q 2 Y , let hX 00; Y 00i be a pair such that p 2 X 00 and q 2 Y 00. Then

q _ r 2 Y 00, and it follows that T (X;Y;X 00; Y 00). Since this holds for all
pairs hX 00; Y 00i with p 2 X 00 and q 2 Y 00, p �f q.
If r 2 Y , then p �f r follows in the same way. �

In summary, similarity-maximizing preference relations have very weak, per-
haps disappointingly weak, logical properties. However, it does not follow
that they are inadequate to represent ceteris paribus preferences. Coun-
terexamples to several of the rejected principles were given in Subsection
4.2, and it can reasonably be argued that an adequate logic for ceteris
paribus preferences should be quite weak.

4.9 The totality approach

In this subsection, we are going to return to the alternative approach to
combinative preferences that was mentioned in Subsection 4.5, namely the
totality approach. It is based on the representation of (single) sentences
rather than of pairs of sentences. Each sentence is represented by the set of
alternatives to which it is applied.

DEFINITION 50. Let p 2 LA. Then:

reprA(p) = fX 2 A j p 2 Xg

The index of reprA is deleted whenever convenient.

Preferences over sentences can be derived from preferences over sets of al-
ternatives, according to the simple principle that p �0 q holds if and only
repr(p) �0 repr(q) holds. More precisely:

DEFINITION 51. Let hA;�i be a comparison structure. Then a relation
�0 over }(A) n f;g is a subset-extension of � if and only it holds for all
A;B 2 A that fAg �0 fBg i� A � B.
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If hA;�i is a sentential comparison structure, then p �0 q is an abbrevi-
ated notation for reprA(p) �

0 reprA(q).

Several types of subset-extensions have been investigated. Among the sim-
plest are those that are based on the decision-theoretical principles of maxi-
min and maximax. To express them we need some additional notation and
terminology.

DEFINITION 52. Let ; 6= B � A, let p 2 [A, and let � be a relation on
A. Then:

max(B) = fX 2 B j (8Y 2 B)(X � Y )g
min(B) = fX 2 B j (8Y 2 B)(Y � X)g

The elements of max(B) are the (�-)maximal elements of B, and those of
min(B) are its (�-)minimal elements.
max(p) is an abbreviation of max(repr(p)), and min(p) an abbreviation

of min(repr(p)). Furthermore:

max(B) � max(D) holds if and only if X � Y
for all X 2 max(B) and Y 2 max(D).

min(B) � min(D) holds if and only if X � Y
for all X 2 min(B) and Y 2 min(D).

DEFINITION 53. Let hA;�i be a sentential comparison structure. The
maximin preference relation that is based on � is the relation �i on [A
such that:

B �i D if and only if min(B) � min(D).

Furthermore, the maximax preference relation based on � is the relation
�x on [A such that:

B �x D if and only if max(B) � max(D).

B >i D is an abbreviation of (B �i D) & :(D �i B), and B �i D of
(B �i D) & (D �i B). B >x D and B �x D are de�ned analogously.

In the indices, x refers to maximization of the maximum and i to maxi-
mization of the minimum.
Neither completeness nor transitivity is transmitted from an exclusionary

preference relation � to �i and �x. However, the combined property of
being both complete and transitive is transmitted.

OBSERVATION 54 (Hansson, 1998b). Let A be a �nite and sentential
alternative set.

(1) Let � be a complete relation on A. It does not follow in general that
�i and �x are complete.
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(2) Let � be a reexive and transitive relation on A. It does not follow
in general that �i and �x are transitive.

(3) Let � be a complete and transitive relation on A. Then �i and �x

are complete and transitive.

Proof.
Part 1: Let A = fX;Y; Zg and let repr(p) = fX;Y g, repr(q) = fZg,

and Z > X � Y > Z. Then min(p) = fX;Y g and min(q) = fZg. It
follows from Z > X that p �i q does not hold and from Y > Z that q �i p
does not hold. The same example can be used to prove the incompleteness
of �x.

Part 2: Let A = fX;Y1; Y2; Zg, repr(p) = fXg, repr(q) = fY1; Y2g,
repr(r) = fZg, and � = fhX;Xi; hY1; Y1i; hY2; Y2i; hZ;Zi; hZ;Xig. Then
min(p) = fXg, min(q) = ;, and min(r) = fZg. Since min(q) = ;, p �i q
and q �i r hold vacuously, whereas p �i r does not hold. The same example
can be used to show that �x is not transitive.

Part 3: For completeness of �i, it is suÆcient to note that due to the
completeness and transitivity of �, either min(p) � min(q) or min(q) �
min(p). For the transitivity of �i, let p �i q �i r. Let X 2 min(p) and
Z 2 min(r). Since q 2 [A, repr(q) is non-empty. Since A is �nite and �
is complete and transitive, so is min(q). Let Y 2 min(q). Then X � Y
follows from p �i q and Y � Z from q �i r. Due to the transitivity of �,
X � Z. Since this holds for all elements X of min(p) and Z of min(r), we
may conclude that p �i r.

The completeness and transitivity of �x follows in the same way. �

Contraposition does not hold for either maximin nor maximax preferences,
but conjunctive expansion of strict preference holds in both cases.

OBSERVATION 55. Let � be a transitive and complete relation on the
contextually complete alternative set A, and let p;:p; q;:q 2 [A. Then:

(1a) p �i q ! :q �i :p does not hold in general.

(1b) p �i q ! :q �i :p does not hold in general.

(1c) p >i q ! :q >i :p does not hold in general.

(2a) p �x q ! :q �x :p does not hold in general.

(2b) p �x q ! :q �x :p does not hold in general.

(2c) p >x q ! :q >x :p does not hold in general.
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Proof.

Parts 1a, 1b, 2a, and 2b: Let A = fA;B;C;Dg, p; q 2 A, :p; q 2 B,
p;:q 2 C, and p; q 2 D. Let A � B > C � D.

Part 1c and 2c: Let A = fA;B;C;Dg, :p;:q 2 A, p;:q 2 B, :p; q 2 C,
and :p;:q 2 D. Let A � B > C � D. �

OBSERVATION 56. Let � be a transitive and complete relation on the
contextually complete alternative set A, and let p&:q; q&:p 2 [A. Then:

(1a) (p �i q)! ((p&:q) �i q&:p)) does not hold in general.

(1b) (p �i q)! ((p&:q) �i (q&:p)) does not hold in general.

(1c) (p >i q)! ((p&:q) >i (q&:p))

(2a) (p �x q)! ((p&:q) �x q&:p)) does not hold in general.

(2b) (p �x q)! ((p&:q) �x (q&:p)) does not hold in general.

(2c) (p >x q)! ((p&:q) >x (q&:p))

Proof.

Parts 1a, 1b, 2a, and 2b: Let A = fA;B;C;Dg, p; q 2 A, :p; q 2 B,
p;:q 2 C, and p; q 2 D. Let A � B > C � D.

Part 1c: Let p >i q. Then min(p) > min(q). Clearly min(p&:q) �
min(p). Furthermore, if follows from min(p) > min(q) that :p 2 min(q),
hence q&:p 2 min(q), hence min(q) � min(q&:p). We can apply transi-
tivity tomin(p&:q) � min(p),min(p) > min(q), andmin(q) � min(q&:p),
and obtain min(p&:q) > min(q&:p), so that (p&:q) >i (q&:p).

Part 2c: Let p >x q. Then max(p) > max(q). Clearly max(q) �
max(q&:p). Furthermore, if follows from max(p) > max(q) that :q 2
max(p), hence p&:q 2 max(p), hence max(p&:q) � max(p). We can ap-
ply transitivity tomax(p&:q) � max(p), max(p) > max(q), andmax(q) �
max(q&:p), and obtain max(p&:q) > max(q&:p), so that (p&:q) >x

(q&:p). �

Disjunctive interpolation holds for both �i and �x.

OBSERVATION 57. Let � be a transitive and complete relation on the
contextually complete alternative set A, and let p; q 2 [A. Then:

(1) (p �i q)! (p �i (p _ q) �i q)

(2) (p �x q)! (p �x (p _ q) �x q)
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Proof.
Part 1: Let p �i q. Then min(p) � min(p_ q) and min(p_ q) � min(q).
Part 2 Let p �x q. Thenmax(p) � max(p_q) andmax(p_q) � max(q).

�

Fairly strong principles of disjunctive distribution can be obtained for �i

and �x:

OBSERVATION 58. Let � be a transitive and complete relation over the
contextually complete alternative set A. Then:

(1a) ((p _ q) �i r)$ (p �i r) & (q �i r)

(1b) (p �i (q _ r))$ (p �i q) _ (p �i r)

(2a) ((p _ q) �x r)$ (p �x r) _ (q �x r)

(2b) (p �x (q _ r)) $ (p �x q) & (p �x r)

Proof.
Part 1a: Left to right: Let (p_q) �i r. Then min(p_q) � min(r). Since

min(p) � min(p _ q), transitivity yields min(p) � min(r), hence p �i r.
We can prove q �i r in the same way.
Right to left: Let p �i r and q �i r. Then min(p) � min(r) and

min(q) � min(r). Since eithermin(p_q) � min(p) ormin(p_q) � min(q),
we can use transitivity to obtain min(p _ q) � min(r), hence (p _ q) �i r.

Part 1b: Left to right: Let p �i (q _ r). Then min(p) � min(q _ r).
Since either min(q_r) � min(q) or min(q_r) � min(r), transitivity yields
either min(p) � min(q) or min(p) � min(r), hence either p �i q or p �i r.
Right to left: For symmetry reasons, we may assume that p �i q. Then

min(p) � min(q). Since min(q) � min(q _ r), transitivity yields min(p) �
min(q _ r), hence p �i (q _ r).

Part 2a: Left to right: Let (p _ q) �x r, i.e. max(p _ q) � max(r).
Since either max(p) � max(p _ q) or max(q) � max(p _ q), we can use
transitivity to obtain either max(p) � max(r) or max(q) � max(r), hence
either p �x r or q �x r.
Right to left: Let p �x r, i.e. max(p) � max(r). We have max(p _ q) �

max(p), and transitivity yields max(p _ q) � max(r), i.e. (p _ q) �x r. If
q �x r, then (p _ q) �x r follows in the same way.

Part 2b: Left to right: Let p �x (q _ r). Then max(p) � max(q _ r).
Since max(q _ r) � max(q), transitivity yields max(p) � max(q), so that
p �x q. We can obtain p �x r in the same way.
Right to left: Let p �x q and p �x r. Then max(p) � max(q) and

max(p) � max(r). Furthermore, either max(q) � max(q _ r) or max(r) �
max(q_r). In either case it follows by transitivity thatmax(p) � max(q_r),
hence p �x (q _ r). �
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The following observation introduces a couple of fairly problematic proper-
ties for maximin and maximax preferences.

OBSERVATION 59. Let � be a relation on the sentential alternative set
A, and let p; q 2 [A. Then:

(1) If j=A p! q, then p �i q.

(2) If j=A p! q, then q �x p.

COROLLARY: Let � be a relation on the sentential alternative set A, and
let p; q 2 [A. Then:

(1) p �i (p _ q)

(2) (p _ q) �x p

Proof.
Part 1: It follows from j=A p! q that min(p) � min(q), hence p �i q.
Part 2: It follows from j=A p! q that max(q) � max(p), hence q �x p.

�

Part (1) of this observation has been called the `Nobel peace prize postulate'.
[Hansson 1998b] Let q denote that a certain statesman stops a war, and p
that he �rst starts a war and then stops it. Let A be an alternative set that
contains representations of p and q. Then j=A p ! q is satis�ed, and we
can conclude that p �i q, i.e. p is (in the maximin sense) at least as good
a behaviour as q. It is not diÆcult, either, to �nd examples that bring out
the strangeness of part (2). We may, for instance, let q denote some violent
action and p the same action, performed in self-defence.
The properties listed in the Corollary of Observation 59 were used by

Packard in axiomatic characterizations. Maximin preference is characterized
by transitivity, completeness, p �i (p _ q), and (p �i r) & (q �i r) ! ((p _
q) �i r). Maximax preference is characterized by transitivity, completeness,
(p _ q) �x p, and (p �x q) & (p �x r) ! (p �x (q _ r)). [Packard 1979]
Maximin and maximax preferences are not they only subset-extended

preference relations of interest. To begin with, they are not the only such
relations that are determined exclusively by the best and worst elements of
a set. (On such relations, see [Barbera et al., 1984].) Two other such pref-
erence relations are the interval maximin and interval maximax relations:

DEFINITION 60 (Hansson, 1998b). Let � be a relation on the sentential
alternative set A. The interval maximin preference relation �ix based on
� is the relation on }(A) n ; such that for all B;D 2 }(A) n ;:

(1) If min(B) > min(D), then B >ix D.

(2) If min(B) � min(D), then B �ix D if and only if max(B) � max(D).
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B >ix D is an abbreviation of (B �ix D) & :(D �ix B), and B �ix D of
(B �ix D) & (D �ix B).

DEFINITION 61 (Hansson, 1998b). Let � be a relation on the sentential
alternative set A. The interval maximax preference relation �xi based on
� is the relation on }(A) n ; such that for all B;D 2 }(A) n ;:

(1) If max(B) > max(D), then B >xi D.

(2) If max(B) � max(D), then B �xi D if and only if min(B) � min(D).

B >xi D is an abbreviation of (B �xi D) & :(D �xi B), and B �xi D of
(B �xi D) & (D �xi B).

�ix maximizes �rst the minimum and after that the maximum, whereas
�xi does this in the reverse order.
Interval maximin preference is a modi�cation of the maximin preference

relation. The latter not only gives precedence to the avoidance of bad worst
outcomes (which is an expression of cautiousness), but also refrains from
making any di�erence between two relata that both satisfy this criterion.
In contrast, the interval maximin preference relation maximizes both worst
and best alternatives, but gives maximization of the former absolute priority
over maximization of the latter. Similarly, the interval maximax preference
relation maximizes both worst and best alternatives, but gives maximization
of the latter absolute priority over maximization of the former.

Another interesting group of subset-extensions are those that rank sets
of alternatives according to their medians. If a set has an odd number of
elements, then the set consisting of the element in the middle according to
the �-ranking is the median according to �. If there is an even number
of elements, then the two elements closest to the middle form the median
[Nitzan and Prasanta, 1984]. Hence, in this case as well, one or two elements
determine the value of the whole set.
A good case can be made that all elements of a set of alternatives should

have an inuence on the value of the set as a whole. This can easily be
achieved if a numerical value (utility) is assigned to each element of A.
Fishburn has provided an axiomatic characterization of preferences over
}(A) n ; that are derived from utility assignments to A by means of even-
chance lotteries [Fishburn, 1972].

5 PREFERENCES AND MONADIC CONCEPTS

In addition to the comparative notions, `better' and `of equal value', in-
formal discourse on values contains monadic (one-place) value predicates,
such as `good', `best', `very bad', `fairly good', etc. It also contains monadic
normative concepts such as `ought', `may', `forbidden', etc. This section
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is devoted to the connection between preference relations and some ma-
jor types of monadic predicates. Throughout this section, �0 denotes a
(weak) combinative preference relation that operates on the union [A of
some contextually complete alternative set A. >0 and �0 are its strict and
symmetric parts, respectively. The construction of �0 will be left open, but
the constructions discussed in Section 4 are obvious candidates.
Subsection 5.1 introduces two general categories of monadic predicates.

Subsections 5.2{5.3 are devoted to `good' and `bad', Subsection 5.4 to some
other monadic value predicates, and Subsection 5.5 to normative predicates.

5.1 Positive and negative predicates

What is better than something good is itself good. Many other value
predicates|such as `best', `not worst', `very good', `excellent', `not very
bad', `acceptable', etc.|have the same property. If one of these predicates
holds for p, then it also holds for everything that is better than p or equal
in value to p. This property will be called `�0-positivity', or (when there is
no risk of confusion), simply `positivity'.

DEFINITION 62 (Hansson, 1990). A monadic predicate H is �0-positive
if and only if for all p and q:

Hp & (q �0 p)! Hq.

Similarly, `bad' has the converse property that if p is bad, then whatever is
worse than or equal in value to p, is also bad. Other predicates that share
this property are `very bad', `worst', and `not best'. This property will be
called
`(�0-)negativity'.

DEFINITION 63 (Hansson, 1990). A monadic predicate H is �0-negative
if and only if for all p and q:

Hp & (p �0 q)! Hq.

Intuitively, we expect the negation `not good' of the positive predicate `good'
to be negative. Indeed, this can easily be shown to be a general pattern
that holds for all positive and negative predicates.

OBSERVATION 64 (Hansson, 1990). A monadic predicate H satis�es �0-
positivity if and only if its negation :H satis�es �0-negativity.

Proof.
Left-to-right: Let H be a �0-positive predicate. Suppose that :H does

not satisfy �0-negativity. Then there are relata p and q such that :Hp,
p �0 q, and :(:Hq). Hence, Hq, p �0 q, and :Hp, contrary to the positivity
of H .
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Right-to-left: Let :H be a �0-negative predicate. Suppose that H does
not satisfy �0-positivity. Then there are relata p and q such that Hp, q �0 p,
and :(Hq). Hence, :Hq, q �0 p, and :(:Hp), contrary to the negativity
of :H . �

An important class of positive predicates are those that represent `best'.
They are mirrored at the other end of the value-scale by negative predicates
that represent `worst':

DEFINITION 65. Let �0 be a combinative preference relation. The follow-
ing are monadic predicates de�ned from �0:

Hp$ (8q)(p �0 q) (strongly best)
Hp$ :(9q)(q >0 p) (weakly best)
Hp$ (8q)(q �0 p) (strongly worst)
Hp$ :(9q)(p >0 q) (weakly worst)

The �rst two of these de�nitions correspond to the notions of strong and
weak eligibility, that were introduced in Subsection 2.6 The �rst of them
also corresponds to the best choice connection discussed in Subsection 3.2.

5.2 Good and bad: de�nitions

De�nitions of `good' and `bad' in terms of a preference relation are a fairly
common theme in the value-logical literature. There are two major tra-
ditions. One of these may be called indi�erence-related since it bases the
de�nitions of `good' and `bad' on a set of indi�erent or neutral propositions.
Goodness is predicated of everything that is better than something neutral,
and badness of everything that is worse than something neutral.
This construction requires a sentence that represents neutral value. Such

a sentence can of course be introduced as a primitive notion, but it would
be more interesting to identify it among the sentences already available.
Some authors have made use of tautologies or contradictions as neutral

propositions. Tautologies have been used for this purpose by Danielsson
[1968, p. 37] and contradictions by von Wright [1972, p. 164]. However, it
is far from clear how something contingent can be compared in terms of value
to a tautology or a contradiction. It would be more intuitively appealing to
have neutral sentences that represent contingent states of a�airs. Such an
approach was proposed by Chisholm and Sosa. According to these authors,
a state of a�airs is indi�erent if and only if it is neither better nor worse
than its negation. Then `a state of a�airs is good provided it is better
than some state of a�airs that is indi�erent, and... a state of a�airs is bad
provided some state of a�airs that is indi�erent is better than it' [Chisholm
and Sosa, 1966, p. 246]. (These authors distinguish between indi�erence
and neutrality. To be neutral means, in their terminology, to be equal in
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value to something that is indi�erent.) The de�nitions of `good' and `bad'
proposed by Chisholm and Sosa can be introduced into the present formal
framework as follows:

DEFINITION 66.

GIp$ (9q)(p >0 q �0 :q) (indi�erence-related good)
BIp$ (9q)(:q �0 q >0 p) (indi�erence-related bad)

For the de�nitions of GI and BI to be at all useful, there should be at least
one indi�erent element, i.e., at least one q such that q �0 :q. Furthermore,
it can be required that all indi�erent elements should be interchangeable in
comparisons. This amounts to the following requirement on the preference
relation:

DEFINITION 67 (Hansson, 1990). �0 satis�es calibration if and only if:

(1) There is some q such that q �0 :q, and

(2) If q �0 :q and s �0 :s, then for all p: p �0 q $ p �0 s and q �0 p $
s �0 p.

The other major approach to de�ning `good' and `bad' has no need for
neutral propositions. According to this de�nition, `good' means `better
than its negation' and `bad' means `worse than its negation'. The �rst
clear statement of this idea seems to be due to Brogan [1919]. It has been
accepted by many other authors [Mitchell, 1950, pp. 103{105; Halld�en,
1957, p. 109; von Wright, 10963, p. 34; von Wright, 1972, p. 162; �Aqvist,
1968]. We can express it in the present framework as follows:

DEFINITION 68.

GNp$ p >0 :p (negation-related good)
BNp$ :p >0 p (negation-related bad)

This de�nition has a strong intuitive appeal, but unfortunately GN and BN
do not always satisfy positivity, respectively negativity. For an example, let
q �0 :q �0 p >0 :p. Then GNp, q �

0 p and :GNq, contrary to positivity.
In order to avoid this de�ciency, a modi�ed version of the negation-related
de�nition has been proposed.

DEFINITION 69 (Hansson, 1990).

GCp$ (8q)(q �0� p! q >0 :q) (canonical good)
BCp$ (8q)(p �0� q ! :q >0 q) (canonical bad)

It is easy to show that GC satis�es �0-positivity and BC �0-negativity.
Since the positivity of `good' and the negativity of `bad' are indispensable
properties of these predicates, GN and BN can be plausible formalizations
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of `good' and `bad' only if �0 is such they satisfy positivity, respectively
negativity. It turns out that this is so exactly when GN coincides with GC
and BN with BC .

OBSERVATION 70 (Hansson, 1990). Let �0 satisfy ancestral reexivity
(p �0� p). Then GN coincides with GC and BN with BC if and only if GN
satis�es positivity and BN satis�es negativity.

Proof. For one direction, note that if GN and BN do not satisfy positivity
respectively negativity, then they cannot be identical with GC and BC that
satisfy these conditions.
For the other direction, let GN and BN satisfy positivity and negativity.

It follows from Part 2 of Theorem 73 (to be proved in the next subsection)
that GNp! GCp and BNp! BCp. It follows directly from De�nitions 68
and 69 that GCp! GNp and BCp! BNp. �

Hence, GC and BC may be seen as extentions of GN and BN that coincide
with the latter in all cases when the latter provide a reasonable account of
`good' and `bad'.

5.3 Good and bad: The axiomatic approach

Another approach to de�ning `good' and `bad' is to identify a set of rea-
sonable axioms that a pair of predicates representing these notions should
satisfy. The following are such axioms:

DEFINITION 71 (Hansson, 1990). Let hG;Bi be a pair of monadic predi-
cates.

(1) It satis�es positivity { negativity (PN) with respect to �0 if and only
if G satis�es �0-positivity and B satis�es �0-negativity.

(2) It satis�es negation-comparability (NC) with respect to �0 if and only
if, for all p:

Gp! (p �0 :p) _ (:p �0 p)
Bp! (p �0 :p) _ (:p �0 p)

(3) It satis�esmutual exclusiveness (ME) if and only if for all p: :(Gp&Bp).

(4) It satis�es non-duplicity (ND) if and only if for all p: :(Gp & G:p)
and :(Bp & B:p).

(5) It satis�es closeness if and only if for all p and q, p >0 q ! Gp _Bq.

These postulates are fairly self-explanatory. Perhaps it should be mentioned
that NC can be seen as a (much) weakened form of completeness. In favour
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of this postulate it can be argued that a sentence that is not comparable
to its negation is de�cient in determinate value information. Therefore,
predicates such as `good' and `bad' are not applicable to such states of
a�airs.
According to closeness, `good' and `bad' come so close to each other that

they only have `neutral' values between them. One way to express this is
that `if two things are of unequal value, then at least one of them must be
good or at least one of them bad' [von Wright, 1972, p. 161].
As the following observation shows, ME is redundant in the presence of

three of the other postulates:

OBSERVATION 72. If hG;Bi satis�es PN, ND, and NC, then it also sat-
is�es ME.

Proof. Suppose to the contrary that hG;Bi satis�es PN, ND, and NC,
but not ME. Then, since ME does not hold, there is some p such that
Gp&Bp. It follows from NC that (p �0 :p) _ (:p �0 p). From PN follows
(:p �0 p) & Gp ! G:p and (p �0 :p) & Bp ! B:p. By sentential logic,
(Gp&G:p)_ (Bp&B:p), contrary to ND. This contradiction completes the
proof. �

We have already seen that hGN ; BN i does not always satisfy PN. It is easy
to check that it satis�es ND, NC, and ME. hGC ; BCi satis�es all these
postulates, and it can also be shown to be maximal among the predicate
pairs that satisfy them.

THEOREM 73 (Hansson, 1990). Let �0 be a relation that satis�es ancestral
reexivity (p �0� p). Let hGC ; BCi be as in De�nition 69. Then:

(1) hGC ; BCi satis�es PN, ND and NC.

(2) Let hG;Bi be a pair of monadic predicates that satis�es PN, ND and
NC. Then for all p:

Gp! GCp and Bp! BCp.

(3) If there is a pair hG;Bi of predicates that satis�es PN, ND, NC, and
closeness, then hGC ; BCi satis�es (PN, ND, NC, and) closeness.

Proof.
Part 1: That PN holds follows directly from De�nition 69. To see that

ND is satis�ed, suppose to the contrary that GCp and GC:p. Due to
ancestral reexitivy, p �0� p, and since GCp, De�nition 69 yields p >0 :p.
In the same way it follows from GC:p that :p >0 p. This contradiction is
suÆcient to ensure that :(GCp & GC:p). The proof that :(BCp & BC:p)
is similar.
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To see that NC is satis�ed, note that due to ancestral reexivity, GCp
implies p >0 :p and BCp implies :p >

0 p.
Part 2: Let Gp and q �0� p. Then there is a series of sentences s0; :::sn,

such that s0 $ p, sn $ q and for all integers k, if 0 � k < n, then
sk+1 �0 sk. Clearly, Gs0. From Gsk and sk+1 �0 sk it follows by PN that
Gsk+1. Thus, by induction, Gsn, i.e. Gq.
From Gq it follows by NC that (q >0 :q) _ (:q �0 q). Suppose that

:q �0 q. Then by PN follows G:q, so that Gq & G:q, contrary to ND. It
follows that q >0 :q.
Thus, if Gp, then for all q, if q �0� p, then q >0 :q. The corresponding

property for Bp can be proved in the same way.
Part 3: Let hG;Bi satisfy PN, ND, NC, and closeness. Due to part 1, it

remains to show that hGC ; BCi satis�es closeness. Let p >0 q. Since hG;Bi
satis�es closeness, we have Gp_Bp, and by part (2) of the present theorem
we have GCp _BCp. �

The indi�erence-related approach fares worse with respect to the postulates.

OBSERVATION 74. Let �0 be a relation that satis�es ancestral reexivity
(p �0� p). Let hGI ; BIi be as in De�nition 66. Then:

(1) If �0 satisifes calibration, then hGI ; BIi satis�es ME.

(2) If �0 satis�es transitivity, then hGI ; BIi satis�es PN.

(3) If �0 satis�es completeness, then hGI ; BIi satis�es NC.

(4) ND does not follow even if calibration, transitivity, and completeness
are all satis�ed.

Proof.
Part 1: Let ME be violated. Then there is some p such that GIp and

BIp, i.e. there are q and r such that p >0 q �0 :q and :s �0 s >0 p. It
follows from p >0 q �0 :q and s �0 :s, due to calibration, that p >0 s.
Contradiction.

Part 2: For the positivity of GI , let GIp and q �0 p. Then there is
some s such that p >0 s �0 :s. Transitivity yields q >0 s, hence GIq. The
negativity of BI is proved in the same way.

Part 3: Directly from the de�nition of NC.
Part 4: Let �0 be transitive and complete, and such that p >0 :p >0 s �0

:s and that calibration is satis�ed. Then Gp & G:p. �

ND is an essential property of `good' and `bad', and hGI ; BIi can hardly be
a satisfactory account of these concepts unless this property holds. Fairly
strong additional conditions are needed to ensure that it holds [Hansson
1990]. In the light of this, the axiomatic analysis is much more favourable
to hGN ; BN i and, in particular to its generalization hGC ; BCi, than to
hGI ; BIi.
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5.4 Some other value predicates

Common language contains many value predicates in addition to `best',
`worst', `good', and `bad', as de�ned above. For a couple of these, precise
de�nitions have been proposed:

very good = good among those that are good [Wheeler, 1972]

very bad = bad among those that are bad
fairly good = good but not very good [Wheeler, 1972]

fairly good = good among those that are not very good [Klein,
1980, pp. 24{25]

almost worst = very bad but not worst [Hansson, 1998b]

The last three of these are neither positive nor negative predicates, but
belong to a third category of predicates, namely those that are, intuitively
speaking, bounded both upwards and downwards. From a formal point of
view, they can be de�ned as the meets of one positive and one negative
predicate. Thus, as indicated above, `p is almost worst' may be de�ned as
`p is very bad and p is not worst', employing the negative predicate `very
bad' and the positive predicate `not worst'.

DEFINITION 75 (Hansson, 1998b). A monadic predicate H is �0-circums-
criptive if and only if there is a �0-positive predicate H+ and a �0-negative
predicate H� such that for all p:

Hp$ H+p & H�p.

A �0-circumscriptive predicate is properly �0-circumscriptive if and only if
it is neither �0-positive nor �0-negative.

5.5 Deontic concepts

It is generally recognized that there are three major groups of normative
expressions in ordinary language, namely prescriptive, prohibitive, and per-
missive expressions. In the formal language, they are represented by the
corresponding three types of predicates. Here, prescriptive predicates will
be denoted by `O', permissive predicates by `P ', and prohibitive predicates
by `W '. (These are abbreviations of `ought', `permitted', and `wrong'.) The
arguments of these predicates are in general taken to be sentences that rep-
resent states of a�airs or actions. The three categories of predicates are also
generally taken to be interde�nable: Oq holds if and only if W:q, and it
also holds if and only if :P:q.
Modern deontic logic began with a seminal paper by Georg Henrik von

Wright in 1951 [von Wright, 1951]. (On the origins of deontic logic, see
also [F�llesdal and Hilpinen, 1970; von Wright, 1998].) The literature in
this area is at least as extensive as that on preference logic. The purpose
of this subsection is not to give an overview of this vast subject, but only
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to point out two alternative ways in which deontic logic can be connected
with preference logic. (For an overview of deontic logic, see [�Aqvist, 1987].)
The �rst of these is the standard semantical construction that dominates

the subject [F�llesdal and Hilpinen, 1970]. It is assumed that there is a
subset of the set of possible worlds (the `ideal worlds') such that for any
sentence p, Op holds if and only if p holds in all these worlds. Although there
is some leeway in the meaning of the term standard deontic logic (SDL), the
following de�nition seems to capture the gist of the matter:

DEFINITION 76. A model hA; Ii for non-iterative standard deontic logic
(non-iterative SDL) consists of a set A of possible worlds and a non-empty
subset I of A.
A non-iterative deontic sentence in hA; Ii is a truth-functional combina-

tion of sentences of the form O�, with � 2 LA. Such a sentence is true in
hA; Ii if and only if it follows by classical truth-functional logic from the
set fO� j � 2 \Ig [ f:O� j � =2 \Ig. It is valid if and only if it is true in
all models.

No explicit preference relation is involved here, but I can be interpreted as
consisting of the best alternatives according to some preference relation. An
explicit preference relation is used in corresponding accounts of conditional
obligation. A sentence such as `If you borrow his lawn-mower then you
ought to return it' is held to be true if and only if you return the lawn-
mower in all those worlds that are best among the worlds in which you
borrow the lawn-mower in question.
The valid sentences of non-iterative SDL coincide with the theorems that

are derivable from the following three axioms [F�llesdal and Hilpinen, 1970]:

Op! :O:p,
Op & Oq $ O(p&q), and
O(p _ :p).

The term `non-iterative' in De�nition 76 refers to the fact that sentences con-
taining iterations of the deontic predicate (such as OOp and :O(Op_Oq))
have been excluded. To cover them, modal semantics (with an accessibility
relation) can be used [F�llesdal and Hilpinen, 1970, pp. 15{19].
Unfortunately, it is an immediate consequence of the basic semantic idea

of SDL|that of identifying obligatory status with presence in all elements
of a certain subset of the alternative set|that the following property will
hold:

If ` p! q, then ` Op! Oq

This property may be called necessitation since it says that whatever is ne-
cessitated by a moral requirement is itself a moral requirement. (It has also
been called `the inheritance principle' [Vermazen, 1977, p. 14], `Becker's law'
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[McArthur, 1981, p. 149], `transmission' [Routley and Plumwood, 1984],
`the consequence principle' [Hilpinen, 1985, p. 191], and `entailment' [Jack-
son, 1985, p. 178].) As an example, suppose that I am morally required to
take a boat without the consent of its owner and use it to rescue a drowning
person. Let p denote this composite action that I am required to perform,
and let q denote the part of it that consists in taking the boat without leave.
Since q follows logically from p, I am logically necessitated to perform q in
order to perform p. According to the postulate of necessitation, I then also
have an obligation to q. This is contestable, since it can be argued that I
have no obligation to q in isolation.
Necessitation is the source of all the major deontic paradoxes. We may

call them the necessitation paradoxes. Four of the most prominent are Ross's
paradox, the paradox of commitment, the Good Samaritan, and the Knower.
Ross's paradox is based on the instance Op! O(p_ q) of necessitation. (`If
you ought to mail the letter, then you ought to either mail or burn it.')
[Ross, 1941, p. 62] The paradox of commitment is based on the instance
O:p ! O(p ! q), which is interpreted as saying that if you do what
is forbidden, then you are required to do anything whatsoever. (`If it is
forbidden for you to steal this car, then if you steal it you ought to run over
a pedestrian') [Prior, 1954]. The Good Samaritan operates on two sentences
p and q, such that q denotes some atrocity and p some good act that can
only take place if q has taken place. We then have ` p ! q, and it follows
by necessitation that if Op then Oq. (`You ought to help the assaulted
person. Therefore, there ought to be an assaulted person') [Prior, 1958,
p. 144]. �Aqvist's Knower paradox makes use of the epistemic principle
that only that which is true can be known. Here, q denotes some wrongful
action, and p denotes that q is known by someone who is required to know
it. Again, we have ` p! q and Op, and it follows by necessitation that Oq.
(`If the police oÆcer ought to know that Smith robbed Jones, then Smith
ought to rob Jones') [�Aqvist, 1967].
A quite di�erent approach, introduced in [Hansson, 1993c] and further

developed in [Hansson, 1997b; Hansson, 1998b; Hansson, 1999b] is based
on the assumption that prescriptive predicates (ought-predicates) should
satisfy the following property:

DEFINITION 77. A (monadic) predicate H is contranegative with respect
to a given relation �0 if and only if the following holds for all p and q:

Hp & (:p �0 :q)! Hq.

OBSERVATION 78. Let O, P , andW be predicates with a common domain
that is closed under negation, and such that for all p, Op if and only if :P:p,
and Op if and only if W:p. Let �0 be a relation over this domain. Then
the following three conditions are equivalent:

(1) O satis�es �0-contranegativity,
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(2) P satis�es �0-positivity, and

(3) W satis�es �0-negativity.

Proof. Left to the reader. �

Since both �0-positivity of P and �0-negativity of W are reasonable prop-
erties, we have good reasons to accept the equivalent requirement that �0

be contranegative. At �rst sight, one might also wish to require that O be
�0-positive, but it is easy to show with examples that this is not a plausible
property. For instance, let q denote that you give your hungry visitor some-
thing to eat and p that you serve her a gourmet meal. It is quite plausible
to claim both that p is better than q and that q is morally required whereas
p is not.
In a deontic logic based on contranegativity of O, the logical properties

of O will depend on those of the underlying preference relation. The more
implausible properties of SDL turn out to correspond to rather implausible
properties of the preference relation. In particular, this applies to necessi-
tation.

OBSERVATION 79. Let A be a set of contextually complete alternatives.
The following are two conditions on a relation �0 in LA:

(1) If j=A q ! p, then p �0� q.

(2) Every �0-contranegative predicate O on LA satis�es necessitation (If
j=A p! q, then Op! Oq.)

If (1) holds, then so does (2). If �0 satis�es ancestral reexivity (p �0� p)
then (1) and (2) are equivalent.

Proof.
From (1) to (2): Let (1) hold. Let O be a predicate that is contranegative

with respect to �0, and such that j=A p ! q and Op. Then, equivalently:
j=A :q ! :p and Op. It follows from (1) that :p �0 �:q and from the
contranegativity of O that Oq.

From ancestral reexivity and (2) to (1): We are going to assume that
ancestral reexivity holds, but (1) does not hold, and prove that then (2)
is violated. Since (1) is not satis�ed there are p and q such that j=A q ! p
and :(p �0� q).
Let W be the predicate such that for all r 2 LA, Wr holds if and only if

p �0� r. Then W is �0-negative. Since �0 satis�es ancestral reexivity, we
have p �0� p and thus Wp. It follows from :(p �0� q) that :Wq. We there-
fore have j=A q ! p, Wp, and :Wq, or equivalently for the corresponding
�0-contranegative predicate O: j=A :p! :q, O(:p), and :O(:q). This is
suÆcient to show that (2) is violated. �
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On the other hand, some of the more plausible properties of deontic predi-
cates turn out to correspond to more plausible preference postulates [Hans-
son, 1997b; Hansson, 1998b]. The following postulate was proposed by von
Wright [1972, p. 44].

P (p&q) & P (p&:q)! Pp

It has been called permissive cancellation since it allows for the cancellation
of q and :q from the two permissions [Hansson, 1998b]. As the following
observation shows, permissive cancellation holds for a wide range of con-
tranegative predicates. (Note that a permissive predicate P is �0-positive if
and only if the corresponding prescriptive predicate O is �0-contranegative.)

OBSERVATION 80. Let A be a set of contextually complete alternatives.
The following are two conditions on a relation �0 in LA:

(1) (p �0� (p&q)) _ (p �0� (p&:q)

(2) Every �0-positive predicate P on LA satis�es permissive cancellation
(P (p&q) & P (p&:q)! Pp).

If (1) holds, then so does (2). Furthermore, if �0 satis�es completeness,
then (1) and (2) are equivalent.

Proof.

From (1) to (2): If p �0� (p&q), then we can use P (p&q) and the posi-
tivity of P to obtain Pp. If p �0� (p&:q), then we can use P (p&:q) and
the positivity of P to obtain Pp.

From (2) and completeness to (1): Let �0 satisfy completeness. We are
going to assume that (1) does not hold, and prove that then neither does
(2). Since (1) does not hold, there are p and q such that :(p �0� (p&q))
and :(p �0� (p&:q)). Due to completeness, there are two cases.
Case i, (p&q) �0 (p&:q): Let P be the predicate such that for all r, Pr

i� r �0 (p&:q). Then P is �0-positive, and it follows directly that P (p&q)
and P (p&:q). It follows from :(p �0� (p&:q)) that :Pp.
Case ii, (p&:q) �0 (p&q): The proof proceeds in the same way as in

case i. �

The condition (p �0� (p&q))_ (p �0� (p&:q) used in the observation follows
from completeness and disjunctive interpolation:�

(p&:q) �0 (p&q)
��
_
�
(p&q) �0 (p&:q)

�
(completeness)�

((p&q) _ (p&:q)) �0 (p&q)
�
_
�
((p&q) _ (p&:q)) �0 (p&:q)

�
(disjunctive interpolation)

(p �0 (p&q)) _ (p �0 (p&:q)) (intersubstitutivity)
(p �0� (p&q)) _ (p �0� (p&:q)) (de�nition of ancestral)
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More details on contranegative logic can be found in [Hansson, 1998b;
Hansson, 1999b]. This is probably only one of many examples of how new
applications of preference logic can lead to new insights in other branches
of philosophical logic.

Philosophy Unit, Royal Institute of Technology, Stockholm, Sweden.
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ERIC M. HAMMER

DIAGRAMMATIC LOGIC

The many diagrammatic systems in use include Euler circles, Venn dia-
grams, state diagrams, control-ow diagrams, line graphs, circuit diagrams,
category-theory diagrams, Hasse diagrams, and geometry diagrams. A dia-
grammatic logic seeks to describe the syntax, semantics, proof theory, etc.,
of some such diagrammatic system.
The diagrams of a diagrammatic system have a (typically two-dimensional)

syntactic structure that can be described using concepts such as labeling,
connectedness, inclusion, direction, etc. They also have a meaning that
can be described using techniques from model theory or algebra. Thus, a
diagrammatic logic di�ers from an ordinary logic only in the type of well-
formed representations it describes (though these may well have properties
not common to more familiar logics).
Diagrams can have unusual properties that distinguish them from expres-

sions of many languages, properties that might motivate the formulation and
analysis of a diagrammatic logic. The structure of a diagram might have
a close correspondence with what they represent. Its meaning might be
invariant under certain topological transformations. It might be unusually
easy to understand. A diagrammatic logic need illuminate none of these
matters (though some of them may be connected to the system's logical
properties and hence addressed by the logic). In particular, philosophical
and psychological questions about the nature of the diagrammatic system
that is the target of a logic could be left to philosophy and psychology.
To reveal the typical characteristics of diagrammatic logics more directly,

several examples will be presented. These include Venn diagrams, a vari-
ation due to Peirce that will be called Peirce-Venn diagrams, and a his-
torically important system developed by Peirce called existential graphs.
Other diagrammatic logics that have been developed include logics of state
transition diagrams,1 blocks world diagrams,2 circuit diagrams,3 conceptual
graphs,4 and geometry diagrams.5 Relevant collections include Allwein and
Barwise [1996] and Glasgow, Narayanan, and Chandrasekaran [1995].

1 FOUNDATIONS

Venn diagrams and Peirce-Venn diagrams (covered in the next two sections)
are constructed from circles or, more generally, closed curves, that overlap in

1Harel [1988].
2Barwise and Etchemendy [1995].
3Johnson, Barwise and Allwein [1996].
4Sowa [1984].
5Luengo [1995].
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all combinations. Some simple syntactic and semantic concepts are common
to both of these systems and so are handled jointly in this section.
The circles of Venn diagrams represent sets, and the overlapping combi-

nations of the circles represent combinations of the sets. For example, in the
case of two circles the four combinations of circles represent the intersection,
the two di�erences, and the complement of the union.

BA"!
# 
"!
# 

In particular, this diagram consists of four minimal regions6 which can be
described by four corresponding combinations of the two labels:

Term Corresponds to minimal region
AB within both
AB within A, not B
AB within B, not A
AB within neither

A term such as AB is said to correspond to the minimal region of the
diagram within left one circle but outside of the right circle.7 Likewise, AB
corresponds to the minimal region outside of both circles, AB corresponds to
the minimal region within both circles, and BA corresponds to the minimal
region within the right but not the left circle. A three-circle diagram such
as

C

BA

"!
# "!
# 
"!
# 

has eight corresponding terms:

ABC ABC ABC ABC ABC ABC ABC ABC

The term ABC corresponds to the minimal region within both A and C
but outside of B, etc. More generally, with an n-circle diagram labeled by n

6Minimal regions are described in Shin [1994], p. 51.
7Correspondence is described in Hammer [1994], pp. 77{78.
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letters, there should be a minimal region and a corresponding term for each
of the 2n combinations of circles. One way to think of this is that there
should be a term for each row of an n-variable truth table, the variables
of which are the letters labeling the circles, with truth indicating that the
region falls within the circle and falsity indicating that it falls outside of the
circle.
For the purposes of logic, minimal regions are entirely described by which

of the circles they fall within (and hence also which they fall outside of). So
any subset of the n circles should describe a minimal region: that minimal
region falling within all the circles in the subset and outside of the rest of
the circles of the diagram.
Given n circles, the following are the conditions desired for a Venn-type

diagram:

1. For each of the 2n terms, there is a minimal region corresponding to
it.

2. There is no more than one region corresponding to any term.

The �rst condition ensures that every Boolean combination of the n sets
is represented in the diagram. The second prevents any redundancy by
ensuring that each combination is represented only once.
For logical purposes, these two conditions are really the only desiderata

of a (formal or informal) syntax of the circles of a system of Venn-type
diagrams. All that is relevant is that there is exactly one minimal region
for each term representing each combination of circles.8

A region of a diagram consists of one or more minimal regions. Hence,
a region can be entirely represented as a set of one or more of the terms
corresponding to the minimal regions of a diagram.9 In the case of a two-
circle diagram with labels A and B, the set fAB;ABg represents the region
outside of the circle labeled by B.
Since a region consists of any one or more minimal regions, there are as

many regions as there are sets of minimal region, minus the empty set. So
there are 2(2

n) � 1 regions.
If two regions of two diagrams are represented by the same set of terms,

they are said to be counterparts.10 Because regions that are counterparts
have to be assigned the same set by any model, for convenience below they
are sometimes spoken of as though they were the same region. This makes
some discussions and proofs easier to read.

8Formal models of the syntax of overlapping circles have been provided for which these
two conditions are satis�ed for any �nite number of circles, though the concept of circle
must be extended to include non-convex closed curves. An example of such a model is
presented in More [1959].

9See Shin [1994], p. 51.
10The counterpart relation is de�ned in Shin [1994], pp. 53{57.
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A model has a domain of discourse which can be an arbirary set, and
assigns subsets of the domain to the circles of the diagrams in question,
assigning the same subset to circles labeled by the same letter. For example,
a model might assign fx; yg to the domain, assign fxg to one circle of a
diagram and fx; yg to the other circle.
A model can also be understood as assigning subsets of the domain to

minimal regions. A minimal region such as ABCDE would be assigned
A \ B \ C \ D \ E (where A is the domain minus the set assigned to the
circle labeled by A, B is the set assigned to the circle labeled B, etc.).11

Likewise, a region can be understood as being assigned the union of the sets
assigned to the minimal regions composing it.
Just as a model determines the sets assigned to minimal regions, con-

versely, an assignment to minimal regions can be used to specify a model.
For example, suppose the four minimal regions of the following diagram are
assigned sets x, y, z, and w, as shown:

wzyx

BA

"!
# 
"!
# 

This speci�es the model:8<
:

A = y [ z
B = z [ w

domain = x [ y [ z [ w

The two systems, Venn diagrams and Peirce-Venn diagrams, discussed in
the next two sections build on the basic diagrams described here by adding
additional syntactic devices that can be used to mark various regions and
thereby make assertions about the sets they represent.

2 VENN DIAGRAMS

This section presents the logical theory of Venn diagrams. Venn diagrams
were introduced by John Venn in 1880 for the purpose of clearly representing
categorical sentences and syllogistic reasoning.12 Venn's system is a mod-
i�cation of a previous, incompleted system of Leonhard Euler's developed
in 1761.13

11This de�nition of model is given in Hammer and Danner [1996]. A similar concept
is de�ned in Shin [1994], pp. 64{68.

12See Venn [1880] and Venn [1894].
13 Euler [1846]. For an analysis of Euler's system see Hammer and Shin [1996].
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The particular version of Venn diagrams presented here is based on mod-
i�cations made by Peirce in 190314 and Shin in 1994.15 Peirce provided
syntactic rules of inference for manipulating his variation on Venn diagrams
while Shin formulated a coherent fragment of Peirce's system and recon-
structed and analyzed it in modern form.
Venn diagrams are based on the syntax and semantics developed in the

previous section. In addition, the system allows any region of a diagram to
be marked as either representing an empty set or a non-empty set (more
briey: to be marked as empty or non-empty).
To assert that a region (rather, the set it represents) is empty is simply

to assert that each of the minimal regions that make it up is empty. A
minimal region is marked as empty by adding the symbol `o' to it. This is
Peirce's notation replacing Venn's shading of the minimal region.
For example, the following diagram asserts that A is empty (that both

AB and AB are empty):

oo

BA

"!
# 
"!
# 

It is redundant to mark a minimal region with more than one `o'. If the
region is empty it's empty. Therefore well-formed diagrams will be required
to have at most one `o' in each minimal region.
To assert that a region is non-empty (rather, the set it represents) is

not the same as asserting that each of the minimal regions composing it is
empty. Rather, it is to assert that at least one of them is non-empty. With
Venn diagrams, this is done by adding a chain of `x's connected by lines to
the region, with one `x' falling in each of its minimal regions. For example,
the following diagram asserts that A is non-empty (that either AB or AB
is non-empty):

xx

BA

"!
# 
"!
# 

The region consisting of all the minimal regions with `x's of the chain
is said to have the chain. In particular, larger regions will not be said to
have a chain falling in some proper subregion of it. For example in the

14Peirce [1958], pp. 294{319.
15Shin [1994].
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above diagram the region fAB;ABg has the `x'-chain but the larger region
fAB;AB;ABg does not.
Because it is redundant for any one chain to have more than one `x' in a

minimal region, all chains of a well-formed diagram are required to have no
more than one `x' in each minimal region.

Likewise, because it is redundant to have two chains in the same region,
a well-formed diagram is allowed to have no more than one `x'-chain in each
region.

Thus, the well-formed Venn diagrams can be summarized by the following
four constructions:

1. Any n circles drawn to overlap in all combinations as described in
the previous section and labeled by n names is a well-formed Venn
diagrams.

2. Given any Venn diagram, the result of adding an `o' to any minimal
region not already containing an `o' results in a well-formed Venn
diagram.

3. Given any Venn diagram, the result of adding an `x'-chain to any
region not already having an `x'-chain results in a well-formed Venn
diagram.

4. Nothing else is a well-formed Venn diagram.

A Venn diagram is consistent just in case no minimal region has both an
`o' and an unconnected `x' in it.

For logical purposes, the syntactic granularity that is relevant for de�ning
diagrams is at the level of which regions have x-chains and which minimal
regions have an `o'. Thus, a diagram is entirely determined by (i) the set of
letters labeling the circles, (ii) the minimal regions with an `o', and (iii) the
sets of minimal regions constituting a region with an `x'-chain. For example,
the following diagram is speci�ed by (i) the set fA;Bg of letters labeling
the circles, (ii) the minimal regions with an `o' AB and AB, and (iii) the
regions with `x'-chains fAB;AB;ABg and fABg.16

x
xxx

o o

BA

"!
# 
"!
# 

16This type of approach to the identity conditions between diagram is presented in
Hammer and Danner [1996].
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Any other diagram having the same such descriptions is just another in-
stance of the same diagram.
Consider the number of distinct syntactically correct diagrams there are

having n curves and some �xed set of n predicates. A diagram can have
an `o' in any number of its minimal regions, so there are 2n possibilities
for adding o's to each diagram. A diagram can have a chain of `x's in any
number of its regions, so there are 2(2

n)�1 possible chains to consider. This
leaves a choice of 2n+2(2

n)�1 `o's and chains of `x's to choose from for each
diagram. Since a diagram can include any combination of these, there are

2(2
n+2(2

n)�1) distinct diagrams possible. In the case of n = 1 there are 16
distinct diagrams possible, with n = 2 there are 524; 288 diagrams possible,
and with n = 3 and up the number is huge but �nite.17 A more diÆcult
task is that of specifying the precise number of logically distinct diagrams
that can be constructed from n curves and some �xed set of n labels, that
is, the number of equivalence classes (the relation being logical equivalence)
of diagrams constructible from the n curves and labels.
The de�nition of the conditions under which a model satis�es a Venn

diagram are as was intuitively described:

DEFINITION 1 (Satis�es).

1. A model satis�es an `x' occurring in some minimal region just in case
the set assigned to that minimal region is non-empty.

2. A model satis�es an `o' occurring in some minimal region just in case
the set assigned to that minimal region is empty.

3. A model satis�es an `x'-chain occurring in some region just in case
the set satis�es at least one `x' in the chain.

4. A model satis�es a Venn diagram just in case it satis�es each `x'-chain
and each `o' in the diagram.18

A diagram is a logical consequence of a set of diagrams just in case the
diagram is satis�ed by every model satisfying each diagram in the set. A
diagram is logically equivalent to another diagram just in case the two are
satis�ed by the same models.
The following rules of inference govern the manipulation of `x'-chains and

`o's.

RULE 2 (Addition). An `x'-chain can be extended with an additional `x'
in a new minimal region.19

17Various calculations of this sort are given in Peirce [1960], pp. 306{307 and analyzed
in Hammer [1995b], pp. 811{813.

18This de�nition is given in Hammer [1995b], pp. 817{818.
19Peirce [1958], p. 310.
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The validitity of Addition can be seen from the fact that if a region is
assigned a non-empty set any region containing it will be assigned a superset,
and hence will be non-empty.

RULE 3 (Contraction). If an `x'-chain has an `x' in a region also having
an `o', that `x' can be erased. If the `x' does not occur on an end, the two
halves of the chain must be reconnected.20

The validity of Contraction can be seen from the fact that if a minimal
region is empty and some region containing it is non-empty, then some other
minimal region of the larger region must be non-empty.

RULE 4 (Simpli�cation). Any `o' can be erased. Any entire `x'-chain can
be erased.21

The validity of Simpli�cation can be seen from the fact that the various
`o's and `x'-chains of a diagram must all be satis�ed for a diagram to be
satis�ed.

RULE 5 (Contradiction). Any diagram can be inferred from a diagram
having a minimal region with both an `o' and an unconnected `x'.22

The validity of Contradiction can be seen from the fact that no diagram
of this type can be satis�ed.

PROPOSITION 6. Addition, Simpli�cation, and Contradiction result in
diagrams that are logical consequences of the diagrams they are applied to.
Contraction results in a logically equivalent diagram.

For two diagrams having the same labels, logical equivalence can be char-
acterized in terms of the two rules of Contraction and Addition. De�ne the
summary of a diagram to be the result of applying Contraction as many
times as possible, then erasing any chain that could be obtained by Addi-
tion. For example, the summary of the diagram

aa  x x
x

x

x

o

x
BA"!

# 
"!
# 

is the diagram:

xo

x
BA"!

# 
"!
# 

20Peirce [1958], pp. 310{311.
21 Peirce [1958], p. 310.
22 Shin [1994], pp. 87{88.
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The two chains are shortened, and then the remaining 2-link chain is erased
because it could be obtained from the unconnected `x' by Addition. A
summary is said to be inconsistent if the result is an inconsistent diagram.

THEOREM 7. Two Venn diagrams having the same labels (and number
of circles) are logically equivalent if and only if they either have the same
summary or else both have inconsistent summaries.

Proof. The right-to-left direction of the theorem follows from the fact that
Contraction results in a logically equivalent diagram and Addition is a valid
rule of inference. For the contrapositive of the other direction, suppose that
two diagrams have distinct (consistent) summaries d and e. Then some
minimal region has an `o' in one but not the other summary, or else some
region has an `x'-chain in one but not the other. The `x'-chain case is
handled.

Case 1: A region of d has an `x'-chain but no subregion of e has one.
Assign the empty set to each minimal region of the chain. Because e does
not have an `x' in any of those regions, it can still be satis�ed by extending
this model. The result satis�es e but not d. Likewise with d and e reversed.

Case 2: A region of d has an `x'-chain and some proper subregion of e
has an `x'-chain. Let r be a minimal region with an `x' of the chain in d but
not e. Assign to r a non-empty set, but to all other regions of the `x'-chain
the empty set. Extend this model to satisfy d. The model does not satisfy
the `x'-chain of e in the subregion and so does not satisfy e. Likewise with
d and e reversed. �

The following completeness result for Venn diagrams shows that if a di-
agram e is a consequence of a diagram d with the same labels, then e can
be obtained from d by applying Contraction a number of times followed by
either one application of Contradiction or else a number of applications of
Addition and Simpli�cation.

THEOREM 8 (Completeness). If diagram e is a logical consequence of d
and both have the same labels (and number of circles), then e is provable
from d.23

Proof. Assume e is a logical consequence of d. Apply Contraction to d
as many times as possible. It can be assumed that at no time during this
process is an inconsistent diagram obtained. For if one were, e would be
immediately obtainable by Contradiction, establishing e's provability. By
applying Contraction a number of times, it can be assumed without loss of
generality that no minimal region of d has both an `x' and an `o'.

23This result is essentially a special case of the completeness result proved in Shin
[1994], pp. 98{110.
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First note that every minimal region with an `o' in e has an `o' in d.
Suppose otherwise for some minimal region r. Construct a model which
assigns�

the empty set to any minimal region of d with an `o'
a non-empty set to all other minimal regions of d

Such a model satis�es d. Because r is assigned the empty set, the model
does not satisfy e, a contradiction.
Next note that for every region with an `x'-chain in e, some subregion

has an `x'-chain in d. Suppose otherwise for some region r. Construct a
model which assigns8<

:
the empty set to region r
the empty set to any minimal region of d with an `o'
a non-empty set to all other minimal regions of d

Because no subregion of r has an `x'-chain, this model satis�es d. How-
ever, because r is assigned the empty set, the model does not satisfy e, a
contradiction.
These two observations imply that e can now be obtained from d by

several applications of Addition and Simpli�cation. �

More general completeness results extending Theorem 8 can be proved
by formulating rules of Merge, Add Circle, and Remove Circle. This section
concludes with a formulation of these three rules of inference.

RULE 9 (Merge). Two diagrams having the same labels may be combined
into a single diagram as follows:

1. A new diagram is drawn with circles labeled by each of the letters
occurring in the two premises.

2. For each minimal region of either premise with an `o', add an `o' to
each of its counterparts in the conclusion to which an `o' has not
already been added.24

3. For each region of either premise with an `x'-chain, add an `x'-chain
to its counterpart in the conclusion if one has not already been added
to that region.25

24The formulation of this rule uses the more general concept of any two regions being
counterparts. This is de�ned as follows: (i) If two circles are labeled by the same letter,
the two regions within the circles are counterparts. (ii) If two regions are counterparts
then their two `complements' are counterparts, where the `complement' of a region is the
combination of minimal region of the diagram that are not a part of the region. (iii) If two
pairs of regions are counterparts, then the two `unions' of the two pairs are counterparts,
where the `union' of a pair of regions is the combination of all minimal regions that are
a part of either region. (iv) No other two regions are counterparts.

25Examples of this rule are given in Peirce [1958], e.g., p. 312, however the rule is not
stated explicitly. It is stated in essentially this form in Shin [1994], pp. 88{92.
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Next is addition of new circles to Venn diagrams. First, the new cir-
cle must be drawn so that the well-formedness of the overlapping circles is
preserved, that is, so that all Boolean combinations of the circles are repre-
sented. In doing this, any minimal region of the original diagram is broken
into two parts, one within the new circle and the other outside of the new
circle. Hence, any `o' occurring in a minimal region needs to be replaced by
two connected `o's, one in each of the two new subregions. Similarly, any `x'
occurring in a minimal region needs to be split into two parts, one within
the new circle and the other outside of the new circle, with the two being
connected by a line.

RULE 10 (Add Circle). A new circle may be added to a Venn diagram in
such a way that well-formedness is preserved, provided all `x's and `o's are
split as described.26

The following is an example of an application of Add Circle:

��
"
""

C

o

x

x

"!
# BA

HHx

xo"!
# 
"!
# 

"!
# 
"!
# 

o x

x
HH

A B

The `o' is replaced by two `o's, and the two `x's are each replaced by two
`x's that are connected by lines.

The �nal rule is that allowing the removal of a circle. The removal of a
circle from a diagram throws pairs of adjoining minimal regions together:
one within the circle and one outside of the new circle.

RULE 11 (Remove Circle). A circle may be erased provided any two `o's in
adjoining minimal regions are replaced by a single `o' when the two regions
are thrown together, and any `o's without an `o' in the adjoining region are
erased.27

The following is an example of Remove Circle:

oo

C"!
# "!
# 
"!
# 

A B
o x x xxo

BA"!
# 
"!
# 

26Peirce [1958], p. 311 and Shin [1994], pp. 86{87.
27Peirce [1958], p. 311 and Shin [1994], pp. 82{85.
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The two `o's in the two regions that are thrown together when the circle is
erased are replaced by a single `o' while the `o' without an adjoining `o' is
erased. The `x'-chain is left as is.

The repeated application of Merge allows any �nite set of diagrams to be
combined into a single, logically equivalent `conjunction'. Add Circle allows
new circles to be added to any diagram, the result being logically equivalent.
Remove Circle has the property that if e is a logical consequence of d but
a circle in e is labeled by a letter not occurring in d, then the result of
removing that circle using Remove Circle is a diagram that still implies e.
The earliest general completeness result using these additional rules is due
to Shin.28 Another is in Hammer and Danner [1996].

3 PEIRCE{VENN DIAGRAMS

This section presents the logic of Peirce{Venn diagrams, Peirce's variation
and extension of Venn diagrams developed in 1903.29 Peirce's system is
equivalent to the monadic fragment of �rst-order logic in expressive power.
It also is based on what amounts to a conjunctive normal form. In fact, the
key rules of inference formulated by Peirce are practically identical to the
resolution proof procedure for propositional logic.

All Venn diagrams are also Peirce{Venn diagrams. However, Peirce{Venn
diagrams allow any combination of `x's and `o's to be connected by lines
to form a disjunctive chain. For example, the following is a Peirce{Venn
diagram with two chains:

((o
x xx
x BA"!
# 
"!
# 

It asserts that either some A are not B or no A is B (by means of the upper
chain) and something is either A or B (by means of the lower chain).

Because it is redundant to have a single chain with more than one `x' in
one minimal region or more than one `o' in one minimal region, well-formed
Peirce{Venn diagrams are required to have at most one `x' and at most
one `o' in each minimal region. This rules out the following diagram as not
well-formed:

28 Shin[1994], pp. 98{110.
29Peirce [1958], pp. 294{319.
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!!
`̀ o
x
x

BA"!
# 
"!
# 

Likewise, well-formed Peirce{Venn diagrams may not have two chains in
the same region that have `x's and `o's in the same minimal regions. This
rules out the following diagram:

ox
ox BA"!
# 
"!
# 

However, the following diagram is not ruled out:

x
ox
ox BA"!
# 
"!
# 

The syntax of well-formed Peirce{Venn diagrams can be summarized by
the following conditions:

1. Any n circles drawn to overlap in all combinations as described above
and labeled by n names is a well-formed Peirce{Venn diagrams.

2. Given any Venn diagram, the result of adding a chain of `x's and `o's
to any region not already having such a chain results in a well-formed
Peirce{Venn diagram.

3. Nothing else is a well-formed Peirce{Venn diagram.

A Peirce{Venn diagram is consistent just in case no minimal region has
both an unconnected `o' and an unconnected `x' in it.
The semantics for Peirce{Venn diagrams are given by the following

conditions:30

DEFINITION 12 (Satis�es).

1. A model satis�es an `x' occurring in some minimal region just in case
the set assigned to that minimal region is non-empty.

30Hammer [1995b], pp. 817{818.
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2. A model satis�es an `o' occurring in some minimal region just in case
the set assigned to that minimal region is empty.

3. A model satis�es a chain occurring in some region just in case the set
satis�es at least one of the `x's or `o's in the chain.

4. A model satis�es a Peirce{Venn diagram just in case it satis�es each
chain in the diagram.

There is a very close similarity between Peirce{Venn diagram and propo-
sitional sentences in conjunctive normal form. A Peirce{Venn diagram is
interpreted as a conjunction of disjunctions, each of the distinct chains being
a `conjunct' and each link of such a chain being a `disjunct'.
For some purposes, it is convenient to represent Peirce{Venn diagrams in

tabular form. Lower-case letters are used to represent the minimal regions
of a diagram having either an `x' or an `o'. One row of a table represents
one chain of the diagram. The left side of a row consists the minimal regions
that have an `x' from the chain while the right side consists of the minimal
regions that have an `o' from the chain.
As an example, the following table could be used to represent a Peirce{

Venn diagram with two chains, the various links of which fall in �ve di�erent
minimal regions (temporarily referred to as a, b, c, d, and e):

`x' `o'
a; b c; d
c; e b

The �rst chain has two `x's in regions a and b and two `o's in regions c and
d. The second chain has `x's in c and e and an `o' in b.
Notice that the conditions on well-formed diagram prevent such a table

from having two duplicate rows. They also prevent a table from having any
row where the same letter appears twice on the left or twice on the right.
The two rows of the above table can also be expressed as the two propo-

sitional sentences
a _ b _ :c _ :d

and
c _ e _ :b

where :b represents an `o' in minimal region b and b represents an `x' in
region b, and a disjunction of such literals representes a chain of such `x's
and `o's in those minimal regions.
The �rst task is to show that Peirce{Venn diagrams are equivalent in ex-

pressive power to the monadic fragment of �rst-order logic.31 The sentences
31An extension of Venn diagrams is formulated in Shin [1994], pp. 111{152, with the

same expressive power. That system allows any �nite disjunction of Venn diagrams to
qualify as a well-formed diagram.
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of monadic logic are those sentences of �rst-order logic without identity con-
structible from languages involving only one-place predicate symbols.

THEOREM 13. Peirce{Venn diagrams are equivalent to monadic logic.

Proof. It is clear how to derive an equivalent monadic sentence from a
given Peirce{Venn diagram, so only the converse will be shown. Let �
be a monadic sentence and let L(�) be the set of all predicates occurring
in �. First, the quanti�ers of � are driven inwards so that the scope of
each quanti�er is a truth function of atomic formulas each involving the
quanti�ed variable.32 It can be assumed that only existential quanti�ers
occur. Consider such a subformula 9x . The truth-function  can be put
into disjunctive normal form, resulting in

9x(�1 _ : : : _ �n)

which is equivalent to

9x�1 _ : : : _ 9x�n

Thus the scope of each quanti�er is a conjunction of atomic formulas and
negated atomic formulas. Notice that each such conjunction, say A(x) ^
:B(x) ^ C(x), can be written as a term such as ABC, the notation used
above. Now expand each such existentially quanti�ed term into a disjunc-
tion of existentially quanti�ed terms each of which involves every predicate
in L(�). For example, if the subformula is 9xABC and D is the only other
predicate in L(�), the result would be

9xABCD _ 9xABCD

Call each such disjunct a complete atom. Thus, complete atoms are ex-
istentially quanti�ed conjunction of atomic formulas and negated atomic
formulas in which each predicates in L(�) occurs once. Now put the entire
sentence into conjunctive normal form using the complete atoms as atomic
elements. Each conjunct of the resulting sentence corresponds to one chain,
and each disjunct of a conjunct corresponds to one `x' or `o' of the chain,
depending on whether the disjunct is negated or not. The minimal region
the `x' or `o' should be drawn in depends on which region corresponds to
the quanti�ed term. Thus, a Peirce{Venn diagram can be drawn for � by
drawing one circle for each predicate in L(�) and adding one chain for each
conjunct of the derived sentence. �

The rules of inference for Peirce{Venn diagrams include parallels of the
rules of Addition, Simpli�cation, Contraction, and Contradiction from Venn
diagrams. The primary rule, Peirce's Rule, is new.

32A procedure for this deriving from Behmann [1922] is described in Quine [1982].
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RULE 14 (Addition). A chain can be extended with an additional `x' or `o'
in a new minimal region.

RULE 15 (Simpli�cation). Any entire chain can be erased.

RULE 16 (Contradiction). Any diagram can be inferred from a diagram
having a minimal region with both an unconnected `o' and an unconnected
`x'.

RULE 17 (Contraction).
Case 1: If a chain has an `x' in a minimal region having an unconnected `o',
the `x' and the two halves reconnected.
Case 2: If a chain has an `o' in a minimal region having an unconnected `x',
the `o' can be erased and the two halves reconnected.

RULE 18 (Peirce's Rule). If a chain has an `x' in a minimal region and
another chain has an `o' in that same region, the `x' and the 'o' can be that
`x' can be erased provided the four halves of the remaining chains are all
connected to each other.33

Expressed in terms of tables, Peirce's Rule states that two rows that share a
letter that is on the right in one and on the left in the other can be combined
into a larger row, with the two letters in common erased (unless they were
the only letter on that side of the row). As an example, a Peirce{Venn
diagram represented as

`x' `o'
a; b c
d b; e

implies

`x' `o'
a; d c; e

In minimal region B, one chain has an `x' and the other has an `o'. The
`x' and `o' are erased, and the resulting pieces from the two chains are
connected together.
Peirce's Rule is essentially identical to the Resolution Rule of the Resolu-

tion proof procedure for propositional logic, which operates on propositional
sentences in conjunctive normal form.
The following lemma shows that a trivial test determines whether or not

a Peirce{Venn diagram is satis�able.

DEFINITION 19 (Peirce Closure). The Peirce closure of a diagram is the
result of applying Peirce's Rule and Contraction to it as many times as
possible.

33 Peirce [1958], pp. 310{311.



DIAGRAMMATIC LOGIC 411

LEMMA 20. A Peirce{Venn diagram is satis�able if and only if its Peirce
closure is consistent.

Proof. One direction follows from the validity of Peirce's Rule. For the
other direction, note �rst that a consistent Peirce closure is satis�able be-
cause no minimal region has both an `x' and an `o'. Next note that an
application of Peirce's Rule on two chains that conict in some minimal
region results in two subchains of the original chains. Therefore any model
satisfying the new chains must also satisfy the two original chains. Hence, by
induction, any model satisfying the Peirce closure also satis�es the original
diagram. �

Lemma 20 provides a simple decision procedure for propositional logic.
Given a propositional sentence �, construct the conjunctive normal form of
:�. Draw a Peirce{Venn diagram with at least as many minimal regions
as propositional variables in �. Assign each variable P to a �xed minimal
region and let P translate to an `x' in that region, :P translate to an `o' in
that region, and each conjunct of the CNF translate to a connected chain
of these `x's and `o's. Let the assignment of a non-empty set to a minimal
region translates to the assignment of truth to the variable corresponding
to it, and the empty set to false. The resulting Peirce{Venn diagram is
unsatis�able if and only if � is valid. Hence � is valid if and only if the
Peirce closure of the diagram is inconsistent.
Next a completeness result for Peirce's diagrammatic logic is proved. A

somewhat di�erent completeness result for a natural deduction formulation
of Peirce's system is given in Hammer [1995b].34

THEOREM 21 (Completeness). If diagram e is a logical consequence of d
and both have the same labels (and number of circles), then e is provable
from d.

Proof. Assume that e is not provable from d. Take the Peirce closure of d,
which we can assume is consistent. Some chain

p _ q _ :r _ :s

occurs in e but no subchain of it occurs in the Peirce closure. (The same ar-
gument will work for other types of chains). We construct a model satisfying
d but not e. Add the two unconnected `o's :p;:q and the two unconnected
`x's r; s to the Peirce closure, obtaining d0. We construct a model of d0 using
Lemma 20. Suppose the Peirce closure of d0 were inconsistent, say resulting
in an `x' and `o' z and :z. The presence of :p;:q; r; s allow chains having
any of p, q, :r, or :s as links to be shortened by Contraction. Consider
now the same proof with all uses of the added `x's and `o's :p;:q; r; s re-
moved (this is a proof from the Peirce closure of d.) The result is two chains

34pp. 821{825.
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p_ q _ :r _ :s _ z and p _ q _ :r _ :s_ :z, including at least the last link
but possibly not all of the other links, depending on which of :p;:q; r; s
were used in the original proof. One application of Peirce's Rule to these
two chains results in either p _ q _ :r _ :s or a subchain of p _ q _ :r _ :s
(from which p _ q _ :r _ :s is obtainable by Addition). This contradicts
that p _ q _ :r _ :s is not provable from d. Hence the Peirce closure of d0

is consistent, and so by Lemma 20 e is not a logical consequence of d. �

As with the Venn system, rules of Merge, Add Circle, and Remove Circle
can be formulated that allow more general completeness results to be proved
for Peirce{Venn diagrams.

4 EXISTENTIAL GRAPHS

This section describes the logic of existential graphs developed by Peirce.35

Existential graphs, a system arising from Peirce's work on the calculus of
relations and predicate logic, is a graphical system for representing logical
sentences and inferences.

Peirce wavered somewhat on the purpose of existential graphs. In 1911
he describes the system as a `system of logical symbols' whose `purpose and
end is simply and solely the investigation of the theory of logic, and not at all
the construction of a calculus to aid the drawing of inferences'.36 Likewise,
in 1903 he writes of the system that `the whole e�ort has been to dissect
the operations of inference into as many distinct steps as possible'.37 The
system is presented in these statements as an analytical device rather than
a practical tool. On the other hand, in 1906 Peirce describes the system as
a practical reasoning tool: `The system of Existential Graphs which I have
now suÆciently described - or, at any rate, have described as well as I know
how, leaving the further perfection of it to others - greatly facilitates the
solution of problems of Logic. . . '.38 This statement describes the system as
a practical tool designed to assist in logical reasoning.

The system of existential graphs was divided by Peirce into several nat-
ural fragments. The alpha fragment is equivalent to propositional logic,
and forms a very elegant and workable substitute. The beta fragment is
equivalent to �rst-order logic with identity. Its rules are much more com-
plex than those of the alpha fragment, and is a system that is not readily
analyzable. These are the two most polished fragments of the system of exis-
tential graphs, and are the two examined here. The gamma fragment allows
expressions of modality, abstraction, higher-order quanti�cation, and state-

35 Peirce [1958].
36Peirce [1958], p. 320.
37Peirce [1958], p. 343.
38Peirce [1958], pp. 458{459.
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ments about existential graphs themselves.39 A good description of Peirce's
entire system is Roberts [1973].
Graphs are drawn on the sheet of assertion: a blank, empty area of the

page on which is drawn all that is asserted. The blank sheet of assertion is
logically true, since nothing is, in that case, being asserted.
Several graphs drawn on the sheet of assertion are interpreted conjunc-

tively. Thus,

C

B

A

is equivalent to A ^B ^ C.
A closed curve (as with the circles of Venn diagrams) called a cut negates

the subgraph that it encloses. Thus,

�
�
�
�D

C

B

A

is equivalent to A ^B ^ :(C ^D).
A cut that encloses no subgraph other than a part of the sheet of asser-

tion is logically false because it denies the empty subgraph consisting of no
assertion.
A common idiom is used frequently by Peirce to graph implications. To

graph an implication, �rst two concentrically nested cuts are drawn. Then
the antecedent is drawn in the area within the outer cut but outside of
the inner cut, and the consequent drawn within the inner cut. Thus, the
following graph is equivalent to `if A then B'.

�
�
�
�

�
�
�
�BA

The �rst rule of inference allows a double negation to be added or removed
from any subgraph.

RULE 22 (Double Cut). Two concentrically nested cuts may be erased or
added around any subgraph.

39See Peirce [1958], pp. 401{410.
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RULE 23 (Insertion in Odd). Any graph may be drawn on an area of the
sheet of assertion that is enclosed by an odd number of cuts.

Insertion in Odd can be thought of as allowing additional assumptions to
be added to subproofs.40

RULE 24 (Erasure in Even). Any subgraph drawn on an area of the sheet
of assertion that is enclosed by an even number of cuts may be erased.

Erasure in Even can be thought of as a generalized version of simpli�cation,
the rule allowing any conjunct to be eliminated from a conjunction.

RULE 25 (Iteration). A subgraph may be copied to any other area on the
sheet of assertion that falls within all of the cuts enclosing the original
subgraph.

Iteration can be understood as allowing one to reiterate or use assump-
tions or facts in subproofs within their scope.

RULE 26 (Deiteration). Any subgraph that could have been drawn as a
result of the rule of Iteration may be erased.

Conversely, Deiteration encodes the principle that if a previously estab-
lished fact occurs in a subproof, there is no need to reestablish it in the
subproof and so any such redundant occurrence can be eliminated.

The alpha fragment of Peirce's system is equivalent to propositional logic.
Completeness results for various formulations of the system have been pro-
vided by Zeman [1964], Roberts [1964], Roberts [1973], White [1984], and
Hammer [1995a].

The following is an example of a proof that uses all �ve inference rules.
The conclusion is a graph of `if A and D, then C'. The premises are graphs
of `if A then B' and `if not-C, then not-B':

#
"

 
!

�
�
�
�
�Æ ��
 �	 BC

�
�
�
�

�
�
�
�BA

By Double Cut:

#
"

 
!

�
 �	 BC

�
�
�
�

�
�
�
�BA

40The connection between the rules of existential graphs and natural deduction proofs
is made in Roberts [1964].
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By Iteration of the right graph into the left graph and then Erasure of the
right graph:

�
�

�
�

�
�

�
�

�
� ���
 �	BCBA

By Deiteration:

�
�

�
�

�
�

�
�

�� ���
 �	CBA

By Double Cut:

�
�

�
�

�Æ �CBA

Finally, by Erasure in Even (of B) and then Insertion in Odd (of D):

�
�

�
�

�Æ �D
CA

Peirce's next fragment of existential graphs, the beta system, is much
more complicated. Peirce uses what he calls lines of identity instead of
variables. The formula x knows y would be approximated by the graph:

knows

Actually, lines of identity also have quanti�cational import, so the graph is
really the equivalent of 9x9y(x knows y).
The next graph is equivalent to 9x:9y(x knows y), or equivalently, `Some-

one knows nobody.'

�
�
�
�knows
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As this example shows, the scope of quanti�cation associated with a line
of identity is determined by the portion of the line that is the least deeply
enclosed within cuts. In particular, the order in which the elements of a
graph are interpreted is (i) lines of identity on the sheet of assertion (i.e.,
with parts enclosed by no cuts), (ii) cuts on the sheet of assertion, (iii) lines
of identity on the sheet of assertion (i.e., with parts enclosed by no cuts),
(iv) cuts on the sheet of assertion, etc.

The next graph is equivalent to `someone knows everyone'.

�
�

�
�

�
�
�
�knows

Notice that lines of identity enclosed by an odd number of cuts are naturally
interpreted as universally quanti�ed.

Cross-reference (indicated in �rst-order logic by the same variable occur-
ring more than once) is accomplished in the system of existential graphs
by allowing lines of identity to branch. For example, the following graph is
equivalent to `everyone knows a millionaire'.

'
&

$
%

�
�

�
�

millionaire

knows

The following is a selection of most of the rules of inference for the
beta fragment.41 For a more complete list see Peirce [1958], Zeman [1964],
Roberts [1973] and Roberts [1992]. Most of the rules are generalizations of
the alpha rules, now taking into account lines of identity.

RULE 27 (Double Cut). Concentrically nested cuts may be added or re-
moved around any subgraph as long as no graphs occur in the area within
the outer cut but outside of the inner cut except possibly lines of identity
that pass directly from within the inner cut to outside of the other cut.

This is the same rule as in the alpha system, with the only exception
being that lines of identity are allowed to pass directly through the two
cuts.

RULE 28 (Erasure). Any subgraph occurring within an even number of cuts
may be erased, including an evenly enclosed portion of a line of identity.

41See Peirce [1958], pp. 395{396.
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RULE 29 (Iteration). A subgraph of a graph can be copied to any other
part of the graph which falls within the same or additional cuts.42

This rule is not stated in its entirety, which allows lines of identity to be
connected to their iterated counterparts.

RULE 30 (Deiteration). A subgraph that could be the result of an applica-
tion of Iteration can be erased.

RULE 31 (Connect in Odd). Two loose ends of lines of identity that occur
in the same, oddly enclosed area can be connected.

Graphs in oddly enclosed areas behave like assumptions. Connecting two
loose ends in such an area has something of the e�ect of making a stronger
assumption, namely that the two objects are identical.

RULE 32 (Retraction Outwards). A loose end of a line of identity can be
retracted as long as the only cuts it is retracted across are in the direction
of within the cut to outside of the cut.

RULE 33 (Extension Inwards). A loose end can be extended inwards through
zero or more additional cuts.

RULE 34 (Branch). A branch can be added to any portion of a line of
identity.

Here is an example of a non-trivial proof in the beta system. The con-
clusion is a graph of `everyone is known by someone':

'
&

$
%

�
�
�
�knows

The two premises are graphs of `someone is known by everyone' and `if
someone knows another, that person also knows the �rst' (or `knows is
symmetric'):

'
&

$
%

�
�

�
�knowsknows

'
&

$
%

�
�
�
�knows

To begin the proof, an application of Iteration to the graph of `knows is
symmetric' (and then an application of Erasure to the original) gives:

42Peirce [1958], p. 396.
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'

&

$

%

'

&

$

%

knows

'
&

$
%

�
�

�
�knowsknows

The e�ect of this is to bring the premise `knows is symmetric' within the
scope of the other premise so that the two can be combined.
The next step is to connect the two lines of identity of each premise

to a line of the other premise, thereby identifying the variables of the two
premises. This is done using Branch, Extension Inwards, and Connect in
Odd. First, four applications of Branch gives:

'

&

$

%

'

&

$

%

knows

'
&

$
%

�
�

�
�knowsknows

Second, two applications of Extension Inwards to the two new outer branches
gives:

'

&

$

%

'

&

$

%

knows

'
&

$
%

�
�

�
�knowsknows
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Finally, two applications of Connect in Odd gives:

'

&

$

%

'

&

$

%

knows

'
&

$
%

�
�

�
�knowsknows

The e�ect of these operations is that the two pairs of `variables' of the
two premises have been identi�ed, allowing the lines of identity of the two
premises to interact.
Eventually, the innermost occurrence of `knows' will be the predicate of

the conclusion, the other two being eliminated once they have been used.
An application of Deiteration (to the subgraph `knows') gives:

'

&

$

%

'

&

$

%

knows

'
&

$
%

�
�

�
�knows

Two applications of Retraction to the loose ends results in:

'

&

$

%

'

&

$

%

knows

'
&

$
%

�
�

�
�knows
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Then, by Double Cut:

'

&

$

%

'

&

$

%

knows

knows

Because the outermost `knows' occurs within an even number of cuts it can
be eliminated. Thus, an application of Erasure and then two applications
of Retraction on the loose ends yields:

'

&

$

%

'

&

$

%
knows

Restructuring this graph for readability gives:

#
"

 
!

�
�

�
�knows

This graph says that the person who was known by everyone knows every-
body. To get the conclusion, an application of Erasure gives:

#
"

 
!

�
�

�
�knows
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Finally, an application of Retraction Outwards to the unconnected line of
identity and then Erasure yields the conclusion:

#
"

 
!

�
�

�
�knows

Analysis of the beta system of existential graphs remains uncompleted
at this time partly because the system's unusual topological syntax resists
many standard techniques. However, completeness results have been re-
ported in Zeman [1964] and Roberts [1973], and consistency results have
been reported in Zeman [1964] and Roberts [1973, 1992].

5 CONCLUSION

A diagrammatic logic is simply a logic whose target objects are diagrams
rather than sentences. Other than this, diagrammatic logics and logics in-
volving expressions of some language are not di�erent in kind. In either
case, the logic should provide an adequate description of the class of rep-
resentations being studied, their meaning, and the principles behind their
use and purpose within the system of which they are a part. The reasons
for formulating and analyzing a diagrammatic logic are also the same as
for a language-based logic. If for any reason the grammatical, semantical,
or inferential properties of a diagrammatic system need to be determined
precisely, say for computational or psychological purposes, a diagrammatic
logic will do exactly that.

Peoplesoft Inc., USA.
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PREFACE TO THE SECOND EDITION

It is with great pleasure that we are presenting to the community the
second edition of this extraordinary handbook. It has been over 15 years
since the publication of the �rst edition and there have been great changes
in the landscape of philosophical logic since then.

The �rst edition has proved invaluable to generations of students and
researchers in formal philosophy and language, as well as to consumers of
logic in many applied areas. The main logic article in the Encyclopaedia
Britannica 1999 has described the �rst edition as `the best starting point
for exploring any of the topics in logic'. We are con�dent that the second
edition will prove to be just as good.!

The �rst edition was the second handbook published for the logic commu-
nity. It followed the North Holland one volume Handbook of Mathematical
Logic, published in 1977, edited by the late Jon Barwise. The four volume
Handbook of Philosophical Logic, published 1983{1989 came at a fortunate
temporal junction at the evolution of logic. This was the time when logic
was gaining ground in computer science and arti�cial intelligence circles.

These areas were under increasing commercial pressure to provide devices
which help and/or replace the human in his daily activity. This pressure
required the use of logic in the modelling of human activity and organisa-
tion on the one hand and to provide the theoretical basis for the computer
program constructs on the other. The result was that the Handbook of
Philosophical Logic, which covered most of the areas needed from logic for
these active communities, became their bible.

The increased demand for philosophical logic from computer science and
arti�cial intelligence and computational linguistics accelerated the devel-
opment of the subject directly and indirectly. It directly pushed research
forward, stimulated by the needs of applications. New logic areas became
established and old areas were enriched and expanded. At the same time, it
socially provided employment for generations of logicians residing in com-
puter science, linguistics and electrical engineering departments which of
course helped keep the logic community thriving. In addition to that, it so
happens (perhaps not by accident) that many of the Handbook contributors
became active in these application areas and took their place as time passed
on, among the most famous leading �gures of applied philosophical logic of
our times. Today we have a handbook with a most extraordinary collection
of famous people as authors!

The table below will give our readers an idea of the landscape of logic
and its relation to computer science and formal language and arti�cial in-
telligence. It shows that the �rst edition is very close to the mark of what
was needed. Two topics were not included in the �rst edition, even though
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they were extensively discussed by all authors in a 3-day Handbook meeting.
These are:

� a chapter on non-monotonic logic

� a chapter on combinatory logic and �-calculus

We felt at the time (1979) that non-monotonic logic was not ready for
a chapter yet and that combinatory logic and �-calculus was too far re-
moved.1 Non-monotonic logic is now a very major area of philosophi-
cal logic, alongside default logics, labelled deductive systems, �bring log-
ics, multi-dimensional, multimodal and substructural logics. Intensive re-
examinations of fragments of classical logic have produced fresh insights,
including at time decision procedures and equivalence with non-classical
systems.

Perhaps the most impressive achievement of philosophical logic as arising
in the past decade has been the e�ective negotiation of research partnerships
with fallacy theory, informal logic and argumentation theory, attested to by
the Amsterdam Conference in Logic and Argumentation in 1995, and the
two Bonn Conferences in Practical Reasoning in 1996 and 1997.

These subjects are becoming more and more useful in agent theory and
intelligent and reactive databases.

Finally, �fteen years after the start of the Handbook project, I would
like to take this opportunity to put forward my current views about logic
in computer science, computational linguistics and arti�cial intelligence. In
the early 1980s the perception of the role of logic in computer science was
that of a speci�cation and reasoning tool and that of a basis for possibly
neat computer languages. The computer scientist was manipulating data
structures and the use of logic was one of his options.

My own view at the time was that there was an opportunity for logic to
play a key role in computer science and to exchange bene�ts with this rich
and important application area and thus enhance its own evolution. The
relationship between logic and computer science was perceived as very much
like the relationship of applied mathematics to physics and engineering. Ap-
plied mathematics evolves through its use as an essential tool, and so we
hoped for logic. Today my view has changed. As computer science and
arti�cial intelligence deal more and more with distributed and interactive
systems, processes, concurrency, agents, causes, transitions, communication
and control (to name a few), the researcher in this area is having more and
more in common with the traditional philosopher who has been analysing

1I am really sorry, in hindsight, about the omission of the non-monotonic logic chapter.
I wonder how the subject would have developed, if the AI research community had had
a theoretical model, in the form of a chapter, to look at. Perhaps the area would have
developed in a more streamlined way!
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such questions for centuries (unrestricted by the capabilities of any hard-
ware).

The principles governing the interaction of several processes, for example,
are abstract an similar to principles governing the cooperation of two large
organisation. A detailed rule based e�ective but rigid bureaucracy is very
much similar to a complex computer program handling and manipulating
data. My guess is that the principles underlying one are very much the
same as those underlying the other.

I believe the day is not far away in the future when the computer scientist
will wake up one morning with the realisation that he is actually a kind of
formal philosopher!

The projected number of volumes for this Handbook is about 18. The
subject has evolved and its areas have become interrelated to such an extent
that it no longer makes sense to dedicate volumes to topics. However, the
volumes do follow some natural groupings of chapters.

I would like to thank our authors are readers for their contributions and
their commitment in making this Handbook a success. Thanks also to
our publication administrator Mrs J. Spurr for her usual dedication and
excellence and to Kluwer Academic Publishers for their continuing support
for the Handbook.

Dov Gabbay
King's College London
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DIRK VAN DALEN

INTUITIONISTIC LOGIC

INTRODUCTION

Among these logics that deal with the familiar connectives and quanti�ers
two stand out as having a solid philosophical{mathematical justi�cation.
On the one hand there is a classical logic with its ontological basis and on the
other hand intuitionistic logic with its epistemic motivation. The case for
other logics is considerably weaker; although one may consider intermediate
logics with more or less plausible principles from certain viewpoints none
of them is accompanied by a comparably compelling philosophy. For this
reason we have mostly paid attention to pure intuitionistic theories.

Since Brouwer, and later Heyting, considered intuitionistic reasoning,
intuitionistic logic has grown into a discipline with a considerable scope.
The subject has connections with almost all foundational disciplines, and it
has rapidly expanded.

The present survey is just a modest cross-section of the presently available
material. We have concentrated on a more or less semantic approach at the
cost of the proof theoretic features. Although the proof theoretical tradition
may be closer to the spirit of intuitionism (with its stress on proofs), even a
modest treatment of the proof theory of intuitionistic logic would be beyond
the scope of this chapter. The reader will �nd ample information on this
particular subject in the papers of, e.g. Prawitz and Troelstra.

For the same reason we have refrained from going into the connection
between recursion theory and intuitionistic logic. Section 8 provides a brief
introduction to realizability.

Intuitionistic logic is, technically speaking, just a subsystem of classical
logic; the matter changes, however, in higher-order logic and in mathemat-
ical theories. In those cases speci�c intuitionistic principles come into play,
e.g. in the theory of choice sequences the meaning of the pre�x 8�9x derives
from the nature of the mathematical objects concerned. Topics of the above
kind are dealt with in Section 9.

The last sections touch on the recent developments in the area of cate-
gorical logic. We do not mention categories but consider a very special case.
There has been an enormous proliferation in the semantics of intuitionistic
second-order and higher-order theories. The philosophical relevance is quite
often absent so that we have not paid attention to the extensive literature
on independence results. For the same reason we have not incorporated the
intuitionistic ZF-like systems.
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Intuitionistic logic can be arrived at in many ways|e.g. physicalistic or
materialistic|we have chosen to stick to the intuitionistic tradition in con-
sidering mathematics and logic as based on human mental activities. Not
surprisingly, intuitionistic logic plays a role in constructive theories that
do not share the basic principles of intuitionism, e.g. Bishop's constructive
mathematics. There was no room to go into the foundations of these al-
ternatives to intuitionism. In particular we had to leave out Feferman's
powerful and elegant formalisations of operations and classes. The reader
is referred to Beeson [1985] and Troelstra and van Dalen [1988] for this and
related topics.

We are indebted for discussions and comments to C.P.J. Koymans,
A.S. Troelstra and A. Visser.

1 A SHORT HISTORY

Intuitionism was conceived by Brouwer in the early part of the twentieth
century when logic was still in its infancy. Hence we must view Brouwer's
attitude towards logic in the light of a rather crude form of theoretical logic.
It is probably a sound conjecture that he never read Frege's fundamental
expositions and that he even avoided Whitehead and Russell's Principia
Mathematica. Frege was at the time mainly known in mathematical cir-
cles for his polemics with Hilbert and others, and one could do without the
Principia Mathematica by reading the fundamental papers in the journals.
Taking into account the limited amount of specialised knowledge Brouwer
had of logic, one might well be surprised to �nd an astute appraisal of the
role of logic in Brouwer's Dissertation [Brouwer, 1907]. Contrary to most
traditional views, Brouwer claims that logic does not precede mathematics,
but, conversely, that logic depends on mathematics. The apparent contra-
diction with the existing practice of establishing strings of `logical' steps
in mathematical reasoning, is explained by pointing out that each of these
steps represents a sequence of mathematical constructions. The logic, so to
speak, is what remains if on takes away the speci�c mathematical construc-
tions that lead from one stage of insight to the next.

Here it is essential to make a short excursion into the mathematical and
scienti�c views that Brouwer held and that are peculiar to intuitionism.
Mathematics, according to Brouwer, is a mental activity, sometimes de-
scribed by him as the exact part of human thought. In particular, mathe-
matical objects are mental constructions, and properties of these objects are
established by, again, mental constructions. Hence, in this view, something
holds for a person if he has a construction (or proof) that establishes it.
Language does not play a role in this process but may be (and in practice:
is) introduced for reasons of communication. `People try by means of sounds
and symbols to originate in other copies of mathematical constructions and
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reasonings which they have made themselves; by the same means they try
to aid their own memory. In this way mathematical language comes into
being, and as its special case the language of logical reasoning'. The next
step taken by man is to consider the language of logical reasoning math-
ematically, i.e. to study its mathematical properties. This is the birth of
theoretical logic.

Brouwer's criticism of logic is two-fold. In the �rst place, logicians are
blamed for giving logic precedence over mathematics, and in the second
place, logic is said to be unreliable (Brouwer [1907; 1908]). In particular,
Brouwer singled out the principle of the excluded third as incorrect and
unjusti�ed. The criticism of this principle is coupled to the criticism of
Hilbert's famous dictum that `each particular mathematical problem can
be solved in the sense that the question under consideration can either be
aÆrmed, or refuted' [Brouwer, 1975, pp. 101 and 109].

Let us, by way of example, consider Goldbach's Conjecture, G, which
states that each even number is the sum of two odd primes. A quick check
tells us that for small numbers the conjecture is borne out: 12 = 5 + 7,
26 = 13 + 13, 62 = 3 + 59, 300 = 149 + 151. Since we cannot perform an
in�nite search, this simple method of checking can at best provide, with
luck, a counter example, but not a proof of the conjecture. At the present
stage of mathematical knowledge no proof of Goldbach's conjecture, or of
its negation, has been provided. So can we aÆrm G_:G? If so, we should
have a construction that would decide which of the two alternatives holds
and provide a proof for it. Clearly we are in no position to exhibit such a
construction, hence we have no grounds for accepting G _ :G as correct.

The undue attention paid to the principle of the excluded third, had
the unfortunate historical consequence that the issues of the foundational
dispute between the Formalists and the Intuitionists were obscured. An
outsider might easily think that the matter was a dispute of two schools{
one with, and one without, the principle of the excluded third (or middle),
PEM for short. Brouwer himself was in no small degree the originator of
the misunderstanding by choosing the far too modest and misleading title
of `Begr�undung der Mengenlehre unabh�angig vom logischen Satz vom aus-
geschlossenen Dritten' for his �rst fundamental paper on intuitionistic math-
ematics. For the philosophical-mystical background of Brouwer's views, see
[van Dalen, 1999a]; a foundational exposition can be found in [van Dalen,
2000].

The logic of intuitionism was not elaborated by Brouwer, although he
proved its �rst theorem: :'$ :::'.

The �rst mathematicians to consider the logic of intuitionism in a more
formal way were Glivenko and Kolmogorov.

The �rst presented a fragment of propositional logic and the second a
fragment of predicate logic. In 1928 Heyting independently formalised intu-
itionist predicate logic and the fundamental theories of arithmetic and `set
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theory' [Heyting, 1930]. For historical details, cf. Troelstra [1978; 1981].
Heyting's formalization opened up a new �eld to adventurous logicians, but
it did not provide a `standard' or `intended' interpretation, thus lacking
the inner coherence of a conceptual explanation. In a couple of papers (cf.
[Heyting, 1934]), Heyting presented from 1931 on the interpretation that
we have come to call the proof-interpretation (cf. [Heyting, 1956, Chapter
VII]). The underlying idea traces back to Brouwer: the truth of a mathe-
matical statement is established by a proof, hence the meaning of the logical
connective has to be explained in terms of proofs and constructions (recall
that a proof is a kind of construction). Let us consider one connective, by
way of example: A proof of ' !  is a construction which converts any
proof of ' into a proof of  .

Note that this de�nition is in accord with the conception of mathematics
(and hence logic) as a mental constructive activity. Moreover it does not
require statements to be bivalent, i.e. to be either true or false. For example,
' ! ' is true independent of our knowledge of the truth of '. The proof-
interpretation provided at least an informal insight into the mysteries of
intuitionistic truth, but it lacked the formal clarity of the notion of truth in
classical logic with its completeness property.

An analogue of the classical notion of truth value was discovered by
Tarski, Stone and others who had observed the similarities between in-
tuitionistic logic and the closure operation of topology (cf. [Rasiowa and
Sikorski, 1963]). This so-called topological interpretation of intuitionistic
logic also covers a number of interpretations that at �rst sight might seem to
be totally devoid of topological features. Among these are the lattice (like)
interpretations of Jaskowski, Rieger and others, but also the more recent
interpretations of Beth and Kripke. All these interpretations are grouped
together as semantical interpretations, in contrast to interpretations that
are based on algorithms, one way or another.

A breakthrough in intuitionistic logic was accomplished by Gentzen in
1934 in his system of Natural Deduction (and also his calculus of sequents),
which embodied the meaning of the intuitionistic connectives far more ac-
curately than the existing Hilbert-type formalizations. The eventual recog-
nition of Gentzen's insights is to a large extent due to the e�orts of Prawitz
who reintroduced Natural Deduction, and considerably extended Gentzen's
work [1965; 1971].

In the beginning of the thirties the �rst meta-logical results about in-
tuitionistic logic and its relation to existing logics appeared. G�odel, and
independently Gentzen, formulated a translation of classical predicate logic
into a fragment of intuitionistic predicate logic, thus extending early work
of Glivenko [Glivenko, 1929; Gentzen, 1933; G�odel, 1932].

G�odel also established the connection between the modal logic S4 and
intuitionistic logic [G�odel, 1932].
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The period after the Second World War brought new researchers to in-
tuitionistic logic and mathematics. In particular Kleene, who based an `ef-
fective' interpretation of intuitionistic arithmetic on the notion of recursive
function. His interpretation is known as realizability (Kleene [1952; 1973]).
In 1956 Beth introduced a new semantic interpretation with a better foun-
dational motivation than the earlier topological interpretations, and Kripke
presented a similar, but more convenient interpretation in 1963 [Kripke,
1965]. These new semantics showed more exibility than the earlier in-
terpretations and lent themselves better to the model theory of concrete
theories. General model theory in the lattice and topological tradition had
already been undertaken by the Polish school (cf. [Rasiowa and Sikorski,
1963]).

In the meantime G�odel had presented his Dialectica Interpretation [1958],
which like Kleene's realizability, belongs to the algorithmic type of interpre-
tations. Both the realizability and the Dialectica Interpretation have shown
to be extremely fruitful for the purpose of Proof Theory.

Another branch at the tree of semantic interpretations appeared fairly
recently, when it was discovered that sheaves and topoi present a generali-
sation of the topological interpretations [Goldblatt, 1979; Troelstra and van
Dalen, 1988].

The role of a formal semantics will be expounded in Section 3. Its most
obvious and immediate use is the establishing of underivability results in
a logical calculus. However, even before a satisfactory semantics was dis-
covered, intuitionists used to show that certain classical theorems were not
valid by straightforward intuitive methods. We will illustrate the naive ap-
proach for two reasons. In the �rst place it is direct and the �rst thing
one would think of, in the second place it has its counterparts in formal
semantics and can be useful as a heuristics.

The traditional counterexamples are usually formulated in terms of a
particular unsolved problem. The problem in the following example goes
back to Brouwer. Consider the decimal expansion of � : 3; 14 : : : , hardly
anything is known about regularities in this expansion, e.g. it is not known
if it contains a sequence of 9 nines. Let A(n) be the statement `the nth
decimal of � is a nine and it is preceded by 8 nines'.

1. The principle of the excluded third is not valid.
Suppose 9xA(x) _ :9xA(x), then we would have a proof that either
provides us with a natural number n such that A(n), or that shows
us that no such n exists. Since there is no such evidence available we
cannot accept the principle of the excluded third.

2. The double negation principle is not valid. Observe that ::(9xA(x)_
:9xA(x)) holds. In general the double negation of the principle of the
excluded third holds, since ::(' _ :') is equivalent to :(:' ^ ::')
and the latter is correct on the intuitive interpretations.
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Since 9xA(x) _ :9xA(x) does not hold, we see that ::' ! ' is not
valid.

3. One version of De Morgan's Law fails.

The suspect case is :('^ ) ! :'_: , since its conclusion is strong and its
premise is weak. Consider :(:9xA(x) ^ 9xA(x)) ! ::9xA(x) _ :9xA(x).
The premise is true, but the conclusion cannot be asserted, since we do not
know if it is impossible that there is no sequence of 9 nines or it is impossible
that there is such a sequence.

Counterexamples of the above kind show that our present state of know-
ledge does not permit us to aÆrm certain logical statements that are classi-
cally true. They represent evidence of implausibility, all the same it is not
the strongest possible result. Of course we cannot expect to establish the
negation of the principle of the excluded third because that is a downright
contradiction. By means of certain strong intuitionistic, or alternatively al-
gorithmic, principles one can establish a strongly non-classical theorem like
:8x('(x) _ :'(x)) for a suitable '(x).

We will now present an informal version of the proof interpretation. For
convenience we will suppose that the variables of our language range over
natural numbers. This is not strictly necessary, but it suÆces to illustrate
the working of the interpretation. Recall that we understand the primitive
notion `a is a proof of '', where a proof is a particular kind of (mental)
construction. We will now proceed to explain what it means to have a
proof of a non-atomic formula ' in terms of proofs of its components.

(i) a is a proof of ' ^  i� a is a pair (a1; a2) such that a1 is a proof of
' and a2 is a proof of  .

(ii) a is a proof of ' _  i� a is a pair (a1; a2) such that a1 = 0 and a2 is
a proof of ' or a1 = 1 and a2 is a proof of  .

(iii) a is a proof of '!  i� a is a construction that converts each proof
b of ' into a proof a(b) of  .

(iv) nothing is a proof of ? (falsity).

(v) a is a proof of 9x'(x) i� a is a pair (a1; a2) such that a1 is a proof of
'(a2).

(vi) a is a proof of 8x'(x) i� a is a construction such that for each natural
number n, a(n) is a proof of '(�n).

Note that intuitionists consider :' as an abbreviation for ' ! ?. The
clause that a trained logician will immediately look for is the one dealing
with the atomic case. We cannot provide a de�nition for that case since it
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must essentially depend on the speci�c theory under consideration. In the
case of ordinary arithmetic the matter is not terribly important as the closed
atoms are decidable statements of the form 5 = 7 + 6, 23:16 = 5(3 + 2:8),
etc. We can `start' the de�nition in a suitable fashion.

Remark. If one wishes to preserve the feature that from a proof one can
read o� the result, then some extra care has to be taken, e.g. according to
clause (iii) (0; p) proves ' _  for all possible  , where ' is a proof of '.
One may beef up the `proof' by adding the disjunction to it: replace (0; p)
by (0; p; ' _  ), etc.

The above version is due to Heyting (cf. [Heyting, 1956; Troelstra, 1981]).
Re�nements have been added by Kreisel for the clauses involving the impli-
cation and universal quanti�cation [Kreisel, 1965]. His argument being: the
de�nition contains a part that is not immediately seen to be of the ultimate
simple and lucid form we wish it to be. In particular one could ask oneself
`does this alleged construction do what it purports to do?' For this reason
Kreisel modi�ed clause (iii) as follows: a is a proof of '!  i� a is a pair
(a1; a2) such that a1 is a construction that converts any proof b of ' into
a proof a1(b) of  , and a2 is a proof of the latter fact. A similar modi�-
cation is provided for (vi). The situation is akin to that of the correctness
of computer programs. In particular we use Kreisel's clause if we want the
relation `a is a proof of '' to be decidable. Clauses (iii) and (vi) clearly do
not preserve decidability, moreover they do not yield `logic free' conditions.

It must be pointed out however that the decidability of the proof-relations
has been criticised and that the `extra clauses' are not universally accepted.

Sundholm [1983] contains a critical analysis of the various presentations of
the `proof interpretation'. In summing up the views of Brouwer, Heyting and
Kreisel, he notes a certain confusion in terminology. In particular he points
out that constructions (in particular proofs) can be viewed as processes and
di�er from the resulting construction-object. The latter is a mathematical
object, and can be operated upon, not so the former. The judgements at
the right-hand side, explaining the meaning of the logical constants, are
taken by Kreisel to be mathematical objects, a procedure that is objected
to by Sundholm. indeed, on viewing the judgement `a converts each proof
of ' into a proof of  ' as extra-mathematical, the need for a second clause
disappears.

In Beeson [1979] a theory of constructions and proofs is presented violat-
ing the decidability of the proof relation. Troelstra and Diller [1982] study
the relation between the proof interpretation and Martin-L�ofs's type theory.

The proofs inductively de�ned above are called canonical by Martin-L�of,
Prawitz and others. Of course there are also non-canonical proofs, and
some of them are preferable to canonical ones. Consider, e.g. 1011+1110 =
1110 + 1011 in arithmetic. One knows how to get a canonical proof: by
simply carrying out the addition according to the basic rules (x + 0 = x
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and x + Sy = S(x + y), where S is the successor function). An obvious
non-canonical (and shorter) proof would be: �rst show 8xy(x+ y = y + x)
by mathematical induction and then specialise.

We will now proceed to illustrate the rules in use.

(1) (' ^  ! �)! ('! ( ! �)):

Let a be a proof of '^ ! �, i.e. a is a construction that converts any proof
(b; c) of ' ^  into a proof a((b; c)) of �. We want a proof of '! ( ! �).
So let p be a proof of ' and q a proof of  .

De�ne a construction k such that k(p) is a proof of  ! �, i.e. (k(p))(q)
is a proof of �. Evidently we should put (k(p))(q) = a((p; q)); so, using the
functional abstraction operator, k(p) = �q:a((p; q)) and k = �p:�q:a((p; q)).
The required proof is a construction that carries a into k, i.e. �apq:a((p; q)).

(2) :(' _  )! (:' ^ : ):
Let a be a proof of :(' _  ), a construction that carries a proof of

' _  into a proof of ?. Suppose now that p is a proof of ', then (0; p)
is a proof of ' _  , and hence a((0; p)) is a proof of ?. So �p:a((0; p))
is a proof of :'. Likewise �q:a((1; q)) is a proof of : . By de�nition
(�p:a((0; p)); �q:a((1; q))) is a proof of :' ^ : . So the construction that
carries a into (�p:a((0; p)), �q:a((1; q)), i.e. �a:(�p:a((0; p)); �q:a((1; q))), is
the required proof.

(3) 9x:'(x) ! :8x'(x):
Let (a1; a2) be a proof of 9x:'(x), i.e. a1 is a proof of '(�a2)! ?. Suppose
p is a proof of 8x'(x), then in particular p(a2) is a proof of '(�a2), and hence
a1(p(a2)) is a proof of ?. So �p:a1(p(a2)) is a proof of :8x'(x)). Therefore
�(a1; a2)�p:a1(p(a2)) is the required proof.

The history of intuitionistic logic is not as stirring as the history of intu-
itionism itself. The logic itself was not controversial, Heyting's formalization
showed it to be a subsystem of classical logic. Moreover, it convinced logi-
cians that there was a coherent notion of `constructive reasoning'. In the
following sections we will show some of the rich structure of this logic. One
problem in intuitionistic logical theories is how to codify and exploit typ-
ically intuitionistic principles. These are to be found in particular in the
second-order theories where the concepts of set (species) and function play
a role.

Despite Brouwer's scorn for logic, some of the �ner distinctions that are
common today were introduced by him. In his thesis we can already �nd
the fully understood notions of language, logic, metalanguage, metalogic,
etc. (cf. Brouwer [1907; 1975]).

The Brouwer{Hilbert controversy seems from our present viewpoint to
be one of those deplorable misunderstandings. Hilbert wanted to justify by
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metamathematical means the mathematics of in�nity with all its idealiza-
tions. He considered mathematics as based on the bedrock of its �nitistic
part, which is just a very concrete part of intuitionistic mathematics. The
latter transcends �nitism by its introduction of abstract notions, such as set
and sequence.

2 PROPOSITIONAL AND PREDICATE LOGIC

The syntax of intuitionistic logic is identical to that of classical logic (cf.
Wilfrid Hodges' chapter in Volume 1 of this Handbook). As in classical logic,
we have the choice between a formalisation in a Hilbert-type system or in a
Gentzen-type system. Heyting's original formalisation used the �rst kind.
We will exhibit a Hilbert-type system �rst.

2.1 An Axiom System for Intuitionistic Logic

Axioms

1. '! ( ! ')

2. ('!  )! (('! ( ! �))! ('! �))

3. '! ( ! ' ^  )

4. ' ^  ! ' ' ^  !  

5. '! ' _   ! ' _  

6. ('! � ! (( ! �)! (' _  ! �))

7. ('!  )! (('! : )! :')

8. '(t)! 9x'(x)

9. 8x'(x)! '(t)

10. '! (:'!  )

Rules

Modus Ponens

' '!  
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Quanti�er rules

'!  (x)

'! 8x (x)

'(x) !  

9x'(x) !  

The quanti�er axioms and rules are subject to the usual variable condi-
tions: t is free for x and x does not occur free in  .

The deducibility relation, `, is de�ned as in Hodges' chapter (Vol. 1) of
the Handbook. As in classical logic, we have the Deduction theorem:

 1; : : : ;  n ` ',  1; : : : ;  n�1 `  n ! ':

If we add to the axioms the principle of the excluded third, ' _ :', or
the double negation principle, ::' ! ', we obtain the familiar classical
logic.

We should note that the axioms contain all connectives, and not, as in
classical logic, just _;: and 9 (or whatever your favourite choice may be).
The reason is that the de�nability of the connectives in terms of some of
them (Hodges Chapter in Volume 1 of this Handbook) fails, as we will see
later.

Since intuitionistic logic is more of an epistemic than of an ontological
nature, we will study it mainly by means of Gentzen's Natural Deduction,
as this latter system reects the speci�c constructive reasoning of the intu-
itionist best.

This particular system has only rules and no axioms. The simplest rules
have the form ::::::

' , and are to be read as ' follows (immediately) from the
premises above the line. Some of the rules, however, involve manipulations
with the so-called assumptions. The prime example is the rule that cor-
responds to the deduction theorem in Hilbert-type systems. Suppose we
can derive  by means of a derivation D from a number of assumptions
among which is a formula ', then we can derive '!  from the mentioned
assumptions without '. We denote this by

[']
D
 

'!  

we say that the assumption ' is cancelled, this is indicated by the use of
square brackets.
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It appears to be convenient to employ a choice of connectives that includes
? and excludes :. Of course :' can be introduced as an abbreviation for
'! ?. We will also use the traditional abbreviation '$  .

The rules come in two kinds, Introduction rules and Elimination rules.

Introduction rules Elimination rules

^I
'  

' ^  ^E
' ^  
'

' ^  
 

_I
'

' _  
 

' _  _E

['] [ ]
D1 D2

' _  � �

�

! I

[']
D
 

'!  

! E
' '!  

 

? ?
'

8I '(x)

8x'(x) 8E 8x'(x)
'(t)

9I '(t)

9x'(x) 9E

['(y)]
D

9x �

�
For the quanti�er rules we have to add a few conditions: in the rules 9I
and 8E, t has to be `free for x'. An application of 8I is allowed only if
the variable x does not occur in any of the assumptions in the derivation of
'(x). Similarly the free variable y in the cancelled formula '(y) may not
occur free in � or any of the assumptions in the right-hand derivation of �
(in 9E).

The rules of Gentzen's system of Natural Deduction are intended to rep-
resent the meaning of connectives as faithfully as possible (cf. [Gentzen,
1935] or [Szabo, 1969, p. 74]). Gentzen's goals have recently been made
more precise in [Dummett, 1973] and [Prawitz, 1977]. We will set ourselves
a speci�c goal by showing that the natural deduction rules are in accordance
with the meaning of the logical connectives as put forward in Heyting's proof
interpretation.
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We will consider a few representative cases.

^I :
'1 '2

'1 ^ '2
:

Let proofs pi of 'i be given. Then we can form the ordered pair (p1; p2)
which is a proof of '1 ^ '2. This is the step that, given canonical proofs of
the conjuncts, provides the canonical proof of the conjunction.

^E :
'1 ^ '2
'i

:

Given a canonical proof p of '1 ^ '2, we know that it must be an ordered
pair (p1; p2). The projection �i yields the required canonical proof of 'i.

! I :

[']
D
 

'!  

:

Suppose that we have a proof of  under a number of assumptions, including
'. Then this proof, when supplemented by a proof of ' yields a proof of  ,
i.e. we have a construction that transforms any proof of ' into a proof of
 , but that means that we have a proof of '!  .

8I : '(x)

8x'(x) :

Suppose that we have a proof of '(x), i.e. a proof schema, that for each
instance '(n) of '(x) yields a proof of it. Since x does not occur in the
assumptions, the proof is uniform in x, i.e. it is a method for converting n
into a proof of '(n). Again we have found a proof of 8x'(x), along the lines
of Heyting's interpretation.

The reader will now be able to continue this line of argument. We will
only dwell for a moment on the ex falso rule.

? :
?
'
:

The justi�cation in terms of constructions is not universally accepted, e.g.
[Johansson, 1936] rejected the rule and formulated his so-called minimal
logic, which has the same rules as intuitionistic logic with deletion of the ex
falso rule.

Now, ? has, in the intuitionistic conception, no proof. What we have to
provide is a construction that automatically yields for every proof of ? a
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proof of '. Nothing is simpler; take for example the identity construction
i : p 7! p, i promises to give a proof of ' as output as soon as it gets a proof
of ? as input. Obviously, i keeps its promise because it is never asked to
ful�ll it.

Note that there is an alternative way of looking at the Natural Deduction
system, we could consider it as a concrete illustration of Heyting's proof
interpretation. For instance, the actual formal derivations are the proofs
and/or constructions. In that sense they realized Heyting's clauses.

Let us, by way of illustration, make a few derivations.

1. ('!  )! (( ! �)! '! �))

1['] ['!  ]3

! E
 [ ! �]2

! E

(1)
�

'! �
! I

(2) ! I

(3)
( ! �)! ('! �)

('!  )! (( ! �)! ('! �))
! I

2. By substitution of ? for � we obtain the law of contraposition
('!  )! (: ! :').

3. '! ::'

1[:'] [']2 (recall that :' stands for '! ?)
! E

(1)
?
::'

(2) ! I
'! ::'

4. :::' ! :'
1[:'] [']2

(1)
?
::' [:::']3

(2)
?
:'

(3)

:::'! :'
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5. From 3. we get :'! :::', combining this with 4. we have
:'$ :::'.

6. ::8x'(x) ! 8x::'(x)

1[8x'(x)]
'(x) [:'(x)]2

(1)
?

:8x'(x) [::8x'()]3

(2)
?

::'(x)
(3)

8x::'(x)
::8x'(x) ! 8x::'(x)

7. :(' _  )$ (:' ^ : )

[']1

' _  [:(' _  )]3

(1)
?
:'

[ ]2

' _  [:(' _  )]3

(2)
?
: 

(3)
:' ^ : 

:(' _  )! :' ^ :'
The arrow from right to left is trivial.

8. ' _ :' and ::' ! ' are equivalent as schema's, i.e. all instances of
PEM follow from all instances of the double negation principle and
vice versa. We will consider one direction. the proof requires a number
of derivations, each of which is simple.

(a) ` ::(' _ :') (use (7))

(b)
::(' _ :')! (' _ :') D

::(' _ :')
' _ :'

where D is a derivation obtained in (a).

The other direction is left to the reader.

The following list of provable statements will come in handy (relevant
variables are shown)

1. '! ::'
2. :'$ :::'
3. :(' ^ :')
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4. ::(' _ :')
5. :(' _  )$ :' ^ :'
6. (' _ :')! (::'! ')

7. ('!  )! :(' ^ : )
8. ('! : )$ :(' ^  )
9. (::' ^ :: )$ ::(' ^  )
10. (::'! :: )$ ::('!  )

11. (::'!  )! (: ! :')
12. 9x:'(x) ! :8x'(x)
13. :9x'(x) $ 8x:'(x)
14. ' _ 8x (x)! 8x(' _  (x))
15. 8x('!  (x)) $ ('! 8x (x))
16. 8x('(x)!  )$ (9'(x) !  )

17. 9x('!  (x)) ! ('! 9x (x))
18. ::8x'(x) ! 8x::'(x).

Furthermore, conjunction and disjunction have the familiar associative,
commutative and distributive properties.

For counterexamples to invalid propositions and sentences see Section
3.11.

The systems of intuitionistic propositional and predicate (or quanti�ca-
tional) logic are, without consideration of their formalisations, denoted by
IPC and IQC.

Derivability will pedantically be denoted by �jIPC' (resp. �jIQC'), or
IPC ` ' (resp. IQC ` '), for empty �. When no confusion arises, we
will however delete the subscripts. The derivations are in tree form, but
one can easily represent them in linear form (cf. [Prawitz, 1965, p. 89 �]).
The present form, however, is more suggestive and since there is nothing
sacrosanct about linearity we will stick to Gentzen's notation.

There is, nonetheless, a good reason for a more complete notation that
makes the cancellation of assumptions explicit.

As usual, we write � ` ' for `there is a derivation of ' from uncancelled
assumptions that belong to the set �'. The rules of natural deduction can
be formulated in terms of `. For convenience we write �; '1; : : : ; 'n for
� [ f'1; : : : ; 'ng and �, � for � [�.
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The following facts follow immediately from our rules:

1. � ` ' if ' 2 �
2. � ` ' and � `  ) �;� ` ' ^  
3. � ` ' ^  ) � ` '

� ` ' ^  ) � `  
4. � ` ') � ` ' _  

� `  ) � ` ' _  
5. � ` ' _  and �; ' ` � and �0;  ` � ) �;�;�0 ` �
6. �; ' `  ) � ` '!  

7. � ` ' and � ` '!  ) �;� `  
8. � ` ? ) � ` '
9. � ` '(x) ) � ` 8x'(x), where x is not free in �

10. � ` 8x'(x)) � ` '(t)
11. � ` '(t)) � ` 9x'(x)
12. � ` 9x'(x) and �; '(y) ` � ) �;� ` �, where y is not free in � and

�.

The above presentation of natural deduction can be viewed as a kind of
sequent calculus, cf. [Troelstra and Schwichtenberg, 1996, x2.1.4]

We can now turn the tables and de�ne � ` ' inductively by the preceding
clauses. D is the least class of pairs (�; ') (denoted by � ` ') such that

� ` ' 2 D if ' 2 �
� ` ' 2 D; � `  2 D ) �;� ` ' ^  2 D
...

� ` 9x'(x) 2 D; �; '(y) ` � 2 D ) �;� ` � 2 D;
where y is not free in � and �.

Observe that a derivation in D corresponds to a derivation in tree form,
as presented before. The linearisation of natural deduction derivations that
some authors have practised obscures the perspicuity of the derivations
and we will stick to the tree form (remember what Frege said about `the
convenience of the printer').

EXAMPLE 1. Take the string

';  ; � ` ' (by 1)
 ; � ` '! ' (by 6)
 ` � ! ('! ') (by 6)
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It shows that  ` � ! (' ! ') an we can recover the derivation in tree
form from it:

�rst derivation ' second derivation
[']

'! '

third derivation

[']

'! '

� ! ('! ')

All this calls for some clari�cation.

1. The matter of cancellation is somewhat delicate, you don't have to
cancel all occurrences of the relevant formula, not even any occurrence.
This is made explicit in, e.g. rule 6, �; ' `  ) � ` ' !  . � may
still contain '.

2. The tree derivation shows only the assumptions that actually play
a role, but in � ` ' there may be lots of superuous assumptions
(in�nitely many if you wish!).

It is for example quite simple to show, on the basis of the rules 1{12
� ` ') �;� ` '.

Natural Deduction, or for that matter its sister system of the Sequent
Calculus, lends itself well to study derivations for their own sake. This par-
ticular branch of logic has in the case of Natural Deduction been rigorously
practised and promoted by Dag Prawitz, who established the main facts of
the system and who demonstrated its exibility and usefulness (cf. Prawitz
[1965; 1971]).

The fundamental theorem in the subject is concerned with derivations
without superuous parts. The following is evidently awkward.

� � ! ' ! E
' [ ] ^I
' ^  ^E
' ! I

 ! '

We have introduced the superuous conjunction ' ^  only in order to
eliminate it again. A more eÆcient proof is

� � ! ' ! E
' ! I

 ! '
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We have eliminated the introduction followed by an elimination, thus simpli-
fying the derivation. A derivation in which an introduction is never followed
by an elimination is called normal. Here it has to be explained what `follow'
means. For this purpose a special partial ordering is introduced; e.g. in! I
' ! ' follows after  , in _E ' follows after ' _ ', etc. See [van Dalen,
1997, p. 199,203].

Prawitz proved the

THEOREM 2 (Normal Form Theorem). If � ` ', then there is a normal
derivation of ' from � (cf. [Prawitz, 1965]).

There is a better result called the

THEOREM 3 (Normalisation Theorem). Any derivation reduces to a nor-
mal derivation.

Here a reduction step consists in the removal of a superuous introduction
followed by an elimination (cf. [Prawitz, 1971]).

There is even a still stronger form, the

THEOREM 4 (Strong Normalisation Theorem). Every sequence of reduc-
tion steps terminates in a normal form.

The whole tradition of normalisation and reduction is traditionally a part
of combinatory logic and �-calculus, a systematic account is given in [Klop,
1980] and [Barendregt, 1984].

There is an interesting interplay between natural deduction derivations
and �-terms, and hence between normalisation in natural deduction and in
�-calculus (cf. [Gallier, 1995; Howard, 1980; Pottinger, 1976; Troelstra and
van Dalen, 1988]).

One of the pleasant corollaries of the normal form of a derivation is the

PROPERTY 5 (Subformula property). In a normal derivation of � ` '
only subformulas of � and ' occur.

In particular only connectives from � and ' can occur. As a consequence
we have

THEOREM 6. Intuitionistic predicate logic is conservative over intuition-
istic propositional logic.

Proof. Let ` ' where ' is a proposition. Consider a normal derivation �
of '. By the subformula property only propositional connectives can occur,
hence we have a derivation using only propositional rules. �

Natural deduction was given an interesting extension by Schroeder-Heister,
[1984]; an exposition and applications can be found in [Negri and von Plato,
2001].
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3 PROOF TERMS AND THE CURRY{HOWARD ISOMORPHISM

Since natural deduction is so close in nature to the proof interpretation,
it is perhaps not surprising that a formal correspondence between a term
calculus and natural deduction can be established.

We will �rst demonstrate this for a small fragment, containing only the
connective `!'. Consider an ! introduction:

[']
D
 

'!  

[x : ']
D
t :  

�x � t : '!  

We assign in a systematic way proof-terms to formulas in the derivation.
Since ' is an assumption, it has a hypothetical proof term, say x. On
cancelling the hypotheses; we introduce a �x in front of the (given) term
t for  . By binding x, the proof term for ' !  no longer depends on
the hypothetical proof x of '. Note that this corresponds exactly to our
intuitive proof interpretation.

The elimination runs as follows:

'!  ' t : '!  s : '
 t(s) :  

Observe the analogy to the proof interpretation. Let us consider a par-
ticular derivation.

['] [x : ']

 ! ' �y � x :  ! '

'! ( ! ') �x � �y � x : '! ( ! ')

Thus the proof term of '! ( ! ') is �xy:x, this is Curry combinator K.

A cut elimination conversion now should give us information about the
conversion of the proof term.

x :  
D
t : ' D0

�x � t :  ! ' s :  
(�x � t)(s) : '

reduces to

D0
s :  
D[s=x]
t[s=x] : '

The proof theoretic conversion corresponds to the �-reduction of the �-
calculus.
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In order to deal with full predicate logic we have to introduce speci�c op-
erations in order to render the meaning of the connectives and their deriva-
tion rules:�

p �� pairing
p0; p1 �� projections

�
D �� discriminator (\case dependency")
k �� case obliteration

E { witness extractor

? { ex falso operator

^I
t0 : '0 t1 : '1

p(t0; t1) : '0 ^ '1
^E

t : '0 ^ '1
(i = 0; 1)

pi(t) : 'i

_I
t : 'i

(i = 0; 1)
ki(t) : '0 _ '1

_E t : ' _  t0[x
'] : � t1[x ] : �

Du;v(t; t0[u]; t1[v]) : �

! I
t[x'] :  

�y' � t[y'] : '!  
! E

t : '!  t0 : '

t(t0) :  

8I t[x] : '(x)

�y � t[y] : 8y'(y) 8E t : 8x'(x)
t(t0) : '(t0)

9I t1 : '(t0)

p(t0; t1) : 9x'(x)
9E t : 9x'(x) t1[y; z'(y)] : �

Eu;v(t; t1[u; v]) : �

There are a number of details that we have to mention.

(i) In ! I the dependency on the hypothesis has to be made explicit in
the term. We do this by assigning to each hypothesis its own variable.
E.g. x' : '.

(ii) In _E (and similarly 9E) the dependency on the particular (auxilliary)
hypotheses ' and  disappears. This is done by a variable binding
technique. In Du;v the variables u and v are bound.

(iii) In the falsum rule the result, of course, depends on the conclusion '.
So ' has its own ex falso operator ?'.
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Now the conversion rules for the derivation automatically suggest the con-
version for the term.

We have seen that the term calculus corresponds with the natural de-
duction system. This suggests a correspondence between proofs and propo-
sitions on the one hand and elements (given by the terms) and types (the
spaces where these terms are to be found). This correspondence was �rst
observed for a simple case (the implication fragment) by Haskell Curry,
[Curry and Feys, 1958], ch. 9, x E, and extended to full intuitionistic logic
by W. Howard, [Howard, 1980]. Let us �rst look at a simple case, the one
considered by Curry.

Since the meaning of proposition is expressed in terms of possible proofs
| we know the meaning of ' if we know what things qualify as proofs |
one may take an abstract view and consider a proposition as its collection of
proofs. From this viewpoint there is a striking analogy between propositions
and sets. A set has elements, and a proposition has proofs. As we have seen,
proofs are actually a special kind of constructions, and they operate on each
other. E.g. if we have a proof p : '!  and a proof q : ' then p(q) :  . So
proofs are naturally typed objects.

Similarly one may consider sets as being typed in a speci�c way. If '
and  are typed sets then the set of all mappings from ' to  is of a higher
type, denoted by '!  or  '. Starting from certain basic sets with types,
one can construct higher types by iterating this `function space'-operation.
Let us denote `a is in type '' by a 2 '.

Now there is this striking parallel.

Propositions Types
a : ' a 2 '
p : '!  ; q : ' p 2 '!  ; q 2 '
) p(q) :  ) p(q) 2  
x : ') t(x) :  x : ') t(x) 2  
then �x � t : '!  then �x � t 2 '!  

It now is a matter of �nding the right types corresponding to the remain-
ing connectives. For ^ and _ we introduce a product type and a disjoint
sum type. For the quanti�ers generalizations are available. The reader is
referred to the literature, cf. [Howard, 1980], [Gallier, 1995].

The main aspect of the Curry-Howard isomorphism, (also known as
\proofs as types"), is the faithful correspondence:

proofs
propositions

=
elements
types

with their conversion and normalization properties.
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The importance of the connection between intuitionistic logic and type
theory was fully grasped and exploited by Per Martin-L�of. Indeed, in his ap-
proach the two are actually merge into one master system. His type systems
are no mere technical innovations, but they intend to capture the founda-
tional meaning of intuitionistic logic and the corresponding mathematical
universe. Expositions of `proofs as types' and the Martin-L�of type theories
can be found in e.g. [Gallier, 1995], [Girard et al., 1989], [Martin-L�of, 1977],
[Martin-L�of, 1984], [Troelstra and van Dalen, 1988], [Sommaruga, 2000].

4 SEMANTICS

The intended interpretation of intuitionistic logic as presented by Heyting,
Kreisel and others so far has proved to be rather elusive, in as much that the
completeness properties that are on every logicians shopping list, have not
(yet) been established. Even in the case of the interpretation of arithmetic
the results are far from �nal. The Curry{Howard isomorphism, also known
by the name `formulas as types', in a sense ful�lls the promise of the proof
interpretation for intuitionistic logic, in the sense that there is a precise
correspondence between natural deductions and proof terms, [Troelstra and
van Dalen, 1988, p. 556].

However, ever since Heyting's formalisation, various, more or less arti-
�cial, semantics have been proposed. In the thirties the topological inter-
pretation was introduced by Tarski, and in the �fties and sixties Beth and
Kripke formulated two closely related semantics.

We will �rst consider the topological interpretation.

DEFINITION 7. A topological space is a pair hX;Oi where O � P(X) such
that

1. ;; X 2 O

2. U; V 2 O ! U \ V 2 O

3. Ui 2 O(i 2 I)! [fIi j i 2 Ig 2 O.
In plain words, a topological space is a set that comes with a family O of
open subsets that is closed under arbitrary unions and �nite intersections
and that contains ; and X . A familiar example is the Euclidean plane,
where O consists of unions of open discs.

In general we can de�ne a topological space when a basis is given, i.e. a
collection B of subsets such that

1. Ai 2 B; p 2 Ai(i = 1; 2)) 9A 2 B(p 2 A � A1 \ A2)

2. 8p 2 X9A 2 B(p 2 A).
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We now de�ne open sets as arbitrary unions of basis-elements. It is a simple
exercise to show that the open sets, thus introduced, indeed satisfy the
condition of De�nition 7. The open discs of the Euclidean plane evidently
form a basis for the natural topology.

We call U a neighbourhood of a point p if U is open and p 2 U , and if,
for a given basis B; U 2 B, we say that U is a basic neighbourhood of p.

Now we will interpret sentences as open subsets (opens, for short) of
a topological space. In order to motivate the interpretation we recall that,
when a �xed basis B is given, the evidence for p 2 U is a basic neighbourhood
A of p such that A � U .

Let us now assign to each statement ' an open subset [[']] of X . We will
try to motivate the topological operations that accompany the connectives.

Let us say that a basic neighbourhood U proves ' if U � [[']]. Suppose
that Ui proves 'i then by the de�nition of basis we can �nd U 2 B such
that U � U1\U2; U proves both '1 and '2. The union of all those U 's that
prove both '1 and '2 is [['1]] \ [['2]], so let us put [['1 ^ '1]] := [['1]]\ [['2]].
Similarly we put [['1 _'2]] := [['1]][ [['2]]. Since ? should not have a proof,
we put [[?]] := ;. Note that this leaves ; as a proof of ?, therefore we
consider ; as the empty proof (or a kind of degenerate proof that carries no
evidence). The interesting case is the implication.

U1

U

U2

[['1]] [['2]]

A proof of '1 ! '2 should give us a method to convert a proof of '1 into
a proof of '2. Therefore we take a basic neighbourhood U in [['1]]

c [ [['2]],
now for any proof U1 that intersects U we can �nd a proof U2 of '2 in
U \ U1: So U indeed provides the required method.

The U 's with that property make up the largest open subset of
[['1]]

c [ [['2]], which we call the interior of that set. So let us put

[['1 ! '2]] := Int ([['1]]
c [ [['2]]) (= Intfx j x 2 [['1]]) x 2 [['2]]g):
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U1

U

[['1]] [['2]]

In order to interpret quanti�ed statements we assume that a domain A
of individuals is given. Then we put

[[9x'(x)]] := [f[['(a)]] j a 2 Ag
[[8x'(x)]] := Int \ f[['(a)]] j a 2 Ag:1

Let us now accept the above as an inductive de�nition of the value [[']]X
of ' in X under a given assignment of open sets to atomic sentences. When
no confusion arises we will delete the index X . The notation suppresses
O, a better notation would be [[']]O , but the reader will have no diÆculty
�nding the correct meaning. A formula ' is said to be true in the topological
space X , notation �X ', if for all valuations [[cl(')]] = X , where cl(') is the
universal closure of '. ' is true, � ', if ' is true in all topological spaces.

For the consequence relation, �, we de�ne � �X ' := Int \ f[[ ]]X j
 2 �g � [[']]X and � � ' i� � �X ' for all X . Observe that for �nite
�(= f 1; : : : ;  ng);� � ',�  1 ^ : : :^ n ! '. Observe that nothing has
been said about the topological space X , in particular X could be the one-
point space with a resulting two-valued, classical logic! This shows that the
above motivation has not enough special assumptions on `constructions', or
`evidence' to lead to a speci�cally intuitionistic logic. The explanation is
too liberal.

The topological interpretation is complete in the following sense:

THEOREM 8. � ` ', � � '.

The implication from left to right (the soundness with respect to the
topological interpretation) is easily veri�ed by the reader. Just check all
the axioms of the Hilbert-type system and show that the derivation rules
preserve truth, or do the latter for the rules of natural deduction.

1For convenience we will abuse notation and use the same symbol for the individual
and its name.
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We will treat the ! I rule.
Let us abbreviate [[�]]X ; [[']]X and [[ ]]X as U; V;W (where [[�]]X =Sf[[�]]X j� 2 �g). Then the induction hypothesis is U \ V � W (note

that we use the formulation of p. 20). Since U is open, U � Int(V c [W )
, U � V c [ W . Now it is a matter of elementary set theory to show
U \ V �W , U � V c [W .

The implication from right to left will follow from a later result.

EXAMPLE 9. [[:']] = [['! ?]] = Int[[']]c. Let ' be an atom and assign to
it the complement of a point p (in the plane), then [[:']] = ; and [['_:']] =
X � fpg 6= X . By the soundness of the logic we have 6` ' _ :'.

The topological interpretation is extensively studied in [Rasiowa and
Sikorski, 1963] (cf. also [Sch�utte, 1968; Dummett, 1977]).

We will move on to a semantics that belongs to the same family as the
topological interpretation but that has certain advantages. Beth and Kripke
have each introduced a semantics for intuitionistic logic and shown its com-
pleteness. The semantics that we present here is a common generalisation
introduced for metamathematical purposes in [van Dalen, 1984].

The underlying heuristics is based on the conception of mathematics (and
hence logic) as a mental activity of an (idealised) mathematician (or logician
if you like). Consider the mental activity of this person, S, as structured
in linear time of type !, i.e. time t runs through 0; 1; 2; 3; : : : . At each time
t S has acquired a certain body of facts, knowledge. It seems reasonable
to assume that S has perfect memory, so that the body of facts increases
monotone in time. Furthermore S has at each time t, in general, a number
of possibilities to increase his knowledge in the transition to time t+1. So if
we present `life' graphically for S, it turns out to fork. However, S not only
collects, experiences or establishes truths, but he also constructs objects,
the elements of his universe. Here also is considerable freedom of choice for
S, going from time t to t+1 he may decide to construct the next prime, or
to construct

p
2. This yields a treelike picture of S's possible histories.

Each node of the tree represents a stage of knowledge of S and a stage
in his construction of his universe. So to each node �i we have assigned a
set of sentences Si and a set of objects Ai, subject to the condition that Si
and Ai increase, i.e.

�i � �j ) Si � Sj and Ai � Aj :
Given this picture of S's activity, let us �nd out how he interprets the

logical constants. First, two auxiliary notions: a path through � is a max-
imal linearly ordered subset, a bar for � is a subset B such that each path
through � intersects B.

It is suggestive to picture bars above �i, i.e. to situate them in the future.
It is no restriction to restrict ourselves to this kind of bars we will see. Now
let ' be an atomic sentence. How can S know ' at state �? He could
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require that ' were then and there given to him. That however seems a bit
restrictive. He might know how to establish ', but need more time to do
so. In that case we say that S knows ' at stage � if for each path through
� (so to speak each `research') there is a stage � such that at � ' is actually
established (or, maybe, experienced). In other words, if there is a bar B
for � such that at each � 2 B ' is given. The following clauses �x the
knowledge of S concerning composite statements.

Conjunction. S knows '^ at stage � if he knows both ' and  at stage
�.

Disjunction. For S to know that '_ holds at stage � he need not know
right away which one holds, he may again need a bit more time. All he
needs to know is that eventually ' or  will hold. To be precise, that there
is a bar B for � such that for each � 2 B S knows ' at stage � or he knows
 at stage �.

Implication. For S to know '!  at stage �, he need not know anything
about ' or  at stage �, all he must be certain of is that if he comes to
know ' in any later stage �, he must also know  at that stage.

Falsity. S, being an idealised person, never establishes a falsity.

Universal Quantification. For S to know 8x'(x) at stage � it does
not suÆce to know '(a) for al objects a that exist at stage �, but also for
all objects that will be constructed in the future.

Existential Quantification. S knows 9x'(x) at stage � if eventually
he will construct an element a such that he knows '(a). To be precise, if
there is a bar B for � such that for each � 2 B there exists an element a at
stage � such that S knows '(a) at that stage.

Examples.

';  ';  ; � � ';  
� � � �

�';  �

�
�

� knows '!  at �
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'(0) '(2) '(7)
� � �

'(0) '(1)
� � �

� �

�
�

� knows 9x'(x) at �

We will now give a formal de�nition of a model for a given similarity type
(without functions).

DEFINITION 10.

1. A model is a quadruple M = hM;�; D;i where M is partially or-
dered by � , and D is a function that assigns to each element of
M a structure of the given type, such that for �; � 2 M;� � � )
D(�) � D(�). Warning: we mean literally `subset', not `substruc-
ture'. D(�) � D(�) is used as a shorthand for `the universe of D(�)
is a subset of that of D(�), and the relations of D(�) are subsets of
the corresponding relations of D(�)'. We write a 2 D(�) for `a is in
the universe of D(�)'.

2. The relation between elements ofM and sentences, called the forcing
relation is inductively de�ned by

(a) �  ', for ' atomic, if there is a bar B for � such that 8� 2
B;D(�) � '

(b) �  ' ^  if �  ' and �   

(c) �  ' _  if there is a bar B for � such that 8� 2 B; �  ' or
�   

(d) �  '!  if 8� � �; �  ') �   

(e) �  8x'(x) if 8� � �8b 2 D(�); �  '(b)

(f) �  9x'(x) if there is a bar B for � such that
8� 2 B; 9b 2 D(�); �  '(b).

Observe that for no �; �  ?, so by de�ning :' := '! ? we get

3. �  :' if 8� � �; � 6 ' (where � 6 ' stands for �  ').
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Our de�nition used the approach with auxiliary names for elements of
the structures D(�). The alternative approach with assignments works just
as well.

We say that a formula ' holds (is true)in a model M if �  cl(') for
all � 2M . If we also allow for the language to contain proposition letters,
then the interpretation of propositional logic is contained as a special case.

The following lemma is rather convenient for practical purposes

LEMMA 11.

1. � � �; �  ') �  '

2. � 6 ', there is a path P through � such 8� 2 P (� 6 ')

3. �  ', there is a bar B for � such that 8� 2 B(�  ').

Proof. Induction on '. Note that (2) is obtained from (3) by negating
both sides. �

For sentences we have

LEMMA 12 (Soundness). � ` ') �  '.

Proof. �  ' stands for `for each M and each � 2 M;�   for all
 2 � ) �  ''. The proof proceeds by induction on the derivation of
� ` '. We consider one case: �; ' `  ! � ` ' !  . Let, in a model
M; �  � for all � 2 �. Suppose that � 6 ' !  , then there is a � � �
such that �  ' but � 6  . This conicts with the induction hypothesis
�; '   . Hence �  '!  . �

We obtain the Beth models and Kripke models by specialisation:

DEFINITION 13.

1. M is a Beth model if jD(�)j is a �xed set D for all �.

2. M is a Kripke model if in (a), (c) and (f) B = f�g. To spell it out:

(a0) �  ' if D(�) � '

(c0) �  ' _  if �  ' or �   

(f0) �  9x'(x) if 9a 2 D(�); �  '(a).

For a Beth model we can simplify clause 5:

(a0) 8x'(x), 8a 2 D;�  '(a) (repeat the proof of Lemma 11(a)).
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Generally speaking, Kripke models are somewhat superior to Beth mod-
els. A small example may serve to illustrate this.

We will summarily present models by a simple diagram. For each node
we list the propositions that are forced by it.

' � �

�
�

Kripke model

�
'��3

�3�
'��2

�2�
'��1

�1�
'��0

�0�

Beth Model

The Kripke model is a counter-example to ' _ :', and so is the Beth
model. Note that the Beth model has to be in�nite in order to refute a
classical tautology, since in a well-founded model all classical tautologies
are true. One sees this by observing that in a well-founded model (i.e. there
are no in�nite ascending sequences; if we had turned the model upside down,
we would have had the proper well-foundedness) there is a bar of maximal
nodes.

Now consider a maximal node �, if � 6 ', then �  :'. So �  '_ :'.
So ' _ :' is forced on the bar B and hence in each node of the model.

B
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So, as a rule, we have simpler Kripke models for our logical purposes than
Beth models.

A Beth model is a special case of our model, so we automatically have
soundness for Beth models. For Kripke models, however, we have to show
soundness separately.

Each class of models is complete for intuitionistic logic. This can be
shown as follows, �rst show the Model Existence Lemma for Kripke seman-
tics, then modify a Kripke model into a model and �nally a model into a
Beth model.

LEMMA 14 (Model Existence Lemma for Kripke Semantics). If � 6` '
then there is a Kripke model K with a bottom node �0 such that �0   for
all  2 � and �0 6 '.

Proof. We'll use a Henkin-style proof after Aczel, Fitting and Thomason.
For simplicity's sake we'll treat the case of a denumerable language, i.e. we
have denumerably many individual variables and individual constants. A
set � of sentences is called a prime (also, saturated) theory if

1. it is closed under derivability

2. ' _  2 �) ' 2 � or  2 �
3. 9x'(x) 2 �) '(c) 2 � for some constant c. �

The fundamental fact about prime theories is the following:

LEMMA 15. If � 6` ' then there is a prime theory �p � � such that ' 62 �p.

Proof. We have to make a harmless little assumption, namely that there
are enumerably many constants ci, not in �. We approximate the �p, as
in the case of the Hintikka sets. To start, we add enumerably many new
constants to the language of �; '. Since we have a countable language, we
may assume that the sentences are given in some �xed enumeration. We
will treat these sentences one by one. This `treatment' consists of adding
witnesses (as in the case of the Hintikka set) and deciding disjunctions. We,
so to speak, approximate the required �p.

step 0 �0 = �

step k + 1 k is even. Let 9x (x) be the �rst existential sentence such that
�k ` 9x (x), that has not been treated, and let c be the �rst
fresh constant not in �k. then put �k+1 = �k;  (c).

k is odd. Let  1 _  2 be the �rst disjunction that has not been
treated, such that �k `  1 _  2. Pick an i such that �k;  i 6` ',
then put �k+1 = �k;  i. By 2. below, at least one of  1;  2 will
do.
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The prime theory we are looking for is

�p =
[
k�0

�k:

We will check the properties.

1. � � �p, trivially.

2. �p 6` '. This amounts to �k 6` ' for all k. We use induction on k.

Case 1. �2k+1 = �2k;  (c). Assume �2k 6` '. If �2k+1 ` ' then by
9E;�2k ` '. Contradiction.
Case 2. We have to show that �2k+1;  1 6` ' or �2k+1;  2 6` '. Sup-
pose both are false, then by (_E) �2k+1 ` '. Contradiction.
So, we proved �k 6` ' for all k.

3. �p is a prime theory.

(a) Let  1 _  2 2 �p, then  1 _  2 2 �k for some k, and hence
�h `  1 _  2 for all h � k. Now look for the �rst h such that
 1 _  2 is treated at step h; then by de�nition  1 2 �h+1 or
 2 2 �h+1. And so at least one of the  i's is in �p.

(b) 9x (x) 2 �p implies by a similar argument that  (c) 2 �p for
some c.

(c) If �p `  , then �p `  _  and, as in (1),  2 �p. �

We now can construct the required Kripke model. In order to obtain
elements for the various domains we consider denumerably many disjoint
sets Vi of denumerably many constants fcim j m � 0g. By joining these Vi's
we get a denumerable family of languages Li partially ordered by inclusion.
The nodes of our Kripke model are prime theories � � �0, which are prime
with respect to some Li, and the partial ordering is the inclusion relation.
The domain of such a � is the set of constants of its language Li. The
forcing relation is de�ned by

�   ,  2 � for atomic  :

Claim: �   ,  2 � holds for all sentences  .
We use induction on  . For  1_ 2; 9x (x) we apply the prime property

of �. Consider �   1 !  2, if  1 !  2 62 �, then �;  1 6`  2, so we
can �nd � � �;  1 such that � 6`  2 and � is prime with respect to Li+1
(where Li belongs to �). So, by induction hypothesis, �   1 and � 6  2.
Contradiction. Hence  1 !  2 2 �. The converse is simple.

A similar argument is used for 8x (x). Let �  8x (x), i.e. 8� �
�;8c 2 D(�);�   (c), and by induction hypothesis  (c) 2 �. Now if
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8x (x) 62 �, then � 6` 8x (x) and hence � 6`  (c) for a fresh constant
c of the next language Li. But then we can �nd a prime theory � with
respect to Li that contains � and � 6`  (c), so  (c) 62 �. Contradiction.
So 8x (x) 2 �. Again the converse is simple.

We now �nally can �nish our proof: the model that we have constructed
satis�es the requirements. To be precise, we �rst extend � to a prime theory
�0 and then construct the model with �0 as bottom node.

As a corollary we have the

THEOREM 16 (Strong Completeness Theorem for Kripke Semantics).
� ` ', �  '.

Proof. ) is the soundness property.
( If � 6` ', then we have a Kripke model such that its bottom node

�0 6 ' and �0   for all  2 �. Hence � 6 '. �

In order to carry the result over to the other two semantics it suÆces to
modify a Kripke model so that we obtain a (Beth) model that does the trick
of Lemma 14.

Kripke has indicated how to do this. In one step we obtain a general
model, and in one more step a Beth model. We will indicate only the �rst
modi�cation

� 
� �

�
�

�02

�01

�00

�0

00

01

02�12

�11

�10
�1

10

11

�2

�3

We basically repeat each node in�nitely often, complete with its domain.
If we look at the Kripke model and its modi�cation below, then we see that
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each �i forces the same atoms as � in the Kripke model, since any bar
intersects the path �0�1�2 : : : .

An inductive argument shows that

Æ K ', Æ0  ';

where Æ = �; �;  and Æ0 is one of the indexed Æ's below and where K stands
for Kripke-forcing, and  for general forcing. In order to make the procedure
general, we introduce �nite sequences h�1; �2; : : : ; �ni of nodes of the Kripke
model, with �i � �i+1, as nodes of the new model. Put D(h�1; : : : ; �ni) =
D(�n). It is a simple exercise to show that the new model serves to establish
Lemma 14. This suÆces to show the completeness of our semantics. In order
to obtain a Beth model we have to collect everything into one domain. This
is worked out in [Kripke, 1965, p. 112 �] or [Sch�utte, 1968].

As a result we have

� ` ', � K ', �  ', � B ';

where K and B stand for Kripke and Beth forcing.
Let us �nally return to the topological interpretation. We wills how that

each Beth model can be viewed as a topological model. Consider a Beth
model hB;�; D;i, the poset B gives rise to a topological space as follows:
the points of TB are paths in B. We de�ne a topology by indicating the
basic open sets U�, where U� = fP j 9� � �; P passes through �g. The
opens (short for `open sets') of TB are unions of U�'s. In the terminology
of topology: fU� j � 2 Bg is a basis for the topology on TB . We check the
properties of a basis 4:

1. P 2 U� \U� , then there are  � � and Æ � � such that ; Æ 2 P . Let
Æ �  then P 2 UÆ and UÆ � U� \ U� .

2. For any path P and any � 2 P we have P 2 U�.
We next turn to the de�nition of the truth values. Put [[']] = [fU� j �  'g
for atomic '. We thus obtain a canonical topological model TB.

THEOREM 17. For the topological model TB the identity
[[']] = [fU� j �  'g holds for all sentences '.
Proof. Induction on '.

For atoms the identity holds by de�nition. _ and ^ are simple.
Consider !. We must show U� � [['!  ]], �  '!  .
We use a small topological lemma: U � Int(V c [W ), U \ V �W , cf.

the proof of Theorem 8.

So, U� � [['!  ]], U� � Int([[']]c [ f ]]), U� \ [[']] � [[ ]]:
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We want to show �  ' ) �   for all � � �. So let �  '. then
by induction hypothesis, U� � [[']], and by � � � U� � U�. Therefore
U�\[[']] = U� � [[ ]], i.e. �   . Conversely we have to show U�\[[']] � [[ ]].
since the U�'s form a basis it suÆces to show U� � U� \ [[']] ! U� � [[ ]],
but U� � [[']] implies �  ', and hence �   , which in turn implies,
U� � [[ ]].

The quanti�er cases are simple, we leave them to the reader. �

COROLLARY 18. For the topological interpretation the completeness the-
orem holds, i.e. � ` ', �  '.

Proof. Soundness is shown by a routine induction. Completeness follows
from the completeness of the Beth semantics and Theorem 17. �

We have introduced a number of semantics each of which has certain
drawbacks. For designing counterexamples and straightforward theoretical
applications the Kripke semantics is the most convenient one. We will
demonstrate this below in a few examples.

EXAMPLE 19. The following, classically valid, sentences are not derivable.

1. ' _ :' (principle of the excluded middle, PEM)

2. ::'! ' (double negation principle)

3. :(' ^  )! :' _ : (De Morgan's Law)

4. :' _ ::'
5. ('!  ) _ ( ! ') (Dummett's axiom)

6. (::'! ')! ' _ :'
7. (:'! : )! ( ! ')

8. ('!  )! :' _  
9. :8x'(x)! 9x:'(x)
10. 8x::'(x) ! ::8x'(x) (double negation shift, DNS)

11. 8x(' _  (x))! ' _ 8x (x) (constant domain axiom)

12. (' ! 9x (x)) ! 9x(' !  (x)) (independence of premiss principle,
IP)

13. (8x'(x)!  )! 9x('(x) !  )

14. 8x('(x) _ :'(x)) ^ ::9x'(x) ! 9x'(x)
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15. ::8xy(x = y _ x 6= y)

16. ::8xy(:x 6= y ! x 6= y)

Proof. Consider the following Kripke models (where the nodes are labelled
with the forced atoms and forced formulas).

� '

a:

�

'  
� �

b:

�

� ';  

c:

�  

1 and 2 are refuted by model a.
4 and 6 are refuted by model b. (forget about the  ).
3 and 5 are refuted by model b.
7 is refuted by model c.
8 is refuted by model a (take  := ').

For the quanti�ed sentences we need to indicate universes.

'(0) ';  (0)

_0 _1 _0 _1 _0 _1 _2 _3

a. b.
'(0)
'(1)
'(2)

_0 _0  (0) _0 _1 _2
'(0)
'(1)

';  (1) '(1)

_0 _1 _0 _1 _0 _1 '(0)

c. d. e.

_0 0 _0

0

9 and 13 are refuted in model a.
10 is refuted in model e.
11 is refuted in model b.
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_0 _1 _2 _3 _4 i = j; i; j � 3

_0 _1 _2 _3 i = j; i; j � 2

f. _0 _1 _2 i = j; i; j � 1

_0 _1

12 is refuted in model c.
14 is refuted in model d.
15 and 16 are refuted in model f.

The identity relation satis�es the obvious axioms of reexivity, symmetry,
transitivity and compatibility with basic relations. Model f clearly satis�es
these axioms.

Observe that we could have refuted 9, 11, 12, 13, 14 by the familiar reduc-
tion of a quanti�ed statement to a proposition mimicking a �nite domain.
Sentence 10 is of a di�erent ilk, we can even show that 10 is true in all �nite
Kripke models (i.e. with a �nite tree).

In a �nite tree each node is dominated by an end (or top) node. Suppose
that 8x::'(x) holds, then in an end node � we have �  8x::'(x), i.e.
8a 2 D�;�  ::'(a). But, since � is an end node, this implies �  '(a)
hence �  8x'(x). As a result we get �0  ::8x'(x) for the bottom node.

As we will show in the next section, IPC is complete for �nite Kripke
models, so IQC essentially needs a wider class of partially ordered sets for
its Kripke semantics. �

Heyting algebras, the common generalization of the preceding semantics.

Boole's discovery of the algebraic nature of the logical laws and operations
was repeated for the case of intuitionistic logic by McKinsey, Stone, Tarski
and others. The resulting algebra has been called closure algebra, Brouwe-
rian algebra, pseudo-Boolean algebra, but nowadays the term Heyting alge-
bra is generally accepted.
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There are various axiomatisations for the theory of Heyting algebras (cf.
[Rasiowa and Sikorski, 1963; Johnstone, 1982]), we will use one that stays
very close to the axioms of IPC.

For the formulation it is convenient to use the notion of lattice.

DEFINITION 20. hA;�i is a lattice if it is a poset in which each pair of
elements has a sup and an inf.

We denote the sup and inf of x and y by x t y and x u y. by de�nition
u and t satisfy

x u y � x; y � x t y
x; y � z ! x t y � z
z � x; y ! z � x u y:

We can alternatively obtain a lattice from a structure hA;t;ui satisfying

x t y = y t x x u y = y u x
x t (y t z) = (x t y) t z x u (y u z) = (x u y) u z
x u (x t y) = x x t (x u y) = x:

We de�ne the relation `�' by x � y := xuy = x. It is a simple exercise to
show that � de�nes a lattice (cf. [Rasiowa and Sikorski, 1963, pp. 35,36]).
A lattice with top > and bottom ? is a lattice with two elements > and
satisfying ? � x � > for all x.

Note that we can show x u y = x , x � y $ x t y = y, so the ordering
can also be expressed by t.
DEFINITION 21. A Heyting-algebra is a structure hA;u;t;);>;?i such
that

1. it is a distributive lattice with respect to u;t and with top and bot-
tom.

2. x u (x) y) = x u y

3. (x) y) u y = y

4. (x) y) u (x) z)) (x) (y u z)

5. ?u x = ?

6. ? ) ? = >.

Any Boolean algebra obviously is a Heyting algebra. The paradigm of a
Heyting algebra is O(X), the set of opens of a topological space X , where
U ) V is de�ned as in Section 3: Int(U c [ V ).
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We have the following key properties

LEMMA 22.

1. x) x = >

2. x u y � z $ x � y ) z.

We de�ne the complement by �x := x) ?.
The obvious connection with logic is via the Lindenbaum algebra of a

theory. Consider some theory T in IPC, then

' �  := T `IPC '$  

is a congruence relation, as one easily shows.
On the equivalence classes we de�ne a Heyting algebra, by putting

'= � u = � := (' ^  )= �
'= � t = � := (' _  )= �
'= �)  = � := ('!  )= �

? := ?= �
> := (? ! ?)= � :

It is a routine matter to show that one thus obtains a Heyting algebra,
the so-called Lindenbaum algebra of T .

Examples of Heyting algebras

1.

0 1 2 3 : : : : : : !
� � � � : : : : : : �

Consider the set of natural numbers with a sup ! (i.e. the ordinal
! + 1) and de�ne n um := min(n;m); n tm := max(n;m),

n) m :=

�
m if n > m
! if n � m; for n;m � !

? := 0;> := !:

The ordering is the natural one. In this Heyting algebra the excluded
third fails:

�n = n) ? =

� ? if n 6= 0
> else:

For n 6= ?, > we get n t �n = n t ? = n 6= >.
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2. From the diagram below we can read o� the operations. The non-
trivial one is the `implication' (relative complement).

>
�

�c

a� �b

�
?

The relation x � y ) z , xuy � z tells us that y ) z is the greatest
element x such that x u y � z, so we can write down the table for ).

) ? a b c >
? > > > > >
a b > b > >
b a a > > >
c ? a b > >
> ? a b c >

The �rst column yields the negation. One can view the Heyting al-
gebras as a suitable generalisation of the classical truth table. In this
form Heyting algebras occur already in Heyting's paper of 1930. Truth
tables also occur in [Jaskowski, 1936].

3. The Rieger{Nishimura lattice [Nishimura, 1966]

In the diagram below one of the two points immediately above the
bottom, is the complement of the other. If we call the right hand one
p, we can compute the remaining elements. We enumerate the points
as indicated. We put

'0 := ?
'1 := p
'2 := �p

'2n+3 := '2n+1 t '2n+2
'2n+4 := '2n+2 ) '2n+1:

The operations on the lattice follow from its order. The Rieger{
Nishimura lattice is the free Heyting algebra with one generator, i.e.
in logical terms it is the Lindenbaum algebra of IPC with just one
atom.



INTUITIONISTIC LOGIC 41

>

�� p) p �p t �� p

p t �p �� p

�p p

11

10

7

9

8

6 5

3 4

2 1

0 ?

There are two things to be shown:

(a) each proposition in p is one of the 'i's;

(b) the dependencies between the 'i's are as shown in the diagram.

(a) is shown by induction on '. We'll do one case. Let ' =  ^ �. By
induction hypothesis `  $ 'i;` � $ 'j for some i; j. If the elements i; j
are comparable, then we immediately see that ' is a 'k . So the interesting
cases are i = 2n+1; j = 2n+2 and i = 2n+3; j = 2n+4. In the �rst case
` '$ '2n�1, in the second case ` '$ '2n+1.

The proof of (b) is a matter of tedious bookkeeping. Given the depen-
dencies between '0; '1; '2, one checks the dependencies for higher 'n's
inductively. Consider for example '2n+3 and '2n+4.

2n+ 4 2n+ 3 ('2n+3 ! '2n+4)$
� � [('2n+1 _ '2+2)!

('2n+2 ! '2n+1)]$
� � '2n+2 ! '2n+1:
2n+ 1 2n+ 2
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So, from the induction hypothesis 6` '2n+2 ! '2n+1, we obtain
6` '2n+3 ! '2n+4, i.e. '2n+3=� ) '2n+4=� 6= >, i.e. '2n+3=� 6� '2n+4=�.

An interpretation of IPC in a Heyting algebra A is given by a map-
ping h from the atoms into A. h is then extended to all propositions in
the canonical way i.e. h(' ^  ) = h(') u h( ); h(' _  ) = h(') t h( );
h('!  ) = h(')) h( );' is true in A if for all interpretations h; h(') =
>. A simple inductive proof shows the

Soundness Theorem IPC ` ') ' is true in all Heyting algebras.

The converse also holds, for consider the Lindenbaum algebra of IPC
and interpret each proposition canonically: h(�) = �= �, then IPC ` � ,
h(�) = >. So ' is true in the Lindenbaum algebra.

Hence we have the

Completeness Theorem for Heyting Algebras. IPC ` ' , ' is
true in all Heyting algebras.

There is a simple connection between Kripke models and Heyting alge-
bras. We can associate to a Kripke model a topological space as follows.
The points of the space are the nodes of the poset; the opens are the sets U
with the property � 2 U ^� � �) � 2 U . As in the case of the topological
model associated to a Beth model over a tree, the sets U� = f� j � � �g
form a basis for this topology.

For atoms we de�ne [[']] = f� j �  'g(�).
One shows by induction on ' that (�) holds for all propositions (cf.

also [Fitting, 1969, p.23]). Thus we have associated to each Kripke model
an interpretation in the Heyting algebra of the opens of the associated
topological space.

Instead of considering Kripke or Beth models with a prescribed inter-
pretation (forcing) of the atoms, we can also consider the underlying poset
only. We then speak of a Kripke (Beth) frame. A frame is thus turned into
a model by assigning structures to the nodes.

There is an alternative formulation of Kripke (Beth, etc.) models, that
sticks closer to the language. Instead of assigning classical structures to
nodes, one can just as well assign sets of atoms to nodes, e.g. think of V (�)
as the set of atomic sentences that are true in D(�). So V is a function
fromM to the power set of the set of closed atoms, subject to the condition
that � � � ) V (�) � V (�).

Alternatively one can de�ne a binary interpretation function i : At �
M ! f0; 1g (where At is the set of closed atoms), such that � � � and
i('; �) = 1) i('; �) = 1 (think of i('; �) = 1 as D(�) � ').
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4.1 An External View of Kripke Models

If one looks at a Kripke model from the outside, then it appears as a com-
plicated concoction of classical structures, and hence as a classical structure
itself. Such a structure has its own language and we can handle it by ordi-
nary, classical, model-theoretical means.

What is involved in this `master structure' of K? (i) the partially ordered
set of nodes, (ii) the relations between these structures. We can simply
describe this master structure K� by a language, containing two sorts of
individuals (or alternatively one sort, but two predicates N(x) and E(x),
for `x is a node' and `x is an element'). Let us use �; �; ; : : : for the
`node-sort' and x; y; z; : : : for the `element sort'. Then we add � to the
original language, and replace each predicate symbol P by P � with one
more argument than P and add a domain predicate symbol. The structure
K� validates the following laws (referred to by �):

� � � ^ � �  ! � � 
� � � ^ � � �! � = �
8��~x(� � � ^ P �(�; ~x)! P �(�; ~x))
8��x(D(�; x) ! D(�; x))

Now we can mimic the forcing clauses in the extended language. Consider
the translation of �  ' given by the inductive de�nition:

1. (�  P (~t))� := P �(�;~t) and (�  ?)� := ?.
2. (�  ' ^  )� := (�  ')� ^ (�   )�.

3. (�  ' _  )� := (�  ')� _ (�   )�.

4. (�  '!  )� := 8� � �((�  ')� ! (�   )�).

5. (�  9x'(x))� := 9x(D(�; x) ^ (�  '(x))�).

6. (�  8x'(x))� := 8� � �8x(D(�; x) ! (�  '(x))�).

It is obvious that:

1. �  ', K� � (�  ')�

2. each model of � corresponds uniquely to a Kripke model.

Now we can apply the full force of classical model theory to the models
of � in order to obtain results about Kripke models. For example, one gets
for free the ultraproduct theorem and the Hilbert{Bernays completeness
theorem (consistent RE theories have �0

2 models, cf. [Kleene, 1952, Ch
XIV].

Similar `translations' can be applied to Beth semantics or the general
semantics (cf. [van Dalen, 1978] for an application to lawless sequences).



44 DIRK VAN DALEN

4.2 Model theory of intuitionistic logic in an intuitionistic set-

ting

If one is willing to give up the strong results of all the arti�cial semantics
(completeness, Skolem{L�owenheim, etc.), there is no reason why one should
not practise model theory of intuitionistic theories as an ordinary part of in-
tuitionistic mathematics. That is to say, to adopt an intuitionistic variant of
the Tarskian semantics. A number of interesting results have been obtained
for speci�c theories and structures, e.g., the continuum and the irrationals
are elementarily equivalent for the theories of equality, apartness and linear
order. Note that even a seemingly trivial theory, such as that of equal-
ity, turns out to be highly complicated|in contrast to the classical case.
Also, strong classical theorems cannot always be upheld in an intuitionis-
tic setting. e.g. the existence of winning strategies for Ehrenfeucht{Fra��ss�e
games implies elementary equivalence (cf. [van Dalen, 1993]), but the con-
verse fails (cf. [Veldman and Waaldijk, 1996]). The last mentioned paper
contains a wealth of interesting methos and results, it is recommended for
getting acquainted with the �eld.

5 SOME METALOGICAL PROPERTIES OF IPC AND IQC

Intuitionistic logic is in a sense richer in metalogical properties than classical
logic. There are common properties, such as completeness, compactness and
deduction theorem, but soon the logics start to diverge. Classical logic has
phenomena such as prenex normal forms, Skolem form, and Herbrand's
theorem which are absent in intuitionistic logic. Intuitionistic logic on the
other hand is more blessed with derived rules.

The �rst example is the

Disjunction Property, DP. � ` ' _  ) � ` ' or � `  .
Clearly, the nature of � is relevant, for if � contains all instances of PEM,
then DP is false, since in CPC ' _ :' is a tautology, but neither ', nor
:' needs to be a tautology.

A suÆcient condition on � is that it exists of Harrop formulas, i.e. for-
mulas without dangerous occurrences of _ or 9. To be precise, the class of
Harrop formulas is inductively de�ned by

1. ' 2 H for atomic '

2. ';  2 H ! ' ^  2 H

3. ' 2 H ) 8x' 2 H

4.  2 H ) '!  2 H .



INTUITIONISTIC LOGIC 45

�0

�1 �2

THEOREM 23. The disjunction property holds for sets � of Harrop formu-
las.

For a proof using natural deduction, see [Prawitz, 1965, p. 55], [van
Dalen, 1997, p. 209]. In Aczel [1968] a proof is given using a metamathe-
matical device `Aczel's slash'. See also [Gabbay, 1981, Ch. 2, Section 3].

The intuitionistic reading of the disjunction property is: given a proof of
'_ we can e�ectively �nd a proof of ' or a proof of  . The proof theoretical
demonstrations of DP have this intuitionistic character, not however the
model-theoretic proof below. The proof uses classical meta-theory, to be
speci�c, it uses reductio ad absurdum.

To demonstrate the use of Kripke models, we give the proof for a simple
case, � = ;.

Let ` ' _  and suppose 0 ' and 0  . Then there are Kripke models
K1 and K2 with bottom node �1 and �2 such that �1 1 ' and �2 6  . We
construct a new Kripke model K by taking the disjoint union of K1 and K2

and placing an extra node �0 at the bottom, see �gure above. We stipulate
that nothing is forced at �0. Clearly, the result is a Kripke model.
�0  ' _  , so �0  ' or �0   . If �0  ', then �1  '. Contradiction.
And if �0   , then �2   . Contradiction. Hence we have ` ' or `  .

For predicate logic we can also establish the Existence Property:
� ` 9x'(x) ) � ` '(t) for a chosen term t, where � consists of Harrop
formulas (9x'(x) is closed). See [Prawitz, 1965; Aczel, 1968; Gabbay, 1981;
van Dalen, 1997].

Since the only closed terms in our present approach are constants, we
can replace the conclusion of EP by `� ` '(c) for a constant c'.

In the case that there are no constants at all the conclusion is rather
surprising: � ` 8x'(x).

Like its classical counterpart IPC is decidable; there are various proofs
for this fact. In [Kleene, 1952, Section 80], [Troelstra and van Dalen, 1988,
p. 541] and [Szabo, 1969, p. 103], a sequent calculus is used. The use of
normal derivations in natural deduction likewise yields a decision procedure.
In [Rasiowa, 1974, p. 266] decidability is derived from the completeness of
IPC for �nite Heyting algebras. We will use a similar argument based on
Kripke models.
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Our �rst step is to reduce Kripke models for IPC to �nite models, fol-
lowing [Smory�nski, 1973].

We consider a Kripke model K with a tree as its underlying poset such
that K 6` '; a suitable re�ning will yield a `submodel' K�, such that

1. K� is �nite
2. � �  , �   , for all subformulas of '.

Let S be the set of subformulas of ', and put S� = f 2 S j �   g. We
de�ne a sequence of sets Kn : K0 = f�0g (�0 is the bottom node of K).

Let Kn be de�ned, and � 2 Kn. We consider sets fÆ1; : : : ; Ækg � K such
that

1. � � Æi
2. S� 6= SÆi

3. the SÆ jumps only once between � and Æi, i.e. SÆ = S� or SÆ = SÆi for
� � Æ � Æi

4. SÆi 6= SÆj for i 6= j.

Since there are only �nitely many SÆ's we can �nd a maximal such set say
f�01; : : : ; �0kg , if there are such Æ's at all.

De�ne

K1 = f�00;1; : : : ; �00;kg [ f�0g
Kn+1 = Kn [

Sff�02; : : : ; �0kg j � 2 Kn �Kn�1g; n � 1:

As the S� 's increase, and there are only �nitely many subformulas, the
sequence Kn stops eventually. Clearly each Kn is �nite, hence K� = [Kn

is �nite.
Claim: K� with its inherited � is the required �nite submodel. Property

(2) is shown by induction on  . For atomic  (2) holds by de�nition. For
_ and ^ the result follows immediately. Let us consider  1 !  2. Suppose
that for � 2 K�; � 6  1 !  2, then there is a  � � in K such that    1
and  6  2. If  1 2 S� we are done. Else we �nd by our construction a
Æ 2 K� with � < Æ �  such that  1 2 SÆ and  2 62 SÆ , hence � 6�  1 !  2.
The converse is simple.

We now may conclude.

THEOREM 24. IPC is complete for �nite Kripke models over trees.

Proof. By the above and Lemma 14. �

As a consequence we get

COROLLARY 25. IPC is decidable.
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Proof. We can e�ectively enumerate all �nite Kripke models over trees,
and hence e�ectively enumerate all refutable propositions. By enumerating
all proofs in IPC we also obtain an e�ective enumeration of all provable
propositions. By performing these enumerations simultaneously we obtain
an e�ective test for provability in IPC. �

Theorem 24 is also paraphrased as `IPC has the Finite Model Property
(FMP)', i.e. IPC 6` ' ) ' is false in a �nite model. The FMP is the
key concept in our decidability proof. Note that the decision procedure
of Corollary 25 is horribly ineÆcient. The procedures based on sequent
calculus or natural deduction are much more practical.

Corollary 25 can be considerably improved, in the sense that narrower
classes of Kripke models can be indicated for which IPC is complete.

Examples.

1. IPC is complete for the Jaskowski sequence Jn. The sequence Jn is
de�ned inductively. J1 is the one point tree.

Jn+1 is obtained from Jn by taking n+1 disjoint copies Jn and adding
an extra bottom node.

� � � � � � � � �
J1

� � � �
J2

�
J3

Cf. [Gabbay, 1981, p. 70 �.]. The Jaskowski sequence is the Kripke
model version of Jaskowski's original sequence of truth tables,
[Jaskowski, 1936].

2. IPC is complete for the full binary tree (cf. [Gabbay, 1981, p. 72].

Strictly speaking we have given classes of Kripke frames, where complete-
ness with respect to a class K of frames means `completeness with respect
to all Kripke models over frames from K'.

During the early childhood of intuitionism and its logic it was put forward
by some mathematicians that intuitionistic logic actually is a three-valued
logic with values true, false, undecided. This proposal is wrong on two
counts, it is philosophically wrong and by a result of G�odel no �nite truth
table completely characterizes intuitionistic logic (see Section 5).

Our comments on the failure of the double negation shift, DNS, (Section
3.11-10) have already made it clear that IQC is not complete for �nite
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Kripke frames. The usual re�nement of the completeness proof tells us that
(for a countable language) IQC is complete for countable Kripke models
over trees.

Intuitionistic predicate calculus di�ers in a number of ways from its classi-
cal counterpart. Although both IQC and CQC are undecidable, monadic
IQC is undecidable (Kripke) (cf. [Gabbay, 1981, p. 234]), whereas the
monadic fragment of CQC is decidable (Behmann). Another remarkable
result is the decidability of the prenex fragment of IQC, which implies that
not every formula has a prenex normal form to which it is equivalent in
IQC.

We will consider the class of prenex formulas below.

LEMMA 26. IQC ` 9y'(x1; : : : ; xn; y) ) IQC ` 8x1; : : : ; xn'(x1; : : : ;
xn; t), where all variables in ' are shown, and where t is either a constant
or one of the variables x1; : : : ; xn.

Proof. Add new constants a1; : : : ; an, then IQC ` 9y'(a1; : : : ; an; y) and
apply EP. �

We now get the following intuitionistic version of the Herbrand Theorem.

THEOREM 27. Let Q1x1; : : : ; Qnxn' be a prenex sentence, then IQC `
Q1x2; : : : ; Qnxn' i� IPC ` '0, where '0 is obtained form ' by replac-
ing the universally quanti�ed variables by distinct new constants, and the
existentially quanti�ed variables by suitable old or new constants.

Proof. Induction on n. Use EP and Lemma 26. �

As a corollary of Theorem 27 and Corollary 25 we get

THEOREM 28. The prenex fragment of IQC is decidable.

and

COROLLARY 29. There is not for every ' a prenex  such that IQC `
'$  .

Among the properties that classical and intuitionistic logic share is the
so- called

THEOREM 30 (Interpolation Theorem). If IQC ` ' !  , then there
exists a �, called an interpolant of '!  , such that

1. IQC ` '! � and
IQC ` � !  

2. all non-logical symbols in � occur in ' and in  .

The interpolation theorem was established by proof theoretical means by
[Sch�utte, 1962] and [Prawitz, 1965]. Gabbay [1971] proved the theorem by
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model theory, he also established a suitable form of Robinson's consistency
theorem.

For proofs and re�nements the reader is referred to [Gabbay, 1981, Chap-
ter 8], and [Troelstra and Schwichtenberg, 1996, x4.3], whereas in CPC the
interpolation theorem holds in all fragments. Zucker has shown this not to
be the case for IPC (cf. [Renardel de Lavalette, 1981]).

5.1 Independence of the Propositional Connectives

Whereas in classical logic the propositional connectives are interde�nable,
this is not the case in IPC, a fact already known to McKinsey [1939]. There
are a number of ways to show the independence of the intuitionistic connec-
tives. A proof theoretical argument, based on the normal form theorem, is
given by [Prawitz, 1965, p. 59 �]. We will use some ad hoc considerations.

1. The independence of _ from !;^;:;? is clear, since !;^;:;? are
preserved under the double negation translation (up to provable equiv-
alence), but _ is not.

2. : is independent from _;!;^ already in CPC, so let alone in IPC.

3. ! is independent from ^;_;:. We use the simple fact that for!-free
', ` (p! q)! ')` (p! ::q)! '. De�nability of ! would yield
` (p! ::q)! (p! q).

4. ^ is independent of _;!;:;?. Consider the Kripke model
p; q
�

� �
p q

A simple inductive argument shows that the ^-free formulas are either equiv-
alent to ? or are forced in at least one of the lower nodes.

Although even the traditional de�nability result fail in intuitionistic logic,
there is a completeness of the sets f!;^;_;?g for IPC or f!;^;_;?;
=;9;8g for IQC under special assumptions. Zucker and Tragesser [1978]

showed that logical constants, given by Natural Deduction rules are de�n-
able in the above sets. A similar result is to be found in [Prawitz, 1979].

In view of the incompleteness of the intuitionistic connectives there have
been a number of de�nitions of new connectives, e.g. by model theoretic
means (cf. Gabbay [1977; 1981, p. 130 �], Goad [1978] and de Jongh [1980]).
Kreisel introduced the connective � by a second-order propositional condi-
tion: �(' := 9 (' $ : _ :: ). Matters of de�nability, etc. of � have
been extensively investigated in [Troelstra, 1980].
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a = c b = d

_a

�

_b _c _d

a = b

_a _b _c _d



_a

�

_b _c _d

Figure 1.

5.2 The Addition of Skolem Functions is not Conservative

It is a fact of classical logic that the extension of a theory by Skolem func-
tions does not essentially strengthen T (Vol 1, p. 89), i.e. (a simple case) if
T ` 8x9y'(x; y) then we may form TS by adding a function symbol f and
the axiom 8x'(x; f(x)) and TS is conservative over T : if TS ` � where �
does not contain f , then T ` �. In general this is not true in intuitionistic
logic [Minc, 1966]. We will show this by means of a simple counter example
of Smory�nski [1978].

Consider the theory T of equality EQ plus the extra axiom 8x9y(x 6= y),
and its Skolem extension TS = EQ+ 8x(x 6= f(x)) ^ 8xy(x = y ! f(x) =
f(y)), then TS is not conservative over T .

It suÆces to �nd a statement � in the language of EQ such that TS ` �
and T 6` �. We take � := 8x19y18x29y2[x1 6= y1 ^ x2 6= y2 ^ (x1 = x2 !
y1 = y2)].

Clearly TS ` �. The Kripke model of �gure 1 establishes T 6` �.
Clearly �  8x9y(x 6= y).

Now suppose �  �. Take a; b for x1; x2 then we must take d; c for y1; y2
(in that order). However � 6 a = b! c = d.

The equality fragment of TS is axiomatised in [Smory�nski, 1978].

5.3 Fragments of IPC

The situation in intuitionistic logic radically changes if one leaves out some
connectives. We mention the following result: (Diego, McKay) there are
only �nitely many non-equivalent propositions built from �nitely many
atoms in the _-free fragment (cf. [Gabbay, 1981, p. 80]).

5.4 Some Remarks on Completeness and Intuitionistically

Acceptable Semantics

This section uses notions of later sections, in particular Section 9. the reader
is suggested to consult those sections.
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As we have argued in Section 1, an interpretation of the logical constants
based on intuitionistic principles must somehow exploit the notion of con-
struction. This has been proposed by Heyting, and extended by Kreisel. It
has not (so far), however, led to a exible semantics that provided logic with
completeness. The more successful semantics have provided completeness
theorems, but at the price of importing classical metamathematics. This
is a matter of considerable philosophical interest. As Intuitionism is a le-
gitimate, well-motivated philosophy, it should at least have a semantics for
its logic that stands up to the criteria of the underlying philosophy; un-
less one adopts Brouwer's radical view that `mathematics is an essentially
languageless activity'. The traditional semantics lend themselves perfectly
well to an intuitionistic formulation. One has to select among the various
classically equivalent formulations the intuitionistically correct one (e.g. in
the topological interpretation [[' !  ]] = Intfx j x 2 [[']] ! x 2 [[ ]]g
and not Int(([[']]c [ [[ ]])). Soundness does not present problems, so inde-
pendence results can usually be obtained by Intuitionisitc means. For the
more sophisticated applications of semantics one usually needs complete-
ness, and the original completeness proofs relied heavily on classical logic.
For propositional logic the problem is relatively simple.

The �rst positive result was provided by Kreisel, who in [Kreisel, 1958]

interpreted IPC by means of lawless sequences, and showed by intuitionistic
means IPC to be complete for this particular interpretation.

The basic idea is to relate Beth models (which are special cases of topo-
logical models) to lawless sequences, considered as paths through the under-
lying trees; one assigns sets of lawless sequences to propositions, ' 7! [[']],
cf. Theorem 17, such that the logical operations correspond to the Heyt-
ing algebra operations. Since one can restrict oneself to �nitely branching
trees in this context, one can show completeness for the topological space
of lawless sequences using only the simple properties of lawless sequences
(including the fan theorem). Kripke [1965] indicates a similar procedure on
the basis of Kripke models.

A more serious matter is the completeness of predicate calculus. The
plausible approach, i.e. to interpret `validity' as `validity in structure �a la
Tarski', called internal validity by Dummett [1977, p. 215], led to an unex-
pected obstacle. Kreisel [1962], following G�odel, established the following
result: if IQC is complete for internal validity, then 8�::9x'(�; x) !
8�9x'(�; x) holds for all primitive recursive predicates '.

So validity of the above kind would give us Markov's `Principle (cf. Sec-
tion 6.5.3), a patently non-intuitionistic principle. It does not do any good
to consider Beth semantics, for one can obtain the same fact for validity in all
Beth models [Dyson and Kreisel, 1961]. Even worse, under the assumption
of Church's Thesis (i.e. all functions from N ! N are recursive, cf. Chapter
4 of Vol. 1 of this Handbook) IQC is incomplete in the sense that the set
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of valid formulae is not recursively enumerable, as established by [Kreisel,
1970] (cf. [van Dalen, 1973; Leivant, 1976]).

The strongest result so far is McCarty's theorem; constructive validity
is nonarithmetic, [McCarty, 1988]. This bleak situation in semantics for
IQC changed when Veldman in 1974 introduced a technical device that
allowed for a modi�ed Kripke (and similarly, Beth) semantics for which the
completeness of IQC can be established in an intuitionistically acceptable
manner. Although Veldman's proposal can be implemented in more than
one way, its main feature is relaxation of the forcing conditions for atoms:
�  ? is in general allowed. For these more general models intuitionistic
completeness proofs have been give for the Kripke version by [Veldman,
1976], and for the Beth version by [Swart, 1976].

Extensive discussions of the aspects of intuitionistic completeness of IQC
are to be found in [Dummett, 1977] and [Troelstra, 1977]. H. Friedman
[1977; 1977a] has sketched intuitionistically correct completeness proofs for
MQC and the ? (and :)-free part of IQC. The details of a slightly up-
graded version can be found in [Troelstra and van Dalen, 1988, x13.2], there
the result is cast in the form of a universal Beth model:

1. There is a Beth modelM such thatM  ', IQC ` ' for all ?-free
formulas '.

2. There is a Beth model M for minimal logic such that M  ' ,
MQC ` ' for all '.

3. there is a modi�ed Beth model M� such that M�  ' , IQC ` '
for all '.

5.5 The Intuitionistic View of Non-intuitionistic Model Theo-

retic Methods

It should not come as a surprise that for intuitionists such semantical proofs
as employed, e.g. in the case of DP (cf. Theorem 23) do not carry much
weight. After all, one wants to extract a proof of either ' or  from a proof
of '_ , and the gluing proof doe not provide means for doing so. There is
however a roundabout way of having one's cake and eating it. For example,
in the case of the proof of DP one shows classically that `' has no proof in
IQC' ` has no proof in IQC' then `'_ has no proof in IQC', and hence
(classically ) IQC ` ' _  ) IQC ` ' _ IQC `  .

One formalizes this statement in Peano's Arithmetic, so

PA ` 9xPrIQC(x; p' _  q)! 9yPrIQC(y; p'q) _ 9zPrIQC(z; p q)
or

PA ` 8x9yz(PrIQC(x; p' _  q)! PrIQC(u; p'q) _ PrIQC(z; p q)):
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Now one uses the fact that PA is conservative over HA for �0
2 statements,

so that HA ` 8x9yz( ).
This shows that DP is intuitionistically correct. In [Smory�nski, 1982]

problems of this kind is considered in a more general setting. Of course,
one might wonder why go through all this rigmarole when direct proofs (e.g.
via natural deduction, or slash operations) are available. A matter of taste
maybe.

6 INTERMEDIATE LOGICS

By adding the principle of the excluded middle to IPC we obtain full clas-
sical propositional logic. It is a natural question what logics one gets by
adding other principles. We will consider extensions of IPC by schemas,
e.g. IPC + (' !  ) _ ( ! '). First we remark that all such extensions
are subsystems of CPC, for let T be such an extension and suppose that
T 6� CPC, then there is a ' such that T ` ' (and hence all substitu-
tion instances) and ' is not a tautology. but then we �nd by substituting,
say p0 ^ :p0 and p0 ! p0 for suitable atoms of ' an instance '0 which
is false. therefore CPC ` :'0 and, by Glivenko's theorem (Corollary 51)
IPC ` :'0. This contradicts T ` '0.

So there are only logics between IPC and CPC to consider.
The study of intermediate logics is mainly a matter for pure technical

logic, dealing with completeness, �nite model property, etc. There are how-
ever certain intermediate logics that occur more or less naturally in real
life (e.g. in the context of G�odel's Dialectica interpretation, or of realizabil-
ity), so that their study is not merely l'art pour l'art. One such instance is
Dummett's logic LC, which turns up in the provability logic of Heyting's
arithmetic (cf. [Visser, 1982]).

One of the most popular topics in intermediate logic was the investigation
of classes of semantics for which various logics are complete. Furthermore
there is the problem to determine the structure of the family of all interme-
diate logics under inclusion.

The �eld has extensively been studied and an even moderately complete
treatment is outside the scope of this chapter. the reader is referred to
[Rautenberg, 1979] and [Gabbay, 1981].

6.1 Dummett's Logic LC

DEFINITION. LC = IPC+ ('!  ) _ ( ! ').

Theorem. LC is complete for linearly ordered Kripke models.

One direction is simple, one just checks that (' !  ) _ ( ! ') holds
in all linearly ordered Kripke models. For the converse, consider the model,



54 DIRK VAN DALEN

obtained in the Model Existence Lemma 14, consisting of prime theories,
ordered by inclusion. The bottom node �0 forces all instances of the schema
('!  ) _ ( ! ').

Consider �1;�2 with ' 2 �1��2 for some '. We will show that �2 � �1.
Let  2 �2. Since �0  ' !  or �0   ! ' and �0 � �i(i = 1; 2) we
have  2 �1 or ' 2 �2. As the latter is ruled out we �nd  2 �1. Hence
for any two �1;�2, we have �1 � �2 or �2 � �1.

This establishes the semantic characterisation of LC.

6.2 Filtration and Minimalisation

Some models are needlessly complicated because some of their nodes are in
a sense redundant. A simple case is a model with two nodes � < �, which
force exactly the same formulas. The idea to collapse nodes that force the
same formulas presents itself naturally. Scott and Lemmon introduced such
a procedure in modal logic under the name of �ltration [Lemmon and Scott,
1966], and Smory�nski did something similar in intuitionistic logic under the
name of minimalisation [Smory�nski, 1973; Segerberg, 1968]. Let a Kripke
model K = hK;�;i be given. We consider forcing on K for a class of
formulas � closed under subformulas. For � 2 K de�ne [�]� := f' 2
� j �  'g. Put K� = f[�]� j � 2 Kg; [�]� � [�]� if [�]� � [�]� and
[�]�  ' if ' 2 [�]� for atomic '. Observe that the mapping �! [�]� is a
homomorphism of posets.

Obviously K� = hK�;��i is a Kripke model.
THEOREM 31. [�]� � ', �  ' for ' 2 �.

Proof. Induction on '. The only non-trivial case is the implication.
(i) � 6 ' !  , 9� � � �  ' and � 6  , (induction hypothesis)

, 9� � �([�]� � ' and [�]� 6�  ).
Since � � � implies [�]� � [�]�, we have � 6 '!  .
(ii) �  '!  . Let [�]� � [�]� and [�]� � '. By induction hypothesis

�  ' and hence ' 2 [�]�. But ' !  2 [�]� � [�]�, so �   and again
by induction hypothesis [�]� �  . This shows [�]�  '!  . �

Observe that this procedure does not preserve all desirable properties, e.g.
being a tree.

EXAMPLE.

';  ';  
Æ Æ

' Æ Æ  

Æ

�!

';  
Æ

' Æ Æ  

Æ
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Gabbay has re�ned the notion of �ltration in order to obtain models with
special properties. For this selective �ltration cf. [Gabbay, 1981, p. 87 �.].

6.3 The Finite Model Property, FMP

An intermediate logic is said to have the Finite Model Property if it is
complete for a class of �nite models. We have already seen the importance
of the FMP for logic: if T is e�ectively axiomatised (RE will do) and has
the FMP, then T is decidable [Harrop, 1958].

The following facts may be helpful in establishing the FMP in some cases.

THEOREM 32 (Smory�nski [1973]).

1. Let T be complete for a class of Kripke models with posets charac-
terised by positive sentences in a language extended by individual con-
stants, then T has the FMP.

2. as (1) but with universal sentences and �nitely many constants.

Proof.

1. Let �0 6 ' for �0 bottom node of K. Apply �ltration to K and call
the result K0. K0 is a homomorphic image of K and since positive
sentences are preserved under homomorphic images (a simple fact of
model theory), K0 belongs to the given class. Since we only have to
consider subformulas of ';K0 evidently is �nite.

2. Use the fact that universal sentences are preserved under substructures
(cf. [van Dalen, 1997, p. 141, ex. 3]) and apply the construction given
in the proof of Theorem 24. �

COROLLARY 33. LC has the FMP and is decidable.

6.4 The `Bounded Height' models

A Kripke frame (model) is said to have height n if the maximum length of
its chains is n. If the length of the chains is unbounded, we say that the
height is !. Can we �nd an intermediate logic such that it is complete for
all frames of height at most n?

We de�ne a sequence of propositions 'i by:

'1 := p1 _ :p1
'n+1 := pn+1 _ (pn+1 ! 'n);

where pn is the nth atom.
Let BHn = IPC+'n, where we take 'n to be a schema (i.e. we add all

substitution instances of 'n to IPC).

THEOREM 34. BHn is complete for all Kripke frames of height � n.
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Proof. Suppose that K has height � n and for some �0 2 K;�0 6 'n. So
�0 6 �n ! 'n�1; �0 6 �n for some �n. by de�nition of forcing we �nd an
�1 > �0 such that �1  �n an �1 6 'n�1. By iterating this step we �nd an
increasing sequence �0 < �1 < : : : < �n. This contradicts the condition on
the heights, so K  BHn.

Conversely, we have to show that if BHn 6 � then there exists a model
of height � n which falsi�es �. So let K be a Kripke model of BHn and
not of �. We obtain K0 from it by �ltration. It remains to show that K0
has height � n. Suppose K0 has a chain �0 < �1 < : : : < �n. Since K0
is �ltrated we can �nd atoms pi(i = 1; : : : ; n), such that �n�i+1  pi and
�n�i 6 pi. So �j  pi if and only if j > n� i.

Claim: �n�i 6 'i. We show this by induction on i. By de�nition �n�1 6
'1. �n�i�1  'i+1 , �n�i�1  pi+1 _ (pi+1 ! 'i). Now �n�i�1 6 pi+1,
and �n�1  pi+1 but �n�1 6 'i, by induction hypothesis; so �n�i�1 6 'i+1.
We now may apply the induction principle: �0 6 'n. Contradiction.

So K0 has height � n. �

COROLLARY 35. BHn has the FMP and is decidable.

Proof. The posets of height � n are axiomatised by

8x0 : : : xn
 
n̂�1̂

i=0

xi � xi+1 !
_n�1_
i=0

xi = xi+1

!
:

Apply Theorem 32. �

It is obvious that BH! coincides with IPC, so only the �nite BHn's are
relevant here for us.

Another approach to the bounded height logics is via a sequence of gen-
eralisations of Peirce's law:

�1 = ((p1 ! p0)! p1)! p1
�n+1 = ((pn+1 ! �n)! pn+1)! pn+1:

Put LPn = IPC+ �n;LP! = IPC.
Ono [1972] and Smory�nski [1973] showed that BHn = LPn. The notion

of nth slice was introduced by [Hosoi, 1967] to capture logic of exact height
n : Sn is the class of logics that are complete for models of height n, but
not for models of smaller height.

6.5 Cardinality Conditions

Consider the statement

Cn :=
WW

0�i<j�n
pi $ pj ;
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if Cn holds in a model with bottom node then two atoms must be forced
on exactly the same set of nodes. So if we have n modes, then there are
2n subsets and hence C2n holds in all models of � n elements. This bound
is in general too crude. Let us therefore specialise the class of models to
linearly ordered frames.

Put Sn = LC+ Cn+1 (as a schema).

THEOREM 36. Sn is complete for all linear models with n nodes.

Proof. If the model has n nodes then by a simple inspection one sees that
Cn+1 holds. Conversely, if a model of K of Cn+1, obtained by �ltration,
has at least k + 1 nodes �0 < �1 < : : : < �n, then by �ltration we can �nd
'1; : : : ; 'n such that �i 6 'i+1 and �i+1  'i+1. Putting '0 := p! p and
'n+1 := p ^ :p, we obtain an instance of Cn+1 that is not forced by �0.
This shows that Sn is complete for models with linear poset of length � n.
But, since we can always add some nodes for free, it is also complete for all
linear models with exactly n nodes.

Converting the linear, �nite Kripke frames into truth tables one obtains
G�odel's many-valued logic, used to establish the fact that IPC is not a
(�nite) many-valued logic [1932]. �

6.6 Some More Intermediate Logics

A number of intermediate logics have found their way into the literature.
We will mention some of them, with their main properties.

KC is axiomatised by :' _ ::'.

1. KC is strongly complete for the class of directed Kripke frames. (A
poset is direct if it satis�es 8��9(� �  ^ � � ).)

2. KC is strongly complete for the class of Kripke frames with a maxi-
mum.

For proofs see [Gabbay, 1981, p. 66 �.], [Smory�nski, 1973]. KC can alter-
natively be axiomatised by (:'! : ) _ (: ! :'). This shows that LC
is an extension of KC.

The Kreisel{Putnam system KP is axiomatised by (:� ! ' _  ) !
[(:� ! ') _ (:� !  )] [Kreisel and Putnam, 1957].

KP has the DP and FMP, and Gabbay has shown it to be complete for
the class of Kripke models satisfying the condition # below [Gabbay, 1970].
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For a poset hK;�i with bottom element we de�ne for a subset E of K:

E+ = fp j 9q 2 E(q � p)g;E� = fp j 9q 2 E(p � q)g.

# For every E � P the set P � (E+)� is either empty or has a �rst
element.

For a proof see [Gabbay, 1981, p. 96 �.].

Notions of width

The width of a frame can be conceived in various ways. One can look for
the length of maximal anti-chains, or the maximal number of successors
of individual nodes (say in �nite frames). We will consider some notions
below.

(a) Anti-chain width. A Kripke frame K has a.c. width n if it has an
anti-chain length n, but no anti-chain of length n+ 1. De�ne

'n =
_n_
i=0

0
@pi !__

j 6=i

pj

1
A and BAn = IPC+ 'n (as a schema):

THEOREM. [Smory�nski, 1973] BAn is strongly complete for the class of
frames of a.c. width at most n.

The proof is routine, use �ltration.

COROLLARY. BAn has the FMP and is decidable.

(b) Top-width. In �nite frames one can just count the number of top
nodes, this gives a maximum width for trees, but not for posets in general.

De�ne the top-width of a frame as the number of maximal nodes and put

Æn :=
nWW
i=0

 
:pi !

WW
j 6=i
:pj

!
;

 n :=

 VV
0�i<j�n

:(:pi ^ :pj)
!
! Æn

and BTWn := IPC+  n (as a schema).

THEOREM. [Smory�nski, 1973]BTWn is complete for the class of all frames
of top-width at most n.

COROLLARY. BTWn has the FMP and is decidable.
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(c) Local width [Gabbay and de Jongh, 1974]. We consider �nite trees and
de�ne the local width of a tree frame as the maximum number of successors
of its nodes. De�ne

�n :=

"
n+1VV
i=0

  
pi !

WW
i6=j
pj

!
! WW

i6=j
pj

!#
!

n+1WW
i=0

pi

and LWn = IPC+ �n (as a schema).

Theorem. LWn is complete for tree frames of local width at most n.

Corollary. LWn has the FMP and is decidable.

Furthermore one can show that

1. LWn has the DP (use the gluing trick)

2. \LWn = IPC

3. LWn 6= LWn+1.

For proofs see [Gabbay, 1981, p. 83 �.].

6.7 The Lattice of Intermediate Logics

Intermediate logics constitute a poset under the natural order of inclu-
sion. Let us agree to consider intermediate logics as being given by ax-
iom schemata. Observe that any such consistent extension of IPC is a
subsystem of CPC. Hence we can safely form the meet and join of inter-
mediate logics as follows: let Ti be axiomatised by the schemas 'ij(j � 0),

then T1 u T2(T1 t T2) are axiomatised by 'j1 _ 'k2('j1 ^ 'k2). It immediately
follows that the intermediate logics constitute a distributive lattice.

This lattice has extensively been investigated. We have already met some
properties: e.g. there is a descending sequence of logics with intersection
IPC (Section 5.6.3 (c)).

Further properties are:

There are 2@0 many intermediate logics [Jankov, 1968].
There are intermediate logics, that are not �nitely axiomatisable.
There exists a sequence of formulas 'i such that the logics TA axiomatised

by f'i j i 2 Ag for A � !, satisfy TA = TB , A = B. Such a string is
called strongly independent (cf. [Gabbay, 1981, p. 73 �.]).

There are intermediate logics without the FMP (cf. [Gabbay, 1981, p.
103 �]).

There exists a strictly increasing chain of intermediate logics [Jankov,
1968; Fine, 1970].

There are exactly eight intermediate logics with the interpolation theorem
[Maximova, 1977]. For more information cf. [Rautenberg, 1979, p. 288 �].
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6.8 Extensions of IQC

The study of intermediate predicate logics has not yet made advances com-
parable to those in propositional logic. We refer the reader to, e.g. [Ono,
1973].

The best known extension of IQC is the logic of constant domains in-
troduced by [Grzegorczyk, 1964], and axiomatised and shown complete by
[G�ornemann, 1971].

Put CD = IQC+ 8x(' _  (x))! (' _ 8x (x)).
Theorem. [G�ornemann] CD is complete for the class of Kripke models
with constant domain.

Proof. See [Gabbay, 1981, p. 50 �]. �

CD has somewhat unpleasant features as it is not closed under relativisa-
tion, i.e. if �(x) is some suitable formula then we may have CD ` � but
CD 6` ��(x), where ��(x) is the sentence obtained by relativizing all quanti-
�ers. The reason being that although the domain is �xed, predicates need
not be constant in Kripke models for CD.

The di�erence between IQC and CD disappears when we restrict our-
selves to formula without 8 [Fitting, 1969] or without _ and 9 [Gabbay,
1981].

Another noteworthy principle is the double negation shift DNS:

8x::'(x) ! ::8x'(x):
Put MH := IQC+DNS.
MH turns out to be complete for Kripke models with the property that

each node is below some maximal node [Gabbay, 1981, p. 57 �]. Keeping
the proof of Glivenko's theorem in mind, it is not surprising that it holds
for MH.

Actually MH is the smallest such extension of IQC [Gabbay, 1981, p.
14].

To �nish this section, let us mention a rather di�erent enterprise. Ono
and Komori [1985] studied intuitionistic propositional calculus in the Gentzen
sequent formalisation, without the contraction rule. They generalise Kripke
models to monoid-Kripke models and establish the completeness theorem.
Ono [1985] extends this study to predicate calculus.

The study of logics without structural rules is the subject of Girard's
linear logic, cf. [Girard et al., 1989].

7 FIRST-ORDER THEORIES

A number of basic notions of intuitionistic mathematics can faithfully be
studied in the framework of intuitionistic �rst-order logic. Although the
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situation is similar to that in classical logic, there is one disturbing as-
pect peculiar to intuitionistic logic (or rather its semantics): the absence
of natural (or standard) models. Let us compare the state of a�airs with
classical logic. For theories in CQC we have not only the traditional no-
tion of model, as presented by Tarski (cf. [van Dalen, 1997]), but also the
notion of Boolean-valued model [Rasiowa and Sikorski, 1963]. The reader
who is not familiar with the theory of Boolean valued models, may think of
a topological model over a discrete space, i.e. with O(X) = P(X). Or he
may think of Heyting algebras with the extra condition �� x = x for all x
(or �x t x = T ).

The truth values [[']] are simply elements of a Boolean algebraB. There is
among the Boolean algebras a canonical one that is contained in all Boolean
algebras, the two-element algebra 2 = f0; 1g, with operations given by the
traditional truth tables. Now there is for each Boolean-valued model a
(truth preserving homomorphism onto a Boolean-valued model over 2, i.e.
an ordinary model. Hence truth in all Boolean-valued models is equiva-
lent to truth in all ordinary models. So the notion of truth according to
ordinary model theory coincides with that of Boolean-valued model theory
(cf. [Rasiowa and Sikorski, 1963, p. 295]). The ordinary models can thus
be considered as the real (or standard) models among the Boolean-valued
ones. This relation does not exist for intuitionistic semantics (say Heyting-
valued, to take the most general one). For although 2 is contained in (and
can be obtained as homomorphic image of) all Heyting-algebras, truth in
all Heyting value model is certainly not the same as truth in all 2-valued
(i.e. classical) models.

The fact that for intuitionistic �rst-order theories there does not exist a
canonical model notion in the various semantics that we have exhibited is
one that we have to accept, unpleasant as it may be.

Philosophically speaking there are two ways to open to use| (1) look for a
codi�cation of the Brouwer{Heyting{Kreisel notion of proof- interpretation,
(2) give up the notion of `standard' truth, or intended model.

We will discuss the problem of semantics later, but not without point-
ing out that the absence of a standard model for arithmetic in any of the
semantics introduced earlier, is rather embarrassing (see below).

We will discuss a number of basic �rst-order theories below. The most
fundamental is the theory of equality.

7.1 The Theory of Equality EQ

The axioms for EQ are the familiar ones:
the universal closures of

1. x = x

2. x = y ! y = x
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3. x = y ^ y = z ! x = z

(whenever we list axioms we will tacitly presuppose the clause `the universal
closure of').

As in classical logic one shows by induction on ' x = y ! ('(x)! '(y)).
Let us consider a Kripke model for EQ. We will denote the binary relation

that interprets = in � by ��. One easily sees that �� is an equivalence
relation in (the domain of) each node. In general, however, �� is not
the identity. For, suppose that �� were the identity in each node, then
if for a; b 2 � a 6�� b, we see that for all � � �; a 6�� b in �. Hence
�  a = b _ a 6= b. Conversely, if K  8xy(x = y _ x 6= y), then we can
construct from K a Kripke model K0 with � the identity in each node.

For, since �� is an equivalence relation we can form equivalence classes
[a]� for each a in �.

De�ne � 0 a = b := [a]� = [b]�(, a �� b).
Claim: �  ', � 0 ' for all � 2 K.

Proof. Induction on '. The de�nition of 0 takes care of the atomic '.
^ and _ are immediate, � 6 ' !  , 9� � �; �  ' and � 6  ,
(induction hypothesis) 9� � �; � 0 ' and � 60  , � 60 '!  .
�  8x'(x) , 8a 2 �; �  '(�a) , 8[a] 2 �; � 0 '(�a) , � 0 8x'(x)

(where �a is the name of a in K and of [a] in K0). A similar argument handles
9. A slight boost of the argument yields the same result for arbitrary
languages.

Summing up: IQC with decidable equality is complete for normal Kripke
models (i.e. with = interpreted by real equality).

The theory EQ is of interest since the basic theories of real life depend
heavily on equality.

In general T c will denote the classical theory T +' _ :'; T d will denote
the theory T+ decidability for atoms. We will keep superscripts for `logical'
and pre�xes for `mathematical' variants of theories.

The following facts have been proved:

EQd = EQc

decidable

EQd + [Lifschitz, 1969]

EQs - [Lifschitz, 1969]

EQ - [Lifschitz, 1969],
where EQs is the theory of stable inequality: 8xy(::x = y ! x = y). �

7.2 The Theory of Apartness, AP

For practical purposes one needs in intuitionistic mathematics a strong in-
equality relation. For example, in the theory of the reals one needs a prop-



INTUITIONISTIC LOGIC 63

erty like `x has a positive distance to 0 (9k(j x j> 2�k), to make sure that
x has an inverse. A mere inequality would not do.

The positive inequality relation was introduced by Brouwer in 1918 and
axiomatized by Heyting.

Notation x#y read x is apart from y.
AP has the axioms of EQ plus the following ones:

:x#y $ x = y
x#y ! x#z _ y#z:

One easily derives the following:

FACT 37. The following are derivable in AP.

x#y ! y#x
x#y ! x 6= y
::x = y ! x = y:

In particular AP has a stable equality. Most theories that occur in basic
mathematics have an apartness relation. Combinatory logic, however, does
not allow an apartness relation since its equality is not stable.

A theory with decidable equality trivially has an apartness relation,
namely the inequality. One and the same structure may, however, carry
more apartness relations.

EXAMPLE

0. 1.

1 # 0
0 # 1
0 = 0
1 = 1

0 1

1 # 0
0 # 1
0 = 0
1 = 1

0 1

0 = 0
1 = 1
0 # 1
1 # 0

0 1
0 = 0
1 = 1

The above models carry the same, decidable, equality, but distinct apart-
ness relation.

The apartness relation inuences the equality relation, the question is
does it stop at the stability axiom or does it carry stronger conditions? The
answer is provided in [van Dalen and Statman, 1979] where the axiomati-
sation of the equality fragment of AP is studied.

Consider the following sequence of inequalities 6=n
x 6=0 y := :x = y
x 6=n+1 y := 8z(x 6=n z _ y 6=n z):
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For each n we formulate a stability axiom

Sn := :x 6=n y ! x = y:

FACT.

EQ ` Sn ! Sm for n > m
AP ` Sn for all n
AP ` x#y ! x 6=n y for all n:

Consider the !-stable theory of equality EQs
! = EQ+ fSn j n 2 !g

EQs
! turns out to be the equality fragment of AP:

THEOREM.

1. AP is conservative over EQs
!.

2. EQs
! is not �nitely axiomatisable.

Van Dalen and Statman proved the theorem by means of a normal form
theorem for AP. There is however a short and elegant proof by Smory�nski
using model theory [Smory�nski, 1977], that we will reproduce here.

Proof of 1. Suppose EQs
! 6` '. Consider the Kripke model K obtained in

the model existence lemma.
De�ne �  a#b := �  a 6=n b for all n.
Claim # is an apartness relation. We will only consider 8xy(:x#y !

x = y) (everything else is trivial).
Suppose the bottom node, �0, does not force it, then �1  :a#b and

�1 6 a = b for some �1. Since K is a model of EQs
! we have �1 6 :a 6=n b

for all n.
Now �1[fa 6=n b j n 2 !g is consistent, for else �1[fa 6=n b j n 2 !g ` ?

and hence �1 ` :a 6=m b, i.e. �1  :a 6=m b, for some m. Therefore there
exists a prime theory � � �1 with a 6=n b 2 � for all n, so �  a#b.
Contradiction.

Hence �0  8xy(:x#y ! x = y).
2. is shown by constructing suitable Kripke models �

As a corollary we obtain the unde�nability of # in terms of =. For, if
AP ` x#y $ '(x; y) for a suitable equality formula ', then we would have
a �nite axiomatisation of EQs

! (note that the above example also establishes
the same fact).

Observe that we could accept the apartness relation as basic and de�ne
equality by x = y := :x#y if we replace :x#y $ x = y by :x#x and
x#y ! y#x.
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Further facts: AP is undecidable [Smory�nski, 1973a], [Gabbay, 1981, p.
258]. There are Kripke models of EQs

! that do not carry any apartness
relation at all [van Dalen and Statman, 1979]. For a treatment of apartness
in a sequent calculus setting, see [Negri and von Plato, 2001].

7.3 The Theory of Order, LO

In classical logic linear order is singled out from the partial orders by re-
quiring any two elements to be comparable, i.e. x < y _ x = y _ y < x.
This axiom would be excessively strong in an intuitionistic context, since
not even the reals would be ordered. Therefore Heyting proposed another
axiom, that we shall adopt.

The language of LO contains the predicate symbols< and =. The axioms
of LO are those of EQ, plus

x < y ^ y < z ! x < z
x = y $ :x < y ^ :y < x
x < y ! z < y _ x < z:

It is a simple exercise in logic to show the following:

Fact

1. :x < x

2. x = y ^ x < z ! y < z

3. x < y _ y < x is an apartness relation.

Heyting called a relation satisfying the axioms of LO a pseudo- order
relation and a relation satisfying, moreover, x < y _ x = y _ y < x an order
relation. Since, however, the �rst kind of relation turns out to be the more
important and the more common of the two, we have adopted the present
terminology.

Since

LO+ 8xy(x < y _ x = y _ y < x) ` (x < y _ :x < y) ^ (x = y _ :x = y)

we call this system decidable linear order LOd.
Conversely, the decidability of < and = implies the comparability of x

and y.
The theory of dense linear ordering, DLO, is obtained by adding

9z(x < y ! x < z < y); 9y(x < y); 9y(y < x):

Variants of DLO are considered by Smory�nski [1977].
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Not only can we de�ne a canonical apartness relation in LO, but also
show that the theory containing apartness and order (AP+ LO+ x#y !
x < y _ y < x) is conservative over AP (and hence over EQs

!) [Smory�nski,
1977; Hartog, 1978].

The theories LO and DLO are undecidable [Smory�nski, 1977] cf. [Gab-
bay, 1981], but DLOd is decidable and coincides with its classical counter-
part DLOc, [Smory�nski, 1973a].

In [Gabbay, 1981] a number of re�nements of the above results are treated.

7.4 Logic with Operations

The set theoretical view of operations (functions)is that they are a special
kind of relations, so we could do without the complications of introducing
function symbols. However, the circumvention of function symbols is most
unnatural, and, when we come to choice sequences, disastrous. The syn-
tactic aspects of a �rst-order language with function symbols are strictly
analogous to the classical ones.

We will therefore look into the semantic aspects. Consider a Kripke
model K with a functional relation R(x; y), i.e. K  8x9!yR(x; y). The
properties of forcing tell us that for each � we have that for each a 2 D(�)
there is a unique b 2 D(�) such that �  R(a; b). That is R is a function
on D(�). hence we de�ne for each function symbol f an n-ary function
f� : D(�)n ! D(�), for each �.

The monotonicity condition is not quite obvious since elements of jD(�)j
are determined up to the relation ��.

The simplest solution is to put: � � � ) fa � f�. There is another
solution, however, that modi�es the concept of Kripke model in the spirit
of category theory, where one de�nes a Kripke model as a pre-sheaf over P ,
where P is a poset (cf._ [Goldblatt, 1979, p. 256]).

Before formulating the modi�ed notion of Kripke model, we recall the
notion of homomorphism for (classical) structures.

f : A ! B is a homomorphism from structure A to B if f is a function
from the universe of A into the universe of B such that f preserves all
relations and functions, i.e.,

RA(a1; : : : ; an)) RB(f(a1); : : : ; f(an)) for all relations R;

and

f(FA(a1; : : : ; an)) = FB(f(a1); : : : ; f(an)) for all functions F :
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EXAMPLE

a
Æ

bÆ Æc

Æ d

f!

Æ 1

2 Æ

3 Æ
Æ 4

wheref(a) = 1
f(b) = f(c) = 2
f(d) = 3

f is a homomorphism of the poset A into the poset B. We now come to our

DEFINITION 38. A Kripke model is a quintuple K = hK;�; d; f;i where
(K;�) is a poset, D assigns to each � 2 K a structure D(�), f assigns to
each pair �; � with � � � a homomorphism f�� : D(�) ! D(�) such that
f�� = idD(�), for all �; f� Æ f�� = f� for all � � � � . The forcing
relation  is de�ned as in De�nition 13. Furthermore, equality is always
interpreted as real identity.

We can always associate a model in the new sense to a model in the old
sense by lumping together elements in equivalence classes under ��.

In dealing with concrete Kripke models we will act broad-mindedly and
choose whichever notion is most convenient, or even use the old notion and
think of a new one.

7.5 Heyting's Arithmetic, HA

The language of arithmetic contains, =;+; �; S; 0; 1 (and, when convenient,
as many primitive recursive functions as we wish).

The axioms of HA are those of Peano's arithmetic plus the axioms of
EQ.

1. x = y $ Sx = Sy

2. :Sx = 0

3. x+ 0 = x
x+ Sy = S(x+ y)

4. x � 0 = 0
x � Sy = x � y + x

5. '(0) ^ 8x('(x)! '(Sx))! 8x'(x).

Number 5 is the schema of mathematical (or complete) induction. It can
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also be presented in the form of a natural deduction rule

'(0)

['(x)]
...

'(Sx)

'(x)

It is a simple exercise to show the decidability of the equality relation.

THEOREM 39.

HA ` 8xy(x = y _ x 6= y)
HA ` 8x(x 6= 0) 9y(x = Sy)):

For a number of formal proofs, see [Kleene, 1952].

Arithmetic has correctly received a considerable amount of attention. It
is the theory of the hard core of intuitionistic mathematics, put forward
by Brouwer in his First Act of Intuitionism (cf. [Brouwer, 1975, pp. 509],
[Brouwer, 1981, p. 4], [Heyting, 1956, p. 13 �]).

Apart from foundational motivations for studying HA, there is a prag-
matic argument for investigating arithmetic. It is, so to speak, a showroom
of metamathematical tools and results. We will only be able to discuss
a minute part of the material that is available. The reader is referred to
Troelstra [1973].

Since HA is a subsystem of PA (Peano's arithmetic) we cannot expect
to �nd theorems contradicting the classical practice. We will have to look
for metamathematical methods that capitalise on the constructive nature
of intuitionistic logic.

HA has the properties EP and DP, that are popularly considered to be
the hallmark of constructive theories. We will �rst show EP and return to
the signi�cance of EP and DP later.

THEOREM 40.
DP: HA ` ' _  ) HA ` ' or HA `  (disjunction property)
EP: HA ` 9x'(x) ) HA ` '(n) for some n. (existence property)

Proof. DP follows immediately from EP, since disjunction can be de�ned
in terms of the existential quanti�er: HA ` (' _  ) $ 9x((x = 0 ! ') ^
(x 6= 0!  )). therefore we will consider EP.

Let HA ` 9x'(x), but HA 6` '(n) for all n.
Then, by the completeness theory, there are Kripke models K0;K1;K2; : : :

such that Kn 6 '(n). We form a new Kripke model K.
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K0 K1 K2

�0 �1 �2

�

We take the disjoint union of the models Ki and add an extra bottom
node �.

The structure belonging to � is the standard model of (classical) arith-
metic. Since N is contained in all domains of the Ki's, the resulting model
satis�es the conditions of the Kripke semantics. We will show that K  HA.
The only non- trivial axiom is mathematical induction. So we must show
   (0),   8x( (x) !  (Sx)) )   8x (x), for all . For  6= �
this is so by hypothesis, so consider �   (0); �  8x( (x) !  (Sx)). We
must show 8 � � 8c 2 D();    (c). Again the only case that must
be taken care of is � itself. So we must show �   (n) for all n. but we
know �   (0) and �   (n) ! �  �(Sn). Hence, by induction in the
metalanguage we get �   (n) for all n.

Now �  HA, so �  9x'(x), and hence �  '(n) for some n. Contra-
diction with Kn 6 '(n).

Therefore HA ` '(n) for some n. �

Although EP seems to be stronger than DP, a result of Friedman shows
this not to be the case for a large class of extensions of HA.

THEOREM 41 ([Friedman, 1975]). For all RE extensions of HA EP fol-
lows from DP.

It seems attractive to consider EP as the characteristic of constructivity;
if we can show the existence of an object with a property ', then we can
e�ectively indicate such an object. This is the constructive counterpart of
the classical notion of `pure existence'.

Kreisel has shown, however, that the possession of EP is neither neces-
sary nor suÆcient for constructive theories. The following example (due to
Kreisel, cf. [Troelstra, 1973, p. 91]) may illustrate the matter.

Let Prf be the proof predicate of HA (cf. [Kleene, 1952, p. 254]). De�ne
'(x) := Prf(x; p0 = 1q) _ 8y:Prf(y; p0 = 1q). As HA is consistent on the
intended interpretation, 8y:Prf(y; p0 = 1q) is true, so evidently 9x'(x) is
true. Moreover, :Prf(n; p0 = 1q) is true for each n, and (Prf being prim-
itive recursive) provable. Hence, for any n HA ` '(n) $ 8y:Prf(y; p0 =
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1q). By de�nition HA ` 9x'(x) $ [9yPrf(y; p0 = 1q) _ 8y:Prf(y; p0 =
1q)]. Now HA ` 9x'(x) ! '(n) yields HA ` [9yPrf(y; p0 = 1q) _
8y:Prf(y; p0 = 1q)] ! 8y:Prf(y; p0 = 1q), hence HA ` 9yPrf(y; p0 =
1q)! 8y:Prf(y; p0 = 1q), and so HA ` 8y:Prf(y; p0 = 1q), or HA proves
its own consistency, contradicting G�odel's second theorem.

Note that T = HA + 9x'(x) is an intuitionistically true theory and
T ` 9'(x), but by the above argument 6` '(n) for all n. So T does not have
EP.

The proof of EP above was itself not constructive, we have used a proof
by contradiction. So we cannot actually exhibit the promised number n.

There are various proofs that do provide the required instances. For ex-
ample, by means of the Kleene slash [Troelstra, 1973, p. 177], q-realisability
[Troelstra, 1973, p. 189 �], and normalisation in Gentzen systems [Minc,
1974]. An interesting feature is the stability of the instantiation member in
various methods. That is, quite di�erent techniques for converting a prov-
able 9-statement into its instantiation yield the same number (cf. [Stein,
1980]).

It is to be noted that all proofs of DP (or EP) for HA go essentially
beyond the means of HA. Actually one can make this precise (Myhill) in
the following form: let T be an r.e. extension ofHA then there are sentences
' and  such that if T ` Pr('_ )! Pr(')_Pr( ), then T ` Pr(p0 = 1q)
where Pr(x) is the provability predicate for T .

In words, the price for `provable DP' is that T proves its own inconsistency
(cf. [Leivant, 1985]).

Closure under rules

For a given derivation rule
'1; : : : ; 'n

R
 

we automatically get that prov-

ability of the premises yields provability of the conclusion. We say that a
theory is closed under a rule R if T ` '1; : : : ; T ` 'n ) T `  . Intuition-
istic systems tend to be closed under various rules that are themselves not
correct. We will list a few cases below. Consider the following principle.

Markov's Principle, MP

8x('(x) _ :'(x)) ^ ::9x'(x) ! 9x'(x):

MP plays an important role in metamathematics. It naturally turns up in
certain interpretations. Markov postulated it in the context of recursion
theory in the form `if it is impossible that a Turing machine does not halt,
then it must halt', in the formalism of recursion theory: ::9zT (e; n; z)!
9zT (e; n; z) (cf. [Troelstra, 1973]). Thus Markov's formulation can be taken
to deal with a primitive recursive '(x).

THEOREM 42. MP is not derivable in HA.



INTUITIONISTIC LOGIC 71

Proof.[Smory�nski] Let '(x) be a primitive recursive formula such that
9x'(x) is independent of HA (e.g. :ConHA, the inconsistency of HA).
Let K be a Kripke model of HA+ 9x'(x). We put an extra node a at the
bottom of K, with D(�) the standard model for PA.

K
��

��
Suppose HA ` ::9x'(x) ! 9x'(x). (�)
Since the new model is a model of HA (cf. the proof of Theorem 40),

we have �  ::9x'(x) ! 9x'(). But evidently �  ::9x'(x), therefore
�  9x'(x) and hence �  '(n) for some n. '(x) being primitive recursive
and '(n) being true, a theorem from arithmetic tells us that HA ` '(n),
so HA ` 9x'(x). This contradicts the independence of 9x'(x). Therefore
(�) is false. �

Next we will show that HA is closed under Markov's rule.

THEOREM 43.

HA ` 8x('(x) _ :'(x));HA ` ::9x'(x) )
HA ` 9x'(x); for FV (') = fxg:

Proof. From HA ` ::9x'(x), we conclude PA ` 9x'(x) and so 9x'(x)
is true in the standard model. Therefore, '(n) is true for some n. Now
using HA ` '(n) _ :'(n) and DP we immediately get HA ` '(n), and
thus HA ` 9x'(x). �

Our next principle is the

Independence of Premise Principle, IP

(:'! 9x (x)) ! 9x(:'!  (x)):

The heuristic argument against IP is as follows: :' ! 9x (x) may be
seen to hold by constructing an instance n that depends on the proof of :'.
In 9x(:' !  (x)), however, we are required to construct the instance n
beforehand. This evidently is a stronger requirement. Formal independence
proofs are given in [Troelstra, 1973, pp. 179, 369].

THEOREM 44.

HA ` :'! 9x (x) ) HA ` 9x(:'!  (x))
(FV ( ) = fxg):
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Proof. See below. �

The case of Church's Thesis will be considered in Section 8.
We return to the closure under Markov's Rule, to demonstrate an ex-

tremely elegant proof by H. Friedman [1977].
First we introduce the Friedman translation ' ! '�: replace in ' each

atomic subformula  by  _� (where � is a formula ofHA). The translation
has the following properties.

LEMMA 45.

1. � ` ') �� ` '� and � ` '�.
2. HA ` '! HA ` '�.
3. For any term t;HA ` ::9x(t(x; y) = 0)) HA ` 9x(t(x; y) = 0).

Proof. (1) and (2) are easily shown by a suitable induction.
(3) HA ` (9xt(x; y) = 0! ?)! ?.
We apply the Friedman Translation with respect to

� := 9x(t(x; y) = 0); then ((9xt(x; y) = 0! ?)! ?)� =
[9x(t(x; y) = 0 _ 9x(t; (x; y) = 0))! ?_ 9x(t(x; y) = 0)]
! (?_ 9x(t(x; y) = 0)):

The latter formula is equivalent to 9x(t(x; y) = 0). Now apply (2). �

So for the special case of t(x; y) = 0, closure under Markov's Rule has
been established (i.e. in particular for primitive recursive functions f(x; y)).

The general closure result is obtained by an application of closure un-
der Church's Rule (cf. Section 8), i.e. if HA ` 8x9y'(x; y), then HA `
8x'(x; fegx) for some e (index of total recursive function).

One easily derivesHA ` '(x; y)_:'(x; y) ) HA ` '(x; y)$ feg(x; y) =
0, for a suitable index e. We can replace feg(x; y) = 0 by 9z(T (e; x; y; z) ^
U(z) = 0) (cf. van Dalen's Algorithms chapter in Volume 1 of this Hand-
book).

The matrix of the latter expression is primitive recursive, so we may con-
servatively extend HA by adding a symbol f for its characteristic function.
Hence we get HA0 ` '(x; y) $ 9z(f(x; y; z) = 0), where HA0 is the ex-
tension by f and its de�ning equations. Now we may apply Lemma 45(3):
HA ` ::9x'(x; y) ) HA0 ` ::9xz(f(x; y; z) = 0) ! (Lemma 45 carries
over to HA0) HA0 ` 9xz(f(x; y; z) = 0)) HA ` 9x'(x; y).

Observe that the above argument yields closure under Markov's Rule for
formulas with parameters.

We now apply the Friedman translation to the rule of independence of
premises (A. Visser). For convenience we write ``' for `HA `'.
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Let ` :'! 9x (x). We apply the Friedman translation with respect to
::'. By Lemma 45(2) ` (:')::' ! (9x (x))::' : : : (1).

Observe that ` :�! (�� $ �) for any � and � : : : (2),
as one can easily show by induction on �.

Therefore also ` �� ! (:�! �) : : : (3).
From(1) we get ` (:')::' ! 9x( (x)::'), and an application of (3)

yields ` (:')::' ! 9x(:' !  (x)). (:')::' = (' ! ?)::' = '::' !
::'. Now apply (3) with � = ' and � = ::', then '::' ! (:' ! '),
hence '::' ! ::'. Hence ` 9x(:' !  (x)). Friedman's translation is
closely related to a straightforward translation of intuitionistic into minimal
logic, cf. [Leivant, 1985] for details and also for syntactic criteria for closure
under Markov's rule.

Closure under Markov's rule is exactly what one needs for identifying
provably recursive functions in classical and intuitionistic arithmetic. Using
the notion of Ch. 4 of Vol. 1 of this Handbook, we can say that the recursive
function with index e is provably recursive in a theory S if S ` 8x9yT (e; x; y)
(for each input x the computation provably halts). Closure under Markov's
rule tells us that PA and HA have exactly the same provably recursive
functions (Kreisel). In other words, by restricting our arguments to intu-
itionistic logic we do not lose any recursive functions. Friedman extended
this result to classical and intuitionistic set theory ZF ([Friedman, 1977], cf.
also [Leivant, 1985]).

8 RELATION WITH OTHER LOGICS

First we consider a sub-logic of intuitionistic logic. Minimal logic was pro-
posed by Johansson in reaction to the role of negation, in particular the
Ex falso sequitur quodlibet rule (our falsum rule). His critique resulted in
a rejection of the rule `?'. As a result, in his system of minimal logic, ?
cannot properly be distinguished from other atoms. This is reected in the
Kripke semantics for minimal logic.

DEFINITION 46. A Kripke model for MQC is obtained from De�nitions
10 and 13 by deleting the condition on ? (i.e. �  ? is allowed).

By a proof that is completely similar to that of Lemma 14 we get

THEOREM 47 (Completeness for MQC).

�jMQC', �  '

(where  is understood in the sense of De�nition 46).

It now follows immediately that MQC is a proper subsystem of IQC
(similarly for MPC and IPC), for MQC 6 ? ! '. Consider the one
point model in which ? is forced.
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Although minimal logic is strictly weaker than intuitionistic logic, they
are in a sense of the same strength. To be precise, each can faithfully be
interpreted in the other.

DEFINITION 48. The translations � and y are de�ned by

'� := ' _ ? for atomic '
(' ^  )� := '� ^  �
(' _  )� := '� _  �
('!  )� := '� !  �

(8x')� := 8x'�
(9x')� := 9x'�

'y := '[p=?]:
where p is a propositional letter not occurring in '.

Observe that the translation y eliminates ?, so for 'y we cannot use the
falsum rule in IQC. That makes it plausible that 'y behaves in IQC as '
does in MQC.

THEOREM 49.

1. IQC ` ',MQC ` '�

2. MQC ` ', IQC ` 'y,

Proof. (1) ( is trivial.
For ) use induction on the derivation of � ` ' and observe

` �! ', � ` ':

(2) ? behaves in the semantics for minimal logic like any atom, so validity
of ' in all `minimal' Kripke models is equivalent to validity of 'y in all `intu-
itionistic' Kripke models. Alternatively, a simple proof theoretic argument
based on the normal form theorem will do. �

Minimal logic enjoys most metalogical properties that can be expected, e.g.
there is a normal form theorem for natural deduction derivations, normal
derivations have he subformula property, etc. Its propositional calculus,
MPC, is decidable (use Theorem 49). For more information the reader is
referred to [Johansson, 1936; Prawitz, 1965; Prawitz and Malmn�as, 1968].

Our next goal is to investigate the relation between classical logic and
intuitionistic logic. The �rst results antedate Heyting's formalisation. Kol-
mogorov already in 1925 established a translation procedure [Kolmogorov,
1925], and in [Glivenko, 1929] a similar result is to be found. The next to in-
vestigate the relation between classical and intuitionistic logic (in the wider
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context of arithmetic) were G�odel and Gentzen ([G�odel, 1933; Gentzen,
1933]). for more information on translations the reader is referred to [Leivant,
1985], [Troelstra and van Dalen, 1988].

We �rst present the result of Glivenko:

THEOREM 50.

CPC ` ', IPC ` ::':

Proof. Recall that IPC is complete for �nite Kripke models. Since in each
maximal node all tautologies are forced, we see that ::' is valid in all �nite
Kripke models if ' is a classical tautology. This shows ). The converse is
trivial. �

COROLLARY 51.

CPC ` :', IPC ` :':

There are a number of translations from IQC into CQC that have
roughly similar properties. The main feature is the elimination of _ and
9. Let us call a formula negative if it does not contain _ and 9 and if all
its atoms are negated. The translation below assigns to each formula a
negative formula.

Negative formulas have the following convenient property

LEMMA 52. IQC ` '$ ::' for negative '.

Proof. An exercise in plain old logic. �

DEFINITION 53. The translation Æ is given by

'Æ := ::' for atomic '
(' ^  )Æ := 'Æ ^  Æ
('!  )Æ := 'Æ !  Æ

(' _  )Æ := :(:'Æ ^  Æ)
(8x')Æ := 8x'Æ
(9x')Æ := :8x:'Æ

THEOREM 54.

1. CQC ` ', IQC ` 'Æ

2. CQC ` '$ 'Æ.

Proof. (2) is routine. For (1) we consider instead � `c ' and �Æ `i 'Æ
(where `c;`i stand for classical and intuitionistic derivability, and �Æ is the
set of translated  's from �). Proof by induction on the derivation of � ` ',
use Lemma 52. �
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Since negative formulas are invariant under the translation we get

COROLLARY 55.

1. CQC ` ', IQC ` ' for negative '.

2. For theories with decidable atoms (i.e. T ` ' _ :' for atomic ') we
have T `c ', T Æ `i ' for negative '.

The latter is the case for arithmetic, HA.
The above result tells us that PA and HA are relatively consistent, so

intuitionistic arithmetic is, from a foundational point of view, just as much
in need of a consistency proof as PA.

There are some special results in the area, we list some.

FACTS 56.

1. CQC ` ', IQC ` ' for ' a negation of a prenex formula (Kreisel).

2. CQC ` ', IQC ` ::', and
CPC ` :', IQC ` :', for ' without 8. [Fitting, 1969, p. 52].

3. If 8 does not occur negatively in ' then CQC ` :' , IQC ` :'
[Smory�nski, 1973]�.

4. If ' is a �0
2-sentence (i.e. of 89 form), then PA ` ' , HA ` '.

(Kreisel, cf. [Troelstra, 1973, Ch. 3, S. 8], lemma 46.)

Intuitionistic logic seen from the modal viewpoint

As we have sketched earlier, intuitionistic logic has certain strong intensional
aspects, in particular the meaning of the connectives| expressed in terms
of proofs and construction, or of knowledge|has an intensional ring. This
has been observed by G�odel, who proposed a translation of intuitionistic
logic into modal logic [G�odel, 1932].

The `necessity' operator cold be read here as `I have a proof' or `I know
that'.

DEFINITION 57. The translation m is de�ned by

'm := �' for atomic '
(' _  )m := 'm _  m
(' ^  )m := 'm ^  m
('!  )m := �('m !  m)

We will establish the relation between S4 and IPC. Observe that in S4

�?$ ?; so (:')m $ �:'m:
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We borrow from modal logic the fact that S4 is complete for Kripke models
hK;R;i with a reexive, transitive R (cf. [Hughes and Cresswell, 1968;
Sch�utte, 1968] and Chapter II.1 of the Handbook).

The forcing notion is de�ned by

� 6 ?
�  ' ^  , �  ' and �   
�  ' _  , �  ' or �   
�  '!  , � 6 ' or �   
�  �', for all � with �R�; �  ':

Observe that the propositional fragment is classical. Further, an intuition-
istic Kripke model may be viewed as a modal Kripke model (not always
conversely).

LEMMA 58. Let hK;�;i be an intuitionistic Kripke model. De�ne a
modal Kripke model with the same underlying poset and the same forcing
for atoms denoted by m. Then for all '; �  ', � m 'm,

Proof. Induction on '. �

THEOREM 59. IPC ` ', S4 ` 'm.

Proof. (. Let IPC 6` ', then there is a Kripke model with � 6 ' for the
bottom node �. Now apply Lemma 58, then S4 6` 'm.
). Let S4 6` 'm, then there is a Kripke model such that �0 6m 'm

for the bottom node �: we turn this model into an intuitionistic Kripke
model by �rst collapsing the model, i.e. we consider the equivalence relation
� � �0 := � � �0 ^ �0 � � and introduce a new underlying set of nodes
�= �. For �= � we put �= �� ' := � m 'm, for atomic '. This relation
is obviously well-de�ned, so is the forcing relation for all formulas. An
argument similar to that of Lemma 58 establishes �= � ' , � m 'm.
we now conclude �0= �6 ', so IPC 6` '. �

Artemov has picked up G�odel's thread and designed logic which incorpo-
rates both `proof' and `modality', [Artemov, 2001].

8.1 Strong Negation

Intuitionistic negation does not conform to the classical laws of double nega-
tion, De Morgan, etc. This is mainly so because negation is a rather weak
connective. Think of its interpretations in a Kripke model: it is not de-
cided on the spot. Or one may think of inequality versus apartness, `being
unequal' carries so much less information than `being apart'. Could we pos-
sibly strengthen negation, so that the classical rules would e obeyed? As
a matter of fact, this is what Nelson [1949] and Markov [1950] have done.
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The new connective can more or less be viewed as an attempt to save the
classical laws by brute fore. Let us write `� '' for the strong negation of '.

The axioms for the logic with strong negation are those of IQC plus the
following

� ('!  )$ '^ �  
� (' ^  )$� '_ �  
� (' _  )$� '^ �  
� ' ^ '!  
� 9x'(x) $ 8x � '(x)
� 8x'(x)$ 9x � '(x)
� :'$ ';�� '$ ';� '! :':

One obtains a Kripke model for a logic with strong negation by incorporating
a strong falsity which is veri�ed at the spot.

DEFINITION 60. A Kripke model is a quadruple hK;�; D; ii where K;�
and D are as in De�nition 10, i is the interpretation map which assigns
�1; 0; 1 to atoms and nodes such that � � �; i('; �) 6= 0) i('; �) = i('; �).

We de�ne [']� for formulas ' and nodes �:

[']� := i('; �) for atomic ' with parameters in D(�);
where [?]� 6= 1
[' ^  ]� := min ([']�; [ ]�)
[' _  ]� := max([']�; [ ]�)

['!  ]� :=

8<
:

1 if 8� � �; [']� = 1) [ ]� = 1
�1 if [']� = 1 and [ ]� = �1
0 otherwise

[� ']� =

8<
:

1 if [']� = �1
�1 if [']� = 1
0 otherwise

[:']� =

8<
:

1 if 8� � �; [']� 6= 1
�1 if [']� = 1
0 otherwise

[8x'(x)]� =

8<
:

1 if 8� � �;8b 2 D(�)['(b)]� = 1
�1 if 9a 2 D(�)['(a)]� = �1
0 otherwise

[9x'(x)]� =

8<
:

1 if 9a 2 D(�); ['(a)]� = 1
�1 if 8� � �;8b 2 D(�)['(b)]� = �1
0 otherwise:
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It is a matter of routine to show this semantics sound for logic with strong
negation, IQCsn, in the sense that IQCsn ` ' ) [']� = 1 in all Kripke
models K and nodes � 2 K.

There are alternative ways to present the same model. One can assign
to each node two sets of atomic statements: �+ = f' j i('; �) = 1g and
�� = f' j i('; �) = �1g, and extend those sets as shown above to the
strongly veri�ed and strongly falsi�ed sentences. Some authors write �  '
for [']� = 1 and ��k' for [']� = �1. These notations are purely a matter
of convenience.

The completeness of IQCsn can be shown by the usual Henkin- or
tableaux-technique (cf. [Thomason, 1969]) but also by a reduction to IQC.
We will indicate the steps.

(1) Observe that all strong negations can be driven in, so each ' is prov-
ably equivalent to a '� with all strong negations in front of atoms.

(2) We want to consider strongly negated atoms as atoms in their own
right, so we double the language by adding a predicate P̂ for each pred-
icate P . Indicate the new atoms by '̂. At the very least the strongly
negated atoms should imply the negated atoms. Put � = f'̂ ! :' j
' atomic sentenceg, and let �� be the formula one obtains by replacing � �
(atomic ') by '̂ in ��.

Claim: � `IQC ( �� �)! :�� for all �.

Prove this by induction on �.

(3) � allows us to reduce IQCsn to IQC in the following sense: IQCsn `
� , IQC+ � ` ��.

Proof: Induction on the proof length (or on the derivation in natural
deduction).

(4) We can now apply the completeness theorem for IQC. Let IQCsn 6` �
then IQC + � 6` ��, so there is an ordinary Kripke model K in which all
axioms of � are valid, but not so ��. Turn K into a strong negation model
K0, putting ��k' if �  '̂ for atomic sentences '. Now one shows that K0
is a model of IQCsn, but not of �.

Since an ordinary model is trivially a strong negation model, it is imme-
diately seen that IQCsn is conservative over IQC.

IQCsn has some unusual properties, e.g. ` ' $  does not imply
`� ' $�  (consider :' $ ' ! ?). For more information, cf. [Gabbay,
1981, p. 124 �], [Rasiowa, 1974, Ch. XII] and [Rautenberg, 1979, p. 305 �].

8.2 The Connections with �-Calculus and Combinatory Logic

Already in 1958 Curry pointed out that there is a remarkable correspon-
dence between the implication fragment of IPC and combinatory logic, CL.
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In particular the axioms correspond to the CL axioms as follows:

'! ' � Ix = x
'! ( ! ') � Kxy = x
(� ! ('!  ))! ((� ! ')! (� !  )) � Sxyz = xz(yz):

Howard extended the correspondence in his `Formulas as types' paper
(1969, published in [Howard, 1980]). Once such a correspondence exists one
is almost forced to look at the reduction processes in CL or �-calculus and
in natural deduction systems (cf. [Prawitz, 1971]). In Pottinger [1976] the
isomorphism between natural deduction derivations and �-terms has been
exploited to obtain alternative proofs of the normalisation theorem for IPC.

In Martin{L�of's type theory the parallelism between types and formulas
is a key feature. For more information the reader is referred to Martin-L�of
[1977; 1984] and Troelstra and van Dalen [1988].

9 THE ALGORITHMIC TRADITION

Intuitionistic logic was intended to codify constructive reasoning. The proof-
interpretation expresses the meaning of the logical constants in terms of
constructions. It seems plausible to try to delimit the class of constructions
involved. Stephen Kleene conjectured in 1940 that in particular for a state-
ment of the form 8x9y'(x; y) provability in HA should entail the existence
of a recursive function f that acts as a choice function: 8x'(x; f(x)) (cf.
[Kleene, 1973]). This led Kleene to the notion of statements as `incomplete
communications', taking his cue from Hermann Weyl, see [van Dalen, 1995]

e.g. 9x'(x) is an incomplete communication of a fuller statement giving an
object x such that '(x). Likewise the other composite statements can be
considered as incomplete statements, to e supplemented by extra informa-
tion.

The result was the so-called 1945-realizability or recursive realizability, a
notion that we will formulate in the framework of HA. The sentence ' is
realized by the number n; nr', must, be thought of as n codes `the necessary
information to establish ''.

DEFINITION 61. x r ' is a formula of HA with at most one free variable
x, associated to the sentence ' (we use notation from Ch. 4 of Vol. 1 of
this Handbook).

x r ' := ' for atomic '
x r (' ^  ) := (x)0 r ' ^ (x)1 r  
x r (' _  ) := ((x)0 = 0! (x)1 r ') ^ ((x)0 6= 0! (x)1 r  )
x r ('!  ) := 8y(y r '! fxgy # ^fxgy r  )
x r 9y'(y) := (x)1 r '((x)0)
x r 8y'(y) := 8y(fxgy # ^fxgy r '(y))
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Explanation: The �rst clause tells us that any number realizes a true
atomic sentence. However, no number realizes a false atomic sentence. The
second clause is self-evident. The clause for the disjunction exhibits the
e�ective nature of the disjunction. We can e�ectively test if (x)0 = 0 or
(x)0 6= 0. Hence, the `realizer' of a disjunction contains enough information
to indicate the desired disjunct. The implication clause shows a resemblance
to the proof interpretation of!; x is the index of a partial recursive function
that transforms any realizer of ' into a realizer of  . In the case of 8
a similar resemblance can be observed. The clause for 9 tells us that a
realizer of 9y'(y) contains the required instance and the information that
realizes it.

Note that xr' is a formula of HA, so it makes sense to ask for the truth
of an instance nr', or its derivability in HA.

EXAMPLES 62.

1. x r (2 = 1 + 1) :, 2 = 1 + 1($ >).
2. x r 8z9y(z = y) :,
8z(fxgz # ^fxgz r 9y(z = y)) :,
8z(fxgz # ^(fxgz)1 r (z = (fxgz)0)) :,
8x(fxgz # ^z = (fxgz)0.

So if we take the index e of the identity function z 7! z, then (fxgz)0 = fegz
and we can put fxgz = hfegz; 0i. This is a (total) recursive function, so it
has an index, say e0. The number e0 realizes 8z9y(z = y).

Kleene's realizability can be considered as an interpretation of HA in
HA bringing out the constructive character of HA. This interpretation is
sound in the following sense:

THEOREM 63. HA ` ') HA ` n r ' for some n.

The proof is mainly a matter of perseverance (cf. [Kleene, 1952, p. 504],
[Troelstra, 1973, p. 189]).

A consequence of this theorem is the fact that (assuming the consistency
of HA) a realizable sentence ' is consistent with HA. For suppose that
nr' and HA+' is inconsistent, then HA ` :', and hence HA ` mr(:')
for some m. But mr(:') is equivalent to 8y(yr' ! fmgy # ^fmgyr?),
and since ? is not realisable, neither is '. Contradiction.

The most striking application of this procedure for establishing consis-
tency is:

THEOREM 64. Church's Thesis is consistent with HA.

Proof. We have in mind a special form of Church's Thesis, namely one
that can be formulated in HA. We choose the following form:

CT0 8x9y'(x; y)! 9z8x(fzgx # ^'(x; fzgx)):
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Observe that we can avoid the abbreviation fzgx #: 8x9y'(x; y) !
9z8x9u(T (z; x; u) ^ '(x; Uu)) where T is Kleene's T predicate (cf. van
Dalen's Algorithms Chapter in Volume 1 of this Handbook), and U is the
output-extraction function.

For convenience we suppose that ' has only the variables x and y free.

We will need the following notation: if t is a term for a partial recursive
function, then �x:t is the index of the partial recursive function given by t
depending on x (if there are more variables we consider them as parameters;
strictly speaking the notation is based on the Smn -theorem, Cf. Vol. 1 of
this Handbook, p. 275, or [Kleene, 1952, p. 344]). For example, �x:x+ y is
the index of the unary function that adds y.

We will sketch the proof in such a way that the reader, if he wishes to do
so, can provide the full details himself.

Let u r 8x9y'(x; y), then 8x(fugx # ^fugx r 9y'(x; y)), i.e.

8x(fugx # ^(fugx)1 r '(x; (fugx)0)) : : : (0):

Put t := fugx, and a = �x:(t)0; b = �wT (a; x; w); Æ(u) = ha;�x:hb; ho; (t)1iii.
Claim: Æ(u) r 9z8x9v(T (z; x; v) ^ '(x; Uv)) : : : (1).
We carry out the steps as given in the de�nition.

�x:hb; h0; (t)1ii r 8x9v(T (a; x; v) ^ '(x; Uv)) : : : (2):
hb; h0; (t)1ii r 9v(T (a; x; v) ^ '(x; Uv)) : : : (3):
h0; (t)1i r T (a; x; b) ^ '(x; Ub) : : : (4):

or

T (a; x; b) ^ (t)1 r '(x; Ub) : : : (5):

Now observe that by the de�nition of a and b; T (a; x; b) is true for all x. So
0 realizes it (where for convenience T (a; x; b) has been taken to be atomic;
this is achieved by a simple conservative extension of HA). Furthermore,
Ub is the output of fag on input x, which is (t)0, so (t)1 r '(x; Ub) can be
read as (fugx)1 r '(x; (fugx)0). This holds by (0). The passage from (0)
to (1) tells us that �u:Æ(y) r CT0. �

Almost the same argument establishes ECT0 (see below) [Troelstra, 1973,
p. 195].

Troelstra has investigated the theory of the realizable sentences of arith-
metic. It turns out that this fragment has a simple axiomatization (cf.
[Troelstra, 1998, p. 416]).

HA+ECT0 ` '$ 9x(x r ')
HA+ECT0 ` '$ HA ` 9x(x r ');
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where ECT0 is the Extended Thesis of Church:

8x('! 9y xy)! 9u8x('! (fugx # ^ (x; fugx)))

for almost negative ' (i.e. ' does not contain _, and 9 only in front of
atoms).

HA+CT0 has been studied in detail by David McCarty, for his results
see [McCarty, 1988]. Perhaps the most striking fact established by him is
the categoricity of the theory: HA+CT0 has no non-standard models.

Since Kleene's pioneering papers there has been a proliferation of notions.
The reader is referred to [Troelstra, 1973] and [Troelstra, 1998] for the major
notions in the context of arithmetic. There are also extensions to higher
theories (e.g. set theory- like ones) (cf. [Feferman, 1979], [Beeson, 1985]).

In the �fties G�odel proposed a new interpretation of HA (and exten-
sions) based on functionals of all �nite types (cf. [G�odel, 1958; Kreisel, 1959;
Troelstra, 1973; Avigad and Feferman, 1998]). The basic idea is to reduce
the logical complexity of sentences at the cost of increasing the types of the
objects. Kreisel proposed the notion of `modi�ed realizability' (cf. Troel-
stra [1973; 1998]); Kleene transferred realizability to analysis by means of
`continuous function application'; in the context of �rst-order logic we men-
tion L�auchli's `abstract realizability. A systematic and unifying treatment
of various realizabilities has been given (cf. [Stein, 1980]).

The above-mentioned interpretations have led to a wealth of proof theo-
retic results, such as conservative extensions, and closure under rules. the
reader is referred to [Troelstra, 1973; Troelstra, 1998] for detailed informa-
tion.

The Russian school of A. A. Markov has made the algorithmic tradition
the guideline for its actual mathematical practice. Its members consider
mathematics as dealing with concrete, constructive objects. In particular
they adhere to Church's thesis, so that, e.g. real numbers in their approach
are given by recursive Cauchy sequences (hence the name `recursive anal-
ysis'). Following Markov, they accept the principle ::9x'(x) ! 9x'(x)
for primitive recursive '(x)|Markov's Principle. For a survey, cf. [Demuth
and Ku�cera, 1979].

For a long time the `algorithmic' interpretations have withstood attempts
of unifying treatment together with the semantic interpretations. Recently,
however, the framework of topos theory has provided a more semantic treat-
ment of, e.g. realisability interpretations. In particular work of Hyland,
Johnstone and Pitts [1980] on tripos theory and Hyland [1982] on the e�ec-
tive topos has provided a semantical home for the above kind of interpreta-
tions.
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10 SECOND-ORDER LOGIC

Whereas �rst-order intuitionistic logic and its prominent theories, such as
arithmetic, are just subtheories of the corresponding classical ones, the no-
tions of second-order logic seem to dictate their own laws in the light of
intuitionistic conceptions.

Traditionally, second-order logic is concerned with individuals, sets (and
relations) and the only non-logical principle that is considered is the so-
called comprehension axiom. Most studies are centered around second-
order arithmetic, and extensions of it.

We will �rst discuss second-order logic.
The language of intuitionistic second-order logic IQC2 contains variables

and constants for

individuals � x0; x1; x2; : : : ; c0; c1; c2; c3; : : :
n-ary relations � Xn

0 ; X
n
1 ; X

n
2 ; : : : ; Cn0 ; C

n
1 ; C

n
2 ; : : : ;

where n � 0.
0-ary variables (constants) are called propositional variables (constants),

1-ary variables (constants) are called set (species) variables (constants).
The atoms of IQC2 are of the form X0; C0 for 0-ary second-order terms,
or Xn(t1; : : : ; tn); C

n(t1; : : : ; tn) for n-ary second-order terms Xn; Cn and
�rst-order terms t1; : : : ; tn (i.e. individual variables or constants).

In classical logic one thinks of 0-ary terms as denoting the truth values
`true', `false'. In our case we may think of truth values in a Heyting- algebra.

Formulas are de�ned as usual by means of the connectives ^;_;!;?;8x;
8Xn; 9x; 9Xn.

The rules of derivation (in Natural Deduction) are extended by the fol-
lowing quanti�er rules:

82I
'

8Xn'
82E8X

n'

'�

92I '�

9Xn'
92E

9Xn' [']
...
 

 

where '� is obtained from ' by replacing each occurrence of Xn(t1; : : : ; tn)
by �(t1; : : : ; tn), for a certain �, such that no free variable among the ti
becomes bound after substitutions.

Observe that 92I takes the place of the traditional Comprehension Prin-
ciple (cf. [van Dalen, 1997, Chapter 4])

9Xn8x1; : : : ; xn['(x1; : : : ; xn)$ Xn(x1; : : : ; xn)]:
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The surprise of second-order logic is the fact that the usual connectives
are de�nable in terms of 8 and!, this in sharp contrast to IQC (Prawitz).
Given the rules for 8 and ! we can de�ne the connectives as follows.

DEFINITION 65.

1. ? := 8X0:X0

2. ' ^  := 8X0[('! ( ! X0))! X0]

3. ' _  := 8X0[('! X0)! (( ! X0)! X0)]

4. 9x' := 8X0[8x('! X0)! X0]

5. 9Xn' := 8X0[8Xn('! X0)! X0].

To be precise: given the rules for 8 and ! we can prove the rules for the
de�ned connectives (cf. [Prawitz, 1965, p. 67], [van Dalen, 1997, p. 152]).
For proof theoretical purposes the reduction of the number of connectives
turns out to be an asset (cf. [Tait, 1975; Prawitz, 1971]),

The semantics for second-order logic are relatively straightforward gener-
alizations of the existing semantics for �rst-order logics (cf. [Prawitz, 1970;
Takahashi, 1970; Fourman and Scott, 1979]).

10.1 Second-order Arithmetic, HAS

The simplest formalisations of HAS (Heyting's second-order arithmetic
with set variables), is obtained by adding the axioms for HA to second-
order logic (in an extended language containing the obligatory operations
and relations for arithmetic). Observe that, as a schema, the induction ax-
iom is de�ned for the full language. The traditional issue in second-order
arithmetic concerns the Comprehension Principle, CA. Should it have the
full strength or should it be restricted to the predicative case? This topic
has never been really central in intuitionistic considerations on higher-order
objects. There certainly is not much to go on in Brouwer's writings. If we
embrace the viewpoint that a set X is given when we know what it means to
prove n 2 X , then it is still not obvious to decide between the predicative
and the impredicative viewpoint. Since the matter of predicativity is an
issue in it own right, we bypass the topic.

Even at a quite low level sets of natural numbers turn out to be rather
elusive. If we consider

fn j the nth decimal of � is preceded by 20 ninesg
then we do not know whether it is empty or not. So, even sets that have
simple de�nitions may be rather wild (although not surprisingly so, as re-
cursion theory has already shown us).
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The universe of sets di�ers in an essential way from the universe of nat-
ural numbers. Whereas the latter are discretely given and completely de-
termined with respect to each other, the �rst are pretty undetermined in
the extensional sense, i.e. considered as being determined by their elements.
This undeterminedness is brought out in the following uniformity principle,
formulated by Troelstra

UP 8X9x'(X; x)! 9x8X'(X; x):

In words: if for each set X one can �nd a natural number x such that
'(X; x) then there is already one number x0 that satis�es '(X; x0) for all X .
Surprising as this may seem, the almost immediate counter-examples from
classical logic are seen not to work. For example, consider 8X(X = ;_X 6=
;)), which can be written as 8X9x((x = 0! X = ;) ^ (x 6= 0! X 6= ;)).
Classically, this statement is true, but intuitionistically is in general not
decidable whether a set is empty, cf. the set de�ned above. The uniformity
principle is consistent with HAS + AC-NS, where the axiom or choice from
number to species reads

AC-NS 8x9X'(X; x)! 9Y 8x'((Y )x; x)

(where y 2 (Y )x , hx; yi 2 Y ) [Troelstra, 1973a; van Dalen, 1974].
HAS has been studied via Kripke semantics in [Jongh and Smory�nski,

1976]). They interpreted the �rst-order part as usual and took for sets of
natural numbers growing families of sets (just like unary predicates in an
ordinary Kripke model).

EXAMPLE 66.

� � N

� � ?

Take in � and � the standard model of (classical) arithmetic and let S� =
?; S� = N . Then �  ::8x(x 2 S), i.e. ::S = N , but � 6 8x(x 2 S) and
even � 6 9x(x 2 S).

A number of proof theoretic results are obtained by semantic means, e.g.
HAS has the disjunction and the existence property, but also the existence
property for 9X :

HAS ` 9X'(X)) HAS ` '(fx j �(x)g); for a suitable �(x);

i.e. if `there (provably) exists a set' X , then `there already exists a de�nable
set'. We list a few closure properties.
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1. HAS is closed under the Uniformity Rule, URc

HAS ` 8X9'(X; x)) HAS ` 9x8X'(X; x)
(where FV (') = fX; xg).

2. HAS is closed under Markov's Rule, MR

HAS ` 8x('(x) _ :'(x)) ^ ::9x'(x) ) HAS ` 9x'(x).
3. HAS is closed under Church's Rule, CR

HAS ` 8x9y'(x; y)) HAS ` 9e8x'(x; fegx).
4. HAS is closed under the Rule of Choice, RC-NS

HAS ` 8x9X'(X; x)) HAS ` 9X8x'((X)x; x).

Intuitionistic second-order arithmetic has been extensively studied by proof-
theoretical means, e.g. [Martin-L�of, 1971; Prawitz, 1971; Girard, 1971] and
Troelstra [1973; 1973a].

10.2 Choice Sequences

Whereas in classical mathematics one can de�ne functions in terms of sets
and vice versa, we here treat functions and sets more or less independently.
Philosophically speaking this is rather obvious; the two notions are radi-
cally di�erent. A set (say of natural numbers) is given to us as a property
of natural numbers (cf. Brouwer [1918; 1981a]), whereas a function (say
from natural numbers to natural numbers) is given as a process of assign-
ing values to arguments. Interde�nability of these notions would be an
unexpected coincidence. One can, of course, consider a function as a set
of pairs, conversely one cannot, in general, give a set by a characteristic
function. For let f : N ! f0; 1g and n 2 A , f(n) = 1, then it follows
from 8m(m = 1 _ m 6= 1) that 8n(n 2 A _ n 62 A), i.e. A is decidable
(mind you, not recursive, but decidable in the sense that `n belongs to A
or does not belong to A'). Since there is in intuitionistic mathematics an
abundance of undecidable sets, we must conclude that the characteristic
function approach to sets does not work.

For the sake of perspicuity we will in the following restrict ourselves to
functions from N to N .

The nineteenth century had already brought us the immense progress
of widening the function concept, in the form of `a function is a law that
assigns a natural number to each natural number', thus doing away with
conditions of analyticity, etc. However, the discussions at the beginning of
this century made it clear that on a reasonable reading of `law', one would
end up with a countable universe of functions, with all its mathematical
drawbacks. Or, even worse, with the de�nability paradoxes (Richard and
Berry).
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In order to overcome these diÆculties Brouwer introduced in 1918 a more
liberal notion of function, which identi�ed functions with choice processes.
To quote from Brouwer [1981a]: \Admitting two ways of creating new math-
ematical entities: �rstly in the shape of more or less freely proceeding in�nite
sequences of mathematical entities previously acquired; : : : "

These sequences were introduced in 1918 as choice sequences (Wahlfol-
gen). In a later stage Brouwer spoke of arrows. One has to think an ide-
alised mathematician who at consecutive stages chooses natural numbers.
This (mental) choice process may be highly involved, e.g. the subject may
be in the course of the process put all kinds of restrictions on future choices.
He may, for example, at a certain stage give up all freedom and follow a
given law, or he may decide at the beginning that he will never completely
give up his freedom of choice.

The matter of higher-order restrictions on future choices (i.e. restrictions
on restrictions, etc.) has sparked some debate. Indeed, Brouwer himself has
questioned their usefulness (cf. Brouwer [1981a, p.13]; [1975, p. 511]).

Once choice sequences were introduced, Brouwer was faced with the non-
trivial problem of how to exploit them in mathematics. Put otherwise, what
properties can one extract from the basic conception of a choice process?
In the very �rst paper on the subject Brouwer laid down the following
continuity principles: A law that assigns to each choice sequence � a natural
number n must completely determine n after a �nite initial segment of �
has been determined (cf. Brouwer [1918, p. 13]; [1975, p. 160]).

The matter of establishing the basic properties of choice sequences calls
for `informal rigour' (a term introduced by Kreisel [1967], referring to a
precise non-formal analysis of certain conceptually given concepts, leading
to more or less basic axioms (principles)). A general analysis of this kind is
not within the scope of the present chapter. The reader is referred to [Troel-
stra, 1977; Dummett, 1977] and [van Atten and van Dalen, forthcoming].
Without going into all details we will indicate a language for a theory of
choice sequences (also called intuitionistic analysis).

Add to the language of arithmetic, function variables �1; �2; �3; : : : and
suitable function constants (e.g. the primitive recursive functions). The
result is a two sorted language. We add all axioms of IQC for both sorts.
In general one ads the (rather weak) comprehension principle

8x9!y'(x; y)! 9�8x'(x; �(x)):

What more is to be added depends on the notion under consideration. The
comprehension principle is, e.g., correct for general choice sequences, but
not in general for lawlike or lawless sequences. We will use roman symbols
f; g; h; : : : for lawlike sequences (i.e. choice sequences given by a law). One
may use various sorts of choice sequences in one and the same context (cf.
[Kreisel and Troelstra, 1970; Troelstra, 1977]). We will, however, consider
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a particularly perspicuous kind of choice sequence, introduced by Kreisel.
The choice sequences we have in mind constitute, so to speak, a limiting
case where no restrictions whatsoever will be placed on future choices. The
resulting notion is that of `lawless sequence'. In what way does the law-
lessness of a sequence manifest itself? Let us do a thought experiment: we
make successive choices �(0); �(2); �(2); : : : , such that at each stage there
is a complete freedom for the next choice (think of the throws of a die,
where there is however an overall restriction to numbers � 6), we add the
successive values and we �nd that the sum of a certain initial segment is a
prime number. For example, �(0) = 4; �(1) = 2; �(2) = 2; �(3) = 0; �(4) =
1; �(5) = 8; �(6) = 2; : : : , and 4 + 2 + 2 + 0 + 1 + 8 = 17, which is a prime.
So for this � we have established `There is an initial segment of � such that
its sum is a prime number'|abbreviated by '(�).

It is , however, immediately clear that any lawless sequence � that starts
with the same initial segment h4; 2; 2; 0; 1; 8i also satis�es '. This is an
instance of the general principle of open data:

'(�)! 9x8�(��x = ��x! '(�));

where ��x = h�(0); �(1); : : : ; �(x� 1)i, i.e. the coded (cf. Algorithms Chap-
ter, volume 1 of this Handbook) initial segment of length x of �. In words: if
' holds for the lawless sequence � then there is an initial segment of � such
that all lawless continuations of it also satisfy '. Or less precise, � having
the property ' is determined by a suitable initial fragment.

The principle can be justi�ed as follows: the idealized mathematician es-
tablishes '(�) after a �nite number of values of � has been chosen, because
at any time that is all the available information on � he has. but, there-
fore, the continuation of this particular initial segment is irrelevant, i.e. all
continuations � also have the property '.

It is quite often helpful to think of a choice sequence (function) as a path
in the full tree of all �nite sequences of natural numbers. So suppose '(�)
holds on the basis of the information of segment h0; 2; 3; 0; 1i, then ' holds
for all lawless sequences (paths) that pass through the node h0; 2; 3; 0; 1i in
the tree. but in the tree topology this is a (basic) open. Hence if ' holds
for �, it holds for an open neighbourhood of � (this explains the name `open
data').

There are two more basic principles:

LS1 8x9�(� 2 x),
where x is a coded initial segment and � 2 x stands for �(0) = (x)0; : : : �(k�
1) = (x)k�1, where k is the length of x. In words each initial segment can
be extended into a lawless sequence.

This principle is harder to justify, if no restrictions at all are allowed, how
does one make certain that the �rst k choices can be made to conform to
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a given segment? It is best to view this principle as slightly modifying the
original notion: we allow at the beginning the speci�cation of an arbitrary
�nite initial segment. In this way al �nite sequences actually occur as initial
segments.

If we make no assumptions about initial segments then the sequences o�er
a less satisfactory mathematical theory. Troelstra [1983] introduced this
weaker notion (without LS1) under the name of proto-lawless sequences.

Finally, if the idealized mathematician considers two (mental) lawless
choice processes, then he knows if the processes are identical or not, so we
have

LS2 8��(� � � _ :� � �),
where � is the intensional identity between sequences, considered as mental
choice processes.

The principle of open data is formulated as

LS3 '(�)! 9x(� 2 x ^ 8� 2 x'(�)).
Actually, Kreisel's notion of `lawlessness' requires also a certain indepen-
dence of sequences, so that the sequences are also lawless with respect
to each other. An example: say we generate a lawless sequence �(0); �(1);
�(3); : : : and we drop the �rst value, is the remaining sequence �(1); �(2);
�(3); : : : lawless? Individually viewed, yes, but in conjunction with the
original sequence, no.

This leads us to extend LS3 as follows:

LS3n '(�; �1; : : : ; �n)^ 6� (�; �1; : : : ; �n)

9x(� 2 x ^ 8� 2 x(6� (�; �1; : : : ; �n)! '(�; �1; : : : ; �n))),

where !�(�; �1; : : : ; �n) stands for
nVV
i=1
� 6� �i.

Without the extra clause 6� (�; �1; : : : ; �n) the principle is false. For ex-
ample, consider '(�; �) := � � �. Suppose we could apply LS31, then

� � � ! 9x(� 2 x ^ 8� 2 x(� � �));

i.e. there is an initial segment of � such that every extension of it coincides
with �. This plainly contradicts LS1.

From these principles we can already derive a number of unusual results.

THEOREM 67.

1. � � � $ 8x(�x = �x)

2. 8�::9x(�x = 0)

3. 8�:9�8x(�(x + 1) = �(x))
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4. :9�(� = f), for a lawlike function f .

Proof. (a)! is trivial. For we can use a proof by contradiction by LS2.
So let � 6� �, we may apply LS31 to '(�; �) := 8y(�(y) = �(y)):

9x(� 2 x ^ 8� 2 x(� 6� � ! 8y(�(y) = �(y)):

Let, therefore, the initial segment h�(0); : : : ; �(k)i be such that for � 6� � and
�(0) = �(0); : : : ; �(k) = �(k) it follows that 8y(�(y) = �(y)). Since �(k + 1)
can be chosen freely, we choose �(k + 1) = �(k + 1) + 1 (i.e. we apply
LS2 to h�(0); : : : ; �(k); �(k + 1) + 1i to obtain a �. But this contradicts
8y(�(y) = �(y)). Hence � � �.

(b) Suppose :9x(�x = 0), or by logic, 8x(�x 6= 0). Apply LS3 and add a
zero to the initial segment of � that exists according to LS3.

(c) Apply LS31 to 8x(�(x+ 1) = �(x)).
(d) � = f is an abbreviation for 8x(�(x) = f(x)) (extensional equality).

Apply LS3 to the latter formula. �

Could we do better than (b) and even show 8�9x(�(x) = 0)? The answer
is no, but we need a strengthening of the system to show this.

We have already de�ned what a bar is (cf. p. 25. Now we can formalise
it in analysis: B is a bar (in the tree of all �nite sequences) if 8�9x(��x 2 B).
Such a bar is a denumerable set of sequences. Can we present such a bar by
a convenient function? The technique is not diÆcult, we consider a function
e : N ! N , such that e(x) = 0 if x is a (coded) sequence above the bar, and
e(x) > 0 for x on or below the bar.

More formally:

e 2 K0 := 8�9x(e(��x) > 0) ^ 8xy(e(x) > 0
^y � x! e(x) = e(y))

(where y � x stands for `the sequence y extends x'). K0 is the class of
neighbourhood functions (or moduli of continuity, also called Brouwer op-
erations. Note that the part of the tree above B is a well-founded tree.
Kreisel and Troelstra have considered K0 as an inductively de�ned class of
lawlike functions (cf. [Troelstra and van Dalen, 1988, p. 223 �.]).

The neighbourhood functions have been introduced with respect to law-
less sequences, i.e. if e gives a bar B then each lawless sequence � hits the
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bar. It is however plausible to widen the scope of such e, such that each se-
quence (not necessarily lawless) hits the bar. This extension principle which
states that for each e 2 K0 we have 8�9x(e(��x) 6= 0) (where � ranges over
all sequences), is required for certain applications of the theory. A justi�-
cation of the extension principle by means of an abstraction operator is put
forward by Troelstra [1977, p. 20].

Here we will for simplicity use K0 as given above. We will now formulate
a strong continuity principle: if 8�9x'(�; x), than x can be found for a
given � by a neighbourhood function e from K0 as follows: look for the �rst
initial segment ��y such that e(��y) = k + 1 > 0 and put x = k. Let us
agree to write e(�) = k when we follow the above procedure, then we get
the following principle:

LS4 8�9x'(�; x)! 9e 2 K08�'(�; e(�)).

By the extension principle e operates on all possible sequences. We will
use this to show :8�9x(�(x) = 0). Suppose 8�9x(�(x) = 0), then by LS4
8�(�(e(�)) = 0), i.e. e picks a zero of �. Now consider f such that 8x(f(x) =
1). Determine e(f), say k. f `hits' the bar determined by e in a node m,
which hence is an initial segment of f . Now extend this segment m with
enough 1's such that the total length of the resulting n exceeds k. By
LS1 there is a lawless sequence � with initial segment n. By de�nition,
however, e(�) = e(f) and 0 = �(e(�)) = f(e(f)) = 1. Contradiction. Hence
:8�9x(�(x) = 0).

The above lines may serve to illustrate the highly unusual character of
lawless sequences and the extraordinary richness of the intuitionistic uni-
verse of functions. Kreisel and Troelstra have established for a certain
system elimination theorems, i.e. translations that eliminate the choice se-
quences (cf. [Kreisel and Troelstra, 1970]; [Troelstra and van Dalen, 1988,
12.3.1]). This may, with due caution, be viewed as evidence for the view-
point that choice sequences are only a fa�con de parler.

Note however that the evidence is rather incomplete in the sense that
the theorems range over a few formal theories. Moreover such a viewpoint
would violently conict with the ontological status of the mentally generated
objects of intuitionism.

Choice sequence have the didactic disadvantage that one cannot show an
isolated copy, unless it happens to be given by a law. This situation changed
when Joan Moschovakis adapted a topological model of Scott for the reals
to choice sequences. A similar interpretation was presented by the author
in the framework of Beth models. Since the latter approach allows one a
nice visualisation we will sketch it here (cf. [van Dalen, 1978]).

In order to facilitate the presentation, we consider models with the uni-
versal tree (the tree of all �nite sequences of natural numbers) as underlying
poset. We will also denote the �nite sequences (n0; : : : ; nk�1) by ~n.



INTUITIONISTIC LOGIC 93

Whereas in a Kripke model the condition 8x9!y�(x)y forces us to interpret
a sequence (function) in each node as a total function, in a Beth model
~n  8x9!y�(x) = y only tells us that eventually on a bar B, the outputs y
for an input x will be determined, so the natural interpretation of a sequence
� is a growing family �~n of partial functions with the property that along
a path the union of all these �~n's yield a total function. A concept that
con�rms rather well to the heuristic notion of `choices being made in time'.
In the nodes the choice function is only partially determined, but the whole
model allows us to view the choice sequences, as it were from a higher
viewpoint, as completed.

So we take a Beth model of arithmetic (containing only standard num-
bers) and consider as the universe of choice sequences all such growing
families of partial functions.

Examples
(1) De�ne �~n := ~n for each ~n, i.e. in each �nite sequence the partial

function is just this sequence. Evidently the conditions are satis�ed.
(2) De�ne �h i = h i and �hii = �x:i, i.e. at the bottom node we take the

empty function, and at its immediate successors hii we take the constant
functions with value i. Observe that h i  9x8y(�(y) = x) (a simple exercise
in Beth semantics), so the model tells us that the sequence is constant,
although externally it is not.

The particular model with underlying tree of all �nite sequences of nat-
ural numbers validates a list of principles:

AC - NF 8x9�'(x; �) ! 9�8x'(x; (�)x);

where (�)x(y) = �(hx; yi), the axiom of choice from numbers to functions.

SC! 8�9!x'(x; �) ! 9� 2 K08�'(�(�); �);

the strong continuity principle with uniqueness restriction.
BIM monotone bar induction, a principle that can be considered as an in-

tuitionistic version of induction over well-founded relations, or of trans�nite
induction (cf. [Troelstra and van Dalen, 1988; Kleene and Vesley, 1965]).

KS 9�('$ 9x�(x) 6= 0);

Kripke's Schema, a principle which will be discussed in the next section.
The validity of Kripke's Schema is fairly simple to establish. For the

remaining principles we refer to [van Dalen, 1978]. The idea is to go up
in the tree and in each node to check if ' has been forced. So we de�ne
�~n to be a �nite sequence of the same length as ~n. Let ~n have length k,
then we put �~n(k) = 0 if ~n 6 ' and �~n(k) = 1 if ~n  '. this de�nes a
proper choice sequence. Clearly, for any ~n, if ~n  ' then ~n  9x�(x) 6= 0.
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Conversely, suppose that ~n  9x�(x) 6= 0, then there is a bar B for ~n such
for each ~m 2 B; ~m  �(n) 6= 0 for some n. This implies � ~m(n) = 1, which
by de�nition means that ~m  '. So ' is forced on a bar for ~n. Hence ~n � '
(cf. Lemma 11). Therefore h i  9�('$ 9x�(x) 6= 0).

Although Kripke semantics has shown itself superior to Beth semantics
in many respects, the latter is the more convenient one to treat functions.
For, in the Kripke model, a function must in each world be interpreted by a
total function (just evaluate �  8x9y(f(x) = y); in a Beth model however
one can `postpone' the assignment of outputs to inputs, and this allows for
a particularly simple model for analysis. In order to use Kripke models for
dealing with analysis one has to exploit the expanding of the domains, and
this calls, in the case of arithmetic, immediately for non-standard numbers.
Hardly natural!

The above model for analysis has the drawback that its �rst-order theory
is classical, i.e. each classically true sentence of �rst-order arithmetic holds
in the model. Therefore the model cannot play the role of `standard model'
of analysis. The model shows, however, that it is consistent to put an
intuitonistic second-order theory on top of a classical �rst-order theory. The
problem of the `standard model' occurs already for �rst order arithmetic.
In HA one can show not only 8xy(x = y _ x 6= y), but also m = n ,
HA ` �m = �n. So in a topological model for arithmetic, with only standard
numbers we have [[t = s]] = X or ?, i.e. atoms take only the values > or
?. Now a simple induction shows that [[']] takes the values > or ? for all
sentences '. So we get full true, classical arithmetic. Therefore, in order to
obtain intuitionistic features, say the failure of the principle of the excluded
middle, we have to assume the presence of non-standard numbers. This
all points towards serious limitations of the present semantic treatment of
intuitionistic theories.

10.3 The Disjunction Property for Analysis

We have seen that Kripke models may be `put together' as a means for
proving metalogical results, e.g. the disjunction property (cf. p. 44). In
view of the usefulness of Beth models for interpreting analysis, it would be
convenient to have a similar operation in Beth semantics.

Roughly speaking, one takes the disjoint union of two Kripke models and
adds one bottom node (left-hand �gure). The domain of the bottom node
is contained in all domains of the Kripke models A and B. In the case of
Beth models one would place the models A and B alternatingly on top of
the linearly ordered set of natural numbers (right-hand �gure). Here we
run into diÆculties; what should the domain be in the nodes 0, 1, 2, : : : ?
The semantics does not allow for non-constant domains, so we reach a dead-
end. Now our generalised semantics comes in handy, if we allow expanding
domains then we can use this `gluing' technique. Let us outline how to
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obtain DP.

Suppose T ` ' _ and T 6` '; T 6`  , and B 6  . Find a domain that is
contained in the bottom nodes of A and B (this is not always possible, it
depends on the class of models of T !), and place this in the nodes 0; 1; 2; : : :
of the co-called spine.

Now 0  ' _  , so there is a bar B such that for each � 2 B; �  '
or �   . The bar intersects the spine, say in n. If n  ' then there is a
copy of A above n in which ' is forced. Contradiction. Similarly for n   .
Hence T ` ' or T `  .

The above gluing construction is particularly fruitful for analysis, (cf.
Dalen [1984; 1986]). It yields simple proofs of the disjunction and existence
property for various systems of analysis. The main problem is the de�nition
of the universe of sequences in the resulting model. One assigns to the nodes
n on the spine, the set of �nite sequences of length n. The sequences (in
the sense of the model) in node n are then all possible extensions of these
sequences to partial functions in higher nodes.

J. Moschovakis had already established DP and EP for some systems by
proof theoretical means in [Moschovakis, 1967].

The reason for dwelling on arithmetic and its extensions, in particular
analysis, is that this hard core of mathematical logic is the ultimate testing
ground for logical methods. Analysis is extremely important because it
illustrates the typical consequences of intuitionism. In analysis one can
most clearly see the conict between the classical and the intuitionistic
approaches. Brouwer used the following theorem to illustrate the typical
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properties of intuitionism:

Each function from the closed interval [0,1] to R is uniformly
continuous [1923].

From the intuitionistic principles we can derive similar results. The conti-
nuity principle SC! tells us that each function from sequences to numbers is
continuous. however, classically one can de�ne the function F such that

F (�) =

�
0 if � contains a 0
1 otherwise:

This F cannot be continuous, because continuity would mean that the
occurrence of a 0 in a sequence � can be predicted on the basis of an initial
segment of �. Quod non.

The conict with classical mathematics is here particularly striking. In
general, analysis and higher-order systems are the perfect grounds for demon-
strating the proper character of intuitionism; it distinguishes itself from
narrow constructivism and �nitism by its embracing abstract notions.

A topic that has been omitted altogether is second-order propositional
logic. Whereas in classical logic this is a subject of great dullness (think of
quanti�cations over a set of two truth-values), it is not so in the intuition-
istic version. In contrast to the classical system, the intuitionistic one is
undecidable (cf. [Gabbay, 1981] for a systematic treatment of this topic).

10.4 Remarks on the Axiom of Choice

In classical mathematics the axiom of choice used to be considered as some-
thing that, if it should hold at all, should hold globally (this is not to say
that no re�nements of AC have been considered, but that the foundational
evidence seems to point that way (cf. [Shoen�eld, 1967, p. 253]). In in-
tuitionism there is fairly solid evidence for the validity of the principle of
countable choice; let 8x9y'(x; y) be given for, say x and y ranging over
natural numbers, then we have a proof of 8x9y'(x; y), i.e. a construction
that provides for each x 2 N a proof of 9y'(x; y). this, in turn, means
that we have a construction that yields a y and a proof of '(x; y). So we
have a construction that for each x yields a y such that '(x; y) holds (i.e.
has a proof). This construction provides a choice function f , such that
8x'(x; f(x)) holds. So AC-NN is valid on an intuitionistic interpretation of
the logic. (In Martin-L�of's type theory is is actually provable.)

Let us now consider AC-RN. The following is true: for each real number
x there is a natural number y such that x < y (recall that x is given by a
Cauchy sequence). If there were a choice function f such that x < f(x),
then|by Brouwer's theorem (cf. [Heyting, 1956, p. 46], [Brouwer, 1981a,
p. 80])|f has to be continuous. But a continuous function from R to N is
constant. Contradiction.
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An inspection of the proof, as given for AC-NN, will show what has gone
wrong.

Our assumption reads in full: 8x 2 R; 9y 2 N (x < y), so the proof
interpretation tells us that for each choice sequence x of rational numbers
�(x) is a proof of `x is a Cauchy sequence ! 9y 2 N (x < y)', i.e. �(x)
applied to a proof of `x is a Cauchy sequence' yields a proof of

9y 2 N (x < y):

Now, �nishing the argument, we �nd a choice function that depends on
x and on a proof that x is a Cauchy sequence. But now we see that f is
not extensional, i.e. x1 = x2 ! f(x1; �1) = f(x2; �2) fails, where �i is a
proof that xi is a Cauchy sequence. Therefore the continuity theorem was
not applicable. The moral of this digression is that one has to spell out the
assumption of AC in full. In case of AC-NN we are on safe ground because
a natural number by virtue of its mode of generation carries its own proof
that it is a natural number.

The general axiom of choice is intuitionistically out of the question, as
Diaconescu (cf. [Goldblatt, 1979]) has shown that it implies the excluded
third. The following simple argument, due to Goodman and Myhill, proves
Diaconescu's result.

Let ' be any statement. Form the sets

A := fn 2 N j n = 0 _ (n = 1 ^ ')g;
B := fn 2 N j n = 1 _ (n = 0 ^ ')g:

We have 8X 2 fA;Bg9y 2 N (y;X).
AC would supply us with a function f such that 8X 2 fA;Bg(f(X) 2

X). Since f(X) is a natural number, we get f(A) = f(B) _ f(A) 6= f(B).
If F (A) = f(B), then ' holds, and if f(A) 6= f(B), then :' holds. For
suppose ', then A = B (extensionally) so f(A) = f(B). Contradiction. So
the validity of AC for this particularly simple case implies ' _ :'.

11 THE CREATING SUBJECT

In Brouwer's writings some explicit references to the agent of mathematical
activity occur (1948) (cf. [Brouwer, 1975, p. 478]). The basic ideas were
already present in his lectures in the late 1920s, cf. [Brouwer, 1992]; the
publication was, however, postponed until after the second world war. In
due time this practice has become known under the name `theory of the
creating subject'. Brouwer introduced the creating subject for the purpose
of establishing some stronger results in the area of so-called negative predi-
cates. In particular he showed that inequality on the reals is strictly weaker
than apartness: :8xy(x 6= y ! x#y).
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Kreisel, Kripke and others have analyzed the principles involved in those
proofs (cf. [Kreisel, 1967]).

The creating subject is assumed to operate in linear time of order-type
!. It `experiences the truth' of statements ' at stages 0; 1; 2; : : : The exact
nature of `experiencing the truth' is, of course, left open. One may think of
`proving', `observing' or `knowing', etc. By suitably idealising the creating
subject we may assume that:

1. it retains truths that have been experienced;

2. at each stage it knows ' or it does not know '. that is, `knowing '
at stage n' is decidable;

3. ' holds if it has been `experienced', by the creating subject.

This is in perfect accordance with the intuitionistic dogma that mathematics
has its seat in the human mind, and that the only way to establish something
is to have a mental `proof' or `experience' for it.

The converse can be defended under the purely solipsistic view that what
is the case solely depends on mental experience of the (unique) creating
subject. Then, if ' holds it follows that the creating subject has come to
know it at some stage. If one allows for an intersubjective viewpoint, then
the matter is less clear. The statement ' may hold without the creating
subject (one of many) having established it. In this case it seems plausible
that it is impossible that the creating subject will never experience '.

The theory of the creating subject has been formalized by Kreisel [1967],
in a theory containing at least (a fragment of) arithmetic, and a tensed
modal operator �x, to be read as `the creating subject knows (has evidence,
a proof for, : : : etc.) at time x'.

The principles under (1), (2) and (3) can now be formulated as

1. �x'! �x+y'

2. �x' _ :�x'
3. '$ 9x�x'.

In the intersubjective case (3) splits into the following parts

�x'! ' and '! ::9x�x':
For the applications that Brouwer had in mind the weaker reading suf-

�ces. The justi�cation for the solipsistic version, however, is more convinc-
ing. In principle there is no objection to iterate the operator �, and in
Brouwer's consistent view that reection on one's own mental activity is
possible, or even necessary it seems quite correct to do so. However, all
problems that arise in and around predicativity, reappear here as well.

In the following pages we will look at the full theory as given by (1), (2)
and (3).



INTUITIONISTIC LOGIC 99

11.1 Kripke's Schema

If we have function variables available, then we can eliminate the modal
operator and retain all its bene�ts by keeping track of the knowledge of
the creating subject by means of a function that registrates if the creating
subject knows ' at stage x.

De�ne

�(x) =

�
0 if :�x'
1 if �x';

then by (3) ' ! 9x�x', so ' ! 9x�(x) 6= 0. conversely 9x�(x) 6= 0 !
9x�x' and hence 9x�(x) 6= 0! '. This proves Kripke's Schema.

KS

9�('$ 9x�(x) 6= 0):

By a similar argument one obtains the weak Kripke's Schema in the inter-
subjective case

KS�

9�((9x�(x) 6= 0! ') ^ (:'! 8x�(x) = 0)):

Kripke's Schema is used, for instance, for the construction of certain strong
counterexamples (cf. [Hull, 1969]). We list some of them:

The statements refer to the intuitionistic reals.

1. :8xy((:x < y ^ x 6= y)! y < x)

2. :8xy(x 6= y ! x#y)

3. :8xy(x 6= y ! :x < y _ :y < x)

4. not every bounded set without points of accumulation is bounded in
number (refutation of the Bolzano{Weierstrauss theorem).

Note that these results are strong in comparison to the older results which
only yielded `we cannot prove that : : : '. The �rst of these strong counterex-
amples was presented by Brouwer in 1949.

Myhill has shown that KS is inconsistent with the continuity principle
for functions, which is a generalisation of SC:

8�9�'(�; �)! 9F8�'(�; F (�));

where F is a continuous function (cf. [Troelstra, 1969]). KS is however
consistent with SC (Kroll (cf. [Grayson, 1981; Scowcroft, 1999])).
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11.2 Kriple's Schema and the Continuum

Brouwer's strong refutations already show that the creating subject re�nes
our insight into the structure of the continuum. Further results in this
area have been obtained in [van Dalen 1999A]. Brouwer had already shown
that the continuum is indecomposable, in the sense that if R = A [ B and
A \B = ;, then A = R or A = ;. On the basis of KS it can be shown that
all negative, dense subsets of R are likewise indecomposable (where X � R
is negative if ::x 2 X ! x 2 X). Hence, e.g., the irrationals and the not-
not-rationals are indecomposable. These subsets are therefore connected in
the topological sense, and they have dimension 1. This is in sharp contrast
to te classical theory, where the irrationals are zero-dimensional.
Kripke's schema also allows us to show a kind of converse to Brouwer's
indecomposability theorem: KS + R is indecomposable ) there are no
discontinuous functions on R. We will, by way of illustration, sketch the
proof: let f : R ! R be discontinuous. It is no restriction to assume that
f(0) = 0 and that f is discontinuous in 0. So there is a k and there are xn
such that jxnj < 2�n and jf(xk)j > 2�k. Now consider the statement r 2 Q
for an r 2 R. We apply KS to r 2 Q _ r 62 Q:
9�(9x�(x) 6= 0 $ r 2 Q _ r 62 Q). For convenience we assume that � is

positive at most once, with value 1.

De�ne an =

�
xn if 8k � n(�(k) = 0)
xp if p � n and �(p) = 1

Clearly (an) converges, say lim an = a. Now jf(an)j < 2�k or jf(an)j > 0,
hence a 6= xn for all n, or a#0. The �rst is impossible, since it would
imply :(r 2 Q _ r 62 Q). The latter inplies 9n�(n) = 1, and hence
r 2 Q_r 62 Q. Since this holds for arbitrary r, we have got a decomposition
of R. Contradiction. Therefore there are no discontinuous functions on R.

Although the theory of the creating subject has a richer language it is
actually conservative over the theory with Kripke's Schema ([van Dalen,
1978]).

11.3 The Interpretation of the Creating Subject

We have already seen how to validate KS in the Beth model for analysis. A
slight adaptation will provide an interpretation of the tensed modal `know-
ledge' operator. We de�ne ~n  �k' if for all ~m on the bar for ~n of nodes
of length k; ~m  ' (note that this bar may be below ~n). We'll check the
axioms (2) and (3).
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�
� n

�

(2) For a given ' we have for each ~m of length k; ~m  ' or ~m 6 '. For
such a ~m we can conclude 8~p � ~m; ~p 6 �n' from ~m 6 ', i.e. ~m 6 ') ~m 

:�k'. So for each ~m on the bar of nodes of length k we have ~m  �k' or
~m  :�k'. Hence h i  �k' _ :�k'.
(3) If ~n  ' and with lth(~n) = k, then ~n  �k' and hence ~n  9x�x'.

Conversely, if ~n  9x�x' then there is bar B for ~n such that for each ~m 2 B
there is an k(~m) with ~m  �k'. Applying the above de�nition and Lemma
11 we conclude ~m  ' for each ~m 2 B.

Applying Lemma 11 once more we get ~n  '.

11.4 Kripke's Schema and a Representation of Sets of Natural

Numbers

Although we cannot use characteristic functions to represent sets, we can
use Kripke's Schema to obtain a substitute.

Let X be a set of natural numbers, then by KS

8x9�[x 2 X $ 9y(�y = 0)]:

(switching = and 6= is a harmless act). Applying the axiom of choice from
numbers to functions, AC-NF, we get

9�8x[x 2 X $ 9y(�hx; yi = 0]:

So each setX can be represented by a sequence. This allows for a translation
of second-order arithmetic into analysis with KS.

Using this representation, there is a simple argument that deduces the
Uniformity Principle,

8X9x'(X; x)! 9x8X'(X; x);

from the Weak Continuity Principle,

8�9x'(�; x) ! 8�9xy8�(��y = ��y ! '(�; x));

in the presence of KS, cf. [van Dalen, 1977].
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The theory of the creating subject has remained controversial until this
day. The introduction of an element of subjectivity runs counter to the
tradition of the exact sciences. It is, however, an unavoidable step in rep-
resenting some of Brouwer's arguments.

Evidently the theory, as it stands, is far from complete. Questions con-
cerning the number of conclusions per step, or regarding disjunction (e.g.
is �n(' _  ) ! �n' _ �n a valid principle?), remain unsettled, and evi-
dence seems to be scarce. Dummett has investigated the subject [Dummett,
1977] and Posy has applied the theory in a case study of Brouwer's paper
on virtual order [Posy, 1980], cf. also [Posy, 1976].

12 THE LOGIC OF EXISTENCE

For the practice of classical logic and mathematics it suÆces to consider
only total operations. for example, consider the inverse-operation, a�1. for
real numbers a�1 exists if a#0, so we cannot apply the classical trick of
de�ning a�1 := 0 for the remaining a's. This should leave us with a partial
function, since # is not a decidable relation on R.

a�1 =

�
1=a if a#0
0 if a = 0

(note that it could not possibly be total, (for then it had to be uniformly
continuous on [0,1]). One could avoid the problem by only discussing mul-
tiplication, but that would be a sin against the time-honoured practice of
mathematics. So we would prefer to have a�1, even if it means allowing
partially de�ned terms and problems of existence.

Traditionally the matter is dealt with in free logic (cf. Bencivenga's chap-
ter on Free Logics in this Handbook); we will, however briey discuss ex-
istence here since it comes up naturally in intuitionistic logic, and since it
has surprising semantic aspects.

The semantic aspects of partial elements can conveniently be demon-
strated in any of the models introduced earlier. We will �rst consider Kripke
models. Elements occur in certain domains and not in others, so they have a
natural mode of existence in Kripke models. We de�ne �  Ea i� a 2 D(�).
E behaves as an ordinary predicate and we can handle it as usual. We may
explicitly introduce the extent of a as follows. [[Ea]] = f� j a 2 D(�)g,
clearly [[Ea]] is an open set in the canonical topology. [[Ea]] is that part
of the underlying topological space where a exists; this explains the name
partial element: [[Ea]] need not be all of the space. Since in Beth models
elements exist always (likewise in topological models), one has to consider
the general models of Section 3 in order to introduce partial elements.

There is a kind of paradigm for the semantics of partial elements: sheaves
over topological spaces. Without going into technical details we will sketch
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a

b

b

a

[[Ea]]

[[a = b]]

the approach so that the reader can form an impression. Consider two
topological spaces X and Y and continuous maps into Y de�ned on open
subsets of X . The reader may take R for X and Y . We de�ne for such a
map (section) a : [[Ea]]= domain a.

In order to get a reasonable realistic theory we also want to interpret
equality of partial elements. A natural choice is [[a = b]] = Intft 2 X j
a(t) = b(t)g.

Note that [[a = a]] = [[Ea]] and also [[a = b]] � [[Ea]] \ [[Eb]]. Using our
knowledge of the topological interpretation (i.e. the interpretation of the
connectives), we see that a = b ! Ea ^ Eb is true. Equality satis�es the
laws a = b$ b = a and a = b ^ b = c! a = c, since [[a = b]] = [[b = a]] and
[[a = b]] \ [[b = c]] � [[a = c]], but not a = a. For [[a = a]] 6= X , in general, we
see that the presence of partial elements a�ects the theory of identity (cf.
[Scott, 1979]).

Of course propositional logic is not a�ected by the introduction of partial
elements. It is predicate logic that requires attention. Turning Quine's
dictum `existence = being quanti�ed over' around, we stipulate that one
can only quantify over existing elements.

For existential quanti�cation this makes sense, 9x'(x) means that there
exists an element that satis�es '. Adding `but it need not exist' would be
plain cheating. For universal quanti�cation we read 8x'(x) as `for any a
picked from the domain '(a) holds', which commits us to existing elements
(note that in classical logic 9 decides the matter for 8).

The above is reected in the axioms and rules of quanti�cation.



104 DIRK VAN DALEN

8I

[Ex]
...
'(x)

8x'(x)

8E
8x'(x) Et

'(t)

9I
'(t) Et

9x'(x) 9E 9x'(x)

['(x); Ex]
...
�

�

(with the obvious restrictions).
In a Hilbert-type system we retain the rules 8I and 9E in the form

 ^ Ex! '(x)

 ! 8x'(x)
'(x) ^ Ex! �

9x'(x) ! �

and add the axioms

8x'(x) ^ Et! '(t) '(t) ^ E(t)! 9x'(x):
As sketched above one also has to revise the identity rules. There are two

possible notions of identity, a strong one, where one requires both elements
to exist, and a weaker one, where one automatically equates elements there
where they do not exist.

The above equality, =, is the strong one. The weaker one can be de�ned
by a � b := Ea _Eb! a = b.

The notions are interde�nable as is shown by the following fact

a = b$ a � b ^ Ea ^ Eb:
this provides us with the following axioms

x = x$ Ex
x = y ! y = x
x = y ^ y = z ! x = z:

One has to select carefully the right formulation in cases involving equiva-
lence or existence. For example, x � x! Ex is false, but 8x(x � x! Ex)
is correct, for it is equivalent on logical grounds to 8x(Ex! (x � x! Ex)).

The theory of partial elements is the ideal setting for the introduction
of a description operator. For Ix:'(x) is just a term, it has no existential
import; it has to satisfy a certain formula when and where it uniquely exists.
For instance, it is axiomatized by

8y[y = Ix:'(x)$ 8x('(x) $ x = y)]:
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� � 

In our model we just look for those nodes where a unique element is forced
to satisfy '(x) and we put them together to one partial element. Let � 

'(0)^9!x'(x); �  '(1)^9!'(x);   '(0)^'(1), then Ix:'(x) is interpreted
in the model as being 0 in � and 1 in � and unde�ned (non-existent) in .
So Ix:'(x) is locally equal to given elements. This being `locally' equal
to something, or `locally' true, etc. is a characteristic consequence of the
forcing conditions of Beth semantics (cf. Section 3 above).

In a theory with identity we want to be able to replace equals by equals.
Should one restrict this to the strong equality? For general (extensional)
formulas this seems too restrictive, even weak equality would preserve prop-
erties, so we formulate the axiom as

x � y ^ '(x) ! '(y):

Following Scott [1979] we call `=' identity and `�' equivalence. The reader
is referred to this basic paper, and to [Troelstra and van Dalen, 1988, p.
50], for more information on existence and partial elements. We add one
more remark: if the theory has function symbols, then the following can be
said: if one gets an output, then there must have been an input, or more
formally Ef(x)! Ex. Reversing the arrow we get the condition for a total
function: Ex! Ef(x).

One should observe that quanti�ers a�ect existence; they are not neutral
as one would maybe expect. the interpretation of `8x ' is `for
all x that exist '. One can actually prove 8x'(x)$ 8x(Ex!
'(x)).

We now return to the model of continuous maps from R to R.
We can operate on these functions in a pointwise manner, e.g. add mul-

tiply etc. By de�nition we have

[[f � g]] := Intfx 2 R j f(x) = g(x) _ f(x) and g(x) are unde�nedg:
For quanti�cation we put:

[[8x'(x)]] = Int \f [[Ef ! '(f)]]
[[9x'(x)]] = [f [[Ef ^ '(f)]]:

Now it is a matter of simple veri�cation to check the axioms listed above.
Let us look at the description operator in this model.
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a

b

c

c�1

c�1

[[Ea]]
[[Eb]]

[[a = b]]

The elements of the model have the convenient property, peculiar to
sheaves, that they can be glued together if they coincide on overlapping
domains (elementary analysis). Moreover, one can always restrict a function
to a smaller open domain. We use these properties to interpret Ix:'(x)
as the union of all continuous functions restricted to the part where they
uniquely satisfy '(x), more formal [ff � [[8x('(x) $ f = x)]], where f � U
stands for the subfunction of f obtained by restriction of f to U .

Applying this to the inverse, we put h�1 = Ix:(xh = 1). Putting together
all small functions, that locally act as in inverses, we obtain a function
de�ned on the subdomain of h obtained by leaving out the zero's of h.

Note that the model once more demonstrates the necessity of strengthen-
ing the equality relation for the existence of inverses. Note that [[f 6= 0]] =
Int[[f = 0]]c = Int(Intfx j f(x) = 0g)c = R but [[9x(xf = 1)]] = Rnf0g. So
[[f 6= 0! 9x(xf = 1)]] 6= R.

y = x

f

Therefore we use the apartness relation, #,

[[f#g]] := fx j f(x) 6= g(x) andf(x) and g(x) are de�nedg:

Now we get [[f#0 ! 9x(xf = 1)]] = R (observe that this amounts to
[[f#0]] � [[9x(xf = 1)]]).

After Fourman had developed the sheaf interpretation for the case of
topological spaces, Fourman and Scott generalised the approach to sheaves
over complete Heyting algebra's (so-called 
-sets), this approach is to be
found in their paper of 1979. At that time there had already been done
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a great deal in categorical logic, after the pioneering work of W. Lawvere.
This topic has reached a size and technical re�nement that places it utterly
beyond the present book. For an introduction the reader is referred to Gold-
blatt's book [1979], Fourman and Scott [1979], Grayson [1984], [MacLane
and Moerdijk, 1992; McLarty, 1992].

The generalisations of sheaves over topological spaces (in particular over
sites) have provided models for various kinds of choice sequences (cf. [Hoeven
and Moerdijk, 1984]).

Recommended Reading

Beeson [1985], Bishop and Bridges [1985], Brouwer [1975; 1981], van Dalen
[1973; 1999b], Dummett [1977]. Fraenkel et al. [1973], Goldblatt [1979],
Heyting [1956], Troelstra [1969; 1977] and Troelstra and van Dalen [1988],
Philosophica Mathematica 6, 1998.
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WALTER FELSCHER

DIALOGUES AS A FOUNDATION FOR

INTUITIONISTIC LOGIC

SUMMARY OF CONTENTS

The principal content of this article is a (new) foundation for intuitionistic
logic, based on an analysis of argumentative processes as codi�ed in the
concepts of a dialogue and a strategy for dialogues. This work is presented
in Section 3. A general historical introduction is given in Section2. Since
already there the reader will need to know exactly what a dialogue and a
strategy shall be, these basic concepts are de�ned in the (purely technical)
Section 1.

1 BASIC CONCEPTS: DIALOGUES AND STRATEGIES

I consider a �rst-order language, built with variables x; y; : : : and terms
t ; formulas shall be constructed from atomic formulas with the proposi-
tional connectives ^;_;!;: and the quanti�ers 8; 9 ; I shall also consider
_;^1;^2; 9 as special symbols in their own right. By an expression I un-
derstand either a term or a formula or a special symbol. I introduce two
further symbols P and Q ; taking two new (and disjoint) copies of the set of
expressions, I form for every expression e two new expressions Pe and Qe,
the P -signed and the Q-signed version of the expression e.

The symbols P;Q shall symbolise two persons engaged in an argument
or in a dialogue; I shall use X;Y as variables for P;Q and shall assume
X 6= Y . An argumentation form is a schematic presentation of an argument,
concerning a logically composite assertion; it describes how a composite
assertion made by C may be attacked by Y and how, if possible, this attack
may be answered by X . As the logical form of the composite assertion
shall completely determine the argument, each of the four propositional
connectives and each of the two quanti�ers determines an argumentation
form:
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^ : assertion: Xw1 ^ w2

attack: Y ^i (i.e., Y chooses i = 1 or i = 2)
answer: Xwi

_ : assertion: Xw1 _ w2

attack: Y _
answer: Xwi (i.e., X chooses i = 1 or i = 2)

! : assertion: Xw1 ! w2

attack: Y w1

answer: Xw2

: : assertion: x:w
attack: Y w
answer: no answer possible

8 : assertion: X8xw
attack: Y t (i.e., Y chooses the term t)
answer: Xw(t)

9 : assertion: X9xw
attack: Y 9
answer: Xw(t) (i.e., X chooses the term t).

In the last two answers I have written w(t) for the substitution instance
obtained from w if the term t is substituted for the variable x.

A dialogue shall be a (�nite or in�nite) sequence Æ of statements, i.e.,
signed expressions, stated alternatingly by P and Q and progressing in ac-
cordance with the argumentation forms; I shall consider only such dialogues
which are begun by P . Since it is necessary to distinguish carefully between
attacks, answers and the assertions they refer to, I shall introduce besides Æ
an accompanying sequence � of references, and there I shall use the symbols
A for attack and D for answer (defense). For notational convenience, I shall
assume that a natural number is the set of all smaller natural numbers
(whence 0 is the �rst natural number), and a sequence shall always be a
function, de�ned on either a natural number or on the set ! of all natural
numbers. The precise de�nition then reads as follows:

A dialogue Æ; � consists of two sequences such that

Æ is a sequence of signed expressions,

� is a function de�ned on the positive members of def(Æ), and if
n in def(�) is an ordered pair [m;Z ] such that m is a natural
number less than n and Z is either A or D ,

satisfying the properties (D00){(D02):
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(D00) Æ(n) is P -signed if n is even and Q-signed if n is odd; Æ(0) is a
composite formula.

(D01) If �(n) = [m;A ] then Æ(m) is a composite formula and Æ(n) is attack
upon Æ(m) according to the appropriate argumentation form.

(D02) If �(p) = [n;D ] then �(n) = [m;A ] and Æ(p) is the answer to the
attack Æ(n) according to the appropriate argumentation form.

The signed formulas occurring as values of Æ are called the assertions of the
dialogue while the remaining values of Æ are symbolic statements or, more
correctly, symbolic attacks. The numbers in def(Æ) are called the positions
or places of the dialogue. If Pv is the assertion Æ(0), the dialogue is said to
be a dialogue for the formula v (or, sometimes, for Pv).

Assume now that a particular classH of dialogues is given, de�ned maybe
by additional conditions, which has the property that, for every position
n of an H-dialogue Æ; �, the restrictions of Æ; � to positions i such that
i � n form an H-dialogue again. Assume further hat a subclass of H has
been de�ned, consisting of certain �nite H-dialogues which then are said
to be the H-dialogues won by P . Let v be a composite formula; to say
that P has an H-strategy shall mean that P is in possession of a system
of information, consisting of possible choices of P -statements in dialogues,
such that every H-dialogue for v is won by P if only P chooses, after every
statement made by Q, its own statement from this system of information.
In order to formulate a more precise de�nition, recall that a tree S is a
partially ordered set of elements called nodes with the following properties:
there exists a largest element eS (the top node), and for every node e the
number kek of nodes f such that e � f < eS is �nite; every node except
eS has exactly one upper neighbour but may have arbitrarily many lower
neighbours (i.e., the tree is branching downwards). A path in S is a linearly
ordered subset of nodes which, together with each of its elements e, contains
all the preceding nodes f with e � f ; a branch is a path which is maximal.
If A is a branch of S, let �A be the unique order-preserving bijection which
maps either a natural number or all of ! onto A, i.e. k�A(i)k = i holds for
every node �A(i) in A. Consider now a tree S and functions Æ; � where Æ
is de�ned on all nodes of S and � on the nodes di�erent from eS ; for every
branch A de�ne ÆA = Æ � �A ; �A = � � �A. The triplet S; Æ; � then is an
H-strategy for v if

(S0) For every branch A of S the pair ÆA; �A is anH-dialogue for v which
is won by P .

(S1) For every node e of S the following is the case. If kek is odd
then S does not branch at e. If kek is even then e has as many
lower neighbours as Q has possibilities to extend, by adding a new
position, to an H-dialogue the (restricted) dialogue leading to e,
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and Æ; � assign these lower neighbours the values which realise these
possibilities.

The general de�nitions having been established, particular classes of dia-
logues can be introduced. To do so, I shall need the following terminology.
Let Æ; � be a dialogue, and let Æ(n) be one of its attacks. The attack Æ(n) will
be said to be open at a position k with n<k if there is no position n0 with
n<n0 � k which carries an answer Æ(n0) to that attack. In particular, an
attack upon a formula X:v remains open at all later places. A D-dialogue
shall be a dialogue Æ; � satisfying the following properties (D10){(D13) :

(D10) P may assert an atomic formula only after it has been asserted by
Q before: if Æ(n) = Pa and a is atomic then there exists m such
that m<n and Æ(m) = Qa .

(D11) If, at a position p�1, there are several open attacks suitable to be
answered at p, then only the latest of them may be answered at p :
if �(p) = [n;D ] and if n<n0<p ; n0�n � 0 (mod 2), �(n0) = [m0; A ]
then there exists p0 such that n0<p0<p ; �(p0) = [n0; D ].

(D12) An attack may be answered at most once: for every n there exists
at most one p such that �(p) = [n;D ].

(D13) A P -formula may be attacked at most once: if m is even then there
exists at most one n such that �(n) = [m;A].

A D-dialogue is said to be won by P if it is �nite, ends with an even position
and if the rules do not permit Q to continue with another attack or answer.
In that case the last position carries an atomic formula asserted by P .

The importance of D-dialogues rests in the fact that the formulas for
which there exist D-strategies are precisely those provable in intuitionistic
logic. This follows from the following, stronger

EQUIVALENCE THEOREM. There exist recursive algorithms which, for
every formula v, transform a proof of the sequent ) v in Gentzen's calculus
LJ (for intuitionistic logic) into a D-strategy | and vice versa.

Contrary to �rst appearances, a proof of this theorem is by no mean obvious;
it cannot be pursued here and may be found in Felscher [1981; 1985].

An E-dialogue shall be a D-dialogue satisfying the additional condition
that Q can react only upon the immediately preceding utterance of P :

(E) For every n in def(Æ): if n is odd then Æ(n) is either attack upon
Æ(n�1) or answer to Æ(n�1) .

An E-dialogue is said to be won by P if, again, it is �nite, ends with an even
position and if now the rules for E-dialogues do not permit Q to continue



DIALOGUES AS A FOUNDATION FOR INTUITIONISTIC LOGIC 119

with either an attack or an answer. There will be occasion to refer to the
following result which is auxiliary to the proof of the Equivalence Theorem.

EXTENSION LEMMA. There is a recursive algorithm by which every
E-strategy can be embedded into a D-strategy.

It follows from this lemma that the Equivalence theorem holds also for E-
strategies in place of D-strategies.

Readers not familiar with the use of dialogues may appreciate the follow-
ing examples in which a; b; : : : are assumed to be atomic formulas.

(1a)
0. P (a ^ b)! (a ^ b)
1. Q(a ^ b) [0,A]
2. P^1 [1,A]
3. Qa [2,D]
4. P^2 [1,A]
5. Qb [4,D]
6. P (a ^ b) [1,D]

7. Q^1 [6,Q] 7. Q^2 [6,Q]
8. Pa [7,D] 8. Pb [7,D]

(1b)
0. P (a ^ b)! (a ^ b)
1. Q(a ^ b) [0,A]
2. P (a ^ b) [1,D]

3. Q^1 [2,A] 3. Q^2 [2,A]
4. P^1 [1,A] 4. P^2 [1,A]
5. Qa [4,D] 5. Qb [4,D]
6. Pa [3,D] 6. Pb [3,D]

Here we have two di�erent D-strategies for the same formula.

(2a)
0. P (a! ::a)
1. Qa [0,A]
2. P::a [1,D]
3. Q:a [2,A]
4. Pa [3,A]

(2b)
0. P (::a! a)
1. Q::a [0,A]
2. P:a [1,A]
3. Qa [3,A]
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The �rst example is a D-strategy. In the second example, P cannot
win if (D11) shall not be violated.

(3)
0. P ((a ^ :a)! b)
1. Q(a ^ :a) [0,A]
2. P^1 [1,A]
3. Qa [2,D]
4. P^2 [1,A]
5. Q:a [4,D]
6. Pa [5,A]

This is a D-strategy. The same reasoning holds for P:(a ^ :a).
(4)

0. P ((a! a)! b)! b
1. Q(a! a)! b [0,A]
2. P (a! a) [1,A]

3. Qb [2,D] 3. Qa [2,A]
4. Pb [1,D] 4. Pa [3,D]
5. Qa [2,A] 5. Qb [2,D]
6. Pa [5,D] 6. Pb [1,D]

This is a D-strategy. If we omit positions 5 and 6, we still obtain
an E-strategy.

(5a)
0. P ((a! b)! a)! a
1. Q(a! b)! a [0,A]
2. P (a! b [1,A]

3. Qa [2,D] 3. Qa [2,A]
4. Pa [1,D]

The left E-dialogue is won by P but not the right one. There is no
strategy as long as (D11) shall not be violated.

(5b)
0. P::(((a! b)! a)! a)
1. Q:(((a! b)! a) [0,A]
2. P ((a! b)! a)! a) [1,A]
3. Q(a! b)! a [2,A]
4. P (a! b) [3,A]

5. Qa [4,D] 5. Qa [4,A]
6. Pa [3,D] 6. P ((a! b)! a)! a [1,A]

7. Q(a! b)! a [6,A]
8. Pa [7,D]
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This an E-strategy and is easily extended to a D-strategy.

(6)
0. P ((a! b)! (a! c))! (a! (b! c)) 0
1. Q(a! b)! (a! c) [0,A] 1
2. P (a! (b! c)) [1,D] 0
3. Qa [2,A] 1
4. P (b! c) [3,D] 0
5. Qb [4,A] 1
6. P (a! b) [1,A] 2

7. Qa [6,A] 3 7. Q(a! c) [6,D] 1
8. Pb [7,D] 2 8. Pa [7,A] 2
9. Q(a! c) [6,D] 1 9. Qc [8,D] 1
10. Pa [9,A] 2 10. Pc [5,D] 0
11. Qc [10,D] 1 11. Qa [6,A] 3
12. Pc [5,D] 0 12. Pb [11,D] 2

This is again a D-strategy. If we omit positions 9{12 on the left
branch and positions 11{12 on the right branch then we obtain an
E-strategy. The numbers appearing to the right of the values of �
are the orders of the respective assertions as they will be de�ned in
Section 3.3.

(7) Let d0 be the formula f ^ :f for some (atomic) f .

0. P (a ^ ((b! a)! d0))! c 0
1. Q(a ^ ((b! a)! d0)) [0,A] 1
2. P^1 [1,A]
3. Qa [2,D] 1
4. P^2 [1,A]
5. Q(b! a)! d0 [4,D] 1
6. P (b! a) [5,A] 2

7. Qd0 [6,D] 1 7. Qb [6,A] 3
8. Pa [7,D] 2
9. Qd0 [6,D] 1

This can be completed so as to become a D-strategy; Qd0 can be
handled as in example (3), and on the left branch we then will have
to add the steps occurring in the right branch as positions 7 and 8.

(8) Let d0 be as in (7) and de�ne recursively for i = 0; 1; : : :

ei = a ^ ((b! a)! di)! c ;
di+1 = ei ! d0 :
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Example (7) then gives a d-strategy for e0 and, moreover, shows
that there is a D-strategy for each ei+1 with Qdi appearing in the
positions 7 and 9 respectively. The D-strategy for ei then contains
assertions of orders up to i+3.

(9)
0. P ((a! b)! v)! (c! (b! a))
1. Q(a! b)! v [0,A]
2. P (c! (b! a)) [1,D]
3. Qc [2,A]
4. P (a! b) [1,A]

5. Qa [4,A] 5. Qv [4,D]
6. P (b! a) [3,D]
7. Qb [6,A]
8. Pa [7,D]
9. Qv [4,D]
10. Pb [5,D]

The left-dialogue satis�es (D10), (D12), (D13), and observing these
rules Q has no possibility to continue it. The rule (D11) is violated
at place 6. If the formula v is chosen suitably then the dialogues
can be extended so as to obtain a strategy, e.g., if v is a ^ b or
c ! a or (a ! d) ! d. However, for these choices of v already a
D-strategy for the initial contention can be found.

(10)
0. P (:(a! b))! (a _ d)
1. Q:(a! b) [0,A]
2. P (a _ d) [1,D]
3. Q_ [2,A]
4. P (a! b) [1,A]
5. Qa [4,A]
6. Pa [3,D]
7. Qc [4,D]

Also this dialogue satis�es (D10), (D12), (D13) and violates (D11).

(11)
0. P (a ^ ((:a! b)! c))! c
1. Q(a ^ ((:a! b)! c)) [0,A]
2. P^1 [1,A]
3. Qa [2,D]
4. P^2 [1,A]
5. Q(:a! b)! c [4,D]
6. P (:a! b) [5,A]
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7. Q:a [6,A] 7. Qc [6,D]
8. Pa [7,A] 8. Pc [1,D]
9. Qc [6,D] 9. Q:a [6,A]
10. Pc [1,D] 10. Pa [9,A]

In the left dialogue, Q violates (D11) at place 9. If this place and
the following place 10 are omitted, a D-strategy remains.

(12)
0. P (:(b! (c _ d)))! (a! b)
1. Q:(b! (c _ d)) [0,A]
2. Pa! b [1,D]
3. Qa [2,A]
4. P (b! (c _ d)) [1,A]
5. Qb [4,A]
6. Pc _ d [5,D]
7. Q_ [6,A]
8. Pb [3,D]

P violates (D11) at place 8.

2 THE LITERATURE ON DIALOGUES

2.0

It was P. Lorenzen who, in addresses in 1958 and 1959, published as Loren-
zen [1960; 1961], proposed the idea that an autonomous foundation of in-
tuitionistic logic should be based on the concepts of a dialogue and of a
strategy for dialogues. Emphasizing the autonomy of such a foundational
approach, Lorenzen preferred to speak of a constructive or e�ective logic
and avoided the more familiar name of intuitionistic logic. While the �rst
descriptions of dialogues seemed to use only the properties named here
(D00){(D02), it soon became clear that additional rules would be required
if only intuitionistically provable formulas should be those which could be
secured by strategies for dialogues. Such additional rules were formulated
by Lorenz [1961] who de�ned (among other types) the kind of dialogues
called D-dialogues here; they appear in Lorenzen [1962; 1967] and in Kam-
lah and Lorenzen [1967]. While these presentations attempted to arrive at
an appropriate de�nition for a dialogue by specializing the general notion, a
di�erent approach was taken in [Lorenz, 1973] and [Lorenzen and Schwem-
mer, 1973] where there is considered at �rst a very narrow type of dialogue
(permitting both P and Q to react only upon the immediately preceding
step) which then is liberalised to types of dialogues which are, essentially,
the E-dialogues of Section 1.
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Lorenzen's basic idea is indeed a very attractive one. However, although
described in a variety of articles and books, its presentations have been
marred by a recurrence of ambiguous de�nitions and incomplete, if not
erroneous proofs. And all these elaborations so far have su�ered from two
major defects.

2.1

The �rst defect is of a technical-mathematical character. If a new develop-
ment of intuitionistic logic, based on the concepts of dialogues and strate-
gies, shall be given, then one expects an equivalence theorem to be estab-
lished which states that provability by strategies coincides with provability
by one of the known calculi for intuitionistic logic. The proof of such a
theorem remained missing for many years.

A �rst attempt to prove an equivalence theorem was made in Lorenz's dis-
sertation [Lorenz, 1961]; it was repeated in [Lorenz, 1968]. A certain part of
Lorenz's dissertation was corrected in [Stegm�uller, 1964]; some claims made
in other parts were proved while other ones were refuted in the Diplomarbeit
of W. Kindt [1970]. Kindt's refutations were acknowledged in footnote 12 of
[Lorenz, 1968] where it is said that a correction of the erroneous statements
in [Lorenz, 1961] would require \ein paar detaillierte technische Vorbere-
itungen" (cf. also a similar remark in footnote No. 16); unfortunately, these
few, detailed technical preparations have never been presented to the public,
and the gaps in Lorenz's attempt still appear to be un�lled. (It is somewhat
distressing that in the presumably authoritative collection of [Lorenzen and
Lorenz, 1978] the article [Lorenz, 1968] is simply reprinted together with
its footnotes; the part of [Lorenz, 1961] to which footnote No.12 refers has
been omitted altogether.)

A �rst correct proof of an equivalence theorem was given by Kindt [1972];
however, the dialogues studied by Kindt are not D-dialogues but employ in-
stead of (D11) a di�erent rule. In [Lorenzen and Schwemmer, 1973, pp. 59
and 71] it is observed that the E-strategies (in the sense of Section 1) consid-
ered there give rise to a calculus of `Dialogstellungen' which (at least in the
propositional case) may be transformed into a calculus of Beth-tableaux
such that provability by E-strategies implies intuitionistic provability. A
new, and simpler approach to an equivalence theorem for D-dialogues was
developed by Haas [1980] and it seems that the technical gaps contained in
this work are only minor and can actually be �lled. An attempt to prove an
equivalence theorem for E-dialogues is contained in [Mayer, 1981] and Dr
E. C. W. Krabbe informs me that an equivalence theorem for E-dialogues
is contained in [Krabbe, 1982] and in [Barth and Krabbe, 1982].

The equivalence theorem stated in Section 1 was presented in [Felscher,
1981] and in a revised form in [Felscher, 1985].
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2.2

The second defect from which the elaborations of Lorenzen's idea have suf-
fered concerns the matter of foundations. The rules (D00){(D01) are just
precise descriptions of the intention that dialogues should proceed through
applications of the argumentation forms. But when additional rules (the
`Dialog-Rahmenregeln' in the terminology of the Lorenzen school) had to be
imposed, the question arose whether such rules could be explained as natural
codi�cations of principles of argumentation. Such principles, if foundation-
ally sound, would have to be based on an analysis of the use of dialogues as
a means to establish a systematical, indisputable and convincing conduction
of formal arguments.

When Lorenzen [1960; 1961] wrote about `Sprachspiele', i.e., language
games, he used this word in the sense of the ancients' �!�, referring to
a regulated (linguistic) process, the rules of which were to be governed by
an insight which, although not further explained, was clearly assumed to be
present. This attitude changed with [Lorenz, 1961] who, attempting a math-
ematical formalisation, began to make use of the concepts of a mathematical
discipline known as the Theory of Games. Games there are mathematical
objects, describing procedures as varied as whist and rummy at the one
end and the games invented by warriors and economists at the other end.
The rules then may be arbitrary: what matters is that they are adhered to;
and the convention that a game is won because the other player can't draw
any more may be brought about by rather odd rules of the game (such as,
e.g., the categorical application of an equaliser). Matters were not improved
when Lorenz [1961] observed that a change of dialogue rules would give rise
to a type of dialogue the strategies for which would prove precisely the clas-
sically provable formulas. For this situation made it perfectly clear that the
mathematical arbitrariness of the Theory of Games, being a tool to describe
formally such di�erent ways of reasoning as are classical logic and intuition-
istic logic, could not possibly produce a philosophical foundation for either
one of them. The mathematical apparatus for the Theory of Games was
used heavily in the mathematical work of Kindt [1970; 1972]. On the other
hand, phrases referring to `dialogue games' have spread through a certain
kind of literature where a mathematical terminology is borrowed in order
to give at least the appearance of conceptual precision.

It appears that Lorenzen himself did not follow the fashion of a game-
theoretical reduction. However the foundational discussions presented, e.g.
in [Lorenzen and Schwemmer, 1973] are not based on an argumentative
analysis; in particular, atomic statements and their negations are discussed
with respect to a semantical distinction of true and false, and the di�erence
between classical and intuitionistic logic is made to depend on the decidabil-
ity (`Wahrheits-De�nitheit': de�niteness with respect to truth) of atomic
statements. As crown's evidence for the generally unsatisfactory state of
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a foundational discussion I may quote Kambartel [1979] who, in the very
conclusion of this article, writes in respect to the problem of justi�cation:

. . . Rechtfertigungsproblem. Dieses besteht darin, die schema-
tischen Dialogspiele selbst von einem argumentativen Gebrauch
der logischen Partikeln her zu begr�unden. Die dialogische Logik
hat dieses Prolbem bisher dadurch �uberspielt, dass sie die Di-
alogspiele methodisch als `erste' Festlegung des Gebrauchs der
logischen Partikeln behandelt. Das dabei vernachl�assigte, �uber
die schematische Ebene hinausf�uhrende Rechtfertigungsproblem
schl�agt dann sp�atestens in der Rahmenregeldiskussion wieder
durch. In der Tat werden dort `Rechtfertigungen' f�ur die Wahl
solcher Regeln, z.B. neuerdings immament schematisch oder,
wie zun�achst geschehen, im eher intuitiven R�uckgri� auf halb-
schematisch analysierte Beispiele, beigebracht. Weder `technis-
che' Kriterien noch die Verallgemeinerung von Beispielen
stellen aber bereits einen im engeren Sinne normativen Zugang
zur Logik dar . . .

2.3

Lorenzen's argumentation forms have also been put to use by K. J. J. Hin-
tikka, but this with quite di�erent intentions. Hintikka, beginning with
[Hintikka, 1968], developed what he calls a game-theoretical semantics, and
a more recent series of articles on this topic have been collected in [Saari-
nen, 1979]. A semantical game in Hintikka's terminology may indeed be
viewed as a dialogue in the sense of Section 1 although Hintikka restricts
his attention to the single argumentation forms and nowhere cares to for-
mulate game rules proper (such that the implied reference to mathematical
games remains but an incantation). The point, however, is that Hintikka is
concerned with a linguistical analysis of natural languages and not with a
foundation of (classical or intuitionistic) logic. For this purpose, argumen-
tation forms and dialogues are used as tools for the semantical evaluation
of logically composite expressions (which may be more complex than �rst-
order logic would permit to express) in domains governed by classical logic.
There is, therefore, no connection of Hintikka's work with that discussed in
the present article.

3 FOUNDATIONS OF DIALOGUES

In this Section I shall develop an argumentative foundation for the use of
particular types of dialogues, the D-dialogues, as a basis for intuitionistic
logic. That such a foundation is wanted was outlined in subsection 2.2.
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3.1 The Argumentative Interpretation of Logical Operators

There exists a well known provability interpretation of the logical opera-
tions (connectives and quanti�es) which then may be considered as being
represented by Gentzen's calculi of proofs, i.e., natural deduction and the
sequent calculus LJ; for details, cf. van Dalen's article in this volume. In
the same manner, the argumentation forms may be viewed as expressing
an argumentative interpretation of the logical operations, and as far as the
positive connectives and the quanti�ers are concerned this interpretation is
obvious enough. Concerning implication, Y attacks Xw1 ! w2 by o�er-
ing Y w1 as an admission (or local hypothesis) and X may react by either
answering with Xw2 or attacking Y w1 (provided w1 is composite). Con-
cerning negation, the situation is the same as in the case of the provability
interpretation: if external, semantical references to truth and falsity shall
be avoided, we must enrich the basic concept of provability by adding ei-
ther refutability or absurdity as a primitive notion. Since we are aiming
for intuitionistic logic, we introduce a constant � symbolising absurdity and
then understand :w as an abbreviation of w ! � . The principle of ex
absurdo quodlibet takes as its �rst form that he, X , who is forced to assert
� then must concede, without further argument, any assertion made by Y .
A speaker professing � thus brings himself into a position precluding any
further debate, and so we may just as well omit this fatal step and state, as
the second form of ex absurdo quodlibet, that � must not be asserted. This
then explains why an attack Y w upon Xw ! � , i.e., X:w , cannot be
answered.

3.2 Basic Principles for Dialogues

Gentzen's calculi of proofs are easily explained in that they represent the
weakest consequence relation for which the provability interpretation is
valid. The connection between dialogues and the argumentative interpre-
tation of logical operations is (not only more complicated but also) located
on a di�erent level: it is not the dialogues but the strategies for dialogues
which will correspond to proofs. I thus formulate the basic purpose for the
use of dialogues:

(A0) Logically provable assertions shall be those which, for purely formal
reasons, can be upheld by a strategy covering every dialogue chosen
by Q.

The dialogue rules (D00){(D02), describing the use of argumentation forms,
simply produce the (linguistic) material of the dialogue which then will
have to be organised by the dialogue rules proper. Extending the intentions
expressed in the formulation of the argumentation forms, I formulate the
argumentative intent in the pursuit of a single dialogue:
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(A1) A dialogue is, on the part of Q an attempt to put into doubt (to
refute) the initial assertion made by P ; it is, on the part of P , an
attempt to uphold this assertion, and if P succeeds in doing so this
will mean that P wins the dialogue.

In the light of these intentions we now will have to clarify

(b0) how to determine the dialogue rules proper,

(b1) the notion that P wins a dialogue.

It must be emphasised that the concepts occurring here cannot be studied
separately but must be analysed simultaneously and in constant regard of
the purpose (A0).

3.3 Dependence, Positive Dependence and Order

The notions to be discussed in this subsection are auxiliary. Let Æ; � be a
dialogue. I shall say that a statement depends directly on an earlier state-
ment if it is either an attack upon or an answer to that statement; I de�ne
dependence to be the transitive and reexive relation generated by direct
dependence. Dependence, therefore, is an order relation, contained in the
linear order given by Æ ; since every statement, di�erent from the initial
one, depends directly on exactly one earlier statement, it follows that de-
pendence de�nes the ordering of a tree on the set of all statements, i.e., on
im(Æ) with Æ(0) as its top node. I de�ne a chain to be a sequence of state-
ments in im(Æ) such that each of its members, except the �rst one, depends
directly on its predecessor in that sequence; every chain � thus arises from
a path in the dependence tree by removing the nodes above �(0) from the
path. Every chain is a subsequence of Æ and Æ itself is pieced together from
various chains, some of which may only have one member.

While dependence is a relation de�ned between arbitrary statements, a
second relation will be de�ned only between assertions of a dialogue Æ; � .
An assertion Xv is an immediate positive dependent of an earlier assertion
Xw if it is an answer to an attack upon Xw ; I de�ne positive dependence
to be the transitive and reexive relation generated by immediate positive
dependence.

The relation of positive dependence leads to the following classi�cation
of assertions. The initial assertion and its positive dependence shall be of
order 0 ; if Xv ! w or X:v is of order n then an attack Y v shall be of
order n+1 , and so shall be the positive dependence of this attack. It follows
that the P -assertions are exactly those of even order and the Q-assertions
are exactly those of odd order.



DIALOGUES AS A FOUNDATION FOR INTUITIONISTIC LOGIC 129

3.4 Contentions and Hypotheses

When asserting the initial statement of a dialogue, P contends it to be
defensible. In this sense, the initial assertion is contended, and in the same
manner assertions of order 0 are contended. Assertions of order 1 , if
they do not arise as positive dependents of earlier ones, are attacks Qw1

upon assertions Pw1 ! w2 or P:w1; hence they are (global) hypotheses
o�ered by Q, and then also their positive dependents are (particularisations
of ) hypotheses. Assertions of order 2 , if they do not arise as positive
dependents of earlier ones, are attacks Pw2 upon hypotheses Qw1 ! w2 or
Q:w1; here P takes up the hypotheses by admitting Pw1 as a (higher order)
contention. Consequently, also these assertions are contended by P , and so
are their positive dependents. Repeating this argument, it follows that all
P -assertions are contended and that all Q-assertions are hypothetical. It
will be advisable to observe the distinction made between global hypotheses
in a dialogue as discussed here, and local hypotheses occurring as admissions
in instances of argumentation forms.

Applying the argumentation forms, assertions of logically composite for-
mulas are dissolved into assertions of lesser complexity: contentions are up-
held and
hypotheses are developed. Obviously, contentions Pw1^w2 ; Pw1_w2 ; P8xw ;
P9xw are upheld by holding up the immediate positive dependents (as cho-
sen by P or prescribed by Q), and the same holds for the development of
the analogous hypotheses. Consider now contentions Pw1 ! w2 where we
include the case P:w1 by writing it as Pw1 ! � ; when attacked by Qw1

then P may either uphold the answer Pw2 or attack Qw1 in order to force
Q into a further development of this hypothesis. Similarly, if a hypothesis
Qw2 ! w2 is attacked by Pw1 then Q may develop it into the answer Qw2

or Q may attack the contention Pw1.
The process of dissolving logically composite assertions comes to an end

once atomic assertions have been reached. Atomic formulas asserted by
Q are hypotheses, intended by Q as describing particular situations which
serve to refute P 's contention to have a defensible initial assertion; they
do not need further justi�cation. Atomic formulas asserted by P , however,
remain contentions in need of justi�cation. Securing them by material in-
sight, such as, e.g., illumination or revelation, is unacceptable (anyway and
in particular) if purely formal defensibility has been claimed by P . There
remains, therefore, only one possibility for P to assert an atomic formula
Pa for purely formal reasons:

(c0) P may assert Pa only if Q admits Qa as a hypothesis relevant to
the position of Pa.

For in that case P confronts Q with its own hypothesis to which Q cannot
possibly object (in [Krabbe, 1982] this principle is mentioned with the ap-
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propriate name of ipse dixisti). This principle (c0) is purely descriptive in
that it refers to a given, completed dialogue; it does not provide the means
in order to enforce that, already during the performance of the dialogue,
assertions Pa are made only in observance of (c0). Making reference to the
linear structure of a dialogue, we therefore strengthen (c0) to

(c1) P may assert Pa only after Q has admitted Qa at an earlier, relevant
position.

It appears that we now would have to clarify the notion of relevance, and
a �rst attempt to do so would consist in producing a de�nition which de-
scribes, for every position of a dialogue, the set of hypotheses relevant for
this position. I shall not proceed in this manner; rather, I shall introduce
additional restrictive rules for dialogues with the e�ect that the family of
all hypotheses occurring in a dialogue becomes coherent in the sense that
its members, being admitted simultaneously, do not create distinctions of
relevance: each of them is relevant for all atomic contentions asserted after-
wards. The additional rules will, obviously, restrict the amount of informa-
tion analysed in a dialogue. But the principal objects for us are strategies,
not methods for winning a single dialogue, and no information will be lost
if it only remains available within the system of dialogues belonging to a
strategy.

3.5 How to Win a Dialogue

P wins a dialogue if it succeeds in holding up its contentions. During the
course of a dialogue, the initial contention is dissolved into more and more
specialised subcontentions, and this specialisation comes to an end with
the contention of atomic formulas as regulated by (c1). It is implicit in
this conception that no composite contention is accepted as being upheld
without further dissolution, for Q may always challenge it with an attack.
Consider now a dialogue containing an atomic contention Pa which, for the
moment, we assume as being of order 0 . We then �nd a unique sequence of
contentions, beginning with the initial contention Pv and ending with Pa
, each of which (except the �rst one) is an immediate positive dependent
of its predecessor. Consequently, Pa is the �nal step of a process by which
Pv is narrowed down to more special contentions | and in view of (c1)
this �nal step may be asserted for purely formal reasons. Of course, other
sequences of specialisations of Pv, ending with other atomic formulas, may
be possible, but since we are considering provability by strategies, these
other possibilities are covered by other dialogues which a strategy will have
to take into account. We thus arrive at

(WA) The initial contention is considered as having been upheld success-
fully if P has asserted an atomic contention of order 0.
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Obviously, the same reasoning can be used to say that a contention of order
n can be considered as having been upheld successfully if P has narrowed
it down to an atomic contention of order n | but this observation remains
without consequences.

There is, however, another way to consider the initial contention as hav-
ing been upheld successfully; it rests on the principle of ex absurdo quodlibet
applied to dialogues (and not only to argumentation forms). As a simplest
situation, consider a hypothesis Qw1 of order 1 , arising as an attack upon
Pw1 ! w2 of order 0 , and assume that, after a sequence of positive depen-
dents of Qw1 , the only possibility left to Q would be the assertion of an
absurdity Q�. In that case, the hypothesis Qw1 has been developed (and
we may assume: by P 's prodding) into an absurdity and, therefore, has
itself been shown as untenable. But as this hypothesis had been granted in
the attack Qw1, we conclude by ex absurdo quodlobet that Pw1 ! w2 can
be upheld without any further argument. More generally, a hypothesis Qr1
of order n+1 ; n>0, arising as an attack upon r1 ! r2 of order n , is itself a
development of the earlier hypothesis Qs1 ! s2 of order n�1which gave rise
to an attack Ps1 of which Pr1 ! r2 is a positive dependent. Consequently,
if Qr1 can be shown as leading to an absurdity, then also Qs1 ! s2 must
be considered as leading to an absurdity. Descending from n�1 to 1 , we
conclude that already the �rst hypothesis Qw1 of order 1 , giving rise to
the higher order hypotheses resulting in Qs1 ! s2 , leads to an absurdity,
and thus again Pw1 ! w2 can be upheld without further argument. We
thus arrive at

(WB) The initial contention is considered as having been upheld success-
fully if (P has not asserted an atomic contention of order 0 but) Q
has been brought into a position where its only possibility to con-
tinue would be the assertion of an absurdity.

Of course, at the present stage of our discussion no reason is visible why Q
may become so restricted in its possibilities as is supposed in (WB); this
will become clear after the following sections. What can be said already
here is that if a dialogue is won by P then its last position is even (i.e., the
last move is P 's), and if the initial contention does not contain a negation
then the dialogue can be won only according to (WA).

3.6 Rami�cations

I shall now discuss how to avoid the distinctions of relevance as they appear
in condition (c0). Let us begin by considering more closely the situation
described there: let Æ; � be a dialogue with positions j; k such that j <
k ; Æ(j) = Qa ; Æ(k) = Pa where a is atomic. Since both these assertions
depend on Æ(0), there exist chains �0; �1 from Æ(0) to Æ(j) and to Æ(k), and
it follows from j<k that �1 cannot be an initial part of �0 . Consequently,
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either �0 is an initial part of �1 or �0; �1 ramify at a position preceding Æ(j).
The �rst case is unproblematical. For let n be the last argument of �0 such
that �0(n) = Æ(j); being an atomic hypothesis, �o(n) must be an attack
upon �0(n�1) = Pa ! w which then is answered by �1(n+1) = Pw, for
this is the only way in which the atomic hypothesis Qa can have dependents
in �1. Thus Pa is Pw or a dependent of Pw, and Qa must certainly be
considered as relevant for Pa. In the second case, however, the rami�cation
may cause distinctions of relevance.

I shall say that there is a rami�cation at n for two chains �0; �2 of a
dialogue if both chains coincide for all i such that i � n, if further both
chains are de�ned (at least) for n+1 and if �0(n+1) is di�erent from �1(n+1)
, i.e., if �0(n+1); �1(n+1) are stated at di�erent positions of the dialogue.
A rami�cation then arises in one of the three following ways:

(1) �0(n+1); �1(n+1) are di�erent attacks upon �0(n);

(2) �0(n+1); �1(n+1) are di�erent answers to the attack �0(n) upon �0(n�1);
(3) �0(n) is an attack Y w1 upon �0(n�1) = Xw1 ! w2; �i(n+1) is an

attack upon �0(n) and �1�i(n+1) is the answer Xw2 to �0(n) ; i = 0; 1.

The attacks in (1) shall be called distinct if not only their positions but also
the statements made by them are di�erent; otherwise they are only repeated
attacks. In the same way, I shall speak of distinct and of repeated answers.
In this subsection I shall be concerned with rami�cations of the �rst two
types.

Distinct attacks are possible upon assertions Xw1 ^ w2; X8xw. If P
contends, say, Pw1 ^ w2 then P certainly should be able to contend both
Pw1 and Pw2 . But a hypothesis arising during the analysis of Pw1 (e.g.,
if w1 is a ! a) will not be relevant during the analysis of Pw2 (e.g., if w2

is b ! a) and vice versa: such hypotheses are admitted for one but not
for the other subcontention. Distinct attacks upon contentions, therefore,
do cause distinctions of relevance. In a strategy, however, the possibility
of distinct attacks by Q is already taken into consideration in that it leads
to di�erent dialogues which all have to be won by P . Consequently, there
will be no loss of information if such distinct attacks are excluded from
every single dialogue. On the other hand, a hypothesis Qw1 ^w2 is present
already before any rami�cation caused by di�erent attacks and it should
remain in e�ect with its complete content also after the rami�cation. If, for
instance, during the development of Qw1 the moves of P lead Q to admit
Qa then this hypothesis should be considered as coherent with Qw1 as well
as with Qw1 ^ w2 and also with Qw2 : Qa should be relevant also for any
development of Qw2 .

Distinct answers can be given to attacks upon assertionsXw1_w2; X9xw.
If P contends, say, Pw1 _ w2 then it will have to contend only one of
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Pw1; Pw2. Again now, hypotheses arising during the analysis of one of
these answers (e.g., if w1 is :a) will not be relevant during the analysis of
the other (e.g., if w2 is a). Distinct answers to attacks upon contentions,
therefore, do cause distinctions of relevance. However, if P has answered
an attack with, say, Pw1 then a second, later answer with Pw2 would be
useful only if Pw1 could not be upheld successfully and if P now would try
a second attempt. But in a strategy we can demand that P knows what it
is doing and does not proceed by trial and error, and there will be no loss
of information if we exclude distinct answers to attacks upon contentions.
On the other hand, if Q were to answer an attack upon, say Qw1 _w2 with
both Qw1 and Qw2 then it would grant not only the content of Qw1 _ w2

but actually that of Qw1 ^ w2. In a strategy, however, P has to provide
dialogues for all possible answers, and there will be no loss of information
if we also exclude distinct answers to attacks upon hypotheses.

In order to discuss repeated attacks and repeated answers, we may now
assume that the two chains �0; �1 ramifying at n, are chosen as being max-
imal, i.e., as branches of the dependence tree. I now de�ne inductively the
notion of corresponding couples: �0(0); �1(0) form a corresponding couple;
if �0(i); �1(i) form a corresponding couple then �0(i+1); �1(i+1) shall form
a corresponding couple if they either appear at the same position of the
dialogue or if they are (at least) identical as signed expressions and also
are identical in their mode within the dialogue, i.e., as attacks or answers
referring to �0(i); �1(i). Let us assume now that the rami�cation at n arises
under repetitions. Then �0(n+1) ; �1(n+1) still form a corresponding cou-
ple, and we may look for all corresponding couples �0(n + i); �1(n+i) . If
these couples exhaust already one of the two chains, say �0, then that part
of �0 which starts at n+1 does not contain any information which is not
available in the corresponding part of �1. No information will be lost if that
part of �0 (or the corresponding part of �1) is omitted from the dialogue,
and so we may exclude the repetition at n+1 which gave rise to the twofold
presence of that part.

It remains to consider the case that there exists a common argument m
of �0; �1 ; n+1<m, such that �0(m); �1(m) is not a corresponding couple.
Letm be minimal for this property and observe that either P or Q acts atm
in both of �0; �1. If P attacks at m, say Qw1^w2 with Pw1 in the one and
with Pw2 in the other chain, then these distinct attacks could have been
carried out without the repetitive rami�cation at n (and with an acceptable
rami�cation at the position of Qw1^w2 instead). If P answers atm, say Qv
with Pw1 and Pw2, then the repetitive rami�cation at n just hides the fact
that there is actually a rami�cation caused by distinct answers. The same
types of rami�cations occur if Q in both �0; �1 attacks m or answers at m.
Finally, if either P or Q attacks m in the one and answers m in the other
chain then the repetitive rami�cation at n delays an actual rami�cation of
type (3). Again now, either this rami�cation of type (3) could have been
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carried out already at n or there are restrictions on the execution of such
rami�cations (as they actually will be discussed in the next section) and
the repetitive rami�cation at n is employed in order to circumvent these
restrictions.

Consequently, in all cases repetitive rami�cations either can be avoided
immediately or lead to distinctions of relevance of the sort discussed already
for distinct rami�cations. In any case, therefore, they may be excluded
without loss of information.

The conditions e�ecting the exclusion of di�erent answers and of di�erent
attacks upon contentions are precisely (D12) and (D13).

3.7 Nested Attacks and Nested Answers

There are good reasons why, in a dialogue, a certain answer upon an attack
by Q is not stated immediately but only after some delay. The necessity to
observe (c1) will cause such situations if

a contention Pw1 ! w2 has been attacked and the admitted
hypothesis Qw1 needs further elaboration in order to permit P
either to assert Pw2 or to force Q into an absurdity,

or a contention, itself stated already under a hypothesis, has
been attacked and now the earlier hypothesis needs further elab-
oration.

Delayed answers, therefore, cannot be excluded. It is such delays which
cause a nesting of attacks and, thereby, a nesting of answers.

Let Æ; � be a dialogue and let Æ(m); Æ(n) be assertions such that m�n � 0
(mod 2), let Æ(i) be an attack upon Æ(m) and let Æ(j) be an attack upon
Æ(n) (whence also i�j � 0 (mod 2)). I shall call Æ(j); Æ(i) a pair of nested
attacks if j<i and if the attack Æ(j) is still open at i ; in that case Æ(i) is the
inner attack and Æ(j) is the outer attack. I shall speak of H-nested attacks
if the inner attack is a hypothesis; in that case, both m;n are even, Æ(m) is
of the form Pw1 ! w2 or P:w1 and Æ(i) is Qw1 .

Consider a pair ofH-nested attacks as above and let Ps be the contention
which P would have to state in order to answer the outer attack. The ques-
tion then arises whether the hypothesis Qw1 can be considered as relevant
for Ps and its dependents, since P contended the assertion Æ(n) before Qw1

has been admitted. For instance, if Æ(n) is Pr ! s then, by contending
it, P states that it is prepared to hold up Ps under the hypothesis Qr |
an additional hypothesis such as Qw1 is, at this stage, not available. Obvi-
ously, hypotheses available at the position n may be used as well, and we
also can assume that distinctions of relevance have already been excluded
at least as far as the positions n;m. The complete content now of Æ(m) ,
i.e., of Pw1 ! w2 or P:w1 is, again, that P is prepared to hold up Pw2
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(or, for that matter, even P�) under the hypothesis Qw1. Therefore, the
hypothesis Qw1 should be counted as being relevant if P actually ful�ls the
obligation to assert PW2 (or P� : : :): Qw1 together with Pw2 preserves the
complete content of Æ(m). We thus arrive at the principle

(d0) For every pair ofH-nested attacks: the hypothesis granted by the inner
attack may be used as relevant in order to contend the answer to the
outer attack provided P also contends the answer to the inner attack.

The dialogue won by P in example (9) satis�es (d0) for the H-nested attacks
with n = 1 ; m = 4 ; j = 3 ; i = 5 ; the hypothesis Qw1 = Qa is used in order
to contend the answer Æ(6) to Æ(j) at 8, and conversely also this answer itself
is employed in order to develop the hypothesis Qb which is needed when
contending the answer Æ(10) to Æ(i).

The principle (d0) is purely descriptive; it does not provide the means in
order to enforce that only the situation described as desirable occurs. If the
inner attack is upon P:w1 then P will never be able to ful�l the obligation
expressed in (d0), and if we wish to avoid an additional label declaring Qw1

to be irrelevant for Ps then another formulation is wanted. But also if Æ(m)
is Pw1 ! w2 with w2 6= � , a di�erent formulation would be useful: the
example (10) shows a pair of H-nested attacks violating (d0) , but P has
won the dialogue in accordance with (WA) and Q , if it is left to respect
(D12), (D13), cannot continue: there just is no position left for P to state
the answer to the inner attack. We thus formulate a rule which forces P to
contend this answer before it makes use of the hypothesis:

(d1) For every pair of H-nested attacks: the inner attack must have been
answered before the outer attack may be answered.

In this manner, we now have also a well-de�ned nesting of answers.

Consider now a pair of nested attacks upon contentions which is not H-
nested; this means that the inner attack is symbolic. The statement of such
an attack does not create any hypotheses possibly needed for the contention
of the answer Ps to the outer attack. Still, there may be various reasons
for P not to answer the outer attack Æ(j) immediately at j+1 , but to
delay this answer to a position following that of the inner attack: actually
the observance of (d1), together with that of (c1) may be one such reason.
The example (12) communicated to me by Dr. E. C. W. Krabbe, shows a
dialogue satisfying (D10), (D12), (D13) and (d1), but the outer attack at 3
is answered at 8 while the inner attack at 7 remains open. Given the outer
attack 3, also the hypothesis Æ(5) arises as an inner attack, and observance
of (d1) forces P to state the contention Æ(6) before Æ(5) can be used in order
to state the answer Pb to the outer attack. In avoiding the answer to the
inner attack at 7 , P now fails to uphold the contention Æ(6). Thus (d1) has
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been observed, but the promise to uphold Æ(6) is given lip service only. It
follows from this example that, in order to observe the full meaning of (d0)
we have to strengthen the rule (d1) to

(d2) For every pair of nested attacks upon contentions: the inner attack
must have been answered before the outer attack may be answered.

As for nested attacks upon hypotheses, it follows from the de�nition of a
strategy that, if P has a strategy at all, then P a fortiori has a strategy
respecting

(d02) For every pair of nested attacks upon hypotheses: the inner attack
must have been answered before the outer attack may be answered.

There is reason to conjecture that also the converse implication holds, and
a proof should be related to that of the Extension Lemma mentioned in
Section 1. The idea of such a proof is illustrated by example (11): violating
(D11), Q may try to withhold a certain hypothesis (e.g., absurdity), but
P knows from the strategy how the answer to the outer attack had to be
treated if it was stated immediately after this attack.

3.8 D-Dialogues

It was the purpose of the last two subsections to look for restrictions on
dialogues which would permit us to avoid distinctions of relevance. We
thus arrived at the rules (D12), (D13) in subsection 3.6 and at rule (D11)
which is the conjunction of (d1) and (d

0
2) in subsection 3.7. Having imposed

these rules, let us look once more at the family of hypotheses occurring
in a dialogue. Clearly, every positive dependent of a hypothesis Qw is
nothing but a speci�cation or an instantiation of Qw ; and dependents of
higher order, coming from intermediary contents, keep this character as
well. Passing through a chain of dependents, we see that the hypotheses
occurring there form a coherent set, i.e., a set of simultaneously admitted
assumptions without distinctions of relevance. Di�erent chains of depen-
dents are joined together with the help of delayed attacks and answers, and
the three types of rami�cations which thus may arise were described at the
beginning of subsection 3.6. The presence of our rules now insures that all
those rami�cations are excluded which would cause distinctions of relevance.
What remains permitted are rami�cations of type (3) with properly nested
answers and rami�cations of type (1) caused by di�erent attacks upon a
hypothesis. If P attacks a hypothesis Qw a �rst time, it forces from Q a
certain system of speci�cations of the hypothesis Qw asserted by Q in the
beginning; if P attacks Qw a second time then it may obtain a di�erent
system of speci�cations which, nevertheless, still is a system of speci�ca-
tions of this same hypothesis Qw : once Q has admitted Qw then it must
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bear the consequences of being forced into speci�cations, and the speci�ed
hypotheses brought forward under the di�erent answers given by Q to the
same attack of P upon Qw express, when considered simultaneously, more
than is contained in Qw alone, and thus they do create distinctions of rel-
evance. It must be emphasised that this di�erence in the e�ects of attacks
and answers is fundamental.

We thus �nd that, in the presence of (D11), (D12), (D13), the set of
all hypotheses occurring in a dialogue is coherent in the sense that no
distinctions of relevance appear. Consequently, the condition (c1) becomes
(D10), and our dialogues are D-dialogues.

At this point, a methodological observation appears to be appropriate.
In the preceding two subsections I have presented arguments resulting in
the introduction of additional rules with the purpose to avoid distinctions
of relevance ((D12), (D13), (d0)). In subsection 3.6 the exclusion of certain
moves in a dialogue was supported with the observation that no information
will be lost if the possibilities, excluded from single dialogues, remain present
in strategies; in subsection 3.7 the introduction of (d0) was explained with
the necessity to preserve the complete content. It should be noticed very
clearly that these argumentations are based on an informal understanding
of purposes; they are not justi�cations based on mathematical theorems. As
a matter of fact, as long as we abstain from a formal de�nition of relevance,
we cannot even formulate a theorem saying that strategies for dialogues with
precautions on relevance (?) prove the same formulas as do strategies for
dialogues with (D12), (D13), (d0).

3.9 How to Win a D-dialogue

I have de�ned in subsection 3.5 what it means that P wins a dialogue.
On the other hand, there is the purely formalist de�nition, taken from the
literature and mentioned in Section 1, that a D-dialogue is won by P if
Q has no way to continue. It remains to be shown that both notions are
equivalent with respect to strategies.

If a D-dialogue has been won according to (WB) then it also has been
won in the formal sense. If a D-dialogue has been won according to (WA)
then it contains an atomic contention Pa of order 0 which, therefore, must
be an answer. Consequently, Q cannot continue the dialogue at this position
by referring to Pa. We now can show:

If for some formula v; P has a strategy to win with (WA), (WB) all
D-dialogues for v then P also has a strategy to win in the formal sense all
D-dialogues for v. For consider a strategy the branches of which are won
with (WA), (WB). These branches could not be continued by Q if Q would
have to respect the rules for E-dialogues. We thus obtain an E-strategy if,
where necessary, we cut o� ends of branches when Q begins to violate the
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rule (E). It then follows from the Extension Lemma that this E-strategy
may be extended again to a D-strategy.

For the converse implication, it can even be shown that a D-dialogue Æ; �
which is won in the formal sense is won also according to (WA), (WB). As
this is clear if, during the dialogue, P has stated an atomic contention of
order 0, we may assume now that P has not stated an atomic contention
of order 0; (WB) then will hold if we can prove that Q could continue if
it were to state an absurdity: there still should exist a (last) open attack
of the form P:w. Before continuing the proof, it will be useful to prepare
some auxiliary notions.

Let Æ; � be a dialogue; let n be an odd position and assume that Q has
already stated Æ(n). Then �0(n) shall be the number of contentions which,
after this statement, still may be attacked by Q at later positions, and
�1(n) shall be the number of contentions which, being attacks, still may
be answered by Q at later positions | and here I expressly include the
unspeakable answers Q� to attacks Pw upon some Q:w. The number
�(n) = �0(n)+�1(n) is called the degree (of freedom) of n. The following
characterisation will be useful:
�(n) is the di�erence a(n)�d(n) where a(n) is the number of attacks

upon hypotheses Qw1 ! w2 ; w1 not atomic, which are contended before
n , and d(n) is the number of atomic P -answers contended before n . This
follows from the following observations in which 2i+1 is a position of Æ; � .
If Æ(2i) is an attack then �(2i�1) � �(2i+1) � �(wi�1)+1, and the
right inequality becomes equality if, and only if, Æ(2i) is an attack upon a
hypothesis Qw1 ! w2 such that w1 is not atomic (whereas w2 may be �).
If Æ(2i) is an answer which is not atomic then �(2i�1) = �(2i+1). If Æ(2i)
is an answer which is atomic then �(2i�1) must be positive (for otherwise
Q could not act at 2(i+1)), and �(2i+1) = �(2i�1)�1.

Consider now a D-dialogue. It follows from (D12) (D13) that every as-
sertion has at most one atomic immediate positive dependent; consequently,
every assertion has at most one atomic positive dependent. Let now Pa be
an atomic contention of positive order; there then exists a �rst (highest)
contention Pwa of which Pa is a positive dependent, and Pa; Pwa have
the same order. By the preceding remark, Pwa is unique, and as it has no
positive predecessor, it must be an attack upon a hypothesis Qwa ! ua
(where ua may be �).

I now resume the proof where it was interrupted. Let 2i be the last
position of the dialogue. Then Æ(2i) cannot be a composite formula (since
that could be attacked by Q) nor can it be a symbolic attack (since that
could be answered); thus it must be an atomic contention Pa, necessarily of
positive order. Let Pwa be the unique, highest contention determined by Pa
as above. If Pwa is Pa then ua must be � (for otherwise Q could answer),
and thus (WB) holds. Assume now that Pwa is di�erent from Pa; then
wa is not atomic. It now will be suÆcient to show that �(wi�1) is positive
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| because the possibilities numbered by �(i�1) cannot comprise attacks
or answers which actually could be stated (for in that case Q could still
continue), and thus there must be at least one open attack to be answered
only by absurdity. I thus have to prove that the di�erence a(2i�1)�d(2i�1)
is positive. Let Pb be an atomic answer which contributes to d�(2i�1);
it is of positive order and thus determines the unique attack Pwb. Since
Pb is an answer and Pwb is an attack, Pb must be a proper dependent of
Pwb. Thus wb is not atomic and, therefore, the attack Pwb contributes to
a(2i�1). It follows that the map ' sending b into wb is an injection of
the set of contentions contributing to d(2i�1) into the set of contentions
contributing to a(2i � 1). Since wa is not atomic, the latter set contains
Pwa; the former set, however, does not contain Pa. Consequently, a(wi�1)
is strictly larger than d(2i�1).

3.10 Intuitionistic versus Classical Logic

As was mentioned in Section 2, Lorenz [1961] has observed that a change
in the rules for D-dialogues produces a class of dialogues which I shall call
C-dialogues, such that the formulas provable by C-strategies are precisely
the classical provable formulas. The change leading from D-dialogues to
C-dialogues consists in

cancelling (D11) and (D12) for P , but leaving them in e�ect for
Q.

(If I understand Lorenz's and Lorenzen's writings correctly then they seem
to demand the cancellation for P of (D12) only; the examples (2b) and (5a)
show that this would not suÆce.) It is not hard to see that C-strategies
prove only classically provable formulas. For the case of propositional logic,
the converse implication (i.e., every classically provable formula can be
proved by a C-strategy) can be seen as follows. Observe �rst that an intu-
itionistically provable formula, being provable by a D-strategy, is trivially
provable by a C-strategy. It is well known that if w is a classically prov-
able formula then ::w is intuitionistically provable; assume now that w
is not intuitionistically provable. Every D-dialogue Æ; � for ::w, won by
P , begins with attacks Æ(1) = Q:w; Æ(2) = Pw, and since we assume that
the part beginning at position 2 is not a D-dialogue for w won by P , there
must be positions below 2 at which P attacks Æ(1) again. If we compare the
branches in the dependence tree and look for the �rst positions at which
they di�er, we will �nd, re�ning the discussion in subsection 3.6, that this
happens at contentions which could be obtained without the repetitive �rst
part of the branch if repeated answers or answers in disregard of (D11) were
permitted to P . Permitting such answers in C-dialogues, it can be shown
that a D-strategy for ::w can be rebuilt into a C-strategy for w.
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The mathematical fact that C-strategies can be used for classical logic
is, in principle, not surprising; other proof-theoretical systems, e.g., those
of Hilbert-type, can also be used for many varieties of logics. Rather than
leading to amazement over the universal applicability of a mathematical
tool (trees and strategies), this situation should teach us to emphasise the
fundamental di�erences between intuitionistic and classical logic.

For the provability interpretation, as represented by Gentzen's calculi,
Curry [1963, p. 260] has attempted a provability explanation of classical
negation with help of his concept of complete absurdity, but this hardly
will be considered to be a conceptual foundation. For the argumentative
approach presented here, classical logic cannot be given a foundation by
simply changing formal details of a foundation for intuitionistic logic. If we
want to explain the rules governing classical negation then there appears to
be no way to avoid the semantical notions of true and false: without these
notions we cannot explain why distinctions of relevance may be discarded
as it is done when P is permitted to repeat answers and to disregard (D11).
Thus, for classical logic, the entire conceptual frame employed for the foun-
dation of intuitionistic strategies, has to be abandoned: there is no use for
contentions and hypotheses, for defendability by purely formal reasons and
for considerations of relevance. What is required, is a completely di�er-
ent conceptual framework, based on the notions of true and false and on
the distribution of truth-values under logical operations. The foundation
of classical logic within such a framework is well known, and the elegant
formulation of classical tableaux due to Smullyan [1968] may easily be read
as to depict a dialogue-strategy leading to a failure of the attempt to falsify
a formula. Again, the argumentative explanation of winning a dialogue ac-
cording to (A); (WB) is only formally related to the closure of branches in
Smulluyan's tableaux which always means the advent of absurdity.

4 APPENDIX: CONCEPTS CONNECTED WITH THE
EQUIVALENCE THEOREM

The equivalence theorem, formulated in Section 1, states the existence of
certain transformations between strategies and proofs in the calculus LJ;
the proof of this theorem cannot be presented here. It may, however, be
instructive for the reader to become familiar with some concepts which orig-
inally were developed for this proof. For details which have to be suppressed
here I refer to Felscher [1981; 1985].

The reader will have noticed that among the examples, listed at the end
of Section1, there is none which treats a formula with quanti�ers. But this is
no serious omission since the argumentation forms for quanti�ers are, so to
speak, the direct generalisations of the forms for conjunction and disjunction
to the in�nite case. For strategies, however, this treatment of quanti�ers has
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the e�ect that there may occur in�nite rami�cations: if S; Æ; � is a strategy
and if a node e carries as Æ(e) either a formula P8xw or an attack P9 upon
a formula Q9xw then the tree S has an in�nite rami�cation at e | every
term t determines a lower neighbour of e, carrying either an attack Qt or
an answer Qw(t). Although the branches of S must be �nite (as follows
from (S0)), the strategy itself is an in�nite object. It is obvious that this is
a clear disadvantage of strategies as compared to the more usual notions of
proof. I now shall abstract a �nite object from a strategy, its skeleton.

Let H be a class of dialogues as in Section 1. An H-skeleton for a formula
v is a triplet S; Æ; � with the same properties as an H-strategy for v except
that in (S1) certain nodes e are exceped and, instead, are covered by

(S1e) If Æ(e) is P8xw then only one lower neighbour of e carries an attack
upon Æ(e), and this attack is Qy where y is a variable not occurring free
in any expression Æ(h) with h � e . If Æ(e) is an attack P9 upon Q9xw
then only one lower neighbour of e carries an answer, and this answer
is Qw(y) where y is a variable not occurring free in any expression Æ(h)
with h � e .

As is usual, the variable y will be called the eigenvariable in these situations.
It is clear that every H-strategy contains various H-skeletons, and it is not
hard to see that, conversely, every H-skeleton can be extended to an H-
strategy. This observation has the important consequence that it suÆces to
consider H-skeletons which, having �nite trees, are more easily handled in
induction proofs. For instance, the Extension Lemma of Section 1 is proved
in the form that every E-skeleton can be extended to a D-skeleton.

Unfortunately, E-skeletons still have certain undesirable properties. Con-
sider the example of a formula 9xa! 9xa where a is atomic; there are two
E-strategies, viz.

0. P9xa! 9xa 0. P9xa! 9xa
1. Q9xa [0,Q] 1. Q9xa [0,A]
2. P9 [1,A] 2. P9xa [1,D]
3. Qa(y) [2,D] 3. Q9 [2,A]
4. P9xa [1,D] 4. P9 [1,A]
5. Q9 [4,A] 5. Qa(y) [4,D]
6. Pa(y) [5,D] 6. Pa(y) [3,D]

In the right skeleton, the attack at 3 is answered with the substitution term y
at 6; this answer must be delayed because the choice of the substitution term
depends on the eigenvariable y appearing at 5. There are no phenomena of
an analogous type in, say, the sequent calculus; in Lorenzen and Schwemmer
[1973] and in Haas [1980], where an informal use of E-skeletons is made,
the possibility that this situation might occur has been overlooked.
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In order to circumvene this diÆculty, I introduce the concepts of a formal
dialogue and of a formal strategy, making use of the formal argumentation
forms for 8 and 9:
Q8: assertion:Q8xw P8: assertion:P8xw

attack: Pt attack: Qy (eigenvariable)
answer: Qw(t) answer: Pw(y)

Q9: assertion:Q9xw P9: assertion:P9xw
attack: P9 attack: Qt
answer: Qw(y) (eigenvariable) answer: Pw(t).

I de�ne a formal E-dialogue in exactly the same way in which I de�ned an E-
dialogue, only now in (D01), (D02) the formal argumentation forms are used
for quanti�ers and the eigenvariable condition is imposed at the position
indicated. The adjective formal then refers to the fact that, contrary to the
intuitive understanding, in the attack Qt the term t is stated already by Q;
eigenvariables chosen at a later position then must respect these expressions
Qt. I de�ne a formal E-strategy in the same way in which I de�ned an E-
strategy, but now with formal dialogues instead and with the following
changes: there is only one possibility for Q taken into account for

answering an attack P9 (case Q9),
making an attack Qy (case P8),
making an attack Qt (case P9).

It then is obvious that every formal E-strategy can be transformed into
an E-skeleton; it can be shown that, conversely, every E-skeleton can be
transformed into a formal E-strategy.

It is the formal E-strategies which can be set into correspondence with
LJ-proofs.

It follows from these observations that the disadvantage of dialogues con-
sisting in

1. the treatment of quanti�ers as in�nite conjunctions and disjunctions
disregarding Frege's discovery of �nitary quanti�er rules made possible
by the use of free variables, and

2. the ensuing appearance of in�nite strategies

is only apparent. It arose because we wanted to use the same argumentation
forms (concerning quanti�ers) for both P and Q; it could have been avoided
if, from the outset, we would have studied strategies instead of dialogues.
This illustrates once more the diÆculty, mentioned at the beginning of Sec-
tion3.2, that it is not the dialogues but the strategies which correspond to
proofs: working with dialogues, we have to describe in advance the branches
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of strategies which themselves are to be de�ned only with the help of these
dialogues.

It also should be observed that, in contrast to Gentzen's calculi for prov-
ability, strategies and dialogues do not appear as natural representations of
the relation of provability from hypotheses but only as those of the relation
of absolute provability. Of course, if M is a �nite set of sentences and m is
a conjunction of these sentences then, for every sentence w, the sequents

M ) w and ) m! w

are simultaneously derivable in LJ, and this permits us to reduce the prov-
ability of w from the hypotheses M to the absolute provability of m ! w.
It also is obvious that a dialogue, discussing the derivability of M ) w,
should begin with an initial list of the Q-formulas determined by M , fol-
lowed (or preceded) by the P -formula Pw. But no general rule on how to
proceed from this initial list can be stated as long as we want to keep the
alternation between P and Q during the progress of our dialogue. If a is
atomic, a sequent such as a ) a _ w produces the initial list Qa; Pa _ w
whichmust be followed by an attack of Q ; on the other hand, a sequent such
as a^w ) a produces the initial list Qa^w ;Pa which must be followed by
an attack of P . Certainly, regulations circumventing these diÆculties may
be formulated, but apparently only at the cost of a loss in intuitive appeal.
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EDITOR'S NOTE

The dialogue system of this chapter has recently been implmented as a
theorem prover DiaLog [1] and Colosseum [2]. DiaLog, written in
Lisp, o�ers a rule language for rede�ning the rules of the game. It also
supports automatic and interactive proving and has a user-friendly interface.
EÆciency, however, has not been the major concern, and therefore,DiaLog
may serve more as a tool for teaching or for experimenting with the dialogue
rules.
Colosseum is a no-frills re-implementation of Dialogue Games in Prolog.

Its dialogue rules are hardwired for intuitionistic �rst order predicate logic
(as speci�ed by Felscher above). Colosseum allows automatic proving
only, but it is much faster than DiaLog and is web accessible.1

1http://www8.informatik.uni-erlangen.de/IMMD8/staff/Zinn/Dialogue/Colosseum.html
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FREE LOGICS

I: Introduction

1 WHAT ARE FREE LOGICS?

Some theorems of CQC=, such as those of the form

(1) 9x(x = �)

and

(2) '[�=x]! 9x';
are often accused of introducing into that theory|and thus into the very
core of `our logic'|undesired `existential commitments'. However, the mere
derivability of these sequences of symbols can hardly accomplish such a
major feat by itself, and even when the theory is supplied with the usual
`referential' semantics, metaphysics is still far from being determined one
way or another. 1 and 2 certainly require|by way of this semantics|
that every singular term of the language receive an interpretation in the
domain of quanti�cation, but so what? The formal instrument does not
specify the metaphysical counterpart of the relation between a symbol and
its interpretation, nor does it tell you which things can or cannot belong to
a domain of quanti�cation. The formal instrument is neutral with respect
to all these questions, and thus by itself cannot introduce any metaphysical
commitments, existential or otherwise.

Things get more complicated when one takes into account the ideology
most commonly associated with CQC= and its referential semantics. Then
it becomes very `natural' to think of a singular term as denoting its interpre-
tation, hence to read the semantical requirement evoked by 1 and 2 as the
requirement that every singular term denote. Even more importantly, if one
agrees with Quine that `to be is to be a value of a bound variable'1|that
is, if one assigns `existential import' to quanti�ers|the domain of quanti�-
cation becomes the set of all and only those objects which exist in a given
(possible) situation, and the above requirement is drastically strengthened,
to the demand that every singular term denote an existing object. Now the
ontological commitments are certainly apparent, and someone is bound to
react to them in the name of logic's `purity'.

1See for example [Quine, 1939]. In what follows, we will sometimes refer to this
statement as Quine's dictum.
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Free logics2 result from this reaction. However, since what they are a
reaction to is a very delicate combination of many factors|a certain philo-
sophical understanding of a certain formal interpretation of a certain formal
system|it is diÆcult to say exactly what they are and how far they extend.
To say|as is often said|that they are `logics free of existence assumptions
with respect to their singular terms' is too vague to be of much help, and
also somewhat inaccurate from a historical point of view. For every formal
system and every formal semantics can be free in this sense, given a suit-
able ideology, but this much tolerance was certainly not in the minds of the
people who created free logics.3 They wanted to reform classical logic, and
substitute for it a better instrument, they thought that both the usual formal
systems and the usual formal semantics were faulty in important ways, and
it is only fair to de�ne free logics so as to make sense of the precise task
that they set for themselves.

On the other hand, it would not do to identify free logics with a certain
class of theorems. For one thing, there is no one such class (as the expression
`free logics' should make clear),4 and there is even some debate as to whether
free logics result from restricting or rather extending classical logic.5 But
more importantly, we suggested above that all these modi�cations|whether
restrictions or extensions|would make no sense (and in particular would
not be legitimately referred to as free logics) if not in the context of certain
interpretations of the formal systems, and of a certain understanding of
these interpretations.

And �nally, it would be totally unsatisfactory to de�ne free logics in terms
of a given semantics, or even a given class of semantics. For not only is a
formal semantics (as well as a formal system) not enough to characterise
the present enterprise in the absence of some `intuitive reading' of it, but
also the choice of a semantics is probably the most important question in
this area, and we have to be careful not to prejudge such a fundamental
issue by a biased de�nition.

Keeping all these reservations in mind will inevitably result in a less than
straightforward characterisation of our subject, but the complications we
will have to go through will prove instructive. For in this subject more than
in others, logic, philosophy of logic and philosophy in general (especially
metaphysics) are intertwined in a very delicate way, and it does not hurt if
this delicate relation is emphasised right from the beginning.

In conclusion, I propose the following de�nition. A free logic is a formal
system of quanti�cation theory, with or without identity, which allows for
some singular terms in some circumstances to be thought of as denoting no

2This expression was �rst used by Karel Lambert in 1960.
3See for example [Leonard, 1956] and [Lambert, 1967].
4Thus `free logics' is the correct expression to refer to the whole subject, but `free

logic' is also very common.
5In this regard, see van Fraassen's position sketched in Section 11.



FREE LOGICS 149

existing object, and in which quanti�ers are invariably thought of as having
existential import.

A few comments and clari�cations are in order. First of all, a termi-
nological matter. The expression `thought of', which occurs twice in the
de�nition, must be regarded as inclusive of both the formal interpretation
of the system and the intuitive (or philosophical) reading of this interpreta-
tion. When the formal semantics is missing (as was the case in free logics for
several years), this `thinking of' reduces entirely to its intuitive component.

Secondly, the de�nition requires that there be in the language of a free
logic expressions construed as singular terms. A language containing no
individual constants or descriptions and allowing individual variables to
occur only bound in well-formed formulas (and there are languages of this
sort forCQC, for example some of Quine's) would hardly satisfy the present
requirement.

Thirdly, the de�nition does not exclude the possibility that every sin-
gular term denotes in every circumstance, only that every singular term
denotes an existing object in every circumstance. There are philosophers
(Meinongians for example) who think that there are non-existing objects,
and that singular terms may well denote them: the de�nition is neutral with
respect to such views. However, to avoid awkwardness, usually I will refer
to singular terms not denoting an existent simply as non-denoting.

Fourthly, the de�nition is concerned not with whether there actually are
non-denoting singular terms, but only with whether there may be. A free
logic is after all a logic; hence all that it can reasonably care for is logi-
cal possibility. When a logic acknowledges the possibility of non-denoting
singular terms, we will say that it allows for non-denoting singular terms.

Fifthly, not every logic allowing for non-denoting singular terms is a free
logic by our de�nition. In particular, all attempts at saving the formal
system (and the formal semantics) of classical logic by some substitutional
or Meinongian reading of the quanti�ers are ruled out. On the other hand,
it is perfectly possible to add to a free logic substitutional or Meinongian
quanti�ers, thus extending its expressive power.

Finally, even though referential semantics played a major role in the dis-
cussion above, the de�nition does not mention this semantics. The reason is
that the existential import of quanti�ers, and even the distinction between
denoting and non-denoting singular terms, can be e�ectively mimicked in
some non-referential semantics (for example, in Leblanc's truth-value se-
mantics),6 even if the best way to understand what is going on in these
semantics is still to compare them with their referential analogues. Thus
the three factors to whose combination a free logic is a reaction come to play
di�erent roles in its de�nition: a free logic is the result of a modi�cation of

6On this and other alternatives to the standard referential approach, see the chapter
by Leblanc in Volume 2 of the present 2nd edition of this Handbook.
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the formal system of CQC (or CQC=), motivated by a certain intuitive
reading of it, which is best understood (at least so far) in the context of the
usual referential interpretation of that system.

2 WHY FREE LOGICS?

The most general answer to this question has already been suggested in
the discussion preceding my de�nition of a free logic. Though vigorously
attacked from some quarters, the neopositivistic suspicion towards meta-
physics is still highly inuential in contemporary logic. Whether they re-
gard metaphysics as sheer `nonsense' or as a set of `synthetic' statements
to be neatly distinguished from the `analytic' ones constituting their disci-
pline, many logicians like logic to be metaphysically `pure', or not to carry
any metaphysical `baggage'|as the many debates in the area of quanti�ed
modal logic show sometimes quite dramatically. To apply such a general
motivation to the present case, it is enough to regard even the simplest
existential statements as metaphysical in nature.

However, this motivation by itself does not go very far towards motivating
anything close to free logics. As we will see in the next section, classical logic
has its own ways of dealing with these matters, and certainly many classical
logicians would not accept without a �ght the claim|presupposed by the
alleged `justi�cation' of free logics suggested above|that classical logic is
in any sense existentially committed or metaphysically `impure'. To get
closer to the justi�cation we are looking for, we need to weaken that claim
as follows. Classical logic (if �ltered through the usual interpretation, and
the usual reading of this interpretation) does not allow for non-denoting
singular terms. To be sure, this logic can be used in such a way as to
avoid any philosophical commitments or any problems resulting from the
limitation in question, but this requires the adoption of convoluted and ad
hoc procedures of translation from natural language into the formal language
and back (in a word, of a number of epicycles). Free logics, on the other
hand, represent a much more straightforward and direct approach to the
same problems: they make the translations easier, they allow expressions
of natural language to be taken more often at face value, and they require
fewer ad hoc assumptions.

This justi�cation is certainly better than the �rst one, but still, it does
not entirely ful�l its purpose. For it does not take into account the fact that
the classical logician can shape his philosophy of language so as to make it
�t his logic perfectly (and make his logic the most `natural' thing in the
world): Russell's position|to be mentioned briey in the next section|is
in this respect typical. And this makes it clear once and for all that the
adoption of some speci�c view in the philosophy of language is an essential
step towards the justi�cation of free (and perhaps all) logics.



FREE LOGICS 151

There is a whole spectrum of such views that would do the job nicely,
ranging from an extremely `metaphysical' one to an extremely `pragmatic'
one. For the sake of illustration, let me briey discuss these two extremes.

The `metaphysical' extreme states simply that in natural language there
are non-denoting singular terms. A singular term is an expression that
purports to denote a single object, and many a singular term fails to achieve
this purpose. Nonetheless, they are still singular terms: `Pegasus' is as
much a singular term as `Caesar' or `3', and `the winged horse' or `the
round square' are as much singular terms as `the President of the USA in
2000'. Hence no formal system can give a faithful representation of the
structure of natural language (and so be reasonably applied to it) if it does
not allow for non-denoting singular terms.

The `pragmatic' extreme, on the other hand, regards the real existence
of non-denoting singular terms in natural language as totally irrelevant.
Whether there are or there aren't any, there are contexts in which some
people use expressions as singular terms without assuming that they denote
anything, or maybe even in the process of wondering whether they denote
or not. For example, an attempt by a person to prove that God exists|
or that `God' denotes|might be conceived as a case in point. Whether
these people are right or not, a logic allowing for non-denoting singular
terms would also allow for a more direct and faithful representation (and
evaluation) of their reasoning in those contexts. So this logic would be an
instrument of wider and simpler applicability than classical logic, and would
not prejudge important issues which it is inappropriate for logic to decide.

Of course, the classical logician can be expected to have responses to
these motivations. It is certainly not news that in philosophy, or anywhere
else, you can't get something valuable for nothing. In the present case, this
suggests that you need a position in between the two above extremes to
transform the fear of metaphysical commitment so well entrenched in most
contemporary logicians into a defence of free logics.

3 CLASSICAL LOGIC AND NON-DENOTING SINGULAR TERMS

As suggested earlier, the classical logician is not forced to modify his formal
instrument by the mere presence in natural language of expressions like
`Pegasus' or `the round square'. He has at his disposal several techniques for
dealing with alleged non-denoting singular terms within his own framework.
Since all these techniques are treated extensively in other parts of the Hand-
book.7 I will limit myself here to little more than listing them.

In the �rst section, I pointed out that the problem free logicians see in
classical logic (and try to solve with their logics) is the following: classical

7In particular, in Hodges' chapter in Volume 1 and Salmon's chapter \Reference and
Inforamtion Contents: Names and Descriptions" in a later volume.
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logic makes it impossible to combine the presence of non-denoting singular
terms with an `existential' reading of quanti�ers. A classical logician willing
to avoid this problem, then, has two main options available: he can deny
existential import to quanti�ers, or exclude the possibility of non-denoting
singular terms.

If he wants to go the �rst way, he will �nd two basic suggestions in the
literature. One is to drop the referential scheme of interpretation altogether,
and go back to the old substitutional scheme, quite popular in the days
before Tarski's systematisation of formal semantics. The other is to remain
within the referential framework, but admitting non-existing objects (as
well as existing ones) in the range of quanti�ers.8

If he wants to go the second way, he will again have a choice between
two alternatives: Russell's theory of descriptions and Frege{Carnap's cho-
sen object theory. Within the �rst alternative, he will rule out non-denoting
singular terms by simply denying the status of singular terms to all those
expressions of natural language (that is, de�nite descriptions and `grammat-
ically proper names') that can ever be non-denoting, and retaining it only
for those other expressions (that is, demonstratives) that look absolutely
`secure' from a denotational point of view. Within the second alternative,
his strategy will be more subtle. For Frege never really denied (as Rus-
sell did|at least as far as logical form was concerned) that there are in
natural language non-denoting singular terms, but claimed that their pres-
ence constitutes a defect, to be repaired in a `logically perfect' language (see
[Frege, 1892]). Thus, whereas Russell's proposal extends very naturally to a
complex philosophical position, which includes (at least) metaphysical and
epistemological themes, Frege's quali�es as an intrinsically pragmatic one,
in whose favour nothing can be said better than Carnap's words in [Carnap,
1947]: `there is no theoretical issue of right or wrong between the various
conceptions, but only the practical question of the comparative convenience
of di�erent methods' (p. 33).

4 INCLUSIVE LOGICS

Chronologically, some of the �rst instances of a revisionary attitude about
the existential `commitments' of classical logic can be found in what Quine
called inclusive logics, that is, logics allowing the domain of quanti�cation to
be empty. To dispel what seems to be a quite common misunderstanding, it
needs to be pointed out once and for all that inclusive logics and free logics
are two di�erent subjects. A logic can be free without being inclusive, and
can be inclusive without being free. However, it is also convenient to treat

8The �rst suggestion is usually associated with Le�sniewski, the second one with
Meinong. For more recent formulations, see in the �rst case Lejewski [1954; 1958] and
[Luschei, 1962], in the second Parsons [1980] and Routley [1980].
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the two subjects together. For, on the one hand, the problems they face
are strictly connected, and on the other, as for example [Belnap, 1960] has
pointed out, it is quite natural to require inclusiveness of a free logic and
vice versa.

The �rst inclusive logic was developed (twenty-�ve years before the �rst
free logics) by [Jaskowski, 1934]. Jaskowski's is a natural deduction system,
which, in contrast with most other such systems, allows for two di�erent
kinds of assumptions (or `suppositions'). One can assume formulas (which
one indicates by pre�xing the formula with the metalinguistic symbol S),
and one can assume singular terms (which one indicates by pre�xing the
term with the metalinguistic symbol T ). The way the assumption of terms
works is made clear by the quanti�cational rules of the system, which are
given below.

1. Supposition of a term: at any point in a deduction it is possible to
introduce an assumption of the form T� , where � is a new term.

2. Universal Instantiation: '[�=x] follows from 8x' and T� .

3. Universal Generalisation: if ' follows from T� then it is possible to
deduce 8�', and this conclusion does not depend on the assumption
T� (which is thus `discharged').9

To explain how these rules allow the domain to be empty (by disallowing
proofs of formulas which would exclude this possibility), it is best to use an
example. Consider then

(3) 8x'! 9x';
a typical instance of an `exclusive' formula and a theorem of classical logic,
and try to prove it in Jaskowski's system. A reasonable way to go about
this is to assume the antecedent of 3 and the negation of its consequent,
that is, to start out with

(4) S8x'

(5) S8x:':

However, given the particular form of (2) above, nothing follows from 4 or
5 without also supposing a singular term. Let us do so, and continue with

(6) T�:

Now from 4 and 6 we get

9The fact that the Universal Generalisation can be given in this form depends on
speci�c features of Jaskowski's system: in particular, on the fact that his only terms are
variables.
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(7) '[�=x]

and from 5 and 6 we get

(8) :'[�=x]
which of course contradict each other. So the assumptions are not consis-
tent, but the key point here is that there are not two but three assumptions,
and in particular 4 and 5 can still be perfectly consistent if nothing like 6
is accepted (which is exactly what one would �nd most natural in the case
of the empty domain).10 Thus the attempted proof of 3 is blocked.

Jaskowski considers this quanti�cational system very briey, almost as
an appendix to a paper mostly devoted to propositional logic. Possibly
for this reason, the system has a number of unnecessary limitations, and
the consequences of removing them are not explored. If they had been
explored, the system might have turned out to be the �rst free logic as well
as the �rst inclusive logic. To understand what I mean, consider that in
the system in question (i) open formulas are not provable, (ii) there are no
individual constants, and (iii) the metalinguistic symbol T has no object-
language counterpart. If (iii) and either (i) or (ii) were dropped (and, say, T �

were the object-language counterpart of T ), rules (1){(3) of p. 153 would
immediately yield (in conjunction with the propositional rules) theorems
like

(9) (8x' ^ T ��)! '[�=x]

(10) 8xT �x;

while at the same time blocking the proof of formulas like

(11) 8x'! '[�=x];

and as we will see these are the key features of most free logics.11

When something like the above happens, and the solution of a problem
can be found almost automatically by solving another problem, one natu-
rally is led to suspect that there exists something more than a coincidence,
that there is indeed a real connection between the two problems. In retro-
spect, it is not diÆcult to see what the connection is. Free logics are logics
allowing for non-denoting singular terms, and of course if the domain is
empty then all singular terms are non-denoting; hence if an inclusive logic

10For in this domain there are no objects, hence nothing to talk about by using singular
terms.

11This of course when T � is read as a substitute of the more common E!. Furthermore,
notice that removal of (iii) is not critical to generate a free logic: if (iii) is not dropped
(but either (i) or (ii) is) what we obtain is a `pure' free logic, that is, a free logic without
existence or identity. Indeed, making the existence symbol metalinguistic is one way of
constructing a natural deduction or Gentzen formulation of such a pure free logic.
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allows for any singular terms at all, it must allow for non-denoting singular
terms, and thus be free as well. In light of this consideration, it is easy to see
that the only way Jaskowski's logic (or any inclusive logic for that matter)
could avoid being free was by refusing to admit any singular terms (which
is the philosophical meaning of limitations (i) and (ii) above). And one
might expect that, simply by developing their instrument a little further,
inclusive logicians would have �nally `reached' free logics in a very natural
way. However, this is not what happened, and the reason is interesting.

As we will argue later at great length, the fundamental problem to be
solved in the development of free logics is a semantical one: the prob-
lem of assigning reasonable truth-conditions to sentences containing non-
denoting singular terms. Inclusive logicians went very close to hitting this
problem when they considered dropping some of Jaskowski's limitations.
Thus Mostowski [1951], when constructing an inclusive logic contravening
(i) above, had to decide what to do with open formulas in the empty domain.
In a language without individual constants (as his was), free variables are
the only possible place-holders for singular terms, hence Mostowski's prob-
lem was at least in part a special case of the fundamental problem of free
logics. But there was at the time no awareness of this, so he simply treated
free variables in analogy with (universally) bound ones, and he made all
open formulas true in the empty domain.

The system resulting from this choice had a surprising anomaly: modus
ponens was not truth- or validity-preserving in it, as the following example
illustrates.

(12) '(x)
'(x)! 9y'(y)
9y'(y)

The presence of this anomaly could have worked as a stimulus towards more
satisfactory solutions, if the general problem lingering in the background
had been perceived. Since it was not, subsequent authors such as Hailperin
[1953] and Quine [1954] regarded the anomaly as a mere nuisance, and
preferred to avoid the question entirely by returning to Jaskowski's practice
of excluding open theorems, thus contributing in a decisive way to sealing
o� what could otherwise have been a promising line of enquiry.

II: Proof-Theory

5 AXIOMATIC SYSTEMS

We saw in the last section how inclusive logicians avoided the crucial (se-
mantical) problem of free logics. It might be surprising to �nd out that
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even most free logicians basically side-stepped this problem for ten years
(at least in their published works), by limiting themselves to a purely proof-
theoretical development of their logics. As a result, the history of free logics
can be neatly divided into two (partly overlapping) periods: the �rst one
mostly devoted to proof-theory and the second one mostly devoted to se-
mantics. It is natural, then, in accounting for the subject, to follow the
same pattern, and here we will do just that. In the present part we will
discuss the formal systems of free logic, as elaborated largely between 1956
and 1967,12 and in the next one the interpretations of these systems, whose
development took o� only beginning in 1966. Within each part, however,
we will make no attempt at preserving any chronological order, but will be
guided entirely by considerations of systematicity.

Every axiomatic formulation of CQC contains as a primitive assumption
either the so-called Law of Speci�cation

(13) 8x'! '[�=x]

or some other principle or rule deductively equivalent to it. (For de�niteness,
we will refer from now on to a system containing 13 as a primitive assumpt-
ion.)13 Furthermore, all the theorems of CQC = that free logicians �nd
questionable (including 1 and 2) are proved by making a substantial use of
13. It is natural to conclude, then, that the �rst step in the construction of
an axiom system for free logic is going to be dropping 13.

When this is done, the remaining axioms permit the proof of the following
weakened form of 13 (that we might call Restricted (Law of) Speci�cation):

(14) (8x' ^ 9x(x = �))! '[�=x]

Far from representing a problem for the free logician, however, this result is
most welcome to him; for Restricted Speci�cation (in contrast with Speci�-
cation proper) is a law that makes perfectly good sense even in the presence
of non-denoting singular terms (and existentially loaded quanti�ers).

To understand why this is so, consider that the supplementary condition
required in 14 to instantiate the universal quanti�cation 8x' with respect
to the singular term � can be legitimately read as stating that � denotes
a value of a bound variable, or more simply (via Quine's dictum) that � is
denoting. Thus on the one hand 14 says nothing (and in particular nothing

12For these systems, see Leonard [1956]; Leblanc and Hailperin [1959]; Hintikka [1959a]

and Lambert [1963; 1967].
13Also, we will refer to a language without function symbols and with 8 as the only

primitive quanti�er. As a consequence of the latter, the counterpart of 13 in terms of 9
(that is, the Law of Particularisation

13� '[�=x]! 9x')

will not occur among the primitive assumptions. And �nally, let me notice once and for
all that here we will try to give a uniform treatment of the various free logics, disregarding
notational and stylistic di�erences among their authors.
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questionable) about non-denoting singular terms, and on the other, though
it cannot be used to justify the dubious inference from

(15) Nothing (existent) is a winged horse

to

(16) Pegasus is not a winged horse;

it can be used to justify the perfectly legitimate one from 15 and

(17) Secretariat exists

to

(18) Secretariat is not a winged horse:

Beginning with a seminal paper by Leonard [1956], that practically in-
augurated the subject, free logicians have insisted that two of their most
important tasks are (a) making explicit the existential assumptions that
are tacit in classical logic (and that only can justify|in their opinion|the
presence there of `laws' like 13), and (b) discriminating between the cases
in which these assumptions are relevant and the cases in which they are
not. 14 is a good example of how these two tasks can be successfully per-
formed: on the one hand, the assumption that (the singular term) � be
denoting|taken for granted by classical logic|is here expressed by

(19) 9x(x = �)

and on the other the relevance of this assumption is signalled by its very
presence, thus distinguishing the case of 14 from, say, that of

(20) '(�) ! ::'(�);
which is also a theorem of both classical and free logic and in which no
supplementary existential condition is given (or needed).

All of the above, however, is made possible by the fact that CQC= is a
logic with identity, for the identity symbol plays a vital role in expressing
existence in 19 and substitutivity of identicals a vital role in proving 14.
What would happen if the starting point were an axiom system for CQC,
that is, for classical logic without identity?

We can approach this problem in stages. First of all, notice that if indeed
19 expresses an existential commitment to the denotational character of � ,
it seems legitimate to use it as de�niens for a new existence symbol, say in
the following way:

(21) E!� =df 9x(x = �), where x is alphabetically the �rst variable dis-
tinct from � .

14
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By using this abbreviation, 14 could be rephrased as

(22) (8x' ^ E!�)! '[�=x];

thus making the meaning of the extra assumption even more explicit.
In the system resulting from CQC by dropping 13, neither 14 nor its

de�nitional abbreviation 22 can be proved; yet, on the other hand, some-
thing like 14 or 22 is certainly needed. For, as already noted, the procedures
of classical logic (and in particular, Universal Instantiation), though based
on tacit existential assumptions, are of course unquestionable when these
assumptions are true.

The simplest way of reintroducing the legitimate cases of instantiation
after dropping 13 from CQC would be to add E! to the set of primitive
symbols, and 22 to the set of axiom-schemata. There is however a more
ingenious way, which makes use of neither the existence nor the identity
symbol, and is due to [Lambert, 1963].

To understand this alternative, it is enough to take a closer look at 14.
What this `law' says is that if something is a value of a bound variable
then it has all the properties (expressible in the language and) shared by
all such values. This conditional statement, however, could be reformulated
in universal terms: every value of a bound variable has all the properties
(expressible in the language and) shared by all such values. And this refor-
mulation in turn suggests

(23) 8y(8x'! '[y=x])

as a possible replacement for 14 or 22.
I have now developed the core of a `pure' free logic FQC, of a free logic

with existence FQCE!, of a free logic with identity FQC=, and of course
of a free logic with existence and identity FQCE!=. Before presenting their
�nal formulations, however, two further problems must be mentioned.

First of all, consider the system obtained from CQC= by substituting
23 for 13. In this system

(24) 8x9y(y = x)

is provable, which seems to be a perfectly reasonable result. For every value
of a bound variable is certainly also a value of any other bound variable.
However, as shown by Bencivenga [1978a; 1980a], this very natural result is
not provable in the system obtained from CQC= by simply dropping 13,
not is its counterpart in terms of the existence symbol

(25) 8xE!x
14This existence symbol was �rst used by Russell, but only with descriptions. It was

[Leonard, 1956] who generalised its application to all singular terms.
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provable in the system obtained from CQC= by substituting 22 for 13
(which again is not good news, given the evident connection between 25
and that `existential import' of quanti�ers that we regarded as a de�ning
feature of free logics).

Secondly, it long remained an open problem in pure free logic whether

(26) 8x8y'! 8y8x'
is provable in the system obtained from CQC by substituting 23 for 13.
Fine [1983] solved this problem in the negative, showing the independence
of 26 from the system in question.

In conclusion, then, let us agree on what follows. FQC is obtained from
CQC by substituting 23 and 26 for 13. FQC= is obtained from CQC=
by substituting 23 for 13. FQCE! and FQCE!= are obtained from CQC

and CQC=, respectively, by substituting 22 and 25 for 13.
Two �nal remarks. First, all of the above are in a sense minimal systems

of free logic: a few stronger systems will be considered in the part on se-
mantics. Second, it will also become clearer in the part on semantics that
all these systems are inclusive as well as free: once again, it is the strict
connection between the two sets of problems that allows us to automatically
solve the one while addressing the other.

6 NON-AXIOMATIC SYSTEMS

Something must be said about natural deduction and Gentzen formulations
of free logics. Indeed, the �rst two formal systems for free logics|those by
Leblanc and Hailperin [1959] and Hintikka [1959a]|were natural deduction
systems, which however did not receive much currency in the literature. As
to Gentzen systems for free logics, they can be found in [Routley, 1966;
Trew, 1970; Bencivenga, 1980b]. Here in formulating both kinds of systems
we will take for granted standard rules for connectives and identity (as
well as, in the case of Gentzen systems, standard axioms), and we will
make a substantial use of the existence symbol in the quanti�cational rules.
Systems for pure free logic (or free logic with identity but not existence) may
be obtained by using the same rules but making `E!' into a metalinguistic
symbol, and thus accepting as theorems only formulas not containing it.15

With all these quali�cations, a natural deduction system for free logic
can be characterised by the following four rules.

15This is the strategy suggested in note 11. In the case of a free logic with identity but
without existence, it would also be possible to have 9x(x = �) do the job of E!� , but
this would have the `unnatural' consequence of making quanti�cation theory dependent
on identity theory.
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(27) Introduction rule for 8 :
fE!ag

...
'[a=x]
8x'

where a is a new individual constant not occurring in '.

(28) Elimination rule for 8 :
8x' E!a

'[a=x]

(29) Introduction rule for 9 :
'[a=x] E!a

9x'
(30) Elimination rule for 9 :

f'[a=x]g
fE!ag

...
9x'  

 

where a is a new individual constant not occurring in ' or  .
On the other hand, a Gentzen system for free logic can be characterised

by the following four rules.

(31) Introduction of 8 in the antecedent:

�; '[a=x] ` � �0 ` �0; E!a

�;�0;8x' ` �;�0

(32) Introduction of 8 in the succedent :

�; E!a ` �; '[a=x]
� ` �;8x'

where a does not occur in �;� or '.

(33) Introduction of 9 in the antecedent :

�; E!a; '[a=x] ` �
�; 9x' ` �

where a does not occur in �;� or '.



FREE LOGICS 161

(34) Introduction of 9 in the succedent :

� ` �; '[a=x] �0 ` �0; E!a

�;�0 ` �;�0; 9x'

III: Semantics

7 THE PROBLEM

Consider a simple subject-predicate sentence, say,

(35) Socrates is a man:

How is a truth-value to be assigned to 35 according to the usual referential
semantics for classical logic (briey, classical semantics)?

Very simply put, the answer is as follows. First of all, we establish a
domain of quanti�cation (which, given our adoption here of Quine's dic-
tum, can be identi�ed with the set of existing things). Then we look for
the denotation of the singular term `Socrates' and for the extension of the
general term (or predicate) `being a man' in that domain. And �nally, we
pronounce 35 true if that denotation is a member of that extension, and
false otherwise.

There is more to this procedure than meets the eye. Indeed, it is impossi-
ble to set up (in a reasonable way) the conditions at which a given sentence
is true without having some theory of truth, and the procedure in question
is based on one such theory, that is, on what is usually called the correspon-
dence theory of truth. 35 is (say) true|according to this theory|because
it corresponds to reality, and it would be false if it did not. More generally,
35 is true in a given state of a�airs (or `possible world') if it corresponds
to reality there, and false otherwise. If we were doing propositional logic,
this correspondence between (atomic) sentences and reality would be the
bottom line, but at the level of analysis of quanti�cation theory, that is,
when sentences are analysed into (singular and general) terms, the corre-
spondence in question is to be reduced to some more basic correspondences:
the ones between singular terms and the objects constituting extensions.
If in general the correspondence theory wants to establish the truth of a
sentence in terms of a �t between what the sentence says and the way the
world is, then such basic correspondences represent at this level of analysis
the points at which the �t must be sought. To go back to our example
once more, 35 is true just in case the object corresponding to `Socrates' is
a member of the set corresponding to `being a man'.

But then of course basic correspondences are the key to the whole matter.
Once we have the basic correspondences relative to some sentence we can
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determine whether the sentence corresponds to reality or not, but not before.
In the world in which we live, we know that 35 is true and

(36) Plato is a table

is false, but this is because we know who Socrates and Plato are, and which
things are men and tables. Probably we would not know if we did not know
who Socrates is, and certainly we would be in big trouble if there were no
Socrates.

This kind of trouble is exactly what awaits us when we introduce non-
denoting singular terms into the picture. Non-denoting singular terms de-
note nothing existent. Of course, they could denote something else, and in
what follows we will consider some such position, but this is one possibility
among many, and we must also take into serious account the possibility
that they denote nothing at all. And taking this possibility seriously means
considering situations in which some of the basic correspondences required
by classical semantics are simply not there.

This is more than an epistemological problem. Consider for example

(37) Secretariat is white

and

(38) Pegasus is white;

and suppose that Secretariat be taken to a remote planet, where its colour
could not be ascertained. Also, to simplify things, suppose that none of the
�ctional writings about Pegasus said anything about its colour. Still, there
would be a fundamental di�erence between 37 and 38. For the colour of
Secretariat could not be ascertained in fact, due to the practical limitations
of human beings, but could be ascertained in principle, by somebody able
to overcome those practical limitations, whereas in the case of Pegasus the
thing would be impossible in principle, too: since Pegasus is nowhere to be
seen, no matter how our powers were to improve, they would not inuence
our ability (or rather, inability) to verify its colour.

So it is not a matter of what we know, but of what we think truth is.
Under the circumstances imagined above, it looks like it's not the case that
Pegasus is white. It is the case that it is not white? (Or|which is the
same|it is false that it is white?) Maybe, but if it is so, it must be for (at
least partly) di�erent reasons than (say) in the case of 36, and we need our
theory of truth to tell us exactly what the analogies and the di�erences are
between the two cases. The correspondence theory by itself cannot tell us
this, because its verdicts are based on data|the basic correspondences|
that here are not always available. Perhaps all we need is a small clause
taking explicit care of such `exceptions', but still we need something, we
need some way of deciding when sentences containing non-denoting singular
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terms are true, and why. This is the main question to be faced in the
course of constructing a semantics for free logics|and in my opinion in free
logics in general. It is an important question because any answer to it is
inevitably going to provide an alternative to, or at least a generalisation
of, the correspondence theory of truth. It is a delicate question because
the correspondence theory is an old and venerable one, and challenging it
represents a true act of `revolutionary science'. In the rest of the present
part, I will give an account of this revolution.

8 OUTER DOMAINS

Given the way in which we set up the problem of `free' semantics (that
is, accommodating for the presence of gaps in the basic correspondences),
the easiest way to `solve' this problem consists simply in avoiding any such
gaps. This is substantially the way most classical logicians operate, either by
assigning arbitrary denotations to (previously) non-denoting singular terms
(�a la Frege{Carnap) or by excluding (�a la Russell) such (alleged) terms from
the class of things in need of a direct semantical counterpart. However, there
is a way of going in this direction without ending up in classical logic: all
that we have to do is to acknowledge that `Pegasus' or `the present King of
France' have a semantical counterpart (or a denotation) just as much as `Bill
Clinton' or `the present President of France' do, only that such counterparts
(or denotations) are not members of the domain of quanti�cation, or, to put
it more bluntly, do not exist.

Even if some suggestions of this kind are much older,16 the �rst such pro-
posal that appeared in print was contained in the review by Church [1965]

of Lambert [1963]. The purpose of the review was a critical one: Church
indeed meant to show that the whole enterprise of free logic was of very lit-
tle philosophical signi�cance. Actually however (and a little ironically), the
main result it achieved was that of sketching one of the very �rst semantical
treatments of the subject, and one that was going to have a lot of success
in the next few years.

Briey, the substance of Church's contribution was as follows. Let S
be any set, and let a classical interpretation of individual and predicate
constants be de�ned on S. Let P be any monadic predicate, and let two
new quanti�ers be de�ned, to be read `for every x, if x is P then . . . ' and
`there is an x such that x is P and . . . '. Church suggested (without actually
proving it, but the claim was indeed true, and was proved later)17 that the
set of theorems of Lambert's axiomatic system would coincide with the set

16For example [Leblanc and Thomason, 1968] mention a suggestion of outer domains
made (to Leblanc) by Joseph Ullian in 1962, and apparently both Belnap and Lambert
had outer domain semantics very early (but never published their results).

17A sketch of the proof is given in Section 11.
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of (classically) logical truths containing only the new quanti�ers. As Meyer
and Lambert [1968] put it, free logic was then just a `simple exercise in a
theory of restricted quanti�cation'.

Shortly after Church's `proposal', at least three major attempts were
under way at constructing free semantics along the lines implicitly (and un-
willingly) suggested by it. None of them made explicit reference to Church,
and quite possibly they were all totally independent of his review, but there
is a factual, objective sense in which they were all developing the suggestions
contained in it, and emphasising di�erent aspects of them.

The system which went the closest to reproducing Church's intuitions was
the `logic of possible and actual objects' proposed by Cocchiarella [1966].
Semantically, the basic unit of this logic (a Cocchiarella structure) can be
conceived of as an ordered triple hA;A0; Ii, where A is as usual a non-
empty set and I is a (total) function interpreting individual and predicate
constants on A. The new character in this story is A0, which is just any
(possibly empty) subset of A. A is the range of quanti�ers, but not of quan-
ti�ers having existential import: rather, its members are to be construed
intuitively as `possible objects'. A0, on the other hand, is the range of an-
other pair of quanti�ers, which do have existential import. If we adopt the
usual symbols for the `existentially committed' quanti�ers and for exampleV
and

W
for the more general ones, it is easy to see that 8x' can be true in

a Cocchiarella structure while '[�=x] is not (indeed, even while 9x' is not,
if A0 is empty), hence that Speci�cation fails for the restricted quanti�ers.
On the other hand, this principle does hold for the unrestricted quanti�ers,
which suggests that a formal system for the logic in question can be ob-
tained simply by pairing a classical logic for

V
and

W
with a free logic for

8 and 9 and adding the schema

(39)
V
x'! 8x';

which supplies the connection between the two sets of quanti�ers.
Due to the presence of two sets of quanti�ers and of principles like 39,

Cocchiarella's logic of possible and actual objects is in fact more than a
minimal free logic in the sense of Part II, but by dropping the unrestricted
quanti�ers from the language and all the theorems containing them from
the formal system, we would obtain exactly a minimal free logic in that
sense. On the other hand, if we were to do this then the larger set A would
not be the range of any quanti�ers but would only be providing denotations
for the individual constants not interpreted in A0. It might be natural then
to represent the situation in a slightly di�erent way and, instead of insisting
on the set of existents being a subset of a larger set of possibles, focus on
the distinction between existents and non-existents (that is, in terms of a
Cocchiarella structure, between A0 and A � A0). And this in turn would
bring us immediately to the variant of the present approach proposed by
Leblanc and Thomason [1968]. Since this variant is probably the most
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popular, we will give here a slightly more detailed account of it than we
did of Cocchiarella's (or than we will do of Scott's). The reader can easily
accommodate our remarks to the other variants.

A Leblanc{Thomason (or, more simply LT) structure is again an ordered
triple hA;A0; Ii, where however A and A0 are two disjoint sets (called the
inner domain and the outer domain, respectively) such that their union is
non-empty (this union of course corresponds to the set of possibles in a
Cocchiarella structure, and it still plays an important role in the present
context, though in a way it shifted to the background). I is a (total) function
interpreting individual and predicate constants on A[A0. An LT structure
is null if its inner domain is empty, and non-null otherwise. In a non-null
LT structure, an assignment is a (total) function from the set of variables
to the inner domain. Satisfaction is then de�ned as usual, but the fact that
variables can only get values in the inner domain makes of this domain the
range of quanti�ers.

Leblanc and Thomason's semantics is inclusive as well as free, as is shown
by the presence of null LT structures. Thus the problem arises once again
of what to do in those structures with open formulas. However, this is not
a problem that we need consider. Simplifying on Leblanc{Thomason's own
treatment, we can agree to adopt the Jaskowski{Hailperin{Quine suggestion
of accepting only closed theorems, and thus leave open formulas simply
uninterpreted in null LT structures.18 In contrast with the above authors,
this won't produce any limitation in our expressive powers, because we
already have individual constants as place-holders for singular terms, and
individual constants behave in null LT structures just as they behave (when
they are non-denoting) in the non-null ones.19 Besides, we need not deal
with open formulas as a preliminary step for evaluating quanti�ed sentences
in null LT structures, since we can agree once and for all that for all such
structures A and all sentences 8x'
(40) A � 8x':
An analogous attitude will be adopted (without further mention) with re-
spect to all the alternative semantics to be presented here.

We have thus considered two variants of what we will call in general the
outer domain approach to free semantics. As suggested above, they empha-
sise di�erent aspects of this approach (and of the original suggestions by
Church). Cocchiarella makes the most of the notion of restricted quanti�-
cation, whereas Leblanc and Thomason make the most of the presence of
two kinds of denotata. A third aspect of this approach is its similarity to
Frege{Carnap's classical device; in both cases indeed the problem of non-
denoting singular terms is solved by making them denoting (in a sense). It

18As to Leblanc and Thomason themselves, they preferred to follow Mostowski in
weakening modus ponens.

19That is, in both cases they denote members of the outer domain.
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is not surprising then that there be a further variant of the approach in
question which makes the most of this similarity. Such a variant is due to
Scott [1967].

Scott's theory (as on the other hand both Frege's and Carnap's) is actu-
ally a theory of (de�nite) descriptions, but the general semantical strategy
it embodies makes perfectly good sense at the level of unanalysed singular
terms, too. Very simply put, this strategy is as follows. Associate with
each domain of quanti�cation an entity not belonging to it, say the entity
�. Since � is outside the range of quanti�ers, by Quine's dictum it does not
exist, but still it can be assigned as a semantical value to singular terms;
hence f�g works practically as an outer domain. At the same time however,
since this outer domain is a singleton, � works also like a Carnapian chosen
object, in that all the (originally) non-denoting singular terms have it as
their common semantical counterpart (or `denotation').

Because of this last feature of Scott's semantics,

(41) (:E!� ^ :E!� 0)! � = � 0

is logically true in it. Since of course 41 is not provable in the minimal free
logics of Part II, they should be strengthened somewhat to generate a formal
system adequate to the semantics in question. The simplest way to do this
consists in adding 41 itself as a further axiom-schema. A more elaborate
alternative would require the addition of a new symbol (for example, `�')
to the language, of a clause �xing its interpretation on the `non-existent
object' to the semantics, and of the schema

(42) :E!� ! � = �
to the deductive apparatus. Actually, if we were dealing with descriptions,
this more elaborate alternative might turn out to the be the simpler of the
two, because in description theory `�' could be introduced by de�nition, say
by

(43) � =df
�x(x 6= x):

Our presentation of the outer domain approach to free semantics ends
here, and we can conclude the present section with a brief appraisal of this
approach. Such remarks will be of a general nature, and will leave aside the
special developments recommended by Scott, which will be the subject of
further discussion in the section on descriptions.

First of all, then, the positive side. Outer domain semantics is simple,
and we know why: �lling all the gaps left by non-denoting singular terms
in the basic correspondences allows one to stick to the standard evaluation
procedures, thus generating a feeling of familiarity for the whole enterprise.
The problem of non-denoting singular terms is not so much solved as it
is dissolved. The reason why `Pegasus is white' is (say) true is not at all
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di�erent from the reason why `Secretariat is white' would be: `Pegasus is
white' is true because the (non-existent) object Pegasus falls within the
(non-existent part of the) extension of `white'.

Furthermore, outer domain semantics is formally very convenient. Se-
mantical completeness is provable here in its stronger form: not only the set
of logically true sentences but also the set of valid arguments is recursively
enumerable, and thus the whole logic is under complete (proof-theoretical)
control. Once again, the reason is not hard to �nd, even though probably
it will be fully appreciated only later, when this semantics is contrasted
with some of its alternatives.20 The fact is that the semantics in question is
bivalent: every sentence, whether or not it contains non-denoting singular
terms, is either true or false (in any structure).

Whereas all the positive comments on this semantics have to do with
practical or technical matters, all the negative ones have to do with philo-
sophical matters. The �rst (and most common) of these comments is prob-
ably best put in the form of a question: what exactly is the status of the
members of the outer domain? The most natural answer to this question is
`non-existent objects', but such an answer generates trouble.

It is not that non-existent objects are not philosophically `respectable'.
On the contrary, they are quite popular in philosophy today, probably more
than they ever were after Russell's alleged `refutation' of Meinong. Scholars
of Meinongian inclination, for example Parsons [1980], have questioned the
validity of that refutation, and constructed ingenious philosophical theories
of non-existent objects. To be sure, such objects are diÆcult to deal with,
mostly because|as noted by [Quine, 1948]|their identity conditions are
far from clear, but to say that they are diÆcult is not to say|as Quine
concluded a bit too hastily|that they are `well-nigh incorrigible'. After
all, if we are not ready yet to give a satisfactory account of non-existent
objects|and chances are that soon this will no longer be true, if indeed it
is true now|the problem might be with us and our philosophy, rather than
with the objects themselves.

All of this is very good, but unfortunately it does not even get close to
removing the trouble we mentioned above. For the diÆculty with using non-
existent objects to construct a semantics for free logics is not that we are
not ready to accept them or to account for them, but that accepting them
and accounting for them should have little to do with one's logic, and should
depend instead on one's metaphysical position|at least according to a quite
common conception of logic and metaphysics.21 And if this conception is

20See in this connection the end of Section 10.
21Given that metaphysics is often de�ned as the study of what is (insofar as it is), it

may sound awkward to say that this discipline should also be concerned with what is
not. The awkwardness however is reduced when we consider that most supporters of non-
existent objects ascribe to them some sort of (watered-down) `being' (often discriminating
between `to be' and the stronger `to exist').
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correct, then outer domain semantics is in conict with what we regarded
as the most basic motivation for having a free logic in the �rst place!

Another criticism of outer domain semantics has to do less with non-
existent objects in themselves than with the particular use the semantics
in question makes of them. For many supporters of such objects (including
Meinong)22 have held that at least some of them are `incomplete', that is,
such that for some property P , they have neither P nor not-P , and indeed,
there seems to be something to the claim that, if for example none of the
stories about Pegasus says anything about its length, then (say) the sentence

(44) Pegasus is six feet long

is neither true nor false, but simply indeterminate. The present semantics,
however, allows for no such `truth-value gaps', and we must be careful not
to introduce them too hastily into the picture. For if we decided to simply
leave some members of the outer domain `unde�ned' with respect to some
predicate constant P , this would determine the immediate collapse of such
logical laws as

(45) ' _ :';
and with them of most of CPC.

Though certainly quite serious, this criticism of outer domain semantics
is not as damaging as the �rst one was. Truth-value gaps cannot be in-
troduced too hastily in this semantics, but can be introduced after all. In
a later section, we will mention a compromise between the outer domain
and the supervaluational approach which saves much of the spirit of both
while allowing (as supervaluations do) for truth-value gaps and (in a sense)
`incomplete' objects.

A third negative comment on outer domain semantics is even more de-
pendent than the previous one on the particular ways this semantics has
been formulated so far, and furthermore is itself grounded on a debatable
philosophical position. It is just that some people �nd it objectionable that
there be `genuine' relations between existent and non-existent objects, and
the semantics in question (in its usual formulations) seems to allow for such
relations.

What I mean by `genuine' deserves some words of explanation. If we
admit non-existent objects, there are inevitably going to be some relations
between them and the existent ones, because it is simply true that, say,

(46) I am thinking of Pegasus:

Relations such as the one expressed by 46, however, are of a very special
kind; without entering into any detail, we can qualify them as `intentional'
or in some sense `modal', and contrast them with such `purely descriptive'
(or `genuine') relations as the one expressed by

22See [Findlay, 1963, p. 57].
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(47) Peter is taller than Mary:

Now according to some philosophers of logic the predicate constants P;Q;
R; : : : of quanti�cation theory stand for genuine (nonintentional) relations,
hence if you think that no such relations hold between existents and non-
existents (and share this position in the philosophy of logic), you might
be embarrassed by the fact that in the usual formulations of outer domain
semantics an ordered pair ho1; o2i can fall into the extension of (say) P even
when o1 is a member of the inner domain and o2 a member of the outer
domain (or vice versa).

It would be possible to reformulate outer domain semantics so as to avoid
this (for some people) unwelcome feature of it. However, this has not been
done yet, and the present context is certainly not the right place to do
it. Let me just notice in closing that at some point the problems raised
by these reformulations will become interwoven with the problems raised
by our second criticism of outer domain semantics. For there are several
ways to go after claiming that the existent object a cannot hold the genuine
relation P to the non-existent object b, and one of them is to say that

(48) Pab

is an indeterminate sentence.

9 CONVENTIONS

The positions that we will consider in the present section are quite disparate.
What holds them together (in my opinion at least) is the fact that they
determine truth-values for sentences containing non-denoting singular terms
pretty much by �at, and that whatever discussions or justi�cations they o�er
of their choices are more or less of an `external' nature, that is, have mostly
to do with the practical consequences of these choices or with how much
they `�t' with other (already accepted) linguistic theories.23 For this reason,
I found it suggestive to group them around the word `convention'.

The most typical `conventional' positions can be described very easily.
Their basic semantical unit is a `partial' structure hA; Ii, where A is the
usual domain of quanti�cation and I interprets (on A) all the predicate
constants and some (possibly all, possibly even none) of the individual con-
stants. Truth-values for atomic formulas not containing non-interpreted
constants are determined as usual, whereas all the atomic formulas con-
taining such constants have the same truth-value, true or false as the case

23For example, [Burge, 1974] takes it as a crucial argument in favour of his approach
that it allows him to save a Tarskian theory of truth. Of course, even authors going in
di�erent directions do sometimes o�er `external' justi�cations, but nowhere seem such
justi�cations as crucial as in the semantics discussed in the present section.
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may be. Borrowing (and adapting) some terminology by Lambert [1981],
we can thus distinguish (on obvious grounds) between positive and negative
conventional semantics.

The truth-values of complex formulas are also determined as usual. In
particular, assignments are de�ned as (total) functions from the set of vari-
ables to the domain, and the satisfaction-condition for quanti�ed formulas
is the standard

(49) A � 8x'[f ] if and only if for every member � of the domain of A;A �

'[f; �=x]:

Completeness and the other usual metatheoretical results are not diÆcult
to establish for conventional semantics: once more, bivalence makes things
relatively easy. Indeed, there is in general not much to be said about the
technicalities of these semantics; hence we might turn right away to some
considerations for and against accepting them.

Given the present state of the literature, positive conventional semantics
are little more than a theoretical possibility. Of course, it is a possibility of
which most scholars in the �eld are aware, but nonetheless it has not become
yet the core of a full-edged semantical approach. In such a situation, we
cannot expect to �nd a great deal of (published) discussion on the semantics
in question; hence most of this discussion we will have to supply on our own.

An argument which could be given in favour of positive conventional
semantics is that they make it very easy to validate the schema

(50) � = �;

which is usually regarded as expressing a logical law. However, this does not
mean that such logics allow for a standard treatment of identity: they create
problems with respect to the substitutivity of identicals. For consider a
structure hA; Ii such that I(a) is not de�ned, I(b) is de�ned and I(b) 62 I(P ).
In this structure,

(51) a = b

and

(52) Pa

are both true, but

(53) Pb

is false. On the other hand, the situation is not so desperate as it might
seem. As we will see, many free semantics are forced to treat identity in
some special way, and in particular to require explicitly that a sentence of
the form 51 be false when exactly one of a and b is denoting. A similar
special provision is all that we would need here.
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Another criticism of positive conventional semantics could be that they,
too, allow for `genuine' relations between existents and non-existents. Of
course, this criticism should be slightly reformulated, since the semantics
in question do not literally allow for any non-existents at all, but only for
the truth of (atomic) sentences containing both denoting and non-denoting
singular terms. And of course, once reformulated, the criticism might be
easily answered in a number of di�erent ways, by adopting some more `spe-
cial provisions'.

Turning now to negative conventional semantics, we must notice �rst of
all that they have had much more success than their positive counterparts.
Indeed, the �rst semantical account of a free logic ever published, the one
by Schock [1964; 1968], was a negative conventional semantics, and so was
one of the latest ones, by [Burge, 1974]. If we add that Russell's classical
description theory has a lot in common|in the results if not in the methods
or the motivations|with these semantics, and that even authors going in a
di�erent direction|such as Scott [1967]|tend to agree with them when it
comes to determining the truth-values of sentences,24 we will have an idea
of the persistent attraction of the approach in question.

What are the reasons for this attraction? Schock [1968] expresses his
motivation as follows: `The application of a predicate to various terms holds
just when the denotations of the terms stand in the relation denoted by the
predicate; if not all of the terms denote, then their denotations cannot stand
in the relation and the application does not hold' (p. 21). In other words,
since there is no denotation of `Pegasus', the denotation of `Pegasus' cannot
stand in any relation with (say) the denotation of `Bellerophon'; hence

(54) Pegasus is loved by Bellerophon

is false.

As it is, this is not much of an argument. For it basically reduces to the
circular claim that 54 is false because

(55) The denotation of `Pegasus' stands in the relation of being loved by
with the denotation of `Bellerophon'

is|where the falsity of 55 is as much in need of a justi�cation as that
of 54. One might try to shore it up by pointing out that|in the usual
set-theoretical terms of classical semantics|the set of ordered pairs cor-
responding to the relation of being loved by is not going to contain any
member corresponding to Pegasus and Bellerophon. But one might answer
that classical set theory|just as classical semantics|is not prepared to
deal with non-denoting singular terms, and that things could be di�erent

24See the schema (I3) on p. 188 of [Scott, 1967], which Scott considers very reasonable
when giving axioms for a theory (not however for pure logic).
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in a `free set theory' devised for this purpose.25 The negative conventional
semanticist might then reply that his approach does not require any such
new technical instrument, that it allows one to preserve most of the classical
framework, and that these `conservative' features are very important from
a pragmatic point of view.

With this appeal to conservatism we have struck a key note. For what ex-
actly is so great about preserving the classical framework? And why should
pragmatic arguments be so crucial in choosing a free semantics? Of course,
one may think that pragmatic arguments are always crucial, or even that
they are the only arguments one can give in favour of any theory, and that
the traditional framework is always to be preserved whenever it is possible.
This is a general position in the philosophy of logic (and of science), and
I have nothing much to say about it|except that it does not seem to be
shared by many free logicians. What I think deserves some comment is the
opinion somebody might have that in this particular case, because of the
particular nature of the problem, pragmatic arguments are more important
than usual. More precisely, I refer to the opinion that, since non-denoting
singular terms are basically `don't cares', the only criteria to use in assessing
an attitude towards them are whether the attitude is simple, eÆcient, and
does not require a vast revision of our conceptual framework. I think that
this opinion may be very dangerous for free logic as a whole.26 For after
all, what is simpler and more conservative in this case than just sticking to
classical logic, supplemented by some of the policies mentioned in Section
3? Thus, omitting any further comment on the speci�cs of negative conven-
tional semantics,27 I will conclude the present section with some remarks
on why free logicians may think that non-denoting singular terms are not
`don't cares', and why they might want something more than an eÆcient
way to accommodate them in the classical framework.

It is not that free logicians are interested in non-denoting singular terms
in themselves; it is not that they have some kind of perverse attraction for
what does not exist. However, they are not bound to the realm of existents
either; they do not share that `prejudice in favour of the actual'28 which is so
common (and possibly healthy) in other branches of knowledge. A scienti�c
truth is true (at least in part) because of the way the world is, and given a
suÆciently wide conception of the `world' the same might be said of many
philosophical truths, but a logical truth should be independent of any such
factual matters, and in particular of what exists and what does not exist.

25Such free set theories have been developed in [Scott, 1967] and [Bencivenga, 1976].
To my knowledge, however, they have never been used in formulating semantics.

26Of course, so may be the more general position mentioned above. but that is also
too general to be discussed here.

27But let me stop a minute to notice that|as far as identity is concerned|these
semantics are in a sense in a dual position with respect to their positive counterparts:
they easily validate substitutivity of identicals but invalidate self-identity.

28The expression is Meinong's. See [Meinong, 1904].
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A logical truth should depend only on (logical) form, and there seems to
be no plausible (non ad hoc) ground for distinguishing between the form of
`Pegasus is white' and that of `Secretariat is white'. Of course, we know that
somewhere there is a di�erence, because Secretariat exists and Pegasus does
not, but invoking that piece of information, and discriminating on that score
between the procedures involved in evaluating the two sentences, would be
contaminating logic with mere contingencies.

In conclusion, non-denoting singular terms represent an important chal-
lenge for logic in general. For this reason, even though the free logician is
not going to forget considerations of simplicity and theoretical conservatism,
he may think that it is more crucial to rethink the whole subject, no matter
how complicated and revisionary this process is going to be.

10 SUPERVALUATIONS AND BEYOND

The most organic attempt to date at rethinking the whole subject of truth
theory in view of the presence of non-denoting singular terms was initiated
in 1966 by two seminal papers by van Fraassen [1966a; 1966b], and pursued
by van Fraassen himself and several other authors, including Skyrms [1968],
Meyer and Lambert [1968], Woodru� [1971] and Bencivenga [1980b; 1981].
In the present section we will study this approach, which from its most char-
acteristic technical instrument may be called the supervaluational approach.

The starting point of our analysis is once more conventions. According
to van Fraassen [1966a], the truth-value of a sentence like

(56) Pegasus has a white hind leg;

or even the fact that this sentence has a truth-value, is ultimately to be
established on the ground of some convention. This convention, however,
belongs to the philosophy of language, and should receive there whatever
justi�cation it is going to receive. Logic, on the other hand, has nothing
to do with any such conventions and justi�cations: the set of logical truths
should be absolutely independent of the philosophy of language we decide
to adopt. In particular, there will be conventions assigning True to 56 and
conventions assigning False to it, but logic should not be committed to any
of them. At the very most, we can think of logic as committed to the logical
product of all possible conventions, to what all these conventions have in
common, to what is going to be true (or false) no matter what convention
we adopt.

This notion of the logical product of all possible conventions leads very
naturally to the idea of a supervaluation, in the following way. Let a partial
structure A = hA; Ii be given, and suppose that I(a) is not de�ned, I(b) is
de�ned and I(b) 2 I(P ). Application of the standard evaluation procedures
establishes the truth of sentences like
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(57) Pb

(58) Pb _ :Pb

(59) 9xPx
as well as the falsity of

(60) :Pb

(61) Pb ^ :Pb
(62) 8x:Px;

but determines no truth-value at all for

(63) Pa

(64) :Pa

(65) Pa _ Pb

(66) Pa ^ :Pb

(67) Pa _ :Pa

(68) Pa ^ :Pa:

Of course, 63{68 might receive any combination of truth-values on the
ground of some convention or other, but it seems reasonable to restrict
our attention to those conventions that are classical in the following sense:
they assign truth-values to atomic formulas containing non-denoting singu-
lar terms in some way that it is not our present concern to examine (indeed,
that we could for our present purposes regard as totally arbitrary), but then
they proceed to evaluate complex formulas in the standard way.

The combination of any such classical convention and the information
supplied by the partial structure will determine a valuation of all the sen-
tences of the language. Let us agree to call any such valuation a classical
valuation (on A). Of course, all classical valuations will agree on all the
sentences (like 57{62) that contain no non-denoting singular terms, but the
interesting thing is that they will also agree on many sentences which do
contain non-denoting singular terms. Thus for example 63 will receive the
value True in some classical valuations and the value False in some others,
but every classical valuation will verify 65 and 67 and falsify 66 and 68. In
other words, there will be cases|and many of them|in which the logical
product of all classical valuations will be non-empty, and as such informa-
tive, beyond what is determined by the partial structure. As the fate of
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67 and 68 suggests, this supplementary information is enough to extend to
non-denoting singular terms all of CPC.

The essence of van Fraassen's approach consists simply in using this sup-
plementary information. More precisely, the supervaluation WA for a par-
tial structure A is characterised by him as the (partial) valuation which
assigns True to the sentences that are true in all classical valuations on A,
False to the sentences that are false in all classical valuations on A, and no
truth-value at all to the remaining sentences. Then, in at least one of the
alternatives he contemplates,29 supervaluations are to constitute the basic
(or admissible) valuations of free semantics, and all the other semantical
notions are de�ned in their terms.

The fact that supervaluations preserve all of CPC without espousing
any speci�c convention or admitting non-existent objects is certainly re-
markable, but it is also important to point out that when we move beyond
propositional logic supervaluations create serious problems.

The most apparent of these problems concern identity. When a is non-
denoting, nothing so far prevents a classical valuation from falsifying

(69) a = a;

and when both a and b are non-denoting, nothing so far prevents a clas-
sical valuation from verifying 51 and 52 and falsifying 53 on p. 170, thus
invalidating substitutivity of identicals.

Further (and more subtle) problems concern quanti�cation. To under-
stand them, we must �rst of all ask ourselves how the present approach
can be extended to deal with variables and open formulas. A natural way
would seem to be the following. De�ne a convention for a partial struc-
ture A as a binary function from the set of atomic formulas and the set
of assignments for A to fT; Fg (that is, as a function assigning (arbitrary)
truth-values to atomic formulas relative to assignments). Then let A, any
convention and any assignment determine an auxiliary classical valuation,
by using standard evaluation techniques for atomic formulas not contain-
ing non-denoting singular terms and for complex formulas, and relying on
the convention for atomic formulas containing non-denoting singular terms.
Point out that in the case of sentences assignments make no di�erence, and
de�ne on this ground the notion of a classical valuation on A, as deter-
mined only by A and a convention. Finally, de�ne the supervaluation for
A as the logical product of all classical valuations on A. All of this sounds
very good, but unfortunately it does not work: for it may well be that in
the case of sentences assignments do make a di�erence. Indeed, nothing
so far prevents a convention from assigning True to some atomic sentence

29He also considers an alternative in which classical valuations themselves are the
admissible valuations, but such an alternative is far less interesting or philosophically
defensible; hence we will totally disregard it here.
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(containing a non-denoting singular term) relative to some assignment and
False to the same sentence relative to a di�erent assignment. Hence the
`de�nition' suggested above of a classical valuation is not legitimate.

Van Fraassen's solution of these problems is disappointing. Very simply
put, he adds to the de�nition of a convention a number of ad hoc clauses
which rule out|by �at|all the possibilities contemplated above. More
precisely, a convention K is to be de�ned in such a way that

1. K(� = �; f) = T ;

2. K('[�=x]; f) = K('[� 0=x]; f) if either � [f ] = � 0[f ] or K(� = � 0; f) =
T ;

3. K('; f) = K('; f 0) if f(x) = f 0(x) for every variable x occurring
(free) in '.

For analogous reasons, it is also required that

4. K(� = � 0; f) = F if exactly one of � [f ] and � 0[f ] is de�ned.30

These additional clauses simplify the technical developments, and make
some of the desired metatheoretical results easily available, but certainly
don't go in the direction of providing a satisfactory philosophical moti-
vation for the resulting semantics. Indeed, they rather weaken whatever
motivation there was after our �rst introduction of the supervaluational
approach. For remember, the crucial point there was the neat separation
promised by supervaluations between logic and philosophy of language, and
the fact that they were supposed to be independent of speci�c conventions,
and committed only to the logical product of all conventions. Now it would
be hard to hold this point of view|in presence of so many restrictions on
what counts as a convention. Even the fact that we should limit ourselves
to classical conventions (or valuations) might begin to look suspicious, and
the whole enterprise appear dangerously close to a gigantic circle. To put
it bluntly, it seems that van Fraassen can assign truth-values to sentences
containing non-denoting singular terms only to the extent to which he is
not independent of a conventional attitude.

In my opinion, these shortcomings of supervaluational semantics are due
less to the general idea of a supervaluation than to a failure on van Fraassen's
part to get deeper into its analysis. Indeed, I think that supervaluations
come very close to providing that generalisation of the correspondence the-
ory of truth that we judged necessary for a reasonable treatment of non-
denoting singular terms. To justify this claim, it will be convenient to have
a fresh look at the whole thing.

30Van Fraassen's language does not contain E!. If it did, it would probably be necessary
to add one more clause:

(e) k(E!�; f) = T if and only if � [f ] is de�ned.
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Let me begin by asking a direct question. Why is a sentence like 67 always
true in supervaluational semantics, even when its only atomic component 63
is truth-valueless? One way to answer this question could be the following:
even though 63 has no truth-value, if it did have a truth-value, any truth-
value, 67 would be true. But what is required for 63 to have a truth-value?
The semantics itself gives the answer: 63 has a truth-value if and only if
a is denoting. Hence the answer to our original question may be rewritten
as follows: 67 is true even when a is non-denoting (and 63 truth-valueless)
because if a were denoting then it would be true.

This answer constitutes the core of a new theory of truth, which for the
sake of a label we might call the counterfactual theory of truth. This theory
substantially agrees with the correspondence theory on all sentences not
containing non-denoting singular terms, but develops in an original way be-
yond that scope. Its most basic principle may be formulated as follows: a
sentence containing non-denoting singular terms is true (false) if and only
if it would be true (false) in case these terms were denoting, no matter
what their denotations were. According to this principle, not only is 67
always (hence logically) true and 68 logically false, but also 69 is logically
true and substitutivity of identicals is truth-preserving, and all of this as
a consequence not of the adoption of ad hoc clauses but of the use of nor-
mal evaluation procedures. Also, it will be useful to point out right away
that accepting the principle in question does not commit one in any way
to outer domains or non-existent objects. For in outer domain semantics
non-denoting singular terms simply `denote' non-existents, whereas in the
present approach these terms denote nothing, and we only take the liberty
of considering alternative situations (or `possible worlds') in which they de-
note, and of making their behaviour there relevant for the evaluation of
sentences containing them in the situations (or worlds) in which they do
not denote. We will see that compromises are possible between the counter-
factual theory of truth and outer domain semantics, but such compromises
are not inevitable.

Supervaluational semantics|as developed by van Fraassen|suggests the
counterfactual theory, but does not explicitly espouse it. More precisely, this
semantics does not get to the point of assigning a truth-value (or no truth-
value) to a sentence containing non-denoting singular terms by considering
situations in which these terms are denoting. Rather, it considers situations
in which the atomic formulas containing these terms receive truth-values. In
a way, it is as though supervaluational semantics were developing the sug-
gestions leading to the counterfactual theory only at a propositional level
of logical analysis. From this limitation springs in my opinion all the talk
about conventions, for it seems that only on a conventional basis we can
assign (what look like) arbitrary truth-values to unanalysed atomic formu-
las. And from the same source springs also the necessity of adding ad hoc
clauses to the de�nition of a convention; for from a purely propositional
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point of view there is simply no reason why a sentence like (69) should not
be false, or more generally why the assignment of truth-values should �t the
non-propositional logical structure of sentences.

The message sent by these considerations is quite clear: what we have
to do to remove all that sounds ad hoc and circular in the semantics of su-
pervaluations is carry the approach expressed by this semantics to a more
speci�cally quanti�cational level. Several authors have received this mes-
sage, and several semantics have been developed along these lines, but all of
them had to face, and solve one way or another, a serious problem, whose
realisation might well have been the main reason for van Fraassen's adoption
of a `propositional' treatment of non-denoting singular terms.

The problem is as follows. Suppose that supervaluational semantics be
developed at a quanti�cational level in what looks like the most natural
way. Given a partial structure A and a sentence ' containing singular
terms that are non-denoting in A, one considers all extensions of A which
make those terms denoting, and pronounces ' true (in A) if it is true in all
such extensions, false if it is false in all such extensions, and truth-valueless
otherwise. Now consider the sentence

(70) 8xPx! Pa;

and suppose that a be non-denoting (in some structure A).

70 is an instance of Speci�cation, and we know that rejecting Speci�cation
is the most distinctive feature of a free logic from a proof-theoretical point of
view. In particular, 70 is not provable in any free logic unless a special clause
is added to it which makes sure that a is denoting; hence we would expect
that when a is non-denoting a free semantics had a way of invalidating 70.
But this is simply not the case in the semantics sketched above. For 70
is certainly true in all extensions of A in which a is denoting, and so it
is true in A itself. This argument can be easily generalised to any other
instance of Speci�cation, and the conclusion is startling: the most natural
`quanti�cational' development of supervaluational semantics leads not to
free but to classical logic!

There are in the literature at least four di�erent ways of addressing this
problem.31 The simplest one is advocated by Woodru� [1971], and con-
sists substantially in mixing the supervaluational approach with the outer
domain approach. To get the compromise in question we need to qualify
the counterfactual theory of truth in the following way: a sentence con-
taining non-denoting singular terms is true (false) if and only if it would
be true (false) in case these terms were denoting, no matter what their de-
notations were but provided that they were non-existent objects. Thus all

31Except for the last one, the semantics to be discussed below do not present themselves
explicitly as `ways of addressing this problem'. But this is a good way of perceiving the
substance of their contribution.
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extensions of a partial structure A are to be conceived as all possible ways
of adding an outer domain to it, and 70 is easily invalidated. The resulting
semantics has a few advantages over the straight outer domain approach,
especially because it does not assign a truth-value to every sentence con-
taining non-denoting singular terms, and thus in a sense can accommodate
for `incomplete' objects, but it shares the most substantial problem of that
approach, that is, the metaphysical commitment to non-existents.

A more sophisticated variant of this strategy was proposed (earlier) by
Meyer and Lambert [1968]. It still consists substantially in allowing for
outer domains, but these domains are thought of as constituted by words,
not by objects. More precisely, non-denoting singular terms are thought of
as themselves contained in what Meyer and Lambert call the semantical|
not outer|domain of a nominal interpretation, and then predicates are
distributed in all possible ways over these new `entities' to form the logical
points over the nominal interpretation. A sentence is true (false) in a nom-
inal interpretation if and only if it is true (false) in all logical points over
it, and true (false) in the underlying real interpretation (which corresponds
to a partial structure) if and only if it is true (false) in all the nominal
interpretations which `complete' it.

This approach is certainly suggestive, but insuÆciently motivated, and it
needs further elaboration before becoming really practicable. The main
problem with non-denoting singular terms is that of explaining why a sen-
tence like

(71) Pegasus is a horse

has whatever truth-value it has (if any), but just on this question the authors
become elusive. 71 is true in a logical point|they say|not because the
object Pegasus is a horse there, but because there the word `Pegasus' is a
horse-word. Again, this is suggestive, but what exactly is implied by being
a horse-word? And how are horse-words to be identi�ed if not in terms of
the truth of sentences of the form

(72) � is a horse?

Unless we answer these questions (and the authors don't), the whole strategy
might look circular, and haunted by the ghost of an ultimately `conventional'
attitude.

The third attempt at developing the suggestions contained in superval-
uational semantics at a `deeper' level of analysis is due to [Skyrms, 1968],
and can be described as resulting from two distinct applications of those
suggestions. Straight supervaluational technique (that is, assignment of ar-
bitrary truth-values to atomic sentences containing non-denoting singular
terms, and subsequent construction of the logical product of all the valua-
tions so obtained) is used with truth-functional compounds, whereas with
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atomic sentences (and in particular identities) containing non-denoting sin-
gular terms Skyrms substantially adopts the counterfactual theory of truth,
by constructing the logical product of (the truth-values the sentences in
question have in) all the extensions of the original structure that assign de-
notations to the (originally) non-denoting singular terms. Quanti�ed sen-
tences are treated in yet a third way, that is, in the standard way: 8x' is
true (or, in Skyrms' terminology, holds) in a structure A just in case ' holds
in A for every assignment.

Skyrms' motivations are expressed very clearly. Frege seems to have
thought|he says|that all sentences containing non-denoting singular terms
should be truth-valueless, but supervaluations add `an Aristotelian notion
of Redemption to the Fregean notion of Sin', in that `if the logical structure
is such that every way of �lling up the \holes" makes it true (false), then the
sentence is true (false) regardless of the holes' (his italics). `Van Fraassen',
he continues quite correctly, `applies this idea only to the extent to which
logical structure is determined by the sentential connectives', but `identity
is also a logical constant, and I suggest that we apply this idea to identity
statements' (p. 479). Unfortunately, Skyrms stops short of noticing that
quanti�ers, too, are logical constants, and thus should also contribute to
`determining the logical structure'. As a result, the supervaluational idea is
not applied to quanti�cation, and very little of quanti�ed logic is `redeemed'.
In particular, when a and b are non-denoting, not only 70 but also

(73) 8xRxa! 8yRya

(74) 8x(Qxa! Rxa)! (8xQxa! 8xRxa)

(75) Pa! 8xPa

(76) a = b! (8xRxa! 8xRxb)

(77) (8xPx ^ 9x(x = a))! Pa

are truth-valueless.

Skyrms does not propose a formal system adequate to his semantics, nor
did anybody else, and in fact David Kaplan has apparently proved that the
semantics in question is not recursively axiomatisable. On the other hand,
the approach advocated by Bencivenga [1980b; 1981] falls well within the
mainstream of the `standard' free logics we presented in Part II.

To get immediately to the core of Bencivenga's semantics, let us concen-
trate on the solution he o�ers for the problem connected with 70. Once
more, consider a structure A in which a is non-denoting. Suppose that the
antecedent of 70 be true in A, and consider an extension A0 of A which
assigns a denotation to a. Of course, 70 is true in A0: if for example we
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assume that its consequent be false there, its antecedent will be false, too.
The situation can be depicted as follows:

8xPx Pa
A T �
A0 F F

Now Bencivenga points out that, since we are trying to evaluate 70 in A,
the truth-values this sentence has in other structures (such as A0) are really
of no independent interest. The only reason why we refer to A0 and other
extensions is that A gives no information about the consequent of 70, and
we hope that this lack of information can be remedied by extending A.
Thus in the case of 69, in which, too, A gives no direct information, we
are able by extending it to determine the value True (and save the `logical
law' of self-identity). However, we must not forget the purely instrumental
character of the extensions in question, and in particular must not let them
prevail over the information A already gives. What this means|in terms of
the above diagram|is that it is perfectly legitimate to take into account the
truth-value assigned by A0 to Pa, since A assigns no truth-value to it, but
this truth-value should be combined|to the extent to which our evaluation
procedure is relative to A|with the truth-value A| not A0|assigns to
8xPx, since in this case A already gives a de�nite response, and one that A0

does not `complete', but simply contradicts. And of course if truth-values
are combined in this way, 70 turns out to be false. In general, then, it is all
right to extend A in all possible ways and to construct the logical product of
all (the valuations relative to) such extensions, but in de�ning the valuations
in question whatever information is provided by A must always weigh more
than the information provided by the other (auxiliary) sources.

This discussion leads very naturally to the de�nition of a new techni-
cal instrument: the valuation V ��

A0(A) for an extension (or more precisely,

a `completion')32 A0 of A from the point of view of A. Without entering
into the details of this de�nition, we can say that V ��

A0(A) is determined by

A wherever A assigns de�nite truth-values, and is determined by A0 else-
where. The supervaluational instrument is then applied to all these V ��

A0(A)

(where A0 is a completion of A), and gives the �nal truth-values (or lack of
truth-values) relative to A.

Bencivenga's semantics does not show any of the asymmetries or oddities
of Skyrms'. There are not three di�erent ways of evaluating sentences, and
the formal systems introduced in Part II are provably adequate to (suitable
versions of) it. Furthermore, this semantics is not committed in any way
to outer domains, for exactly the same reasons for which the counterfactual
theory of truth in general is not. In this semantics, the truth-value of a

32A completion of A is an extension of A which assigns a denotation to all singular
terms.
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sentence in a given structure often depends on the truth-values some parts
of the sentences have in other structures (in which the non-denoting singular
terms occurring in the sentence are denoting), but this does not add to any
structure any new category of objects, even less non-existent objects. There
are di�erent structures, and di�erent sets of objects exist in them: this much
seems pretty safe to say, and this is all that the semantics in question needs.

Of course, the price must be paid somewhere. Here the price of this
metaphysical simpli�cation is paid in terms of a number of logical complica-
tions, �rst and foremost the de�nition of V ��

A0(A). Some people (for example,

[Posy, 1982]) have objected to this de�nition, mostly because the valua-
tion in question does not correspond to any (single) structure: what is true
(false) in it is not just what is true (false) in A, nor just what is true (false)
in A0, but some combination of the two. To this objection one might an-
swer that it seems to be a tendency of contemporary philosophical logic to
regard structures as themselves constituting a structure, rather than just a
set, that is, as bearing to one another relations that are semantically sig-
ni�cant. Kripke's semantics for modal logic is a sign of this tendency, and
Bencivenga's doubly determined valuations may be another (perhaps more
radical) sign of it.

Before concluding the present section, something must be said about a
few formal properties of supervaluations. Such properties have been proved
within the context of van Fraassen's original semantics, but the proofs could
be easily adapted to most of the variants we presented here.

Let us begin by considering the simple sentence

(78) Pa:

We have already mentioned (and used) the fact that in supervaluational
semantics 78 is true in a structure A only if

(79) E!a

is also true there. And we also noticed that 78 cannot even be false in A
unless 79 is true, or, to put it otherwise, that 79 is a semantical consequence
not only of 78 but also of

(80) :Pa:
There are important historical connections here. Frege [1892] and Straw-

son [1950; 1952] emphasised the role that relations of presupposition play in
natural language. According to their characterisation, a sentence ' presup-
poses a sentence  just in case the truth of  is a necessary condition for '
to have any truth-value at all. Thus for example



FREE LOGICS 183

(81) John stopped beating his wife

presupposes both

(82) John has a wife

and

(83) John used to beat his wife.

For, if either 82 or 83 were not true, 81 would be neither true nor false: it
would simply represent a `spurious' use of language.

Particularly important are the relations of existential presupposition. Ac-
cording to Frege and Strawson, a sentence like

(84) The present King of France is wise

does not imply

(85) The present King of France exists

(as Russell claimed), but rather presupposes it, and in general any simple
sentence containing singular terms presupposes the existence of denotations
for those terms.

Classical semantics cannot express any non-trivial relation of presupposi-
tion
(and in particular existential presupposition). For in classical semantics
every sentence (in every situation) has a truth-value, and thus the only sen-
tences that can be presupposed are the logically true ones. Strawson used
this fact as evidence that formal logic is in general inadequate to deal with
natural language. On the other hand|as is illustrated by the relations be-
tween 78 and 79|supervaluational semantics does allow for non-trivial rela-
tions of existential presupposition (since 79 is not logically true in it); hence
this semantics constitutes an implicit answer to Strawson's challenge.33

It is crucial to the above argument that supervaluational semantics is non-
bivalent. There are less positive sides to this failure of bivalence. For exam-
ple, van Fraassen proved that a suitable formal system of free logic is weakly
complete with respect to his semantics, but proved also that this system is
not strongly complete with respect to the same semantics.34 The essence of
the proof is as follows. Suppose the system were strongly complete. Then,
since

(86) Pa � E!a;

33For some developments along these lines, see van Fraassen [1968; 1969]. Appar-
ently, however, the discovery that supervaluations allow for non-trivial presuppositional
relations is due to Lambert (see [van Fraassen, 1968, p. 151]).

34For the �rst result, see [van Fraassen, 1966a], for the second one see [van Fraassen,
1966b].
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we would have

(87) Pa ` E!a;
and since the Deduction Theorem is provable for the system in question, we
could also conclude that

(88) Pa! E!a

is a theorem in it. But this is impossible, because 88 is not logically true
and the system is provably sound.

Once again, it is the failure of bivalence that allows for this result. For
when 78 is true, we know from 86 that 79|hence also 88|is true, and when
78 is false 88 is true on purely propositional grounds. But 78 can also be
neither true nor false, and in that case 88 has no truth-value either|which
explains why it is not logically true.

The result in question leaves two interesting problems open. On the one
hand, there is the obvious problem of whether or not a di�erent formal
system could be strongly complete for supervaluational semantics|that is,
whether or not the set of supervaluationally valid arguments is recursively
enumerable. On the other hand, we know that in bivalent semantics weak
completeness (for a given formal system) plus compactness gives strong
completeness (for the same system), but there is no reason to think that
this implication should hold when bivalence fails. In particular, the above
argument against strong completeness makes no reference to in�nite sets of
sentences; hence it still leaves the possibility open that the semantics be
compact. Whether or not it is, is our second problem.

Woodru� [1984] answered both questions in the negative. The set of
supervaluationally valid arguments is not recursively enumerable, and su-
pervaluational semantics is not compact. On the other hand, [Bencivenga,
1983] has shown that the quanti�er-free fragment of the semantics is com-
pact. This results is interesting because our argument against strong com-
pleteness does not depend on quanti�ers either; hence in quanti�er-free su-
pervaluational semantics it is indeed the case that weak completeness plus
compactness does not give strong completeness.

IV: Extensions and Connections

11 FREE LOGIC AND CLASSICAL LOGIC

We already know that it is possible to deal with free logic as restricted
quanti�cation theory. We saw the semantical side of this when introducing
the outer domain approach. A syntactical result along the same line was



FREE LOGICS 185

proved by [Meyer and Lambert, 1968]. We will give now a brief sketch of
their proof.

Let L be a �rst-order language with the existence but without the identity
symbol. Let : and! be the only primitive connectives of L, and 8 its only
primitive quanti�er. Let L0 be the result of adding a new monadic predicate
constant Q to L, and let a translation � of L into L0 be de�ned as follows:

1. (P�1 : : : �n)
� = P�1 : : : �n;

2. (E!�)� = Q� ;

3. (:')� = :('�);
4. ('!  )� = '� !  �;

5. (8x')� = 8x(Qx! '�).

What Meyer and Lambert showed (in e�ect) is that a sentence ' of L is a
theorem of FQCE! if and only if '� is a theorem of classical logic (briey,
a classical theorem).

The `only if' part of this biconditional is straightforward. One need only
show that the translation of every axiom of FQCE! is a classical theorem,
and that if '� and ('!  )� are classical theorems, so is  �.

The `if' part is more complicated. The reason is obvious: classical logic
is more powerful than free logic, hence it is not at all trivial that classical
logic does not allow one to prove translations more than free logic allows
to prove theorems. What we need here is a conservative extension result,
showing that the more powerful deductive tools available in classical logic
(in particular Speci�cation) do not extend the class of provable sentences
of a certain form.

First of all, then, we must give a clear formulation of the result we need.
For this purpose, Meyer and Lambert construct, for every sentence '� of
L0, the sentence '�1, by substituting E! for Q. Given that

(89) 8x(E!x!  )$ 8x 
is provable in FQCE!, '�1 is provably equivalent to ' in FQCE!. Fur-
thermore, it is obvious that '�1 is a classical theorem just in case '� is.
In conclusion, our problem reduces to showing that '�1 is a classical theo-
rem only if it is provable in FQCE!|and this is the conservative extension
result we need.

Of course, if '�1 is a classical theorem, its proof (in classical logic) may
well contain instances of Speci�cation. However, Meyer and Lambert want
to show that, given the particular form of '�1, all the instances of Speci-
�cation that might be needed to prove it are also instances of the weaker
schema
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(90) 8x(E!x!  )! (E!� !  [�=x]);

which is provable in FQCE!. And this would follow if it were possible to
show that, every time a universal quanti�cation 8x� occurs in a proof of
'�1 (in classical logic), � is of the form E!x!  .

That '�1 itself has the above property is trivial, but in an axiomatic
system this shows nothing about the structure of the sentences that can be
used to prove '�1. However, a solution is readily at hand. It is enough to
reformulate the problem within a Gentzen system for classical logic.35 Since
this system has the subformula property, we may be sure that if ` '�1 is
provable in it then universal quanti�ers occur in the appropriate contexts
in the whole proof, hence that the following Gentzen-variant of 90 is all that
is ever applied in the proof:

�; E!� !  [�=x] ` �
:

�;8x(E!x!  ) ` �
This concludes Meyer and Lambert's argument.

An analogous (and simpler) result is available in the opposite direction.
Let L be as before, except that it contains the identity but not the existence
symbol. Consider the exclusive free logic EFQC= obtained by adding to
FQC= the axiom-schema

(91) 8x'! 9x';
and the translation + of L into L de�ned as follows:

1. '+ = (9x(x = a1) ^ : : : ^ 9x(x = an)) ! ', where a1; : : : ; an are all
the individual constants occurring in '.

It is easy to show that a sentence ' is a classical theorem if and only if '+

is a theorem of EFQC=.
For more formal connections between free logics and classical logic, the

reader may consult [Trew, 1970]. We prefer to close the present section by
discussing an opinion that challenges the most common view of the relations
between these two (kinds of) logics, a view that we have endorsed here.

It is quite natural to think of free logics as alternatives to classical logic.36

After all, the people who created the subject were reacting against principles
of classical logic (such as Speci�cation) that they considered wrong. Van
Fraassen [1969], however, would rather think of a free logic as an extension
of a classical logic, obtained by adding to it a theory of singular terms that
was simply not available in the classical framework.

35To be precise, Meyer and Lambert do not refer to a Gentzen system but to a variant
of such a system proposed by Anderson and Belnap. But the essence of their argument
is the same as given here.

36In the case of minimal free logics without E!, these alternatives qualify as fragments
of classical logic.
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The rationale of van Fraassen's position is as follows. We have already
mentioned the fact that classical logic may be formalised so as to exclude
both open theorems and individual constants. Quine [1940], for example,
proceeds in this way. And Quine's system|which basically has no place
for singular terms|is a subsystem of some free logics, for example of the
pure exclusive free logic EFQC, which bears to FQC the same relation
EFQCE! bears to FQCE!.37

Of course, there are formalisations of classical logic that do account for
singular terms, for example by admitting individual constants, and they
are subsystems of no free logic whatsoever, but in van Fraassen's opinion
these formalisations were adopted faute de mieux. In absence of an ade-
quate theory of singular terms, classical logicians extended to these terms
the principles of their logic of bound variables (or `bound' logic). The ex-
tension was faulty, but this fault did not touch the substantial validity of
classical logic as a bound logic. Free logics on the other hand set things
right, restricting classical logic to its proper scope and supplying a speci�c
treatment of singular terms (indeed, several such treatments).

In assessing this argument, it is of fundamental importance to notice
that it operates at three di�erent levels. At bottom, there is the simple
fact that free logics handle quanti�ers and bound variables in the standard
(referential) way. As we said a number of times, free logics confer existential
import to quanti�ers, and accept Quine's dictum that to be is to be a value
of a bound variable. Next, there is the fact that it is possible to construe
classical logic as a bound logic, and thus make it a subsystem of some free
logic. But �nally, there is also the suggestion that it is better to construe
classical logic in this way, that such a construal is more likely to `capture
the spirit' of both classical and free logics, and that any other position on
the matter would be adopted faute de mieux.

This last is basically a value judgement, and as such more prescriptive
than descriptive in nature. Its supporters might claim that its adoption
would allow one to maintain a conservative attitude with respect to logic,
and possibly remove some psychological obstacles to accepting free logics.
I would rather insist that such a claim of conservatism does very little
historical justice to both classical and free logicians. For classical logicians|
pace van Fraassen|did have their own views about singular terms, views
that they at least considered adequate and that free logicians did very little
to preserve.

37Of course, Quine's system is also a subsystem of EFQCE!, but its relation to EFQC
is more interesting, because they have the same language.
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12 DESCRIPTIONS

From the very beginning, free logicians were concerned with de�nite de-
scriptions. There are at least two reasons for this interest. The �rst one
is historical: Russell's description theory was one of the most important
instruments in the hands of classical logicians to deal with (alleged) non-
denoting singular terms, hence an important test for free logics was whether
or not they were able to handle the same subject in a more satisfactory way.
The second reason is theoretical: the necessity of a free logics is more appar-
ent the more inevitable the presence of non-denoting singular terms seems to
be, and certainly descriptions (if they are considered singular terms) make it
very diÆcult to deny that there are non-denoting singular terms. You may
think that `Pegasus' does not denote, but no major problem would follow
(apart of course from a conict with your intuitions) if you were to decide
instead that it does. On the other hand, if you decide that `the winged
horse' is denoting, this will appear to contradict the truth of

(92) No (existing) horse is winged;

and even worse consequences will follow if you decide that `the round square'
or `the entity di�erent from itself' are denoting.

The basic principles of Russell's description theory|as given for example
in Whitehead and Russell [1910]|were the two de�nitions38

(93) E! �x' =df 9y(8x('$ x = y))

(94)  [ �x'=y] =df 9y(8x('$ x = y) ^  ):

However, free logicians usually regard de�nite descriptions as genuine sin-
gular terms; hence they are not interested in the elimination procedures
connected with de�nitions like 93{94. Rather, they are interested in the
acceptability of the corresponding biconditionals

(95) E! �x'$ 9y(8x('$ x = y))

(96)  [ �x'=y]$ 9y(8x('$ x = y) ^  ):

Now free logicians never questioned 95; they usually regarded its right-hand
member as giving both a necessary and a suÆcient condition for the exis-
tence of a denotation of �x'. Similarly, one half of 96, that is,

(97) 9y(8x('$ x = y) ^  )!  [ �x'=y]

38For precision's sake, it must be noted that the two Russellian de�nitions contained
scope operators. But these operators play practically no role in free description theories
(the only exception I know of is [Scales, 1969]): hence to simplify things we will disregard
them here. Also, in this paragraph we will always assume that y is free in  .
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is universally accepted in free logic: denoting de�nite descriptions appear
to everybody to conform to Russell's analysis. What is in question is the
other half of 96, that is,

(98)  [ �x'=y]! 9y(8x('$ x = y) ^  );
and the main reason why it is in question is that it implies

(99)  [ �x'=y]! E! �x':

For 99 forces one to consider false most sentences containing non-denoting
descriptions,39 including such sentences as

(100) �x' = �x';

which most free logicians regard as logically true.
The �rst free description theory was proposed by [Leonard, 1956], but in a

second-order modal language|which explains why it did not generate much
response in the literature. A more accessible suggestion came from [Hin-
tikka, 1959b].

Hintikka's theory is based on a single principle, the biconditional

(101) � = �x'$ ('[�=x] ^ 8x('! x = �)):

101 implies both 95 and 97, but it also has a number of unwelcome conse-
quences. In particular, [Lambert, 1962] showed that

(102) '[ �x'=x]

follows from 101 and 100, and some instances of 102, such as

(103) P ( �x(Px ^ :Px)) ^ :P ( �x(Px ^ :Px));
are contradictory sentences!

Lambert's own solution of this problem consists in weakening Hintikka's
theory, by substituting

(104) 8y(y = �x'$ ('[y=x] ^ 8x('! x = y)))

for 101. Now in a free logic assuming 104 as an axiom-schema is equivalent
to assuming

(105) E! �x'! (� = �x'$ ('[�=x] ^ 8x('! x = �)));

39Again, we must notice that unless we adopt scope operators or deny to descriptions
the status of singular terms (and Russell did both) 99 leads to downright inconsistency.
But the main point of the argument is independent of this, since it can be made in
connection with such simple sentences as 100. So once more we need not enter into
unnecessary complications.
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which shows that Lambert's theory|to be called FD|has something spe-
ci�c to say about descriptions40 only to the extent to which they are denot-
ing. For this reason, several authors (including Lambert, van Fraassen and
Scott)41 have considered FD a minimal free description theory, the common
core as it were of all such theories.

The intuitive idea behind this characterisation is that, again, everybody
agrees on how to treat denoting descriptions, and FD says nothing (speci�c)
beyond that. Disagreements will arise among free description theorists only
with respect to non-denoting descriptions and in this area a large number
of alternatives are possible, which in general require the addition of further
schemata to FD. Lambert [1962] mentions one of these alternatives, that is,
the theory (to be called FD1) which results from adding to FD the schema

(106) � = �x(x = �);

and [Lambert, 1964] a di�erent one, obtained by replacing 104 with

(107) �x' = � $ 8y(� = y $ ('[y=x] ^ 8x('! x = y)));

from which however 104 is derivable.
This last theory|to be called FD0

2|is an interesting one. For it turns
out that it is equivalent to the theory FD2 which is obtained by adding
to FQCE!= 104 and the principle 41 on p. 166|that is, by combining
minimal description theory with Scott's free logic.

Van Fraassen and Lambert [1967] make some interesting remarks about
the philosophical signi�cance of the di�erences between all these description
theories (which remarks|in view of the above equivalence result|apply
mutatis mutandis to Scott's free logic). FD2 (or FD0

2)|they say|may
be the right theory for some speci�c (and limited) purposes. For example,
in the course of reconstructing mathematics non-denoting descriptions may
well be regarded as `don't cares', and a compromise between free logic and
the chosen object theory may be the most eÆcient way to handle them. On
the other hand, if we are interested in natural language, FD2 is going to
be too strong. To give just one example, such a theory would allow us to
derive

(108) John avoided the explosion of the White House in 1965;

from

(109) John avoided the accident at the corner of High Street and Pleasant
Street,

40That is, something that does not follow simply from treating descriptions as genuine
singular terms, and thus extending to them the laws of (free) quanti�cation and identity
theory.

41See [van Fraassen and Lambert, 1967; Scott, 1970; Lambert, 1972].
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and the fact that there was no accident at that corner or any explosion of
the White House in 1965. For these other, more `philosophical' purposes, a
weaker theory like FD or FD1 might be preferred.

The `liberality' of this position is certainly attractive; however, there are
problems with it. On the one hand, if FD2 or FD'2 are recommended on
pragmatic grounds, to people who don't care much about non-denoting de-
scriptions, how can they be preferred to the original chosen object theory|
which is certainly simpler and thus even more recommendable from a prag-
matic point of view? On the other hand, if we reject FD2 and move to
weaker theories, how are we going to choose among them? The intuitive
acceptability of `laws' like 106 by itself won't do, for we need a way of check-
ing our intuitions on the matter, and even more importantly we need some
kind of evidence that we have found all the relevant laws.

The problem with van Fraassen and Lambert's approach is that they
do not give a semantical analysis of their theories, except for the minimal
FD. They do present semantics for all these theories, and completeness
theorems for them, but such `semantics' do little more than duplicating the
theories, and the arbitrary selections that seem to be at their foundations.
Thus for example the fundamental unit of the `semantics' for FD1|the
FD1-structure|is de�ned essentially as an FD-structure that veri�es all
instances of 106, and such an approach certainly says very little about why
106 is a logical law, and which other laws (if any) should be accepted. This
leaves us with the semantics for FD, but FD is a very weak theory, too
weak even for its author Lambert.42

The above is substantially the same criticism already raised against van
Fraassen's semantics for (free) quanti�cation and identity theory. Just as
in that case (say) self-identity was validated by �at, so it happens now for
106. Thus we may expect to �nd here the same kinds of developments of
van Fraassen's approach that we found there. And indeed, at least one such
development is available, by Bencivenga [1978b; 1980c].

Once again, Bencivenga's starting point is the counterfactual theory of
truth: a sentence containing non-denoting singular terms is true (false) if
and only if it would be true (false) in case these terms were denoting.

However, a major complication arises in applying this theory to descrip-
tions, in that it is not always possible for a description to denote, or for a
set of descriptions to denote simultaneously. Thus

(110) �x(Px ^ :Px)

will never have a denotation (if not in some variant of the chosen object
theory, which Bencivenga is not willing to accept), and

(111) �xPx

42In this regard, see the conclusion of [Lambert, 1962].
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(112) �x:Px

(113) �x(x = x);

though being all `consistent' descriptions (and having denotations some-
where) will never have denotations together.

With respect to sentences containing either 110 or all of 111{113, Benci-
venga faces a choice: he can either make them all vacuously true (or perhaps
false) or modify his approach, for example by requiring as an additional
condition for the truth (or falsity) of sentences containing non-denoting de-
scriptions that there be at least one structure in which all such descriptions
are denoting. He chooses the second route, and this choice gives rise to
further complications. For now every sentence containing (say) 110, even
such a sentence as

(114) �x(Px ^ :Px) = �x(Px ^ :Px);
whose logical truth seems not to depend on a logical analysis of descriptions,
becomes `essentially truth-valueless'|that is, does never receive a truth-
value.

Bencivenga's assessment of the situation is that free quanti�cation and
identity theories, though successful in removing the existential assumptions
of classical logic, still carry with them some weaker assumptions, of possibil-
ity of existence. Such assumptions, however, are contradicted by (some) de-
scriptions, hence our quanti�cational logic should be modi�ed if we want to
allow for a natural extension of it to descriptions. Whether we will actually
make the modi�cation in question or instead worry about assumptions of
possibility where they really matter (that is, in languages with descriptions)
will ultimately be decided|Bencivenga thinks|on practical grounds, and
certainly relevant to these practical considerations is his proof that the set
of logically true sentences of his (possibility-free) semantics for descriptions
is not recursively enumerable.

So much for the extensions to descriptions of the supervaluational ap-
proach. Analogous extensions of the outer domain approach and of the
`conventional' approach were proposed by [Grandy, 1972] and by [Burge,
1974], respectively. Since Grandy's development is less immediate than
Burge's, and contains at least one new theoretical notion, we will conclude
the present section by briey describing it.

The novelty of Grandy's semantics is a function �, de�ned on all subsets
of the union A[A0 of the inner and the outer domain of an LT-structure and
with values in A [A0. By de�nition, �(S) 2 A if and only if S \A = �(S),
that is, the value of � for a given subset S of A[A0 `exists' just in case it is
the only existing member of S. In a Grandy structure, de�ned as an ordered
4-tuple hA;A0; I; �i, the denotation of a description �x' is the value � has
for the subset of A [ A0 constituted by all objects satisfying '.
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Grandy's semantics does not force one to identify all non-existents, as for
example Scott's does. Thus, in intuitive terms, if � assigns di�erent values
to the set of winged horses and the set of golden mountains, the sentence

(115) The winged horse = the golden mountain

turns out false. On the other hand, however, if

(116) '[�=x]$  [�=x]

is logically true, then in every Grandy structure ' and  are satis�ed by
the same objects; hence

(117) �x' = �x 

is logically true, too. This is certainly an asset of Grandy's approach: in it
one can validate in a natural way such schemata as

(118) �x' = �x(' ^ ');
which are certainly as `intuitive' as (say) 106 was and which in van Fraassen{
Lambert's framework would require the addition of further ad hoc clauses.
From a proof-theoretical point of view, the approach in question is charac-
terised by the rule

(119)
` �! ('[�=x]$  [�=x])

; if � does not occur in �;` �! �x' = �x 

which allows for a simple proof of 118 and the like.
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SCOTT LEHMANN

MORE FREE LOGIC

By a free logic is generally meant a variant of classical �rst-order logic in
which constant terms may, under interpretation, fail to refer to individuals
in the domain D over which the bound variables range, either because they
do not refer at all or because they refer to individuals outside D. If D
is identi�ed with what is assumed by the given interpretation to exist, in
accord with Quine's dictum that \to be is to be the value of a [bound]
variable,"1 then a free variation on classical semantics does not require
that all constant terms refer to existents, and in this sense such terms lack
existential import.

Classical semantics treats free variables like constants, at least in the
quanti�er clause of the valuation rules. When we stipulate that 9xA is
true i� A is true for some assignment of a value �(x) in D to x, we are
treating x at its free occurrences in A as a constant that refers to �(x).
In free semantics, free variables are also generally treated like constants,
which means that they need not be assigned values in D; thus free variables
and variable terms (such as x + y or 1=x) constructed from them also lack
existential import. However, when reckoning the truth of 9xA in terms of
the truth of A for assignments of values to x, we consider only assignments
� for which �(x) 2 D. Thus, although neither constant nor variable terms
need refer to individuals in D, free semantics honors Quine's dictum.2

In classical semantics, free variables have existential import because D
is non-empty: there is always something in D for x to be assigned by �.
Variants of classical semantics in which this requirement is relaxed so that
D may be empty are said to be inclusive. A semantics that is free and
inclusive is said to be universally free: the range of the bound variables
may be empty, and even if it is not, neither constant nor variable terms
have existential import.

This survey of free logic will begin by considering its motivation, then
move to reviewing various kinds of free semantics and the syntactic proof
systems designed to capture the forthcoming notions of logical truth or
logical consequence, and conclude by describing some applications of free
logics, notably free description theory. As this summary may suggest, my
emphasis throughout will be on semantics. The account is self-contained

1Quine [1948, p. 15]. That Quine means bound variables here is clear from his earlier
statement [p. 13] that \a theory is committed to those and only those entitites to which
the bound variables of the theory must be capable of referring in order for the aÆrmations
made in the theory to be true."

2Compare Bencivenga's [1986, p. 375] characterization: \A free logic is a formal
system of quanti�cation theory, with or without identity, which allows for some singular
terms in some circumstances to be thought of as denoting no existing object, and in
which quanti�ers are invariably thought of as having existential import."
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and does not presuppose familiarity with [Bencivenga, 1986], reproduced in
this volume. There is new material on motivation, applications, and neutral
free semantics, while areas of overlap di�er in detail and emphasis. Semantic
options are laid out in greater detail, as are free description theories built
upon them, but I pay less attention to the history of ideas.

1 QUICK REVIEW OF CLASSICAL FIRST-ORDER LOGIC

Partly to settle notation and terminology, and partly because free logics
are variants of it, let us �rst quickly review classical �rst-order logic with
identity, which we may take to be framed in formal �rst-order languages L:

The logical vocabulary of L includes the identity operator =, plus an
adequate set of quanti�ers and truth-functional operators. Let us assume
they are the universal quanti�er 8, negation :, and material conditional
!. The non-logical vocabulary of L includes (individual) variables, plus
perhaps constants, (k�place) function-names , and (k�place) predicates.
We need not specify these symbols, which will vary with L; its sentences are
to represent the logical forms of certain sentences of natural language, and
its non-logical vocabulary will be chosen accordingly. Many formulations of
free logic employ a 1-place existence predicate E or E!, but such a predicate
can generally be de�ned in terms of identity,3 so we need not include it in the
non-logical vocabulary. The proof method of L will require an unbounded
list of variables or special constants.

After de�ning terms as (1) variables, (2) names, and (3) complex terms
ft1 : : : tk, where the ti are terms and f is a k�place function-name, the
formation rules of L identify formulae as (4) subject-predicate formulae
Pt1 : : : tk, where the ti are terms and P is a k�place predicate, (5) identities
s = t, where s and t are terms, (6) negations :A, where A is a formula, (7)
conditionals (A! B), where A and B are formulae, and (8) universals 8xA,
where x is a variable and A is a formula.4 Identities and subject-predicate
formulae are atomic; atomic formulae and their negations are elementary.

Subsequently, I shall use the following syntactical variables, with or with-
out subscript: for variables: x, y, and z; for constants: a, b, and c; for
function-names: f ; for predicates: P ; for terms: s and t; for formulae:
A, B, and C; for sets of formulae: X . Conjunctions (A&B), disjunctions
(A _ B), biconditionals (A $ B), and existentials 9xA may be de�ned as
usual in terms of :, !, and 8. s 6= t abbreviates :s = t. The outermost
parentheses in conditionals, conjunctions, disjunctions, and biconditionals
standing alone will be omitted. ft1 : : : tk and Pt1 : : : tk will be used with

3For exceptions, see [Garson, 1991], discussed below in Section 5.3, and [Gumb, 1998].
4To avoid the notational clutter that attends the use of single- and quasi-quotation,

I shall generally follow Church [1956] in using symbols of L as names for themselves and
juxtaposition for juxtaposition.



MORE FREE LOGIC 199

the assumption that f and P are k�place; where necessary, commas and
parentheses will disambiguate expressions, as in Pf(x; y), and may also be
inserted to enhance readability, as in 9x(x = fx):

An occurrence of a term t in a formula A is bound in A provided it is
an occurrence in a part 8xB of A, where x occurs in t; an occurrence of
t in A is free if it is not bound. The bound (free) variables of A are those
with a bound (free) occurrence in A. A sentence is a formula without free
variables. A(x1; : : : ; xk=t1; : : : ; tk) is the result of simultaneously replacing
the xi at each free occurrence in A by ti, having (if necessary) �rst made
such occurrences free for ti in A: if a free occurrence of xi in A is in a part
8yB, where y occurs in ti, replace each occurrence of y in 8yB by the �rst
variable that occurs in neither A nor any of the tj ; relabel the result `A' and
repeat until there are no such occurrences. I shall write A(x1; : : : ; xk) for A
and A(t1; : : : ; tk) for A(x1; : : : ; xk=t1; : : : ; tk). 9!xA or 9!xA(x) abbreviates
9x8y(A(x=y) $ y = x), where y is not x. In writing 9x(x = t), I assume
that x does not occur in t. The universal closure 8A of A is 8x1 : : :8xkA,
where the free variables of A are x1; : : : ; xk:

An interpretation I of L is a pair hD; di; where D is a set and d is a de-
notation function de�ned on the constants, function-names, and predicates
of L, such that:

i1. D is non-empty;

i2. d(a) 2 D;
i3. If f is k�place, d(f) is a total k � ary function D ! D:

i4. If P is k�place, d(P ) is a k � ary relation in D.

An assignment � is a function that assigns individuals �(x) in D to the
variables. An x-variant of � is an assignment that di�ers from � at most at
x:

Under I and �, terms refer to individuals of D according to the reference
rules:

r1. x refers to �(x):

r2. a refers to d(a)

r3. ft1 : : : tk refers to d(f)(�1; : : : ; �k), if ti refers to �i.

Under I and �, formulae are true or false (and false if not true) according
to the valuation rules:

v1. Pt1 : : : tk is true i� h�1; : : : ; �ki 2 I(P ), if ti refers to �i.
v2. If s refers to � and t to �, then s = t is true i� � is �:
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v3. :A is true i� A is false.

v4. A! B is false i� A is true and B is false.

v5. 8xA is false i� A is false for some x�variant of �.5

Since the referents of terms without variables and the truth-values of
sentences are independent of �, I shall speak of referents and truth-values
under I in such cases.

Logical relations and properties are de�ned as usual in terms of the to-
tality of interpretations: A is a logical consequence of X(X j= A) i� there is
no interpretation and assignment under which all the X-formulae are true
and A is false; X is satis�able i� there is some interpretation and assign-
ment under which all the X-formulae are true; A is logically true (false) i�
A is true (false) under each interpretation and assignment; A and B are
logically equivalent i�, under each interpretation and assignment, A is true
i� B is true. A1; : : : ; Ak j= B means: fA1; : : : ; Akg j= B. X;A j= B means:
X [ fAg j= B. X 6j= A means: not X j= A:

These de�nitions embody what Kleene [1967, p. 103] terms the condi-
tional reading of free variables: free variables are treated by r1 as names
of D-individuals. By contrast, the generality reading treats free variables
as if they were universally quanti�ed. It may be captured by stipulating
that A is true (false) under I i� A is true (false) under I and � for each �.
We can then drop \and assignment" from the above de�nitions. However,
we end up with weaker notions of logical consequence and logical equiva-
lence (and a stronger notion of satis�ability). For the logical consequence
relation j=g, we have X j=g A i� 8X j= 8A, where 8X = f8B : B 2 Xg,
so that X j=g A if X j= A but not conversely (e.g., Px j=g 8xPx, but
Px 6j= 8xPx). If X is a set of sentences, the two consequence relations
coincide, since X j= A i� X j= 8A and here we have 8X = X:

From the semantic perspective assumed here, the aim of proof theory is to
provide syntactic characterizations of logical properties and relations, which
are de�ned in semantic terms. In particular, we want a syntactic notion of
proof from hypotheses that captures the logical consequence relation: A is
provable from hypotheses in X(X ` A) i� A is a logical consequence of
X(X j= A), at least if X is a set of sentences. A proof system with this
property is said to be strongly complete. A proof system in which A is

5Most presentations of free logic give a substitutional account of quanti�cation, on
which v5 would read instead: 8xA(x) is false i� A(a) is false for some constant a. If 8x
is to have the force of `for all individuals x', every individual in D must be named by
some constant or other. If D is uncountable, the terms and formulae of L will then be
undecidable. This awkward result may be avoided by proving, via the L�owenheim-Skolem
theorem, that interpretations may be restricted to countable universes without altering
logical consequence relations, so that no more than a countable in�nity of constants need
be assumed. By contrast, the objectual account of quanti�cation given in v5 does not
require an elaborate justi�cation.
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provable (from no hypotheses) i� A is logically true (` A i� j= A) is weakly
complete. If detachment or modus ponens

MP A;A! B ` B
holds, and the deduction theorem or conditional proof

CP X ` A! B provided X;A ` B
holds for sentences A, then weak completeness is equivalent to: X ` A i�
X j= A for �nite sets X of sentences.

Many strongly complete systems in a variety of styles are known for clas-
sical �rst-order semantics. It will be useful to give one that can be modi�ed
in simple ways to capture logical consequence for at least some free vari-
ations on classical semantics. The simplest proof systems to describe are
Hilbert-style systems, which specify logical axioms and rules of inference,
and de�ne a proof of A from hypotheses X as a �nite sequence hA1; : : : ; Aki
such that Ak = A and each Ai is either a member of X , or a logical axiom,
or is derived from previous formulae in the sequence by a rule of inference.
Unlike natural deduction systems, in which some inference rules (such as
CP) are conditional, those of a Hilbert-style system are (like MP) categori-
cal.

Since the propositional part of the system does not matter here, we may
adopt the simple inference rule

T A1; : : : ; Ak ` B
if B is a tautological consequence of fA1; : : : ; Akg, that is, there is no as-
signment of truth-values to universals and atomic formulae for which each
Ai is true and B is false in virtue of rules v3 and v4.

The quanti�er rule and axioms are as in [Church, 1956, p. 172]; the rule
is generalization:

UG A ` 8xA
and the axiom schemas are distribution and speci�cation:

A1 8x(A! B)! (A! 8xB); if x is not free in A

A2 8xA(x)! A(t)

Finally, we have the identity axiom schemas:

A3 x = x
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A4 x = y ! (A(x)! A(y)); where A is atomic.

Let us agree that A(x) is A(z=x) and A(y) is A(z=y), so that A(y) results
from A(x) by replacing x at some occurrences by y.

Let us call this system CL. Like most Hilbert-style systems, CL is sound
with respect to j=g but not j=: if X ` A, then X j=g A but not neces-
sarily X j= A (consider UG). The limitation is immaterial if X consists of
sentences, as it will if L is used to represent arguments in some natural
language.

2 MOTIVATIONS FOR FREE LOGIC

The motivations for free logic may be grouped under four headings. (1) Clas-
sical �rst-order semantics embodies existence assumptions that can produce
weird results and constrain what can be done to avoid them. Accordingly,
(2) certain philosophical doctrines can be expressed in �rst-order languages,
classically conceived, only with diÆculty and in ways that will seem arti-
�cial. Then there are general considerations of logical form: (3) if logical
form captures truth-conditions in the sense of determining correct truth-
values in all possible situations, then logical semantics must be universally
free. Finally, for those who remain unconvinced, there is a pragmatic argu-
ment: (4) the representation of logical moves in a classical system can often
be considerably simpli�ed if we pretend that certain expressions are terms
that need not refer to any existent, either because they do not refer at all
or because they refer to pretend objects.

2.1 Classical Existence Assumptions

The existence assumptions built into classical �rst-order semantics are im-
plicit in i1{i3: D is non-empty, constants refer to individuals of D, and
function-names refer to total functions D ! D. These assumptions con-
strain the meaning of logical forms. As implicit premises, they permit some
surprising inferences. While such unwanted conclusions can be avoided, the
ways of doing so, constrained as they are by these assumptions, may seem
arti�cial and too complex.6 Let us consider the existence assumptions in
turn.

6Various free logics can be represented as classical �rst-order theories. Let Lf be the
�rst-order language of a free system FL in which free logical truth has been characterized
in terms of Hilbert-style provability from logical axioms by logical rules of inference: j= A
i� `FL A; and let Lc result from Lf by adding a 1-place predicate E. Trew [1970] shows
the dedicated reader how to (1) translate sentences A of Lf into sentences tr(A) of Lc
and, for each of a variety of systems FL, how to (2) write axioms Ax(FL) that classically
constrain the interpretation of E, so that `FL A i� Ax(FL) `CL tr(A), i.e., i� tr(A) is
classically provable from Ax(FL).
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(a) Existential conclusions may be validly drawn from premises that are
not overtly existential, because the assumption of a non-empty uni-
verse operates as an implicit existential premise. For example, `A
person is good i� she loves everyone, so some person loves all good
persons' is valid when assigned the simple form

8x(Gx$ 8yLxy)
9x8y(Gy ! Lxy)

For if there is a good person x, then x loves everyone, hence all good
persons. If there is no good person, let x be anybody: x loves all good
persons (at least on the standard no-counterexample interpretation
of `all'), so someone loves all good persons. The crucial step is the
passage from `8y(Gy ! Lxy) is true of any x' to `8y(Gy ! Lxy) is
true of some x', a move licensed (albeit sotto voce) by the assumption
that the range of x is non-empty.7

These awkward results can be sidestepped by complicating logical
form: take the variables to range, not over persons but over some
wider class, and relativize the quanti�ers to the subclass of persons by
introducing an appropriate 1-place predicate. The resulting argument

8x(Px! (Gx$ 8y(Py ! Lxy)))

9x(Px&8y(Py ! (Gy ! Lxy)))

is invalid, since the premise is true and the conclusion false when P is
assigned the empty extension, which of course is permitted in classical
semantics.

Constants and function-names complicate the transformation. To pre-
serve the validity of `Pope John-Paul II is nobody's spouse, so he isn't
his own spouse', we will need to add a premise Pj to do the work of
i2 and a premise 8x(Px! PSx) to do the work of i3:

:9x(Px& j = Sx)
8x(Px! PSx)

Pj

j 6= Sj
7Amore mathematical example is the generation of an empty set, apparently ex nihilo,

in some ZF-formulations of pure set theory, e:g. [Shoen�eld, 1967]: 9y8z(z =2 y) follows
from the subset axiom in the form 8x9y8z(z 2 y $ (z 2 x&A(z))). For let x be a set;
by the subset axiom, there is a set y whose members are the sets z such that z 2 x and
z 6= z; since no set z is such that z 6= z, there are no such sets and y has no members;
so there is a set with no members. What is disturbing here is that the subset axiom has
an essentially conditional form: if x exists, so does any describable subset of x. How can
it yield a categorical existence claim? The answer is that classical semantics guarantees
that the range of x is non-empty, so some set will exist.
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If P is assigned the empty extension, then Pj will be false, but for a
reason that will strike some people as incorrect: j refers to something
not in the extension of P . If there were no people, `Pope John-Paul II
is a person' might be false, but not because `Pope John-Paul II' refers
to something (zero, say) which is not in the now empty extension of
`person'; `Pope John-Paul II' doesn't refer at all in this situation. At
best, we have a semantic proxy for failure of reference that delivers
the right truth-values | at best because one might want to hold that
`Pope John-Paul II is a person' is neither true nor false when `Pope
John Paul II' does not refer.

None of these manoeuvres will alter the validity of such arguments as
`Everything is self-identical, so something is'

8x(x = x)

9x(x = x)

since the range of x is non-empty. And it might be objected that the
account of logical possibility given by classical semantics is defective,
for surely the range of the variables could be empty.

(b) i2 requires that constants refer to something in the range of the vari-
ables, which permits quick proofs of the existence of God (or Grendel,
or anything you like), since 9x(x = g) is logically true if g refers to
something in the range of x. If you feel bad about doing so little work
for such large results, you can give a short CL-proof:

1. x = x A3

2. 8x(x = x) UG(1)

3. 8x(x = x)! g = g A2

4. 8x(x 6= g)! g 6= g A2

5. 9x(x = g) T(2,3,4)

The instances of A2 are logically true because g must refer to some-
thing in the range of x:

The standard Russellian �x for these problems is to replace con-
stants g that may not refer by predicate constructions: �nd a sin-
gular predicate G true of at most one thing, which you'd be will-
ing to label g if there were such a thing (in the present case, per-
haps Anselm's `nothing greater than x can be or be conceived' will
do) and replace atomic parts A(g) by 9y(8z(Gz $ y = z)&A(y)),
where y is not free in A. Then the existence claim 9x(x = g) becomes
9x9y(8z(Gz $ y = z)&x = y), which is obviously not logically true.
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Alternatively, add 8x8y((Gx&Gy)! x = y) as a premise (an axiom)
to constrain interpretations of G, and replace atomic parts A(g) by 9y
(Gy&A(y)). This will transform the existence claim 9x(x = g) into
9x9y(Gy&x = y), and the issue of its logical truth into that of the
validity of

8x8y((Gx&Gy)! x = y)

9x9y(Gy&x = y)

which is obviously invalid. This procedure will make atomic sentences
A(g) with non-referring terms g false, since the predicate G will be
true of nothing. If you think that some subject-predicate sentences
with non-referring subjects | such as `Grendel was slain' | are true,
you can use the replacement 8y(Gy ! A(y)) for them, as Mendelson
[1989, p. 613] observes. But something seems to be missing here. The
reason for the truth of `Grendel was slain' and the falsity of `Grendel
was pink' is really the same: whatever singular predicate we �nd for
Grendel is true of nothing. Moreover, if you think that some subject-
predicate sentences with non-referring subjects, such as van Fraassen's
[1966, p. 82] `Pegasus has a white hind leg', are neither true nor false,
you will not be happy with Russell's way of dealing with them, since
classical semantics is bivalent: any sentence is true or false.

(c) i3 requires that functions be total, which validates such arguments as
`Every spouse loves his or her spouse (and, of course, the spouse of
one's spouse is oneself), so nobody is unloved', if it is given the simple
form

8x8y(x = Sy ! (y = Sx&LxSx))

:9x:9yLyx

For any person x is such that x's spouse loves the spouse of x's spouse,
who of course is x, and everyone has a spouse, since S is total. In real
life, not everyone has a spouse, but the straightforward way of saying
this, :8x9y(y = Sx), is logically false.

In mathematical applications of logic, it would be convenient to in-
troduce notations for partial functions, e:g:, to de�ne predecessor P
in terms of successor S in the natural numbers by 8x8y(Px = y $
Sy = x) or division = in terms of multiplication � in the reals by
8x8y8z(x=y = z $ z � y = x). However, such de�nitions will not do:
given :9x(Sx = 0), the �rst entails :9x(P0 = x), which is logically
false; given 8x(x�0 = 0), the second entails S0 = 0, which contradicts
:9x(Sx = 0). Nor can we simply exclude the troublesome arguments.
8x(x 6= 0 ! 8y(Px = y $ Sy = x)) leaves P unde�ned at 0, and
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8x8y(y 6= 0 ! 8z(x=y = z $ z � y = x)) leaves x=y unde�ned when
the value of y is 0, whereas classical semantics requires that functions
be everywhere de�ned.

These diÆculties may be avoided by replacing function names with
relational predicates for their graphs.

8x8y(Syx! (Sxy&LxSx))

:9x:9yLyx

is invalid, and de�nitions like 8x8y(Pxy $ Sy = x) or 8x8y8z(Dxyz
$ z � y = x) are �ne. For some applications, however, we will need
to add a premise (an axiom) to the e�ect that the de�ned predicate
is functional, e:g:, 8x8y8z((Sxy&Sxz) ! y = z). And we lose the
considerable advantages of functional notation.

Alternatively, we can represent a partial function f by a total function
F that coincides with f where f is de�ned and is given some arbitrary
value elsewhere. If the arbitrary value for the predecessor and division
functions is 0, then their de�nitions may be given as (8x(x 6= 0 !
8y(Px = y $ Sy = x))&P0 = 0) and 8x(8y(y 6= 0 ! 8z(x=y =
z $ z � y = x))&x=0 = 0). In the case of the spouse function,
we might pick an unmarried person (the Pope, say) and extend the
spouse function to unmarried people x by stipulating that the spouse
of x is the Pope. If S now represents this function and p names the
Pope, then Sx 6= p will tell us that x has a spouse (that the partial
spouse function is de�ned at x), and we can recast the premise of the
argument as 8x(Sx 6= p ! 8y(x = Sy ! (y = Sx&LxSx))): The
price is a violation of ordinary usage: `The Pope's spouse is the Pope'
is not true. Since the Pope is unmarried, `The Pope's spouse' doesn't
refer to the Pope or to anyone else; it doesn't refer to anything. Where
the partial function f is onto, as is the predecessor function, we cannot
identify the arguments at which it is de�ned in this way. No matter
what individual i is picked for the arbitrary value, Fx 6= i will be false
for some x at which f is de�ned.

2.2 Logical Habitats for Philosophical Doctrines

If free semantics permits us to avoid strange results, it also permits us
to state strange doctrines. Free semantics provides a more neutral logical
setting than classical semantics for certain philosophical views. It permits
distinctions upon which they depend to be made in a straightforward way
and does not prejudice the case against them by rendering important claims
logically false. Let us consider an assortment.
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a. Meinong claimed, notoriously, that there are non-existent objects, that
things like the golden mountain may have being while lacking exis-
tence. The straightforward form of `a does not exist' is :9x(a = x),
but this is logically false in classical semantics, since a must refer to
something in the range of x. A device like Russell's will avoid this, but
at the expense of a complex form :9x9y(8z(Az $ z = y)& y = x),
where Az is uniquely true of a.

We could instead take the variables to range over beings and introduce
a 1-place existence predicate E; quanti�cation over existents would be
represented by relativizing quanti�ers to E, 8x(Ex ! A(x)) indicat-
ing that A(x) is true of all existents, 9x(Ex&A(x)) that it is true of
some existent. Then 9x:Ex will represent `there are non-existent ob-
jects.' We can even let Ex abbreviate 9y(y = x), provided we follow
Lejeweski and give identity a non-standard meaning: an interpreta-
tion is hD; d; oi, where hD; di is classical and o 2 D, and s = t is true
under I and � i� s and t refer under I and � to the same individ-
ual of D and this individual is not o. Relative to interpretations and
valuations of this sort, 9x:9y(y = x) is logically true.

These classical or quasi-classical approaches do not really honor Quine's
dictum. Here to be is to be the value of a variable, all right, but to ex-
ist is not. By contrast, a free semantics that permits constants to refer
to individuals outside the range of x allows us to say simply that a
does not exist without immediately contradicting ourselves and with-
out abandoning Quine's useful connection between quanti�cation and
existence.

If we wish to make the more general Meinongian claim that there are
non-existent objects | if we wish to quantify over them | then it
may be argued that we are really committed to objects with being
and should simply treat them classically, delimiting the subclass of
existents with E. Alternatively, we could add a special quanti�er 9by,
meaning `there is a being y such that' and write 9by:9x(y = x) : to
be is to be the value of a variable bound by 9b, to exist is to be the
value of a variable bound by 9. For free semantics of this sort | and
an argument that the semantics of any modal or tense logic can be
built up from it | see [Cocchiarella, 1991]. More modestly, we could
limit what does not exist to a single Lejewskian object, named by o,
and then de�ne 9bxA(x) as A(o) _ 9xA(x). For this approach | and
a proof that it is deductively equivalent to Lejewski's | see [Lambert
and Scharle, 1967].

b. The truth of `Fred exists, but might not have' is typically explained
by gesturing toward a world that is possible relative to ours at which
`Fred does not exist', i.e., :9x(x = f), is true. Accordingly, at such a
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world, f cannot refer to something in the range of x: Fred is not among
the existents of that world. Standard Kripke-style modal semantics is
free.

c. Intuitionists and constructivists inuenced by them reject non-
constructive proofs in mathematics. A proof of 9xA(x) is, for them,
nothing more nor less than a proof of A(t) for some t, and such a proof
is not secured merely be showing that a contradiction can be obtained
from the assumption that 8x:A(x). Now if we have not established
that f is de�ned at s, we can hardly claim to have a proof of fs = fs
and therefore a proof of 9x(x = fs). Yet standard formulations of
intuitionist logic follow classical logic in regarding t = t as a logical
axiom and licensing the inference to 9x(x = t). Accordingly, we must
either banish partial functions from intuitionist logic, thereby limit-
ing its reach in mathematics and ignoring the views of patriarchs like
Brouwer, or further modify the logic, this time in the direction of free
logic. For free variations on Kripke-style semantics for intuitionistic
logic, see [Posy, 1982].

d. Evans [1979] has noted that the standard examples of contingent a
priori truths presuppose a free semantics. If we stipulate that `Julius'
refers to whoever (uniquely) invented the zipper, then `if someone
(uniquely) invented the zipper, Julius did' appears to be (1) true, (2)
a priori, but (3) contingent. It is true because if someone (uniquely)
invented the zipper, that person is Julius because `Julius' refers to
whoever (uniquely) invented the zipper. It is a priori because we
need only understand the stipulation to see that it is true. It is con-
tingent because there is a possible world in which it is false, given
that someone actually did (uniquely) invent the zipper: in the actual
world Julius (uniquely) invented the zipper, but he might not have:
at a possible world in which someone else (uniquely) invented the zip-
per, `Julius did' is false. A free semantics is presupposed because in
classical semantics we cannot introduce a constant like j with a de�n-
ing axiom 8x(x = j $ A(x)) without �rst establishing that 9!xA(x).
Otherwise, we could stipulate that 8x(x = j $ x 6= x) and end up
with the logically false j 6= j. In this case, A(x) is 8y(Zy $ y = x),
representing `x (uniquely) invented the zipper'. Thus, the candidate
sentence (9!xZx ! 8y(Zy $ y = j))) | if someone (uniquely) in-
vented the zipper, Julius did | is not well-formed unless 9!xZx is
true, so it cannot be known a priori to be true. If, however, we allow
non-referring names with the understanding that atomic constructions
involving them are false, 8x(x = j $ 8y(Zy $ y = x))) will be true
whether or not 9!xZx is true; and if 9!xZx is true, j must refer and
8y(Zy $ y = j) will also be true.
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e. Aristotle held that true predication requires a subject: the truth of
`Socrates is well' presupposes the existence of Socrates: `Socrates'
must refer. However, the falsity of `Socrates is well' does not: `Socrates
is well' is false if Socrates exists but illness is attributable to him; it is
also false if Socrates does not exist. `Socrates is ill' and `Socrates is not
well' do not give the same information: the former attributes illness
to Socrates, the latter merely denies that wellness is attributable to
him: he may be ill, or he may not exist at all.

While classical semantics can handle contrary predications like `John
is rich' and `John is poor' simply by not identifying the extension of
`rich' with the complement of the extension of `poor', it does not al-
low `Socrates is well' and `Socrates is ill' to be false if `Socrates' does
not refer: all names refer. A free semantics in which non-referring
subject-terms render subject-predicate sentences false embodies Aris-
totle's view in a natural way. Scales [1969] has extended it by al-
lowing complex predicates �xA(x) to be formed from open sentences
A(x) : �xA(x)t is true i� t refers and A(t) is true. Since A(t) may be
true when t does not refer, �xA(x)t and A(t) may di�er in truth-value.
For example, :Wp representing `Pegasus is not winged' is true, while
(�x:Wx)p, representing `Pegasus is wingless' is false, if `Pegasus' does
not refer.

f. Russell and Meinong go further than Aristotle, holding that ascribing
to a sentence a subject-predicate form requires that the subject-term
refer,
whether the sentence is true or false, a doctrine now embodied in
classical semantics. As Lambert [1986, p. 276] notes, Meinong held
that `the golden mountain is golden' is a predication, so there must
be a golden mountain; Russell couldn't swallow the conclusion, and so
denied the sentence a subject-predicate form.

If the Russell{Meinong view of predication is accepted, `exists' cannot
be a predicate. One argument, extracted from Mendelson [1989, p.
609], is this: (1) If `exists' is a predicate, then singular existentials
of the form `s exists' are subject-predicate sentences with subject s.
(2) In a subject-predicate sentence, \the subject stands for something
and the predicate says something about that for which the subject
stands." So (3) if `exists' is a predicate, `s exists' is trivially true.
But (4) some singular existentials (such as `Neptune exists') are not
trivially true, and others (such as `Vulcan exists') are simply false.
So (5) `exists' is not a predicate. Since (2) is enshrined in classical
semantics, it will be diÆcult to treat `exists' as a predicate E in the
classical setting | unless we abandon (1) or Quine's dictum.8 For the

8Mendelson, under the spell of (2), does abandon (1): he construes \atomic-looking"
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extension of E will be the range of the bound variables and any term
s must refer to something in this range, so Es will indeed be trivially
true.

g. An alternative to both Aristotle and Russell-Meinong holds that `The
present king of France is bald' is a subject-predicate sentence whose
truth or falsity requires the existence of the present king of France, or
the truth of `The present king of France exists.' `The present king of
France is bald' then presupposes `The present king of France exists' in
Strawson's [1952, p. 175] sense: a statement S presupposes a state-
ment S0 i� \the truth of S0 is a precondition for the truth-or-falsity of
S." Presupposition is an interesting relation only if S can be neither
true nor false, since otherwise S presupposes S0 i� S0 is necessarily
true. So a formal treatment will require giving up bivalence. If classi-
cal semantics is assumed, then Bk does indeed presuppose 9x(x = k),
for the latter is logically true. However, as just observed in Section
2.2f, 9x(x = k) cannot be an adequate representation of the contin-
gent truth `The present king of France exists'.

The natural semantic setting for presupposition is a free semantics
in which (1) subject-predicate sentences with non-referring subjects
are neither true nor false, (2) existence claims of the form 9x(x = t)
are false if t does not refer, (3) :A is neither true nor false i� A is
neither true nor false, and (4) X j= A i� A is true whenever all the
X�sentences are true. Presupposition may then be characterized as

A presupposes B i� A j= B and :A j= B

and Bk presupposes 9x(x = k), because both Bk j= 9x(x = k) and
:Bk j= 9x(x = k), although 6j= 9x(x = k). Free semantics of this
\neutral" kind are discussed in Section 3.6. For a di�erent superval-
uational treatment of presupposition, see [van Fraassen, 1968].

h. Mereology conceives of individuals as wholes with parts. For the mere-
ologist, `The rivers of Canada are numerous' does not claim that a
particular set | the set of Canadian rivers | has many members,
but that a particular whole | the mereological sum of the Canadian
rivers | has many parts. Wholes whose parts are spatio-temporal in-
dividuals are also spatio-temporal, though perhaps spatio-temporally
discontinuous; by contrast, sets of spatio-temporal individuals are ab-
stract objects. Since every whole is a part of itself, there cannot be

sentences Ps as either 9x(Sx&Px) or 8x(Sx ! Px), where S is a singular predicate.
However, his non-standard semantics generates the truth-values that Ps would have if
it were a subject-predicate sentence whose subject may refer to individuals outside the
range of the bound variables.
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a whole with no parts (though there may be wholes | true atoms |
with no proper parts). While set theory can embrace the empty set,
mereology does not recognize an empty whole.

In thinking rigorously and systematically about parts and wholes, it
is very convenient to employ operators such as binary sum (x + y is
the whole whose parts z are such that z is part of x or z is part of
y), generalized sum (�xA(x) is the whole whose parts z are such that
there is a y such that A(y) of which z is part), binary product (x � y
is the whole whose parts z are such that z is part of x and z is part
of y), etc. But such operators will not be everywhere de�ned, if there
is no empty whole: both �x(x 6= x) and x� y, where x and y have no
common part, would be the empty whole, if there were such a thing,
but there is not, so both �x(x 6= x) and x� y, where x and y have no
common part, are unde�ned. If mereological theories are to be framed
as �rst-order theories, classical semantics is an unwelcome constraint:
the mereologist must either do without these operators and conduct
all logical business in terms of cumbersome predicates, or he must
hold his nose and introduce a constant for something he denies exists,
viz. the empty whole. A free semantics that permits partial operators
is much more congenial. For a discussion of free mereological theories,
see [Simons, 1991].

2.3 Logical Form

I take the present view of logical form to have these elements:

a. Sentences-in-context have a semantic structure or logical form: their
truth-values (truth, falsity, or lack thereof) reduce, via recursive se-
mantic rules, to the semantic values of their unstructured parts or
elements (e:g:, a subject-predicate sentence is true i� the referent of
the subject term belongs to the extension of the predicate).

b. An interpretation assigns appropriate semantic values to such elements
(e:g:, extensions to predicates).

c. Any logically possible situation is represented by some interpretation;
in particular, the actual situation is represented by an interpretation,
so that the actual truth or falsity of a sentence reduces to the actual
semantic values of its elements.

d. The logical properties and relations of sentences-in-context are deter-
mined by their semantic structures and the totality of interpretations
via semantic de�nitions of these properties and relations (e:g:, logical
truth is truth under every interpretation); such de�nitions provide the
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basis for judging the soundness and adequacy of proof systems that
give purely syntactic accounts of proof and proof from hypotheses.

Granting this, it is easy to argue for inclusive semantics: bound variables
may range over the empty domain, for surely it is logically possible that
there be nothing at all. To be sure, once we have investigated this case,
we might want to heed Quine's advice [1953, p. 161] and put it aside for
pragmatic reasons if, by including it, we would \cut ourselves o� from laws
applicable to all other cases". Or we might include it by using those laws but
performing an extra check on results: existentials will be false and universals
true in the empty domain, and the other sentences will be truth-functional
compounds of these if we have followed Quine and purged the language of
all singular terms but variables. Still, what justi�es the truth-value assign-
ments is a look at this case and thinking through the application of general
semantic rules to it. Note that the no-counterexample interpretation is re-
quired if universals are to be true and that vacuous quanti�ers are not idle
in the empty domain (9y8xPx is false while 8xPx is true).9

We may also argue for free semantics as follows: (1) In accord with
Quine's dictum, the range of bound variables in a given interpretation is
restricted to individuals that exist in the possible situation represented by
the interpretation. (2) There are sentences in which expressions that look
for all the world like names do not, in actual use, refer to actual individu-
als. So (3) if these expressions are treated as names, no interpretation that
represents the actual situation can assign them referents in the range of the
bound variables. (4) What is permitted in interpretations that represent
the actual situation must also be permitted in interpretations that repre-
sent possible situations. So (5) if these expressions are treated as names,
interpretations in general need not assign them referents in the range of the
bound variables.

(1) is true of classical semantics, whether we identify an interpretation
with (i) a meaning function that associates with each element an appropriate
semantic value in the actual world, or (ii) a possible world, at which the
meanings of elements in the actual world determine their semantic values,
or (iii) a meaning function at a possible world.10 Sentences of type (2)
include:

9For discussion of systems that treat vacuous quanti�ers in the empty domain di�er-
ently, see [Lin, 1983].

10The main defect of (i), aside from having to represent reasoning about hypothetical
situations indirectly, is that the valid arguments depend upon how many individuals
there are in the actual world. If the number is �nite | k, say | any argument with a
premise stating that there are more than k individuals will be valid, since the premises are
not satis�able. The main defect of (ii), aside from issues of epistemic access to possible
worlds, is that arguments like `Some even number has an irrational square root, 2 is an
even number, so 2 has an irrational square root' will be valid, since the conclusion is
presumably true at any possible world. Hence, (iii).
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s1. If Vulcan exists and its orbit lies within that of Mercury, it's going to
be very hard to observe.

s2. Vulcan doesn't exist.

s3. Zeus is not Allah.

s4. The ancient Greeks worshipped Zeus.

s5. Pegasus is a winged horse.

s6. Bosch painted a picture of hell.

s7. Mary admires Eustacia Vye.

The simple thought behind (4) is that the actual is a special case of the
possible. A name like `Hillary Clinton' happens to refer to a particular
individual of the actual world; but the name could have been attached to
some other individual of this world or to an individual of some other possible
world. If we are prepared to regard an expression like `Eustacia Vye' as a
name that does not in fact refer to an individual of this world (but to the
heroine of Thomas Hardy's novel, The Return of the Native), then we should
allow that in a possible situation, however conceived, it need not refer to an
individual that exists in that situation.

(5), the conclusion of the argument, is conditional, and we may avoid
adopting free semantics by refusing to admit that such expressions are,
despite appearances, singular terms. The cost of such denial is dealing with
them in some other way, and those we have seen above are awkward. What
basis is there for holding that `Mary admires Hillary Clinton' is a relational
subject-predicate construction, while `Mary admires Eustacia Vye' is not?
The obvious di�erence is that `Hillary Clinton' refers to a real person and
`Eustacia Vye' does not. But why should logical form depend upon that?

Lambert [1998, p. 157] and Kroon [1991, p. 21] suggest that logical form
is independent of empirical fact, and hence independent of whether terms
actually refer. The premise, however, seems too strong. We may agree
that the logical form of a sentence cannot depend upon its truth or falsity,
since its truth or falsity is determined by its logical form and the actual
semantic values its elements, including the referents of its terms. But it
does not follow that form cannot depend on whether expressions that we
are tempted to classify as terms refer, particularly if we cannot �gure out
how to get semantic rules to deliver truth-values smoothly in such cases.

Indeed, it may be argued that logical form does depend to an extent on
empirical fact, since it is sentences-in-use that have such forms. When Alice
says, `I'm hungry', and Bill adds, `But I'm not', there is no contradiction:
the form of what Alice says is represented by Ha and the form of what
Bill says by :Hb. If logical forms reect the di�erent uses of indexicals
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like `I', as they must in one way or another, then why may they not reect
such empirical facts as whether \terms" refer? We might want to say that
the logical form of `I'm hungry' is the same in both cases, namely, the
simple subject-predicate form Ps, and that Ha represents, in this form, the
propositional content of what Alice says. But then it is representations of
propositional content that will do the work that (a){(d) require of logical
form.

I prefer a more pragmatic argument: logical form should be reasonably
accessible, and the closer it is to surface form the better, other things equal.
We do not want to misconstrue logical form and have to reformulate rea-
soning when we discover our error. If logical forms are contingent upon
whether certain expressions refer | a matter that may be very diÆcult to
settle | then logic may not be very useful. We don't want to have to revise
reasoning about the unknown solution to some equation if we �nd out, as
a result of that very reasoning (how else?), that there is no solution (or no
unique solution). Moreover, we'd like to be able to conduct such reasoning
using a term t for the solution, rather than (say) in Russell's indirect and
clumsy fashion.11

But perhaps we need not abandon the classical perspective, even if we
admit that the italicized terms in s1-s7 are singular terms. Let me sketch
two objections of this kind:

OBJECTION 1. Suppose we insist that sentences with terms that do not
refer, or that seem to refer to things outside the range of the variables, are
neither true nor false. Then applying classical laws will lead from truths to
truths: we may apply existential generalization to `Mary admires Eustacia
Vye' to get `Mary admires someone', but the premise is untrue, so the
falsity of the conclusion (if it is false) does not invalidate the rule. The
reason for including the actual situation (in which such terms as `Eustacia
Vye' do not refer to anyone) among the possible situations is to mesh logic
with truth: the conclusion of a sound argument should be true. But if we
insist that sentences with terms like `Eustacia Vye' are truth-valueless, we
need not worry that classical logic will lead us from true premises to untrue
conclusions. Accordingly, such sentences can be set aside as `don't cares'.12

There are three problems with this proposal. First, it is diÆcult to
maintain that all such sentences are truth-valueless; indeed, anyone not be-
witched by some theory will take most of s1{s7 to be true. Second, familiar
rules of inference such as addition

11Note, however, that a free semantics that does not support extensionality in the sense
that 8x(A(x) $ B(x)) j= A(t) $ B(t) is probably not going to support this reasoning
either, since it will typically involve moving from A(t) and 8x(A(x) $ B(x)) to B(t).
We shall probably have to conduct it under the additional assumption that t exists:
9x(x = t).

12This objection is suggested by van Fraassen [1966, Section 3].
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ADD A ` A _ B
will then not preserve truth, contrary to what is alleged: `Washington is
the capitol of the USA so either Washington or Atlantis is the capitol of
the USA' has a true premise and a truth-valueless conclusion. Third, no
justi�cation has yet been given for the claim that terms which do not refer to
things in the range of the bound variables render sentences truth-valueless;
such a justi�cation requires an extension of the ordinary semantic rules to
this case.

OBJECTION 2. Let us concede that sentences with terms that do not
refer to existents can be true or false; still, it does not follow that we must
reject classical semantics for free semantics:

a. Perhaps, as Stenlund [1973], Burge [1974], and Kroon [1991] suggest,
some sentences of this kind can be handled classically, albeit by shift-
ing from possible to imaginary or hypothetical worlds. In actual use, a
sentence like `Pegasus is a winged horse' invokes an implicit `in myth'
operator that, in e�ect, shifts attention from the actual situation to
an imaginary one in which Pegasus exists (and indeed turns out to
be a winged horse). That is, in actual use or context, the sentence
is not about this world, but about another one, at which the normal
reference conditions of classical semantics are ful�lled. Thus, classical
semantics is all we need to understand why the reasoning of Sher-
lock Holmes in \Silver Blaze" about the missing horse is sound in the
world of Doyle's story: \. . . he must have gone to King's Pyland or to
Mapleton; he is not at King's Pyland. Therefore he is at Mapleton."13

However, this manoeuvre works only for sentences like s5. Consider
s3: Zeus is not Allah, but where? Insofar as we can understand the
truth of most of the sentences s1-s7 in terms of reference to imaginary
individuals, it is reference across, not within, worlds, and that is not
going to be accommodated by classical interpretations. All we need
do to create problems for the recommended treatment of `Pegasus is a
winged horse' is to add `though such things do not exist'. If `Pegasus
is a winged horse' is true, so is `Pegasus is a winged horse, though
such things do not exist', but moving to a world of myth will render it
self-contradictory. We can �x this by staying here in the actual world
and understanding `Pegasus' to refer to something in a world of myth,
but that abandons classical semantics for some free variant of it.

b. Perhaps what is problematic about sentences like s4, s6, and s7 is not
failure of reference, but referential opacity, which we are not going to

13A. C. Doyle, \Silver Blaze", in The Complete Sherlock Holmes (Garden City: Garden
City Books, 1930), pp. 383{401 at p. 393.
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be able to handle with extensional logical forms anyway. Contexts
like `worshipped . . . ', `picture of . . . ' and `admires . . . ', according to
this view, are not referentially transparent: truth-value need not be
preserved by replacing a referential term by a co-referring term. The
suggestion is that if John worships God, it does not follow that John
worships Satan, even if God and Satan turn out to be identical (or as
identical as the members of the Trinity). And similarly for the others.

This objection does not help in the other cases. Nor does it seem very
convincing. There is certainly a sense in which John does worship
Satan if he worships God and God is Satan. And similar things may
be said about the other contexts. A picture of Fred is a picture of the
Grand Dragon of the Ku Klux Klan, if that's who Fred is. `Admires'
is no more intensional than `loves', the standard logic-text example of
a relational predicate.

2.4 Derived Rules and Axioms

Reection on the cases discussed in Section 2.1 will suggest that we can work
around the constraints of classical semantics in various ways without giving
up its familiar simplicity. We can relativize the quanti�ers to a predicate
E that we interpret as true of existents; irreferential terms are those that
refer to individuals of D that are not in d(E), function-names f such that
d(f)(�) =2 d(E) for some � 2 d(E) represent functions d(E) ! d(E) that
are not total. Or we can eliminate non-referring terms in Russell's way.
While such representations may not be perfect, they may be good enough
for most purposes.

However, classical representations of irreferential names and partial func-
tions can be cumbersome, and at some point those who work with them will
want to develop some derived rules to facilitate reasoning and its formal or
informal representation. Such rules will be those of a corresponding free
logic. Development of various free logics can therefore provide a number of
`o� the shelf' systems that can be applied in such cases. Let us consider
two examples.

a. Suppose that you believe Russell was correct in holding that descrip-
tions like `the present King of France' are not genuine singular terms
and that what appear to be subject-predicate constructions like `the
present King of France is bald' are actually complex quanti�er con-
structions. Still, working with these complex constructions is about
as inviting as programming in machine language; you will want to de-
velop some macros. So let's pretend that `the present King of France'
is a term and `the present King of France is bald' is a subject-predicate
sentence whose truth-value is given by Russell's quanti�er construc-
tion, and attempt to develop a system of derived axioms and rules of
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inference that enables you to treat descriptions as if they were terms.
The obvious minimal constraint on such a system is that A should be
provable i� the Russellian expansion of A is logically true. If we can
pretend that descriptions are terms, we can also pretend that they can
refer | or fail to refer, as the case may be | and ask what sort of log-
ical semantics we may pretend underlies the system of derived axioms
and rules. As Scales [1969] and Burge [1974] show, the result of this
process is a free logic, whose underlying semantics may be suÆciently
compelling to loosen your allegiance to Russell and to classical logic.

b. Quine's pure set theory NF [1969] is framed in a �rst-order language
without identity, whose non-logical symbols are variables and the 2-
place predicate 2 : Identity (in the weak sense of indiscernibility) is
introduced by de�nition: x = y abbreviates 8z((z 2 x$ z 2 y)& (x 2
z $ y 2 z)):14 The only axioms are extensionality

8z(z 2 x$ z 2 y)! x = y

and restricted comprehension

9x8y(y 2 x$ A(y));

where A is strati�ed: it is possible to replace the variables by numerals
so that subject-predicate constructions x 2 y become n 2 n+ 1. The
restriction is designed to secure the safety of type theory without
the pain. Quine's view [1969, p. 16] is that \much. . . of what is
commonly said of classes with the help of `2' can be accounted for as
a mere manner of speaking, involving no real reference to classes or any
irreducible use of `2'." Singular terms fx : A(x)g for classes | terms
Quine calls class abstracts | are introduced by a pair of contextual
de�nitions: y 2 fx : A(x)g abbreviates A(y), and fx : A(x)g 2 �,
where � is a class abstract, abbreviates 9y(y = fx : A(x)g& y 2 �).
If class abstracts are regarded as referring to pretend or virtual classes,
then virtual classes which belong to virtual classes are real, though
the virtual classes to which they belong need not be; sets are members
of real classes. Identity may be extended to class abstracts by taking
� = � to abbreviate 8x(x 2 � $ x 2 �), so that � = fx : A(x)g $
8x(x 2 � $ A(x)) and � = fx : x 2 �g:
Existential generalization fails for class abstracts: A(�) 6j= 9xA(x) for
some A(�). In particular, let A(x) be x = �, where � is fx : B(x)g.
Then the premise A(�) is � = �, i:e:, fx : B(x)g = fx : B(x)g, i:e:,

14Of course, this will not force `=' to be interpreted as numerical identity; no set
of axioms constraining the interpretation of `=' can do that, which is why identity is
commonly regarded not as a predicate but as a logical operator.
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8y(y 2 fx : B(x)g $ y 2 fx : B(x)g), i:e:, 8y(B(y) $ B(y)), which
is logically true. The conclusion 9xA(x) is 9x(x = �), i:e:, 9x8y(y 2
x $ y 2 fx : B(x)g), i:e:, 9x8y(y 2 x $ B(y)), which amounts
to unrestricted comprehension, since B(y) can be any formula and
the premise will be true. If B(y) is y =2 y, we obtain the logical
falsehood 9x8y(y 2 x $ y =2 y) of Russell's paradox. However, the
inference will be valid if 9x(x = �) is added as an extra premise: A(�),
9x(x = �) j= 9xA(x). For then we can move from A(�) to A(x) (in
virtue of j= � = � ! (A(�) $ A(�)) for variables or set abstracts
�; �), from which of course 9xA(x) follows. This is not a problem here
because the added premise is just the conclusion when B(y) is y =2 y.
This is typical of free logics: A(t), 9x(x = t) j= 9xA(x), but not
necessarily A(t) j= 9xA(x). A natural question now is whether we
can capture the logical moves involving class abstracts � in a set of
derived axioms and rules which treat them as genuine terms t and, if
so, whether there is a natural free semantics that we might pretend
underlies their use. A suÆciently natural semantics might blur the dis-
tinction between pretense and reality, especially in pure mathematics,
where there does not seem to be much di�erence between pretending
that mathematical objects exist and asserting that they do. For a
restructuing of Quine's NF along these lines, see [Scott, 1967].

3 FREE SEMANTICS

Free departures from classical semantics are usually | though not always,
as in [Farmer, 1995], [Feferman, 1995], and [Woodru�, 1984] | universally
free. If we are going to permit terms that do not refer to individuals in
the range of the bound variables, why not include the case where no term
can refer to such an individual, simply because there are none? This is
easy enough to do semantically, though the required adjustments to proof
systems are a bit more trouble.

There are two ways in which terms may fail to refer to individuals in the
range of the bound variables: either they refer to individuals outside this
range, or they do not refer at all.

The �rst way leads to outer domain semantics, a straightforward bivalent
modi�cation of classical semantics in which a classical domain D is divided
into a possibly empty inner domain Di, over which the bound variables
range, and an outer domain Do. With the exception of the quanti�er valua-
tion clause v5, in which x�variants must now be understood to assign to x
an individual of the inner domain, the interpretation and valuation clauses
of classical semantics can be adopted without change.

The second way involves partial interpretations I = hD; di, where D may
be empty and the denotation function d is partial on constants and assigns



MORE FREE LOGIC 219

partial functions D ! D to function-names. Assignment functions � are
also typically partial on variables. Here we face the problem of \assigning
reasonable truth conditions to sentences containing non-denoting singular
terms," as Bencivenga [1986, p. 382] observes. This requires giving reasoned
responses to the following questions:

q1. If t does not refer, must ft also be non-referring? Does `Jack Aubrey's
sovereign' refer to England's George III, although `Jack Aubrey' does
not refer to a real person but to the �ctitious captain of Patrick
O'Brian's sea novels?

q2. Should d treat predicates as names of partial truth-valued functions
on D? Is `2 is green' false (because `2' refers to something that is not
in the extension of `green') or is it truth-valueless (because `2' does not
refer to something that is colored)?

q3. If t does not refer, may Pt be true? If not, is it false or is it truth-
valueless?

q4. If t does not refer, is t = t true, false, or truth-valueless? If s refers
and t does not, is s = t false or truth-valueless?

q5. If formulae may lack truth-value, how are the classical truth-tables
for the connectives to be extended? Shall we count A ! B true or
truth-valueless if A is false and B is truth-valueless, or B is true and
A is truth-valueless?

q6. If formulae may lack truth-value, how are the quanti�er clauses to be
modi�ed? Should v5 read `8xA is false if A is false for some x�variant
of �, and 8xA is true otherwise' or `8xA is false if A is false for some
x�variant of �, and 8xA is true if A is true for each x�variant of �' or
`8xA is true if A is true for each x�variant of �, and false otherwise'?

q7. If formulae may lack truth-value, how are the de�nitions of logical
properties and relations to be modi�ed? Should logical consequence
preserve truth? non-falsehood? both?

Applications may decide some of these questions. For example:

1. If we wish to allow for the non-strict functions and relations of com-
puter science, then we will answer `No' to q1 and `Yes' to the �rst part
of q3. Following Gumb and Lambert [1997], we might then implement
such permissions by adding a virtual entity u (for `unde�ned') to D:
d will assign to a k�place function-name f a total k � ary function
d(f) : D [ fug ! D [ fug and to a k�place predicate P a k � ary
relation d(P ) in D [ fug as its extension. If we want ft to be un-
de�ned, though t refers to �, we will set d(f)(�) = u; if we want ft
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to be de�ned, though t does not refer, we will require d(f)(u) 2 D;
if we want Pt to be true when t does not refer, we will put u in the
extension d(P ) of P . u is not to be regarded as a strange entity, but
as a notational device for simplifying the statement of semantic rules,
as in [Kroon, 1991].

2. If we think that `2 is green' presupposes `2 is colored' in the sense of
Section 2.2g, we will answer `Yes' to q2. We can then follow Smiley
[1960] and Ebbinghaus [1969] and have I assign P both a domain of
application D(P ) in D and, within that domain, an extension d(P ).
If we want Px to be truth-valueless when x is assigned �, then we put
� outside D(P ); if we want Px to be false when x is assigned �, then
we put � in D(P )� d(P ):

The large decision is whether to answer q3 and q4 in a way that permits
truth-valueless atomic formulae | and forces us to answer q5-q7. We can
prune the choice tree considerably by opting for bivalence at the atomic
level. However, such a decision needs to be rationalized. It will not do
simply to argue that atomic formulae with non-referring terms should be
false because (a) any atomic formula A(t) is a predication which is true
just in case the A(x) is true of the referent of t, so that (b) where t fails to
refer, A(t) is not true, so (c) where t fails to refer, A(t) must be false. For
what underwrites the move from (b) to (c) is bivalence. However, there may
be applications which call for such a ruling. For example, Farmer [1995,
p. 281] claims that in the \traditional approach to partial functions" in
mathematics, variables and constants always refer, functions may be partial
and ft does not refer if t does not refer or d(f) is not de�ned at d(t), while
Pt is false if t does not refer.

The usual route to true atomic formulae with non-referring terms is story
semantics, a non-referential variant of outer domain semantics: treat non-
referring terms as if they referred to individuals in an outer domain, taking
the formulae that are true under such a pretense to constitute a story S
which supplements a partial referential interpretation I and assignment �.
Story semantics is equivalent to outer domain semantics in which the indi-
viduals of the outer domain Do are treated as virtual or pretend objects.
Story (or virtual outer domain) semantics seems to provide a natural way
of dealing with sentences that are about �ctional or mythical entities, at
least if we do not want to follow Meinong in reifying them. Note, however,
that we don't yet have a justi�cation for the bivalence that is built into
this type of semantics, because actual stories or myths, unlike the stories of
story semantics, are not complete. Nothing Doyle wrote decides the �ctional
truth-value of `Sherlock Holmes died before 1920,' yet if Bh represents this
sentence and h does not refer, any story S will include either Bh or :Bh:

If atomic formulae with non-referring terms are all to be false, then an
excursion into stories is unnecessary: we can simply modify the valuation
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rules v1 and v2 for atomic formulae to require as much. Note, however,
that t = t will then be false, if t does not refer. Even stranger results await
those who follow Frege [1892] and deny truth-values to atomic formulae with
non-referring terms. For if Pt lacks truth-value, then :Pt and Pt _ :Pt
also appear to lack truth-value. Accordingly, some instances of A _ :A are
not logically true, if logical truth is truth under each partial interpretation
and assignment. This is suÆciently disturbing to motivate a search for an
respectable alternative that permits Pt to be truth-valueless while insuring
that t = t and A_:A are logically true. The usual proposal is a supervalua-
tional semantics, in which truth under a partial interpretation is understood
as truth under all completions of it.

A free semantics in which some atomic formulae with terms that do not
refer to individuals in the range of the bound variables are true is said
to be positive.15 If all such atomic formulae are false (truth-valueless),
the semantics is said to be negative (neutral). Both outer domain and
story semantics are positive in this sense, as is supervaluational semantics.
However, the more signi�cant divide is between bivalent and non-bivalent
accounts. I shall �rst discuss bivalent free semantics, both positive and
negative, then non-bivalent free semantics, including supervaluations.

3.1 Positive Bivalent Semantics: Outer Domains

Outer domain free semantics involves minimal change in classical semantics.
An outer domain interpretation I = hD; di is classical, except that D is
partitioned into an inner domain Di and an outer domain Do. Thus, i1 is
altered to:

io1: D is non-empty, and D = Di +Do

No change is needed in the classical notion of an assignment. However,
bound variables are to range overDi, so the classical notion of an x�variant
must be modi�ed to require that x is assigned a value in Di: an x-variant
of � is an assignment that di�ers from � at most at x and assigns x a value
in Di. Note that � now need not be an x-variant of �. If Di is empty, � has
no x-variants, so in this case universals are true and existentials are false.
Evidently:

6j= 9x(x = x)
Pt 6j= 9xPx; but A(t), 9x(x = t) j= 9xA(x)
8xPx 6j= Pt; but 8xA(x), 9x(x = t) j= A(t)

Pt 6j= 9x(x = t)
j= t = t

15Here I follow the recent usage of Lambert [1997, p. 62]. Other meanings of `positive'
can be found in the free logic literature. Bencivenga [1986, p. 397] terms (conventional)
semantics positive if each atomic formula containing a non-referring term is true, while
Lambert [1991b, p. 344] uses `positive' merely as a synonym for `non-negative'.
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If desired, an existence predicate E! may be introduced by taking E!t to
abbreviate 9x(x = t). The extension d(E!) of E! under I will be Di:

A Hilbert-style system PFL (for `positive free logic') of axioms and rules16

that is strongly complete relative to outer domain free semantics may be
obtained from CL by replacing A1 with

8x(A! B)! (8xA! 8xB)
A! 8xA, if x is not free in A

modifying A2 to

(8xA(x)& 9x(x = t))! A(t)

modifying A3 to

t = t

modifying A4 to

s = t! (A(s)! A(t)), if A is atomic

and adding

8x9y(y = x):

Lambert [1991a, p. 9] characterizes outer domain semantics as embody-
ing a \Meinongian world picture": the inner domain consists of existents,
while beings that lack existence are relegated to the outer domain. This
identi�cation is a bit misleading, since Meinong held that non-existent be-
ings are indeterminate with respect to certain properties | the golden
mountain has no speci�c height | whereas the objects of an outer domain
are determinate in virtue of i4 and v1. A true Meinongian outer domain
semantics would not be bivalent. Moreover, outer domains are sometimes
taken to consist of pretend or virtual objects: that is, objects that we pre-
tend exist so as to provide a referential semantics for terms that do not
refer to existents. But Meinong did not regard having being as a matter of
pretense.

3.2 Positive Bivalent Semantics: Stories

Story semantics can be regarded as a non-referential version of outer domain
semantics. A story interpretation hI; Si consists of a partial interpretation I
that permits non-referring terms and a story (or convention) S that assigns
truth-values to atomic formulae containing such terms.

16This formulation is based on [Meyer and Lambert, 1968]; see also [Lambert, 1997,
p. 39]. Leblanc [1968] has shown how to derive (8xA&E!t) ! A(t) from the other
axioms by the rules of inference. For discussion of related systems, see [Bencivenga,
1986, Sections 5 and 6].
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A partial interpretation I = hD; di is classical except that D may be
empty, d is partial on constants, and d assigns function-names partial func-
tions D ! D. In particular:

ip1: D is a possibly empty set.

ip2: If d is de�ned at a, d(a) 2 D:
ip3: If f is k�place, d(f) is a partial k-ary function D ! D:

i4 remains unchanged. Assignments � may be partial, but as in ip2 if �
is de�ned at x, �(x) 2 D. The rules for reference under I and � must be
reformulated to take account of non-referring terms:

rp1: If � is de�ned at x, then x refers to �(x); otherwise, x does not refer.

rp2: If d is de�ned at a, then a refers to d(a); otherwise, a does not refer.

rp3: If each ti refers and d(f) is de�ned at h�1; : : : ; �ki, where ti refers to
�i, then ft1 : : : tk refers to d(f)(�1; : : : ; �k); otherwise, ft1 : : : tk does
not refer.

However, irreferential terms do not lead to truth-valueless formulae, since
the story S supplies the missing truth-values for atomic formulae. A sub-
stitutional account of quanti�cation would permit us simply to identify S
with a set of atomic sentences satisfying certain conditions.17 Objectual
quanti�cation requires a somewhat more complicated account, derived from
Woodru� [1984]. Here a story is a function S from assignments � to sets
S(�) of atomic formulae with non-referring terms satisfying the following
conditions:

s1. If t does not refer, then t = t 2 S(�):
s2. If just one of s and t refers, then s = t =2 S(�):
s3. If neither s nor t refers and s = t 2 S(�), then A(s) 2 S(�) i�

A(t) 2 S(�):
s4. If both s and t refer to the same individual of D, then A(s) 2 S(�) i�

A(t) 2 S(�):
s5. If � and � agree on the free variables of A, then A 2 S(�) i� A 2 S(�):
Truth-values for atomic formulae under hI; Si and � are �xed by I and � if
all terms refer, and by S and � otherwise:

vs1: If each ti refers, then Pt1 : : : tk is true i� h�1; : : : ; �ki 2 d(P ), where
ti refers to �i; otherwise, Pt1 : : : tk is true i� Pt1 : : : tk 2 S(�):

17The conditions are s1{s4 with `S(�)' replaced by `S'.
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vs2: If both s and t refer, then s = t is true i� � is �, where s refers to �
and t refers to �; otherwise, s = t is true i� s = t 2 S(�):

The classical valuation rules v3{v5 are unchanged, except that truth and
falsity are now relative to hI; Si and �. Note that if t does not refer under
I and �, then 9x(x = t) is false under hI; Si and �. If t does not refer
because D is empty, there are no x-variants of �, hence no x-variants � of
� for which x = t is true under hI; Si and �; so 9x(x = t) is false under
hI; Si and �. If D is not empty, let � be any x-variant of �. Since x refers
under I and � and t does not, x = t =2 S(�) and x = t is false under hI; Si
and �; therefore, 9x(x = t) is false under hI; Si and �.

It can be shown that to any outer domain interpretation hDi + Do; di
and assignment � there corresponds a story interpretation hDi; d

0; S0i and
assignment �0 that preserves truth-values, and conversely. Thus, adopting
story semantics does not require any change in PFL.

Story semantics is now somewhat unfashionable. Lambert [2001] regards
his creation as an unsuccessful attempt to develop \a philosophically palat-
able semantics for positive free logic whose domain consists of a single set
of (intuitively) existing objects, whose denotation function is partial, and
whose truth de�nition makes no appeal to other worlds or `extensions' of
the domain." It is unsuccessful, in his view, because a story is \simply
a list of sentences governed by some logical laws, hence a story in a very
Pickwickian sense indeed." However, it seems no more Pickwickian than
identifying properties of D-individuals with the subsets of D, as is standard
in classical semantics.

Another objection is Bencivenga's: without a semantic rationale, condi-
tions s1{s5 are ad hoc, and the \logical laws" that they build into a story
S are without foundation.18 For example, if we are going to require that
a = a 2 S(�) when a does not refer under I, why shouldn't we also require
that Pa 2 S(�) when 8xPx is true, but a does not refer, under I? Why
can't 8xA(x) ! A(t) also claim the status of a logical law, contrary to the
desires of free logicians? Perhaps this objection can be partially met by
arguing that conditions s1{s5 capture the rules of language games about
�ctional or pretend entities.19 However, as noted above, this justi�cation
will be incomplete unless we can argue that such language games commit

18Bencivenga [1986, p. 403], and [this volume, p. 176]. Woodru� [1984, p. 944]

characterizes conditions like s1{s5 as \constraints designed to ensure that we get the
right results (for instance, that the laws of identity continue to hold)."

19I confess that I do not �nd Walton's use of this idea very illuminating. According to
Walton [1990, p. 400], when Sally claims that Tom Sawyer attended his own funeral, she
is claiming that The Adventures of Tom Sawyer is such that \to behave in a certain way,
to engage in an act of pretense of a certain kind while participating in a game authorized
for it, is �ctionally to speak the truth." Unless Sally is a very unusual person, this is
false. As an account of when Sally's assertions of `Tom Sawyer attended his own funeral'
are true, it is more promising, but obscure.
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participants to bivalence, i:e:, to accepting A or :A, for any atomic sentence
A with a non-referring term.

3.3 Negative Bivalent Semantics

Negative free semantics is story semantics without the story: an interpre-
tation I is precisely as it is in story semantics, that is, it is a partial in-
terpretation de�ned by ip1{ip3 and i4. The rules of reference rp1{rp3 are
unchanged, but vs1 and vs2 are altered to declare that atomic formulae
with non-referring terms are false:

vr1: If each ti refers, then Pt1 : : : tk is true if h�1; : : : ; �ki 2 d(P ), where ti
refers to �i; otherwise, Pt1 : : : tk is false.

vr2: If s and t refer, then s = t is true if � is �, where s refers to � and t
refers to �; otherwise, s = t is false.

The subscript `r' is for `Russell'. In contrast to outer domain semantics, we
have:

Pt j= 9x(x = t)
6j= t = t

:9x(x = t) j= t 6= t:

A Hilbert-style system NFL (for `negative free logic') of logical axioms
and rules20 that is strongly complete with respect to this semantics may be
obtained from PFL by altering the identity axiom schema t = t to

8x(x = x)

and adding

A(t)! 9x(x = t), if A is atomic.

A somewhat less free version of negative free semantics is employed by
Farmer [1995] and Feferman [1995] to formalize reasoning about partial
functions in mathematics. Since mathematical domains | natural num-
bers, sets, etc. | are assumed to be non-empty, ip1 is replaced by the
classical i1. Since in mathematical practice variables and constants are as-
sumed to refer, assignments are total and ip2 is replaced by the classical i2;
the classical reference rules r1 and r2 (resp.) replace rp1 and rp2 (resp.). For
a Hilbert-style axiomatization LPT of this semantics, with extensions to a
partial combinatory logic CLp and a partial ��calculus �p, see [Feferman,
1995]. For a type-theoretical extension LUTINS of this semantics that has
been axiomatized to provide a basis for automated theorem proving, see

20See [Burge, 1974, p. 191] and [Lambert, 1997, p. 83].
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[Farmer, 1995]. Following Beeson [1985, p. 98], Farmer and Feferman re-
place the existence predicate E! with # (read `is de�ned'); t # is equivalent
to 9x(x = t).

Lambert [1991a, p. 9] characterizes negative free semantics as Russellian:
there are no entities, Meinongian or virtual, beyond the existents, and non-
referring terms render atomic formulae false just as they do for Russell.
However, Russell's truth-values result from treating non-referring terms as
descriptive and atomic formulae containing them as abbreviations for more
complex formulae that turn out to be false if the descriptions are empty. So
his truth-values are rationalized by some analysis of constructions containing
non-referring terms. That is not yet the case here. If we hold, with
Burge [1974, p. 193] following Aristotle, that \true predications at the
most basic level express comments on topics, or attributions of properties or
relations to objects," then we will agree that \lacking a topic or object, basic
predications cannot be true." But this will not get us all the way to negative
free semantics unless we buy bivalence, for which Burge does not argue.
The rest of the justi�cation will probably have to be provided by particular
applications, as when Farmer [1995, p. 282] notes that the \traditional
approach to partial functions" in mathematics holds that \formulas are
always true or false" and that \application of a predicate is false if any
argument is unde�ned."

3.4 Intermission: Axiomatizing Equivalence and Implication

Before turning to non-bivalent free semantics, let us take note of Lin's [1983]

study of equivalence and implication for various bivalent free semantics.
Some elementary logic texts, such as [Tidman and Kahane, 1999], present

natural deduction systems that include replacement rules A[B] ` A[C],
where A[C] results from A[B] by replacing a part B by C. For each such
rule, there is a decidable syntactic relation R such that (i) B R C or C R B
and (ii) R�related formulae are logically equivalent. Examples are double
negation, where ::B R B, and DeMorgan's laws, where :(B_C)R:B&:C
and :(B&C)R:B _ :C. Any rule of this kind is closed under ordinary
replacement: if B ` C is an instance, so is A[B] ` A[C]. Let us call such
rules replacement closed.

Classical semantics supports ordinary replacement in the sense that if B is
logically equivalent to C, then A[B] is logically equivalent to A[C]. So if B is
provable from A by replacement closed rules, B is logically equivalent to A.
For classical semantics and free variants that support ordinary replacement,
it is natural to ask if the converse holds: is there a system S of replacement
closed rules such that B is S-provable from A if B is logically equivalent to
A? Positive results are summarized in Chart B of [Lin, 1983, p. 86].

Textbook authors warn students not to apply implicational rules like
ADD to parts of formulae, since :B ` :(B _ C) is unsound. However,
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applications of such rules to certain parts of formulae are sound. If a positive
(negative) part B of a formula A[B+](A[B�]) is characterized as in [Sch�utte,
1960, p. 11], then A[B+] ` A[B _ C+] is sound because the truth (falsity)
of a positive (negative) part renders a formula true. Moreover, A[B_C�] `
A[B�] is sound as well. So we may generalize addition to a pair of rules:
A[B+] ` A[B _ C+] and A[B _ C�] ` A[B�]:

A natural question is whether implication can be characterized by a sys-
tem of such paired rules R1 and R2, where R1 is A[B+] ` A[C+], R2 is
A[C�] ` A[B�], and B bears some decidable syntactic relation R to C.
Given Sch�utte's account of positive and negative parts, classical seman-
tics supports polar replacement: if B j= C, then A[B+] j= A[C+] and
A0[C�] j= A0[B�]. This suggests that the paired rules R1 and R2 should
be closed under polar replacement: if B ` C is an instance of R1 (R2),
then A[B+] ` A[C+] is an instance of R1 (R2) and A0[C�] ` A0[B�] is an
instance of R2 (R1). For then, from a proof hB = B1; : : : ; Bk = Ci of C
from B, we could obtain (1) a proof of A[C+] from A[B+] by Bi ! A[Bi

+],
and (2) a proof of A0[B�] from A0[C�] by Bi ! A0[Bi

�] and reversing the
resulting sequence of formulae.

Sch�utte's notion of positive and negative part does not license closure
under polar replacement, since a positive (negative) part of a negative part
of A need not be a negative (positive) part of A. In the case of addition, for
example, B _ A ` (B _ C) _ A is an instance of R1, but :((B _ C) _ A) `
:(B _ A) is not an instance of R2. However, there is another notion of
positive and negative part that does support polar replacement and for
which implicational replacement holds for classical semantics: B is a positive
(negative) part of A i� B occurs within the scope of an even (odd) number of
negations in A, where the quanti�er is 8 and the connectives are :, &, and
_; and 9 and! are de�ned as usual in terms of them. It is this notion that
Lin uses in de�ning closure under polar replacement. He then characterizes
implication in classical semantics and various free (bivalent) variations by
systems of implicational rules closed under polar replacement; results are
summarized in Chart A of [Lin, 1983, p. 47].

3.5 Non-bivalent Semantics: Supervaluations

Frege [1892, p. 70] claims that \anyone who seriously took [`Odysseus was
set ashore at Ithaca while sound asleep'] to be true or false would ascribe
to the name `Odysseus' a reference." His view is that subject-predicate
sentences with non-referring terms are truth-valueless. If interpretations
and assignments are partial, then Frege's view dictates that vr1 be replaced
by

vf1: If each ti refers, then Pt1 : : : tk is true if h�1; : : : ; �ki 2 d(P ) and
Pt1 : : : tk is false if h�1; : : : ; �ki =2 d(P ), where ti refers to �i; otherwise,
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Pt1 : : : tk lacks truth-value.

If `=' is regarded as a predicate | or as a binary truth-valued operator that
has no output without a pair of inputs | then vr2 must be replaced by

vf2: If s and t refer, then s = t is true if � is � and s = t is false if � is
not �, where s refers to � and t refers to �; otherwise, s = t lacks
truth-value.

Once bivalence is lost at the atomic level, we must face questions q5{q7.
There are two plausible answers to q5: either the weak or the strong truth-
tables, as Kleene [1950, p. 334] calls them. The weak tables assign precisely
the same truth-values as do the classical tables, leaving the compound truth-
valueless in all other cases. Thus :A is truth-valueless when A is truth-
valueless, and A ! B is truth-valueless when A or B (or both) is truth-
valueless. The strong tables treat negation in the same way, but preserve
certain features of the classical tables for other compounds: A! B is true
when A is false or B is true, regardless of whether the other constituent has
a truth-value. Thus, treating A _ B as :A! B and A&B as :(A! :B),
disjunctions are true if at least one disjunct is true, and conjunctions are
false if at least one conjunct is false. Neither of these answers to q5 will
prevent such classical logical truths as Pt _ :Pt and s = t ! (Ps ! Pt)
from ending up with no truth-value when t and s do not refer. Note also
that t = t will have no truth-value if t does not refer.

Supervaluational semantics is an attempt to avoid such alien results,
while permitting some atomic formulae to lack truth-values. The basic
idea is to consider completions of a partial interpretation I and to revise
the valuation rules so that A is supertrue (superfalse) under I and � if, for
each completion I 0 of I and �0 of �, A is true (false) under I 0 and �0, and A
is supervalueless under I and � otherwise. In van Fraassen's [1966] original
development of the idea, completions of I are achieved by adding stories S,
which he terms classical valuations over I : if I = hD; di, then I 0 = hI; Si,
where S is de�ned as in story semantics.

Since Pt _ :Pt, s = t ! (Ps! Pt), and t = t are true under any story
interpretation hI; Si, they are supertrue under any partial interpretation I ,
and hence logically true with respect to supervaluational semantics. More
generally, A is logically true with respect to supervaluational semantics (in
the sense of being supertrue under every partial interpretation I) i� A is
logically true with respect to story semantics. Accordingly, the Hilbert-style
axiomatization PFL of story semantics is weakly complete with respect to
supervaluational semantics.

However, it is not strongly complete: Pa j=s 9x(x = a) but Pa 6` 9x(x =
a), where X j=s A i� A is supertrue under each partial interpretation I and
assignment � for which each B 2 X is supertrue. Note �rst that if a does
not refer under I , Pa has no supervalue, since there are stories S and S0
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for which Pa 2 S but Pa =2 S0:21 Thus, if Pa is supertrue under I , then
a must refer under I . So 9x(x = a) is true under any I 0, where I 0 is a
completion of I , and therefore 9x(x = a) is supertrue under I . Accordingly,
Pa j=s 9x(x = a). However, 6j=s Pa ! 9x(x = a), since if a does not
refer under I , then, as noted in Section 3.2, 9x(x = a) is false under any
hI; Si. However, for some completions hI; Si of I , Pa is true under hI; Si
and for others, it is false; thus, Pa! 9x(x = a) is not supertrue under every
interpretation I . Accordingly, by weak completeness, 6` Pa ! 9x(x = a).
But the deduction theorem holds for PFL, so Pa 6` 9x(x = a):

Since PFL is strongly complete with respect to story semantics, we have
Pa j=s 9x(x = a) but Pa 6j= 9x(x = a). This is analogous to the situation
in classical semantics, where Px j=g Pa but Px 6j= Pa. This suggests that,
just as the generality interpretations of classical logic treat free variables as
if they were universally quanti�ed, supervaluations may also involve implicit
quanti�cation. Woodru� [1984] has shown that they do indeed, and that
it is second-order.22 Consider a subject-predicate formula Pxa, a partial
interpretation I , where d(a) is unde�ned, and an assignment �, for which
�(x) 2 D. The story S in a completion I 0 = hI; Si of I may be regarded
as assigning an extension d(Pa) to a predicate Pa de�ned by Pax $ Pax:
�(x) 2 d(Pa) i� Pax 2 S(�), where � is an x-variant of �. Thus, Pxa
is supertrue under I and � i� for each S, Pxa is true under hI; Si and �
i� for each extension d(Pa), Pax is true under I and � i� 8PaPax is true
under I and �. This sketch of the argument assumes that a does not refer.
Woodru� shows how to conditionalize such assumptions to obtain, for any
A, a second-order normal form tr(A), such that A is supertrue under I and
� i� tr(A) is supertrue under I and �. Moreover, tr(A) is such that if A is
supertrue under I and �, a part of tr(A) of the form 8P1 : : :8PkB, where
B contains no constant that does not refer under I and �, is true under I
and �. 23

Woodru� goes on to establish that supervaluational semantics inherits
the pathologies of classical second-order semantics. Compactness (X is
satis�able if every �nite subset of X is satis�able), the upward L�owenheim{
Skolem theorem (X is satis�able in ! if there is some k such that X is
satis�able in f0; : : : ; k + jg for each j), and the downward L�owenheim-
Skolem theorem (X is satis�able in ! if X is satis�able in some larger set)
all fail; and �nite logical consequence is not recursively axiomatizable (there
is no recursive set of axioms such that A1; : : : ; Ak j=s B i� A1; : : : ; Ak ` B):

21Since we are dealing with sentences here, I suppress mention of assignments.
22Note that supervaluations are also like generality interpretations in not treating con-

nectives as (strict) truth-functions. Px_:Px can be true (supertrue) without either Px
or :Px being true (supertrue).

23Woodru�'s construction is carried out for languages without function-names. In
addition, partial interpretations are partial only with respect to constants: domains are
non-empty and assignment functions are total.
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The question naturally arises whether there are constraints on stories
that restore a �rst-order regime. That is, are there constraints C such that
if supertruth under I is understood as truth under each completion hI; Si
of I such that S satis�es C, then the desirable properties of classical �rst-
order semantics (compactness, the L�owenheim{Skolem theorems, and the
recursive axiomatizability of logical consequence) are assured? Woodru�
[1991] shows that what he terms `actualist' constraints will do the trick.
Constraints C of this type, which require too much development to describe
here, have the e�ect of making each formula A superequivalent to an actu-
alist formula A0, in which every occurrence of a constant a is in a part of of
the form 9x(x = a), 9x(x = a)&B, or 9x(x = a) ! B. Superequivalence
here means that A is supertrue under I i� A0 is supertrue under I , where
supertruth under I is now truth under hI; Si for each S that satis�es C.
What Woodru� [1991, p. 227] terms \the �rst-order character of actualist
semantics" then follows from the fact that actualist formulae are stable: A
is true under hI; Si i� A is true under hI; S0i, for any stories S and S0:24

Woodru� [1991, p. 225] suggests that \the text of some story, theory or
myth" could function as an actualist constraint. Details, however, are left
to the reader's imagination; as he notes at the outset, his treatment is quite
abstract.

The equivalence of story semantics and outer domain semantics will sug-
gest another way to complete a partial interpretation I = hD; di: embed it
in an outer domain interpretation I 0 = hD +Do; d

0i, where:
ie2: d0(a) = d(a) if d is de�ned at a, and d0(a) 2 Do otherwise.

ie3: d0(f)(�1; : : : ; �k) = d(f)(�1; : : : ; �k) if d(f) is de�ned at h�1; : : : ; �ki,
and d0(f)(�1; : : : ; �k) 2 Do otherwise.

ie4: d(P ) is the restriction of d0(P ) to Dk, if P is k�place.
Partial assignments � are similarly completed by requiring that �0(x) =
�(x) if � is de�ned at x and �0(x) 2 Do otherwise. We can then stipulate
that A is supertrue (superfalse) under I and � i�, for each completion I 0 of
I and completion �0 of �, A is true (false) under I 0 and �0:

Bencivenga [1980] develops an equivalent semantics that embeds par-
tial interpretations in classical interpretations with non-standard valuation

24Instead of stories S over I, Woodru� speaks of conventions C over I, which he
characterizes as consisting of (1) an equivalence relation � on the constants that do not
refer under I and (2) an extension in D for each atomic formula whose terms are non-
referring constants and, for some k � 0, the �rst k variables. (2) treats atomic formulae
as predicates (sentences as 0-place predicates) and is subject to the constraints that (a)
a = x and x = a are true of nothing in D, (b) a = b is true if a � b, and (c) if A is
obtained from B by replacing constants by equivalent constants, then A and B are true of
the same tuples of individuals of D. Evidently, to each story S corresponds a convention
C that gives us the same information about the truth values of atomic formulae with
non-referring terms, assuming that D is non-empty and �(x) 2 D, and conversely.
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rules. A classical interpretation I 0 = hD0; d0i over a partial interpretation
I = hD; di satis�es the following conditions:
ic1: D0 is non-empty and D � D0:

ic2: If d is de�ned at a, then d0(a) = d(a):

ic3: If d(f) is de�ned at h�1; : : : ; �ki,
then d0(f)(�1; : : : ; �k) = d(f)(�1; : : : ; �k):

25

ic4: d(P ) � d0(P ):
Partial assignments � are completed by stipulating that �0(x) = �(x) if �
is de�ned at x. Note that, save for ic1; these conditions are weaker than
those on outer domain completions.

If supertruth is reckoned in terms of classical completions, then Pt_:Pt,
s = t! (Ps! Pt), and t = t will be logically supertrue, but so will 9x(x =
a) and Pt ! 9xPx | an unwelcome result in free logic. Bencivenga's
technical solution to this problem is essentially to modify the valuation rules
v1, v2, and v5 for classical interpretations over partial interpretations.26

The notion of an x-variant in v5 must be understood as in outer domain
semantics: x must be assigned something in D. v1 and v2 become:

vb1: If each ti refers under I and �, then Pt1 : : : tk is true under I 0 and
�0 if h�1; : : : ; �ki 2 d(P ) and Pt1 : : : tk is false under I 0 and �0 if
h�1; : : : ; �ki =2 d(P ), where the referent of ti under I and � is �i;
otherwise, Pt1 : : : tk is true under I

0 and �0 if h�1; : : : ; �ki 2 d0(P ) and
Pt1 : : : tk is false under I 0 and �0 if h�1; : : : ; �ki =2 d0(P ), where �i is
the referent of ti under I

0 and �0:

vb2: If just one of s and t refers under I and �, then s = t is false under I 0

and �0; otherwise, s = t is true under I 0 and �0 if s and t refer under
I 0 and �0 to the same individual, and s = t is false under I 0 and �0 if
s and t refer under I 0 and �0 to di�erent individuals.27

25Bencivenga's formal language does not contain function-names, but presumably they
would be handled in this way.

26The non-standard valuation rules capture valuation under I0 \from the point of view
of" I, as Bencivenga [1986, p. 409] and [this volume, p. 181], puts it. For his own
somewhat di�erent presentation of the rules, see [Bencivenga, 1980, pp. 101{103].

27The long-winded form of these rules permits their use in Bencivenga's [1980b] free
description theory, where such atomic sentences as P (�x(x 6= x)) lack truth-value under
I0. See Section 4.4 below.
vb2; like s2 or ie2; implies that s = t is superfalse if s refers and t does not. On

Frege's view, reected in vf2; s = t should lack truth-value in this case. For a variant
of supervaluational semantics that aims to honor Frege's position, see [Skyrms, 1968].
Skyrms account is not quite correct | subscripts on `G' must be reversed in (ii), lest
s = t be supervalueless when s and t refer to di�erent individuals (or, where s is not
t, to the same individual) | and it has the strange consequence that 9x(x = a) is
supervalueless, not superfalse, when a does not refer.
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These adjustments preserve the logical supertruth of Pt _ :Pt, t = t, and
s = t ! (Ps ! Pt). However, if a does not refer under I , 9x(x = a) is
superfalse under I and �. (Let I 0 and �0 classically complete I and �. If
D is empty, there are no x�variants of �0, so 9x(x = a) is false under I 0

and �0. If D is non-empty and �0 is any x-variant of �0, then x = a is false
under I 0 and �0 by vb2; so 9x(x = a) is false under I 0 and �0:) Moreover,
Pt! 9xPx is not logically supertrue. (If t does not refer under I = hD; di
and �, but d(P ) is empty, then Pt! 9xPx is supervalueless under I and �.
For 9xPx is false under each classical completion I 0 = hD0; d0i of I , whereas
d0(P ) may be de�ned so as to include or to exclude the referent of t under
I 0 and �0:)

Supervaluations do turn out desired results, subject to the limitations
revealed by Woodru� [1984]. Though certain sentences (such as Pa and
t = s) may be supervalueless, the classical laws that free logicians like (such
as t = t, Pt _ :Pt, and (Pt & 9x(x = t))! 9xPx) are logically supertrue,
while those they dislike (such as Pt ! 9xPx) are not. However, anyone
who regards logical properties and relations as fundamentally semantic will
regard such a justi�cation of laws as circular. Bencivenga's appeal to classi-
cal completions with non-standard valuation rules is designed to provide a
semantic rationale for supervaluations, which otherwise appear to be merely
a \technical instrument".28

Bencivenga's case is as follows: (1) Where terms refer (as in `Caesar
wore a white tunic when he crossed the Rubicon'), truth or falsity may be
identi�ed with the outcome of an ideal practical experiment that compares
what the sentence says with the way the world is. (2) In most cases where
terms do not refer (as in `Pegasus has a white hind leg'), such practical
experiments are out of the question; but we may nonetheless identify truth
or falsity with the outcome of mental experiments (represented by classical
completions of partial interpretations) that assign such terms non-existent
referents. (3) However, no mental experiment can override the facts, in the
sense of altering the outcome of an ideal practical experiment (e:g:, that
`Pegasus exists' is false); hence, the non-standard valuation rules vb1 and
vb2. (4) Where all mental experiments (so constrained by the facts) agree on
a truth-value for a sentence (as with `Pegasus is Pegasus'), it is reasonable
to assign it that value; where they disagree (as with `Pegasus has a white
hind leg'), it is reasonable to regard it as truth-valueless.29 Together, these
conditions give us what Bencivenga [1986, p. 406], and [this volume, p.
179], calls the counterfactual theory of truth: \a sentence containing non-
denoting singular terms is true (false) if and only if it would be true (false)
in case these terms were denoting, no matter what their denotations were
but provided that they were non-existent objects".

28The phrase is Bencivenga's [1986, p. 405], and [this volume, p. 178].
29Bencivenga [1980a, p. 225].
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Unfortunately, the counterfactual theory of truth seems merely to restate
the diÆculty. Why should truth, which is ordinarily regarded as correspon-
dence to fact, be reckoned in terms of what is contrary to fact? Why should
we reckon that `Pegasus is Pegasus' is true because it would be true if, con-
trary to fact, `Pegasus' did refer? We do sometimes decide what is the case
by considering what would be the case if things were di�erent, as when we
apply the semantic de�nition of a valid argument. But usually this is not a
good idea. The fact that Milosevic would agree to autonomy for Kosovo if
he were reasonable does not, unfortunately, tell us that he will do so. Why
is truth more like validity than Balkan politics? If partial interpretations
merely reected incomplete information about referents, lack of truth-value
would represent ignorance of truth-value and supervaluations would make
sense. I don't know whether `The �rst person born in China in 1999 was a
boy' is true, but clearly `The �rst person born in China in 1999 is the �rst
person born in China in 1999' is true no matter who this person turns out
to be. But lack of information about the referent of `Odysseus' is not what
leads Frege to deny a truth-value to `Odysseus was set ashore at Ithaca
while sound asleep'. I think we know everything there is to know about the
referent of `Odysseus': there is no such thing. If supervaluations make sense
in free logic, I believe we do not yet know why.

Before leaving supervaluational semantics, let us note a connection with
Kripke-style modal semantics established by Barba [1989]. The introduction
to Barba's paper suggests that we will be shown how to translate sentences
A of an ordinary �rst-order language L with identity into sentences tr(A) of
the corresponding modal language L� and how to associate with a partial
interpretation I of L a modal interpretation I 0 of L� so that A is supertrue
(superfalse) under I i� tr(A) is true (false) under I 0. But no such scheme
is possible, since standard modal semantics is bivalent and supervaluational
semantics is not. Instead, Barba shows how to associate with a partial inter-
pretation I of L a class KI of modal interpretations so that A is supertrue
under I i� �3A is true under each interpretation in KI . Modal interpreta-
tions here are non-standard in some respects. For example, they are partial:
a need not refer at world w | but if it refers at w to �, � exists in w and in
every world w0 accessible from w, and a refers at w0 to �. However, Barba's
[1989, p. 134] valuation rules VL are bivalent: if a does not refer at w, Pa
is true (!) at w:

3.6 Non-bivalent Semantics: Neutral Free Semantics

Supervaluations are the last stop before neutral free semantics, where even
t = t will lack truth-value if t does not refer, and lack of truth-value at
the atomic level is inherited by at least some compounds, among them such
classical logical truths as Pt_:Pt and s = t! (Ps! Pt), when neither s
nor t refers. This may not appear to be a very promising destination for the
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logician: if logical truths are conceived as those sentences which are always
true, there are not going to be many | or perhaps any | logical truths.

However, the situation may not be as bad as it appears to be, for two
reasons. First, quanti�cation may restore truth-values: if 9x(x = y) is to
express `y exists', then 9x(x = a) should be false when a does not refer under
I and �, although x = a will lack truth-value under I and any x�variant
of �. This can be achieved by understanding 9xA to be true under I and
� if A is true under I and some x�variant of � and to be false otherwise.
Second, a weaker notion of logical truth | A is logically true i� A is never
false | may serve as well in many applications. t = t, Pt _ :Pt, and
s = t! (Ps! Pt) are logically true in this weaker sense, as are such laws
of free logic as (A(t)& 9x(x = t))! 9xA(x), where x does not occur in t:

The underlying semantic rationale for neutral free semantics is Frege's
functional view of reference: predicates and `=' name functions from indi-
viduals to truth-values. If functions are operations, as Frege seems to have
thought, then the semantic rules governing subject-predicate and identity
constructions are vf1 and vf2; for where there is no input to an operation,
there is no output either. The truth-functional connectives name truth-
functions, so the same line of thought dictates the weak tables for them.30

v3 and v4 become:

vf3: :A is true if A is false; :A is false if A is true; :A lacks truth-value if
A lacks truth-value.

vf4: A ! B is false if A is true and B is false; A ! B is true if A is true
and B is true, or A is false and B is true, or A is false and B is false;
A! B lacks truth-value if either A or B lacks truth-value.

In classical semantics, 9 and 8 may be regarded as naming functions from
`propositional functions' to truth-values. Under I and �, A(x) names the
1-ary propositional function A: D ! fT; Fg whose value at �0(x), where
�0 is an x-variant of �, is the truth-value of A(x) under I and �0. Then
9(A) = T if A(�) = T for some � 2 D and 9(A) = F otherwise, while
8(A) = T if A(�) = T for each � 2 D and 8(A) = F otherwise. If
these clauses are carried over to the present case, where A may be a partial
function D ! fT; Fg, we have:
vf5: 9xA is true if A is true for some x-variant of �; otherwise, 9xA is false;

8xA is true if A is true for each x-variant of �; otherwise, 8xA is false.

Note that 9xA and :8x:A are no longer equivalent in the sense of being
true, false, or truth-valueless together. If a does not refer, 9xPxa is false

30Woodru� [1970, p. 128] argues that the strong tables | which dictate replacing the
second clause of vf4 by `A! B is true if A is false or B is true' and the third by `A! B
lacks truth-value otherwise' | are required by Frege's view that reference is a function
of sense. For skepticism, see [Lehmann, 1994, p. 326].
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(because Pxa lacks truth-value for any assignment to x) but :8x:Pxa is
true (8x:Pxa is false, since :Pxa is always truth-valueless).

The valuation rules vf1{vf5 are those of Lehmann [1994], except that he
de�nes 8xA as :9x:A, so that the universal clause of vf5 becomes `8xA is
false if A is false for some x-variant of �; otherwise 8xA is true' and hence
8xPxa is true (!) when a does not refer. Smiley's [1960, p. 126] rules di�er
only in taking 9xA(8xA) to lack truth-value if A lacks truth-value for some
assignments to x but is otherwise false (true). Thus, 9x(a = fx) will lack
truth-value under hD; di if a refers, d(f) is partial, but d(a) 6= d(f)(�) for
any � 2 D at which d(f) is de�ned.

I have noted that logical truth may be understood in a strong or a weak
sense. Similarly, logical consequence may be de�ned in a number of ways,
depending upon whether we want valid inference (1) to lack counterexam-
ples, (2a) to preserve truth, or (2b) to preserve non-falsehood:

X j=1 A i� there are no I and � such that: each X�formula is true while A is false.
X j=2a A i� there are no I and � such that: each X�formula is true while A is not true.
X j=2b A i� there are no I and � such that: A is false while no X�formula is false.

j=1 supports contraposition (:B j= :A provided A j= B) but not transi-
tivity (X j= A provided X 0 j= A and X j= B for each B 2 X 0) : :9x(x =
a) j=1 a = a and a = a j=1 9x(x = a), but :9x(x = a) 6j=1 9x(x = a).
Both j=2a and j=2b support transitivity, but neither supports contraposition:
Pa j=2a 9x(x = a) but :9x(x = a) 6j=2a :Pa, while :9x(x = a) j=2b :Pa
but Pa 6j=2b 9x(x = a). Both transitivity and contraposition can be had by
combining (2a) and (2b), as in Blamey [1986, pp. 5 and 58], to require that
valid inference preserve (3) both truth and non-falsity. That is, X j=3 A i�
X j=2a A and X j=2b A. j=3 is obviously stronger than j=2a or j=2b, each of
which is stronger than j=1. Note that A is strongly logically true i� j=2a A
and weakly logically true i� j=1 A (or j=2b A):

Each of these consequence relations can be expressed in terms of a notion
of satis�ability, which in turn can be represented syntactically by a variant of
Je�rey's [1991] tree method. Add a marker � to L, and call A� a �-formula.
Let Y range over sets of formulae and �-formulae. Y is �-satis�able i� there
is some I and � for which each �-formula of Y is true and no formula of Y is
false. The basic free consequence relations de�ned above may be expressed
in terms of �-satis�ability as:
X �1 A i� X� [ f:A�g is not �-satis�able
X �2a A i� X� [ f:Ag is not �-satis�able
X �2b A i� X [ f:A�g is not �-satis�able

As in the classical case, a tree for �nite Y is obtained by �rst listing
the members of Y vertically and then extending this list downward in a
branching array by application of reductive rules.31 Here, each classical

31The tree method may be modi�ed to accommodate in�nite sets of formulae. For a
sketch of the argument applied to the free case, see [Lehmann, 1994, Section 4].
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rule for a connective is replaced by two rules: one governing formulae, the
other governing �-formulae.

(A! B)

::A

A

:A B A� :A� :A�
B� :B�

(A! B)�

::A�

:(A! B)

A A B
:B :A :B

:(A! B)�

A�

A�

B�

:B�

A(s)
s = t�

A(t)

A(s)�

s = t�

A(t)�

if A is elementary

Quanti�er rules apply only to �-formulae:

8xA(x)�

A(t)

:9xA(x)�

:A(t)
if t occurs in an elementary �-formula above A(t) or :A(t)

:8xA(x)�

y = y�

:A(y)�

9xA(x)�

y = y�

A(y)�

if y does not occur free above y = y�
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In addition, we need a rule for converting formulae into �-formulae:

A

A�

if A is (i) a quanti�ed formula or the negation thereof; or (ii) an elementary
formula, each term of which occurs in an elementary �-formula32 above A*.

As the rule for :(A ! B) will suggest, branches are not closed when
they contain A and :A, as they are in the classical case, because both may
lack truth-value. Instead, at least one of A and :A must be a �-formula.
Similarly, t 6= t�, not the classical t 6= t, closes a branch. A tree is closed if
each of its branches is closed. Let Y ` i� some tree for some �nite subset of
Y is closed. It can be proved that Y ` i� Y is not �-satis�able; for details,
albeit for a slightly di�erent system of rules, see [Lehmann, 1994].

A Hilbert-style axiomatization of j=2a or j=2b would probably require
introducing a non-Fregean connective t, as in [Smiley, 1960], [Woodru�,
1970], or [Robinson, 1974]: tA is true if A is true and is false otherwise.33

Many classical tautologies are only weakly logically true, rules like ADD
do not preserve truth, while rules like MP do not preserve non-falsehood.
A Hilbert-style axiomatization of j=1 seems beyond reach, since j=1 is not
transitive.

4 FREE DESCRIPTION THEORIES

The requirement that singular terms denote something in the range of the
variables constrains classical description theory, just as it constrains classical
logic. In natural languages there are many singular terms that may be
regarded as descriptions having the form `the (one and only) x such that
: : : x : : :', where `: : : x : : :' is some condition on x : if `: : : x : : :' is true only of
�, then `the (one and only) x such that : : : x : : :' refers to �. For example,
`the least prime' refers to 2 because `x is prime and no prime is less than x' is
true only of 2. Indeed, one might want to maintain, as does Quine [1997, p.
103], that the \universal form of singular terms" is `the (one and only) x such
that : : : x : : :' in the sense that any constant or variable singular term may
be regarded as having this form. Names, such as `Socrates', can be handled
by introducing singular predicates, such as `x Socratizes'. Variable terms,

32Assuming vf1. If subject-predicate formulae with referring terms can lack truth-
value, replace `elementary �-formula' here with `identity �-formula or negated identity
�-formula'.

33If A� is identi�ed with tA, then X is �-satis�able i� some I and � fails to falsify
any member of X. Smiley [1960] does not give any proof method, and Woodru�'s [1970]

natural deduction system is unsound.
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such as `the least prime greater than y', may be construed as descriptions
whose referents will generally depend upon the values of their variables.

We may represent descriptions by adding to a �rst-order language L the
description operator � with formation rule: if A is a formula, �xA is a term.
Let L� be the resulting language. The corresponding semantic rule will
specify that under I and �;

r4. �xA refers to whatever uniquely satis�es A

where � uniquely satis�es A i� (i) A is true under I and �0, where �0 is
the x-variant of � for which �0(x) = �, and (ii) A is false under I and any
other x-variant of �. This understanding we might hope to capture proof-
theoretically by adding to CL a schema sometimes termed `Lambert's Law':

LL 8y(y = �xA$ 8x(A$ y = x)))

where y is not free in A (and a free occurrence of y in A is now any occurrence
not in a part of A of the form 8yB or �yB):34

If A has no free variables other than x, then whatever �xA designates
under I and � will be an individual of D that is independent of �, so we
may treat �xA as a constant. If in addition y is free, then whatever �xA
designates will be an individual of D that depends upon the value �(y)
of y, and we may regard �xA as giving the value of some function at y.
Thus, having descriptions �xA available would permit de�ning constants c
by c = �xA and function-names f by 8y(fy = �xA):

However, if �xA is to be a singular term, classical semantics demands
that it refer to something in the range of the variables. There is no problem
if 9!xA is true. For then some individual � of D will uniquely satisfy A,
and �xA will refer to it by r4; such descriptions are said to be proper. But
r4 tells us nothing about the referent of an improper description �xA. If
9!xA is false, so that nothing uniquely satis�es A, we must nonetheless
specify a referent in D for �xA. Moreover, LL is false if 9!xA is false, since
8y(y = �xA $ 8x(A $ y = x))) j= 9!xA : both 8x(A ! x = �xA) and
A(�xA) follow classically from LL, so 9!xA follows as well.

Indeed, some instances of LL, as when A is x 6= x or Px&:Px, are
logically false. The corresponding instances of A(�xA) | �x(x 6= x) 6=
�x(x 6= x) or P (�x(Px&:Px))&:P (�x(Px&:Px)) | are sometimes called
Meinong's paradox, after Russell's derivation of them from Meinong's prin-
ciple that `: : : x : : :' is true of the x such that : : : x : : :, a principle expressed
by A(�xA(x)): Lambert [1991b; 1995] shows that Russell's paradox may also
be derived from LL and that ways of evading it in set theory parallel ways
of evading Meinong's paradox in description theory.

34Lambert [1991b; 1995] labels this system `NTDD' (for `naive theory of de�nite de-
scriptions').
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4.1 Classical Fixes

Accordingly, if we wish to take descriptive terms seriously within the clas-
sical framework, we must either modify the formation rule to exclude im-
proper descriptions, or we must specify a referent in D for improper de-
scriptions and modify LL.

The �rst approach is associated with Hilbert and Bernays. Recall that
we may extend a �rst-order theory T to T 0 by adding a new constant c with
the de�ning axiom 8x(x = c$ Ac(x)), provided x is the only free variable
of Ac(x) and 9!xAc(x) is a theorem of T . Similarly, we may introduce a
new function name f with the de�ning axiom 8x8y(y = fx $ Af (x; y)),
provided x and y are the only free variables of Af and 8x9!yAf (x; y) is a the-
orem of T . Each addition is really only a notational change. We may elim-
inate c from a formula B0 by replacing atomic parts Pc by 9x(Ac(x)&Px)
and the resulting formula B will be a theorem of T i� B0 is a theorem of T 0.
Similarly, we may eliminate f from a formula B0 by replacing atomic parts
Pft by 9y(Af (t; y)& Py), where y does not occur in t | and the resulting
formula B will be a theorem of T i� B0 is a theorem of T 0:

Since we may think of c as �xAc(x) and fx as �yAf (x; y), the conditions
on de�ning c and f give the Hilbert-Bernays conditions for considering de-
scriptive terms well-formed: 9!xAc(x) and 8x9!yAf (x; y). Essentially, this
amounts to saying that a descriptive term �xA is well-formed only under
(consistent) assumptions X | the axioms of T | that entail 9!xA, assump-
tions which accordingly function as additional premises in any argument
involving �xA:

The Hilbert-Bernays approach has the awkward consequence of making
the question of whether �xA is a term undecidable, since logical consequence
is not decidable. Normally, of course, the syntactical categories of term, for-
mula, and sentence are decidable, provided the basic categories of constant,
variable, (k-place) function-name, and (k-place) predicate are decidable.
But that is not the case here.

Instead of limiting attention to proper descriptions, we can instead follow
Frege and stipulate a referent in D for the improper descriptions, modifying
LL accordingly. To L we add a constant e for the designated (`empty')
element. An interpretation of L� is just an interpretation hD; di of L, which
accordingly will assign e a referent d(e) in D. The reference rule for �xA
will now read:

rf4: If some individual � of D uniquely satis�es A, then �xA refers to �;
otherwise, �xA refers to d(e):

Thus, all instances of the schema

F B(�xA) $ (9y(8x(A$ y = x)&B(y)) _ (:9y8x(A$ y = x)&B(e)))
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are logically true. To axiomatize logical truth, we may add

LLf 8y(y = �xA$ ((9!xA&A(y)) _ (:9!xA& y = e)))

in place of LL to CL.
Assigning improper descriptions an arbitrary referent is like arbitrarily

completing a partial function, and here as there we must be prepared for
some weird results: if some other constant c refers to d(e), then c = �x(x 6=
x), will be true, though it will represent sentences like `Zero is the non-self-
identical number'. Moreover, 9y(y = �x(x 6= x)) and �x(x = x) = �x(x 6= x)
are logically true.

An alternative to treating descriptions �xA as genuine terms is to fol-
low Russell and to regard formulae B(�xA) in which they appear as giving
only the surface form of corresponding sentences of natural language, their
logical form being obtained by a transformation of B(�xA) that eliminates
descriptions. A sentence like `The present King of France is bald' looks
like a subject-predicate sentence with form B(�xKx), where Kx represents
`x is King of France at present', but �xKx is not a genuine singular term,
according to Russell. Why? Because (1) genuine singular terms are mean-
ingful, (2) the meaning of a meaningful singular term is its denotation, and
(3) `the present King of France' has no denotation. In Russell's view, the
logical form of `The present King of France is bald' is not subject-predicate,
but existential: 9y(8x(Kx $ y = x)&Bx), which says that one and only
one thing is King of France at present, and that thing is bald. For Russell,
we have

R P (�xA) $ 9y(8x(A$ y = x)& Py)

for predicates P , but not in general.
`The present King of France is not bald' looks like a negated subject-

predicate sentence with form :B(�xKx); what is its logical form? If we
think of �xKx as occurring in B(�xKx), the form of :B(�xKx) will be
:9y(8x(Kx$ y = x)&Bx); if we think of �xKx as occurring in :B(�xKx),
the form of :B(�xKx) will be 9y(8x(Kx $ y = x)&:Bx). In the former
narrow-scope reading, the sentence is true: it is being read as `it's not the
case that: the present King of France is bald'. In the latter wide-scope
reading, the sentence is false: it is being read as `the present King of France
is non-bald'. If A is description-free, LL is logically true if �xA is taken to
have narrowest scope:

8y(9z(8x(A$ z = x)& y = z)$ 8x(A$ y = x))

But LL is false if �xA is improper and is taken to have wider scope:

8y9z(8x(A$ z = x)& (y = z $ 8x(A$ y = x)))
9z(8x(A$ z = x)&8y(y = z $ 8x(A$ y = x)))
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Accordingly, the transformation of a formula B containing descriptions
into a ��free formula tr(B) requires an indication of the scope of the descrip-
tions in B. This may be done by using the notation [�xA]B to indicate that
the scope of �xA in B is B. The wide scope reading of �xKx in :B(�xKx)
would then be indicated by [�xKx]:B(�xKx) and the narrow scope reading
by :[�xKx]B(�xKx). More formally, we may add to the formation rules of
L two clauses:

1. If B is a formula in which �xA appears, [�xA]B is a formula

2. If B is a formula in which (a) each description �xA that occurs in B
occurs in a subformula [�xA]C of B and (b) any subformula [�xA]C
of B is such that some occurrence of �xA in C is not in a subformula
[�xA]C 0 of C, then B is a [�]�formula.

For the purposes of (2), subformulae of B include formulae that appear
in descriptions in B. Scope indicators [�xA] are like quanti�ers, and (2) is
analogous to a clause de�ning sentences as formulae lacking free occurrences
of variables. (a) rules out unscoped occurrences of descriptions, and (b)
rules out vacuous scope indicators. Let this language be L[�]. tr then maps
[�]-formulae of L[�] into ��free formulae of L :

t1. tr(A) = A if A is not a [�]�formula.

t2. tr commutes with connectives and quanti�ers.

t3. tr([�xA]B(�xA)) = 9y(8x(tr(A) $ y = x)& tr(B(y))):

Despite its enormous inuence, Russell's treatment of descriptive terms is
ill-motivated and cumbersome. The denotative theory of meaning which
led Russell to banish improper descriptions from the realm of terms has
little plausibility, especially in view of the many failed attempts to cap-
ture intension in extension (e:g:, the meaning of a sentence is the propo-
sition it expresses, and that is a set of possible worlds). Although scope
indicators may be useful to disambiguate constructions like `The present
King of France isn't bald', they introduce a complication that in many
cases is of no use. For example, `Winston Churchill or the present King
of France is bald' appears to be unambiguous in English, though Russell's
formalism provides two readings: Bc _ [�xKx]B(�xKx), which is true, and
[�xKx](Bc _ B(�xKx)), which is false. There are no scope indicators in
English, and assigning Russellian forms is an ad hoc business. The validity
of `The janitor is guilty, so the janitor or the accused is guilty' requires a
narrow-scope construal of `the accused'; the validity of `The accused is not
guilty, those who are not guilty are innocent, so the accused is innocent'
requires a wide-scope construal of `the accused' in the premise.
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A treatment of descriptions that enables us to handle them as we would
other terms, while avoiding the problems of the other two approaches is obvi-
ously worth pursuing. Insofar as these problems arise from the straightjacket
of classical semantics, we may hope to avoid them either by permitting im-
proper descriptions to refer to individuals of an outer domain or not to refer
at all.

4.2 Outer Domain Free Description Theory

An outer domain interpretation for descriptions may be obtained from an
outer domain interpretation hDi +Do; di by adding a denotation function
d0 for descriptions:

io5: d0(�xA) 2 Do:

d0(�xA) will be the referent of �xA, if �xA turns out to be improper. Thus,
r4 is rewritten:

ro4: If some individual � of Di uniquely satis�es A, then �xA refers to �;
otherwise, �xA refers to d0(�xA):

Relative to this semantics, LL is logically true. If LL is added to PFL, we
obtain a complete axiomatization of this semantics. This free description
theory is rather weak; let us call it mFD (`m' for `minimal').35

mFD permits many individuals in Do and places no restrictions on their
assignment as referents to improper descriptions. The limiting case appears
to be the one in which Do consists of a single individual, which accordingly
must be the referent of any improper description. If interpretations of L�
require as much, then

FD2 (:9x(x = s)&:9x(x = t))! s = t

is logically true. If s and t do not refer to existents, i.e., to individuals in the
inner domain, then they must refer to individuals of the outer domain, but
there is just one of these. This semantics may be axiomatized by adding FD2
to mFD. Alternatively, we could add :9y(y = �xA) ! �xA = �x(x 6= x),
where y is not free in �xA, as in [Scott, 1967, p. 35]. Let us term this theory
MFD (`M' for `maximal').

MFD has obvious aÆnites with the Fregean treatment of improper de-
scriptions in classical semantics. The classical principle F holds with �x(x 6=
x) in place of e, and we must identify the present King of France with the
unicorn in the closet. However, 9y(y = �x(x 6= x)) and �x(x = x) = �x(x 6=
x)) are no longer logically true.

35This theory is called FD by Lambert and van Fraassen [1972, p. 160]] and MFD by
Lambert [1997, p. 118].
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Lambert [1997, p. 118] notes that between mFD and MFD lie various free
description theories, partially ordered by inclusion. One linear progression
is:

T1 mFD+ �x(x = t) = t

T2 mFD+ (A(t)&8x(A! x = t))! A(�xA)

T3 mFD+ (:9x(x = t)&A(t))! A(�xA)

These theories tell us when A(�xA) is true. LL j= 9y(y = �xA) ! A(�xA),
if y is not free in �xA, so 9y(y = �xA) ! A(�xA) is a theorem of mFD and
thus of T1, T2, T3, and MFD: A(�xA) holds when �xA refers to an existent.
If A is false of every individual, as when A is x 6= x or Px&:Px, then of
courseA is not true of �xA. Otherwise, mFD is non-commital about whether
A(�xA) is true, and theories T1, T2, and T3 give us more information.

T1: If A(x) is x = t and �xA refers to a non-existent, so does t. �x(x =
t) = t identi�es these nonexistents and thus makes A(�xA) true when
A is t = x. Hence, the one and only thing that is Vulcan is Vulcan.

T2: If t refers to a non-existent and A is true of it, then 8x(A ! x = t)
will hold only if A is not true of any existent. Thus (A(t)&8x(A !
x = t)) ! A(�xA) tells us that A(�xA) provided A is true of some
non-existent but not true of any existent. This will be the case if A is
t = x and t does not refer, so T2 contains T1. But it also makes the
unicorn in the closet a unicorn in the closet, since Ux will not be true
of any existent.

T3: (:9x(x = t)&A(t)) ! A(�xA) says that A is true of �xA provided
(i) A is true of some non-existent. LL assures that A is true of �xA
provided A is uniquely true of some existent, so the extra content of
T3 over mFD is that A is true of �xA provided (i) and either (ii) A is
not true of any existent or (iii) A is true of more than one existent. So
the extra content over T2 is that A is true of �xA provided (i) and (iii).
Hence, the lost treasure is a lost treasure, since there are mythical lost
treasures and more than one real one. Models of MFD have just one
non-existent, so if �xA refers to a non-existent, A(�xA) will be true
provided A is true of some non-existent. However, MFD is stronger
than T3, since the latter permits more than one non-existent.



244 SCOTT LEHMANN

Another linear progression is:

T01 mFD + 8cx(A(x) $ B(x))! �xA = �xB

T02 mFD+ 8x(A(x) $ B(x))! �xA = �xB

8c is the comprehensive universal quanti�er with the classical valuation rule
v5, whereD is Di+Do and x-variants may assign values in D0. 8cx(A(x) $
B(x)) ! �xA = �xB says that �xA and �xB are co-referential provided A
and B are co-extensive in the strong sense of being true of the same existents
and non-existents. Thus, the present King of France needn't be the unicorn
in the closet. 8x(A(x) $ B(x)) ! �xA = �xB says that �xA and �xB are
co-referential provided A and B are co-extensive in the weaker sense of being
true of the same existents. Thus, the present King of France is the unicorn
in the closet, though the lost treasure needn't be identi�ed with either: T 02,
like T2, is weaker than MFD. Note that 8x(A(x)$ B(x)) ! 8y(y = �xA$
y = �xB), and hence 8cx(A(x) $ B(x)) ! 8y(y = �xA $ y = �xB), is a
theorem of mFD.

Outer domain semantics for descriptions permits a formal representation
of Anselm's ontological argument. Here individuals that exist in re belong
to the inner domain, while individuals that exist in intellectu populate the
outer domain. If Gx represents `nothing greater than x can be conceived',
then a simple version of the argument is:

:9y(y = �xGx) ! :G(�xGx)
G(�xGx)

9y(y = �xGx)

This argument is valid by modus tollens. In mFD, the premises are falsi�-
able, and both are required for validity. By contrast, as Mann [1967] has
observed, a Russellian treatment of the descriptions collapses the argument
into something trivial and question-begging. The antecedent of the �rst
premise is equivalent to 9x(x 6= x) if its form is taken to be [�xGx]:9y(y =
�xGx) and to :9!xGx if its form is taken to be :[�xGx]9y(y = �xGx) or
:9y[�xGx](y = �xGx); the consequent is equivalent to 9x(Gx&:Gx) if its
form is taken to be [�xGx]:G(�xGx) and to :9!xGx if its form is taken to be
:[�xGx]G(�xGx). Hence the �rst premise is either logically true or logically
false. The second premise is equivalent to 9!xGx, as is the conclusion, read
either as [�xGx]9y(y = �xGx) or as 9y[�xGx](y = �xGx). So the argument
becomes: A, 9!xGx =9!xGx, where A is logically true or logically false.
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4.3 Russellian Free Description Theory

To obtain a `Russellian' free description theory for L�, we need only supple-
ment negative free semantics with

rp4. If some individual � of D uniquely satis�es A, then �xA refers to �;
otherwise, �xA does not refer.

While this treatment of descriptions di�ers from Russell's in taking �xA to
be a genuine term, it does make P (�xA) false if �xA is improper, just as
Russell insisted: the Russellian biconditionals R are logically true. Every
instance of LL is also logically true, and indeed logical truth relative to this
semantics may be axiomatized by adding LL to NFL, as in [Burge, 1974].
Let us call this theory rFD.

Principles de�ning extensions of mFD generally do not carry over to
rFD. Both (A(t)&8x(A ! x = t)) ! A(�xA) and (:9x(x = t)&A(t)) !
A(�xA) are OK: if �xA refers, then A(�xA); if �xA does not refer, then A(t)
and A(�xA) will have the same truth-value if t does not refer, and t cannot
refer if :9x(x = t) is true or (A(t)&8x(A! x = t)) is true while �xA does
not refer. The other principles are not OK. The \cancellation" principle
�x(x = t) = t is false when t does not refer. FD2 is not always true; indeed,
some instances, such as :9y(y = �x(x 6= x)) ! �x(x 6= x) = �x(x 6= x),
are logically false, since its antecedent is logically true and its consequent
is logically false. 8x(A(x) $ B(x)) ! 8y(y = �xA $ y = �xB), which says
that if A and B are co-extensive, �xA and �xB do not di�er in denotation,
is always true. But 8x(A(x) $ B(x)) ! �xA = �xB is not always true;
indeed, 8x(x 6= x$ x 6= x)! �x(x 6= x) = �x(x 6= x) is logically false.

rFD does not capture Russell's scope distinctions. We have schema R

[�xA]P (�xA) $ 9y(8x(A$ y = x)&Py)

but not, for example,

[�xA]:P (�xA) $ 9y(8x(A$ y = x)&:Py)
In a sense, only descriptions with narrowest scope are treated as genuine
singular terms.

By introducing machinery for forming complex predicates �xB from for-
mulae B, Scales [1969] is able to represent scoped descriptions as genuine
singular terms satisfying the more general schema

S �yB(y)(�xA) $ 9y(8x(A$ y = x)&B(y))

Obtain L� from L� by adding the predicate-forming operator � with forma-
tion rule: �x1 : : : xkA is a k-place (complex) predicate if the free variables
of A are x1; : : : ; xk. \Russellian" interpretations of L� are obtained from
those of L� by stipulating that the extension d(�x1 : : : xkA) of the complex
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predicate �x1 : : : xkA is the set of k-tuples h�1; : : : ; �ki of elements of D
of which A is true, where A is true of h�1; : : : ; �ki i� A is true when xi is
assigned �i. Note that if t does not refer, �x:Px(t) is false while :Pt is
true. L� thus embodies Aristotle's view that truly attributing a property
requires an existing subject, though truly denying an attribution does not;
`Pegasus is wingless' is false, while `Pegasus does not have wings' is true.

Schema S holds because (1) if �xA refers to �, A is true only of �, and �
is in the extension of �yB(y) i� B(y) is true of �, and (2) if �xA does not
refer, �yB(y)(�xA) is false and, because 9!xA is false, so is the right side of
S. Logical truth in L� may be axiomatized by adding LL and

�x1 : : : xkA(t1; : : : ; tk)$ (9x1(x1 = t1)& . . . &
9xk(xk = tk)&A(t1; : : : ; tk))

to NFL; see Scales [1969, p. 11] and Lambert [1997, p. 112].
Recall that for Russell, [�]�formulae A of L[�] are abbreviations for �-free

formulae tr(A) of L: tr(A) gives the Russellian meaning of A. We may also
translate [�]�formulae A into formulae of L� by tr0, where tr0 is de�ned by
t1, t2 and

t30. tr0([�xA]B(�xA)) = �y tr0(B(y))(�x tr0(A)):

Under any interpretation I of L� and assignment �, tr0(A) gets the same
value as tr(A): in the basis case where both A and B are ��free, tr(A)
is the left side of schema S, while tr0(A) is the right side. Accordingly,
scoped descriptions can be regarded as genuine singular terms without alter-
ing Russellian truth-values, provided their contexts are treated as complex
predicates.

Kroon [1991, p. 24] has observed that \the Russellianizing of de�nite de-
scriptions is a clumsy and unnatural business | far more clumsy and un-
natural than its defenders seem to realize". The problematic constructions
Kroon has in mind are those in which we refer to something by describ-
ing a description, as in `The man denoted by the description John just
used is bald.' To represent constructions of the general form `what's de-
noted by the description that �s has P ' �a la Russell, we would need a
description predicate DES true of descriptions `�x�(x)', a corresponding-
open-sentence predicate COS true of pairs h`�x�(x)'; `�(x)'i, and a satis-
faction predicate SAT true of pairs h�; `�(x)'i i� � satis�es `�(x)'. Then
the ugly Russellian analysis would be: 9x(9y(8z((DES(z)&�(x)) $ z =
y)&COS(y; x))& 9w(8z(SAT (z; x) $ z = w)&P (w))). How much sim-
pler it would be if we could write P (den(`�x(DES(x)&�(x))'), where den
represents the denotation function.

Kroon develops a modi�ed free Russellian semantics for such construc-
tions. Imagine that L� has been supplemented with vocabulary that permits
naming its terms and formulae (so that DES may be de�ned) and let L�0



MORE FREE LOGIC 247

result from L� by adding semantic predicates TRUE and DEN (so that den
may be de�ned by den(x) = y $ DEN(x; y) ). Interpretations I of L� are
as in negative free semantics, except that Kroon assumes that every indi-
vidual of D is named by some constant of L� so that reference and valuation
rules need be given only for constant terms and sentences. d(TRUE) and
d(DEN) are de�ned by a �xed point construction over I . The extensions of
I used in this construction assign semantic predicates P both a set dt(P ) of
which they are true and a set df (P ) of which they are false; the initial ex-
tension I0 of I makes TRUE false of every non-sentence and true of nothing
and DEN false of every pair h�; �i where � is not a constant term and true
of nothing. If t refers to � and � is neither in dt(TRUE) nor in df (TRUE),
then TRUE(t) lacks truth-value; if s refers to � and t refers to � and h�; �i
is neither in dt(DEN) nor in df (DEN), then DEN(s; t) lacks truth-value.
rp4 is modi�ed so that �xA is unde�ned if 9!xA lacks truth-value. As usual in
negative free semantics, subject-predicate and identity sentences containing
non-referring terms are false; however, if no constituent term fails to refer
and at least one is unde�ned, they lack truth-value. Strong tables are used
for the connectives; 8xA lacks truth-value if A(c) is not false for any c but
lacks truth-value for some c:

4.4 Non-bivalent Free Description Theories

Finally, it is possible to give L� a supervaluational or a neutral free seman-
tics, so that non-referring descriptions �xA generate truth-value gaps.

A slight obstacle to extending Bencivenga's [1980] supervaluational se-
mantics to L� is that some terms, such as �x(x 6= x), are now not going to
refer under any classical extension I 0 and �0 of a partial interpretation I and
assignment �. Thus, valuation rules v3-v5 need to be rewritten to allow for
formulae that are neither true nor false under I 0 and �0. Bencivenga [1980b,
p. 396] speci�es Kleene's strong tables for the connectives and stipulates
that 8xA is truth-valueless if A is never false but lacks truth-value for some
assignment to x :

8xA is true (false) under I 0 and �0 if A is true (false) under I 0

and �0x for each (some) x-variant �0x of �; otherwise, 8xA lacks
truth-value under I 0 and �0:

The reference rule for descriptions will be

If some individual uniquely satis�es A under I and �, then �xA
refers to it under I 0 and �0; if no individual uniquely satis�es A
under I and � but some individual uniquely satis�es A under
I 0 and �0, then �xA refers to it under I 0 and �0; otherwise �xA
does not refer under I 0 and �0:
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Supervaluational semantics for L renders t = t and Pt _ :Pt logically
true, but that is not the case for L�. Since �x(x 6= x) does not refer under
any classical extension I 0 of I , neither �x(x 6= x) = �x(x 6= x) nor P�x(x 6=
x)_:P�x(x 6= x) is true or false under I 0, so both are supervalueless under
(any) I . �xPx = �xPx will also be supervalueless under I = hD; di if d(P ) is
empty (as when Px represents `x is a unicorn in the closet'), since �xPx will
fail to refer under some extension I 0 of I . If you want `the unicorn in the
closet is the unicorn in the closet' to be true, then you can follow Bencivenga
[1980b, p. 398] and modify the notions of supertruth and superfalsity so
that A is supertrue (superfalse) under I and � i� A has a truth-value under
some some classical extension I 0 and �0 of I and �, and A is true (false)
under each such extension. The semantic rationale for this manoeuvre,
however, is unclear.

All instances of LL are logically supertrue for this semantics. Under I 0

and �0, �xA refers, if at all, to something in D that uniquely satis�es A,
whereas if �xA does not refer, both y = �xA and 8x(A $ y = x) are false
of each individual of D in virtue of vb2. The principles generating positive
free description theories stronger than mFD are, in general, not logically
supertrue. Counterexamples to �x(x = t) = t, (A(t)&8x(A ! x = t)) !
A(�xA), (:9x(x = t)&A(t)) ! A(�xA), (:9x(x = t)&:9x(x = s)) ! s =
t, and 8x(A $ B) ! (�xA = �xB) are provided by t = s = �x(x 6= x) and
A = B = x 6= x. No axiomatization of logical supertruth is given, since
Bencivenga establishes that no axiomatization is possible.

Description theories that incorporate neutral free semantics have been
developed by Stenlund [1973] and Robinson [1974]. Indeed, their systems
probably deserve to be regarded as the �rst complete neutral free logics.
Both theories essentially identify referenceless terms with improper descrip-
tions: interpretations of L� are classical for Robinson and Stenlund.

36 Thus,
constants | and variables under assignment37 | refer via i1{i2 and r1{r2
to individuals of D, and function-names designate total functions on D by
i3.

Robinson's treatment of free semantics leaves a good deal to the imag-
ination | it must be inferred from his proof system.38 Except as noted
below, however, he appears to be committed to the same rules of reference

36Stenlund [1973, p. 63] permits D to be empty. However, this does not appear to
be consistent with his Theorem 6.2.1 [p.66], which states that t # is provable i� t refers
under each interpretation, and the fact that c # is an axiom [p.17].

37Both Stenlund and Robinson treat quanti�cation substitutionally.
38For example, Robinson's [1974, p. 498] rule viii allows us to derive 8xA ! A(t)

provided we have derived formulae, written below as 8xA # and t #, to the e�ect that
8xA has a truth-value and t refers. This seems to require the understanding of the
quanti�ers given below, since if 8xA is false and t refers, we cannot be sure that A(t) |
and therefore 8xA! A(t) | is not truth-valueless unless A(x) has a truth-value for any
assignment to x:
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and valuation that Stenlund [1973, p. 64] gives explicitly. The classical r3
is modi�ed to:

If ti refers to �i, then ft1 : : : tk refers to d(f)(�1; : : : �k); other-
wise, ft1 : : : tk does not refer.

Descriptions are governed by rp4, and subject-predicate formulae, identities,
and negations by the Fregean valuation rules vf1{vf3. Robinson appears
to endorse the weak reading of ! embodied in vf4. Stenlund, however,
amends it so that A ! B is true if A is false and B is truth-valueless; the
weak table would render his system unsound, since 9!x(x 6= x) ! (�x(x 6=
x) = �x(x 6= x)) is provable in it. Stenlund regards 8xA as truth-valueless if
A is truth-valueless for some assignment to x, as when A is P�y(f(y) = x)
and d(f) is not 1-1. Thus, the Fregean valuation rule vf5 needs to be
modi�ed to:

8xA is true if A is true for each x�variant of �, and 8xA is false
if A is false for some x-variant of � and not truth-valueless for
any x�variant of �; otherwise, 8xA is truth-valueless.

A peculiar consequence of this understanding of the quanti�ers is that sen-
tences like :9x(x = �y(y 6= y)) are not true, but truth-valueless.

As one might expect of a neutral semantics, not all instances of LL are
logically true in the sense of being true under every interpretation | 8y(y =
�x(x 6= x) $ 8x(A $ y = x)) is truth-valueless under any interpretation
| though none are false under any interpretation. The same substitutions
that generate supervalueless instances of the principles that extend mFD
will generate truth-valueless instances of them here.

Stenlund supplies a natural deduction system of rules for this semantics,
Robinson a Hilbert-style system. Both employ notation for indicating that
terms refer and formulae have truth-value.39 Let us use Beeson's [1985, p.
98] operator # for this purpose. De�ne a #{formula as e #, where e is a term
or formula, and extend the valuation rules to #{formulae by:

t # is true if t refers; otherwise, t # is false.
A # is true if A is true or false; otherwise, A # is false.

Both systems have axioms and rules of three kinds. Those of the �rst kind,
such as

` c #
t # ` ft #
9!xA ` �xA #
t # ` Pt #

s # t # ` s = t #
A # ` :A #

39Stenlund uses t 2 I for t # and A 2 F for A #; Robinson uses �e for e # :
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permit us to prove #{formulae. Rules of the second kind license moving
from #{formulae to formulae, as by

t # ` t = t

More interesting examples are Robinson's

A1 #; : : : ; Ak # ` B(A1; : : : ; Ak);

provided B(A1; : : : ; Ak) is a classical tautology,40 and Stenlund's rule of
conditional proof:

X ` A! B provided X ` A # and X;A ` B:
More familiar rules of the third kind permit deriving formulae from formu-
lae; they include MP and

9!xA ` A(�xA):
Both Stenlund and Robinson provide completeness proofs. Robinson sketches
a proof that K ` A i� K j=2a A, where A is a formula or #-formula, K is a
set of ��free sentences, and each non-logical symbol of A occurs somewhere
in K. Stenlund claims only weak completeness (` A i� j=2a A), though his
proof may be generalizable to a result like Robinson's.

5 OTHER APPLICATIONS

5.1 Predication Again

Recall the Russell-Meinong view that predication presupposes a subject
in the strong sense that a subject-predicate form cannot be ascribed to a
sentence unless the subject exists. Quine [1960, p. 96] is more liberal:
\Predication joins a general term and a singular term to form a sentence
that is true or false according as the general term is true or false of the
object, if any, to which the singular term refers."41 This is really just a
special case, since Quine counts any open sentence with purely referential
occurrences of variables as a predicate: such open sentences are true or false
of (tuples of) objects.

The generalization to open sentences obliterates Aristotle's distinction
between `Socrates is ill' and `Socrates is not well', but Quine's account of
predication is like Aristotle's in allowing for irreferential terms. Strangely
enough, as Lambert [1986, p. 277] observes, Quine's preferred logical idiom
has no singular terms at all, except for variables, which do not challenge

40This is presumably what Robinson [1974, p. 498] intends by rule vii; the paper is
marred by an unusually large number of printing errors and omissions.

41See also [Quine, 1953, p. 163], where Quine argues that \the notion that `Fa' and `�
Fa' implies `a exists' " is rooted in the \familiar confusion" of meaning with denotation.
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the Russell-Meinong view if their range is non-empty. The others, \a major
source of theoretical confusion" in Quine's view [1953, p. 167], are to be
eliminated in favor of predicate constructions �a la Russell. Lambert argues
that Quine ought instead to have embraced a free semantics, and to a limited
extent Quine [1997] has recently done so. In any case, his expressed view
of predication needs a free setting, where its development is not entirely
obvious.

In classical semantics, Quinean predications are extensional in two senses:
(1) s = t j= A(s)$ A(t) and (2) 8x(A(x)$ B(x)) j= A(t)$ B(t). (1) says
that if s and t are co-referring, then A(s) is true i� A(t) is true; it realizes
Quine's condition that the terms in predications occur purely referentially.
(2) says that if A(x) and B(x) are co-extensive predicates, then A(t) is true
i� B(t) is true. Free semantics will generally support (1), but not necessarily
(2). `x rotates', `x exists and x rotates', and `if x exists, then x rotates' are
co-extensive predicates, but `Vulcan rotates', `Vulcan exists and rotates',
and `if Vulcan exists, it rotates' will not end up with the same truth-values
in bivalent free semantics. If v does not refer in outer domain semantics, we
can make Rv true or false, but 9y(y = v)&Rv is false and 9y(y = v)! Rv
is true regardless. If v does not refer in negative free semantics, Rv is false,
but 9y(y = v)&Rv is false and 9y(y = v)! Rv is true.

Extensionality of type (2) may be restored by following Scales [1969] and
regarding predications A(t) as the result of applying a complex predicate
�xA to t. Recall that the extension d(�xA) of �xA in L� consists of those
individuals of D (or of Di, if we employ outer domain semantics) of which
A(x) is true. Thus, we have 8x(�xA(x) $ �xB(x)) j= �xA(t) $ �xB(t).
For discussion, see Lambert [1986; 1997a; 1998]. For a supervaluational
treatment of L� that supports \general-term extensionality" of this kind,
see Lambert and Bencivenga [1986].

On any of these free semantic treatments, L� embodies two kinds of pred-
ication: ordinary predication, which does not have existential import (Pt 6j=
9x(x = t)), and complex predication, which does (�xPx(t) j= 9x(x = t)).
Of course, we needn't introduce complex predicates to achieve this; we could
simply de�ne two types of subject-predicate constructions in L, say, P (t)
for ordinary predication and P [t] for predication with existential import.
Lambert and Simons [1994] suggest that ordinary predication P (t) corre-
sponds to characterization, while P [t] corresponds to classi�cation. The
latter (`Catso is a tuxedo cat') presupposes an individual to classify, the
former (`Catso is hungry') traditionally does not.

5.2 De�nitions

The fact that neither outer domain nor Russellian free semantics supports
8x(A(x) $ B(x)) j= A(t) $ B(t) creates problems for introducing de�ni-
tions in theories based on them. To take the simplest case, we may wish to
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add a new predicate P to the language of T with a de�ning axiom

Df 8x(Px$ A(x))

and then regard Pt as an abbreviation of A(t). But when t does not refer
to an existent, this may not be possible. If t refers to something in the
outer domain, Df does not tell us whether Pt $ A(t), because the bound
variables range only over the inner domain. If t does not refer in Russellian
free semantics, Pt will be false but A(t) may be true, as when A is x 6= x:

If outer domains consist of some �xed �nite number of individuals
�1; : : : ; �k, we can name them e1; : : : ; ek and use Lambert and Scharle's
[1967] trick, noted above in Section 2.2a, to extend quanti�cation to the
outer domain: let 8cxA abbreviate 8xA&A(e1)& : : :&A(ek): If we then give
what Gumb and Lambert [1997] call a \full explicit de�nition" of P by

Dfc 8cx(Px$ A(x));

we may regard Pt as an abbreviation of A(t), since 8cx(Px $ A(x)) j=
Pt $ A(t). Gumb and Lambert develop this approach to de�nitions for
outer domains with just one individual err, which could represent the `error
object' of certain programming languages. A proof of Beth's de�nability
theorem is sketched.

Dwyer's [1988] approach is somewhat more general. In outer domain
semantics, partial functions Di ! Di are represented by total functions
Di ! Di +Do: if � 2 Di but d(f)(�) 2 Do, then f represents a function
that is unde�ned at �. More precisely, from an outer domain interpretation
hDi +Do; di we may extract a partial interpretation hDi; dpi:

Let dp(c) = d(c) if d(c) 2 Di; otherwise, dp is not de�ned at c:

If �i 2 Di, then let dp(f)(�1; : : : ; �k) = d(f)(�1; : : : ; �k)
if d(f)(�1; : : : ; �k) 2 Di; otherwise, dp(f) is not de�ned at
h�1; : : : ; �ki.
If �i 2 Di, let h�1; : : : ; �ki 2 dp(P ) i� h�1; : : : ; �ki 2 d(P ):

Outer domain interpretations that coincide when restricted to the inner do-
main generate the same partial interpretation I . The class C(I) of such
\internally invariant" outer domain interpretations can be regarded as rep-
resenting I . Dwyer exploits this connection to characterize de�nability for
partial functions from an outer domain perspective.

The problem here again is that the classical conditions on de�nitions do
not carry over. We cannot allow just any formula A(x) in de�nition Df of
P , because not every open sentence is stable in the sense of being true of
the same individuals of Di as we move from one interpretation of C(I) to
another. For example, let I be a partial interpretation in which D is the set
of real numbers, so that under assignment neither x=0 nor x + 1=0 refers.
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Under any assignment relative to I 0 2 C(I), however, x=0 and x+ 1=0 will
designate \unreal" numbers � and � in Do, where � and � may or may
not coincide. Accordingly, as we move from one C(I)�interpretation to
another, x=0 = x+1=0 will be true of di�erent sets of reals; it is not stable.
If A(x) is x=0 = x + 1=0, then Df does not characterize any property of
reals.

Dwyer [1988, p. 31] develops a suÆcient syntactic condition on stability
(viz., atomic constituents of A contain no more than one non-logical sym-
bol), which is used in reformulating the classical conditions on admissible
de�nitions. Free versions of Robinson's joint consistency theorem, Craig's
interpolation lemma, and Beth's de�nability theorem are proved to establish
the adequacy of this account.

5.3 Modality

As noted at the end of Section 3.5, Barba [1989] has shown how to un-
derstand the supertruth of A in terms of something like the logical truth
of �3A. Two additional connections between free and modal logic are
described in this section.

a. Garson [1991] develops a general system of quanti�ed intensional logic
based on free logic. By a general system, he means one (1) from which
particular systems can be obtained by specifying (a) constraints on
interpretations and (b) additional axioms or rules and (2) for which
completeness can be established by a general proof | one easily mod-
i�ed to establish the completeness of these particular systems.

Let us assume a �rst order language L0 without function-names, but
with operators � (if A is a formula, so is �A) and E! (if t is a term,
E!t is a formula). QS-interpretations I = hW;w0; R;D;E; di of L0
are generalizations of Kripke interpretations. As usual, W is a set
of possible worlds, w0 2 W represents the actual world, R is a bi-
nary accessibility relation on W , D is a (non-empty) set of possible
individuals, and d assigns intensions d(P ) : W ! P(Dk) to k�place
predicates P , d(P )(w) being the extension of P at w. In Kripke se-
mantics, E(w) � D is the set of individuals that exist in w; in Garson's
generalization, E(w) is a set of individual intensions W ! D, and �
exists in w if � = f(w) for some f 2 E(w). In Kripke semantics, d also
assigns possible individuals d(a) to constants a; in Garson's version,
d assigns individual intensions d(a) to constants a. Like constants,
variables x are assigned individual intensions �(x); an x-variant of
� at w is an assignment � that di�ers from � at most at x, where
�(x) 2 E(w). Kripkean interpretations and assignments, in which
designation is rigid, are the special case where individual intensions
are constant functions.
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Under interpretation I and assignment �:

ri1. x refers at w to �(x)(w):

ri2. a refers at w to d(a)(w):

vi1. If ti refers at w to �i, Pt1 : : : tk is true at w i� h�1; : : : ; �ki 2
d(P )(w):

vi2. If ti refers at w to �i, then t1 = t2 is true at w i� �1 = �2:

vi3. :A is true at w i� A is false at w:

vi4. A! B is false at w i� A is true at w and B is false at w:

vi5. 8xA is true at w i� A is true at w for each x-variant of � at w:

vi6. �A is true at w i� A is true at each w0 such that wRw0:

vi7. E!t is true at w i� the intension of t 2 E(w):
vi8. A is true i� A is true at w0:

As noted in Section 2.2b, Kripke-semantics is basically outer domain
free semantics, with the individuals that exist in w constituting w's
inner domain, while the rest of D functions as w's outer domain. In
Kripke semantics, E!t can be de�ned by 9x(x = t), but not here:
vi7 treats E! as a predicate of intensions. If R is universal, E!t is
equivalent to 9x�(x = t); but in general existence is not de�nable
from identity.

For this semantics, Garson sketches a complete Hilbert-style system
GS, consisting of (a) propositional modal axioms and rules appropri-
ate to the accessibility relation R, (b) identity axioms and rules that
we may (with the stipulation that E!t is not atomic) identify with the
identity axioms of PFL, and (c) quanti�er rules which are generaliza-
tions of those of free logic:42

GUI G[8xA] ` G[E!t! A(t)]

GUG
If ` G[E!t! A(t)] and t does not occur in G[8xA], then ` G[8xA]

Here G[B] is any formula of one of the following forms

B
A! B

�(A1 ! ::. �(Ak ! B) : : :)
A! �(A1 ! ::. �(Ak ! B) : : :)

42This is apparently what Garson [1991, p. 134] intends by rules GUI and GUG, which
are not clear as stated.
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After sketching a Henkin-style completeness argument for GS, Garson
illustrates the generality of QS+GS by showing how to obtain several
familiar systems (including Kripke's) as special cases.

b. Schweizer [1990] develops Skryms' [1978] defense of the metalinguistic
reading of necessity claims against Montague's [1963] argument that
such readings are incoherent. The metalinguistic reading treats neces-
sity not as an operator � (for `necessarily') applying to sentences, but
as a predicate N (for `is necessary') applying to names of sentences.
M�interpretations I of such languages are pairs < I0; C >; where C
is a set of interpretations and I0 2 C. A is true under I i� A is true
under I0, and d(N) is such that if pAq names A, NpAq is true under
I 0 2 C i� A is true under each C�interpretation.
G�odel-numbering allows us to develop the metalinguistic interpreta-
tion of necessity in an extension T of formal arithmetic, whose lan-
guage includes the predicate N . If pAq is the numeral for g(A), we
want to read NpAq as `pAq is necessary'. To support this reading,
Montague argues, T should be such that for any sentence A,

(1) If `T A; then `T NpAq

(2) `T NpAq! A

Assuming T 's proof method is complete, (1) says that if pAq is neces-
sary in the sense of being true in every model of T , then it is provable
that pAq is necessary. (2) says that the standard modal principle `if
pAq is necessary, then A is true' is provable. Now diagonalization
gives us a sentence B such that

(3) `T :NpBq$ B

(2) and (3) imply `T :NpBq. But `T :NpBq and (3) imply `T B,
which with (1) implies `T NpBq. So T is inconsistent.

Let L be a �rst-order language that includes the language of formal
arithmetic, let L� be the standard modal extension of L, and let
LN result from L by adding the necessity predicate N . Assuming
a G�odel-numbering of LN , we may translate L��formulae A into
LN�formulae tr(A) by: tr(�A) = NpAq; tr commutes with :, !;
and 8x; and tr(A) = A for L�formulae A. If I = hW;w0; R;D;E; di is
a Kripke interpretation of L� with universal accessibility relation R;43

Schweizer shows how to obtain an M�interpretation tr(I) of LN so
that for sentences A, A is true under I i� tr(A) is true under tr(I). The

43Schweizer [1990, p, 165] stipulates only that I is an S5 interpretation (R is an equiv-
alence relation), but his construction assumes that R is universal. This is a stronger
assumption: �(Pa & :8xPx) can be true if R is an equivalence relation but not if R is
universal, assuming as usual that D = [w2WE(w):
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construction evades Montague's problem because the G�odel-sentence
B that issues from diagonalization is not tr(A) for any sentence A,
whereas the modal axiom holds only in the form Nptr(A)q! tr(A):

Since tr(I) is an M�interpretation hI0; Ci, C is a set of interpreta-
tions such that NpAq is true under tr(I) i� A is true under each
interpretation in C. The connection with free logic is that these
C�interpretations are outer domain interpretations. At each w 2W ,
I induces an outer domain interpretation I(w) = hDi + Do; dwi of
L, where Di = E(w), Do = D � E(w), and dw is the restriction of
d to w: dw(a) = d(a) and dw(P ) = d(P )(w). When dw is appro-
priately extended to N , we can identify I0 with I(w0) and C with
fI(w)jw 2 Wg:44 The extension of dw is in stages corresponding to
the number of nested occurrences of � in A: we put g(tr(A)) in dw(N)
at stage k + 1 provided tr(A) is true under I(w) at stage k. At stage
0, A is ��free, so tr(A) = A, which gets a truth-value under each
outer domain interpretation I(w):

Schweizer [1990, p. 170] states that \analogous equivalence results can
be obtained for the other normal systems of quanti�ed modal logic, by
simply utilizing the relevant accessibility relationR . . . within the eligi-
ble set of models." Presumably, his suggestion is thatM�interpretations
I now be conceived as triples hI0; C;Ri, where C is a set of interpreta-
tions, R is a binary relation on C, and I0 2 C. Then A is true under I
i� A is true under I0 and NpAq is true under I

0 2 C i� A is true un-
der each I 00 such that I 0RI 00. The ordinary notion of a metalinguistic
interpretation is then the special case where R is universal.
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STEPHEN BLAMEY

PARTIAL LOGIC

INTRODUCTION

When I was originally asked to write about `partial logic' for the �rst edition
of the Handbook , I was a little puzzled: I was taken to be an expert in an
apparently well de�ned subject area that I didn't know existed. But it
turned out to be the sort of thing I had written about in my D.Phil. thesis,
so I had somewhere to start. Nowadays the label `partial logic' is much more
familiar, and a lot of work is being done in the area it covers. The bulk of
my own work, though|most of it dating right back to thesis days|has not
yet been published: I have been bewilderingly bad about this. In particular,
the various promises made in the �rst edition about forthcoming work have
still not been ful�lled. In spite of this, I have resisted the temptation just to
shove in more material of my own for the second edition|except in small
ways here and there. Additions are largely in response to what has newly
appeared in print.

A wide range of work will be surveyed (much more now than in the
�rst edition), but the backbone of this chapter is the development of what
I call `simple partial logic'. It is against this backbone that other more
sophisticated projects are discussed. Simple partial logic results from the
simple-minded following through of the idea that classical logic may be loos-
ened up to cater for non-denoting singular terms and neither-true-nor-false
sentences|to cater for them in a uniform way as semantically `unde�ned'
items|and at the same time to cater for `partially de�ned' functors: term-
forming functors, predicates, and sentence connectives. These functors have
to accommodate unde�ned arguments, but they may also produce unde�ned
compounds even when all their arguments are fully de�ned. In particular,
we shouldn't ignore sentence connectives of this kind: once loosened up,
classical propositional logic needs to be �lled out with connectives such
as interjunction and transplication. The uniformity behind all this comes
from the idea of representing partial functions by monotonic functions|
as explained in Section 1|and using monotonically representable partial
functions to interpret functors of whatever logical category.

All sections have undergone some stylistic revision for the second edi-
tion, and most of them have been expanded. Note that Section 2 now has
more subsections: there is a new introductory subsection, which means that
subsections 2.1 to 2.5 have become subsections 2.2 to 2.6; and the old sub-
section 2.6 has split into three|2.7 to 2.9|so that the old 2.7 is now 2.10.
Section 4 has been disrupted in a similar way: the old subsection 4.1 has
split into 4.1 and 4.2; subsection 4.3 is new; and the old subsection 4.2 has



262 STEPHEN BLAMEY

split into 4.4 and 4.5. There has been a more straightforward reorganization
to Sections 6 and 7: a new subsection has been introduced as 6.3, which
means that the old subsections 6.3 and 6.4 become 6.4 and 6.5; and the old
subsection 7.2 has split into two: 7.2 and 7.3. The other Sections retain
their original structure.

_̂ _̂ _̂

Notation for interjunction :{ In the �rst edition an interjunction sign
was formed by juxtaposing two `�'s: ��. This was a pity, because it made
the symbol a bit too at. Interjunction is a squadging of conjunction and
disjunction, and so the symbol for it should be a simultaneous occurrence
of `^' and `_': _̂. Sadly, the notation `��' has found its way into the
literature, and|much worse|this has sometimes become just two `x's: xx.
I urge anyone who wants to write an interjunction sign in the future to avoid
`xx' at all costs: `��' is tolerable, but I recommend `_̂'.

1 A SKETCH OF SIMPLE PARTIAL LOGIC

1.1 Classical Semantics as Partial Semantics

In classical logic sentences are either true (>) or false (?) and the interpre-
tation of the standard sentence connectives can be given in the following
way:

:� is

�
> i� � is ?
? i� � is >;

� ^  is

�
> i� � is > and  is >
? i� � is ? or  is ?;

� _  is

�
> i� � is > or  is >
? i� � is ? and  is ?;

�! is

�
> i� � is ? or  is >
? i� � is > and  is ?;

�$ is

�
> i� (� is > and  is >) or (� is ? and  is ?)
? i� (� is > and  is ?) or (� is ? and  is >):

For simple partial logic we shall adopt precisely these classical >/? condi-
tions; only we give up the assumption that all sentences have to be classi�ed
either as > or as ?. This leaves room for the classi�cation neither->-nor-?.
At present we are concerned merely to highlight a parallel with classical se-
mantics, and under the parallel we can think of the third classi�cation as
a `truth-value gap'. This thought is taken a little further in Sections 1.2
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and 3. But the point, if any, of seeing the third classi�cation as di�erent
in philosophical kind from > and ? will of course depend on what partic-
ular motivation we consider for adopting the forms of partial logic. (See,
especially, Sections 2 and 5.)

To interpret universal and existential quanti�ers over a given domain D,
we shall again exploit the fact that the classical interpretation leaves room
for a gap between> and?when we write out>-conditions and?-conditions
separately. Assuming that a language has|or can be extended so as to
have|a name a for each object a in D,

8x�(x) is

�
> i� �(a) is > for every a in D
? i� �(a) is ? for some a in D;

9x�(x) is

�
> i� �(a) is > for some a in D
? i� �(a) is ? for every a in D:

Most treatments of classical logic stipulate that the domain be non-empty.
We shall not be so restrictive: D may be empty.

These >/?-conditions for 8x and 9x of course presuppose a semantic
account of predicate/singular-term composition. And this mode of compo-
sition deserves some attention, since it is the most familiar place to locate
the cause of a sentence's being neither `true' nor `false'. It has been consid-
ered to give rise to a truth-value gap in two di�erent ways: either (i) because
a term t may lack a denotation and may, for this reason, make a sentence
�(t) neither true nor false; or (ii) because a predicate �(x) may be only
`partially de�ned'|not either true or false of some object or objects|so
that, if t denoted such an object, �(t) would be neither true nor false.
We shall want to accommodate both these ideas in one uniform account
of predicate/singular-term composition. Our approach will be sketched in
Section 1.2, along with an approach to functors which form singular terms
from singular terms.

But there is one particular atomic predicate to consider immediately:
the identity predicate. Once again we can adopt classical >-conditions and
?-conditions verbatim for a sentence t1 = t2:

t1 = t2 is

�
> i� t1 and t2 denote the same thing
? i� t1 and t2 denote di�erent things:

This means that if either t1 or t2 is non-denoting, then t1 = t2 is neither
> nor ?. Identity is an untypically straightforward case. At least, so it is
if we restrict attention to a determinate relation over a discrete domain of
objects|as we shall.

_̂ _̂ _̂

Whatever general framework we set up for predicate/singular-term compo-
sition, our logic has so far been revealed as `partial' only in the weak sense
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that it accommodates value-gaps that might arise from the interpretation of
non-logical terms or predicates. This is because the interpretation of clas-
sical logical vocabulary is classical. But there is a stronger sense of `partial
logic': a logic will be partial in the stronger sense if it provides the resources
for explaining why a sentence may be neither > nor ? in terms of logical
vocabulary|vocabulary, that is, with a �xed meaning in the logic. We
should look for modes of logical composition whose interpretation can give
rise to truth-value gaps, even when any classical sentence constructed out of
the same non-logical vocabulary (with the same interpretation) would have
to be either > or ?.

Assuming that we have worked out the general account of how non-
denoting terms can give rise to truth-value gaps, a term-forming descriptions
operator would be an example of gap-introducing logical vocabulary. This is
because a term �x�(x) may turn out not to denote, even when �(x) is totally
de�ned. Assuming that �(x) is in fact totally de�ned, then the denotation
conditions for �x�(x) must be that if a is an object in the domain, then:

�x�(x) denotes a i� 8x[x = a$ �(x)] is >;
where, as before, a is a name|pre-existing or specially introduced|for a.
In other words, �x�(x) denotes an object if and only if that object uniquely
satis�es �(x) and is non-denoting if there is no such object. Of course,
we also have to consider the case where �(x) is not totally de�ned, but
the denotation conditions stated will continue to make sense. Furthermore,
given the general constraint to emerge in Section 1.2, they will turn out
to be the only possible ones for a determinate relation of identity over a
discrete domain of objects (see Section 6.4).

These �-terms involve a rather complicated route to neither->-nor-? sen-
tences. There is a much more straightforward, and no less interesting, kind
of gap-introducing vocabulary: sentence connectives. Consider the follow-
ing >/?-conditions for the connectives _̂ and =, the �rst of which we shall
call interjunction and the second transplication:

� _̂  is

�
> i� � is > and  is >
? i� � is ? and  is ?;

� =  is

�
> i� � is > and  is >
? i� � is > and  is ?:

Notice that _̂ has the >-conditions of ^ and the ?-conditions of _, while
= has the >-conditions of ^ but the ?-conditions of !. And so these
connectives clearly meet our desideratum of introducing value gaps: we do
not necessarily have to look to predicate/singular-term composition to �nd a
logical explanation why a sentence may be neither > nor ?. The particular
usefulness of _̂ and = will be touched upon in Section 2.2 and several later
sections.
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Among our logical vocabulary we shall also include a constantly true
sentence >, and a constantly false one ?. Thus we are using `>' and `?'
both as truth-value labels and to stand for logical constants; and, in a similar
way, we shall use `�' both to label the classi�cation `neither->-nor-?' and
to stand for a sentence which is logically neither > nor ?. There will also
be a logically non-denoting singular-term, denoted by `~'|which will be
used also to denote the classi�cation `non-denoting'. In the presence of
the term ~, we shall then be able to abandon �-terms without any loss in
expressive power: this is explained in Section 6.4.

_̂ _̂ _̂

Finally, we must consider the relation of (logical) consequence. Our seman-
tical de�nition of ` is a consequence of �' is, loosely stated, that

(i) whenever � is >,  is >, and (ii) whenever  is ?, � is ?.
And so, yet again, we are using a de�nition which conjoins two formulations
of the classical de�nition, one involving > and the other ?|formulations
which are equivalent in total logic, but not in partial logic. To illustrate the
idea, consider for the moment just a propositional calculus with formulae
built up from atomic sentences using the connectives we have introduced.
Then `interpretations' will simply be partial assignments of > and ? to
atomic sentences, and formulae may be evaluated according to our >/?-
clauses for the connectives. We shall use `�' for the relation of logical conse-
quence, and so � �  if only if (i) and (ii) above both hold when `whenever'
is understood to mean `under any partial assignment under which'. (By
`partial assignment' I do not mean to exclude total assignments: here, as
elsewhere, `partial' means `not necessarily total'.)

The tendency among authors on partial logics of one sort or another is
to take condition (i) on its own to de�ne logical consequence; and some-
times (i) and (ii) are used to frame two separate notions|for example,
in [Dunn 1975], [Hayes 1975] and, in disguised form, in [Woodru� 1970]. In
[Cleave 1974], on the other hand, there is a (rather algebraic) version of
our double-barrelled de�nition. And across the literature of the last twenty
years the picture has not greatly changed. But perhaps making a choice
between these alternatives is not such a fundamental matter. After all, we
can de�ne the two halves of our single notion:

� �>  i� � � � _  ;
� �?  i� � ^ � � �:

And, putting them back together again,

� �  i� � �>  and � �?  :

Or, if we invoke negation, either one of the halves on its own would do:

� �  i� � �>  and : �> :� i� � �?  and : �? :�:



266 STEPHEN BLAMEY

The issue might be set in a more interesting context if thought were given
to the connection between these de�nitions and inferential practice; but this
question goes far beyond our semantics-orientated essay.

To motivate working with the double-barrelled de�ntion we can adduce
some arguments from theoretical neatness. First, the law of contraposition
holds:

� �  i� : � :�:
Secondly, logical equivalence|a relation which must be taken to obtain be-
tween two formulae if and only if they take the same resultant classi�cation
under any interpretation|turns out as mutual consequence. Using `'' for
equivalence,

� '  i� � �  and  � �:

Thirdly, equivalence and consequence �t together with conjunction and dis-
junction in the natural (at least the classical) way:

� '  ^ � i�  ' � _  i� � �  :

These properties of � break down for �> and for �?.
Neatness aside, some interesting di�erences between working with � and

working just with �> (equally just with �?) can be extracted from
[Langholm 1988]. In particular, it emerges that in a �rst-order logic with-
out non-denoting terms some interpolation results for �> are much cheaper
than corresponding results for �. (On interpolation for � in a full �rst-order
language, see Sections 6.5, 7.2, and 7.3.)

In Section 6.5 we shall present a rigorous de�nition of (double-barrelled)
consequence for �rst order languages, and there will be two generalisations.
First, we shall be interested not merely in logical consequence, but in re-
lations of consequence determined by a given range of interpretations|to
match a proof theoretical notion of consequence in a given theory (pre-
sented in Section 7.1). Secondly, consequence will be de�ned between sets
of formulae, rather than individual formulae: not only will several premises
be allowed, but also several `conclusions'|to be understood disjunctively.
This will match our sequent-style proof theory; and another advantage of
the double-barrelled de�nition will then emerge: we shall be able to frame
fewer and simpler rules, since sequent principles will be able to constrain
the >-conditions and ?-conditions of logical vocabulary at one go.

There is, �nally, a di�erent kind of generalization to consider: more-than-
two-place `consequence' relations. For example, �> and �? are combined
into a four-place relation in [Langholm 1989, Fenstad 1997, Bochman 1998].
If, for simplicity's sake, we restrict attention to single formulae rather than
sets of formulae, then the relation|call it C|can be de�ned as follows:
C(�1;  1; �2;  2) if and only if whenever �1 is > and  2 is ?, then either
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 1 is > or �2 is ?. Notice that we could de�ne C, using negation, in terms
of either �> or �?:

C(�1;  1; �2;  2) i� �1 ^ : 2 �>  1 _ :�2 i� : 1 ^ �2 �? :�1 _  2:

Alternatively|and I have myself found this more useful to work with|
we could adopt a four-place relation C 0 that just conditionalizes the two
place �: C 0(�1;  1; �2;  2) if and only if whenever �1 is > and  1 is ?, then
�2 �  2. In terms of � this relation could be de�ned as follows:

C 0(�1;  1; �2;  2) i� �1 ^ : 1 ^ �2 �  2 _ :�1 _  1:

In Section 7.1 we shall use the the proof-theoretical correlate of � to de�ne a
three-place consequence relation along these lines|one that ignores the  1
argument place. Some of the quanti�er and identity rules are most perspic-
uously presented in terms of this relation. (Compare the three- and four-
place relations used for systems of modal logic in [Blamey and Humberstone
1991].)

1.2 Partial Semantics as Monotonic Semantics

To interpret sentence connectives we have speci�ed >-conditions and ?-
conditions for formulae constructed by means of them: �-conditions then
take care of themselves. Even so, � is a semantic classi�cation, and the ap-
paratus of 3-valued logic is at our disposal: our >/?-conditions are summed
up in the following matrices. (The constant sentences >, � and ? can be
thought of as 0-place connectives, but their matrices are trivial).

� :�
> ?
� �
? >

�  � ^  � _  � _̂  �$ �! �= 

> > > > > > > >
> � � > � � � �
> ? ? > � ? ? ?
� > � > � � > �
� � � � � � � �
� ? ? � � � � �
? > ? > � ? > �
? � ? � � � > �
? ? ? ? ? > > �

Partial assignments of > or ? to atomic constituents can now be replaced
by total assignments of >, � or ?. And, if we take it that each assignment
assigns a classi�cation to all of a denumerable stock of atomic formulae, then
everything will �t neatly into place when we just assign � to any vocabulary
we are not interested in.
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Let us now impose a simple ordering v on f>; �;?g:

�

?>

x v y i� either x = � or x = y.

Equivalently: x v y i� both, if x = >, then y = >, and, if x = ?, then
y = ?. Then we can extend the use of `v' to de�ne a `degree-of-de�nedness'
relation between assignments v and w:

v v w i� v(p) v w(p) for every atomic formula p:

In other words, v v w if and only if wherever v assigns the value > or ?,
w assigns that value also. If v(�) is the result of evaluating a formula �
under v, it is then easy to deduce the following monotonicity of evaluation:

if v v w; then v(�) v w(�); for every formula �.

An intuitive way to think about this is that if a formula has taken on a
value (> or ?), then this value persists when any atomic gaps (�) are �lled
in by a value (> or ?) (cf. Lemma 3 in section 6.2).

Here we have a global monotonicity condition, but we might direct atten-
tion to individual formulae. If all atomic formulae occurring in � are among
p1; : : : ; pn, then we can specify a 3n-row matrix for �, which describes a
function f from f>; �;?gn into f>; �;?g, where f(x1; : : : ; xn) is the classi-
�cation of � under the assignment of xi to pi, 1 � i � n. And f will then
be a monotonic function. That is to say

if xi v yi for all i, then f(x1; : : : ; xn) v f(y1; : : : ; yn).
Observe that this is equivalent to monotonicity in each coordinate sepa-
rately.

What lies behind both forms of monotonicity is that the matrix for each
sentence connective describes a monotonic function and that the class of
monotonic functions is closed under composition. The question then arises:
Is our logic expressively adequate for all monotonic functions? It is. In
Section 4.1 we shall show that :, ^, _, _̂, >, and ? form a neatly complete
bunch of connectives.

Our `partial' propositional logic could, then, simply be seen as the to-
tal logic of 3-valued monotonic modes of sentence composition|modes
�(p1; : : : ; pn) that are interpreted by monotonic functions. The connection
between the two ways of looking at it is made by the idea that monotonic
functions from f>; �;?gn into f>; �;?g can be taken to represent partial
functions from f>;?gn into f>;?g. Modes of composition in the logic
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can then be taken to be interpreted by partial functions. On this under-
standing of the mathematical semantics, > and ? are obviously the only
`truth values' that there are: � plays a role merely in the representation of
partial functions by monotonic total ones. Thus the idea that a sentence
classi�ed � su�ers from a `truth-value gap' is given immediate, but in itself
uninteresting, sense.

_̂ _̂ _̂

The use of monotonic functions to represent partial ones has nothing specif-
ically to do with truth functions. Given any domain D, we can pick on an
extraneous object ~ and consider functions from (D [ f~g)n into D [ f~g
which are monotonic|in exactly the same sense as before|with respect to
an order relation v given by:

~

D: � � �

x v y i� either x = ~ or x = y:

Equivalently: x v y if and only if, for any a 2 D, if x = a then y = a. These
functions can be taken to represent partial functions from Dn into D. And
we can just as easily consider a range of di�erent domains D1; : : : ; Dn+1,
each �xed up with their own extraneous objects ~1; : : : ;~n+1, and represent
a system of partial functions fromD1�: : :�Dn into Dn+1 by functions from
(D1 [ f~1g)� : : :� (Dn [ f~ng) into Dn+1 [ f~n+1g which are monotonic
with respect to the respective orderings. A simple example would be the
system of partial n-place relations on a domainD, represented by monotonic
functions from (D [ f~g)n into f>; �;?g. If n = 1, these would be `partial
subsets' of D.

The functions represented are partial not only in that they may be unde-
�ned for some n-tuple of arguments, but also in that they allow for `empty
argument places': � and ~ stand equally for the gap of an empty argument
place and for the gap of no output value. This suggests that these partial
functions might aptly be deployed to provide the uniform account of lin-
guistic composition that we demanded in Section 1.1|to handle partially
de�ned functors that may embrace non-denoting terms.

But what kind of sense does it makes to say that monotonic functions
represent partial ones? The notion of representation is itself unproblematic:
it is just the same as when we say that ordinary total functions can be
represented in set theory by sets of a certain kind. Still, when it is observed
that an `empty argument place' does not necessarily mean no output value
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(consider for example the matrices for ^ and _), it may be objected that
it is nonsense to talk of a function which can yield an output value form
an incomplete, possibly total vacuous, array of input values. This thought,
only thinly veiled in talk about functors, seems to have �gured in some
discussions of Frege, and we shall tackle it in this context in Section 3.2. A
di�erent|and opposite|reaction would be to question all the fuss about
monotonicity: granted the idea of � and ~ representing gaps in both input
and output, why restrict the range of representing functions at all? In
Section 2 we shall see how some speci�c applications for partial functions in
semantics call for the monotonicity constraint, and a more general view will
emerge when we discuss the �rst reaction. For the moment we can put the
point intuitively: the output value, if any, of a monotonically representable
partial function can be seen to depend, and depend only, on the input values
in occupied argument places (and not on the gaps of empty ones), precisely
because of the monotonicity condition that if a gap is `�lled in', then the
output value remains �xed.

The degree-of-de�nedness ordering v becomes more interesting than
merely a gap versus an object when we push the idea of representing partial
functions up to higher-level categories|to functions with systems of partial
functions as their domain (and possibly also as their range). Consider, the
simple example of the system of partial subsets of a domain D, represented
by monotonic functions form D [ f~g into f>; �;?g. Between two such
functions f and g we can de�ne f v g to mean that f(x) v g(x) for any
x in D [ f~g. Then, to represent partial subsets of the system of partial
subsets of D, we can use functions on the monotonic functions|functions
F into f>; �;?g which are themselves monotonic:

if f v g; then F (f) v F (g):
Intuitively, the point of this higher-level monotonicity is that if F yields a
value when applied to f , then this depends, and depends only, on the range
of output values of f , not on its gaps. This means that if g behaves like
f except possibly that it is more de�ned, then F must send g to the same
value it sends f to.

A full hierarchy will emerge for higher-level categories of monotonically-
representable partial functions, and a non-trivial study of its characteristics
can be found in [Lepage 1992]. In [Muskens 1989] and in [Lapierre 1992],
on the other hand, there are special hierarchies designed to interpret inten-
sional partial logic. Muskens has a cunning reduction of functional applica-
tion and abstraction to operations on partial relations, which are what his
hierarchy is actually a hierarchy of. But Lepage and Lapierre adopt a more
familiar style of reduction: they take hierarchies of just one-place functions
as primitive. Nothing is lost, because a domain of partial functions from
D1 � : : :�Dn into Dn+1 is isomorphic to, and can be modelled by, the do-
main of partial functions from D1 into the domain of partial functions from
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D2 into . . . into the domain of partial functions from Dn into Dn+1. And
so, in particular, if Dn+1 = f>;?g, then we have a modelling of partial
n-place relations. In [Tich�y 1982] it had been argued that such a reduction
to one-place functions was possible only with domains of total functions,
but Lepage exposes the error in Tich�y's argument.

_̂ _̂ _̂

To provide a semantics for �rst-order languages we need neither go very
far up the hierarchy nor reduce all functions to one-place ones. Predicates
will be interpreted by monotonically-representable partial sets and relations
over a domain D. Similarly, n-place functors which form singular terms out
of singular terms will be interpreted by monotonically representable par-
tial functions from Dn into D. And in a model theory, conceived of as a
theory developed in some standard set theory, we can expect to work with
the representing monotonic functions. A model will directly assign such
a function to unstructured predicate symbols and term-functor symbols,
but we are no less interested in the complex predicates that arise as for-
mulae �(x1; : : : ; xn), with free variables x1; : : : ; xn signaling the argument
places, and in the complex term-functors that arise as compound terms
t(x1; : : : ; xn). If we take free variables to range over D [ f~g, are we guar-
anteed that these complex modes will be monotonic? We are, given that
every unstructured functor|logical and non-logical alike|is interpreted via
a monotonic function of the appropriate category, since combining mono-
tonic functions invariably leads to a monotonic function. Straightforward
functional composition lies behind all linguistic combinations except for the
variable-binding quanti�ers 8 and 9 (and also the variable-binding opera-
tor �, if we include it: see Section 6.4).

In the simplest case quanti�ers are just second-level predicates, taking
a one-place predicate �(x) to a sentence 8x�(x) or 9x�(x). Disentangling
them from the apparatus of variable-binding, it is easy to see that the
>=?-conditions we gave for 8 and 9 match an interpretation via monotonic
second-level functions F8 and F9 on the domain of partial subsets of D:

F8(f) =

�
> i� f(a) = > for every a in D
? i� f(a) = ? for some a in D;

F9(f) =

�
> i� f(a) = > for some a in D
? i� f(a) = ? for every a in D:

But quanti�ers play a general role in converting any (n+1)-place predicate
�(x1; : : : ; xi; : : : ; xn+1), into an n-place predicate 8xi�(x1; : : : ; xi; : : : ; xn+1)
or 9xi�(x1; : : : ; xi; : : : ; xn+1), and we have to check that monotonicity will
always be preserved in this move. This is easy enough. Notice that variables
bound by a quanti�er will `range over' just the domain of objects D|not,
as free variables do, over the whole of D [ f~g.
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Finally, what about the interpretation of singular terms?|`closed' terms,
which contain no free variables? To �t in with the model-theoretic apparatus
for functors, we should expect to be able to assign an object in the domain
of quanti�cation to a term to mean that the term denotes that object, and
to assign ~ to a non-denoting term. If we stipulate the classi�cation of
all unstructured singular terms in this way, the apparatus of monotonic
functions will then yield an appropriate classi�cation for compound closed
terms.

The reader who is eager for formal details could now skip on to Section 6.
But a few further remarks are prompted, if we want seriously to understand
a term's denoting an element of D in a way that matches the informal idea
of a term's standing for an object. A sharp contrast must be drawn with
the assignment of ~ to a term. For ~ is not the nonsense of an object
which doesn't exist; nor is it a special object picked on (Frege-style) to
be the actual denotation for terms that should really be non-denoting: ~
has been introduced simply as part of the apparatus for representing partial
functions. It does then make sense to see~ playing a derived model theoretic
role as the semantic classi�cation `non-denoting', but it would be courting
confusion if we then went on to think of the monotonic functions of the
model theory just as functions on semantic classi�cations. The classi�cation
of a denoting term would then turn out to be the very object denoted, but
to keep semantic levels straight, we should distinguish the object a that a
term denotes from the classi�cation `denoting-a': such a classi�cation is not
an object in the domain and can be aligned with ~. Of course, objects and
the corresponding classi�cations do correspond one-to-one, and so it is in
fact open to us to adopt an alternative understanding of the semantics right
from the start|as a semantics that operates throughout on classi�cations.
And this could either be thought of as a total monotonic semantics on
all classi�cations or as a partial semantics on the range of classi�cations
`denoting-so-and-so' (see Section 3).

Observe that a parallel �nickiness over sentences and � would be called for
only if the assignment of > or ? to a sentence were intended to be more than
a model-theoretic device for classifying sentences|as it would, for example,
according to Frege's uni�ed theory of reference, where the truth-values >
and ? are seriously thought of as objects denoted by sentences. Otherwise,
it is harmless to take the monotonic functions that represent partial ones
simply as (total) functions on semantic classi�cations.

1.3 Comparisons with Supervaluations

The preceding remarks bring our partial logic very much in line with tradi-
tional truth-table approaches. The most notable di�erence is simply in the
choice of connectives. We have the novelty of gap-introducing modes, such
as interjunction, but we have not introduced any of the familiar gap-closing
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vocabulary, which tends to have a metalinguistic avour. There is no `it
is true that: : :' connective, for example, which is often introduced to turn
gappy sentences into false ones. Nor can we de�ne such a mode: it would
not be monotonic. In Section 4 we take up the theme of non-classical vo-
cabulary, but now we contrast simple partial logic with an altogether more
sophisticated approach, viz. supervaluations. See [Van Fraassen 1966].

To illustrate the basic|but by no means the theoretically most general|
idea, consider the question of evaluating a classical propositional formula
under a given partial assignment of the truth values > and ? to atomic
constituents. First we are to evaluate the formula in the ordinary classical
way, under all total assignments which extend the partial assignment. Then
the formula is taken to be > if all these total assignments make it >; ?, if
they all make it ?; and � otherwise. In other words, using the de�nitions we
have already introduced, the supervaluational evaluation vs(�) of a formula
� can be given by:

vs(�) =

�> i� w(�) = > for all total w such that v v w
? i� w(�) = ? for all total w such that v v w:

It is easy to see that this scheme of evaluation yields global monotonicity
of evaluation, just as well as simple partial logic (see Section 2.5):

if v v w; then vs(�) v ws(�); for every (classical) formula �.

However, since the basic evaluation of formulae is just classical, the idea
of using monotonic functions to give the interpretation of sentence modes
has no role to play. In simple partial logic the monotonicity of a mode
�(p1; : : : ; pn) can be stated in terms of a substitutivity condition: given any
particular assignment v, and any formulae  1; : : : ;  n; �1; : : : ; �n,

if v( i) v v(�i) for all i, then v(�( 1; : : : ;  n)) v v(�(�1; : : : ; �n)).

But clearly there is nothing parallel for the supervaluational scheme. Say, for
example, that vs(p) = v(p) = � and vs(q) = v(q) = >, then vs(p _ :p) = >
but vs(p _ :q) = �.

This example points up in a particularly startling way the `intensional'
character of supervaluational semantics, which is a departure from the spirit
of classical logic. It is, however, a price that supervaluation theorists are
willing to pay in order to preserve what is considered to be a more important
feature of classical logic, viz. the stock of classical tautologies. More exactly,
it is considered important to be able to capture the `logical truths' of clas-
sical logic|formulae true under any total assignment|as `logical truths' of
partial logic|formulae true under any partial assignment. The supervalua-
tional scheme makes this work, because, if � is a classical formula, then � is
a classical tautology if and only if vs(�) = > for any partial assignment v.
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This contrasts markedly with our naive scheme of evaluation: logical truths
of any kind are very thin on the ground. Indeed, only formulae containing
some occurrence of one of the constant sentences > or ? can ever be true
under all partial assignments.

But why should we be interested in logical truth? In [Thomason 1972,
p. 231], where the author is arguing in favour of supervaluational techniques
in spite of their intensionality, the suggestion seems to be that the truths of a
logic are supposed to capture distinctions between good and bad reasoning.
But why so? Can we not leave it to the laws of logical consequence|or
perhaps to a more encompassing theory of logical relationships between
formulae|to capture cannons of correct reasoning? Then we might still be
in a good position to show that classical tautologies are indeed `preserved'
in partial logic. Consider, for example, the relation � which we de�ned
in Section 1.1 (or �> would serve equally well). It is easy to check that,
assuming � is a classical formula, � is a classical tautology if and only if

[p1 _ :p1] ^ : : : ^ [pn _ :pn] � �;

where p1; : : : ; pn are the atomic constituents of �. Does this not set clas-
sical tautologies in exactly their rightful place? The formula to the left of
`�' could never be ?, but it is not trivially >, as it would be under the
supervaluational scheme: it is > precisely when all the pi are either > or ?.

Observe that it would be vain to expect the logic of monotonic matrices
to capture even its own relation of logical consequence in terms of truth:
there can be no mode of composition �(p; q) such that  � � if and only
if �( ; �) is logically true. For if there were, then �(� ; �) would be >, but
�(>;?) would not be, which violates monotonicity. And this has nothing
speci�cally to do with our double-barrelled de�nition of �: it is exactly
the same with either �> or �?. If we wanted to introduce some special
conditional connective to play the role of �( � ; � ), then either it would have
to have a non-monotonic matrix (see Section 4.4), or else it would lead to
an intensional semantics of the kind we discuss in Section 2.7. However, the
exercise we have set ourselves is to use the framework of consequence to set
up logic without any such connective.

It would be a mistake to suppose that the theory of supervaluations
is not actually concerned with logical relations. On the contrary, there
is much sophisticated work involved with comparing and contrasting rela-
tions of `implication', `necessitation', `presupposition', etc., etc.|for exam-
ple in [Van Fraassen 1967, Van Fraassen 1971]. But here the theory quickly
becomes rather abstract and we lose sight of any particular formal lan-
guage. In contrast, simple partial logic puts emphasis on a particular
logical vocabulary, and this includes gap-introducing connectives such as
interjunction and transplication. These connectives actually prove some-
thing of a nuisance to the supervaluational idea: the de�nition we gave
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for vs( ) continues to make sense when _̂ and = are allowed to occur in
 , but the point of the exercise is rather spoilt, since there will be for-
mulae of the overall form of classical tautologies which do not come out
true. For example, if � is p _̂ :p, then there can be no v|not even a v
which is already total|such that vs(� _ :�) = >. In the face of this prob-
lem various supervaluational manoeuvres might be prompted: consider, for
example, [Van Fraassen 1975], where Belnap's connective of `conditional as-
sertion' (see Sections 2.3 and 4.5) is supervaluationalized.

The supervaluational evaluation of a formula � under an assignment v is
a boosting-up of its simple evaluation, in that v(�) v vs(�). The question
then arises what other kinds of boost-up evaluation may be de�ned|in par-
ticular, what kinds k such that v(�) v vk(�) v vs(�)|and [Langholm 1988]
experiments with various de�nitions. So long as we remain with proposi-
tional logic, these in fact turn out to yield the same result as supervalu-
ational semantics, but corresponding de�nitions of the evaluation of �rst-
order formulae in partial relational structures give rise to non-trivial di�er-
ences. Aside from any intrinsic interest in varying the de�nition of evalua-
tion, this proves to be a useful model-theoretic technique for investigating
extensions of a classical language. However, Langholm's partial relational
structures do not capture the full semantics of monotonically-representable
partial functions. And, as far as I know, it remains uninvestigated how his
work �ts in with the model theory we introduce in Section 6 and use in
Section 7.

2 SOME MOTIVATIONS AND APPLICATIONS

2.1 Varieties of Partiality

In classical logic a sentence, or the assertion of a sentence in a particular
context, is classi�ed as either true or false: the classi�cation is an assess-
ment of propositional content against how things are|or maybe against a
possible way for things to be. And the propositional content is �xed as what
it is precisely by conditions for its assessment. Specifying such conditions is
then a way of specifying meaning for a sentence, due account being taken, in
one way or another, of contextual parameters. This, roughly, is the picture
that standardly goes along with classical logic. What about partial logic?

Di�erent concerns prompt di�erent partial-logic pictures: these are not
necessarily intended to surplant the classical picture, but may o�er a mod-
i�cation of a part of it, or may simply o�er something to complement it or
to esh it out in some way. Among the variety of motivations for adopting
partial logic, some will wear on their sleeves a picture they �t, but others
leave it a contentious matter what picture to �t them into. As an intro-
duction to this variety, I want to draw two rough and ready distinctions to
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be discerned between di�erent accounts of the point of classifying sentences
as > (`true'), or ? (`false'), or neither->-nor-?, rather than just true or
false.

First, let us distinguish between a one-tier and a two-tier framework for
assessment. The one-tier framework is something like this:

(1) The classi�cation `neither->-nor-?' is, like > and ?, a way of assess-
ing content expressed in (the assertion of) a sentence (in a context)|a
way of assessing it against how things actually are, or against a pos-
sible way for things to be.

This framework lends itself to a straightforward scheme of meaning-
speci�cation: a speci�cation of content-�xing conditions for assessment as
either >, or ?, or neither->-nor-?, will be a speci�cation of meaning. But it
leaves open how, as an assessment of content, to understand what `neither-
>-nor-?' means. In what sense, if any, is this a `gap' rather than just a
third truth value? How do the three classi�cations >, ?, and neither->-
nor-? mesh with the two classical truth values, if they mesh at all?|in
other words, how, if at all, does content �xed by classi�cation in partial
logic mesh with classical propositional content?

The two-tier framework, on the other hand, does not leave these questions
open:

(2) The classi�cation `neither->-nor-?' is a way of assessing (the assertion
of) a sentence (in a context) to signify that no content is expressed|
nothing to be either > or ?. Then > and ? may themselves just be
taken to be the classical truth values true and false.

But in this framework for assessment the account of meaning-speci�cation
will be complicated. We seem to need both a speci�cation of conditions for
assessing when there is content, and a speci�cation of content-�xing con-
ditions (which will be classical truth/falsity conditions). But how ex-
actly these two tiers �t together, or whether they can somehow be wrapped
up into one, is left open. The two-tier framework will suggest itself most
obviously|though not exclusively|when things have to do with the con-
tribution of a context in determining propositional content. For example,
it might be said of an assertion of the sentence `This is blue' that it is a
precondition for there being any content to be either > or ? that there is
something which, in the context of the assertion, can be understood to be
what `this' stands for.

The second distinction is between two di�erent choices for what a sen-
tence is to be assessed against. The contrast between a one-tier and a two-
tier framework was formulated with the following `global' kind of set-up in
mind:
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(A) The assessment of (the assertion of) a sentence (in a context) as either
>, or ?, or neither->-nor-?, is against (a formal representation of)
the whole way things are, or a possible whole way for things to be.

But there may be reasons to invoke a `local' kind of set-up:

(B) The assessment of (the assertion of) a sentence (in a context) as ei-
ther >, or ?, or neither->-nor-?, is against (a formal representation
of) some part of the way things are, or some possible part of a way
for things to be.

The wholeness of a global set-up is not meant to rule out relativity to a
particular domain of discourse, or to the vocabulary of a particular language.
For example, there would be nothing non-whole about the standard model
for a �rst-order language of arithmetic. But in a local set-up we might
be working with a mere `part' of this model which, say, consisted just of
the information that 10 to 31 are natural numbers and that 10 < 30 and
11 < 29, but nothing more.

In a global set-up the classi�cation neither->-nor-? will arise|whether
in the one-tier or the two-tier framework|in virtue of some speci�c feature
of a sentence, perhaps in conjunction with a feature of a particular con-
text of assertion. But in a local set-up a di�erent sort of explanation arises
for the classi�cation neither->-nor-?. The classi�cations > and ? may be
thought of as `positive' truth values that an assessment can determine, leav-
ing `neither->-nor-?' to mean that no positive truth value is determined: a
sentence may be neither > nor ? because the mere part against which it is
assessed does not have enough in it to determine anything positive. Local
set-ups, will not appear standing on their own: they will be constitutive of
some wider semantic system which invokes assessment against partial states
or stages of information in one way or another. And it will only be within
the wider system that questions about propositional content and sentence
meaning can be raised and answered.

Three di�erent ways have emerged to understand `neither > nor ?', and
there would be nothing but confusion if we tried to assimilate them. But
in an overall semantic enterprise more than one of these ways may be in
play at the same time|perhaps independently of one another, or perhaps
interdependently: there will then be issues about criss-crossing or mesh-
ing. (And to complicate things further, our characterization of a one-tier
framework describes a general kind of understanding of `neither > nor ?'
of which there may be various instances.) Criss-crossing would arise, for
example, if we were working with a notion of content determined by condi-
tions for (global) assessment as either > or ? or neither > nor ?, but if we
also wanted a classi�cation for there being no content: then, presumably,
sentences would have to be classi�ed as either > or ? or neither > nor ?
or neither > nor ? nor neither->-nor-?. An example of meshing, on the
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other hand, will arise if the global assessment of sentences as either > or ?
or neither > nor ? is to be explained as the outcome of a succession|or
some more complicated structure|of set-ups for local assessment. We shall
come across meshing of this sort in several places, and the question will
arise whether the resulting global assessment is to be taken in a one-tier
or a two-tier framework. Maybe, though, this distinction is not as cut and
dried as my over-neat schematizing would suggest.

We shall be scratching only the surface of the possible complexity of
things. The �rst few applications we consider are ones that assume global
assessment, but a role for local set-ups will become increasingly more promi-
nent as we move through the list. Some of the issues raised by the examples
in this section will be discussed in subsequent sections; though the discus-
sions still leave a lot of loose ends.

2.2 Presupposition

In the context of a logic which admits of sentences which are neither `true'
(>) nor `false' (?), the `presupposition' of a sentence can simply be thought
of as its `either->-or-?' conditions. Then, whether we are working with
a one-tier or a two-tier framework in which to specify the overall >/?-
conditions of a sentence, its presupposition will be constitutive of these>=?-
conditions. Such a notion makes quite general sense, but the terminology
is usually associated with a particular application: when triclassi�catory
logic is deployed in an account of a particular linguistic phenomenon called
`presupposition'.

A paradigm example sentence would be one containing a de�nite descrip-
tion, such as

(1) The present King of France is sane.

It might be said that if this sentence were used to make an assertion, then
the existence of a (unique) present King of France is not thereby asserted
as a straightforward `conjunctive constituent'|as it would be in an asser-
tion of `There's someone who (alone) is presently King of France and who
is sane'|but �gures in some other, subtler, way: it is presupposed. The-
oretical approaches to the linguistic phenomenon vary widely: see Scott
Soames's chapter of the Handbook. But the kind of approach that partial
logic has relevance to is that according to which the presupposition associ-
ated with (the assertion of) a sentence is to be captured semantically as a
presupposition in the sense we began with. Of course, to explain what it is
that is being captured in this way, we would still have to look to a wider
theory of meaning|an issue we shall touch upon in some later sections.

Anyhow, if we wished to construe the description `The present King of
France' as a singular term, then we might be prompted to treat (1) along
the lines introduced in Section 1.1. Such a treatment would make it a
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case of a `truth-value gap' caused by a denotationless term|an idea which
authors on presupposition like to trace back to [Frege 1892] but associate
more strongly with Strawson in his attack on Russell's theory of descrip-
tions: [Russell 1905, Russell 1959], [Strawson 1950, Strawson 1964].

This is an encounter we ought to consider. At a super�cial level it may
simply be seen as a debate between someone who is sensitive to presup-
position, and therefore wants to say that a sentence such as (1) is neither
true nor false (Strawson) and someone who takes a conservative line that
classical logic is to apply and that the sentence is just plain false (Rus-
sell). However, there are deeper stands which confuse this simple contrast.
According to Russell, de�nite descriptions are not properly construed as
singular terms at all, but are to be de�ned away in terms of identity and
the quanti�ers 8 and 9. Strawson, on the other hand, not only construes
descriptions as singular terms but suggests a particular theory of reference
for them according to which they function much like demonstratives: condi-
tions to determine whether or not they have a denotation and, if so, what it
is, cannot be schematized outside a theory about how they are used in par-
ticular contexts to refer to particular things. But then, with partial logic
at hand, we might actually be prompted to side very much with Russell
and against Strawson. Let us consider three progressive stages of becoming
more Russellian and less Strawsonian.

First, we might agree to consider descriptions as singular terms, but
abandon the Strawsonian account of reference. Partial logic provides a se-
mantics for `logically pure' terms �x�(x) whose denoting-conditions depend
solely on the way �(x) determines its extension over a given domain of ob-
jects. Perhaps we could work with such a semantics? As a residue from the
Strawsonian account, we should recognize that description terms call for a
contextually determined restriction on the range of the bound variable; but
contextual dependence of this sort is a quite general phenomenon, in no way
speci�c to de�nite descriptions, and it might best be treated separately|in
some suitably general account of such dependence.

The second stage away from Strawson towards Russell is the thought
that perhaps we might not always want to construe de�nite descriptions
as singular terms. They share many features with quanti�er phrases of
the form `every F ', `most F ', and so on. And it is perhaps a virtue of
Russell's analysis that it casts `the F ' as a quanti�er phrase along with these
other forms: the Russellian formula 9x[8y[x = y $ Fy] ^Gx]|or anything
equivalent will do equally well|can be seen as an analysis of a scheme of
complex quanti�cation Ix[Fx;Gx] for `the F is G', just as 8x[Fx! Gx]
is the familiar analysis of a scheme 8x[Fx;Gx] for `every F is G'. This
analysis imposes classical total >=?-conditions on Ix[Fx;Gx], but why not
impose presuppositional >=?-conditions instead?

Universal quanti�cation has now come into the picture, and so it is per-
tinent to observe that a sentence such as
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(2) All Jack's children are bald.

provides another standard example of presupposition: (2) presupposes that
Jack is not childless. Hence we should think of imposing presuppositional
>=?-conditions on 8x[Fx;Gx] as well as on Ix[Fx;Gx]. What we need for
these schemes is something along the following lines:

Ix[Fx;Gx] is > i� there is just one F , which is G;
Ix[Fx;Gx] is ? i� there is just one F , which is not G.

8x[Fx;Gx] is > i� something is an F and any F is G;
8x[Fx;Gx] is ? i� something is an F and some F is not G.

These interpretation clauses remain rather informal, but it easy enough
to see that Ix[Fx;Gx] will be neither > nor ? unless there is exactly
one F , and 8x[Fx;Gx] will be neither > nor ? unless there is at least
one F . In [Thomason 1979] the presupposition of universal sentences is
handled in this way, though de�nite descriptions remain singular terms; in
[Keenan 1973], on the other hand, descriptions are handled with a scheme
of quanti�cation. Note that if G is a straightforward unstructured predi-
cate, then the >=?-conditions of Ix[Fx;Gx] should turn out to match those
of G �xFx, but Ix[Fx; : : : x : : :] promises greater scope for scope distinctions
than the singular term �xFx (see Section 6.4).

The third stage of Russellianization should now be obvious: why not
provide an analysis for the scheme Ix[Fx;Gx] in terms of identity and the
quanti�ers 8 and 9? This, of course, should be an analysis in partial logic,
which captures the presuppositional >=?-conditions. And, while we are
about it, why not give an analysis of 8x[Fx;Gx] as well? In Section 4.2 we
shall show how interjunction and transplication may be used to do this.

If we work with connectives of this sort, perhaps we shall then have
progressed some way towards the ideal expressed in [Thomason 1979] of a
formal language `rich enough that every genuine instance of presupposition
is formalizable'? Various kinds of presuppositional idiom might be tack-
led, since with a simple semantics for languages enriched with _̂ or = we
can produce formulae which actually exhibit non-trivial presuppositions in
virtue of `logical structure' of a very basic kind. This provides something
to complement abstract theorising about relations of presupposition, such
as what occurs in some of the literature on supervaluations, where there
is a baroque formal semantics for no particular language at all. For we
should, I think, object to the contrast made in [Van Fraassen 1971, p. 138].
According to van Fraassen some non-classical logics, such as modal logic,
contain `non-classical connectors', while others, such as the `logic of pre-
suppositions', are where `one studies non-classical relations among (sets of)
sentences'. No: the logic of presuppositions should be non-classical in the
�rst sense.
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Of course, it is easy enough in simple partial logic to de�ne a formal
relation of presupposing|if we want to. We can say that � (logically) pre-
supposes  if and only if � is > whenever  is either > or ?. And once we
have interjunction and transplication in our language, then even this simple-
minded de�nition becomes interesting|and even when we restrict attention
to propositional logic: for example, �= presupposes �, and � _̂  presup-
poses �$ . On the other hand, observe that we could use transplication
to de�ne presupposing in terms of equivalence, in a way that matches the
use of conjunction in a de�nition of entailment: � logically presupposes  
if and only if � '  =�. But all this is of parenthetical interest only, since
a formal relation of presupposing will have no essential role to play when a
semantic theory is set up in our logic.

2.3 Conditional Assertion

Related to the idea of a truth-value gap for sentences whose presuppo-
sition fails to obtain is the thought that naturally occurring conditional
sentences of the form `if �;  ' are neither true nor false when � is false.
And in [Belnap 1970] a possible world semantics is developed for a connec-
tive `= ' of `conditional assertion' according to which, if � is false, then �= 
is neither true nor false because it makes no assertion, in a depragmatized
(sic) sense of assertion. Otherwise �= `asserts' what  `asserts' (unless  
itself makes no assertion). In Section 4.5 we shall consider this semantics
and contrast Belnap's `= ' with transplication in simple partial logic. But
observe straightaway that Belnap's project is manifestly to provide a par-
tial logic for what we called the two-tier framework for the assessment of
sentences: `no assertion' means no propositional content to be either true
or false.

This prompts us to ask whether partial logic for presupposition should be
understood in the same way. Well, any formal treatment of a Strawsonian
context-involving account of presupposition would slip naturally enough
into a two-tier framework (though Strawson himself might eschew a for-
mal enterprise). But I want to suggest that such a framework would be
less happy for the `logically pure' treatment we outlined for the presupposi-
tional schemes of quanti�cation Ix[Fx;Gx] and 8x[Fx;Gx]|or indeed for
description terms �xFx. For example, the presupposition of the sentence
`All Jack's children are bald' is taken simply to be the condition that Jack
has children: whether or not this presupposition obtains is an objective fact
of the matter, and in an assertion of the sentence it may be contextually
quite remote, so that it would be something of a mystery how it might be
supposed to e�ect the question whether or not there is assessible content in
the assertion. To elaborate the point, say I know Jack, and say it is taken
to be `mutual knowledge' between us that Jack is a father; and say you an-
nounce `All Jack's children are bald'. Let us assume, furthermore, that only
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yesterday you had seen all Jack's children, and they were as bald as coots.
Even so, if they had subsequently taken a wonder drug and had in the mean-
time sprouted hair, then we would say that you had made a false assertion,
viz. an assertion with false content. If, on the other hand, they had all been
run over by a bus, would this mean that your assertion was stripped of any
content? What would the di�erence be between the two cases to the success
of your linguistic performance as an expression of content? In particular,
what di�erence to my understanding of your performance?

Any attempt to explain a two-tier framework for presuppositional se-
mantics would need to counter these reections. At least so far as sentences
like our example sentence are concerned, it would seem to make more sense
to espouse a one-tier framework and to seek an account of `true', `false'
and `neither-true-nor-false' simply as three di�erent ways of assessing the
content of assertions that sentences can be used to make, whatever status
the classi�cation `neither-true-nor-false' might then turn out to have (see
Sections 2.4 and 5.2).

2.4 Sortal Incorrectness

Some basic examples of `category mismatch', or `sortal incorrectness' mo-
tivate allowing predicate/singular-term composition to give rise to a truth-
value gap in the second of the two ways mentioned in Section 1.1, viz.
because the predicate is not considered to be either true or false of a given
object. For example, we might want to say that

(1) The moon is sane.

is neither true nor false, on the grounds that the moon is just not the kind
of thing to be either sane or insane. A logically conservative response would
be that this simply means the sentence is false|very obviously so. But
there is a counter-response that appeals to the behaviour of negation. In
the sentence

(2) The moon is not sane.

the negation seems naturally to `go with the predicate', just as much as it
would have if we had had `insane' in place of `not sane'. If (1) is false, so
should (2) be, and a certain tension then arises, since (1) seems to be the
straightforward negation of (2).

Precisely this tension is familiar, of course, from logically conservative
treatments of paradigm presuppositional sentences, according to which pre-
supposition failure is a straightforward case of falsity. For example, both
of the following sentences would be said to be false, yet one is the natural
negation of the other:

(3) The present King of France is sane.
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(4) The present King of France is not sane.

There is room here for considerable discussion concerning negation and am-
biguity, but the fact remains that on its most natural reading (4) both
appears to play a role as the direct negation of (3) and yet fails to be true
for precisely the same reasons as (3).

In partial logic there is no tension with negation, since failure-to-be-true
is subdivided between the classi�cations ? and �, and we have a mode of
negation which switches ? with truth (>) but leaves � �xed. And so, if (1)
and (3) are cast as �, (2) and (4) fall into place. Indeed, a desire to do justice
to the naturalness of natural negation might alone be suÆcient to motivate
the apparatus of `partial' semantics. Then > and ? might be considered
`proper truth values', as opposed to the `gap' �, just because they are the
classi�cations that negation switches about. Saying this does not in itself
preclude regarding � as a case of falsity (see Section 5.2). In other words,
we may have an application for partial logic in a one-tier framework, along
with a clear answer to the question how the three sentence classi�cations
mesh with the classical truth values truth and falsity: > coincides with
truth, while falsity spans both ? and �.

However this may be, the idea of sortal incorrectness presents its own
special issues, and in [Thomason 1972] the behaviour of negation is just one
strand in a highly developed semantic theory. Thomason rejects three-entry
matrices for giving the meaning of standard connectives and adopts a log-
ical framework of a supervaluational kind. One reason for his doing is this
is the thought that sentences of the form of classical tautologies ought to
be true. In Section 1.3 we discussed|and found fault with|the general
argument behind this thought; now we should consider the particular ex-
ample sentence that is chosen to back up the argument. This is `What I
am thinking of is shiny or not shiny'. Thomason points out that if we were
using three-entry matrices, it would be necessary to �nd out what is being
thought of before we can say whether or not the sentence is true. It would
be true if I were thinking of an apple, say, but sortally incorrect, and hence
neither true nor false, if I were thinking of the number 2: this is because
on any matrix approach|at least, on any non-eccentric one|�_:� would
be � if � were �. However, it is not clear why this fact should constitute a
special problem for matrices or provide any extra ammunition for the gen-
eral argument, though it is presented as if it did. This is especially puzzling,
given the way Thomason deploys the related sentence `What I am thinking
of is shiny' against a `syntactic' account of sortal incorrectness, according
to which sortally incorrect sentences are intrinsically ungrammatical. For
he points out precisely that we cannot know just by looking at the sentence
whether or not it is sortally incorrect: the answer depends on discovering
what is being thought about. This is a neat argument, but it will be an
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uncomfortable one if it is considered to be a problem when we cannot tell
a priori the sortal correctness or incorrectness of a sentence.

2.5 Semantic Paradox

A partial-valued approach to the semantic paradoxes rivals the `orthodox'
Tarskian account of a hierarchy of languages, in which the semantical predi-
cates of a given language can apply only to the language immediately preced-
ing it in the hierarchy. On this account, a simple paradoxical sentence such
as `This sentence is false' would be ruled out as anomalous on the grounds
that there can be no place for it in a hierarchy. But in [Kripke 1975] an
argument is deployed against the Tarskian theory very similar to the one
Thomason deploys against a syntactical account of sortal incorrectness. The
point is that paradoxicality cannot be seen as an intrinsic anomaly of given
sentences|or for that matter of given con�gurations of sentences|since
even the most innocent of truth-assertions and falsity-assertions can, in
unfavourable circumstances, turn out to be paradoxical: examples of this
involve people talking about one another's assertions.

A lot of work has recently been done on the paradoxes|and a lot of
that involves partiality in one way or another: see Visser's chapter in the
Handbook (and see Section 2.10). Here I shall focus on Kripke. To replace a
syntactical hierarchy of truth predicates in di�erent languages, he proposed
a single language containing its own partially de�ned truth predicate. This
idea had previously occurred in various authors (see [Martin 1970]), but
Kripke took up the formal challenge of addressing particular interpreted
languages, such as arithmetic, which are suÆciently rich already to provide
the kind of self-reference that leads to paradox. Briey described, his pro-
cedure is to graft a predicate symbol T onto a language and then to expand
its interpretation so as to make T a truth predicate. It is a truth predicate
in the sense that for any sentence � (of the expanded language), if � is a
name in the language for �, then

T� is true (>) i� � is true (>);
T� is false (?) i� � is false (?).

We shall be able to de�ne a `Liar sentence' �, such that � is true if and
only if :T� is true, and such that � is false if and only if :T� is false, but
there is no contradiction: � and :T� will both be neither true nor false.
The construction of a model to interpret T depends on the monotonicity of
evaluation that partial logic can provide (see Sections 1.2 and 6.2). Kripke
considers a supervaluational scheme of evaluation, but seems to prefer sim-
ply partial logic (see Section 5.1).

The actual method of model construction is a trans�nite induction simi-
lar to ones used, for example, in [Gilmore 1974], [Feferman 1975] and, most
cunningly, in [Scott 1975]. And compare Aczel's induction in the appendix
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to [Aczel and Feferman 1980]. These references all have to do with systems
of type-free class abstraction, where paradoxes are di�used by going un-
de�ned: in particular, Scott de�nes truth/falsity conditions appropriate to
turn a model for the �-calculus into a partial-valued language of classes.
From a set-theoretical point of view all these systems pay a rather high
price, viz. the loss of extensionality, but some work has also been done
using partial logic to set up extensional set theories: see [Hinnion 1994].

Truth theories and set theories are the obvious lairs for paradox, but
it lurks too in quotational logic|logic set up in a language with explicit
devices for talking about itself. For example, a sentence such as

M = \9p [\p" =M ^ :p ]"

may be thrown up, whereM is a sentence name, and p is a sentence variable.
If p is taken to range over all sentences, and if our background logic is
classical, then we have a version of the Liar. One strategy for avoiding
trouble is to impose a ranking on sentence variables, and a quotational
logic with such a ranking is investigated in [Wray 1987a]. But Wray ends
with a proposal for adopting partial logic as the background logic, so that
variable-ranking can safely be dropped. And this proposal is carried through
in [Wray 1987b].

In his article Kripke criticised other authors who had wanted to defuse
the paradoxes by going partial, on the grounds that they did not provide
`genuine theories'|no `precise semantical formulation of a language at least
rich enough to speak of its own elementary syntax', and no `mathematical
de�nition of truth'. However, there is a sense of `theory' in which Kripke
himself did not provide a theory: that is to say a formal theory in the
language for which we have a `precise semantical formulation' and a `math-
ematical de�nition of truth'. Kripke's de�nition of truth is a metalinguistic
model-theoretic construction and he left it at that. He provided no sys-
tem in which a truth-language can express its own semantical principles,
let alone any stock of basic `axioms' to generate such principles. I want to
suggest that the way to �ll in this gap is to use the de�nition we shall give
in Section 7 of what a `theory' is in partial logic. It is not clear, though,
what Kripke himself would make of the suggestion, since he claimed that
his logic is utterly classical. We shall pursue this thought a little way in
Section 5.1.

2.6 Stage-by-stage Evaluation

The bare existence of models for a semantically closed language is only half
of Kripke's story about truth: the construction he employs to demonstrate
the existence of such models is associated with an intuitive picture of how
sentences can be evaluated as true or as false. In terms of this picture an



286 STEPHEN BLAMEY

account is given|along lines originally explored in [Herzberger 1970]|of
`paradoxicality' and related notions. The monotonicity of evaluation now
comes to life as a persistence condition governing a procedure of evaluation
which runs through stages of increasing information. At a given stage the
truth predicate has been de�ned to a given extent and sentences can be
evaluated at that stage in the ordinary way|according to simple partial
logic or a supervaluational scheme. But this evaluation then determines
the truth predicate for the next stage of evaluation. The truth predicate
becomes more de�ned, and as it becomes more de�ned so more sentences
become true or false, and the truth predicate becomes still more de�ned
. . . and so on. Monotonicity ensures that once a sentence has taken on the
value `true' or `false', and the interpretation of the truth predicate has been
strengthened accordingly, then it can neither become unde�ned nor switch
truth value at any later stage of evaluation.

Recall the distinction we drew in section 2.1 between a `local' and a
`global' set-up for assessing sentences. It would not seem inappropriate to
think of the evaluation of sentences at each particular stage of information as
a local set-up. But the succession of stages leads up to a global set-up, viz. a
stable model to interpret semantically closed partial languages: this model
can be seen as the result of pursuing a stage-by-stage evaluation process
until it settles down and no new true or false sentences are produced. By
general principles governing the inductive de�nition behind this process it
must settle down sooner or later, though in the case of interesting languages
this will not be without trans�nite leaps to limit-ordinal stages, where all
previous truths and falsehoods are gathered up to de�ne the new interpre-
tation of the truth predicate. Assuming, then, that the model we end up
with constitutes a global set-up, the question arises whether it provides a
one-tier or a two-tier framework of assessment. `One-tier' would seem to be
the obvious answer, but this seems to conict with some of Kripke's own
remarks, and we shall return to the question in Section 5.1.

_̂ _̂ _̂

However this may be, another, and in some ways rather simpler, illus-
tration of monotonicity as a constraint in the context of a stage-by-stage
process evaluation is provided by the discussion of partial recursive predi-
cates in [Kleene 1952, Section 64]. `Kleene's strong matrices' are introduced
here|the same matrices that we presented in Section 1.2. A partial recur-
sive predicate P (~x) may be unde�ned for some n-tuple ~a of numbers, and,
accordingly, Kleene �rst o�ers the simple gloss `true', `false' and `unde-
�ned' for the matrix entries >, ? and � (for which he used `t', `f ' and `u').
These classi�cations are intended to apply to sentences built up out of par-
tial recursive predicates, and the point of monotonic (which Kleene calls
`regular') matrices can be described in terms of the derived role sentence
modes play as modes which compound predicates. For, if �(p1; : : : ; pn) is
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a monotonic mode of sentence composition and P1(~x); : : : ; Pn(~x) are par-
tial recursive predicates, then �(P1(~x); : : : ; Pn(~x)) is partial recursive also;
while, conversely, if �(p1; : : : ; pn) is not monotonic, then we can �nd predi-
cates P1(~x); : : : ; Pn(~x) which are themselves partial recursive, but which are
such that �(P1(~x); : : : ; Pn(~x)) is not. (See Kleene's Theorems XX and XXI.)

Kleene explains and illustrates monotonicity in terms of a particular kind
of algorithm for the interpretation of partial recursive predicates. For a
given input ~a, one of these algorithms will either yield the output `true', or
yield the output `false', or else go on for ever. A second, `computational',
construal then emerges for the matrix entries: `true', `false' and `unknown
(or value immaterial)'. These are classi�cations for a sentence P (~a) which
can be applied at successive stages in pursuing the algorithm for P (~x) with
input ~a. The matrix for a given connective, _ say, reects the way algo-
rithms for predicates Q(~x) and R(~x) are to be combined to yield an algo-
rithm for Q(~x)_R(~x). The classi�cation � means `unknown' because if the
value > or ? has not been decided at a given stage, then we do not know
what might or might not happen at a further stage. On the other hand, it
can also be glossed `value immaterial', since we may be able to determine the
value > or ? for a compound sentence independently of some constituent
sentence which remains �. For example, Q(~a)_R(~a) can be evaluated as >
if R(~a) has been decided as >, even if Q(~a) remains �.

The original objective construal of the matrix-entries now falls into place
in the following way: `true' applies to sentences which are decided as > at
some stage, `false' to those which are decided as ? at some stage, and `unde-
cided' to sentences which are never decided as either > or? at any stage|in
other words, which remain � for ever. Thus Kleene's algorithms can never
actually tell us that a sentence P (~a) is unde�ned. (And since, if P (~x) is par-
tial recursive, it is, in general, undecidable whether or not P (~a) is de�ned, it
would, in general, be vain to demand a di�erent kind of algorithm which did
tell us.) This explains why none but monotonic connectives are admissible:
a resultant value > or ?, decided by a compound algorithm, is allowed to
depend only on out-put values > or ? from constituent algorithms|never
on the classi�cation �. (See Sections 1.2 and 3.2).

Here we appear to have a paradigm for the use of monotonically rep-
resentable partial truth-functions. But in [Haack 1974, Haack 1978] it is
claimed that Kleene ought rather to have used a supervaluational scheme of
evaluation|indeed that his own arguments dictate this. There is no space
to do full justice to Haack's remarkable claim, but it would appear to de-
pend primarily on two things. The �rst is that Kleene mentions a secondary
application for his matrices|to sentences built up from total predicates of a
kind which are decidable (by one of his algorithms) on part of their domain
and have their extension over the rest of the domain given by a separate
stipulation. It seems that this enables Haack to misunderstand Kleene's
gloss for � as `lack of information that a sentence is > or is ?' to mean
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lack of information which of either > or ? it is. Kleene does not mean
this, however: � (under its computational construal) signi�es lack of infor-
mation whether a sentence is > or ? or � for ever. It is diÆcult to see
what sense Haack can have made of Kleene's discussion of the `law of the
excluded fourth', which is required to advance from the computational to
the objective construal.

Secondly, and connected in some not altogether clear way with the mis-
taken idea that all sentences under consideration are really either > or ?,
there seems to be a confusion between the constraint of monotonicity (reg-
ularity) and a totally di�erent point about the particular matrices chosen
for classical connectives: that they are, in Kleene's words, `uniquely deter-
mined as the strongest possible regular extensions of the classical 2-valued
truth-tables'. For Haack never actually mentions the notion of regularity,
but she interprets Kleene's explanatory discussion of the constraint as if it
were some kind of direct argument for a desideratum that modes of com-
position be as strong as possible. In [Haack 1974] she reports on Kleene's
illustrative discussion of _ (which I sketched above), but she seems to get
the point back-to-front. And, in conclusion, she is prepared to announce the
`underlying principle' to be that `if F (A;B; : : :) would be > (?) whether
A;B; : : : were true or false, then it is to be > (?) if A;B; : : : are �'. If
Kleene's principle were something like this, then perhaps we should con-
sider supervaluational semantics. But it isn't and we shouldn't.

2.7 Stages, States, and Exotic Connectives

Partial logic extends in various directions to more elaborate kinds of se-
mantics than we shall be pursuing. In one direction the computational
idea of a process of evaluation can actually be built into the interpreta-
tion of some of the logical connectives: consider for example the semantics
in [Thomason 1969] for the theory of constructible falsity. This theory is a
kind of two-sided intuitionism whose proper constructivist interpretation|
handled in [Nelson 1949] and [Lopez-Escobar 1972]|would appeal to twin
notions of `provability' and `refutability' in the way that intuitionists ap-
peal just to provability. But for a model theory we can consider a two-sided
version of Kripke's semantics for intuitionistic logic.

For simplicity of illustration let us consider just a propositional language.
Models can then be taken to consist of a set V, whose elements �, are each
associated with a partial assignment v� of > and ? to atomic sentences,
and a reexive transitive relation � on V, which satis�es the condition that
if � � � then v� v v� . The elements of V are to be thought of as stages
of information; and the condition on � is meant to embody the idea that
when � � � then � has all the information at � but possibly more besides.
Formulae are then evaluated at stages in V. For atomic sentences the
persistence of truth value (> or ?) through stages of increasing information



PARTIAL LOGIC 289

is constitutive of the model, and the guiding constraint on evaluation rules
is that this persistence be extended to all formulae. In other words, our
de�nition of v�(�) must be such that, for any � if � � � then v�(�) v v�(�).

The evaluation of negations, conjunctions and disjunctions, at a given
stage, involves only the classi�cation at that stage of their immediate
constituents|according to the >=?-conditions of simple partial logic. But
the evaluation of conditionals involves constituent classi�cations at stages
of further information. Thus we have a system of local set-ups for assess-
ment with a special kind of interdependence between the set-ups: it resides
in the actual assessment conditions of a logical connective. Thomason and
Lopez-Escobar give the following >=?-conditions:

v�(�!  ) = > i� for every � � �, if v�(�) = > then v�( ) = >;
v�(�!  ) = ? i� v�( ) = > and v�( ) = ?.

Notice that in fact it is only the >-conditions that appeal to further stages.
But, in virtue of them, ! matches a truth-preservation consequence rela-
tion: � !  is true at any � in any model if and only if, in any model,  
is true at any � at which  is true. We can take this to mean that � !  
is logically true if and only if  is a (single-barrelled) logical consequence
of �.

This is how the theory has grown up, but the >-conditions for ! could
easily be modi�ed to match a double-barrelled notion of consequence|one
which also requires preservation of falsity from conclusion to premiss. And
we might also adopt stronger ?-conditions which, like the >-conditions,
appeal to further stages of information, and which match the failure of
consequence:

v�(�!  ) = > i� for every � � �
8<
:

if v�(�) = > then v�( ) = >
and

if v�( ) = ? then v�(�) = ?;

v�(�!  ) = ? i� for every � � �
8<
:
v�(�) = > and v�( ) 6= >

or
v�( ) = ? and v�(�) 6= ?.

The full point of adopting this strong interpretation of ! only emerges if
we consider setting up non-logical theories in this sort of language: � !  
will be true in all models of a theory if and only if  follows from � in the
theory; and � !  will be false in all models of a theory if and only if  's
following from � is inconsistent with the theory. The details of this would
take us too far a�eld, but see Sections 6.5 and 7.1 for non-logical theories in
simple partial logic|and for an indication how to spell out theory-relative
notions of `following-from' and `(in)consistency'. Anyhow, in the framework
of this kind of model there are various ways of ringing the changes on the
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interpretation of particular connectives, and obviously a variety of di�erent
connectives could be introduced.

A similar framework is provided by the `data semantics' of [Veltman 1981]:
`data sets' play the role of stages of information, and an increase-of-infor-
mation ordering is given simply by the relation � between these sets. In
this framework Veltman interprets a pair of operators for `it may be that'
and `it must be that'. But analogous operators can be introduced into the
two-sided Kripke models we have set up: let us write `3' and `�'. For 3
the >=?-conditions will be that

v�(3�) = > i� for some � � �, v�(�) = >;
v�(3�) = ? i� for every � � �, v�(�) = ?;

and � is dual to 3: �� is equivalent to :3:�. In [Turner 1984] and
[Wansing 1995] the consistency operator M of [Gabbay 1982] is translated
into a partial-logic setting by giving it precisely the interpretation we have
given 3. But observe that we have now introduced a crucial departure from
the original models: the general persistence condition|that if � � � then
v�(�) v v�(�)|has now broken down. It is scuppered by the >-conditions
for 3 (and dually by the ?-conditions for �).

The search for exciting new operators can be continued by observing that
3 and � are a special case of something more general: `dynamic' operators
h�i and [�], formed from a formula �. For h�i the >=?-conditions will be
that

v�(h�i ) = > i� for some � � �, v�(�) = > and v�( ) = >;
v�(h�i ) = ? i� for every � � �, if v�(�) = > then v�( ) = ?:

And, again, [�] is dual to h�i: [�] is equivalent to :h�i: . The formulae
h�i and [�] could in fact be thought of as kinds of conditional|`if �,
then it may be that  ' and `if �, then it must be that  '. (Notice that the
>-conditions of [�] , though not the ?-conditions, are exactly the same as
those we originally gave for �!  .) Anyhow, 3 and � can now be captured
as h>i and [>].

In [Jaspars 1995] a logic is presented which not only contains these `upward-
looking' operators, but also a (mutually dual) pair of `downward-looking'
ones|let us write h�i0 and [�]0|whose >-conditions and ?-conditions at �
involve quantifying over � � �. The >=?-conditions for h�i0 are:

v�(h�i0 ) = > i� for some � � �, v�(�) 6= > and v�( ) = >;
v�(h�i0 ) = ? i� for every � � �, if v�(�) 6= > then v�( ) = ?.

Jaspars glosses h�i0 as meaning `it is possible to retract � from the cur-
rent state [of information] in such a way that  holds afterwards'. Now,
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this takes us even further away from the original idea of a two-sided intu-
istionistic system than 3 or h�i does. Originally we were to think of the
elements ofV as representing progressive stages in a process of discovery, for
which the quasi-ordering � represented possible advances in information|
indefeasible advances, which once achieved remained �rm. The idea of `los-
ing' information had no role to play in interpreting the language, and the
possibility that we might not only lose information, but subsequently `ad-
vance' in a di�erent and incompatible way, would have been in clear conict
with the intended interpretation of the model. But this possibility is now
envisaged: we have variable states, not progressive stages, of information.
[Wansing 1993] is a comprehensive essay investigating the ups and downs of
all this; and [Wang and Mott 1998] provides a discussion of how quanti�ers
�t in.

Jaspars emphasizes the dynamic character of his semantics by de�ning
two relations over the elements of V which a formula determines as its
`dynamic meaning':

�[[�]]
�

>
� i� � � � and v�(�) = >;

�[[�]]
�

>
� i� � � � and v�(�) 6= >.

Thus �[[�]]
�

>
� (�[[�]]

�

>
�) means that � is a possible way of extending (reduc-

ing) � to include (remove) the information that � is true. The notation
used here is mine; in particular, I have put in the subscript `>' to point
up the one-sidedness of these de�nitions: there is a complementary pair of
relations, de�ned by replacing `>' with `?'.

These relations between states of information have been de�ned in terms
of � and the evaluation of a formula at a state of information (which is itself
de�ned in terms of�). But an alternative strategy would be to take relations
that determine dynamic meaning as semantically primitive|to de�ne them
directly, by recursion on the complexity of formulae. De�nitions of this kind,
giving an explicit `dynamic semantics', are very popular nowadays: further
examples appear at the end of Section 2.10 and in Section 4.3. In Section 4.3
there are also some general remarks on the very idea of a dynamic semantics.

2.8 Under-de�ned and Over-de�ned

Another way to extend simple partial logic is to consider more truth-value
classi�cations than just >, � and ?. In particular, if � means `neither >
nor ?', what about a classi�cation for `both > and ?'? This might even
make some sense in an application where `neither > nor ?' signi�es a kind
of unde�nedness that is underde�nedness: there might then be a correlative
notion of overde�nedness.
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There is in any case an irresistible temptation to add a top element|
never mind what it could mean|to the degree-of-de�nedness ordering on
truth-value classi�cations. This yields a four-element lattice:

(?)
�

? (f)(t) >

(>)

The labels in brackets are the ones used in [Scott 1973a]. Let us call this
lattice D0: the beauty of Scott's idea is that D0 can be naturally embedded
into the domain D1 of monotonic functions from D0 into D0|and this in a
way which provides the basis for embedding D1 into its monotonic function
space D2, and so on. There is a sequence of nested domains, and a limit
domain can be de�ned which constitutes a system of type-free functions
closed under application and abstraction|a model for the �-calculus.

But in fact a similar construction can be carried out if we start with
our more modest semi-lattice of >, � and ?|see [Barendregt 1984], for
example|and so there is no special motivation here for adding `over-de�ned'
as a fourth truth-value classi�cation. What a �-calculus model of this sort
provides is a kind of higher-order, but type-free, partial propositional logic:
truth values and truth functions inhabit a single uni�ed domain. Quan-
ti�ers, however, would seem to present something of a stumbling block in
attempts to provide a full-blown type-free partial logic by means of this
sort of construction. Application in a limit domain is, loosely speaking,
de�ned in terms of approximations from preceding domains, and, even if
we iterate the construction through trans�nite stages, it is not clear how
successive approximations could ever build up to any decent de�nition of
quanti�cation as a function both ranging over and contained in a limit
domain. (The workable de�nitions I have discovered so far perhaps just
about count as non-trivial, but they specify too weak a notion of quanti�-
cation to be useful.) Furthermore, it does not seem that starting with the
four-element lattice of truth-value classi�cations would o�er any advantage.
Intensional type-free logic, on the other hand, is much easier to obtain:
consider [Scott 1975] and the other similar work mentioned in Section 2.5.

Anyhow, the idea that a sentence may be over-de�ned, in being both
true and false, is one that paraconsistent logicians would like to make seri-
ous sense of: see Priest's chapter in the Handbook . But in this chapter we
need only advert to places in work we have already mentioned where the
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four-element lattice plays a role. First, then, it turns up in the type hier-
archy of [Muskens 1989] (see Section 1.2). Secondly, the general framework
set up in [Langholm 1988] allows both-truth-and-falsity as well as neither-
truth-nor-falsity, though a de�nition of `coherence' is immediately given to
delineate those logics which run on just the three truth-value classi�cations
>, ? and � (see Section 1.3). And again in [Bochman 1998] partial logic
turns out to be a special case in a more general four-valued framework (see
Section 1.1). Compare, too, the work on the paradoxes in [Visser 1984].

2.9 Non-deterministic Algorithms

But four is still a small number: there are even more truth-value classi�-
cations in the `non-deterministic partial logic' developed for the semantics
of programming languages in [P�appinghaus and Wirsing 1981]. This logic
is applicable to the evaluation of sentences under `non-deterministic algo-
rithms'. The algorithms are `non-deterministic' because at given stages in
pursuing them a choice may be left of (�nitely many) di�erent ways to pro-
ceed. Assuming a particular choice is always made, then a sentence will
either be evaluated as > or as ?, or else remain unde�ned (�) (either be-
cause the procedure grinds to a conclusionless halt or because it goes on for
ever). But di�erent choices might result in di�erent resultant classi�cations.
And so, for a given non-deterministic algorithm, there is a spread of alter-
native classi�cations. The seven values of Pappinghaus and Wirsing's logic
are the di�erent possible spreads: the non-empty subsets of f>; �;?g. The
authors explain various constraints on the interpretation of modes of sen-
tence composition and provide a stock of connectives which is expressively
complete for modes meeting these constraints.

I am too out of touch properly to survey the role partial logic and its rel-
atives have played in computer science. But I do know that in an extended
version of [Blamey 1991], a degree-of-de�nedness ordering derived from par-
tial logic is called in to handle divergence|along with non-determinism|in
models for CSP processes.

2.10 Situation Semantics

`Situation Semantics' was introduced in [Barwise and Perry 1981a, Barwise
and Perry 1981b] as a rival to the Fregean tradition in semantics according to
which truth and truth conditions are central notions. Rather, it was argued,
situations and truth-in-a-situation conditions are central. Quite an indus-
try has subsequently developed, and there is now a chapter in the Handbook
which is dedicated to the theory of situations. Here I shall restrict attention
largely to the early foundational papers. In this work objects and relations
are taken as metaphysically basic, and|suppressing complications to do
with time and place|situations are then con�guarations of objects and re-
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lations. They could be modelled over a given domain D of objects as partial
functions from the set of all (n+1)-tuples consisting of an n-place relation
on D and n elements of D into the truth-values > and ?. (Empty argument
places of the kind considered in Section 1.2 do not enter the picture here:
we can take these functions, modelled set-theoretically, just as subsets of
total functions.) Thus situations turn out to be a kind of partial model
and provide a paradigm for the idea of a local set-up for the assessment of
sentences. A simple sentence such as `John hits Mary', for example, would
be true (false) in a situation s if and only if s(hits; John;Mary) = > (?).

We might, then, think of the meaning of a sentence � as a predicate of
situations|one which determines, as its truth-sided interpretation, the set
`[[�]]>' of situations in which it is true. (Barwise and Perry use `[[�]]' for this
set.) However, we can only think in this way once a number of parameters
have been �lled in. For the linguistic meaning of a sentence, just like that
of any subsentential item, is given as a many-place relation with an array
of argument places designed to reveal its sensitivity to both linguistic and
non-linguistic context: and a great many of these argument places are for
situations. For example, a de�nite description is evaluated for a denotation
relative to a situation|a situation which can cross-refer in various ways
with situation slots elsewhere in the architecture of a sentence, possibly,
but not necessarily, to be ultimately determined by the context of utterance.
Furthermore, situations are taken to be the very objects of perception in
certain `naked in�nitive' constructions such as `Hilary sees Mary hit John':
roughly, this would be true in a situation in which Hilary sees a situation in
which Mary hits John. Along these lines Barwise and Perry o�er an account
of the `logical transparency' of such `: : : sees �' contexts, which contrasts
with the opacity arising in sentences of the form `: : : sees that �'.

Anyhow, if we ignore the internal structure of situations, then they can
be thought of just as `partial possible worlds'|points with respect to which
sentences are to be evaluated as >, ? or neither > nor ?. This prompts
comparison with other work: for example, in [Humberstone 1981] partial
possible worlds are called `possibilities' and are used to provide a semantics
for traditional modal logic. (And see [Van Benthem and Van Eijck 1982,
Fenstad et al. 1987, Van Benthem 1988] for more exploration of intercon-
nections.)

_̂ _̂ _̂

Classically propositions are often modelled as sets of possible worlds, but
what happens if we are working with partial possible worlds or situations?
In the early work we are considering Barwise and Perry suggest modelling
propositions as sets of situations satisfying the coherence condition that
if s 2 P and s � s0, then s0 2 P . And the interpretation sets [[�]]>
then turn out as propositions. This approach to propositions is later aban-
doned (see below), but it is worth pursuing a little way, if only as partial-
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possible-world theory. In particular, the question arises how to de�ne log-
ical operations over propositions|operations to interpret modes of sen-
tence composition. Conjunction and disjunction, obviously enough, turn
out to be just intersection and union, so that [[� ^  ]]> = [[�]]> \ [[ ]]> and
[[� _  ]]> = [[�]]> [ [[ ]]>. But what about negation? Barwise and Perry do
not actually treat negation as a mode of sentence composition: it turns up
in more complicated categories. Even so, given a proposition P , another
proposition P � = fs� j s 2 Pg is determined, where s� is the situation ob-
tained from s by reversing the values > and ?. And for basic sentences �,
such as `John hits Mary', [[�]]�> turns out to be the set [[�]]? of situations in
which � is false: this looks to be a likely candidate for [[:�]]>.

But to cater for the negation of complex sentences, we had better modify
our representation of propositions so that they have their negative side ex-
plicitly built in. If we take pairs hP; P �i of Barwise-and-Perry propositions
to interpret sententially atomic items, then to interpret compound sentences
we can use the following clauses:

h[[:�]]>; [[:�]]?i = h[[�]]?; [[�]]>i;
h[[� ^  ]]>; [[� ^  ]]?i = h[[�]]> \ [[ ]]>; [[�]]? [ [[ ]]?i;
h[[� _  ]]>; [[� _  ]]?i = h[[�]]> [ [[ ]]>; [[�]]? \ [[ ]]?i:

And we can add clauses for interjunction and transplication too:

h[[� _̂  ]]>; [[� _̂  ]]?i = h[[�]]> \ [[ ]]>; [[�]]? \ [[ ]]?i;
h[[� = ]]>; [[� = ]]?i = h[[�]]> \ [[ ]]>; [[�]]> \ [[ ]]?i:

These equations of course just model the >=?-conditions proposed in Sec-
tion 1.1.

We should (in parenthesis) observe that the same equations will serve if
we are interested in capturing not the local assessment of a formula in a
system of situations, partial possible worlds, or whatever, but rather the
global assessment of a formula against complete possible worlds|against
whole possible ways for things to be. If v�(p) is the (partial) evaluation
of an atomic sentence p at a possible world �, the following pair gives the
interpretation of p:

hf� j v�(p) = >g; f� j v�(p) = ?gi:
Then, given an arbitrary formula �, we may invoke the displayed equations
to �x the sets of possible worlds [[�]]>, in which � is >, and [[�]]?, in which
� is ?. Assuming that this provides a one-tier framework of assessment|
and it requires some ingenuity to see it providing anything else|the pair
h[[�]]>; [[�]]?i then models the `partial proposition' that � expresses.

Anyhow, in the framework of de�nitions of this kind, a natural version of
our double-barrelled consequence relation would be that � �  if and only
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if both [[�]]> � [[ ]]> and [[ ]]? � [[�]]?. Barwise and Perry use just the
�rst conjunct of this to de�ne a notion of consequence (matching �>)|and
hence to de�ne equivalence as bi-consequence. Thus de�ned, consequence
and equivalence are stronger, and so more discriminating, than relations
which the authors grudgingly label `logical' and de�ne as follows:  is a
`logical consequence' of (is `logically equivalent' to) � if and only if, if s
is any total situation, then s 2 [[�]]> only if (if and only if) s 2 [[ ]]>.
(Total situations are just situations that are total functions.) It is then one
strand in their argument against the Fregean tradition that trouble results if
`logical' equivalence is expected to play a role which should rather be played
by the more discriminating relation. This involves ringing the changes on
the problem, if substitutively of `logical' equivalents is allowed, of non-truth-
functional modes of composition which create extensional contexts. The
general aim here is to point up oddities which result from thinking directly
in terms of truth values (and truth conditions), rather than situations (and
truth-in-a-situation conditions). But it's far from clear that this aim is
met. The more discriminating relation of equivalence has nothing specially
to do with the local set-ups of situation theory: it is available in any partial
semantics. Oddities may equally well be avoided by going partial with a
global set-up for assessment|and thinking directly in terms of the truth
values > and ? (and >/?-conditions).

_̂ _̂ _̂

In [Barwise and Etchemendy 1987] the apparatus of situations is invoked to
address semantic paradox. This involves subjecting the notion of a proposi-
tion to some scrutiny, and we are o�ered two conceptions|`Russellian' and
`Austinian'. Under either conception, the formal modelling of propositions
is very di�erent from the one presented above. First we have to have `states
of a�airs': these are the basic constituents of situations, which, working
with the de�nition we set out at the start, can be taken just to be the mem-
bers of the sets representing the partial functions that model situations,
viz. (n+ 2)-tuples consisting of an n-place relation, n objects, and a truth
value (> or ?). Russellian propositions are then de�ned as constructs built
up from states of a�airs, in much the way formulae of a formal language
are built up from atomic sentences. At bottom we have basic propositions
which just are|or directly correspond to|individual states of a�airs, and
these will be true in a situation if and only if they are contained in it:
truth conditions for arbitrary propositions can then be given by recursive
clauses that follow their construction, in just the way that clauses are given
for evaluating formulae. Austinian propositions, on the other hand, have a
particular situation built in as a kind of contextual parameter|what the
proposition is `about'. A construction from states of a�airs gives a `propo-
sition type', which needs to be paired with a situation to model an actual
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proposition. So an Austinian proposition contains within itself a situation
with respect to which it is true or not.

To give an adequate perspective on the Liar sentence, Barwise and
Etchemendy espouse Austinian propositions. The Liar sentence is to be
taken in a situation-supplying context and will express a proposition about
that situation. If s is the situation supplied and ps is the proposition ex-
pressed, then ps will be a constituent of itself: its proposition type will
consist just of the state of a�airs hT; ps;?i, where T is (an item to repre-
sent) the property of being true. (Aczel's theory of non-well-founded sets
is invoked as the framework in which to de�ne such self-reexive proposi-
tions.) Thus ps will be true if and only if hT; ps;?i 2 s. But assuming
that no situation can be unfaithful to semantic facts, so that hT; ps;?i 2 s
only if ps is not true, it follows that ps will not be true|in other words,
hT; ps;?i 62 s. And, since s cannot be unfaithful to this fact, hT; ps;>i 62 s.

But the modelling of propositions leaves no room for the conclusion that
ps is therefore neither true nor false: separate falsity conditions are not
de�ned, and so, because ps is not true, it's counted simply false. Rather than
admitting a neither-true-nor-false proposition, we are invited to appreciate
the inevitable partiality of the situation. This means we could always extend
s to a situation s0 = s [ fhT; ps;?ig, which includes information about
the proposition the Liar sentence expressed|though of course in a context
supplying this situation the Liar sentence will express a di�erent proposition
ps0 , and hT; ps0 ;?i will not be contained in s0.

In [Groeneveld 1994] the idea that the Liar sentence actually drives us
on from situation s to situation s0 is taken up and built into a semantics for
languages in which the Liar sentence can be formulated. Partial logic now
comes back into the picture|a dynamic partial logic, for which a pair of
relations [[�]]

+

and [[�]]
�
are de�ned between situations (`+' for >, and `�'

for ?). These may be glossed as follows: s[[�]]
+

s0 if and only if `s0 is the
weakest extension of s that covers the information of �'; s[[�]]

�
s0 if and only

if `s0 is the weakest extension of s that rejects the information of �'.

3 FREGEAN THEMES

3.1 Reference Failure

In Section 1.1 we announced that we should, in partial logic, be able to
do justice to the idea that a sentence �(t) can be neither > nor ? because
some constituent term t is non-denoting. This calls to mind Frege's theory
of reference (Bedeutung), according to which the truth value `true' or `false'
is the reference of a true or false sentence, just as the object denoted by
a singular term is its reference, and according to which there is a general
principle of reference failure that any compound expression lacks a reference



298 STEPHEN BLAMEY

whenever any constituent expression lacks a reference. This principle would
then explain particular claims that �(t) is neither > or ? `because' t is non-
denoting. Of course, our partial logic does not obey this strict principle: if
the range of interpretation for predicates �(x) is the system of monotonically
representable partial subsets of a domain (see Section 1.2), then, since an
empty argument place does not necessarily mean no output value, �(t) could
be > or ? even if t is non-denoting. But can we argue that our semantics
provides some other, subtler, general principle to give more than ad hoc
content to particular claims that �(t) is neither > nor ? because t is non-
denoting?

This question leads to thoughts that are in any case prompted if we pur-
sue a Fregean parallel and think of f>;?g as the range of reference for
sentences and of a domain of objects, or indeed the corresponding classi-
�cations `denoting so-and-so', as the range of reference for singular terms.
And it is diÆcult to avoid the parallel. This is not because of any concep-
tion external to systematic semantics of what the `reference' of a sentence
or singular term is to consist in, but simply because it is a central strand
in Frege's theorising that compound reference be (functionally) dependent
on constituent reference: the parallel points up precisely the dependence
that must obtain according to the idea that modes of composition are in-
terpreted by partial functions. But then there might seem to be a problem,
since the dependence of reference on reference is supposed to be intimately
connected with the strict Fregean principle of reference failure, which our
logic does not obey. The connection is made (in rather di�erent styles) in
[Woodru� 1970, Dummett 1973, Haack 1974, Haack 1978], for example|
and a host of more recent references could equally well be given. Haack
even presents a deductive-looking argument to the e�ect that the principle
actually follows from the idea of dependence. To defend our framework from
the charge that its range of modes is too liberal for it to be understood as
a semantics of partial functions, we have to argue that, on the contrary,
the dependence of reference on reference does not in itself dictate the crude
principle that a compound �(�) lacks a reference whenever any constituent
� lacks a reference. Such an argument will be attempted in Section 3.2.
It is not, of course, just a matter of predicate/singular-term composition:
either �(�) or � could be either a singular term or a sentence. And at the
end of Section 3.2 we shall generalize the question even further.

Frege himself regarded reference failure as a defect of ordinary language,
and in his systematic logical language he went to great, and often arti�cial,
lengths to avoid any kind of unde�nedness arising. In [Frege 1891] the sug-
gestion seems to be that logical laws could not be given otherwise. Perhaps
this was because he tended to assimilate any kind of unde�nedness into an
intractable kind of `vagueness', but it might anyway have seemed rather
impractical to do with logic with so many gaps. In our semantics, however,
there are not so many gaps. Moreover, what gaps there are will not ham-
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per our formal development as they would have hampered Frege's, because
we shall be presenting logic in terms of consequence rather than truth (see
Sections 6.5 and 7.1.)

_̂ _̂ _̂

However this might be, let us briey consider some meta-semantical discus-
sion of the Fregean idea that �(t) seriously `lacks' a reference (truth value)
when t `lacks' a reference (objected denoted). [Dummett 1973, Chapters
10 and 12] approaches the matter by discerning di�erent strands in Frege's
notion of reference, and the possession of a `semantic role' is taken to be the
only strand in common between sentences and singular terms: the semantic
role of an item turns out to be what we have been calling its `semantic
classi�cation', though the notion of semantic role is anchored to more fun-
damental ideas (see Section 5.2). First, then, we should distinguish the
realm of objects that can be denoted by terms from the realm of semantic
roles, which includes the classi�cation `non-denoting'. Secondly, Dummett
also insists on a distinction between the notion of `truth-value' in the sense
of semantic role, viz. classi�cation or matrix entry in whatever semantics
there is reason to adopt, and notions of truth and falsify applicable in the
evaluation of what someone asserts using a sentence. Hence, no purchase
is to be gained on the idea of sentences actually lacking a truth value by
drawing a parallel with names lacking a bearer. Moreover, according to
Dummett, whenever anyone ever asserts anything, one or other of the truth
values in the second sense must apply (see Section 5.2). There is, though,
room for the idea that a sentence may be neither `true' nor `false' if these
labels apply to two, among more than two, semantic classi�cations. Dum-
mett takes bearer-less names to be a paradigm source for the problems with
negation that we discussed in Section 2.4, and, as we saw, these problems
motivate a triclassi�catory semantics.

According to Dummett we are concerned throughout with singular terms
possessing a Fregean sense (Sinn), understood as a cognitive content which
determines, but is independent of, the object, if any, denoted. In that case,
there is no question of denotation failure in any way infecting what a sen-
tence can express, and the right foundations for the use of partial logic
to handle possibly-non-denoting singular terms will then be what in Sec-
tion 2.1 we called a `one-tier' framework for assessment. However, it would
be contentious to assume that all singular terms can properly be treated in
such a framework. It has been argued that the function of at least some
singular terms is to introduce denoted objects so intimately into what their
containing sentence is used to express that, should such a term in fact not
denote, then nothing could have been expressed at all: there would be noth-
ing to be either true or false. This is how we glossed `neither > nor ?' in
the `two-tier' framework, and it echoes the Strawsonian approach to the
presupposition of de�nite descriptions, which we put on one side in Sec-
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tions 2.2 and 2.3. But recent theorizing along these lines has become more
concerned with demonstratives and proper names: some classic references
are [Wiggins 1976], [McDowell 1977], and [Evans 1982], where it is argued
that it is, in fact, an important strand in some of Frege's own thinking that
bearerless proper names cannot be used to express anything|any Fregean
thought. A rich debate has subsequently developed, encompassing both
exegetical questions and the question what it is right to say: for example,
[McDowell 1984, McDowell 1986, Bell 1990, Wiggins 1995, Sainsbury 1999,
Wiggins 1999]. This is not the place to disentangle the debate, but we have
to consider how it impinges on our theme about reference.

First, it would seem that at least pure description terms must fall within
the scope of Dummett's account. (I eschew|though I cannot here provide
a proper rebuttal of|the Russellian view that there should in principle
be no such singular terms in a properly constituted logical language.) In
that case, if we take descriptions as a paradigm for the singular terms that
our logic is to accommodate, then it might be supposed that any problem
about the dependence of reference on reference will have evaporated: surely
we can simply extract from Dummett's account the picture of a total-valued
semantics operating throughout on semantic classi�cations? But, even if we
do this, the problem will reappear. Given our particular semantics, with
monotonic functions interpreting modes of composition, we can ask what
sense, if any, it makes to say of that semantics that it exhibits functional
dependence just among the classi�cations > and ? and the classi�cations
`denoting-so-and-so'. This is precisely the question what sense it makes to
say that monotonic functions represent partial ones. Itself the question re-
mains internal to the mathematical semantics, but it becomes interesting in
connection with at least some applications, if we want a general explanation
behind the speci�c need for, or usefulness of, monotonic forms.

But what if we hanker after taking proper names as the paradigm for sin-
gular terms in partial logic? And what if we espouse the two-tier position
that when a barerless name makes a sentence neither true nor false, this
is because there can be no Fregean thought expressed by the sentence? It
might then be supposed that the kind of infection a barerless name causes
will be so radical that, however it occurs in a sentence, it must block the
expression of a thought|so that the crudely Fregean principle will be in-
evitable. But I want tentatively to suggest that it is perhaps not so obviously
inevitable. Central to arguments for the two-tier position is Frege's charac-
terization of the sense of an expression as the `mode of presentation' (Art
des Gegebenseins) of a reference. It seems to follow from this that if there
is no reference, then there can be no sense: there will be nothing for there
to be any mode of presentation of. In particular, if a name has no bearer
to be its reference, then it will have no mode of presentation of a bearer to
be its sense. Now, suppose we espouse this characterization of sense, and
accept the inference from it. Still, does it follow that a sentence containing
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a bearerless name can express no thought? It might be supposed to follow,
because a thought is the sense of a sentence and, as such, will be dependent
on the sense of constituent expressions|in a way that somehow or other
matches the dependence of the reference of the sentence (its truth value) on
the reference of the constituents. But our thesis concerning reference is that
such dependence does not entail the principle that a compound expression
must lack a reference whenever any constituent does. If this is right, then
a matching thesis concerning sense cannot be dismissed out of hand. There
may be room for a sentence that can be used to express a thought even
when a constituent name lacks a bearer. For there may be sense for the
sentence even when there is no sense to the name.

This remains the mere mooting of a possibility: a thorough investigation
is called for into the compositionality of sense, and this is no place for my
inchoate thoughts on the matter.

3.2 Functional Dependence

The problem, recall, is to provide an account of functional dependence which
makes sense of saying that the `reference' if any, of a compound �(�) depends
on the `reference', if any, of a constituent �|an account which can explain
why �(�) may sometimes lack a reference because � lacks a reference, but
one which is not subject to the crude Fregean principle that it is always the
case that

(1) if � lacks a reference, then �(�) lacks a reference.

Here �( ) is a functor, and for the moment we shall assume that both �
and �(�) are either sentences or singular terms, though our remarks will be
suÆciently general for it not to matter which. Frege himself wished actually
to conate these categories, but we will not be committed to that: indeed,
we could envisage a many-sorted semantics with more than just two distinct
domains of reference for basic, non-functor, categories. ([Wiggins 1984], for
example, needs this.)

Now, when reference failure is not the issue, the principle that, with
respect to given ranges of reference, `compound reference depends on con-
stituent reference' is familiar as an `extensionality' condition|to pick out
modes of composition as extensional predicates or truth-functional sentence
functors, for example. Here the idea of dependence is actually being put
to work, and what is important is not that each constituent reference has
to pull its weight as something on which compound reference depends|
a thought that would indeed suggest the crudely Fregean principle|but
rather that compound reference depends only on constituent reference, not
on anything else. This is often spelt out with the following substitutivity
condition:
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(2) If � and � have the same reference,
then �(�) and �(�) have the same reference.

As formulated, (2) presupposes that �; �; �(�) and �(�) each have a refer-
ence; but we are considering the possibility that expressions lack a reference,
and the question naturally arises how (2) might be modi�ed so as to allow
for this. In fact is an appropriate answer to this question not precisely what
we are looking for?

Presumably, then, we must adopt at least the following constraint on
modes of composition:

(3) If � has a reference and �(�) has a reference,
then, if � has the reference of �, �(�) has the reference of �(�).

But what if �(�) has a reference, though � lacks one? We do not want to
rule out this possibility, but, to preserve the idea of dependence, it must
be constrained. An obvious thought is that if �(�) has a reference even
when � lacks one, then � must occur in �(�) in a slot that happens to be
irrelevant to determining the reference of �(�)|given the reference of all
other constituents. But in that case, whatever � we care to substitute for
�; �(�) must have the reference of �(�). Hence for any � (given any �):

(4) If � lacks a reference but �(�) has a reference,
then �(�) has the reference of �(�).

And now, to replace (2), the conjunction of (3) and (4) can be logically
manipulated into the following substitutivity condition:

(5) If � has the reference, if any, of �,
then �(�) has the reference, if any, of �(�).

Here, of course, we have to understand the antecedent in a way that makes
it trivially true for any � that lacks a reference.

We are now in a position to explain why it is sometimes apt to say that
�(�) lacks a reference `because' � lacks one. For (4) yields a conditional
form of Frege's principle (1): (1) obtains when �'s slot in �(�) is relevant to
determining compound reference. It is a mark of relevance that there exist
expressions � and  such that �(�) and �() take on a di�erent reference,
or such that one of them has a reference but not the other. And it follows
from (4) that if such � and  do exist, then condition (1) does obtain.

This discussion was originally prompted simply as a defence of our partial
semantics against the strict Fregean principle (1). But the criterion of func-
tional dependence embodied in condition (5) in fact does more: it dictates
precisely a semantics of monotonically representable partial functions. Our
semantics is not just not too liberal, but it is as liberal as it can be|given
the criterion of dependence. To see this, consider a domain of reference
D1 for constituent expressions � and �, and a domain of reference D2 for
compounds �(�) and �(�). Then (5) means precisely that
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(50) if, for any a1 in D1, if � refers to a1, � refers to a1,
then, for any a2 in D2, if �(�) refers to a2, �(�) refers to a2.

And so, if we assume that for any item inD1 there is|or can be introduced|
an expression whose reference it is, then we may deduce from (50) that the
interpretation of �( ) can be given as a partial function from D1 into D2

of the kind that is representable by a monotonic function from the �xed-up
domain D1 [ f~1g into the �xed-up domain D2 [ f~2g: recall Section 1.2.
This deals with one-place modes of composition, but the idea generalizes
easily enough to arbitrary n-place ones, since monotonicity coordinate by
coordinate is equivalent to monotonicity across all coordinates.

It is interesting to contrast the discussion here with that in [Woodru� 1970,
pp. 128-9], where the speci�c question is raised how to reconcile the use of
Kleene's `strong' matrices for ^ and _ (in other words the matrices we have
adopted) with a generally Fregean way of thinking. Woodru� does not ar-
gue, as we have, that there is no trouble over the dependence of compound
reference on constituent reference; rather, he argues that dependence may
break down|for example when � _  is > because � is >, though  is �|
but that this does not matter. The idea seems to be that, provided the
constituent items of a sentence all have a sense, including ones without a
reference, then we at least have a compound sense for the whole sentence,
and this sense can be considered as determining a reference. However,
according to our criterion of dependence, this detour through sense is un-
necessary. And, to avoid entanglement with the debate that �gured at the
end of Section 3.1, the detour is in any case best not taken.

_̂ _̂ _̂

So far we have been thinking of the function which interprets a functor
simply as what exhibits dependence of compound reference on constituent
reference, but, in Fregean theory, the interpreting functions are themselves
the reference of functors, and compound reference `depends' no less on this
kind of reference than on the reference of a constituent singular term or
sentence. What then of our monotonically representable partial functions?
Can we see them as constituting a range of reference|or a range of `par-
tial reference'|which is subject to some suitable principle of dependence?
It seems we can set them in this Fregean light by considering appropri-
ate generalisations of principle (5) for higher-level functors �( ) which take
functors � for arguments. If �( ) is a simple second-level predicate, for ex-
ample, (such as a �rst-order quanti�er) the principle would be one which
linguistically embodied the intuitive idea of dependence that we sketched in
Section 1.2 in connection with partial subsets of the system of partial sub-
sets of a given domain. But in fact we can cater for a complete hierarchy of
functor categories|one which includes not only functors which take func-
tors as arguments, but also (though this unFregean) functors which make
functors.
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There is no space to pursue these thoughts, but we should point out that it
would be inadequate to think of the `partial reference' of partial functors as
a `partially speci�ed' (total) reference. This is the idea that [Dummett 1973,
p. 170] would like to o�er Frege, but it could not explain the subtlety of
monotonically representable partial functions. The reason is that �rst-level
functors accommodate empty argument places for reference-less terms in a
way which is subject only to the constraint of principle (5). Full account
has to be taken of this in our generalization of (5) to higher-level functors.

4 NON-CLASSICAL CONNECTIVES

4.1 Interjunction and Transplication: Expressive Adequacy

Let us begin with the proof of expressive adequacy. We argued in Section 1.2
that, since the matrices for the connectives of simple partial logic all de-
scribe monotonic functions, any propositional formula, however complex,
must also have a matrix which describes a monotonic function. We now
show that, conversely, given any monotonic function f from f>; �;?gn into
f>; �;?g, we can �nd a formula �f (p1; : : : ; pn)|�f for short|whose ma-
trix describes f : in other words, �f will take the classi�cation f(x1; : : : ; xn)
under the assignment of xi to pi. We shall use just :, ^, _, _̂, > and ? to
de�ne �f .

The case when n = 0 is easy: there are three 0-place functions, which
are described by the trivial matrices for the logically constant sentences (or
0-place connectives) >, � and ?. And � can be de�ned away as > _̂ ?.
Otherwise, when n > 0, we can proceed as follows. First, for any n-tuple
~x 2 f>; �;?gn and any number i from 1 to n. Let the formulae >(~x; i) and
?(~x; i) be de�ned by cases|by cases within cases|as follows:

>(~x; i) =
=
=
=

pi if xi = >

:pi if xi = ?

> otherwise

9=
;

?

� � � if f(~x) = >,

� � � � � � � � � � � � � � � � � � otherwise;
?(~x; i) =

=
=
=

pi if xi = ?

:pi if xi = >

? otherwise

9=
;

>

� � � if f(~x) = ?,

� � � � � � � � � � � � � � � � � � otherwise.
Then we can de�ne �f to be" WW VV

>(~x; i)
~x2f>;�;?gn 1�i�n

#
_̂
" VV WW

?(~x; i)
~x2f>;�;?gn 1�i�n

#
:

It is now not diÆcult to check that:
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(i) if the

�
left-hand
right-hand

�
interjunct of �f is

�
>

?

�
under the assignment

of xi to pi, then f(xn; : : : ; xn) =

�
>

?

�
;

(ii) if f(xn; : : : ; xn) =

�
>

?

�
, then both interjuncts are

�
>

?

�
under the

assignment of xi to pi.

Given the >=?-conditions of _̂, it follows from (i) and (ii) that the matrix
of �f does indeed describe the function f .

It also follows that that the left-hand interjunct gives the >-conditions
of �f , while the right-hand interjunct gives the ?-conditions. And so these
formulae provide interesting `normal forms' for monotonic modes of sentence
composition. In Section 6.3 we shall show that interjunctive normal forms
of this kind exist in quanti�er logic too. As speci�ed �f is likely to contain
many otiose occurrences of > and ?, but there are obvious ways of obtaining
a more economical formula.

We have shown that f:;^;_; _̂ ;>;?g is a set of connectives adequate
to express any monotonic function from f>; �;?gn into f?; �;>g. The
question now arises what other sets of connectives are expressively adequate.
In particular, given the classical connectives (including! and$, which can
be de�ned in terms of :;^ and _ in the usual way), what are the variations
on _̂? First, then, observe that transplication has equal expressive power.
Not only is = de�nable in terms of _̂, but also conversely:

� =  ' [� ^  ] _̂ [�! ];

� _̂  ' [�$ ] = � ' [�$ ] = :

Or we could take the logically unde�ned sentence �. We observed above
that � can be de�ned as > _̂ ?; now observe that _̂ can be de�ned in terms
of �:

� _̂  ' [� ^ � ] _ [� ^  ] _ [� ^  ] ' [� _ � ] ^ [� _  ] ^ [� _  ]:

Hence each of _̂, = and � has the same expressive power as either of the
others.

But to give a more complete answer to our question, �rst consider the
subclass of monotonic functions satisfying the following condition (a con-
verse to the crude Fregean principle that we eschewed in Section 3):

if xi 6= � for all i, then f(x1; : : : ; xn) 6= �.
In [Van Benthem 1988] such functions are called `closed'. Thus the matrix
of a formula � will describe a closed function if and only if, for all total
assignments v, either v(�) = > or v(�) = ?; and in [Langholm 1988] such
formulae are called `determinable'. Clearly the matrix for any formula which
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contains no connectives beyond :;^;_;> and ? will describe a closed func-
tion, since closed functions are closed under composition; furthermore|and
less trivially|any such function is described by the matrix of some such for-
mula: in other words, a formula is determinable if and only if it equivalent to
a classical formula. There are proofs of this|all di�erent|in [Blamey 1980]
and in the two works referred to above.

We are now in a position to provide a general answer to the adequacy
question for monotonic modes of composition: the set f:;^;_;>;?;1g is
expressively adequate if and only if 1 is a connective (of any arity) whose
matrix describes a non-closed monotonic function. `Only if' is immediate:
compounding closed functions will never reach _̂, for example. On the other
hand, we can deduce `if'|the claim that anything monotonic and non-closed
will do|from the fact that the constant sentence � will do. First, � itself
is the one and only 0-place non-closed monotonic connective. Secondly, if
n > 0 and 1 is an n-place connective whose matrix describes a non-closed
monotonic function f1, then f1(x1; : : : ; xn) = �, for some x1; : : : ; xn such
that either xi = > or xi = ? for each i. And so, together with the constant
sentences> and?, 1 will be suÆcient to de�ne �|and hence any monotonic
mode.

For some particular applications of partial logic, the determinability of
all formulae in the language may be a desideratum, so that non-closed con-
nectives would be out of place. But in [Jaspars 1995] there is a more general
claim, which, in the light of the discussion in Sections 1.2 and 3, would seem
to be incorrect. He claims that it follows from the idea that being neither >
nor ? means being `genuinely unde�ned', rather than having a third truth
value, that `whenever all the parts of some proposition have obtained a truth
value, then the proposition ought to get a truth value as well'. However,
without some question-begging assumption about the possible structure of
propositions|or the sentences that express them|I cannot see why it fol-
lows. You might just as well say that it follows from the idea of a singular
term's being genuinely unde�ned, rather than denoting some specially in-
troduced object, that whenever the constituent terms of a compound term
are all de�ned, then the compound term must be too. But in that case
`0�1', for example, wouldn't be unde�ned. No doubt Jaspars has particu-
larly in mind the kind of unde�nedness that arises from what in Section 2.1
I called a local set-up for assessment, so that being neither > nor ? means
that so-and-so information is not suÆcient to determine the value > or ?.
But, even if so, this does not dictate any principle that information which
is suÆcient to determine a value for all constituents must also be suÆcient
to determine a value for the compound.
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4.2 Interjunction and Transplication: Logical Analysis

The two formulae given to de�ne _̂ in terms of � are each other's dual:
and _̂ is self-dual. This means that negation, when applied to an interjec-
tion, can be driven through to rest equally on both interjuncts. Applied to
transplication, on the other hand, negation can be driven past the left-hand
constituent|which we may call the transplicator|to rest on the right-hand
constituent|which we may call the transplicand :

:[� _̂  ] ' :� _̂ : ; :[� = ] ' � =: :
If > and ? are thought of as the classi�cations which negation switches,
then these equivalences reveal how it is that interjunction and transplica-
tion give rise to non-trivial either->-or-? conditions. Notice, then, that a
transplicator can be taken to introduce a presupposition, in the sense that
�'s being > is a necessary condition for �= 's being either > or ?. But
interjunctions are more interesting: � _̂  can be thought of as expressing
� and  `as standing or falling together', or|as the de�nition of _̂ in terms
of = makes explicit|under the presupposition that they are equivalent.

Recall that in Section 2.2 we gave informal>=?-conditions for the schemes
of presuppositional quanti�cation Ix[Fx;Gx] and 8x[Fx;Gx]. We can now
show how to capture these >=?-conditions by analysis under interjunc-
tion and transplication. This is a project that could be generalized|see
[Van Eijck 1995] and [Sandu 1998] for general frameworks in which to han-
dle modes of quanti�cation in partial logic|but Ix[Fx;Gx] and 8x[Fx;Gx]
will do to illustrate the use of interjunction and transplication. For the
moment we shall adopt the simplifying assumption that F and G are un-
structured predicates, totally de�ned over a given domain: we can then
assume that classical principles govern all classical-looking formulae.

First, then, the scheme Ix[Fx;Gx], for `the F is G', admits the following
interjunctive analysis (where F !x abbreviates 8y[x = y $ Fy]):

9x[F !x ^Gx] _̂ 8x[F !x! Gx]:

Clearly the left-hand interjunct had the desired >-conditions, and whenever
it is in fact >, the right-hand interjunct must also be >; similarly, the right-
hand interjunct has the desired ?-conditions and, whenever it is in fact
?, the left-hand interjunct must also be ?; while the conditions under
which the two interjuncts take on opposing truth-values are precisely the
required �-conditions. Hence the interpretation of _̂ guarantees that we
have the right >=?-conditions for Ix[Fx;Gx]. Under presuppositional >=?-
conditions :Ix[Fx;Gx] must be equivalent to Ix[Fx;:Gx]: the scheme is
self-dual. This is revealed by our analysis, since the negation of the formula
above is equivalent to

9x[F !x ^ :Gx] _̂ 8x[F !x! :Gx]:
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To see this, �rst drive negation through onto the interjuncts, and thence
onto Gx, and �nally switch the interjuncts around.

This analysis of Ix[Fx;Gx] is just the interjunction of formulae giving a
classical Russellian analysis of Ix[Fx;Gx] and of :Ix[Fx;:Gx]. But there
are other versions of classical analysis which contain 9xF !x as a distinct
conjunctive component. On a presuppositional interpretation this compo-
nent is a presupposition, and the simple strategy of replacing conjunction
by transplication yields the following formulae, either of which may serve
to analyse Ix[Fx;Gx]:

9xF !x =8x[Fx!Gx];

9xF !x = 9x[Fx ^ Gx]:
Notice that these formulae are equivalent because given that 9xF !x is >
the >=?-conditions of the two transplicands must coincide. Notice too that
when we apply negation it slips past the tranplicator onto the transplicand,
and thence through onto Gx, to give

9xF !x = 9x[Fx ^ :Gx];
9xF !x =8x[Fx!:Gx]:

So again our analysis reveals that :Ix[Fx;Gx] is equivalent to Ix[Fx;:Gx].
To provide a transplicative analysis for the scheme 8x[Fx;Gx] of univer-

sal quanti�cation, we can follow a similar pattern:

9xFx =8x[Fx! Gx]:

It is easy to check, given our simplifying assumption concerning F and G,
that this formula captures the right presuppositional >=?-conditions. And
we should also consider a scheme 9x[Fx;Gx]|to be dual to 8x[Fx;Gx], in
having the same ?=>-conditions as :8x[Fx;:Gx]. The obvious analysis is:

9xFx = 9x[Fx ^Gx]:
We could use this to symbolize a sentence such as `Some of Jack's children
are bald', which, no less than `All Jack's children are bald', carries the
presupposition that Jack is not childless. I shall leave it as an exercise to
provide an interjunctive analysis for 8x[Fx;Gx] and for 9x[Fx;Gx].

We cannot, of course, rest with the assumption that F and G are un-
structured and totally de�ned: if our schemes of analysis are any good,
then they should continue to make appropriate sense when applied to ar-
bitrary formulae �(x) and  (x) in place of Fx and Gx. And so we should
consider what happens when one scheme of presuppositional quanti�cation
occurs embedded in another. Horrendously complicated formulae can arise
if a number of quanti�ers are analysed out together: in particular, occur-
rences of = or _̂ will be obscurely embedded not only within the scope of
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sentence connectives (including other occurrences of themselves) but also
within the scope of the quanti�ers 8 and 9. Yet it turns out that any for-
mula, however complex, is in fact equivalent to one of the form �= where �
and  themselves contain no occurrence of either = or _̂. Furthermore, we
can specify rules systematically to transform an arbitrary formula into an
equivalent formula of this form; and these rules can be framed so that the
transplicator � will capture the `overall presupposition' of the formula: �'s
>-conditions will be precisely the either >-or-? conditions of �= |and
hence too of the original formula. These transformation rules, which we
shall present in Section 6.3, can be seen as a logician's version of `projection
rules' for presupposition.

The examples presented here reveal only a small fraction of what inter-
junction and transplication have to o�er in the analysis of presupposition:
I hope there will very soon be a publication telling more of the story.

4.3 Static versus Dynamic Semantics

The idea of a `dynamic' semantics that emerged rather abstractly at the end
of Section 2.7, and turned up again in Section 2.10, has �gured prominently
in the linguistics literature: in particular, presupposition has been given
a dynamic treatment. The questions therefore arise whether our use of
transplication and interjunction in the analysis of presupposition can be
captured in a dynamic semantics, and whether it has to be to provide an
adequate foundation. The answers, I want to argue, are respectively `yes'
and `no'.

Approached dynamically, the meaning of a sentence is seen as captured
by its potential to change contextual information states. These states might
be taken to be cognitive states of an individual participant in linguistic ex-
change, or perhaps to be something more communal and complicated; and
they might be represented in the form of a partial model of some kind, or
as a set of total models or of possible worlds, or as structures that are for-
mulae of some elaborate formal language, or whatever. The general idea
can be traced back to work such as [Stalnaker 1972] and [Seuren 1976],
and has been developed in [Kamp 1981, Kamp and Reyle 1993, Heim 1982,
Seuren 1985, Veltman 1996], and so on. (See [Van Benthem 1991,
Muskens et al. 1997], and so on, for illuminating surveys.) In such work the
old-fashioned idea of giving meaning in terms of truth/falsity conditions is
pushed aside|just as it is in situation semantics. Or, at least, it is pushed
back, for we must come down to earth at some stage and actually give the
meaning of the expressions of any particular language: this is the funda-
mental message of [Lewis 1972]. And presumably the way to come down to
earth, via the dynamic apparatus, is to give conditions for the correctness
of information states.
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Anyhow, the presuppositional characteristics of a sentence seem always to
be considered context-involving in some special way. But in [Blamey 1980]
it was argued against [Karttunen 1973, Karttunen 1974] that a context-
involving account of the meaning of presuppositional idioms was unneces-
sary and something of a distortion: contextual phenomena could best be
accounted for on the basis of a semantical account|using the forms of par-
tial logic|which was itself independent of a theory of context. A dynamic
approach will not be set up in quite the same way as Karttunen's, but can
we make an analogous point? In [Beaver 1997] dynamic clauses are given
to interpret a language with :, ^, and = (though Beaver writes ` �' for
`�= '|notation which he adopts from the work in [Krahmer 1995]); and so
let us consider his propositional semantics. We may describe the underlying
models as consisting of a set V of possible worlds �, each � determining a
classical total assignment v� of > or ? to atomic sentences. States of in-
formation are then represented by sets of possible worlds (all those possible
worlds compatible with the state of information represented), and to inter-
pret a formula � there is a relation �[[�]]� between states � and �|glossed
as meaning `it is possible to update � with � to produce � '. The de�nition
of �[[�]]� has the following dynamic clauses:

�[[p]]� i� � = � \ f� j v�(p) = >g,
�[[:�]]� i� for some �, �[[�]]� and � = � r �,

�[[� ^  ]]� i� for some �, �[[�]]� and �[[ ]]� ,
�[[� = ]]� i� �[[�]]� and �[[ ]]� .

The question we should now ask is whether this de�nition for �[[�]]� has to
be taken as primitive, or whether the relation can be de�ned in terms of
something which is static and arguably more basic.

Well, any formula � can obviously be evaluated in simple partial logic
under a (total) assignment v� to yield a value v�(�). And so if we de�ne

[[�]]> = f� j v�(�) = >g; [[�]]? = f� j v�(�) = ?g;
then �'s content (in V) under partial semantics may be represented by
the pair h[[�]]>; [[�]]?i. Alternatively, and equivalently, we could use the
equations displayed in Section 2.10 directly to de�ne content-evaluation
for �. It then turns out that this content is suÆcient to de�ne the relation
�[[�]]� : a straightforward inductive argument shows that

�[[�]]� i� � = � \ [[�]]> = � r [[�]]?:

(Hence, observe, the relation is actually a function, though not a total one.)
The right-hand side is equivalent to saying that (i) for all � 2 �, either
v�(�) = > or v�(�) = ?, and (ii) � is got from � by taking away all those �
such that v�(�) 6= >|equivalently, given (i), such that v�(�) = ?. This ar-
gument is essentially the same as the one presented in [Muskens et al. 1997]
concerning dynamic clauses formulated in a slightly di�erent way.
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This brief commentary on Beaver's apparatus falls short of a full jus-
ti�cation for my answers to the opening questions, but it does show that
a natural possible world semantics for presuppositional analysis in partial
logic is suÆcient to determine natural dynamic clauses. These clauses do
not have to be taken as the foundation. It would, though, be more natural
still if the world-relative assignments v� were not restricted to total ones:
to function smoothly the atomic formulae of a logical syntax ought to be
schematic for arbitrary sentences, and so not subject to any special semantic
restriction.

4.4 Non-Monotonic Matrices

Non-monotonic matrices provide the most obvious examples of what our
languages cannot express. In [Woodru� 1970], for instance, there are several
of the `metalinguistic' sort of connective that we mentioned in Section 1.3.
These are obtained by semantic descent from metalinguistic predicates or
relations:

� T� F� �� +�

> > ? > >
� ? ? > ?
? ? > ? >

�  � �=  �)  � 7!  

> > > > >
> � ? ? ?
> ? ? ? ?
� > ? > >
� � > > >
� ? ? > >
? > ? > >
? � ? ? >
? ? > ? >

Thus �=;), and 7! (for which Woodru� uses `!') are obtained from rela-
tions of equivalence, presupposition and single-barrelled consequence (the
relation �> of Section 1.1) respectively. Woodru� comments that the `dis-
tinctive feature' of these connectives is that they yield compounds which
are de�ned even when every constituent is unde�ned. However, a mode t(p)
which is just constantly >, whatever the classi�cation of p, would have this
feature, and yet it is monotonic. From our point of view, `not monotonic'
is a more fundamental feature.

But is there any natural way of classifying more �nely among additional
connectives? It is a well-known result that the T connective, together with
our :;^;_ and �, is expressively adequate for arbitrary matrices. And, given
:;^, and _, any of the other connectives listed above can de�ne T . Hence
together with monotonic modes they would each yield a full-blown 3-valued
logic. This fact aboutWoodru�'s connectives is rather more interesting than
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the simple fact that they are not monotonic, since it raises the question: are
there non-monotonic connectives which would not provide a full-blown 3-
valued logic if they were included with the monotonic modes? In other
words: are there any logics whose expressive range is intermediate between
the logic of monotonic matrices and the logic of arbitrary matrices? It turns
out that there is precisely one.

To complement the relation v on f>; �;?g we can de�ne a relation �,
which might be thought of as a relation of `compatibility', in the following
way:

x� y i� neither (x = > and y = ?) nor (x = ? and y = >):

This relation will be of interest in Sections 6 and 7, but in the present
context it provides a characterization of the intermediate logic: it is the
logic of those matrices which describe functions f that are `�-preserving'
in the following sense:

if xi� yi for all i, then f(x1; : : : ; xn) � f(y1; : : : ; yn).

To see that �-preserving logic �ts in as we claim, notice �rst that mono-
tonic functions are �-preserving, though there are �-preserving functions
which are not monotonic: for example, f such that f(>) = >, f(�) = >
and f(?) = �. And there are also functions which are not �-preserving|
including all the functions described by the matrices listed above. We now
need two facts whose proofs are omitted, because they are tedious (though
not diÆcult):

(i) if we add to the monotonic sentence modes any non-monotonic �-
preserving mode, then we can express all �-preserving functions.

(ii) if we add to the monotonic sentence modes any non-�-preserving
mode, then we can express all three-valued functions.

It is easy to check that the class of �-preserving functions is closed under
composition, and so it follows from (i) that the �-preserving modes do
indeed provide an intermediate logic. And then it follows from (ii) that this
is the only one.

As a corollary of this argument we also have a general answer to the ade-
quacy question for �-preserving modes of composition: f:;^;_; _̂ ;>;?;1g
is expressively adequate if and only if 1 is a connective (of any arity) whose
matrix describes a non-monotonic �-preserving function.
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4.5 Two-Tier Semantics

We now turn to something more exotic, viz. the semantics of [Belnap 1970],
which is intended to model a two-tier framework for assessment in which the
classi�cation �means `no assertion': see Section 2.3 above. This is not to say
it is intended to be a general modelling of any two-tier framework; nor is it
plausibly taken as such: for example, it would not seem to be appropriate for
developing any account of Fregean thoughts of the kind mooted at the end of
Section 3.1. Anyhow, in Belnap's semantics propositions are �rst modelled
as sets of possible worlds in the usual classical way, so that a proposition is
true at at world if and only if it contains that world, and then interpretation
clauses are given which either assign a proposition to a formula at a world|
for it to `assert' at that world|or else leave a formula `unassertive' at a
world, with no proposition assigned to it. With this apparatus Belnap's
connective `=' is interpreted by stipulating that at a world in which � asserts
a false proposition �= is unassertive, and at any other world �= asserts
what  asserts, unless  itself is unassertive, in which case �= is again
unassertive. Thus `=' turns out very like transplication; though to match
it up properly we should have to modify its interpretation so that �= is
unassertive not only when � is false, but also when � is unassertive.

This is a minor modi�cation and would not disrupt Belnap's idea. But we
should stress that our (monotonic) interpretation of transplication in simple
partial logic is in no way committed to further explication with Belnap's
apparatus. If we want to consider a possible-world semantics, then we have
the alternative, and simpler, one-tier option of modelling propositions as
`partial propositions' of the kind �rst introduced in Section 2.10 and later
invoked in Section 4.3|that is, as pairs of sets of possible worlds which just
model our talk of >=?-conditions. Any formula would then express a propo-
sition at any world: either->-or-?-conditions would be constitutive of this
proposition rather than being conditions for the existence of a proposition
expressed.

The simpler one-tier option would certainly be more appropriate for a
logic of presuppositional analysis: recall Section 2.3. But there is a further
special point about the use of transplication in analysis which shows that
Belnap's interpretation for `/' makes it crucially di�erent. It would not
just be a mistake to think that the role of a transplicator � in �= is to
determine whether or not anything is `asserted', but it would be an even
worse mistake to take  on its own to represent what is asserted, if anything
is. We can think of the transplicand in an assertion-specifying role only if we
take it �ltered through the transplicator, so to speak. Recall that we used
8x[Fx! Gx] as a transplicand to analyse both Ix[Fx;Gx] and 8x[Fx;Gx]:
thus we may �lter the same transplicand through di�erent transplicators to
get something entirely di�erent. Furthermore, di�erent transplicands may
be �ltered through the same transplicator to yield the same thing|the same
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>=?-conditions. For if 9xF !x is taken as the tranplicator, then we saw that
either 8x[Fx! Gx] or 9x[Fx^Gx] does equally well as a transplicand in an
analysis of Ix[Fx;Gx]|and there are plenty of other inequivalent formulae
we could just as well have chosen: 8x[F !x ! Gx] or 9x[F !x ^ Gx], for
example.

In [Beaver 1997] there is some ambivalence over a formula ` �', which in
Section 4.3 we assimilated to a transplication �= . He glosses  � as `the
assertion of  carrying the presupposition that �', but this is ambiguous.
Does it mean (i) the assertion of  , carrying the presupposition that �; or
(ii) the assertion of  -carrying-the-presupposition-that-�? The wording is
more likely to convey reading (i), though apparently Beaver actually wants
to leave both readings open. But as a gloss on our use of transplication
only reading (ii) is admissible, where  -carrying-the-presupposition-that-�
is understood to mean  -�ltered-through-�, in the way that our examples of
analysis illustrate. This is the content of any assertion that �= represents:
the presupposition that � is constitutive of this content, not a separate item
just stuck on alongside.

This point about the undetachability of a transplicator could in fact be
made independent of our espousal of a one-tier rather than a two-tier frame-
work for presuppositional semantics. For even if we wanted to gloss the
`neither->-nor-?' of presupposition failure to mean no assertion, what is
asserted when � is true and �= represents an assertion could not be spec-
i�ed by  on its own. If, as in Belnap's semantics, classical propositions are
the only candidates for the content of assertions, then, to put it in Belnap's
language, what �= asserts when it asserts anything|that is, when � is
true and  asserts something|cannot be what  asserts, but can only be
the conjunction (intersection) of what � asserts and what  asserts. In-
deed, it would be easy enough to revise Belnap's clauses for `/' along these
lines. This is not a point against Belnap, of course; for recall that his `/'
is not intended for presuppositional analysis at all, but rather to construe
conditionals.

Anyhow, as in an alternative to going to meet Belnap among the possible
worlds, we could in fact unravel his semantics into simple >=?-conditions.
Clauses for evaluating a formula at a given world|clauses which make no
appeal to any other world|are given in [Dunn 1975]. The following matri-
ces for ^;_, and / then emerge:
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�  � ^  � _  �= 

> > > > >
> � > > �
> ? ? > ?
� > > > >
� � � � �
� ? ? ? ?
? > ? > �
? � ? ? �
? ? ? ? �

Thus, quite apart from `/', the matrices for ^ and _ show a di�erence form
simple partial logic: conjunction and disjunction are not monotonic (nor
even �-preserving). This prompts a question: If we started out with our
monotonic matrices for ^ and _, then could we sensibly convert them into
a Belnap-style two-tier semantics? This becomes a pertinent question in
Section 5.1, where we shall address it.

_̂ _̂ _̂

But �rst we should observe that the above non-monotonic, and prima facie
rather odd, matrix for _ also arises in [Ebbinghaus 1969], where a �rst-
order semantics is o�ered to handle the kind of unde�nedness that arises
from natural modes of mathematical expression. Ebbinghaus presents his
semantics by �rst giving clauses for when a formula is de�ned|in a given
model|and then building truth conditions on top of this. The rules for
disjunction are:

� _  is de�ned i� � is de�ned or  is de�ned,
� _  is true i� � is true or  is true.

Hence, if � means unde�ned, > means true, and ? means de�ned but not
true, then Belnap's matrix for _ results. Negation is taken to work in the
same way that it does in simple partial logic, and Ebbinghaus de�nes �(�)
as � _ :�, to yield a sentence-mode expressing `� is de�ned'. Hence �(�)
yields �, if � is � (just as it would if we had de�ned it in simple partial
logic). Contrast Woodru�'s +�.

The interpretation of the existential quanti�er is analogous to disjunc-
tion: 9x�(x) is taken to be de�ned just in case �(x) is de�ned for at least
one element in the domain of quanti�cation, and to be true just in case
�(x) is true of at least one element. This interpretation is motivated by
the desire to allow existential statements to come out false, even when the
quanti�ed predicate is unde�ned for some elements|and so not false of ev-
erything: for example, in the domain of rationals or reals, 9x[x�1 = 0] is to
be false, though 0�1 = 0 is unde�ned. Clearly this would not be possible
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in monotonic logic. However, since (unlike Ebbinghaus) we envisage setting
up all nonlogical theories directly in terms of consequence, we are not under
the same pressure to assign such existential statements a truth value.

Disjunction and existential quanti�cation thus turn out to be much
`stronger' than in simple partial logic. But conjunction and universal quan-
ti�cation are much `weaker'. For conjunction we have:

� ^  is de�ned i� � is de�ned and  is de�ned,
� ^  is true i� � is true and  is true.

and so �^ is unde�ned whenever either � or  is. Then 8 matches ^ just
as 9 matched _. These interpretations do not, therefore, yield the classical
duality between ^ and _ and between 8 and 9; but they allow Ebbinghaus
to frame neat rules for �( ) in a natural deduction system which is designed
to axiomatize a truth-preservation notion of consequence.

This system falls squarely under the heading `partial logic', but in much
recent work there seems to be something of a division of interest. On the
one hand, partial logicians tend to ignore unde�ned singular terms|perhaps
because they are primarily concerned with partial states of information, or
situations, or the like (see Sections 2.7 and 2.10); though this is certainly
not a de�nitive reason for ignoring unde�ned terms. On the other hand,
those setting up systems to accommodate unde�ned singular terms tend
to prefer a logic which at the level of sentences is totally de�ned and two
valued. See [Feferman 1995] for a magisterial exposition of doctrine|and
for a survey of work; and for work speci�cally in the `free logic' tradition, see
Bencivenga's chapter of the Handbook . But the system in [Lehmann 1994],
for example, is an exception to the trend: it is a partial logic with unde�ned
terms. This is work in the Fregean tradition, and I would want to take issue
with it because it espouses the principle of functional dependence that in
Section 3 I argued was unnecessarily crude.

5 PARTIAL LOGIC AS CLASSICAL LOGIC

5.1 Partial Truth Languages

A proper discussion of the idea of `alternative' logics is far beyond the scope
of this essay. But, via some themes we have touched upon already, we
shall briey puzzle over two particular accounts of how the triclassi�catory
semantics of partial logic can play a role which does not, in any interesting
sense, give rise to an alternative to classical logic.

First consider [Kripke 1975] which we discussed in Sections 2.5 and 2.6.
His remarks about logic are, in fact, rather sketchy and largely centred in
footnotes, but nonetheless they are forcefully expressed. In footnote 18, for
example, he claims that in adopting Kleene's monotonic matrices for evalu-
ating sentences he is doing no more than adopting `conventions for handling
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sentences that do not express propositions' and that these conventions `are
not in any philosophically signi�cant sense changes in logic'. For logic is sup-
posed to apply primarily to propositions which are all either true or false.
Kripke draws a parallel between handling possibly non-denoting (numeri-
cal) terms and handling sentences which are unde�ned (�), and this parallel
calls to mind our account (in Sections 1.2 and 3) of the partial-functional
interpretation of functors. However, the parallel there was the Fregean one
between objects denoted and the truth-values > and ?, whereas Kripke's
parallel is between objects denoted by (numerical) terms and propositions
expressed by sentences. And in the text he presents us with an explic-
itly two-tier picture of the meaning of a sentence: gapless truth conditions
determine propositions, but sentences, which might turn out to be paradox-
ical and hence neither true nor false, are not directly interpreted by truth
conditions, but by conditions for truth conditions.

Clearly these conditions must not only determine when a sentence ex-
presses a proposition|has gapless truth conditions|but also what proposi-
tion a sentence expresses when it does express one. Kripke is vague at this
point, but his picture of the interpretation of sentences looks to be of the
same general kind that Belnap's semantics is intended to model. And so we
return to the question raised in Section 4.5: can Kleene's monotonic ma-
trices be made to �t with such a semantics? Kripke seems (in footnote 30)
to suggest that they stand a better chance than a supervaluational scheme
of evaluation. This is presumably because, according to this scheme, there
would be the diÆculty of sentences none of whose constituents expressed
a proposition, but which are true, just because they are of the form of a
tautology. The problem would be to say what proposition such a sentence
expresses, in a way which does justice to ideas of compositionality whereby
a compound proposition is in some sense determined by constituent propo-
sitions. However, even on the Kleene scheme we may have a sentence which
is true even though one of its constituent sentences is neither true nor false,
and so, according to Kripke, expresses no proposition: for example, some-
thing of the form �_ , where � is a straightforward truth and  is paradox-
ical. What proposition does � _  then express? And, in general, what are
the rules which tell us what proposition a compound sentence expresses?

Let us assume we can make suitable sense of saying that propositions
are closed under boolean operations (perhaps, but not necessarily, because
we have modelled them as sets of possible worlds). And let us, by way of
example, compare Belnap's and Kleene's matrices for disjunction:

_ > � ?
> > > >
� > � ?
? > ? ?

Belnap

_ > � ?
> > > >
� > � �
? > � ?

Kleene
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The four corners of Belnap's matrix are accounted for by saying that if both
disjuncts of a disjunction express (or `assert') a proposition, then the dis-
junction expresses the corresponding disjunction of the propositions. If, on
the other hand, neither disjunct expresses a proposition, then the disjunc-
tion expresses none: this explains the centre of the matrix. So far the two
matrices coincide, but what happens when one disjunct expresses a propo-
sition but not the other? The prima facie oddity of Belnap's matrix is
explained by his stipulation that the disjunction expresses the same propo-
sition as the proposition-expressing constituent. But what could Kripke say
about Kleene's matrix? The only obvious course would be to make _ the
same kind of connective as Belnap's `/' of conditional assertion and to say
that the existence of a proposition expressed by the disjunction depends
on the truth value of the disjunct which expresses a proposition (the truth
value of that proposition): if it is true, then this is the true proposition
expressed, and if it is false, then no proposition is expressed.

It might, then, be possible to make sense of things along these lines,
treating conjunction in a parallel way and, of course, extending it all to
handle quanti�ers. And some such elaboration of partial semantics would
have to be given, if Kripke ever wants to set up logic for his truth languages
so that it can be seen to apply to classical propositions that sentences might
or might not express. But then we might ask what role these propositions
would play in his account of truth and paradoxicality. We are invited to see
the monotonicity-dependent construction of models in some way reecting
an intuitive evaluation process of sentences, in a progression of succesive
stages: as the process is pursued more sentences receive truth values. But we
can hardly think of this process as evaluating sentences for the propositions,
if any, they express. For, though monotonicity guarantees persistence of
truth value, there would not be persistence of propositions. If, for example,
� were true and  neither true nor false, but at some stage of evaluation
 took on a truth value, then the proposition originally expressed by � _ 
would disappear as a disjunctive constituent of the later proposition. Or
are classical propositions meant to be there from the start, in some sense,
so that they can determine the process of evaluation? This is a picture it
seems diÆcult to make sense of. So what theoretical role would classical
propositions play? The oddity is that they seem to have no role.

But why should we envisage a two-tier semantics at all? The alternative is
to give a direct account of meaning in terms of (partial) >=?-conditions, so
that sentences have `partial propositions' as their meaning: see Section 2.10
above, and compare the remarks in Section 4.5. This would mesh naturally
with Kripke's account of the stage-by-stage evaluation of sentences: as the
evaluation progresses, so propositions become progressively `more de�ned'.
The idea of partial propositions is crying out for further elucidation, but
if it can be provided, then we have the most straightforward way to gloss
the formal construction of models for semantically closed languages. As
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we explained in Section 2.6, a succession of partial, but progressively less
partial, models culminates in a model which is still partial but which is
stable: it throws up no new true or false sentences in terms of which to
de�ne (the truth predicate of) any less partial model. There are >/?-
conditions for all sentences in each model in the succession, and in the �nal
stable model they give the �nal stable meaning of sentences of the language.

The natural logical apparatus to adopt would then be, or be something
similar to, what we shall outline in Sections 6 and 7. And there is surely
nothing to stop us interpreting this apparatus as delivering a logic that is
esssentially classical|richer than usual simply because it embodies rules
for handling varieties of unde�nedness. The presentation of partial logic in
Section 1 was meant to reveal this interpretation as a coherent option.

5.2 Natural Negation

If we turn to Dummett's views on presupposition and the role a logic such
as ours might play in providing a semantics, then the debate becomes a
very di�erent one. The idea that a sentence classi�ed as � expresses no
proposition, or that no assertion can be made using it, does not enter the
picture at all. Thus Dummett's account is in what we have been calling
a one-tier framework. But it does invoke two di�erent aspects of mean-
ing, and these give rise to two di�erent levels of content. Sentences are
semantically classi�ed as > or � or ?, and there is a notion of the `se-
mantic content' of a sentence as its >-versus-�-versus-? conditions; but
assertions made using sentences are to be classi�ed exhaustively into true
ones and false ones, and the `assertoric content' of a sentence matches
truth-versus-falsity conditions. Semantic classi�cations then divide into
the `designated', for sentences which can be used to make true sentences,
and the `undesignated', for sentences which can be used to make false ones.
Presuppositional � will side with ? as a case of falsity.

With this framework at hand, Dummett is polemical|for example in the
introduction to [Dummett 1978]|against theorists who would deploy no-
tions of `truth' and `falsity' matching the semantic classi�cations> and ? in
a way which he reserves exclusively for truth and falsity. For according
to Dummett, so long as we concern ourselves with the linguistic activity of
making assertions and with the meaning a sentence manifests in this linguis-
tic practice, then a basic notion of objective truth and falsity leaves no room
for anything but an exhaustive dichotomy into the true and the false.
There is an exclusion clause for `vagueness' and `ambiguity'|which Dum-
mett thinks of as cases where an assertion would have no fully determinate
content (and which he supposes have nothing to do with presupposition)|
but, otherwise, the way things are is either incorrectly ruled out by an
assertion, in which case it is false, or else it is not, in which case it is true.
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This thesis emerges in various places in [Dummett 1973], but is crispest in
[Dummett 1959]. (Note that `anti-realist' worries are not at issue here.)

Why then bother with a semantics that operates on the classi�cations
>; �, and ?? The point, it is suggested, will simply be to obtain a smooth
account of how sentences are composed from their constituents. To interpret
modes of linguistic composition|not just sentence composition|a system
of semantic classi�cations reveals how the meaning (semantic content) of
a complex expression is determined by the meaning (semantic content) of
its constituents; but the point of a systematic semantics of this sort is just
to lead up in an appropriate way to a correct speci�cation of true-versus-
flase conditions|assertoric content. It is here that the notion of `semantic
role', alluded to in Section 3.1, �ts in: the classi�cations of a semantics
capture one strand in the Fregean notion of reference because they play a
role|a semantic role|in determining the truth or falsity of (assertions
made using) sentences. Thus the subtleties of a presuppositional semantics
are taken to derive just from structural features we are prompted to discern
in a language.

The most salient feature would seem to be negation. We saw in Sec-
tion 2.4 that, to account for natural modes of negation as straight-forward
sentence functors, we need to split non-truth (falsity) into?, which negation
switches with > (truth), and �, which it leaves �xed. This is a standard ex-
ample of Dummett's to illustrate the role of triclassi�catory semantics, and
he uses it also to explain our naive inclination to apply the labels `true',
`false' and `neither-true-nor-false' directly to the evaluation of assertions
themselves. For we are inclined, he suggests, to call the assertion of a sen-
tence `false' only if the assertion of the (natural) negation of that sentence
would have been true (true).

This seems to provide an explanation of the three-fold scheme of semantic
classi�cation|and hence of the phenomenon of presupposition|in terms
of the true/false dichotomy and natural negation. But, as Dummett
himself points out, natural negation is not a purely syntactical notion. Just
consider the complex variety of forms: for example, `Some of Jack's children
are not bald' is just as much a natural negation of `All Jack's children are
bald' as `Not all Jack's children are bald' is. Hence natural negation is not
identi�able as such in a meaning-independent way. Yet as natural speakers
we do recognise it, and as theorists it is handy for us to do it justice. So,
what is it? It is not unreasonable to call, in turn, for an explanation of
this mode of sentence modi�cation. Furthermore, why is natural negation
negation at all? The classical truth values true and flase are taken to
be fundamental, but natural negation takes some false sentences to ones
that are again false (when there is presupposition failure). At this point
Dummett's overall picture might leave us restless. For it does not seem to
leave much room to answer these questions|or not without going round
in a circle. For what can we say about natural negation other than that
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it is a mode of sentence modi�cation which is to be called in to spell out
the way we talk about presupposition and its treatment in triclassi�catory
semantics?

To break out of the circle, we might be prompted to look to an account of
presupposition in the theory of assertion|to mesh with the semantic notion
cast in triclassi�catory logic. And, whatever we think of the particular
accounts on o�er in the literature, there is surely something to be said along
these lines. Dummett's response to this would probably be that we would
just have decorated the circle with super�cial aspects of meaning, unless it
had been shown that presupposition can make a distinctive contribution to
the cognitive adjustments that people undergo when they understand what
is said to them; and that this could never be shown. Even so, in the work
referred to at the end of Section 4.2 I'm foolhardy enough to attempt an
account which is intended to provide more than super�cial decoration.

6 FIRST-ORDER PARTIAL SEMANTICS

6.1 Languages and Models

In this section we outline a model-theoretic semantics to match the sketch
of �rst-order partial logic given in Section 1. A few facts about the logic
will emerge, and their proofs will be outlined in Section 7, after we have
presented an axiomatization of logical laws. (I hope that a much fuller ac-
count of things will soon appear.) The languages we work with will contain
no description terms, though Section 6.4 deals with how they would �t in.

Let us, then, take a language L to consist of the following.

(a) Logical vocabulary:

(1) sentence connectives :, ^, _, _̂, >, and ?,
(2) quanti�er symbols 8 and 9,
(3) an identity predicate symbol =,

(4) a constant symbol ~,

(5) a set Var of denumerably many variables.

(b) Non-logical vocabulary:

(1) a set Prd(L) of predicate symbols,
(2) a set Fnc(L) of function symbols,

(3) a set Cns(L) of constant symbols.
The elements P of Prd(L) and f of Fnc(L) are taken to come along with
�xed numbers �(P ) and �(f) to give their number of argument places.
Accordingly, a model for L is to be a structure M consisting of



322 STEPHEN BLAMEY

(0) a set DM (which does not have to be non-empty),

(1) for each P 2 Prd(L),
a monotonic function PM : (DM [ f~g)�(P ) ! f>; �;?g,

(2) for each f 2 Fnc(L),
a monotonic function fM : (DM [ f~g)�(f) ! DM [ f~g,

(3) for each c 2 Cns(L),
an element cM 2 DM [ f~g.

For assignments to variables we shall just use functions s : V ar ! DM [
f~g. Then, if we de�ne the terms of a language L in the usual inductive
way, the classi�cation Ms(t) of a term t under an assignment s is given as
follows:

Ms(x) = s(x); for all x 2 Var ;

Ms(~) = ~;

Ms(c) = cM ;

Ms(ft1 � � � t�(f)) = fM (Ms(t1); � � � ;Ms(t�(f))):

We can now build on this to de�ne the formulae of L and their interpreta-
tion in a model. Formulae|like terms|are taken to be de�ned by functor-
�rst construction throughout. But we shall be writing `� ^  ', `c = d', etc.,
rather than `^� ', `=cd', etc., and so be helping ourselves to brackets when
necessary. This is just so much notation. And we can regard the following
`de�nitions' in the same light:

� =df > _̂ ?;
�! =df :� _  ;
�$ =df [�! ] ^ [ !�];

� =  =df [�! ] _̂ [� ^  ]:

Given an assignment s, a variable x and an element a in the �xed-up
domain DM [ f~g of a model M , let s(xja) be the assignment such that
s(xja)(x) = a and s(xja)(y) = s(y) if y is a variable distinct from x. Then
the classi�cation Ms(�) of a formula � under an assignment s can be spec-
i�ed as follows:
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Ms(>) = >;
Ms(?) = ?;

Ms(t1 = t2) =

�
> i� Ms(t1);Ms(t2) 2 DM , and Ms(t1) =Ms(t2)
? i� Ms(t1);Ms(t2) 2 DM , and Ms(t1) 6=Ms(t2);

Ms(Pt1 : : : t�(P )) =

�
> i� PM (Ms(t1; : : : ; t�(P )) = >

? i� PM (Ms(t1; : : : ; t�(P )) = ?;

Ms(:�) =

�
> i� Ms(�) = ?

? i� Ms(�) = >;

Ms(� ^  ) =

�
> i� Ms(�) = > and Ms( ) = >

? i� Ms(�) = ? or Ms( ) = ?;

Ms(� _  ) =

�
> i� Ms(�) = > or Ms( ) = >

? i� Ms(�) = ? and Ms( ) = ?;

Ms(� _̂  ) =

�
> i� Ms(�) = > and Ms( ) = >

? i� Ms(�) = ? and Ms( ) = ?;

Ms(8x�) =

�
> i� Ms(xja)(�) = >; for every a 2 DM

? i� Ms(xja)(�) = ?; for some a 2 DM ;

Ms(9x�) =

�
> i� Ms(xja)(�) = >; for some a 2 DM

? i� Ms(xja)(�) = ?; for every a 2 DM :

These are the conditions for > and ?: Ms(�) is � if it is neither > nor ?.
Observe how it is that variables have nothing more to do with ~, once they
are bound by a quanti�er.

The classi�cation of a formula has been de�ned relative to an assignment,
but we can neatly advance to a non-relative de�nition: let M(�) be Ms(�),
where s assigns ~ to all variables. It will then follow (from Lemma 3)
that M(�) = >(?) if and only if Ms(�) = >(?) for every assignment s.
A free occurrence of a variable in a formula can be de�ned in the usual
way, and sometimes we shall call free variables parameters. Sentences are
parameter free formulae and, as we should expect, their classi�cation is
in any case quite independent of assignments. This is a corollary of the
following standard semantical lemma:

LEMMA 1 (Relevant Variables).

(1) If s1(x) = s2(x) for every x in t, then Ms1(t) =Ms2(t).

(2) If s1(x) = s2(x) for every x free in �, then Ms1(�) =Ms2(�).
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Let us use the notation `u(t=x)' for the term obtained from a term u by
substituting t for x throughout. Similarly, let us use `�(t=x)' for the formula
obtained from � by substituting t for all free occurrences of x in �. And we
shall say that t is substitutable for x in � when no occurrence of a variable
in t becomes a bound (i.e., not free) occurrence in �(t=x). Then there is a
second standard lemma:

LEMMA 2 (Substitution for Variables).

(1) Ms(u(t=x)) =Ms(xjMs(t))(u).

(2) Ms(�(t=x)) = Ms(xjMs(t))(�), provided that t is substitutable for x
in �.

6.2 Monotonicity and Compatibility

Now for something more interesting: the monotonicity of evaluation (cf.
Section 1.2). First we need to de�ne a `degree-of-de�nedness' relation, v,
between models for a given language L: this consists in the appropriate `v'-
relation holding between the respective interpretations of the vocabulary of
L. Writing it all out explicitly, in terms only of the basic relations on
f>; �;?g and on a �xed-up domain D [ f~g, we have: M v N if and only
ifM and N have a common domain D and, for all P 2 Prd(L), f 2 Fnc(L)
and c 2 Cns(L),

(1) PM (~a) v PN (~a), for all ~a 2 (D [ f~g)�(P ),
(2) fM (~a) v fN(~a), for all ~a 2 (D [ f~g)�(f),
(3) cM v cN .

We also need to extend v, in the natural way, to assignments: s1 v s2 i�
s1(x) v s2(x), for all x 2 Var . Then for terms as well as formulae:

LEMMA 3 (Monotonicity of Evaluation). If M1 vM2 and s1 v s2, then
(1) M1s1(t) vM2s2(t), (2) M1s1(�) vM2s2(�).

The proof of this lemma is just a matter of checking|by induction on
the complexity of terms and formulae.

To set alongside `degree-of-de�nedness' there is also a `compatibility' re-
lation between models. In Section 4.4 we de�ned a relation � on f>; �;?g:
neither >�? nor ?�>, but otherwise � holds. And, analogously, we can
de�ne � on a �xed-up domain D [ f~g by:

a� b i� a and b are not distinct elements of D.

Then to de�ne compatibility between models: M �N if and only if M and
N have a common domain D and for all P 2 Prd (L), f 2 Fnc(L) and
c 2 Cns(L),
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(1) PM (~a)�PN (~a), for all ~a 2 (D [ f~g)�(P ),
(2) fM (~a)� fN(~a), for all ~a 2 (D [ f~g)�(f),
(3) cM � cN .

And, as in the case of v, a natural compatibility relation is induced between
variable assignments: s1� s2 i� s1(x)� s2(x), for all x 2 Var . We could
now prove a lemma parallel to Lemma 3, got by replacing `v' by `�'; but this
result will shortly be generalized, at least so far as formulae are concerned
(part (2)), to something usefully stronger: Lemma 6.

Observe now that if M �N , then we can coherently stick M and N
together to de�ne a modelM tN , which is the least upper bound ofM and
N with respect to the v ordering: if D is the common domain of M and
N , then, the interpretation of P 2 Prd(L), f 2 Fnc(L) and c 2 Cns(L), is
given by stipulating that,

(1) for any ~a 2 (D [ f~g)�(P ):
PMtN (~a) =

�> i� either PM (~a) = > or PN (~a) = >
? i� either PM (~a) = ? or PN (~a) = ?;

(2) for any ~a 2 (D [ f~g)�(f), and any b 2 D:
fMtN (~a) = b i� either fM (~a) = b or fN (~a) = b,

(3) for any b 2 D:
cMtN = b i� either cM = b or cN = b.

Similarly, if s1 and s2 are assignments D [ f~g ! Var , and if s1� s2,
then an assignment s1 t s2 is coherently de�ned by stipulating that for any
x 2 Var , and any a 2 D, s1t s2 (x) = a i� either s1(x) = a or s2(x) = a.

We shall also be interested in purely `elementary' relations ve and �e
between models|and also a relation of elementary equivalence �e|which
can indi�erently be characterised either in terms of the classi�cation of
arbitrary formulae �, or sentences �, as follows:

M ve N i� M(�) v N(�); for any �;

M �e N i� M(�) � N(�); for any �;

M �e N i� M(�) = N(�); for any �:

Notice that M �e N if and only if M ve N and N ve M , just as M = N
if and only if M v N and N vM .

Notice, too, that the relationsv and�|and indeed the identity relation|
can be characterized in terms of the evaluation of formulae:

LEMMA 4.

M v N i� DM = DN and Ms(�) v Ns(�), for any � and any s;

M � N i� DM = DN and Ms(�) �Ns(�), for any � and any s;

M = N i� DM = DN and Ms(�) = Ns(�), for any � and any s:
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`Only if' follows trivially from Lemma 3 and the parallel result for �; `if'
can easily be checked by considering atomic formulae.

Relations of `degree-of-de�nedness' and `compatibility' also arise in a nat-
ural way between formulae. Let us restrict attention to `purely logical' rela-
tions, de�ned by generalising over all the models for a given language; then,
including also a relation ' of equivalence:

� v  i� Ms(�) vMs( ); for any M and any s;

� �  i� Ms(�) �Ms( ); for any M and any s;

� '  i� Ms(�) =Ms( ); for any M and any s:

Notice that � '  if and only if � v  and  v �.
The relation of compatibility between formulae gives rise to an interesting

question. If �� , then � and  never take on conicting truth values: can
we then stick � and  together to yield a more de�ned formula � which
takes the value > or ? whenever either one of � and  does? In other
words, is there for compatible formulae any thing analogous to M tN for
compatible models M and N? Let us call � a joint for � and  if and only
if, for any model M and assignment s,

Ms(�) =

�
> i� either Ms(�) = > or Ms( ) = >

? i� either Ms(�) = ? or Ms( ) = ?:

There is clearly no monotonic mode of sentence composition which we could
use to compound � and  and thereby produce such a �, but in fact joints
for compatible formulae always exist. In the restricted case of propositional
logic this is an immediate corollary of `expressive adequacy' (see Section 4.1
above), but it holds in quanti�er logic too:

THEOREM 5 (Compatibility Theorem). Any two logical compatible formu-
lae have a joint.

To prepare for our proof of this result in Section 7.3, we need two lemmas.
The �rst is the promised generalization of the compatibility result parallel
to Monotonicity of Evaluation (Lemma 3):

LEMMA 6. If � �  , M1 �M2, and s1 � s2, then M1s1(�) �M2s2( ).

To see this, consider M1 tM2 and apply part (2) of Lemma 3. (Note
that part (2) of Lemma 3 can itself be generalized along the lines of this
lemma: replace `�' by `v'.)

The second lemma could be thought of as saying that � and  have a
`least upper bound', viz. a joint, when and only when they have an `upper
bound'. (Indeed, this makes quite literal sense if we think of the relation
induced by v on the Lindenbaum algebra of a language.)

LEMMA 7. � and  have a joint if and only if there is a formula � such
that � v � and  v �.
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`Only if' is trivial. Conversely, given �, the following formula is obviously
a joint: [[� _  ] ^ �] _̂ [� _ [ ^ �]].

6.3 Interjunctive and Transplicative Normal Forms

In section 4.1 we promised normal forms in quanti�er logic to match the
in propositional normal forms that derive from our proof of expressive ad-
equacy. Let us, then, say that a formula is in interjunctive normal form
when it is an interjunction  _̂ � such that neither  nor � contains any
occurrence of _̂ and such that, for any model M and any assignment s,
Ms( _̂ �) = > if and only if Ms( ) = >, and Ms( _̂ �) = ? if and only
if Ms(�) = ?. Logical consequence has not yet been oÆcially de�ned for
our �rst-order languages, but from the outline in Section 1.1 it is easy to
see that this condition will turn out equivalent to saying that  � �. (The
precise de�nition of � is in section 6.5.) We can now show that an arbitrary
formula � is logically equivalent to a formula in interjunctive normal form:
in fact we can describe a procedure to transform � into normal form.

The procedure relies on the fact|easy to check|that our language ad-
mits `substitutivity of equivalents': when a subformula is replaced by some-
thing equivalent, then the resulting formula is equivalent to the original one.
This means we can �rst replace any atomic subformula �0 of a formula �
by �0 _̂ �0|which itself is clearly in normal form|and, since �0 ' �0 _̂ �0,
the resulting formula will be equivalent to �. Then we can progressively
pull _̂ out of the scope of the logical operators in �|both connectives and
quanti�ers|working up from those with narrowest scope to the one with
widest scope. What makes this possible is that if  _̂ � is in normal form,
or if both  1 _̂ �1 and  2 _̂ �2 are in normal form, then the following equiv-
alences hold, and the formula on the right of `'' will again be in normal
form:

: ( _̂ �) ' :� _̂ : 
( 1 _̂ �1) ^ ( 2 _̂ �2) ' ( 1 ^  2) _̂ (�1 ^ �2)
( 1 _̂ �1) _ ( 2 _̂ �2) ' ( 1 _  2) _̂ (�1 _ �2)
( 1 _̂ �1) _̂ ( 2 _̂ �2) ' ( 1 ^  2) _̂ (�1 _ �2)

8x( _̂ �) ' 8x _̂ 8x�
9x( _̂ �) ' 9x _̂ 8x�:

Thus we can pull _̂ out of the scope of an operator by replacing a subfor-
mula of one of the forms displayed on the left by the equivalent formula on
the right. At each stage equivalence to � is preserved; and at each stage
the replacement subformula is in normal form: and so we end up with an
equivalent formula in normal form.

The displayed equivalences do not of course hold unconditionally, except
for the �rst. We could alternatively use ones that did, but the formulae
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on the right would then be double the length. For example, to specify how
to pull _̂ out of the scope of a quanti�er, when it governs an arbitrary
interjunction, we need the following:

8x( _̂ �) ' 8x( ^ �) _̂ 8x( _ �)
9x( _̂ �) ' 9x( ^ �) _̂ 9x( _ �):

Suitable equivalences for ^, _, and _̂ I leave as an exercise.
Let us now pretend that = is a primitive connective|and ! and $ as

well. And let us say that a formula is in transplicative normal form when it
is a transplication  =� such that neither  nor � contains any occurrence
of either = or _̂ (so that there are only classical logical operators in  and
�) and such that, for any M and any s, Ms( ) = > if and only if either
Ms( =�) = > or Ms( =�) = ?. Then if we have a procedure, along
the lines of the one above, for transforming an arbitrary formula into an
equivalent one in transplicative normal form, this will yield projection rules
for presupposition of the kind we were interested in at the end of Section 4.2.

Such a procedure can be based on the following equivalences (which hold
whether or not the constituents on the left are already in normal form):

� ' (� _ :�) = �
:( = �) '  = :�

( 1=�1) ^ ( 2=�2) ' (( 1^ 2) _ ( 1^:�1) _ ( 2^:�2)) = (�1 ^ �2)
( 1=�1) _ ( 2=�2) ' (( 1^ 2) _ ( 1^�1) _ ( 2^�2)) = (�1 _ �2)
( 1=�1)!( 2=�2) ' (( 1^ 2) _ ( 1^:�1) _ ( 2^�2)) = (�1!�2)

( 1=�1)$( 2=�2) ' ( 1 ^  2) = (�1$�2)

( 1=�1) = ( 2=�2) ' ( 1 ^  2 ^ �1) = �2
( 1=�1) _̂ ( 2=�2) ' ( 1 ^  2 ^ (�1$�2)) = �2

8x( = �) ' (8x( ^ �) _ 9x( ^ :�)) = 8x�
9x( = �) ' (9x( ^ �) _ 8x( ^ :�)) = 9x�

The �rst equivalence gives us a way to transform atomic subformulae, and
the rest show to pull = out of the scope of any logical operator|including
other occurrences of = itself.

If we have transformed a formula into transplicative normal form, then
the resulting transplicator will be a summing up, in a =-and-_̂-free for-
mula, of any presupposition introduced into the original formula by = or by
_̂. (Some horrendously complicated transplicators can arise, but obvious
simpli�cations will be possible particular cases.) Furthermore, since the
transplicand is also =-and-_̂-free, we can see that a single occurrence of = is
suÆcient for representing the overall content|the >=?-conditions|of the
original formula.
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But if projection rules are the only thing you want to get, then observe
that the equivalences for = and _̂ may be brought in line with the others:

( 1=�1) = ( 2=�2) ' ( 1 ^  2 ^ �1) = (�1=�2)
( 1=�1) _̂ ( 2=�2) ' ( 1 ^  2 ^ (�1$�2)) = (�1 _̂�2):

A procedure based on these equivalences will transform a formula � into
 =�, where  sums up the overall presupposition, as before, but � is left
to stand.

On the other hand, we may want to pin down a =-and-_̂-free transplicand
more tightly. Observe that a formula  _̂ � in interjunctive normal form will
be equivalent to (�! ) = and to (�! ) =�, which are in transplicative
normal form. (We can make do with �!  , rather than �$  , because
 � �.) The transplicand  then �xes >-conditions, while the transplicand
� �xes ?-conditions. I shall leave it as an exercise to formulate equivalences
on which to base a procedure for transforming a formula directly into a
transplicative normal form of each of these special kinds: the equivalences
given for ^, _, 8, and 9 can be kept, but the others need to be revised.

6.4 A Parenthesis on Description Terms

If we expand our languages to contain a term-forming descriptions operator
�, and if we consider its interpretation in the kind of model we are working
with, then the denotation conditions sketched in Section 1.1 turn out in the
following way: for any model M , and any assignment s, if a 2 DM , then

Ms(
�x�) = a i� Ms(yja)(8x[x = y $ �]) = >:

And Ms(
�x�) = ~ if there is no such a. (We are here assuming that y is a

variable distinct from x and extraneous to �.) These denotation conditions
can be spelt out to mean that if a 2 DM , then

Ms(
�x�) = a i�

�
Ms(xja)(�) = >; and
Ms(xjb)(�) = ?; for every b 2 DM not identical to a:

Hence, to be the denotation of �x�, a has to be determinately `the unique
x such that �': � must be false, not just not true, when any other object in
DM is assigned to x.

But do we have to work with such a stringent form of uniqueness? In
the present context we do, on pain of violating monotonicity. Notice that,
according to our de�nition, Ms(

�x�) is an element of DM only if Ms(xja)(�)
is either > or ? for any a in DM . This guarantees monotonicity for �-terms.
If, for Ms(

�x�) to be an element a of DM , we were to require only that
Ms(xja)(�) = > and that Ms(xjb)(�) 6= > for any b in DM distinct from a,
then there might be a model N such that M v N and Ns(xjb)(�) = > for
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some such b, in which case Ns(
�x�) could not be a and monotonicity would

have been violated. (For example, takeM and N to be models interpreting
a predicate symbol P over the domain f0; 1g, where PM (0) = PN (0) =
PN (1) = > and PM (1) = �|�ll in other details as you like|and consider
�xPx.)
Notice, then, that according to our de�nitions �x� may be non-denoting

for two di�erent kinds of reason: either (i) because � is not suÆciently
de�ned to determine a denotation, or (ii) because � is suÆciently highly
de�ned to rule out there being one. Case (i) arises when the formula
9y8x(x = y $ �) is �. and case (ii) when it is ?. If we had a subtler
theory of identity and of the interpretation of `singular terms', then subtler
interpretations for �x� would be available. But this leads far beyond the
simple kind of model we are working with.

The literature on description terms is vast and varied, but two approaches
which it is interesting to compare and contrast with the present one occur
in [Smiley 1960] and [Scott 1967]. Smiley entertains `neither-true-nor-false'
sentences, but he is unconstrained by monotonicity; while Scott treats non-
denoting terms in a logic which, at sentence-level, is classical and total. In
[Czermak 1974], on the other hand, there is a theory more like the one here.
But it should be emphasized that our de�nitions do not involve any special
ideas concerning the interpretation of description terms: they merely follow
a path which was pre-determined once we embarked on partial logic as the
logic of monotonic modes of composition.

The standard semantical de�nitions and lemmas of Sections 6.1 and 6.2
all extend in the obvious way to languages which contain �|due account
being taken of the fact that terms, as well as formulae, may now contain
`bound' variables. And so we have a framework in which to address the
question whether, having introduced �-terms, we can after all `eliminate'
them without decreasing the expressive power they provide. But what does
this mean? There are various degrees of eliminability that we should dis-
tinguish. In a weak sense, �would be eliminable provided that any formula
were equivalent to an �-free one. In a stronger sense of eliminability there
would be some procedure which we could apply to transform a formula into
an equivalent �-free one. But we should really hope for something stronger
still: to be in possession of a general scheme of scope-free elimination. And
this is something we can indeed obtain.

To signal one or more occurrence in a formula of a term �x� (possibly
ignoring other occurrences of �x�) we can always pick on some extrane-
ous variable y and describe the formula as  ( �x�=y). And so we can take
our goal to be to de�ne a scheme I(x; �; y;  ) which does not involve �

and which, for any � and  , will yield a formula equivalent to  ( �x�=y),
provided only that �x� is `substitutable for y in  '|i.e., that no free occur-
rence of a variable in �x� becomes a bound occurrence in  ( �x�=y). Then
we may read the scheme I(x; �; y;  ) as `the x such that � is a y such that
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 ', and it will provide for the `scope-free' elimination of �-terms simply be-
cause �-languages admit `substitutivity of equivalents': when a subformula
is replaced by an equivalent one an equivalent formula results. The point is
that to eliminate a term �x� from a formula we can apply the scheme to any
subformula  ( �x�=y) which binds no variables occurring free in �x�. More-
over, to transform a formula into an entirely �-free one, we can apply the
scheme to �-terms in any order we like, and (variable-binding permitting)
di�erent occurrences of the same term can be eliminated all at once, or one
at a time, or in any combination we choose. Such a scheme will then ex-
hibit a semantical scope-freedom which exactly matches the scope-freedom
possessed by an �-term in virtue of its syntactic category.

In Section 4.2 we presented a `Russellian' analysis for a de�nite-description
quanti�er Ix[ � ; � ], but any thought that this could serve as the required elim-
ination scheme is soon dispelled. The >=?-conditions for Ix[ � ; � ] certainly
give de�nite descriptions a fair degree of semantical scope-freedom|in par-
ticular, freedom with respect to negation|but it is not thorough-going. For
example, if � is >, then Ix[�;  ] _ � has to be >, though Ix[�;  _ �] might
be �. This is not a defect of our analysis for Ix[ � ; � ], since scope sensitivity
can be important if we are considering natural language description idioms,
but we have to look elsewhere for a scheme to go proxy for de�nite descrip-
tions that are construed as terms. In fact, Ix[ � ; � ] would not even serve to
eliminate �-terms from atomic formulae. This is because our monotonicity
constraint is suÆciently liberal to allow sentences Pt1 � � � �x� � � � tn which
are > or ? even when �x� is ~, though �x� is ~ only if 9y8x[x = y $ �] is
not >, in which case Ix[�; P t1 � � �x � � � tn] must be �.

It is not surprising, given this last observation, that our scheme of elimi-
nation will involve the logically non-denoting term ~. Let us abbreviate the
formula 8x[x = y $ �] as �(x!y), then we could use either of the following
as de�nitions of I(x; �; y;  ):

9y[�(x!y) ^  ] _ [8y[�(x!y)! ] ^  (~=y)];
8y[�(x!y)! ] ^ [9y[�(x!y) ^  ] _  (~=y)]:

To see that these formulae work, it is just a matter of checking >=?-
conditions (with the aid of an extended version of Lemma 2) to show that
they are equivalent to  ( �x�=y)|assuming, that is, that �x� is substitutable
for y in  .

We have emphasized that an elimination scheme of this kind allows us to
dispense with the syntax of description terms as terms without disrupting
any of the characteristics they manifest as such. But in fact this could be
achieved much more cheaply: simply introduce a primitive mode of complex
quanti�cation Dx[ � ; � ] interpreted so that - - -Dx[�; � � �x � � �]- - - will always
mimic - - -(� � � �x� � � �)- - -. Stating explicit >=?-conditions for Dx[ � ; � ] is
routine. What we should now emphasize is that our de�nitions for a scheme
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of elimination go a stage further than this: they show how a quanti�er
Dx[ � ; � ] may be analysed in terms of simple and basic logical vocabulary.
In other words, we can do for Dx[ � ; � ] what in Section 4.2 we did for Ix[ � ; � ].

In the basic languages presented in Section 6.1, the displayed elimination
schemes can of course be viewed as de�nitions|explicit de�nitions for a
complex quanti�er or, `contextual de�nitions' for an �-term. And so we have
a sense in which �is de�nable in terms of ~. Conversely, if we have �, then ~
can be de�ned directly|for example, as �x?. Hence the presence of either
~ or �provides equivalent expressive resources in a �rst-order language
subject to the kind of interpretation we are considering. However, we cannot
dispense with ~ in �-free languages without a decrease in expressive power:
the atomic sentence P~, for example, is equivalent to no ~-free formula. (To
see this consider modelsM and N with the singleton domain f0g such that
PM (0) = PM (~) = PN (0) and PN (~) = �: if s(x) = 0, for all x 2 Var , then
for any ~-free formula �, Ms(�) = Ns(�), though Ms(P~) 6= Ns(P~).)
In the presence of ~, on the other hand, other vocabulary distinctive to
partial logic could be dispensed with: given our interpretation of =, � could
be de�ned as ~ = ~, and hence|as we showed in Section 4.1|_̂ (and =)
could also be de�ned.

Although ~ is not logically eliminable, it remains a possibility that it is
in some sense eliminable in particular non-logical theories set up in partial
logic: we shall mention a theorem about this in Section 7.3.

6.5 Semantic Consequence

To provide for a suitably powerful notion of semantic consequence, conceived
along the lines suggested in Section 1.1, our basic de�nition is of what it is
for a model M for a language L, together with an assignment s, to reject a
pair h�;�i of sets of formulae of L. We shall say that (M; s) rejects h�;�i
if and only if

either: (i) Ms(�) = > for all � 2 � and Ms( ) 6= > for all  2 �,
or: (ii) Ms(�) 6= ? for all � 2 � and Ms( ) = ? for all  2 �:

And let us say that M (on its own) rejects , or is a counter model to, h�;�i
when there is an s such that (M; s) rejects h�;�i. Then, ifM is any class
of models for L, �M|consequence inM|is de�ned by

� �M � i� no model inM rejects h�;�i.

WhenM is the class of all models for a given language, we just write `�':
this is logical consequence. Following the common notational practice with
turnstyles, we shall ignore squiggly brackets and the empty set, and replace
union signs by commas: for example, `� >; �;�' means that ; � f>; �g[�.
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In Section 1.1 we remarked on single-barrelled relations of consequence.
Note the way in which � may now be deployed to capture such relations:

� �M �;� i� no model inM satis�es condition (i) above,

�; � �M � i� no model inM satis�es condition (ii) above.

And � �M � if and only if both � �M �;� and �; � �M �. In fact this
biconditional is just an instance of a quite general principle: for any formula
�, � �M � if and only if both � �M �;� and �; � �M �.

In Section 7.1 we shall present logical laws using sequents : these will be
understood to be pairs of �nite sets, for which we use the special notation
`�>��' instead of `h�;�i'. And we shall mention sequents in the same style
that we state facts about consequence, writing `>� ;>; �;�', for example,
to stand for ;>�f>; �g[�. When M is not a counter model to �>�� we
shall say that M is a model of �>��, or that �>�� holds in M . More
generally, if � is a set of sequents, M will be said to be a model of � if and
only if M is a model of every sequent in �; and `K(�)' will be the notation
for the class of all such models. (Note: `model for L', `model of ' �).

A sequent �>�� embodies a principle of consequence|�'s following
from �. It is a principle of logical consequence if � � �, in which case it
holds in all models, but there are sequents which hold in some models but
not in others; and there are also sequents, such as ;>�;, which hold in
none. A set � of sequents then embodies a collection of such principles, and
�K(�) is the relation of consequence semantically determined by them:

� �K(�) � i� no model of � rejects h�;�i.

Observe, then, that �K(;) is logical consequence; and that �K(f;>�;g) is
the universal relation between sets of formulae.

Clearly, if �>�� is contained in �, then � �K(�) �; but the converse
does not generally hold: ; is an obvious counterexample. When it does
hold|when � = f�>�� j � �K(�) �g|of sequents which is closed under
the sequent principles it determines, and our proof theoretical apparatus
will be designed to pick out precisely such sets of sequents as what `theories'
are in partial logic. Thus we shall be adopting an extensional notion of a
theory, not involving any particular axiomatization. Pure logic, for a given
language, will be one such theory, viz. f�>�� j � � �g.

But �K(�) is a full-blown consequence relation between arbitrary (not
necessarily �nite) sets of formulae, and we should demand of our proof
system that it yield consequence relations `� to match �K(�). We shall
produce a suitable de�nition which is `sound and complete' in that, for any
� and �,

� �K(�) � i� � `� �:
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But then we shall be able to show that the relation �K(�) does not actually
go beyond the sequent principles|the �nite principles of consequence|
determined by �|in fact not beyond those determined by some �nite subset
of �. For the de�nition of `� will guarantee that � `� � if and only if
�0 `�0 �0 for some �nite subsets �0 of �, �0 of � and �0 of �; so that
�K(�) too turns out to be �nitary in this way. Contraposing, we could state
the fact as a two-pronged form of compactness:

THEOREM 8 (Compactness). There is a model of � which rejects h�;�i
i�, for every �nite subset �0 of �, �0 of � and �0 of �, there is a model
of �0 which rejects h�0;�0i.

Two complementary parallels with standard treatments of classical logic
are now emerging, which pervade the development of partial logic. First,
pairs of sets of formulae and their rejectability (by a model and an assign-
ment) play a role which single sets of formulae and their satis�ability (by a
model and an assignment) usually play in classical logic. Secondly, sets of
sequents and their models play the part which sets of sentences and their
models play in classical logic. But why should things turn out like this?

It has already been explained|in Section 1.3|that principles of logical
consequence cannot be summed up in terms of the truth of sentences, but
the irreducibility of consequence to truth extends further than this. For,
given a sequent �>��, it is not in general possible to �nd a sentence �
such that M is a model of �>�� if and only if M(�) = T|equivalently,
if and only if M is a model of >��. (Moreover, if there is no sentence,
then there is no formula of any kind to play this role; since, if there were a
formula � then a suitable sentence could be obtained by substituting ~ for
all parameters in �.) This contrasts with classical logic, in which a sequent
�>�� can always be summed up in the sentence 8~x[^̂ � ! __�], where
^̂ � is the conjunction of elements of �, __� is the disjunction of elements
of �, and 8~x binds all free variables.

We can extend and strengthen this point about partial logic: given a set
� of sequents it is not in general possible to �nd a corresponding set �0

of sequents of the truth-expressing form >�� such that M is a model of
� if and only if M is a model of �0. To see this observe that if we can
�nd such a �0, then K(�) satis�es the following closure condition|because
K(�0) obviously does and K(�) = K(�0).

(y) If M 2 K(�) and M ve N , then N 2 K(�).

In fact we could use the Compactness Theorem to show that (y) is a suÆ-
cient, as well as a necessary, condition for �nding such a �0. But the present
point depends on its being necessary: we just have to produce a � such that
K(�) does not satisfy (y). A simple example would be fP~ >� Q~; �g:
checking this is essentially an exercise in propositional logic.
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Although the principles of consequence that arbitrary sequents express
cannot be reduced to the truth of sentences, still, can we at least make do
with parameter-free sequents, which contain only sentences, not arbitrary
formulae? No, we cannot. Let us argue in the same pattern as before: the
following is obviously a necessary condition (and in fact also a suÆcient
condition) for there being a set �0 of parameter free sequents such that
K(�) = K(�0).

(z) If M 2 K(�) and M �e N , then N 2 K(�).

However, fPx >� Qx; �g, for example, does not satisfy (z)|though it is
more involved to check out this example than the previous one. This is
perhaps a little surprising: it means that the relation �e of `elementary
equivalence' between models is a strictly weaker relation that the relation
of being a model of the same sequents.

Anyhow, let us return to the relation � of logical consequence. This has
been de�ned relative to a particular language L, but, as in classical logic,
it is in fact an absolute notion, in the sense that � � � in L1 if and only if
� � � in L2, whenever the formulae in � and � are formulae of both L1 and
L2. In particular, � � � in any given language if and only if � � � in the
language containing no non-logical vocabulary other than that occurring
in � or �. Observe too that the relations of equivalence ('), degree-of-
de�nedness (v) and compatibility (�), which we de�ned in Section 6.2, are
absolute in this sense. These facts are easy to check, using the notion of
the reduct M �L0 of a model M for L to a smaller language L0: M �L0
is the model for L0 which has the same domain as M and interprets the
vocabulary of L0 in the same way as M , just ignoring any vocabulary in L
but not in L0. We shall use this de�nition later on, and we shall also talk of
expanding a model M for L to a model N for a bigger language L+ when
M = N �L.

The absoluteness of � means that we can state the following theorem
without reference to any particular language (though its proof|in Sec-
tion 7.3|will depend on being very �nicky about languages).

THEOREM 9 (Craig Interpolation). If � �  , then � � � and � �  for
some formula � which contains no non-logical vocabulary which does not
occur both in � and in  .

It is noteworthy that there is an analogous result for degree-of-de�nedness:
if � v  , then � v � and � v  for an interpolant � subject to the same
constraint.
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7 FIRST-ORDER PARTIAL THEORIES

7.1 Logical Laws

It will be neatest to take our logical laws as directly de�nitive of what a
`theory' is. The laws will be in the form of sequent axioms and sequent rules,
and a theory , in a given language L, is de�ned to be a set of sequents of L
which contains the sequent axioms and is closed under the sequent rules, in
the sense that if the `premise(s)' of a rule is (are) in the set then so is its
`conclusion'. `Proofs' then enter the picture in the following way. If, given
a set � of sequents of L, we de�ne � to be the intersection of all theories
in L which contain �, then � will be a theory|the `smallest' theory in L
containing �|and a sequent will be contained in � if and only if there is
a sequent proof of it from a �nite subset of �. That things �t together in
this way is just part of the general theory of inductive de�nitions (see for
example [Aczel 1977]). We shall call � the theory axiomatised by �; and
� will already be a theory if and only if � = �. Pure logic, for a given
language L, then slots into place as the smallest theory in L, viz. ;.

The �rst three laws are general principles of consequence, which we label
after [Scott 1973b]: a basic axiom scheme (R), a (double) rule of thinning
(M), and cut (T).

(R) � >� �

(M)
� >� � � >� �

� >� �;� �; � >� �

(T)
� >� �;� �; � >� �

� >� �

Clearly any instance of (R) will hold in any model, and if the `premise(s)'
of an instance of (M) or (T) hold in a model, then the `conclusion' holds in
that model. Hence individually these laws are `sound'. It will be left unsaid
that all the remaining axioms and rules are individually sound in the same
way: this can be checked using the de�nitions and lemmas of Section 6.1.

The next rule is a general rule of (S) of substitution. When � is a set of
formulae, we use `�(t=x)' to stand for f�(t=x) j � 2 �g.

(S)
� >� �

�(t=x) >� �(t=x)

This holds provided that the term t is substitutable for x in all the formulae
in � and � (see Section 6.1). In the presence of this rule we shall be able
to specify the quanti�er and identity laws with parameters, instead of using
schematic letters for terms.
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For propositional laws we can use the following. Double lines means the
rule applies upwards as well as downwards, and `:�' stands for f:� j � 2 �g.

>�> ?>�

: � >� � � >� :�

�; :� >� � � >� :�; �

:� >� � � >� :�
:� >� � � >� :�

�; �;  >� � � >� �;  ; �

�; � ^  >� � � >� � _  ; �

�; �;  >� �;� �; � >� �;  ; �

�; � _̂  >� �;� �; � >� � _̂  ; �
Observe how � may be deployed to cancel one or the other half of our
double-barrelled notion of consequence. Thus, in particular, the rules for
interjunction match _̂ with ^ for >-conditions and with _ for>-conditions.

From these laws we can immediately deduce some further fundamental
principles (which could be swapped in various obvious ways to provide al-
ternative sets of propositional laws):

� >� ::� ::� >� �

�; :� >� : ;  

� >� �

:� >� :�

� ^  >� � � >� � _  
� ^  >�   >� � _  

�;  >� � ^  � _  >� �;  

� _̂  >� �; � �; � >� � _̂  
� _̂  >�  ; � �;  >� � _̂  
�;  >� � _̂  � _̂  >� �;  

Let us now adopt the abbreviation `�>
������' for `�; �>�:�;�'. The



338 STEPHEN BLAMEY

force of such sequents can be expressed informally as `when � is true, then
� follows from �': recall the discussion at the end of Section 1.1. Then
for quanti�ers we can use the following up-and-down rules, subject to the
proviso that x does not occur free in any formula in � or in �:

� >
x=x���� �; � �; � >

x=x���� �

� >� 8x�; � �; 9x� >� �

The proviso is only of importance for the downward rules, but given (S)
its presence does not hamper the upward ones, which are equivalent to the
following axioms:

8x� >x=x���� � � >
x=x���� 9x�:

Notice how x = x is here playing the role of an `existence predicate'.
Of course, x = x can never actually be false, and so we include the

following axiom:
� >� x = x:

And to capture the determinateness of identity:

x = x; y = y >� x = y; :x = y:

For the substitutivity of identicals we adopt the following scheme, which
means that whenever x = y is true, then occurrences of x and y can be
shu�ed around in a formula in any way you like:

�(x=u; y=v) >
x=y���� �(y=u; x=v):

However a further substitutivity principle is required to govern non-denoting
terms:

�(x=z) >� x = x; �(y=z):

Since parameters are schematic for terms, the force of this is that a non-
denoting term can be replaced by any term without a�ecting the truth value
of a formula, if it already has one.

If we were envisaging subtler theories of identity these laws would need
to be modi�ed, but in the present context they capture our semantics of
monotonic composition, once we include an axiom for the logically non-
denoting term:

x = ~ >� � :
There is room for variation in the choice of primitive laws for identity;

but let us adopt these. We can then go on to derive a characteristic principle
for ~, whose e�ect is that if a formula is true (or false), then it remains so
on making any substitution for an occurrence of ~:

�(~=x) >� �(y=x); �:



PARTIAL LOGIC 339

And other basic laws are easily obtained; for example, the symmetry of
identity and distinctness:

x = y >� y = x;

and the transitivity of identity:

x = y; y = z >� x = z; �:
Observe that � cannot be taken away here: if y assigned no object, then
neither of the left-hand formulae can be false, even if x = z is. However,
we can easily derive a general principle to handle distinctness as well as
identity:

x = y; y = z >
y=y���� x = z:

The laws we have given provide the de�nition of a theory (in L) and of
the theory � (in la) axiomatised by �, in the way explained at the outset.
Furthermore between arbitrary sets � and � of formulae of a language
L we can de�ne the consequence relation `�, demanded in Section 6.5, by
stipulating that � `� � if and only if, for some �nite subsets �0 of � and �0

of �, �0>��0 2 �. This will be if and only if there is a proof of �0>��0

from some �nite subset �0 of �|hence if and only if �0>��0 2 �0. Thus
`� turns out to be �nitary in the way announced in Section 6.5. Note that,
although the de�nitions of � and `� are relative to a particular language L,
a given set � of sequents will always be a set of sequents of (in�nitely) many
di�erent languages. This means that, on its own, our notation is radically
ambiguous, and we need to be careful when more than one language is in
play.

Since our laws are individually sound, it is easy to check that no model of
� can be a counter model to any sequent in �: in other words, not just is it
the case that K(�) � K(�), but K(�) = K(�). And the following theorem,
which makes reference to arbitrary sets � and �, is a trivial extension of
this fact:

THEOREM 10 (Soundness). If � `� � then � �K(�) �.

The converse, guaranteeing that `� coincides with the semantically de-
�ned relation �K(�), is rather more diÆcult to establish:

THEOREM 11 (Completeness). If � �K(�) � then � `� �.

We shall turn our attention to the proof of completeness in Sections 7.2
and 7.3.

It is easy to see that � = �, and so `� is the same relation as `�. Also,
given soundness, �K(�) is the same relation as �K(�). Hence we would lose
nothing by stating Theorem 11 with � restricted to theories. We would lose
something if we restricted � and � to �nite sets, viz. being able to deduce as
a corollary the full version of compactness stated in Theorem 8. But note
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that when we do consider just �nite sets of formulae, then Theorems 10
and 11 may be wrapped up together into the following equation: � =
f�>�� j � �K(�) �g.

These remarks put us in a position to convert the discussion in Section 6.5
of the conditions labelled (y) and (z) into facts about theories. We may
deduce from that discussion that a theory � is axiomatizable by sequents
of the form >�� if and only if K(�) is closed under the relation ve, in the
sense of condition (y), and that a theory � is axiomatizable by parameter-
free sequents if and only if K(�) is closed under the relation �e, in the
sense of condition (z). And there are various other results along these lines:
necessary and suÆcient conditions for a theory's being axiomatizable by
sequents of a given kind are provided by specifying closure conditions on
the class of its models.

In connection with soundness and completeness we should also think
about `consistency'. We have no use for a notion of the consistency of a
set of formulae, but it makes sense to ask about the consistency of a set
of sequents. Let us say that � is consistent if and only if ;>�; 62 �.
And `inconsistent' will just mean not consistent. Hence we may also de�ne
relational notions: �1 is (in)consistent with �2 if and only if �1 [ �2 is
(in)consistent (which in turn makes sense of the words ` 's following from
� is inconsistent with : : :', used in Section 2.7: this means that f�>� g is
inconsistent with : : : ). By rule (M), it follows that � is consistent if and
only if � does not contain all sequents (of the language in question). It also
follows, by Theorems 10 and 11, that � is consistent if and only if � has
a model, since the statement that � is inconsistent if and only if � has no
model is just the special case of soundness and completeness when � and �
are both empty. On the other hand, the special case of Theorems 10 and 11
when � is empty gives the soundness and completeness of an axiomatization
of the relation `; of logical consequence (for which we shall just write ``').
Happily the theory thus axiomatised, viz. ;, turns out to be consistent,
according to our de�nition, since there will be models of ;|and hence too
of ;|in great abundance.

It is noteworthy that to axiomatize pure logic we could abandon the
system presented here and instead use a cut-free sequent calculus that has
`introduction rules' only. (See Sundholm's chapter in Volume 2 of the second
edition of this Handbook.) One way to proceed would be to have `negative'
rules as well as `positive' rules|the negative rules for vocabulary in the
immediate scope of negation. In [Cleave 1974] there are rules of this kind
that we could use for classical vocabulary, but to handle interjunction we
need to include the following three-premise rules.
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�; �; � >� � �; �;  >� � �; �;  >� �

�; �_̂ >��

� >� �; �;� � >� �;  ; � � >� �;  ; �
� >� �_̂ ;�

�; :�; � >� � �; :�; : >� � �; �; : >� �

�; :[�_̂ ] >��

� >� :�; �; � � >� :�; : ; � � >� �; : ; �
� >� :[�_̂ ];�

7.2 Model-Existence Theorems

Wrapping Soundness and Completeness up together, contraposing, and
spelling out `� 2K(�) �' we have that

� 0� � i� there is a model of � which rejects h�;�i:

(The line through the turnstyles signi�es negation.) We could then estab-
lish completeness (`only if') by adopting a Henkin-style strategy to boost
up any pair h�;�i such that � 0� � to an exhaustive pair h�+;�+i of
sets of sentences of an extended language, from which we could then read
o� a model rejecting h�;�i. But this strategy can be elaborated to yield
much more powerful model-existence results: kinds of interpolation theo-
rem. We can then go on to deduce the Completeness Theorem and a lot
more besides|facts both about pure logic and about non-logical theories.

To introduce the idea, consider the following set up:{ �1 is a set of se-
quents of a language L1, and �1 and �1 are sets of formulae of L1; �2 is a
set of sequents of a language L2, and �2 and �2 are sets of formulae of L2;
and � is a set of formulae common to both L1 and L2. We can then ask:

Is there a � 2 � such that �1 `�1 �;�1 and �2; � `�2 �2?

(We may suppose that `�1 is de�ned relative to L1 and `�2 relative to
L2.) Notice that, provided � is non-empty, this is a generalization of the
question `Is it the case that � `� �?'. For if � = �1 = �2, � = �1 = �2,
and � = �1 = �2, then, by rules (M) and (T), the two questions must
have the same answer.

And our interpolation theorems may be seen as generalizations of the
Completeness Theorem, because they state that the answer `no' to certain
questions of the displayed form entails the existence of a pair of models M1

of �1 and M2 of �2 such that M1 rejects h�1;�1i, M2 rejects h�2;�2i and
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M1 and M2 are related in a particular speci�ed way: di�erent ways for M1

and M2 to be related correspond to di�erent assumptions about �. We
also have corresponding generalizations of the Soundness Theorem, since
the non-existence of an interpolant will be necessary as well as suÆcient
for the existence of a suitably related pair of models. But necessity is
not as interesting as suÆciency; it gives us nothing new: it will always be
immediately deducible from soundness.

To give a taste for all this, I shall develop a little way the case where,
in the set up described, � is the set of all formulae of some sublanguage L
of L1 and of L2. This is a simple and straightforward case, but even so we
shall be able to deduce quite a lot from it.

First, to specify appropriate relationships between models, we need a
generalization of the relations v and � de�ned in Section 6.2: if M1 is a
model for L1 and M2 is a model for L2, then there are relations of degree-
of-de�nedness (vL) and of compatibility (�L) relative to the vocabulary
of a common sublanguage L. With the notion of a reduct at hand (see
Section 6.5), we can de�ne the relations like this:

M1 vL M2 i� M1�L v M2�L;
M1 �L M2 i� M1�L � M2�L:

Next observe that the claim that an interpolant exists can be analysed
as the conjunction of three separate interpolant-existence claims:

LEMMA 12 (Combination Lemma).

There is a � 2 � such that ;�1 `�1 �;�1 and �2; � `�2 �2

i� the following all hold:

(1) there is a �1 2 � such that �1 `�1 �; �1;�1 and �2; �1 `�2 �;�2;

(2) there is a �2 2 � such that �1; � `�1 �2;�1 and �2; �2; � `�2 �2;

(3) there is a �3 2 � such that �1 `�1 �; �3;�1 and �2; �3; � `�2 �2:

`Only if' is trivial: put �1 = �2 = �3 = �. For `if' it is straightforward
to check that we may take � = [[�1 ^ �3] _ �2] _̂ [�1 ^ [�3 _ �2]].

We shall sketch a proof of a model-existence result that is in fact split
up into three parallel theorems, corresponding to the three cases above:
Theorem 13. But the Combination Lemma will show how they can be
combined into one: Theorem 14. So there are two theorems to state. The
assumptions common to both are that L is a sublanguage of L1 and of L2,
and � is the set of all formulae of L; that �1 and �1 are sets of formulae
and �1 a set of sequents of a language L1; and that �2 and �2 are sets of
formulae and �2 is a set of sequents of a language L2.
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THEOREM 13 (Interpolant-Excluding Model Pairs: split-up version).

In each of the three cases

(1) � 2 �1 \�2; (2) � 2 �1 \ �2; (3) � 2 �1 \ �2;

there is no � 2 � such that �1 `�1 �;�1 and �2; � `�2 �2

i�

there are models M1 of �1 and M2 of �2, with a common domain and
assignments s1 and s2 such that (M1; s1) rejects h�1;�1i, (M2; s2) rejects
h�2;�2i, and

in case (1), M1 vL M2 and s1 v s2;
in case (2), M2 vL M1 and s2 v s1;
in case (3), M1 �L M2 and s1 � s2:

THEOREM 14 (Interpolant-Excluding Model Pairs: combined version).
There is no � 2 � such that �1 `�1 �;�1 and �2; � `�2 �2

i�

there are models M1 of �1 and M2 of �2, with a common domain and
assignments s1 and s2 such that at least one of the following holds:

(1) M1 vL M2; s1 v s2; and

�
(M1; s1) rejects h�1; f�g [�1i;
(M2; s2) rejects h�2; f�g [�2i;

(2) M2 vL M1; s2 v s1; and

�
(M1; s1) rejects h�1 [ f�g;�1i;
(M2; s2) rejects h�2 [ f�g;�2i;

(3) M1 �L M2; s1 � s2; and

�
(M1; s1) rejects h�1; f�g [�1i;
(M2; s2) rejects h�2 [ f�g;�2i:

It is now easy to see that the split-up version together with the Combina-
tion Lemma entails the combined version; and it is easy to check directly|
from basic de�nitions|that the combined version entails the split-up ver-
sion. Some applications can appeal directly to just one of the three cases of
the split-up version, but most will invoke the combined one.

Now we sketch a proof|in its bearest outlines|of Theorem 13. `If'
follows easily from soundness in each of the three cases. `Only if' is non-
trivial, but the main construction is the same in each case: distinguishing
between them comes only at the very end.

First, then, take two disjoint sets C and D of new constants, where C is
denumerable, and the cardinality of D is the maximum of the cardinalities
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of the the two languages L1 and L2; and take some one-one function � from
Var onto C. Now let L+1 and L+2 be the extensions of L1 and L2 got by
taking C [D as additional constants; and let �+ be the set of all sentences
obtained from a formula in � by making any substitution of constants from
C [D for the parameters (so the sentences in �+ will be common to both
L+1 and L+2 ). And �nally, some notation: if � is a formula, �� is the formula
obtained by substituting �(x) for all free occurrences of x; and if � is a set
of formulae, �� = f�� j � 2 �g.

Assuming that there is no � 2 � such that �1 `�1 �;�1 and �2; � `�2
�2, it is now fairly easy to deduce that

there is no � 2 �+ such that ��1 `�1 �; ��1 and ��2; � `�2 ��2,

where `�1 and `�2 are now de�ned relative to the extended languages
L+1 and L+2 , rather than L1 and L2. The hard work is then to provide a
construction that achieves the following. First, ��1, ��1, ��2, and ��2

are extended to sets �+1 , �
+
1 , �

+
2 , and �+

2 of sentences such that �+1 [�+
1

exhausts all the sentences of L1, �+2 [�+
2 exhausts all the sentences of L2,

and

there is no � 2 �+ such that �+1 `�1 �;�+
1 and �+2 ; � `�2 �+

2 .

(Notice that, since ? 2 �+, �+1 0�1 �+
1 ; and, since > 2 �+, �+2 ; 0�2 �+

2 :
thus �+1 \�+

1 = �+2 \�+
2 = ;.) Secondly, the construction de�nes a subset

D0 of D such that

for all d 2 D0, d = d 2 �+1 \ �+2 and :d = d 2 �+
1 \�+

2 ;

if 9x� 2 �+1 , then �(d=x) 2 �+1 , for some d 2 D0,

if 9x� 2 �+2 , then �(d=x) 2 �+2 , for some d 2 D0,

if 8x� 2 �+
1 , then �(d=x) 2 �+

1 , for some d 2 D0,

if 8x� 2 �+
2 , then �(d=x) 2 �+

2 , for some d 2 D0.

(Thus quanti�ers will be `witnessed' by elements of D0|which the �rst
condition will guarantee are `de�ned'.)

Now we de�ne relations �1 and �2 over D0 as follows:

d �1 e i� d = e 2 �+1 and :d = e 2 �+
1 ,

d �2 e i� d = e 2 �+2 and :d = e 2 �+
2 .

These turn out to be equivalence relations, and we can use them to factor out
D0 to provide domains for modelsM

+
1 for L+1 andM+

2 for L+2 , such thatM+
1

is a model of �1 that rejects h�+1 ;�+
1 i, andM2 is a model of �2 that rejects

h�+2 ;�+
2 i: the models can be de�ned in terms of h�+1 ;�+

1 i and h�+2 ;�+
2 i in

much the same way that a classical model is de�ned from a consistent and
complete set of sentences in a standard Henkin-style completeness proof.
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But, by axiom (R), �+1 \ �+ \ �+
2 = ;, from which we can deduce

that �1 and �2 are in fact the same relation, so that M+
1 and M+

2 have
a common domain. Their reducts M1 and M2 to the original languages
L1 and L2 then turn out to be models of �1 and of �2 such that (M1; s1)
rejects h�1;�1i and (M2; s2) rejects h�2;�2i, where s1 and s2 are de�ned
by putting s1(x) =M+

1 (�(x)) and s2(x) =M+
2 (�(x)).

Finally, to deduce the relationship between M1 and M2, and between s1
and s2|which is peculiar to each of the three cases|we again make use of
the fact that �+1 \ �+ \�+

2 = ;. This guarantees the following facts:
in case (1), M+

1 (�) vM+
2 (�) for any � 2 �+;

in case (2), M+
2 (�) vM+

1 (�) for any � 2 �+;

in case (3), M+
1 (�) �M+

2 (�) for any � 2 �+.

Hence, �rst, we can deduce that

in case (1), M1s(�) vM2s(�) for any � 2 � and any s;

in case (2), M2s(�) vM1s(�) for any � 2 � and any s;

in case (3), M1s(�) �M2s(�) for any � 2 � and any s.

But � contains all formulae of L. And, for any � 2 �,M1s(�) = (M1�L)s(�)
and M2s(�) = (M2�L)s(�). It therefore follows from Lemma 4 that the
displayed conditions are equivalent, respectively, to

(1) M1 vL M2; (2) M2 vL M1; (3) M1 �L M2:

Secondly, since, for any variable x and any d 2 D0, �(x) = d and :�(x) = d
are both in �+, we can also deduce|from the facts about M+

1 and M+
2 |

that
(1) s1 v s2; (2) s2 v s1; (3) s1 � s2:

7.3 Some Proofs

The Completeness Theorem (Theorem 11) can now immediately be estab-
lished: we shall argue by contraposition. Assume, then, that � 0� �. By
rule (T), it follows that there can be no formula � such that � `� �;� and
�; � `� �. And so to show that some model of � rejects h�;�i we may ap-
ply Theorem 14, taking each of L1, L2, and L to be whatever language we're
working with, and taking �1 = �2 = �, �1 = �2 = �, and �1 = �2 = �.
This guarantees models M1 and M2, with assignments s1 and s2, which
satisfy at least one of the three conditions speci�ed. But each of these
conditions obviously entails that both M1 and M2 reject h�;�i|which is
over-kill: pick either one.

To establish the Compatibility Theorem (Theorem 5), we can appeal
directly to case (3) of Theorem 13. Assume that � �  , and|aiming for a
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contradiction|assume that there is no joint for formulae � and  . Then,
by Lemma 7, there is no lambda such that both � v � and � v �. But this
is equivalent to the absence of any � such that

� _  � �; � and �; � � � ^  :

By Soundness we can replace � by `, and then we have something in the
right form to apply Theorem 13, case (3). Since we are working with pure
logic in a single language, we take each of L1, L2, and L to be this language|
so that �L will just be �|and we take �1 = �2 = ;. Then we take
�1 = f� _  g, �2 = f�g, �1 = f�g, �2 = f� ^  g. This guarantees models
M1 andM2, with assignments s1 and s2, such that (M1; s1) rejects h�1;�1i,
(M2; s2) rejects h�2;�2i, M1 �M2, and s1 � s2. But the rejections mean
that

(M1s1(�) = > or M1s1( ) = >) and (M2s2(�) = ? or M2s2( ) = ?)

Distributing `and' across `or' there are then four possibilities, each of which,
by Lemma 6, contradicts the assumption that � �  .

To establish Craig Interpolation (Theorem 9) we now make use of the fact
that in Theorem 14 L1 and L2 might be di�erent languages. Given formulae
� and  , let L1 be the language whose non-logical vocabulary is precisely
that occurring in �, let L2 be the language whose non-logical vocabulary is
precisely that occurring in  , and let L be the language whose non-logical
vocabulary is precisely that common to both L1 and L2. Assume now that
there is no Craig interpolant for formulae � and  : we have to show that
� 2  . But, by Soundness, the absence of a Craig interpolant means that
there is no formula � of L such that � ` � and � `  . And so we may apply
Theorem 14 taking �1 = �2 = ;, �1 = f�g, �2 = ;, �1 = ;, �2 = f g.
This guarantees models M1 for L1 and M2 for L2, along with assignments
s1 and s2, such that at least one of three possible conditions obtains. We
shall consider each in turn.

In case (1), M1 vL M2, s1 v s2, (M1; s1) rejects hf�g; f�gi, and (M2; s2)
rejects h;; f�;  gi. But now let M be an expansion of M2 which gives
vocabulary in L1 but not in L2 the interpretation that M1 gives it. Then
M1 v M �L1. Thus, by Monotonicity of Evaluation (Lemma 3), and since
M �L1 treats formulae of L1 in the same way as M , it follows that

M1s1(�) v (M �L1)s1(�) = Ms1(�) v Ms2(�):

But (M1; s1)'s rejecting hf�g; f�gi means that M1s1(�) = >, from which it
follows thatMs2(�) = >. On the other hand, (M2; s2)'s rejecting h;; f�;  gi
means that M2s2( ) 6= >, from which it follows that Ms2( ) 6= >. Hence
(M; s2) rejects hf�g; f gi|showing that � 2  .

In case (2) we can argue in an exactly parallel way.
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In case (3), M1 �L M2, s1 � s2, (M1; s1) rejects hf�g; f�gi, and (M2; s2)
rejects hf�g; f gi. But now let M+

1 be an expansion of M1 which gives
vocabulary in L2 but not in L1 the interpretation that M2 gives it; and let
M+

2 be an expansion ofM2 which gives vocabulary in L1 but not in L2 in the
interpretation that M1 gives it. Clearly M

+
2 �M+

2 , and if M =M+
2 tM+

2

and s = s2 t s2, then, by Monotonicity of Evaluation,

M1s1(�) = M+
1 s1

(�) v Ms(�) and M2s2( ) = M+
2 s2

( ) v Ms( ):

But the rejections mean, respectively, that M1s1(�) = > and M2s2( ) =
?. It follows that Ms(�) = > and Ms( ) = ?. Hence (M; s) rejects
hf�g; f gi|again showing that � 2  .

Finally we shall use the Interpolant-Excluding Model Pairs Theorem to
prove a result, which has not been mentioned before, about non-logical the-
ories: a model-theoretic criterion for when a piece of non-logical vocabulary
is de�nable in a theory �. First we need a relation '� of equivalence in �|
or �-equivalence. Now that we have soundness and completeness in place,
we can indi�erently de�ne this relation either in terms of `� or in terms of
the models of �:

� '�  i� � `�  and  `� �,
i� Ms(�) =Ms( ) , for any M 2 K(�) and any s.

Then let us say that (i) a predicate symbol P , (ii) a function symbol f , (iii)
a constant symbol c, is (explicitly) de�nable in � if and only if there is a
formula � that does not contain (i) P , (ii) f , (iii) c, such that

(i) Px1:::x�(P ) '� �; (ii) y = fx1:::x�(f) '� �; (iii) y = c '� �;

(where the displayed variables are assumed to be distinct from one another).
The de�nability theorem takes exactly the same form for each of these

three cases, and so we can state it schematically for an item � of non-logical
vocabulary. Say that L is the language of the theory �, and let L6� be the
language got from L by dropping �, then

THEOREM 15.
� is de�nable in � i�, for any models M and N of �,

(a) if M vL6� N , then M v N , and (b) if M �L6� N , then M �N .

In other words, it is necessary and suÆcient for the de�nability of � that
given a pair of models of �, if (a) the relation v, or (b) the relation �,
obtains between the interpretations of vocabulary other than �, then it also
obtains between the interpretations of �. It is easy enough to check `only
if' directly. To establish `if', we can argue by contraposition and invoke
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Theorem 14. I shall sketch the case where � is a predicate letter P : the
other cases are not too di�erent.

Assume, then, that P is not de�nable in �. This means that there is no
formula � of L6� such that Px1 : : : x�(P ) `� � and � `� Px1 : : : x�(P ). Hence
we can apply Theorem 14, taking both the L1 and L2 of that theorem to
be the language L of this one, and taking the L of that theorem to be L6�.
And we then take �1 = �2 = �, �1 = fPx1 : : : x�(P )g, �1 = ;, �2 = ;,
�2 = fPx1 : : : x�(P )g. This guarantees modelsM1 andM2 of �, along with
assignments s1 and s2, such that at least one of three possible conditions
obtains. We shall consider each in turn.

In case (1), M1 vL6� M2, but the rejection conditions, together with the
fact that s1 v s2, entail that M1 6v M2. For (M1; s1) rejects hfPx1 : : :
x�(P )g; f�gi, so that M1s1(Px1 : : : x�(P )) = >, and therefore M1s2(Px1 : : :
x�(P )) = >; but (M2; s2) rejects h;; f�; Px1 : : : x�(P )gi, so thatM2s2(Px1 : : :
x�(P )) 6= >.

In case (2) we can argue in an exactly parallel way.
In case (3), M1 �L6� M2, but the rejection conditions, together with the

fact that s1 � s2, entail thatM1 6�M2. For (M1; s1) rejects hfPx1 : : : x�(P )g;
f�gi, so that M1s1(Px1 : : : x�(P )) = >; and (M2; s2) rejects hf�g; fPx1 : : :
x�(P )gi, so that M2s2(Px1 : : : x�(P )) = ?: and therefore M1s(Px1 : : :
x�(P )) = > and M2s(Px1 : : : x�(P )) = ?, where s = s1 t s2.

There are two noteworthy comments on this de�nability result. First,
the condition on models of � is strictly stronger than the condition that
whenever models agree exactly on vocabulary other than �, then they also
agree on �. Secondly, it follows from the de�nability of � in � that there
will be a uniform procedure for transforming any formula into an �-free
�-equivalent one. In the case of a predicate symbol this is just a matter
of making the obvious substitution. In the case of a de�nable function
symbol f , on the other hand, there will be a scheme of elimination for
terms ft1 : : : t�(f) that is scope-free in the same way that the description-
scheme we speci�ed in Section 6.4 is scope free. Given terms t1; : : : ; t�(f), we
shall always be able to de�ne f using a formula � that contains no variables
occurring in t1; : : : ; t�(f): y = fx1 : : : x�(f) '� �. (We can always rewrite
variables as required.) Then, by rule (S),

y = ft1 : : : t�(f) '� �(t1=x1) : : : (t�(f)=x�(f)) (�(ti=xi) for short).

It follows that, provided ft1 : : : t�(f) is substitutable for y in  ,  (ft1 : : :
t�(f)=y) will be �-equivalent to each of the following:

9y[�(ti=xi) ^  ] _ [8y[�(ti=xi)! ] ^  (~=y)];
8y[�(ti=xi)! ] ^ [9y[�(ti=xi) ^  ] _  (~=y)]:

And a de�nable constant symbol can be handled in a parallel way|without
any need to fuss about variables.
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_̂ _̂ _̂

Further model-theoretic results about non-logical theories can be derived
from subtler versions of the Interpolant-Excluding Model Pairs Theorem(s).
An example of this is the theorem we mentioned in Section 6.4 concerning
the eliminability of ~ in a theory �. By `eliminability' let us agree to
mean simply that any formula � is equivalent in � to some ~-free formula
 : � '�  . And let us de�ne a new degree-of-de�nedness relation v6~
between models M and N by taking over the de�nition of `M v N ' given
in Section 6.2, but restricting ~a, in clauses (1) and (2), to D�(P ) and to
D�(f). D is the common domain of M and N , and so M v6~ N if and only
if N is more de�ned than M over objects in the domain. In general v6~ is
a strictly weaker relation than v, but
THEOREM 16. ~ is eliminable in a theory � if and only if, whenever M
and N are non-empty models of � and M v6~ N , then M v N .

Another result about non-logical theories arises from further considera-
tion of the Compatibility Theorem (Theorem 5). This theorem was a result
about pure logic, but the question arises concerning an arbitrary theory �
whether formulae that are compatible in �|i.e. never take on conicting
truth values in models of �|have a joint in the theory �|i.e. a formula
with the >=?-conditions of a joint in all models of �. The answer is `no',
but we can derive a model-theoretic criterion for when a theory is guaran-
teed joints for all compatible formulae. This result, however, requires more
apparatus than we have developed|even to state, let alone to prove.

St Edmund Hall, Oxford.
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PREFACE TO THE SECOND EDITION

It is with great pleasure that we are presenting to the community the
second edition of this extraordinary handbook. It has been over 15 years
since the publication of the �rst edition and there have been great changes
in the landscape of philosophical logic since then.

The �rst edition has proved invaluable to generations of students and
researchers in formal philosophy and language, as well as to consumers of
logic in many applied areas. The main logic article in the Encyclopaedia
Britannica 1999 has described the �rst edition as `the best starting point
for exploring any of the topics in logic'. We are con�dent that the second
edition will prove to be just as good!

The �rst edition was the second handbook published for the logic commu-
nity. It followed the North Holland one volume Handbook of Mathematical
Logic, published in 1977, edited by the late Jon Barwise. The four volume
Handbook of Philosophical Logic, published 1983{1989 came at a fortunate
temporal junction at the evolution of logic. This was the time when logic
was gaining ground in computer science and arti�cial intelligence circles.

These areas were under increasing commercial pressure to provide devices
which help and/or replace the human in his daily activity. This pressure
required the use of logic in the modelling of human activity and organisa-
tion on the one hand and to provide the theoretical basis for the computer
program constructs on the other. The result was that the Handbook of
Philosophical Logic, which covered most of the areas needed from logic for
these active communities, became their bible.

The increased demand for philosophical logic from computer science and
arti�cial intelligence and computational linguistics accelerated the devel-
opment of the subject directly and indirectly. It directly pushed research
forward, stimulated by the needs of applications. New logic areas became
established and old areas were enriched and expanded. At the same time, it
socially provided employment for generations of logicians residing in com-
puter science, linguistics and electrical engineering departments which of
course helped keep the logic community thriving. In addition to that, it so
happens (perhaps not by accident) that many of the Handbook contributors
became active in these application areas and took their place as time passed
on, among the most famous leading �gures of applied philosophical logic of
our times. Today we have a handbook with a most extraordinary collection
of famous people as authors!

The table below will give our readers an idea of the landscape of logic
and its relation to computer science and formal language and arti�cial in-
telligence. It shows that the �rst edition is very close to the mark of what
was needed. Two topics were not included in the �rst edition, even though
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viii

they were extensively discussed by all authors in a 3-day Handbook meeting.
These are:

� a chapter on non-monotonic logic

� a chapter on combinatory logic and �-calculus

We felt at the time (1979) that non-monotonic logic was not ready for
a chapter yet and that combinatory logic and �-calculus was too far re-
moved.1 Non-monotonic logic is now a very major area of philosophi-
cal logic, alongside default logics, labelled deductive systems, �bring log-
ics, multi-dimensional, multimodal and substructural logics. Intensive re-
examinations of fragments of classical logic have produced fresh insights,
including at time decision procedures and equivalence with non-classical
systems.

Perhaps the most impressive achievement of philosophical logic as arising
in the past decade has been the e�ective negotiation of research partnerships
with fallacy theory, informal logic and argumentation theory, attested to by
the Amsterdam Conference in Logic and Argumentation in 1995, and the
two Bonn Conferences in Practical Reasoning in 1996 and 1997.

These subjects are becoming more and more useful in agent theory and
intelligent and reactive databases.

Finally, �fteen years after the start of the Handbook project, I would
like to take this opportunity to put forward my current views about logic
in computer science, computational linguistics and arti�cial intelligence. In
the early 1980s the perception of the role of logic in computer science was
that of a speci�cation and reasoning tool and that of a basis for possibly
neat computer languages. The computer scientist was manipulating data
structures and the use of logic was one of his options.

My own view at the time was that there was an opportunity for logic to
play a key role in computer science and to exchange bene�ts with this rich
and important application area and thus enhance its own evolution. The
relationship between logic and computer science was perceived as very much
like the relationship of applied mathematics to physics and engineering. Ap-
plied mathematics evolves through its use as an essential tool, and so we
hoped for logic. Today my view has changed. As computer science and
arti�cial intelligence deal more and more with distributed and interactive
systems, processes, concurrency, agents, causes, transitions, communication
and control (to name a few), the researcher in this area is having more and
more in common with the traditional philosopher who has been analysing

1I am really sorry, in hindsight, about the omission of the non-monotonic logic chapter.
I wonder how the subject would have developed, if the AI research community had had
a theoretical model, in the form of a chapter, to look at. Perhaps the area would have
developed in a more streamlined way!
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such questions for centuries (unrestricted by the capabilities of any hard-
ware).

The principles governing the interaction of several processes, for example,
are abstract an similar to principles governing the cooperation of two large
organisation. A detailed rule based e�ective but rigid bureaucracy is very
much similar to a complex computer program handling and manipulating
data. My guess is that the principles underlying one are very much the
same as those underlying the other.

I believe the day is not far away in the future when the computer scientist
will wake up one morning with the realisation that he is actually a kind of
formal philosopher!

The projected number of volumes for this Handbook is about 18. The
subject has evolved and its areas have become interrelated to such an extent
that it no longer makes sense to dedicate volumes to topics. However, the
volumes do follow some natural groupings of chapters.

I would like to thank our authors are readers for their contributions and
their commitment in making this Handbook a success. Thanks also to
our publication administrator Mrs J. Spurr for her usual dedication and
excellence and to Kluwer Academic Publishers for their continuing support
for the Handbook.

Dov Gabbay
King's College London
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J. MICHAEL DUNN AND GREG RESTALL

RELEVANCE LOGIC

1 INTRODUCTION

1.1 Delimiting the topic

The title of this piece is not `A Survey of Relevance Logic'. Such a project
was impossible in the mid 1980s when the �rst version of this article was
published, due to the development of the �eld and even the space limitations
of the Handbook. The situation is if anything, more diÆcult now. For
example Anderson and Belnap and Dunn's two volume [1975; 1992] work
Entailment: The Logic of Relevance and Necessity, runs to over 1200 pages,
and is their summary of just some of the work done by them and their co-
workers up to about the late 1980s. Further, the comprehensive bibliography
(prepared by R. G. Wolf) contains over 3000 entries in work on relevance
logic and related �elds.

So, we need some way of delimiting our topic. To be honest the fact that
we are writing this is already a kind of delimitation. It is natural that you
shall �nd emphasised here the work that we happen to know best. But still
rationality demands a less subjective rationale, and so we will proceed as
follows.

Anderson [1963] set forth some open problems for his and Belnap's sys-
tem E that have given shape to much of the subsequent research in relevance
logic (even much of the earlier work can be seen as related to these open
problems, e.g. by giving rise to them). Anderson picks three of these prob-
lems as major: (1) the admissibility of Ackermann's rule  (the reader
should not worry that he is expected to already know what this means),
(2) the decision problems, (3) the providing of a semantics. Anderson also
lists additional problems which he calls `minor' because they have no `philo-
sophical bite'. We will organise our remarks on relevance logic around three
major problems of Anderson. The reader should be told in advance that
each of these problems are closed (but of course `closed' does not mean
`�nished'|closing one problem invariably opens another related problem).
This gives then three of our sections. It is obvious that to these we must add
an introduction setting forth at least some of the motivations of relevance
logic and some syntactical speci�cations. To the end we will add a section
which situates work in relevance logic in the wider context of study of other
logical systems, since in the recent years it has become clear that relevance
logics �t well among a wider class of `resource-conscious' or `substructural'
logics [Schroeder-Heister and Do�sen, 1993; Restall, 2000] [and cite the S{H
article in this volume]. We thus have the following table of contents:
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2 J. MICHAEL DUNN AND GREG RESTALL

1. Introduction

2. The Admissibility of 

3. Semantics

4. The Decision Problem

5. Looking About

We should add a word about the delimitation of our topic. There are by now
a host of formal systems that can be said with some justi�cation to be `rele-
vance logics'. Some of these antedate the Anderson{Belnap approach, some
are more recent. Some have been studied somewhat extensively, whereas
others have been discussed for only a few pages in some journal. It would be
impossible to describe all of these, let alone to assess in each and every case
how they compare with the Anderson{Belnap approach. It is clear that the
Anderson{Belnap-style logics have been the most intensively studied. So
we will concentrate on the research program of Anderson, Belnap and their
co-workers, and shall mention other approaches only insofar as they bear
on this program. By way of minor recompense we mention that Ander-
son and Belnap [1975] have been good about discussing related approaches,
especially the older ones.

Finally, we should say that our paradigm of a relevance logic throughout
this essay will be the Anderson{Belnap system R or relevant implication
(�rst devised by Belnap|see [Belnap, 1967a; Belnap, 1967b] for its history)
and not so much the Anderson{Belnap favourite, their system E of entail-
ment. There will be more about each of these systems below (they are explic-
itly formulated in Section 1.3), but let us simply say here that each of these
is concerned to formalise a species of implication (or the conditional|see
Section 1.2) in which the antecedent suÆces relevantly for the consequent.
The system E di�ers from the system R primarily by adding necessity to
this relationship, and in this E is a modal logic as well as a relevance logic.
This by itself gives good reason to consider R and not E as the paradigm
of a relevance logic.1

1.2 Implication and the Conditional

Before turning to matters of logical substance, let us �rst introduce a frame-
work for grammar and nomenclature that is helpful in understanding the
ways that writers on relevance logic often express themselves. We draw

1It should be entered in the record that there are some workers in relevance logic
who consider both R and E too strong for at least some purposes (see [Routley, 1977],
[Routley et al., 1982], and more recently, [Brady, 1996]).
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heavily on the `Grammatical Propaedeutic' appendix of [Anderson and Bel-
nap, 1975] and to a lesser extent on [Meyer, 1966], both of which are very
much recommended to the reader for their wise heresy from logical tradition.

Thus logical tradition (think of [Quine, 1953]) makes much of the gram-
matical distinction between `if, then' (a connective), and `implies' or its
rough synonym `entails' (transitive verbs). This tradition opposes

1. If today is Tuesday, then this is Belgium

to the pair of sentences

2. `Today is Tuesday' implies `This is Belgium',

3. That today is Tuesday implies that this is Belgium.

And the tradition insists that (1) be called a conditional, and that (2) and
(3) be called implications.

Sometimes much philosophical weight is made to rest on this distinction.
It is said that since `implies' is a verb demanding nouns to ank it, that
implication must then be a relation between the objects stood for by those
nouns, whereas it is said that `if, then' is instead a connective combining that
implication (unlike `if, then') is really a metalinguistic notion, either overtly
as in (2) where the nouns are names of sentences, or else covertly as in (3)
where the nouns are naming propositions (the `ghosts' of linguistic entities).
This last is then felt to be especially bad because it involves ontological
commitment to propositions or some equally disreputable entities. The �rst
is at least free of such questionable ontological commitments, but does raise
real complications about `nested implications', which would seem to take us
into a meta-metalanguage, etc.

The response of relevance logicians to this distinction has been largely one
of `What, me worry?' Sometime sympathetic outsiders have tried to apolo-
gise for what might be quickly labelled a `use{mention confusion' on the part
of relevance logicians [Scott, 1971]. But `hard-core' relevance logicians often
seem to luxuriate in this `confusion'. As Anderson and Belnap [1975, p. 473]

say of their `Grammatical Propaedeutic': \the principle aim of this piece
is to convince the reader that it is philosophically respectable to `confuse'
implication or entailment with the conditional, and indeed philosophically
suspect to harp on the dangers of such a `confusion'. (The suspicion is
that such harpists are plucking a metaphysical tune on merely grammatical
strings.)"

The gist of the Anderson{Belnap position is that there is a generic
conditional-implication notion, which can be carried into English by a va-
riety of grammatical constructions. Implication itself can be viewed as a
connective requiring prenominalisation: `that implies that ', and as
such it nests. It is an incidental feature of English that it favours sentences
with main subjects and verbs, and `implies' conforms to this reference by
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the trick of disguising sentences as nouns by prenominalisation. But such
grammatical prejudices need not be taken as enshrining ontological presup-
positions.

Let us use the label `Correspondence Thesis' for the claim that Anderson
and Belnap come close to making (but do not actually make), namely, that
in general there is nothing other than a purely grammatical distinction
between sentences of the forms

4. If A, then B, and

5. That A implies that B.

Now undoubtedly the Correspondence Thesis overstates matters. Thus, to
bring in just one consideration, [Casta~neda, 1975, pp. 66 �.] distinguishes
`if A then B' from `A only if B' by virtue of an essentially pragmatic distinc-
tion (frozen into grammar) of `thematic' emphases, which cuts across the
logical distinction of antecedent and consequent. Putting things quickly, `if'
introduces a suÆcient condition for something happening, something being
done, etc. whereas `only if' introduces a necessary condition. Thus `if' (by
itself or pre�xed with `only') always introduces the state of a�airs thought
of as a condition for something else, then something else being thus the
focus of attention. Since `that A implies that B' is devoid of such thematic
indicators, it is not equivalent at every level of analysis to either `if A then
B' or `A only if B'.

It is worth remarking that since the formal logician's A ! B is equally
devoid of thematic indicators, `that A implies that B' would seem to make
a better reading of it than either `if A then B' or `A only if B'. And yet
it is almost universally rejected by writers of elementary logic texts as even
an acceptable reading.

And, of course, another consideration against the Correspondence Thesis
is produced by notorious examples like Austin's

6. There are biscuits on the sideboard if you want some,

which sounds very odd indeed when phrased as an implication. Indeed, (6)
poses perplexities of one kind or another for any theory of the conditional,
and so should perhaps best be ignored as posing any special threat tot he
Anderson and Belnap account of conditionals. Perhaps it was Austin-type
examples that led Anderson and Belnap [1975, pp. 491{492] to say \we
think every use of `implies' or `entails' as a connective can be replaced by a
suitable `if-then'; however, the converse may not be true". They go on to say
\But with reference to the uses in which we are primarily interested, we feel
free to move back and forth between `if-then' and `entails' in a free-wheeling
manner".

Associated with the Correspondence Thesis is the idea that just as there
can be contingent conditionals (e.g. (1)), so then the corresponding implica-
tions (e.g. (3)) must also be contingent. This goes against certain Quinean
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tendencies to `regiment' the English word `implies' so that it stands only for
logical implication. Although there is no objection to thus giving a technical
usage to an ordinary English word (even requiring in this technical usage
that `implication' be a metalinguistic relation between sentences), the point
is that relevance logicians by and large believe we are using `implies' in the
ordinary non-technical sense, in which a sentence like (3) might be true
without there being any logical (or even necessary) implication from `Today
is Tuesday' to `This is Belgium'.

Relevance logicians are not themselves free of similar regimenting ten-
dencies. Thus we tend to di�erentiate `entails' from `implies' on precisely
the ground that `entails', unlike `implies', stands only for necessary impli-
cation [Meyer, 1966]. Some writings of Anderson and Belnap even suggest
a more restricted usage for just logical implication, but we do not take this
seriously. There does not seem to be any more linguistic evidence for thus
restricting `entails' than there would be for `implies', though there may be
at least more excuse given the apparently more technical history of `entails'
(in its logical sense|cf. The oed).

This has been an explanation of, if not an apology for, the ways in which
relevance logicians often express themselves. but it should be stressed that
the reader need not accept all, or any, of this background in order to make
sense of the basic aims of the relevance logic enterprise. Thus, e.g. the
reader may feel that, despite protestations to the contrary, Anderson, Bel-
nap and Co. are hopelessly confused about the relationships among `entails',
`implies', and `if-then', but still think that their system R provides a good
formalisation of the properties of `if-then' (or at least `if-then relevantly'),
and that they system E does the same for some strict variant produced by
the modi�er `necessarily'.

One of the reasons the recent logical tradition has been motivated to
insist on the �erce distinction between implications and conditionals has
to do with the awkwardness of reading the so-called `material conditional'
A! B as corresponding to any kind of implication (cf. [Quine, 1953]).

The material conditional A ! B can of course be de�ned as :A _ B,
and it certainly does seem odd, modifying an example that comes by oral
tradition from Anderson, to say that:

7. Picking a guinea pig up by its tail implies that its eyes will fall out.

just on the grounds that its antecedent is false (since guinea pigs have no
tails). But then it seems equally false to say that:

8. If one picks up a guinea pig by its tail, then its eyes will fall out.

And also both of the following appear to be equally false:

9. Scaring a pregnant guinea pig implies that all of her babies will be
born tailless.
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10. If one scares a pregnant guinea pig, then all of her babies will be born
tailless.

It should be noted that there are other ways to react to the oddity of sen-
tences like the ones above other than calling them simply false. Thus there
is the reaction stemming from the work of Grice [1975] that says that at least
the conditional sentences (8) and (10) above are true though nonetheless
pragmatically odd in that they violate some rule based on conversational
co-operation to the e�ect that one should normally say the strongest thing
relevant, i.e. in the cases above, that guinea pigs have no tails (cf. [Fogelin,
1978, p. 136 �.] for a textbook presentation of this strategy).

Also it should be noted that the theory of the `counterfactual' conditional
due to Stalnaker{Thomason, D. K. Lewis and others (cf. Chapter [[??]] of
this Handbook), while it agrees with relevance logic in �nding sentences like
(8) (not (10) false, disagrees with relevance logic in the formal account it
gives of the conditional.

It would help matters if there were an extended discussion of these
competing theories (Anderson{Belnap, Grice, Stalnaker-Thomason-Lewis),
which seem to pass like ships in the night (can three ships do this without
strain to the image?) but there is not the space here. Such a discussion
might include an attempt to construct a theory of a relevant counterfactual
conditional (if A were to be the case, then as a result B would be the case).
The rough idea would be to use say The Routley{Meyer semantics for rel-
evance logic (cf. Section 3.7) in place of the Kripke semantics for modal
logic, which plays a key role in the Stalnaker{Thomason{Lewis semantical
account of the conditional (put the 3-placed alternativeness relation in the
role of the usual 2-placed one). Work in this area is just starting. See
the works of [Mares and Fuhrmann, 1995] and [Akama, 1997] which both
attempt to give semantics for relevant counterfactuals.

Also any discussion relating to Grice's work would surely make much of
the fact that the theory of Grice makes much use of a basically unanalysed
notion of relevance. One of Grice's chief conversational rules is `be relevant',
but he does not say much about just what this means. One could look at
relevance logic as trying to say something about this, at least in the case of
the conditional.

Incidentally, as Meyer has been at great pains to emphasise, relevance
logic gives, on its face anyway, no separate account of relevance. It is not
as if there is a unary relevance operator (`relevantly').

One last point, and then we shall turn to more substantive issues. Or-
thodox relevance logic di�ers from classical logic not just in having an ad-
ditional logical connective (!) for the conditional. If that was the only
di�erence relevance logic would just be an `extension' of classical logic, us-
ing the notion of Haack [1974], in much the same way as say modal logic
is an extension of classical logic by the addition of a logical connective �



RELEVANCE LOGIC 7

for necessity. The fact is (cf. Section 1.6) that although relevance logic
contains all the same theorems as classical logic in the classical vocabulary
say, ^;_;: (and the quanti�ers), it nonetheless does not validate the same
inferences. Thus, most notoriously, the disjunctive syllogism (cf. Section 2)
is counted as invalid. Thus, as Wolf [1978] discusses, relevance logic does
not �t neatly into the classi�cation system of [Haack, 1974], and might best
be called `quasi-extension' of classical logic, and hence `quasi-deviant'. In-
cidentally, all of this applies only to `orthodox' relevance logic, and not to
the `classical relevance logics' of Meyer and Routley (cf. Section 3.11).

1.3 Hilbert-style Formulations

We shall discuss �rst the pure implicational fragments, since it is primarily
in the choice of these axioms that the relevance logics di�er one from the
other. We shall follow the conventions of Anderson and Belnap [Anderson
and Belnap, 1975], denoting by `R!' what might be called the `putative
implicational fragment of R'. Thus R! will have as axioms all the axioms
of R that only involve the implication connective. That R! is in fact the
implicational fragment of R is much less than obvious since the possibility
exists that the proof of a pure implicational formula could detour in an
essential way through formulas involving connectives other than implication.
In fact Meyer has shown that this does not happen (cf. his Section 28.3.2 of
[Anderson and Belnap, 1975]), and indeed Meyer has settled in almost every
interesting case that the putative fragments of the well-known relevance
logics (at least R and E) are the same as the real fragments. (Meyer also
showed that this does not happen in one interesting case, RM, which we
shall discuss below.)

For R! we take the rule modus ponens (A;A! B ` B) and the following
axiom schemes.

A! A Self-Implication (1)

(A! B)! [(C ! A)! (C ! B)] Pre�xing (2)

[A! (A! B)]! (A! B) Contraction (3)

[A! (B ! C)]! [B ! (A! C)] Permutation: (4)

A few comments are in order. This formulation is due to Church [1951b]

who called it `The weak implication calculus'. He remarks that the axioms
are the same as those of Hilbert's for the positive implicational calculus (the
implicational fragment of the intuitionistic propositional calculus H) except
that (1) is replaced with

A! (B ! A) Positive Paradox: (10)

(Recent historical investigation by Do�sen [1992] has shown that Orlov con-
structed an axiomatisation of the implication and negation fragment of R
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in the mid 1920s, predating other known work in the area. Church and
Moh, however, provided a Deduction Theorem (see Section 1.4) which is
absent from Orlov's treatment.)

The choice of the implicational axioms can be varied in a number of in-
formative ways. Thus putting things quickly, (2) Pre�xing may be replaced
by

(A! B)! [(B ! C)! (A! C)] SuÆxing. (20)

(3) Contraction may be replaced by

[A! (B ! C)]! [(A! B)! (A! C)] Self- Distribution, (30)

and (4) Permutation may be replaced by

A! [(A! B)! B] Assertion: (40)

These choices of implicational axioms are `isolated' in the sense that one
choice does not a�ect another. Thus

THEOREM 1. R! may be axiomatised with modus ponens, (1) Self-Implication
and any selection of one from each pair f(2); (20)g; f(3); (30)g, and f(4); (40)g.
Proof. By consulting [Anderson and Belnap, 1975, pp. 79{80], and �ddling.

�

There is at least one additional variant of R! that merits discussion. It
turns out that it suÆces to have SuÆxing, Contraction, and the pair of
axiom schemes

[(A! A)! B]! B Specialised Assertion, (4a)

A![(A! A)! A] Demodaliser. (4b)

Thus (4b) is just an instance of Assertion, and (4a) follows from Assertion
by substitution A ! A for A and using Self-Implication to detach. That
(4a) and (4b) together with SuÆxing and Contraction yield Assertion (and,
less interestingly, Self-Implication) can be shown using the fact proven in
[Anderson and Belnap, 1975, Section 8.3.3], that these yield (letting ~A ab-
breviate A1 ! A2)

~A! [( ~A! B)! B] Restricted-Assertion. (400)

The point is that (4a) and (4b) in conjunction say that A is equivalent to

(A ! A) ! A, and so every formula A has an equivalent form ~A and so
`Restricted Assertion' reduces to ordinary Assertion.2

2There are some subtleties here. Detailed analysis shows that both SuÆxing and
Pre�xing are needed to replace ~A with A (cf. Section 1.3). Pre�xing can be derived from
the above set of axioms (cf. [Anderson and Belnap, 1975, pp. 77{78 and p. 26].
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Incidentally, no claim is made that this last variant of R! has the same
isolation in its axioms as did the previous axiomatisations. Thus, e.g.
that SuÆxing (and not Pre�xing) is an axiom is important (a matrix of
J. R. Chidgey's (cf. [Anderson and Belnap, 1975, Section 8.6]) can be used
to show this.

The system E of entailment di�ers primarily from the system R in that
it is a system of relevant strict implication. Thus E is both a relevance logic
and a modal logic. Indeed, de�ning �A =df (A ! A) ! A one �nds E
has something like the modality structure of S4 (cf. [Anderson and Belnap,
1975, Sections 4.3 and 10]).

This suggests that E! can be axiomatised by dropping Demodaliser from
the axiomatisation of R!, and indeed this is right (cf. [Anderson and Bel-
nap, 1975, Section 8.3.3], for this and all other claims about axiomatisations
of E!).3

The axiomatisation above is a `�xed menu' in that Pre�xing cannot be
replaced with SuÆxing. There are other `�a la carte' axiomatisations in the
style of Theorem 1.

THEOREM 2. E! may be axiomatised with modus ponens, Self-Implication
and any selection from each of the pairs fPre�xing, SuÆxingg, fContraction,
Self-Distributiong and fRestricted-Permutation, Restricted-Assertiong (one
from each pair).

Another implicational system of less central interest is that of `ticket en-
tailment' T!. It is motivated by Anderson and Belnap [1975, Section 6] as
deriving from some ideas of Ryle's about `inference tickets'. It was moti-
vated in [Anderson, 1960] as `entailment shorn of modality'. The thought
behind this last is that there are two ways to remove the modal sting from
the characteristic axiom of alethic modal logic, �A! A. One way is to add
Demodaliser A ! �A so as to destroy all modal distinctions. The other is
to drop the axiom�A! A. Thus the essential way one gets T! from E! is
to drop Specialised Assertion (or alternatively to drop Restricted Assertion
or Restricted Permutation, depending on which axiomatisation of E! one
has). But before doing so one must also add whichever one of Pre�xing and
SuÆxing was lacking, since it will no longer be a theorem otherwise (this is
easiest to visualise if one thinks of dropping Restricted permutation, since
this is the key to getting Pre�xing from SuÆxing and vice versa). Also
(and this is a strange technicality) one must replace Self-Distribution with
its permuted form:

(A! B)! [[A! (B ! C)]! (A! C)] Permuted Self-Distribution.

(300)

This is summarised in
3The actual history is backwards to this, in that the system R was �rst axiomatised

by [Belnap, 1967a] by adding Demodaliser to E.
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THEOREM 3 (Anderson and Belnap [Section 8.3.2, 1975]). T! is axioma-
tised using Self-Implication, Pre�xing, SuÆxing, and either of fContraction,
Permuted Self-Distributiong, with modus ponens.

There is a subsystem of E! called TW! (and P�W, and T�W in
earlier nomenclature) axiomatised by dropping Contraction (which corre-
sponds to the combinator W) from T!. This has obtained some interest
because of an early conjecture of Belnap's (cf. [Anderson and Belnap, 1975,
Section 8.11]) that A ! B and B ! A are both theorems of TW! only
when A is the same formula as B. That Belnap's Conjecture is now Bel-
nap's Theorem is due to the highly ingenious (and complicated) work of E.
P. Martin and R. K. Meyer [1982] (based on the earlier work of L. Powers
and R. Dwyer). Martin and Meyer's work also highlights a system S! (for
Syllogism) in which Self-Implication is dropped from TW!.

Moving on now to adding the positive extensional connectives ^ and _,
in order to obtain R!;^;_ (denoted more simply as R+) one adds to R!

the axiom schemes

A ^ B ! A; A ^ B ! B Conjunction Elimination (5)

[(A! B) ^ (A! C)]! (A! B ^ C) Conjunction Introduction (6)

A! A _ B; B ! A _ B Disjunction Introduction (7)

[(A! C) ^ (B ! C)]! (A _ B ! C) Disjunction Elimination (8)

A ^ (B _ C)! (A ^ B) _ C Distribution (9)

plus the rule of adjunction (A;B ` A ^ B). One can similarly get the
positive intuitionistic logic by adding these all to H!.

Axioms (5){(8) can readily be seen to be encoding the usual elimination
and introduction rules for conjunction and disjunction into axioms, giving
^ and _ what might be called `the lattice properties' (cf. Section 3.3). It
might be thought that A ! (B ! A ^ B) might be a better encoding
of conjunction introduction than (6), having the virtue that it allows for
the dropping of adjunction. This is a familiar axiom for intuitionistic (and
classical) logic, but as was seen by Church [1951b], it is only a hair's breadth
away from Positive Paradox (A! (B ! A)), and indeed yields it given (5)
and Pre�xing. For some mysterious reason, this observation seemed to
prevent Church from adding extensional conjunction/disjunction to what
we now call R! (and yet the need for adjunction in the Lewis formulations
of modal logic where the axioms are al strict implications was well-known).

Perhaps more surprising than the need for adjunction is the need for ax-
iom (9). It would follow from the other axioms if only we had Positive Para-
dox among them. The place of Distribution in R is continually problematic.
It causes inelegancies in the natural deduction systems (cf. Section 1.5) and
is an obstacle to �nding decision procedures (cf. Section 4.8). Incidentally,
all of the usual distributive laws follow from the somewhat `clipped' version
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(9).
The rough idea of axiomatising E+ and T+ is to add axiom schemes

(5){(9) to E! and T!. This is in fact precisely right for T+, but for E+

one needs also the axiom scheme (remember �A =df (A! A)! A):

�A ^�B ! �(A ^ B) (10)

This is frankly an inelegance (and one that strangely enough disappears in
the natural deduction context of Section 1.5). It is needed for the inductive
proof that necessitation (` C ) ` �C) holds, handling he case where C
just came by adjunction (cf. [Anderson and Belnap, 1975, Sections 21.2.2
and 23.4]). There are several ways of trying to conceal this inelegance, but
they are all a little ad hoc. Thus, e.g. one could just postulate the rule of
necessitation as primitive, or one could strengthen the axiom of Restricted
Permutation (or Restricted Assertion) to allow that ~A be a conjunction
(A1 ! A1) ^ (A2 ! A2).

As Anderson and Belnap [1975, Section 21.2.2] remark, if propositional
quanti�cation is available, �A could be given the equivalent de�nition
8p(p! p)! A, and then the o�ending (10) becomes just a special case of
Conjunction Introduction and becomes redundant.

It is a good time to advertise that the usual zero-order and �rst-order rele-
vance logics can be out�tted with a couple of optional convenience features
that come with the higher-priced versions with propositional quanti�ers.
Thus, e.g. the propositional constant t can be added to E+ to play the role
of 8p(p! p), governed by the axioms.

(t! A)! A (11)

t! (A! A); (12)

and again (10) becomes redundant (since one can easily show (t ! A) $
[(A! A)! A]).

Further, this addition of t is conservative in the sense that it leads to
no new t-free theorems (since in any given proof t can always be replaced
by (p1 ! p1) ^ � � � ^ (pn ! pn) where p1; : : : ; pn are all the propositional
variables appearing in the proof | cf. [Anderson and Belnap, 1975]).

Axiom scheme (11) is too strong for T+ and must be weakened to

t: (11T)

In the context of R+, (11) and (11T) are interchangeable. and in R+, (12)
may of course be permuted, letting us characterise t in a single axiom as
`the conjunction of all truths':

A$ (t! A) (13)

(in E, t may be thought of as `the conjunction of all necessary truths').
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`Little t' is distinguished from `big T ', which can be conservatively added
with the axiom scheme

A! T (14)

(in intuitionistic or classical logic t and T are equivalent).
Additionally useful is a binary connective Æ, labelled variously `inten-

sional conjunction', `fusion', `consistency' and `cotenability'. these last
two labels are appropriate only in the context of R, where one can de�ne
A ÆB =df :(A! :B). One can add Æ to R+ with the axiom scheme:

[(A ÆB)! C]$ [A! (B ! C)] Residuation (axiom): (15)

This axiom scheme is too strong for other standard relevance logics, but
Meyer and Routley [1972] discovered that one can always add conservatively
the two way rule

(A ÆB)! C a ` A! (B ! C) Residutation (rule) (16)

(in R+ (16) yields (15)). Before adding negation, we mention the positive
fragment B+ of a kind of minimal (Basic) relevance logic due to Routley
and Meyer (cf. Section 3.9). B+ is just like TW+ except for �nding the
axioms of Pre�xing and SuÆxing too strong and replacing them by rules:

A! B ` (C ! A)! (C ! B) Pre�xing (rule) (17)

A! B ` (B ! C)! (A! C) SuÆxing (rule) (18)

As for negation, the full systems R, E, etc. may be formed adding to the
axiom schemes for R+, E+, etc. the following 4

(A! :A)! :A Reductio (19)

(A! :B)! (B ! :A) Contraposition (20)

::A! A Double Negation. (21)

Axiom schemes (19) and (20) are intuitionistically acceptable negation prin-
ciples, but using (21) one can derive forms of reductio and contraposition
that are intuitionistically rejectable. Note that (19){(21) if added to H+

would give the full intuitionistic propositional calculus H.
In R, negation can alternatively be de�ned in the style of Johansson, with

:A =df (A! f), where f is a false propositional constant, cf. [Meyer, 1966].
Informally, f is the disjunction of all false propositions (the `negation' of
t). De�ning negation thus, axiom schemes (19) and (20) become theorems

4Reversing what is customary in the literature, we use : for the standard negation of
relevance logic, reserving � for the `Boolean negation' discussed in Section 3.11. We do
this so as to follow the notational policies of the Handbook.
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(being instances of Contraction and Permutation, respectively). But scheme
(21) must still be taken as an axiom.

Before going on to discuss quanti�cation, we briey mention a couple of
other systems of interest in the literature.

Given that E has a theory of necessity riding piggyback on it in the
de�nition �A =df (A ! A) ! A, the idea occurred to Meyer of adding to
R a primitive symbol for necessity � governed by the S4 axioms.

�A! A (�1)

�(A! B)! (�A! �B) (�2)

�A ^�B ! �(A ^ B) (�3)

�A! ��A; (�4)

and the rule of Necessitation (` A) ` �A).
His thought was that E could be exactly translated into this system R�

with entailment de�ned as strict implication. That this is subtly not the
case was shown by Maksimova [1973] and Meyer [1979b] has shown how to
modify R� so as to allow for an exact translation.

Yet one more system of interest is RM (cf. Section 3.10) obtained by
adding to R the axiom scheme

A! (A! A) Mingle: (22)

Meyer has shown somewhat surprisingly that the pure implicational system
obtained by adding Mingle to R is not the implicational fragment of RM,
and he and Parks have shown how to axiomatise this fragment using a
quite unintelligible formula (cf. [Anderson and Belnap, 1975, Section 8.18]).
Mingle may be replaced equivalently with the converse of Contraction:

(A! B)! (A! (A! B)) Expansion: (23)

Of course one can consider `mingled' versions of E, and indeed it was in
this context that McCall �rst introduced mingle, albeit in the strict form
(remember ~A = A1 ! A2),

~A! ( ~A! ~A) ~Mingle (24)

(cf. [Dunn, 1976c]).
We �nish our discussion of axiomatics with a brief discussion of �rst-

order relevance logics, which we shall denote by RQ, EQ, etc. We shall
presuppose a standard de�nition of �rst-order formula (with connectives
:;^;_;! and quanti�ers 8; 9). For convenience we shall suppose that we
have two denumerable stocks of variables: the bound variables x; y, etc.
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and the free variables (sometimes called parameters) a; b, etc. The bound
variables are never allowed to have unbound occurrences.

The quanti�er laws were set down by Anderson and Belnap in accord with
the analogy of the universal quanti�er with a conjunction (or its instances),
and the existential quanti�er as a disjunction. In view of the validity of
quanti�er interchange principles, we shall for brevity take only the universal
quanti�er 8 as primitive, de�ning 9xA =df :8x:A. We thus need

8xA! A(a=x) 8-elimination (25)

8x(A! B)! (A! 8xB) 8- introduction (26)

8x(A _ B)! A _ 8xB Con�nement: (27)

If there are function letters or other term forming operators, then (25)
should be generalised to 8xA ! A(t=x), where t is any term (subject to
our conventions that the `bound variables' x; y, etc. do not occur (`free')
in it). Note well that because of our convention that `bound variables' do
not occur free, the usual proviso that x does not occur free in A in (26)
and (27) is automatically satis�ed. (27) is the obvious `in�nite' analogy
of Distribution, and as such it causes as many technical problems for RQ
as does Distribution for R (cf. Section 4.8). Finally, as an additional rule
corresponding to adjunction, we need:

A(a=x)

8xA
Generalisation: (28)

There are various more or less standard ways of varying this formulation.
Thus, e.g. (cf. Meyer, Dunn and Leblanc [1974]) one can take all universal
generalisations of axioms, thus avoiding the need for the rule of Generalisa-
tion. Also (26) can be `split' into two parts:

8x(A! B)! (8xA! 8xB) (26a)

A! 8xA Vacuous Quanti�cation (26b)

(again note that if we allowed x to occur free we would have to require that
x not be free in A).

The most economical formulation is due to Meyer [1970]. It uses only
the axiom scheme of 8-elimination and the rule.

A! B _ C(a=x)

A! B _ 8xC
(a cannot occur in A or B) (29)

which combines (26){(28).

1.4 Deduction Theorems in Relevance Logic

Let X be a formal system, with certain formulas of X picked out as axioms
and certain (�nitary) relations among the formulas of X picked out as rules.



RELEVANCE LOGIC 15

(For the sake of concreteness, X can be thought of as any of the Hilbert-
style systems of the previous section.) Where � is a list of formulas of X
(thought of as hypotheses) it is customary to de�ne a deduction from � to
be a sequence B1; : : : ; Bn, where for each Bi(1 � i � n), either (1) Bi is in
�, or (2) B is an axiom of X, or (3) Bi `follows from' earlier members of
the sequence, i.e. R(Bj1 ; : : : ; Bjk ; Bi) holds for some (k+ 1)|any rule R of
X and Bj1 ; : : : ; Bjk all precede Bi in the sequence B1; : : : ; Bn. A formula
A is then said to be deducible from � just in case there is some deduction
from � terminating in A. We symbolise this as � `X A (often suppressing
the subscript).

A proof is of course a deduction from the empty set, and a theorem is
just the last item in a proof. There is the well-known

Deduction Theorem (Herbrand). If A1; : : : ; An; A `H! B, then we
have also A1; : : : ; An `H! A! B.

This theorem is proven in standard textbooks for classical logic, but the
standard inductive proof shows that in fact the Deduction Theorem holds
for any formal system X having modus ponens as its sole rule and H! �
X (i.e. each instance of an axiom scheme of H! is a theorem of X). Indeed
H! can be motivated as the minimal pure implicational calculus having
modus ponens as its sole rule and satisfying the Deduction Theorem. This
is because the axioms of H! can all be derived as theorems in any formal
system X using merely modus ponens and the supposition that X satis�es
the Deduction Theorem. Thus consider as an example:

(1) A;B ` A De�nition of `
(2) A ` B ! A (1), Deduction Theorem
(3) ` A! (B ! A) (2), Deduction Theorem:

Thus the most problematic axiom of H! has a simple `a priori deduc-
tion', indeed one using only the Deduction Theorem, not even modus ponens
(which is though needed for more sane axioms like Self-Distribution).

It might be thought that the above considerations provide a very powerful
argument for motivating intuitionistic logic (or at least some logic having he
same implicational fragment) as The One True Logic. For what else should
an implication do but satisfy modus ponens and the Deduction Theorem?

But it turns out that there is another sensible notion of deduction. This is
what is sometimes called a relevant deduction.(Anderson and Belnap [1975,
Section 22.2.1] claim that this is the only sensible notion of deduction, but
we need not follow them in that). If there is anything that sticks out in the
a priori deduction of Positive Paradox above it is that in (1), B was not
used in the deduction of A.

A number of researchers have been independently bothered by this point
and have been motivated to study a relevant implication that goes hand in
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hand with a notion of relevant deduction. This, in this manner Moh [1950]

and Church [1951b] came up with what is in e�ect R!. And Anderson
and Belnap [1975, p. 261] say \In fact, the search for a suitable deduction
theorem for Ackermann's systems : : : provided the impetus leading us to
the research reported in this book." This research program begun in the late
1950s took its starting point in the system(s) of Ackermann [1956], and the
bold stroke separating the Anderson{Belnap system E from Ackermann's
system �0 was basically the dropping of Ackermann's rule  so as to have
an appropriate deduction theorem (cf. Section 2.1).

Let us accordingly de�ne a deduction of B from A1; : : : ; An to be relevant
with respect to a given hypothesis Ai just in case Ai is actually used in
the given deduction of B in the sense (paraphrasing [Church, 1951b]) that
there is a chain of inferences connecting Ai with the �nal formula B. This
last can be made formally precise in any number of ways, but perhaps the
most convenient is to ag Ai with say a ] and to pass the ag along in
the deduction each time modus ponens is applied to two items at least one
of which is agged. It is then simply required that the last step of the
deduction (B) be agged. Such devices are familiar from various textbook
presentations of classical predicate calculus when one wants to keep track
whether some hypothesis Ai(x) was used in the deduction of some formula
B(x) to which one wants to apply Universal Generalisation.

We shall de�ne a deduction of B from A1; : : : ; An to be relevant sim-
pliciter just in case it is relevant with respect to each hypothesis Ai. A
practical way to test for this is to ag each Ai with a di�erent ag (say the
subscript i) and then demand that all of the ags show up on the last step
B.

We can now state a version of the

Relevant Deduction Theorem (Moh, Church). If there is a deduction
in R! of B from A1; : : : ; An; A that is relevant with respect to A, then there
is a deduction in R! of A ! B from A1; : : : ; An. Furthermore the new
deduction will be `as relevant' as the old one, i.e. any Ai that was used in
the given deduction will be used in the new deduction.

Proof. Let the given deduction be B1; : : : ; Bk, and let it be given with a
particular analysis as to how each step is justi�ed. By induction we show
for each Bi that if A was used in obtaining Bi (Bi is agged), then there is
a deduction of A! Bi from A1; : : : ; An, and otherwise there is a deduction
of Bi from those same hypotheses. The tedious business of checking that
the new deduction is as relevant as the old one is left to the reader. We
divide up cases depending on how the step Bi is justi�ed.

Case 1. Bi was justi�ed as a hypothesis. Then neither Bi is A or it
is some Aj . But A ! A is an axiom of R! (and hence deducible from
A1; : : : ; An), which takes care of the �rst alternative. And clearly on the
second alternative Bi is deducible from A1; : : : ; An (being one of them).
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Case 2. Bi was justi�ed as an axiom. Then A was not used in obtaining
Bi, and of course Bi is deducible (being an axiom).

Case 3. Bi was justi�ed as coming from preceding steps Bj ! Bi and
Bj by modus ponens. There are four subcases depending on whether A was
used in obtaining the premises.

Subcase 3.1. A was used in obtaining both Bj ! Bi and Bj . Then by in-
ductive hypothesis A1; : : : ; An `R! A ! (Bj ! Bi) and A1; : : : ; An `R!
A! Bj . So A! B may be obtained using the axiom of Self-Distribution.

Subcase 3.2. A was used in obtaining Bj ! Bi but not Bj . Use the
axiom of Permutation to obtain A! Bi from A! (Bj ! Bi) and Bj .

Subcase 3.3. A was not used in obtaining Bj ! Bi but was used for Bj .
Use the axiom of Pre�xing to obtain A! Bi from Bj ! Bi and A! Bj .

Subcase 3.4. A was not used in obtaining either Bj ! Bi nor Bj . Then
Bi follows form these using just modus ponens.

Incidentally, R! can easily be veri�ed to be the minimal pure implica-
tional calculus having modus ponens as sole rule and satisfying the Relevant
Deduction Theorem, since each of the axioms invoked in the proof of this
theorem can be easily seen to be theorems in any such system (cf. the next
section for an illustration of sorts).

There thus seem to be at least two natural competing pure implicational
logics R! and H!, di�ering only in whether one wants one's deductions
to be relevant or not.5 �

Where does the Anderson{Belnap's [1975] preferred system E! �t into
all of this? The key is that the implication of E! is both a strict and
a relevant implication (cf. Section 1.3 for some subtleties related to this
claim). As such, and since Anderson and Belnap have seen �t to give it
the modal structure of the Lewis system S4, it is appropriate to recall the
appropriate deduction theorem for S4.

Modal Deduction Theorem [Barcan Marcus, 1946] If A1 ! B1; : : : ; An !
Bn; A `S4 B (! here denotes strict implication), then A1 ! B1; : : : ; An !
Bn `S4 A! B.

The idea here is that in general in order to derive the strict (necessary)
implication A ! B one must not only be able to deduce B from A and
some other hypotheses but furthermore those other hypotheses must be
supposed to be necessary. And in S4 since Ai ! Bj is equivalent to �(Ai !
Bj), requiring those additional hypotheses to be strict implications at least
suÆces for this.

Thus we could only hope that E! would satisfy the

5This seems to di�er from the good-humoured polemical stand of Anderson and Belnap
[1975, Section 22.2.1], which says that the �rst kind of `deduction', which they call
(pejoratively) `OÆcial deduction', is no kind of deduction at all.
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Modal Relevant Deduction Theorem [Anderson and Belnap, 1975]

If there is a deduction in E! of B from A1 ! B1; : : : ; An ! Bn; A that is
relevant with respect to A, then there is a deduction in E! of A! B from
A1 ! B1; : : : ; An ! Bn that is as relevant as the original.

The proof of this theorem is somewhat more complicated than its un-
modalised counterpart which we just proved (cf. [Anderson and Belnap,
1975, Section 4.21] for a proof).

We now examine a subtle distinction (stressed by Meyer|see, for ex-
ample, [Anderson and Belnap, 1975, pp. 394{395]), postponed until now
for pedagogical reasons. We must ask, how many hypotheses can dance
on the head of a formula? The question is: given the list of hypotheses
A, A, do we have one hypothesis or two? When the notion of a deduc-
tion was �rst introduced in this section and a `list' of hypotheses � was
mentioned, the reader would naturally think that this was just informal
language for a set. And of course the set fA;Ag is identical to the set
fAg. Clearly A is relevantly deducible from A. The question is whether
it is so deducible from A;A. We have then two di�erent criteria of use,
depending on whether we interpret hypotheses as grouped together into
lists that distinguish multiplicity of occurrences (sequences)6 or sets. This
issue has been taken up elsewhere of late, with other accounts of deduc-
tion appealing to `resource consciousness' [Girard, 1987; Troelstra, 1992;
Schroeder-Heister and Do�sen, 1993] as motivating some non-classical log-
ics. Substructural logics in general appeal to the notion that the number of
times a premise is used, or even more radically, the order in which premises
are used, matter.

At issue in R and its neighbours is whether A! (A! A) is a correct rel-
evant implication (coming by two applications of `The Deduction Theorem'
from A;A ` A). This is in fact not a theorem of R, but it is the character-
istic axiom of RM (cf. Section 1.3). So it is important that in the Relevant
Deduction Theorem proved for R! that the hypotheses A1; : : : ; An be un-
derstood as a sequence in which the same formula may occur more than
once. One can prove a version of the Relevant Deduction Theorem with
hypotheses understood as collected into a set for the system RMO!, ob-
tained by adding A! (A! A) to R! (but the reader should be told that
Meyer has shown that RMO!, is not the implicational fragment of RM,
cf. [Anderson and Belnap, 1975, Section 8.15]).7

6Sequences are not quite the best mathematical structures to represent this grouping
since it is clear that the order of hypotheses makes no di�erence (at least in the case of
R). Meyer and McRobbie [1979] have investigated `�resets' (�nitely repeatable sets) as
the most appropriate abstraction.

7Arnon Avron has defended this system, RMO!, as a natural way to charac-
terise relevant implication [Avron, 1986; Avron, 1990a; Avron, 1990b; Avron, 1990c;
Avron, 1992]. In Avron's system, conjunction and disjunction are intensional connec-
tives, de�ned in terms of the implication and negation of RMO!. As a result, they do
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Another consideration pointing to the naturalness of R! is its connection
to the �I-calculus. A formula is a theorem of R! if and only if it is the
type of a closed term of the �I-calculus as de�ned by Church. A �I term is
a � term in which every lambda abstraction binds at least one free variable.
So, �x:�y:xy has type A ! �

(A ! B) ! B
�
, and so, is a theorem of R!,

while �x:�y:x, has type A ! (B ! A), which is an intuitionistic theorem,
but not an R! theorem. This is reected in the � term, in which the �y
does not bind a free variable.

We now briey discuss what happens to deduction theorems when the
pure implication systems R! and E! are extended to include other con-
nectives, especially ^. R will be the paradigm, its situation extending
straight-forwardly to E. The problem is that the full system R seems not
to be formulable with modus ponens as the sole rule; there is also need for
adjunction (A;B ` A ^B) (cf. Section 1.3).

Thus when we think of proving a version of the Relevant Deduction Theo-
rem for the full system R, it would seem that we are forced to think through
once more the issue of when a hypothesis is used, this time with relation to
adjunction. It might be thought that the thing to do would be to pass the
ag ] along over an application of adjunction so that A^B ends up agged
if either of the premises A or B was agged, in obvious analogy with the
decision concerning modus ponens.

Unfortunately, that decision leads to disaster. For then the deduction
A;B ` A ^ B would be a relevant one (both A and B would be `used'),
and two applications of `The Deduction Theorem' would lead to the thesis
A! (B ! A ^B), the undesirability of which has already been remarked.

A more appropriate decision is to count hypotheses as used in obtaining
A^B just when they were used to obtain both premises. This corresponds to
the axiom of Conjunction Introduction (C ! A)^(C ! B)! (C ! A^B),
which thus handles the case in the inductive proof of the deduction theorem
when the adjunction is applied. This decision may seem ad hoc (perhaps
`use' simpliciter is not quite the right concept), but it is the only decision to
be made unless one wants to say that the hypothesis A can (in the presence
of the hypothesis B) be `used' to obtain A^B and hence B (passing on the
ag from A this way is something like laundering dirty money).

This is the decision that was made by Anderson and Belnap in the con-
text of natural deduction systems (see next section), and it was applied by
Kron [1973; 1976] in proving appropriate deduction theorems for R, E (and
T). It should be said that the appropriate Deduction Theorem requires si-
multaneous agging of the hypothesis (distinct ags being applied to each
formula occurrence, say using subscripts in the manner of the `practical
suggestion' after our de�nition of relevant deduction for R!), with the re-
quirement that all of the subscripts are passed on to the conclusion. So the

not have all of the distributive lattice properties of traditional relevance logics.
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Deduction Theorem applies only to fully relevant deductions, where every
premise is used (note that no such restriction was placed on the Relevant
Deduction Theorem for R!).

An alternative stated in Meyer and McRobbie [1979] would be to adjust
the de�nition of deduction, modifying clause (2) so as to allow as a step in
a deduction any theorem (not just axiom) of R, and to restrict clause (3) so
that the only rule allowed in moving to later steps is modus ponens.8 This
is in e�ect to restrict adjunction to theorems, and reminds one of similar
restrictions in the context of deduction theorems of similarly restricting the
rules of necessitation and universal generalisation. It has the virtue that
the Relevant Deduction Theorem and its proof are the same as for R!.
(Incidentally, Meyer's and Kron's sense of deduction coincide when all of
A1; : : : ; An are used in deducing B; this is obvious in one direction, and less
than obvious in the other.)

There are yet two other versions of the deduction theorem that merit
discussion in the context of relevance logic (relevance logic, as Meyer often
points out, allows for many distinctions).

First in Belnap [1960b] and Anderson and Belnap [1975], there is a
theorem (stated for E, but we will state it for our paradigm R) called
The Entailment Theorem, which says that A1; : : : ; An `entails' B i� `R
(A1 ^ : : : ^ An) ! B. A formula B is de�ned in e�ect to be entailed by

hypothesis A1; : : : ; An just in case there is a deduction of B using their con-
junction A1 ^ : : :^An. Adjunction is allowed, but subject to the restriction
that the conjunctive hypothesis was used in obtaining both premises. The
Entailment Theorem is clearly implied by Kron's version of the Deduction
Theorem.

The last deduction theorem for R we wish to discuss is the

Enthymematic Deduction Theorem (Meyer, Dunn and Leblanc [1974]).
If A1; : : : ; An; A `R B, then A1; : : : ; An `R A ^ t! B.

Here ordinary deducibility is all that is at issue (no insistence on the
hypotheses being used). It can either be proved by induction, or cranked
out of one of the more relevant versions of the deduction theorem. Thus it
falls out of the Entailment Theorem that

`R X ^ A ^ T ! B;

where X is the conjunction of A1; : : : ; An, and T is the conjunction of all
the axioms of R used in the deduction of B. But since `R t! T , we have
`R X ^ A ^ t! B.

8Of course this requires we give an independent characterisation of proof (and theo-
rem), since we can no longer de�ne a proof as a deduction from zero premisses. We thus
de�ne a proof as a sequence of formulas, each of which is either an axiom or follows from
preceding items by either modus ponens or adjunction (!).
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However, the following R theorem holds:

`R (X ^ A ^ t! B)! (X ^ t! (A ^ t! B)):

So `R X ^ t! (A ^ t! B), which leads (using `R t) to X `R A ^ t! B,
which dissolving the conjunction gives the desired

A1; : : : ; An `R A ^ t! B:

In view of the importance of the notion, let us symbolise A ^ t ! B
as A !t B. This functions as a kind of `enthymematic implication' (A
and some truth really implies B) and there will be more about Anderson,
Belnap and Meyer's investigations of this concept in Section 1.7. Let us
simply note now that in the context of deduction theorems, it functions like
intuitionistic implication, and allows us in R! to have two di�erent kinds
of implication, each well motivated in its relation to the two di�erent kinds
of deducibility (ordinary and relevant).9 For a more extensive discussion
of deduction theorems in relevance logics and related systems, more recent
papers by Avron [1991] and Brady [1994] should be consulted.

1.5 Natural Deduction Formulations

We shall be very brief about these since natural deduction methods are
amply discussed by Anderson and Belnap [1975], where such methods in fact
are used s a major motivation for relevance logic. Here we shall concentrate
on a natural deduction system NR for R.

The main idea of natural deduction (cf. Chapters [[were I.1 and I.2]] of the
Handbook) of course is to allow the making of temporary hypotheses, with
some device usually being provided to facilitate the book-keeping concerning
the use of hypotheses (and when their use is `discharged'). Several textbooks
(for example, [Suppes, 1957] and [Lemmon, 1965])10 have used the device
of in e�ect subscripting each hypothesis made with a distinct numeral, and
then passing this numeral along with each application of a rule, thus keeping
track of which hypothesis are used. When a hypothesis is discharged, the
subscript is dropped. A line obtained with no subscripts is a `theorem' since
it depends on no hypotheses.

Let us then let �; �, etc. range over classes of numerals. The rules for !
are then naturally:

A! B�

A�

B�[�

[!E]

Afkg
...
B�

A! B��fkg (provided k 2 �)

[!I ]

9In E enthymematic implication is like S4 strict implication. See [Meyer, 1970a].
10The idea actually originates with [Feys and Ladri�ere, 1955].
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Two fussy, really incidental remarks must be made. First, in the rule !E
it is to be understood that the premises need not occur in the order listed,
nor need they be adjacent to each other or to the conclusion. Otherwise we
would need a rule of `Repetition', which allows the repeating of a formula
with its subscripts as a later line. (Repetition is trivially derivable given
our `non-adjacent' understanding of!E|in order to repeat A�, just prove
A ! A and apply !E.) Second, it is understood that we have what one
might call a rule of `Hypothesis Introduction': anytime one likes one can
write a formula as a line with a new subscript (perhaps most conveniently,
the line number).

Now a non-fussy remark must be made, which is really the heart of the
whole matter. In the rule for !I , a proviso has been attached which has
the e�ect of requiring that the hypothesis A was actually used in obtaining
B. This is precisely what makes the implication relevant (one gets the
intuitionistic implication system H! if one drops this requirement). The
reader should �nd it instructive to attempt a proof of Positive Paradox
(A ! (B ! A)) and see how it breaks down for NR! (but succeeds in
NH!. The reader should also construct proofs in NR! of all the axioms
in one of the Hilbert-style formulations of R! from Section 1.3.

Then the equivalence of R! in its Hilbert-style and natural deduction
formulations is more or less self-evident given the Relevant Deduction The-
orem (which shows that the rule! I can be `simulated' in the Hilbert-style
system, the only point at issue).

Indeed it is interesting to note that Lemmon [1965], who seems to have
the same proviso on !I that we have for NR! (his actual language is
a bit informal), does not prove Positive Paradox until his second chapter
adding conjunction (and disjunction) to the implication-negation system
he developed in his �rst chapter. His proof of Positive Paradox depends
�nally upon an `irrelevant' ^I rule. The following is perhaps the most
straightforward proof in his system (di�ering from the proof he actually
gives):

(1) A1 Hyp
(2) B2 Hyp
(3) A ^ B1;2 1; 2;^I?
(4) A1;2 3;^E
(5) B ! A1 2; 4;! I
(6) A! (B ! A) 1; 5;! I .

We think that the manoeuvre used in getting B's 2 to show up attached to
A in line (4) should be compared to laundering dirty money by running it
through an apparently legitimate business. The correct `relevant' versions
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of the conjunction rules are instead

A�

B�

A ^ B�

[^I ]
A ^ B�

A�

A ^ B�

B�
[^E]

What about disjunction? In R (also E, etc.) one has de Morgan's Laws
and Double Negation, so one can simply de�ne A _B = :(:A ^ :B). One
might think that settling down in separate int-elim rules for _ would then
only be a matter of convenience. Indeed, one can �nd in [Anderson and
Belnap, 1975] in e�ect the following rules:

A�

A _ B�

B�

A _B�
[_I ]

A _ B�

...
Ak

...
C�[fkg
Bh

...
C�[fhg
C�[�

[_E]

But (as Anderson and Belnap point out) these rules are insuÆcient. >From
them one cannot derive the following

A ^ (B _ C)�
Distribution:

(A ^ B) _ C�
And so it must be taken as an additional rule (even if disjunction is de�ned
from conjunction and negation).

This is clearly an unsatisfying, if not unsatisfactory, state of a�airs. The
customary motivation behind int-elim rules is that they show how a connec-
tive may be introduced into and eliminated from argumentative discourse
(in which it has no essential occurrence), and thereby give the connective's
role or meaning. In this context the Distribution rule looks very much to
be regretted.

One remedy is to modify the natural deduction system by allowing hy-
potheses to be introduced in two di�erent ways, `relevantly' and `irrele-
vantly'. The �rst way is already familiar to us and is what requires a
subscript to keep track of the relevance of the hypothesis. It requires that
the hypotheses introduced this way will all be used to get the conclusion.
The second way involves only the weaker promise that at least some of the
hypotheses so introduced will be used. This suggestion can be formalised by
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allowing several hypotheses to be listed on a line, but with a single relevance
numeral attached to them as a bunch. Thus, schematically, an argument of
the form

(1) A;B1

(2) C;D2

...
(k) E1;2

should be interpreted as establishing

A ^ B ! (C ^D ! E):

Now the natural deduction rules must be stated in a more general form
allowing for the fact that more than one formula can occur on a line. Key
among these would be the new rule:

�; A _ B�

...
�; Ak

...
��[fkg

�; Bl

...
��[flg

��[�

[_E0]

It is fairly obvious that this rule has Distribution built into it. Of course,
other rules must be suitably modi�ed. It is easiest to interpret the formulas
on a line as grouped into a set so as not to have to worry about `structural
rules' corresponding to the commutation and idempotence of conjunction.

The rules !I;!E;_I;_E;^I , and ^E can all be left as they were (or
except for !I and !E, trivially generalised so as to allow for the fact that
the premises might be occurring on a line with several other `irrelevant'
premises), but we do need one new structural rule:

��
��

�;��

[Comma I ]

Once we have this it is natural to take the conjunction rules in `Ketonen
form':

�; A;B�
[^I 0]

�; A ^B�
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�; A ^B�
[^E0]

�; A;B�

with the rule

�;��
[Comma E]

��

It is merely a tedious exercise for the reader to show that this new system
N 0R is equivalent to NR. Incidentally, N 0R was suggested by reection
upon the Gentzen System LR+ of Section 4.9.

Before leaving the question of natural deduction for R, we would like to
mention one or two technical aspects. First, the system of Prawitz [1965]

di�ers from R in that it lacks the rule of Distribution. This is perhaps
compensated for by the fact that Prawitz can prove a normal form theorem
for proofs in his system. A di�erent system yet is that of [Pottinger, 1979],
based on the idea that the correct ^I rule is

A�

B�

A ^ B�[�

He too gets a normal form theorem. We conjecture that some appropriate
normal form theorem is provable for the system N 0R+ on the well-known
analogy between cut-elimination and normalisation and the fact that cut-
elimination has been proven for LR+ (cf. Section 4.9). Negation though
would seem to bring extra problems, as it does when one is trying to add it
to LR+.

One last set of remarks, and we close the discussion of natural deduction.
The system NR above di�ers from the natural deduction system for R
of Anderson and Belnap [1975]. Their system is a so-called `Fitch-style'
formalism, and so named FR. The reader is presumed to know that in
this formalism when a hypothesis is introduced it is thought of as starting
a subproof, and a line is drawn along the left of the subproof (or a box is
drawn around the subproof, or some such thing) to demarcate the scope
of the hypothesis. If one is doing a natural deduction system for classical
or intuitionistic logic, subproofs or dependency numerals can either one be
used to do essentially the same job of keeping track the use of hypotheses
(though dependency numerals keep more careful track, and that is why they
are so useful for relevant implication).

Mathematically, a Fitch-style proof is a nested structure, representing
the fact that subproofs can contain further subproofs, etc. But once one
has dependency numerals, this extra structure, at least for R, seems otiose,
and so we have dispensed with it. The story for E is more complex, since
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on the Anderson and Belnap approach E di�ers from R only in what is
allowed to be `reiterable' into subproof. Since implication in E is necessary
as well as relevant, the story is that in deducing B from A in order to show
A ! B, one should only be allowed to use items that have been assumed
to be necessarily true, and that these can be taken to be formulas of the
form C ! D. So only formulas of this form can be reiterated for use in the
subproof from A to B. Working out how best to articulate this idea using
only dependency numerals (no lines, boxes, etc.) is a little messy. This
concern to keep track of how premises are used in a proof by way of labels
has been taken up in a general way by recent work on Labelled Deductive
Systems [D'Agostino and Gabbay, 1994; Gabbay, 1997].

We would be remiss not to mention other formulations of natural deduc-
tion systems for relevance logics and their cousins. A di�erent generalisa-
tion of Hunter's natural deduction systems (which follows more closely the
Gentzen systems for positive logics | see Section 4.9) is in [Read, 1988;
Slaney, 1990].11

1.6 Basic Formal Properties of Relevance Logic

This section contains a few relatively simple properties of relevance logics,
proofs for which can be found in [Anderson and Belnap, 1975]. With one
exception (the `Ackermann Properties'|see below), these properties all hold
for both the system R and E, and indeed for most of the relevance logics
de�ned in Section 1.3. For simplicity, we shall state these properties for
sentential logics, but appropriate versions hold as well for their �rst-order
counterparts.

First we examine the Replacement Theorem For both R and E,

` (A$ B) ^ t! (�(A)$ �(B)):

Here �(A) is any formula with perhaps some occurrences of A and �(B) is
the result of perhaps replacing one or more of those occurrences by B. The
proof is by a straightforward induction on the complexity of �(A), and one
clear role of the conjoined t is to imply � ! � when �(= �(A)) contains
no occurrences of A, or does but none of them is replaced by B. It might
be thought that if these degenerate cases are ruled out by requiring that
some actual occurrence of A be replaced by B, then the need for t would
vanish. This is indeed true for the implication-negation (and of course the
pure implication) fragments of R and E, but not for the whole systems in
virtue of the non-theoremhood of what V. Routley has dubbed `Factor':

11The reader should be informed that still other natural deduction formalisms for R
of various virtues can be found in [Meyer, 1979b] and [Meyer and McRobbie, 1979].
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1. (A! B)! (A ^ �! B ^ �).

Here the closest one can come is to

2. (A! B) ^ t! (A ^ �! B ^ �),

the conjoined g giving the force of having � ! � in the antecedent, and
the theorem (A ! B) ^ (� ! �) ! (A ^ � ! B ^ �) getting us home.
(2) of course is just a special case of the Replacement Theorem. Of more
`relevant' interest is the

Variable Sharing Property. If A! B is a theorem of R (or E), then
there exists some sentential variable p that occurs in both A and B. This
is understood by Anderson and Belnap as requiring some commonality of
meaning between antecedent and consequent of logically true relevant impli-
cations. The proof uses an ingenious logical matrix, having eight values, for
which see [Anderson and Belnap, 1975, Section 22.1.3]. There are discussed
both the original proof of Belnap and an independent proof of Don�cenko,
and strengthening by Maksimova. Of modal interest is the

Ackermann Property. No formula of the form A ! (B ! C) (A con-
taining no !) is a theorem of E. The proof again uses an ingenious matrix
(due to Ackermann) and has been strengthened by Maksimova (see [Ander-
son and Belnap, 1975, Section 22.1.1 and Section 22.1.2]) (contributed by
J. A. Co�a) on `fallacies of modality'.

1.7 First-degree Entailments

A zero degree formula contains only the connectives ^;_, and :, and can
be regarded as either a formula of relevance logic or of classical logic, as one
pleases. A �rst degree implication is a formula of the form A ! B, where
both A and B are zero-degree formulas: Thus �rst degree implications can
be regarded as either a restricted fragment of some relevance logic (say R
or E) or else as expressing some metalinguistic logical relation between two
classical formulas A and B. This last is worth mention, since then even a
classical logician of Quinean tendencies (who remains unconverted by the
considerations of Section 1.2 in favour of nested implications) can still take
�rst degree logical relevant implications to be legitimate.

A natural question is what is the relationship between the provable �rst-
degree implications of R and those of E. It is well-known that the corre-
sponding relationship between classical logic and some normal modal logic,
say S4 (with the ! being the material conditional and strict implication,
respectively), is that they are identical in their �rst degree fragments. The
same holds of R and E (cf. [Anderson and Belnap, 1975, Section 2.42]).

This fragment, which we shall call Rfde (Anderson and Belnap [1975] call
it Efde) is stable (cf. [Anderson and Belnap, 1975, Section 7.1]) in the sense
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that it can be described from a variety of perspectives. For some semantical
perspectives see Sections 3.3 and 3.4. We now consider some syntactical
perspectives of more than mere `orthographic' signi�cance.

The perhaps least interesting of these perspectives is a `Hilbert-style'
presentation of Rfde (cf. [Anderson and Belnap, 1975, Section 15.2]). It
has the following axioms:

3. A ^ B ! A;A ^ B ! B Conjunction Elimination

4. A! A _B;B ! A _ B Disjunction Introduction

5. A ^ (B _ C)! (A ^ B) _ C Distribution

6. A! ::A;::A ! A Double Negation

It also has gobs of rules:

7. A! B;B ! C ` A! C Transitivity

8. A! B;A! C ` A! B ^ C Conjunction Introduction

9. A! C;B ! C ` A _B ! C Disjunction Introduction

10. A! B ` :B ! :A Contraposition.

More interesting is the characterisation of Anderson and Belnap [1962b;
1975] of Rfde as `tautological entailments'. The root idea is to consider �rst
the `primitive entailments'.

11. A1 ^ : : : ^Am ! B1 _ : : : _Bn,

where each Ai and Bj is either a sentential variable or its negate (an `atom')
and make it a necessary and suÆcient criterion for such a primitive entail-
ment to hold that same Ai actually be identically the same formula as some
Bj (that the entailment be `tautological' in the sense that Ai is repeated).
This rules out both

12. p ^ :p! q,

13. p! q _ :q,
where there is no variable sharing, but also such things as

14. p ^ :p ^ q ! :q,
where there is (of course all of (12){(14) are valid classically, where a prim-
itive entailment may hold because of atom sharing or because either the
antecedent is contradictory or else the consequent is a logical truth).

Now the question remains as to which non-primitive entailments to count
as valid. Both relevance logic and classical logic agree on the standard
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count as valid. Both relevance logic and classical logic agree on the stan-
dard `normal form equivalences': commutation, association, idempotence,
distribution, double negation, and de Morgan's laws. So the idea is, given
a candidate entailment A! B, by way of these equivalences, A can be put
into disjunctive normal form and B may be put into conjunctive normal
form, reducing the problem to the question of whether the following is a
valid entailment:

15. A1 _ � � � _ Ak ! B1 ^ � � � ^ Bh.

But simple considerations (on which both classical and relevance logic
agree) having to do with conjunction and disjunction introduction and elim-
ination show that (15) holds if for each disjunct Ai and conjunct Bj , the
primitive entailment Ai ! Bj is valid. For relevance logic this means that
there must be atom sharing between the conjunction Ai and the disjunction
Bj .

This criterion obviously counts the Disjunctive Syllogism

16. :p ^ (p _ q)! q,

as an invalid entailment, for using distribution to put its antecedent into
disjunctive normal form, (16) is reduced to

160 (:p ^ p) _ (:p ^ q)! q.

But by the criterion of tautological entailments,

17. :p ^ p! q,

which is required for the validity of (160), is rejected.
Another pleasant characterisation of Rfde is contained in [Dunn, 1976a]

using a simpli�cation of Je�rey's `coupled trees' method for testing clas-
sically valid entailments. The idea is that to test A ! B one works out
a truth-tree for A and a truth tree for B. One then requires that every
branch in the tree for A `covers' some branch in the tree for B in the sense
that every atom in the covered branch occurs in the covering branch. This
has the intuitive sense that every way in which A might be true is also a
way in which B would be true, whether these ways are logically possible
or not, since `closed' branches (those containing contradictions) are not ex-
empt as they are in Je�rey's method for classical logic. This coupled-trees
approach is ultimately related to the Anderson{Belnap tautological entail-
ment method, as is also the method of [Dunn, 1980b] which explicates an
earlier attempt of Levy to characterise entailment (cf. also [Clark, 1980]).

1.8 Relations to Familiar Logics

There is a sense in which relevance logic contains classical logic.
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ZDF Theorem (Anderson and Belnap [1959a]). The zero-degree formulas
(those containing only the connectives ^;_;:) provable in R (or E) are
precisely the theorems of classical logic.

The proof went by considering a `cut-free' formulation of classical logic
whose axioms are essentially just excluded middles (which are theorems of
R / E) and whose rules are all provable �rst-degree relevant entailments
(cf. Section 2.7). This result extends to a �rst-order version [Anderson and
Belnap Jr., 1959b]. (The admissibility of  (cf. Section 2) provides another
route to the proof to the ZDF Theorem.)

There is however another sense in which relevance logic does not contain
classical logic:

Fact (Anderson and Belnap [1975, Section 25.1]). R (and E) lack as a
derivable rule Disjunctive Syllogism:

:A;A _ B ` B:

This is to say there is no deduction (in the standard sense of Section 1.4)
of B from :A and A _ B as premises. This is of course the most notori-
ous feature of relevance logic, and the whole of Section 2 is devoted to its
discussion.

Looking now in another direction, Anderson and Belnap [1961] began
the investigation of how to translate intuitionistic and strict implication
into R and E, respectively, as `enthymematic' implication. Anderson and
Belnap's work presupposed the addition of propositional quanti�es to, let us
say R, with the subsequent de�nition of `A intuitionistically implies B' (in
symbols A � B) as 9p(p^ (A^p ! B)). This has the sense that A together
with some truth relevantly implies B, and does seem to be at least in the
neighbourhood of capturing Heyting's idea that A � B should hold if there
exists some `construction' (the p) which adjoined to A `yields' (relevant
implication) B. Meyer in a series of papers [1970a; 1973] has extended
and simpli�ed these ideas, using the propositional constant t in place of
propositional quanti�cation, de�ning A � B as A^t! B. If a propositional
constant F for the intuitionistic absurdity is introduced, then intuitionistic
negation can be de�ned in the style of Johansson as :A =df A � F . As
Meyer has discovered one must be careful what axiom one chooses to govern
F . F ! A or even F � A is too strong. In intuitionistic logic, the absurd
proposition intuitionistically implies only the intuitionistic formulas, so the
correct axiom is F � A�, where A� is a translation into R of an intuitionistic
formula. Similar translations carry S4 into E and classical logic into R.
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2 THE ADMISSIBILITY OF 

2.1 Ackermann's Rule 

The �rst mentioned problem for relevance logics in Anderson's [1963] sem-
inal `open problems' paper is the question of `the admissibility of '. To
demystify things a bit it should be said that  is simply modus ponens for
the material conditions (:A _ B):

1.
A

:A _ B
:

B

It was the third listed rule of Ackermann's [1956] system of strenge Imp-
likation (�; �; ; 1st, 2nd, 3rd). This was the system Anderson and Belnap
`tinkered with' to produce E (Ackermann also had a rule Æ which they
replaced with an axiom).

The major part of Anderson and Belnap's `tinkering' was the extremely
bold step of simply deleting  as a primitive rule, on the well- motivated
ground that the corresponding object language formula

2. A ^ (:A _ B)! B

is not a theorem of E.

It is easy to see that (2) could not be a theorem of either E or R, since
it is easy to prove in those systems

3. A ^ :A! A ^ (:A _ B)

(largely because :A ! :A _ B is an instance of an axiom), and of course
(3) and (2) yield by transitivity the `irrelevancy'

4. A ^ :A! B.

The inference (1) is obviously related to the Stoic principle of the dis-
junctive syllogism:

5.
:A
A _ B

:
B

Indeed, given the law of double negation (and replacement) they are equiv-
alent, and double negation is never at issue in the orthodox logics. Thus E
and R reject

6. :A ^ (A _ B)! B
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as well as (2).
This rejection is typically the hardest thing to swallow concerning rele-

vance logics. One starts o� with some pleasant motivations about relevant
implication and using subscripts to keep track of whether a hypothesis has
actually been used (as in Section 1.5), and then one comes to the point
where one says `and of course we have to give up the disjunctive syllogism'
and one loses one's audience. Please do not stop reading! We shall try to
make this rejection of disjunctive syllogism as palatable as we can.

(See [Belnap and Dunn, 1981; Restall, 1999] for related discussions, and
also discussion of [Anderson and Belnap, 1975, Section 16.1]); see Burgess
[1981] for an opposing point of view.

2.2 The Lewis `Proof'

One reason that disjunctive syllogism has �gured so prominently int he
controversy surrounding relevance logic is because of the use it was put to by
C. I. Lewis [Lewis and Langford, 1932] in his so-called `independent proof':
that a contradiction entails any sentence whatsoever (taken by Anderson
and Belnap as a clear breakdown of relevance). Lewis's proof (with our
notations of justi�cation) goes as follows:

(1) p ^ :p
(2) p 2, ^-Elimination
(3) :p 1, ^-Elimination
(4) p _ q 2, _-Introduction
(5) q 3, 4 disjunctive syllogism

Indeed one can usefully classify alternative approaches to relevant implica-
tion according to how they reject the Lewis proof. Thus, e.g. Nelson rejects
^-Elimination and _-Introduction, as does McCall's connexive logic. Parry,
on the other hand, rejects only _-Introduction. Geach, and more recently,
Tennant [1994],accept each step, but says that `entailment' (relevant impli-
cation) is not transitive. It is the genius of the Anderson{Belnap approach
to see disjunctive syllogism as the culprit and the sole culprit.12

Lewis concludes his proof by saying, \If by (3), p is false; and, by (4), at
least one of the two, p and q is true, then q must be true". As is told in
[Dunn, 1976a], Dunn was saying such a thing to an elementary logic class
one time (with no propaganda about relevance logic) when a student yelled
out, \But p was the true one|look again at your assumption".

12Although this point is complicated, especially in some of their earlier writings (see,
e.g. [Anderson and Belnap Jr., 1962a]) by the claim that there is a kind of fallacy of
ambiguity in the Lewis proof. the idea is that if _ is read in the `intensional' way (as
:A ! B), then the move from (3) and (4) to (5) is ok (it's just modus ponens for
the relevant conditional), but the move from (2) to (4) is not (now being a paradox of
implication rather than ordinary disjunction introduction).
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That student had a point. Disjunctive syllogism is not obviously ap-
propriate to a situation of inconsistent information|where p is assumed
(given, believed, etc.) to be both true and false. This point has been ar-
gued strenuously in, e.g. [Routley and Routley, 1972; Dunn, 1976a] and
Belnap [1977b; 1977a]. The �rst two of these develop a semantical analysis
that lets both p and :p receive the value `true' (as is appropriate to model
the situation where p ^ :p has been assumed true), and there will be more
about these ideas in Section 3.4. The last is particularly interesting since
it extends the ideas of Dunn [1976a] so as to provide a model of how a
computer might be programmed as to make inferences from its (possibly in-
consistent) database. One would not want trivially inconsistent information
about the colour of your car that somehow got fed into the fbi's computer
(perhaps by pooled databases) to lead to the conclusion that you are Public
Enemy Number One.

We would like to add yet one more criticism of disjunctive syllogism,
which is sympathetic to many of the earlier criticisms.

We need as background to this criticism the natural deduction framework
of [Gentzen, 1934] as interpreted by [Prawitz, 1965] and others. the idea (as
in Section 1.5) is that each connective should come with rules that introduce
it into discourse(as principal connective of a conclusion) and rules that elim-
inate it from discourse (as principal connective of a premise). further the
`normalisation ideas of Prawitz, though of great technical interest and com-
plication, boil down philosophically to the observation that an elimination
rule should not be able to get out of a connective more than an introduction
rule can put into the connective. This is just the old conservation Principle,
`You can't get something for nothing', applied to logic.

The paradigm here is the introduction and elimination rules for conjunc-
tion. The introduction rule, from A;B to infer A ^ B packs into A ^ B
precisely what the elimination rule, from A ^ B to infer either A or B
(separately), then unpacks.

Now the standard introduction rule for disjunction is this: from either A
or B separately, infer A_B. We have no quarrel with an introduction rule.
an introduction rule gives meaning to a connective and the only thing to
watch out for is that the elimination rule does not take more meaning from
a connective than the introduction rule gives to it (of course, one can also
worry about the usefulness and/or naturalness of the introduction rules for
a given connective, but that (pace [Parry, 1933]) seems not an issue in the
case of disjunction.

In the Lewis `proof' above, it is then clear that the disjunctive syllogism
is the only conceivably problematic rule of inference. Some logicians (as
indicated above) have queried the inferences from (1) to (2) and (4), and
from (2) to (3), but from the point of view that we are now urging, this is
simply wrongheaded. Like Humpty Dumpty, we use words to mean what
we say. So there is nothing wrong with introducing connectives ^ and _
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via the standard introduction rules. Other people may want connectives for
which they provide di�erent introduction (and matching elimination) rules,
but that is their business. We want the standard (`extensional') senses of
^ and _.

Now the d.s. is a very odd rule when viewed as an elimination rule for _
parasitical upon the standard introduction rules (whereas the constructive
dilemma, the usual _-Elimination rule is not at all odd). Remember that
the introduction rules provide the actual inferences that are to be stored in
the connective's battery as potential inferences, perhaps later to be released
again as actual inferences by elimination rules. The problem with the dis-
junctive syllogism is that it can release inferences from _ that it just does
not contain. (In another context, [Belnap, 1962] observed that Gentzen-
style rules for a given connective should be `conservative', i.e. they should
not create new inferences not involving the given connective.)

Thus the problem with the disjunctive syllogism is just that p _ q might
have been introduced into discourse (as it is in the Lewis `proof') by _-
Introduction from p. So then to go on to infer q from p _ q and :p by the
disjunctive syllogism would be legitimate only if the inference from p;:p to
q were legitimate. But this is precisely the point at issue. At the very least
the Lewis argument is circular (and not independent).13

2.3 The Admissibility of 

Certain rules of inference are sometimes `admissible' in formal logics in
the sense that whenever the premises are theorems, so is the conclusion a
theorem, although these rules are nonetheless invalid in the sense that the
premises may be true while the conclusion is not. Familiar examples are the
rule of substitution in propositional logic, generalisation in predicate logic,
and necessitation in modal logic. Using this last as paradigm, although the
inference from A to �A (necessarily A) is clearly invalid and would indeed
vitiate the entire point of modal logic, still for the (`normal') modal logics,
whenever A is a theorem so is �A (and indeed their motivation would be
somehow askew if this did not hold).

Anderson [1963] speculated that something similar was afoot with respect
to the rule  and relevance logic. Anderson hoped for a `sort of lucky
accident', but the admissibility of  seems more crucial to the motivation
of E and R than that. Kripke [1965] gives a list of four conditions that a
propositional calculus must meet in order to have a normal characteristic
matrix, one of which is the admissibility of .14 `Normal' is meant in the

13This is a new argument on the side of Anderson and Belnap [1962b, pp. 19, 21].
14The other conditions are that it be consistent, that it contain all classical tautologies,

and that it be `complete in the sense of Halld�en'. R and E can be rather easily seen to
have the �rst two properties (see Section 1.8 for the bit about classical tautologies), but
the last is rather more diÆcult (see Section 3.11).
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sense of Church, and boils down to being able to divide up its elements into
the `true' and the `false' with the operations of conjunction, disjunction,
and negation treating truth and falsity in the style of the truth tables (a
conjunction is true if both components are true, etc.). If one thinks of
E (as Anderson surely did) as the logic of propositions with the logical
operations, and surely this should divide itself up into the true and the false
propositions.15

2.4 Proof(s) of the Admissibility of 

There are by now at least four variant proofs of the admissibility of  for
E and R. The �rst three proofs (in chronological order: [Meyer and Dunn,
1969], [Routley and Meyer, 1973] and [Meyer, 1976a]) are all basically due to
Meyer (with some help from Dunn on the �rst, and some help from Routley
on the second), and all depend on the same �rst lemma. The last proof
was obtained by Kripke in 1978 and is unpublished (see [Dunn and Meyer,
1989]).

All of the Meyer proofs are what Smullyan [1968] would call `synthetic'
in style, and are inspired by Henkin-style methods. The Kripke proof is
`analytic' in style, and is inspired by Kanger{Beth{Hintikka tableau-style
methods. In actual detail, Kripke's argument is modelled on completeness
proofs for tableau systems, wherein a partial valuation for some open branch
is extended to a total valuation. As Kripke has stressed, this avoids the
apparatus of inconsistent theories that has hitherto been distinctive of the
various proofs of 's admissibility.

We shall sketch the third of Meyer's proofs, leaving a brief description
of the �rst and second for Section 3.11. Since they depend on semantical
notions introduced there.

The strategy of all the Meyer proofs can be divided into two segments:
The Way Up and The Way Down. Of course we start with the hypotheses
that ` A and ` :A _ B, yet assume not ` B for the sake of reduction. We
shall be more precise in a moment, but The Way Up involves constructing
in a Henkin-like manner a maximal theory T (containing all the logical the-
orems) with B 62 T . The problem though is that T may be inconsistent in
the sense of having both C;:C 2 T for some formula C. (Of course this
could not happen in classical logic, for by virtue of the paradox of implica-
tion C ^ :C ! B;B would be a member of T contrary to construction.)
The Way Down �xes this by �nding in e�ect some subtheory T 0 � T that
is both complete and consistent, and indeed is a `truth set' in the sense of
[Smullyan, 1968] (Meyer has labelled it the Converse Lindenbaum Lemma).
Thus for all formulas X and Y , :X 2 T 0 i� X 62 T 0, and X _ Y 2 T 0 i� at

15This would be less obvious to Routley and Meyer [1976], and Priest [1987; 1995] who
raise the `consistency of the world' as a real problem.
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least one of X and Y is in T 0. So since :A _ B 2 T 0, at least one of :A
and B is in T 0. But since A 2 T 0, then :A is not in T 0. So B must be in
T 0.16 But T 0 is a subset of T , which was constructed to keep B out. So B
cannot be in T 0, and so by reductio we obtain B as desired.

Enough of strategy! We now collect together a few notions needed for a
more precise statement of The Way Up Lemma. Incidentally, we shall from
this point on in our discussion of  consider only the case of R. Results for
E (and a variety of neighbours) hold analogously.

By an `R-theory' we mean a set of formulas T of R closed under adjunc-
tion And logical relevant implication, i.e. such that

1. if A;B 2 T , then A ^ B 2 T ;

2. if `R A! B and A 2 T , then B 2 T .

Note that an arbitrary R-theory may lack some or all of the theorems of
R (in classical logic and most familiar logics this would be impossible be-
cause of the paradox of strict implication which says that a logical theorem
is implied by everything). We thus need a special name for those R{theories
that contain all of the R-theorems|those are called regular.17 In this sec-
tion, since we have no use of irregular theories and shall be talking only
of R, by a theory we shall always mean a regular R theory (irregular R-
theories however play a great role in the completeness theorems of Section 3
below and there we shall have to be more careful about our distinctions).

A theory T is called prime if whenever A _ B 2 T , then A 2 T or
B 2 T . The converse of this holds for any theory T in virtue of the R-
axioms A! A _B and B ! A _B and property (2). A theory T is called
complete if for every formula A;A 2 T or :A 2 T , and called consistent if
for no formula A do we have both A;:A 2 T . In virtue of the R-theorem
A _ :A, we have that all prime theories are complete. A consistent prime
theory is called normal, and it should by now be apparent that a normal
theory is a truth set in the sense of Smullyan given above.

Where � is a set of formulas, we write � `R A to mean that A is deducible
from � in the `oÆcial sense' of there being a �nite sequence B1; : : : ; Bn,

16The proof as given here would appear to use disjunctive syllogism in the meta-
language at just this point, but it can be restructured (indeed we so restructured the
original proofs [Meyer and Dunn, 1969]) so as to avoid at least such an explicit use
of disjunctive syllogism. The idea is to obtain by distribution (A 2 T 0 and A 62 T 0) or
(B 2 T 0 and B 62 T 0) from the hypothesis B 62 T 0. The whole question of a `relevant' ver-
sion of the admissibility of  is a complicated one, and admits of various interpretations.
See [Belnap and Dunn, 1981; Meyer, 1978].
17It is interesting to note for regular theories, condition (2) may be replaced with the

condition

(20) if A 2 T and (A! B) 2 T , then B 2 T , in virtue of the R-theorem A^ (A! B) !
B.
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with Bn = A and each Bi being either a member of �, or an axiom of
R, or a consequence of earlier terms by modus ponens or adjunction (in
context we shall often omit the subscript R). We write � `� A to mean
that � [ � `R A, and quite standardly we write things like �; A `R B
in place of the more formal � [ fAg `R B. Note that for any theory T ,
writing `T A in place of � `T A boils down to saying that A is a theorem of
T (A 2 T ). Where � is a set of formulas not necessarily a theory, `� A can
be thought of as saying that A is deducible from the `axioms' �. The set
fA :`� Ag is pretty intuitively the smallest theory containing the axioms
�, and we shall label it as Th(�).

We can now state and sketch a proof of the

Way Up Lemma. Suppose not `R A. Then there exists a prime theory T
such that not `T A.

Proof. Enumerate the formulas of R : X1; X2; : : : . De�ne a sequence of
sets of formulas by induction as follows.

T0 = set of theorems of R.

Ti+1 = Th(Ti [ fXi+1g) if it is not the case that Ti; Xi+1 ` A;
Ti, otherwise.

Let T be the union of all these Tn's. It is easy to see as is standard that T
is a theory not containing A. Also we can show that T is prime.

Thus suppose `T X _ Y and yet X;Y 62 T . Then it is easy to se that
since neither X nor Y could be added to the construction when their turn
came up without yielding A, we have both

1. X `T A,

2. Y `T A.

But by reasonably standard moves (R has distribution), we get

3. X _ Y `T A,

and so `T A contrary to the construction. �

The Way Down Lemma. Let T 0 be a prime theory. Then there exists a
normal theory T � T 0.

The concept we need is that of a `metavaluation' (more precisely as we
use it here a `quasi-metavaluation', but we shall not bother the reader with
such detail). The concept and its use re  may be found in [Meyer, 1976a].
(See also Meyer [1971; 1976b] for other applications.) For simplicity we
assume for a while that the only primitive connectives are :;_ and ! (^
can be de�ned via de Morgan). A metavaluation v is a function from the
set of formulas into the truth values f0; 1g, such that



38 J. MICHAEL DUNN AND GREG RESTALL

1. for a propositional variable p; v(p) = 1 i� p 2 T ;

2. v(:A) = 1 i� both (a) v(A) = 0 and (b) :A 2 T ;

3. v(A _B) = 1 i� either v(A) = 1 or v(B) = 1.

4. v(A! B) = 1 i� both (a) v(A) = 0 or v(B) = 1, and (b) A! B 2 T .

One surprising aspect of these conditions is the double condition in (2)
that must be met for :A to be assigned the value 1. Not only must (a) A
be assigned 0 (the usual `extensional condition'), but also (b) :A must be
a theorem of T (the `intensional condition'). and of course there are similar
remarks about (4). The condition in (1) also relies upon G (actually to a
lesser extent than it might seem|when both p;:p 2 T , it would not hurt
to let v(p) = 0).

We now set T 0 = fA : v(A) = 1g. The following lemma is useful, and has
an easy proof by induction on complexity of formulas (the case when A is
a negation evaluated as 0 uses the completeness of T ).

Completeness Lemma. If v(A) = 1, then A 2 T . If v(A) = 0, then
:A 2 T .

It is reasonably easy to see that T 0 is in fact a truth set. That it behaves
ok with respect to disjunction can be read right o� of clause (3) in the
de�nition of v, so we need only look at negation where the issue is whether
T 0 is both consistent and complete. It is clear from clause (2) that T 0

is consistent, but T 0 is also complete. Thus, suppose A 62 T 0, then by
the Completeness Lemma :A 2 T . This is the intensional condition for
v(:A) = 1, but our supposition that A 62 T 0 is just the extensional condition
that v(A) = 0. Hence v(:A) = 1, i.e. :A 2 T 0 as desired.

It is also reasonably easy to check that T 0 is an R-theory. It is left to
the reader to do the easy calculation that T 0 is closed under adjunction and
R-implication, i.e. that these preserve assignments by v of the value 1. Here
we will illustrate the more interesting veri�cation that the R-axioms all get
assigned the value 1. We shall not actually check all of them, but rather
consider several typical ones.

First we check suÆxing: (A ! B) ! [(B ! C) ! (A ! C)]. Suppose
v assigns it 0. Since it is a theorem of R and a fortiori of T , then it
satis�es the intensional condition and so must fail to satisfy the extensional
condition. So v(A ! B) = 1 and v((B ! C) ! (A ! C)) = 0. By the
Completeness Lemma, then (A! B) 2 T , and so by modus ponens from the
very axiom in question (SuÆxing) we have that (B ! C)! (A! C) 2 T .
So v((B ! C)! (A! C)) satis�es the intensional condition, and so must
fail to satisfy the extensional condition since it is 0. So v(B ! C) = 1
and v(A ! C) = 0. By reasoning analogous to that above (one more
modus ponens) we derive that v(A ! C) must �nally fail to satisfy the
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extensional condition, i.e. v(A) = 1 and v(C) = 0. But clearly since all of
v(A! B) = 1, v(B ! C) = 1, v(A) = 1, then by the extensional condition,
v(C) = 1, and we have a contradiction.

The reader might �nd it instructive in seeing how negation is handled
to verify �rst the intuitionistically acceptable form of the Reductio axioms
(A ! :A) ! :A, and then to verify its classical variant (used in some
axiomatisations of R), (:A ! A) ! A. The �rst is easier. Also Classical
Double Negation, ::A! A is fun.

This completes the sketch of Meyer's latest proof of the admissibility of
 for R.

2.5  for First-order Relevance Logics

The �rst proof of the admissibility of  for �rst-order R, E, etc. (which we
shall denote as RQ, etc.) was in Meyer, Dunn and Leblanc [1974], and uses
algebraic methods analogous to those used for the propositional relevance
logic in [Meyer and Dunn, 1969]. The proof we shall describe here though
will again be Meyer's metavaluation-style proof.

The basic trick needed to handle �rst-order quanti�ers is to produce this
time a �rst-order truth set. Assuming that only the universal quanti�er 8
is primitive (the existential can be de�ned: 9x =df :8x:), this means we
need

(8) 8xA 2 T i� A(a=x) 2 T for all parameters (free variables) a:

This is easily accommodated by adding a clause to the de�nition of the
metavaluation v so that

5. v(8xA) = 1 i� v(A(a=x)) = 1 for all parameters a.

This does not entirely �x things, for in proving the Completeness Lemma
we have now in the induction to consider the case when A is of the form
8xB. If v(8xB) = 1, then (by (5)), va(B(a=x)) = 1 for all parameters a.
By inductive hypothesis, for all a;B(a=x) 2 T . But, and here's the rub,
this does not guarantee that 8xB(a=x) 2 T . We need to have constructed
on The Way Up a theory T that is `!-complete' in just the sense that this
guarantee is provided. ([Meyer et al., 1974] call such a theory `rich'.) Of
course it is understood by `theory' we now mean a `regular RQ-theory',
i.e. one containing all of the axioms of RQ and closed under its rules (see
Section 1.3). Actually things can be arranged as in [Meyer et al., 1974] so
that generalisation is in e�ect built into the axioms so that the only rules
can continue to be adjunction and modus ponens.

Thus we need the following

Way Up Lemma for RQ. Suppose A is not a theorem of �rst-order RQ.
Then there exists a prime rich theory T so that A 62 T .
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This lemma is Theorem 3 of [Meyer et al., 1974], and its proof is of basi-
cally a Henkin style with one novelty. In usual Henkin proofs one can assure
!-completeness by building into the construction of T that whenever :8xB
is put in, then so is :B(a=x) for some new parameter a. This guarantees
!-completeness since if B(a) 2 T for all a, but 8xB 62 T , then by complete-
ness :8xB 2 T and so by the usual construction :B(a) 2 T for some a, and
so by consistency (??) B(a) 62 T for some a, contradicting the hypothesis
for !-completeness. But we of course have for relevance logics no guarantee
that T is consistent, as has been remarked above.

The novelty then was to modify the construction so as to keep things
out as well as put things in, though this last still was emphasised. Full
symmetry with respect to `good guys' and `bad guys' was �nally obtained
by Belnap, 18 in what is called the Belnap Extension Lemma, which shall
be stated after a bit of necessary terminology.

We shall call an ordered pair (�;�) of sets of formulas of RQ and `RQ-
pair'. We shall say that one RQ pair (�1;�1) extends another (�0;�0) if
�0 � �1 and �0 � �1. An RQ pair is de�ned to be exclusive if for no
A1; : : : ; Am 2 �; B1; : : : ; Bn 2 � do we have ` A1^� � �^Am ! B1_� � �_Bn.
It is called exhaustive if for every formula A, either A 2 � or A 2 �.19

It is now easiest to assume that ^ and 9 are back as primitive. We call a
set of formulas � _-prime (^-prime) if whenever A _ B 2 �(A ^ B 2 �),
at least one of A or B 2 � (clearly _-primeness is the same as primeness).
Analogously, we call � 9-prime (8- prime) if whenever 9xA 2 �(8xA 2 �),
then A(a=x) 2 � for some a. Given an RQ pair (�;�) we shall call �(�)
completely prime if � is both _- and 9-prime (� is both ^- and 8-prime).
the pair (�;�) is called completely prime if both � and � are completely
prime. We can now state the

Belnap Extension Lemma. Let (�;�) be an exclusive RQ pair. Then
(�;�) can be extended to an exclusive, exhaustive, completely prime RQ
pair (T; F ) in a language just like the language of RQ except for having
denumerably many new parameters.

We shall not prove this lemma here, but simply remark that it is a
surprisingly straightforward application of Henkin methods to construct a
maximal RQ-pair and show it has the desired properties (indeed it simply
symmetrises the usual Henkin construction of �rst-order classical logic).

18Belnap's result is unpublished, although he communicated it to Dunn in 1973. Dunn
circulated a write-up of it about 1975. It is cited in some detail in [Dunn, 1976d]. Gabbay
[1976] contains an independent but precise analogue for the �rst-order intuitionistic logic
with constant domain.
19We choose our terminology carefully, not calling (�;�) a `theory', not using `consis-

tency' for exclusiveness, and not using `completeness' for exhaustiveness. We do this so
as to avoid conict with our earlier (and more customary) usage of these terms and in
this we di�er on at least one term from usages on other occasions by Gabbay, Belnap, or
Dunn.
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In order to derive the RQ Way Up Lemma we simply set � = RQ
and � = fAg and extend it to the pair (T; F ) using the Belnap Extension
Lemma. It is easy to see that T is a (regular) RQ-theory, and clearly
G is prime. but also T is !-complete. Thus suppose B(a=x) 2 T for
all a, but 8xB 62 T . Then by exhaustiveness 8xB 2 FR. Then by 8-
primeness, B(a=x) 2 FR for some a. But since `RQ B(a=x) ! B(a=x),
this contradicts the exclusiveness of the pair (T; F ).

2.6  for Higher-order Relevance Logics and Relevant Arith-
metic

The whole point about  being merely an admissible rule is that it might
not hold for various extensions of F (cf. [Dunn, 1970] for actual counter
examples). Thus, as we just saw, it was an achievement to show that 
continues to e admissible in R when it is extended to include �rst-order
quanti�cation. The question of the admissibility of  naturally has great
interest when R is further extended to include theories in the foundations
of mathematics such as type theory (set theory) and arithmetic.

Meyer [1976a] contains investigations of the admissibility of  for relevant
type theory (R!). We shall report nothing in the way of detail here except
to observe that Meyer's result is invariant among various restrictions of the
formulas A in the Comprehension Axiom scheme:

9Xx+18yn(Xn+1(yn)$ A):

As for relevantly formulated arithmetic, most work has gone on in study-
ing Meyer's systems R] , R]] and their relatives, based on Peano arithmetic,
though Dunn has also considered a relevantly formulated version of Robin-
son Arithmetic [Anderson et al., 1992]. Here we will recount the results
for R] and R]] for they are rather surprising. In a nutshell,  is admis-
sible in relevant arithmetics with the in�nitary !-rule (from A(0), A(1),
A(2), : : : to infer 8xA(x)), but not without it [Friedman and Meyer, 1992;
Meyer, 1998].

The system R] is given by rewriting the traditional axioms of Peano
arithmetic with relevant implication instead of material implication in the
natural places. You get the following list of axioms

Identity y = z ! (x = y ! x = z)
Successor x0 = y0 ! x = y

x = y ! x0 = y0

0 6= x0

Addition x+ 0 = x
x+ y0 = (x + y)0

Multiplication x0 = 0
xy0 = xy + x

Induction A(0) ^ 8x�A(x)! A(x0)
�! 8xA(x)
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which you add to those of RQ in order to obtain an arithmetic theory.
The question about the admissibility of  was open for many years, until
Friedman teamed up with Meyer to show that it is not [Friedman and Meyer,
1992]. The proof does not provide a direct counterexample to . Instead, it
takes a more circuitous route. First, we need Meyer's classical containment
result for R] . When we map formulae in the extensional vocabulary of
arithmetic to the language of R] by setting �(x = y) to (x = y) _ (0 6= 0)
and leaving the rest of the map to respect truth functions (so �(A ^ B) =
�(A) ^ �(B), �(:A) = :�(A) and �(8xA) = 8x�(A)) then we have the
following theorem:

�(A) is a theorem of R] i� A is a theorem of classical Peano
arithmetic.

This is a subtle result. The proof goes through by showing, by induction,
that �(A) is equivalent either to (A^ (0 = 0))_ (0 6= 0) or to (A_ (0 6= 0))^
(0 = 0), and then that  and the classical form of induction (with material
implication in place of relevant implication) is valid for formulae of this form
in R] . Then, if we had the admissibility of  for R] , we could infer A
from �(A). (If �(A) is equivalent to (A ^ (0 = 0)) _ (0 6= 0), then we can
use 0 = 0 and  to derive A^ (0 = 0), and hence A. Similarly for the other
case).

The next signi�cant result is that not all theorems of classical Peano
arithmetic are theorems of R] . Friedman provided a counterexample, which
is simple enough to explain here. First, we need some simple preparatory
results.

� R] is a conservative extension of the theory R]+ axiomatised by the
negation free axioms of R] [Meyer and Urbas, 1986].

� If classical Peano theorem is to be provable in R] and if it contains
no negations, then it must be provable in R]+.

� Any theorem provable in R]+ must be provable in the classical positive
system PA+ which is based on classical logic, instead of R.

The proofs of these results are relatively straightforward. The next result
is due to Friedman, and it is much more surprising.

� The ring of complex numbers is a model of PA+.

The only diÆcult thing to show is that it satis�es the induction axiom.
For any formula A(x) in the vocabulary of arithmetic, the set of complex
numbers � such that A(�) is true is either �nite or co�nite. If A(x) is
atomic, then it is equivalent to a polynomial of the form f(x) = 0, and f
must either have �nitely many roots or be 0 everywhere. But the set of
either �nite or co�nite sets is closed under boolean operations, so no A(x)
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we can construct will have an extension which is neither �nite or co�nite.)
As a result, the induction axiom must be satis�ed. For if A(0) holds and
if A(x) � A(x0) holds then there are in�nitely many complex numbers �
such that A(�). So the extension of A is at least co�nite. But if there is a
point � such that A(�) fails, then so would A(� � 1), A(� � 2) and so on
by the induction step A(x) � A(x0), and this contradicts the con�nitude of
the extension of A. As a result, A(�) holds for every �.

We can then use this surprising model of positive Peano arithmetic to
construct a Peano theorem which is not a theorem of R] . It is known that
for any odd prime p, there is a positive integer y which is not a quadratic
residue mod p. That is, 9y8z:(y � z2 mod p) is provable in Peano arith-
metic. This formula can be rewritten in the language or arithmetic with
a little work. However, the corresponding formula is false in the complex
numbers, so it is not a theorem of PA+. Therefore it isn't a theorem of R]

+, and by the conservative extension result, it is not a theorem of R] . As
a consequence, R] is not closed under .

Where is the counterexample to ? Meyer's containment result provides
a proof of �(B), where B is the quadratic residue formula. The  rule would
allow us to derive B from �(B), and it is here that  must fail.

If we replace the induction axiom by the in�nitary rule !, we can prove
the admissibility of  using a modi�cation of the Belnap Extension Lemma
for the Way Up and using the standard metavaluation technique for the
Way Down. The modi�cation of the Belnap Extension Lemma is due to
Meyer [1998].

Belnap Extension Lemma, with Witness Protection:

Let (�;�) be an exclusive R]] pair in the language of arithmetic
(that is, with 0 as the only constant). Then (�;�) can be
extended to an exclusive, exhaustive, completely prime R]] pair
(T; F ) in the same language.

This lemma requires the !-rule for its proof. Consider the induction stage
in which you wish to place 8xA(x) in �i. The witness condition dictates
that there be some term t such that A(t) also appear in �i. The !-rule
ensures that we can do this without the need for a new term, for if no term
000���0 could be consistently added to �i, then each A(000���0) is a consequence
of �i, and by the !-rule, so is 8xA(x), contradicting the fact that we can
add 8xA(x) to �i. So, we know that some 000���0 will do, and as a result, we
need add no new constants to form the complete theory T . The rest of the
way up lemma and the whole of the way down lemma can then be proved
with little modi�cation. (for details, see [Meyer, 1998]). Consequently,  is
admissible in R]] .

These have been surprising results, and important ones, for relevant arith-
metic is an important `test case' for accounts of relevance. It is a theory in
which we can have some fairly clear idea of what it is for one formulae to
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properly follow from another. In R] and R]] , we have 0 = 2! 0 = 4 be-
cause there is an `arithmetically appropriate' way to derive 0 = 4 from
0 = 2 | by multiplying both sides by 2. However, we cannot derive
0 = 2 ! 0 = 3, and, correspondingly, there is no way to derive 0 = 3
from 0 = 2 using the resources of arithmetic. The only way to do it within
the vocabulary is to appeal to the falsity of 0 = 3, and this is not a rele-
vantly acceptable move. 0 6= 3 ! (0 = 3 ! 0 = 2) does not have much to
recommend as pattern of reasoning which respects the canons of relevance.

We are left with important questions. Are there axiomatisable extensions
of R] which are closed under ? Can theories like R] and R]] be ex-
tended to deal with more interesting mathematical structures, while keeping
account of some useful notion of relevance? Early work on this area, from a
slightly di�erent motivation (paraconsistency, not relevance) indicates that
there are some interesting results at hand, but the area is not without its
diÆculties [Mortensen, 1995].

The admissibility of  would also seem to be of interest for relevant
type theory (even relevant second-order logic) with an axiom of in�nity (see
[Dunn, 1979b]).

One of the chief points of philosophical interest in showing the admissibil-
ity of  for some relevantly formulated version of a classical theory relates to
the question of the consistency of the classical theory (this was �rst pointed
out in Meyer, Dunn and Leblanc [1974]). As we know from G�odel's work,
interesting classical theories cannot be relied upon to prove their own con-
sistency. To exaggerate perhaps only a little, the consistency of systems like
Peano (even Robinson) arithmetic must be taken in faith.

But using relevance logic in place of classical logic in formulating such
theories gives us a new strategy of faith. It is conceivable that since rele-
vance logic is weaker than classical logic, the consistency of the resultant
theory might be easier to demonstrate. This has proved true at least in the
sense of absolute consistency (some sentence is unprovable) as shown by
[Meyer, 1976c] for Peano arithmetic using elementary methods. Classically
of course there is no di�erence between absolute consistency and ordinary
(negation) consistency (for no sentence are both A and :A provable), and
if  is admissible for the theory, then this holds for relevance logic, too. The
interesting thing then would be to produce a proof of the admissibility of
, which we know from G�odel would itself have to be non-elementary.

One could then imagine arguing with a classical mathematician in the
following Pascal's Wager sort of way [Dunn, 1980a].

Look. You have equally good reason to believe in the negation
consistency of the classical system and the (relative) complete-
ness of the relevant system. In both cases you have a non-
elementary proof which secures your belief, but which might be
mistaken. Consider the consequences in each case if it is mis-
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taken. If you are using the classical system, disaster! Since even
one contradiction classically implies everything, for each theo-
rem you have proven, you might just as well have proven its
negation. But if you are using the relevant system, things are
not so bad. For at least large classes of sentences, it can be
shown by elementary methods (Meyer's work) that not both the
sentences and their negations are theorems.

2.7 Ackermann's  and Gentzen's Cut: Gentzen Systems as
Relevance Logic

In [Meyer et al., 1974] an analogy was noted between the role that the
admissibility of  plays in relevance logic and the role that cut elimination
plays in Gentzen calculi (even those for classical systems). For the reader
unfamiliar with Gentzen calculi, this subsection will make more sense after
she has read Sections 4.6 and 4.7. The Gentzen system for the classical
propositional calculus LK with the material conditional and negation as
primitive (as is well-known, all of the other truth-functional connectives
can be de�ned from these) may be obtained by adding to the rules of LR:

!

of Section 4.7. the rule of Thinning (see Section 4.6) on both the left and
right. Gentzen also had as a primitive rule:

� ` A;B ;A ` Æ
;

�;  ` B; Æ (Cut)

which has as a special case

` A ` B
:` B

(1)

Since A ` B is derivable just when ` A ! B is derivable, and since in
classical logic A! B is equivalent to :A _ B, (1) above is in e�ect

` A ` :A _ B
;` B

(10)

which is just .
All of the Gentzen rules except Cut have the Subformula Property: Every

formula that occurs in the premises also occurs in the conclusion, though
perhaps there as a subformula. Gentzen showed via his Hauptsatz that
Cut was redundant|it could be eliminated without loss (hence this is often
called the Elimination Theorem). Later writers have tended to think of
Gentzen systems as lacking the Cut Rule, and so the Elimination Theorem
is stated as showing that Cut is admissible in the sense that whenever the
premises are derivable so is the conclusion. There is thus even a parallel
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historical development with Ackermann's rule  in relevance logic, since
writers on relevance logic have tended to follow Anderson and Belnap's
decision to drop  as a primitive rule.

Note that the Subformula Property can be thought of as a kind of rela-
tion of relevance between premises and conclusion. Thus Cut as primitive
destroys a certain kind of relevance property of Gentzen systems, just as
 as primitive destroys the relevance of premises to conclusion in relevance
logic. The analogies become even clearer if we reformulate Gentzen's system
according to the following ideas of [Sch�utte, 1956].

The basic objects of Gentzen's calculus LK were the sequents A1; : : : ; Am `
B1; : : : ; Bn, where the Ai's and Bj 's are formulas (any or all of which might
be missing). Such a sequent may be interpreted as a statement to the ef-
fect that either one of the Ai's is false or one of the Bj 's is true. To every
such sequent there corresponds what we might as well call its `right-handed
counterpart':

` :A1; : : : ;:Am; B1; : : : ; Bn

It is possible to develop a calculus parallel to Gentzen's using only `right-
handed' sequents, i.e. those with empty left side. This is in e�ect what
Sch�utte did, but with one further trick. Instead of working with a right-
handed sequent ` A1; : : : ; Am, which can be thought of as a sequence of
formulas, he in e�ect replaced it with the single formula A1 _ � � � _Am.20

With these explanations in mind, the reader should have no trouble in
perceiving Sch�utte's calculus K1 as `merely' a notational variant of Gentzen's
original calculus LK (albeit, a highly ingenious one). Also Sch�utte's sys-
tem had the existential quanti�er which we have omitted here purely for
simplicity. Dunn and Meyer [1989] treats it as well.

The axioms of K1 are all formulas of the form A _ :A. The inference
rules divide themselves into two types:

Structural rules:

M_ A _B _ N
[Interchange]M_ B _ A _ N

N _ A _A
[Contraction]N _ A

Operational rules:

N
[Thinning]N _B

N _ :A N _ :B
[de Morgan]N _ :(A _ B)

N _ A
[Double Negation]N _ ::A

It is understood in every case but that of Thinning that either both of
M and N may be missing. Also there is an understanding in multiple
disjunctions that parentheses are to be associated to the right.

20It ought be noted that similar \single sided" Gentzen systems �nd extensive use in
the proof theory for Linear Logic [Girard, 1987; Troelstra, 1992].
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In [Meyer et al., 1974] it was said that the rule Cut is just  `in peculiar
notation'. In the context of Sch�utte's formalism the notation is not even so
di�erent. Thus:

M_A :A _ N
[Cut]M_N

A :A _B
[]:

B

Since either M or N may be missing, obviously  is just a special case of
Cut.

It is pretty easy to check that each of the rules above corresponds to
a provable �rst-degree relevant implication. Indeed [Anderson and Belnap
Jr., 1959a] with their `Simple Treatment' formulation of classical logic (ex-
tended to quanti�ers in [Anderson and Belnap Jr., 1959b]) independently
arrived at a Cut-free system for classical logic much like Sch�utte's (but with
some improvements, i.e. they have more general axioms and avoid the need
for structural rules). They used this to show that E contains all the clas-
sical tautologies as theorems, the point being that the Simple Treatment
rules are all provable entailments in E (unlike the usual rule for axiomatic
formulations of classical logic, modus ponens for the material conditional,
i.e. ). Thus the later proven admissibility of  was not needed for this pur-
pose, although it surely can be so used. Sch�utte's system can also clearly
be adapted to the purpose of showing that classical logic is contained in rel-
evance logic, and indeed [Belnap, 1960a] used K1 (with its quanti�cational
rules) to show that EQ contains all the theorems of classical �rst-order
logic.

It turns out that one can give a proof of the admissibility of Cut for
a classical Gentzen-style system, say Sch�utte's K1, along the lines of a
Meyer-style proof of the admissibility of  (see [Dunn and Meyer, 1989],
�rst reported in 1974).21 We will not give many details here, but the key
idea is to treat the rules of K1 as rules of deducibility and not merely as
theorem generating devices. Thus we de�ne a deduction of A from a set of
formulas � as a �nite tree of formulas with A as its origin, members of � or
axioms of K1 at its tips, and such that each point that is not a tip follows
from the points just above it by one of the rules of K1 (this de�nition has to
be slightly more complicated if quanti�ers are present due to usual problems
caused by generalisation). We can then inductively build a prime complete

21We hasten to acknowledge the nonconstructive character of this prof. In this our proof
compares with that of Sch�utte [1956] (also proofs for related formalisms due to Anderson
and Belnap, Beth, Hintikka, Kanger) in its uses of semantical (model-theoretic) notions,
and di�ers from Gentzen's. Like the proofs of Sch�utte et al. this proof really provides a
completeness theorem. We may briey label the di�erence between this proof and those
of Sch�utte and the others by using (loosely) the jargon of Smullyan [1968]. Calling both
Hilbert-style formalisms and their typical Henkin-style completeness proofs `synthetic',
and calling both Gentzen-style formalisms and their typical Sch�utte-style completeness
proof `analytic', it looks as if we can be said to have given an synthetic completeness
proof for an analytic formalism.
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theory (closed under deducibility) on The Way up, which will clearly be
inconsistent since because of the `Subformula Property' clearly, e.g. q is not
deducible from p;:p. but this can be �xed on The Way Down by using
metavaluation techniques so as to �nd a complete consistent subtheory.

In 1976 E. P. Martin, Meyer and Dunn extended and analogised the
result of Meyer concerning the admissibility of  for relevant type theory
described in the last subsection, in much the same way as the  argument
for the �rst-order logic has been analogised here, so as to obtain a new proof
of Takeuti's Theorem (Cut-elimination for simple type theory). This un-
published proof dualises the proof of Takahashi and Prawitz (cf. [Prawitz,
1965]) in the same way that the proof here dualises the usual semantical
proofs of Cut-elimination for classical �rst-order logic. This dualisation is
vividly described by saying that in place of `Sch�utte's Lemma' that every
semi- (partial-) valuation may be extended to a (total) valuation, there is in-
stead the `Converse Sch�utte Lemma' that every `ambi-valuation' (sometimes
assigns a sentence both the values 0, 1) may be restricted to a (consistent)
valuation.

3 SEMANTICS

3.1 Introduction

In Anderson's [1963] `open problems' paper, the last major question listed,
almost as if an afterthought, was the question of the semantics of E and
EQ. Despite this appearance Anderson said (p. 16) `the writer does not
regard this question as \minor"; it is rather the principle large question
remaining open'. Anderson cited approvingly some earlier work of Belnap's
(and his) on providing an algebraic semantics for �rst-degree entailments,
and said (p. 16), `But the general problem of �nding a semantics for the
whole of E, with an appropriate completeness theorem, remains unsolved'.

It is interesting to note that Anderson's paper appeared in the same
Acta Filosphica Fennica volume as the now classic paper of Kripke [1963]

which provided what is now simply called `Kripke-style' semantics for a
variety of modal logics (Kripke [1959a] of course provided a semantics for
S5, but it lacked the accessibility relationR which is so versatile in providing
variations).

When Anderson was writing his `open problems' paper, the paradigm of a
semantical analysis of a non-classical logic was probably still something like
the work of McKinsey and Tarski [1948], which provided interpretations
for modal logic and intuitionistic logic by way of certain algebraic struc-
tures analogous to the Boolean algebras that are the appropriate structures
for classical logic. But since then the Kripke-style semantics (sometimes re-
ferred to as `possible-worlds semantics', or `set-theoretical semantics') seems
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to have become the paradigm. Fortunately, E and R now have both an al-
gebraic semantics and a Kripke-style semantics. We shall �rst distinguish in
a kind of general way the di�erences between these two main approaches to
semantics, before going on to explain the particular details of the semantics
for relevant logics (again R will be our paradigm).

3.2 Algebraic vs. Set-theoretical Semantics

It is convenient to think of a logical system as having two distinct aspects
syntax (well-formed strings of symbols, e.g. sentences) and semantics (what,
e.g. these sentences mean, i.e. propositions). These double aspects compete
with one another as can be seen in the competing usages `sentential calculus'
and `propositional calculus', but we should keep �rmly in mind both aspects.

Since sentences can be combined by way of connectives, say he conjunc-
tion sign ^, to form further sentences, typically there is for each logical
system at least one natural algebra arising at the level of syntax, the alge-
bra of sentences (if one has a natural logical equivalence relation there is
yet another that one obtains by identifying logically equivalent sentences to-
gether into equivalence classes|the so-called `Lindenbaum algebra'). And
since propositions can be combined by the corresponding logical operations,
say conjunction, to form propositions, here is an analogous algebra of propo-
sitions.

Now undoubtedly some readers, who were taught to `Quine' propositions
from an early age, will have troubles with the above story. The same reader
would most likely not �nd compelling any particular metaphysical account
we might give of numbers. We ask that reader then to at least suspend
disbelief in propositions so that we can get on with the mathematics.

There is an alternative approach to semantics which can be described
by saying that rather than taking propositions as primitive, it `constructs'
them out of certain other semantical primitives. Thus there is as a paradigm
of this approach the so-called `UCLA proposition' as a set of `possible
worlds'.22 We here want to stress the general structural idea, not placing
much emphasis upon the particular choice of `possible worlds ' as the se-
mantical primitive. Various authors have chosen `reference points', `cases',
`situations', `set-ups', etc.|as the name for the semantical primitive varying
for sundry subtle reasons from author to author. We have both in relevance
logic contexts have preferred `situations', but in a show of solidarity we shall
here join forces with the Routley's [1972] in their use of `set-ups'.

Such `set-theoretical' semantical accounts do not always explicitly verify
such a construction of propositions. Indeed perhaps the more common
approach is to provide an interpretation that says whether a formula A is

22Actually the germ of this idea was already in Boole (cf. [Dipert, 1978]), although
apparently he thought of it as an analogy rather than as a reduction.
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true and false at a given set-up S writing �(a; S) = T or S � A or some
such thing. Think of Kripke's [1963] presentation of his semantics for modal
logic. But (unless one has severe ontological scruples about sets) one might
just as well interpret A by assigning it a class of set-ups, writing �(A) or
jAj or some such thing. One can go from one framework to the other by
way of equivalence

S 2 jAj i� S � A:

3.3 Algebra of First-degree Relevant Implications

Given two propositions a and b, it is natural to consider the implication
relation among them, which we write as a � b (`a implies b'). It might be
thought to be natural to write this the other way around as a � b on some
intuition that a is the stronger or `bigger' one if it implies b. Also it suggests
a � b (`b is contained in a'), which is a natural enough way to think of impli-
cation. There are good reasons though behind our by now almost universal
choice (of course at one level it is just notation, and it doesn't matter what
your convention is). Following the idea that a proposition might be identi-
�ed with the set of cases in which it is true, a implies b corresponds to a � b,
which has the same direction as a � b. Then conjunction ^ corresponds to
intersection \, and they have roughly the same symbol (and similarly for _
and [).

It is also natural to assume, as the notation suggests, that implication is
a partial order, i.e.

(p.o.1) a � a (Reexivity),
(p.o.2) a � b and b � a) a = b (Antisymmetry),
(p.o.3) a � b and b � c) a � c (Transitivity).

It is natural also to assume that there are operations of conjunction ^ and
disjunction _ that satisfy

(^lb) a ^ b � a, a ^ b � b,
(^glb) x � a and x � b) x � a ^ b,
(_ub) a � a _ b, b � a _ b,
(_lub) a � x and b � x) a _ b � x.

Note that (^lb) says that a ^ b is a lower bound both of a and of b, and
(^glb) says it is the greatest such lower bound. Similarly a _ b is the least
upper bound of a and b.

A structure (L;�;^;_) satisfying all the properties above is a well-known
structure called a lattice. Almost any logic would be compatible with the as-
sumption that propositions form a lattice (but there are exceptions, witness
Parry's [1933] Analytic Implication which would reject (_ub)).
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Lattices can be de�ned entirely operationally as structures (L;^;_) with
the relation a � b de�ned as a ^ b = a. Postulates characterising the
operations are:

Idempotence: a ^ a = a, a _ a = a
Commutativity: a ^ b = b ^ a, a _ b = b _ a
Associativity: a ^ (b ^ c) = (a ^ b) ^ c, a _ (b _ c) = (a _ b) _ c
Absorption: a ^ (a _ b) = a, a _ (a ^ b) = a.

An (upper) semi-lattice is a structure (S;_), with _ satisfying Idempotence,
Commutativity, and Associativity.

Given two lattices (L;^;_) and (L0;^0;_0), a function h from L into 0

is called a (lattice) homomorphism if both h(a ^ b) = h(a) ^0 h(b) and
h(a _ b) = h(a) _0 h(b). If h is one{one, h is called an isomorphism.

Many logics (certainly orthodox relevance logic) would insist as well that
propositions form a distributive lattice, i.e. that

a ^ (b _ c) � (a ^ b) _ c:
This implies the usual distributive laws a ^ (b _ c) = (a ^ b) ^ (a ^ c) and
a _ (b ^ c) = (a _ b) ^ (a _ c). (Again there are exceptions, important ones
being quantum logic with its weaker orthomodular law, and linear logic with
its rejection of even the orthomodular law.)

The paradigm example of a distributive lattice is a collection of sets closed
under intersection and union (a so-called `ring' of sets). Stone [1936] indeed
showed that abstractly all distributive lattices can be represented in this
way. Although we will not argue this here, it is natural to think that if
propositions correspond to classes of cases, then conjunction should carry
over to intersection and disjunction to union, and so productions should
form a distributive lattice.

Certain subsets of lattices are especially important. A �lter is a non-
empty subset F such that

1. a; b 2 F ) a ^ b 2 F ,

2. a 2 F and a � b) b 2 F .

Filters are like theories. Note by easy moves that a �lter satis�es

10. a; b 2 F , a ^ b 2 F ,

20. a 2 F or b 2 F ) a _ b 2 F .

When a �lter also satis�es the converse of (20) it is called prime, and is like
a prime theory. A �lter that is not the whole lattice is called proper. Stone
[1936] showed (using an equivalent of the Axiom of Choice) the

Prime Filter Separation Property. In a distributive lattice, if a 6� b,
then there exists a prime �lter P with a 2 P and b 62 P .
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This is related to the Belnap Extension Lemma of Section 2.5.
So far we have omitted discussion of negation. This is because there is

less agreement among logics as to what properties it should have.23 There
is, however, widespread agreement that it should at least have these:

1. (Contraposition) a � b) :b � :a,

2. (Weak Double Negation) a � ::a.

These can both be neatly packaged in one law:

3. (Intuitionistic Contraposition) a � :b) b � :a.

We shall call any unary function : satisfying (3) (or equivalently (1) and
(2)) a minimal complement. The intuitionists of course do not accept

4. (Classical Contraposition) :a � :b) b � a, or

5. (Classical Double Negation) ::a � a.

If one adds either of (4) or (5) to the requirements for a minimal complement
one gets what is called a de Morgan complement (or quasi-complement),
because, as can be easily veri�ed, it satis�es all of de Morgan's laws

(deM1) :(a ^ b) = :a _ :b,
(deM2) :(a _ b) = :a ^ :b.

Speaking in an algebraic tone of voice, de Morgan complement is just a
(one{one) order-inverting mapping (a dual automorphism) of period two.

De Morgan complement captures many of the features of classical nega-
tion, but it misses

(Irrelevance 1) a ^ :a � b,
(Irrelevance 2) a � b _ :b.

If (either of) these are added to a de Morgan complement it becomes a
Boolean complement. If Irrelevance 1 is added to a minimal complement, it
becomes a Heyting complement (or pseudo-complement).

A structure (L;^;_;:), where (L;^;_) is a distributive lattice and :
is a de Morgan (Boolean) complement is called a de Morgan (Boolean)
lattice. Note that we did not try to extend this terminological framework
to `Heyting lattices', because in the literature a Heyting lattice requires an
operation called `relative pseudo-complementation' in addition to Heyting
complementation (plain pseudo-complementation).

As an example of de Morgan lattices consider the following (here we use
ordinary Hasse diagrams to display the order; a � b is displayed by putting
a in a connected path below b):

23Cf. Dunn [1994; 1996] wherein the various properties below are related to various
ways of treating incompatibility between states of information.



RELEVANCE LOGIC 53

1
s

s

0

2:

1
s

s

s

0

3: p = :p

1
s

�
�
�s
@
@
@s�
�
�

s@
@
@

0

p :p4:

1
s

�
�
�s
@
@
@s�

�
�

s@
@
@

0

p = :p q = :q4:

The backwards numeral labelling the third lattice over is not a misprint.
It signi�es that not only has the de Morgan complement been obtained by
inverting he order of the diagram, as in the order three (of course :I = �
and vice versa), but also by rotating it from right to left at the same time.
2 and 4are Boolean lattices.

A homomorphism (isomorphism) h between de Morgan Lattice with de
Morgan complements : and :0 respectively is a lattice homomorphism (iso-
morphism) such that h(:a) = :0h(a).

A valuation in a lattice out�tted with one or the other of these `com-
plementations' is a map v from the zero-degree formulas into its elements
satisfying

v(:A) = :v(A);

v(A ^ B) = v(A) ^ v(B);

v(A _ B) = v(A) _ v(B):

Note that the occurrence of `:' on the left-hand side of the equation denotes
the negation connective, whereas the occurrence on the right-hand side de-
notes the complementation operation in the lattice (similarly for ^ and _).
Such ambiguities resolve themselves contextually.

A valuation v can be regarded as in interpretation of the formulas as
propositions.

De Morgan lattices have become central to the study of relevance of
logic, but they were antecedently studied, especially in the late 1950s by
Moisil and Monteiro, by Bia lynicki-Birula and Rasiowa (as `quasi-Boolean
algebras'), and by Kalman (as `distributive i-lattices') (see Anderson and
Belnap [1975] or Rasiowa [1974] for references and information).
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Belnap seems to have �rst recognised their signi�cance for relevance logic,
though his research favoured a special variety which he called an intension-
ally complemented distributive lattice with truth �lter (`icdlw/tf'), shortened
in Section 18 of [Anderson and Belnap, 1975] to just intensional lattice. An
intensional lattice is a structure (L;^;_;:; T ), where (L;^;_;:) is a de
Morgan lattice and T is a truth-�lter, i.e. T is a �lter which is complete in
the sense T contains at least one of a and :a for each a 2 L, and consistent
in the sense that T contains no more than one of a and :a.

Belnap and Spencer [1966] showed that a necessary and suÆcient condi-
tion for a de Morgan lattice to have a truth �lter is that negation have no
�xed point, i.e. for no element a; a = :a (such a lattice was called an icdl).
For Boolean algebras this is a non-degeneracy condition, assuring that the
algebra has more than one element, the one element Boolean algebra being
best ignored for many purposes. But the experience in relevance logic has
been that de Morgan lattices where some elements are �xed points are ex-
tremely important (not all elements can be �xed points or else we do have
the one element lattice).

The viewpoint of [Dunn, 1966] was to take general de Morgan lattices as
basic to the study of relevance logics (though still results were analogised
wherever possible to the more special icdl's). Dunn [1966] showed that upon
de�ning a �rst-degree implication A ! B to be (de Morgan) valid i� for
every valuation v in a de Morgan lattice, v(A) � v(B); A ! B is valid i�
A ! B is a theorem of Rfde (or Efde). The analogous result for icdl's (in
e�ect due to Belnap) holds as well.

Soundness (`Rfde
A ! B ) A ! B is valid) is a more or less triv-

ial induction on the length of proofs in Rfde fragment|cf. [Anderson and
Belnap, 1975, Section 18].

Completeness (A ! B valid ) `Rfde
A ! B) is established by proving

the contrapositive. We suppose not `Rfde
A ! B. We then form the

`Lindenbaum algebra', which has as an element for each zero degree formula
(zdf) X; [X ] =df fY : Y is a zdf and `Rfde

X $ Y g. Operations are de�ned
so that :[X ] = [:X ], [X ] ^ [Y ] = [X ^ Y ], and [X ] _ [Y ] = [X _ Y ], and
we set [X ] � [Y ] whenever `Rfde

X ! Y . It is more or less transparent,
given Rfde formulated as it is, that the result is a de Morgan lattice. It
is then easy to see that A ! B is invalidated by the canonical valuation
vc(X) = [X ], since clearly [A] 6� [B].

The above kind of soundness and completeness result is really quite triv-
ial (though not unimportant), once at least the logic has had its axioms
chopped so that they look like the algebraic postulates merely written in a
di�erent notation. The next result is not so trivial.

Characterisation Theorem of Rfde with Respect to 4. `Rfde
A!

B i� A! B is valid in 4, i.e. for every valuation v in 4, v(A) � v(B).

Proof. Soundness follows from the trivial fact recorded above that Rfde is
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sound with respect to de Morgan lattices in general. For completeness we
need the following:

4-Valued Homomorphism Separation Property. Let D be a de Morgan
lattice with a 6� b. Then there exists a homomorphism h of D into 4 so that
h(a) 6� h(b).

Completeness will follow almost immediately from this result, for upon
supposing that not `Rfde

A! B, we have v(A) = h[A] 6� h[B] = v(B) (the
composition of a homomorphism with a valuation is transparently a valua-
tion). So we go on to establish the Homomorphism Separation Property.

Assume that a 6� b. By the Prime Filter Separation Property, we know
there is a prime �lter P with a 2 P and b 62 P . for a given element x,
we de�ne h(x) according to the following four possible `complementation
patterns' with respect to P .

1. x 2 P;:x 62 P : set h(x) = 1;

2. :x 2 P; x 62 P : set h(x) = 0;

3. x 2 P;:x 2 P : set h(x) = p;

4. x 62 P;:x 62 P : set h(x) = q.

It is worth remarking that if D is a Boolean lattice, (3) (inconsistency)
and (4) (incompleteness) can never arise, which explains the well-known
signi�cance of 2 for Boolean homomorphism theory. Clearly these speci�-
cations assure that h(a) 2 fp; Ig and h(b) 2 fq; 0g, and so by inspection
h(a) 6� h(b). It is left to the reader to verify that h in fact is a homomor-
phism. (Hint to avoid more calculation: set [p) = fp; Ig and [q) = fq; Ig
(the principal �lters determined by p and q). Observe that the de�nition
of h above is equivalent to requiring of h that h(x) 2 [p) i� x 2 P , and
h(x) 2 [q) i� :a 62 P . Observe that if whenever i = p; q; y 2 [i) i� z 2 [i),
then y = z. Show for i = p; q; h(a^b) 2 [i) i� h(a)^H(b) 2 [i), h(a_b) 2 [i)
i� h(a) _ h(b) 2 [i), and h(:a) 2 [i) i� :h(a) 2 [i). �

3.4 Set-theoretical Semantics for First-degree Relevant Impli-
cation

Dunn [1966] (cf. also [Dunn, 1967]) considered a variety of (e�ectively
equivalent) representations of de Morgan lattices as structures of sets. We
shall here discuss the two of these that have been the most inuential in the
development of set-theoretical semantics for relevance logic.

The earliest one of these is due to Bia lynicki-Birula and Rasiowa [1957]

and goes as follows. Let U be a non-empty set and let g : U ! U be such
that it is of period two, i.e.

1. g(g(x)) = x, for all x 2 U .
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(We shall call the pair (U; g) and involuted set|g is the involution, and is
clearly 1{1). Let Q(U) be a `ring' of subsets of U (closed under \ and [)
closed as well under the operation of `quasi-complement'

2. :X = U � g[X ](X � U).

(Q(U);[;\;:) is called a quasi-�led of sets and is a de Morgan lattice.

Quasi-fields of Sets Theorem [Bia lynicki-Birula and Rasiowa, 1957].
Every de Morgan lattice D is isomorphic to a quasi-�eld of sets.

Proof. Let U be the set of all prime �lters of D, and let P range over U .
Let :P ! f:a : a 2 Pg, and de�ne g(P ) = D�:P . We leave to the reader
to verify that U is closed under g. For each element a 2 D, set

f(a) = fP : a 2 Pg:
Clearly f is one{one because of the Prime Filter Separation Property, so

we need only check that f preserves the operations.

ad^: P 2 f(a ^ b), a ^ b 2 P , ((10) of Section 3.3) a 2 P and b 2 P ,
P 2 f(a) and P 2 f(b), P 2 f(a) \ f(b). So f(a ^ b) = f(a) \ f(b)
as desired.

ad_: The argument that f(a _ b) = f(a) [ f(b) is exactly parallel using
(20) (or alternately this can be skipped using the fact that a _ b =
:(:a ^ :b).

ad:: P 2 f(:a) , :a 2 P , a 2 :P , a 62 g(P ) , g(P ) 62 f(a) , P 62
g[f(a)], P 2 U � g[f(a)].

We shall now discuss a second representation. Let U be a non-empty set
and let R be a ring of subsets of U (closed under intersection and union, but
not necessarily under complement, quasi-complement, etc.). by a polarity
in R we mean an ordered pair X = (X1; X2) such that X1; X2 2 R. We
de�ne a relation and operations as follows, given polarities X = (X1; X2)
and Y = (Y1; Y2):

X � Y , X1 � Y1 and Y2 � X2

X ^ Y = (X1 \ Y1; X2 [ Y2)

X _ Y = (X1 [ Y1; X2 \ Y2)

:X = (X2; X1):

By a �eld of polarities we mean a structure (P (R);�;^;_;:) where P (R)
is the set of all polarities in some ring of sets R, and the other components
are de�ned as above. We leave to the reader the easy veri�cation that every
�eld of polarities is a de Morgan lattice. �
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We shall prove the following

Polarities Theorem [Dunn, 1966]. Every de Morgan lattice is isomorphic
to a �eld of polarities.

Proof. Given he previous representation, it clearly suÆces to show that
every quasi-�eld of sets is isomorphic to a �eld of polarities.

The idea is to set f(X) = (X;U �g[X ]). Clearly f is one{one. We check
that it preserves operations.

ad^: f(X\Y ) = (X\Y; U�g[X\Y ]) = (X\Y; (U�g[X ])\(U�g[Y ])) =
(X;U � g[X ]) ^ (Y; U � g[Y ]) = f(X) ^ f(Y ).

ad_: Similar.

ad:: f(:X) = (:X;U � g(:X)) = (U � g[X ]; U � g(U � g[X ])) = (U �
g[X ]; X) = :f(X).

�

We now discuss informal interpretations of the representation theorems
that relate to semantical treatments of relevant �rst-degree implications
familiar in the literature.

Routley and Routley [1972] presented a semantics for Rfde, the main in-
gredients of which were a set K of `atomic set-ups' (to be explained) on
which was de�ned an involution �. An `atomic set-up' is just a set of propo-
sitional variables, and it is used to determine inductively when complex
formulas are also `in' a given set-up. A set-up is explained informally as be-
ing like a possible world except that it is not required to be either consistent
or complete. The Routley's [1972] paper seems to conceive of set-ups very
syntactically as literally being sets of formulas, but the Routley and Meyer
[1973] paper conceives of them more abstractly. We shall think of them this
latter way here so as to simplify exposition. The Routleys' models can then
be considered a structure (K; �;�), where K is a non-empty set, � is an
involution on K, and � is a relation from K to zero-degree formulas. We
read `a � A' as the formula A holds at the set-up a:

1. (^ �) a � A ^ B , a � A and a � B

2. (_ �) a � A _ B , a � A or a � B

3. (: �) a � :A, not a� � A.

The connection of the Routleys' semantics with quasi-�elds of sets will be-
come clear if we let (K; �) induce a quasi-�eld of sets Q with quasi- com-
plement :, and let j j interpret sentences in Q subject to the following
conditions:
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10. j ^ j jA ^Bj = jAj \ jBj
20. j _ j jA _Bj = jAj [ jBj
30. j:j j:Aj = :jAj.
Clause (^ �) results from clause j ^ j by translating a 2 jX j as a � X (cf.

Section 3.2). Thus clause j ^ j says

a 2 jA ^ Bj , a 2 jAj and a 2 jBj;

i.e. it translates as clause (^ �). The case of disjunction is obviously the
same. The case of negation is clearly of special interest, so we write it out.

Thus clause j:j says

a 2 j:Aj , a 2 :jAj;
, a 2 K � jAj�;
, a 62 jAj�;
, a� 62 jAj:

But the translation of this last is just clause (: �).
Of course the translation works both ways, so that the Routleys' seman-

tics is just an interpretation in the quasi-�elds of sets of Bia lynicki-Birula
and Rasiowa written in di�erent notation. Incidentally soundness and com-
pleteness of Rfde relative to the Routleys' semantics follows immediately
via the translation above from the corresponding theorem of the previous
section vis �a vis de Morgan lattices together with their representation as
quasi-�elds of sets. Of course the Routleys' conceived their results and de-
rived them independently from the representation of Bia lynicki-Birula and
Rasiowa.

We will not say very much here about what intuitive sense (if any) can be
attached to the Routleys' use of the �-operator in their valuational clause for
negation. Indeed this question has had little extended discussion in the lit-
erature (though see [Meyer, 1979a; Copeland, 1979]). The Routleys' [1972]

paper more or less just springs it on the reader, which led Dunn in [Dunn,
1976a] to describe the switching of a with a� as `a feat of prestidigitation'.
Routley and Meyer [1973] contains a memorable story about how a� `weakly
asserts', i.e. fails to deny, precisely what a asserts, but one somehow feels
that this makes the negation clause vaguely circular. Still, semantics often
gives one this feeling and maybe it is just a question of degree. One way
of thinking of a and a� is to regard them as `mirror images' of one another
reversing `in' and `out'. Where one is inconsistent (containing both A and
:A), the other is incomplete (lacking both A and :A), and vice versa (when
a = a�, a is both consistent and complete and we have a situation appro-
priate to classical logic). Viewed this way the Routleys' negation clause
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makes sense, but it does require some anterior intuitions about inconsistent
and incomplete set-ups. More about the interpretation of this clause will
be discussed in Section 5.1.

Let us now discuss the philosophical interpretation(s) to be placed on
the representation of de Morgan lattices as �elds of polarities. In Dunn
[1966; 1971] the favoured interpretation of a polarity (X1; X2) was as a
`proposition surrogate', X1 consisting of the `topics' the proposition gives
de�nite positive information about and, X2 of the topics the proposition
gives de�nite negative information about. A valuation of a zero degree
formula in a de Morgan lattice can be viewed after a representation of the
elements of the lattice as polarities as an assignment of positive and negative
content to the formula. The `mistake' in the `classical' Carnap/Bar-Hillel
approach to content is to take the content of :A to be the set-theoretical
complement of the content of A (relative to a given universe of discourse).
In general there is no easy relation between the content of A and that of
:A. They may overlap, they may not be exhaustive. Hence the need for
the double-entry bookkeeping done by proposition surrogates (polarities).
If A is interpreted as (X1; X2), :A gets interpreted as the interchanged
(X2; X1).

Another semantical interpretation of the same mathematics is to be found
in Dunn [1969; 1976a]. There given a polarity X = (X1; X2); X1 is thought
of as the set of situations in which X is true and X2 as the set of situations
in which X is false. These situations are conceived of as maybe inconsistent
and/or incomplete, and so again X1 and X2 need not be set-theoretic com-
plements. This leads in the case when the set of situations being assessed
is a singleton fag to a rather simple idea. The �eld of polarities looks like
this

(fag; ;) T (= fTg)
s

�
�
�s
@
@
@s�
�
�

s@
@
@

(;; fag) F (= fFg)

(fag; fag) B (= fT; Fg) (;; ;) N (= ;)

We have taken the liberty of labelling the points so as to make clear the
informal meaning. (Thus the top is a polarity that is simply true in a and
the bottom is one that is simply false, but the left-hand one is both true
and false, and the right-hand one is neither.) Note that the de Morgan
complement takes �xed points on both B and N. This is of course our old
friend 4, which we know to be characteristic for Rfde.

This leads to the idea of an `ambi-valuation' as an assignment to sentences
of one of the four values T, F, B, N, conceived either as primitive or realised
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as sets of the usual two truth values as suggested by the labelling. On this
latter plan we have the valuation clauses (with double entry bookkeeping):

(^) T 2 v(A ^ B), T 2 v(A) and T 2 v(B);
F 2 v(A ^ B), F 2 v(A) or F 2 v(B);

(_) T 2 v(A _ B), T 2 v(A) or T 2 v(B);
F 2 v(A _ B), F 2 v(A) and F 2 v(B);

(:) T 2 v(:A), F 2 v(A);
F 2 v(:A), T 2 v(A):

We stress here (as in [Dunn, 1976a]) that all this talk of something's
being both true and false or neither is to be understood epistemically and
not ontologically. One can have inconsistent and or incomplete assumptions,
information, beliefs, etc. and this is what we are trying to model to see what
follows from them in an interesting (relevant!) way. Belnap [1977b; 1977a]

calls the elements of the lattice `told values' to make just this point, and goes
on to develop (making connections with Scott's continuous lattices) a theory
of `a useful four-valued logic' for `how a computer should think' without
letting minor inconsistencies in its data lead to terrible consequences.

Before we leave the semantics of �rst-degree relevant implications, we
should mention the interesting semantics of van Fraassen [1969] (see also An-
derson and Belnap [1975, Section 20.3.1] and van Fraassen [1973]), which
also has a double-entry bookkeeping device. We will not mention details
here, but we do think it is an interesting problem to try to give a represen-
tation of de Morgan lattices using van Fraassen's facts so as to try to bring
it under the same umbrella as the other semantics we have discussed here.

3.5 The Algebra of R

This section is going to be brief. Dunn has already exposited on this topic in
Section 28.2 of [Anderson and Belnap, 1975] and the interested reader should
consult that and then Meyer and Routley [1972] for information about how
to algebraise related weaker systems and how to give set-theoretical repre-
sentations.

De Morgan monoids are a class of algebras that are appropriate to R
in the sense that (i) the Lindenbaum algebra of R is one of them and (ii)
all R theorems are valid in them ((ii) gives soundness, and of course (i)
delivers completeness by way of the canonical valuation). In thinking about
de Morgan monoids it is essential that R be equipped with the sentential
constant t. Also it is nice to think of fusion (Æ) as a primitive connective,
with even perhaps ! de�ned (A ! B =df :(A Æ :B)) but this is not
essential since in R (but not the weaker relevance logics) fusion can be
de�ned as A ÆB =df :(A! :B).

A de Morgan monoid is a structure D = (D;^;_;:; Æ; e) where
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(I) (D;^;_;:) is a de Morgan lattice,

(II) (D; Æ; e) is an Abelian monoid, i.e. Æ is a commutative, associative
binary operation on D with e its identity, i.e. e 2 D and e Æ a = a for
all a 2 D,

(III) the monoid is ordered by the lattice, i.e. a Æ (b _ c) = (a Æ b) _ (a Æ c),
(IV) Æ is upper semi-idempotent (`square increasing'), i.e. a � a Æ a,

(V) a Æ b � c i� a Æ :c � :b (Antilogism).

De Morgan monoids were �rst studied in [Dunn, 1966] (although [Meyer,
1966] already had isolated some of the key structural features of fusion
that they abstract). They also were described in [Meyer et al., 1974] and
used in showing  admissible. Similar structures were investigated quite
independently by Maksimova [1967; 1971].

The key trick in relating de Morgan monoids to R is that they are resid-
uated, i.e. there is a `residual' operation ! so that

(VI) a Æ b � c i� a � b! c.

Indeed this operation turns out to be :(b Æ:c) (with the weaker systems
or with positive R it is important to postulate this law of the residual).
Thus

(1) a Æ b � c, b Æ a � c Commutativity
(2) a Æ b � c, b Æ :a 1, (V)
(3) a Æ b � c, a � :(b Æ :c) 2, de Morgan lattice.

As an illustration of the power of (VI) we show how the algebraic analogue
of the Pre�xing axiom follows from Associativity. First note that one can
get from (III) the law of

(Monotony) a � b) c Æ a � c Æ b.
Now getting down to Pre�xing:

1. a! b � a! b

2. (a! b) Æ a � b 1, (VI)

3. (c! a) Æ c � a 2, Substitution

4. (a! b) Æ ((c! a) Æ c) � b 2,3, Monotony

5. ((a! b) Æ (c! a)) Æ c � b 4, Associatively

6. (a! b) Æ (c! a) � c! b 5, (VI)

7. a! b � ((c! a)! (c! b)) 6, (VI).
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Incidentally, something better be said at this point about how validity
in de Morgan monoids is de�ned. Unlike the case with Rfde, there are
theorems which are of the form A! B, e.g. A_:A. We need some way of
de�ning validity which is broader than insisting that always v(A) � v(B).
The identity e interprets the sentential constant t. By virtue of the R
axiom A$ (t! A) characterising t, it makes sense to count all de Morgan
monoid elements a such that e � a as `designated', and to de�ne A as
valid i� v(A) � e for all valuations in all de Morgan monoids. We have the
following law

a � b, e � a! b;

which follows immediately from (VI) and the fact that e is the identity
element. This means that (7) just above can be transformed into

e � (a! b)! ((c! a)! (c! b))

validating pre�xing as promised.
Other axioms of R can be validated by similar moves. Commutativity

validates Assertion, that e is the identity validates self-implication, square-
increasingness validates Contraction, antilogism validates Contraposition,
and the other axioms fall out of de Morgan lattice properties with lattice
ordering and the residual law pitching in.

We shall not here investigate the `converse' questions about how the
fusion connective in R is associative, etc. (that the Lindenbaum algebra of
R is indeed a de Morgan monoid (cf. Dunn's Section 28.2.2 of [Anderson
and Belnap, 1975])), but the proof is by `�ddling' with contraposition being
the key move.

Not as much is known about the algebraic properties of de Morgan
monoids as one would like. Getting technical for a moment and using unex-
plained but standard terminology from universal algebra, it is known that de
Morgan monoids are equationally de�nable (replace (V) with aÆ:(aÆ:b) �
b, which can be replaced by the equation (a Æ :(a Æ :b)) _ b = b). So
by a theorem of Birkho� the class of de Morgan monoids is closed under
sub-algebras, homomorphic images, and subdirect products. Further, given
a de Morgan monoid D with a prime �lter P with e 2 P , the relation
a � b , (a ! b) ^ (b ! a) 2 P is a congruence, and the quotient algebra
D=� is subdirectly irreducible, and every de Morgan monoid is a subdirect
product of such. It would be nice to have some independent interesting
characterisation of the subdirectly irreducibles.

One signi�cant recent result about the algebra of R has been provided
by John Slaney. He has shown that there are exactly 3088 elements in the
free De Morgan monoid generated by the identity e. Or equivalently, in
the language of R including the constant t, there are exactly 3088 non-
equivalent formulae free of propositional variables. The proof technique is
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quite subtle, as generating a large algebra of 3088 elements is not feasible,
even with computer assistance. Instead, Slaney attacked the problem using
a \divide and conquer" technique [Slaney, 1985]. Since R contains all for-
mulae of the form A _ :A, for any A, whenever L is a logic extending R,
L = (L+A)\ (L+:A), where L+A is the result of adding A as an axiom
to L and closing under modus ponens and adjunction. Given this simple
result, we can proceed as follows. R is (R+f ! t)\(R+:(f ! t)). Now it
is not diÆcult to show that the algebra of R+ (f ! t) generated by t is the
two element boolean algebra. Then you can restrict your attention to the
algebra generated by t in the logic R + :(f ! t). If this has some charac-
teristic algebra, then you can be sure that the elements freely generated by
t in R are bounded above by the number of elements in the direct product
of the two algebras. To get the characteristic algebra of R + :(f ! t),
Slaney goes on to divide and conquer again. He ends up considering six
matrices, characterising six di�erent extensions of R. This would give him
an upper bound on the number of constants (the matrices were size 2, 4,
6, 10, 10 and 14, so the bound was their product, 67200, well above 3088).
Then you have to consider how many of these elements are generated by the
identity in the direct product algebra. A reasonably direct argument shows
that there are exactly 3088 elements generated in this way, so the result is
proved.

3.6 The Operational Semantics (Urquhart)

This set-theoretical semantics is based upon an idea that occurred indepen-
dently to Urquhart and Routley in the very late 1960s and early 70s. We
shall discuss Routley's contribution (as perfected by Meyer) in the next sec-
tion and also just mention some related independent work of [Fine, 1974].
Here we concentrate upon the version of Urquhart [1972c] (cf. also Urquhart
[1972b; 1972a; 1972d]).

Common to all the versions is the idea that one has some set K whose
elements are `pieces of information', and that there is a binary operation Æ
on K that combines pieces of information. Also there is an `empty piece
of information' 0 2 K. We shall write x � A to mean intuitively `A holds
according to the piece of information x'. The whole point of the semantics
is disclosed in the valuational clause

(!) x � A! B i� 8y 2 K (if y � A, then x Æ y � B):

The idea of the clause from left-to-right is immediately clear: if A ! B
is given by the information x, then if A is given by y, then the combined
piece of information x Æ y ought to give B (by modus ponens). The idea
of the clause from right-to-left is to say that if this happens for all pieces
of information y, this can only be because x gives us the information that
A! B.
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Perhaps saying the whole point of the semantics is given in the clause (!)
along is an exaggeration. There are at least two quick surprises. The �rst
is that we do not require (or want) a certain condition analogised from a
condition required by Kripke's (relational) semantics for intuitionistic logic:

(The Hereditary Condition) If x � A, then x Æ y � A:

This would yield that if x � A, then x � B ! A, i.e. if y � B, ten
x Æ y � A. This would quickly involve us in irrelevance.

The other surprise is related to the failure of the Hereditary Condition:
Validity cannot be de�ned as a formula's holding at all pieces of information
in all models, since even A ! A would not then turn out to be valid.
Thus x � A ! A requires that if y � A then x Æ y � A. But this last
is just a commuted form of the rejected Hereditary Condition, and there
is no more reason to think it holds. We shall see in a moment that the
appropriate de�nition of validity is to require that 0 � A for the empty
piece of information in all models.

Enough talk of what properties Æ does not have! What property does it
have? We have just been irting with one of them. Clearly 0 � A ! A
requires that if x � A then 0 Æ x � A, and how more naturally would that
be obtained than requiring that 0 be a (left) identity?

0 Æ x = x: (Identity)

This then seems the minimal algebraic condition on a model. Urquhart
in fact requires others, all naturally motivated by the idea that Æ is the
`union' of pieces of information.

x Æ y = y Æ x (Commutativity)

x Æ (y Æ z) = (x Æ y) Æ z (Associativity)

x Æ x = x: (Idempotence)

These conditions combined may be expressed by saying that (K; Æ; 0)
is a `(join) semi-lattice with least element 0', and accordingly Urquhart's
semantics is often referred to as the `semi-lattice semantics'. It is well-known
that every semi-lattice is isomorphic to a collection of sets with union as Æ
and the empty set as 0 (map x to fy : x Æ y = yg so that henceforward Æ
will be denoted by [.

Each of the conditions above of course corresponds to an axiom of R!

when it is nicely axiomatised. Thus commutativity plays a natural role in
verifying the validity of assertion. The following use of natural deduction
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in the metalanguage makes this point nicely (we write `A; x' rather than
x � A for a notational analogy):

1. A; x Hypothesis
2. A! B; z Hypothesis
3. B; x [ z 1, 2, (!)
4. B; z [ x 3, Comm.
5. (A! B)! B; x 2, 4(!)
6. (A! B)! B; 0 [ x 5, Identity
7. A! ((A! B)! B); 0.

The reader may �nd it amusing to write out an analogous pair of proofs
for Pre�xing, seeing how Associativity of [ enters in, and for Contraction
watching the Idempotence.24

The game has now been given away. There is some �ddling to be sure in
proving a completeness theorem for R! re the semi-lattice semantics, but
basically the idea is that the semi-lattice semantics is just the system FR!

`written in the metalanguage'.
There is not a problem in extending the semi-lattice semantics so as to

accommodate conjunction. The clause

x � A ^ B i� x � A and x � B (^)

does nicely. Somewhat strangely, the `dual' clause

x � A _ B i� x � A of x � B (_)

causes trouble. It is analogous to having the rule of _-Elimination NR
read:

A _ B; x
A; x Hyp.

...
c; x [ y
B; x Hyp.

...
C; x [ y
C; x [ y:

With this rule we can prove

(]) (A! B _ C) ^ (B ! C)! (A! C);

24Though unfortunately veri�cation of this last does not depend purely on Idempo-
tence, but rather on (xy)y = xy, which of course is equivalent to Idempotence given
Associativity and Identity. The veri�cation of the formula A ^ (A ! B) ! B `exactly'
uses Idempotence, but of course this is hardly a formula of the implicational fragment.
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which is not a theorem of R (see [Urquhart, 1972c]|the observation is
Meyer's and Dunn's.)25 And of course one can analogously verify that it is
valid in the semi-lattice semantics.

Note that the condition (_) is not nearly as intuitive as the condition
(^). The condition (^) is plausible for any piece of information x, at least
if the relation x � c does not require that C be explicitly contained in x.
On the other hand the condition (_) is much less than natural. Does not it
happen all the time that a piece of information x determines A_B to hold,
without saying which? Is not this one of the whole points of disjunctions?
Pieces of information x that satisfy (_) might be called `prime' (in analogy
with this epithet applied to theories of Section 2.4), and they have a kind of
completeness or e�eminateness that is rare in ordinary pieces of information.
This by itself counts as no criticism of the semantics, since it is quite usual
in semantical treatments to work with such idealised notions.

The condition (_) is not really as `dual' to the condition (^) as one might
think. Thus the formula

(]d) (B ^ C ! A) ^ (C ! B)! (C ! A);

which is the dual of (]) is easily seen not to be valid in the semantics. This
seems to be connected with another feature (problem?) of the semantics, to
wit, no one has ever �gured out how to add a natural semantical treatment
of classical negation to the semantics (although it is straightforward to add a
species of constructive negation|see [Urquhart, 1972c]).26 The point of the
connection is that (]d) would follow from (]) given classical contraposition
principles, and yet the �rst is valid and the second one invalid in the positive
semantics. So something about the positive semantics would have to be
changed as well to accommodate negation.

The semi-lattice semantics has been extensively investigated in Charlewood
[1978; 1981]. He �ts it out with (two) natural deduction systems one with
subscripts and one without. This last is in fact the (positive) system of
Prawitz [1965], which Prawitz wrongly conjectured to be the same as Ander-
son and Belnap's. Charlewood proves normalisation theorems (something
that was anticipated by Prawitz for his system|incidentally the problem
of normalisation for the Anderson{Belnap R seems still open). Inciden-
tally, one advantage of these natural deduction systems is that, unlike the
Anderson{Belnap one for their system R (cf. Section 1.5), they allow for a
proof of distribution.

Charlewood also carries out in detail the engineering needed to implement
K. Fine's axiomatisation of the semi-lattice semantics. What is needed is

25It would be with C ! C as an additional conjunct in the antecedent.
26Charlewood and Daniels have investigated a combination of the semi-lattice semantics

for the positive connectives and a four-valued treatment of negation in the style of [Dunn,
1976a]. they avoid the problem just described by in e�ect building into their de�nition of
a model that it must satisfy classical contraposition. This does not seem to be natural.
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to add to the Anderson{Belnap's R+ the following rule:

R1: From B0^((A1^q1; : : : ; qn^An)! X)! ((B1^q1; : : : ; Bn^qn)! E)
for X = B;C, and n � 0 infer the same thing with B_C put in place of
the displayed X , provided that he qi are distinct and occur only where
shown.

We forbear taking cheap shots at such an ungainly rule, the true elegance
of which is hidden in the details of the completeness proof that we shall not
be looking into. Obviously Anderson and Belnap's R is to be preferred
when the issue is simplicity of Hilbert-style axiomatisations.27

3.7 The Relational Semantics (Routley and Meyer)

As was indicated in the last section, Routley too had the basic idea of the
operational semantics at about the same time as Urquhart. Priority would
be very hard to assess. At any rate Dunn �rst got details concerning both
their work in early 1971, although J. Garson told him of Urquhart's work
in December of 1970 and he has seen references made to a typescript of
Routley's with a 1970 date on it (in [Charlewood, 1978]).

Meyer and Dunn were colleagues at the time, and Routley sent Meyer
a somewhat incomplete draft of his ideas in early 1971. This was a coura-
geous and open communication in response to our keen interest in the topic
(instead he might have sat on it until it was perfected). The draft favoured
the operational semantics, indeed the semi-lattice semantics, and was not
clear that this was not the way to go to get Anderson and Belnap's R. But
the draft started with a more general point of view suggesting the use of a
3-placed accessibility relation Rxyz (of course a 2-placed operation like [ is
a 3-placed relation, but not always conversely), with the following valuation
clause for !:

(!) x � A! B i� 8y; z 2 K (if Rxyz and y � A, then z � B):

Forgetting negation for the moment, the clauses for ^ and _ are `truth
functional', just as for the operational semantics.

Meyer, having observed with Dunn the lack of �t between the semi-
lattice semantics and R, was all primed to make important contributions to
Routley's suggestion. In particular he saw that the more general 3-placed
relation approach could be made to work for all of R. In interpreting Rxyz
perhaps the best reading is to say that the combination of the pieces of
information x and y (not necessarily the union) is a piece of information
in z (in bastard symbols, x Æ y � z). Routley himself called the x; y, etc.

27However, the semi-lattice semantics has been taken up and generalised in the �eld of
substructural logics in the work of [Do�sen, 1988; Do�sen, 1989] and [Wansing, 1993].
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`set-ups', and conceived of them as being something like possible worlds
except that they were allowed to be inconsistent and incomplete (but always
prime). On this reading Rxyz can be regarded as saying that x and y are
compatible according to z, or some such thing.

Before going on we want to advertise some work that we are not going to
discuss in any detail at all because of space limitations. The work of Fine
[1974] independently covers some of the same ground as the Routley-Meyer
papers, with great virtuosity making clear how to vary the central ideas
for various purposes. The book of Gabbay [1976, see chapter 15] is also
deserving of mention.

We now set out in more formal detail a version of the Routley{Meyer
semantics for R+ (negation will be reserved for the next section). The
techniques are novel and the completeness proof quite complicated, so we
shall be reasonably explicit about details. The presentation here is very
much indebted to work (some unpublished) of Routley, Meyer and Belnap.

By an (R+) frame (or model structure) is meant a structure (K;R; 0),
where K is a non-empty set (the elements of which are called set-ups), R
is a 3-placed relation on K; 0 2 K, all subject to some conditions we shall
state after a few de�nitions. We de�ne for a; b 2 K; a � b (Routley and
Meyer used >) i� R0ab, and R2abcd i� 9x (Rabx and Rxcd). We also write
this last as R2(ab)cd and distinguish it from R2a(bc)d =df 9x(Raxd^Rbcx).
The variables a; b, etc. will be understood as ranging over the elements of
some K �xed by the content of discussion.

Transcribing the conditions on the semi-lattice semantics as closely as we
can into this framework we get the requirements

1. (Identity) R0aa,

2. (Commutativity) Rabc) Rbac,

3. (Associativity) R2(ab)cd) R2a(bc)d,28

4. (Idempotence) Raaa.

It should be remarked that these conditions fail to pick up the whole
strength of the corresponding semi-lattice conditions. Thus, e.g. Identity
here only picks up 0�a � a and not conversely, and similarly for Idempotence
(also of course Commutativity and Associativity do not require any identity,
but this is a slightly di�erent point). We need for technical reasons one more
condition:

5. (Monotony) Rabc and a0 � a) Ra0bc.

28In the original equivalent conditions of Routley and Meyer [1973] this was instead
`Pasch's Law': R2abcd) R2acbd. Also Monotony (condition (5) below) was misprinted
there.
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By a model we mean a structure M = (K;R; 0;�), where (K;R; 0) is a
frame and � is a relation from K to sentences of R+ satisfying the following
conditions:

(1) (Atomic Hereditary Condition). For a propositional variable p, if a � p
and a � b, then b � p.

(2) (Valuational Clauses). For formulas A;B

(!) a � A! B i� 8b; c 2 K (if Rabc and b � A, then c � B);

(^) a � A ^ B i� a � A and a � B;

(_) a � A _ B i� a � or a � B.

We shall say that A is veri�ed on M if 0 � A, and that A entails B on
M if 8a 2 K (if a � A, then a � B). We say that A is valid if A is veri�ed
on all models.

It is easy to prove by an induction onA, the following (note how Monotony
enters in):

Hereditary Condition. For an arbitrary formula A, if a � A and a � b,
then b � A.

Verification Lemma. If in a given model (K;R; 0;�)A entails B in the
sense that for every a 2 K; a � A only if a � B, then A ! B is veri�ed in
the model, i.e. 0 � A! B.

Proof. suppose that R0ab and a � A. By the hypothesis of the Lemma,
a � B, and by the Hereditary Condition, b � B, as is required for 0 � A!
B. �

We are now in a position to prove the

Soundness Theorem. If `R A, then A is valid.

Proof. Most of this will be left to the reader. We �rst show that the axioms
of R+ are valid. Since they are all of the form A ! B we can simplify
matters a little by using the Veri�cation Lemma. As an illustration we
verify Assertion (the reader may wish to compare this to the corresponding
veri�cation vis �a vis the semi-lattice semantics of the last section).

To show A ! [(A ! B) ! B] is valid, it suÆces by the Veri�cation
Lemma to assume a � A and show a � A ! B ! B. For this last we
assume Rabc and b � A ! B, and show c � B. By Commutativity, Rabc.
By (!) since we have b � A! B and a � A, we get c � B as desired.

The veri�cation of the implicational axioms of Self-Implication and Pre-
�xing are equally routine, falling right out of the Veri�cation Lemma and
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Associativity for the relation R. Unfortunately the veri�cation of Contrac-
tion is a bit contrived (cf. note 24 above), so we give it here.

To verify Contraction, we assume that (1) a � A ! :A ! B and show
a � A! B. To show this last we assume that (2) Rabc and (3) b � A, and
show c � B. From (2) we get, by Commutativity, Rbac. But Rbbb holds by
Idempotence. so we have R2(bb)ac. By Associativity we get R2b(ba)c, i.e.
for some x, both (4) Rbxc and (5) Rbax. by Commutativity, from (5) we
get Rabx. Using (!), we obtain from this, (1), and(3) hat (6) x � A! B.
by Commutativity from (4) we get Rxbc, and from this, (6), and (3) we at
last get the desired c � B.

Veri�cation of the conjunction and disjunction axioms is routine and is
safely left to the reader.

It only remains to be shown then that the rules modus ponens and ad-
junction preserve validity. Actually something stronger holds. It is easy to
se that for any a 2 K (not just 0), if a � A ! B and a � A, then a � B
(by virtue of Raaa), and of course it follows immediately from (^) that if
a � A and a � B, then a � A ^ B. �

We next go about the business of establishing the

Completeness Theorem. If A is valid, then �R+ A.

The main idea of the proof is similar to that of the by now well-known
Henkin-style completeness proofs for modal logic. We suppose that no �R+

A and construct a so-called `canonical model', the set-us of which are certain
prime theories (playing the role of the maximal theories of modal logic).
The base set-up 0 is constructed as a regular theory (for the terminology
`regular', `prime', etc. consult Section 2.4; of course everything is relativised
to R+). From this point on for simplicity we shall assume that we are
dealing with R+ out�tted with the optional extra fusion connective Æ and
the propositional constant t (recall these can be conservatively added | cf.
Section 1.3). We then de�ne Rabc to hold precisely when for all formulas
A and B, whenever A 2 a and B 2 b, then A ÆB 2 c.29

Let us look now at the details. Pick 0 as some prime regular theory T
with A 62 T . We can derive that at least one such exists using the Belnap
Extension Lemma (it was stated in Section 2.5 for RQ, but it clearly holds
for R+ as well). thus set � = R+ and � = fAg.

De�ne K = set of prime theories,30 and de�ne the accessibility relation
R canonically as above.
29The use of Æ and t is a luxury to make things prettier at least at the level of descrip-

tion. Thus, e.g. as we shall see, the associativity of R follows from the associativity of
Æ, and other mnemonically pleasant things happen. We could avoid its use by de�ning
Rabc to hold whenever if A 2 a and A! B 2 b, then B 2 c. Incidentally, the valuational
clause for fusion is : x � A Æ B i� for some a; b such that Rabx; a � A and b � B. The
valuational clause for t is x � t i� 0 � x.
30One actually has a choice here. We have required of theories that they be closed

under implications provable in 0, i.e. require of T that whenever A 2 T and A! B 2 0,
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THEOREM 4. The canonically de�ned structure (K; 0; R) is an R+ frame.

LEMMA 5. The relation R de�ned canonically above satis�es Identity, Com-
mutativity, Idempotence, and Associativity.

Proof.

ad Identity. We need to show that R0aa, i.e. if X 2 0 and A 2 a, then
X ÆA 2 a. By virtue of the R -theorem A! t ÆA, we have t ÆA 2 a. But
using the R-theorem X ! :t ! x, we have t ! X 2 0. By Monotony we
have X ÆA 2 a as desired.

ad Commutativity. Suppose Rabc. We need show Rbac, i.e. if B 2 b and
A 2 a, then B ÆA 2 c. From Rabc, it follows that A ÆB 2 c. But by virtue
of the R-theorem A ÆB ! B ÆA (commutativity of Æ) we have B ÆA 2 C,
as desired.

ad Idempotence. We need show Raaa, i.e. if A 2 a and B 2 a, then
A ÆB 2 a. This follows from the R-theorem A ^B ! A ÆB, which follows
ultimately from the square increasingness of Æ; (X ! X ÆX), as the proof
sketch below makes clear.

1. A ^ B ! A Axiom

2. A ^ B ! B Axiom

3. (A ^ B) Æ (A ^ B)! A ÆB 1, 2, Monotony

4. A ^ B ! A ÆB 3, square increasingness

ad Associativity. This is by far the least trivial property. Let us then
assume that R2(ab)cd, i.e. 9x(Rabx and Rxcd). We need then show that
there is a prime theory y such that Rayd and Rbcy, i.e. R2a(bc)d.

Set y0 = fY : 9B 2 b; C 2 c :`R BÆC ! Y g. (This is sometimes referred
to as b Æ c). Clearly the de�nition of y0 assures that Rbcy0.

Observe that y0 is a theory.31 Thus it is clear that y0 is closed under
provable R-implication, since this is just transitivity. We show it is also
closed under adjunction. Thus suppose for some B;B0 2 b; C; C 0 2 c;�R
B Æ C ! Y and `R B0 Æ C 0 ! Y 0. Then `R (B Æ C) ^ (B0 Æ C 0) !
Y ^ Y 0 using easy properties of conjunction. But we have the R-theorem
(B ^B0) Æ (C ^C 0)! (B ÆC) ^ (B0 ÆC 0) (which follows basically from the
one-way distribution of Æ over ^; X Æ (Y ^ Z) ! (X Æ Y ) ^ (X Æ Z), which

then B 2 T . The latter is a stronger requirement and leads to the `smaller' reduced
models of [Routley et al., 1982], which are useful for various purposes.
31The presentation of Routley{Meyer [1973] is more elegant than ours, developing as

they do properties of what they call the calculus of `intensional R-theories', showing that
it is a partially ordered (under inclusion) commutative monoid (Æ as de�ned above) with
identity 0. Further Æ is monotonous with respect to �, i.e. if a � b then c Æ a � c Æ b, and
Æ is square increasing, i.e. a � a Æ a. Then de�ning Rabc to mean a Æ b � c, the requisite
properties of R fall right out.
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follows basically from Monotony, Y1 ! Y2 ! X Æ Y1 ! X Æ Y2, which is
easy). So by transitivity we get `R (B ^ B0) Æ (C ^ C 0) ! Y ^ Y 0, from
which it follows that Y ^ Y 0 2 y0 as promised (B ^ B0 2 b; C ^ C 0 2 c of
course, since b; c are closed under adjunction).

We next verify that Ray0d. Suppose that A 2 a and Y 2 y0. Then
for some B 2 b; C 2 c;`R B Æ C ! Y . Since Rabx;A Æ B 2 x. And
since Rxcd(A Æ B) Æ C 2 d. By the associativity of Æ (since d is a theory),
then A Æ (B Æ C) 2 d. but by Monotony, since `R B Æ C ! Y , we have
`R A Æ (B Æ C)! A Æ Y . Hence A Æ Y 2 d, as needed.

The reader is excused if he has lost the thread a bit and thinks that we
are now �nished verifying the associativity of R. We wanted some prime
theory y which �lls in the blanks

1. Ra d and

2. Rbc ,

and we have just �nished verifying that y0 is a theory that does �ll in the
blanks. The kicker is that y0 need not be prime. So we work next at
pumping up y0 to make it prime while continuing to �ll in the blanks.

It clearly suÆces to prove

The Squeeze Lemma. Let a0 and y0 be theories that need not be prime,
and let d be a prime theory. If Ra0y0d, then there exists a prime theory y
such that (i) y0 � y and (ii) Ra0yd.

This can be accomplished by a Lindenbaum-style construction like that
of Section 2.3 (or alternatively Zorn's Lemma may be used as in Routley
and Meyer [1973]). The idea is to de�ne y as the union of a sequence
of sets of formulas yn, where (relative to some �xed enumeration of the
formulas) yn+1 is de�ned inductively as yn [ fAn+1g if Ra(yn [ fAn+1g)d,
and otherwise yn+1 is just yn.

But it is instructive to crank the existence of the given y out of the Belnap
Extension Lemma for R.

Thus set � = y0 and � = fA : 9B(A ! B) 2 a and B 62 dg. We need
check that (�; �) is exclusive.

We observe �rst that � is closed under disjunction. Thus supposeA1; A2 2
�. Then for some B1; B)2; A1 ! B1; A2 ! B2 2 a, and yet B1; B2 62 d.
Then (since d is prime) B1 _ B2 62 d. but since a is a theory, then
A1 _ A2 ! B1 _ B2 by an appropriate theorem of R in the proximity
of the disjunction axioms. So A1 _ A2 2 � as desired. Since � is closed
dually under adjunction (that was the point of observing above that y0 is a
theory), this means that if the pair (�; �) fails to be exclusive, then for some
X 2 �; A 2 �;`R X ! A. So for some B;A! B 2 a and B 62 d. But since
a is a theory, by transitivity we derive that X ! B 2 a. But since Raxd
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and X 2 x, we get (X ! B) ÆX 2 d. But since `R X Æ (X ! B)! B, we
have B 2 d, contrary to the choice of B.

Now that we know (�;�) is an exclusive pair we apply the Belnap Ex-
tension Lemma to get a pair (y; y0) with y0 = � � y and y a prime theory,
completing the proof of the Squeeze Lemma, which actually does complete
the proof that the relation R is Associativity.

ad Monotony. (Yes, we still have something left to do.) Let us suppose
that R0a0a and Rabc, and show Ra0bc. Note that it follows from R0a0a
that a0 � a,32 from which it follows at once from Rabc and Ra0bc. Thus
if X 2 a0 then since X ! X 2 0, then (X ! X) Æ X 2 a. But since
`R+ (X ! X) ÆX ! X , then X 2 a.

Having now �nally veri�ed that the canonical (K; 0; R) has all the prop-
erties of an R+-frame, we need now to de�ne an appropriate relation � on
it. The natural de�nition is a � A i� A 2 a, but we need now to verify that
this has the properties (1) and (2) required of � above.

Theorem 2. The canonically de�ned (K; 0; R;�) is indeed an R-model.

Proof. ad (1) (the Hereditary Condition). Suppose a � b, i.e. R0ab. We
show that a � b, from which the Hereditary Condition immediately follows.
Suppose then that A 2 a. Since t 2 0; t Æ A 2 b. But via the R-theorem
t ÆA! A, we have A 2 b as desired.

ad (2) (the valuation of clauses). The clauses (^) and (_) are more or
less immediate (primeness is of course needed for half of (_)). The clause
of interest is (!). Applying the canonical de�nition of �, this amounts to

(!c) A! B 2 a i� 8b; c(if Rabc and A 2 b; then B 2 c):

Left-to-right is argued as follows. Suppose A ! B 2 a;Rabc; A 2 b,
and show B 2 c. Rabc of course means canonically that whenever X 2 a
and Y 2 b, then X Æ Y 2 c. Setting X = A ! B and Y = A, we get
A Æ (A! B)! C. Then using the R+- theorem

A Æ (A! B)! B; we obtain B 2 c:

Right-to-left is harder, and in fact involves the third (and last) application
of the Belnap Extension Lemma in the proof of Completeness. Thus suppose
contrapositively that A ! B 62 a. We need to construct prime theories b
and c, with A 2 b and B 62 c. We let �b = Th(fAg) and set �c = a Æ�b,
i.e. fZ : 9X 2 a; 9Y 2 �b `R+ X ÆY ! Zg. This is the same as fZ : 9X 2
a `R+ X ÆA! Zg. We set �c = fBg. Clearly (�c; �c) is an exclusive pair,
for otherwise `R+ X ÆA! B, i.e. `R+ X ! (A! B) for some X 2 a, and
so A ! B 2 a contrary to our supposition. We apply Belnap's Extension
Lemma to get an exclusive pair (c; c0) with �c � c and c prime theory. Note

32In the `reduced models (cf. note 46) one can show that R0a0a i� a0 � a.
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that by de�nition of �b and �c; Ra�b�c, and so Ra�bc. We are now in a
position to apply the Squeeze Lemma getting a prime theory b � �b such
that Rabc. Clearly A 2 b, but also B 62 c since B 2 �c � c0 (c and c0 are
exclusive).

This at last completes the proof of the Completeness Theorem for R+.
�

Remark. It is fashionable these days to always prove strong completeness.
This could have been done. Thus de�ne A to be a logical consequence of
a set of formulas � i� for every R+-model M , if 0 � B for every B 2 �,
then 0 � A. This is a kind of classical notion and should not be confused
with some kind of relevant consequence. Thus, e.g. where B is a theorem
of R+, since always 0 � B, B will be a logical consequence of any set �.
De�ne B to be deducible from � (again in a neo-classical sense) to mean
B 2 Th(� [R+). Appropriate modi�cations of the work above will show
that logical consequence is equivalent to deducibility.

3.8 Adding Negation to R+

We now discuss the Routley{Meyer semantics for the whole system R.
The idea is simply to add the Routley's treatment of negation using the
�-operator (discussed in Section 3.4). (This is not diÆcult and there is very
little reason to segregate it o� into this separate section, except that we
thought that the treatment of R+ was complicated enough.)

Thus an R-frame is a structure, (K;R; 0; �) where (K;R; 0) is an R+-
frame and K is closed under the unary operation � satisfying:

(Period two) A�� = a,
(Inversion) Rabc) Rac�b�

For an R-model the valuational clauses for the positive connectives are as
for an R-model, and we of course add

(:) a � :A i� a� 6� A:

The soundness and completeness results are relatively easy modi�cations
of those for R+. That � is of period two naturally is used n the veri�cation
of Double Negation and Inversion is central to the veri�cation of Contra-
position. For completeness, a� is de�ned canonically as fA : :A 62 ag (cf.
the de�nition of the analogue g[P ] in the proof of Bia lynicki{Birula and
Rasiowa's representation of de Morgan lattices in Section 3.4), and one of
course has to show that a� is a prime theory when a is. One also has to show
that canonical � is of period two and satis�es (Inversion), and that canonical
� satis�es (:) above, i.e. A 2 a , :A 62 a�, i.e. :A 62 fB : :B 62 ag, i.e.
::A 2 a, which of course just uses Double Negation.
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It is worth remarking that since the canonical 0 is a prime regular theory,
then since `R A _ :A, then 0 is complete (but not necessarily consistent|
this is relevant to the development in Section 3.9). For your garden variety
Routley{Meyer model (not necessarily canonical) notice also that 0 � A or
0 � :A. This follows ultimately from 0� � 0, i.e. R00�0, proven below.

1. R0�0�0�

2. R0�00 1, (Inversion), (Period two)

3. R00�0 2, (Commutation).

Now 0� � 0 means by the Hereditary Condition that if 0 � A then 0� � A,
i.e. 0 � :A as desired.

It should be said that although either the four-valued treatment or the
�-operator treatment of negation work equally well for �rst-degree relevant
implications (at least from a technical point of view), the �-operator treat-
ment seems to win hands down in the context of all of R. Meyer [1979a]

has succeeded in giving a four-valued treatment of all of R, but at the price
of great technical complexity (e.g. the accessibility relation has to be made
four-valued as well, and that is just for starters). Further, as Meyer points
out, one's models still have to be closed under �, so it still can be said to
sneak in the back door.

3.9 Routley-Meyer Semantics for E and other Neighbours of R

Once one sets down a set of conditions on an accessibility relation, they can
be played with n various ways so as to produce semantics for a wide variety
of systems as the experience with modal logic has taught us. Also other
features of the frames can be generalised.

We can here only give the avour of a whole range of possible and actual
results. In all the results below � will satisfy the same conditions as for
R+ (or R ) models (as appropriate). To begin with we follow Routley and
Meyer [1973] with the description of a series of conditions on positive frames
and corresponding axioms for propositional logic. They begin by requiring
of a B+-frame (K;R; 0)

B1. a � a

B2. a � b and b � x) a � c
B3. a0 � a and Rabc) Ra0bc.

B1{B2 of course say that � is a quasi-order, and B3 says something like
that it is monotone.
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`B' appears to be for `Basic', for they regard the above postulates as a
natural minimal set on their approach.33 Gabbay [1976] investigates even
weaker logics where no conditions at all are placed on the frame, but these
have no theorems and are characterised only by rules of deducibility (un-
less Boolean negation and/or the Boolean material conditional is present,
options which he does explore).

The sense in which the above postulates are minimal goes something like
this. B3 is needed in proving the Hereditary Condition for implications,
and the Hereditary Condition is needed in turn for verifying 0 � A !
A (indeed anything) so we have at least some minimal theorems. The
Hereditary Condition is used in showing the equivalence of the veri�cation
of an implication in a model and entailment in that mode, i.e. 0 � A ! B
i� 8x 2 K(x � A ) x � B) (cf. Section 3.7 to see how these conditions
were used to establish these facts about R+-models). What about B2? We
think it is just a `freebie'. It seems to play no role in verifying axioms or
rules, but the completeness proof can be made to yield canonical (`reduced')
models (cf. note 3.7) that satisfy it, so why not have it? This seems to be
what Routley et. al. [1982] say. It appears that B1 is even more a freebie.

It may be shown that A is a theorem of the system B+ (formulated in
Section 1.3) i� A is valid in all B+ models.

Routley and Meyer establish the following correspondence between con-
ditions on the accessibility relation R and axioms:

(1) Raaa A ^ (A! B)! B
(2) Rabc) R2a(ab)c (A! B) ^ (B ! C)! (A! C)
(3) R2abcd) R2a(bc)d A! B ! ([B ! C]! [A! C])
(4) R2abcd) R2b(ac)d A! B ! ([C ! A]! [C ! B])
(5) Rabc) R2abbc (A! [A! B])! (A! B)
(6) Ra0a ([A! A]! B)! B
(7) Rabc) Rbac A! ([A! B]! B)
(8) 0 � a A! (B ! B)
(9) Rabc) b � c A! (B ! A).

Routley and Meyer connect these conditions on accessibility relations to
axioms extending the basic logic B. The correspondence is more perspicu-
ous when you consider the structural rules corresponding to each axiom or
condition. We can express these as conditions on fusion:

33However, some notational confusion is possible, with Fine's use of `B' as another
basic relevance logic di�ering slightly from Routley and Meyer's usage [Fine, 1974]. For
Fine, B includes the law of the excluded middle, and for Routley and Meyer, it does not.
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(1) Raaa A ` A ÆA
(2) Rabc) R2a(ab)c A ÆB ` A Æ (A ÆB)
(3) R2abcd) R2a(bc)d (A ÆB) Æ C ` A Æ (B Æ C)
(4) R2abcd) R2b(ac)d (A ÆB) Æ C ` B Æ (A Æ C)
(5) Rabc) R2abbc A ÆB ` (A ÆB) ÆB
(6) Ra0a A Æ t ` A
(7) Rabc) Rbac A ÆB ` B ÆA
(8) 0 � a B ÆA ` B (or A ` t)
(9) Rabc) b � c A ÆB ` B.

General recipes for translating between structural rules and conditions
on accessibility relations are to be found in Restall [1998; 2000].

If one wants to add to B+ any of the axioms on the right to get a sentential
logic X, one merely adds the corresponding conditions to those for a B+

model to get the appropriate notion of an X-model, with a resultant sound
and complete semantics.

Some logics of particular interest arising in this way are (nomenclature as
in [Anderson and Belnap, 1975]) (note well that T has nothing to do with
Feys' t of modal logic fame):

TW+ : B+ + (3; 4)
T+ : TW+ + (5)
E+ : T+ + (6)
R+ : E+ + (7)
H+ : R+ + (8)
S4+ : E+ + (8):

These are far from the most elegant formulations from a postulational
point of view, being highly redundant (in particular the Pre�xing and Suf-
�xing rules of B+ are supplanted already in TW+ by the corresponding
axioms. further the rule of Necessitation (A ` (A! A)! A) is also redun-
dant already in TW+ (this is not so obvious|proof is by browsing through
[Anderson and Belnap, 1975]).

What minimal conditions should be imposed on the �-operator when it is
added to a B+-frame so as to give a B-frame? Routley et. al. [1982] choose

B4. a�� = a, and

B5. a � b) b� � a�.
The minimality of B5 can be defended in terms of its being needed for

showing that negations satisfy the Hereditary Condition. B4 would seem to
have little place in a minimal system except for the fact that the dominant
trend in relevance logic has been to keep classical double negation.34

34In fact, B5 is too strong for a purely minimal logic of negation. See Section 5.1 for
more discussion on this.
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One can get semantics for the full systems TW, T, etc. simply by adding
the appropriate postulates to the conditions on a B-model.

We could go on, but will instead refer the reader to Routley et al. [1982],
Fine [1974] and Gabbay [1976] for a variety of variations producing systems
in the neighbourhood of R.

Some �nd the conditions on the \base point" 0 on frames rather puz-
zling or unintuitive. Why should the basic conditions on frames include
conditions such as the fact that a � b de�ned as R0ab generate a partial
order? Some recent work by Priest and Sylvan and extended by Restall has
shown that these conditions can be done away with and the frames given an
interpretation rather reminiscent of that of non-normal modal logics [Priest
and Sylvan, 1992; Restall, 1993]. The idea is as follows. We have two sorts
of set-ups in a frame | normal ones and non-normal ones. Then we split
the treatment of implication along this division. Normal points are given
an S5-like interpretation.

� x � A! B i� for every y if y � A then y � B

and non-normal points are given the condition which appeals to the ternary
relation R

� x � A! B i� for every y and z where Rxyz if y � A then z � B

The other connectives are treated in just the same way as in the original
relational semantics. To prove soundness and completeness for this seman-
tics, it is simplest to go through the original semantics | for it is not too
diÆcult to show that this account is merely a notational variant, where we
have set Rxyz i� y = z when x is a normal set-up. This satis�es all of
the conditions in the original semantics, for we have set a � b to be simply
a = b.

We turn now to one such system RM deserving of special treatment.

3.10 Algebraic and Set-theoretical Semantics for RM

RM has been described by Meyer as `the laboratory of relevance logic'. It
plays a role somewhat like S5 among modal logics, being a place where
conjectures can be tested relatively easily (e.g. the admissibility of  was
�rst shown for RM). This then could be a very long section because RM is
by far the best understood of the Anderson{Belnap style systems. We shall
try to keep it short by being dogmatic. The interested reader can verify
the results claimed by consulting Meyer's Section 29.3 and Section 29.4 of
[Anderson and Belnap, 1975] (see also [Dunn, 1970; Tokarz, 1980]).

In the �rst place the appropriate algebras for RM are the idempotent de
Morgan monoids (strengthening a � a Æ a to a = a Æ a). The subdirectly
irreducible ones are all chains with de Morgan complement where aÆb = a^b
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if a � :b, and a Æ b = a _ b otherwise. The designated elements are all
elements a such that :a � a, and of course these must have a greatest
lower bound to serve as the identity e. (This is just another description
with Æ as primitive instead of ! of the `Sugihara matrices' described in the
publications cited above.) Meyer showed that if `RM A, then A is valid in
all the �nite Sugihara matrices, establishing the �nite model property for
RM.

Dunn showed that every extension of RM closed under substitution and
the rules of R has some �nite Sugihara matrix as a characteristic matrix
(RM is `pretabular'). A similar result was shown by Scroggs to hold for the
modal logic S5, and researchers (particularly Maksimova) have obtained
results characterising all such pretabular extensions of S4 and of the in-
tuitionistic logic. Curiously enough there are only �nitely many, and it is
an interesting open problem to �nd some similar results for R. RM corre-
sponds to the super-system of the intuitionistic propositional calculus LC
(indeed LC can be translated into RM; see [Dunn and Meyer, 1971]). Much
study has been done of the `superintuitionistic' calculi (with an emphasis
on the decision problem), and it would be good to see some of the ideas of
this carried over to the `super-relevant' calculi. A small start was begun in
[Dunn, 1979a].

Routley and Meyer [1973] add the postulate

0 � a or 0 � a�

to the requirement on an R-frame to get an RM-frame. Dunn [1979a]

instead adds the requirement

Rac) a � c or b � c;

which neatly generalised to give a family of postulates yielding set-theoretical
semantics for a denumerable family of weakenings of RM which are alge-
braised by adding various weakenings of idempotence (an+1 = an). It is an
open problem whether R itself is the intersection of this family and whether
they all have the �nite model property (if so, R is decidable). Since R is
undecidable, one of these must be false. However, it is unknown at the time
of writing which one fails.

Proof Sketch
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1. :X ! (:X ! :X) Mingle Axiom, Subst.
2. X ! (:X ! X) 1, Permutation and

Contraposition
3. (A _ :A) ^ (B _ :B)! 2, Subst.
:((A _ :A) ^ (B _ :B))!
((A _ :A) ^ (B _ :B))

4. :(A _ :A) _ :(B _ :B)! 3, MP, de M
(A _ :A) ^ (B _ :B)

5. A ^ :A! B _ :B 4, _I;^E, de M.

Kalman [1958] especially investigated de Morgan lattices with the prop-
erty a ^ :a � b _ :b. We will call these Kalman lattices. he showed that
every Kalman lattice is isomorphic to a subdirect product of the de Morgan
lattice 3. This implies a three- valued Homomorphism Separation Property
for Kalman lattices (which also can be proven by modifying the proof of its
four-valued analogue, noting that each `side' of 4 is just a copy of 3). The
representation in terms of polarities uses polarities X = (X1; X2) where
X1 [X2 = U , i.e. X1 and X2 are exhaustive.

This means informally that X always receives at least one of the values
true and false. This leads to a semantics using ambivaluations into the
left-hand side of 4:

F = ffg.

B = ft; fg

T = ftg

s

s

s

This idea leads to a simpler Kripke-style semantics for RM using an or-
dinary binary accessibility relation instead of the Routley{Meyer ternary
one (actually this semantics antedates the Routley{Meyer one, the results
having been presented in [Dunn, 1969]|cf. [Dunn, 1976b] for a full presen-
tation. No details will be supplied here. This semantics has been generalised
to �rst-order RM with a constant domain semantics [Dunn, 1976c]). The
analogous question with Routley{Meyer semantics is has now been closed in
the negative in the work of [Fine, 1989], which we consider in Section 3.12.

Meyer [1980] has used this `binary semantics' to give a proof of an ap-
propriate Interpolation Lemma for RM. (Unfortunately, interpolation fails
for E and R [Urquhart, 1993].)

3.11 Spin O�s from the Routley{Meyer Semantics

The Routley{Meyer semantical techniques can be used to prove a variety of
results concerning the system R and related logics which were either more
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complicated using other methods (usually algebraic or Gentzen methods), or
even impossible. Thus (cf. [Routley and Meyer, 1973]), it is possible to give
a variety of conservative extension results (being careful in constructing the
canonical model to use only connectives and sentential constant available
in the fragment being extended). Also it is possible to give a proof of the
admissibility of  (see [Routley and Meyer, 1973]) that is easier than the
original algebraic proof (though not as easy as Meyer's latest proof using
metavaluations|cf. Section 2.4). Admissibility of  amounts to showing
that if A is refutable in a given R-model (K;R; 0;�) then A is refutable in
a normal R-model (K 0; R0; 00;�0) (one where 00� = 00) gotten by adding a
new `zero' and rede�ning R0 and �0 in a certain way from R and �.

Perhaps the most interesting new property to emerge this way is `Halld�en
completeness', i.e. if `R A_B and A and B share no propositional variables
in common, then `R A or `R B ([Routley and Meyer, 1973, Section 2.3]).

Another direction that the Routley{Meyer semantics has taken quickly
ends up in heresy: classical (Boolean) negation � can be added to R with
horrible theorems resulting like A^ � A! B, and yet R does not collapse
to classical logic. Indeed no new theorems emerge in the original vocabulary
of R. The idea is to take a normal R-model (K;R; 0; �;�) and turn it in for
a new R-model (K 0; R0; 00; �0;�0) , whose 00 is a new element K 0 = K[f00g,
�0 is like � but with 00�0 = 00, and R0 is like R with the additional features:

1. R000ab i� R; a00b i� a = b,

2. R0ab00 i� a = b�.

Also �0 is just like � but with 00 � A if 0 � A.
The whole point of this exercise is to provide refuting R-models for all

non-R-theorems that have the property

a � b (i.e. R00ab) ) a = b:

These are called `classical R-models' (�rst studied in Meyer and Routley
[1973a; 1973b]) and upon them one can de�ne

a � �A, not a � A:

One could not do this on ordinary R-models without things coming apart
at the seams, because in order to have the theorem �p ! �p valid, one
would need the Hereditary Condition to hold for � p, i.e. if a � b, then if
a � �p then b � �p, i.e. if a � p then b � p. But one has no reason to
think that this is the case, since all one has is the converse coming from
the fact that the Hereditary condition holds for p. The inductive proof
the Hereditary condition breaks down in the presence of Boolean negation,
but of course with classical R-models the Hereditary Condition becomes
vacuous and there is no need for a proof.
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This leads to certain technical simplicities, e.g. it is possible to give
G�odel{Lemmon style axiomatisations of relevance logics like the familiar
ones for modal logics, where one takes among one's axioms all classical
tautologies (using �)|cf. [Meyer, 1974].

But it also leads to certain philosophical perplexities. For example, what
was all the fuss Anderson and Belnap made against contradictions implying
everything and disjunctive syllogism? Boolean negation trivially satis�es
them, so what is the interest in de Morgan negation failing to satisfy them.
Will the real negation please stand up?

A certain schism developed in relevance logic over just how Boolean nega-
tion should be regarded. See [Belnap and Dunn, 1981; Restall, 1999] for the
`con' side and [Meyer, 1978] for the `pro' side.

Belnap and Dunn [1981] point out that although Meyer's axiomatisations
of R with Boolean negation do not lead to any new theorems in the standard
vocabulary of R, they do lead to new derivable rules, e.g. A ^ :A ` B and
:A^ (A_B) ` B (note well that the negation here is de Morgan negation).
This can be seen quite readily if one recognises that the semantic correlate
of X ` Y is that 0 � X ) 0 � Y in all classical R-models, and that since
all such are normal, : behaves at 0 in these just like classical negation. We
both think this point counts against enriching R with Boolean negation,
but Meyer [1978, note 21] thinks otherwise.

3.12 Semantics for RQ

The question of how to extend these techniques to handle quanti�ed rel-
evance logics was open for a long time. The �rst signi�cant results were
by Routley, who showed that the obvious constant domain semantics were
suÆcient to capture BQ, the natural �rst-order extension of B [Routley,
1980b]. However, extending the result to deal with systems involving tran-
sitivity postulates in the semantics (such as Rabc^Rcde) R2abde) proved
diÆcult. To verify that the frame of prime theories on some constant domain
actually satis�es this condition (given that the logic satis�es a correspond-
ing condition, here the pre�xing axiom) requires constructing a new prime
theory x such that Rabx and Rxde. And there seems to be no general way
to show that such a theory can be constructed using the domain shared
by the other theories. This is not a problem for logics like BQ, in which
the frame conditions do not have conditions which, to be veri�ed in the
completeness proof, require the construction of new theories.

Fine showed that this is not merely a problem with our proof techniques.
Logics like RQ, EQ, TQ and even TWQ are incomplete with respect to the
constant domain semantics on the frames for the propositional logics [Fine,
1989]. He has given a technical argument for this, constructing a formula in
the language of RQ which is true in all constant domain models, but which
is not provable. The argument is too detailed to give here. It consists of a
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simple part, which shows that the formula�
(p! 9xEx) ^ 8x((p! Fx) _ (Gx! Hx))

�
! �8x(Ex ^ Fx! q) ^ 8x((Ex! q) _Gx)! 9xHx _ (p! q)

�
is valid in the constant domain semantics. This is merely a tedious veri�ca-
tion that there is no counterexample. The subtle part of his argument is the
construction of a countermodel. Clearly the countermodel cannot be a con-
stant domain frame. Instead, he constructs a frame with variable domains,
in which each of the axioms of RQ is valid (and in which the rules preserve
validity) but the o�ending formula fails. This is quite a tricky argument, for
variable domain semantics tend not to verify RQ's analogue to the Barcan
formula

8x(p! Fx)! (p! 8xFx)

But Fine constructs his example in such a way that this formula is valid,
despite the variable domains.

Despite this problem, Fine has found a semantics with respect to which
the logic RQ is sound and complete. This semantics rests on a di�erent view
of the quanti�ers. For Fine's account, a statement of the form 8xA(x) is true
at a set-up not only when A(c) is true for each individual c in the domain
of the set-up, but instead, when A(c) is true for an arbitrary individual c.
In symbols,

a � 8xA(x) i� (9a")(9c 2 Da" �Da)(a" � A(c)).

That is, for every set-up a there are expansions of the form a" where we add
new elements to the domain, but these are totally arbitrary. The frames
Fine de�nes are rather complex, needing not only the " operator but also
a corresponding # operator which cuts down the domain of a set-up, and
an across operator  which identi�es points in setups (! (a; fc; dg) is the
minimal extension of the set-up a in which the individuals c and d are
identi�ed. Instead of discussing the details of Fine's semantics, we refer
the reader to his paper which introduced them [Fine, 1988]. Fine's work
has received some attention, from Mares, who considers options for the
semantics of identity [Mares, 1992]. However, it must be said that while
the semantic structure pins down the behaviour of RQ and related systems
exactly, it is not altogether clear whether the rich and complex structure
of Fine's semantics is necessary to give a semantics for quanti�ed relevance
logics.

Whatever one's thoughts about the theoretical adequacy of Fine's se-
mantics, they do raise some important issues for anyone who would give a
semantic structure for quanti�ed relevance logics. There are a number of
issues to be faced and a number of options to be weighed up. One option
is to give complete primacy to the frames for the propositional logics, and
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to use the constant domain semantics on these frames. The task then is to
axiomatise this extension. The task is also to give some interpretation of
what the points in these semantic structures might be. For if they are the-
ories (or prime theories) then the evaluation clauses for the quanti�ers do
not make a great deal of sense without further explanation. No-one thinks
that a claim of the form 9xA(x) can be a member of a theory only if there is
an object in the language of the theory which satis�es A according to that
theory. Nor are we so readily inclined to think that all theories need share
the same domain of quanti�cation.

If, on the other hand, we take the set-ups in frames to be quite like (some
class of) theories, then we must face the issue of the relationships between
these theories. No doubt, if 8xA(x) is in some theory, then A(c) will be in
that theory for any constant c in the language of the theory. However, the
converse need not be the case.

Anyway, it is clear that there is a lot of work to be done in the semantics
of relevance logics with quanti�ers. One area which hasn't been explored at
any depth, but which looks like it could bring some light is the semantics of
positive quanti�ed relevance logics. Without the distribution of the univer-
sal quanti�er over disjunction, these systems are subsystems of intuitionistic
logic.

4 THE DECISION PROBLEM

4.1 Background

When the original of this Handbook article was published back in 1985,
without a doubt the outstanding open problem in relevance logics was the
question as to whether there exists a decision procedure for determining
whether formulas are theorems of the system E or R. Anderson [1963] listed
it second among his now historic open problems (the �rst was the admissi-
bility of Ackermann's rule  discussed in Section 2). Through the work of
Urquhart [1984], we now know that there is no such decision procedure.

Harrop [1965] lends interest to the decision problem with his remark that
`all \philosophically interesting" propositional calculi for which the decision
problem has been solved have been found to be decidable : : : '.35 We now
have a very good counterexample to Harrop's claim.

In this section we shall examine Urquhart's proof, but before we get there
we shall also consider various fragments and subsystems of R for which there
are decision procedures. R will be our paradigm throughout this discussion,
though we will make clear how things apply to related systems.

35He continues somewhat more technically ` : : : and none is known for which it has
been proved that it does not possess the �nite model property with recursive bound.'
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4.2 Zero-degree Formulas

These are formulas containing only ^;_, and :. As was explained in Sec-
tion 1.7, the zero-degree theorems of R (or E) are precisely the same as
those of the classical propositional calculus, so of course the usual two val-
ued truth tables yield a decision procedure.

4.3 First-degree Entailments

Two di�erent (though related) `syntactical' decision procedures were de-
scribed for these in Section 1.7 (the method of `tautological entailments'
and the method of `coupled trees'). A `semantical' decision procedure us-
ing a certain four element matrix 4 is described in Section 3.3. The story
thus told leaves out the historically (and otherwise) very important role of
a certain eight element matrix M0 (cf. [Anderson and Belnap, 1975, Section
22.1.3]). This matrix is essential for the study of �rst-degree formulas and
higher (see Section 4.4 below), in so much as it is impossible to de�ne an
implication operation on 4 and pick out a proper subset of designated ele-
ments so as to satisfy the axioms of E (a fortiori R). Indeed M0 was used in
[Anderson and Belnap Jr., 1962b] and [Belnap, 1960b] to isolate the �rst-
degree entailments of R, and the formulation of Section 1.7 presupposes
this use.

4.4 First-degree Formulas

These are `truth functions' of �rst-degree entailments and/or formulas con-
taining no ! at all (the `zero-degree formulas'). Belnap [1967a] gave a
decision procedure using certain �nite `products' of M0. No one such prod-
uct is characteristic for Dfdf, but every non-theorem of Efdf is refutable in
some such products Mn

0 (where n may in fact be computed as the largest
number of �rst-degree entailments occurring in a disjunction once the can-
didate theorem has been put in conjunctive normal form). Hence Efdf has
the �nite model property which suÆces of course for decidability (cf. [Har-
rop, 1965]). This is frankly one of the most diÆcult proofs to follow in the
whole literature of relevance logics. A sketch may be found in [Anderson
and Belnap, 1975, Section 19].

4.5 `Career Induction'

This is what Belnap has labelled the approach, exempli�ed in Sections 4.1{
4.3 above of extending the positive solution to the decision problem `a degree
at a time'. The last published word on the Belnap approach is to be found
in his [1967b] where he examines entailments between conjunctions of �rst-
degree entailments and �rst degree entailments.
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Meyer [1979c], by an amazingly general and simple proof, shows that a
positive answer to the decision problem for `second-degree formulas' (no !
within the scope of an arrow within the scope of an !) is equivalent to
�nding a decision procedure for all of R.

4.6 Implication Fragment

We now start another tack. Rather than looking at fragments of the whole
system R delimited by complexity of formulas, we instead consider frag-
ments delimited by the connectives which they contain. The earliest result
of this kind is due to [Kripke, 1959b], who gave a Gentzen system for the
implicational fragments of E and R, and showed them decidable. We shall
here examine the implicational fragment of R (R!) in some detail as a
kind of paradigm for this style of argument.36

The appropriate Gentzen calculus37 LR! is the same as that given by
Gentzen [1934] except for two trivial di�erences and one profound di�erence.
The �rst trivial di�erence is the obvious one that we take only the opera-
tional rules for implication, and the second trivial di�erence consequent on
this (with negation it would have to be otherwise) is that we can restrict our
sequents to those with a single formula in the consequent. The profound
di�erence is that we drop the structural rule variously called `thinning' or
`weakening'. This leaves:

Axioms.

A ` A:

Structural Rules.

Permutation
�;A;B; �;` C
�;B;A; �;` C Contraction

�; a;A ` B
�;A ` B

Operational Rules.

(`!)
�;A ` B
� ` A! B

(!`)
� ` A �;B ` C

:
�; �;A! B ` C

It is easy to see why thinning would be a disaster for relevant implication.

36Actually this and various other results discussed below using Gentzen calculi presup-
poses `separation theorems' due to Meyer, showing, e.g. as is relevant to this case, that
all of the theorems containing only ! are provable from the axioms containing only !.
37We do not follow Anderson and Belnap [1975] in calling Gentzen systems `consecution

calculi', much as their usage has to recommend it.
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Thus:

A ` A
Thinning

A;B ` A
(`!)

A ` B ! A
(`!)` A! (B ! A)

It is desirable to prove `The Elimination Theorem', which says that the
following rule would be redundant (could be eliminated).

(Cut)
� ` A �;A ` B

:
�; � ` B

This is needed to show the equivalence of LR! to its usual Hilbert-style
(axiomatic system `HR!' R! one of the formulations of Section 1.3). We
will not pause on details here, but the principal question regarding the
equivalence is whether modus ponens (The sole rule for HR!) is admissible
in the sense that whenever ` A and ` A ! B are both derivable in LR!,
so is ` B (let � and � be empty).

The strategy of the proof of the Elimination Theorem can essentially
be that of Gentzen with one important but essentially minor modi�cation.
Thus, Gentzen actually proved something stronger than Cut elimination,
namely,

(Mix)
� ` A � ` B

;
�; [� �A] ` B

where [� �A] is the result of deleting all occurrences of A from �. This is
useful in the induction, but sometimes it takes out too many occurrences of
A. In Gentzen's framework these could always be thinned back in, but of
course this is not available with LR!. We thus instead generalise Cut to
the rule

(Fusion)
� ` A � ` B

;
�; (� � A) ` B

where � contains some occurrences of A and (��A) is the result of deleting
as many of those occurrences as one wishes (but at least one).

The main strategy of the decision procedure for LR! is to limit appli-
cations of the contraction rule so as to prevent a proof search from running
on forever in the following manner: `Is p ` q derivable? Well it is if p; p ` q
is derivable. Is p; p ` q derivable? Well it is if p; p; p ` q is, etc.'.

We need one simple notion before strategy can be achieved. We shall
say that the sequent of �0 ` A is a contraction of sequent � ` A just in
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case �0 ` A can be derived from � ` A by (repeated) applications of the
rules Contraction and Permutation (with respect to this last it is helpful
not even to distinguish two sequents that are mere permutations of one
another). The idea that we now want to put in e�ect is to drop the rule
Contraction, replacing it by building into the operational rules a limited
amount of contraction (in the generalised sense just explained).

More precisely, the idea is to allow a contraction of the conclusion of an
operational rule only in so far as the same result could not be obtained by
�rst contracting the premises. A little thought shows that this means no
change for the rule (`!), and that the following will suÆce for

(!`0)
� ` A �;B ` C
[�; �;A! B] ` C

where [�; �;A! B] is any contraction of �; �;A! B such that :

1. A! B occurs only 0, 1, or 2 times fewer than in �; �;A! B;

2. Any formula other than A! B occurs only 0 or 1 time fewer.

It is clear that after modifying LR! by building some limited contraction
into (!`) in the manner just discussed, the following is provable by an
induction on length of derivations:

Curry's Lemma.38 If a sequent �0 is a contraction of a sequent � and �
has a derivation of length n, then �0 has a derivation of length � n.

Clearly this lemma shows that the modi�cation of LR! leaves the same
sequents derivable (since the lemma says the e�ect of contraction is re-
tained). So henceforth we shall by LR! always mean the modi�ed version.

Besides the use just adverted to, Curry's Lemma clearly shows that every
derivable sequent has an irredundant derivation in the following sense: one
containing no branch with a sequent �0 below a sequent � of which it is a
contraction.

We are �nally ready to begin explicit talk about the decision procedure.
Given a sequent �, one begins the test for derivability as follows (building

38This is named (following [Anderson and Belnap, 1975]) after an analogous lemma in
[Curry, 1950] in relation to classical (and intuitionistic) Gentzen systems. There, with
free thinning available, Curry proves his lemma with (!`) (in its singular version) stated
as:

�; A! B ` A �; A! B;B ` C
:

�; A! B ` C

This in e�ect requires the maximum contraction permitted in our statement of (!`)
above, but this is ok since items contracted `too much' can always be thinned back in.
Incidentally, our statement of (!`) also di�ers somewhat from the statement of Anderson
and Belnap [1975] or Belnap and Wallace [1961], in that we build in just the minimal
amount of contraction needed to do the job.
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a `complete proof search tree'): one places above � all possible premises
or pairs of premises from which � follows by one of the rules. Note well
that even with the little bit of contraction built into (!`) this will still be
only a �nite number of sequents. Incidentally, one draws lines from those
premises to �. One continues in this way getting a tree. It is reasonably
clear that if a derivation exists at all, then it will be formed as a subtree
of this `complete proof search there', by the paragraph just above, the is
complete proof search tree can be constructed to be irredundant. But the
problem is that the complete proof search tree may be in�nite, which would
tend to louse up the decision procedure. There is a well-known lemma which
begins to come to the rescue:

K�onig's Lemma. A tree is �nite i� both (1) there are only �nitely many
points connected directly by lines to a given point (`�nite fork property') and
(2) each branch is �nite (`�nite branch property').

By the `note well' in the paragraph above, we have (1). The question
remaining then is (2), and this is where an extremely ingenious lemma of
Kripke's plays a role. To state it we �rst need a notion from Kleene. Two
sequents � ` A and �0 ` A are cognate just when exactly the same formulas
(not counting multiplicity) occur in � as in �0. Thus, e.g. all of the following
are cognate to each other:

(1) X;Y ` A
(2) X;X; Y ` A
(3) X;Y; Y ` A
(4) X;X; Y; Y ` A
(5) X;X;X; Y; Y ` A.

We call the class of all sequents cognate to a given sequent a cognation class.

Kripke's Lemma. Suppose a sequence of cognate sequents �0;�1; : : : ; is
irredundant in the sense that for no �i;�j with i < j, is �i a contraction
of �j . Then the sequence is �nite.

We postpone elaboration of Kripke's Lemma until we see what use it is
to the decision procedure. First we remark an obvious property of LR!

that is typical of Gentzen systems (that lack Cut as a primitive rule):

Subformula Property. If � is a derivable sequent of LR!, then any
formula occurring in any sequent in the derivation is a subformula of some
formula occurring in �.

This means that the number of cognation classes occurring in any deriva-
tion (and hence in each branch) is �nite. But Kripke's Lemma further shows
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that only a �nite number of members of each cognation class occur in a
branch (this is because we have constructed the complete proof search tree
to be irredundant). So every branch is �nite, and so both conditions of
K�onig's lemma hold. Hence the complete proof search tree is �nite and so
there is a decision procedure.

�0

1

2

3

4

5

6

7

2 3 4 5 6 7

Figure 1. Sequents in the Plane

Returning now to Kripke's Lemma, we shall not present a proof (for
which see [Belnap Jr. and Wallace, 1961] or [Anderson and Belnap, 1975]).
Instead we describe how it can be geometrically visualised. For simplicity
we consider sequents cognate to X;Y ` A ((1), (2), (3), etc. above). Each
such sequent can be represented as a point in the upper right-hand quadrant
of the co-ordinate plane (where origin is labelled with 1 rather than 0 since
(1) is the minimal sequent in the cognation class). See Figure 1. Thus, e.g.
(5) gets represented as `3 X units' and `2 Y units'.

Now given any sequent, say

(�0) X;X;X; Y; Y ` A

as a starting point one might try to build an irredundant sequence by �rst
building up the number of Y 's tremendously (for purposes of keeping on the
page we let this be to six rather than say a million). But in so doing one
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has to reduce the number of X 's (say, to be strategic, by one). The graph
now looks like 2 for the �rst two members of the sequence �0;�1.

�0

�1

1

2

3

4

5

6

7

2 3 4 5 6 7

Figure 2. Descending Regions

The purpose of the intersecting lines at each point is to mark o� areas
(shaded in the diagram) into which no further points of the sequence may
be placed. Thus if �2 were placed as indicated at the point (6, 5), it would
reduce to �0. What this means is that each new point must march either
one unit closer to the X axis or one unit closer to the Y axis. Clearly after a
�nite number of points one or the other of the two axes must be `bumped',
and then after a short while the other must be bumped as well. When
this happens there is no space left to play without the sequence becoming
redundant.

The generalisation to the case of n formulas in the antecedent to Eu-
clidean n-space is clear (this is with n �nite|with n in�nite no axis need
ever be bumped).

Incidentally, Kripke's Lemma (as Meyer discovered) is equivalent to a
theorem of Dickson about prime numbers: Let M be a set of natural num-
bers all of which are composed out of the �rst m primes. Then every n 2M
is of the form Pn1

1 �Pn2
2 � : : : Pnk

k , and hence (by unique decomposition) can
be regarded as a sequence of the Pi's in which each Pi is repeated ni times.
Divisibility corresponds then to contraction (at least neglecting the case
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ni = 0). Dickson's theorem says that if no member of M has a proper
divisor in M , then M is �nite.

Before going on to consider how the addition of connectives changes the
complexity, let us call the reader's attention to a major open problem: It is
still unknown whether the implication fragment of T is decidable.

4.7 Implication{Negation Fragment

The idea of LR:
! is to accommodate the classical negation principles pre-

senting R in the same way that Gentzen [1934] accommodated them for
classical logic: provide multiple right-hand sides for the sequents. this
means that a sequent is of the form � ` �, where � and � are (possible
empty) �nite sequences of formulas. One adds structural rules for Permuta-
tion and Contraction on the right-hand side, reformulates (`!) and (!`)
as follows

(`!)
�;A ` B; �
� ` A! B; �

(!`)
� ` A;  �;B ` Æ

;
�; �; A! B ` ; Æ

and adds `ip and op' rules for negation:

(` :)
�;A ` �
� ` :A; � (: `)

� ` A; �
:

�;:A ` �
LE:! is the same except that in the rule (`!)� must be empty and �

must consist only of formulas whose main connective is !. The decision
procedure for LE:! was worked out by Belnap and Wallace [1961] along
basically the lines of the argument of Kripke just reported in the last section,
and is clearly reported in [Anderson and Belnap, 1975, Section 13]. the
modi�cation to LR:

! is straightforward (indeed LR:
! is easier because one

need not prove the theorem of p. 128 of [Anderson and Belnap, 1975], and so
one can avoid all the apparatus there of `squeezes'). McRobbie and Belnap
[1979] have provided a nice reformulation of LR:

! in an analytic tableau
style, and Meyer has extended this to give analytic tableau for linear logic
and other systems in the vicinity of R [Meyer et al., 1995].

4.8 Implication{Conjunction Fragment, and RWithout Distri-
bution

This work is to be found in [Meyer, 1966]. The idea is to add to LR! the
Gentzen rules:

(^ `)
�;A ` C

�;A ^B ` C
�; � ` C

�;A ^ B ` C (` ^)
� ` A � ` B

:
� ` A ^ B

Again the argument for decidability is a simple modi�cation of Kripke's.
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Note that it is important that the rule (^ `) is stated in two parts, and
not as one `Ketonen form' rule:

(K^ `)
�;A;B ` C

:
�;A ^ B ` C

The reason is that without thinning it is impossible to derive the rule(s)
(^ `) from (K^ `).

Early on it was recognised that the distribution axiom

A ^ (B _ C)! (A _ B) _ C
was diÆcult to derive from Gentzen-style rules for E and R. Thus Anderson
[1963] saw this as the sticking point for developing Gentzen formulations,
and Belnap [1960b, page 72]) says with respect to LE! that `the standard
rules for conjunction and disjunction could be added : : : the Elimination
Theorem (suitably modi�ed) remaining provable. However, [since distribu-
tion would not be derivable], the game does not seem worth the candle'.
Meyer [1966] carried out such an addition to LR:

!, getting a system he
called LR�, whose Hilbert-style version is precisely R without the distri-
bution axiom. He showed using a Kripke-style argument that this system
is decidable. This system is now called LR, for \lattice R".

Meyer [1966] also showed how LR can be translated into R!;^ rather
simply. Given a formula A in the language of LR+, let V be the set of
variables in A, and let two atomic propositions pt and pf not in V . Set :A
for the moment to be A! pf , to de�ne a translation A0 of A as follows.

p0 = p

t0 = pt

(A! B)0 = A0 ! B0

(A ^ B)0 = A0 ^ B0
(A _ B)0 = :(:A0 ^ :B0)
(A ÆB)0 = :(A0 ! :B0)

then setting t(A) =
Vfpt ! (p ! p) : p 2 V [ fpt; pfgg and f(A) =Vf::p! p : p 2 V [ fpt; pfgg, we get the following theorem:

Translation Theorem (Meyer). If A is a formula in LR+ then A is
provable in LR+ if and only if (t(A)^f(A)^pt)! A0 is provable in R!;^.

The proof is given in detail in [Urquhart, 1997], and we will not present it
here.

Some recent work of Alasdair Urquhart has shown that although R!;^

is decidable, it is only just decidable [Urquhart, 1990; Urquhart, 1997].
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More formally, Urquhart has shown that given any particular formula in
the language of R!;^, there is no primitive recursive bound on either the
time or the space taken by a computation of whether or not that formula
is a theorem. Presenting the proof here would take us too far away from
the logic to be worthwhile, however we can give the reader the kernel of the
idea behind Urquhart's result.

Urquhart follows work of [Lincoln et al., 1992] by using a propositional
logic to encode the behaviour of a branching counter machines. A counter
machine has a �nite number of registers (say, ri for suitable i) which each
hold one non-negative integer, and some �nite set of possible states (say,
qj for suitable j). Machines are coded with a list of instructions, which
enable you to increment or decrement registers, and test for registers' being
zero. A branching counter machine dispenses with the test instructions and
allows instead for machines to take multiple execution paths, by way of
forking instructions. The instruction qi + rjqk means \when in qi, add 1 to
register rj and enter stage qk," and qi� rjqk means \when in qi, subtract 1
to register rj (if it is non-empty) and enter stage qk," and qifqjqk is \when
in qi, fork into two paths, one taking state qj and the other taking qk."

A machine con�guration is a state, together with the values of each reg-
ister. Urquhart uses the logic LR to simulate the behaviour of a machine.
For each register ri, choose a distinct variable Ri, for each state qj choose
a distinct variable Qj . The con�guration hqi;n1; : : : ; nli, where ni is the
value of ri is the formula

Qi ÆRn1
1 Æ � � � ÆRnl

l

and the instructions are modelled by sequents in the Gentzen system, as
follows:

Instruction Sequent
qi + rjqk Qi ` Qk ÆRj

qi � rjqk Qi; Rj ` Qk

qifqjqk Qi ` Qj _Qk

Given a machine program (a set of instructions) we can consider what is
provable from the sequents which code up those instructions. This set of
sequents we can call the theory of the machine. Qi Æ Rn1

1 Æ � � � Æ Rnl
l `

Qj Æ Rm1
1 Æ � � � Æ Rml

l is intended to mean that from state con�guration
hqi;n1; : : : ; nli all paths will go through con�guration hqj ;m1; : : : ;mli after
some number of steps.

A branching counter machine accepts an initial con�guration if when run
on that con�guration, all branches terminate at the �nal state qf , with all
registers taking the value zero. The corresponding condition in LR will be
the provability of

Qi ÆRn1
1 Æ � � � ÆRnl

l ` Qm
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This will nearly do to simulate branching counter machines, except for the
fact that in LR we have A ` A Æ A. This means that each of our registers
can be incremented as much as you like, provided that they are non-zero to
start with. This means that each of our machines need to be equipped with
every instruction of the form qi>0 + rjqi, meaning \if in state qi, add 1 to
rj , provided that it is already nonzero, and remain in state qi."

Given these de�nitions, Urquhart is able to prove that a con�guration
is accepted in branching counter machine, if and only if the corresponding
sequent is provable from the theory of that machine. But this is equivalent
to a formula ^

Theory(M) ^ t! (Q1 ! Qm)

in the language of LR. It is then a short step to our complexity result,
given the fact that there is no primitive recursive bound on determining
acceptability for these machines. Once this is done, the translation of LR
into R!^ gives us our complexity result.

It is still unknown if R! has similar complexity or whether it is a more
tractable system.

Despite this complexity result, Kripke's algorithm can be implemented
with quite some success. The theorem prover Kripke, written by McRobbie,
Thistlewaite and Meyer, implements Kripke's decision procedure, together
with some quite intelligent proof-search pruning, by means of �nite models.
If a branch is satis�able in RM3, for example, there is no need to extend it
to give a contradiction. This implementation works in many cases [Thistle-
waite et al., 1988]. Clearly, work must be done to see whether the horri�c
complexity of this problem in general can be transferred to results about
average case complexity.

Finally, before moving to add distribution, we should mention that Linear
Logic (see Section 5.5) also lacks distribution, and the techniques used in
the theorem prover Kripke have application in that �eld also.

4.9 Positive R

In this section we will examine extensions of the Gentzen technique to cover
all of positive relevance logic. We know (see Section 4.12) that this will
not provide decidability. However, they provide another angle on R and
cousins. Dunn and Minc independently developed a Gentzen-style calcu-
lus (with some novel features) for R without negation (LR+).39 Belnap

39Dunn's result was presented by title at a meeting of the Association for Symbolic
Logic, December, 1969 (see [Dunn, 1974]), and the full account is to be found in [Anderson
and Belnap, 1975, Section 28.5]). Minc [1972, earliest presentation said to there to be
February 24] obtained essentially the same results (but for the system with a necessity
operator). See also [Belnap Jr. et al., 1980].
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[1960b] had already suggested the idea of a Gentzen system in which an-
tecedents were sequences of sequences of formulas, rather than just the
usual sequences of formulas (in this section `sequence' always means �nite
sequence). The problem was that the Elimination Theorem was not prov-
able. LR+ goes a step `or two' further, allowing an antecedent of a sequent
instead to be a sequence of sequence of : : : sequences of formulas. More
formally, we somehow distinguish two kinds of sequences, `intensional se-
quences' and `extensional sequences' (say pre�x them with an `I ' or an
`E'). an antecedent can then be an intensional sequence of formulas, an
extensional sequence of the last mentioned, etc. or the same thing but with
`intensional' and `extensional' interchanged. (We do not allow things to `pile
up', with, e.g. intensional sequences of intensional sequences|there must
be alternation).40 Extensional sequences are to be interpreted using ordi-
nary `extensional' conjunction ^, whereas intensional sequences are to be
interpreted using `intensional conjunction' Æ, which may be de�ned in the
full system R as AÆB = :(A! :B), but here it is taken as primitive|see
below).

We state the rules, using commas for extensional sequences, semicolons
for intentional sequences, and asterisks ambiguously for either; we also em-
ploy an obvious substitution notation.41

Permutation
�[� � ] ` A
�[ � �] ` A Contraction

�[� � �] ` A
�[�] ` A

Thinning
�[�] ` A

;
�[�; ] ` A provided � is non-empty:

�;A ` B
(`!)

� ` A! B

� ` A �[B] ` C
(!`)

�[�;A! B] ` C

� ` A � ` B
(` ^)

� ` A ^ B
�[A;B] ` C

(^ `)
�[A ^B] ` C

40This di�ers from the presentation of [Anderson and Belnap, 1975] which allows such
`pile ups', and then adds additional structural rules to eliminate them. Belnap felt this
was a clearer, more explicit way of handling things and he is undoubtedly right, but
Dunn has not been able to read his own section since he rewrote it, and so return to the
simpler, more sloppy form here.
41With the understanding that substitutions do not produce `pile ups'. Thus, e.g. a

`substitution' of an intensional sequence for an item in an intensional sequence does not
produce an intensional sequence with an element that is an intensional sequence formed
by juxtaposition. Again this di�ers from the presentation of [Anderson and Belnap, 1975,
cf. note 28].
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� ` A
(` _)

� ` A _ B
� ` B

(` _)
� ` A _ B

�[a] ` C �[B] ` C
(_ `)

�[A _ B] ` C

� ` A � ` B
(` Æ)

�;� ` A ÆB
�[a;B] ` C

(Æ `)
� ÆB] ` C

For technical reasons (see below) we add the sentential constant t with the
axiom ` t and the rule:

�[B] ` A
(t `)

�[�; t] ` A
The point of the two kind of sequences can now be made clear. Let us
examine the classically (and intuitionistically) valid derivation:

(1) A ` A Axiom
(2) A;B ` A Thinning
(3) A ` B ! A (`!):

It is indi�erent whether (2) is interpreted as

(2^) (A ^ B)! A; or
(2!) A! (B ! A);

because of the principles of exportation and importation. In LR+ however
we may regard (2) as ambiguous between

(2; ) A;B ` A (extensional), and
(2; ) A;B ` A (intensional).

(2,) continues to be interpreted as (2^), but (2;) is interpreted as

(2Æ) (A ÆB)! A:

Now in R, exportation holds for Æ but not for ^ (importation holds for
both). Thus the move from (2;) to (3) is valid, but not from (2,) to (3). On
the other hand, in R, the inference from A ! C to (A ^ B) ! C is valid,
whereas the inference to (A Æ B) ! C is not. Thus the move from (1) to
(2,) is valid, but not the move from (1) to (2;). the whole point of LR+ is
to allow some thinning, but only in extensional sequences.

This allows the usual classical derivation of the distribution axiom to go
through, since clearly

A ^ (B _ C) ` (A ^ B) _ C
can be derived with no need of any but the usual extensional sequence. The
following sketch of a derivation of distribution in the consequent is even
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more illustrative of the powers of LR+ (permutations are left implicit; also
the top half is left to the reader);

X ` X
X ` X

A;B ` (A ^ B) _ C A;C ` (A ^ B) _ C
(_ `)

A;B _ C ` (A ^ B) _ C
(!`)

A; (X ;X ! B _ C) ` (A ^ B) _ C
(!`)

(X ;X ! A); (X ;X ! A;X ! B _ C) ` (A ^ B) _ C
X ! A;X ! B _ C;X ` (A ^ B) _ C

(X ! A) ^ (X ! B _ C);X ` (A ^ B) _ C
` (X ! A) ^ (X ! B _ C)! [X ! (A ^ B) _ C]

LR+ is equivalent to R+ in the sense that for any negation-free sentence A
of R;` A is derivable in LR+ i� A is a theorem of R. The proofs of both
halves of the equivalence are complicated by technical details. Right-to-left
(the interpretation theorem) requires the addition of intensional conjunction
as primitive, and then a lemma, due to R. K. Meyer, to the e�ect that
this is harmless (a conservative extension). Left-to-right (the Elimination
Theorem) is what requires the addition of the constant true sentence t. This
is because the `Cut' rule is stated as:

� ` A �(A) ` B
;

�(�) ` B
where �(�) is the result of replacing arbitrarily many occurrences of A in
�(A) by � if � is non-empty, and otherwise by t.42 Without this emendation
of the Cut rule one could derive B ` A whenever ` A is derivable (for
arbitrary B, relevant or not) as follows

` A
A ` A

Thinning
A;B ` A

Cut
B ` A

Discussing decidability a bit, one problem seems to be that Kripke's
Lemma (appropriately modi�ed) is just plain false. The following is a se-
quence of cognate sequents in just the two propositional variables X and Y
which is irredundant in the sense that structural rules will not get you from
a later member to an earlier member:

X ;Y ` X (X ;Y ); X ` X ((X ;Y ); X);Y ` X : : : 43

42Considerations about the eliminability of occurrences of t are then needed to show the
admissibility of modus ponens. This was at least the plan of [Dunn, 1974]. A di�erent
plan is to be found in [Anderson and Belnap, 1975, Section 28.5], where things are
arranged so that sequents are never allowed to have empty left-hand sides (they have t
there instead).
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4.10 Systems Without Contraction

Gentzen systems without the contraction rule tend to be more amenable to
decision procedures than those with it. Clearly, all of the work in Kripke's
Lemma is in keeping contraction under control. So it comes as no surprise
that if we consider systems without contraction for intensional structure, de-
cision procedures are forthcoming. If we remove the contraction rule from
LR we get the system which has been known as LRW (R without W with-
out distribution), and which is equivalent to the additive and multiplicative
fragment of Girard's linear logic [Girard, 1987]. It is well known that this
system is decidable. In the Gentzen system, de�ne the complexity of a se-
quent to be the number of connectives and commas which appear in it. It
is trivial to show that complexity never increases in a proof and that as a
result, from any given sequent there are only a �nite number of sequents
which could appear in a proof of the original sequent (if there is one). This
gives rise to a simple decision procedure for the logic. (Once the work has
already been done in showing that Cut is eliminable.)

If we add the extensional structure which appears in the proof theories of
traditional relevance logics then the situation becomes more diÆcult. How-
ever, work by Giambrone has shown that the Gentzen systems for positive
relevance logics without contraction do in fact yield decision procedures [Gi-
ambrone, 1985]. In these systems we do have extensional contraction, so
such a simple minded measure of complexity as we had before will not yield
a result. In the rest of this section we will sketch Giambrone's ideas, and
consider some more recent extensions of them to include negation. For de-
tails, the reader should consult his paper. The results are also in the second
volume of Entailment [Anderson et al., 1992].

Two sequents are equivalent just when you can get from one to the other
by means of the invertible structural rules (intensional commutativity, ex-
tensional commutativity, and so on). A sequent is super-reduced if no equiv-
alent sequent can be the premise of a rule of extensional contraction. A
sequent is reduced if for any equivalent sequents which are the premise of a
rule of extensional contraction, the conclusion of that rule is super-reduced.
So, intuitively, a super-reduced sequent has no duplication in it, and a re-
duced sequent can have one part of it `duplicated', but no more. Clearly any
sequent is equivalent to a super-reduced sequent. The crucial lemma is that
any super-reduced sequent has a proof in which every sequent appearing is

43Further, this is not just caused by a paucity of structural rules. Interpreting the
sequents of formulas of R+ (^ for comma, Æ for semicolon, ! for `) no later formula
provably implies an earlier formula. Incidentally, one does need at least two variables (cf.
R. K. Meyer [1970b]).
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reduced. This is clear, for given any proof you can transform it into one in
which every sequent is reduced without too much fuss.

As a result, we have gained as much control over extensional contraction
as we need. Giambrone is able to show that only �nitely many reduced
sequent can appear in the proof of a given sequent, and as a result, the
size of the proof-search tree is bounded, and we have decidability. This
technique does not work for intensional contraction, as we do not have the
result that every sequent is equivalent to an intensionally super-reduced
sequent, in the absence of the mingle rule. While A ^ A ` B is equivalent
to A ` B, we do not have the equivalence of A ÆA ` B and A ` B, without
mingle.

These methods can be extended to deal with negation. Brady [1991]

constructs out of signed formulae TA and FA instead of formulae alone,
and this is enough to include negation without spoiling the decidability
property. Restall [1998] uses the techniques of Belnap's Display Logic (see
Section 5.2) to provide an alternate way of modelling negation in sequent
systems. These techniques show that the decidability of systems without
intensional contraction are decidable, to a large extent independently of the
other properties of the intensional structure.

4.11 Various Methods Used to Attack the Decision Problem

Decision procedures can basically be subdivided into two types: syntactic
(proof-theoretic) and semantic (model-theoretical). A paradigm of the �rst
type would be the use of Gentzen systems, and a paradigm of the second
would be the development of the �nite model property. It seems fair to say,
looking over the previous sections, that syntactic methods have dominated
the scene when nested implications have been afoot, and that semantical
methods have dominated when the issue has been �rst-degree implications
and �rst-degree formulas.44

There are two well-known model-theoretic decision procedures used for
such non-classical logics as the intuitionistic and modal logics. One is due
to McKinsey and Tarski and is appropriate to algebraic models (matrices)
(cf. [Lemmon, 1966, p. 56 �.]), and the other (often called `�ltration') is
due to Lemmon and Scott and is appropriate to Kripke-style models (cf.
[Lemmon, 1966, p. 208 �]). Actually these two methods are closely con-
nected (equivalent?) in the familiar situation where algebraic model sand
Kripke models are duals. The problem is that neither seems to work with
E and R. The diÆculty is most clearly stated with R as paradigm. For the
algebraic models the problem is given a de Morgan monoid (M;^;_;�; Æ)
44As something like `the exception that proves the rule' it should be noted that Belnap's

[1967a] work on �rst-degree formulas and slightly more complex formulas has actually
been a subtle blend of model-theoretic (algebraic) and proof-theoretic methods.
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and a �nite de Morgan sublattice (D;^0;_;�0), how to de�ne a new multi-
plicative operation Æ0 on D so as to make it a de Morgan monoid and so for
x; y 2 D, if x Æ y 2 D then x Æ y = x Æ0 y. the chief diÆcult is in satisfying
the associative law. For the Kripke-style models (say the Routley{Meyer
variety) the problem is more diÆcult to state (especially if the reader has
skipped Section 3.7) but the basic diÆculty is in the satisfying of certain re-
quirements on the three-placed accessibility relation once set-ups have been
identi�ed into a �nite number of equivalence classes by `�ltration'. Thus,
e.g. the requirement corresponding to the algebraic requirement of associa-
tivity is Rayx & Rbcy ) 9y(Raby & Rycx)45 the problem in a nutshell
is that after �ltration one does not know that there exists the appropriate
equivalence class �y needed to feed such an existentially hungry postulate.

The McKinsey-Tarski method has been used successfully by Maksimova
[1967] with respect to a subsystem of R, which di�ers essentially only in
that it replaces the nested form of the transitivity axiom

(A! B)! [(B ! C)! (A! C)]

by the `conjoined' form

(A! B) ^ (B ! C)! (A! C):46

Perhaps the most striking positive solution to the decision problem for
a relevance logic is that provided for RM by Meyer (see [Anderson and
Belnap, 1975, Section 29.3], although the result was �rst obtained by Meyer
[1968].47 Meyer showed that a formula containing n propositional variables
is a theorem of RM i� it is valid in the `Sugihara matrix' de�ned on the non-
zero integers from �n to +n. this result was extended by [Dunn, 1970] to
show that every `normal' extension of RM has some �nite Sugihara matrix
(with possibly 0 as an element) as a characteristic matrix. So clearly RM
and its extensions have at least the �nite model property. Cf. Section 3.10
for further information about RM.

Meyer [private communication] has thought that the fact that the de-
cidability of R is equivalent to the solvability of the word problem for de
Morgan monoids suggests that R might be shown to be undecidable by
some suitable modi�cation of the proof that the word problem for monoids
is unsolvable. It turns out that this is technique is the one which pays o� |
although the proof is very complex. The complexity arises because there
is an important disanalogy between monoids and de Morgan monoids in

45This is suggestively written (following Meyer) as Ra(bc)x) R(ab)cx.
47In fact neither McKinsey-Tarski methods nor �ltration was used in this proof. We are

no clearer now that they could not be used, and we think the place to start would be to
try to apply �ltration to the Kripke-style semantics for RM of [Dunn, 1976b], which uses
a binary accessibility relation and seems to avoid the problems caused by `existentially
hungry axioms' for the ternary accessibility relation.
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that in the latter the multiplicative operation is necessarily commutative
(and the word problem for commutative monoids is solvable).48 Still it has
occurred to both Meyer and Dunn that it might be possible to de�ne a new
multiplication operation � for both Æ and ^ in such a way as to embed the
free monoid into the free de Morgan monoid. This suspicion has turned out
to be right, as we shall see in the next section.

4.12 R, E and Related Systems

As is quite well known by now, the principal systems of relevance logic, R,
E and others, are undecidable. Alasdair Urquhart proved this in his ground
breaking papers [Urquhart, 1983; Urquhart, 1984]. We have recounted ear-
lier attempts to come to a conclusion on the decidability question. The
insights that helped decide the issue came from an unexpected quarter |
projective geometry. To see why projective geometry gave the necessary
insights, we will �rst consider a simple case, the undecidability of the sys-
tem KR. KR is given by adding A ^ :A ! B to R. A KR frame is one
satisfying the following conditions (given by adding the clause that a = a�

to the conditions for an R frame).

R0ab i� a = b Rabc i� Rbac i� Racb (total permutation)
Raaa for each a R2abcd only if R2acbd

The clauses for the connectives are standard, with the proviso that a � :A
i� a 6� A, since a = a�.

Urquhart's �rst important insight was that KR frames are quite like
projective spaces. A projective space P is a set P of points, and a collection
L of subsets of P called lines, such that any two distinct points are on
exactly one line, and any two distinct lines intersect in exactly one point.
But we can de�ne projective spaces instead through the ternary relation
of collinearity. Given a projective space P , its collinearity relation C is a
ternary relation satisfying the condition:

Cabc i� a = b = c, or a, b and c are distinct and they lie on a
common line.

If P is a projective space, then its collinearity relation C satis�es the fol-
lowing conditions,

Caaa for each a. Cabc i� Cbac i� Cacb. C2abcd only if C2acbd.

48In this connection two things should be mentioned. First, Meyer [unpublished type-
script, 1973] has shown that not all �nitely generated de Morgan monoids are �nitely
presentable. Second, Meyer and Routley [1973c] have constructed a positive relevance
logic Q+ (the algebraic semantics for which dispenses with commutativity) and shown it
undecidable.
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provided that every line has at least four points (this last requirement is
necessary to verify the last condition). Conversely, if we have a set with a
ternary relation C satisfying these conditions, then the space de�ned with
the original set as points and the sets lab = fc : Cabcg [ fa; bg where a 6= b
as lines is a projective space.

Now the similarity with KR frames becomes obvious. If P is a projective
space, the frame F(P) generated by P is given by adjoining a new point 0,
adding the conditions C0aa, Ca0a, and Caa0, and by taking the extended
relation C to be the accessibility relation of the frame.

Projective spaces have a naturally associated undecidable problem. The
problem arises when considering the linear subspaces of projective spaces.
A subspace of a projective space is a subset which is also a projective space
under its inherited collinearity relation. Given any two linear subspaces X
and Y , the subspace X + Y is the set of all points on lines through points
in X and points in Y .

In KR frames there are propositions which play the role of linear sub-
spaces in projective spaces. We need a convention to deal with the extra
point 0, and we simply decree that 0 should be in every \subspace." Then
linear subspaces are equivalent to the positive idempotents in a frame. That
is, they are the propositions X which are positive (so 0 2 X) and idempotent
(so X = X ÆX). Clearly for any sentence A and any KR model M, the
extension of A, jjAjj inM is a positive idempotent i� 0 � A^ (A$ A ÆA).
It is then not too diÆcult to show that if A and B are positive idempotents,
so are A ÆB and A ^ B, and that t and > are positive idempotents.

Given a projective space P , the lattice algebra hL;\;+i of all linear
subspaces of the projective space, under intersection and + is a modular ge-
ometric lattice. That is, it is a complete lattice, satisfying these conditions:

Modularity a � c) (8b)�a \ (b+ c) � (a \ b) + c
�

Geometricity Every lattice element is a join of atoms, and if a is an atom
and X is a set where a � �X then there's some �nite Y � X , where
a � �Y .

The lattice of linear subspaces of a projective space satis�es these conditions,
and that in fact, any modular geometric lattice is isomorphic to the lattice
of linear subspaces of some projective space. Furthermore the lattice of
positive idempotents of any KR frame is also a modular geometric lattice.

The undecidable problem which Urquhart uses to prove the undecidabil-
ity of KR is now simple to state. Hutchinson [1973] and Lipshitz [1974]

proved that

The word problem for any class of modular lattices which in-
cludes the subspace lattice of an in�nite dimensional projective
space is undecidable.
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Given an in�nite dimensional projective space in which every line includes
at least four points P , the logic of the frame (P) is said to be a strong logic.
Our undecidability theorem then goes like this:

Any logic between KR and a strong logic is undecidable.

The proof is not too diÆcult. Consider a modular lattice problem

If v1 = w1 : : : vn = wn then v = w

stated in a language with variables xi (i = 1; 2; : : : ) constants 1 and 0,
and the lattice connectives \ and +. Fix a map into the language of KR
by setting xti = pi for variables, 0t = t, 1t = >, (v \ w)t = vt ^ wt and
(v + w)t = vt Æ wt. The translation of our modular lattice problem is then
the KR sentence�

B ^ (vt1 $ wt
1) ^ � � � ^ (vtn $ wt

n) ^ t�! (vt $ wt)

where the sentence B is the conjunction of all sentences pi ^ (pi $ pi Æ pi)
for each pi appearing in the formulae vtj or wt

j .
We will show that given a particular in�nite dimensional projective space

(with every line containing at least four points) P , then the word problem
is valid in the lattice of linear subspaces of P if and only if its translation
is provable in L, for any logic L intermediate between KR and the logic of
the frame F(P).

If the translation of the word problem is valid in L, then it holds in the
frame F(P). Consider the word problem. If it were invalid, then there
would be linear subspaces x1; x2; : : : in the space P such that each vi = wi
would be true while v 6= w. Construct a model on the frame F(P) as
follows. Let the extension of pi be the space xi together with the point 0.
It is then simple to show that 0 � B, as each pi is a positive idempotent. In
addition, 0 � t, and 0 � vti $ wt

i , for the extension of each vti and wt
i will

be the spaces picked out by vi and wi (both with the obligatory 0 added).
However, we would have 0 6� vt $ wt, since the extensions of vt and wt

were picked out to di�er. This would amount to a counterexample to the
translation of the word problem, which we said was valid. As a result, the
word problem is valid in the space P . The converse reasoning is similar.

Unfortunately, these techniques do not work for systems weaker than KR.
The proof that positive idempotents are modular uses essentially the special
properties of KR. Not every positive idempotent in R need be modular.
But nonetheless, the techniques of the proof can be extended to apply to a
much wider range of systems. Urquhart examined the structure of the of the
modular lattice undecidability result, and he showed that you could make
do with much less. You do not need to restrict your attention to modular
lattices to construct an undecidable word problem. But to do that, you need
to examine Lipshitz and Hutchinson's proof more carefully. In the rest of
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this section, we will sketch the structure of Urquhart's undecidability proof.
The techniques are quite involved, so we do not have the space to go into
detail. For that, the reader is referred to Urquhart [1984].

Lipshitz and Hutchinson proved that the word problem for modular lat-
tices was undecidable by embedding into that problem the already known
undecidable word problem for semigroups. It is enough to show that a struc-
ture can de�ne a \free associative binary operation", for then you will have
the tools for representing arbitrary semigroup problems. (A semigroup is a
set with an associative binary operation. An operation is a \free associative"
operation if it satis�es those conditions satis�ed by any associative opera-
tion but no more.) We will sketch how this can be done without resorting
to a modular lattice.

The required structure is what is called a 0-structure, and a modular
4-frame de�ned within a 0-structure. An 0-structure is a set equipped with
the following structure

� A semilattice with respect to u.

� With a binary operator + which is associative and commutative.

� And x � y ) x+ z � y + z.

� 0 + x = x.

� y � 0 ) x u (x+ y) = x.

A 4-frame in a 0-structure is a set fa1; a2; a3; a4g [ fcij : i 6= j; i; j =
1; : : : ; 4g such that

� The ais are independent. If G;H � fa1; : : : ; a4g then (�G)u (�H) =
�(G \H) (where �; = 0)

� If G � fa1; : : : ; a4g then �G is modular

� ai + ai = ai

� cij = cji

� ai + aj = ai + cik; cij u aj = 0, if i 6= j

� (ai + ak) u (cij + cjk) = cik for distinct i; j; k

Now, we are nearly at the point where we can de�ne a semigroup structure.
First, for each distinct i; j, we de�ne the set Lij to be fx : x + aj =
ai + aj and x u aj = 0g. Then if b 2 Lij and d 2 Ljk where i; j; k are
distinct, then we set b 
 d = (b + d) u (ai + ak), and it is not diÆcult to
show that b 
 d 2 Lik. Then, we can de�ne a semigroup operation `:' on
L12 by setting

x:y = (x
 c23)
 (c31 
 y)
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Now it is quite an involved operation to show that this is in fact an associa-
tive operation, but it can be done. And in fact, in certain circumstances,
the operation is a free associative operation. Given a countably in�nite-
dimensional vector space V , its lattice of subspaces is a 0-structure, and it
is possible to de�ne a modular 4-frame in this lattice of subspaces, such that
any countable semigroup is isomorphic to a subsemigroup of L12 under the
de�ned associative operation. (Urquhart gives the complete proof of this
result [Urquhart, 1984].)

The rest of the work of the undecidability proof involves showing that this
construction can be modelled in a logic. Perhaps surprisingly, it can all be
done in a weak logic like TW[^;_;!;>;?]. We can do without negation by
picking out a distinguished propositional atom f , and by de�ning �A to be
A! f , t to be �f , and A :B to be �(A! �B). A is a regular proposition
i� ��A$ A is provable. The regular propositions form an 0-structure, un-
der the assumption of the formula � = fR(t; f;>;?); N(t; f;>;?);�> $
?g. where R(A) is �� A$ A, N(A) is (t! A)! A, and R(A;B; : : : ) is
R(A) ^ R(B) ^ � � � and similarly for N . In other words, we can show that
the conditions for an 0-structure hold in the regular propositions, assuming
� as an extra premise. To interpret the 0-structure conditions we interpret
u by ^, + by : and 0 by t.

Now we need to model a 4-frame in the 0-structure. This can be done
as we get just the modularity we need from another condition which is
simple to state. De�ne K(A) to be R(A) ^ (A ^ �A $ ?) ^ (A _ �A $
>) ^ (A : �A$ �A) ^ (A$ A :A). Then we can show the following

K(A); R(B;C); C ! A ` A ^ (B :C)$ (A ^ B) :C

In other words, if K(A), then A is modular in the class of regular proposi-
tions. Then the conditions for a 4-frame are simple to state. We pick out
our atomic propositions A1; : : : ; A4 and C12; : : : ; C34 which will do duty for
a1; : : : ; a4 and c12; : : : ; c34. Then, for example, one independence axiom is

(A1 :A2 :A3) ^ (A2 :A3 :A4)$ (A2 :A3)

and one modularity condition is

K(A1 :A3 :A4)

We will let � be the conjunction of the statements that express that the
propositions Ai and Cij form a 4-frame in the 0-structure of regular proposi-
tions. So, �[� is a �nite (but complex) set of propositions. In any algebra
in which � [ � is true, the lattice of regular propositions is a 0-structure,
and the denotations of the propositions Ai and Cij form a 4-frame. Finally,
when coding up a semigroup problem with variables x1; x2; : : : ; xm, we will
need formulae in the language which do duty for these variables. Thus we
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need a condition which picks out the fact that pi (standing for xi) is in L12.
We de�ne L(p) to be (p :A2 $ A1 :A2)^ (p^A2 $ t). Then the semigroup
operation on elements of L12 can be de�ned in terms of ^ and : and the
formulae Ai and Cij . We assume that done, and we will simply take it that
there is an operation � on formulae which picks out the algebraic operation
on L12. This is enough for us to sketch the undecidability argument.

The deducibility problem for any logic between TW[^;_;!
;>;?] and KR is undecidable.

Take a semigroup problem which is known to be undecidable. It may be
presented in the following way

If v1 = w1 : : : vn = wn then v = w

where each term vi; wi is a term in the language of semigroups, constructed
out of the variables x1; x2; : : : ; xm for some m. The translation of that
problem into the language of TW[^;_;!;>;?] is the deducibility problem

�;�; L(p1; : : : ; pm); vt1 $ wt
1; : : : ; v

t
n $ wt

n ` vt $ wt

where each the translation ut of each term u is de�ned recursively by setting
xti to be pi, and (u1:u2)

t to be ut1 � ut2.
Now the undecidability result will be immediate once we show that for

any logic between TW and KR the word problem in semigroups is valid if
and only if its translation is valid in that logic.

For left to right, if the word problem is valid in the theory of semi-
groups, its translation must be valid, for given the truth of � and � and
L(p1; : : : ; pm), the operator � is provably a semigroup operation on the
propositions in L12 in the algebra of the logic, and the terms vi and wi
satisfy the semigroup conditions. As a result, we must have vt and wt

picking out the same propositions, hence we have a proof of vt $ wt.
Conversely, if the word problem is invalid, then it has an interpretation

in the semigroup S de�ned on L12 in the lattice of subspaces of an in�nite
dimensional vector space. The lattice of subspaces of this vector space is
the 0-structure in our countermodel. However, we need a countermodel for
our | the 0-structure is not a model of the whole of the logic, since it just
models the regular propositions. How can we construct this? Consider the
argument for KR. There, the subspaces were the positive idempotents in the
frame. The other propositions in the frame were arbitrary subsets of points.
Something similar can work here. On the vector space, consider the subsets
of points which are closed under multiplication (that is, if x 2 �, so is kx,
where k is taken from the �eld of the vector space). This is a De Morgan
algebra, de�ning conjunction and disjunction by means of intersection and
union as is usual. Negation is modelled by set di�erence. The fusion �Æ� of
two sets of points is the set fx+ y : x 2 � and y 2 �g. It is not too diÆcult
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to show that this is commutative and associative, and square increasing,
when the vector space is in a �eld of characteristic other than 2, since if
x 2 � then x = 1

2x + 1
2x 2 � Æ �. Then � ! � is simply �(� Æ ��). It

is not too diÆcult to show that this is an algebraic model for KR, and
that the regular propositions in this model are exactly the subspaces of the
vector space. It follows that our counterexample in the 0-structure is a
counterexample in a model of KR to the translation of the word problem.
As a result, the translation is not provable in KR or in any weaker logic.

This result applies to systems between TW and KR, and it shows that
the deducibility problem is undecidable for any of these systems. In the
presence of the modus ponens axiom A^(A! B)^t! B, this immediately
yields the undecidability of the theoremhood problem, as the deducibility
problem can be rewritten as a single formula.

�
� ^ � ^ L(p1; : : : ; pm) ^ (vt1 $ wt

1) ^ � � � ^ (vtn $ wt
n) ^ t�! (vt $ wt)

As a result, the theoremhood problem for logics between T and KR is
undecidable. In particular, R, E and T are all undecidable.

The restriction to TW is necessary in the theorem. Without the pre-
�xing and suÆxing axioms, you cannot show that the lattice of regular
propositions is closed under the `fusion-like' connective ` : '.

Before moving on to our next section, let us mention that these geometric
methods have been useful not only in proving the undecidability of logics,
but also in showing that interpolation fails in R and related logics [Urquhart,
1993].

5 LOOKING ABOUT

A lot of the work in relevance logics taking place in the late 1980's and in
the 1990's has not focussed on Anderson's core problems. Now that these
have been more or less resolved, work has proceeded apace in other direc-
tions. In this section we will give an undeniably indiosyncratic and personal
overview of what we think are some of the strategic directions of this recent
research. The �rst two sections in this part deal with generalisations |
�rst of semantics, and second of proof theory | which situate relevance
logic into a wider setting. The next sections deal with neighbouring formal
theories, and we end with one philosophical application of the machinery of
relevance logics.

5.1 Gaggle Theory

The fusion connective Æ has played an important part in the study of rel-
evance logics. This is because fusion and implication are tied together by
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the residuation condition

a � b! c i� a Æ b � c

In addition, in the frame semantics, fusion and implication are tied to the
same ternary relation R, implication with the universal condition and fusion
with the existential condition.

This is an instance of a generalised Galois connection. Galois studied
connections between functions on partially ordered sets. A Galois connec-
tion between two partial orders � on A and �0 on B is a pair of functions
f : A! B and g : B ! A such that

b �0 f(a) i� a � g(b)

The condition tying together fusion and implication is akin to that tying
together f and g for Galois. So, gaggle theory (for `ggl': generalised Galois
logic) studies these connections in their generality, and it turns out that rele-
vance logics like R, E and T are a part of a general structure which not only
includes other relevance logics, but also traditional modal logics, J�onsson
and Tarski's Boolean algebras with operators [J�onsson and Tarski, 1951] and
many other formal systems. Dunn has shown that if a logic has a family of n-
ary connectives which are tied together with a generalised galois connection,
then the logic has a frame semantics in which those connectives are mod-
elled using the one n+1-ary relation, in the way that fusion and implication
are modelled by the same ternary relation in relevance logics [Dunn, 1991;
Dunn, 1993a; Dunn, 1994].

In general, an n-ary connective f has a trace (�1; : : : ; �n) 7! + if

� f(c1; : : : ;1; : : : ; cn) = 1, if �i = + (where the 1 is in position i).

� f(c1; : : : ;0; : : : ; cn) = 1, if �i = � (where the 0 is in position i).

� If a � b, and if �i = + then f(c1; : : : ; a; : : : ; cn) � f(c1; : : : ; b; : : : ; cn).

� If a � b, and if �i = � then f(c1; : : : ; b; : : : ; cn) � f(c1; : : : ; a; : : : ; cn).

We write this as T (f) = (�1; : : : ; �n) 7! +. On the other hand, the connec-
tive f has trace (�1; : : : ; �n) 7! � if

� f(c1; : : : ;1; : : : ; cn) = 0, if �i = + (where the 0 is in position i).

� f(c1; : : : ;0; : : : ; cn) = 0, if �i = � (where the 1 is in position i).

� If a � b, and if �i = + then f(c1; : : : ; b; : : : ; cn) � f(c1; : : : ; a; : : : ; cn).

� If a � b, and if �i = � then f(c1; : : : ; a; : : : ; cn) � f(c1; : : : ; b; : : : ; cn).
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We write this as T (c) = (�1; : : : ; �n) 7! �. Here are a few examples of
traces of connectives. Conjunction-like connectives tend to be (�;�) 7! �,
disjunction-like connectives tend to be (+;+) 7! +, necessity-like connec-
tives tend to be + 7! +, possibility-like connectives tend to be � 7! �, and
negations can be either + 7! � or � 7! + (and in many cases they are
both).

Now we are nearly able to state the abstract law of residuation. First, we
de�ne S(f; a1; : : : ; an; b) as follows. If T (f) = (� � � ) 7! +, then S(f; a1; : : : ;
an; b) is the condition f(a1; : : : ; an) � b. If, on the other hand, T (f) =
(� � � ) 7! �, then S(f; a1; : : : ; an; b) is b � f(a1; : : : ; an). Then, two connec-
tives f and g are contrapositives in place j i�, if T (f) = (�1; : : : ; �j ; : : : ; �n)
7! � , then T (g) = (�1; : : : ;��; : : : ; �n) 7! ��j . (Where we de�ne �+ as �
and �� as +.) Two operators f and g satisfy the abstract law of residuation
i� f and g are contrapositives in place j, and S(f; a1; : : : ; aj ; : : : ; an; b) i�
S(g; a1; : : : ; b; : : : ; an; aj).

A collection of connectives in which there is some connective f such that
every element of the collection satis�es the abstract law of residuation with
f , is called a founded family of connectives. Dunn's major result is that if
you have an algebra in which every connective is in a founded family, then
the algebra is isomorphic to a subalgebra of the collection of propositions in
a model in which each founded family of n-ary connectives shares an n+ 1-
ary relation. The soundness and completeness of the Routley{Meyer ternary
relational semantics is for the implication-fusion fragment of relevance logics
is an instance of this more general result.

The gaggle theoretic account of negation in relevance logics is interest-
ing. We do not automatically get negation modelled by the Routley star |
instead, being a unary connective, negation is modelled with a binary re-
lation. One way negation can be modelled along gaggle theoretic lines is
as follows. The De Morgan negation connective has trace � 7! +, so the
gaggle theoretic result is that there is a binary relation C between set-ups
such that

� x � :A i� for each y where xCy, y 6� A
This is the general semantic structure which models negation connectives
with trace � 7! +. Given a relation C, which we may read as `compatibil-
ity', we can de�ne another negation connective �, using C's converse:

� x � �A i� for each y where yCx, y 6� A
Then it follows that A ` �B i� B ` :A. For the De Morgan negation of
relevance logics, � and : are the same, for the compatibility relation C is
symmetric. But in more general settings, this need not hold.

The general perspective of gaggle theory not only opens up new formal
systems to study | it also helps with interpreting the semantics. The
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condition for : above can be read as follows: :A is true at x i� for each
y compatible with x, A is not true at y. This certainly sounds like a more
palatable condition for negation than that using Routley star. We have an
understanding of what it is for two set-ups (theories, worlds or situations)
to be compatible, and the notion of compatibility is tied naturally to that
of negation. Furthermore, the Routley star condition is an instance of this
more general `compatibility' condition. For any set-up a, a� can be seen as
the set-up which `wraps up' all set-ups compatible with a. We can argue
whether there is such an all-encompassing set-up, but if there is, then the
semantics for negation in terms of the compatibility relation is equivalent
to that of the Routley star. And in addition, we have another means of
explaining it.

Furthermore, once we have this generalised position from which to view
negation, we can tinker with the binary accessibility relation in just the same
way that modal logics are studied. Clearly if Boolean negation (written
`�') is present, then :A is simply ��A for the positive modal operator �
which uses C as its accessibility relation; and the study of these negation
is dealt with using the techniques of modal logic. However, in relevance
logics and other related systems, boolean negation is not present. And
in this case the theory of negations arising from compatibility clauses like
the one we have seen is a young and interesting subject in its own right.
This perspective is pursued in Dunn [1994], and Restall [1999] develops a
philosophical interpretation of the semantics.

5.2 Display Logic

Nuel Belnap has developed proof theoretical techniques which are quite sim-
ilar to those from gaggle theory. Consider the general problem of providing
a sequent calculus for logics like R and others. We have the choice of how
to formulae sequents. If they are of the form X ` A, where X is a struc-
tured collection of formulae, and A is a formula, then we have the problem
of how to state the introduction and elimination of negation rules in such
a way as to make ::A equivalent to A. It is unclear how to do this while
maintaining that the succedent of every sequent is a single formula. On the
other hand, if we allow that sequents are of the form X ` Y , where now
both X and Y are structured complexes of formulae, it is unclear how to
state a cut rule which is both valid and admits of a cut-elimination proof in
the style of Gentzen. If we are restricted to single formulae in the succedent
position the rule is easy to state:

X ` A Y (A) ` B
Y (X) ` B

but in the presence of multiple succedents it is unclear how to state the
rule generally enough to be eliminable yet strictly enough to be valid under
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interpretation. If there is only one sort of structuring in the consequent this
might be possible, in the way used in the proof theories of classical or linear
logic, for example:

X ` A; Y X 0; A ` Y 0
X;X 0 ` Y; Y 0

But if we have X ` Y (A) and X 0(A) ` Y 0 where the indicated instances of
A are buried under multiple sorts of structure, then what is the appropriate
conclusion of a cut rule? X 0(X) ` Y (Y 0) will not do in general, for it is
invalid in many instances. For example, in R if Y (A) is A ^ B and X 0(A)
is A ÆD, then we have A^B ` A^B and A ÆD ` A ÆD, but we don't have
(A ^ B) Æ D ` (A Æ D) ^ B in general. (Consider the case where B = A.
A ÆD needn't imply A.)

The alternative examined by Belnap is to make do with Cut where the
cut formula is \displayed" in both premises of the rule.

X ` A A ` Y
X ` Y

In order to get away with this, a system needs to be such that whenever you
need to use a cut you can. The way Belnap does this is by requiring what he
calls the \display condition". The display condition is satis�ed i� for every
formula, every sequent including that formula is equivalent (using invertible
rules) to one in which that formula is either the entire antecedent or the
entire succedent of the sequent. For Belnap's original formulation, this is
achieved by having a binary structuring connective Æ (not to be confused
with the sentential connective Æ) and a unary connective �. The display
rules were as follows:

X Æ Y ` Z () X ` �Y Æ Z
X ` Y Æ Z () X Æ �Y ` Z () X ` Z Æ Y

X ` Y () �Y ` �X () � �X ` Y
A structure is in antecedent position if it is in the left under an even number
of stars, or in the right under an odd number of stars. If it is not in
antecedent position, it is in succedent position. The star is read as negation,
and the circle is read as conjunction in antecedent position, and disjunction
in succedent position. The display postulates are a reworking of conditions
like the residuation condition for fusion and implication. Here we have the
conditions that a Æ b � c i� a � �b+ c (where x+ y is the �ssion of x and
y).

Belnap's system allows that di�erent families of structural connectives
can be used for di�erent families of connectives in the language. For exam-
ple, when Æ and � are read intensionally, we can have the following rules for
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implication:

X ÆA ` B
X ` A! B

X ` A B ` Y
A! B ` �X Æ Y

If the properties of Æ vary, so do the properties of the connective !. We
can give Æ properties of extensional conjunction in order to get a material
conditional. Or conditions can be tightened, to give ! modal properties.
It is clear that the family of structural connectives (here Æ and �) act in
analogously to accessibility relations on frames. However, the connections
with gaggle theory run deeper, however. It can be shown a connective in-
troduced in with rules without side conditions, and in a way which `mimics'
structural connectives (just as here A ! B mimics �X Æ Y in consequent
position) must have a de�nable trace. Any implication satisfying those rules
will have trace (�;+) 7! +, for example. For more details of this connection
and a general argument, see Restall's paper [Restall, 1995a].

Display logic gives these systems a natural cut-free proof theory, for Bel-
nap has shown that under a broad set of conditions, any proof theory with
this structure will satisfy cut-elimination. So again, just as with gaggle the-
ory, we have an example of the way that the study of relevance logics like
R and E have opened up into a more general theory of logics with similar
structures.

5.3 Paraconsistency

Relevance logics are paraconsistent, in that argument forms such asA^:A `
B are taken to be invalid. As a result, relevance logics have been seen to
be important for the study of paraconsistent theories. [[See Priest's article
in this volume]]. Relevance logics are suited to applications for which a
paraconsistent notion of consequence is needed however, not all logics are
equal in this regard. For example, paraconsistentists have often considered
the topic of na��ve theories of sets and of truth (any predicate yields the set
of things satisfying that predicate, the proposition p is true if and only if
p). With a relevance logic at hand, you can avoid the inference to triviality
from contradictions such as that arising from the liar

This proposition is not true.

(from which you can deduce that it is true, and hence that it isn't) and
Russell's paradox (fx : x 62 xg both is and is not a member of itself).
However, the Curried forms of these paradoxes

If this proposition is true then there is a Santa Claus.

and fx : (x 2 x) ! Pg are more diÆcult to deal with. These yield ar-
guments for the existence of Santa Claus and the truth of P (which was
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arbitrary) in logics like R, or any others with theorems related to the rule
of contraction. The theoremhood of propositions such as

�
A ! (A !

B)
� ! (A ! B) and A ^ (A ! B) ! B rule out a logic for service in the

cause of paraconsistent theories like these [Meyer et al., 1979].
However, this has not deterred some hardier souls in considering weaker

relevance logics which do not allow one to deduce triviality in these theo-
ries. Some work has been done to show that in some logics these theories
are consistent, and in others, though inconsistent, not everything is a theo-
rem [Brady, 1989].

Another direction of paraconsistency in which techniques of relevance
logics have borne fruit is in the more computational area of reasoning with
inconsistent information. The techniques of �rst degree entailment have
found a home in the study of \bilattices" by Melvin Fitting and others,
who seen in them a suitable framework for reasoning under the possibility
of inconsistent information [Fitting, 1989].

5.4 Semantic Neighbours

Another area in which research has grown in the recent years has been
toward connections with other �elds. It has turned out that seemingly
completely unrelated �elds have studied structures remarkably like those
studied in relevance logics. These neighbours are helpful, not only for giv-
ing independent evidence for the fact that relevance logicians have been
studying something worthwhile, but also because of the di�erent insights
they can bring to bear on theorising. In this section we will see just three
of the neighbours which can shed light on work in relevance logics.

The �rst connection comes with Barwise and Perry's situation semantics
[1983]. For Barwise and Perry, utterances classify situations (parts of the
world) which may be incomplete with regard to their semantic `content'.
Consider the claim that Max saw Queensland win the SheÆeld Shield".
How is this to be understood? For the Barwise and Perryof Situations and
Attitudes [Barwise and Perry, 1983], this was to be parsed as expressing
a relationship between Max and a situation, where a situation is simply
a restricted part of the world. Situations are parts of the world and they
support information. Max saw a situation and in this situation, Queensland
won the SheÆeld Shield. If, in this very situation, Queensland beat South
Australia, then Max saw Queensland beat South Australia.

This shows why for this account situations have to be (in general) re-
stricted bits of the world. The situation Max saw had better not be one
in which Paul Keating lost the 1996 Federal Election, lest it follow from
the fact that Max witnessed Queensland's victory that he also witnessed
Keating's defeat, and surely that would be an untoward conclusion. Let's
denote this relationship between situations an the information they support
as follows. We'll abbreviate the claim that the situation s supports the
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information that A by writing `s � A', and we'll write its negation, that s
doesn't support the information that A by writing `s 6� A'. This is standard
in the situation theoretic literature. The information carried by these situ-
ations has, according to Barwise and Perry, a kind of logical coherence. For
them, infons are closed under conjunction and disjunction, and s � A ^ B
if and only if s � A and s � B, and s � A _ B if and only if s � A or
s � B. However, negation is a di�erent story | clearly situations don't
support the traditional equivalence between s � :A and s 6� A (where :A
is the negation of A), for our situation witnessed by Max supports neither
the infon \Keating won the 1996 election" nor its negation.

What to do? Well, Barwise and Perry suggest that negation inter-
acts with conjunction and disjunction in the familiar ways | :(A _ B)
is (equivalent to) :A ^ :B, and :(A ^ B) is (equivalent to) :A _ :B.
And similarly, ::A is (equivalent to) A. This gives us a logic of sorts
of negation | it is �rst degree entailment. Now for Barwise and Perry,
there are no actual situations in which s � A ^ :A (the world is not
self-contradictory). However, they agree that it is helpful to consider ab-
stract situations which allow this sort of inconsistency. So, Barwise and
Perry have an independent motivation for a semantic account of �rst-degree
entailment. (More work has gone on to consider other connections be-
tween situation theory and relevance logics [Mares, 1997; Restall, 1994;
Restall, 1995b].)

Another connection with a parallel �eld has come from completely di�er-
ent areas of research. The semantic structures of relevance logics have close
cousins in the models for the Lambek Calculus and in Relation algebras.
Let's consider relation algebras �rst.

A relation algebra is a Boolean algebra with some extra operations, a
binary operation which denotes composition of relation, a unary operation
^,for the converse of a relation, and a constant 1 for the identity relation.
There is a widely accepted axiomatisation of the variety RA of relation
algebras. A relation algebra is set R with operations ^;_;�; 1; Æ;^ such
that

� hR;^;_;�i is a boolean algebra.

� ^ is an automorphism on the algebra, satisfying a^^ = a, (a^b)^ =
a^ ^ b^, �(a^) = (�a)^.

� Æ is associative, with a left and right identity 1, satisfying (a_ b) Æ c =
(a Æ c) _ (b Æ c), a Æ (b _ c) = (a Æ b) _ (a Æ c).
� ^ and Æ are connected by setting (a Æ b)^ = b^ Æ a^.

These conditions are satis�ed by the class of relations on any base set (that
is, by any concrete relation algebra). However, not every algebra satisfying
these equations is isomorphic to a subalgebra of a concrete relation algebra.
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These algebras are quite similar to de Morgan monoids. If we de�ne :A
to be �(a)^ or (�a)^ then the conjunction, disjunction, :, 1 fragment is
that of �rst degree entailment. We do not have a � b _ :b, and nor do we
have a ^ :a � b. Consider the relation a:

a x y
x 1 1
y 0 1

Then :a is the following relation

a x y
x 0 1
y 0 0

So we don't have b � a _ :a for every b, and nor do we have a ^ :a _ b.
(However, we do have 1 � a _ :a.)

The class of relation algebras have a natural form of implication to go
along with the fusionlike connective Æ. If we de�ne a ! b to be :(:b Æ a),
then we have the residuation condition a Æ b � c i� a � b ! c. However,
that is not the only implication-like connective we may de�ne. If we set
b a to be :(aÆ:b), then aÆ b � c i� b � c a. Since Æ is not, in general,
commutative, we have two residuals.

In logics like R this is not possible, for the left and the right residuals of
fusion are the same connective. However, in systems in the vicinity of E,
these implication operations come apart. This is mirrored by the behaviour
on frames, since we can de�ne B  A by setting x � B  A i� for each y; z
where Ryxz if y � A then z � B. This will be another residual for fusion,
and it will not agree with ! in the absence of commutativity of R (if Rxyz
then Ryxz).49

It was hoped for some time that relation algebras would give an inter-
esting model for logics like R. However, there does not seem to be a nat-
ural class of relations for which composition is commutative and square
increasing. (The class of symmetric relations will not do. Even if a = a^

and b = b^, it does not follow that a Æ b = b Æ a. You merely get that
a Æ b = a^ Æ b^ = (b Æ a)^.) Considered as a logic, RA is a sublogic of R
(ignoring boolean negation for the moment). It is not a sublogic of E, since
in RA, a = 1 ! a. Another di�erence between RA and typical relevance
logics is the behaviour of contraposition. We do not have a! b = :b! :a.
Instead, a! b = :a :b.

A �nal connection between RA and relevance logics is in the issue of
semantics. As we stated earlier, not all relation algebras are representable
as subalgebras of concrete relation algebras. However, Dunn has shown

49We should ag here that in the relevance logic literature, [Meyer and Routley, 1972]

seems to have been the �rst to consider both left- and right-residuals for fusion.
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that all relation algebras are representable by algebras of propositions on
a particular class of Routley{Meyer frames [Dunn, 1993b]. This is the �rst
representation theorem for RA, and it shows that the semantical techniques
of relevance logics have a wider scope than applications to R, E and their
immediate neighbours.

In a similar vein, Dunn and Meyer [1997] have provided a Routley{Meyer
style frame semantics for combinatory logic. The key idea here is that the
ternary relation R satis�es no special conditions, but these properties are
encoded by combinators, which are modelled by special propositions on
frames.

Lambek's categorial grammar is also similar to relevance logics, though
this time it is introduced with frames, not algebras [Lambek, 1958; Lambek,
1961]. Here, the points in frames are pieces of syntax, and the `propositions'
are syntactic classi�cations of various kinds. For example, the classi�cations
into noun phrases, verbs, and sentences. The interest comes with the way
in which these classi�cations can be combined. For example A Æ B can be
de�ned, where we say x � A Æ B i� x is a concatenation of two strings y
and z, where y � A and z � B. We can also de�ne `slicing' operations,
setting x � AnB i� for each y where y � A, yx � B; and x � B=A i�
for each y where y � A, xy � B. These are obviously analogues for Æ and
! in relevance logics, and again, we have a `left' and `right' residuals for
fusion. In these frames Rxyz i� xy = z. So the Lambek calculus gives us an
independently motivated interpretation of a class of Routley{Meyer frames.
This connection has been explored by Kurtonina [1995], which is a helpful
sourcebook of some recent work on ternary frames in connection with the
Lambek calculus and related logics.

If you like, you can enrich the logic of strings with conjunction and dis-
junction, and if you do it in the obvious way (using the same clauses as in
relevance logics) you get a formal logic quite like RA [Restall, 1994]. But
more importantly, the conditions for conjunction and disjunction may be
independently motivated. A string is of type A _ B just when it is of type
A or of type B. A string is of type A ^ B just when it is of type A and of
type B. The resulting logic is clearly interpretable, but it was a number of
years before a proof theory was found for it. Here the techniques for the
Gentzenisation for positive relevance logics are appropriate, and the proof
theory can be found by utilising the proof theory for R+, and removing
the commutativity and contraction of the intensional bunching operation.
The resulting proof theory captures exactly the Lambek calculus enriched
with conjunction and disjunction. In addition, the techniques of Giambrone
show that the resulting logic is decidable [Restall, 1994].
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5.5 Linear Logic

The burgeoning phenomenon of linear logic is one which has a number of
formal similarities to relevance logics [Girard, 1987; Troelstra, 1992]. Linear
logic is the study of systems in the vicinity of LRW (R without contraction,
without distribution). This is proof-theoretically a very stable system. It
is simple to show that it is decidable. Girard's innovation, however, is to
extend the proof theory with a modal operator ! which allows intuitionistic
logic to be modelled inside linear logic. This operation in given as follows,
in single-succedent Gentzen systems.

X ` B
X; !A ` B

X ;A ` B
X ; !A ` B

!X ` B
!X ` !B

X; !A; !A ` B
X; !A ` B

Given this proof theory it is possible to show that A) B de�ned as !A!
B is an intuitionistic implication. This is similar to Meyer's result that
A ^ t! B is an intuitionistic implication in R (indeed, !A de�ned as A ^ t
satis�es each of the conditions for ! above in R, but not in systems without
contraction). However, nothing like it holds in relevance logics without
contraction.

Linear logic also brings with it many new algebraic structures and models
in category theory. None of these models have been mined to see if they can
bring any `relevant' insight. However, some transfer has gone on in the other
direction | Allwein and Dunn [1993] have shown that the multiplicative
and additive fragment of linear logic can be given a Routley{Meyer style
semantics. This is not a simple job, as the absence of the distribution of
(additive) conjunction over disjunction means that at least one of these con-
nectives (in this case, disjunction) must take a non-standard interpretation.

5.6 Relevant Predication

There has been one major way in which relevance logics have been used in
application to philosophical issues, and this application makes a good topic
to end this article. The topic is Dunn's work on relevant predication [Dunn,
1987].50 The guiding idea is that a theory of relevant implication will give
you some way of marking out the distinction between the way that Socrates'
wisdom is a property of Socrates, in the way that Socrates' wisdom is not
a property of Bill Clinton.

Classical �rst order logic is not good at marking out such a distinction,
for if Wx stands for `x is wise', and s stands for Socrates, and c stands for

50The reference [Dunn, 1987] is of course \Relevant Predication": Of course all work
has precursors, in this instance (largely unpublished) thoughts in the 1970's by N. Belnap,
J. Freeman, and most importantly R. K. Meyer and A. Urquhart (and Dunn). Cf. Sec. 9
of [Dunn, 1987] for some history.
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Bill Clinton, then Wx is true of x i� it is wise, and (Ws ^ x = x) _Ws
is true of something i� Socrates is wise. Why is one a `real' property and
the other not? The guiding idea for relevant predication is the following
distinction. It is true that if x is Socrates then x is wise. However, it is not
true that if x is Bill Clinton then Socrates is wise. At least, it is plausible
that this conditional fail, when read `relevantly'. This can be cashed out
formally as follows. F is a relevant property of a (written (�xFx)a) if and
only if (8x)(x = a! Fx).

Given this de�nition, if F is a relevant property of a then Fa holds
(quite clearly) and if F and G are relevant properties of a then so is their
conjunction, and the disjunction of any relevant property with anything at
all is still a relevant property.

Furthermore, one can de�ne what it is for a relation to truly be a relation
between objects. If Hx is `x's height is over 1 meter', and Ly is `y is a
logician' then, it is true that Greg's height is over 1 meter and Mike is a
logician. However, it would be bizarre to hold that in this there is a real
relation that holds between Greg and Mike because of this fact. We would
have the following

8x8y(x = g ^ y = m ! Hx ^ Ly)

(assuming that (�xHx)g and (�yLy)m) but it need not follow that

8x8y(x = g ! (y = m ! Hx ^ Ly))

for there is no reason that Hx should follow from y = m, even given that
x = g holds. There is no connection between `y's being m' and Hg.
This latter proposition is a good candidate for expressing that there is a
real relationship holding between g and m. In other words, we can de�ne
(�xyLxy)ab to be

8x8y�x = a! (y = b! Lxy)
�

to express the holding of a relevant relation. For more on relevant predi-
cation, consult Dunn's series of papers [Dunn, 1987; Dunn, 1990a; Dunn,
1990b]

Relevance logics are very good at telling you what follows from what
as a matter of logic | and in this case, the logical structure of relevant
predication and relations. However, more work needs to be done to see in
what it consists to say that a relevant implication is true. For that, we
need a better grip on how to understand the models of relevance logics. It
is our hope that this chapter will help people in this aim, ant to bring the
technique of relevance logics to a still wider audience.
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MARIA LUISA DALLA CHIARA AND ROBERTO
GIUNTINI

QUANTUM LOGICS

1 INTRODUCTION

The oÆcial birth of quantum logic is represented by a famous article of
Birkho� and von Neumann \The logic of quantum mechanics" [Birkho�
and von Neumann, 1936]. At the very beginning of their paper, Birkho�
and von Neumann observe:

One of the aspects of quantum theory which has attracted the
most general attention, is the novelty of the logical notions which
it presupposes .... The object of the present paper is to discover
what logical structures one may hope to �nd in physical theories
which, like quantum mechanics, do not conform to classical logic.

In order to understand the basic reason why a non classical logic arises
from the mathematical formalism of quantum theory (QT), a comparison
with classical physics will be useful.

There is one concept which quantum theory shares alike with
classical mechanics and classical electrodynamics. This is the
concept of a mathematical \phase-space". According to this
concept, any physical system S is at each instant hypothetically
associated with a \point" in a �xed phase-space �; this point
is supposed to represent mathematically, the \state" of S, and
the \state" of S is supposed to be ascertainable by \maximal"
observations.

Maximal pieces of information about physical systems are called also pure
states . For instance, in classical particle mechanics, a pure state of a single
particle can be represented by a sequence of six real numbers hr1; : : : ; r6i
where the �rst three numbers correspond to the position-coordinates, where-
as the last ones are the momentum-components.

As a consequence, the phase-space of a single particle system can be
identi�ed with the set IR6, consisting of all sextuples of real numbers. Sim-
ilarly for the case of compound systems, consisting of a �nite number n of
particles.

Let us now consider an experimental proposition P about our system,
asserting that a given physical quantity has a certain value (for instance:
\the value of position in the x-direction lies in a certain interval"). Such

D. Gabbay and F. Guenthner (eds.),
Handbook of Philosophical Logic, Volume 6, 129{228.
c 2002, Kluwer Academic Publishers. Printed in the Netherlands.
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a proposition P will be naturally associated with a subset X of our phase-
space, consisting of all the pure states for which P holds. In other words,
the subsets of � seem to represent good mathematical representatives of
experimental propositions. These subsets are called by Birkho� and von
Neumann physical qualities (we will say simply events). Needless to say,
the correspondence between the set of all experimental propositions and
the set of all events will be many-to-one. When a pure state p belongs to
an event X , we will say that our system in state p veri�es both X and the
corresponding experimental proposition.

What about the structure of all events? As is well known, the power-set
of any set is a Boolean algebra. And also the set F(�) of all measurable
subsets of � (which is more tractable than the full power-set of �) turns out
to have a Boolean structure. Hence, we may refer to the following Boolean
algebra:

B = hF(�);�;\;[;�;1;0i;

where:

1) � ;\ ;[ ; � are, respectively, the set-theoretic inclusion relation and
the operations intersection, union, relative complement;

2) 1 is the total space �, while 0 is the empty set.

According to a standard interpretation, \ ;[ ; � can be naturally re-
garded as a set-theoretic realization of the classical logical connectives and ,
or , not . As a consequence, we will obtain a classical semantic behaviour:

� a state p veri�es a conjunction X \ Y i� p 2 X \ Y i� p veri�es both
members;

� p veri�es a disjunction X [ Y i� p 2 X [ Y i� p veri�es at least one
member;

� p veri�es a negation �X i� p =2 X i� p does not verify X .

To what extent can such a picture be adequately extended to QT? Birkho�
and von Neumann observe:

In quantum theory the points of � correspond to the so called
\wave-functions" and hence � is : : : a function-space, usually
assumed to be Hilbert space.

As a consequence, we immediately obtain a basic di�erence between the
quantum and the classical case. The excluded middle principle holds in



QUANTUM LOGICS 131

classical mechanics. In other words, pure states semantically decide any
event: for any p and X ,

p 2 X or p 2 �X:

QT is, instead, essentially probabilistic. Generally, pure states assign only
probability-values to quantum events. Let  represent a pure state (a wave
function) of a quantum system and let P be an experimental proposition
(for instance \the spin value in the x-direction is up"). The following cases
are possible:

(i)  assigns to P probability-value 1 ( (P) = 1);

(ii)  assigns to P probability-value 0 ( (P) = 0);

(iii)  assigns to P a probability-value di�erent from 1 and from 0 ( (P) 6=
0; 1).

In the �rst two cases, we will say that P is true (false) for our system in
state  . In the third case, P will be semantically indeterminate.

Now the question arises: what will be an adequate mathematical repre-
sentative for the notion of quantum experimental proposition? The most
important novelty of Birkho� and von Neumann's proposal is based on the
following answer: \The mathematical representative of any experimental
proposition is a closed linear subspace of Hilbert space" (we will say simply
a closed subspace).1 Let H be a (separable) Hilbert space, whose unitary
vectors correspond to possible wave functions of a quantum system. The
closed subspaces ofH are particular instances of subsets of H that are closed
under linear combinations and Cauchy sequences. Why are mere subsets of
the phase-space not interesting in QT? The reason depends on the super-
position principle, which represents one of the basic dividing line between
the quantum and the classical case. Di�erently from classical mechanics,
in quantum mechanics, �nite and even in�nite linear combinations of pure
states give rise to new pure states (provided only some formal conditions
are satis�ed). Suppose three pure states  ;  1 ;  2 and let  be a linear
combination of  1 ;  2:

 = c1 1 + c2 2:

1A Hilbert space is a vector space over a division ring whose elements are the real or
the complex or the quaternionic numbers such that

(i) An inner product ( : ; :) that transforms any pair of vectors into an element of the
division ring is de�ned;

(ii) the space is metrically complete with respect to the metrics induced by the inner
product ( : ; :).

A Hilbert space H is called separable i� H admits a countable basis.
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According to the standard interpretation of the formalism, roughly this
means that a quantum system in state  might verify with probability jc1j2
those propositions that are certain for state  1 (and are not certain for  )
and might verify with probability jc2j2 those propositions that are certain
for state  2 (and are not certain for  ). Suppose now some pure states
 1;  2; : : : each assigning probability 1 to a given experimental proposition
P, and suppose that the linear combination

 =
X
i

ci i (ci 6= 0)

is a pure state. Then also  will assign probability 1 to our proposition
P. As a consequence, the mathematical representatives of experimental
propositions should be closed under �nite and in�nite linear combinations.
The closed subspaces ofH are just the mathematical objects that can realize
such a role.

What about the algebraic structure that can be de�ned on the set C(H)
of all mathematical representatives of experimental propositions (let us call
them quantum events)? For instance, what does it mean negation, con-
junction and disjunction in the realm of quantum events? As to negation,
Birkho� and von Neumann's answer is the following:

The mathematical representative of the negative of any experi-
mental proposition is the orthogonal complement of the math-
ematical representative of the proposition itself.

The orthogonal complement X 0 of a subspace X is de�ned as the set
of all vectors that are orthogonal to all elements of X . In other words,
 2 X 0 i�  ? X i� for any � 2 X : ( ; �) = 0 (where ( ; �) is the inner
product of  and �). From the point of view of the physical interpretation,
the orthogonal complement (called also orthocomplement) is particularly
interesting, since it satis�es the following property: for any event X and
any pure state  ,

 (X) = 1 i�  (X 0) = 0;

 (X) = 0 i�  (X 0) = 1;

In other words,  assigns to an event X probability 1 (0, respectively)
i�  assigns to the orthocomplement of X probability 0 (1, respectively).
As a consequence, one is dealing with an operation that inverts the two
extreme probability-values, which naturally correspond to the truth-values
truth and falsity (similarly to the classical truth-table of negation).

As to conjunction, Birkho� and von Neumann notice that this can be still
represented by the set-theoretic intersection (like in the classical case). For,
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the intersection X \ Y of two closed subspaces is again a closed subspace.
Hence, we will obtain the usual truth-table for the connective and :

 veri�es X \ Y i�  veri�es both members.

Disjunction, however, cannot be represented here as a set-theoretic union.
For, generally, the union X [Y of two closed subspaces is not a closed sub-
space. In spite of this, we have at our disposal another good representative
for the connective or : the supremum X t Y of two closed subspaces, that
is the smallest closed subspace including both X and Y . Of course, X t Y
will include X [ Y .

As a consequence, we obtain the following structure

C(H) = hC(H) ;v ;u ;t ; 0 ;1 ;0i ;

where v ;u are the set-theoretic inclusion and intersection; t ; 0 are de�ned
as above; while 1 and 0 represent, respectively, the total space H and the
null subspace (the singleton of the null vector, representing the smallest
possible subspace). An isomorphic structure can be obtained by using as
a support, instead of C(H), the set P (H) of all projections P of H. As is
well known projections (i.e. idempotent and self-adjoint linear operators)
and closed subspaces are in one-to-one correspondence, by the projection
theorem. Our structure C(H) turns out to simulate a \quasi-Boolean be-
haviour"; however, it is not a Boolean algebra. Something very essential is
missing. For instance, conjunction and disjunction are no more distributive.
Generally,

X u (Y t Z) 6= (X u Y ) t (X u Z):

It turns out that C(H) belongs to the variety of all orthocomplemented or-
thomodular lattices , that are not necessarily distributive.

The failure of distributivity is connected with a characteristic property of
disjunction in QT. Di�erently from classical (bivalent) semantics, a quantum
disjunction X t Y may be true even if neither member is true. In fact, it
may happen that a pure state  belongs to a subspace X t Y , even if  
belongs neither to X nor to Y (see Figure 1).

Such a semantic behaviour, which may appear prima facie somewhat
strange, seems to reect pretty well a number of concrete quantum situa-
tions. In QT one is often dealing with alternatives that are semantically
determined and true, while both members are, in principle, strongly inde-
terminate. For instance, suppose we are referring to some one-half spin
particle (say an electron) whose spin may assume only two possible values:
either up or down. Now, according to one of the uncertainty principles , the
spin in the x direction (spinx) and the spin in the y direction (spiny) rep-
resent two strongly incompatible quantities that cannot be simultaneously
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Figure 1. Failure of bivalence in QT

measured. Suppose an electron in state  veri�es the proposition \spinx is
up". As a consequence of the uncertainty principle both propositions \spiny
is up" and \spiny is down" shall be strongly indeterminate. However the
disjunction \either spiny is up or spiny is down" must be true.

Birkho� and von Neumann's proposal did not arouse any immediate in-
terest, either in the logical or in the physical community. Probably, the
quantum logical approach appeared too abstract for the foundational de-
bate about QT, which in the Thirties was generally formulated in a more
traditional philosophical language. As an example, let us only think of the
famous discussion between Einstein and Bohr. At the same time, the work
of logicians was still mainly devoted to classical logic.

Only twenty years later, after the appearance of George Mackey's book
Mathematical Foundations of Quantum Theory [Mackey, 1957], one has wit-
nessed a \renaissance period\ for the logico-algebraic approach to QT. This
has been mainly stimulated by the contributions of Jauch, Piron, Varadara-
jan, Suppes, Finkelstein, Foulis, Randall, Greechie, Gudder, Beltrametti,
Cassinelli, Mittelstaedt and many others. The new proposals are charac-
terized by a more general approach, based on a kind of abstraction from
the Hilbert space structures. The starting point of the new trends can be
summarized as follows. Generally, any physical theory T determines a class
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of event-state systems hE ; Si, where E contains the events that may occur
to our system, while S contains the states that a physical system described
by the theory may assume. The question arises: what are the abstract con-
ditions that one should postulate for any pair hE ; Si? In the case of QT,
having in mind the Hilbert space model, one is naturally led to the following
requirement:

� the set E of events should be a good abstraction from the structure
of all closed subspaces in a Hilbert space. As a consequence E should
be at least a �-complete orthomodular lattice (generally non distribu-
tive).

� The set S of states should be a good abstraction from the statistical
operators in a Hilbert space, that represent possible states of physical
systems. As a consequence, any state shall behave as a probability
measure, that assigns to any event in E a value in the interval [0; 1].
Both in the concrete and in the abstract case, states may be either
pure (maximal pieces of information that cannot be consistently ex-
tended to a richer knowledge) or mixtures (non maximal pieces of
information).

In such a framework two basic problems arise:

I) Is it possible to capture, by means of some abstract conditions that are
required for any event-state pair hE ; Si, the behaviour of the concrete
Hilbert space pairs?

II) To what extent should the Hilbert space model be absolutely binding?

The �rst problem gave rise to a number of attempts to prove a kind of
representation theorem. More precisely, the main question was: what are
the necessary and suÆcient conditions for a generic event-state pair hE ; Si
that make E isomorphic to the lattice of all closed subspaces in a Hilbert
space?

Our second problem stimulated the investigation about more and more
general quantum structures. Of course, looking for more general structures
seems to imply a kind of discontent towards the standard quantum logical
approach, based on Hilbert space lattices. The fundamental criticisms that
have been moved concern the following items:

1) The standard structures seem to determine a kind of extensional col-
lapse. In fact, the closed subspaces of a Hilbert space represent at
the same time physical properties in an intensional sense and the ex-
tensions thereof (sets of states that certainly verify the properties in
question). As happens in classical set theoretical semantics, there is no
mathematical representative for physical properties in an intensional
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sense. Foulis and Randall have called such an extensional collapse \the
metaphysical disaster" of the standard quantum logical approach.

2) The lattice structure of the closed subspaces automatically renders the
quantum proposition system closed under logical conjunction. This
seems to imply some counterintuitive consequences from the physical
point of view. Suppose two experimental propositions that concern
two strongly incompatible quantities, like \the spin in the x direction
is up", \the spin in the y direction is down". In such a situation,
the intuition of the quantum physicist seems to suggest the following
semantic requirement: the conjunction of our propositions has no def-
inite meaning; for, they cannot be experimentally tested at the same
time. As a consequence, the lattice proposition structure seems to be
too strong.

An interesting weakening can be obtained by giving up the lattice condi-
tion: generally the in�mum and the supremum are assumed to exist only for
countable sets of propositions that are pairwise orthogonal. In the recent
quantum logical literature an orthomodular partially ordered set that satis-
�es the above condition is simply called a quantum logic. At the same time,
by standard quantum logic one usually means the complete orthomodular
lattice based on the closed subspaces in a Hilbert space. Needless to ob-
serve, such a terminology that identi�es a logic with a particular example of
an algebraic structure turns out to be somewhat misleading from the strict
logical point of view. As we will see in the next sections, di�erent forms of
quantum logic, which represent \genuine logics" according to the standard
way of thinking of the logical tradition, can be characterized by convenient
abstraction from the physical models.

2 ORTHOMODULAR QUANTUM LOGIC AND ORTHOLOGIC

We will �rst study two interesting examples of logic that represent a natu-
ral logical abstraction from the class of all Hilbert space lattices.These are
represented respectively by orthomodular quantum logic (OQL) and by the
weaker orthologic (OL), which for a long time has been also termed min-
imal quantum logic. In fact, the name \minimal quantum logic" appears
today quite inappropriate, since a number of weaker forms of quantum logic
have been recently investigated. In the following we will use QL as an ab-
breviation for both OL and OQL.

The language of QL consists of a denumerable set of sentential literals
and of two primitive connectives: : (not), ^ (and). The notion of formula
of the language is de�ned in the expected way. We will use the following
metavariables: p; q; r; : : : for sentential literals and �, �, ; : : : for formulas.
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The connective disjunction (_ ) is supposed de�ned via de Morgan's law:

� _ � := : (:� ^ :�) :

The problem concerning the possibility of a well behaved conditional con-
nective will be discussed in the next Section. We will indicate the basic
metalogical constants as follows: not, and, or, y (if...then), i� (if and only
if), 8 (for all ), 9 (for at least one).

Because of its historical origin, the most natural characterization of QL
can be carried out in the framework of an algebraic semantics. It will be
expedient to recall �rst the de�nition of ortholattice:

DEFINITION 1 (Ortholattice). An ortholattice is a structure B = hB ;v ;0 ;
1 ;0i, where

(1.1) hB ;v ;1 ;0i is a bounded lattice, where 1 is the maximum and
0 is the minimum. In other words:

(i) v is a partial order relation on B (reexive, antisymmetric
and transitive);

(ii) any pair of elements a; b has an in�mum aub and a supremum
a t b such that:
a u b v a; b and 8c: c v a; b y c v a u b;
a; b v a t b and 8c: a; b v c y a t b v c;

(iii) 8a: 0 v a; a v 1.

(1.2) the 1-ary operation 0 (called orthocomplement) satis�es the fol-
lowing conditions:

(i) a00 = a (double negation);

(ii) a v b y b0 v a0 (contraposition);

(iii) a u a0 = 0 (non contradiction).

Di�erently from Boolean algebras, ortholattices do not generally satisfy
the distributive laws of u and t. There holds only

(a u b) t (a u c) v a u (b t c)

and the dual form

a t (b u c) v(a t b) u (a t c):
The lattice hC(H) ;v ; 0 ;1 ;0i of all closed subspaces in a Hilbert space

H is a characteristic example of a non distributive ortholattice.

DEFINITION 2 (Algebraic realization for OL). An algebraic realization for
OL is a pair A = hB ; vi, consisting of an ortholattice B = hB ;v ; 0 ;1 ;0i
and a valuation-function v that associates to any formula � of the language
an element (truth-value) in B, satisfying the following conditions:
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(i) v(:�) = v(�)0;

(ii) v(� ^ ) = v(�) u v().

DEFINITION 3 (Truth and logical truth). A formula � is true in a real-
ization A = hB ; vi (abbreviated as j=A �) i� v(�) = 1; � is a logical truth
of OL (j=

OL
�) i� for any algebraic realization A = hB ; vi, j=A �.

When j=A �, we will also say that A is a model of �; A will be called a
model of a set of formulas T (j=A T ) i� A is a model of any � 2 T .

DEFINITION 4 (Consequence in a realization and logical consequence).
Let T be a set of formulas and let A = hB ; vi be a realization. A formula
� is a consequence in A of T (T j=A �) i� for any element a of B:
if for any � 2 T , a v v(�) then a v v(�).
A formula � is a logical consequence of T (T j=

OL
�) i� for any algebraic

realization A: T j=A �.

Instead of f�g j=
OL
� we will write � j=

OL
�. If T is �nite and equal to

f�1; : : : ; �ng, we will obviously have: T j=
OL
� i� v(�1)u � � �uv(�n) v v(�).

One can easily check that j=
OL
� i� for any T , T j=

OL
�.

OL can be equivalently characterized also by means of a Kripke-style
semantics, which has been �rst proposed by [Dishkant, 1972]. As is well
known, the algebraic semantic approach can be described as founded on the
following intuitive idea: interpreting a language essentially means associat-
ing to any sentence � an abstract truth-value or, more generally, an abstract
meaning (an element of an algebraic structure). In the Kripkean semantics,
instead, one assumes that interpreting a language essentially means associ-
ating to any sentence � the set of the possible worlds or situations where
� holds. This set, which represents the extensional meaning of �, is called
the proposition associated to � (or simply the proposition of �). Hence,
generally, a Kripkean realization for a logic L will have the form:

K =
D
I ;
�!
Ri ;�!oj ;� ; �

E
;

where

(i) I is a non-empty set of possible worlds possibly correlated by relations

in the sequence
�!
Ri and operations in the sequence �!oj . In most cases,

we have only one binary relation R, called accessibility relation.

(ii) � is a set of sets of possible worlds, representing possible propositions
of sentences. Any proposition and the total set of propositions � must
satisfy convenient closure conditions that depend on the particular
logic.

(iii) � transforms sentences into propositions preserving the logical form.
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The Kripkean realizations that turn out to be adequate for OL have
only one accessibility relation, which is reexive and symmetric. As is well
known, many logics, that are stronger than positive logic, are instead char-
acterized by Kripkean realizations where the accessibility relation is at least
reexive and transitive. As an example, let us think of intuitionistic logic.
From an intuitive point of view, one can easily understand the reason why
semantic models with a reexive and symmetric accessibility relation may
be physically signi�cant. In fact, physical theories are not generally con-
cerned with possible evolutions of states of knowledge with respect to a con-
stant world, but rather with sets of physical situations that may be similar ,
where states of knowledge must single out some invariants . And similarity
relations are reexive and symmetric, but generally not transitive.

Let us now introduce the basic concepts of a Kripkean semantics for OL.

DEFINITION 5 (Orthoframe). An orthoframe is a relational structure F =
hI; R i, where I is a non-empty set (called the set of worlds) and R (the
accessibility relation) is a binary reexive and symmetric relation on I .

Given an orthoframe, we will use i; j; k; : : : as variables ranging over the
set of worlds. Instead of Rij (not Rij) we will also write i ?= j (i ? j).
DEFINITION 6 (Orthocomplement in an orthoframe). Let F = hI; R i be
an orthoframe. For any set of worlds X � I , the orthocomplement X 0 of X
is de�ned as follows:

X 0 = fi j 8j(j 2 X y j ? i)g :

In other words, X is the set of all worlds that are unaccessible to all
elements of X . Instead of i 2 X 0, we will also write i ? X (and we will read
it as \i is orthogonal to the set X"). Instead of i =2 X 0, we will also write
i ?= X .

DEFINITION 7 (Proposition). Let F = hI; R i be an orthoframe. A set of
worlds X is called a proposition of F i� it satis�es the following condition:

8i [i 2 X i� 8j(i ?= j y j ?= X)] :

In other words, a proposition is a set of worlds X that contains all and
only the worlds whose accessible worlds are not unaccessible to X . Notice
that the conditional i 2 X y 8j(i ?= j y j ?= X) trivially holds for any set
of worlds X .

Our de�nition of proposition represents a quite general notion of \possible
meaning of a formula", that can be signi�cantly extended also to other
logics. Suppose for instance, a Kripkean frame F = hI; R i, where the
accessibility relation is at least reexive and transitive (as happens in the
Kripkean semantics for intuitionistic logic). Then a set of worlds X turns
out to be a proposition (in the sense of De�nition 7) i� it is R-closed (i.e.,
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8ij(i 2 X and Rij y j 2 X)). And R-closed sets of worlds represent
precisely the possible meanings of formulas in the Kripkean characterization
of intuitionistic logic.

LEMMA 8. Let F be an orthoframe and X a set of worlds of F .

(8.1) X is a proposition of F i� 8i [i =2 X y 9j(i ?= j and j ? X)]

(8.2) X is a proposition of F i� X = X 00.

LEMMA 9. Let F = hI; R i be an orthoframe.

(9.1) I and ; are propositions.

(9.2) If X is any set of worlds, then X 0 is a proposition.

(9.3) If C is a family of propositions, then
T
C is a proposition.

DEFINITION 10 (Kripkean realization for OL). A Kripkean realization for
OL is a system K = hI; R ;� ; �i, where:

(i) hI; Ri is an orthoframe and � is a set of propositions of the frame
that contains ;; I and is closed under the orthocomplement 0 and
the set-theoretic intersection \;

(ii) � is a function that associates to any formula � a proposition in
�, satisfying the following conditions:

�(:�) = �(�)0;

�(� ^ ) = �(�) \ �().

Instead of i 2 �(�), we will also write i j= � (or, i j=K �, in case of
possible confusions) and we will read: \� is true in the world i". If T is a
set of formulas, i j= T will mean i j= � for any � 2 T .

THEOREM 11. For any Kripkean realization K and any formula �:

i j= � i� 8j ?= i9k ?= j (k j= �):

Proof. Since the accessibility relation is symmetric, the left to right im-
plication is trivial. Let us prove i j==� y not8j ?= i9k ?= j (k j= �),
which is equivalent to i =2 �(�) y 9j ?= i8k ?= j (k =2 �(�)). Suppose
i =2 �(�). Since �(�) is a proposition, by Lemma 8.1 there holds for a cer-
tain j: j ?= i and j ? �(�). Let k ?= j, and suppose, by contradiction,
k 2 �(�). Since j ? �(�), there follows j ? k, against k ?= j. Consequently,
9j ?= i8k ?= j (k =2 �(�)). �

LEMMA 12. In any Kripkean realization K:

(12.1) i j= :� i� 8j ?= i (j j==�);
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(12.2) i j= � ^  i� i j= � and i j= .

DEFINITION 13 (Truth and logical truth). A formula � is true in a
realization K = hI; R ;� ; �i (abbreviated j=K �) i� �(�) = I ; � is a logical
truth of OL (j=

OL
�) i� for any realization K, j=K �.

When j=K �, we will also say that K is a model of �. Similarly in the
case of a set of formulas T .

DEFINITION 14 (Consequence in a realization and logical consequence).
Let T be a set of formulas and let K be a realization. A formula � is a

consequence in K of T (T j=K �) i� for any world i of K, i j= T y i j= �.
A formula � is a logical consequence of T (T j=

OL
�) i� for any realization K:

T j=K �. When no confusion is possible we will simply write T j= �.

Now we will prove that the algebraic and the Kripkean semantics for OL
characterize the same logic. Let us abbreviate the metalogical expressions
\� is a logical truth of OL according to the algebraic semantics", \� is
a logical consequence in OL of T according to the algebraic semantics",
\� is a logical truth of OL according to the Kripkean semantics", \� is a
logical consequence in OL of T according to the Kripkean semantics", by

j=A
OL
� ; T j=A

OL
� , j=K

OL
� ; T j=K

OL
�, respectively.

THEOREM 15. j=A
OL
� i� j=K

OL
�; for any �.

The Theorem is an immediate corollary of the following Lemma:

LEMMA 16.

(16.1) For any algebraic realization A there exists a Kripkean realiza-
tion KA such that for any �, j=A � i� j=KA �.

(16.2) For any Kripkean realization K there exists an algebraic real-
ization AK such that for any �, j=K � i� j=AK �.

Sketch of the proof
(16.1) The basic intuitive idea of the proof is the following: any algebraic

realization can be canonically transformed into a Kripkean realization by
identifying the set of worlds with the set of all non-null elements of the
algebra, the accessibility-relation with the non-orthogonality relation in the
algebra, and �nally the set of propositions with the set of all principal
quasi-ideals (i.e., the principal ideals, devoided of the zero-element). More
precisely, given A = hB ; vi, the Kripkean realization KA = hI; R ;� ; �i is
de�ned as follows:

I = fb 2 B j b 6= 0g;
Rij i� i 6v j0;
� = ffb 2 B j b 6= 0 and b v ag j a 2 Bg;
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�(p) = fb 2 I j b v v(p)g.
One can easily check that KA is a \good" Kripkean realization; further,
there holds, for any � : �(�) = fb 2 B j b 6= 0 and b v v(�)g. Conse-
quently, j=A � i� j=KA �.

(16.2) Any Kripkean realization K = hI; R ;� ; �i can be canonically
transformed into an algebraic realization AK = hB ; vi by putting:

B = �;

for any a; b 2 B: a v b i� a � b;
a0 = fi 2 I j i ? ag;
1 = I ; 0 = ;;
v(p) = �(p).

It turns out that B is an ortholattice. Further, for any �, v(�) = �(�).
Consequently: j=K � i� j=AK �. �

THEOREM 17. T j=A
OL
� i� T j=K

OL
�.

Proof. In order to prove the left to right implication, suppose by con-

tradiction: T j=A
OL
� and T j=K

OL
=�. Hence there exists a Kripkean realization

K = hI; R ;� ; �i and a world i of K such that i j= T and i j==�. One can
easily see that K can be transformed into KÆ = hI; R ;�Æ ; �i where �Æ is
the smallest subset of the power-set of I , that includes � and is closed un-
der in�nitary intersection. Owing to Lemma 9.3, KÆ is a \good" Kripkean
realization for OL and for any �, �(�) turns out to be the same proposition
in K and in KÆ. Consequently, also in KÆ, there holds: i j= T and i j==�.
Let us now consider AKÆ . The algebra B of AKÆ is complete, because �Æ is
closed under in�nitary intersection. Hence,

T f�(�) j � 2 Tg is an element
of B. Since i j= � for any � 2 T , we will have i 2 T f�(�) j � 2 Tg. Thus
there is an element of B, which is less or equal than v(�)(= �(�)) for any
� 2 T , but is not less or equal than v(�)(= �(�)), because i =2 �(�). This

contradicts the hypothesis T j=A
OL
�.

The right to left implication is trivial. �

Let us now turn to a semantic characterization of OQL. We will �rst
recall the de�nition of orthomodular lattice.

DEFINITION 18 (Orthomodular lattice). An orthomodular lattice is an
ortholattice B = hB ;v ;0 ;1 ;0i such that for any a; b 2 B:

a u (a0 t (a u b)) v b:

Orthomodularity clearly represents a weak form of distributivity.

LEMMA 19. Let B be an ortholattice. The following conditions are equiv-
alent:
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(i) B is orthomodular.

(ii) For any a; b 2 B: a v b y b = a t (a0 u b).
(iii) For any a; b 2 B: a v b i� a u (a u b)0 = 0.

(iv) For any a; b 2 B: a v b and a0 u b = 0 y a = b.

The property considered in (19(iii)) represents a signi�cant weakening of
the Boolean condition:

a v b i� a u b0 = 0:

DEFINITION 20 (Algebraic realization for OQL). An algebraic realization
for OQL is an algebraic realization A = hB; vi for OL, where B is an
orthomodular lattice.

The de�nitions of truth, logical truth and logical consequence in OQL
are analogous to the corresponding de�nitions of OL.

Like OL, also OQL can be characterized by means of a Kripkean seman-
tics.

DEFINITION 21 (Kripkean realization for OQL). A Kripkean realization
for OQL is a Kripkean realization K = hI; R ;� ; �i for OL, where the set
of propositions � satis�es the orthomodular property :

X 6� Y y X \ (X \ Y )0 6= ;:

The de�nitions of truth, logical truth and logical consequence in OQL are
analogous to the corresponding de�nitions of OL. Also in the case of OQL
one can show:

THEOREM 22. j=A
OQL

� i� j=K
OQL

�.

The Theorem is an immediate corollary of Lemma 16 and of the following
lemma:

LEMMA 23.

(23.1) If A is orthomodular then KA is orthomodular;

(23.2) If K is orthomodular then AK is orthomodular.

Proof. (23.1) We have to prove X 6� Y y X \ (X \ Y )0 6= ; for any
propositions X;Y of KA. Suppose X 6� Y . By de�nition of proposition in
KA:

X = fb j b 6= 0 and b v xg for a given x;

Y = fb j b 6= 0 and b v yg for a given y;

Consequently, x 6v y, and by Lemma 19: x u (x u y)0 6= 0 , because A is
orthomodular. Hence, x u (x u y)0 is a world in KA. In order to prove
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X \ (X \ Y )0 6= ;, it is suÆcient to prove x u (x u y)0 2 X \ (X \ Y )0.
There holds trivially x u (x u y)0 2 X . Further, x u (x u y)0 2 (X \ Y )0,
because (xu y)0 is the generator of the quasi-ideal (X \ Y )0 . Consequently,
x u (x u y)0 2 X \ (X \ Y )0.
(23.2) Let K be orthomodular. Then for any X;Y 2 �:

X 6� Y y X \ (X \ Y )0 6= ;:

One can trivially prove:

X \ (X \ Y )0 6= ; y X 6� Y:

Hence, by Lemma 19, the algebra B of AK is orthomodular. �

As to the concept of logical consequence, the proof we have given for OL
(Theorem 17) cannot be automatically extended to the case of OQL. The
critical point is represented by the transformation of K into KÆ whose set of
propositions is closed under in�nitary intersection: KÆ is trivially a \good"
OL-realization; at the same time, it is not granted that KÆ preserves the
orthomodular property. One can easily prove:

THEOREM 24. T j=K
OQL

� y T j=A
OQL

�:

The inverse relation has been proved by [Minari, 1987]:

THEOREM 25. T j=A
OQL

� y T j=K
OQL

�:

Are there any signi�cant structural relations between A and KAK and

between K and AKA? The question admits a very strong answer in the case

of A and KAK .

THEOREM 26. A = hB; vi and AKA = hB�; v�i are isomorphic realiza-
tions.

Sketch of the proof Let us de�ne the function  : B ! B� in the following
way:

 (a) = fb j b 6= 0 and b v ag for any a 2 B.

One can easily check that: (1)  is an isomorphism (from B onto B�); (2)
v�(p) =  (v(p)) for any atomic formula p. �

At the same time, in the case of K and KAK

, there is no natural cor-
respondence between I and �. As a consequence, one can prove only the
weaker relation:

THEOREM 27. Given K = hI ; R ;� ; �i and KAK

= hI� ; R� ;�� ; ��i,
there holds:

��(�) = fX 2 � j X � �(�)g ; for any �:
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In the class of all Kripkean realizations for QL, the realizationsKA (which
have been obtained by canonical transformation of an algebraic realization
A) present some interesting properties, which are summarized by the fol-
lowing theorem.

THEOREM 28. In any KA = hI ; R ;� ; �i there is a one-to-one correspon-
dence � between the set of worlds I and the set of propositions ��f;g such
that:

(28.1) i 2 �(i);

(28.2) i ?= j i� �(i) 6� �(j)0;

(28.3) 8X 2 �: i 2 X i� 8k 2 �(i)(k 2 X).

Sketch of the proof Let us take as �(i) the quasi-ideal generated by i. �

Theorem 28 suggests to isolate, in the class of all K, an interesting sub-
class of Kripkean realizations, that we will call algebraically adequate.

DEFINITION 29. A Kripkean realization K is algebraically adequate i� it
satis�es the conditions of Theorem 28.

When restricting to the class of all algebraically adequate Kripkean real-
izations one can prove:

THEOREM 30. K = hI ; R ;� ; �i and KAK

= hI� ; R� ;�� ; ��i are isomor-
phic realizations; i.e., there exists a bijective function  from I onto I� such
that:

(30.1) Rij i� R� (i) (j), for any i; j 2 I;

(30.2) �� = f (X) j X 2 �g, where  (X) := f (i) j i 2 Xg;
(30.3) ��(p) =  (�(p)), for any atomic formula p.

One can easily show that the class of all algebraically adequate Krip-
kean realizations determines the same concept of logical consequence that
is determined by the larger class of all possible realizations.

The Kripkean characterization of QL turns out to have a quite natural
physical interpretation. As we have seen in the Introduction, the mathemat-
ical formalism of quantum theory (QT) associates to any physical system
S a Hilbert space H, while the pure states of S are mathematically rep-
resented by unitary vectors  of H. Let us now consider an elementary
sublanguage LQ of QT, whose atomic formulas represent possible measure-
ment reports (i.e., statements of the form \the value for the observable Q
lies in the Borel set �") and suppose LQ closed under the quantum logical
connectives. Given a physical system S (whose associated Hilbert space is
H), one can de�ne a natural Kripkean realization for the language LQ as
follows:

KS = hI ; R ;� ; �i ;
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where:

� I is the set of all pure states  of S.

� R is the non-orthogonality relation between vectors (in other words,
two pure states are accessible i� their inner product is di�erent from
zero).

� � is the set of all propositions that is univocally determined by the
set of all closed subspaces of H (one can easily check that the set of
all unitary vectors of any subspace is a proposition).

� For any atomic formula p, �(p) is the proposition containing all the
pure states that assign to p probability-value 1.

Interestingly enough, the accessibility relation turns out to have the fol-
lowing physical meaning: Rij i� j is a pure state into which i can be
transformed after the performance of a physical measurement that concern
an observable of the system.

3 THE IMPLICATION PROBLEM

Di�erently from most weak logics, QL gives rise to a critical \implication-
problem". All conditional connectives one can reasonably introduce in QL
are, to a certain extent, anomalous; for, they do not share most of the char-
acteristic properties that are satis�ed by the positive conditionals (which
are governed by a logic that is at least as strong as positive logic). Just
the failure of a well-behaved conditional led some authors to the conclusion
that QL cannot be a \real" logic. In spite of these diÆculties, these days
one cannot help recognizing that QL admits a set of di�erent implicational
connectives, even if none of them has a positive behaviour. Let us �rst pro-
pose a general semantic condition for a logical connective to be classi�ed as
an implication-connective.

DEFINITION 31. In any semantics, a binary connective
�! is called an

implication-connective i� it satis�es at least the two following conditions:

(31.1) �
�! � is always true (identity);

(31.2) if � is true and �
�! � is true then � is true (modus ponens).

In the particular case of QL, one can easily obtain:

LEMMA 32. A suÆcient condition for a connective
�! to be an implication-

connective is:

(i) in the algebraic semantics: for any realization A = hA; vi, j=A �
�! �

i� v(�) v v(�);
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(ii) in the Kripkean semantics: for any realization K = hI; R;�; �i,
j=K �

�! � i� �(�) � �(�).

In QL it seems reasonable to assume the suÆcient condition of Lemma
32 as a minimal condition for a connective to be an implication-connective.

Suppose we have independently de�ned two di�erent implication-connect-
ives in the algebraic and in the Kripkean semantics. When shall we admit
that they represent the \same logical connective"? A reasonable answer to
this question is represented by the following convention:

DEFINITION 33. Let
A� be a binary connective de�ned in the algebraic

semantics and
K� a binary connective de�ned in the Kripkean semantics:

A�
and

K� represent the same logical connective i� the following conditions are
satis�ed:

(33.1) given any A = hB; vi and given the corresponding KA =

hI; R;�; �i, �(�
K� �) is the quasi-ideal generated by v(�

A� �);

(33.2) given any K = hI; R;�; �i and given the corresponding AK =

hB ; vi, there holds: v(�
A� �) = �(�

K� �).

We will now consider di�erent possible semantic characterizations of an
implication-connective in QL. Di�erently from classical logic, in QL a mate-
rial conditional de�ned by Philo-law (�! � := :�_�), does not give rise to
an implication-connective. For, there are algebraic realizations A = hB; vi
such that v(:� _ �) = 1, while v(�) 6v v(�). Further, ortholattices and
orthomodular lattices are not, generally, pseudocomplemented lattices: in
other words, given a; b 2 B, the maximum c such that a u c v b does not
necessarily exist in B. In fact, one can prove [Birkho�, 1995] that any
pseudocomplemented lattice is distributive.

We will �rst consider the case of polynomial conditionals , that can be
de�ned in terms of the connectives ^ ;_ ;:. In the algebraic semantics, the
minimal requirement of Lemma 32 restricts the choice only to �ve possible
candidates [Kalmbach, 1983]. This result follows from the fact that in the
orthomodular lattice freely generated by two elements there are only �ve
polynomial binary operations Æ satisfying the condition a v b i� a Æ b = 1.
These are our �ve candidates:

(i) v(�!1 �) = v(�)0 t (v(�) u v(�)).

(ii) v(�!2 �) = v(�) t (v(�)0 u v(�)0).

(iii) v(�!3 �) = (v(�)0 u v(�)) t (v(�) u v(�)) t (v(�)0 u v(�)0).

(iv) v(�!4 �) = (v(�)0 uv(�))t (v(�)uv(�))t ((v(�)0 tv(�))uv(�)0).
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(v) v(�!5 �) = (v(�)0uv(�))t(v(�)0 uv(�)0)t(v(�)u(v(�)0 tv(�))).

The corresponding �ve implication-connectives in the Kripkean semantics
can be easily obtained. It is not hard to see that for any i (1 � i � 5), !i

represents the same logical connective in both semantics (in the sense of
De�nition 33).

THEOREM 34. The polynomial conditionals!i (1 � i � 5) are implication-
connectives in OQL; at the same time they are not implication-connectives
in OL.

Proof. Since !i represent the same connective in both semantics, it will
be suÆcient to refer to the algebraic semantics. As an example, let us prove
the theorem for i = 1 (the other cases are similar). First we have to prove
v(�) v v(�) i� 1 = v(�!1 �) = v(�)0 t (v(�) u v(�)), which is equivalent
to v(�) v v(�) i� v(�)u (v(�)uv(�))0 = 0. From Lemma 19, we know that
the latter condition holds for any pair of elements of B i� B is orthomodular.
This proves at the same time that!1 is an implication-connective in OQL,
but cannot be an implication-connective in OL. �

Interestingly enough, each polynomial conditional !i represents a good
weakening of the classical material conditional. In order to show this result,
let us �rst introduce an important relation that describes a \Boolean mutual
behaviour" between elements of an orthomodular lattice.

DEFINITION 35 (Compatibility).
Two elements a; b of an orthomodular lattice B are compatible i�

a = (a u b0) t (a u b):

One can prove that a; b are compatible i� the subalgebra of B generated
by fa; bg is Boolean.

THEOREM 36. For any algebraic realization A = hB; vi and for any �; �:

v(�!i �) = v(�)0 t v(�) i� v(�) and v(�) are compatible.

As previously mentioned, Boolean algebras are pseudocomplemented lat-
tices. Therefore they satisfy the following condition for any a; b; c:

c u a v b i� c v a b;

where: a b := a0 t b.
An orthomodular lattice B turns out to be a Boolean algebra i� for any

algebraic realization A = hB; vi, any i (1 � i � 5) and any �; � the following
import-export condition is satis�ed:

v() u v(�) v v(�) i� v() v v(�!i �):
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In order to single out a unique polynomial conditional, various weaken-
ings of the import-export condition have been proposed. For instance the
following condition (which we will call weak import-export):

v() u v(�) v v(�) i� v() v v(�) !i v(�);
whenever v(�) and v(�) are compatible.

One can prove [Hardegree, 1975; Mittelstaedt, 1972] that a polynomial
conditional !i satis�es the weak import-export condition i� i = 1. As
a consequence, we can conclude that !1 represents, in a sense, the best
possible approximation for a material conditional in quantum logic. This
connective (often called Sasaki-hook) was originally proposed by [Mittel-
staedt, 1972] and [Finch, 1970], and was further investigated by [Hardegree,
1976] and other authors. In the following, we will usually write ! instead
of !1 and we will neglect the other four polynomial conditionals.

Some important positive laws that are violated by our quantum logical
conditional are the following:

�! (� ! �);

(�! (� ! ))! ((�! �)! (�! ));

(�! �)! ((� ! )! (�! ));

(� ^ � ! )! (�! (� ! ));

(�! (� ! ))! (� ! (�! )):

This somewhat \anomalous" behaviour has suggested that one is deal-
ing with a kind of counterfactual conditional . Such a conjecture seems to
be con�rmed by some important physical examples. Let us consider again
the class of the Kripkean realizations of the sublanguage LQ of QT (whose
atomic sentences express measurement reports). And let KS = hI; R;�; �i
represent a Kripkean realization of our language, which is associated to a
physical system S. As [Hardegree, 1975] has shown, in such a case the con-
ditional! turns out to receive a quite natural counterfactual interpretation
(in the sense of Stalnaker). More precisely, one can de�ne, for any formula
�, a partial Stalnaker-function f� in the following way:

f� : Dom(f�)! I;

where:

Dom(f�) = fi 2 I j i ?= �(�)g :
In other words, f� is de�ned for all and only the states that are not orthog-
onal to the proposition of �.
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If i 2 Dom(f�), then:

f�(i) = jP�(�)i;

where P�(�) is the projection that is uniquely associated with the closed sub-

space determined by �(�), and jP�(�)i is the normalized vector determined
by P�(�)i. There holds:

i j= �! � i� either 8j ?= i(j j==�) or f�(i) j= �:

From an intuitive point of view, one can say that f�(i) represents the \pure
state nearest" to i, that veri�es �, where \nearest" is here de�ned in terms
of the metrics of the Hilbert space H. By de�nition and in virtue of one of
the basic postulates of QT (von Neumann's collapse of the wave function),
f�(i) turns out to have the following physical meaning: it represents the
transformation of state i after the performance of a measurement concerning
the physical property expressed by �, provided the result was positive. As a
consequence, one obtains: �! � is true in a state i i� either � is impossible
for i or the state into which i has been transformed after a positive �-test,
veri�es �.

Another interesting characteristic of our connective !, is a weak non
monotonic behaviour. In fact, in the algebraic semantics the inequality

v(�! ) v v(� ^ � ! )

can be violated (a counterexample can be easily obtained in the orthomod-
ular lattice based on IR3). As a consequence:

�!  j==� ^ � ! :

Polynomial conditionals are not the only signi�cant examples of implication-
connectives in QL. In the framework of a Kripkean semantic approach, it
seems quite natural to introduce a conditional connective(, that represents
a kind of strict implication. Given a Kripkean realization K = hI; R;�; �i
one would like to require:

i j= �( � i� 8j ?= i (j j= � y j j= �):

However such a condition does not automatically represent a correct se-
mantic de�nition, because it is not granted that �(�( �) is an element of
�. In order to overcome this diÆculty, let us �rst de�ne a new operation in
the power-set of an orthoframe hI; Ri.
DEFINITION 37 (Strict-implication operation ( ( ). Given an orthoframe
hI; Ri and X;Y � I :

X ( Y := fi j 8j (i ?= j and j 2 X y j 2 Y )g :
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If X and Y are sets of worlds in the orthoframe, then X ( Y turns out
to be a proposition of the frame.

When the set � of K is closed under ( , we will say that K is a realization
for a strict-implication language.

DEFINITION 38 (Strict implication ((). If K = hI; R;�; �i is a realization
for a strict-implication language, then

�(�( �) := �(�) ( �(�):

One can easily check that ( is a \good" conditional. There follows
immediately:

i j= �( � i� 8j ?= i (j j= � y j j= �):

Another interesting implication that can be de�ned in QL is represented by
an entailment-connective.

DEFINITION 39 (Entailment (�). Given K = hI; R;�; �i,

�(�� �) :=

(
I; if �(�) � �(�);

;; otherwise:

Since I; ; 2 �, the de�nition is correct. One can trivially check that� is
a \good" conditional. Interestingly enough, our strict implication and our
entailment represent \good" implications also for OL.

The general relations between!;( and� are described by the following
theorem:

THEOREM 40. For any realization K for a strict-implication language of
OL:

j=K (�� �)� (�( �):

For any realization K for a strict-implication language of OQL:

j=K (�� �)� (�! �); j=K (�( �)� (�! �):

But the inverse relations do not generally hold!

Are the connectives( and � de�nable also in the algebraic semantics?
The possibility of de�ning � is straightforward.

DEFINITION 41 (Entailment in the algebraic semantics). GivenA = hB; vi,

v(�� �) :=

(
1; if v(�) v v(�);

0; otherwise:
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One can easily check that � represents the same connective in the two
semantics. As to (, given A = hB; vi, one would like to require:

v(�( �) =
Ffb 2 B j b 6= 0 and 8c(c 6= 0 and b 6v c0 and

c v v(�) y c v v(�))g:
However such a de�nition supposes the algebraic completeness of B. Fur-

ther we can prove that ( represents the same connective in the two se-
mantics only if we restrict our consideration to the class of all algebraically
adequate Kripkean realizations.

4 METALOGICAL PROPERTIES AND ANOMALIES

Some metalogical distinctions that are not interesting in the case of a num-
ber of familiar logics weaker than classical logic turn out to be signi�cant
for QL (and for non distributive logics in general).

We have already de�ned (both in the algebraic and in the Kripkean se-
mantics) the concepts of model and of logical consequence. Now we will
introduce, in both semantics, the notions of quasi-model , weak consequence
and quasi-consequence. Let T be any set of formulas.

DEFINITION 42 (Quasi-model).

Algebraic semantics Kripkean semantics
A realization A = hB; vi A realization K = hI; R;�; �i
is a quasi-model of T i� is a quasi-model of T i�
9a[a 2 B and a 6= 0 and 9i(i 2 I and i j= T ).
8� 2 T (a v v(�))].

The following de�nitions can be expressed in both semantics.

DEFINITION 43 (Realizability and veri�ability). T is realizable (RealT )
i� it has a quasi-model; T is veri�able (VerifT ) i� it has a model.

DEFINITION 44 (Weak consequence). A formula � is a weak consequence
of T (T j� �) i� any model of T is a model of �.

DEFINITION 45 (Quasi-consequence). A formula � is a quasi-consequence
of T (T j� �) i� any quasi-model of T is a quasi-model of �.

One can easily check that the algebraic notions of veri�ability, realizabil-
ity, weak consequence and quasi-consequence turn out to coincide with the
corresponding Kripkean notions. In other words, T is Kripke-realizable i�
T is algebraically realizable. Similarly for the other concepts.

In both semantics one can trivially prove the following lemmas.

LEMMA 46. Verif T y Real T.

LEMMA 47. Real T i� for any contradiction � ^ :�, T j==� ^ :�.
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LEMMA 48. T j= � y T j� �; T j= � y T j� �.

LEMMA 49. � j� � i� :� j� :�.

Most familiar logics, that are stronger than positive logic, turn out to
satisfy the following metalogical properties, which we will call Herbrand{
Tarski , veri�ability and Lindenbaum, respectively.

� Herbrand{Tarski

T j= � i� T j� � i� T j� �
� Veri�ability

VerT i� RealT

� Lindenbaum

RealT y 9T � [T � T � and ComplT �], where

ComplT i� 8� [� 2 T or :� 2 T ].

The Herbrand{Tarski property represents a semantic version of the de-
duction theorem. The Lindenbaum property asserts that any semantically
non-contradictory set of formulas admits a semantically non-contradictory
complete extension. In the algebraic semantics, canonical proofs of these
properties essentially use some versions of Stone-theorem, according to
which any proper �lter F in an algebra B can be extended to a proper
complete �lter F � (such that 8a(a 2 F � or a0 2 F �)). However, Stone-
theorem does not generally hold for non distributive orthomodular lattices!
In the case of ortholattices, one can still prove that every proper �lter can
be extended to an ultra�lter (i.e., a maximal �lter that does not admit
any extension that is a proper �lter). However, di�erently from Boolean
algebras, ultra�lters need not be complete.

A counterexample to the Herbrand{Tarski property in OL can be ob-
tained using the \non-valid" part of the distributive law. We know that
(owing to the failure of distributivity in ortholattices):

� ^ (� _ ) j== (� ^ �) _ (� ^ ):

At the same time

� ^ (� _ ) j� (� ^ �) _ (� ^ );

since one can easily calculate that for any realization A = hB; vi the hypoth-
esis v(� ^ (� _ )) = 1, v((� ^ �) _ (� ^ )) 6= 1 leads to a contradiction 2.

2In OQL a counterexample in two variables can be obtained by using the failure
of the contraposition law for !. One has: � ! � j==:� ! :�. At the same time
� ! � j� :� ! :�; since for any realization A = hB; vi the hypothesis v(� ! �) = 1,
implies v(�) v v(�) and therefore v(:� ! :�) = v(�)t(v(�)0uv(�)0) = v(�)tv(�)0 = 1.
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A counterexample to the veri�ability-property is represented by the nega-
tion of the a fortiori principle for the quantum logical conditional !:

 := :(�! (� ! �)) = :(:� _ (� ^ (:� _ (� ^ �)))):

This  has an algebraic quasi-model. For instance the realization A =
hB; vi, where B is the orthomodular lattice determined by all subspaces of
the plane (as shown in Figure 2). There holds: v() = v(�) 6= 0. But one
can easily check that  cannot have any model, since the hypothesis that
v() = 1 leads to a contradiction in any algebraic realization of QL.

OO

��
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v(�)
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Figure 2. Quasi-model for 

The same  also represents a counterexample to the Lindenbaum-property.
Let us �rst prove the following lemma.

LEMMA 50. If T is realizable and T � T �, where T � is realizable and
complete, then T is veri�able.

Sketch of the proof Let us de�ne a realization A = hB; vi such that

(i) B = f1; 0g;
(ii)

v(�) =

(
1; if T � j= �;

0; otherwise:
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Since T � is realizable and complete, A is a good realization and is trivially
a model of T . �

Now, one can easily show that  violates Lindenbaum. Suppose, by con-
tradiction, that  has a realizable and complete extension. Then, by Lemma
50,  must have a model, and we already know that this is impossible.

The failure of the metalogical properties we have considered represents,
in a sense, a relevant \anomaly" of quantum logics. Just these anomalies
suggest the following conjecture: the distinction between epistemic logics
(characterized by Kripkean models where the accessibility relation is at least
reexive and transitive) and similarity logics (characterized by Kripkean
models where the accessibility relation is at least reexive and symmetric)
seems to represent a highly signi�cant dividing line in the class of all logics
that are weaker than classical logic.

5 A MODAL INTERPRETATION OF OL AND OQL

QL admits a modal interpretation [Goldblatt, 1974; Dalla Chiara, 1981]

which is formally very similar to the modal interpretation of intuitionistic
logic. Any modal interpretation of a given non-classical logic turns out to
be quite interesting from the intuitive point of view, since it permits us
to associate a classical meaning to a given system of non-classical logical
constants. As is well known, intuitionistic logic can be translated into the
modal system S4. The modal basis that turns out to be adequate for OL is
instead the logic B. Such a result is of course not surprising, since both the
B-realizations and the OL-realizations are characterized by frames where
the accessibility relation is reexive and symmetric.

Suppose a modal language LM whose alphabet contains the same senten-
tial literals as QL and the following primitive logical constants: the classical
connectives � (not), f (and) and the modal operator � (necessarily). At
the same time, the connectives g (or), � (if ... then), � (if and only if ),
and the modal operator � (possibly) are supposed de�ned in the standard
way.

The modal logic B is semantically characterized by a class of Kripkean
realizations that we will call B-realizations.

DEFINITION 51. A B-realization is a system M = hI; R;�; �i where:

(i) hI; Ri is an orthoframe;

(ii) � is a subset of the power-set of I satisfying the following con-
ditions:

I; ; 2 �;

� is closed under the set-theoretic relative complement �,
the set-theoretic intersection \ and the modal operation �,
which is de�ned as follows:
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for any X � I; �X := fi j 8j (Rij y j 2 X)g;
(iii) � associates to any formula � of LM a proposition in � satisfying

the conditions: �(� �) = ��(�); �(�f) = �(�)\�(); �(��) =
��(�).

Instead of i 2 �(�), we will write i j= �. The de�nitions of truth, logical
truth and logical consequence for B are analogous to the corresponding
de�nitions in the Kripkean semantics for QL.

Let us now de�ne a translation � of the language of QL into the language
LB.

DEFINITION 52 (Modal translation of OL).

� �(p) = ��p;

� �(:�) = � � �(�);

� �(� ^ ) = �(�) f �().

In other words, � translates any atomic formula as the necessity of the
possibility of the same formula; further, the quantum logical negation is in-
terpreted as the necessity of the classical negation, while the quantum logical
conjunction is interpreted as the classical conjunction. We will indicate the
set f�(�) j � 2 Tg by �(T ).

THEOREM 53. For any � and T of OL: T j=
OL
� i� �(T ) j=

B
�(�)

Theorem 53 is an immediate corollary of the following Lemmas 54 and
55.

LEMMA 54. Any OL-realization K = hI; R;�; �i can be transformed into
a B-realization MK = hI�; R�;��; ��i such that: I� = I; R� = R;
8i (i j=K � i� i j=MK �(�)).

Sketch of the proof Take �� as the smallest subset of the power-set of
I that contains �(p) for any atomic formula p and that is closed under
I; ;;�;\;�. Further, take ��(p) equal to �(p). �

LEMMA 55. Any B-realization M = hI; R;�; �i can be transformed into a
OL-realization KM = hI�; R�;��; ��i such that: I� = I; R� = R;
8i (i j=KM � i� i j=M �(�)).

Sketch of the proof Take �� as the smallest subset of the power-set of
I that contains �(��p) for any atomic formula p and that is closed under
I; ;;0 ;\ (where for any set X of worlds, X 0 := fj j notRijg). Further take
��(p) equal to �(��p). The set ��(p) turns out to be a proposition in the
orthoframe hI�; R�i, owing to the B-logical truth: ��� � �����. �
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The translation of OL into B is technically very useful, since it permits
us to transfer to OL some nice metalogical properties such as decidability
and the �nite-model property .

Does also OQL admit a modal interpretation? The question has a some-
what trivial answer. It is suÆcient to apply the technique used for OL
by referring to a convenient modal system Bo (stronger than B) which is
founded on a modal version of the orthomodular principle. Semantically
Bo can be characterized by a particular class of realizations. In order to
determine this class, let us �rst de�ne the concept of quantum proposition
in a B-realization.

DEFINITION 56. Given a B-realization M = hI; R;�; �i the set �Q of
all quantum propositions of M is the smallest subset of the power-set of I
which contains �(��p) for any atomic p and is closed under 0 and \.

LEMMA 57. In any B-realization M = hI; R;�; �i, there holds �Q � �.

Sketch of the proof The only non-trivial point of the proof is represented
by the closure of � under 0. This holds since one can prove: 8X 2 � (X 0 =
��X). �

LEMMA 58. Given M = hI; R;�; �i and KM = hI; R;��; ��i, there holds
�Q = ��.

LEMMA 59. Given K = hI; R;�; �i and MK = hI; R;��; ��i, there holds
� � ��Q.

DEFINITION 60. A Bo-realization is a B-realization hI; R;�; �i that sat-
is�es the orthomodular property:

8X;Y 2 �Q : X 6� Y y X \ (X \ Y )0 6= ;:

We will also call the Bo-realizations orthomodular realizations .

THEOREM 61. For any T and � of OQL: T j=
OL
� i� �(T ) j=

Bo
�(�).

The Theorem is an immediate corollary of Lemmas 54, 55 and of the
following Lemma:

LEMMA 62.

(62.1) If K is orthomodular then MK is orthomodular.

(62.2) If M is orthomodular then KM is orthomodular.

Unfortunately, our modal interpretation of OQL is not particularly in-
teresting from a logical point of view. Di�erently from the OL-case, Bo

does not correspond to a familiar modal system with well-behaved metalog-
ical properties. A characteristic logical truth of this logic will be a modal
version of orthomodularity:

�f � � � � [� f� � (� f �)] ;
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where �; � are modal translations of formulas of OQL into the language
LM.

6 AN AXIOMATIZATION OF OL AND OQL

QL is an axiomatizable logic. Many axiomatizations are known: both in
the Hilbert-Bernays style and in the Gentzen-style (natural deduction and
sequent-calculi).3 We will present here a QL-calculus (in the natural deduc-
tion style) which is a slight modi�cation of a calculus proposed by [Gold-
blatt, 1974]. The advantage of this axiomatization is represented by the
fact that it is formally very close to the algebraic de�nition of ortholattice;
further it is independent of any idea of quantum logical implication.

Our calculus (which has no axioms) is determined as a set of rules . Let
T1; : : : ; Tn be �nite or in�nite (possibly empty) sets of formulas. Any rule
has the form

T1 j��1; : : : ; Tn j��n
T j��

( if �1 has been inferred from T1; : : : ; �n has been inferred from Tn, then �
can be inferred from T ). We will call any T j�� a con�guration. The con-
�gurations T1 j��1; : : : ; Tn j��n represent the premisses of the rule, while
T j�� is the conclusion. As a limit case, we may have a rule, where the
set of premisses is empty; in such a case we will speak of an improper rule.
Instead of ;

T j��
we will write T j��; instead of ; j��, we will write j��.

Rules of OL

(OL1) T [ f�g j�� (identity)

(OL2)
T j��; T � [ f�g j��

T [ T � j�� (transitivity)

(OL3) T [ f� ^ �g j�� (^-elimination)

(OL4) T [ f� ^ �g j�� (^-elimination)

(OL5)
T j��; T j��
T j�� ^ � (^-introduction)

(OL6)
T [ f�; �g j� 
T [ f� ^ �g j�  (^-introduction)

3Sequent calculi for di�erent forms of quantum logic will be described in Section 17.
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(OL7)
f�g j��; f�g j�:�

:� (absurdity)

(OL8) T [ f�g j�::� (weak double negation)

(OL9) T [ f::�g j�� (strong double negation)

(OL10) T [ f� ^ :�g j�� (Duns Scotus)

(OL11)
f�g j��
f:�g j�:� (contraposition)

DEFINITION 63 (Derivation). A derivation of OL is a �nite sequence of
con�gurations T j��, where any element of the sequence is either the conclu-
sion of an improper rule or the conclusion of a proper rule whose premisses
are previous elements of the sequence.

DEFINITION 64 (Derivability). A formula � is derivable from T (T j�
OL
�)

i� there is a derivation such that the con�guration T j�� is the last element
of the derivation.

Instead of f�g j�
OL
� we will write � j�

OL
�. When no confusion is possible,

we will write T j�� instead of T j�
OL
�.

DEFINITION 65 (Logical theorem). A formula � is a logical theorem of
OL ( j�

OL
�) i� ; j�

OL
�.

One can easily prove the following syntactical lemmas.

LEMMA 66. �1; : : : ; �n j�� i� �1 ^ � � � ^ �n j��.

LEMMA 67. Syntactical compactness.
T j�� i� 9T � � T (T � is �nite and T � j��).

LEMMA 68. T j�� i� 9�1; : : : ; �n (�1 2 T and : : : and �n 2 T and
�1 ^ � � � ^ �n j��).

DEFINITION 69 (Consistency). T is an inconsistent set of formulas if
9� (T j�� ^ :�); T is consistent , otherwise.

DEFINITION 70 (Deductive closure). The deductive closure T of a set of
formulas T is the smallest set which includes the set f� j T j��g. T is
called deductively closed i� T = T .

DEFINITION 71 (Syntactical compatibility). Two sets of formulas T1 and
T2 are called syntactically compatible i�

8� (T1 j�� y T2 j�=:�):

The following theorem represents a kind of \weak Lindenbaum theorem".
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THEOREM 72. Weak Lindenbaum theorem.
If T j�=:�, then there exists a set of formulas T � such that T � is compatible
with T and T � j��.

Proof. Suppose T j�=:�. Take T � = f�g. There holds trivially: T � j��.
Let us prove the compatibility between T and T � . Suppose, by contradic-
tion, T and T � incompatible. Then, for a certain �, T � j�� and T j�:�.
Hence (by de�nition of T �), � j�� and by contraposition, :� j�:�. Conse-
quently, because T j�:�, one obtains by transitivity: T j�:�, against our
hypothesis. �

We will now prove a soundness and a completeness theorem with respect
to the Kripkean semantics.

THEOREM 73. Soundness theorem.

T j�� y T j= �:

Proof. Straightforward. �

THEOREM 74. Completeness theorem.

T j= � y T j��:

Proof. It is suÆcient to construct a canonical model K = hI; R;�; �i such
that:

T j�� i� T j=K �:

As a consequence we will immediately obtain:

T j�=� y T j==K� y T j==�:
De�nition of the canonical model

(i) I is the set of all consistent and deductively closed sets of formulas;

(ii) R is the compatibility relation between sets of formulas;

(iii) � is the set of all propositions in the frame hI; Ri;
(iv) �(p) = fi 2 I j p 2 ig.

In order to recognize that K is a \good" OL-realization, it is suÆcient
to prove that: (a) R is reexive and symmetric; (b) �(p) is a proposition
in the frame hI; Ri.
The proof of (a) is immediate (reexivity depends on the consistency of any
i, and symmetry can be shown using the weak double negation rule).
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In order to prove (b), it is suÆcient to show (by Lemma 8.1): i =2 �(p) y
9j ?= i (j ? �(p)). Let i =2 �(p). Then (by de�nition of �(p)): p =2 i; and,
since i is deductively closed, i j�= p. Consequently, by the weak Lindenbaum
theorem (and by the strong double negation rule), for a certain j: j ?= i and
:p 2 j. Hence, j ? �(p).

LEMMA 75. Lemma of the canonical model.

For any � and any i 2 I, i j= � i� � 2 i.

Sketch of the proof By induction on the length of �. The case � = p
holds by de�nition of �(p). The case � = :� can be proved by using Lemma
12.1 and the weak Lindenbaum theorem. The case � = � ^  can be proved
using the ^-introduction and the ^-elimination rules. �

Finally we can show that T j�� i� T j=K �. Since the left to right impli-
cation is a consequence of the soundness-theorem, it is suÆcient to prove:
T j�=� y T j==K�. Let T j�=�; then, by Duns Scotus, T is consistent. Take
i := T . There holds: i 2 I and T � i. As a consequence, by the Lemma of
the canonical model, i j= T . At the same time i j==�. For, should i j= � be
the case, we would obtain � 2 i and by de�nition of i, T j��, against our
hypothesis. �

An axiomatization of OQL can be obtained by adding to the OL-calculus
the following rule:

(OQL) � ^ :(� ^ :(� ^ �)) j� �. (orthomodularity)

All the syntactical de�nitions we have considered for OL can be extended
to OQL. Also Lemmas 66, 67, 68 and the weak Lindenbaum theorem can be
proved exactly in the same way. Since OQL admits a material conditional,
we will be able to prove here a deduction theorem:

THEOREM 76. � j�
OQL

� i� j�
OQL

�! �.

This version of the deduction-theorem is obviously not in contrast with
the failure in QL of the semantical property we have called Herbrand{
Tarski. For, di�erently from other logics, here the syntactical relation j�
does not correspond to the weak consequence relation!

The soundness theorem can be easily proved, since in any orthomodular
realization K there holds:

� ^ :(� ^ :(� ^ �)) j=K �:

As to the completeness theorem, we need a slight modi�cation of the
proof we have given for ` OL. In fact, should we try and construct the
canonical model K, by taking � as the set of all possible propositions of the
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frame, we would not be able to prove the orthomodularity of K. In order
to obtain an orthomodular canonical model K = fI; R;�; �g, it is suÆcient
to de�ne � as the set of all propositions X of K such that X = �(�)
for a certain �. One immediately recognizes that �(p) 2 � and that �
is closed under 0 and \. Hence K is a \good" OL-realization. Also for
this K one can easily show that i j= � i� � 2 i. In order to prove the
orthomodularity of K, one has to prove for any propositions X;Y 2 �,
X 6� Y y X \ (X \ Y )0 6= ;; which is equivalent (by Lemma 19) to
X\ (X \ (X \Y )0)0 � Y . By construction of �, X = �(�) and Y = �(�) for
certain �; �. By the orthomodular rule there holds �^:(�^:(�^�)) j� �.
Consequently, for any i 2 I; i j= � ^ :(� ^ :(� ^ �)) y i j= �. Hence,
�(�) \ (�(�) \ (�(�) \ �(�))0)0 � �(�).

Of course, also the canonical model of OL could be constructed by taking
� as the set of all propositions that are \meanings" of formulas. Neverthe-
less, in this case, we would lose the following important information: the
canonical model of OL gives rise to an algebraically complete realization
(closed under in�nitary intersection).

7 THE INTRACTABILITY OF ORTHOMODULARITY

As we have seen, the proposition-ortholattice in a Kripkean realization
K = hI; R;� ; �i does not generally coincide with the (algebraically) com-
plete ortholattice of all propositions of the orthoframe hI; Ri.4 When �
is the set of all propositions, K will be called standard . Thus, a standard
orthomodular Kripkean realization is a standard realization, where � is or-
thomodular. In the case of OL, every non standard Kripkean realization
can be naturally extended to a standard one (see the proof of Theorem 17).
In particular, � can be always embedded into the complete ortholattice of
all propositions of the orthoframe at issue. Moreover, as we have learnt
from the completeness proof, the canonical model of OL is standard. In the
case of OQL, instead, there are variuos reasons that make signi�cant the
distinction between standard and non standard realizations:

(i) Orthomodularity is not elementary [Goldblatt, 1984]. In other words,
there is no way to express the orthomodular property of the ortholat-
tice � in an orthoframe hI; Ri as an elementary (�rst-order) property.

(ii) It is not known whether every orthomodular lattice is embeddable into
a complete orthomodular lattice.

(iii) It is an open question whether OQL is characterized by the class of
all standard orthomodular Kripkean realizations.

4For the sake of simplicity, we indicate briey by � the ortholattice h� ;v ; 0 ;1 ;0i.
Similarly, in the case of other structures dealt with in this section.
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(iv) It is not known whether the canonical model of OQL is standard. Try
and construct a canonical realization for OQL by taking � as the set
of all possible propositions (similarly to the OL-case). Let us call such
a realization a pseudo canonical realization. Do we obtain in this way
an OQL-realization, satisfying the orthomodular property? In other
words, is the pseudo canonical realization a model of OQL?

In order to prove that OQL is characterized by the class of all standard
Kripkean realizations it would be suÆcient to show that the canonical model
belongs to such a class. Should orthomodularity be elementary, then, by
a general result proved by Fine, this problem would amount to showing
the following statement: there is an elementary condition (or a set thereof)
implying the orthomodularity of the standard pseudo canonical realization.
Result (i), however, makes this way de�nitively unpracticable.

Notice that a positive solution to problem (iv) would automatically pro-
vide a proof of the full equivalence between the algebraic and the Kripkean

consequence relation (T j=A
OQL

� i� T j=K
OQL

�). If OQL is characterized by a

standard canonical model, then we can apply the same argument used in the
case of OL, the ortholattice � of the canonical model being orthomodular.
By similar reasons, also a positive solution to problem (ii) would provide a
direct proof of the same result. For, the orthomodular lattice � of the (not
necessarily standard) canonical model of OQL would be embeddable into
a complete orthomodular lattice.

We will now present Goldblatt's result proving that orthomodularity is
not elementarity. Further, we will show how orthomodularity leaves de-
feated one of the most powerful embedding technique: the MacNeille com-
pletion method.

Orthomodularity is not elementary
Let us consider a �rst-order language L2 with a single predicate denoting
a binary relation R. Any frame hI; Ri (where I is a non-empty set and R
any binary relation) will represent a classical realization of L2.

DEFINITION 77 (Elementary class).

(i) Let � be a class of frames. A possible property P of the elements of
� is called �rst-order (or elementary) i� there exists a sentence � of
L2 such that for any hI; Ri 2 �:

hI; Ri j= � i� hI; Ri has the property P :

(ii) � is said to be an elementary class i� the property of being in � is an
elementary property of �.
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Thus, � is an elementary class i� there is a sentence � of L2 such that

� = fhI; Ri j hI; Ri j= �g :
DEFINITION 78 (Elementary substructure). Let hI1; R1i ; hI2; R2i be two
frames.

(a) hI1; R1i is a substructure of hI2; R2i i� the following conditions are
satis�ed:

(i) I1 � I2;
(ii) R1 = R2 \ (I1 � I1);

(b) hI1; R1i is an elementary substructure of hI2; R2i i� the following con-
ditions hold:

(i) hI1; R1i is a substructure of hI2; R2i;
(ii) For any formula �(x1; : : : ; xn) of L2 and any i1; : : : ; in of I1:

hI1; R1i j= �[i1; : : : in] i� hI2; R2i j= �[i1; : : : in]:

In other words, the elements of the \smaller" structure satisfy exactly the
same L2-formulas in both structures. The following Theorem [Bell and
Slomson, 1969] provides an useful criterion to check whether a substructure
is an elementary substructure.

THEOREM 79. Let hI1; R1i be a substructure of hI2; R2i. Then, hI1; R1i
is an elementary substructure of hI2; R2i i� whenever �(x1; � � � ; xn; y) is a
formula of L2 (in the free variables x1; � � � ; xn; y) and i1; � � � ; in are elements
of I1 such that for some j 2 I2, hI2; R2i j= �[i1; � � � ; in; j], then there is some
i 2 I1 such that hI2; R2i j= �[i1; � � � ; in; i]:

Let us now consider a pre-Hilbert space 5 H and letH+ := f 2 H j  6= 0g,
where 0 is the null vector. The pair
H+;?= �
is an orthoframe, where 8 ; � 2 H+:  ?= � i� the inner product of  
and � is di�erent from the null vector 0 (i.e., ( ; �) 6= 0). Let �(H) be the
ortholattice of all propositions of hH+;?= i, which turns out to be isomorphic
to the ortholattice C(H) of all (not necessarily closed) subspaces of H (a
proposition is simply a subspace devoided of the null vector). The following
deep Theorem, due to Amemiya and Halperin [Varadarajan, 1985] permits

5A pre-Hilbert space is a vector space over a division ring whose elements are the real
or the complex or the quaternionic numbers such that an inner product (which transforms
any pair of vectors into an element of the ring) is de�ned. Di�erently from Hilbert spaces,
pre-Hilbert spaces need not be metrically complete.
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us to characterize the class of all Hilbert spaces in the larger class of all
pre-Hilbert spaces, by means of the orthomodular property.

THEOREM 80 (Amemiya{Halperin Theorem). C(H) is orthomodular i� H
is a Hilbert space.

In other words, C(H) is orthomodular i� H is metrically complete.
As is well known [Bell and Slomson, 1969], the property of \being metri-

cally complete" is not elementary. On this basis, it will be highly expected
that also the orthomodular property is not elementary. The key-lemma in
Goldblatt's proof is the following:

LEMMA 81. Let Y be an in�nite-dimensional (not necessarily closed) sub-
space of a separable Hilbert space H. If � is any formula of L2 and  1; � � � ;  n
are vectors of Y such that for some � 2 H, hH+;?= i j= �[ 1; � � � ;
 n; �], then there exists a vector  2 Y such that hH+;?= i j= �[ 1; � � � ;  n;  ].

As a consequence one obtains:

THEOREM 82. The orthomodular property is not elementary.

Proof. Let H be any metrically incomplete pre-Hilbert space. Let H be
its metric completion. Thus H is an in�nite-dimensional subspace of the
Hilbert space H. By Lemma 81 and by Theorem 79, hH+;?= i is an elemen-

tary substructure of
D
H+

;?=
E

. At the same time, by Amemiya{Halperin's

Theorem, C(H) cannot be orthomodular, because H is metrically incom-
plete. However, C(H) is orthomodular. As a consequence, orthomodularity
cannot be expressed as an elementary property. �

The embeddability problem
As we have seen in Section 2, the class of all propositions of an orthoframe
is a complete ortholattice. Conversely, the representation theorem for or-
tholattices states that every ortholattice B = hB;v ; 0 ;1 ;0i is embeddable
into the complete ortholattice of all propositions of the orthoframe hB+;?= i,
where: B+ := B � f0g and 8a; b 2 B: a ?= b i� a 6v b0. The embedding is
given by the map

h : a 7! ha ];

where ha ] is the quasi-ideal generated by a. In other words: ha ] = fb 6= 0 j
b v ag.

One can prove the following Theorem:

THEOREM 83. Let B = hB;v ; 0 ;1 ;0i be an ortholattice. 8X � B, X is
a proposition of hB+;?= i i� X = l(u(X)), where:

u(Y ) :=
�
b 2 B+ j 8a 2 Y : a v b	 and l(Y ) :=

�
b 2 B+ j 8a 2 Y : b v a	 :
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Accordingly, the complete ortholattice of all propositions of the orthoframe
hB+;?= i is isomorphic to the MacNeille completion (or completion by cuts)
of B [Kalmbach, 1983].6 At the same time, orthomodularity (similarly to
distributivity and modularity) is not preserved by the MacNeille completion,
as the following example shows [Kalmbach, 1983].

Let C0(2)(IR) be the class of all continuous complex-valued functions f on
IR such that Z +1

�1

j f(x) j2 dx <1

Let us de�ne the following bilinear form (: ; :) : C0(2)(IR) � C0(2)(IR) ! jC

(representing an inner product):

(f; g) =

Z +1

�1
f�(x)g(x)dx;

where f�(x) is the complex conjugate of f(x). It turns out that C0(2)(IR),

equipped with the inner product (: ; :), gives rise to a metrically incom-
plete in�nite-dimensional pre-Hilbert space. Thus, by Amemiya{Halperin's
Theorem (Theorem 80), the algebraically complete ortholattice C(C0(2)(IR))

of all subspaces of C0(2)(IR) cannot be orthomodular. Now consider the

sublattice FI of C(C0(2)(IR)), consisting of all �nite or co�nite dimensional
subspaces. It is not hard to see that FI is orthomodular. One can prove
that C(C0(2)(IR)) is sup-dense in FI; in other words, any X 2 C(C0(2)(IR)) is
the sup of a set of elements of FI. Thus, by a theorem proved by McLaren
[Kalmbach, 1983], the MacNeille completion of C(C0(2)(IR)) is isomorphic to

the MacNeille completion of FI. Since C(C0(2)(IR)) is algebraically complete,

the MacNeille completion of C(C0(2)(IR)) is isomorphic to C(C0(2)(IR)) itself.
As a consequence, FI is orthomodular, while its MacNeille completion is
not.

8 HILBERT QUANTUM LOGIC AND THE ORTHOMODULAR LAW

As we have seen, the prototypical models of OQL that are interesting from
the physical point of view are based on the class H of all Hilbert lattices,
whose support is the set C(H) of all closed subspaces of a Hilbert space
H. Let us call Hilbert quantum logic (HQL) the logic that is semantically
characterized by H . A question naturally arises: do OQL and HQL repre-
sent one and the same logic? As proved by [Greechie, 1981],7 this question

6The MacNeille completion of an ortholattice B = hB;v ; 0 ;1 ;0i is the lattice
whose support consists of all X � B such that X = l(u(X)), where: u(Y ) :=
fb 2 B j 8a 2 Y : a v bg and l(Y ) := fb 2 B j 8a 2 Y : b v ag. Clearly the only di�er-
ence between the proposition-lattice of the frame



B+;?=

�
and the Mac Neille completion

of B is due to the fact that propositions do not contain 0.
7See also [Kalmbach, 1983].
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has a negative answer: there is a lattice-theoretical equation (the so-called
orthoarguesian law) that holds in H , but fails in a particular orthomodu-
lar lattice. As a consequence, OQL does not represent a faithful logical
abstraction from its quantum theoretical origin.

DEFINITION 84. Let � be a class of orthomodular lattices. We say that
OQL is characterized by � i� for any T and any � the following condition
is satis�ed:

T j=
OQL

� i� for any B 2 � and any A = hB; vi : T j=A �:

In order to formulate the orthoarguesian law in an equational way, let us
�rst introduce the notion of Sasaki projection.

DEFINITION 85 (The Sasaki projection).
Let B be an orthomodular lattice and let a; b be any two elements of B.
The Sasaki projection of a onto b, denoted by a e b, is de�ned as follows:

a e b := (a t b0) u b:

It is easy to see that two elements a; b of an orthomodular lattice are
compatible (a = (a u b0) t (a u b)) i� a e b = a u b. Consequently, in any
Boolean lattice, e coincides with u.

DEFINITION 86 (The orthoarguesian law).

a v b t f(a e b0) u [(a e c0) t ((b t c) u ((a e b0) t (a e c0)))]g (OAL)

Greechie has proved that (OAL) holds in H but fails in a particular �nite
orthomodular lattice. In order to understand Greechie's counterexample, it
will be expedient to illustrate the notion of Greechie diagram.

Let us �rst recall the de�nition of atom.

DEFINITION 87 (Atom). Let B = hB;v;1;0i any bounded lattice. An
atom is an element a 2 B � f0g such that:

8b 2 B : 0 v b v a y b = 0 or a = b:

Greechie diagrams are hypergraphs that permits us to represent particular
orthomodular lattices. The representation is essentially based on the fact
that a �nite Boolean algebra is completely determined by its atoms. A
Greechie diagram of an orthomodular lattice B consists of points and lines.
Points are in one-to-one correspondence with the atoms of B; lines are in one-
to-one correspondence with the maximal Boolean subalgebras8 of B. Two
lines are crossing in a common atom. For example, the Greechie diagram
pictured in Figure 3. represents the orthomodular lattice G12 (Figure 4).
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Let us now consider a particular �nite orthomodular lattice, called B30,
whose Greechie diagram is pictured in Figure 3.

THEOREM 88. (OAL) fails in B30.
Proof. There holds: ae b0 = (at b)u b0 = s0 u b0 = e; ae c0 = (at c)u c0 =
n0 u c0 = i and b t c = l0. Thus,

b t f(a e b0) u [(a e c0) t ((b t c) u ((a e b0) t (a e c0)))]g
= b t fe u [i t (l0 u (e t i))]g
= b t fe u [i t (l0 u g0)]g
= b t (e u (i t 0))

= b t (e u i)
= b

6w a:
�

Hence, there are two formulas � and � (whose valuations in a convenient
realization represent the left- and right- hand side of (OAL), respectively)
such that � j=

OQL
= �. At the same time, for any C(H) 2 H and for any

realization A = hC(H); vi, there holds: � j=A �.
As a consequence, OQL is not characterized by H . Accordingly, HQL

is de�nitely stronger than OQL. We are faced with the problem of �nding

8A maximal Boolean subalgebra of an ortholattice B is a Boolean subalgebra of B,
that is not a proper subalgebra of any Boolean subalgebra of B.
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out a calculus, if any, that turns out to be sound and complete with respect
to H . The main question is whether the class of all formulas valid in H is
recursively enumerable. In order to solve this problem, it would be suÆcient
(but not necessary) to show that the canonical model of HQL is isomorphic
to the subdirect product of a class of Hilbert lattices. So far, very little is
known about this question.

Lattice characterization of Hilbert lattices
As mentioned in the Introduction, the algebraic structure of the set E of
all events in an event-state system hE ; Si is usually assumed to be a �-
complete orthomodular lattice. Hilbert lattices, however, satisfy further
important structural properties. It will be expedient to recall �rst some
standard lattice theoretical de�nitions. Let B = hB;v;1;0i be any bounded
lattice.

DEFINITION 89 (Atomicity). A bounded lattice B is atomic i� 8a 2
B � f0g there exists an atom b such that b v a.

DEFINITION 90 (Covering property). Let a; b be two elements of a lattice
B. We say that b covers a i� a v b ; a 6= b, and 8c 2 B : a v c v b y

a = c or b = c.
A lattice B satis�es the covering property i� 8a; b 2 B: a covers a u b y

a t b covers b.

DEFINITION 91 (Irreducibility). Let B be an orthomodular lattice. B is
said to be irreducible i�
fa 2 B j 8b 2 B : a is compatible with bg = f0;1g.
One can prove the following theorem:

THEOREM 92. Any Hilbert lattice is a complete, irreducible, atomic or-
thomodular lattice, which satis�es the covering property.

Are these conditions suÆcient for a lattice B to be isomorphic to (or em-
beddable into) a Hilbert lattice? In other words, is it possible to capture
lattice-theoretically the structure of Hilbert lattices? An important result
along these lines is represented by the so-called Piron{McLaren's coordina-
tization theorem [Varadarajan, 1985].

THEOREM 93 (Piron{McLaren coordinatization theorem). Any orthomod-
ular lattice B (of length9 at least 4) that is complete, irreducible, atomic with
the covering property, is isomorphic to the orthomodular lattice of all (: ; :)-
closed subspaces of a Hilbertian space hV ; �; (: ; :);Di.10

9The length of a lattice B is the supremum over the numbers of elements of all the
chains of B, minus 1.
10A Hilbertian space is a 4-tuple hV; �; (: ; :);Di, where V is a vector space over a

division ring D, � is an involutive antiautomorphism on D, and (: ; :) (to be interpreted
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Do the properties of the coordinatized lattice B restrict the choice to one
of the real, the complex or the quaternionic numbers ( jQ) and therefore
to a classical Hilbert space? Quite unexpectedly, [Keller, 1980] proved a
negative result: there are lattices that satisfy all the conditions of Piron-
McLaren's Theorem; at the same time, they are coordinatized by Hilbertian
spaces over non-archimedean division rings. Keller's counterexamples have
been interpreted by some authors as showing the de�nitive impossibility for
the quantum logical approach to capture the Hilbert space mathematics.
This impossibility was supposed to demonstrate the failure of the quantum
logic approach in reaching its main goal: the \bottom-top" reconstruction
of Hilbert lattices. Interestingly enough, such a negative conclusion has
been recently contradicted by an important result proved by Sol�er [1995]:
Hilbert lattices can be characterized in a lattice-theoretical way. Sol�er's
result is essentially based on the following Theorem:

THEOREM 94. Let hV ; �; (: ; :);Di be an in�nite-dimensional Hilbertian
space over a division ring D. Suppose our space includes a k-orthogonal
set f igi2IN, i.e., a family of vectors of V such that 8i : ( i;  i) = k and
8i; j(i 6= j) : ( i;  j) = 0. Then hV ; �; (: ; :);Di is a classical Hilbert space.

As a consequence, the existence of k-orthogonal sets characterizes Hilbert
spaces in the class of all Hilbertian spaces. The point is that the existence
of such sets admits of a purely lattice-theoretic characterization, by means
of the so-called angle bisecting condition [Morash, 1973]. Accordingly, every
lattice which satis�es the angle bisecting condition (in addition to the usual
conditions of Piron{McLaren's Theorem) is isomorphic to a classical Hilbert
lattice.

9 FIRST-ORDER QUANTUM LOGIC

The most signi�cant logical and metalogical peculiarities of QL arise at the
sentential level. At the same time the extension of sentential QL to a �rst-
order logic seems to be quite natural. Similarly to the case of sentential
QL, we will characterize �rst-order QL both by means of an algebraic and
a Kripkean semantics.

Suppose a standard �rst-order language with predicates Pn
m and individ-

ual constants am.11 The primitive logical constants are the connectives :;^
and the universal quanti�er 8. The concepts of term, formula and sentence

as an inner product) is a de�nite symmetric �-bilinear form on V. Let X be any subset of
V and let X0 := f 2 V j 8� 2 X; ( ; �) = 0g; X is called (: ; :)-closed i� X = X00. The
following condition is required to hold: for any (: ; :)-closed set X of V;V = X + X0 :=
f + � :  2 X;� 2 X0g.
If D is either IR or jC or jQ and the antiautomorphism � is continuous, then hV; �; (: ; :);Di
turns out to be a classical Hilbert space.
11For the sake of simplicity, we do not assume functional symbols.
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are de�ned in the usual way. We will use x; y; z; x1; � � � ; xn; � � � as metavari-
ables ranging over the individual variables, and t; t1; t2; � � � as metavariables
ranging over terms. The existential quanti�er 9 is supposed de�ned by a
generalized de Morgan law:

9x� := :8x:�:

DEFINITION 95 (Algebraic realization for �rst-order OL). An algebraic
realization for (�rst-order) OL is a system A =


BC ; D ; v
�

where:

(i) BC =


BC ;v ; 0 ;1 ;0� is an ortholattice closed under in�nitary in�-

mum ( F) and supremum (
F

) for any F � BC such that F 2 C (C
being a particular family of subsets of BC).

(ii) D is a non-empty set (disjoint from B) called the domain of A.

(iii) v is the valuation-function satisfying the following conditions:

� for any constant am: v(am) 2 D; for any predicate Pn
m, v(Pn

m)
is an n-ary attribute in A, i.e., a function that associates to any
n-tuple hd1; � � � ;dni of elements of D an element (truth-value)
of Bc;

� for any interpretation � of the variables in the domain D (i.e., for
any function from the set of all variables into D) the pair hv; �i
(abbreviated by v� and called generalized valuation) associates
to any term an element in D and to any formula a truth-value
in Bc, according to the conditions:

v�(am) = v(am)

v�(x) = �(x)

v�(Pn
mt1; � � � ; tn) = v(Pn

m)(v�(t1); � � � ; v�(tn))

v�(:�) = v�(�)0

v�(� ^ ) = v�(�) u v�()

v�(8x�) = F�v�[x=d](�) j d 2 D	 ; where�
v�[x=d](�) j d 2 D	 2 C

(�[x=d] is the interpretation that associates to x the individual d
and di�ers from � at most in the value attributed to x).

DEFINITION 96 (Truth and logical truth). A formula � is true in A =
BC ; D; v� (abbreviated as j=A �) i� for any interpretation of the variables
�, v�(�) = 1; � is a logical truth of OL (j=

OL
�) i� for any A, j=A �.

DEFINITION 97 (Consequence in a realization and logical consequence).
Let A =


BC ; D; v� be a realization. A formula � is a consequence of T in
A (abbreviated T j=A � ) i� for any element a of Bc and any interpretation
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�: if for any � 2 T , a v v�(�), then a v v�(�); � is a logical consequence
of T (T j=

OL
� ) i� for any realization A: T j=A �.

DEFINITION 98 (Kripkean realization for (�rst-order) OL). A Kripkean
realization for (�rst-order) OL is a system K =



I ; R ;�C ; U ; �

�
where:

(i)


I ; R ;�C

�
satis�es the same conditions as in the sentential case; fur-

ther �C is closed under in�nitary intersection for any F � �c such
that F 2 C (where C is a particular family of subsets of �C);

(ii) U , called the domain of K, is a non-empty set, disjoint from the set
of worlds I . The elements of U are individual concepts u such that
for any world i: u(i) is an individual (called the reference of u in the
world i). An individual concept u is called rigid i� for any pairs of
worlds i, j: u(i) = u(j). The set Ui = fu(i) j u 2 Ug represents the
domain of individuals in the world i . Whenever Ui = Uj for all i,j we
will say that the realization K has a constant domain.

(iii) � associates a meaning to any individual constant am and to any
predicate Pn

m according to the following conditions:

�(am) is an individual concept in U .

�(Pn
m) is a predicate-concept , i.e. a function that associates to

any n-tuple of individual concepts hu1; � � � ;uni a proposition in
�C ;

(iv) for any interpretation of the variables � in the domain U , the pair
h� ; �i (abbreviated as �� and called valuation) associates to any term
t an individual concept in U and to any formula a proposition in �C

according to the conditions:

��(x) = �(x)

��(am) = �(am)

��(Pn
mt1; � � � ; tn) = �(Pn

m)(��(t1); � � � ; ��(tn))

��(:�) = ��(�)0

��(� ^ ) = ��(�) \ ��()

��(8x�) =
T�

��[x=u](�) j u 2 U	 ; where�
��[x=u](�) j u 2 U	 2 C.

For any world i and any interpretation � of the variables, the triplet h� ; i ; �i
(abbreviated as ��i ) will be called a world-valuation.

DEFINITION 99 (Satisfaction). ��i j= � (��i satis�es �) i� i 2 ��(�).

DEFINITION 100 (Veri�cation). i j= � (i veri�es �) i� for any �: ��i j= �.
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DEFINITION 101 (Truth and logical truth). j=K � (� is true in K) i� for
any i: i j= �;

j=
OL
� (� is a logical truth of OL) i� for any K: j=K �.

DEFINITION 102 (Consequence in a realization and logical consequence).
T j=K � i� for any i of K and any �: ��i j= T y ��i j= �;

T j=
OL
� i� for any realization K: T j=K �.

The algebraic and the Kripkean characterization for �rst-order OQL can
be obtained, in the obvious way, by requiring that any realization be ortho-
modular.

In both semantics for �rst-order QL one can prove a coincidence lemma:

LEMMA 103. Given A =

BC ; D ; v

�
and K =



I ; R ;�C ; U; �

�
:

(103.1) If � and �� coincide in the values attributed to the variables oc-
curring in a term t, then v�(t) = v�

�

(t); ��(t) = ��
�

(t).

(103.2) If � and �� coincide in the values attributed to the free variables
occurring in a formula �, then v�(�) = v�

�

(�); ��(�) = ��
�

(�).

One can easily prove, like in the sentential case, the following lemma:

LEMMA 104.

(104.1) For any algebraic realization A there exists a Kripkean realization
KA such that for any �: j=A � i� j=KA �. Further, if A is
orthomodular then KA is orthomodular.

(104.2) For any Kripkean realization K, there exists an algebraic realiza-
tion AK such that for any for any �: j=K � i� j=AK �. Further,
if K is orthomodular then AK is orthomodular.

An axiomatization of �rst-order OL (OQL) can be obtained by adding
to the rules of our OL (OQL)-sentential calculus the following new rules:

(PR1) T [ f8x�g j��(x=t), where �(x=t) indicates a legitimate sub-
stitution).

(PR2)
T j��
T j� 8x� (provided x is not free in T ).

All the basic syntactical notions are de�ned in the expected way. One
can prove that any consistent set of sentences T admits of a consistent
inductive extension T �, such that T � j�8x�(t) whenever for any closed term
t, T � j��(t). The \weak Lindenbaum theorem" can be strengthened as
follows: for any sentence �, if T j�=:� then there exists a consistent and
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inductive T � such that:

T is syntactically compatible with T � and T � j��:12

One can prove a soundness and a completeness theorem of our calculus
with respect to the Kripkean semantics.

THEOREM 105. Soundness.
T j�� y T j= �:

Proof. Straightforward. �

THEOREM 106. Completeness.
T j= � y T j��:

Sketch of the proof Like in the sentential case, it is suÆcient to construct
a canonical model K =



I ; R ;�C ; U ; �

�
such that T j�� i� T j=K �.

De�nition of the canonical model

(i) I is the set of all consistent, deductively closed and inductive sets of
sentences expressed in a common language LK , which is an extension
of the original language;

(ii) R is determined like in the sentential case;

(iii) U is a set of rigid individual concepts that is naturally determined by
the set of all individual constants of the extended language LK. For
any constant c of LK, let uc be the corresponding individual concept
in U . We require: for any world i, uc(i) = c. In other words, the
reference of the individual concept uc is in any world the constant c.
We will indicate by cu the constant corresponding to u.

(iv) �(am) = uam ;

�(Pn
m)(uc11 ; : : : ;u

cn
n ) = fi j Pn

mc1; : : : ; cn 2 ig :
Our � is well de�ned since one can prove for any sentence � of LK:

i j�=� y 9j ?= i : j j�:�:

As a consequence, ��(Pn
mt1; : : : ; tn) is a possible proposition.

(v) �C is the set of all \meanings" of formulas (i.e., X 2 �C i� 9�9�(X =
��(�)); C is the set of all sets

�
��[x=u](�) j u 2 U	 for any formula

�.

12By De�nition 71, T is syntactically compatible with T � i� there is no formula � such
that T j�� and T � j�:�.
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One can easily check that K is a \good" realization with a constant
domain.

LEMMA 107. Lemma of the canonical model.
For any �, any i 2 I and any �:

��i j= � i� �� 2 i;

where �� is the sentence obtained by substituting in � any free variable x
with the constant c�(x) corresponding to the individual concept �(x).

Sketch of the proof. By induction on the length of �. The cases � =
Pn
mt1; � � � ; tn, � = :�, � = � ^  are proved by an obvious transformation

of the sentential argument. Let us consider the case � = 8x� and suppose
x occurring in � (otherwise the proof is trivial). In order to prove the left
to right implication, suppose ��i j= 8x�. Then, for any u in U , ��[x=u] j=
�(x). Hence, by inductive hypothesis, 8u 2 U , [�(x)]�[x=u] 2 i. In other
words, for any constant cu of i: [�(x)]�(x=cu) 2 i. And, since i is inductive
and deductively closed: 8x�(x)� 2 i. In order to prove the right to left
implication, suppose [8x�(x)]� 2 i. Then, [by (PR1)], for any constant c of

i: [�(x=c)]� 2 i. Hence by inductive hypothesis: for any uc 2 U , �
�[x=uc]
i j=

�(x), i.e., ��i j= 8x�(x). On this ground, similarly to the sentential case,
one can prove T j�� i� T j=K �. �

First-order QL can be easily extended (in a standard way) to a �rst-order
logic with identity. However, a critical problem is represented by the possi-
bility of developing, within this logic, a satisfactory theory of descriptions .
The main diÆculty can be sketched as follows. A natural condition to be
required in any characterization of a �-operator is obviously the following:

9x f�(x) ^ 8y [(�(y) ^ x = y) _ (:�(y) ^ :x = y)] ^ �(x)g
is true y �(�x�(x)) is true:

However, in QL, the truth of the antecedent of our implication does not
generally guarantee the existence of a particular individual such that �x� can
be regarded as a name for such an individual. As a counterexample, let us
consider the following case (in the algebraic semantics): let A be hB ; D ; vi
where B is the complete orthomodular lattice based on the set of all closed
subspaces of the plane IR2, and D contains exactly two individuals d1;d2.
Let P be a monadic predicate and X;Y two orthogonal unidimensional
subspaces of B such that v(P )(d1) = X , v(P )(d2) = Y . If the equality
predicate = is interpreted as the standard identity relation (i.e., v�(t1 =
t2) = 1, if v�(t1) = v�(t2); 0, otherwise), one can easily calculate:

v (9x [Px ^ 8y((Py ^ x = y) _ (:Py ^ :x = y))]) = 1:
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However, for both individuals d1;d2 of the domain, we have:

v�[x=d1](Px) 6= 1; v�[x=d2](Px) 6= 1:

In other words, there is no precise individual in the domain that satis�es
the property expressed by our predicate P !

10 QUANTUM SET THEORIES AND THEORIES OF QUASISETS

An important application of QL to set theory has been developed by [Takeuti,
1981]. We will sketch here only the fundamental idea of this application. Let
L be a standard set-theoretical language. One can construct ortho-valued
models for L, which are formally very similar to the usual Boolean-valued
models for standard set-theory, with the following di�erence: the set of
truth-values is supposed to have the algebraic structure of a complete or-
thomodular lattice, instead of a complete Boolean algebra. Let B be a
complete orthomodular lattice, and let �, �,... represent ordinal numbers.
An ortho-valued (set-theoretical) universe V is constructed as follows:

V B =
S
�2On V (�) , where:

V (0) = ;.
V (�+1) = fg j g is a function andDom(g) � V (�) andRang(g) � Bg.
V (�) =

S
�<� V (�), for any limit-ordinal �.

( Dom(g) and Rang(g) are the domain and the range of function g,
respectively).

Given an orthovalued universe V B one can de�ne for any formula of L the
truth-value [[�]]� in B induced by any interpretation � of the variables in
the universe V B.

[[x 2 y]]� =
F
g2Dom(�(y))

�
�(y)(g) u [[x = z]]�[z=g]

	
[[x = y]]� = Fg2Dom(�(x))

�
�(x)(g)  [[z 2 y]]�[z=g]

	u
Fg2Dom(�(y))

�
�(y)(g) [[z 2 x]]�[z=g]

	
.

where is the quantum logical conditional operation (a b := a0t (au b),
for any a; b 2 B).

A formula � is called true in the universe V B (j=V B �) i� [[�]]� = 1, for
any �.

Interestingly enough, the segment V (!) of V B turns out to contain some
important mathematical objects, that we can call quantum-logical natural
numbers .
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The standard axioms of set-theory hold in B only in a restricted form.
An extremely interesting property of V B is connected with the notion of
identity. Di�erently from the case of Boolean-valued models, the identity
relation in V B turns out to be non-Leibnizian. For, one can choose an
orthomodular lattice B such that:

6j=V B x = y ! 8z(x 2 z $ y 2 z):

According to our semantic de�nitions, the relation = represents a kind
of \extensional equality". As a consequence, one may conclude that two
quantum-sets that are extensionally equal do not necessarily share all the
same properties. Such a failure of the Leibniz-substitutivity principle in
quantum set theory might perhaps �nd interesting applications in the �eld
of intensional logics.

A completely di�erent approach is followed in the framework of the the-
ories of quasisets (or quasets). The basic aim of these theories is to provide
a mathematical description for collections of microobjects, which seem to
violate some characteristic properties of the classical identity relation.

In some of his general writings, Schr�odinger discussed the inconsistency
between the classical concept of physical object (conceived as an individual
entity) and the behaviour of particles in quantum mechanics. Quantum
particles { he noticed { lack individuality and the concept of identity cannot
be applied to them, similarly to the case of classical objects.

One of the aims of the theories of quasisets (proposed by [da Costa et al.,
1992]) is to describe formally the following idea defended by Schr�odinger:
identity is generally not de�ned for microobjects. As a consequence, one
cannot even assert that an \electron is identical with itself". In the realm
of microobjects only an indistinguishability relation (an equivalence relation
that may violate the substitutivity principle) makes sense.

On this basis, di�erent formal systems have been proposed. Generally,
these systems represent convenient generalizations of a Zermelo{Fraenkel
like set theory with urelements . Di�erently from the classical case, an ure-
lement may be either a macro or a microobject . Collections are represented
by quasisets and classical sets turn out to be limit cases of quasisets.

A somewhat di�erent approach has been followed in the theory of quasets
(proposed in [Dalla Chiara and Toraldo di Francia, 1993]).

The starting point is based on the following observation: physical kinds
and compound systems in QM seem to share some features that are charac-
teristic of intensional entities. Further, the relation between intensions and
extensions turns out to behave quite di�erently from the classical semantic
situations. Generally, one cannot say that a quantum intensional notion
uniquely determines a corresponding extension. For instance, take the no-
tion of electron, whose intension is well de�ned by the following physical
property: mass = 9:1 � 10�28g, electron charge = 4:8 � 10�10e.s.u., spin
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= 1=2. Does this property determine a corresponding set , whose elements
should be all and only the physical objects that satisfy our property at a
certain time interval? The answer is negative. In fact, physicists have the
possibility of recognizing, by theoretical or experimental means, whether a
given physical system is an electron system or not. If yes, they can also
enumerate all the quantum states available within it. But they can do so
in a number of di�erent ways. For example, take the spin. One can choose
the x-axis and state how many electrons have spin up and how many have
spin down. However, we could instead refer to the z-axis or any other direc-
tion, obtaining di�erent collections of quantum states, all having the same
cardinality. This seems to suggest that microobject systems present an ir-
reducibly intensional behaviour: generally they do not determine precise
extensions and are not determined thereby. Accordingly, a basic feature of
the theory is a strong violation of the extensionality principle.

Quasets are convenient generalizations of classical sets, where both the
extensionality axiom and Leibniz' principle of indiscernibles are violated.
Generally a quaset has only a cardinal but not an ordinal number, since it
cannot be well ordered.

11 THE UNSHARP APPROACHES

The unsharp approaches to QT (�rst proposed by [Ludwig, 1983] and
further developed by Kraus, Davies, Mittelstaedt, Busch, Lahti, Bugajski,
Beltrametti, Cattaneo and many others) have been suggested by some deep
criticism of the standard logico-algebraic approach. Orthodox quantum
logic (based on Birkho� and von Neumann's proposal) turns out to be at
the same time a total and a sharp logic. It is total because the meaning-
ful propositions are represented as closed under the basic logical operations:
the conjunction (disjunction) of two meaningful propositions is a meaningful
proposition. Further, it is also sharp, because propositions, in the standard
interpretation, correspond to exact possible properties of the physical sys-
tem under investigation. These properties express the fact that \the value
of a given observable lies in a certain exact Borel set".

As we have seen, the set of the physical properties, that may hold for
a quantum system, is mathematically represented by the set of all closed
subspaces of the Hilbert space associated to our system. Instead of closed
subspaces, one can equivalently refer to the set of all projections , that is in
one-to-one correspondence with the set of all closed subspaces. Such a cor-
respondence leads to a collapse of di�erent semantic notions, which Foulis
and Randall described as the \metaphysical disaster" of orthodox QT. The
collapse involves the notions of \experimental proposition", \physical prop-
erty", \physical event" (which represent empirical and intensional con-
cepts), and the notion of proposition as a set of states (which corresponds
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to a typical extensional notion according to the tradition of standard se-
mantics).

Both the total and the sharp character of QL have been put in question
in di�erent contexts. One of the basic ideas of the unsharp approaches is a
\liberalization" of the mathematical counterpart for the intuitive notion of
\experimental proposition". Let P be a projection operator in the Hilbert
space H, associated to the physical system under investigation. Suppose P
describes an experimental proposition and let W be a statistical operator
representing a possible state of our system. Then, according to one of the
axioms of the theory (the Born rule), the number Tr(WP ) (the trace of
the operator WP ) will represent the probability-value that our system in
state W veri�es P . This value is also called Born probability . However,
projections are not the only operators for which a Born probability can be
de�ned. Let us consider the class E(H) of all linear bounded operators E
such that for any statistical operator W ,

Tr(WE) 2 [0; 1]:

It turns out that E(H) properly includes the set P (H) of all projections on
H. The elements of E(H) represent, in a sense, a \maximal" mathemati-
cal representative for the notion of experimental proposition, in agreement
with the probabilistic rules of quantum theory. In the framework of the
unsharp approach, E(H) has been called the set of all e�ects .13 An im-
portant di�erence between projections and proper e�ects is the following:
projections can be associated to sharp propositions having the form \the
value for the observable A lies in the exact Borel set �", while e�ects may
represent also fuzzy propositions like \the value of the observable A lies in
the fuzzy Borel set �". As a consequence, there are e�ects E, di�erent from
the null projection jO, such that no state W can verify E with probability
1. A limit case is represented by the semitransparent e�ect 1

21I (where 1I is
the identity operator), to which any state W assigns probability-value 1

2 .
From the intuitive point of view, one could say that moving to an unsharp

approach represents an important step towards a kind of \second degree of
fuzziness". In the framework of the sharp approach, any physical event E
can be regarded as a kind of \clear" property. Whenever a state W assigns
to E a probability value di�erent from 1 and 0, one can think that the
semantic uncertainty involved in such a situation totally depends on the
ambiguity of the state (�rst degree of fuzziness). In other words, even a
pure state in QT does not represent a logically complete information, that
is able to decide any possible physical event. In the unsharp approaches,
instead, one take into account also \genuine ambiguous properties". This
second degree of fuzziness may be regarded as depending on the accuracy

13It is easy to see that an e�ect E is a projection i� E2 := EE = E. In other words,
projections are idempotent e�ects.
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of the measurement (which tests the property), and also on the accuracy
involved in the operational de�nition for the physical quantities which our
property refers to.

12 EFFECT STRUCTURES

Di�erent algebraic structures can be induced on the class E(H) of all e�ects.
Let us �rst recall some de�nitions.

DEFINITION 108 (Involutive bounded poset (lattice)). An involutive
bounded poset (lattice) is a structure B = hB ;v ; 0 ;1 ;0i, where hB ;v ;1 ;0i
is a partially ordered set (lattice) with maximum (1) and minimum (0); 0

is a 1-ary operation on B such that the following conditions are satis�ed:
(i) a00 = a; (ii) a v b y b0 v a0.
DEFINITION 109 (Orthoposet). An orthoposet is an involutive bounded
poset that satis�es the non contradiction principle:

a u a0 = 0:

DEFINITION 110 (Orthomodular poset). An orthomodular poset is an or-
thoposet that is closed under the orthogonal sup (a v b0 y a t b exists)
and satis�es the orthomodular property:

a v b y 9c such that a v c0 and b = a t c.

DEFINITION 111 (Regularity). An involutive bounded poset (lattice) B is
regular i� a v a0 and b v b0 y a v b0.

Whenever an involutive bounded poset B is a lattice, then B is regular
i� it satis�es the Kleene condition:

a u a0 v b t b0:

The set E(H) of all e�ects can be naturally structured as an involutive
bounded poset:

E(H) = hE(H) ;v ; 0 ;1 ;0i ;
where

(i) E v F i� for any state (statistical operator) W , Tr(WE) � Tr(WE)
(in other words, any state assigns to E a probability-value that is less
or equal than the probability-value assigned to F );

(ii) 1, 0 are the identity (1I) and the null ( jO) projection, respectively;

(iii) E0 = 1�E.
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One can easily check that v is a partial order, 0 is an order-reversing invo-
lution, while 1 and 0 are respectively the maximum and the minimum with
respect to v. At the same time this poset fails to be a lattice. Di�erently
from projections, some pairs of e�ects have no in�mum and no supremum
as the following example shows [Greechie and Gudder, n.d.]:

EXAMPLE 112. Let us consider the following e�ects (in the matrix-repre-
sentation) on the Hilbert space IR2:

E =

�
1
2 0
0 1

2

�
F =

�
3
4 0
0 1

4

�
G =

�
1
2 0
0 1

4

�

It is not hard to see that G v E;F . Suppose, by contradiction, that L =
E u F exists in E(IR2). An easy computation shows that L must be equal
to G. Let

M =

�
7
16

1
8

1
8

3
16

�

Then M is an e�ect such that M v E;F ; however, M 6v L, which is a
contradiction.

In order to obtain a lattice structure, one has to embed E(H) into its
MacNeille completion E(H).

The MacNeille completion of an involutive bounded poset

Let hB ;v ;1 ;0i be an involutive bounded poset. For any non-empty
subset X of B, let l(X) and u(X) represent respectively the set of all
lower bounds and the set of all upper bounds of X . Let MC(B) :=
fX � B j X = u(l(X))g. It turns out that X 2MC(B) i� X = X 00,
where X 0 := fa 2 B j 8b 2 X : a v b0g. Moreover, the structure

B = hMC(B) ;� ; 0 ; f0g ; Bi

is a complete involutive bounded lattice (which is regular if B is reg-
ular), where X u Y = X \ Y and X t Y = (X [ Y )00.

It turns out that B is embeddable into B, via the map h : a ! ha],
where ha] is the principal ideal generated by a. Such an embedding
preserves the in�mum and the supremum, when existing in B.

The Mac Neille completion of an involutive bounded poset does not gener-
ally satis�es the non contradiction principle (a u a0 = 0 ) and the excluded
middle principle (a t a0 = 1 ). As a consequence, di�erently from the
projection case, the Mac Neille completion of E(H) is not an ortholattice.
Apparently, our operation 0 turns out to behave as a fuzzy negation, both
in the case of E(H) and of its Mac Neille completion. This is one of the
reasons why proper e�ects (that are not projections) may be regarded as
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representing unsharp physical properties , possibly violating the non contra-
diction principle.

The e�ect poset E(H) can be naturally extended to a richer structure,
equipped with a new complement �, that has an intuitionistic-like be-
haviour:

E� is the projection operator PKer(E) whose range is the kernelKer(E)
of E, consisting of all vectors that are transformed by the operator E
into the null vector.

By de�nition, the intuitionistic complement of an e�ect is always a pro-
jection. In the particular case, where E is a projection, it turns out that:
E0 = E�. In other words, the fuzzy and the intuitionistic complement
collapse into one and the same operation.

The structure hE(H) ;v ; 0 ; � ;1 ;0i turns out to be a particular example
of a Brouwer Zadeh poset [Cattaneo and Nistic�o, 1986].

DEFINITION 113. A Brouwer{Zadeh poset (simply a BZ-poset) is a struc-
ture hB ;v ; 0 ; � ;1 ;0i, where

(113.1) hB ;v ; 0 ;1 ;0i is a regular involutive bounded poset;

(113.2) � is a 1-ary operation on B, which behaves like an intuitionistic
complement:

(i) a u a� = 0.

(ii) a v a��.

(iii) a v b y b� v a�.

(113.3) The following relation connects the fuzzy and the intuitionistic
complement:

a�0 = a��.

DEFINITION 114. A Brouwer Zadeh lattice is a BZ-poset that is also a
lattice.

The Mac Neille completion of a BZ-poset

Let B = hB ;v ; 0 ; � ;1 ;0i be a BZ-poset and let B the Mac Neille
completion of the regular involutive bounded poset hB ;v ; 0 ; 1 ;0i.
For any non-empty subset X of B, let

X� := fa 2 B j 8b 2 X : a v b�g :

It turns out that B = hMC(B);� ; 0 ; � ; f0g ; Bi is a complete BZ-
lattice [Giuntini, 1991], which B can be embedded into, via the map
h de�ned above.
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Another interesting way of structuring the set of all e�ects can be ob-
tained by using a particular kind of partial structure, that has been called ef-
fect algebra [Foulis and Bennett, 1994] or unsharp orthoalgebra [Dalla Chiara
and Giuntini, 1994]. Abstract e�ect algebras are de�ned as follows:

DEFINITION 115. An e�ect algebra is a partial structure A = hA ;� ;1 ;0i
where � is a partial binary operation on A. When � is de�ned for a pair
a ; b 2 A, we will write 9 (a� b). The following conditions hold:

(i) Weak commutativity

9(a� b) y 9(b� a) and a� b = b� a.

(ii) Weak associativity

[9(b� c) and 9(a� (b� c))] y [9(a � b) and 9((a � b) � c)
and a� (b� c) = (a� b)� c].

(iii) Strong excluded middle

For any a, there exists a unique x such that a� x = 1.

(iv) Weak consistency

9(a� 1) y a = 0.

From an intuitive point of view, our operation � can be regarded as an
exclusive disjunction (aut), which is de�ned only for pairs of logically in-
compatible events.

An orthogonality relation ?, a partial order relation v and a generalized
complement 0 can be de�ned in any e�ect algebra.

DEFINITION 116. Let A = hA ;� ;1 ;0i be an e�ect algebra and let a; b 2
A.

(i) a ? b i� a� b is de�ned in A.

(ii) a v b i� 9c 2 A such that a ? c and b = a� c.

(iii) The generalized complement of a is the unique element a0 such
that a� a0 = 1 (the de�nition is justi�ed by the strong excluded
middle condition).

The category of all e�ect algebras turns out to be (categorically) equiva-
lent to the category of all di�erence posets , which have been �rst studied in
[Kôpka and Chovanec, 1994] and further investigated in [Dvure�censkij and
Pulmannov�a, 1994].

E�ect algebras that satisfy the non contradiction principle are called
orthoalgebras :

DEFINITION 117. An orthoalgebra is an e�ect algebra B = hB ;� ;1 ;0i
such that the following condition is satis�ed:
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Strong consistency

9 (a� a) y a = 0.

In other words: 0 is the only element that is orthogonal to itself.

In order to induce the structure of an e�ect algebra on E(H), it is suÆ-
cient to de�ne a partial sum � as follows:

9 (E � F ) i� E + F 2 E(H);

where + is the usual sum-operator. Further:

9 (E � F ) y E � F = E + F:

It turns out that the structure hE(H) ;� ; 1I ; jOi is an e�ect algebra, where
the generalized complement of any e�ect E is just 1I�E. At the same time,
this structure fails to be an orthoalgebra.

Any abstract e�ect algebra

A = hA ;� ;1 ;0i
can be naturally extended to a kind of total structure, that has been termed
quantum MV-algebra(abbreviated as QMV-algebra) [Giuntini, 1996].

Before introducing QMV-algebras, it will be expedient to recall the de�ni-
tion of MV-algebra. As is well known, MV-algebras (multi-valued algebras)
have been introduced by Chang [1957] in order to provide an algebraic proof
of the completeness theorem for  Lukasiewicz' in�nite-many-valued logic L@.
A \privileged" model of this logic is based on the real interval [0; 1], which
gives rise to a particular example of a totally ordered (or linear) MV-algebra.

Both MV-algebras and QMV-algebras are total structures having the
following form:

M = (M ;� ; � ;1;0)

where:

(i) 1 ;0 represent the certain and the impossible propositions (or alter-
natively the two extreme truth values);

(ii) � is the negation-operation;

(iii) � represents a disjunction (or) which is generally non idempotent
(a� a 6= a).

A (generally non idempotent) conjunction (and) is then de�ned via de
Morgan law:

a� b := (a� � b�)� :
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On this basis, a pair consisting of an idempotent conjunction et (e) and
of an idempotent disjunction vel (d) is then de�ned:

a e b := (a� b�)� b

a d b := (a� b�)� b:
In the concrete MV-algebra based on [0; 1], the operations are de�ned as

follows:

(i) 1 = 1; 0 = 0;

(ii) a� = 1� a;

(iii) � is the truncated sum:

a� b =

(
a+ b; if a+ b � 1;

1; otherwise:

In this particular case, it turns out that:

a e b = Minfa; bg
(a et b is the minimum between a and b):

a d b = Maxfa; bg
(a vel b is the maximum between a and b):

A standard abstract de�nition of MV-algebras is the following [Mangani,
1973]:

DEFINITION 118. An MV-algebra is a structure M = (M ;� ; � ;1;0),
where � is a binary operation, � is a unary operation and 0 and 1 are
special elements of M , satisfying the following axioms:

(MV1) (a� b)� c = a� (b� c)
(MV2) a� 0 = a

(MV3) a� b = b� a
(MV4) a� 1 = 1

(MV5) (a�)� = a

(MV6) 0� = 1

(MV7) a� a� = 1

(MV8) (a� � b)� � b = (a� b�)� � a
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In other words, an MV-algebra represents a particular weakening of a
Boolean algebra, where � and � are generally non idempotent.

A partial order relation can be de�ned in any MV-algebra in the following
way:

a � b i� a e b = a:

Some important properties of MV-algebras are the following:

(i) the structure hM ;� ;� ;1 ;0i is a bounded involutive distributive lat-
tice, where a e b (a d b) is the inf (sup) of a; b;

(ii) the non-contradiction principle and the excluded middle principles
for �;e;d are generally violated: a d a� 6= 1 and a e a� 6= 0 are
possible. As a consequence, MV algebras permit us to describe fuzzy
and paraconsistent situations;

(iii) a� � b = 1 i� a � b. In other words: similarly to the Boolean case,
\not-a or b" represents a good material implication;

(iv) every MV-algebra is a subdirect product of totally ordered MV-algebras
[Chang, 1958];

(v) an equation holds in the class of all MV-algebras i� it holds in the
concrete MV-algebra based on [0; 1] [Chang, 1958].

Let us now go back to our e�ect-structure hE(H) ;� ;1 ;0i. The partial
operation � can be extended to a total operation � that behaves like a
truncated sum. For any E;F 2 E(H):

E � F =

(
E + F; if 9(E � F );

1; otherwise:

Further, let us put:

E� = 1I�E:
The structure E(H) = hE(H) ;� ;� ;1 ;0i turns out to be \very close" to an
MV-algebra. However, something is missing: E(H) satis�es the �rst seven
axioms of our de�nition (MV1-MV7); at the same time one can easily check
that the axiom (MV8) (usually called \ Lukasiewicz axiom") is violated. For
instance, let us consider two non trivial projections P;Q such that P is not
orthogonal to Q� and Q is not orthogonal to P �. Then, by de�nition of �,
we have that P �Q� = 1I and Q� P � = 1I. Hence: (P � �Q)

� �Q = Q 6=
P = (P �Q�)� � P .

As a consequence,  Lukasiewicz axiom must be conveniently weakened to
obtain a representation for our concrete e�ect structure. This can be done
by means of the notion of QMV-algebra.
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DEFINITION 119. A quantum MV-algebra (QMV-algebra) is a structure
M = (M ;� ; � ;1;0) where � is a binary operation, � is a 1-ary operation,
and 0;1 are special elements of M . For any a; b 2M : a�b := (a��b�)� ; ae
b := (a� b�)� a ; a d b := (a� b�)� b. The following axioms are required:

(QMV1) a� (b� c) = (b� a)� c,
(QMV2) a� a� = 1,

(QMV3) a� 0 = a,

(QMV4) a� 1 = 1,

(QMV5) a�� = a,

(QMV6) 0� = 1,

(QMV7) a� [(a� e b) e (c e a�)] = (a� b) e (a� c).

The operations e and d of a QMV-algebra M are generally non com-
mutative. As a consequence, they do not represent lattice-operations. It is
not diÆcult to prove that a QMV-algebra M is an MV-algebra i� for all
a; b 2M : a e b = b e a.

At the same time, any QMV-algebraM = (M ;� ; � ;1;0) gives rise to an
involutive bounded poset hM ;� ; � ;1 ;0i, where the partial order relation
is de�ned like in the MV case.

One can easily show that QMV-algebras represent a \good abstraction"
from the e�ect-structures:

THEOREM 120. The structure E(H) = hE(H) ;� ;� ;1 ;0i (where � ;� ;1 ;0
are the operations and the special elements previously de�ned) is a QMV-
algebra.

The QMV-algebra E(H) cannot be linear. For, one can easily check that
any linear QMV-algebra collapses into an MV-algebra.

In spite of this, our algebra of e�ects turns out to satisfy some weak forms
of linearity.

DEFINITION 121. A QMV-algebraM is called weakly linear i� 8a; b 2M :
a e b = b or b e a = a.

DEFINITION 122. A QMV-algebraM is called quasi-linear i� 8a; b 2M :
a e b = a or a e b = b.

It is easy to see that every quasi-linear QMV-algebra is weakly linear,
but not the other way around (because e is not commutative).

A very strong relation connects the class of all e�ect algebras with the
class of all quasi-linear QMV-algebras: every e�ect algebra can be uniquely
transformed into a quasi-linear QMV-algebra and viceversa.

Let B = hB ;� ;1 ;0i be an e�ect algebra. The operation � can be
extended to a total operation

� : B �B ! B
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in the following way:

a� b :=

(
a� b; if 9(a� b);

1; otherwise:

The resulting structure


B ;� ; 0 ; 1 ;0

�
will be denoted by Bqmv.

Viceversa, let M = (M ;� ; � ;1;0) be a QMV-algebra. Then, one can
de�ne a partial operation � on M such that

Dom(�) := fha; bi 2M �M j a � b�g :
9(a� b) y a� b = a� b:

The resulting structure hM ;� ;1 ;0i will be denoted by Mea.

THEOREM 123. [Gudder, 1995; Giuntini, 1995] Let B = hB ;� ;1 ;0i be
an e�ect algebra and let M = (M ;� ; � ;1;0) be a QMV-algebra.

(i) Bqmv is a quasi-linear QMV-algebra;

(ii) Mea is an e�ect algebra;

(iii) (Bqmv)ea = B;

(iv) M is quasi-linear i� (Mea)qmv =M;

(v) Bqmv is the unique quasi-linear QMV-algebra such that � extends
� and a � b in Bqmv implies a v b in B.

As a consequence, the e�ect algebra E(H) of all e�ects on a Hilbert space
H determines a quasi-linear QMV-algebra E(H)qmv = hE(H) ;� ;� ;1 ;0i,
where

E � F =

(
E + F; if 9(E � F );

1; otherwise;

and
E� = 1�E = E0:

These di�erent ways of inducing a structure on the set of all unsharp
physical properties have suggested di�erent logical abstractions. In the
following sections, we will investigate some interesting examples of unsharp
quantum logics.

13 PARACONSISTENT QUANTUM LOGIC

Paraconsistent quantum logic (PQL) represents the most obvious unsharp
weakening of orthologic. In the algebraic semantics, this logic is character-
ized by the class of all realizations based on an involutive bounded lattice,
where the non contradiction principle (a u a0 = 0) is possibly violated.
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In the Kripkean semantics, instead, PQL is characterized by the class of
all realizations hI ; R ;� ; �i, where the accessibility relation R is symmetric
(but not necessarily reexive), while � behaves like in the OL - case. Any
pair hI; Ri, where R is a symmetric relation on I , will be called symmetric
frame. Di�erently from OL and OQL, a world i of a PQL realization may
verify a contradiction. Since R is generally not reexive, it may happen
that i 2 � (�) and i ? � (�). Hence: i j= � ^ :�.

All the other semantic de�nitions are given like in the case of OL, mutatis
mutandis . On this basis, one can show that our algebraic and Kripkean
semantics characterize the same logic.

An axiomatization of PQL can be obtained by dropping the absurdity
rule and the Duns Scotus rule in the OL calculus. Similarly to OL, our
logic PQL satis�es the �nite model property and is consequently decidable.

Hilbert-space realizations for PQL can be constructed, in a natural way,
both in the algebraic and in the Kripkean semantics. In the algebraic se-
mantics, take the realizations based on the Mac Neille completion of an
involutive bounded poset having the form

hE(H) ;v ; 0 ;1 ;0i ;

where H is any Hilbert space. In the Kripkean semantics, consider the
realizations based on the following frames

hE(H)� f0g ; 6?i ;

where ?= represents the non orthogonality relation between e�ects (E 6? F
i� E 6v F 0). Di�erently from the projection case, here the accessibility
relation is symmetric but generally non-reexive. For instance, the semi-
transparent e�ect 1

21I (representing the prototypical ambiguous property)
is a �xed point of the generalized complement 0; hence 1

21I ? 1
21I and

( 121I)0 ? ( 121I)0. From the physical point of view, possible worlds are here
identi�ed with possible pieces of information about the physical system un-
der investigation. Any information may be either maximal (a pure state)
or non maximal (a mixed state); either sharp (a projection) or unsharp
(a proper e�ect). Violations of the non contradiction principle are deter-
mined by unsharp (ambiguous) pieces of knowledge. Interestingly enough,
proper mixed states (which cannot be represented as projections) turn out
to coincide with particular e�ects. In other words, within the unsharp ap-
proach, it is possible to represent both states and events by a unique kind
of mathematical object, an e�ect.

PQL represents a somewhat rough logical abstraction from the class
of all e�ect-realizations. An important condition that holds in all e�ect
realizations is represented by the regularity property (which may fail in a
generic PQL-realization).
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DEFINITION 124. An algebraic PQL realization hB ; v i is called regular
i� the involutive bounded lattice B is regular (a u a0 v b t b0).

The regularity property can be naturally formulated also in the frame-
work of the Kripkean semantics:

DEFINITION 125. A PQL Kripkean realization hI; R ;� ; �i is regular i�
its frame hI ; R i is regular . In other words, 8i; j 2 I : i ? i and j ? j y

i ? j.

One can prove that a symmetric frame hI; Ri is regular i� the involutive
bounded lattice of all propositions of hI; Ri is regular. As a consequence,
an algebraic realization is regular i� its Kripkean transformation is regular
and viceversa (where the Kripkean [algebraic] transformation of an algebraic
[Kripkean] realization is de�ned like in OL).

On this basis one can introduce a proper extension of PQL: regular para-
consistent quantum logic (RPQL). Semantically RPQL is characterized by
the class of all regular realizations (both in the algebraic and in the Krip-
kean semantics). The calculus for RPQL is obtained by adding to the
PQL-calculus the following rule:

� ^ :� j�� _ :� (Kleene rule)

A completeness theorem for both PQL and RPQL can be proved, simi-
larly to the case of OL. Both logics PQL and RPQL admit a natural modal
translation (similarly to OL). The suitable modal system which PQL can
be transformed into is the system KB, semantically characterized by the
class of all symmetric frames. A convenient strengthening of KB gives rise
to a regular modal system, that is suitable for RPQL.

An interesting question concerns the relation between PQL and the or-
thomodular property.

Let B = hA;v ; 0 ; 1 ;0i be an ortholattice. By Lemma 19 the follow-
ing three conditions (expressing possible de�nitions of the orthomodular
property) turn out to be equivalent:

(i) 8a; b 2 B: a v b y b = a t (a0 u b);
(ii) 8a; b 2 B: a v b and a0 u b = 0 y a = b;

(iii) 8a; b 2 B: a u (a0 t (a u b)) v b.
However, this equivalence breaks down in the case of involutive bounded

lattices. One can prove only:

LEMMA 126. Let B be an involutive bounded lattice. If B satis�es condition
(i), then B satis�es conditions (ii) and (iii).

Proof. (i) implies (ii): trivial. Suppose (i); we want to show that (iii) holds.
Now, a0 v a0 t b0 = (a u b)0. Therefore, by (i), (a u b)0 = a0 t (a u (a u b)0).
By de Morgan law: a u b = (a u (a0 t (a u b)) v b. �
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Figure 6. G14

LEMMA 127. Any involutive bounded lattice B that satis�es condition (iii)
is an ortholattice.

Proof. Suppose (iii). It is suÆcient to prove that 8a; b 2 B: a u a0 v b.
Now, a u a0 v a; a0. Moreover, a0 v a0 t (a u b). Therefore, by (iii),
a u a0 v a u (a0 t (a u b)) v b. Thus, 8a 2 B: a u a0 = 0. �

As a consequence, we can conclude that there exists no proper orthomod-
ular paraconsistent quantum logic when orthomodularity is understood in
the sense (i) or (iii). A residual possibility for a proper paraconsistent quan-
tum logic to be orthomodular is orthomodularity in the sense (ii). In fact,
the lattice G14 (see Figure 6) is an involutive bounded lattice which turns
out be orthomodular (ii) but not orthomodular (i).

Since f u f 0 = f 6= 0, G14 cannot be an ortholattice. Hence, G14 is
neither orthomodular (i) nor orthomodular (iii). However, G14 is trivially
orthomodular (ii) since the premiss of condition (ii) is satis�ed only in the
trivial case where both a; b are either 0 or 1.

Hilbert space realizations for orthomodular paraconsistent quantum logic
can be constructed in the algebraic semantics by taking as support the
following proper subset of the set of all e�ects:

I(H) := fa1I j a 2 [0; 1]g [ P (H):
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In other words, a possible meaning of the formula is either a sharp property
(projection) or an unsharp property that can be represented as a multiple
of the universal property (1I).

The set I(H) determines an orthomodular involutive regular bounded
lattice, where the partial order is the partial order of E(H) restricted to
I(H), while the fuzzy complement is de�ned like in the class of all e�ects
(E0 := 1I�E).

An interesting feature of PQL is represented by the fact that this logic
turns out to be a common sublogic in a wide class of important logics.
In particular, PQL is a sublogic of Girard's linear logic [Girard, 1987], of
 Lukasiewicz' in�nite many-valued logic and of some relevant logics.

As we will see in Section 17, PQL represents the most natural quantum
logical extension of a quite weak and general logic, that has been called
basic logic.

14 THE BROUWER{ZADEH LOGICS

The Brouwer{Zadeh logics (called also fuzzy intuitionistic logics) represent
natural abstractions from the class of all BZ-lattices (de�ned in Section 12).
As a consequence, a characteristic property of these logics is a splitting of
the connective \not" into two forms of negation: a fuzzy-like negation, that
gives rise to a paraconsistent behaviour and an intuitionistic-like negation.
The fuzzy \not" represents a weak negation, that inverts the two extreme
truth-values (truth and falsity), satis�es the double negation principle but
generally violates the non-contradiction principle. The second \not" is a
stronger negation, a kind of necessitation of the fuzzy \not".

We will consider two forms of Brouwer{Zadeh logic: BZL (weak Brouwer{
Zadeh logic) and BZL3 (strong Brouwer{Zadeh logic). The language of both
BZL and BZL3 is an extension of the language of QL. The primitive con-
nectives are: the conjunction (^), the fuzzy negation (:), the intuitionistic
negation (�).

Disjunction is metatheoretically de�ned in terms of conjunction and of
the fuzzy negation:

� _ � := :(:� ^ :�) :

A necessity operator is de�ned in terms of the intuitionistic and of the fuzzy
negation:

L� :=� :� :
A possibility operator is de�ned in terms of the necessity operator and of
the fuzzy negation:

M� := :L:� :
Let us �rst consider our weaker logic BZL. Similarly to OL and PQL,

also BZL can be characterized by an algebraic and a Kripkean semantics.
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DEFINITION 128 (Algebraic realization for BZL). An algebraic realization
of BZL is a pair hB ; vi, consisting of a BZ-lattice hB ;v ; 0 ;� ;1 ;0i and
a valuation-function v that associates to any formula � an element in B,
satisfying the following conditions:

(i) v(:�) = v(�)0

(ii) v(� �) = v(�)�

(iii) v(� ^ ) = v(�) u v().

The de�nitions of truth, consequence in an algebraic realization for BZL,
logical truth and logical consequence are given similarly to the case of OL.

A Kripkean semantics for BZL has been �rst proposed in [Giuntini, 1991].
A characteristic of this semantics is the use of frames with two accessibility
relations.

DEFINITION 129. A Kripkean realization for BZL is a system
K = hI ; 6? ; 6?� ;� ; �i where:

(i) hI ; 6? ; 6?�i is a frame with a non empty set I of possible worlds
and two accessibility relations: 6? (the fuzzy accessibility relation)
and 6?� (the intuitionistic accessibility relation).

Two worlds i ; j are called fuzzy-accessible i� i 6? j. They are
called intuitionistically-accessible i� i 6?� j. Instead of not(i 6? j)
and not(i 6?� j), we will write i ? j and i ?� j, respectively.

The following conditions are required for the two accessibility
relations:

(ia) hI; 6?i is a regular symmetric frame;

(ib) any world is fuzzy-accessible to at least one world:

8i 9j : i 6? j :

(ic) hI; 6?�i is an orthoframe;

(id) Fuzzy accessibility implies intuitionistic accessibility:

i 6? j y i 6?� j:

(ie) Any world i has a kind of \twin-world" j such that for any
world k:

(a) i 6?� k i� j 6?� k
(b) i 6?� k y j 6? k.

For any set X of worlds, the fuzzy-orthogonal set X 0 is de-
�ned like in OL:

X 0 = fi 2 I j 8j 2 X : i ? jg :
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Similarly, the intuitionistic orthogonal set X� is de�ned as
follows:

X� = fi 2 I j 8j 2 X : i ?� jg :
The notion of proposition is de�ned like in OL. It turns out
that a set of worlds X is a proposition i� X = X 00.
One can prove that for any set of worlds X , both X 0 and X�

are propositions. Further, like in OL, X u Y (the greatest
proposition included in the propositions X and Y ) is X \Y ,
while X t Y (the smallest proposition including X and Y )
is (X [ Y )00.

(ii) � is a set of propositions that contains I , and is closed under
0 ;� ;u.

(iii) � associates to any formula a proposition in � according to the
following conditions:

�(:�) = �(�)0;

�(� �) = �(�)�;

�(� ^ ) = �(�) u �().

THEOREM 130. Let hI ; 6? ; 6?� i be a BZ-frame (i.e. a frame satisfying the
conditions of De�nition 129(i)) and let �0 be the set of all propositions of
the frame. Then, the structure



�0 ;� ; 0 ; � ; ; ; I � is a complete BZ-lattice

such that for any set � � �0:

inf (�) := F� =
\

� and sup (�) :=
G

� =
�[

�
�00
:

As a consequence, the proposition-structure h� ;� ; 0 ; � ; ; ; Ii of a BZL
realization, turns out to be a BZ-lattice.

The de�nitions of truth, consequence in a Kripkean realization, logical
truth and logical consequence, are given similarly to the case of OL.

One can prove, with standard techniques, that the algebraic and the
Kripkean semantics for BZL characterize the same logic.

We will now introduce a calculus that represents an adequate axiomati-
zation for the logic BZL. The most intuitive way to formulate our calculus
is to present it as a modal extension of the axiomatic version of regular
paraconsistent quantum logic RPQL. (Recall that the modal operators of
BZL are de�ned as follows: L� :=� :�; M� := :L:�).

Rules of BZL.

The BZL-calculus includes, besides the rules of RPQL the following modal
rules:
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(BZ1) L� j��

(BZ2) L� j�LL�

(BZ3) ML� j�L�

(BZ4)
� j��

L� j�L�
(BZ5) L� ^ L� j�L(� ^ �)

(BZ6) ; j�:(L� ^ :L�)

The rules (BZ1)-(BZ5) give rise to a S5{like modal behaviour. The
rule (BZ6) (the non-contradiction principle for necessitated formulas) is,
of course, trivial in any classical modal system.

One can prove a soundness and completeness Theorem with respect to the
Kripkean semantics (by an appropriate modi�cation of the corresponding
proofs for QL).

Characteristic logical properties of BZL are the following:

(a) like in PQL, the distributive principles, Duns Scotus, the non-
contradiction and the excluded middle principles (for the fuzzy
negation) break down;

(b) like in intuitionistic logic, we have:

j=
BZL
� (�^ � �); j=

BZL
= �_ � � ; � j=

BZL
�� � ; �� � j=

BZL
= � ;

��� � j=
BZL
� � ; � j=

BZL
� y � � j=

BZL
� � ;

(c) moreover, we have:

� � j=
BZL
:� ; :� j=

BZL
= � � ; : � � j=

BZL
�� � ;

One can prove that BZL has the �nite model property; as a consequence
it is decidable [Giuntini, 1992].

The ortho-pair semantics
Our stronger logic BZL3 has been suggested by a form of fuzzy-intuitionistic
semantics, that has been �rst studied in [Cattaneo and Nistic�o, 1986]. The
intuitive idea, underlying this semantics (which has some features in com-
mon with Klaua's partielle Mengen and with Dunn's polarities) can be
sketched as follows: one supposes that interpreting a language means associ-
ating to any sentence two domains of certainty : the domain of the situations
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where our sentence certainly holds, and the domain of the situations where
our sentence certainly does not hold. Similarly to Kripkean semantics, the
situations we are referring to can be thought of as a kind of possible worlds.
However, di�erently from the standard Kripkean behaviour, the positive do-
main of a given sentence does not generally determine the negative domain
of the same sentence. As a consequence, propositions are here identi�ed
with particular pairs of sets of worlds, rather than with particular sets of
worlds.

Let us again assume the BZL language. We will de�ne the notion of
realization with positive and negative certainty domains (shortly ortho-pair
realization) for a BZL language.

DEFINITION 131. An ortho-pair realization is a system O = hI ; R ;
 ; vi ;
where:

(i) hI ; R i is an orthoframe.

(ii) Let �0 be the set of all propositions of the orthoframe hI ; Ri.
As we already know, this set gives rise to an ortholattice with
respect to the operations u;t and 0 (where u is the set-theoretic
intersection).

An orthopairproposition of hI ; R i is any pair hA1 ; A0i, where
A1; A0 are propositions in �0 such that A1 � A00. An orthopair-
proposition hA1 ; A0i is called exact i� A0 = A01 (in other words,
A0 is maximal). The following operations and relations can be
de�ned on the set of all orthopairpropositions:

(iia) The fuzzy complement:

hA1 ; A0i0 := hA0 ; A1i :
(iib) The intuitionistic complement:

hA1 ; A0i� := hA0 ; A
0
0i :

(iic) The orthopairpropositional conjunction:

hA1 ; A0i u hB1 ; B0i := hA1 u B1 ; A0 t B0i :
(iid) The orthopairpropositional disjunction:

hA1 ; A0i t hB1 ; B0i := hA1 t B1 ; A0 u B0i :
(iie) The in�nitary conjunction:

FnfhAn
1 ; A

n
0 ig :=

*\
n

fAn
1g ;

G
n

fAn
0g
+
:
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(iif) The in�nitary disjunction:

G
n
fhAn

1 ; A
n
0 ig :=

*G
n

fAn
1g ;

\
n

fAn
0g
+
:

(iig) The necessity operator:

�(hA1 ; A0i) := hA1 ; A
0
1i :

(iih) The possibility operator:

�(hA1 ; A0i) := (�(hA1 ; A0i0))0 :
(iik) The order-relation:

hA1 ; A0i v hB1 ; B0i i� A1 � B1 and B0 � A0:

(iii) 
 is a set of orthopairpropositions, that is closed under 0 ;� ;u ;t
and 0 := h; ; Ii :

(iv) v is a valuation-function that maps formulas into orthopairpropo-
sitions according to the following conditions:

v(:�) = v(�)0;

v(� �) = v(�)�;

v(� ^ ) = v(�)uv().

The other basic semantic de�nitions are given like in the algebraic se-
mantics. One can prove the following Theorem:

THEOREM 132. Let hI ; R i be an orthoframe and let 
0 be the set of all
orthopairpropositions of hI ; R i. Then, the structure h
0 ;� ; 0 ;� ; h;; Ii;
hI; ;ii is a complete BZ-lattice with respect to the in�nitary conjunction and
disjunction de�ned above. Further, the following conditions are satis�ed: for
any hA1; A0i ; hB1 ; B0i 2 
0:

(i) � hA1 ; A0i = hA1 ; A0i0�.

(ii) hA1 ; A0i� = �(hA1 ; A0i0 ).

(iii) � hA1 ; A0i = hA1 ; A0i�0.
(iv) (hA1; A0i u hB1; B0i)� = hA1; A0i� t hB1; B0i� :

(Strong de Morgan law)

(v) (hA1; A0i u hB1; B0i��) � (hA1; A0i0� t hB1; B0i):

Accordingly, in any ortho-pair realization the set of all orthopairproposi-
tions 
0 gives rise to a BZ-lattice. As a consequence, one can immediately
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prove a soundness theorem with respect to the ortho-pair semantics. Does
perhaps the ortho-pair semantics characterizes the logic BZL? The answer
to this question is negative. As a counterexample, let us consider an in-
stance of the fuzzy excluded middle and an instance of the intuitionistic
excluded middle applied to the same formula �:

� _ :� and �_ � �:
One can easily check that they are logically equivalent in the ortho-pair
semantics. For, given any ortho-pair realization O, there holds::

� _ :� j=O �_ � � and �_ � � j=O � _ :� :
However, generally

� _ :� j=
BZL
= �_ � � :

For instance, let us consider the following algebraic BZL{realization A =
hB ; vi, where the support B of is the real interval [0 ; 1] and the algebraic
structure on B is de�ned as follows:

a v b i� a � b;
a0 = 1� a;

a� =

(
1 ; if a = 0;

0 ; otherwise:

1 = 1; 0 = 0.

Suppose for a given sentential literal p: 0 < v(p) < 1=2. We will have
v(p_ � p) = Max(v(p) ; 0) = v(p) < 1=2. But v(p _ :p) = Max(v(p) ; 1 �
v(p)) = 1� v(p) � 1=2. Hence: v(p_ � p) < v(p _ :p).
As a consequence, the orthopair-semantics characterizes a logic stronger
than BZL. We will call this logic BZL3. The name is due to the charac-
teristic three-valued features of the ortho-pair semantics.

Our logic BZL3 is axiomatizable. A suitable calculus can be obtained
by adding to the BZL-calculus the following rules.

Rules of BZL3.

(BZ31) L(� _ �) j�L� _ L�

(BZ32)
L� j��; � j�M�

� j��
The following rules turn out to be derivable:

(DR1)
L� j�� ;M� j�M�

� j��
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(DR2) M� ^M� j�M(� ^ �)

(DR3) � (� ^ �) j� � �_ � �
The validity of a strong de Morgan's principle for the connective � (DR3)

shows that this connective represents, in this logic, a kind of strong \super-
intuitionistic" negation (di�erently from BZL, where the strong de Morgan
law fails, like in intuitionistic logic).

One can prove a soundness and a completeness theorem of our calculus
with respect to the ortho-pair semantics.

THEOREM 133 (Soundness theorem).

T j��BZL3 � y T j=
BZL3

�:

Proof. By routine techniques. �

THEOREM 134. Completeness theorem.

T j=
BZL3

� y T j��BZL3 �:

Sketch of the proof
Instead of T j=

BZL3
� and T j��BZL3�, we will shortly write T j= � and T j��.

It is suÆcient to construct a canonical model O = hI ; R ;
 ; vi such that:

T j=O � y T j�� :
(The other way around follows from the soundness theorem).

De�nition of the canonical model

(i) I is the set of all possible sets i of formulas satisfying the following
conditions:

(ia) i is non contradictory with respect to the fuzzy negation ::
for any �, if � 2 i, then :� 62 i;

(ib) i is L-closed : for any �, if � 2 i, then L� 2 i;
(ic) i is deductively closed : for any �, if i j��, then � 2 i.

(ii) The accessibility relation R is de�ned as follows:

Rij i� for any formula �: � 2 i y :� 62 j.
(In other words, i and j are not contradictory with respect
to the fuzzy negation).

Instead of notRij, we will write i ? j.
(iii) 
 is the set of all orthopairpropositions of hI; Ri.
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(iv) For any atomic formula p:

v(p) = hv1(p) ; v0(p)i ;

where:

v1(p) = fi j i j� pg and v0(p) = fi j i j�:pg :

O is well de�ned since one can prove the following Lemmas:

LEMMA 135. R is reexive and symmetric.

LEMMA 136. For any � ; fi j i j��g is a proposition of the orthoframe
hI ; Ri.
LEMMA 137. For any �, fi j i j��g � fi j i j�:�g0.

Further, one can prove

LEMMA 138. For any �, v(�) = hv1(�) ; v0(�)i, where:

v1(�) = fi j i j��g
v0(�) = fi j i j�:�g

LEMMA 139. For any formula �:
0 := h;; Ii = hfi j i j�L� ^ :L�g ; fi j i j�:(L� ^ :L�)gi.
LEMMA 140. Let T = f�1 ; : : : ; �n ; : : : g be a set of formulas and let � be
any formula.Tfv1(�n) j �n 2 Tg � v1(�) y L�1 ; : : : ; L�n ; : : : j��.

As a consequence, one can prove:

LEMMA 141. Lemma of the canonical model

T j=O � y T j��:

Suppose T j=O �. Hence (by de�nition of consequence in a given re-
alization): for any orthopairproposition hA1 ; A0i 2 
, if for all �n 2 T ,
hA1 ; A0i v v(�n), then hA1 ; A0i v v(�).

The propositional lattice, consisting of all orthopairpropositions of O is
complete (see Theorem 132). Hence: Fn fv(�n) j �n 2 Tg v v(�). In
other words, by de�nition of v:

(i)
Tfv1(�n) j �n 2 Tg � v1(�);

(ii) v0(�) � Ffv0(�n) j �n 2 Tg.
Thus, by (i) and by Lemma 140: L�1 ; : : : ; L�n ; : : : j��. Consequently,
there exists a �nite subset f�n1 ; : : : ; �nkg of T such that L�n1 ^ : : : ^
L�nk j��. Hence, by the rules for ^ and L: L(�n1 ^ : : : ^ �nk ) j��.
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At the same time, we obtain from (ii) and by Lemma 138: v1(:�) vFfv1(:�n) j �n 2 Tg.
Whence, by de Morgan,

v1(:�) �
h\
f(v1(:�n))0 j �n 2 Tg

i0
:

Now, one can easily check that in any realization: v1(:�)0 = v1(M�). As
a consequence: v1(:�) � [

Tf(v1(M�n) j �n 2 Tg]0 : Hence, by contraposi-
tion: \

fv1(M�n) j �n 2 Tg � (v1(:�))0

and \
fv1(M�n) j �n 2 Tg � v1(M�):

Consequently, by Lemma 140 and by the S5-rules:

LM�1 ; : : : ; LM�n ; : : : j�M� ; M�1 ; : : : ;M�n ; : : : j�M� :

By syntactical compactness, there exists a �nite subset f�m1 ; : : : ; �mh
g of

T such that M�m1 ; : : : ;M�mh
j�M�. Whence, by the rules for ^ and

M : M(�m1 ^ : : : ^ �mh
) j�M�. Let us put 1 = �n1 ^ : : : ^ �nk and

2 = �m1^: : :^�mh
. We have obtained: L1 j�� and M2 j�M�. Whence,

L1 ^L2 j��, L(1 ^ 2) j��, M1 ^M2 j�M�, M(1 ^ 2) j�M�. From
L(1^2) j��, and M(1^2) j�M� we obtain, by the derivable rule (DR1):
1 ^ 2 j��. Consequently: T j��. �

Similarly to other forms of quantum logic, also BZL3 admits an al-
gebraic semantic characterization [Giuntini, 1993] based on the notion of
BZ3-lattice.

DEFINITION 142. A BZ3-lattice is a BZ-lattice B = hB ;v ; 0 ;� ;1 ;0i,
which satis�es the following conditions:

(i) (a u b)� = a� t b�;

(ii) a u b�� v a0� t b.
By Theorem 132, the set of all orthopairpropositions of an orthoframe

determines a complete BZ3-lattice. One can prove the following represen-
tation theorem:

THEOREM 143. Every BZ3-lattice is embeddable into the (complete) BZ3-
lattice of all orthopairpropositions of an orthoframe.

A slight modi�cation of the proof of Theorem 17 permits us to show that
ortho-pair semantics and the algebraic semantics strongly characterize the
same logic.

One can prove that BZL3 can be also characterized by means of a non
standard version of Kripkean semantics [Giuntini, 1993].

Some problems concerning the Brouwer-Zadeh logics remain still open:
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1) Is there any Kripkean characterization of the logic that is alge-
braically characterized by the class of all de Morgan BZ-lattices
(i.e. BZ-lattices satisfying condition (i) of De�nition 142)? In
this framework, the problem can be reformulated in this way: is
the (strong) de Morgan law elementary?

2) Is it possible to axiomatize a logic based on an in�nite many-
valued generalization of the ortho-pair semantics?

3) Find possible conditional connectives in BZL3.

4) Find an appropriate orthomodular extension of BZL3.

Unsharp quantum models for BZL3

The ortho-pair semantics has been suggested by the e�ect-structures in
Hilbert-space QT. In this framework, natural quantum ortho-pair realiza-
tions for BZL3 can be constructed. Let us refer again to the language LQ
(whose atoms express possible measurement reports) and let S be a quantum
system whose associated Hilbert space is H. As usual, E(H) will represent
the set of all e�ects of H. Now, an ortho-pair realizationMS = hI ; R ;
 ; vi
(for the system S) can be de�ned as follows:

(i) I is the set of all pure states of S in H.

(ii) Rij i� for any e�ect E 2 E(H) the following condition holds:
whenever i assigns to E probability 1, then j assigns to E a
probability di�erent from 0.

In other words, i and j are accessible i� they cannot be strongly
distinguished by any physical property represented by an e�ect.

(iii) The propositions of the orthoframe hI; R i are determined by the
set of all closed subspaces of H (sharp properties), like in OQL.

(iv) 
 is the set of all orthopairpropositions of hI; R i. Any e�ect E
can be transformed into an orthopairproposition f(E) := hXE

1 ;
XE
0 i of 
, where:

XE
1 := fi j i assigns to E probability 1g ;

XE
0 := fi j i assigns to E probability 0g :

In other words, XE
1 ; X

E
0 represent the positive and the negative

domain of E, respectively. The map f turns out to preserve the
order relation and the two complements:

E v F i� f(E) v f(F ):

f(E0) = f(E)0 =


XE
1 ; X

E
0

�0
=


XE
0 ; X

E
1

�
:

f(E�) = f(E)� =


XE
1 ; X

E
0

��
=


XE
0 ; (X

E
0 )0
�
:
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(v) The valuation-function v follows the intuitive physical meaning
of the atomic sentences. Let p express the assertion \the value
for the observable A lies in the sharp (or fuzzy) Borel set �" and
let Ep be the e�ect that is associated to p in H. We de�ne v as
follows:

v(p) = f(Ep) =
D
XEp

1 ; XEp

0

E
:

It is worthwhile to notice that our map f is not injective: di�erent e�ects
will be transformed into one and the same orthopairproposition. As a con-
sequence, moving from e�ects to orthopairpropositions clearly determines a
loss of information. In fact, orthopairpropositions are only concerned with
the two extreme probability value (0,1), a situation that corresponds to a
three-valued semantics.

15 PARTIAL QUANTUM LOGICS

In Section 12, we have considered examples of partial algebraic structures,
where the basic operations are not always de�ned. How to give a seman-
tic characterization for di�erent forms of quantum logic, corresponding re-
spectively to the class of all e�ect algebras, of all orthoalgebras and of all
orthomodular posets? We will call these logics: unsharp partial quantum
logic (UPaQL), weak partial quantum logic (WPaQL) and strong partial
quantum logic (SPaQL).

Let us �rst consider the case of UPaQL, that represents the \logic of
e�ect algebras" [Dalla Chiara and Giuntini, 1995].

The language of UPaQL consists of a denumerably in�nite list of atomic
sentences and of two primitive connectives: the negation : and the exclusive
disjunction _+ (aut).

The set of sentences is de�ned in the usual way. A conjunction is met-
alinguistically de�ned, via de Morgan law:

� :̂ � := :(:�_+ :�):

The intuitive idea underlying our semantics for UPaQL is the follow-
ing: disjunctions and conjunctions are always considered \legitimate" from
a mere linguistic point of view. However, semantically, a disjunction �_+ �
will have the intended meaning only in the \well behaved cases" (where
the values of � and � are orthogonal in the corresponding e�ect orthoal-
gebra). Otherwise, �_+ � will have any meaning whatsoever (generally not
connected with the meanings of � and �). As is well known, a similar
semantic \trick" is used in some classical treatments of the description op-
erator � (\the unique individual satisfying a given property"; for instance,
\the present king of Italy").
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DEFINITION 144. A realization for UPaQL is a pair A = hB ; vi, where
B = hB ;� ;1 ;0i is an e�ect algebra (see De�nition 115); v (the valuation-
function) associates to any formula � an element of B, satisfying the fol-
lowing conditions:

(i) v(:�) = v(�)0, where 0 is the generalized complement (de�ned in B).

(ii)

v(� _+ ) =

(
v(�) � v(); if v(�) � v() is de�ned inB;

any element; otherwise.

The other semantic de�nitions (truth, consequence in a given realization,
logical truth, logical consequence) are given like in the QL-case.

Weak partial quantum logic (WPaQL) and strong partial quantum logic
(SPaQL) (formalized in the same language as UPaQL) will be naturally
characterized mutatis mutandis . It will be suÆcient to replace, in the de�-
nition of realization, the notion of e�ect algebra with the notion of orthoal-
gebra and of orthomodular poset (see De�nition 117 and De�nition 110).
Of course, UPaQL is weaker than WPaQL, which is, in turn, weaker than
SPaQL.

Partial quantum logics are axiomatizable. We will �rst present a calculus
for UPaQL, which is obtained as a natural transformation of the calculus
for orthologic.

Di�erently from QL, the rules of our calculus will always have the form:

�1 j��1; : : : ; �n j��n
� j��

In other words, we will consider only inferences from single formulas.

Rules of UPaQL

(UPa1) � j�� (identity)

(UPa2)
� j�� � j� 

� j�  (transitivity)

(UPa3) � j�::� (weak double negation)
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(UPa4) ::� j�� (strong double negation)

(UPa5)
� j��
:� j�:� (contraposition)

(UPa6) � j��_+ :� (excluded middle)

(UPa7)
� j�:� �_+ :� j��_+ �

:� j�� (unicity of negation)

(UPa8)
� j�:� � j��1 �1 j�� � j��1 �1 j��

�_+ � j��1 _+ �1
(weak substitutiv-

ity)

(UPa9)
� j�:�

�_+ � j�� _+ �
(weak commutativity)

(UPa10)
� j�: � j�:(� _+ )

� j�:� (weak associativity)

(UPa11)
� j�: � j�:(� _+ )

�_+ � j�: (weak associativity)

(UPa12)
� j�: � j�:(� _+ )

�_+ (� _+ ) j� (�_+ �)_+ 
(weak associativity)

(UPa13)
� j�: � j�:(� _+ )

(�_+ �)_+  j��_+ (� _+ )
(weak associativity)
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The concepts of derivation and of derivability are de�ned in the expected
way. In order to axiomatize weak partial quantum logic (WPaQL) it is
suÆcient to add a rule, which corresponds to a Duns Scotus-principle:

(WPaQL)
� j�:�
� j�� (Duns Scotus)

Clearly, the Duns Scotus-rule corresponds to the strong consistency con-
dition in our de�nition of orthoalgebra (see De�nition 117). In other words,
di�erently from UPaQL, the logic WPaQL forbids paraconsistent situa-
tions.

Finally, an axiomatization of strong partial quantum logic (SPaQL) can
be obtained, by adding the following rule to (UPa1)-(UPa13), (WPa):

(SPaQL)
� j�:� � j�  � j� 

�_+ � j� 
In other words, (SPaQL) requires that the disjunction _+ behaves like a

supremum, whenever it has the \right meaning".
Let PaQL represent any instance of our three calculi. We will use the

following abbreviations. Instead of � j�
PaQL

� we will write � j��. When �
and � are logically equivalent (� j�� and � j��) we will write � � �.

Let p represent a particular sentential literal of the language: T will be
an abbreviation for p_+ :p; while F will be an abbreviation for : (p_+ :p).

Some important derivable rules of all calculi are the following:

(D1) F j�� ; � j�T (Weak Duns Scotus)

(D2)
� j�:�
� j��_+ �

(weak sup rule)

(D3)
� j��

� � �_+ : (�_+ :�)
(orthomodular-like rule)

(D4)
� j�: � j�: �_+  � � _+ 

� � � (cancellation)

As a consequence, the following syntactical lemma holds:

LEMMA 145. For any � ; �: � j�� i� there exists a formula  such that

(i) � j�:;

(ii) � � �_+ .
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In other words, the logical implication behaves similarly to the partial order
relation in the e�ect algebras.

The following derivable rule holds for WPaQL and for SPaQL:

(D5)
� j�:� � j�  � j�   j��_+ �

�_+ � j� 
Our calculi turn out to be adequate with respect to the corresponding se-
mantic characterizations. Soundness proofs are straightforward. Let us
sketch the proof of the completeness theorem for our weakest calculus (UP-
aQL).

THEOREM 146. Completeness.

� j= � y � j��:

Proof. Following the usual procedure, it is suÆcient to construct a canon-
ical model A = hB ; vi such that for any formulas �; �:

� j�� y � j=A �:

De�nition of the canonical model.

(i) The algebra B = hB ;� ;1 ;0i is determined as follows:

(ia) B is the class of all equivalence classes of logically equivalent
formulas: B := f[�]� j � is a formulag. (In the following,
we will write [�] instead of [�]�).

(ib) [�]� [�] is de�ned i� � j�:�. If de�ned, [�]� [�] := [�_+ �].

(ic) 1 := [T]; 0 := [F].

(ii) The valuation function v is de�ned as follows: v(�) = [�].

One can easily check that A is a \good" model for our logic. The opera-
tion � is well de�ned (by the transitivity, contraposition and weak substi-
tutivity rules). Further, B is an e�ect algebra: � is weakly commutative
and weakly associative, because of the corresponding rules of our calculus.
The strong excluded middle axiom holds by de�nition of � and in virtue of
the following rules: excluded middle, unicity of negation, double negation.
Finally, the weak consistency axiom holds by weak Duns Scotus (D1) and
by de�nition of �.

LEMMA 147. Lemma of the canonical model

[�] v [�] i� � j��:

Sketch of the proof. By de�nition of v (in any e�ect algebra) one
has to prove:

� j�� i� for a given  such that [�] ? [] : [�]� [] = [�]:
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This equivalence holds by Lemma 145 and by de�nition of �.
Finally, let us check that v is a \good" valuation function. In other words:

(i) v(:�) = v(�)0

(ii) v(� _+ ) = v(�) � v(), if v(�) � v() is de�ned.

(i) By de�nition of v, we have to show that [:�] is the unique [] such
that [�]� [] = 1 := [T]. In other words,

(ia) [T] v [�]� [:�].

(ib) [T] v [�]� [] y :� � .

This holds by de�nition of the canonical model, by de�nition of � and by
the following rules: double negation, excluded middle, unicity of negation.
(ii) Suppose v(�) � v() is de�ned. Then � j�:. Hence, by de�nition of
� and of v: v(�)� v() = [�]� [] = [� _+ ] = v(� _+ ).

As a consequence, we obtain:

� j�� i� [�] v [�] i� v(�) v v(�) i� � j=A �

�

The completeness argument can be easily transformed, mutatis mutandis
for the case of weak and strong partial quantum logic.

16  LUKASIEWICZ QUANTUM LOGIC

As we have seen in Section 12, the class E(H) of all e�ects on a Hilbert
space H determines a quasi-linear QMV-algebra. The theory of QMV-
algebras suggests, in a natural way, the semantic characterization of a new
form of quantum logic (called  Lukasiewicz quantum logic ( LQL)), which
generalizes both OQL and L@.

The language of  LQL contains the same primitive connectives as WPaQL
(_+ ;:). The conjunction ( :̂ ) is de�ned via de Morgan law (like in WPaQL).
Further, a new pair of conjunction ( ^̂ ) and disjunction (__ ) connectives
are de�ned as follows:

� ^̂ � := (�_+ :�) :̂ �

�__ � := :(:� ^̂ :�)

DEFINITION 148. A realization for  LQL is a pair A = hM ; vi, where

(i) M = hM ;� ;� ;1 ;0i is a QMV-algebra.

(ii) v (the valuation-function) associates to any formula � an element
of M , satisfying the following conditions:
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v(:�) = v(�)�.

v(� _+ ) = v(�)� v().

The other semantic de�nitions (truth, consequence in a given realization,
logical truth, logical consequence) are given like in the QL-case.

 LQL can be easily axiomatized by means of a calculus that simply mimics
the axioms of QMV-algebras.

The quasi-linearity property, which is satis�ed by the QMV-algebras of
e�ects, is highly non equational. Thus, the following question naturally
arises: is  LQL characterized by the class of all quasi-linear QMV-algebras
(QLQMV)? In the case of L@, Chang has proved that L@ is characterized
by the MV-algebra determined by the real interval [0; 1]. This MV-algebra
is clearly quasi-linear, being totally ordered.

The relation between  LQL and QMV algebras turns out to be much more
complicated. In fact one can show that  LQL cannot be characterized even
by the class of all weakly linear QMV-algebras (WLQMV). Since WLQMV is
strictly contained in QLQMV, there follows that  LQL is not characterized
by QLQMV. To obtain these results, something stronger is proved. In
particular, we can show that:

� the variety of all QMV-algebras (QMV) strictly includes the
variety generated by the class of all weakly linear QMV-algebras
(H SP(WLQMV)).

� H SP(WLQMV) strictly includes the variety generated by the class of
all quasi-linear QMV-algebras (H SP(QLQMV)).

So far, little is known about the axiomatizability of the logic based on
HSP(QLQMV). In the case of H SP(WLQMV), instead, one can prove that
this variety is generated by the QMV-axioms together with the following
axiom:

a = (a� c� b�) e (a� c� � b):
The problem of the axiomatizability of the logic based on H SP(QLQMV)
is complicated by the fact that not every (quasi-linear) QMV-algebraM =
hM ;� ;� ;1 ;0i admits of a \good polynomial conditional", i.e., a polyno-
mial binary operation Æ such that

a Æ b = 1 i� a � b:

Thus, it might happen that the notion of logical truth of the logic based
on H SP(QLQMV) is (�nitely) axiomatizable, while the notion of \logical
entailment" (� j= �) is not.

We will now show that the QMV-algebraM4 (see Figure 7 below) does
not admit any good polynomial conditional. The operations of M4 are
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de�ned as follows:

`

�
0 0 0

0 a a

0 b b

0 1 1

a 0 a

a a 1

a b 1

a 1 1

b 0 b

b b 1

b a 1

b 1 1

1 0 1

1 a 1

1 b 1

1 1 1

�

0 1

a a

b b

1 0

�
1

�a
��

��
��

��

�
0

??
??

??
??

� b
??

??
??

??

� ��
��

��
��

Figure 7. M4

Let us consider the three-valued MV-algebra M3, whose operations are
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�
1

� 1
2

�
0

Figure 8. M3

de�ned as follows:

�
0 0 0

0 1
2

1
2

0 1 1
1
2 0 1

2
1
2

1
2 1

1
2 1 1

1 0 1

1 1
2 1

1 1 1

�

0 1
1
2

1
2

1 0

It is easy to see that the map h : M4 !M3 such that 8x 2M4

h(x) :=

8><
>:

0; if x = 0;
1
2 ; if x = a or x = b;

1; otherwise

is a homomorphism of M4 into M3.

Suppose, by contradiction, that M4 admits of a good polynomial condi-
tional !M4 . Since a 6� b, we have h(a!M4 b) 6= 1. Thus,

1 6= h(a!M4 b) = h(a)!M3 h(b) =
1

2
!M3

1

2
= 1;

contradiction.
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17 QUANTUM LOGIC AND THE CUBE OF LOGICS
(BY GIULIA BATTILOTTI AND CLAUDIA FAGGIAN)

Di�erent forms of quantum logic can be axiomatized as sequent calculi
[Dummett, 1976; Nishimura, 1980; Cutland and Gibbins, 1982; Tamura,
1988; Nishimura, 1994]. This permits us to investigate such logics more and
more deeply from the proof-theoretical point of view. A sequent calculus for
orthologic can be obtained from a calculus for classical logic, by requiring
a special restriction on contexts in the rules that would permit to derive
the distributive laws. The critical rules are the following: the introduc-
tion of disjunction on the left side, the introduction of conjunction on the
right side, the rules concerning implication and negation. Such a restric-
tion, however, determines some serious proof-theoretical diÆculties, because
quantum logic has a suÆciently strong negation that satis�es de Morgan's
laws. The shortcoming becomes apparent when we try to prove the corner-
stone result, represented by a cut-elimination theorem (which, essentially
depends on the formulation of the rules that appear in our proofs).

A simple and compact sequent calculus for orthologic [Faggian and Sam-
bin, 1997; Battilotti and Sambin, 1999], which admits cut-elimination by
means of a neat procedure, can be obtained by a convenient strengthening
of basic logic. This is a new logic that has been introduced in order to
investigate a general structure for the space of logics [Sambin et al., 1998].

In the framework of basic logic, constraints on contexts are not considered
a limitation; on the contrary, they are regarded as a positive feature, which
is called visibility . At the same time, negation is treated by exploiting the
symmetry of the calculus: the main idea is to use Girard's linear negation,
which can be interpreted as an orthocomplement in a quite natural way.
This approach shows that orthologic (and non-distributive logics, in general)
admits a proof-theory, which turns out to be simpler than the proof-theory
for classical logic. Describing quantum logic in the framework of a uniform
and general setting gives many advantages, since it permits us to study
various logics and their mutual relations. In particular, we obtain a whole
system of quantum logics (including linear orthologic); and for each of these
logics we have a proof of the cut-elimination theorem. All this gives rise to
a new formulation of classical logic [Faggian, 1997], with respect to which
orthologic and the other quantum-like logics (created by this method) turn
out to be characterizable as substructural logics . On this basis it is easy to
compare di�erent logics, and to prove embedding results [Battilotti, 1998].

Basic logic and the cube of logics.
As we already know, quantum logic represents a weakening of classical logic,
obtained by dropping the distributive laws. There are at least two other
important logics that are weaker than classical logic: intuitionistic logic
and linear logic [Girard, 1987]. The situation can be sketched as pictured
in Figure 9.
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��
��

��
��
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��

L
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??
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??

??
??

??
??

?

Figure 9. The most important weakenings of classical logic

It is natural to ask whether there exists a logic that represents a kind
of common denominator for Q, I and L, in the same way as classical logic
theoretically includes all the other logics. A solution to this problem has
been found in terms of a suitable sequent calculus B, that represents a basic
logic.

Di�erently from the calculi we have considered in the previous sections,
a sequent calculus for a given logic L is based on axioms and rules that
govern the behaviour of sequents . Any sequent has the form

M ` N

where M;N are (possibly empty) �nite multisets of formulas.14 Axioms are
particular sequents. Any rule has the form

M1 ` N1 : : : Mn ` Nn

M ` N

where M1 ` N1; : : : ;Mn ` Nn are the premisses , while M ` N is the
conclusion of the rule. Rules can be structural or operational . Operational
rules introduce a new connective, while structural rules deal only with the
structure of the sequents (orders, repetitions, etc.).

A derivation is a sequence of sequents where any element is either an
axiom or the conclusion of a rule whose premisses are previous elements of
the sequence.

Basic logic has been introduced in [Battilotti and Sambin, 1999], and
substantially reformulated in [Sambin et al., 1998]. According to the sec-

14A multiset is a set of pairs such that the �rst element of every pair denotes any object,
while the second element denotes the multiplicity of the occurrences of our object. Two
multisets are equal if and only if all their pairs are equal, that is all their objects together
with their multiplicities are equal.
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ond formulation (we will follow here),15 our logic is characterized by three
strictly linked principles: reection, symmetry , visibility . The reection
principle states the fact that logical constants are the result of importing
into a formal system metalinguistic links between assertions, considered pre-
existing. There is a method that leads to the rules of the calculus, starting
from metalinguistic links between assertions. Such a method analyses the
following equivalences, which assert a correspondence between language and
metalanguage:

M ` � � � if and only if M ` � ÆR �

� � � ` N if and only if � ÆL � ` N
Here the generic sign \�", corresponding to a metalinguistic link between

assertions, is translated respectively into the connective ÆR, when it appears
on the right of the sign `, and into the connective ÆL, when it appears on the
left. In B, the operational rules are completely determined by such equiv-
alences. As a consequence, the meaning of a connective turns out to be
semantically determined by the correspondence with a metalinguistic link,
quite independently of any link with a context. Since every metalinguistic
link is translated into a connective according to two specular ways, the sys-
tem of rules, obtained by this method, turns out to be strongly symmetric.
In fact B contains, for every axiom and for every (unary or binary) rule R

Mi ` Ni

M ` N R

its symmetric rule Rs, given by

Ns
i `Ms

i

Ns `Ms Rs

where the map (�)s is de�ned by induction (on the length of formulas), by
putting ÆsR � ÆL and ÆsL � ÆR, given a suitable correspondence between
propositional variables.

The third principle that B satis�es is the visibility property. A rule
for a given connective is called visible when the principal formula and the
corresponding secondary formulas appear in the rule without any context.16

15The formulation of the rules of B presented in [Sambin et al., 1998] is based on �nite
lists rather than �nite multisets of formulas; hence it contains in addition the structural
rule of exchange. Here we prefer to use multisets, in order to obtain an easy comparison
with sequent calculi for quantum logics.
16In any operational rule, the formula in the conclusion that contains the connective

introduced by the rule itself is called the principal formula; the formulas in the premisses
that are the components of the formula introduced by the rule are called the secondary
formulas.
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We shall see below the syntactical consequences of visibility; we stress here
that semantically it corresponds to the fact that basic connectives have a
primitive meaning, in accordance with the reection principle.

As an example let us refer to a rule that plays an important role in the
case of quantum logic. As is well known, in classical logic, disjunction is
introduced on the left according to the following rule:

M;� ` N M;� ` N
M;� _ � ` N

In the case of B, instead, disjunction is introduced according to the fol-
lowing visible form:

� ` N � ` N
� _ � ` N

where the context M has disappeared.

From the intuitive point of view, one can read the di�erence between the
two cases as follows: the rule typical of classical logic attaches a meaning
to the connective _ in presence of the link \;" with M (such a link is to be
interpreted as a conjunction), whereas the visible rule is intended to explain
the meaning of the connective _ by referring only to the connective itself.
In particular, the visible rule does not permit us to prove the equation that
links conjunction and disjunction ( the distributive law of ^ with respect to
_). As a consequence, any sequent calculus for a quantum logic shall adopt
the visible form for the rule that concerns the introduction of disjunction
on the left. As to the other rules, visibility is not strictly necessary in
order to obtain an adequate sequent calculus for quantum logic. However, a
more convenient strategy permits us to axiomatize quantum logic, by adding
only structural rules to basic logic, without any change in the rules for the
connectives. In this way, we can preserve the characteristic properties of
symmetry and visibility of B, that turn out to be highly convenient from
the proof-theoretical point of view (as we will see below).

Basic logic B has no structural rules. As a consequence, B can be re-
garded as \the logic of connectives" from which various stronger logics can
be obtained by adding suitable structural rules.

Let us now present the sequent calculus for B. Similarly to linear logic,
the language of B contains two pairs of conjunctions and disjunctions: the
additive conjunction ^ and the multiplicative conjunction 
; the additive
disjunction _ and the multiplicative disjunction

&
. Further there are two

conditionals (!,  ), and two pairs of propositional literals 1 and >, 0
and ?.
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The basic sequent calculus B

Axioms
� ` �

Operational rules

(Formation)
�; � ` N
� 
 � ` N 
 L M ` �; �

M ` � &
�

&
R

(Reection)
� ` N1 � ` N2

�
&
� ` N1; N2

&
L

M2 ` � M1 ` �
M2;M1 ` � 
 � 
R

(Formation)
` N

1 ` N 1L
M `
M `? ? R

(Reection) ?` ? L ` 1 1R

(Formation)
� ` N � ` N
� _ � ` N _ L M ` � M ` �

M ` � ^ � ^ R

(Reection)
� ` N

� ^ � ` N
� ` N

� ^ � ` N ^ L M ` �
M ` � _ �

M ` �
M ` � _ � _ R

(Formation) 0 ` N 0L M ` > >R

(Formation)
� ` �
� � `  L

� ` �
` �! �

! R

(Reection)
` � � ` N
�! � ` N ! L

M ` � � `
M ` � �  R

(Order)
� ` �  ` Æ
� !  ` �! Æ

! U
 ` Æ � ` �
 � ` Æ �  U

We will distinguish three main kinds of structural rules, labelled by the
letters L, R and S. The extensions of B obtained by the addition of any
combination of such rules can be organized in a cube, which is conceived as
an architecture whose basis is B (see Figure 9).
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Figure 10. The cube of logics

In the cube, every logic with S satis�es the structural rules of weakening
and contraction:17

M ` N
M;O ` P;N weakening

M;O;O ` N;N; P
M;O ` N;P contraction

Every logic with \L" allows left contexts in any inference rule; every logic
with R allows right contexts in any inference rule. In particular, the cube
solves our initial problem, sketched in Figure 11. In fact, vertex BLRS,
opposed to B represents classical logic, vertex BLR and vertex BLS repre-
sent respectively Girard's linear logic and intuitionistic logic; �nally, vertex
BS corresponds to paraconsistent quantum logic (see below). Moreover,
since logics with R are simply the symmetric copy of logics with L, logics
containing both L and R (BLRS, BLR) or logics containing neither L nor

17As we have seen, in B (as well as in linear logic) the connectives conjunction and dis-
junction are splitted into a multiplicative and an additive connective. Such a distinction
depends on the fact that there are two ways of formulating contexts in any operational
rule: this leads to a multiplicative and to an additive form for each rule. The multiplica-
tive and additive formulation turn out to be equivalent, whenever the structural rules of
weakening and contraction hold. Hence, the distinction plays an essential role in linear
logic and a fortiori in basic logic (where weakening and contraction fail); at the same
time, it vanishes in classical logic and in orthologic.
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R (BS, B), are symmetric. The study of quantum logics �nds place in the
diagonal of symmetric logics, where a �ner distinction of structural rules
can be obtained.

Sequent calculus for Orthologic.
The logic BS is non-distributive. Let us consider the fragment of BS re-
stricted to the connectives ^ and _. If we want to obtain a quantum logic
from it, what is still missing is an involutive negation, satisfying de Morgan.

This aim can be reached by extending the language and by adopting
Girard's negation. The key point is to assume as primitive symbols of the
language both the propositional variables and their duals. In other words,
the propositional literals are assumed to be given in pairs, consisting of a
positive element (written p) and of a negative one (written p?). On this
basis, the negation of a formula is de�ned as follows:

p?? := p (� ^ �)? := �? _ �? (� _ �)? := �? ^ �?

By this choice, we obtain a calculus called basic orthologic and denoted by
?BS (where the symbol ? reminds us that our calculus is applied to a dual
language). Basic orthologic turns out to be equivalent to paraconsistent
quantum logic (PQL). As we already know, PQL represents a weakening
of orthologic, that is obtained by dropping the non contradiction and the
excluded middle principles. Hence, in order to have a calculus for orthologic,
it will be suÆcient to add such principles to our ?BS. This can be done by
means of two new structural rules called transfer . The result is a calculus
for orthologic, which will be denoted by ?O.

The rules of ?O are the following (where (i) -(v) are the rules of ?BS 18

while (vi) express the transfer rules).

(i) � ` �

(ii)

� ` N � ` N
� _ � ` N _L M ` � M ` �

M ` � ^ � ^R

(iii)
� ` N

� ^ � ` N
� ` N

� ^ � ` N ^L
M ` �

M ` � _ �
M ` �

M ` � _ � _R

(iv)
M ` N

M;O ` P;N weakening

18Note that, in ?BS, weakening and contraction are redundant. In fact, one can show
that such a calculus admits elimination of contraction. At the same time, weakening on
the right and on the left can be simulated by ^L and _R, respectively. On this basis,
PQL turns out to admit a very simple formulation, given by (i), (ii), (iii).
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(v)

M;O;O ` N;N; P
M;O ` N;P contraction

(vi)

M ` N
M;N? ` tr1

M ` N
`M?; N

tr2

It is not hard to prove:

THEOREM 149. ?BS is a calculus for paraconsistent quantum logic.

THEOREM 150. ?O is a calculus for orthologic.

As we have seen, our calculus ?O contains both p; q; r::: and p?; q?; r?::: .
Moreover, for any rule of the calculus, the calculus shall contain also the
symmetric one. As a consequence, whenever the calculus produces a deriva-
tion �, it will also produce the dual derivation �?, obtained substituting
every axiom � ` � with the axiom �? ` �? and every occurrence of a rule
with an occurrence of its corresponding symmetric rule (e.g. ^R with _L).
On this basis there holds:

LEMMA 151. The following rule is derivable for ?O:

M ` N
N? `M?

Sketch of the proof One can easily see that M ` N is derivable by
a derivation � if and only if N? ` M? is derivable by the symmetric
derivation �?. �

The structure of the calculus ?O permits us to prove the following cut-
elimination result.

THEOREM 152. ?O admits the elimination of the cuts.

O ` � M;� ` N
M;O ` N cutL

O ` �; P � ` N
O ` N;P cutR

Sketch of the proof Like in Gentzen, the cut-elimination procedure is
obtained by induction on two parameters: the degree and the rank of the
cut-formula19.

19Suppose a derivation and a sequent where a formula � occurs. Let us consider the
paths (i.e. the sequences of consecutive sequents) connecting that point with the point
where the formula � has been introduced, (by an axiom, or by weakening, or by an
operational rule whose principal formula was �). The rank of this particular occurrence
of � is the maximum among the lengths of all these paths. In other words, the rank
represents the `maximum length' between the formula- occurrence we are examining and
the point where that occurrence has been introduced.
The degree (or length) of a formula � is the number of the connectives occurring in �.
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The calculus ?O permits us to overcome in a simple way two questions
that usually make cut elimination for orthologic so complicated: (i) con-
straints on contexts and (ii) negation. We give a sketch of the proof, con-
sidering the two points. The �rst problem is solved by visibility, while the
second one is solved by symmetry.

(i) As we have seen, in any calculus for quantum logic the rule that
introduces _ on the left (here indicated with _L) must have an empty
context on the left. Now consider, for a generic calculus, the derivation

� `  ^ Æ � `  ^ Æ
� _ � `  ^ Æ _L M;  ` �

M; ^ Æ ` �

M;� _ � ` �
cutL

In this derivation, the cut-formula is principal on the right premiss;
hence the right rank is 1. In such a situation, Gentzen's procedure to
lower the rank must operate on the left; this would necessarily produce
the two derivations

� `  ^ Æ M;  ^ Æ ` �

M;� ` �
cutL

� `  ^ Æ M;  ^ Æ ` �

M;� ` �
cutL

Now, one would like to conclude by applying _L, in order to obtain
M;� _ � ` �. However, this step is here not allowed, unless M is
empty. Such a problem does not arise for the calculus ?O, because,
by visibility, every principal formula has an empty context.

(ii) In ?O the only rules about negation are the structural rules of transfer.
Let us consider a derivation of the form:

O ` �?

.... �

M ` �
M;�? ` tr1

M;O ` cutL

We can reduce the rank in a quick way, by exploiting symmetry. In
fact, Girard's negation has the nice property that every formula �
and its dual �? have exactly the same degree. The same idea can
be extended to derivations, and hence to the rank of a cut. As we
have seen in Lemma 151, whenever we have a derivation � for the
sequent M ` N , we also have the dual derivation �? , which derives
N? ` M?. The two derivations � and �? have exactly the same
(symmetrical) structure. Hence in particular, if � is principal, �? is
principal. If � has rank r, then also �? will have the same rank r. In
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? ?O
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BS
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? ?OL

tr
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Figure 11. The diagonal of the cube

such a situation, in order to raise the cut rule, we can substitute �?

by � (ipping derivation). As a consequence, the initial derivation
will be simply reduced to:

O ` �?
.... �?

�? `M?

O `M? cutL

O;M ` tr1

�

Quantum logics and classical logic
We will now consider the symmetric diagonal of the cube in the diagram
in Figure 11. In our diagram, the calculus ?O appears as an intermediate
point between basic orthologic and classical logic. Similarly, we have another
intermediate point between basic logic and linear logic: this is given by ?B
+ tr, which represents the common denominator for orthologic and linear
logic (we will call it \ortholinear logic" ?OL). In the same way, ?B turns
out to be the common denominator of basic orthologic and linear logic. On
this basis, we obtain a whole system of quantum logics, which are all cut-
free. The last of our logics, ?B + tr, seems to be a good candidate in order
to represent a linear quantum logic in the sense of Pratt [1993].

So far we have only dealt with a fragment of basic logic, which has no
implication connective. By means of this linguistic restriction, we have
easily proved the equivalence between our calculi and the usual formula-
tions of paraconsistent quantum logic and of orthologic. However, the same
methods can be naturally applied to the complete versions of our calculi,
preserving cut-elimination and ipping of derivations. In this way, we will
have a primitive implication connective! (together with its dual  ) in all
the logics we have considered. An interesting question to be investigated
concerns the possibility of physical interpretations of such new connectives.
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In the diagram above, we have still a question mark concerning the path
from orthologic to classical logic. Our question can be solved as follows:

THEOREM 153. A calculus for classical logic is obtained from a calculus
for orthologic by adding a pair of structural rules, named separation:

(vii)

M;O `
M ` O? sep1

` N;P
N? ` P sep2

It is easy to see that, in the framework of ?O, separation rules allow us
to derive the following full cut

M1 ` �;N1 M2; � ` N2

M1;M2 ` N1; N2
cut

The converse is also true: full cut allows us to derive separation (by cutting
with ` A;A?). In this sense, separation and cut rule are equivalent: adding
either of them to orthologic gives rise to one and the same logic. Theorem
153 then expresses, with a more e�ective20 content, the well known fact
that adding a full cut rule to orthologic yields classical logic (cf. [Dummett,
1976], [Cutland and Gibbins, 1982]).

It is natural to ask what is the meaning of sep. In the same way as the
tr rules are equivalent to tertium non datur and non contradiction, the sep
rules turn out to be equivalent to reductio ad absurdum 21

M;�? `
M ` � RAA

Let us consider again our Figure 11, where the question marks have been
substituted by sep. Given the logic B as a basic calculus, which contains the
fundamental rules for the connectives, several structural rules can be added:
each rule permits us to reach a \superior" logic. The strongest element is
represented by classical logic, which can be characterized as ?B + S + tr +
sep. With respect to our formulation of classical logic (denoted by ?C) all
the other logics in the diagram can be described as `substructural logics:
for, they can be obtained by dropping some structural rules. This situation
holds in particular for quantum logics, which turn out to be simpler and
more basic than classical logic, from the proof-theoretical point of view.

As we have seen, the examples of quantum logic (we have considered so
far) are, at the same time, substructural with respect to classical logic and
substructural one with respect to the other. On this basis, on can prove

20For, in a sequent calculus cut should represent a metarule, that is should be elim-
inable.
21In [Gibbins, 1985], pag.361, Gibbins shows that dropping the rule RAA has a direct

justi�cation in terms of quantum mechanics, and this is the only case of direct justi�ca-
tion, among all the rules which must be restricted in quantum logic.
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some embedding theorems, by convenient restriction of our structural rules
to suitable kinds of formulas, by means of special modalities. In the case of
linear logic, exponentials have been introduced in order to express weakening
and contraction. In the case of quantum logics, instead, we should obtain
rules of separation and of transfer in a suitable way. How to express the
separation rules in orthologic, in order to obtain an embedding of classical
logic into orthologic? Given ?O, let us �rst assume in the language, besides
the literals p and p?, two new kinds of literals, #p and #p?. This permits us
to obtain a new kind of formulas, that will be named \separable formulas",
formulated as follows:

#(p) := #p #(p?) := #p? #(#p) := #p #(#p?) := #p?

for literals;
#(� Æ �) := #� Æ #�

for every binary connective Æ.
Separable formulas are precisely those formulas that satisfy the separation
rules, which are then de�ned as follows:

(vii0)

M; # O `
M `# O? # sep1

`# N;P
# N? ` P # sep2

where formulas in M , N are any kind of formulas, while formulas in #M ,
#N are separable formulas. We can now introduce the system #?O, which
is de�ned by the rules of ?O and by the rules #sep. In this system, the
sign # plays the role of a modality (which behaves as an unary monotonic
connective: if M ` N , is a derivable sequent in #?O, then also #M ` #N is
a derivable sequent).

Consider now the system ?C for classical logic, and let us describe # as
a map from formulas of the language of ?C into formulas of the language
of #?O. It is easy to show, by induction on the depth of the derivation,
that:

THEOREM 154. For every M , N , M ` N is derivable in ?C if and only
if #M ` #N is derivable in #?O.

Sketch of the proof A proof can be obtained by a natural transformation
of a similar proof, given in [Battilotti, 1998] for the case of classical logic
and basic orthologic. �

As a consequence we obtain an embedding of ?C in #?O. Formulas of
the kind #� can be interpreted as \the classical part of #?O". Similarly to
?, the sign # does not represent here a connective; therefore, there is no
need of introduction rules. One can prove that sequents like #� ` � or like
� ` #� are not provable (di�erently from the exponentials in linear logic).
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In this way, the system #?O is simply a way to represent the coexistence of
classical and quantum logic: it does not assert that \classical" propositions
are stronger or weaker than \quantum" propositions.

18 CONCLUSION

Some general questions that have been often discussed in connection with
(or against) quantum logic are the following:

(a) Why quantum logics?

(b) Are quantum logics helpful to solve the diÆculties of QT?

(c) Are quantum logics \real logics"? And how is their use compatible
with the mathematical formalism of QT, based on classical logic?

(d) Does quantum logic con�rm the thesis that \logic is empirical"?

Our answers to these questions are, in a sense, trivial, and close to a
position that Gibbins (1991) has de�ned a \quietist view of quantum logic".
It seems to us that quantum logics are not to be regarded as a kind of \clue",
capable of solving the main physical and epistemological diÆculties of QT.
This was perhaps an illusion of some pioneering workers in quantum logic.
Let us think of the attempts to recover a realistic interpretation of QT based
on the properties of the quantum logical connectives22.

Why quantum logics? Simply because \quantum logics are there!" They
seem to be deeply incorporated in the abstract structures generated by QT.
Quantum logics are, without any doubt, logics . As we have seen, they
satisfy all the canonical conditions that the present community of logicians
require in order to call a given abstract object a logic. A question that has
been often discussed concerns the compatibility between quantum logic and
the mathematical formalism of quantum theory, based on classical logic.
Is the quantum physicist bound to a kind of \logical schizophrenia"? At
�rst sight, the compresence of di�erent logics in one and the same theory
may give a sense of uneasiness. However, the splitting of the basic logical
operations (negation, conjunction, disjunction,...) into di�erent connectives
with di�erent meanings and uses is now a well accepted logical phenomenon,
that admits consistent descriptions. Classical and quantum logic turn out
to apply to di�erent sublanguages of quantum theory, that must be sharply
distinguished.

Finally, does quantum logic con�rm the thesis that \logic is empirical"?
At the very beginning of the contemporary discussion about the nature of
logic, the claim that the \right logic" to be used in a given theoretical
situation may depend also on experimental data appeared to be a kind of

22See for instance [Putnam, 1969]
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extremistic view, in contrast with a leading philosophical tradition according
to which a characteristic feature of logic should be its absolute independence
from any content.

These days, an empirical position in logic is generally no longer regarded
as a \daring heresy" . At the same time, as we have seen, we are facing
not only a variety of logics, but even a variety of quantum logics . As a
consequence, the original question seems to have turned to the new one :
to what extent is it reasonable to look for the \right logic" of QT?
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MARTIN BUNDER

COMBINATORS, PROOFS AND

IMPLICATIONAL LOGICS

1 INTRODUCTION

In this chapter we �rst look at operators called combinators. These are
very simple but extremely powerful. They provide a means of doing logic
and mathematics without using variables, are powerful enough to allow the
de�nition of all recursive functions and have more recently been used as a
basis for certain \functional" computer languages.

We are interested in another use here which involves the functional
character or type possessed by many combinators. Each type can be
interpreted as a theorem of the intuitionistic implicational logic H! and
combinators possessing that type can be interpreted as Hilbert-style proofs
of that theorem. Weaker sets of combinators can be used to represent
proofs in sublogics of H! , these include the substructural logics, such
as the relevance logics R! and T!. There is a further interpretation of
combinators and types as programs and speci�cations which we will not
discuss here.

Next we look at lambda calculus. This also allows the de�nition of all
recursive functions and has also been used in foundations of mathematics
and computer language development. Many lambda terms also have types
and these again are the theorems of H!. The lambda terms represent
natural deduction style proofs of these theorems.

In the third section of this chapter we look at translations from combi-
nators to lambda terms and vice versa. For the combinators and lambda
terms that represent proofs in H! these translations are well known, for
those corresponding to proofs in weaker logics they are quite new.

In a fourth section we develop a new algorithm which, given an implica-
tional formula, allows us to �nd lambda terms representing natural deduc-
tion style proofs of the formula or demonstrates that the formula has no
proof.

Most implicational substructural logics are speci�ed by substructural
rules or by axioms and not by rules in the natural deduction form. Our
translation procedure, together with the algorithm, provides us with a sim-
ple constructive means of �nding Hilbert-style proofs in many of these logics.
As the translation procedure tells us which lambda terms are translatable
into which sets of combinators, the algorithm can be directed to look only
for the lambda terms of the appropriate kind. The algorithm is inherently
�nite; for any given formula, and for many logics, bounds for the proof
searches can be written down.

D. Gabbay and F. Guenthner (eds.),
Handbook of Philosophical Logic, Volume 6, 229{286.
c 2002, Kluwer Academic Publishers. Printed in the Netherlands.
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The H! algorithm has been implemented by Anthony Dekker as Brouwer
7.9.0 (see [Dekker, 1996]) and, for any implicational formula, produces a
�-term proof (or even 50 alternative proofs) or a guarantee that there is
no proof, virtually instantly. The implementation has more recently been
extended by Martijn Oostdijk as LambdaCal2, (see [Oostdijk, 1996]) to
cover the other implicational systems in this chapter as well as certain sys-
tems with other connectives. This implementation supplies combinator and
lambda calculus proofs.

2 COMBINATORY LOGIC

Combinators are operators which manipulate arbitrary expressions by can-
cellation, duplication, bracketing and permutation. Combinators were �rst
de�ned by Sch�on�nkel in his 1924 paper and rediscovered by Curry in [1930].

To illustrate their use we consider the following examples:
let Axy (rather than A(x; y)) represent x+ y. The commutative law for

addition can then be written as

Axy = Ayx:

Given a combinator C with the property:

Cxyz = xzy

this becomes
Axy = CAxy

which could be simply written, without variables, as

A = CA:

Given an identity combinator I, i.e. one such that

Ix = x

we can write
0 + x = x

as
A0x = x

or
A0x = Ix

and so, without variables, as
A0 = I:

x+ 0 = x



COMBINATORS, PROOFS AND IMPLICATIONAL LOGICS 231

would be
CA0 = I:

Sch�on�nkel found that only two combinators, K and S, were enough to
de�ne all others.

We will now introduce these, other combinators, and our method of writ-
ing functional expressions (such as Axy rather than A(x; y)) more formally.

2.1 Combinators and Application

DEFINITION 1 (Combinator).

1. K and S are combinators.

2. If X and Y are combinators so is (XY ).

(The operation in (2) is called application.)

Though it is possible, it is often not convenient to work without vari-
ables; we therefore introduce terms which are made up of combinators and
variables using application. Other constants could also be included in (1)
below.

DEFINITION 2 (Term).

1. K, S, x; y; z; : : : ; x1; x2; : : : are terms

2. If X and Y are terms so is (XY ).

Notation We use association to the left for terms. This means that our
Axy is short for ((Ax)y). A binary function over the real numbers such as
A is therefore interpreted as a unary function from real numbers into the
set of unary functions from real numbers to real numbers.

The process of going from CXY Z to XZY or from IX to X is called
reduction. This is de�ned as follows:

DEFINITION 3 (Reduction). The relation X . Y (X reduces weakly to
Y ) is de�ned as follows:

(K) KXY . X

(S) SXY Z . XZ(Y Z)

(�) X . X

(�) X . Y ) UX . UY

(�) X . Y ) XU . Y U

(�) X . Y and Y . Z ) X . Z
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(K) and (S) are called the reduction axioms for K and S.

DEFINITION 4 (Weak equality). X = Y if this can be derived from the
axioms and rules of De�nition 3 with \=" instead of \ .", together with

(�) X = Y ) Y = X .

The formal system consisting of at least De�nition 1 and the postulates in
De�nitions 3 we call combinatory logic. Other axioms and rules may be
added.

We now show how the combinators we met earlier, and others, can be
de�ned. We use \�" for \equals by de�nition".

DEFINITION 5.
I � SKK

B � S(KS)K
C � S(BBS)(KK)
B0 � CB
W � SS(KI)
S0 � B(BW)(BBB0)

Each of these de�ned combinators has a characteristic reduction theorem:

THEOREM 6.

1. IX . X

2. BXYZ . X(Y Z)

3. CXYZ . XZY

4. B0XY Z . Y (XZ)

5. WXY . XY Y

6. S0XY Z . Y Z(XZ)

Proof.

1. SKKX . KX(KX) by (S)
so SKKX . X by (K) and (�)
2. S(KS)KXY Z . KSX(KX)Y Z by (�) and (�)

. S(KX)Y Z by (K) and (�)

. KXZ(Y Z) by (S)

. X(Y Z) by (K) and (�).
so S(KS)KXY Z . X(Y Z) by (�) �

If M(X1; : : : ; Xn) is a term made up by application using zero or more
occurrences of each of X1; : : : ; Xn; we can �nd a combinator Z such that
ZX1X2 : : :Xn . M(X1; : : : ; Xn).
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This property is called the \combinatory completeness" of the com-
binatory logic based on K and S.

The combinator Z above is represented by

Z � [x1]([x2](: : : ([xn]M(x1; : : : ; xn)) : : :))

where each [xi](: : :) is called a bracket abstraction.
Bracket abstractions can be de�ned in various ways, a simple de�nition,

involving S and K, is as follows:

DEFINITION 7 (Bracket abstraction [xi]).

(i) [xi] xi � I

(k) [xi] Y � KY if xi 62 Y
(�) [xi]Y xi � Y if xi 62 Y
(s) [xi]Y Z � S([xi]Y )([xi]Z),

where xi 62 Y stands for xi does not appear in Y .

The above clauses must be used in the order given i.e. (ik�s). In the order
(iks�), we would always obtain S([xi]Y )I for [xi]Y xi, if xi 62 Y , instead of
the simpler Y .

Repeated bracket abstraction as in [x1]([x2](: : : ([xn]M) : : :)) we will write
as [x1; x2; : : : ; xn]M .

EXAMPLE 8.

[x1; x2; x3] x3(x1x3) � [x1; x2]S([x3]x3)([x3](x1x3)) by (s)
� [x1; x2]SIx1 by (i) and (�)
� [x1]K(SIx1) by (k)
� S(KK)(SI) by (k) and (�):

S(KK)(SI)x1x2x3 . KKx1(SIx1)x2x3
. K(SIx1)x2x3
. SIx1x3
. Ix3(x1x3)
. x3(x1x3):

Bracket abstraction has the following property which we call (�) for
lambda abstraction in Section 3.

THEOREM 9. ([x]X)Y . [Y=x]X where [Y=x]X is the result of substituting
Y for all occurrences of x in X.

Proof. By a simple induction on the length of X . �
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From this theorem we get:

([x]X)x . X

and if x1; : : : ; xn 62 X1X2 : : :Xn,

([x1; : : : ; xn]X)X1 : : : Xn . [X1=x1; : : : ; Xn=xn]X ;

where [X1=x1; : : : ; Xn=xn]X is the result of substituting simultaneously X1

for all occurrences of x1 in X; : : : ;Xn for all occurrences of xn in X .

2.2 Combinators, Types, Proofs and Theorems

If a term X is an element of a set � (which we write as X 2 � or X : �
below) we have as

KXY = X;
KXY 2 �:

If Y 2 � we have that KX is a function from the set � into the set �,
i.e. in the usual mathematical notation:

KX : � ! � ;

where � ! � represents the set of all functions from � into �.
From this it follows that K is a function from � into � ! �, so we can

write:
K : �! (� ! �) :

Sets such as the �; � and � ! (� ! �) above will be denoted by
expressions called types. Types are de�ned as follows:

DEFINITION 10 (Types).

1. a; b; c; : : : are (atomic) types.

2. If � and � are types so is (�! �).

For types we use association to the right, �! (� ! �) can therefore be
written as �! � ! �.

The type variables or atomic types can be interpreted as arbitrary sets,
the compound types then represent sets of functions.

Above we arrived at K : � ! � ! �; such a derivation we call a type
assignment, we call � ! � ! � the type of K and K an inhabitant of
�! � ! �.

Type assignments can be more formally derived from:

DEFINITION 11 (Type Assignment).

1. Variables can be assigned arbitrary types
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2. If X : �! � and Y : � then (XY ) : �.

3. If Xx : �; x 62 X and x : � then X : � ! �.

We will illustrate this by assigning a type to S.

If we let x : �! � ! ; y : �! � and z : � we have by (2) xz : � ! 
and yz : � and so xz(yz) :  which is, by (S), Sxyz : .

Now by (3) Sxy : �! ,

Sx : (�! �)! �! 

and S : (�! � ! ) ! (�! �) ! �! :

In particular we have

S : (a! b! c) ! (a! b) ! a! c ;

and it can be seen, from the work above, that every type of S has to be a
substitution instance of this. A type with this property we call the princi-
pal type scheme (PTS).

The PTS of K is given by

K : a! b! a :

Notice that the types of K and S are exactly the axioms of H!, intu-
itionistic implicational logic, when ! is read as implication and �; �; : : :
are read as well formed formulas or propositions.

De�nition 11.2 and 3 can be rewritten as:

!e

X : �! � Y : �

XY : �

and

!i

[x : �]
....

Xx : �

X : �! � (x 62 X)

We have, considering only the right hand sides of the :s, the rules of
inference of a natural deduction formulation of H!.

If we take the types of K and S as axiom schemes and use only the parts
of !e to the right of the :s, we have a Hilbert-style formulation of H!.
What appears on the left hand side of the �nal step in such a proof gives
us a unique representation of a proof of the theorem expressed on the right
of the :.
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EXAMPLE 12. If we abbreviate (� !  ! Æ) ! (� ! ) ! � ! Æ by
� we have:

K :�! ( ! Æ)! �
S :�

KS : ( ! Æ)! �
S : (( ! Æ)! �)! (( ! Æ)! � !  ! Æ)
! ( ! Æ)! (� ! )! � ! Æ

S(KS) : (( ! Æ)! � !  ! Æ)! ( ! Æ)! (� ! )! � ! Æ
K : ( ! Æ)! � !  ! Æ

S(KS)K : ( ! Æ)! (� ! )! � ! Æ

We note that each S or K in S(KS)K represents the use of an axiom
and each application a use of !e. We also note that the above represents
a type for the combinator B of De�nition 5.

Some combinators do not have types, for example if we want to �nd a
type for SSS we would proceed as follows:

let S : (� !  ! Æ) ! (� ! ) ! � ! Æ
and S : (� ! �! �) ! (� ! �) ! � ! �

then we have putting � ! �! � = �; � ! � =  and � ! � = Æ:

SS : ((� ! �! �) ! � ! �) ! (� ! �! �) ! � ! � :

Now with S : (� ! � ! �) ! (� ! �) ! � ! �, we would need, to
assign a type to SSS :

� ! �! � = �! � ! � ;
� = �! � ;

and � = �! � :

However this requires both � = � and � = �! � which is impossible.

Also there are types that have no inhabitant, for example a ! b and
((a! b)! a)! a. In fact:

THEOREM 13.

1. If a type � has a combinator inhabitant, � is a theorem of the intu-
itionistic implicational logic H!.

2. If � is a theorem of H!, then it is the type of a combinator.
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Proof.

1. It can be proved by an easy induction on the length of X that

x1 : �1; : : : ; xn : �n ` X : �

implies

�1; : : : ; �n ` �

2. It can be proved by an induction on the length of the deduction leading
to

�1; : : : ; �n ` �
that there are variables x11; : : : x1m1 ; : : : ; xnmn

and a term X such
that

FV (X) � fx11; : : : ; xnmn
g

and

x11 : �1; : : : ; x1m1 : �1; x21 : �2; : : : ; xnmn
: �n ` X : � :

For more details on this see Hindley [1997, Section 6B2 and Section 6B5].
�

The isomorphism between inhabitants and types and proofs and theorems
of H!, which can be extended to �t programs and speci�cations, is called
the Curry-Howard or Formulas-as types isomorphism.

Curry was the �rst to recognise the relation between types and theorems
of H! (see [Curry and Feys, 1958]). The idea was taken up and extended
to other connectives and quanti�ers in Lauchli [1965; 1970], Howard [1980]

(but written in 1969), de Bruin [1970; 1980] and Scott [1970]. Recently it
was extended to include a large amount of mathematics in Crossley and
Shepherdson [1993].

2.3 Types and Weaker Logics

If we consider an arbitrary set of combinators Q, we can de�ne the set of
Q-combinators and Q-terms as follows:

DEFINITION 14 (Q-terms).

1. Elements of Q and x; y; z; : : : ; x1; x2; : : : are Q-terms

2. If X and Y are Q-terms so is (XY ).
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DEFINITION 15 (Q-combinators). A Q-term containing no variables is a
Q-combinator.

The formal system consisting of at least De�nition 15 and the postulates
of De�nition 3, with the reduction axioms (K) and (S) replaced by ones
appropriate to Q, is called Q-combinatory logic. Q-logic is the implica-
tional logic whose axioms are the types of the combinators in Q and whose
rule is ! e.

Thus combinatory logic, as de�ned before, is fS;Kg-(or simply SK-)
combinatory logic, terms are SK-terms and combinators are SK-combinators.

DEFINITION 16 (Weaker sets of combinators). A set Q1 of combinators
is said to be weaker than a set Q2, if for every Q1-combinator X there
is a Q2-combinator Y with the same reduction theorem. (In that case we
say X is Q2-de�nable.) Also there must be a Q2-combinator which is not
Q1-de�nable.

DEFINITION 17 (Weaker combinatory logics). Q1-combinatory logic is
weaker than Q2-combinatory logic if Q1 is weaker than Q2.

BCKW-combinatory logic is just as strong as SK-combinatory logic as
B,C,K and W are (by De�nition 5) SK-de�nable and S is also BCKW-
de�nable (S � B(BW)(BC(BB))).

BCW and BCIW-combinatory logics are both weaker than SK-combin-
atory logic as S is not de�nable using B,C,I and W.

It is clear that BCK- and BCIW-combinatory logics are not combina-
torially complete.

The set of types of the BCK-combinators can easily be seen to be the
set of theorems generated by !e using the types of B,C and K. This we
call BCK-(implicational) logic, which is a subsystem of H!.

In general, if all the combinators of Q1 [Q2 have types and Q1 is weaker
than Q2 then Q1-logic is weaker than Q2-logic.

As before, given a Q-combinator, a Q-theorem and its proof can be read
o�.

EXAMPLE 18. Determine the type of BC(BK) and the BCK-proof of
this as a BCK-theorem.

B : (�! �) ! ( ! �) !  ! �
C : (Æ ! � ! �) ! � ! Æ ! �

BC : ( ! Æ ! � ! �) !  ! � ! Æ ! �
(Here � = Æ ! � ! �, � = � ! Æ ! � :)

K :�! � ! �
BK : (� ! �) ! � ! � ! �

(Here � = �; � = � ! � and  = �.)
BC(BK) : (� ! �) ! � ! � ! �

(Here  = � ! �, Æ = �; � = � and � = �)
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2.4 Combinator Reduction and Proof Reduction

We illustrate here what happens to (part of) a proof represented by a com-
binator KXY or SXY Z when this combinator is reduced by (K) or (S).

The original proof involving KXY must look like:

K : �! � ! �
D1

X : �

KX : � ! �
D2

Y : �

KXY : �
D3

with D1; D2 and D3 representing other proof steps.
With the reduction of KXY to X the proof reduces (or normalises) to:

D1

X : �
D3

If the proof involving SXY Z is:

D2

Y : �! �

S : (�! � ! )! (�! �)! �! 
D1

X : �! � ! 

SX : (�! �)! �! 

SXY : �! 
D3

Z : �

SXY Z : 
D4

With the reduction of SXY Z to XZ(Y Z) the proof reduces (or nor-
malises) to:

D1

X : �! � ! 
D3

Z : �

XZ : � ! 

D2

Y : �! �
D3

Z : �

Y Z : �

XZ(Y Z) : 
D4

It may be, by the way, if D3 is a particularly long part of the proof, that
the \reduced proof" is actually longer than the original. In the same way,
if Z is long, XZ(Y Z) may be longer than SXY Z.

DEFINITION 19. If a term has no subterms of the form KXY or SXY Z,
the term is said to be in normal form.

Not every combinator has a normal form, for example WI(WI) and
WW(WW) do not, but every combinator that has a type also has a normal
form.
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A combinator in normal form will represent a normalised proof, these
however are not unique. For example:

K : a! a! a

and also
KI : a! a! a:

3 LAMBDA CALCULUS

Lambda calculus, like combinatory logic, provides a means of representing
all recursive functions. It is, these days, much used as the basis for functional
computer languages. Extensions of the typed lambda calculus we introduce
in Section 3.2 below, also have applications in program veri�cation.

Lambda calculus was �rst developed by Church in the early 30s (see
[Church, 1932; Church, 1933]) as part of a foundation of logic and mathe-
matics. This was also the aim of Curry's \illative combinatory logic", but
both Church's and Curry's extended systems proved to be inconsistent.

The use of the lambda calculus notation is best seen through an example
such as the following:

If the value of the sin function at x is sinx and the value of the log
function at x is logx, what is the function whose value at x is x2? Usually
this function is also called x2. The lambda calculus allows us to eliminate
this ambiguity by using �x:x2 for the name of the function.

3.1 Lambda terms and lambda reductions

We will now set up the system more formally:

DEFINITION 20 (Lambda terms or �-terms).

1. Variables are �-terms.

2. If X is a �-term and x a variable then, the abstraction of X with
respect to x, (�x:X) is a �-term.

3. If X and Y are �-terms then (XY ), the application of X to Y , is a
�-term.

(�x:X) is interpreted as the function whose value at x is X .

Given this we would expect the following to hold:

EXAMPLE 21.
(�x: sin x) = sin

((�x: sin x)x) = sinx
((�x: sin x)�) = sin�

((�x:x2)2) = 4
((�x:2)x) = 2
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(�x:2) is the constant function whose value is 2.

For terms formed by application we use association to the left as for terms
of combinatory logic. Repeated �-abstraction as in (�x1:(�x2 : : : (�xn:X) : : :))
we abbreviate to �x1:�x2 : : : �xn:X or to �x1x2 : : : xn:X .

Note that while �x1x2 : : : xn:X represents a function of n variables, it is
also a function of one variable whose value, �x2x3 : : : xn:X at x1, is also a
function (if n � 2).

The process of simplifying (�x: sin x)x to sinx or (�x:x2)2 to 22 is called
�-reduction . To explain this we need to de�ne free and bound variables
and, using these, a substitution operator.

As in combinatory logic we use � for equality by de�nition or identity.

DEFINITION 22 (Free and bound variables, closed terms).

1. x is a free variable in x.

2. If x is free in Y or Z then x is free in (Y Z).

3. If x is free in Y and y 6� x, x is free in �y:Y .

4. Every x that appears in �x:Y is bound in �x:Y .

We write FV (X) for the set of free variables of X .
A closed term is one without free variables.

EXAMPLE 23.

1. If X � �xy:xyx; X is a closed term and x and y are bound in X .

2. If X � �xy:xyzx(�u:zx)w; x; y and u are bound in X and FV (X) =
fz; wg

3. If X � x(�x:xy)x, the �rst and last occurrences of x are free occur-
rences of x. Both the occurrences of x in �x:xy are bound.

DEFINITION 24. ([Y=x]X - the result of substituting Y for all free oc-
currences of x in X)

1. [Y=x]x � Y
2. [Y=x]y � y if y is an atom, x 6� y
3. [Y=x](WZ) � ([Y=x]W )([Y=x]Z)

4. [Y=x](�x:Z) � �x:Z
5. [Y=x](�y:Z) � �y:[Y=x]Z if y 6� x

and, y 62 FV (Y ) or x 62 FV (Z).
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6. [Y=x]�y:Z � �z:[Y=x][z=y]Z
if y 6� x; y 2 FV (Y ); x 2 FV (Z) and z 62 FV (Y Z).

As we saw in Example 21, a �-term of the form (�x:X)Y can be simpli�ed
or \reduced". This kind of reduction is speci�ed by the following axiom:

(�) (�x:X)Y . [Y=x]X :

A �-term of the form (�x:X)Y is called a �-redex.
The following axiom allows a change of bound variables and is called an

�-reduction.

(�) �x:X . �y:[y=x]X if y 62 FV (X):

Rules (�), (�) and (�) of De�nition 3 together with:

(�) X . Y ) �x:X . �x:Y ;

allow us to perform �- and �-reductions within a term.

DEFINITION 25 (�- and ��-reduction).
The reduction . speci�ed by (�), (�), (�), (�), (�), (�) and (�) is called

�-reduction.
This becomes ��- (or just �-) reduction if the following axiom is added:

(�) �x:Xx . X if x 62 FV (X):

We denote the two forms of reduction, when we wish to distinguish them,
by .� and .��. If in a ��-reduction (�) is not used we sometimes write .�
instead of .��.

We will call �-, �- and �- reductions �-reductions to distinguish them
from combinator reductions.

EXAMPLE 26.

1. �x1:x1((�x2:x3x2x2)x1) .� �x1:x1(x3x1x1)

2. �x3:(�x1:x1x2(�x2:x3x1x2))(�x1:x1)
.� �x3:(�x1:x1x2(x3x1))(�x1:x1)
.� �x3:(�x1:x1)x2(x3(�x1:x1))
.� �x3:x2(x3(�x1:x1))

so �x3:(�x1:x1x2(�x2:x3x1x2))(�x1:x1)
.�� �x3:x2(x3(�x1:x1))

A term of the form �x:Xx where x 62 FV (X), is called an �-redex.
A term with no �-redexes is said to be in �-normal form. One without

�- and �- redexes is in ��-normal form. One without �-redexes is said to
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be in �-normal form. �-, �- and ��-normal forms are unique (see [Hindley
and Seldin, 1986]).

DEFINITION 27 (�-,�- and ��-equality).
The relation =� is speci�ed by (�); (�); (�); (�); (�) and (�), all with

=� for . and

(�) X =� Y ) Y =� X .

The relation =� is speci�ed by all the above postulates, as well as (�),
with =� for . and =�.

The relation =�� is speci�ed by all the =� postulates, as well as (�), with
=�� replacing =� and ..

Note that the weak equality of combinatory logic obeys all the above
postulates (with [..] for �..) except (�) and (�). It is possible to extend
weak equality by means of some extra equations involving combinators to
make (�) and/or (�) admissible (see [Curry and Feys, 1958, Section 6C4]).
We will call the corresponding equalities for combinatory logic =� and =��

respectively.

3.2 Lambda Terms, Types, Proofs and Theorems

If a term X is an element of a set � and the variable y is in a set �; �y:X
will represent a function from � into � i.e. �y:X : � ! �. We will denote
sets such as these by the types introduced in De�nition 10. We assign types
to �-terms in a similar way to the assignment to combinators.

DEFINITION 28 (Type Assignment).

1. Variables can be assigned arbitrary types.

2. If X : �! � and Y : � then (XY ) : �

3. If X : � and y : � then �y:X : � ! �.

EXAMPLE 29.

1. If x2 : a! a! b; x3 : a then x2x3x3 : b and �x3:x2x3x3 : a! b.

If x1 : (a! b)! c then x1(�x3:x2x3x3) : c, so �x1x2:x1(�x3:x2x3x3) :
((a! b)! c)! (a! a! b)! c.

2. If x1 : � ! � then for x1x1 to have a type we must have � = � ! �
which is impossible. Hence x1x1 and so �x1:x1x1 have no types.

DEFINITION 30. If X is a closed lambda term and ` X : � is derived by
the type assignment rules then X is said to be an inhabitant of � and � a
type of X .
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Note that, as with combinatory logic, if we ignore the terms on the left
of the :, we have in De�nition 20.2 and 3 the elimination and introduction
rules for ! of the natural deduction version of H!. For any Y : �, the
types of the variables free in Y constitute the uncancelled hypothesis which
yield �. When Y has no free variables, � is a theorem of H! and Y
represents a natural deduction proof of �. This can be best seen when the
type assignment rules are written in tree form as in the example below.

EXAMPLE 31.

(6 2)
x2 : a

(6 1)
x1 : a! b! c

(6 2)
x2 : a

x1x2 : b! c
(6 3)

x3 : (b! c) ! a! d

x3(x1x2) : a! d

x3(x1x2)x2 : d

�x2:x3(x1x2)x2 : a! d
�(2) (6 4)

x4 : (a! d) ! e

x4(�x2:x3(x1x2)x2) : e

�x3:x4(�x2:x3(x1x2)x2) : ((b! c) ! a! d) ! e
�(3)

�x1x3:x4(�x2:x3(x1x2)x2) : (a! b! c) !
((b! c) ! a! d) ! e

�(1)

�x4x1x3:x4(�x2:x3(x1x2)x2) : ((a! d) ! e) !
(a! b! c) ! ((b! c) ! a! d) ! e

�(4)!i

!i

!i

!e

!i

!e

!e

!e

At a !i step the assumption cancelled is indicated by -(n). At this time
the assumption is relabelled with (6 n).

In the lambda term proof each application represents a use of !e and
each �-abstraction a use of !i. It follows that:

THEOREM 32.

1. Every type of a �-term is a theorem of H!.

2. Every natural deduction style proof of a theorem of H! can be repre-
sented by a closed �-term with that theorem as its type.

Proof.

1. We will prove the following more general result by induction on X :

If FV (X) � �x1; : : : ; xn	 and if

x1 : �1; : : : ; xn : �n ` X : � �(a)

then

�1; : : : ; �n ` � �(b)

in H!.
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If X is an atom, X = xi for some i; 1 � i � n and � = �i, so (b)
holds.

If (a) is obtained from

x1 : �1; : : : ; xn : �n; xn+1 : �n+1 ` Y : � ;

where � = �n+1 ! � and X = �xn+1:Y then by the induction
hypothesis

�1; : : : ; �n; �n+1 ` �
is valid in H! and so also (b).

If X � UV where
xi1 : �i1 ; : : : ; xik : �ik ` U : �! �;
xj1 : �j1 ; : : : ; xim : �jm ` V : �

and
�
xi1 : �i1 ; : : : ; xin : �ik

	 [ �xj1 : �j1 ; : : : ; �jm : �jm
	

=
�
x1 : �1; : : : ; xn : �n

	
we have by the induction hypothesis in H!:

�i1 ; : : : ; �ik ` �! �

and

�j1 ; : : : ; �jm ` �
and so (b).

2. We show by induction on the length of a proof in H! of

�1; : : : ; �n ` � (c)

that there is a term X with FV (X) � �x1; : : : ; xn	 such that

x1 : �1; : : : ; xn : �n ` X : � (d)

If � is one of the �is this is obvious with X = xi.

If (c) is obtained by the !i rule from

�1; : : : ; �n;  ` Æ

where � =  ! Æ, then by the induction hypothesis we have

x1 : �1; : : : ; xn : �n; xn+1 :  ` Y : Æ
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where FV (Y ) � �x1; : : : ; xn; xn+1	:
Then (d) follows with X = �xn+1:Y .

If (c) is obtained from

�i1 : : : ; �ik ` �! �
and �j1 : : : ; �jm ` �
where

�
�i1 ; : : : ; �ik

	 [ ��j1 ; : : : ; �jm	 =
�
�1; : : : ; �n

	
We have, by the induction hypothesis:

xi1 : �i1 ; : : : ; xik : �ik ` Y : �! �
xj1 : �j1 ; : : : ; xjm : �jm ` Z : �

where FV (Y ) � �xik ; : : : ; xik	 and FV (Z) � �xj1 ; : : : ; xjm	.

(d) then follows with X = Y Z.

�

3.3 Long Normal Forms

In Section 5 we will develop an algorithm, which, when given a type, will
produce an inhabitant of this type if it has one. The inhabitant that is
produced is in long normal form. This is de�ned below.

DEFINITION 33 (Long normal form). A typed �-term �x1 : : : xn:xiX1::Xk

(n � 0; k � 0) is said to be in long normal form (lnf) if X1; : : : ; Xk are
in lnf and have types �1; : : : ; �k and xi has type �1 ! : : : ! �k ! a where
a is an atom.

THEOREM 34. If X is a �-term such that ` X : �, then there is a term
Y in lnf such that ` Y : � and Y .� X.

Proof. By induction on the number of parts xiX1 : : :Xk of X that are not
in lnf and are not the initial part of a term xiX1 : : : Xm, with m > k.

Consider the shortest of these. X1; : : : ; Xk must then be in lnf and if
each Xj has type �j , xi must have type �1 ! : : :! �m ! a where m > k.

Let xp+1; xp+2; : : : ; xp+m�k be variables not free in xiX1 : : : Xk with
types �k+1; �k+2; : : : ; �m respectively.

Then xiX1 : : : Xkxp+1 : : : xp+m�k has type a and �xp+1 : : : xp+m�k:xi
X1 : : : Xkxp+1 : : : xp+m�k has type �k+1 : : : ! �m ! a, the same as
xiX1 : : : Xk.

This new term with the same type as xiX1; : : : ; Xk is in lnf, so when it
replaces xiX1 : : : Xk in X , there is one fewer part not in lnf.

Hence X can be expanded to a term Y in lnf such that Y .� X . The
types of the parts of X being changed are not a�ected so the type of Y will
be the same as the type of X . �
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3.4 Lambda Reductions and Proof Reductions

We illustrate here what happens to (a part of) a proof represented by a
�-term (�x:X)Y or �y:Xy with y 62 FV (X) when this is reduced by (�) or
(�).

(6 1)
x : �
D1

X : � �(1)
�x:X : �! �

D2

Y : �

(�x:X)Y : �
D3

reduces to:
D2

Y : �
[Y=x]D1

[Y=x]X : �
[[Y=x]X=(�x:X)Y ]D3

and

!e

D1

X : �! �
(6 1)
x : �

!i

Xx : �

�x:Xx : �! �
D2

�(1)
(x 62 FV (X))

reduces to
D1

X : �! �

[X=�x:Xx]D2

An expansion of a typed �-term to lnf reverses the second reduction.
The e�ect of these reductions on a type assignment shown by the above

is stated in the theorem below.

THEOREM 35 (Subject Reduction Theorem). If

x1 : �1; : : : ; xn : �n ` X : �

and

X .�� Y ;

then

x1 : �1; : : : ; xn : �n ` Y : �
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Proof. A full proof of this is lengthy. A good outline appears in [Hindley
and Seldin, 1986, Chapter 15]. �

The converse of this is not true, for example (�uv:v)(�x:xx) has no type
but it �-reduces to �v:v which has type a! a.
�xyz:(�u:y)(xz) has type (c ! d) ! b ! c ! b, but not type a ! b !

c! b; it reduces to �xyz:y which has type a! b! c! b.
The �-expansion used in forming a lnf in the proof of Theorem 34, illus-

trates the following limited form of the Subject Expansion Theorem.

THEOREM 36. If

x1 : �1; : : : ; xn : �n ` X : �! �

then
x1 : �1; : : : ; xn : �n ` �x:Xx : �! �

if x 62 FV (X).

Proof. See Hindley and Seldin [1986, Chapter 15]. �

References Much more detail on the work in this section can be found
in [Hindley, 1997, Chapter 2]. The system TA� discussed there is e�ectively
the system we have introduced. See also [Barendregt, 1984, Appendix A].

4 TRANSLATIONS

As �-terms and combinators describe the same set of (recursive) functions
it is not surprising that for each �-term there is a combinator representing
the same function and, in a simple case, with the same reduction theorems
(as in (K), (S) or Theorem 6) and the same types.

For every combinator there is also a similar �-term given by:

DEFINITION 37 ((X�)).

S� � �xyz:xz(yz)
K� � �xy:x

(XY )� � X�Y�:

Any �-term X can be translated into a combinator by taking parts of
X of the form �xi : : : xj :Y where Y contains no �xks and changing these
to [xi; : : : ; xj ]Y as de�ned in De�nition 7, then further parts of the form
�xi : : : xj :Y can be changed in the same way until there are no �xks left. If
we call this translation � we might hope to have

X�� � X
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and
Y�� � Y

for any combinator X and �-term Y .
The former identity holds, but the latter one does not, in general.

EXAMPLE 38.

1. (SKK)�� � (�xyz:xz(yz))�(�uv:u)�(�ts:t)�
� ([x; y; z]:xz(yz))([u:v]u)([t; s]t)
� ([x; y]:Sxy)([u]:Ku)([t]:Kt) � SKK

2. (z(�xyz:xyyz))�� � z([x; y; z]:xyyz)�
� z([x; y]:xyy)� � z([x]:SxI)� � z(SS(KI))�
� z(�xyz:xz(yz))(�uvw:uw(vw))((�st:s)(�r:r))
. z(�yzw:zw(yzw))(�tr:r)
. z(�zw:zw((�tr:r)zw))
. z(�zw:zww)

In the second example above we have only

Y�� =�� Y :

This turns out to be about as much as we can hope to have.
Weaker sets of combinators can be translated into �-calculus in the same

way as above with the translations of S and K in De�nition 37 replaced by
appropriate translations such as:

B� � �xyz:x(yz) ;

for each element of the given basis set Q.
The reverse process however is not so simple. It is not clear which �-

terms can be translated, say, into BCIW combinators, nor how to perform
this translation.

We will resolve this problem later for several basis sets Q.
The process is important as, as was mentioned in the introduction, it

provides a decision procedure and a constructive proof �nding algorithm
for axiomatic logics.

4.1 Q-Translation Algorithms

Trigg, Bunder and Hindley in [Trigg et al., 1994] have extended the notion of
abstractibility from that of De�nition 7 for SK-combinators to abstractibil-
ity for Q-combinators for various basis sets Q. These de�nitions will form
part of our translation procedures.

First we will give the de�nition, from [Bunder, 1996], of a translation
from �-terms into Q-combinators.

DEFINITION 39. A mapping � from �-terms to Q-terms is de�ned by:
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1. X� � X (X an atom)

2. (XY )� � X�Y�
3. (�x:X)� � ��x:X�;

��x varies with Q but is, in simple cases, like the bracket abstraction [x] of
De�nition 7, a sequence of some of the following clauses:

(i) ��x:x � I

(k) ��x:X � KX if x 62 FV (X)

(�) ��x:Xx � X if x 62 FV (X)

(s) ��x:XY � S(��x:X)(��x:Y )

(b) ��x:XY � BX(��x:Y ) if x 62 FV (X)

(c) ��x:XY � C(��x:X) if x 62 FV (Y )

Note that, as before, the clauses in an algorithm � are used strictly in
the order in which they appear.

Note also that the mapping starts by assigning a � to each � in the
term starting from the outermost ones and working inwards. Then, to the
innermost terms ��x:Z i.e. those for which Z contains no ��s, we apply
the appropriate abstraction clause. Later steps now evaluate terms ��x:Z1
where Z1 is a Q-term. The Q-combinators in Z1 arise from the evaluation
of previous ��x:Zs.

EXAMPLE 40.

�(ik�s)xy:xzy � �(ik�s)x:xz � SI(Kz)
�(isk�)xy:xzy � �(isk�)x:S(S(Kx)(Kz))I
� S(S(KS)S(S(KS)(S(KK)I))(S(KK)(Kz))))(KI)

DEFINITION 41. A mapping � from �-terms to Q-terms is said to be a
Q-translation algorithm if:

(A) For every Q-combinator X , X�� is de�ned and

X�� � X :

(B) If for a �-term Y; Y� is de�ned and is a Q-term, then there is a �-term
Y1 such that:

Y�� .Q Y1 /� Y

where .Q means that only full or partial reductions involving the �-
versions of Q-combinators are used and .� involves only � and �-
reductions.
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EXAMPLE 38.2(again) In this example we had,

with � � (ik�s);
Y � z(�xyz:xyyz);

and Y�� � z(�zw:zww);

so (B) holds with Y1 =� Y��.

EXAMPLE 42. (BCC)�� � (�xyz:x(yz))�(�uvw:uwv)�(�rst:rts)�
If � is (i�bc) we have

(BCC)�� � BCC

as required by (A).
If however � is (ikc) (�xyz:x(yz))� is not de�nable so (ikc) is not a

BCI-translation algorithm.
If � is (ibc) we have

B�� � (�xyz:x(yz))�
� C(BB(BBI))(C(BBI)I) 6� B;

so (ibc) is also not a BCI-translation algorithm.
(note that we do have B�� =�� B.)

EXAMPLE 43. When � is (i�bc)

(�yz:z(�x:yx))�� � (��yz:z(��x:yx))�
� (��yz:zy)� � (��z:CIz)�
� (CI)�
� (�uvw:uwv)(�x:x)
.BCI �vw:(�x:x)wv
.BCI �vw:wv:

while also �yz:z(�x:yx) .� �vw:wv

The following theorem lists some properties that are preserved under the
operations � and �.
THEOREM 44.

1. If X and Y are Q-terms then

X .Q Y ) X� .Q Y� :

If � is a Q-translation algorithm then:

2. for every Q-term X, X�� is de�ned and

X�� � X
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3. For every pair of �-terms U and V for which U� and V� are de�ned
and are Q-terms,

U =�� V , U� =�� V�

4. If Y� is de�ned and is a Q-term then

(�x:Y )�x =�� Y�

Proof.

1. It suÆces to prove the result for X � PX1 : : : Xn where P is any
Q-combinator and Y � f(X1; : : : ; Xn) which results by a single P -
reduction step. Then

X� � P�X1� : : : Xn�

� (�x1 : : : xn:f(x1; : : : ; xn))X1� : : : Xn� .Q f(X1�; : : : ; Xn�)
� Y�:

2. By an easy induction using (A) and De�nition 39.2.

3. By Curry and Feys [1958, Section 6C4, Theorem 1]:

U� =�� V� () U�� =�� V��

so the result follows by (B).

4. By (3) ((�x:Y )x)� =�� Y� so the result holds by De�nition 39.2. �

4.2 Q-de�nability

We now come to the important question as to which �-terms can be trans-
lated into Q-combinators, for a given Q. We �rst de�ne Q-de�nability.

DEFINITION 45. A �-term Y is Q-de�nable if there is a Q-translation
algorithm � for which Y� is de�ned and is a Q-term.

The following theorem relates the ( )� operation to Q-de�nability.

THEOREM 46.

1. If Z is Q-de�nable there is a Q-term X such that Z =�� X�.

2. If X is a Q-term and there is a Q-translation algorithm then X� is
Q-de�nable.
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Proof.

1. If Z is Q-de�nable there is a Q-translation algorithm � so that, by (B)

Z�� =�� Z:

thus Z� is the required X .

2. If X is a Q-term and � is a Q-translation algorithm, by Theorem 44.2
X�� � X; so clearly X� is Q-de�nable. �

The importance of Q-de�nability, for implicational logics is that a typed
�-term Y is Q-de�nable if and only if its type is a theorem of Q-logic. In
all the cases we deal with below we �nd that, for a given Q, we can �nd a
Q-translation algorithm which translates all Q-de�nable �-terms.

We now give translations algorithms for a number of sets of combinators.
First we need a lemma.

LEMMA 47. If U is a �-term for which U� is de�ned then

1. if � is the (i�ks) algorithm (��x:U�)x .KS U�:

2. if � is the (i�kbc) algorithm (��x:U�)x .BCK U�:

3. if � is the (i�bc) algorithm (��x:U�)x .BCI U�:

4. if � is the (i�bcs) algorithm (��x:U�)x .BCIW U�:

Proof.

1. By induction on the length of U�. If U� � x

(��x:U�)x � Ix � SKKx . KS x � U�:

If U� � U1�x where x 2=FV (U1�);

(��x:U�)x � U1�x � U�:

If x 2=FV (U�);

(��x:U�)x �KU�x . KS U�

If U� � U1�U2�, where x 2 FV (U1�U2�) and either x 2 FV (U1�)
or U2� 6� x, (��x:U�)x = S(��x:U1�)(�

�x:U2�)x . KS (��x:U1�)
x((��x:U2�)x) . KS U1�U2� � U� by the induction hypothesis.

Cases 2. to 4. are similar. �
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THEOREM 48.

1. (i�ks) is an SK-translation algorithm.

2. (i�kbc) is a BCK-translation algorithm.

3. (i�bc) is a BCI-translation algorithm.

4. (i�bcs) is a BCIW-translation algorithm.

Proof.

1. It is easy to check that (A) holds for the (i�ks) abstraction algorithm.

We prove (B) by induction on the length of the �-term Y .

If Y is an atom Y�� � Y:
If Y � UV; Y�� � U��V�� and by the inductive hypothesis we have
a U1 and V1 such that Y�� � U��V�� .KS U1V1 /� UV � Y:
If Y � �x:Xx, where x 62 FV (X),

Y�� � (�x:Xx)�� � X��:

By the induction hypothesis there is an X1 such that

Y�� � X�� .KS X1 /� X /� Y:

If Y = �x:UV where x 2 FV (U) or x 6� V; but x 2 FV (UV ):

Y�� � S�(�x:U)��(�x:V )��
� (�uvx:ux(vx))

(�x:U)��(�x:V )��
.SK�x:((�x:U)��x)((�x:V )��x) � �x:((��x:U�)x)�((��x:V�)x)�

.SK�x:U��V��

by Lemma 47 and Theorem 44.1.

Now by the induction hypothesis there exist U1 and V1 such that

�x:U��V�� .SK �x:U1V1 /� �x:UV � Y :

Note that if x had not been chosen as the third bound variable in
S�, an extra �-reduction would have been required from �x:U1V1 to
reach the term obtained by the SK-reduction. We will use similar
simpli�cations below.

If Y � �x:x;
Y�� � I� =� Y :
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If Y � �x:X; where x 62 FV (X),

Y�� �K�X��
� (�yx:y)X�� .SK �x:X�� :

By the induction hypothesis there exists an X1 such that

X�� .SK X1 /� X

so
Y�� .SK �x:X1 /� Y

2., 3. and 4. are similar. �

EXAMPLE 49.

1. �i�kbcx1x2:x2
�
�i�kbcx3:x1x4

� � �i�kbcx1x2:x2 (K(x1x4))

� �i�kbcx1:CI(K(x1x4))

� B(CI)(BK(CIx4))

2. �i�bcx1x2:x2
�
�i�bcx3:x3x1

�
� �i�bcx1x2:x2(CIx1)

� �i�bcx1:CI(CIx1)

� B(CI)(CI):

3. �i�kbcsx1x2:x2
�
�i�kbcsx3:x2(x1x3)

�
� �i�kbcsx1x2:x2(Bx2x1)

� �i�kbcsx1:SI(CBx1)

� B(SI)(CB):

4.3 SK, BCI, BCK and BKIW De�nable Terms

For many sets Q we can delineate the Q-de�nable terms. First we need
some notation.

DEFINITION 50.

1. � is the set of all �-terms.

2. A �-term is in Once (i1; : : : ; in) if each xi1 ; : : : ; xin appears free exactly
once in the term and if in every subterm �xj1 : : : xjk :Y of the term, Y
is in Once (j1; : : : ; jk).

3. A �-term is in Once�(i1; : : : ; in) if each xi1 ; : : : ; xin appears free at
most once in the term and if in every subterm �xj1 : : : xjk :Y of the
term, Y is in Once�(j1; : : : ; jk).
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4. A �-term is in Once+(i1; : : : ; in) if each of xi1 ; : : : ; xin appears at least
once in the term and if in every subterm �xj1 : : : xjk :Y of the term, Y
is in Once+(j1; : : : ; jk).

THEOREM 51.

1. The set of SK-de�nable terms is �.

2. The set of BCI-de�nable terms is Once( ).

3. The set of BCK-de�nable terms is Once�( ).

4. The set of BCIW-de�nable terms is Once+( ).

Proof.

1. is trivial.

2. If Y 2 Once(i1; : : : ; in) for some i1; : : : ; in we show by induction on Y
that Y is BCI-de�nable using the (i�bc) algorithm.

Case 1 Y is an atom Y(i�bc) � Y .

Case 2 Y � UV; U 2 Once(j1; : : : ; jr) and V 2 Once(m1; : : : ;ms),
where (j1; : : : ; jr) and (m1; : : : ;ms) are disjoint subsequences of (i1;
: : : ; in) and r + s = n:

Then by the induction hypothesis U and V are BCI-de�nable using
the (i�bc) algorithm and

Y(i�bc) = U(i�bc) V(i�bc):

Case 3 Y � �xp:Zxp where xp 2=FV (Z).

Zxp 2 Once(i1 : : : ; in; p)

and by the induction hypothesis Zxp is BCI-de�nable as Z(i�bc)xp
and

Y(i�bc) = Z(i�bc):

Case 4 Y � �xp:UV; UV 2 Once(i1 : : : ; in; p) and so xp 2 FV (V )�
FV (U) or xp 2 FV (U)� FV (V ):

Hence, for similar disjoint sequences to the above we have U 2 Once
(j1; : : : ; jr) and V 2 Once(m1; : : : ;ms; p) or U 2 Once(j1; : : : ; jr; p)
and V 2 Once(m1; : : : ;ms):

In the former case U; V and �xp:V are BCI de�nable and

Y(i�bc) � BU(i�bc)(�
(i�bc)xp:V(i�bc)):
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In the latter case U; V and �xp:U are BCI-de�nable and

Y(i�bc) � C(�(i�bc)xp:U(i�bc))V(i�bc):

3. and 4. are similar, except that in 4. (m1; : : : ;ms) and (j1; : : : ; jr)
need not be disjoint. �

Note that in each of the four cases above the set of de�nable �-terms
leads us to a natural deduction style system for the logic.

In the case of BCIW-logic (the relevance logic R!), the only �-terms
allowable are those in Once+( ). These can be generated by allowing �x:X
to be de�ned only when x 2 FV (X). This restriction when translated to
typed terms becomes:

(6 1)

x : �

D1

X : �

�x:X : �! �
�(1)

only if x : � is used in the proof D1. This therefore gives the appropriate
restriction on an R! ! introduction rule.

4.4 Bases Without C

We now look at some basis sets that do not include (as de�ned or primitive)
the combinator C. Its lack causes a problem.

Previously the algorithms we used in evaluating ��x2:X did not a�ect
the de�nability of ��x1:�

�x2:X . When we are dealing with algorithms that
do not include (c) (or (s)), this de�nability may fail depending on a choice
of �.

If, for example, we de�ne ��x3:x4x2(x1x3) to be B(x4x2)x1, using
clause (b), we cannot easily de�ne ��x2:B(x4x2)x1. If however we de-
�ned ��x3:x4x2(x1x3) as B0x1(x4x2), using a clause (b0), we can de�ne
��x2:�

�x3:x4x2(x1x3) as B(BB0)x1x4 using (b). Clearly if (b) and (b0) (and
so B and B0) are both available in our translation algorithm, the choice of
which to use would depend on the variables to be abstracted later.

If a subterm �xin+1 :Y of a �-term X is to be translated by � and is in
the scope of (from left to right in X): �xi1 ; : : : ; �xin , we will write this
translation as �

xi1 ;:::;xin
xin+1

:Y�, so that the variables with respect to which we
need to abstract later are agged as: xin to be done next, then xin�1 etc.
These abstractions are of course tied to some set Q and to algorithm clauses
which we still denote by �.

To ensure that the agged xij s are distinct we will assume that any �-
term X being translated has, if necessary, �rst been altered so that no �xk
appears more than once in X .
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For Q-translation algorithms �, where C is not in Q, such as BB0I and
BB0IW, we replace De�nition 39 by:

DEFINITION 52. (xi1 ; : : : ; xin ;Y )� and in particular ( ;Y )� � Y� are given
by:

(xi1 ; : : : ; xin ;P )� � P if P is an atom
(xi1 ; : : : ; xin ;PQ)� � (xi1 ; : : : ; xin ;P )�(xi1 ; : : : ; xin ;Q)�

(xi1 ; : : : ; xin ;�xin+1
:R)� � �

xi1 ;:::;xin
xin+1

:(xi1 ; : : : ; xin ; xin+1 ;R)�

( ;�xi1 :R)� � ��xi1(xi1 ;R)�:

Note that Theorem 44 still holds under this de�nition.

EXAMPLE 53.

( ;�x4x1:x3(�x5x6:x1(�x7:x1x5))(�x2:x2(�x9:x2)))� �
��x4�

x4
x1
:x3(�x4x1x5

:(�x4x1x5x6
:x1(�

x4x1x5x6
x7

:x1x5))(�x4x1x2
:x2(�x4x1x2x9

:x2))

Before we can write down the algorithm clauses used for logics without C,
we need the notion of the index of a term with respect to a set of variables.

DEFINITION 54. (idx(M; i1; : : : ; in))

idx(M; i1; : : : ; in) = max
n
p j 1 � p � n ^ xip 2 FV (M)

o
DEFINITION 55 ((�x

xi1 :::xin
in+1

:P )). This is de�ned using some or all of the
following clauses, depending on �.

(i) �
xi1 :::xin
xin+1

:xin+1 � I

(�) �
xi1 :::xin
xin+1

:Uxin+1 � U if xin+1 62 FV (U)

(b) �
xi1 :::xin
xin+1

:PQ � BP (�
xi1 :::xin
xin+1

:Q)

if idx(P; i1; : : : ; in) � idx(Q; i1; : : : ; in) or xi1 : : : xin is replaced by �;
and xin+1 =2 FV (P ).

(b0) �
xi1 :::xin
xin+1

:PQ � B0(�
xi1 :::xin
xin+1

:Q)P

if idx(P; i1; : : : ; in) > idx(Q; i1; : : : ; in) and xin+1 =2 FV (P ).

(s) �
xi1 :::xin
xin+1

:PQ � S(�
xi1 :::xin
xin+1

:P )(�
xi1 :::xin
xin+1

:Q)

if idx(P; i1; : : : ; in) � idx(Q; i1; : : : ; in) or if xi1 : : : xin is replaced by
�

(s0) �
xi1 :::xin
xin+1

:PQ � S0(�
xi1 :::xin
xin+1

:Q)(�
xi1 :::xin
xin+1

:P )

if idx(Q; i1; : : : ; in) < idx(P; i1; : : : ; in)
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EXAMPLE 56.

1. ( ;�x2x4:x2(�x3:(�x5x6:x5(x4x6))x3)(i�bb
0)

� ��x2�x2x4 :x2(�x2x4x3 :(�x2x4x3x5 �x2x4x3x5x6 :x5(x4x6))x3)
� ��x2�x2x4 :x2(�x2x4x3 :(�x2x4x3x5 :B0x4x5)x3)
� ��x2�x2x4x2(�x2x4x3 :B0x4x3)
� ��x2�x2x4 :x2(B0x4)
� B0B0 where � is (i�bb0)

2. (;�x2x4:x2(�x3:x2x4(�x1:x3(x4x1))))(�ikbb
0ss0)

� ��x2:�x2x4 :x2(�x2x4x3 :x2x4(�x2x4x3x1 :x3(x4x1)))
� ��x2:�x2x4 :x2(�x2x4x3 :x2x4(B0x4x3))
� ��x2:�x2x4 :x2(B(x2x4)(B

0x4))
� ��x2:Bx2(S0B0(BBx2))
� SB(B(S0B0)(BB)) where � is (�ikbb0ss0) :

4.5 Translation Algorithms and De�nable Terms for BB0I and
BB0IW

Before we give the algorithms we need a lemma

LEMMA 57. If Q is (i) BB0I or (ii) BB0IW, X is a Q-term and �
xi1 :::xin
xin+1

:X
is de�ned then �

�
xi1 :::xin
xin+1

:X
�
xin+1 .Q X :

Proof. By induction on the length of X .

Cases 1 to 4 apply where Q is BBI0 or BB0IW, Cases 5 and 6 only for
BB0IW.

Case 1 X � xin+1 .

�
�
xi1 :::xin
xin+1

:X
�
xin+1 � Ixin+1 .Q xin+1 � X

Case 2 X � Uxin+1 where xin+1 62 FV (U)

�
�
xi1 :::xin
xin+1

:X
�
xin+1 � Uxin+1 � X :

Case 3 X � UV where xin+1 62 FV (U), xin+1 6� V , and idx(U; i1; : : : ; in) �
idx(V; i1; : : : ; in).
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�
�
xi1 :::xin
xin+1

:X
�
xin+1 � BU

�
�
xi;:::xin
xin+1

:V
�
xin+1

.QU
��
�
xi1 :::xin
xin+1

:V
�
xin+1

�
.QUV � X ;

by the induction hypothesis.

Case 4 X � UV where xin+1 62 FV (U), xin+1 6� V and idx(V; i1; : : : ; in) <
idx(U; i1; : : : ; in). Similar to Case 3.

Case 5 X � UV where xin+1 2 FV (U) \ FV (V ) and idx(U; i1; : : : ; in) �
idx(V; i1; : : : ; in). Similar to Case 3.

Case 6 X � UV where xin+1 2 FV (U) \ FV (V ) and idx(V; i1; : : : ; in) <
idx(U; i1; : : : ; in). Similar to Case 3. �

THEOREM 58. The following are translation algorithms:

1. ( ; )(i�bb
0), for BB0I

2. ( ; )(i�bb
0ss0), for BB0IW

Proof. In each case (A) is obvious.
We will prove, for each algorithm � and each basis Q, if ((xi1 ; : : : ; xin ;Y )�

is de�ned, that there is a Y1 such that:��
xi1 ; : : : ; xin ; Y

���
�
.Q Y1 /� Y :

This we do by induction on the number k of clauses of � that are needed
to evaluate (xi1 ; : : : ; xin ;Y )�.

If k = 0 there are no �s in Y and so

((xi1 ; : : : ; xin ;Y )�)� � Y � Y1
If k > 0 it is suÆcient to consider a subterm (xi1 ; : : : ; xim ;�xim+1 :Z)�

(� �
xi1 :::xim
xm+1 :Z) of (xi1 ; : : : ; xin ;Y )� where Z contains no �s and to show

that there is a Z1 such that:�
�
xi1 :::xim
xm+1 :Z

�
�
.Q Z1 /� �xim+1 :Z

We then have, by Theorem 44.1,

((xi1 ; : : : ; xin ;Y )�)� .Q ((xi1 ; : : : ; xin ;Y 0)�)� /� Y
0 /� Y

where Y 0 is Y with Z1 for �xim+1 :Z.
Now Y 0 needs fewer than k clauses of � for its evaluation, so by the

induction hypothesis we have a Y1 such that

((xi1 ; : : : ; xin ;Y 0)�)� .Q Y1 /� Y
0 ;
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which provides the result.
To prove the above result for �xin+1 :Z we consider 6 cases for BB0IW.

The �rst 4 also apply to BB0I.
Note that in each case if U is Z or a subterm of Z, as this contains no

�s, we have U� � U .

(a) If Z � xim+1 , then�
�
xi1 ;:::;xim
xim+1

:Z
�
�
� I� � �xim+1 :Z

(b) If Z � Uxim+1 where xim+1 =2 FV (U)
then �

�
xi1 ;:::;xim
xim+1

:Z
�
�
� U�� :

By the induction hypothesis there is a U1, such that

(�
xi1 :::xim
xim+1

:Z)� .Q U�� .Q U1 /� U /� �xim+1 :Z

(c) If Z � UV , where xim+1 =2 FV (U); V 6� xim+1 and idx(U; i1; : : : ;
im) � idx(V; i1; : : : ; im)�

�
xi1 ;:::;xim
xim+1

:Z
�
�
�
�
BU

�
�x

xi1 :::xim
im+1

:V
��

�

� B�U��(�
xi1 ;:::;xim
xim+1

:V )�

.Q�xim+1 :U��

��
�
xi1 ;:::;xim
xim+1

:V
�
xim+1

�
�

so by Theorem 44.1 and Lemma 57,�
�
xi1 ;:::;xim
xim+1

:Z
�
�
.Q �xim+1 :U��V� � �xin+1 :U��V��

Now by the induction hypothesis we have a U1 and V1 such
that:�
�
xi1 ;:::;xim
xim+1

:Z
�
�
.Q �xim+1 :U1V1 /� �xim+1 :UV � �xim+1 :Z

(d), (e), (f) The cases Z � UV where xim+1 =2 FV (U) and idx(U; i1; : : : ;
in) > idx(V; i1; : : : ; im) or where xim+1 2 FV (U)\ FV (U) are
similar. �

Our classi�cation of the BB0I and BB0IW-de�nable �-terms involves a
class HRM(i1; : : : ; in) of heriditary right maximal terms with respect
to xi1 : : : xin ; which we now de�ne.

DEFINITION 59 ((HRM(i1; : : : ; in))).

1. Every variable and every basis combinator is in HRM(i1; : : : ; in).



262 MARTIN BUNDER

2. If M;N 2 HRM(i1; : : : ; in)
and idx(M; i1; : : : ; in) � idx(N; i1; : : : ; in)
then MN 2 HRM(i1; : : : ; in).

3. If M 2 HRM(i1; : : : ; in+1)
then �xin+1:M 2 HRM(i1; : : : ; in).

Strictly we should write HRMQ(i1; : : : ; in), but in each case below the
basis Q will be clear from the context.

HRMBB0I(1; : : : ; n) isHRM(x1; : : : ; xn) of Hirokawa 1996. OurHRM(1;
: : : ; n) is also HRMn of Trigg et al. [1994] where the basis is also taken
from the context.

Before obtaining the classi�cations we need a lemma.

LEMMA 60. If X is a BB0IW-term or X � Y� where Y is a BB0IW-term
and X .BB0IW Z or Z .� X then, if X is in HRM(i1; : : : ; in), so is Z.

Proof. If X is a BB0IW-term this is easy to prove by induction on the
length of the BB0IW-reduction or of the �-expansion.

If X � Y�, where Y is a BB0IW-term more single BB0IW-reductions
are possible. For example instead of

B0UVW .B0 V (UW )

we can have (�uvw:v(uw)) U�V�W� .B0 (�vw:v(U�w))V�W�

.B0(�w:V�(U�w))W�

.B0V�(U�W�);

however in each case the membership of HRM(i1; : : : ; in) is preserved. Sim-
ilarly for �-expansions. �

THEOREM 61.

1. The set of BB0I-de�nable terms is HRM( ) \ Once( ).

2. The set of BB0IW-de�nable terms is HRM( ) \ Once+( ).

Proof. Theorem 58 gives translation algorithms.

1. If Y 2 HRM(i1; : : : in)\Once(i1; : : : ; in), it is easy to show by induc-
tion on the length of Y that Y is BB0I de�nable by (xi1 ; : : : ; xin ;Y )i�bb

0

.
This holds in particular when n = 0.

If Y is BB0I-de�nable then there is a BB0I-translation algorithm �
and a �-term Y1 such that

Y�� .BB0I Y1 /� Y

Now Y� is a BB0I-term and is therefore in HRM( ) \ Once( ). It
follows by Lemma 60 that Y1 and Y are also in HRM( ) \ Once( ).
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2. is similar. �

The (i�bb0)-algorithm for BB0I was �rst used (for abstraction only) in
[Helman, 1977]. It was also used by Hirokawa in his proof of the ) half of
(B) in [Hirokawa, 1996]. Hirokawa proved the result of Theorem 61.1 there.

5 THE BASES BB0IK; BB0; BB0W AND BB0K

The BB0IK(i1; : : : ; in) abstractable terms of Trigg et al 1994 were terms
obtainable from terms of HRM(i1; : : : ; in) \ Once(i1; : : : ; in) by deleting
certain variables. The BB0IK(i1; : : : ; in)-translation algorithm that we
develop here has as its �rst stage, a \full ordering algorithm" which
reverses the deletion process by building up elements of a subclass of
Once�(i1; : : : ; in) to elements of HRM(i1; : : : ; in)\ Once(i1; : : : ; in). Such
elements can then be translated by ( ; )(bb

0i�). A partial ordering algorithm,
which builds up to elements of HRM(i1; : : : ; in)\ Once�(i1; : : : ; in) could
also be used and requires only simple alterations to 1. and 2. below.

THE FULL ORDERING ALGORITHM

Aim To extend, if possible, a ��BB0IK-term Y 2 Once�(i1; : : : ; in) to a
�-BB0IK-term Y o 2 HRM(i1; : : : ; in)\ Once(i1; : : : ; in) so that Y o .KI Y .

1. If Y � a, an atom not in fxi1 ; : : : ; xing
Y o � K�a (xi1xi2 : : : xin)

2. If Y � xim , and 1 � m < n then
Y o � K�xim(xi1 : : : xim�1xim+1 : : : xin)

3. If Y � xin ,
Y o � K�I�(xi1 : : : xin�1)xin

4. If Y � �xin+1 :Z, �nd, if possible, Zo such that

Zo 2 HRM(i1; : : : ; in+1) \ Once (i1; : : : ; in+1)

and Zo .KI Z
then Y o � �xin+1 :Z

o.

5. If Y � Zxin , �nd, if possible, Zo such that

Zo 2 HRM(i1; : : : ; in�1) \ Once (i1; : : : ; in�1)

and Zo .KI Z
then Y o � Zoxin .
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6. If Y � UV , where V 6� xin �nd, by going back to (1), a term Uo and
a subsequence (xj1 ; : : : ; xjr ) of (xi1 ; : : : ; xin) such that:

(a) FV (U) \ fxi1 ; : : : ; xing � fxj1 ; : : : ; xjrg and
FV (V ) \ fxj1; : : : ; xj rg = ;.

(b) Uo 2 HRM(j1; : : : ; jr) \ Once(j1; : : : ; jr)

(c) Uo .KI U

(d) jr 6= in

(e) maxfpjxjp 2 fxj1 ; : : : ; xjrg � FV (U)g is minimal.

(f) Given (e), the number of variables in fxj1 ; : : : ; xjrg � FV (U) is
minimal.

Now let (xs1 ; : : : ; xst) be the sequence obtained from (xi1 ; : : : ; xin)
by removing (xj1 ; : : : ; xjr ).

Now if possible (i.e. by going back to (1)) �nd V o such that

(g) V o 2 HRM(s1; : : : ; st) \ Once(s1; : : : ; st)

and

(h) V o .KI V

then Y o � UoV o.

Choosing the maximal p in xjp 2 FV (Uo)\ fxi1 ; : : : ; xing to be minimal
in (e) and then using as few as possible variables new to U in (f), gives us
maximal exibility for expanding V to V o using the remaining, especially
the higher subscripted, variables. These clauses also ensure that a unique
Y o is produced by the algorithm. Other Y os satisfying the above aim may
exist as well.

The algorithm is applied in two examples below.

EXAMPLE 62. Y � x3x2x1 cannot be ordered relative to (1; 2; 3) or even
(1; 2; 3; 4), but relative to (1; 2; 3; 4; 5)

Y o � x3(K�x2x4)(K�x1x5)

EXAMPLE 63.
Y � x7x0(�x9:x5(x4(x3x2))x1x9)

Relative to (0; 1; 2; : : : 7; 8; 10; 11) we have

Y o � x7(K�x0x8)(�x9:x5(x4(x3(K�x2x6))(K�x1(x10x11))x9)
2 HRM(0; 1; 2; : : : ; 8; 10; 11)\ Once(0; 1; 2; : : : ; 8; 10; 11)

The �-terms that are BB0IK-translatable will be represented in terms of
a generalisation of the classHRM(i1; : : : ; in). If it is not possible to extend a
�-BB0IK-term Y to a Y o 2 HRM(i1; : : : ; in)\Once(i1; : : : ; in), it is always



COMBINATORS, PROOFS AND IMPLICATIONAL LOGICS 265

possible to choose variables xin+1 ; : : : ; xim and a Y o 2 HRM(i1; : : : ; im) \
Once(i1; : : : ; im) so that Y o .KI Y .

If (xj1 ; : : : ; xjr ) is (xi1 ; : : : ; xin) with the free variables of Y deleted
and if we named the atom occurrences in Y from the leftmost to the
rightmost a1; : : : ; ap then Y o could be de�ned as: Y with a1 replaced by
Ka1(xj1 : : : xjrxin+1) and ai (1 < i � p) replaced by Kaixin+i . Repeatedly
using the full reordering algorithm, with n increased by one each time, will
produce a minimal set of extra variables that need to be added to form a
Y o.

DEFINITION 64 (Potentially Right Maximal (i1; : : : ; in)-�-terms).
(PRM(i1; : : : ; in)-�-terms)

1. If X is an atom X 2 PRM( ).

2. xe 2 PRM(e).

3. If X 2 PRM(i1; : : : ; in�1) and xj =2 FV (X) then
X 2 PRM(i1; : : : ; ik; ij ; ik+1; : : : ; in) for 0 � k � n.

4. If X 2 PRM(i1; : : : ; in+1) then �xin+1:X 2 PRM(i1; : : : ; in).

5. If X 2 PRM(j1; : : : ; jp)
and Y 2 PRM(r1; : : : ; rq)
where p = q = n = 0 or rq = in,

fj1; : : : ; jpg \ fr1; : : : ; rqg = ;;
FV (X) \ fxr1 ; : : : ; xrqg = ;;
FV (Y ) \ fxj1; : : : ; xjpg = ;;

and (i1; : : : ; in) is a merge of (j1; : : : ; jp) and (r1; : : : ; rq) (i.e. n = p+q
and (i1; : : : ; in) has the elements of the two sequences with the orders
preserved) then XY 2 PRM(i1; : : : ; in).

EXAMPLE 65.
x1 2 PRM(1)

so
x1 2 PRM(1; 5)

Similarly
x2 2 PRM(2; 4)

and
x3 2 PRM(3)

so
x3x2 2 PRM(2; 3; 4)
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and
x3x2x1 2 PRM(1; 2; 3; 4; 5)

Note:
x3x2x1 =2 PRM(1; 2; 3)[ PRM(1; 2; 3; 4)

Note that the variables in fxi1; : : : ; xing�FV (X) are used in the ordering
of a term Y relative to (i1; : : : ; in), in the same way these extra variable
subscripts are needed to show X 2 PRM(i1; : : : ; in). The connection is
given by the following lemmas.

LEMMA 66. If Y , ordered relative to (i1; : : : ; in) by the full ordering algo-
rithm, becomes Y o, then

Y o .KI Y

where each single K-reduction eliminates one or more of xi1 ; : : : ; xin .

Proof. Obvious from the algorithm. �

LEMMA 67. Y 2 PRM(i1; : : : ; in) \ Once�(i1; : : : ; in)() there is a

Y o 2 HRM(i1; : : : ; in) \ Once(i1; : : : ; in) de�ned by the full ordering algo-
rithm.

Proof. ) By induction on Y .
The case where Y is an atom is obvious.
If Y � �xin+1:Z, then as each bounded variable of Y appears at most

once in Y , we have Z 2 PRM(i1; : : : ; in+1) \ Once�(i1; : : : ; in+1).
By the induction hypothesis we have an appropriate

Zo 2 HRM(i1; : : : ; in+1) \ Once(i1; : : : ; in+1)

and so a Y o � �xin+1:Zo 2 HRM(i1; : : : ; in) \ Once(i1; : : : ; in).
If Y � Zxin, then as each bounded variable of Y appears at most once

in Y , we have Z 2 PRM(i1; : : : ; in�1) \ Once�(i1; : : : ; in�1).
By the induction hypothesis we have an appropriate

Zo 2 HRM(i1; : : : ; in�1) \ Once(i1; : : : ; in�1)

and so a Y o � Zoxin 2 HRM(i1; : : : ; in) \ Once(i1; : : : ; in).
If Y � UV (V 6� xin) then we have (j1; : : : ; jp) and (r1; : : : ; rq) such that

fj1; : : : ; jpg \ fr1; : : : ; rqg = ;;
FV (U) \ fxr1 ; : : : ; xrqg = ;; rq = in; or n = p = q = 0;

FV (V ) \ fxj1; : : : ; xjpg = ;
U 2 PRM(j1; : : : ; jp) \ Once�(j1; : : : ; jp)

and
V 2 PRM(r1; : : : ; rq) \ Once�(r1; : : : ; rq)
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Also the order of (j1; : : : ; jp) and (r1; : : : ; rq) is preserved in (i1; : : : ; in),
where fi1; : : : ; ing = fj1; : : : ; jpg [ fr1; : : : ; rqg.

Of the sequences (j1; : : : ; jp); (r1; : : : ; rq) that satisfy these properties
(and so (a), (b), (c), (d), (e) and (h) of (4) of the full ordering algorithm),
choose those that also satisfy (e) and (f).

Then, as by the induction hypothesis we have:

Uo 2 HRM(j1; : : : ; jp) \ Once(j1; : : : ; jp)

and
V;o 2 HRM(r1; : : : ; rq) \ Once(r1; : : : ; rq);

we have

Y o � UoV o 2 HRM(i1; : : : ; in) \ Once(i1; : : : ; in):

( To prove this we only need to show, by the previous lemma, that
K� or I�-reductions in �-terms eliminating some of xi1; : : : ; xin, preserve
membership of PRM(i1; : : : ; in) in a reduction T .BB0IK R.

We prove this by induction on T .
If T is an atom or contains an I� redex this is obvious.
If

T � K�Wxis 2 PRM(i1; : : : ; in)

then
K�W 2 PRM(j1; : : : ; jp)

and
xis 2 PRM(r1; : : : ; rq)

where in = rq and the other conditions apply.
From there it follows that xr1 ; : : : ; xrp =2 FV (W ).
Also W 2 PRM(j1; : : : ; jp)

and as (j1; : : : ; jp) is a subsequence of (i1; : : : ; in), by 3,

W 2 PRM(i1; : : : ; in):

If T � �xin+1 :W; R � �xin+1 :S and W . S,

W 2 PRM(i1; : : : ; in+1)

and by the induction hypothesis S 2 PRM(i1; : : : ; in+1) and so
R 2 PRM(i1; : : : ; in).

If T � UV , where R �WS; U .BB0IKW and V .BB0IK S, we have: for
some (j1; : : : ; jp) and (r1; : : : ; rq)

U 2 PRM(j1; : : : ; jp)
V 2 PRM(r1; : : : ; rq)
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with the usual conditions.
By the induction hypothesis

W 2 PRM(j1; : : : ; jp)

and
S 2 PRM(r1; : : : ; rq)

and so
R �WS 2 PRM(i1; : : : ; in)

�

LEMMA 68. If A.�B and A.KIC then there is a term D such that B.KID
and C .� D.

Proof. By induction on the number of reduction steps in A .� B and a
secondary induction on the number of steps in A .KI C (i.e. a standard
Church-Rosser theorem proof.) �

THEOREM 69. ( ;Y o)(i�bb
0) is a BB0IK-translation algorithm.

Proof. (A) holds as before. By Theorem 58.1 there is a term Y1 such that
(( ;Y o)(i�bb

0))� .BB0I Y1 /� Y
o.

Now also by Lemma 66
Y o .KI Y;

so by Lemma 68 there is a Y2 such that

Y1 .KI Y2 /� Y

So (( ;Y o)(i�bb
0))� .BB0IK Y2 /� Y , i.e. (B) holds. �

Thus ( ;Y o)(i�bb
0) is a BB0IK-translation algorithm.

THEOREM 70. The set of BB0IK-translatable terms is PRM( )\ Once�( ).

Proof. We have a BB0IK-translation algorithm by Theorem 69.
If Y 2 PRM( )\ Once�( ), then by Lemma 67 Y o 2 HRM( )\ Once( )

and so ( ;Y o)(i�bb
0) is a BB0IK-term, so Y is BB0IK-de�nable.

If Y is BB0IK-de�nable, the proof of Y 2 PRM( )\ Once�( ) proceeds
as for Theorem 61. �

We now consider some bases without I.
We de�ne �� as the set of all �-terms whose �-normal forms do not have

subterms of the form �xi1 : : : xin :xijxij+1 : : : xin or �xi1 : : : xin :xi1xi1xi2xi3
: : : xin .

THEOREM 71.
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1. HRM( ) \ �� \ Once is the set of BB0-de�nable terms.

2. HRM( ) \ �� \ Once+ is the set of BB0W-de�nable terms.

3. PRM( ) \ �� \ Once� is the set of BB0K-de�nable terms.

Proof. 3. Any BB0K-translation algorithm � must contain (�), otherwise,
for example. B�� would not be de�nable. If a Q-translation algorithm �
contains (�) it is easy to show, by induction on the length of a �Q-term Y ,
with �-normal form Z that Y� � Z�.

The full ordering algorithm is such that the combinator I is used only
when it is essential (i.e. just K, B0 and B won't do) and it is clear that the
only terms in �-normal form in PRM( )\�� \ Once� that can have an I
in their translation are of the form:�xi1 : : : xin :xijxij+1 : : : xin .

Hence our result follows from Theorems 69 and 70.

1. and 2. are similar but simpler. �

Note that in a BB0IW abstraction of a term only terms of the form
�xi1 : : : xin :xi1xi2 : : : xin and �xi1 : : : xin :xi1xi1xi2 : : : xin can contain an I
and in BB0I abstraction only the former.

6 THE � PROOF FINDING ALGORITHMS

We have shown that for each theorem of a wide range of implicational logics
there is a �-term of a particular kind, depending on the logic, that has that
theorem as a type. We have also shown that we can expand any such �-term
into long normal form.

If a theorem, or type, � takes the form �1 ! : : : ! �n ! a, where a is
an atom, we know that any lnf inhabitant must take the form �x1 : : : xn:X ,
where X has type a and has FV (X) � fx1; : : : ; xng. This is the basis for the
Ben-Yelles algorithm (see [Ben-Yelles, 1979; Hindley, 1997; Bunder, 1995]),
which constructs potential inhabitants of a given type from the outside in.
As there may be several potential Xs with type a the process can branch
several times. There is, at least for SK and sets of combinators without S
and W a simple bound to this inhabitant, or proof, �nding procedure. The
version of the algorithm given in [Bunder, 1995], which is very eÆcient, has
been implemented in [Dekker, 1996].

In this section we will be looking at an alternative inhabitant building
algorithm, generally even more eÆcient, which builds the inhabitants of a
type from the inside outwards. The given type provides the building blocks
we use for this. This algorithm has been implemented in [Oostdijk, 1996].
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6.1 The Variables and Subterms of an Inhabitant of a Type

In order to describe the way in which a �-term inhabitant of a type is built
up we need some notation.

DEFINITION 72.

1. � is a positive subtype of a type �.

2. If � is a positive subtype of � or a negative subtype of  then � is a
negative subtype of �! .

3. If � is a negative subtype of � or a positive subtype of  then � is a
positive subtype of �! .

DEFINITION 73. An occurrence of a positive (negative) subtype � of a
type � is said to be long if the occurrence of � is not the right hand part
of a positive (negative) subtype �! � of � .

All types other than atomic types are said to be composite.

DEFINITION 74. The rightmost atomic subtype of a type is known as its
tail.

EXAMPLE 75. � = (a ! b) ! (b ! c) ! ((a ! b) ! c) ! c has
b ! c; (a ! b) ! c, the second occurrence of a and the �rst occurrence of
a ! b as long negative subtypes and � , the �rst occurrence of a and the
second occurrences of b and a! b as long positive subtypes of � .

DEFINITION 76.

dn(�) = the number of distinct long negative subtypes of �:
do(�) = the number of occurrences of long negative subtypes of �:
dcp(�) = the number of distinct long positive composite subtypes of �:

dapn(�) = the number of distinct atoms that are tails of both long
positive and long negative subtypes of �:

F (�) = 2dn(�)(dapn(�) + dcp(�)) + dn(�):
G(�) = 2do(�)(dapn(�) + dcp(�)) + do(�):
j� j= the total number of subtypes of �:

DEFINITION 77.

1. X is of �-depth 0 in X .

2. If an occurrence of a term Y is of �-depth d in X then Y is of �-depth
d in UX and XU , provided these are in �-normal form.

3. If an occurrence of a term Y is of �-depth d in �xi:U , it is of �-depth
d in �xjxi:U .
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4. If an occurrence of a term Y is of �-depth d in V 6� �xi:U for any xi
or U , then Y is of �-depth d+ 1 in �xj :V .

The two lemmas that now follow will help to tell us with what a long
normal form inhabitant of a given type � can be constructed and also how
to restrict the search for components.

LEMMA 78. If X is a normal form inhabitant of � , U is a subterm of X
of type � and V is a term of type � with FV (V ) � FV (U), then the result
of replacing U by V in X is another inhabitant of � .

Proof. By a simple induction on the length of X . �

EXAMPLE 79.

�x1x2:x2(�x3:x2(�x4:x1x3x4)) : (a! a! b)! ((a! b)! b)! b

Here x1 : a! a! b, x2 : (a! b)! b, x3 : a and x4 : a, so

�x3:x2(�x4:x1x3x4) : a! b

and
�x3:x1x3x3 : a! b:

So we have by Lemma 77:

�x1x2:x2(�x3:x1x3x3) : (a! a! b)! ((a! b)! b)! b:

LEMMA 80. If ` Z : � , then there is a term X in long normal form, in
which no two distinct variables have the same type, such that:

1. ` X : �

2. For every long subterm Y of X with FV (Y ) = fxi1 ; : : : ; xikg we have:

xi1 : �i1 ; : : : ; xik : �ik ` Y : �

where � is either a long occurrence of a composite positive subtype of �
or an atom which is the tail of both a long positive and a long negative
subtype of � . �i1 ; : : : ; �ik are distinct long negative subtypes of � .

Proof.

1. By Theorem 34 there is an X 0 in lnf such that ` X 0 : � .

If X 0 now contains two variables xk and xe with the same type � we
can change any part �xe:B(xk; xe) of X 0 to �xk:B(xk ; xk) and any
part �xe:B(xe) to �xk :B(xk).

Let X be the term obtained when all possible changes of this kind
have been made to X 0. In X no two distinct variables will have the
same type.
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2. We prove this by induction on the �-depth d of Y in X .

If X is formed by application, as it is in long normal form, it takes
the form:

X � xiX1 : : : Xm

and the type of X must be dependent on that of xi, which does not
agree with 1.

Hence X is not formed by application and if � = �1 ! : : : ! �n ! a
takes the form

X � �x1 : : : xn:xiX1 : : : Xm:

(Note: some of x1; : : : ; xn could be identical.)

If d = 0 and Y is long, we must have Y � X and the result holds with
k = 0 and � = � . If d = 1 and X = �x1 : : : xn:xiX1 : : : Xm; Y will
appear in xiX1 : : : Xm, not in the scope of any �xjs. Thus it appears
in a part xtZ1 : : : ZrY Zr+2 : : : Zq of X for some t(1 � t � n).

If �t = �1 ! : : :! �q ! b we have, x1 : �1; : : : xn : �n ` Y : �r+1.

�r+1 is a long negative subtype of �t and so a long positive subtype
of � . �1; : : : ; �n are occurrences of long negative subtypes of � .

If �r+1 is an atom, then �r+1 must also be the tail of a long negative
subtype of � (namely one of �1; : : : ; �n).

Leaving out the variables not free in Y and variables identical to others
gives the result.

If d > 1,
X � �x1 : : : xn:xiX1 : : :Xj�1(�xn+1 : : : xk:xsZ1 : : : Zp)Xj+1 : : : Xm,
where Y is a long subterm of xsZ1 : : : Zp.

As xsZ1 : : : Zp is long and only in the scope of �x1 : : : xn : : : xk, we
have, if �i = 1 ! : : :! m ! c and j = �n+1 ! : : :! �k ! b:

x1 : �1; : : : ; xn : �n; : : : ; xk : �k ` xsZ1 : : : Zp : b:

Thus ` �x1 : : : xk:xsZ1 : : : Zp : �1 ! : : : ! �k ! b where Y is a long
subterm of �x1 : : : xk :xsZ1 : : : Zp of �-depth d� 1.

Thus 2. holds by the induction hypothesis with � a long positive
subtype of �1 ! : : : ! �k ! b and so of � or an atom which is
the tail of a long positive as well as of a long negative subtype of
�1 ! : : :! �k ! b and so of � .

�

Note The �rst inhabitant given in Example 79 is a counterexample, due to
Ryo Kashima,to an earlier version of Lemma 80. This claimed property 2.
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for any inhabitant X of the given type � in long normal form, rather than
just some X .

It follows from Lemmas 78 and 80 that an X in long normal form such
that

` X : �;

can be built up from subterms of the form

�xr : : : xs:xiX1 : : : Xn;

where xi : �i; �i is a long negative subtype of � , and �i has tail a, where a
is an atom which is also the tail of a positive subtype of � .

The compound types of these subterms in long normal form must be
among the long positive subtypes of � .

With this in mind we arrive at the following algorithm for �nding inhab-
itants of types, i.e. proofs in intuitionistic implicational logic.

6.2 SK-logic (H !)

The H ! Decision Procedure or the SK Long Inhabitant Search Algorithm

Aim
Given a type � , to �nd a closed X in long normal form (if any) such that

` X : �

Step 1
To each distinct long negative subtype �i of � assign a variable xi giving a
�nite list:

x1 : �1; : : : ; xm : �m

Step 2
For each atomic type b that is the tail of both a long negative and a long
positive subtype of � , form by application, (if possible) a lnf inhabitant Y
of b if we don't already have a Y 0 : b with FV (Y 0) � FV (Y ) in Step 1 or
this or earlier Steps 2.
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Step 3
For each long positive composite subtype � of � , form, by abstraction, with
respect to some of x1; : : : ; xm, a term Y in lnf such that Y : � if we don't
already have a Y 0 : � with FV (Y 0) � FV (Y ) in Step 1 or earlier Steps 3.

If one of these terms Y is closed and has type � we stop.
If there is no such term we continue with Steps 2 and 3 until we obtain

no more terms with a \new" set of free variables or a new (atomic tail or
long positive) type. If there are no new terms there is no solution X .
Note

In the work below and in all examples we will select our variables in
Step 1 in the following order: x1 is assigned to the leftmost shallowest long
negative subtype of �; x2 to the next to leftmost shallowest long negative
subtype etc. until the shallowest long negative subtypes are used up. The
next variable xn+1 is assigned to the leftmost next shallowest long negative
subtype and eventually xm to the rightmost deepest long negative subtype.

In Example 81 below, x1 to x4 are assigned to the shallowest subtypes
and x5 to the next shallowest (the deepest) subtype.

Because of this ordering of the variables of X any subterm Y formed
by the algorithm will be in the scope of �x1x2 : : : xnxp1xp1+1 : : : xp2xp3 : : :
xp4 : : : xpq where n < p1 < p2 < p3 : : : < pq and where each �xp2i+1 : : : �xp2i+2

represents a single set of abstractions.

EXAMPLE 81.

� = [((a! b)! d)! d]! [(a! b)! d! e]! [a! a! b]! a! b

Step 1 x1 : ((a! b)! d)! d; x2 : (a! b)! d! e;
x3 : a! a! b; x4 : a; x5 : a! b,

Step 2 x3x4x4 : b; x5x4 : b;

Step 3 �x4:x3x4x4 : a! b; �x4:x5x4 : a! b; �x1x2x3x4:x3x4x4 : �:

EXAMPLE 82.
� = ((a! b)! a)! a:

Step 1 x1 : (a! b)! a; x2 : a:

Step 2 No new terms can be formed by application.

Step 3 �x1:x2 : �:
No new terms can be formed. �x1:x2 is not closed so � has no
inhabitants and no proof in H !.

EXAMPLE 83.

� = [((a! a)! a)! a]! [(a! a)! a! a]! [a! a! a]! a! a:
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Step 1 x1 : ((a! a)! a)! a; x2 : (a! a)! a! a,
x3 : a! a! a; x4 : a; x5 : a! a;

Step 2 x3x4x4 : a; x5x4 : a;

Step 3 �x4:x4 : a! a, �x5:x5x4 : (a! a)! a, �x1x2x3x4:x3x4x4 : � .

THEOREM 84. Given a type � , the SK long inhabitant search algorithm
will, in �nite time, produce an inhabitant of � or will demonstrate that �
has no inhabitants. The algorithm will produce at most F (�) terms before
terminating.

Proof. It follows from the Weak Normalisation Theorem (see [Turing, 1942;
Hindley, 1997]) that if � has an inhabitant, this inhabitant has a normal
form and this will also have type � .

By Lemma 80, � will have an inhabitant X of the form prescribed there.
We show that our SK-algorithm provides such an inhabitant X of � .

Step 1 of the SK-algorithm provides us with the largest set of variables
x1; : : : ; xm that, by Lemma 80, need appear in a solution for X .

Step 2 of the algorithm considers terms U = xiX1 : : : Xn with an atomic
type having a particular subset of x1; : : : ; xm as free variables. By Lemma
78 other terms xjY1 : : : Yk with the same atomic type and a superset of
these free variables can at most produce alternative inhabitants and so do
not need to be considered.

The total number of variables we can have is dn(�). These are the terms
generated by Step 1. The number of subsets of these is at most 2dn(�), the
number of atomic types we can have is at most dapn(�) so the number of
terms generated by Steps 2 is at most 2dn(�):dapn(�).

Step 3 forms terms in long normal form which have composite long pos-
itive subtypes of � as types. There are dcp(�) of these and we can form at
most one of these terms for each set of variables. Hence the most terms we
can form using Steps 3 is 2dn(�):dcp(�).

The maximal number of terms formed using the algorithm is therefore
dn(�) + 2dn(�):(dapn(�) + dcp(�)) = F (�). �

Note
As dapn(�) + dcp(�) � dp(�) where dp(�) is the number of occurrences of
distinct positive subtypes in � , F (�) < dn(�)+2dn(�):dp(�) < 2dn(�)+dp(�) �
2d(�) where d(�) is the number of long subtypes of � so F (�) < 2j� j.

In Example 1, F (�) = 197 while 2d(�) = 212 and 2j� j = 225. The actual
number of terms formed by the algorithm was 10.
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6.3 BCK Logic

We now adapt our long Inhabitant Search Algorithm to search for BCK-
�-terms in long normal form. By Theorem 51(3), these need to be elements
of Once�( ).

The BCK Logic Decision Procedure or the BCK-Long Inhabitant Search
Algorithm

Aim
Given a type � to �nd a closed BCK-de�nable �-term in long normal form
(if any) such that

` X : �:

Step 1 To each occurrence of a long negative subtype �i of � assign a
variable xi giving a �nite list:

x1 : �1; : : : ; xm : �m:

Step 2 For each atomic type b that is the tail of both a long positive and a
long negative subtype of � form (if possible), by application, from the terms
we have so far, an inhabitant Y of b such that no free variables appear more
than once in Y , if we don't already have a Y 0 : b with FV (Y 0) � FV (Y ).

Step 3 For each long positive subtype � of � , form, by abstraction, with
respect to some of x1; : : : ; xm, a term Y such that Y : �, if we don't already
have a Y 0 : � where FV (Y 0) � FV (Y ).

EXAMPLE 85.

� = [((a! b)! d)! d]! [(a! b)! d! e]! [a! a! b]! a! b

Step 1 x1 : ((a! b)! d)! d; x2 : (a! b)! d! e;
x3 : a! a! b; x4 : a; x5 : a! b; x6 : a;

Step 2 x5x4 : b; x5x6 : b; x3x4x6 : b;

Step 3 �x4:x5x4 : a! b;
�x4:x3x4x6 : a! b; �x6:x3x4x6 : a! b; �x1x2x3x4:x5x4 : �;
�x1x2x3x6:x3x4x6 : �; �x1x2x3x4:x3x4x6 : �:

No new terms are generated by further uses of steps 2 and 3 and as the
terms with type � are not closed, there is no BCK inhabitant of � . Note
that � does have an SK inhabitant �x1x2x3x4:x3x4x4, but this is not BCK
because x4 is used twice.

EXAMPLE 86.

� = ((a! a)! a! a! b)! a! a! b
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Step 1 x1 : (a! a)! a! a! b; x2 : a; x3 : a; x4 : a;

Step 2 No new terms are formed.

Step 3 �x2:x2 : a! a;

Step 2 x1(�x2:x2)x2x3 : b;
x1(�x2:x2)x2x4 : b; x1(�x2:x2)x3x4 : b;

Step 3 �x1x2x3:x1(�x2:x2)x2x3 : �:

Notes: 1. The SK algorithm would have produced only �x1x2x3:x1(�x2:x2)
x2x2 : � which is not a BCK-�-term.
2. It was essential here to have a variable for each distinct long negative
occurrence of a in � .

LEMMA 87. If X is a BCK term which is a normal form inhabitant of
�; U a subterm of X of type � and V a BCK term of type �, in which
no free variable appears more than once, with FV (V ) � FV (U), then the
result of replacing U by V in X is another BCK inhabitant of � .

Proof. As for Lemma 78. �

LEMMA 88. If `BCK Z : � , then there is a term X is long normal form
such that:

1. `BCK X : �

2. For every long subterm Y of X with FV (Y ) = fxi1 ; : : : ; xing we have

xi1 : �i1 ; : : : ; xin : �in `BCK Y : �;

where � is either a long occurrence of a composite positive subtype of
� or an atom which is the tail of both a long positive and a long nega-
tive subtype of � . �i1 ; : : : ; �in are distinct occurrences of long negative
subtypes of � .

Proof.

1. The formation of an X in long normal form is as in the proof of Lemma
80(1) except that the extra variables xm+1; : : : ; xn that are choosen
must not be free in xiX1; : : : ; Xm, (otherwise �xm+1 : : : xn:xiX1; : : : ;
Xmxm+1; : : : ; xn would not be a BCK-term). Also for the same rea-
son, we don't identify distinct variables with the same type. We let
X be a term obtained by the expansion of Z to long normal form.
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2. As for Lemma 80(2) except that we have to show that we have at most
one variable for each distinct occurrence of a long negative subtype of
� . We extend the induction proof to include this.

When d = 1, we clearly have one variable for every long negative
subtype �1 : : : ; �n of � = �1 ! : : :! �n ! a and no others.

When d > 1 the subterm Y appears as Zj in a term

xtU1 : : : Us
where Ue = �xu : : : xv :xrZ1 : : : Zp

xt : 1 ! : : :! s ! c
and w = Æu ! : : :! Æv ! d
and 1 � j � p; 1 � e � s and 1 � w � s:

The extra typed variables added at this stage are xu : Æu; : : : ; xv : Æv.

By the inductive hypothesis we have that 1 ! : : : ! s ! c is an
occurrence of a long negative subtype of � and it therefore follows
that the same holds for Æu; : : : ; Æv. Note that as in BCK (and BCI)
logic there can be only one free occurrence of the variable xt in a term
before we abstract with respect to xt, so there can be no other use of
xt that might generate another set of variables with types Æu; : : : ; Æv
i.e. one occurrence of 1 ! : : : ! q ! c in � generates at most one
occurrence of a variable for each occurrence of Æu; : : : ; Æv which are
long negative subtypes of depth one lower than 1 ! : : :! q ! c in
� . �

THEOREM 89. Given a type � , the BCK long inhabitant search algorithm
will in �nite time produce an inhabitant or will demonstrate that � has no
BCK-inhabitants. The algorithm will produce at most G(�) terms before
terminating.

Proof. As for Theorem 84, except that Lemmas 87 and 88 replace Lemmas
78 and 80. �

It might be thought that the BCK algorithm might require fewer than
the maximal F (�) terms required for SK, in fact it requires more because
there may be several variables with the same type. Even when this is not
the case, both algorithms require at most one term for each given type and
each set of variables. For SK some variables may appear several times, for
BCK they may not. For BCI in addition all abstracted variables will have
to appear in the term being abstracted.

The bounds F (�) and G(�) are not directly related to standard complex-
ity measures. The algorithm will in fact generate some other terms but not
record them because they have the same type and set of free variables to
another already recorded.
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6.4 BCI Logic

Again we can adapt the Long Inhabitant Search Algorithm. This time the
inhabitants found must, by Theorem 51(2) be in Once( ).

The BCI-Logic Decision Procedure or the BCI Long Inhabitant Search Al-
gorithm

Aim
Given a type � to �nd a closed BCI-�-term X in long normal form (if any)
such that:

` X : �:

Method
As for the BCK-algorithm except that Step 2 and 3 end in \FV (Y 0) =
FV (Y )" and in Step 3 we may only form �xi : : : xj :Z if xi; : : : ; xj occur free
in Z exactly once each.

EXAMPLE 90.

� = ((a! b)! c)! b! d! (c! e)! e

Step 1 x1 : (a! b)! c; x2 : b; x3 : d; x4 : c! e; x5 : a

Step 2 No new terms are formed.

Step 3 �x5:x2 is not a BCI-�-term, so no new terms are generated and so
there is no BCI-proof of � .

EXAMPLE 91.

((a! b! c)! d)! (b! a! c)! d:

Step 1 x1 : (a! b! c)! d; x2 : b! a! c; x3 : a; x4 : b;

Step 2 x2x4x3 : c;

Step 3 �x3x4:x2x4x3 : a! b! c;

Step 2 x1(�x3x4:x2x4x3) : d;

Step 3 �x1x2:x1(�x3x4:x2x4x3) : �:

Example 86 also produced a BCI-term.

THEOREM 92. Given a type � , the BCI long inhabitant search algorithm
will, in �nite time, produce an inhabitant or will demonstrate that � has no
inhabitants. The algorithm will produce at most G(�) terms before termi-
nating.
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Proof. Lemma 87 holds provided that V is a BCI term such that FV (V ) =
FV (U) and each free variable of V appears exactly once in V . If Z in Lemma
87 is a BCI term so is X .

The proof of the theorem now proceeds as for Theorem 89 except that
in any substitution [V=U ]X the above restrictions apply. Hence FV (Y 0) =
FV (Y ) was needed in Step 2 of the BCI-algorithm. In Steps 2 and 3
we must, for each subset of fx1; : : : ; xmg, consider a term with those free
variables with a particular atomic negative or long positive subtype of T .

�

6.5 BCIW Logic (R!)

The BCI-search algorithm can easily be extended to BCIW-logic. By
Theorem 51(4), the �-terms required are from Once+().

The BCIW Long Inhabitant Search Algorithm

Aim
Given a type � to �nd a closed BCIW-�-term X in long normal form (if
any) such that

` X : �

Method

As for the BCI algorithm except that in Steps 2 and 3 each variable must
appear in Y and Z at least once.

If the algorithm that we have to this stage fails, additional variables with
the same types as the ones �rst given in Step 1 are added and the previous
algorithm is repeated.

Note that, as it is not clear as to how many times new variables might
need to be added, this method, while, as shown in Theorem 96, it leads
to �nding an inhabitant if there is one, does not constitute a decision pro-
cedure. The need for extra variables is illustrated in Example 95 below.
This logic does have a decision procedure (see [Urquhart, 1990]), but its
maximum complexity is related to Ackermann's function.

EXAMPLE 93.

� = [((a! b)! d)! d]! [(a! b)! d! e]! [a! a! b]! a! b

Step 1 x1 : ((a! b)! d)! d; x2 : (a! b)! d! e;
x3 : a! a! b; x4 : a; x5 : a! b; x6 : a

Step 2 x3x4x4 : b; x3x4x6 : b; x3x6x6 : b; x5x4 : b; x5x6 : b

Step 3 �x4:x3x4x4 : a! b; �x4:x3x4x6 : a! b; �x6:x3x4x6 : a! b;
�x4:x5x4 : a! b



COMBINATORS, PROOFS AND IMPLICATIONAL LOGICS 281

We cannot form �x1x2x3x4:x3x4x4 as this is not a BCIW-�-term.
We can form no more terms by Step 2 as we have no terms of type d

or (a ! b) ! d and no new terms of type a. Hence � has no BCIW
inhabitant.

EXAMPLE 94.

� = (c! a! a! a)! c! a! a

Step 1 x1 : c! a! a! a; x2 : c; x3 : a:

Step 2 x1x2x3x3 : a:

Step 3 �x1x2x3:x1x2x3x3 : �:

EXAMPLE 95.

� = c! c! (a! a! b)! (c! (a! b)! b)! b

Step 1 x1 : c; x2 : c; x3 : a! a! b; x4 : c! (a! b)! b; x5 : a

Step 2 x3x5x5 : b

Step 3 �x5:x3x5x5 : a! b

Step 2 x4x1(�x5:x3x5x5) : b;
x4x2(�x5:x3x5x5) : b;

Step 3 No new terms can be formed.

(Add to) Step 1 x6 : a

Step 2 x3x5x6 : b, x3x6x6 : b

Step 3 �x6:x3x5x6 : a! b; �x5:x3x5x6 : a! b

Step 2 x4x1(�x6:x3x5x6) : b; x4x2(�x6:x3x5x6) : b;
x4x1(�x5:x3x5x6) : b; x4x2(�x5:x3x5x6) : b;

Step 3 �x5:x4x1(�x6:x3x5x6) : a! b; �x5:x4x2(�x6:x3x5x6) : a! b;

Step 2 x4x1(�x5:x4x1(�x6:x3x5x6)) : b;
x4x2(�x5:x4x1(�x6:x3x5x6)) : b;
x4x2(�x5:x4x2(�x6:x3x5x6)) : b;

Step 3 �x1x2x3x4:x4x2(�x5:x4x1(�x6:x3x5x6)) : �:

Note that in Example 95 x4 is used twice and so the one occurrence of a in
c ! (a ! b) ! b, requires two variables of type a. If these were identi�ed
the resultant �-term would no longer be BCIW-de�nable.

THEOREM 96. Given a type � , the BCIW long inhabitant search algo-
rithm will, in �nite time, produce an inhabitant.
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Proof. Lemma 87 holds for BCIW-terms provided that we have FV (U) =
FV (V ).

If Z in Lemma 88 is a BCIW-term so is X . In the counterpart to Lemma
88 the word \distinct" must also be dropped for the reasons illustrated in
Example 95 above.

The proof of the theorem now proceeds as that of Theorem 91 except
that multiple copies of variables may appear in substitutions and in terms
formed by the algorithm. �

6.6 BB0IW Logic (T !)

BB0IW search algorithm �nds �-terms of a given type that are in HRM( )\
Once+( ), as required by Theorem 61.

The BB0IW Long Inhabitant Search Algorithm

Aim
Given a type � to �nd a closed BB0IW-�-term X in long normal form (if
any) such that

` X : �

Step 1 As for BCIW.

Step 2 For each atom b and for each subsequence (j1; : : : ; jr) of (1; : : : ;m)
�nd one BB0IW-�-term Y � xj iX1 : : :Xk (k � 0; 1 � i � r),
such that Y 2 HRM(j1; : : : ; jr); Y : b and FV (Y ) = fxj1 ; : : : ;
xjrg, if there is not already such a Y .

Step 3 For each subsequence (j1; : : : ; jr) of (1; : : : ;m) and for each long
positive subtype � of � , form a BB0IW-�-term Y by abstraction
so that Y : � and FV (Y ) = fxj1 ; : : : ; xj rg, if we don't already
have such a Y .

Now repeat steps 2 and 3 and if needs be add extra variables as for BCIW.
As with the BCIW-algorithm this does not, in general, provide a decision

procedure.

EXAMPLE 97.

� = (a! b! c! d)! a! c! b! d

Step 1 x1 : a! b! c! d; x2 : a; x3 : c; x4 : b

Step 2 x1x2x4x3 : d and x1x2x4x3 2 HRM(1; 2; 4; 3)

Step 3 The only term with a positive subtype of � that can be formed is
�x1x2x3x4:x1x2x4x3 : �; but this is not a BB0IW-�-term. Adding
extra variables with the same types only allows us to generate this
same (modulo-� conversion) inhabitant of � .
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EXAMPLE 98.

� = (c! a! a! a)! c! a! a

The only BCIW de�nable-�-term inhabitant of � was �x1x2x3:x1x2x3x3;
this is also a BB0IW de�nable �-term.

THEOREM 99. Given a type � , the BB0IW long inhabitant search algo-
rithm will, in �nite time, produce an inhabitant.

Proof. As for Theorem 96, except that we can replace subterms only by
subterms belonging to the same class HRM(j1; : : : ; jr) (1 � j1 < : : : <
jr � m). �

6.7 BB0I Logic (T-W, P-W)

The search algorithm for this logic �nds elements of the appropriate type
in HRM( ) \Once( ), as requried by Theorem 61(1).

The BB0I Logic or T-W(P-W) Decision Procedure or the BB0I Long In-
habitant Search Algorithm

Aim
Given a type � to �nd a closed BB0I-�-term X in long normal form (if any)
such that

` X : �

Method
As for BB0IW logic except that in the terms formed in Step 2 no free
variable may appear twice and that no extra variables need be added.

EXAMPLE 100.

� = (c! a! a! a)! c! a! a

The only BB0IW inhabitant of � is �x1x2x3:x1x2x3x3 and this is not a
BB0I-de�nable �-term. Thus � has no BB0I inhabitants.

EXAMPLE 101.

� = [(a! a)! a]! (a! a)! a

Step 1 x1 : (a! a)! a; x2 : a! a; x3 : a

Step 2 x2x3 : a

Step 3 �x3:x3 : a! a �x3:x2x3 : a! a

Step 2 x1(�x3:x2x3) : a; x1(�x3:x3) : a
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Step 3 �x1x2:x1(�x3:x2x3) : �

THEOREM 102. Given a type � the BB0I long inhabitant search algorithm
will, in �nite time, produce an inhabitant or will demonstrate that � has no
inhabitants. The algorithm will produce at most G(�) terms before termi-
nating.

Proof. As for Theorem 99, except that each variable xi must appear exactly
once in Y in any �xi:Y as with BCI logic. Also as in Theorem 89 and 92
the procedure can be bounded. Note that the number of subsequences of a
sequence is the same as the number of subsets of the corresponding set. �

6.8 BB0IK Logic

The search algorithm for this logic �nds �-terms of the appropriate type in
PRM( ) \ Once�( ).

The BB0IK Logic Decision Procedure or the BB0IK Long Inhabitant Search
Algorithm

Aim
Given a type � to �nd a closed BB0IK-� term X in long normal form (if
any) such that

` X : �:

Method
As for BB0I logic except that in Step 2 HRM is replaced by PRM .

EXAMPLE 103.

� = b! (b! c)! a! c

Step 1 x1 : b; x2 : b! c; x3 : a

Step 2 x2x1 : c (x2x1 2 PRM (1; 2; 3))

Step 3 �x1x2x3:x2x1 2 �:

THEOREM 104. Given a type � the BB0IK long inhabitant search algo-
rithm will, in �nite time, produce an inhabitant or will demonstrate that �
has no inhabitant. The algorithm will produce at most G(�) terms before
terminating.

Proof. As for Theorem 99. �
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6.9 Some Other Logics

Bunder [1996] also gives the �-terms de�nable in terms of the combina-
tors BB0, BT, BB0K, BIT, BITK, BITW, BTK, and BTW. Those for
BCW and BB0W can easily be found.

Inhabitant �nding algorithms for these logics can easily be obtained as
above. Decision procedures can be obtained for those without W.

University of Wollongong, Australia
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GRAHAM PRIEST

PARACONSISTENT LOGIC

Indeed, even at this stage, I predict a time when there will be
mathematical investigations of calculi containing contradictions,
and people will actually be proud of having emancipated them-
selves from `consistency'. Ludwig Wittgenstein, 1930.1

1 INTRODUCTION

Paraconsistent logics are those which permit inference from inconsistent in-
formation in a non-trivial fashion. Their articulation and investigation is a
relatively recent phenomenon, even by the standards of modern logic. (For
example, there was no article on them in the �rst edition of the Handbook.)
The area has grown so rapidly, though, that a comprehensive survey is al-
ready impossible. The aim of this article is to spell out the basic ideas and
some applications. Paraconsist logic has interest for philosophers, mathe-
maticians and computer scientists. As be�ts the Handbook, I will concen-
trate on those aspects of the subject that are likely to be of more interest to
philosopher-logicians. The subject also raises many important philosophical
issues. However, here I shall tread over these very lightly|except in the
last section, where I shall tread over them lightly.

I will start in part 2 by explaining the nature of, and motivation for, the
subject. Part 3 gives a brief history of it. The next three parts explain the
standard systems of paraconsistent logic; part 4 explains the basic ideas, and
how, in particular, negation is treated; parts 5 and 6 discuss how this basic
apparatus is extended to handle conditionals and quanti�ers, respectively.
In part 7 we look at how a paraconsistent logic may handle various other
sorts of machinery, including modal operators and probability. The next
two parts discuss the applications of paraconsistent logic to some impor-
tant theories; part 8 concerns set theory and semantics; part 9, arithmetic.
The �nal part of the essay, 10, provides a brief discussion of some central
philosophical aspects of paraconsistency.

In writing an essay of this nature, there is a decision to be made as to how
much detail to include concerning proofs. It is certainly necessary to include
many proofs, since an understanding of them is essential for anything other
than a relatively modest grasp of the subject. On the other hand, to prove
everything in full would not only make the essay extremely long, but distract
from more important issues. I hope that I have struck a happy via media.

1Wittgenstein [1975], p. 332.

D. Gabbay and F. Guenthner (eds.),
Handbook of Philosophical Logic, Volume 6, 287{393.
c 2002, Kluwer Academic Publishers. Printed in the Netherlands.
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Where proofs are given, the basic de�nitions and constructions are spelled
out, and the harder parts of the proof worked. Routine details are usually
left to the reader to check, even where this leaves a considerable amount of
work to be done. In many places, particularly where the material is a dead
end for the purposes of this essay, and is easily available elsewhere, I have
not given proofs at all, but simply references. Those for whom a modest
grasp of the subject is suÆcient may, I think, skip all proofs entirely.

Paraconsistent logic is strongly connected with many other branches of
logic. I have tried, in this essay, not to duplicate material to be found in
other chapters of this Handbook, and especially, the chapter on Relevant
Logic. At several points I therefore defer to these. There is no section of
this essay entitled `Further Reading'. I have preferred to indicate in the text
where further reading appropriate to any particular topic may be found.2

2 DEFINITION AND MOTIVATION

2.1 De�nition

The major motivation behind paraconsistent logic has always been the
thought that in certain circumstances we may be in a situation where our
information or theory is inconsistent, and yet where we are required to draw
inferences in a sensible fashion. Let ` be any relationship of logical conse-
quence. Call it explosive if it satis�es the condition that for all � and �,
f�;:�g ` �, ex contradictione quodlibet (ECQ). (In future I will omit set
braces in this context.) Both classical and intuitionist logics are explosive.
Clearly, if ` is explosive it is not a sensible inference relation in an incon-
sistent context, for applying it gives rise to triviality: everything. Thus, a
minimal condition for a suitable inference relation in this context is that
it not be explosive. Such inference relationships (and the logics that have
them) have come to be called paraconsistent.3

Paraconsistency, so de�ned, is something of a minimal condition for a
logic to be used as envisaged; and there are logics that are paraconsistent
but not really appropriate for the use. For example, Johansson's minimal
logic is paraconsistent, but satis�es �;:� ` :�. One might therefore at-
tempt a stronger constraint on the de�nition of `paraconsistent', such as: for
no syntactically de�nable class of sentences (e.g., negated sentences), �, do

2The most useful general reference is Priest et al. [1989] (though this is already a
little dated). That book also contains a bibliography of paraconsistency up to about the
mid-1980s.

3The word was coined by Mir�o Quesada at the Third Latin American Symposium on
Mathematical Logic, in 1976. Note that a paraconsistent logic need not itself have an
inconsistent set of logical truths: most do not. But there are some that do, e.g., any logic
produced by adding the connexivist principle :(� ! :�) to a relevant logic at least as
strong as B. See Mortensen [1984].
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we have �;:� ` �, for all � 2 �. This seems too strong, however. In many
logics, �;:� ` �, for every logical truth, �. If the logic is decidable, then
there is a clear sense in which the set of logical truths is syntactically charac-
terisable. Yet such logics would still be acceptable for many paraconsistent
purposes. Hence, this de�nition would seem to be too strong.4

In his [1974], da Costa suggests another couple of natural constraints on
a paraconsistent logic, of a rather di�erent nature. One is to the e�ect that
the logic should not contain :(�^ :�) as a logical truth. The rationale for
this is not spelled out. However, I take it that the idea is that if one has
information that contains � and :� one does not want to have a logical
truth that contradicts this. Why not though? Since one is not ruling out
inconsistency a priori, there would seem to be nothing a priori against this
(though maybe for particular applications one would not want the situation
to arise). As a general condition, then, it seems too strong. And certainly a
number of the logics that we will consider have :(�^:�) as a logical truth.

Another of the constraints that da Costa suggests is to the e�ect that the
logic should contain as much of classical|or at least intuitionist|logic, as
does not interfere with its paraconsistent nature. The condition is somewhat
vague, though its intent is clear enough; and again, it is too strong. It
assumes that a paraconsistent logician must have no objection to other
aspects of classical or intuitionist logic, and this is clearly not true. For
example, a relevant logician might well object to paradoxes of implication,
such as �! (� ! �).5

As an aside, let me clarify the relationship between relevant logics and
paraconsistent logics. The motivating concern of relevant logic is somewhat
di�erent from that of paraconsistency, namely to avoid paradoxes of the
conditional. Thus, one may take a relevant (propositional) logic to be one
such that if �! � is a logical truth then � and � share a propositional pa-
rameter. The interests of relevant and paraconsistent logics clearly converge
at many points. Relevant logics and paraconsistent logics are not coexten-
sive, however. There are many paraconsistent logics that are not relevant,
as we shall see. The relationship the other way is more complex, since there
are di�erent ways of using a relevant logic to de�ne a consequence relation.
A natural way is to say that � ` � i� � ! � is a logical truth. Such a
consequence relation is clearly paraconsistent. Another is to de�ne logical
consequence as deducibility, de�ned in the standard way, using some set of
axioms and rules for the relevant logic. Such a consequence relation may,
but need not, be relevant. For example, Ackermann's original formulation
of E contained the rule : if ` � and ` :� _ � then ` �. This gives explo-

4Further attempts to tighten up the de�nition of paraconsistency along these lines can
be found in Batens [1980] (in the de�nition of `A-destructive', p. 201, clause (i) should
read 6`L A), and Urbas [1990].

5Indeed, it is just this principle that ruins minimal logic for serious paraconsistent
purposes. For � and �!? (i.e., :�) give ?, and the principle then gives � !?.
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sion by an argument often called the `Lewis Independent Argument', that
we will meet in a moment.

Anyway, and to return from the digression: the de�nition of paraconsis-
tency given here is weaker than suÆcient to guarantee sensible application
in inconsistent contexts; but an elegant stronger de�nition is not at hand,
and since the one in question has become standard, I will use it to de�ne
the contents of this essay.

2.2 Inconsistency and Dialetheism

Numerous examples of inconsistent information/theories from which one
might want to draw inferences in a controlled way have been o�ered by
paraconsistent logicians. For example:

1. information in a computer data base;

2. various scienti�c theories;

3. constitutions and other legal documents;

4. descriptions of �ctional (and other non-existent) objects;

5. descriptions of counterfactual situations.

The �rst of these is fairly obvious. As an example of the second, consider,
e.g., Bohr's theory of the atom, which required bound electrons both to
radiate energy (by Maxwell's equations) and not to (since they do not spiral
inwards towards the nucleus). As an example of the third, just consider a
constitution that gives persons of kind A the right to do something, x, and
forbids persons of kind B from doing x. Suppose, then, that a person in
both categories turns up. (We may assume that it had never occurred to
the legislators that there might be such a person.) In the fourth case, the
information (in, say, a novel or a myth) characterises an object, and turns
out|deliberately or otherwise|to be inconsistent. To illustrate the �fth,
suppose, for example, that we need to compute the truth of the conditional:
if you were to square the circle, I would give you all my money. Applying
the Ramsey-test, we see what follows from the antecedent (which is logically
impossible), together with appropriate background assumptions. (And I
would not give you all my money!)6

There is no suggestion here that in every case one must remain content
with the inconsistent information in question. One might well like to remove

6Many of these examples are discussed further in Priest et al. [1989], ch. 18. The
Bohr case is discussed in Brown [1993]. Another kind of example that is sometimes cited
is the information provided by witnesses at a trial. I �nd this less persuasive. It seems to
me that the relevant information here is all of the form: witness x says so and so. (That
a witness is lying, or making an honest mistake, is always a possibility to be taken into
account.) And any collection of statements of this form is quite consistent.
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some of the inconsistent information in the data base; reject or revise the
scienti�c theory; change the law to eliminate the inconsistency. But this
is not possible in all of the cases given, e.g., for counterfactual condition-
als with impossible antecedents. And even where it is, this not only may
take time; it is often not clear how to do so satisfactorily. (The matter is
certainly not algorithmic.) While we �gure out how to do it, we may still
be in a situation where inference is necessary, perhaps for practical ends,
e.g., so that we can act on the information in the data base; or manipulate
some piece of scienti�c technology; or make decisions of law (on other than
an obviously inconsistent case). Moreover, since there is no decision pro-
cedure for consistency, there is no guarantee that any revision will achieve
consistency. We cannot, therefore, be sure that we have succeeded. (This is
particularly important in the case of the data base, where the deductions go
on \behind our back", and the need to revise may never become apparent.)

In cases of this kind, then, even though we may not, ideally, be satis�ed
with the inconsistent information, it may be desirable|indeed, practically
necessary|to use a paraconsistent logic. Moreover, we know that many
scienti�c theories are false; they may still be important because they make
correct predications in most, or even all, cases; they may be good approxi-
mations to the truth, and so on. These points remain in force, even if the
theories in question contain contradictions, and so are (thought to be) false
for logical reasons. Of course, this is not so if the theories are trivial; but
that's the whole point of using a paraconsistent logic.

One can thus subscribe to the use of paraconsistent logics for some pur-
poses without believing that inconsistent information or theories may be
true. The view that some are true has come to be called dialetheism, a
dialetheia being a true contradiction.7 If the truth about some subject
is dialetheic then, clearly, a paraconsistent logic needs to be employed in
reasoning about that subject. (I take it to be uncontentious that the set
of truths is not trivial. Why this is so, especially once one has accepted
dialetheism is, however, a substantial question.)

Examples of situations that may give rise to dialetheias, and that have
been proposed, are of several kinds, including:

1. certain kinds of moral and legal dilemmas;

2. borderline cases of vague predicates;

3. states of change.

Thus, one may suppose, in the legal example mentioned before, that a
person who is A and B both has and has not the right to do x; or that in

7The term was coined by Priest and Routley in 1981. See Priest et al. [1989], p. xx.
Note that some writers prefer `dialethism'.
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a case of light drizzle it both is and is not raining; or that at the instant a
moving object comes to rest, it both is and is not in motion.8

The most frequent and, arguably, most persuasive examples of dialetheias
that have been given are the paradoxes of self-reference, such as the Liar
Paradox and Russell's Paradox. What we have in such cases, are apparently
sound arguments resulting in contradictions. There are many suggestions as
to what is wrong with such arguments, but none of them is entirely happy.
Indeed, in the case of the semantic paradoxes there is not (even after 2,000
years) any consensus concerning the most plausible way to go. This gives
the thought that the arguments are, after all, sound, its appeal.9

Naturally, all the examples cited in this section are contestable. I will
return to the issue of possible objections in the last part of this essay.

3 A BRIEF HISTORY OF PARACONSISTENT LOGIC

3.1 The Law of Non-contradiction and Paraconsistency

During the history of Western Philosophy, there have been a number of �g-
ures who deliberately endorsed inconsistent views.10 The earliest were some
Presocratics, including Heraklitus. In the middle ages, some Neo-Platonists,
such as Nicholas of Cusa, endorsed contradictory views. In the modern pe-
riod, the most notable advocate of inconsistent views was Hegel.11 These
�gures are relatively isolated, however. It is something of an understate-
ment to say that the dominant orthodoxy in Western Philosophy has been
strongly hostile to inconsistency.12 Consistency has been taken to be piv-
otal to a number of fundamental notions, such as truth and rational belief.
This antipathy to contradiction is, historically, due in large part to Aristo-

8Many of these examples are discussed further in Priest et al. [1989], ch. 18, 2.2. A
discussion of transition states and legal dialetheias can be found in chs. 11 and 13 of
Priest [1987]. Moral dilemmas are also discussed in Routley and Routley [1989]. The
dialetheic nature of vagueness is advocated in Pe~na [1989]. It has also been suggested
that some contradictions in the Hegel/Marx tradition are dialetheic. For a discussion of
this, see Priest [1989a].

9For further discussion, see Routley [1979] and Priest [1987], chs. 1-3.
10And nearly every great philosopher has unwittingly endorsed inconsistent views.
11In each case, there is, of course, some|though, I would argue, misguided|possibility

for exegetical attempts to render the views consistent. Other modern philosophers whose
thought also appears to endorse inconsistency are Meinong and the later Wittgenstein.
In their cases there is more scope for exegetical evasion. For further discussion on all
these matters, see Priest et al [1989], chs. 1, 2.
12Eastern philosophy has been notably less so|though there is, again, room for ex-

egetical debate. The most natural interpretation of Jaina philosophy has them endorsing
inconsistent positions. And major Buddhist logicians of the stature of Nargarjuna held
that it was quite possible for statements to be both true and false. Signi�cant elemements
of inconsistency can also be found in Chinese philosophy. For further discussion of all
this, see Priest et al [1989], ch. 1, sect. 2.
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tle's defense of the Law of Non-contradiction in the Metaphysics.13 Given
this situation, it may therefore be surprising that the orthodoxy against
paraconsistency is a relatively recent phenomenon.

3.2 Paraconsistency Before the Twentieth Century

The major account of validity until this century was, of course, Aristotelian
Syllogistic. Now, consider any sentences of the Syllogistic E and I forms;
for example, `No women are white' and `Some women are white'. These
are contradictories. But the inference from them to, e.g., `All cows are
black', is not a valid syllogism. Syllogistic is not, therefore, explosive: it is
paraconsistent.

It might be suggested that it is more appropriate to look for explosion in
accounts of propositional inference. Here the story is more complex, but the
conclusion is similar. Aristotle had no elaborated account of propositional
inference. However, there are comments that bear on the matter scattered
through the Organon, and they have a distinctly paraconsistent avour. For
example, in the Prior Analytics (57b3), Aristotle states that contradictories
cannot both entail the same thing. It would seem to follow that Aristotle did
not endorse at least one of (in modern notation) �^:� ` � and �^:� ` :�.
For contraposing (a move that Aristotle endorses immediately before), we
obtain � ` :(� ^ :�) and :� ` :(� ^ :�). Hence, not everything can
follow from a contradiction. In fact, there are reasons to suppose that
Aristotle held a view of negation according to which the negation of any
claim cancels that claim out. A contradiction has, therefore, no content,
and entails nothing. This view of negation (which would now be called
`connexivist') was endorsed by a number of subsequent logicians (notably
Abelard) well into the late middle ages.14

A theory of propositional inference was worked out much more thoroughly
by Stoic logicians, and the explosive nature of their theories is more plausible
for the following reason. There is a famous argument for ECQ, often called
the Lewis (independent) argument, after C. I. Lewis. This goes (in natural
deduction form) as follows:

:�
� :� _ �

�

13Book �, ch 4. The historical success of this defence is, however, out of all proportion
to its intellectual weight. See Priest [1998e].
14Much of this and the rest of the material in this subsection is documented in Sylvan

[2000], ch. 4. The discussion there is carried out in terms of the conditional, though it is
equally applicable to the consequence relation.
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The argument uses just two principles (three if you include the transitivity
of deducibility): Addition (� ` �_�) and the Disjunctive Syllogism (�;:�_
� ` �). As we shall see in due course, the Disjunctive Syllogism (DS) has,
unsurprisingly, been rejected by most paraconsistent logicians. Now Stoic
logicians endorsed just this principle. The explosive nature of their logic
would therefore seem a good bet. Despite this, it probably was not: there is
reason to suppose that their disjunction was an intensional one that required
some kind of connection between � and � for the truth of � _ �. If this is
the case, Addition fails in general, as does the Lewis argument.

It is not known who discovered the Lewis argument. Martin [1985] conjec-
tures that it was William of Soissons in the 12th Century. (It was certainly
known to, and endorsed by, some later logicians, such as Scotus and Buri-
dan.) At any rate, William was a member of a group of logicians called the
Parvipontanians, who were known not only for living by a small bridge, but
for defending ECQ. This group may therefore herald the arrival of explosion
on the philosophical stage. Whether or not this is so, after this time, some
logicians endorsed explosion, some rejected it, di�erent orthodoxies ruling at
di�erent times and di�erent places (though, possibly, the explosive view was
more common). One group of logicians who rejected it is notable, since they
very much pre�gure modern paraconsistent logicians. This is the Cologne
School of the late 15th Century, who argued against the DS on the ground
that if you start by assuming that � and :�, then you cannot appeal to �
to rule out :� as the DS manifestly does.

Notoriously, logic made little progress between the end of the Middle
Ages and the start of the third great period in logic, towards the end of the
19th Century. With the work of logicians such as Boole and Frege, we see
the mathematical articulation of an explosive logical theory that has come
to be know, entirely inappropriately, as `classical logic'. Though, in its early
years, many objected to its explosive features, it has achieved a hegemony
(though never a universality) in the logical community, in a (historically)
very brief space of time. Whether this is because the truth was de�nitively
and transparently revealed, or because at the time it was the only game in
town, history will tell.

3.3 The Twentieth Century

A feature of paraconsistent logic this century is that the idea appears to
have occurred independently to many di�erent people, at di�erent times
and places, working in ignorance of each other, and often motivated by
somewhat di�erent considerations. Some, notably, for example, da Costa,
have been motivated by the idea that inconsistent theories might be of
intrinsic importance. Others, notably the early relevant logicians, were
motivated simply by the idea that explosion, as a property of entailment, is
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just too counter-intuitive.15

The earliest paraconsistent logics (that I am aware of) were given by two
Russians. The �rst of these was Vasil'�ev. Starting about 1910, Vasil'�ev
proposed a modi�ed Aristotelian syllogistic, according to which there is
a new form: S is both P and not P . How, exactly, this form was to
be interpreted is contentious, though, a problem exacerbated by the fact
that he was not in a position to employ the techniques of modern logic.
This is not true of the second logician, Orlov, who, in 1929, gave the �rst
axiomatisation of the relevant logic R. Sadly, the work of neither Vasil'�ev
nor Orlov made any impact at the time.16

An important �gure who did have a good deal of inuence was the Polish
logician and philosopher  Lukasiewicz. Partly inuenced by Meinong's ac-
count of impossible objects,  Lukasiewicz clearly envisaged the construction
of paraconsistent logics in his seminal 1910 critique of Aristotle on the Law
of Non-contradiction.17 And it was his erstwhile student, Ja�skowski, who,
in 1948, produced the �rst non-adjunctive paraconsistent logic.18

Paraconsistent logics were again, independently, proposed in South Amer-
ica in doctoral dissertations by Asenjo (1954, Argentina) and da Costa
(1963, Brazil). Asenjo proposed the �rst many-valued paraconsistent logic.
Da Costa gave axiom systems for a certain family of paraconsistent log-
ics (the C systems), and produced the �rst quanti�ed paraconsistent logic.
Many co-workers, such as Arruda and Lopari�c, joined da Costa in the next
20 years, to produce an active school of paraconsistent logicians at Camp-
inas (and later S~ao Paulo). They developed non-truth-functional semantics
for the C systems, and articulated the subject in various other ways; this
included \rediscovering" Vasil'�ev, taking up the work of Ja�skowski, and
formulating various other paraconsistent systems.19

Guided by considerations of relevance, an entirely di�erent approach to
paraconsistency was proposed in England by Smiley in [1959], who artic-
ulated the �rst �lter logic. Starting at about the same time, and drawing
on the earlier work of Ackermann and Church, Anderson and Belnap in
the USA proposed a number of relevant paraconsistent logics of a di�erent
kind. A research school quickly grew up around them in Pittsburgh, which
included co-workers such as Meyer and Dunn.20 The algebraic semantics

15The later Wittgenstein was also sympathetic to paraconsistency for various reasons,
though he never articulated a paraconsistent logic. See, e.g., Marconi [1984].
16On Vasil'�ev see Priest et al. [1989], ch. 3, 2.2 and Arruda [1977]. On Orlov, see

Anderson et al. [1992], p. xvii.
17A synopsis of this is published in English in  Lukasiewicz [1971].
18For a discussion of  Lukasiewicz and Ja�skowski, see Priest et al. [1989], ch. 3, 2.1,

2.3. Ja�skowski's work is translated into English in his [1969].
19Discussion and bibliography can be found in Priest et al. [1989], 5.6. The most

accessible introduction to Asenjo's work is his [1966], and to da Costa's is his [1974]. Da
Costa and Marconi [1989] reports much of the work of da Costa and his co-workers.
20The work of this school is recorded in Anderson and Belnap [1975], and Anderson et
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for relevant logics, in particular, was inaugurated largely by Dunn's 1966
doctoral thesis.21

Investigation of things paraconsistent in Australia took o� in the early
1970s with the discovery of world (intensional) semantics for negation by
R. Routley (now Sylvan) and V. Routley (now Plumwood). This was de-
veloped into an intensional semantics for the Anderson/Belnap logics|and
many others|by Routley,22 Meyer (now in Australia), and a school that
developed around them in Canberra, which included workers such as Brady
and Mortensen. These semantics made the paraconsistent aspects of rele-
vant logics plain.23 Later in the 1970s the cudgel for dialetheism was taken
up by Priest (now Priest) and Routley.24

By the mid-1970s the paraconsistent movement was a fully international
one, with workers in all countries cooperating (though not necessarily agree-
ing!), and with logicians working in numerous countries other than the ones
already mentioned, including Belgium, Bulgaria, Canada and Italy. Some
feel for the state of the subject at the end of the 70s can be obtained from
Priest et al. [1989].25 The rest, as they say, is not history.

4 BASIC TECHNIQUES OF PARACONSISTENT LOGICS

An understanding of most paraconsistent logics can be obtained by look-
ing at the strategies employed in virtue of which ECQ fails. There are
many techniques for achieving this end. In this part, I will describe the
most fundamental. In the process, we will meet dozens of di�erent sys-
tems of paraconsistent logic, often constructed along very di�erent lines.
It is therefore necessary to have some common medium for comparison. I
have chosen to make this semantics, and will specify systems in terms of
these. (I would warn straight away though, that many of the systems we
will meet appeared �rst in proof theoretic terms. Indeed, some of the au-
thors of these systems|e.g. Tennant|would privilege proof theory over
semantics.) When I give details of corresponding proof theories, I will use
the sort of proof theory (natural deduction, sequent calculus, or axiomatic)
that seems most natural for the logic.

Because paraconsistency concerns only negation essentially, we can see
the essentials of paraconsistent logics in languages with very little logical

al. [1992].
21See Anderson and Belnap [1975], and also the article on Relevant Logic in this volume

of the Handbook.
22Whenever the name `Routley' is used without initial in this essay, it refers to Sylvan.
23The work of this group is most accessible in Routley et al. [1982].
24See, e.g., Routley [1979]. Priest's early work on the area is most accessible in Priest

[1987].
25Despite the date, all the work in the collection was �nished by 1980. A number of

papers produced at the same time, that were not included in this, were published in a
special issue of Studia Logica on paraconsistent logics (43 (1984), nos. 1 & 2).
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apparatus. In this part, we will be concerned with a propositional language
whose only connectives are negation, :, conjunction, ^, and disjunction, _.
I will use lower case Roman letters, starting with p, for propositional param-
eters, lower case Greeks, starting with �, for arbitrary formulas, and upper
case Greeks for sets of formulas. I will use j=C , j=I , and j=S5 for the con-
sequence relations of classical logic, intuitionist logic and S5, respectively,
and j= for the semantic consequence relation of whichever paraconsistent
logic happens to be the topic of discussion. If a proof theory is involved, I
will use ` for the corresponding notion of deducibility.

4.1 Filtration

One of the simplest ways to prevent explosion is to �lter it, and any other
undesirables, out. Consider, for simplicity, the one-premise case. (Finite
sets of premises can always be reduced to this by conjoining.) Let F (�; �)
be any relationship between formulas. De�ne an inference from � to � to be
prevalid i� � j=C � and F (�; �). The thought here is that for an inference
to be correct, something more than classical truth-preservation is required,
e.g., some connection between premise and conclusion. This is expressed by
F . Usually, prevalidity is too weak as a notion of validity, since, in general,
it is not closed under uniform substitution, and this is normally taken to be
a desideratum for any notion of validity. However, closure can be ensured
if we de�ne an inference to be valid i� it is a uniform substitution instance
of a prevalid inference.

What inferences are valid depends, of course, entirely on the �lter, F .
One that naturally and obviously gives rise to a paraconsistent logic is:
F (�; �) i� � and � share a propositional parameter. (This collapses the
notions of validity and prevalidity, since if � and � share a propositional
parameter, so do uniform substitution instances thereof.) This logic is not
a very interesting paraconsistent one, however, since, as is clear, p^:p j= �
where � is any formula containing the parameter p.26

A di�erent �lter, proposed by Smiley [1959] is: F (�; �) i� � is not a
(classical) contradiction and � is not a (classical) tautology.27 (Note that,
according to this de�nition, � ^ :� = � is not prevalid, but it is valid,
since it is an instance of p ^ q = p.) It is easy to see that on this account
p ^ :p does not entail q. The major notable feature of �lter logics is that,
in general, transitivity of deducibility breaks down.28 For example, using

26A stronger �lter is one to the e�ect that all the variables of the premise occur in
the conclusion. This gives rise to a logic in the family of analytic implications. On this
family, see Anderson and Belnap [1975], sect. 29.6.
27Filters of a related kind were also suggested by Geach and von Wright. See Anderson

and Belnap [1975], sect. 20.1.
28Though it need not. First Degree Entailment, where transitivity holds, can be seen

as a �lter logic. See Dunn [1980].
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Smiley's �lter, it is easy to see that p^:p j= p^ (:p_ q), p^ (:p_ q) j= q,
but p ^ :p 6j= q.

One of the most interesting �lter logics, given by Tennant [1984], is ob-
tained by generalising Smiley's approach. Let � and � be sets of sentences,
and let `� j=C �' be understood in the natural way (every classical evalu-
ation that makes every member of � true makes some member of � true).
De�ne the inference from � to � to be prevalid i�: � j=C � and for no
proper subsets of � and �, �0 and �0, respectively, do we have �0 j=C �0.
Validity is then de�ned by closing under substitution as before. In this ac-
count, a valid inference is one which is classically valid, and minimally so:
there is no \noise" amongst premise and conclusion set.29

Tennant's j= is obviously non-monotonic (that is, adding extra premises
may invalidate an inference). It also has the following property: if � j=C �,
then there are subsets of � and �, �0 and �0, respectively, such that �0 j=
�0. For if � j=C �, we can simply throw out premises and/or conclusions
until this is no longer true; the result is a prevalid, and so valid, inference.
In particular, if � j=C � then for some �0 � �, �0 j= � or �0 j= �. In the
�rst case, � follows validly from part of �; in the second, part of � can be
shown to be inconsistent by valid reasoning.

Filtration can also be applied proof theoretically: we start with classical
proofs and throw out those that do not satisfy some speci�c criteria. Ten-
nant's logic can be characterised proof-theoretically in just this way. For
�nite premises and conclusions, the valid inferences are exactly those that
are provable in the Gentzen sequent calculus for classical logic, but which
do not use the structural rules of dilution (thinning) and cut. Speci�cally,
consider the sequent calculus whose basic sequents are of the form � : �,
and whose rules are as follows. (�1;�2 means �1[�2; similarly, �; � means
�[ f�g, and if something of this form occurs as a premise of a rule, it is to
be understood that � =2 �).

�; � : � � : �; �
� : �;:� �;:� : �

�; � : � �; � : � �1 : �1; � �2 : �2; �

�; � ^ � : � �; � ^ � : � �1;�2 : �1;�2; � ^ �
� : �; � � : �; � �1; � : �1 �2; � : �2

� : �; � _ � � : �; � _ � �1;�2; � _ � : �1;�2

29The restriction of Tennant's approach to the one-premise, one-conclusion, case obvi-
ously gives Smiley's account. Smiley himself, handles the multiple-premise case, simply
by conjoining. As Tennant points out ([1984], p. 199), this generates a di�erent account
from his. It is not diÆcult to check that p _ q;:(p _ q) 6j= p ^ q for Smiley. (The con-
joined antecedent is a contradiction; and any inference of which the conjoined form is a
substitution instance is not classically valid.) But it is valid for Tennant, since it is a
substitution instance of p _ q; r _ s;:(t _ q);:(r _ u) j= p ^ s.
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Then we have � j= � i� the sequent � : � is provable. For the proof see
Tennant [1984].30

Tennant's account of inference seems to capture very nicely what one
might call the `essential core' of classical inference. As an inference engine
to be applied to inconsistent information/theories, it could not be applied
in the obvious way, however. This is because information is often heavily
redundant. For example, for Tennant's j=, we do not have p;:p _ q; q j= q.
Yet given the information in the premises, it would certainly seem that we
are entitled to infer q. Presumably, then, we would take � to follow from
� i� for some �0 � �, �0 j= �.31 If we do this then more than transitivity
fails; so does Adjunction. For :p; p _ q j= q and :q; p _ q j= p, hence both
p and q follow from f:p; p _ q;:qg = �. But for no subset of �, �0, do we
have �0 j= p ^ q. (� j= �, and if �0 is a proper subset of �, �0 6j=C p ^ q.)
In this respect, Tennant's approach is similar to the next one that we will
look at.

4.2 Non-adjunction

All the other approaches that we will consider, except the last (algebraic
logics) accept validity as de�ned simply in terms of model-preservation.
Thus, given some notion of interpretation, call it a model of a sentence if the
sentence holds in the interpretation; an interpretation is a model of a set of
sentences if it is a model of every member of the set; and an inference is valid
i� every model of the premises is a model of the conclusion. In particular,
then, if explosion is to be avoided, it must be possible to have models for
contradictions, which are not models of everything. Where the di�erences
in the following approaches lie is in what counts as an interpretation, and
what counts as holding in it.

For the next approach, an interpretation, I , is a Kripke interpretation
of some modal logic, say S5, employing the usual truth conditions. Each
world in an interpretation may be thought of as the world according to some
party in a debate or discussion. This gives the approach its common name,
discussive (or discursive) logic. I is a (discursive) model of sentence � i�
� holds at some world in I , i.e., 3� holds in the model. Thus, � j= � i�
� holds, discursively, in every discursive model of �, i.e., i� 3� j=S5 3�,
where 3� is f3�;� 2 �g. This approach is that of Ja�skowski [1969].32 It is
clear that discussive logic is paraconsistent, since we may have 3� and 3:�
30The proof theory can be given a �ltered natural deduction form too. Essentially, clas-

sical deductions that have a certain \normal form" pass through the �lter. See Tennant
[1980].
31Though if we do this, symmetry suggests that we should take � to follow from � i�

for some �0 � � and �0 � �, �0 ` �0; in this case paraconsistency is lost since �;:� ` �.
32Popper also seems to have had a similar idea in 1948. See his [1963], p. 321.
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in an S5 interpretation, without having3�. For similar reasons, Adjunction
(�; � j= � ^ �) fails. It should be noted, however, that � ^ :� j= �, so the
logic is not paraconsistent for conjoined contradictions.

A closely related approach can be found in Rescher and Brandom [1979].
They de�ne validity as truth preservation in all worlds, but they augment
the worlds of standard modal logic by inconsistent and complete worlds,
constructed using operators _[ and _\. Speci�cally, worlds are constructed
recursively from standard worlds as follows. If W is a set of worlds, _[W is a
world such that � is true in _[W i� for some w in W , � is true in w; and _\W
is a world such that � is true in _\W i� for all w in W , � is true in w. As is
intuitively clear, inconsistent worlds just provide another way of expressing
what holds in a Ja�skowski interpretation. Incomplete worlds appear more
novel, but, in fact, add nothing. For if truth fails to be preserved in one
of these, it fails to be preserved in one of the ordinary worlds which go
into making it up. These ideas can be recast to show that the semantics of
Rescher and Brandom, and of Ja�skowski are inter-translatable, and deliver
the same notion of validity.33

A notable feature of discussive logic is that � j= � i� for some � 2 �,
� j=C �. (The proof from right to left is obvious. From left to right, suppose
that for every � 2 �, � 6j=C �. Let w� be a classical world where � holds but
� does not. If we take the interpretation whose worlds are fw�;� 2 �g this
is a counter-model for � j= �.) Thus, single-premise discussive inference is
classical, and there is no essentially multiple-premise inference. One way
to avoid the second of these features is to add an appropriate conditional
connective. We will look at this later. Another way is to allow a certain
amount of conjoining of premises. The question is how to do this in a
controlled way so that explosion does not arise.

One suggestion, made by Rescher and Manor, is, in e�ect, to allow con-
joining up to maximal consistency.34 Given a set of premises, �, a max-
imally consistent subset (mcs) is any consistent subset, �0, such that if

33Proof: Suppose that, discursively, � 6j= �. Then there is an interpretation such that
for each � 2 �, there is some world, w�, such that � is true in w�, but � is not true in
w�. Let w = _[fw�;� 2 �g, then w is a Rescher/Brandom counter-model. Conversely,
suppose that � 6j= � for Rescher and Brandom. Then there is some world such that for
every � 2 �, � is true at w, but � is not. We show that there is a Ja�skowski counter-
model. The result is proved by recusion on the construction of Rescher/Brandom worlds.
If w is a standard world, the result is clear. So suppose that w = _\W , where the result
holds for all members of W . By de�nition, for every z 2W , and every � 2 �, � is true in
z, but for some z, � is not true in z. Consider that z. This is a Rescher/Brandom counter-
model to the inference. Hence, the result holds by recursion hypothesis. Alternatively,
suppose that w = _[W , where the result holds for all members of W . By de�nition, for
every � 2 �, there is some w� 2W , such that � is true in w�, but � is not. By recursion,
there must be a Ja�skowski countermodel for the inference �=�. � is true at some world
in this, but � is not. If we form the collection of worlds for all such �, this then gives us
a Ja�skowski counter-model to the original inference.
34Rescher and Manor [1970-1]. This takes o� from the earlier work of Rescher [1964].
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� 2 ���0, �0 [f�g is inconsistent. We can now say that � follows from �
i� for some mcs �0, �0 j=C �. In possible world terms, we can rephrase this
as follows. Let us say that an interpretation, I , respects � i� for every mcs
�0, there is a world, w, in I such that �0 is true in w. Then it is not diÆcult
to see that this policy is a variant of discussive logic: � j= � i� � holds
discussively in every interpretation that respects �. (If � follows classically
from some �0, then it holds in every discussive interpretation that respects
�. Conversely, suppose that it follows from no �0. Then for each �0 choose
a world w�0 where �0 is true, but � is not. The interpretation containing
all such w�0 is a countermodel.)

This policy is certainly stronger than simple discussive consequence. For
example, it gives: p; q j= p ^ q. In fact, if � is (classically) consistent
then every classical consequence of � is a consequence. But it is still non-
adjunctive: p;:p 6j= p ^ :p.35

A slightly di�erent way of proceeding is provided by Schotch and
Jennings.36 Given a �nite set, �, a partition is any family of disjoint sets,
each of which is classically consistent, and whose union is �. The level of
�, l(�), is the least n such that � can be partitioned into n sets (or, con-
ventionally, 1 if there is no such n). � j= � i� l(�) =1 or, l(�) = n and
for any partition of � of size n, f�i; 1 � i � ng, there is an i such that
�i j=C �. As with the previous approach, this de�nition can be converted
into discussive terms, by taking our models to be those that respect the
premise set. But this time, an interpretation respects � i� for some parti-
tion of the level of �, f�i; 1 � i � ng, and every i, there is a world in the
interpretation where �i is true.

Leaving aside the fact that Schotch and Jennings consider only �nite
premise sets, one di�erence between their approach and the previous one
concerns the consequences of sets, �, with single inconsistent members.
Such sets have no partitions, and so explode for Schotch and Jennings.
They still have mcss though (e.g., �), and so do not explode for Rescher
and Manor. If � has no single inconsistent member then Schotch and Jen-
nings' consequence relation is included in that of Rescher and Manor. For
if f�i; i 2 ng is a partition of the premises, �, and for some i, �i j=C �,
then �i can be extended to an mcs of �, and this classically entails �. The
converse is not true, however. Let � = fp;:p; q; rg. This has two mcss,
fp; q; rg and f:p; q; rg. Hence, for Rescher and Manor, q ^ r follows. But �
has level 2, and one partition is ffp; qg; f:p; rgg. Neither of these classically
entails q ^ r, so this does not follow for Schotch and Jennings (which seems
wrong, intuitively).37

35Rescher and Manor also formulate a weaker policy of inference. � follows from � i�
for all mcs �0, �0 j=C �. This logic is clearly adjunctive.
36See their [1980], where they also discuss appropriate proof theories and modal

connections.
37The same example shows that Schotch and Jennings' j=, unlike Rescher and Manor's,
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Despite the di�erences, Schotch and Jennings' approach shares with that
of Rescher and Manor the following features: for consistent sets, conse-
quence coincides with classical consequence; Adjunction fails. For Schotch
and Jennings, like Ja�skowski, � ^ :� explodes. For Rescher and Manor, it
has no consequences (other than tautologies). The logics that we will look
at in subsequent sections are more discriminating concerning conjoined con-
tradictions.

4.3 Interlude: Henkin Constructions

Before we move on to look at the other basic approaches to paraconsistent
logic, I want to isolate a construction that we will have many occasions to
use. In a standard Henkin proof for the completeness of an explosive logic,
we construct a maximally consistent set of sentences, and use this to de�ne
an evaluation. In the construction of the set, we keep something out of it
by putting its negation in. As might be expected, these techniques do not
work in paraconsistent logic; but they can be generalised to do so. What
plays the role of a maximally consistent set in a paraconsistent logic is a
prime theory, where a set of sentences, �, is a theory i� it is closed under
deducibility; and it is prime i� � _ � 2 � ) (� 2 � or � 2 �). To keep
something out in the construction of a prime theory, we have to exclude it
explicitly. I now show how.

Assume that the proof theory is to be given in natural deduction terms.
For de�niteness I adopt the notational conventions of Prawitz [1965].38 Con-
sider the following rules for conjunction and disjunction:

_I � �

� ^ �

^E � ^ �
�

� ^ �
�

_I �

� _ �
�

� _ �

is non-monotonic, since we have q; r j= q ^ r.
38In particular, something of the form:

�
...
�

in a rule indicates a subproof with � as one assumption|though there may be others|
and conclusion �. If � is overlined, this means that the application of the rule discharges
it.
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_E

� �
...

...
� _ �  



Let ` be any proof theory that includes these rules. Write � ` � to
mean that there are members of �, �1; :::; �n, such that � ` �1 _ ::: _ �n.
Then if � 6` �, there are sets � � � and � � �, such that � 6` �, and
� is a prime theory. To prove this, we enumerate the formulas of the
language: �0; �1; �2; :::, and de�ne a sequence of sets �n, �n (n 2 !) as
follows. �0 = �; �0 = �. If �n [ f�ng 6` �n, then �n+1 = �n [ f�ng and
�n+1 = �n. Otherwise �n+1 = �n and �n+1 = �n [ f�ng. � =

S
n2! �n;

� =
S
n2! �n.

It is not diÆcult to check by induction that for all n, �n 6` �n. (Suppose
this holds for n; if �n [ f�ng 6` �n, the result for n + 1 is immediate. So
suppose that �n [f�ng ` �n and �n+1 ` �n+1. Then �n ` f�ng[�n. By
a sequence of moves that amount to \cut", �n ` �n, contrary to induction
hypothesis.) By compactness, it follows that � 6` �.

It is also easy to check that � is a prime theory. Suppose that � ` �, but
� 62 �. Then for some n, �n[f�g ` �n. Hence, � ` �. Next, suppose that
� _ � 2 �, but � 62 � and � 62 �. Then for some m and n, �n [ f�g ` �n

and �m [ f�g ` �m. Hence � [ f� _ �g ` �, and so � ` �.

4.4 Non-truth-functionality

Let us now return to the other basic approaches to paraconsistent logics.
On the �rst of these, explosion is invalidated by employing a non-truth-
functional account of negation. Typically, this account of negation is im-
posed on top of an orthodox account of positive logic. Thus, let an inter-
pretation be a map, �, from the set of formulas to f1; 0g, satisfying just the
following conditions:

�(� ^ �) = 1 i� �(�) = 1 and �(�) = 1

�(� _ �) = 1 i� �(�) = 1 or �(�) = 1

In particular, the truth value of :� is independent of that of �. Validity
is de�ned as truth preservation over all interpretations. It is obvious that
explosion fails, since we may choose an evaluation that assigns both p and
:p (and their conjunction) the value 1, whilst assigning q the value 0.

These semantics can be characterised very simply in natural deduction
terms by just the rules _I , _E, ^I and ^E. Soundness is easy to check.
For completeness, suppose that � 6` �. Then put � = f�g, and extend �
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to a prime theory, �, with the same property, as in 4.3. De�ne a map, �,
as follows:

�(�) = 1 if � 2 �
�(�) = 0 if � =2 �

It is easy to check that � is an interpretation. Hence, we have the result.

This system contains no inferences that involve negation essentially. For
this reason, : can hardly be thought of as a negation functor. Stronger para-
consistent systems, where this is more plausibly the case, can be obtained
by adding conditions on the semantics. The following are some examples:39

(i) if �(�) = 0, �(:�) = 1

(ii) if �(::�) = 1, �(�) = 1

(iii) if �(�) = 1, �(::�) = 1

(iv) �(:(� ^ �)) = �(:� _ :�)
(v) �(:(� _ �)) = �(:� ^ :�)

Sound and complete rule systems can be obtained by adding the correspond-
ing rules, which are, respectively:

(i) � _ :�
(ii)

::�
�

(iii)
�
::�

(iv)
:(� ^ �)

:� _ :�
(v)

:(� _ �)

:� ^ :�

(Double underlining indicates a two-way rule of inference, and a zero premise
rule, as in (i), can be thought of as an assumption that discharges itself.)
The corresponding soundness and completeness proofs are simple extensions
of the basic arguments.

These additions give the ^;_;:-fragments of various systems in the lit-
erature. (i) gives that of Batens' PI [1980]; (i) and (ii) that of da Costa's
C!;40 (i)-(v) that of Batens' PIS . In PIS every sentence is logically equiva-
lent to one in Conjunctive Normal Form. This can be used to show thatPIS

39Some others can be found in Lopari�c and da Costa [1984], and Beziau [1990].
40Semantics of the present kind for the da Costa systems were �rst proposed in da

Costa and Alves [1977].
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is a maximal paraconsistent logic, in the sense that any logic that extends
it is not paraconsistent. (For details, see Batens [1980].)

Observe, for future reference, that if we add to PI or an extension thereof
the condition:

if �(�) = 1, �(:�) = 0

then all interpretations are classical, and so we have classical logic. As may
easily be checked, adding this is sound and complete with respect to the
rule of inference:

� ^ :�
�

Another major da Costa system, C1, extends C! in accordance with the
following idea. It should be possible to express in the language the idea that
a sentence, �, behaves consistently; and for consistent sentences classical
logic should apply. Let us write :(�^:�) as �0. Then it is natural enough
to suppose that �0 expresses the consistency of �. It does not, in any of
the above systems, since we may have �^:�^�0 true in an interpretation.
This is exactly what is ruled out by the condition:

(vi) �(�) = �(:�) then �(�0) = 041

(�(�) = �(:�) i� both are 1, by semantic condition (i). Note that (i) also
guarantees the converse of (vi): �(�) 6= �(:�) then �(�0) = 1.)
C1 is obtained by adding (vi) to C!, together with the following condition,

which requires consistency to be preserved under syntactic constructions:

(vii) if �(�0) = �(�0) = 1 then �((:�)0) = �((� ^ �)0) = �((� _ �)0) = 1

The deduction rules that correspond to (vi) and (vii) are, respectively:

(vi)
� ^ :� ^ �0

�

(vii)
�0

(:�)0
�0 �0

(� ^ �)0
�0 �0

(� _ �)0

Soundness and completeness of the extensions are easily checked.
Now suppose that we have a piece of valid classical reasoning concerning

formulas composed of parameters p1; :::; pn. If we assume p01; :::; p
0
n then for

41Da Costa's actual condition is: if �(�0) = �(� � (� ^ :�)) = 1 then �(�) = 0. This
is equivalent, given his account of the conditional.
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every such formula, �, �0 follows by the appropriate applications of the rules
of (vii). Hence, whenever we have established � ^ :� we may apply rule
(vi) to give �. But the addition of this inference is suÆcient to give classical
logic, as I have already observed. Hence any valid classical reasoning may be
recaptured formally by adding the appropriate consistency assumptions.42

One �nal comment on treating negation non-truth-functionally. It is a
consequence of this that the substitutivity of provable equivalents breaks
down in general. For example, even though � is logically equivalent to
� ^ � there is no guarantee that the negations of these formulas have the
same truth value in an interpretation.43

4.5 Many Values

The previous approach sticks with the traditional two truth values, and ob-
tains a paraconsistent logic by making negation non-truth-functional. The
next approach retains truth functionality, but drops the idea that there
are exactly two truth values. That is, such logics are many-valued.44 A
many-valued logic will be paraconsistent if it is possible for a formula and
its negation both to take designated values (whilst not everything does). A
natural way of obtaining this is to have a designated value that is a �xed
point for negation. The simplest such logic is a three valued one with values,
t, b, and f , where t and b are designated, and the matrices are:

:
t f
b b
f t

^ t b f
t t b f
b b b f
f f f f

_ t b f
t t t t
b t b b
f t b f

It will be noted that these are just the matrices of  Lukasiewicz and Kleene's
3-valued logics, where the middle value is normally thought of as undecid-
able, or neither true nor false, and so not designated. It was the thought
that this value might be read as both true and false|a natural enough
thought, given dialetheism|and so be designated, that marks the start
of many-valued paraconsistent logic. This was the approach proposed by
Asenjo (see his [1966]), and others, e.g. Priest [1979], where the logic is
called LP , a nomenclature that I will stick with here.

42It might be suggested that one ought not to take �0 as expressing consistency unless
it, itself, behaves consistently. This thought motivates the weaker da Costa system
C2, which is the same as C1, except that �0 is replaced everywhere by �0 ^ �00. Of
course, there is no reason to suppose that this expresses the consistency of � unless it,
itself, behaves consistently. This thought motivates the da Costa system C3 where �0 is
replaced everywhere by �0 ^ �00 ^ �000. And so on for all the da Costa Systems Ci, for
�nite non-zero i.
43For a discussion of this in the context of da Costa's logics, see Urbas [1989].
44For a general discussion of many-valued logics, see the articles on the topic in this

Handbook. See also, Rescher [1969].



PARACONSISTENT LOGIC 307

LP may be generalised in various di�erent ways. One is as follows. If we
let t = +1, b = 0 and f = �1 then the truth conditions of LP are:

�(:�) = ��(�)
�(� ^ �) = minf�(a); �(�)g
�(� _ �) = maxf�(a); �(�)g

The same conditions can be used for any set of integers, X , containing 0
and closed under �. The designated values are the non-negative values. Let
us call this a Sugihara generalisation, after the person who, in e�ect, �rst
proposed a matrix of this kind, where X was the set of all integers.45

Any Sugihara generalisation, though semantically di�erent from LP , is
essentially equivalent to it. Any LP countermodel is a Sugihara counter-
model. But conversely, if we have a Sugihara countermodel, we can obtain
an LP countermodel by mapping all positive values to +1, 0 to 0, and all
negative values to �1. A little thought is suÆcient to establish that the
mapping respects the matrices and preserves designated values, as required.

A di�erent way of generalising LP is as follows. If we let t = 1, b = 0:5
and f = 0 then the truth conditions of LP are:

�(:�) = 1� �(�)
�(� ^ �) = minf�(a); �(�)g
�(� _ �) = maxf�(a); �(�)g

The same conditions can be used for any set of reals f0; 0:5; 1g � X � [0; 1],
which is closed under subtraction (of a greater by a lesser). For suitable
choices of X , these are the matrices of the odd-numbered �nite  Lukasiewicz
many-valued logics, and for X = [0; 1] they are the matrices of  Lukasiewicz'
continuum-valued logic. In  Lukasiewicz' logics proper, the only designated
value is 1, which does not give a paraconsistent logic. But if one takes
the designated values to be fx; a < x � 1g (or fx; a � x � 1g) then
the logic will be paraconsistent provided that 0 < a < 0:5 (or 0 < a �
0:5). Let us call such logics  Lukasiewicz generalisations. In a  Lukasiewicz
generalisation where the set of truth values is [0; 1], these may naturally be
thought of as degrees of truth. Hence, such a logic is a natural candidate
for a paraconsistent fuzzy logic (logic of vagueness).46

It is not diÆcult to see that any  Lukasiewicz generalisation is, in fact,
equivalent to LP . As with the Sugihara generalisations, any LP coun-
termodel is a  Lukasiewicz countermodel; and conversely, any  Lukasiewicz

45See Anderson and Belnap [1975], sect. 26.9.
46A variation on this theme is given by Pe~na in a number of papers. (See, e.g., Pe~na

[1984].) Pe~na takes truth values to be an ordered set of more complex entities de�ned in
terms of the interval [0; 1].
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countermodel can be collapsed into an LP countermodel by the mapping,
f , de�ned thus:

f(x) = 1 if 1� a � x � 1
= 0:5 if a < x < 1� a
= 0 if 0 � x � a

or for the case where a is a designated value:

f(x) = 1 if 1� a < x � 1
= 0:5 if a � x � 1� a
= 0 if 0 � x < a

The generalisations of LP that we have considered in this section all,
therefore, generate the same logic. What its proof theory is, we will see in
the next.

4.6 Relational Valuations

Standardly, semantic evaluations are thought of as functions from formulas
to truth values, say, 0 and 1. Another way of invalidating explosion is to
take them to be, not functions, but relations. A formula may then relate
to both 0 and 1, another way of expressing the thought that a sentence is
both true and false. Assuming that negation behaves as usual, this means
that both p and :p may relate to 1, whilst an arbitrary formula may not.
A natural way of spelling out this idea is as follows.

If P is the set of propositional parameters, an evaluation, �, is a subset
of P � f0; 1g. The evaluation is extended to a relation for all formulas by
the familiar looking recursive clauses:

:��1 i� ��0

:��0 i� ��1

� ^ ��1 i� ��1 and ��1
� ^ ��0 i� ��0 or ��0

� _ ��1 i� ��1 or ��1
� _ ��0 i� ��0 and ��0

Let us say that a formula, �, is true in an interpretation, �, i� ��1, and
false i� ��0; then validity may be de�ned as truth preservation in all inter-
pretations. According to this account, classical logic is just the special case
where multi-valued relations have been forgotten.
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These semantics are the Dunn semantics for the logic of First Degree
Entailment, FDE.47 In natural deduction terms, FDE can be characterised
by the rules ^I , ^E, _I and _E, together with the rules:

:(� ^ �)

:� _ :�
:� ^ :�
:(� _ �)

�
::�

Soundness is easily checked. For completeness, suppose that � 6` �. Extend
� to a prime theory, �, with the same property, as in 4.3. Now de�ne an
interpretation, �, thus:

p�1 i� p 2 �
p�0 i� :p 2 �

A straightforward (joint) induction shows that this characterisation extends
to all formulas. Completeness follows.

There are two natural restrictions that one may place upon Dunn evalu-
ations:

#1 for every p, there is at most one x such that p�x
#2 for every p there is at least one x such that p�x

Both conditions extend from propositional parameters to all formulas, by a
simple induction. Thus, the �rst condition ensures that the relation is func-
tional; the second that it is total. A relation that satis�es both conditions
is just a classical evaluation.

These extra conditions are sound and complete with respect to the extra
rules:

� ^ :�
� � _ :�

respectively, as simple extensions of the completeness proofs demonstrate.
We can express the relational semantics in functional terms by taking an

evaluation to be a function from formulas to subsets of f1; 0g, since there
is an obvious isomorphism between relations, �; and functions, �, given by
the condition:

��x i� x 2 �(�)

47Published in Dunn [1976], though he discovered them somewhat earlier than this. In
the present context, it might be better to call the system `Zero Degree Entailment' since
the language does not contain a conditional connective.
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In this way, FDE can be seen as a many- (in fact, four-) valued logic.48

Restriction #2, which ensures that no formula takes the value �, gives a
three-valued logic that is identical with LP . It is easy enough to check that
the values f1g, f1; 0g, and f0g work the same way as t, b, and f , respectively.
I will make this identi�cation in the rest of this essay. Restriction #1, which
ensures that no formula takes the value f1; 0g, obviously gives an explosive
logic, which is, in fact, the strong Kleene three-valued logic. This is therefore
a logic dual to LP .49

A feature of these semantics for LP and FDE is that they are monotonic
in the following sense. Let �1 and �2 be functional evaluations. If for all
propositional parameters, p, �1(p) � �2(p) then for all �, �1(�) � �2(�).
The proof of this is by a simple induction. One consequence of this for LP
is worth remarking on. LP is clearly a sub-logic of classical logic, since it
has the classical matrices as sub-matrices. The consequence relation of LP
is weaker than that of classical logic, since it is paraconsistent. But the set
of logical truths of LP is identical with that of classical logic. For suppose
that � is not valid in LP . Let � be an evaluation such that 1 =2 �(�).
Let �0 be the interpretation that is the same as �, except that for every
parameter, p, if �(p) = f0; 1g, �0(p) = f0g. This is a classical evaluation;
and by monotonicity, 1 =2 �0(�), as required.

Another feature of these semantics is the evaluation that assigns every
propositional parameter the value f1; 0g, vf1;0g; and, in the four-valued
case, the evaluation that gives every parameter the value �, v�. A simple
induction shows that these properties extend to all formulas. Thus, vf1;0g
makes all formulas true|and false|and v� makes every formula neither.
In particular, then, FDE has no logical truths.50

4.7 Possible Worlds

Yet another, closely connected, way of invalidating explosion is to treat
negation as an intensional operator. This way was proposed by the Routleys
in [1972]. A Routley interpretation is a structure, hW; �; �i, where W is a set
(of worlds), � is a map from W to W , and � maps sets of pairs comprising a
world and propositional parameter to f1; 0g. (I will write �(w;�) as �w(�).)
The truth conditions for conjunction and disjunction are the standard:

�w(� ^ �) = 1 i� �w(�) = 1 and �w(�) = 1

48In fact, the straight truth tables with values 1, 2, 3 and 4 were enunciated by Smiley.
See Anderson and Belnap [1975], p. 161.
49I will usually use the functional semantic representation for FDE and LP in the rest

of this essay. A word of warning, though: in the context of a dialetheic metatheory, the
functional approach may have consequences that the relational approach, proper, does
not have. See Priest and Smiley [1993], p. 49�.
50Further interesting properties of LP and FDE are established in Pynko [1995a] and

[1995b].
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�w(� _ �) = 1 i� �w(�) = 1 or �w(�) = 1

The truth conditions for negation are:

�w(:�) = 1 i� �w�(�) = 0

Note that if w� = w, these conditions just reduce to the classical ones. A
natural understanding of the � operator is a moot point.51 I will return to
the issue in a moment. Validity is de�ned in terms of truth preservation at
all worlds of all interpretations.

In natural deduction terms, this system can be characterised by modify-
ing that for FDE by dropping the rule for double negation, and replacing
it with:

�
...
� :�
:�

where, in the subproof, there are no undischarged assumptions other than
�. Soundness is easily checked. For completeness, suppose that � 6` �.
Extend � to a prime theory, �, with the same property, as in 4.3. Now
de�ne an interpretation, hW; �; �i, where W is the set of all prime theories,
� is de�ned by the condition:

� 2 �� i� :� =2 �

and � is de�ned by:

��(p) = 1 i� p 2 � (#)

It is not diÆcult to check that if � is a prime theory, so is �� and hence
that � is well de�ned. First, suppose that � =2 �� and � =2 ��. Then :�
and :� are in �. Since � is a theory, :� ^ :� 2 �, and so :(� _ �) 2 �.
Hence, �_� =2 ��. Next, suppose that �� ` �, but � =2 ��. Then for some
�1; :::; �n 2 ��, �1 ^ ::: ^ �n ` �. Hence, by contraposition and De Morgan
:� ` :�1 _ ::: _ :�n. But :� 2 � ; hence :�1 _ ::: _ :�n 2 �. Since � is
prime, for some 1 � i � n, :�i 2 �, i.e., �i =2 ��. Contradiction.

An easy recursion shows that (#) extends to all formulas. The result
follows.
51For some discussion and references, see the article on Relevance Logic and Entailment

in this Handbook.
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The logic can be made stronger without (necessarily) ruining its paracon-
sistency by adding further conditions on �. The most notable is: w�� = w.
This is sound and complete with respect to the additional rule:

�
::�

as a simple extension of the completeness argument demonstrates.
These semantics are, in fact, very closely related to the those for FDE

of the previous section. Given an FDE interpretation, �, de�ne a Routley
evaluation on the worlds w and w�, as follows:

�w(p) = 1 i� 1 2 �(p)
�w�(p) = 1 i� 0 =2 �(p)

A simple induction shows that these conditions follow for all formulas. Con-
versely, we can turn the conditions into reverse. Given any Routley evalua-
tion on a pair of worlds, w, w�, de�ne a Dunn evaluation by the conditions:

1 2 �(p) i� �w(p) = 1
0 2 �(p) i� �w�(p) 6= 1

Essentially the same induction shows that these conditions hold for all for-
mulas. Hence, the two semantics are inter-translatable, and validate the
same proof theories.52 The translation also suggests a natural interpretation
of the � operator. w� is that world characterised by the set of unfalsehoods
of w. (This is, of course, in general, distinct from the set of truths in a
four-valued context.)

Under the above translation, the condition: 1 2 �(p) or 0 2 �(p), which
gives an LP interpretation, is equivalent to: �w(p) = 1 or �w�(p) 6= 1;
imposing which condition on an intensional interpretation therefore gives
an intensional semantics for LP .

4.8 Algebraic Semantics

Let us now turn to the �nal approach to paraconsistent logics that we will
consider, an algebraic one. In algebraic logic, an interpretation is a homo-
morphism, �, from sentences into some algebraic structure, A = hA;^;_;:i;
i.e., �(:�) = :�(�), �(� ^ �) = �(�) ^ �(�), etc. (I will use the same signs
for the connectives and the algebraic operations. Context, and the style of
variable, will serve to disambiguate.) If the algebra is a lattice|as it usually

52Which shows that the contraposition rule is admissible in FDE, something that is
not at all obvious.



PARACONSISTENT LOGIC 313

is, and will be in all the cases we consider|the consequence relation of the
logic is represented by the lattice order relation, de�ned in the usual way:
a � b i� a ^ b = a. Thus, a logic will be paraconsistent if it is possible in
the algebra to have an a and b such that a ^ :a 6� b.

Several of the logics that we have looked at can be algebraicised. Con-
sider, for example, FDE. If we take the four-valued semantics for this, we
can think of the values as a lattice whose Hasse diagram is as follows:

f1g
% -

f1; 0g �
- %

f0g
(^ is lattice-meet; _ is lattice join; :f1; 0g = f1; 0g, and :� = �.) This
generalises to a De Morgan algebra. A De Morgan algebra is a structure A =
hA;^;_i, where hA;^;_;:i is a distributive lattice, and : is an involution
of period 2, i.e.:

::a = a

a � b) :b � :a

The structures take their name from the fact that in every such algebra
:(a ^ b) = :a _ :b holds, as do the other De Morgan laws.

De�ne an inference �1; :::; �n=� to be algebraically valid i� for every
homomorphism, �, into a De Morgan algebra, A, �(�1)^ :::^�(�n) � �(�).
Then the algebraically valid inferences are exactly those of FDE. It is
easy to check that the rule system for FDE is sound with respect to these
semantics. Completeness follows from completeness in the four-valued case.
Alternatively, we can give a direct argument as follows.

Consider the relation � � �, de�ned by: � ` � and � ` �. One can
check that this is an equivalence relation, and a congruence on the logical
operators (i.e., if �1 � �1 and �2 � �2 then �1 ^ �2 � �1 ^ �2, etc.).53 If
F is the set of formulas, de�ne the quotient algebra, A = hF=�;^;_;:i,
where, if [�] is the equivalence class of �, :[�] = [:�], [�] ^ [�] = [� ^ �],
etc. One can check that A is a De Morgan lattice. Now, let � be the
homomorphism that maps every � to [�]. If �(�1) ^ ::: ^ �(�n) � �(�).
Then [�1 ^ ::: ^ �n] � [�], i.e., [�1 ^ ::: ^ �n ^ �] = [�1 ^ ::: ^ �n]. Hence,
�1 ^ :::^ �n ` �1 ^ :::^ �n ^ � and so �1 ^ :::^ �n ` �. Conversely, then, if
�1 ^ ::: ^ �n 6` � then �(�1) ^ ::: ^ �(�n) 6� �(�), as required.

53The only tricky point concerns negation. For this, we need to appeal to the fact,
which we have already noted, that if � ` � then :� ` :�. This can be established
directly, by an induction on proofs.
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It should be noted that not all the logics we have considered in previous
sections algebraicise. In particular, the non-truth-functional logics resist
this treatment in general. This is for the same reason that the substitutivity
of provable equivalents breaks down: the semantic value of :� is entirely
independent of that of �. It cannot, therefore, correspond to any well-de�ned
algebraic operation.

The point can be made more precise in many cases. Suppose that A is
some algebraic structure for a logic, and consider any interpretation, �, with
values in the algebra, such that for some p, q and r, �(p) = �(q) 6= �(r).
Then the condition �(�) = �(�) is a congruence relation on the set of
formulas, and collapse by it gives a non-degenerate quotient algebra (i.e., an
algebra that is neither a single-element algebra, nor the algebra of formulas).
But many non-truth-functional logics can be shown to have no such thing.
(See, e.g., Mortensen [1980].)

One �nal algebraic paraconsistent logic is worth noting. This is that
of Goodman [1981]. A Heyting algebra can be thought of as a distribu-
tive lattice, with a bottom element, ?, and an operator, !, satisfying the
condition:

a ^ b � c i� a � b! c

(which makes ? ! ? the top element). We may de�ne :a as a! ?.
Let T be a topological space. Then a standard example of a Heyting

algebra is the topological Heyting algebra hX;^;_;!;?i, where X is the
set of open sets in T , ^ and _ are intersection and union, respectively, ? is
�, and a ! b is (a _ b)o|overlining denotes complementation and o is the
interior operator of the topology. :a is clearly ao.

It is well known that for �nite sets of premises, Intuitionistic logic is
sound and complete with respect to the class of Heyting algebras, in fact,
with respect to the topological Heyting algebras. That is, �1; :::�n j=I � i�
for every homomorphism, �, into such an algebra, �(�1 ^ :::^�n) � �(�).54

The whole construction can be dualised in a natural way to give a para-
consistent logic. A dual Heyting algebra is a distributive lattice, with a top
element, >, and an operator,  , satisfying the condition:

a � b _ c i� a b � c

(which makes >  > the bottom element). We may de�ne :a as >  
a. As may be checked, if T is a topological space, then the structure
hX;^;_; ;>i is a dual Heyting algebra, where X is the set of closed sets
of T , ^ and _ are intersection and union, respectively, > is the whole space,

54See, e.g., Dummett [1977], 5.3.
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and a b is (a^ b)c|where c is the closure operator of the topology. :b is
clearly b

c
.

The logic generated by dual Heyting algebras is dual to Intuitionistic
logic. In particular, in Intuitionistic logic we have � ^ :� j= �, but not
� j= � _ :�; and � j= ::�, but not ::� j= �. Thus in dual Intuitionist
logic, we have � j= � _ :� but not � ^ :� j= �; and ::� j= � but not
� j= ::�. For a topological counter-model to the �rst, consider the real line
with its usual topology, and an interpretation, �, that maps p to [�1;+1],
and q to �. Then �(p ^ :p) = f�1;+1g 6� � = �(q). (This illustrates how
the points in the set represented by p^:p may be thought of as the points
on the topological boundary between the set of points represented by p and
the set of points represented by :p.) For a counter-model to the second, let
�(p) = f0g. Then �(::p) = � 6� �(p).

If j= � in dual Intuitionist logic, then j=C �, since the two-element
Boolean algebra is a dual Heyting algebra. Conversely, if � is any clas-
sical tautology, its dual, �0, is a contradiction. Hence, j=C :�0. But then
by a result of Glivenko, j=I :�0, and so �0 j=I . Thus by duality, in dual Intu-
itionist logic j= �. The logical truths of dual Intuitionist logic are therefore
the same as those of classical logic.

It is worth noting that just as Intuitionist logic can be given an inten-
sional semantics, namely Kripke semantics, so can dual Intuitionist logic;
we simply dualise the Kripke construction. For further details of all the
above, see Goodman [1981].55

5 CONDITIONAL CONNECTIVES

We have now looked at most of the basic techniques of paraconsistent logic,
applied to languages containing only negation, conjunction and disjunction.56

I will call this language the basic language. Next, we will look at some im-
portant extensions of these techniques (which do not ruin paraconsistency).
In this part, we will start with the conditional, by which I mean some con-

55It is well known that in a certain well de�ned sense, Intuitionist logic can be seen
as the \internal logic" of the category-theoretic structures called topoi. It is possible to
dualise the construction involved there to show that dual Intuitionist logic has an equally
good claim to that title. For details, see Mortensen [1995], who calls the ^, _, :-fragment
of a dual Heyting algebra a `paraconsistent algebra'.
56There are others, such as the use of the techniques of combinatorial logic, but I will

not go into these here. For details, one can consult, e.g., Bunder [1984]. There ought to be
yet more. The discussion of connexivism in 3.2 suggests that there ought to be a distinc-
tive connexivist approach to paraconsistency. To date, this has not emerged. The most
articulated modern connexivist logic is due to McCall (see sect. 29.8 of Anderson and
Belnap [1975], which can also be consulted for references to other discussions). Although
this provides a connexivist treatment of the connective !, the logic of the basic language
is classical, and so explosive. Alternatively, one can formulate versions of relevant logic
that contain connexivist principles. See Routley [1978] and Mortensen [1984].



316 GRAHAM PRIEST

nective, ! (if necessary, added to the basic language), satisfying, at least,
modus ponens: �; �! � j= �.

Although paraconsistency does not concern the conditional as such, many
of the paraconsistent logics that we have looked at have distinctive ap-
proaches to the conditional. And this is no accident. If one identi�es �! �
with the material conditional, � � �, de�ned in the usual way as :� _ �,
then modus ponens reduces to the disjunctive syllogism. But in any logic
where disjunction behaves normally and deducibility is transitive, the dis-
junctive syllogism must fail, or explosion would arise, due to the \Lewis
independent argument". Speci�cally, in all the logics we have looked at ex-
cept �lter logics and some of the non-adjunctive logics, the syllogism fails.
In such logics, therefore, a distinct account of the conditional is required.
For completeness' sake, we will start by considering the others.

5.1 ! as �

In �lter logics, we may simply identify ! with �. Things then proceed as
before. A one-premise inference in this language, �=�, is prevalid i� it is
classically valid and F (�; �). It is valid i� it is a substitution instance of a
prevalid inference.57

In the natural extension of Tennant's semantic approach, an inference
from � to � is prevalid i� � j=C � and for no proper subsets of � and
�, �0 and �0, respectively, �0 j=C �0. The natural extension of the proof
theory is to add the conditional rules:

�; � : �;�

� : �! �;�

�1; � : �1 �;�2 : �2

�1;�2; �! � : �1;�2

Unfortunately, the equivalence between these two approaches now fails. For,
semantically, p j= :p ! q (though the system is still paraconsistent); but
without dilution there is no proof of the sequent p : :p! q. At this point,
Tennant prefers to go with the proof theory rather than the semantics.
He also prefers the intuitionist version, which allows at most one formula
on the right-hand side of a sequent. For further details, including natural
deduction versions of the proof theory, see Tennant [1987], ch. 23.

In [1992] Tennant suggests modifying the rule for the introduction of !
on the right.58 The � in the premise sequent is made optional, and the
following rule is added.

57One can modify this approach, invoking the �lter in the truth conditions of the
conditional itself, to give logics of a more relevant variety. This is pursued in a number of
the essays in Philosophical Studies 26 (1979), no. 2, a special issue on relatedness logics.
58In fact, he gives the natural deduction rules. The sequent rules described are the

obvious equivalents.
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�; � : �

� : �! �;�

The exact relationship between these rules and the above semantics is as
yet unresolved.

In the non-adjunctive logics of Rescher and Manor, and Schotch and
Jennings: ! may again be identi�ed with �, producing no novelties. The
machinery of maximally consistent subsets and partitions carries straight
over.

5.2 Discursive Implication

The situation is otherwise with discursive logic. Here a distinct approach
is required, since, as we have already seen, the disjunctive syllogism fails
discursively.

Given an S5 interpretation, Ja�skowski adds a conditional, ! (often
written as �d, and called discursive implication), and de�nes � ! � as
3� � �.59 It is easy to check that in discursive logic �; � ! � j= �,
since 3�;3(3� � �) j=S5 3� (and so there are essentially multi-premise
inferences).

In fact, the logical truths of the pure ! fragment of discursive logic are
the same as those of the pure � fragment of classical logic. For let �� be
any sentence containing only �s, and let �! be the corresponding sentence
containing only !s. In an S5 interpretation with only one world, �� and
3�! are equivalent. So if �� is not a classical logical truth, 3�! is not
a discursive one. Conversely, suppose that �� is a classical logical truth.
We need to show that 3�! is valid in every S5 model. As may easily be
checked, in S5, 3(3� � �) is logically equivalent to 3� � 3�. Hence,
given 3�!, we may \drive the 3s inwards" to obtain a logically equivalent
sentence where the modal operator applies only to propositional parameters.
But this is a substitution instance of ��, and hence valid in S5. This result
does not carry over to the full language. For example, 6j= � ! (:� ! �),
since, as may be checked, 6j=S5 3(3� � (3:� � �)).60

Full discursive logic can naturally be generalised in two obvious ways.
The �rst is by using some modal logic other than S5. The second is by
changing the de�nition of what it is for a sentence, �, to hold discursively
in an interpretation. We change this from3� holding to M� holding, where
M is some other modality (i.e., string of 3s and 2s). For references and
discussion, see B laszczuk [1984] and Kotas and da Costa [1989].

59Given what amounts to Ja�skowski's identi�cation of truth with truth in some possible
world, it might be more natural to de�ne �! � as 3�! 3�. This would have just the
same consequences.
60The natural de�nition of the biconditional, � $ � , is (� ! �) ^ (� ! �). For

reasons not explained, Ja�skowski de�nes it as (� ! �) ^ (� ! 3�). This asymmetric
and counter-intuitive de�nition would seem to have no signi�cant advantages.
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5.3 Da Costa's C-systems

The natural way of extending the non-truth functional semantics of 4.4 to
include a conditional connective, in keeping with the idea that such logics are
just the addition of a non-truth-functional negation to a standard positive
logic, is to give ! the classical truth conditions:

�(� ! �) = 1 i� �(�) = 0 or �(�) = 1

(Note that !, so de�ned, is distinct from �.) Adding this condition to the
logics of 4.4 (except, C! , which we will come to in a moment) gives the full
(propositional) versions of the logics mentioned there; in particular it gives
the da Costa logic C1 (and the other Ci for �nite non-zero i). In each case,
a natural deduction system can be obtained by adding the rules:

! E
� �! �

�

(a)
�

�! �

(b) � _ (�! �)

Soundness is proved as usual. The extension to the completeness proof
amounts to checking that for a prime theory, �, � ! � 2 � i� � =2 � or
� 2 �. From left to right, the result follows by (! E). From right to left:
if � 2 � then the result follows from (a); if � =2 � then (�! �) 2 � by (b)
and primeness.

If instead of (a) and (b), we add to any of these systems|except the ones
with a consistency operator; I will come to these in a second|the rule:

! I

�
...
�

�! �

we obtain, not classical positive logic, but intuitionist positive logic. (These
rules are well known to be complete with respect to this logic.) In particular,
if we add ! I and ! E to the rule system for the basic language fragment
of C! we obtain da Costa's C!.

The intuitionist conditional is not, of course, truth functional, but a
valuational semantics for C! can be obtained as follows. A semi-valuation
is any function that satis�es the conditions for conjunction, disjunction and
negation, plus:
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if �(�! �) = 1 then �(�) = 0 or �(�) = 1
if �(�! �) = 0 then �(�) = 0

A valuation is any semi-valuation, �, satisfying the following condition. Let
� be of the form �1 ! (�2 ! (�3:::! �n):::), where �n is not itself of the
form � ! . Then if �(�) = 0 there is a semi-valuation, �0, such that for
all 1 � i < n, �0(�i) = 1, and �0(�n) = 0. C! is sound and complete with
respect to this notion of valuation. For details, see Lopari�c [1986].61

Changing the deduction rules for ! to the intuitionist ones, makes no
di�erence for those logics that contain a consistency operator, and in par-
ticular, the da Costa logics Ci for �nite i.62 The reason, in nuce, is that
the consistency operator allows us to de�ne a negation with the properties
of classical negation. As is well known, the addition of such a negation to
positive intuitionist logic is not conservative, but produces classical logic.
In more detail, the argument for C1 is as follows.63

De�ne :�� as :� ^ �o. Then it is easy to check that:

�(:��) = 1 i� �(�) = 0

In particular, then, :�� satis�es the rules for classical negation:

� _ :��
� ^ :��

�

Given these, it is easy to show that � ! � a` :�� _ �. (Hint: from left
to right, assume � _ :�� and argue by cases. From right to left, assume �
and :�� _ �, and argue to � by cases.) Hence, ! has the classical truth
conditions.

5.4 Many-valued Conditionals

There are numerous ways to de�ne a many-valued conditional operator. We
will just look at two of the more systematic.64

Given a Sugihara generalisation of LP , one can de�ne a conditional with
the following truth conditions:

61A Kripke-style semantics for C! can be found in Baaz [1986].
62This was �rst observed, in e�ect, by da Costa and Guillaume [1965].
63The argument for the other Cis is similar.
64In the three-valued case, other de�nitions give the system of Asenjo and Tamburino

[1975], and the J systems of D'Ottaviano and da Costa [1970]. A natural many-valued
conditional, given the four-valued semantics of FDE, produces the system BN4 of Brady
[1982].
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�(�! �) = �(:� _ �) if �(�) � �(�)
= �(:� ^ �) if �(�) > �(�)

This de�nition gives rise to \semi-relevant" logics, i.e., logics that avoid the
standard paradoxes of relevance, but are still not relevant.

In the case where the set of truth values is the set of all integers, this
gives the Anderson/Belnap logic RM . Proof-theoretically, RM is obtained
from the relevant logic R, which we will come to in the next section, by
adding the \mingle" axiom:

` �! (�! �)

For details of proofs, see Anderson and Belnap [1975], sect. 29.3.
In the 3-valued case, where the set of truth values is f�1; 0;+1g, the

conditions for ! give the matrix:

! +1 0 �1
+1 +1 �1 �1

0 +1 0 �1
�1 +1 +1 +1

and the stronger logic called RM3. This is sound and complete with respect
to the axiomatic system obtained by augmenting the system R with the
axioms:

` (:� ^ �)! (�! �)
` � _ (�! �)

For the proof, see Brady [1982].
Turning to the second systematic approach, consider any  Lukasiewicz

generalisation of LP .  Lukasiewicz' truth conditions for his conditional, 7!,
are as follows:

�(� 7! �) = 1 if �(�) � �(�)
= 1� (�(�) � �(�)) if �(�) > �(�)

In the three-valued case, this gives the well known matrix:

7! 1 0.5 0
1 1 0.5 0

0.5 1 1 0.5
0 1 1 1
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Now the most notable feature of the  Lukasiewicz de�nition, given that 0:5 is
designated, is that modus ponens fails. For example, consider a valuation, �,
where �(p) = 0:5 and �(q) = 0. Then �(p 7! q) = 0:5. Hence p; p 7! q 6j= q.
(Modus ponens is valid provided that the only designated value is 1, but
then the logic is not paraconsistent.)

Kotas and da Costa [1978] get around this problem by adding to the
language a new operator, �, with the truth conditions:

�(��) = 1 if �(�) is designated
= 0 otherwise

and then de�ne a conditional, � ! �, as �� 7! �.65 They point out the
similarity of this de�nition to Ja�skowski's de�nition of discursive implica-
tion. (In fact, they use the symbol 3 instead of � because of this.)66

It is not diÆcult to check that modus ponens for ! holds. In fact, as
Kotas and da Costa point out, the ^, _, !-fragment of the logic is exactly
positive classical logic. The easiest way to see this is just to collapse the
designated values to 1, and the others to 0, to obtain classical truth tables.

5.5 Relevant !s

Given a Routley interpretation (say one for FDE, though the other cases
will be similar), it is natural to treat ! intensionally. The simplest way is
to give it the S5 truth conditions:

�w(�! �) = 1 i� for all w0 2 W (�w0(�) = 1) �w0(�) = 1)

Clearly, given an interpretation either � ! � is true at all worlds, or at
none. With the Routley � giving the semantics for negation, it follows that
the same is true of negated conditionals. It also follows that �w(�! �) = 1
i� �w�(� ! �) = 1 i� �w:(� ! �) 6= 1. Thus, the semantics validate the
rules:

LEM! (�! �) _ :(�! �)

EFQ!
�! � :(�! �)



and so are unsuitable for serious paraconsistent purposes. Moreover, even
though there may be worlds where �^:� is true, or where �_:� is false,

65In fact, their treatment is more general, since they consider the case in which the
extension of � may be other than the set of designated values.
66Pe~na [1984] de�nes an operator, F , on real numbers such that the value F� is 0 if

that of � is greater than 0, and 1 otherwise; and then de�nes a conditional operator,
�C�, as F� _ �. The result is similar.
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and so neither (�^:�)! � nor �! (�_:�) is valid, the system is not a
relevant one since, e.g., j= p! (q ! q).

These facts may both be changed by modifying the semantics, by adding a
class of non-normal worlds. Thus, an interpretation is a structure hW;N; �; �i.
The worlds in N are called normal; the worlds in W �N (NN) are called
non-normal. Truth conditions are the same as before, except that at non-
normal worlds, the truth value of a conditional is arbitrary. Technically, �
assigns to every pair of world and propositional parameter a truth value,
as before, but for every w 2 NN and every conditional �! �, it now also
assigns � ! � a value at w. This provides the value of � ! � at non-
normal worlds (non-recursively). Validity is de�ned as truth preservation
at all normal worlds of all interpretations.

If one thinks of the conditionals as entailments, then the non-normal
worlds are those where the facts of logic may be di�erent. Thus, one may
think of non-normal worlds as logically impossible situations.67

The system described is called H in Routley and Lopari�c [1978].68 It
is sound and weakly complete (i.e., theorem-complete) with respect to the
following axiom system.

` �! �

` (� ^ �)! � ` (� ^ �)! �

` � ! (� _ �) ` � ! (� _ �)

` �$ ::�
` (:� _ :�)$ :(� ^ �)

` (:� ^ :�)$ :(� _ �)

` (� ^ (� _ ))! ((� ^ �) _ (� ^ ))

If ` � and ` �! � then ` �
If ` � and ` � then ` � ^ �
If ` �! � and ` � !  then ` �! 

If ` �! � then ` :� ! :�
If ` �! � and ` �!  then ` �! (� ^ )

If ` �!  and ` � !  then ` (� _ �)! 

Strong (i.e., deducibility-) completeness requires also the rules in disjunc-
tive form.69 The disjunctive form of the �rst is: ` � _  and ` (�! �) _ 
then ` � _ . The others are similar.70

67For a further discussion of non-normality, see Priest [1992].
68There are several other systems in the vicinity here. Some are obtained by varying

the conditions on �. Others, sometimes called the Arruda - da Costa P systems, are
obtained by retaining the positive logic and adding a non-truth-functional negation. For
details, see Routely and Lopari�c [1978].
69Which are known to be admissible anyway.
70A sound and complete natural deduction system is an open question.
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Soundness is proved as usual. The (strong) completeness proof is as
follows. We �rst show by induction on proofs that if � ` � then �_ ` �_.
It quickly follows that if � `  and � `  then � _ � ` . Now suppose
that � 6` �. Extend � to a prime theory, �, with the same property, as in
4.3. Call a set � a �-theory if it is prime, closed under adjunction, and
� !  2 � ) (� 2 � )  2 �). Note that � is a �-theory. De�ne
the interpretation hW;N; �; �i, where W is the set of �-theories; N = f�g,
� 2 �� i� :� 62 � (which is well-de�ned). If � 2 NN then ��(� ! ) = 1
i� � !  2 �; and for all �:

��(p) = 1 i� p 2 �

Once it can be shown that this condition carries over to all formulas, the
result follows as usual. This is proved by induction. The only diÆcult case
concerns ! when � = �. From right to left, the result follows from the
de�nition of W . From left to right, the result follows from the following
lemma. If � !  62 � then there is a �-theory, �, such that � 2 � and
 62 �. To prove this, we proceed essentially as in 4.3, except that � ` �
is rede�ned. Let �! be the set of conditionals in �; then � ` � is now
taken to mean that there are �1; :::; �n 2 � and �1; :::; �m 2 � such that
�! ` (�1 ^ :::^ �n)! (�1 _ :::_ �m). Now set � = f�g, and � = f�g, and
proceed as in 4.3. The rest of the details are left as a (lengthy) exercise.71

If we add the Law of Excluded Middle to the axiom system:

` � _ :�

we obtain a logic that we will call HX . In virtue of the discussion in 4.7,
one might suppose that this would be sound and complete if we add the
condition: for all w, and parameters, p, 1 = �w(p) or 0 = �w�(p). This
condition indeed makes � _ :� true in all worlds; but for just that reason,
it also veri�es the irrelevant � ! (� _ :�). To obtain HX , we place this
constraint on just normal worlds. The semantics are then just right, as
may be checked. For further details, see Routley and Lopari�c [1978]. Since
normal worlds are now, in e�ect, LP interpretations, HX veri�es all the
logical truths of LP and so of classical logic.

A feature of this system is that substitutivity of equivalents breaks down.
For example, as is easy to check, p$ q 6j= (r ! p)$ (r ! q). This can be
changed by taking the valuation function to work on propositions (i.e., set of
worlds), rather than formulas.72 The most signi�cant feature of semantics
of this kind is that there are no principles of inference that employ nested

71Details can be found in Priest and Sylvan [1992].
72For details see Priest [1992].
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conditionals in an essential way. This is due entirely to the anarchic nature
of non-normal worlds. In e�ect, any breakdown of logic is countenanced.

One way of putting a little order into the anarchy without destroying
relevance, proposed by Routley and Meyer,73 is by employing a ternary re-
lation, R, to give the truth conditions of conditionals at non-normal worlds.
An interpretation is now of the form hW;N;R; �; �i. All is as before, except
that � no longer gives the truth values of conditionals at non-normal worlds.
Rather, for any w 2 NN , the truth conditions are:

�w(�! �) = 1 i� for all x; y 2W;Rwxy ) (�x(�) = 1) �y(�) = 1)

Note that this is just the standard condition for strict implication, except
that the worlds of the antecedent (x) and the consequent (y) have become
distinguished. What, exactly, the ternary relation, R, means, is still a
matter for philosophical deliberation. Validity is again de�ned as truth
preservation at all normal worlds.

These semantics give the basic system of aÆxing relevant logic, B. An
axiom system therefor can be obtained by replacing the last two rules for
H by the corresponding axioms:

` ((�! �) ^ (�! ))! (�! (� ^ ))
` ((�! ) ^ (� ! ))! ((� _ �)! )

and adding a rule that ensures replacement of equivalents:

If ` �! � and `  ! Æ then ` (� ! )! (�! Æ)

The soundness and completeness proofs generalise those for H . Details can
be found in Priest and Sylvan [1992].

We may form the system BX proof theoretically by adding the Law of
Excluded Middle. Semantically, we proceed as with H , placing the appro-
priate condition on normal worlds.

As with modal logics, stronger logics can be obtained by placing condi-
tions on the accessibility relation, R. In this way, most of the logics in the
Anderson/Belnap family can be generated. Details can be found in Restall
[1993]. The strongest of these is the logic R, an axiom system for which is
as follows:

` �! �
` (�! �)! ((� ! )! (�! ))
` �! ((�! �)! �)

73Initially, this was in Routley and Meyer [1973]. For further discussion of all the
following, see the article on Relevent Logic in this volume of the Handbook.
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` (�! (�! �))! (�! �)
` (� ^ �)! �; ` (� ^ �)! �
` ((�! �) ^ (�! ))! (�! (� ^ ))
` � ! (� _ �); ` �! (� _ �)
` ((�! ) ^ (� ! ))! ((� _ �)! )
` (� ^ (� _ ))! ((� ^ �) _ )
` (�! :�)! (� ! :�)
` ::�! �

with the rules of adjunction and modus ponens.
The equivalence between the Dunn 4-valued semantics and the Routley

� operation that we noted in 4.7 suggests another way of obtaining an
intensional conditional connective. In the simplest case, an interpretation is
a structure hW; vi where W is a set of worlds and � is an evaluation of the
parameters at worlds, but this time it is a Dunn 4-valued interpretation.
The truth conditions for the basic language are as in 4.6, except that they
are relativised to worlds. Thus, using the functional notation:

1 2 �w(:�) i� 0 2 �w(�)
0 2 �w(:�) i� 1 2 �w(�)

1 2 �w(� ^ �) i� 1 2 �w(�) and 1 2 �w(�)
0 2 �w(� ^ �) i� 0 2 �w(�) or 0 2 �w(�)

1 2 �w(� _ �) i� 1 2 �w(�) or 1 2 �w(�)
0 2 �w(� _ �) i� 0 2 �w(�) and 0 2 �w(�)

The natural truth and falsity conditions for ! are:

1 2 �w(�! �) i� for all w0 2W; (1 2 �w0(�)) 1 2 �w0(�))
0 2 �w(�! �) i� for some w0 2W , 1 2 �w0(�) and 0 2 �w0(�)

These semantics do not validate the undesirable:

�! � :(�! �)



as their � counterparts do. But they are still not relevant. Relevant logics
can be obtained by adding a class of non-normal worlds. The semantic
values of conditionals at these may either be arbitrary, as with H , or, as
with B, we may employ a ternary relation and give the conditions as follows:
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1 2 �w(�! �) i� for all x; y 2W , Rwxy ) (1 2 �x(�))12 �y(�))
0 2 �w(�! �) i� for some x; y 2W; Rwxy; 1 2 �x(�) and 0 2 �y(�)

As usual, extra conditions may be imposed on R. This construction
produces a family of relevant logics distinct from the usual ones, and one
that has not been studied in great detail. One way in which it di�ers
from the more usual ones is that contraposition of the conditional fails,
though this can be recti�ed by modifying the truth conditions for ! by
adding the clause: `and 0 2 �w0(�) ) 0 2 �w0(�)' (or in the case of non-
normal worlds employing a ternary relation: `and 0 2 �x(�) ) 0 2 �y(�)').
A more substantial di�erence concerns negated conditionals. Because of
the falsity conditions of the conditional, all logics of this family validate
� ^ :� j= :(� ! �). This is a natural enough principle, but absent from
many of the logics obtained using the Routley �.

The more usual relevant logics can be obtained with the 4-valued se-
mantics, but only by using some ad hoc device or other, such as an extra
accessibility relation, or allowing only certain classes of worlds. For details,
see Routley [1984] and Restall [1995].

5.6 ! as �

There is a very natural way of employing any algebra which has an ordering
relation to give a semantics for conditionals. One may think of the members
of the algebra as propositions, or as Fregean senses. The relation � on the
algebra can be thought of as an entailment relation, and it is then natural to
take �! � to hold in some interpretation, �, i� �(�) � �(�). The problem,
then, is to express the thought that � ! � holds in algebraic terms. We
obviously need an algebraic operator, !, corresponding to the connective;
but how is one to express the idea that a! b holds when the algebra may
have no maximal element?

A way to solve this problem for De Morgan algebras is to employ a desig-
nated member of the lattice, e, and take the things that hold in the algebra
to be those whose values are � e.74 While we are introducing new machin-
ery, it is also useful algebraically to introduce another binary (groupoid) op-
erator, Æ, often called
`fusion', whose signi�cance we will come back to in a moment. We may
also enrich the basic language to one containing a constant, e, and an op-
erator, Æ, expressing the new algebraic features.

Thus, following Meyer and Routley [1972], let us call the structure
A = hD; e;!; Æi a De Morgan groupoid i� D is a De Morgan algebra,
hA;^;_;:i, and for any a; b; c 2 A:

74A di�erent way is to let T be a prime �lter on the lattice, thought of as the set of all
true propositions. We can then require that a ! b 2 T i� a � b. For details, see Priest
[1980].
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e Æ a = a
a Æ b � c i� a � b! c
if a � b then a Æ c � b Æ c and c Æ a � c Æ b
a Æ (b _ c) = (a Æ b) _ (a Æ c) and (b _ c) Æ a = (b Æ a) _ (c Æ a)

The �rst of these conditions ensures that e is a left identity on the groupoid.
(Note that the groupoid may not be commutative.) And it, together with
the second, ensure that a � b i� e � a! b. The third and fourth ensure that
Æ respects the lattice operations in a certain sense. The sense is question in
that of a sort of conjunction, and this makes it possible to think of fusion
as a kind of intensional conjunction.

An inference, �1; :::; �n=�; is algebraically valid i� for every homomor-
phism, �, into a De Morgan groupoid, �(�1 ^ ::: ^ �n) � �(�), i.e., e �
�((�1 ^ ::: ^ �n)! �)).75

These semantics are sound and complete with respect to the relevant
logic B of 5.5. Soundness is shown in the usual way, and completeness can
be proved, as in 4.8, by constructing the Lindenbaum algebra, and showing
that it is a De Morgan groupoid.

Stronger logics can be obtained, as usual, by adding further constraints.
The condition: e � a_:a gives the law of excluded middle (and all classical
tautologies). Additional constraints on Æ give the stronger logics in the usual
relevant family, including R. Details of all the above can be found in Meyer
and Routley [1972] (who also show how to translate between algebraic and
world semantics).76

Before leaving the topic of conditionals in algebraic paraconsistent logics,
a �nal comment on dual intuitionist logic. Goodman [1981] proves that in
this logic there is no conditional operator (i.e., operator satisfying modus
ponens) that can be de�ned in terms of _;^ and :; and draws somewhat
pessimistic conclusions from this concerning the usefulness of the logic. Such
pessimism is not warranted, however. Exactly the same is true in relevant
logic; this does not mean that a conditional operator cannot be added to the
basic language. And as Mortensen notes,77 given any algebraic structure
with top (>) and bottom (?) elements, the following conditions can always
be used to de�ne a conditional operator:

�(�! �) = > if �(�) � �(�)
= ? otherwise

75A di�erent notion of validity can be formulated using fusion thus: �(�1 Æ ::: Æ �n) �
�(�), i.e., e � �((�1 ! (:::! (�n ! �):::).
76See also Brink [1988]. A rather di�erent algebraic approach which produces a relevant

logic is given in Avro`n [1990]. This maintains an ordered structure, but dispenses with
the lattice. The result is a logic closely related to the intensional fragment of RM .
77Mortensen [1995], p. 95.
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Though this particular conditional is not suitable for robust paraconsistent
purposes since it satis�es: �! �;:(�! �) j= .

5.7 Decidability

Before we leave the topic of propositional logics, let me review, briey, the
question of decidability for the logics that we have looked at. Unsurprisingly,
most (though not all) are decidable, as the following decision procedures
indicate. As will be clear, in many cases the procedures actually given
could be greatly optimised.

Any �lter logic is decidable if the �lter is. Given any inference, we can
e�ectively �nd the set of all inferences of which it is a uniform substitution
instance. Provided that the �lter is decidable, we can test each of these for
prevalidity. If any of them is valid, the original inference is valid; otherwise
not.

Smiley's �lter is clearly decidable. So is Tennant's semantic �lter. Given
an inference with �nite sets of premises and conclusions, � and �, respec-
tively, we can test the inference for classical validity. We may then test
the inferences for all subsets of � and �. (There is only a �nite number
of these.) If the original inference is valid, but its subinferences are not,
it passes the test; otherwise not. Tennant's proof theory of 5.1 is also de-
cidable. Anything provable has a Cut-free proof (since Cut is not a rule of
proof). Decidability then follows as it does in the case of classical logic.

Turning to non-adjunctive logics: Ja�skowski's discursive logic is decid-
able; we may simply translate an inference into the corresponding one con-
cerning S5, and use the S5 decision procedure for this. The same obviously
goes for any generalisation, provided only that the underlying modal logic
is decidable.

Rescher and Manor's logic is decidable in the obvious way. Given any
�nite set of premises, we can compute all its subsets, the classical consis-
tency of each of these, and hence determine which of the sets are maximally
consistent. Once we have these, we can determine if any of them classically
entails the conclusion. Similar comments apply to Schotch and Jennings'
logic. Given any premise set, we can compute all its partitions, and so de-
termine its level. For every partition of that size, we can test to see if one
of its members classically entails the conclusion.

Non-truth-functional logics are also decidable by a simple procedure.
Given an inference, we consider the set of all subformulas of the sentences
involved (which is �nite). We then consider all mappings from these to
f0; 1g, the set of which is also �nite. For each of these we go through
and test whether it satis�es the appropriate constraints in the obvious way.
Throwing away all those that do not, we see whether the conclusion holds
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in all that remain.78

All �nite many-valued logics are decidable by truth-tables. The in�nite
valued  Lukasiewicz logics (and so their Kotas and da Costa augmentations)
are not, in general, even axiomatisable, let alone decidable. (See Chang
[1963].) This leaves RM . If there is a counter-model for an RM inference,
there must be a number of maximum absolute value employed. Ignoring all
the numbers in the model whose absolute size is greater than this gives
a �nite counter-model. Hence, RM has the �nite model property. As
is well known, any axiomatisable theory with this property is decidable.
(Enumerate the theorems and the �nite models simultaneously. Eventually
we must �nd either a proof of a countermodel.)

Dual intuitionist logic is decidable since intuitionist logic is. We just
compute the dual inference and test it with the intuitionist procedure.

This just leaves the logics of the relevant family. As we saw, the semantics
of these can take either a world form or an algebraic form. The question of
decidability here is the hardest and most sensitive. The weaker logics in the
family are decidable, and can be shown to be so by semantic methods (such
as �ltration arguments) and/or proof theoretic ones (such as Gentzenisation
plus Cut elimination).79 The stronger ones, such as R, are not. Urquhart's
[1984] proof of this fact contains one of the few applications of geometry
to logic. A crucial principle in this context would seem to be contraction:
(� ! (� ! �)) ! (� ! �) (or various equivalent forms, such as (� ^
(�! �))! �). Speaking very generally, systems without this principle are
decidable; systems with it are not.

6 QUANTIFIERS

The novelty of paraconsistent logic lies, it is fair to say, almost entirely at
the propositional level. However, if a logic is to be applied in any serious
way, it must be quanti�cational. Most of the paraconsistent logics that we
have considered extend in straightforward ways to quanti�ed logics. In this
section I will indicate how. Let us suppose that the propositional language is
now augmented to a language, L, with predicates, constants, variables and
the quanti�ers 8 and 9 in the usual way. I will let the adicity of a predicate
be shown by the context. Propositional parameters can be identi�ed with
predicates of adicity 0. I will write �(x=t) to mean the result of substituting
the term t for all free occurrences of x, any bound variables in � having
been relabelled, if necessary, to avoid clashes.

I will reserve the word `sentence' for formulas without free variables. I
will always de�ne validity for inferences containing only sentences, though
the accounts could always be extended to ones employing all formulas, in

78For the method applied to the da Costa systems, see da Costa and Alves [1977].
79See, respectively, Routley et al. [1982], sect. 5.9, and Brady [1991].
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standard ways. Where quanti�ers have an objectual interpretation, and
the set of objects is D, I will assume|for the rest of this essay|that the
language has been augmented by a set of constants in such a way that each
member of the domain has a name. In particular, I will always assume that
the names are the members of D themselves, and that each object names
itself. This assumption is never essential, but it simpli�es the notation.

6.1 Filter and Non-adjunctive Logics

In �lter logics, we may simply take the �lter to be a relation on the extended
language. Smiley's �lter works equally well, for example, when the notion
of classical logical truth employed is that for �rst order, not propositional,
logic. Similarly for Tennant's. In his case (without the conditional oper-
ator), the semantics are sound and complete with respect to the sequent
calculus of 4.1 for the basic language, together with the usual rules for the
quanti�ers:

� : �(x=c);�

� : 8x�;�
�; � : �

�;8x� : �

� : �;�

� : 9x�;�
�; �(x=c) : �

�; 9x� : �

where in the �rst and last of these, c does not occur in any formula in � or
�. For proofs, see Tennant [1984]. (With the conditional operator added,
the situation is di�erent, as we saw in 5.1.)

Non-adjunctive logic accommodates quanti�ers in an obvious way. Con-
sider discursive logic. An inference in the quanti�ed language is discur-
sively valid i� 3� j=CS5 3�, where CS5 is constant-domain quanti�ed S5.
Clearly, any other quanti�ed modal logic could be used to generalise this
notion.80

Rescher and Manor's approach and Schotch and Jennings' also gener-
alise in the obvious way, the classical notion of propositional consequence
involved being replaced by the classical �rst-order notion. In the quanti�-
cational case, the usefulness of these logics is moot, since the computation
of classically maximally consistent sets of premises, or partitions, is highly
non-e�ective.

In all these logics, except Smiley's, the set of logical truths (in the ap-
propriate vocabulary) coincides with that of classical quanti�er logic; hence
these logics are undecidable.81

80For details of quanti�ed modal logic, see the article on that topic in this Handbook.
81I do not know whether Smiley's logic is decidable, though I assume that it is not.
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6.2 Positive-plus Logics

Let us turn now to the logics that augment classical or intuitionist pos-
itive logic with a non-truth-functional negation. Since the semantics of
these are not truth functional, the most natural quanti�er semantics are
not objectual, but substitutional. Let me illustrate this with the simplest
non-truth-functional logic, with a classical conditional operator, but no se-
mantic constraints on negation. Extensions of this to other cases are left as
an exercise.

An interpretation is a pair hC; �i. C is a set of constants, and LC is the
language L augmented by the constants C. � is a map from the sentences
of LC to f1; 0g satisfying the same conditions as in the propositional case,
together with:

�(8x�) = 1 i� for every constant of LC , c, �(�(x=c)) = 1
�(9x�) = 1 i� for some constant of LC , c, �(�(x=c)) = 1

An inference is valid i� it is truth-preserving in all interpretations.
The semantics are sound and complete with respect to the quanti�er

rules:

8I � _ �(x=c)

� _ 8x�
provided that c does not occur in �, or in any undischarged assumption on
which the premise depends.

8E 8x�
�(x=c)

9I �(x=c)

9x�

9E

�(x=c)
...

9x� �

�

provided that c does not occur in � or in any undischarged assumption in
the subproof.

Soundness is proved by a standard recursive argument. For completeness,
call a theory, �, saturated in a set of constants, C, i�:

9x� 2 � i� for some c 2 C, �(x=c) 2 �
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8x� 2 � i� for every c 2 C, �(x=c) 2 �

It is easy to check that if � is a prime theory, saturated in C, then hC; �i
is an interpretation, where � is de�ned by: �(�) = 1 i� � 2 �.

It remains to show that if � 6` � then � can be extended to a prime
theory, �, saturated in some set of constants, C, with the same property;
and the result follows as in the propositional case, using � to de�ne the
interpretation.

To show this, we augment the language with an in�nite set of new con-
stants, C, and then extend the proof of 4.3 as follows. Enumerate the
formulas of LC : �0, �1,... If 8x� or 9x� occurs in the enumeration, and the
constant c does not occur in any preceding formula, we will call �(x=c) a
witness. Now, we run through the enumeration, as before, but this time, if
we throw 9x� into the � side, we also throw in a witness; and if we throw
8x� into the � side, we also throw in a witness. In proving that �n 6` �n,
the only novelty is when a witness is present; and these can be ignored, by
9E on the left, and 8I on the right. The rest of the proof is as in 4.3. The
saturation of � in C follows from deductive closure and construction.

I observe that all the logics in this family contain positive classical quan-
ti�er logic, and so are undecidable.

6.3 Many-valued Logics

Most of the many-valued logics with numerical values that we considered
in 4.5 and 5.4 had two particular properties. First, the truth value of a
conjunction [disjunction] is the minimum [maximum] of the values of the
conjuncts [disjuncts]. Second, the set of truth values is closed under greatest
lower bounds (glbs) and least upper bounds (lubs), i.e., if Y � X then
glb(Y ) 2 X and lub(Y ) 2 X . Any such logic can be extended to a quanti�ed
logic in a very natural way, merely by treating 8 and 9 as the \in�nitary"
generalisations of conjunction and disjunction, respectively.

Speci�cally, a quanti�er interpretation adds to the propositional machin-
ery, the pair hD; di where D is a non-empty domain of objects, d maps every
constant into D, and if P is an n-place predicate, d maps P to a function
from n-tuples of the domain into the set of truth-values. Every sentence,
�, can now be assigned a truth value, �(�), in the natural way. For atomic
sentences, Pc1:::cn:

�(Pc1:::cn) = d(P ) hd(c1):::d(cn)i

The truth conditions for propositional connectives are as in the propositional
logic. The truth conditions for the quanti�ers are:
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�(8x�) = glbf�(x=c); c 2 Dg
�(9x�) = lubf�(x=c); c 2 Dg

Validity is de�ned in terms of preservation of designated values, as in the
propositional case.

I will make just a few comments about what happens when these de�ni-
tions are applied to the many-valued logics we have looked at. The quanti-
�ed �nite-valued logics of 4.5 all collapse into quanti�ed LP (which we will
come to in the next section), as extensions of the arguments given there,
show. For a general theory of quanti�ed �nitely-many-valued logics, see
Rosser and Turquette [1952]. Quanti�ed RM we will come to in a later sec-
tion. In�nite-valued  Lukasiewicz logics are proof-theoretically problematic.
For a start, standard quanti�er rules may break down. In particular, 8x�
may be undesignated, even though each substitution instance is designated.
Thus, 8I may fail. (Similarly for existential quanti�cation.) Worse, as for
their propositional counterparts, such logics are not even axiomatisable in
general.82

6.4 LP and FDE

The technique of extending a many-valued logic to a quanti�ed one can
be put in a slightly di�erent, and possibly more illuminating, way for the
logics with relational semantics, LP and FDE. An interpretation, I, is a
pair, hD; di, where D is the usual domain of quanti�cation, d is a function
that maps every constant into the domain, and every n-place predicate into
a pair, hEP ; AP i, each member of which is a subset of the set of n-tuples
of D;Dn. EP is the extension of P ; AP is the anti-extension. For LP
interpretations, we require, in addition, that EP [ AP = Dn. Truth values
are now assigned to sentences in accord with the following conditions. For
atomic sentences:

1 2 �(Pc1:::cn) i� hd(c1); :::; d(cn)i 2 EP

0 2 �(Pc1:::cn) i� hd(c1); :::; d(cn)i 2 AP

Truth/falsity conditions for connectives are as in the propositional case; and
for the quanti�ers:

1 2 �(8x�) i� for every c 2 D; 1 2 �(�(x=c))
0 2 �(8x�) i� for some c 2 D, 0 2 �(�(x=c))

1 2 �(9x�) i� for some c 2 D; 1 2 �(�(x=c))

82See Chang [1963] for details.
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0 2 �(9x�) i� for every c 2 D; 0 2 �(�(x=c))

An inference is valid i� it is truth-preserving in all interpretations. It should
be noted that if for every predicate, P , EP and AP are exclusive and ex-
haustive, we have an interpretation of classical �rst order logic. All classical
interpretations are therefore FDE (and LP ) interpretations.

These semantics are sound and complete if we add to the rules for LP or
FDE, the rules 8I , 8E, 9I and 9E, plus:

8x:�
:9x�

9x:�
:8x�

Soundness is established by the usual argument. For completeness, suppose
that � 6` �. Extend � to a set �, which is prime, deductively closed and
saturated in a set of new constants, such that � 6` �, as in 6.2. Then de�ne
an interpretation hD; di where D is the set of constants of the extended lan-
guage, d maps any constant to itself, and for any predicate, P , its extension
and anti-extension are de�ned as follows:

hc1; :::; cni 2 EP i� Pc1:::cn 2 �
hc1; :::; cni 2 AP i� :Pc1:::cn 2 �

We now establish that for all formulas, � :

1 2 �(�) i� � 2 �
0 2 �(�) i� :� 2 �

The argument is a routine induction. Here are the cases for 8.

8x� 2 � , for all c; �(x=c) 2 � saturation
, for all c; 1 2 �(�(x=c)) induction hypothesis
, 1 2 �(8x�) truth conditions of 8

:8x� 2 � , 9x:� 2 � quanti�er rules
, for some c; :�(x=c) 2 � saturation
, for some c; 0 2 �(�(x=c)) induction hypothesis
, 0 2 �(8x�) truth conditions of 8
, 1 2 �(:8x�) truth conditions of :

The monotonicity property of the propositional logics LP and FDE car-
ries over to the quanti�ed case. If I1 and I2 are any interpretations, with
truth value assignments �1 and �2, de�ne I1 � I2 to mean that I1 and
I2 have the same domain, and for every predicate, P , the extension (anti-
extension) of P in I1 is a subset of the extension (anti-extension) of P in
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I2. A simple induction shows that if I1 � I2 then for all formulas, � (in
a language with a name for every member of the domain), �1(�) � �2(�).
As in 4.6, it follows that the set of logical truths of LP is exactly the same
as that of classical �rst order logic. And FDE has no logical truths (just
consider an interpretation that makes the extension and anti-extension of
every predicate empty).

Since classical quanti�er logic is not decidable, neither is quanti�ed LP . If
P is any n-place predicate, let PLEM be the sentence: 8x1:::8xn(Px1:::xn _
:Px1:::xn). If PLEM is true in an interpretation, then the extension and
anti-extension of P , exhaust the n-tuples of the domain. If � is any formula,
let �LEM be the conjunction of all formulas of the form PLEM , where P
occurs in �. It follows that �LEM j= � in FDE i� j= � in LP . Hence,
quanti�ed FDE is undecidable too.

6.5 Relevant Logics

Turning to relevant logics, the issues are more complex. This is due to the
fact that there are various approaches to these logics, the variety of the
logics themselves, and the intrinsic complexities of the stronger logics.

Let us start with the world semantics. As we saw in 5.5, a world semantics
for a relevant logic with the Routely operator is a structure hW;N; �; � (; R)i,
where W is a set of worlds, N is a subclass of normal worlds (the comple-
ment being NN), � is the Routley operation (such that w = w��), and �
assigns truth values to all propositional parameters at worlds. In the logic
H , it also assigns values to conditionals at non-normal worlds. In stronger
logics, the ternary relation R is present, and is used to specify the values of
conditionals at non-normal worlds. When no constraints are placed on R,
we have the logic B.

The simplest way of extending such semantics to those of a quanti�ed
language is by removing � from the structure and adding a domain of quan-
ti�cation, D, and a denotation function d. d speci�es a denotation for each
constant (same at each world) and an extension for each n-place predicate
at each world, dw(P ) � Dn. Truth conditions are given in the standard
way. In particular, for the quanti�ers:

�(8x�) = 1 i� for every c 2 D; �(�(x=c)) = 1
�(9x�) = 1 i� for some c 2 D, �(�(x=c)) = 1

An inference is valid i� it is truth-preserving in all normal worlds of all
interpretations.83

83More complex semantics can be employed in the usual variety of ways employed in
modal logic. (See the article on Quanti�ed Modal Logic in this Handbook.) In partic-
ular, we might employ variable-domain semantics. This makes matters more complex.
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Consider the following quanti�er axioms and rules (where ` is now taken
to indicate universal closure):

` 8x�! �(x=c)
` �(x=c)! 9x�
` � ^ 9x� ! 9x(� ^ �) x not free in �
` 8x(� _ �)! (� _ 8x�) x not free in �

If ` 8x(�! �) then ` 9x�! � x not free in �
If ` 8x(�! �) then ` �! 8x� x not free in �

It is easy to check that these axioms/rules are valid/truth-preserving for
H . If they are added to the propositional axioms/rules for H , they are also
complete. For the proof, see Routley and Lopari�c [1980].84

If we strengthen the two rules to conditionals (so that the �rst of these
becomes ` 8x(� ! �) ! (9x� ! �), etc.) and add them to the rules
for B, they are also sound and complete. The same is true for a number
of the extensions of B, including BX . (For details, see Routley [1980a].)
A notable exception to this fact is the system R. Though the system is
sound, it is, perhaps surprisingly, not complete.85 In fact, a proof-theoretic
characterisation of constant domain quanti�ed R is still an open problem.
The axioms and rules are complete for the stronger semi-relevant system
RM of 5.4.86

Since every relevant logic in the above family contains FDE, and this is
undecidable, it follows that all the logics in this family are also undecidable.

6.6 Algebraic Logics

Given any algebraic logic, for which the appropriate algebraic structures are
lattices, and in which conjunction and disjunction behave as lattice meet
and join, there is, as with many-valued logics, a natural way to extend the
machinery to quanti�ers. An algebra is complete i� it is closed under least
upper bounds (

W
) and greatest lower bounds (

V
), i.e., if the domain of the

algebra is A and B � A then
W
B 2 A and

V
B 2 A. If A is any algebraic

structure of the required kind, with domain A, then an interpretation is
a triple hA; D; di, where D is the domain of quanti�cation, d maps every
constant into D and every n-place predicate into a function from Dn into

(The philosophical gain, however, is dubious: world relativised quanti�ers can always be
de�ned in constant-domain semantics, provided we have an Existence predicate.)
84If one works with a free-variable notion of deducibility, as Routley and Lopari�c do,

one also has to add the rule of universal generalisation: if ` � then ` 8x�.
85As Fine showed. Fine also produced a rather di�erent semantics with respect to

which it is complete. See Anderson et al. [1992], sects. 52 and 53.
86See Anderson et al. [1992], sect. 49.2.
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A. Algebraic values are then assigned to all formulas in the usual way. In
particular, for quanti�ed sentences the conditions are:

�(8x�) =
Vf�(�(x=c)); c 2 Dg

�(9x�) =
Wf�(�(x=c)); c 2 Dg

I will comment on this construction for only two kinds of algebras. The
�rst is when A is a De Morgan groupoid, or strengthening thereof. In
this case, the above semantics clearly give quanti�ed relevant logics. Their
relation to quanti�ed relevant logics based on the intensional semantics has
not, as far as I am aware, been investigated.

The second is where A is a dual intuitionist algebra. In this case, the
semantics give a quanti�ed logic that is dual to quanti�ed intuitionist logic.
For details, see Goodman [1981].87

6.7 A Brief Look Back

Now that we have surveyed a large number of paraconsistent logics up to a
quanti�ed level|some very briey|it would seem appropriate to look back
for a moment and put the systems into some sort of perspective.

The logics we have looked at fall roughly and inexactly into four cat-
egories: non-transitive logics, non-adjunctive logics, non-truth-functional
logics and relevant logics. (The most interesting many-valued systems are
zero degree relevant logic, FDE, or closely related to it, like LP , and so
may be classed in this family.) The non-transitive logics seem to be good
for extracting the essential juice out of classical inferences, but do not really
take inconsistent semantic structures seriously. Non-adjunctive logics may
be just what one needs for certain applications (e.g., inferences in a data
base, where one would not necessarily want to infer �^:� from � and :�);
they also take inconsistent structure seriously, though conjoined contradic-
tions are handled indiscriminately, which makes them unsuitable for many
applications. Non-truth-functional logics contain the whole of classical (or
at least intuitionist) positive logic, and so are useful when strong canons of
positive reasoning are required. However, this very strength is a weakness
when it comes to some important applications, as we shall see in connection
with set theory. Undoubtedly the simplest and most robust paraconsistent
logic is the logic LP . When conditional operators are required, the relevant
logic BX is a good all-purpose paraconsistent logic. Its conditional operator
is satisfactory for many purposes, but may be considered relatively weak.
It may be strengthened to give stronger relevant logics; but this, too, may
cause a problem for some applications, as we shall see.

87There is also a topos-theoretic account of quanti�cation for dual intuitionistic logic.
See Mortensen [1995], ch. 11.
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7 OTHER EXTENSIONS OF THE BASIC APPARATUS

I now want to look at other extensions of the basic paraconsistent apparatus.
One way or another, all the paraconsistent logics we have looked at can
be extended appropriately. However, it is tedious to run through every
case, especially when details are often obvious. Hence, I shall illustrate the
extensions mainly with respect to just one logic. Since LP is simple and
natural, it recommends itself for this purpose. I will comment on other
logics occasionally, when there is a point to doing so.

7.1 Identity and Function Symbols

LP|and all the other logics with objectual semantics that we have looked
at|can be extended to include function symbols and identity in the usual
way. The denotation function, d, maps each n-place function symbol, f , to
an n-place function on the domain. A denotation for every (closed) term,
t, is then obtained by the usual recursive condition:

d(ft1:::tn) = d(f)(d(t1); :::; d(tn))

With functional terms present, the quanti�er rules of proof are extended to
arbitrary (closed) terms in the usual way.

If we require the extension of the identity predicate to be fhx; xi ;x 2 Dg
then this is suÆcient to validate the usual laws of identity:

t = t
t1 = t2 �(x=t1)

�(x=t2)

This does not require identity statements to be consistent. In LP the anti-
extension of identity is any set whose union with the extension exhausts
D2, and so a pair can be in both the extension and the anti-extension of
the identity predicate. In other logics, negated identities can be taken care
of by whatever mechanism is used for negation. The completeness proof for
quanti�ed LP can be extended to include function symbols and identity in
the usual Henkin fashion.

I note that description operators can be added in the obvious ways, with
the same panoply of options as in the classical case.88

7.2 Second-order Logic

Paraconsistent logics can also be extended to second order in the obvious
ways. Consider LP . We add (monadic) second order variables, X , Y ,::: to

88See the article of Free Logics in this Handbook.
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the �rst-order language. Then, given an interpretation, hD; di, we extend
the language to one, LD, such that every member of the domain has a name,
and for every pair E, A such that E [ A = D there is a predicate, P , with
E and A as extension and anti-extension, respectively.89 The truth/falsity
conditions for the second order universal quanti�er are then:

1 2 �(8X�) i� for every P in LD, 1 2 �(�(X=P ))

0 2 �(8X�) i� for some P in LD, 0 2 �(�(X=P ))

The truth/falsity conditions for the existential quanti�er are the dual ones.
Appropriate monotonicity carries over to second order LP . Recall from

6.4 that if I1 and I2 are any interpretations, with truth value assignments
�1 and �2, I1 � I2 means that I1 and I2 have the same domain, and for
every predicate, P , the extension (anti-extension) of P in I1 is a subset of
the extension (anti-extension) of P in I2. The same sort of induction as
in the �rst-order case shows that if I1 � I2 then for all formulas, �, in
LD, �1(�) � �2(�). (The predicates added in forming LD have the same
extension/anti-extension in both interpretations; and thus atomic sentences
containing them satisfy the condition.)

In the second order case, and unlike the �rst order case, the logical truths
of LP are distinct from their classical counterparts. For example, as is easy
to check, in LP , j= 9X(Xa^:Xa) (just consider the predicate which has D
as both extension and anti-extension).90 In fact, the logical truths of second
order LP are inconsistent, since it is also a logical truth that 8X(Xa_:Xa),
which is equivalent by quanti�er rules and De Morgan to :9X(Xa^:Xa).

7.3 Modal Operators

All the logics may have modal operators added to them in one way or
another. In the case of discursive logics, indeed, the semantics already
provide for the possibility of alethic modal operators.

Adding modal operators to intensional logics where negation is handled
by the Routley � operator is very natural, but su�ers problems similar to
those we witnessed at the start of 5.5 in connection with the conditional.
Suppose we take an intensional interpretation and give the modal operators
the natural S5 conditions:

�w(2�) = 1 i� for every w0 2W; �w0(�) = 1

89This is the natural policy, since properties are characterised semantically by an
extension/anti-extension pair. As in the classical case, there are other policies, e.g.,
where only predicates corresponding to some restricted class of properties are added.
90Second order FDE is constructed in the obvious way. The same sentence is a logical

truth of this, showing that, unlike the �rst order case, it has logical truths.
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�w(3�) = 1 i� for some w0 2 W; �w0(�) = 1

(or evenN instead ofW ). Then the truth values of modalised statements are
the same at all worlds. Hence, �w(2�) = 1, �w�(2�) = 1, �w(:2�) =
0. Hence 2�;:2� j= �, and so the logic is not suitable for serious paracon-
sistent purposes. The problem does not arise if we attempt a modal logic
weaker than S5, for then the truth conditions of modal operators are given
employing a binary accessibility relation in the usual way, and the truth
values of modal statements will vary across worlds. But, at least for some
purposes, an S5 modality is desirable.

These problems are avoided if we use the Dunn semantics for negation.
The values of modalised formulas will still be the same at all worlds (in the
S5 case), but we may now have both 2� and :2� true at a world. I will
illustrate, again, with respect to LP . Let us start with the case where the
binary accessibility relation is arbitrary, the three-valued analogue of the
modal system K.

An interpretation is now a structure hW;R; �i, where W is a set of
worlds; R is a binary relation on W ; and for each parameter, p, �w(p) 2
ff1g; f1; 0g; f0gg. Truth/falsity conditions for the propositional connectives
are as in 5.5. The conditions for 2 are:

1 2 �w(2�) i� for every w0 such that wRw0, 1 2 �w0(�)
0 2 �w(2�) i� for some w0 such that wRw0, 0 2 �w0(�)

and dually for 3.91

It is easy to check that at every world of an interpretation 2:� has the
same truth value as :3�, and dually. In fact, we can simply de�ne 3� as
:2:�, and will do this in what follows.

To obtain a proof-theoretic characterisation for the logic, we add to the
rules for LP the following (chosen to make the completeness proof simple):


...
� 2

2�

�
...
Æ 3�

3Æ

where there are no other undischarged assumptions in the sub-proofs.

2(� _ Æ)
2� _3Æ

2 ^3�
3( ^ �)

91If a conditional operator is required, we may add a class of non-normal worlds|and
maybe a ternary accessibility relation|and proceed as in 5.5.
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21 ^ ::: ^ 2n
2(1 ^ ::: ^ n)

3(Æ1 _ ::: _ Æn)

3Æ1 _ ::: _3Æn
Soundness is easily checked. For completeness, suppose that � 6` �. Extend
� to a prime, deductively closed theory, �, with the same property, as
in 4.3. De�ne an interpretation, hW;R; �i, where W is the set of prime
deductively closed theories; �R� i� for all �:

2� 2 �) � 2 �

� 2 �) 3� 2 �

and � is de�ned by:

1 2 ��(p) i� p 2 �

0 2 ��(p) i� :p 2 �

All that remains is to show that these conditions extend to all formulas.
Completeness then follows as usual. This is established by induction. The
only diÆcult case is that for 2, which requires the following two-part lemma.

If 2� 62 � then there is a � 2W such that �R� and � 62 �. Proof: Let
�2 = f;2 2 �g and �3 = fÆ;3Æ 62 �g. Then �2 6` �;�3, by the �rst
and second pair of rules, and a bit of �ddling with the third. Extend �2 to
a prime, deductively closed set, �, with the same property, as in 4.3. The
result follows.

If 3� 2 � then there is a � 2 W such that �R� and � 2 �. Proof:
Let �2 and �3 be as before. Then �2; � 6` �3, by the �rst and second
pair of rules, and a bit of �ddling with the third. Extend �2; � to a prime,
deductively closed set, �, with the same property, as in 4.3. The result
follows.

We can now prove the induction step for 2:

2� 2 � , 8� s.t. �R�, � 2 � lemma in one direction
de�nition of R in the other

, 8� s.t. �R�, 1 2 ��(�) induction hypothesis
, 1 2 ��(2�)

:2� 2 � , 3:� 2 � de�nition of 3
, 9�(�R� and :� 2 �) lemma in one direction

de�nition of R in the other
, 9�(�R� and 0 2 ��(�)) induction hypothesis
, 0 2 ��(2�)
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Stronger modal logics can be obtained by placing conditions on R, and
corresponding conditions on the proof theory. But even if we make R uni-
versal (so that for all x and y, xRy), and obtain the analogue of S5, we
still do not get 2�;:2� j= �. To see this, merely consider the interpreta-
tion with one world, w, which accesses itself; and where �w(p) = f1; 0g and
�w(q) = f0g. It is easy to check that �w(2p) = �w(:2p) = f1; 0g. Hence,
2p;:2p 6j= q.

The same treatment can be given to temporal operators. If we take these,
as usual, to be F and G for the future, and P and H for the past, then
(three-valued) tense logic gives F and G the same truth conditions as 3 and
2, respectively; and P and H are the same, except that R is replaced by its
converse, �R (where x �Ry i� yRx). Appropriate soundness and completeness
proofs for the case where R is arbitrary are obtained by modifying the
alethic modal argument,92 and stronger tense logics are obtained by adding
conditions on R, in the usual way.93

Let me also mention conditional operators, >, of the Lewis/Stalnaker
variety. These are modal (binary) operators, and can be given LP (or FDE)
semantics in the same way that they are given a more usual semantics.
For example, for the Stalnaker version, one extends interpretations with a
selection function, f(w;�), thought of as selecting the nearest world to w
where � is true. � > � is then true at w i� � is true at f(w;�). Details
are left as a very non-trivial exercise.94

7.4 The Paraconsistent Importance of Modal Operators

Let me digress from the technical details to say a little about why modal
operators are important in the context of paraconsistency. The reason is
simply that so many of the natural areas where one might want to apply a
paraconsistent logic involve them.

Take alethic modalities �rst. Even though one might not think that there
are any true contradictions, one might still take them to be possible, in the
sense of holding in some situations, such as �ctional or counterfactual ones.
Thus, one might hold that for some p, 3(p ^ :p). This has a simple and
obvious model in the above semantics. In this context, let me mention again
the importance for counterfactual conditionals of worlds where the impos-
sible holds; \impossible worlds" are just what one needs to evaluate such
conditionals, according to the Lewis/Stalnaker semantics in whose direction
I have just gestured.

Some have been tempted not just by the view that some contradictions

92See Priest [1982].
93See the article on Tense Logic in this Handbook.
94For a paraconsistent theory of conditionals of this kind, and of many other modal

operators, that employs the Routley � to handle negation, see Routley [1989].
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are possible, but by the view that everything is possible.95 The valuation
�f1;0g assigns every formula the value f1; 0g. (See 4.6). Hence, any inter-
pretation that contains �f1;0g as one world will verify 3�, for all �, at any
world that accesses it.96 If we interpret the modal operators 2 and 3 as the
deontic operators O (it is obligatory that) and P (it is permissible that), re-
spectively, then the thesis that everything is possible becomes the nihilistic
thesis that everything is permissible|what, according to Dostoevski, would
be the case if there is no God.

Less exotically, standard deontic logic su�ers badly from explosion.97

Since in classical logic �;:� j= � it follows that O�;O:� j= O�: if you
have inconsistent obligations then you are obliged to do everything. This
is surely absurd. People incur inconsistent obligations; this may give rise
to legal or moral dilemmas, but hardly to legal or moral anarchy.98 And
one does not have to believe in dialetheism to accept this. Unsurprisingly,
deontic explosion fails, given the semantics of the previous section: just
consider the interpretation where there is a single world, w; R is universal;
�w(p) = f1; 0g and �w(q) = f0g. It is not diÆcult to check that �w(Op) =
�w(O:p) = f1; 0g, whilst �w(Oq) = f0g.

What is often taken to be the basic possible-worlds deontic logic (called
KD by Chellas [1980], p. 131) makes matters even worse, by requiring that
in an interpretation the accessibility relation be serial: for all x, there is
a y such that xRy. This validates the inference O�=P�. It also validates
the inference O:�=:O�. Hence we have, classically, O�;O:� j= O� ^
:O� j= �; one who incurs inconsistent obligations renders the world trivial.
Someone who believes that there are deontic dilemmas may just have to
jettison the view that obligation entails permission, and so give up seriality.
But on the above account one can retain seriality, and so both the above
inferences; for O� ^ :O� 6j= �, as the countermodel of the last paragraph
shows.99

Another standard way of interpreting the modal operator 2 is as an
epistemic operator, K (it is known that), or a doxastic operator B (it is
believed that). In these cases, classically, one would almost certainly want to
put extra constraints on the accessibility relation, though what these should
be might be contentious: all can accept reexivity (xRx) for K (but not
for B) since this validates K� j= �. Whether one would want transitivity
((xRy&yRz)) xRz) is much more dubious forB andK, since this gives the

95E.g., Mortensen [1989].
96A similar, but slightly more complex, construction can be employed to the same

e�ect if the logic has a conditional operator.
97See the article on Deontic Logic in this Handbook for details of Deontic Logic, in-

cluding the possible-worlds approach.
98For further discussion, see Priest [1987], ch. 13.
99We have just been dealing with some of the \paradoxes of deontic logic". There are

many of these. Arguably, all of them|or at least all the serious ones|are avoided by
using a paraconsistent logic with a relevant conditional. See Routley and Routley [1989].
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highly suspect K� j= KK� and B� j= BB�. All this applies equally to the
semantics of the previous section. Moreover, the paraconsistent semantics
solve problems for doxastic logic of the same kind as for deontic logic. It
is clear that people sometimes have inconsistent beliefs (if not knowledge).
Standard semantics give B�;B:� j= B�. Yet patently someone may have
inconsistent beliefs without believing everything.100

Observations such as this are particularly apt in the branch of AI known
as knowledge representation, where it is common to use epistemic operators
to model the information available to a computer. (See, e.g., a number of
the essays in Halpern [1986].) Such information may well be inconsistent.

Finally, to tense operators. Whilst one does not have to be a dialetheist
to hold that inconsistencies may be believed, obligatory, or true in some
counterfactual situation, one does have to be, to believe that they were or
will be true. Such views have certainly been held, however. Following Zeno,
the whole dialectical tradition holds that contradictions arise in a state of
change. To see one of the more plausible examples of this, just consider a
state described by p which changes instantaneously at time t0 to a state
described by :p. What is the state of a�airs at t0? One answer is that at
t0, p ^ :p is true. Indeed, the contradictory state is the state of change.101

This can be modeled by the paraconsistent interpretation hW;R; �i, where
W is the set of real numbers (thought of as times); R is the standard or-
dering on the reals; and � is de�ned by the condition:

�t(p) = f1g if t < t0
= f1; 0g if t = t0
= f0g if t > t0

It is easy to check that this interpretation veri�es the inference: p^F:p=(p^
:p) _ F (p ^ :p), which we might call `Zeno's Principle': change implies
contradiction.

7.5 Probability

Probability is not a modal notion. But it, too, has paraconsistent signi�-
cance. One of the most natural ways of constructing a paraconsistent proba-
bility theory is to extract one from a class of paraconsistent interpretations,
in the manner of Carnap.102

100If you believe classical logic, then you might suppose that they are rationally com-
mitted to everything, but that is quite di�erent. Even here, however, an explosive logic
would seem to go astray. Dialetheism aside, situations such as the paradox of the preface,
as well as more mundane things, would seem to show that one can be rationally commit-
ted to inconsistent propositions without being rationally committed to everything. See
Priest [1987], sect. 7.4.
101See Priest [1982] and Priest [1987], ch. 11.
102See Carnap [1950].
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A probabilistic interpretation is a pair, hI; �i, where I is a class of in-
terpretations for LP 103 and � a �nitely additive measure on I , that is, a
function from subsets of I to non-negative real numbers such that:

�(�) = 0
�(X [ Y ) = �(X) + �(Y ) if X \ Y = �

If � is any sentence, let [�] = f� 2 I ; 1 2 �(�)g. For reasons that we will
come to, we also require that for all �, �([�]) 6= 0. There certainly are such
interpretations and measures. For example, let I be any �nite class that
contains the trivial interpretation, �f1;0g, where all sentences are true, and
let �(X) be the cardinality of X . Then this condition is satis�ed.

Given a probabilistic interpretation, we de�ne a probability function, p,
by:

p(�) = �([�])=�(I)

It is easy to see that p satis�es all the standard conditions for a probability
function, such as:

0 � p(�) � 1
if � j= � then p(�) � p(�)
if j= � then p(�) = 1
p(� _ �) = p(�) + p(�)� p(� ^ �)

except, of course: p(:�) + p(�) = 1. Since we have p(� ^ :�) > 0, and
p(� _ :�) = 1, it follows that p(�) + p(:�) > 1.

By the construction, we have, in fact, p(�) > 0 for all �. It might be
suggested that a person whose personal probability function gives nothing
the value zero would have to be very stupid|or at least credulous. But since
p(�) may be as small as one wishes, this hardly seems to follow. Moreover,
giving nothing a zero probability signals an open-minded and undogmatic
policy of belief. Arguably, this is the most rational policy.

Given a probability function, conditional probability can be de�ned in
the usual way:

p(�=�) = p(� ^ �)=p(�)

A singular advantage of this paraconsistent probability theory over stan-
dard accounts is that conditional probability is always de�ned, since the
denominator is always non-zero.
103Again, many other paraconsistent logics could be used instead.
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Perhaps the major application of probability theory is in framing an
account of non-deductive inference. How, exactly, to do this is a moot ques-
tion. But however one does it, a paraconsistent account of non-deductive
inference can be framed in the same way, employing paraconsistent prob-
ability theory. For example, we may de�ne the degree of (non-deductive)
validity of the inference �=� to be p(�=(�^ �)), where � is our background
evidence. As one would expect, deductively valid inferences come out as
having maximal degree of inductive validity.

To compute the degree of validity of an inference, so de�ned, we would
often need to employ Bayes' Theorem. Let us look at the paraconsistent
two-hypothesis version of this. Suppose that we have two hypotheses, h1
and h2, that are exclusive and exhaustive, in the sense that j= h1 _ h2 and
j= :(h1^h2), and that we wish to compute the probability of h1 on evidence,
e, given the inverse probabilities of these hypotheses on the evidence (all
relative to some background evidence, �, which we will ignore).

Note �rst that p(h1=e) = p(h1^e)=p(e) = p(e=h1):p(h1)=p(e). It remains
to compute p(e). Since h1 _ h2 entails e _ h1 _ h2 we have :

1 = p(e _ h1 _ h2) = p(e) + p(h1 _ h2)� p(e ^ (h1 _ h2))
= p(e) + 1� p(e ^ (h1 _ h2))

Hence:

p(e) = p(e ^ (h1 _ h2))
= p((e ^ h1) _ (e ^ h2))
= p(e ^ h1) + p(e ^ h2)� p(e ^ h1 ^ h2)
= p(h1):p(e=h1) + p(h2):p(e=h2)� p(h1 ^ h2):p(e=(h1 ^ h2))

Thus:

p(h1=e) =
p(e=h1):p(h1)

p(h1):p(e=h1) + p(h2):p(e=h2)� p(h1 ^ h2):p(e=(h1 ^ h2))
This is the paraconsistent version of Bayes' Theorem. In the classical case,
the last term of the denominator is zero, since j= :(h1 ^h2); but this is not
so in the paraconsistent case. The theorem illustrates a general fact about
paraconsistent probability theory: everything works as normal, except that
we have to carry round some extra terms concerning the probabilities of
certain contradictions which may be neglected in the classical case.

The extra complication may actually be a gain in some contexts. Let
me mention one possible one; this concerns quantum mechanics. Quantum
mechanics is known to su�er from various phenomena often called `causal
anomalies', a famous one of which is the two-slit experiment.104 In this, a
104See, e.g., Haack [1974], ch. 8.
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light is shone onto a screen through a mask with two slits. The intensity
of light on any point on the screen is proportional to the probability that
a photon hits it, �, given that it goes through one slit, �, or goes through
the other, �. Let us write p(� _ �) as q. Then:

p(�=(� _ �)) = p(� ^ (� _ �))=p(� _ �)
= p((� ^ �) _ (� ^ �))=q
= p(� ^ �)=q + p(� ^ �)=q � p(� ^ � ^ �)=q

Classically, we know that :(� ^ �), and so the last term may be ignored.
For similar reasons, q = p(� _ �) = p(�) + p(�), and by symmetry we can
arrange for p(�) and p(�) to be equal. Hence:

p(�=(� _ �)) = p(� ^ �)=2p(�) + p(� ^ �)=2p(�)
= 1

2 (p(�=�) + p(�=�))

Thus, the intensity of light on the screen should be the average of the
intensities of light going each slit independently (which can be determined
by closing o� the other). Exactly this is what is not found.

Standard quantum logic105 avoids the result by rejecting the inference of
distribution (i.e., the equivalence between � ^ (�_ �) and (� ^�)_ (� ^ �),
and so faulting the second line of the above proof. A paraconsistent solution
is just to note that we cannot ignore the third term in the computation of
p(�=(� _ �)), even though we know that :(� ^ �). In qualitative terms,
what this means is that the photon has a non-zero probability of doing the
impossible, and going through both slits simultaneously!

This application of paraconsistent probability theory to quantum me-
chanics is highly speculative. Whether it could be employed to resolve the
other causal anomalies of quantum theory, let alone to predict the observa-
tions that are actually made, has not been investigated.106

7.6 The Classical Recapture

Most paraconsistent logicians have supposed that reasoning in accordance
with classical logic is sometimes legitimate. Most, for example, have taken
it that classical logic is perfectly acceptable in consistent situations. They
have therefore proposed ways in which classical logic can be \recaptured"
from a paraconsistent perspective.

The simplest such recapture occurs in non-adjunctive logics. As we noted
in 4.2, single premise non-adjunctive reasoning is classical. Hence, classical

105See the article on this in the Handbook.
106For more on the above issues, including the e�ects of paraconsistent probability

theory on con�rmation theory, see Priest [1987], sect. 7.6, and Priest et al. [1989], pp.
376-9, 385-8.
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reasoning can be regained simply by conjoining all premises. A di�erent
strategy is to employ a consistency operator, as is done in the da Costa
logics Ci, for �nite non-zero i. As we saw in 5.3, this can be employed to
de�ne a negation which behaves classically; hence classical reasoning can
simply be interpreted within the system. This approach has problems for
some applications, as we shall see when we come to look at set theory.

Yet another way to recapture classical reasoning, provided that a condi-
tional operator is available, is to employ an absurdity constant, ?, satisfying
the condition j= ? ! �, for all �. Such a constant makes perfectly good
sense paraconsistently. Algebraically, it corresponds to the minimal value
of an algebra (which can usually be added if it is not present already). In
truth-preservational terms, there are two ways of handling its semantics.
One is to require that ? be untrue at every (world of every) evaluation. Its
characteristic principle then holds vacuously. The other way (which may be
preferable if one objects to vacuous reasoning) is simply to assign ? (at a
world) the value of the (in�nitary) conjunction of all other formulas (at that
world). A bit of juggling then usually veri�es the characteristic principle.
(The de�nition itself guarantees it only when � does not contain ?.)

Now let C be the set of all formulas of the form (� ^ :�) ! ?. Then
an inference is classically valid i� it is enthymematically valid with C as
the set of suppressed premises, in most paraconsistent logics. For if every
member of C holds at (a world of) an interpretation, then the (world of the)
interpretation is a classical one|or at least the trivial one|and hence if the
premises of a classically valid inference are true at it, so is the conclusion.
Thus, we have an enthymematic recapture.

Let us write �� for �! ?. In classical (and intuitionist) logic, �� just
is :�. It might therefore be thought that provided a logic possesses ?, we
could simply interpret classical logic in it by identifying :� with ��. This
thought would be incorrect, though. In many paraconsistent logics, ��
behaves quite di�erently from classical (and intuitionist) negation. What
properties it has depends, of course, on the properties of !. While it will
always be the case that �;�� j= �, it will certainly not be true in general
that j= � _ ��, that �� � j= �, or even that � j= �� �. As an example
of the last, consider an intensional interpretation for the logic H . (See 5.5.)
Suppose that p is true at some normal world, w, but that at some non-
normal world p ! ? is true (and ? is not). Then (p ! ?) ! ? fails at
w.107

A �nal, and much less brute-force, way of recapturing classical logic starts
from the idea that consistency is the norm. It is implicit in the paracon-
sistent enterprise that inconsistency can be contained. Instead of spreading
everywhere, inconsistencies can exist isolated, as do singularities in a �eld

107It might be thought that the existence of the explosive connective `�' would cause
problems for certain paraconsistent applications; notably, for example, for set theory.
This is not the case, however, as we will see.



PARACONSISTENT LOGIC 349

(of the kind found in physics, not agriculture). This metaphor suggests that
even if inconsistencies are present they will be relatively rare. If it is true
inconsistencies we are talking about, these will be even rarer|something
that the classical logician can readily agree with!108

This suggests that consistency should be a default assumption, in the
sense of non-monotonic logic. Many non-monotonic logics can be formu-
lated by de�ning validity over some class of models, minimal with respect to
violation of the default condition. In e�ect, we consider only those interpre-
tations that are no more proigate in the relevant way than the information
necessitates. In the case where it is consistency that is the default condition,
we may de�ne validity over models that are minimally inconsistent in some
sense. I will illustrate, as usual, with respect to LP .109

Let I = hD; di be an LP interpretation. Let � 2 I! i� � is Pd1:::dn,
where P is an n-place predicate and hd1; :::; dni 2 EP \AP in I. (Recall that
I am using members of the domain as names for themselves.) I! is a measure
of the inconsistency of I. In particular, I is a classical interpretation i�
I! = �. If I1 and I2 are LP interpretations, I will write I1 < I2, and say
that I1 is more consistent than I2, i� I1! � I2!. (The containment here is
proper.) I is a minimally inconsistent (mi) model of � i� I is a model of
� i� I is a model of � and if J < I;J is not a model of �. Finally, � is
an mi consequence of � (� j=m �) i� every mi model of � is a model of �.

As is to be expected, j=m is non-monotonic. For if p and q are atomic
sentences, it is easy to check that fp;:p_qg j=m q, but f:p; p;:p_qg 6j=m q.
Moreover, since all classical models (if there are any) are mi models, and
all mi models are models, it follows that � j= � ) � j=m � ) � j=C �.
The implications are, in general, not reversible. For the �rst, note that
fp;:p _ qg 6j= q; for the second, note that fp;:pg 6j=m q. But if � is
classically consistent, its mi models are exactly its classical models, and
hence we have � j=m �, � j=C �: classical recapture.

j=m has various other interesting properties. For example, it can be
shown that if the LP consequences of some set is non-trivial, so are its mi
consequences Reassurance. For details, see Priest [1991a].110

108Though this is not so obvious once one accepts dialetheism. For a defence of the
view given dialetheism, see Priest [1987], sect. 8.4.
109Though the �rst paraconsistent logician to employ this strategy was Batens [1989],

who employs a non-truth-functional logic. Batens also considers the dymanical aspects
of such default reasoning.
110In that paper, in the de�nition of <, a clause stating that the domains of I1 and
I2 are the same is added. With this clause, the result concerning classical recapture is
false (and that paper is mistaken). For example, if � is 9xPx^9x:Px, then hD; di is an
mi model, wher D = fag; EP = AP = fag, though this is not a classical model. (This
was �rst noted by Diderik Batens, in correspondence.) As < is de�ned here, f8x(Px ^
:Px)g �m 9x8yx = y, which may be thought to be counter-intuitive. But if 8x(Px ^
:Px) is all the information we have, and inconsistencies are to be minimised, perhaps it is
correct to infer that there is just one thing. Note that f8x(Px^:Px);9xQx^9x:Qxg 6j=m

9x8yx = y. For hd; di is an mi model of the premises, where D = fa; bg; EP = AP =
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8 SEMANTICS AND SET THEORY

The previous part gestured in the direction of various applications of para-
consistent logic. I want, in the next two parts, to look at some other appli-
cations in greater detail. These concern theories of particular mathematical
signi�cance. In this part I will deal with semantics and set theory.

Semantic and set-theoretic notions appear to be governed by simple and
apparently obvious principles. In semantics, these concern truth, T , satis-
faction, S, and denotation, D, and are:

T -schema: T h�i $ �

S-schema: Sx h�i $ �(y=x)

D-schema: D htix$ x = t

where � is any sentence, � is any formula with one free variable, y, and t
is any closed term. Angle brackets indicate a name-forming device. In set
theory the principle is the schema of set existence:

Comprehension Schema: 9x8y(y 2 x$ �)

where � is any formula not containing x. What the connective $ is in the
above schemas, we will have to come back to.

Despite the fact that these schemas appear to be obvious, they all give rise
to contradictions, as is well known: the paradoxes of self-reference, such as
(respectively) the Liar Paradox, the Heterological Paradox, Berry's Paradox
and Russell's Paradox. The usual approaches to set theory and semantics
restrict the principles in some way. Such approaches are all unsatisfactory
in one way or another, though I shall not discuss this here.111

A paraconsistent approach can simply leave the principles as they are,
and allow the contradictions to arise. They need do no damage, because
the logic is not explosive. Even so, not all paraconsistent logics are suit-
able as the underlying logics of these theories. For a start, if the above
schemas are formulated with the material � they give rise to a conjoined
contradiction, so using a non-adjunctive logic (except Rescher and Manor's)
explodes the theory.112 And in the da Costa systems, Ci, for �nite i, an
operator behaving like classical negation, :� can be de�ned (see 5.3). The
usual arguments establish contradictions of the form �^:��, and so again

fa; bg; EQ = fag; AQ = fbg. With the present de�nition, the proof of Reassurance for
the �rst-order case, appropriately modi�ed, still goes through.
111See, for example, Priest [1987], chs. 1, 2.
112Rescher and Brandom, [1980], p. 164, suggest splitting the biconditionals up into

two non-conjoined conditionals.
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the theories explode. Fortunately, there are other paraconsistent logics that
will do the job.113

8.1 Truth Theory in LP

Let us start with the semantic case. I will deal with truth; similar remarks
and constructions hold for the other semantic notions, but I will leave read-
ers to ponder these for themselves. The �rst question we need to address is
what connective it is that occurs in the biconditional of the T -schema. The
�rst possibility is that it is a material biconditional, �.114

Let us, then, suppose that we are dealing with the logic LP . We will
need some machinery to handle self reference; a straightforward option is
to let this be arithmetic. Hence, we suppose the language, L, to be that
of �rst order arithmetic augmented by a one place predicate, T . To make
things easy, we will assume that L has a function symbol for each primitive
recursive function (and only those function symbols). Let T0 be the LP
theory in this language which comprises the truths of �rst order arithmetic
plus the T -schema.

The assumption that T0 contains all of arithmetic is obviously a very
strong one, and means that the theory is not axiomatic. We could, instead,
consider an axiomatic theory with some suitable fragment of arithmetic,
but since a major part of our concern will be with what cannot be proved,
it is useful to have the arithmetic part as strong as possible.

The �rst thing to note is that T0 is inconsistent. Given the resources of
arithmetic, for any formula,�, of one free variable, x, one can �nd, by the
usual G�odel construction, a �xed-point formula, �, of the form �(x= h�i).115
Now, let � be :Tx and let � be its �xed point. Then the T -schema gives
us: T h�i � �, i.e., T h�i � :T h�i. Unpacking the de�nition of �, in terms
of ^, _, and : and �ddling, gives exactly T h�i ^ :T h�i.116

Despite being inconsistent, T0 is non-trivial. An easy way to see this
is to observe, �rst of all, that if in any interpretation �(�) = f1; 0g then
�(� � �) = f1; 0g. Hence, an LP model for T0 can be obtained by letting
the denotations of the arithmetic language be that of the standard interpre-
tation of arithmetic|so that, in particular, the domain is N , the natural
numbers; recall that classical interpretations are just special cases of LP

113There are paraconsistent set theories based on da Costa's C systems. (See, e.g.,
Arruda [1980], da Costa [1986].) In these theories, the schemas have to be constrained,
as they are classically. This takes away much of the appeal of a paraconsistent approach.
114It is natural to suppose that it ought to be a detachable conditional. Goodship [1996]

argues that it is only a material conditional. Whether or not this is the case, it is certainly
interesting to explore the two possibilities.
115See, e.g., Priest [1987], sect. 3.5.
116It is worth noting that for the S-schema, the �xed point machinery is unnecessary

for the demonstration of inconsistency. For let � be :Sxx. Then an instance of the
S-schema is: S h�i h�i � :S h�i h�i, and we can then proceed as before.
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interpretations|and setting ET and AT , the extension and anti-extension
of T , both to N . Call this interpretation I0. In I0 every sentence of the
form T h�i takes the value f1; 0g, and so by the observation concerning �,
I0 is a model for the T -schema, and so of all of T0. The same interpreta-
tion shows that if � is any arithmetic formula false in the standard model,
T0 6j= �.
T0 is a relatively weak theory. In particular, it does not legitimate the

two way rule of inference:

�

T h�i
(just consider the south-north inference in I0, where � is an arithmetic
sentence false in the standard model).117

Let the theory obtained by replacing the material T -schema of T0 with
this rule be called T1. T1 is inconsistent. For choose an � of the form
:T h�i. The law of excluded middle gives T h�i _ :T h�i, i.e., T h�i _ �,
which, applying the rule, gives T h�i and �, i.e., :T h�i.

We can construct a model for T1 as follows. If an interpretation assigns
the standard denotations to all arithmetical language let us call it arithmeti-
cal. Any arithmetical interpretation is a model all of T1 except, perhaps,
the T -schema. Let I1 and I2 be two arithmetical interpretations, with as-
signment functions �1 and �2. De�ne �1 � �2 to mean that for all atomic
sentences in the language; �:

�1(�) = t) �2(�) = t
�1(�) = f ) �2(�) = f

If �1 � �2 then this condition extends to all formulas of L. For suppose
that �1 � �2. If n is in the extension of T in I2 but not I1; then �2(Tn) = t
or b, but �1(Tn) = f , violating the condition. Similarly for anti-extensions.
Hence, I2 � I1. By monotonicity, for all �, �2(�) � �1(�). The conclusion
follows. For suppose that �2(�) 6= t. Then � is false (i.e., b or f) in I2;
hence � is false in I1, i.e., �1(�) 6= t. The argument for f is similar.

This result is, in fact, just another version of monotonicity; I will call it
the Monotonicity Lemma.

Let I0 be any arithmetical interpretation, with evaluation function �0.
We now de�ne a trans�nite sequence of arithmetical interpretations,

117Whether or not more follows with minimally inconsistent LP (see 7.6) is presently
unknown. Another non-monotonic notion of inference also suggests itself here. According
to this, the things that follow are the things that hold in all minimally inconsistent models
where the arithmetic part is the standard model. Employing this would be appropriate
if there were good reasons to believe that the only inconsistencies involve the truth
predicate.
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hJi; i 2 Oni (On is the class of ordinals). I will make the construction
slightly more complex than necessary, for the bene�ts of the next section.
It suÆces to de�ne the evaluation function �i of each interpretation. If i > 0
and n is not the code of a sentence, then �i(Tn) = �0(Tn). We therefore
need to consider only atomic formulas of the form T h�i. Let us say that
� is eventually t by k i� 9i > 08j(i � j < k, �j(�) = t). Similarly for f .
Then for k 6= 0:

�k(T h�i) = t if � is eventually t by k
= f if � is eventually f by k
= b otherwise

We can now establish that if 0 < i � k then �i � �k. The proof is by
trans�nite induction. Suppose that the result holds for all j < k. We
show it for k. Since the truth values of atomic formulas other than ones
of the form T h�i are constant, we need consider only these. So suppose
that �i(T h�i) = t. Then � is eventually t by i. In particular, for some
0 < j < i, �j(�) = t. By induction hypothesis, for all l such that j < l < k,
�j � �l. Hence, by monotonicity �l(�) = t. Hence, � is eventually t by k,
i.e., �k(T h�i) = t. The case for f is similar.

What this lemma shows is that once i > 0, and increases, sentences of the
form T h�i can change their truth value at most once. If they ever attain
a classical value, they keep it. Since there is only a countable number of
sentences of this form, there must be an ordinal, l, by which all the formulas
that change value have done so. Hence �l = �l+1. Call Jl, J�; and its
corresponding evaluation function ��. Then if ��(�) = t, ��(T h�i) = t.
Similarly for f and b. Hence ��(�) = ��(T h�i), and so J� is a model of T1.
For the same reason, J� also veri�es the two-way rule:

:�
:T h�i

Yet the theory is not trivial: anything false in the standard model of arith-
metic is untrue in J�, and so T1 6j= �.

It is not diÆcult to see that the construction used to de�ne J� is, in fact,
just a dualised form of Kripke's �xed point construction for a logic with
truth value gaps using the strong Kleene three-valued logic.118 (Provided
we start with a suitable ground model, monotonicity is guaranteed from the
beginning, and so we can just set �k(T h�i) to t (or f) if � takes the value t
(or f) at some i < k.) Hence, if any sentence is grounded in Kripke's sense,
it takes a classical value in J�. In particular, if � is any false grounded
sentence, T1 6j= �.

118See the article on Semantics and the Liar Paradox in this Handbook. One of the �rst
people to realise that the construction could be dualised for this end was Dowden [1984].
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8.2 Adding a Conditional

Although T1 validates the two-way inferential T -schema, it does not validate
the T -schema as formulated with a detachable conditional. This is for the
simple reason that LP does not contain such a conditional. A natural
thought is to augment the language with one to make this possible. Let the
resulting language be L!. Not all conditionals are suitable here, however.
This is due to Curry paradoxes. If the conditional satis�es the inference
of contraction: � ! (� ! �) j= � ! �, then the theory collapses into
triviality. For consider the �xed-point formula, , of the form T hi ! ?
(or if ? is not present, just an arbitrary �). The T -schema gives: T hi $
(T hi ! ?). Contraction gives us: T hi ! ? and then a couple of
applications of modus ponens give ?.119

This fact rules out the use of all the non-transitive logics we looked at
(since they validate � $ (� ! �) j= �), all the da Costa logics and dis-
cussive logic (using discussive implication for the T -schema), since these
validate contraction, and those relevance logics that validate contraction,
such as R.120 A relevant logic without contraction can be used for the
purpose.

Let T2 be as for T0, except that the T -schema is formulated with !,
and the underlying logic is BX (see 5.5, 6.5). T2 is inconsistent, since it is
obviously stronger than T1. But it can be shown to be non-trivial. If we try
to generalise the proof for T1 in simple ways, attempts are stymied by the
failure of anything like monotonicity once ! is involved. However, there is
a way of building on the proof.121 This requires us to move from objectual
semantics to simple evaluational semantics. For the purpose of this section
(and this one only), an atomic formula will be any of the usual kind or
any one of the form � ! �. Clearly, any sentence of the language can be
built up from atomic formulas using ^, _, :, 9 and 8. Call an evaluation
of atomic formulas, �, arithmetical if it assigns to every identity its value
in the standard model of arithmetic. Given an arithmetical evaluation, it
is extended to an evaluation of all sentences by LP truth conditions, using
substitutional quanti�cation.

A quick induction shows that any arithmetical evaluation assigns t to all
the arithmetic truths of the standard model (which do not contain ! or
T ), and f to all the falsehoods. Moreover, for this notion of valuation, we
do have the Monotonicity Lemma. Finally, given any such evaluation, we

119An argument of this kind �rst appeared in Curry [1942]. Di�erent versions that
employ close relatives of contraction, such as ` (� ^ (� ! �)) ! � (but not � ^ (� !
�) ` �) can also be found in the literature. See, e.g., Meyer et al. [1979].
120For good measure, it also rules out using Rescher and Manor's non-adjunctive ap-

proach. Using this, every consistent sentence would follow, since if � is consistent, so is
�$ (�! �).
121The following is taken from Priest [1991b], which simply modi�es Brady's proof for

set theory in [1989].
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can construct a �xed point, ��, such that ��(�) = ��(T h�i), as in 8.1. The
construction is the same, except that in the de�nition of �k, we set Ts to t
if s is a (closed) term that evaluates to the code of �, and � is eventually
t by k. Similarly for f . (The values of atoms of the form � ! � do not
change in the process.)

An induction shows that if � � � then for all i, �i � �i. Suppose
the result for all i < k. We show it for k. We need consider only those
atomic formulas of the form Ts where s evaluates to the code of sentence �.
�k(Ts) = t i� � is eventually t by k, for �. By induction hypothesis, this
implies that � is eventually t by k for �. Hence, �k(Ts) = t, as required.
The case for f is similar. From this result it obviously follows that if � � �
then �� � ��.

Let ) be the conditional connective of RM3 (see 5.4, identifying +1, 0,
and �1 with t, b, and f , respectively). This also plays a role in the proof.
Its relevant property is that if � � � then if � and � are formulas of L!
and �(� ) �) = t, �(� ) �) = t. For if �(� ) �) = t then �(�) = f or
�(�) = t. By monotonicity �(�) = f or �(�) = t. Hence, �(�) �) = t.

Let �0 be the arithmetical interpretation that assigns every sentence of
the form Ts the value b. We now de�ne a trans�nite sequence of arithmetic
valuations, h�i; i 2 Oni, as follows. (I write (�j)

� as ��j .) For k 6= 0:

�k(�! �) = t if 8j < k, ��j (�) �) = t
= f if 9 j < k, ��j (�) �) = f
= b otherwise

And where � is of the form Ts, where s is any closed term which evaluates
to the code of a sentence:

�k(�) = t if 9i8j(i � j < k; ��j (�) = t)
= f if 9i8j(i � j < k; ��j (�) = f)
= b otherwise

We can now establish that if i � k then �i � �k. The proof is by
trans�nite induction. Suppose that the result holds for all j < k. We need
to consider cases where a formula is of the form �! � or Ts, where s is a
term that evaluates to the code of a sentence. Take them in that order.

Suppose that �i(� ! �) = t. Then ��0 (� ) �) = t. By induction
hypothesis, for 0 < j < k, �0 � �j . Thus, ��0 � ��j . Hence, ��j (� ) �) = t,
by the observation concerning ). Thus, �k(� ! �) = t, as required. The
case for f is trivial.

For the other case, suppose that �i(�) = t. Then 9j < i, ��j (�) = t.
By induction hypothesis, if j � l < k, �j � �l, and hence ��j � ��l . By
monotonicity, ��l (�) = t. Thus, �k(�) = t. The case for f is similar.
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What this lemma shows, as before, is that we must eventually reach
an l such that �l = �l+1. Let this evaluation be ~�. Then ~� is a model
of all the extensional arithmetic apparatus. It also models the T -schema.
For if i < l, ��i (�) = ��i (T h�i), and so ��i (� , T h�i) = t or b, and
~�(� $ T h�i) = t or b. (For the same reason, ~� models the contraposed
form: :�$ :T h�i. Since T h:�i $ :� is an instance of the T -schema, it
also models T h:�i $ :T h�i.)

It remains to check that ~� models the axioms and respects the rules of
inference of BX . This requires no little checking. Most of it is routine. Here,
for example, is one of the harder propositional axioms: ((� ! �) ^ (� !
)) ! (� ! ((� ^ )). Let the antecedent be ', and the consequent be  .
Then ~�(' !  ) = t or b i� for no i < l, ��i (' )  ) = f . Now, suppose
that ��i (')  ) = f . Then one of:

��i (') = t and (��i ( ) = b or ��i ( ) = f)

��i (') = b and ��i ( ) = f

In the �rst case, �i(� ! �) = �i(� ! ) = t. But then for all j < i,
��j (� ) �) = ��j (� ) ) = t, in which case ��j (� ) (� ^ )) = t, and so
�i(�! (� ^ )) = t, which is impossible. In the second case, �i(�! �) = t
or b, and �i(� ! )) = t or b. But then for all j < i, ��j (� ) �) = t or b,
and ��j (� ) ) = t or b, in which case ��j (� ) (� ^ )) = t or b, and so
�i(�! ((� ^ )) = t or b, which is also impossible.

For further details, see Brady [1989].122 The construction shows that T1 is
non-trivial, since if � is any arithmetic sentence false in the standard model
~�(�) = f . (Indeed, as with the previous construction, which is incorporated
in this, if � is any false grounded sentence, the same is true.)

8.3 Advantages of a Paraconsistent Approach

What we have seen is that it is possible to have a theory containing all the
machinery of arithmetic, plus a truth predicate which satis�es the T -schema
for every sentence of the language|whether this is formulated as a material
biconditional, a two-way rule of inference, or a detachable bi-conditional.
It is inconsistent, but non-trivial; in fact, the inconsistencies do not spread

122Brady shows that the construction veri�es propositional logics that are a good deal
stronger than BX. His treatment of identiy is di�erent, though. To verify the substi-
tutivity rule of 7.1, it suÆces to show that if t1 = t2 holds in an interpretation then
�(x=t1) and �(x=t2) have the same truth value. A quick induction shows that if this is
true for atomic � it is true for all �. Hence, we need consider only these. Next, show by
induction that if this holds for � it holds for all evaluations in the construction of ��, and
so of �� itself. Finally, we show by induction that it holds for every �i in the hierarchy,
and hence for ~�.
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into the arithmetic machinery.123 Thus, it is possible to have a workable, if
inconsistent, theory which respects the central intuition about truth.

It is not my aim here to discuss the shortcomings of other standard
approaches to the theory of truth,124 but none can match this. All restrict
the T -schema in one way or another. The one that comes closest to having
the full T -schema is Kripke's account of truth, which at least has it in
the form of a two way rule of inference. However, this account has the
singular misfortune of being self-referentially inconsistent. According to this
account, if � is the Liar sentence it is neither true nor false, and so not true,
but the theory pronounces :T h�i itself neither true nor false. According
to T2, � is both true and false (i.e., has a true negation), and this is exactly
what it proves: T h�i ^ :T h�i entails T h�i ^ T h:�i. It might also show
that � is not true (and so not both true and false). But paraconsistency
shows you exactly how to live with this kind of contradiction.

This is not unconnected with the matter of \strengthened" paradoxes. If
someone holds the Liar sentence to be neither true nor false, one can invite
them to consider the sentence, �, `This sentence is not true' (as opposed
to false). Whether � is true, false or neither, a contradiction arises. It is
sometimes suggested that a paraconsistent account of truth falls to the same
problem, since � can have no consistent truth-value on this account either.
It should be clear that this argument is just an ignoratio. A paraconsistent
account does not require it to have a consistent truth-value. In fact, accord-
ing to T2, T h:�i $ :T h�i; if this is right, there is no distinction between
the standard Liar and the \strengthened Liar" at all.125

Let me �nish with a word of caution. We can construct non-trivial the-
ories which incorporate the S-schema of satisfaction and the D-schema of
denotation, in exactly the same way as we did the T -schema. If, however,
we try to add descriptions to a theory with self-reference and the D-schema,
trouble does arise.

Suppose that we have a description operator, ", satisfying the Hilbertian
principle: 9x� ` �(x="x�). If t is any closed term, t = t, and so by
the D-schema D hti t , and 9xD htix. Thus, by the description principle,
D hti "xD htix, whence, by the D-schema again:

t = "xD hti x

123Nor does the T -schema have to be taken as axiomatic. One can give truth conditions
for atomic sentences and then prove the T -schema in the usual Tarskian fashion. See
Priest [1987], ch. 7.
124For this, see Priest [1987], ch. 2.
125The advantages of a paraconsitent account of truth rub o� onto any account of modal

(deontic, doxastic, etc.) operators that treats them as predicates. For all such theories are
just sub-theories of the theory of truth. See Priest [1991b]. We will have an application
of this concerning provability in 9.6.
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Now in arithmetic, just as for any formula, �, with one free variable, x, we
can �nd a sentence, �, of the form �(x= h�i), so, for any term, t, with one
free variable, x, we can �nd a closed term; s, such that s is t(x= hsi). If f
is any one place function symbol, apply this fact to the term f"yDxy, to
obtain an s such that:

s = f"yD hsi y

Since s = "yD hsi y, it follows that s = fs: any function has a �xed point.
This shows that the semantic machinery does have purely arithmetic con-
sequences. In particular, for example, 9x x = x+ 1. Arithmetic statements
like this can be kept under control, as we will see later in the next part, but
worse is to come.

Let f be the parity function, i.e.:

fx = 0 if x is odd
= 1 if x is even

We have fs = 0 _ fs = 1. In the �rst case s = fs = 0, which is even, and
so fs = 1. Thus, 0 = 1. Similarly in the second case. This is unacceptable,
even for someone who supposes that there are some inconsistent numbers.

Where to point the �nger of suspicion is obvious enough. As we saw,
the D-schema entails 9xD htix, for any closed term, t; and there is no rea-
son why someone who subscribes to a paraconsistent account of semantic
notions must believe that every term has a denotation: in particular, in
the vernacular, `s' is `a number that is 1 if it is even and 0 if it is odd',
which would certainly seem to have no denotation. This suggests that the
D-schema should be subjected to the condition that 9xD hti x in some suit-
able way. The behaviour of resulting theories is a particularly interesting
unsolved problem.126

8.4 Set Theory in LP

Let us now turn to the second theory that we will look at, set theory. This
is a theory of sets governed by the full Comprehension schema. This schema
is structurally very similar to the T -schema, and many of the considerations
of previous subsections carry over to set theory in a straightforward manner.
The major element of novelty concerns the other axiom, the Extensionality
axiom.

Let us start with set theory in LP . The language here contains just the
predicates = and 2, and the axioms are:

126For a further discussion of all of these issues, see Priest [1997a].
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9x8y(y 2 x � �)

8x(x 2 y � x 2 z) � y = z

where x does not occur free in �. Call this theory S0. S0 is inconsistent.
For putting y =2 y for �, and instantiating the quanti�er we get: 8y(y 2 r �
y =2 y), whence r 2 r � r =2 r. Cashing out � in terms of : and _ gives
r 2 r ^ r =2 r.

In constructing models of S0, the following observation (due to Restall
[1992]) is a useful one. First some de�nitions. Given two vectors of LP
values, (gm;m 2 D), (hm;m 2 D), the �rst subsumes the second i� for all
m 2 D; gm � hm. Now consider a matrix of such values (em;n;m;n 2 D).
This is said to cover the vector (gm;m 2 D) i� for some n 2 D, the vector
(em;n;m 2 D) subsumes it. A vector indexed by D is classical i� all its
members are t or f . (Recall that we are writing f1g, f1; 0g, f0g as t, b f ,
respectively.)

Now the observation. Consider an LP interpretation, hD; di, and the
matrix (em;n;m;n 2 D), where em;n = �(m 2 n). If this covers every
classical vector indexed byD it veri�es the Comprehension principle. For let
� be any formula not containing x, and consider the vector (�(�(y=m));m 2
D). This certainly subsumes some classical vector; choose one such, and let
this be subsumed by (em;n;m 2 D). Now consider any formula of the form
m 2 n � �(y=m). Where the two sides di�er in value, one of them has the
value b. Hence, the value of the biconditional is either t or b. Thus the same
is true of 8y(y 2 n � �), and 9x8y(y 2 x � �).

Using this fact, it is easy to construct models for S0. Consider an LP
interpretation, hD; di, where D = fm;ng, and em;n is given by the following
matrix:

2 m n
m b t
n b t

Each column is the membership vector of the appropriate member of D;
and since that of m subsumes every classical vector indexed by D, this
veri�es the Comprehension axiom. In the Extensionality axiom, if y and z
are the same, the axiom is obviously true. If they are distinct, one is n and
the other is m, and for each x, the value of x 2 n � x 2 m is b. Hence,
8x(x 2 n � x 2 m) has the value b and Extensionality is veri�ed. In this
model, m =2 n and n =2 n have the value f , as, therefore do 9y y =2 n and
8x9y y =2 x. Hence, S0 is non-trivial.

A characterisation of what can be proved in S0 (and of what its minimally
inconsistent consequences are) is still an open question. There are, however,
certainly theorems of Zermelo Fraenkel set theory, ZF , that are not provable
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in S0. For example, in ZF there is provably no universal set: ZF ` 8x9y y =2
x. But this is not a consequence of S0, as we have just seen.127

The simple model of S0 that we have just used to prove non-triviality is
obviously pathological in some sense. An interesting question is what the
\intended" interpretations of S0 are like. Whilst unable to give an answer
to this, I note that for any classical model of ZF , M = hD; di, there is a
model of S0 which hasM as a substructure. Let a be some new object, let
M+ = hD+; d+i, where D+ = D [ fag, d+ is the same as d, except that
for every c 2 D+, the value of c 2 a is b; for every c 2 D, the value of a 2 c
is f ; the value of a = a is t; and for every c 2 D, the value of a = c is f .
M is clearly a substructure ofM+. The membership vector of a subsumes
every classical vector, and hence M is a model of Comprehension.

It remains to verify Extensionality: 8x(x 2 m � x 2 n) � m = n.
If m and n are the same in M+, then the consequent is true, as is the
conditional. So suppose that they are distinct. If they are both in D, then,
by extensionality in M, there is some c 2 D such that c 2 m is t and c 2 n
is f , or vice versa. Whichever of these is the case, c 2 m � c 2 n is f ,
as is 8x(x 2 m � x 2 n). Hence the conditional is t. Finally, suppose
that m 2 D and n is a (or vice versa, which is similar). Then if c 2 D+,
every sentence of the form c 2 n is b. Hence, every sentence of the form
c 2 m � c 2 n is b, as therefore is 8x(x 2 n � x 2 m). Hence, the
conditional is true.

8.5 Brady's Non-triviality Proof

As a working set theory, S0 is rather weak. Since the Comprehension axiom
is only a material one, we cannot infer that something is in a set from the
fact that it satis�es its de�ning condition, and vice versa. This suggests
strengthening the principle to a two-way rule of inference, as we did for
truth theory. This, in turn, requires the addition of set abstracts to the
language. So let us enrich the language with terms of the form fx;�g for
any variable, x, and formula, �; and trade in the Comprehension principle
of S0 for the two-way rule:

x 2 fy;�g
�(y=x)

Call this theory S1. S1 is inconsistent. For let r be fx;x =2 xg. Then:

r 2 r
r =2 r

The law of excluded middle then quickly gives us r 2 r ^ r =2 r.
127For this, and some further observations in this direction, see Restall [1992].
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The non-triviality of S1 is presently an open question. But even though it
is probably non-trivial, as a working set theory, it is still rather weak. This
is because we have no useful way of establishing that two sets are identical.
Even if we can show that 8x(� � �), and so that 8x(x 2 fx;�g � x 2
fx;�g), we cannot infer that fx;�g = fx;�g since Extensionality does not
support a detachable inference.

We might hope to circumvent this problem by trading in the Extension-
ality principle for the corresponding rule:

8x(� � �)

fx;�g = fx;�g

But if we do this, trouble arises.128 For let r be as before. Then since
r 2 r must take the value b in any interpretation, we have, for any �,
8x(� � r 2 r), and so fx;�g = fx; r 2 rg. Thus, for any � and �,
fx;�g = fx;�g; which is rather too much.

The problem arises because the Extensionality rule of inference allows
us to move from an equivalence that does not guarantee substitution (� �
�; � �  6j=LP � � ) to one that does (identity). This suggests formu-
lating Extensionality itself with a connective that legitimises substitution.
So let us add a detachable connective to the language, !, and formulate
Extensionality as:

8x(�$ �)

fx;�g = fx;�g

The trouble then disappears.

And now that we have a detachable conditional connective at our dis-
posal, it is natural to formulate the Comprehension principle as a detachable
biconditional, as follows:

8y(y 2 fx;�g $ �(x=y))

We have to be careful about the conditional connective here. As with truth,
any conditional connective that satis�es contraction would give rise to triv-
iality. For let c be fx 2 x ! ?g. Then an instance of Comprehension is
y 2 c $ (y 2 y ! ?). Instantiating with c, we get c 2 c $ (c 2 c ! ?),
and we can then proceed, as with truth, to obtain ?. Even if the logic does
not contain contraction, Curry-style paradoxes may still be forthcoming.
For example, if we drop the contraction axiom from the relevant logic R

128There are other cases where the full Comprehension principle by itself is alright, but
throwing in extensionality causes problems; for example, set theory based on  Lukasiewicz'
continuum-valued logic. See White [1979].
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and add the law of excluded middle, the Comprehension principle still gives
triviality.129 Again however, a relevant logic without contraction will do the
job.

Consider the set theory with Extensionality and Comprehension formu-
lated as just described, and based on the underlying logic BX (with free
variables, so that these may occur in the schematic letters of Extensional-
ity and Comprehension). Call this S2: The �rst thing to note about S2 is
that identity can be de�ned in it, in Russellian fashion. Writing x = y for
8z(x 2 z $ y 2 z), x = x follows. Substituting fw;�g for z, and using
the Comprehension principle gives �(w=x) $ �(w=y). Hence, we need no
longer assume that = is part of the language.

Since the Comprehension principle of S2 gives the two-way deduction
version of S1, S2 is inconsistent. It is also demonstrably non-trivial, as
shown by Brady [1989].130 To prove this, we repeat the proof for T2 of
8.2 with three modi�cations. The �rst, a minor one, is that we add two
propositional constants t and f to the language; their truth values are always
what the letters suggest. (This is necessary to kick-start the generation of
the �xed point into motion. In the case of truth, this was done by the
arithmetic sentences.) More substantially, in constructing �� we replace the
clause for T by:

�k(s 2 fx;�g) = t if �(x=s) is eventually t by k
= f if �(x=s) is eventually f by k
= b otherwise

where s is any closed term, and � contains at most x free. The �nal modi�-
cation is that in extending evaluations to all formulas, we use substitutional
quanti�cation with respect to the closed set abstracts.

Now; ~� veri�es all the theorems of S2, in the sense that if � is any closed
substitution instance of a theorem, it receives the value t or b in ~�. This
is shown by an induction on the length of proofs. That the logical axioms
have this property, and the logical rules of inference preserve this property,
is shown as in 8.2. This leaves the set theoretic ones.

Given the construction of ~�, it is not diÆcult to see that it veri�es the
Comprehension principle. It is not at all obvious that Extensionality pre-
serves veri�cation. What needs to be shown is that if 8x(�$ �) is veri�ed,
so is anything of the form a 2 c$ b 2 c, where a is fx;�g and b is fx;�g.
Let c be fy; g. Then, given Comprehension, what needs to be shown is that
(y=a) $ (y=b) is veri�ed. If this can be shown for atomic , the result
will follow by induction. Given the premise of the inference and Compre-
hension, it is true if  is of the form d 2 y. If it is of the form y 2 d, where

129See Slaney [1989]. Other classical principles are also known to give rise to triviality
in conjunction with the Comprehension schema. See Bunder [1986].
130A modi�cation of the proof shows that the theory based on the logic B is, in fact,

consistent. See Brady [1983].
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d is fz; Æg, we need to show that Æ(z=a)$ Æ(z=b) is veri�ed. We obviously
have a regress. In fact, the regression grounds out in a suitable way in the
construction of ~�. For details, see Brady [1989].131

The non-triviality of S2 is established since there are many sentences that
are not veri�ed by ~�. It is easy to check, for example, that any sentence
of the form c 2 fx; fg takes the value f , as, therefore, does the formula
8x9y y 2 x.

A notable feature of Brady's proof is the following. As formulated, the
Comprehension principle entails: 9y8x(x 2 y $ �), where y does not
occur in �. (The y in question is fx;�g and so cannot be a subformula
of �.) If we relax the restriction, we get an absolutely unrestricted version
of the principle. Brady's proof can be extended to verify this version too,
by adding a �xed point operator to the language, and treating it suitably.
Again, for details, see Brady [1989].

Finally, it is worth observing that the T -schema is interpretable in S2. If
� is any closed formula, let us write h�i for fz;�g, where z is some �xed
variable. De�ne Tx to be a 2 x, where a is any �xed term. Then T h�i =
a 2 fz;�g $ �. Moreover, the absolutely unrestricted Comprehension
principle gives us �xed points of the kind required for self-reference. Let �
be any formula of one free variable, x. By the principle, there is a set, s, such
that 8x(x 2 s$ �(x=fz; a 2 sg)). It follows that a 2 s$ �(x=fz; a 2 sg).
Thus, if � is a 2 s, we have � $ �(x= h�i). S2 (with the absolutely
unrestricted Comprehension principle) therefore gives us a demonstrably
non-trivial joint theory of truth, sethood and self-reference.

8.6 Paraconsistent Set Theory

Despite the strong structural similarities between semantics and set theory,
there is an important historical di�erence. Set theory is a well developed
mathematical theory in a way that semantics is not. In the case of set
theory, it is therefore natural to ask how a paraconsistent theory such as S2
relates to this development.

To answer this question (at least to the extent that the answer is known),
it will be useful to divide set theory into three parts. The �rst comprises
that basic set-theory which all branches of mathematics use as a tool. The
second is trans�nite set theory, as it can be established in ZF . The third

131Brady's treatment of identity is slightly di�erent from the one given here. He de-
�nes x = y as 8z(z 2 x $ z 2 y). Given Comprehension, this delivers the version
of Extensionality used here straight away. What is lost is the substitution principle
x = y; �(w=x) ` �(w=y). Given the Comprehension principle, this can be reduced to
x = y; x 2 z ` y 2 z (which follows from our de�nition of identity). Brady takes some-
thing stronger than this as his substitutivity axiom: ` (x = y^z = z) ! (x 2 z $ y 2 z).
Hence, his construction certainly veri�es the weaker principle. It is worth noting that
the construction does not validate the simpler ` x = y ! (x 2 z $ y 2 z), which, in any
case, is known to be a Destroyer of Relevance. See Routley [1980b], sect. 7.
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concerns results about sets, like Russell's set and the universal set, that do
not exist in ZF . Let us take these matters in turn.

S2 is able to provide for virtually all of bread-and-butter set theory
(Boolean operations on sets, power sets, products, functions, operations
on functions, etc.), and so provide for the needs of working mathematics.132

For example, if we de�ne the Boolean operators, x \ y, x [ y and �x as
fz; z 2 x^ z 2 yg, fz; z 2 x_ z 2 yg and fz; z =2 xg, respectively, and x � y
as 8z(z 2 x ! z 2 y), then we can establish the usual facts concerning
these notions. Some care needs to be taken over de�ning a universal set, U ,
and empty set, �, though. If we de�ne �, as fx;x 6= xg, we cannot show
that for all y, � � y, since the underlying logic is relevant and cannot prove
x 6= x! � for arbitrary �. (Dually for U .) If we de�ne � as fx;8z x 2 zg,
this problem is solved, since 8z x 2 z ! x 2 y. (Dually for U .)

The reason for the quali�cation `virtually' in the �rst sentence of the last
paragraph, is as follows. The sets, as structured by union, intersection and
complementation, are not a Boolean algebra, but a De Morgan algebra with
maximum and minimum elements. Though we can show that 8y y 62 x\ �x,
we cannot show that x \ �x � �, since, relevantly, (� ^ :�) ! � fails.
(Dually for U .) There are, in a sense, more than one universal and empty
sets. Moreover, this is essential. If we had x \ �x � � then, taking fz;�g
for x, we get (� ^ :�) ! 8y z 2 y. Now take fz;�g for y, and we get
(� ^ :�)! �; paraconsistency fails. In fact, Dunn [1988] shows that if the
principles that there is a unique universal set, and a unique empty set, are
added to any set theory such as S2, full classical logic falls out.

Turning to the second area, the question of how much of the usual trans-
�nite set theory can be established in S2 is one to which the answer is
currently unknown. What can be said is that the standard proofs of a num-
ber of results break down. This is particularly the case for results that are
proved by reductio, such as Cantor's Theorem. Where � is an assumption
made for the purpose of reductio, we may well be able to establish that
(� ^ �) ! ( ^ :), for some , where � is the conjunction of other facts
appealed to in deducing the contradiction (such as instances of the Com-
prehension principle). But contraposing and detaching will give us only
:� _ :�, and we can get no further.133

Lastly, the third area: reasoning in S2, one can prove various results about
sets that are impossible in ZF . For example, as usual, let fxg be fy; y = xg,
fx; yg be fxg [ fyg and

S
x be fz; 9y 2 x; z 2 yg. r = fx;x =2 xg, and we

know that r 2 r and r =2 r. Then:134

(1) If x 2 r then fxg 2 r. For fxg 2 fxg or fxg =2 fxg. In the �rst case,

132Much of this is spelled out in Routley [1980b], sect. 8.
133Interesting enough, however, it is possible to prove a version of the Axiom of Choice

using the completely unrestricted version of the Comprehension principle. See Routley
[1980b], sect. 8.
134The following is taken from Arruda and Batens [1982].
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fxg = x, and so fxg 2 r. In the second case, fxg 2 r by de�nition.

(2) If x; y 2 r then fx; yg 2 r. For fx; yg 2 fx; yg or fx; yg =2 fx; yg. In
the �rst case, fx; yg = x or fx; yg = y, and so fx; yg 2 r. In the second
case, fx; yg 2 r by de�nition.

(3) ffx; rgg 2 r. For ffx; rgg 2 ffx; rgg or ffx; rgg =2 ffx; rgg. In the
�rst case, ffx; rgg = fx; rg, hence, x = fx; rg = r. But then x; r 2 r so
fx; rg 2 r, by (2), and, ffx; rgg 2 r, by (1). In the second case, ffx; rgg 2 r
by de�nition.

(4) 8x x 2 Sr. For suppose that fx; rg 2 fx; rg. Then fx; rg = x or
fx; rg = r. In the �rst case, fxg = ffx; rgg, so fxg 2 r, by (3). In the
second, fx; rg 2 r. In either case x 2 S r. Suppose, on the other hand, that
fx; rg =2 fx; rg. Then fx; rg 2 r, by de�nition, and so x 2 S r.

That
S
r is universal, is hardly a profound result. But it at least illus-

trates the fact that there are possibilities which transcend ZF .

Let me end this section with a speculative comment on what all this
shows. The discussion of this section, and especially the part concerning the
non-Boolean properties of sets in S2, shows that it is impossible to recapture
standard set theory in its entirety in this theory. Sets are extensional entities
par excellence; using an intensional connective in their identity conditions is
bound to gum up the works. In fact, it seems to me that the most plausible
way of viewing S2 is as a theory of properties, where intensional identity
conditions are entirely appropriate. But what you call these entities does
not really matter here. The important fact is that they are not the sets of
standard modern mathematical practice.

If we want a theory of such entities, the appropriate identity conditions
must employ�, and this means that we are back with the proof-theoretically
weak S0 (or S1). Since this does not contain ZF , how should someone who
subscribes to a paraconsistent theory of such sets view modern mathematical
practice?

One answer is as follows. The standard model of ZF is the cumulative
hierarchy. As we saw in 8.2, there are models of S0 which contain this
hierarchy. We may thus take it that the intended interpretation of S0 is a
model of this kind (or if there are more than one, that they are all models of
this kind). The cumulative hierarchy is therefore a (consistent) fragment of
the set-theoretic universe, and modern set theory provides a description of
it. There is, however, more to the universe than this fragment. A classical
logician may well agree with that claim. For example, they may think that
there are also non-well-founded sets. The paraconsistent logician agrees
with this: after all, r is not well-founded; but they will think that sets
outside the hierarchy may have even more remarkable properties: some of
them are inconsistent.
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9 ARITHMETIC AND ITS METATHEORY

In this part I want to look at the application of paraconsistent logic to
another important mathematical theory: arithmetic. The situation con-
cerning arithmetic is rather di�erent from that concerning set theory and
semantics. There are no apparently obvious and intrinsically arithmetical
principles that give rise to contradiction, in the way that the Comprehen-
sion principle and the T -schema do|or if there are, this fact has not yet
been discovered. In the �rst instance, the paraconsistent interest in arith-
metic arises because there is a class of inconsistent models of arithmetic.
(It might be more accurate to say `models of inconsistent arithmetic'.) It
may be supposed that these models are pathological in some sense.135 I will
come back to this matter later. But even if it is so, the models nevertheless
have an interesting and important mathematical structure, as do the clas-
sical non-standard models of arithmetic|which are, in fact, just a special
case, as we will see. And just as one does not have to be an intuitionist
to �nd intuitionistic structures of intrinsic mathematical interest, so one
does not have to be a dialetheist for the same to be true of inconsistent
structures. One thing this part illustrates, therefore, is the existence of a
new branch of mathematics which concerns the investigation of just such
structures.136

The existence of inconsistent models of arithmetic bears, as might be
expected, on the limitative theorems of Metamathematics. And whatever
the status of the inconsistent models themselves, many have held that these
theorems have important philosophical implications. This part will also
look at the connection between the inconsistent models and the limitative
theorems, and I will comment on the signi�cance of this for the philosophical
implications of G�odel's incompleteness theorem.

9.1 The Collapsing Lemma

Let us start with a theorem about LP on which much of the following
depends: the Collapsing Lemma.137

Let I = hD; di be any interpretation for LP . Let � be any equivalence
relation on D, that is also a congruence relation on the denotations of the
function symbols in the language (i.e., if g is such a denotation, and di � ei
for all 1 � i � n, then g(d1; :::; dn) � g(e1; :::; en)). If d 2 D let [d] be the

135Though this claim has certainly been queried. See Priest [1994].
136On this, see further, Mortensen [1995]. Perhaps surprisingly, the �rst person to

investigate an inconsistent arithmetic was Nelson [1959], who gave a realisability-style
semantics for the language of arithmetic, according to which the set of formulas realised
was inconsistent (and closed under a logic somewhat weaker than intuitionist logic).
137The theorem works equally well for FDE, but we will be concerned primarily with

models of theories that contain the law of excluded middle, and so where there are no
truth-value gaps.
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equivalence class of d under �. De�ne an interpretation, I� = hD�; d�i,
to be called the collapsed interpretation, where D� = f[d]; d 2 Dg; if c is a
constant, d�(c) = [d(c)]; if f is an n-place function symbol:

d�(f)([d1]; :::; [dn]) = [d(f)(d1; :::; dn)]

(this is well de�ned, since � is a congruence relation); and if P is an n-place
predicate, its extension and anti-extension in I�, E�P and A�P , are de�ned
by:

h[d1]; :::; [dn]i 2 E�P i� for all 1 � i � n, 9ei � di, he1; :::; eni 2 EP

h[d1]; :::; [dn]i 2 A�P i� for all 1 � i � n, 9ei � di, he1; :::; eni 2 AP

where EP and AP are the extension and anti-extension of P in I. It is easy
to check that E�= is fh[d]; [d]i ; d 2 Dg, as required for an LP interpretation.

The collapsed interpretation, in e�ect, identi�es all members of an equiv-
alence class to produce a composite individual that has the properties of all
of its members. It may, of course, be inconsistent, even if its members are
not.

A swift induction con�rms that for any closed term, t, d�(t) = [d(t)].
Hence:

1 2 �(Pt1:::tn) ) hd(t1); :::; d(tn)i 2 EP

) h[d(t1)]; :::; [d(tn)]i 2 E�P
) hd�(t1); :::; d�(tn)i 2 E�P
) 1 2 ��(Pt1:::tn)

Similarly for 0 and anti-extensions. Monotonicity then entails that for any
formula, �, �(�) � ��(�). This is the Collapsing Lemma.138

The Collapsing Lemma assures us that if an interpretation is a model of
some set of sentences, then any interpretation obtained by collapsing it will
also be a model. This gives us an important way of constructing inconsistent
models. In particular, if the language contains no function symbols, and I is
a model of some set of sentences, then, by appropriate choice of equivalence
relation, we can collapse it down to a model of any smaller size. Thus we
have a very strong downward L�owenheim-Skolem Theorem: If a theory in a
language without function symbols has a model, it has a model of all smaller
cardinalities.

I note that, since monotonicity holds for second order LP (section 7.2),
the Collapsing Lemma extends to second order LP . Details are left as an
exercise.

138The result is proved in Priest [1991a]. A similar result was proved by Dunn [1979].
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9.2 Collapsed Models of Arithmetic

From now on, let L be the standard language of �rst-order arithmetic: one
constant, 0, function symbols for successor, addition and multiplication, 0,
+, and �, respectively, and one predicate symbol, =. If I is any interpreta-
tion, let Th(I) (the theory of I) be the set of all sentences true in I. Let N
be the standard model of arithmetic, and A = Th(N ). Let M = hM;di be
any classical model of A|which is just special cases of an LP model. (As
is well known, there are many of these other than N .139) I will refer to the
denotations of 0, +, and � as the arithmetic operations ofM, and since no
confusion is likely, use the same signs for them.140

Let � be an equivalence relation on M , that is also a congruence relation
with respect to the interpretations of the function symbols. Then we may
construct the collapsed interpretation,M�. By the Collapsing Lemma,M�

is a model of A. Provided that � is not the trivial equivalence relation, that
relates each thing only to itself, then M� will model inconsistencies. For
suppose that �, relates the distinct members of M , n and m, then in M�,
[n] = [m] and so h[n]; [m]i is in the extension of =. But since n 6= m in
M; h[n]; [m]i is in the anti-extension too. Thus, 9x(x = x ^ x 6= x) holds in
M�.

As an illustration of constructing an inconsistent model of A using the
Collapsing Lemma, suppose that we partitionM into n+1 successive blocks,
C0; :::; Cn+1, such that if x; z 2 Ci and x < y < z then y 2 Ci. And suppose
that for 0 < i � n + 1, Ci is closed under the arithmetic operations of
M. (The existence of such a partition follows from a standard result in the
study of classical models of arithmetic. See Kaye [1991], sect. 6.1.) Let
1 � k 2 C0 [ C1 and de�ne x � y as:

(x; y 2 C0 and x = y) or

for some 0 < i � n+ 1, x; y 2 Ci and x = y mod k

where `x = y mod k' means that for some j 2M , x+ j � k = y, in M.

It is not diÆcult to check that � is an equivalence relation on M , and,
moreover, that it is a congruence relation on the arithmetic operations of
M. Hence, we may use it to give a collapsed model. In this, C0 collapses
into an initial tail of numbers, and each Ci (0 < i � n + 1) collapses into
a block of period k. For example, if M is the standard model, n = 1 and
C0 = �, the collapsed model is a simple cycle of period k. The successor
function in the model may be depicted as follows:

139See, e.g., Kaye [1991].
140For a more detailed discussion of the material in this section, see Priest [1997a].
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0 ! 1 ! ::: ! i
" #

k � 1  :::  i+ 1

I will call such models cycle models. They were, in fact, the �rst inconsistent
models to be discovered.141 If M is any model, n = 1; and k = 1, we
have a tail isomorphic to C0, and then a degenerate single-point cycle. In
particular, if M is a non-standard model and C0 comprises the standard
numbers, we have the natural numbers with a \point at in�nity", 
:

0 ! 1 ! ::: 
  -

9.3 Inconsistent Models of Arithmetic

Now that we have seen the existence of inconsistent models of arithmetic,
let us look at their general structure.

Take any LP model of arithmetic,M = hM;di. I will call the denotations
of the numerals regular numbers. Let x � y be de�ned in the usual way,
as 9z x + z = y. It is easy to check that � is transitive. For if i � j � k
then for some x, y, i + x = j and j + y = k. Hence (i + x) + y = k. But
(i + x) + y = i + (x + y) (since it is a model of arithmetic). The result
follows.

If i 2M , let N(i) (the nucleus of i) be fx 2M ; i � x � ig. In a classical
model, N(i) = fig, but this need not be the case in an inconsistent model.
For example, in a cycle model the members of the cycle constitute a nucleus.
If j 2 N(i) then N(i) = N(j). For if x 2 N(j) then i � j � x � j � i,
so x 2 N(i), and similarly in the other direction. Thus, every member of a
nucleus de�nes the same nucleus.

Now, if N1 and N2 are nuclei, de�ne N1 � N2 to mean that for some (or
all, it makes no di�erence) i 2 N1 and j 2 N2, i � j. It is not diÆcult to
check that � is a partial ordering. Moreover, since for any i and j, i � j
or j � i, it is a linear ordering. The least member of the ordering is N(0).
If N(1) is distinct from this, it is the next (since for any x, x � 0 _ x � 1),
and so on for all regular numbers.

Say that i 2M has period p 2M i� i+ p = i. In a classical model every
number has period 0 and only 0. But again, this need not be the case in
an inconsistent model, as the cycle models demonstrate. If i � j and i has
period p so does j. For j = i + x; so p + j = p + i + x = i + x = j. In
particular, if p is a period of some member of a nucleus, it is a period of

141This was by Meyer [1978]. Things are spelled out in Meyer and Mortensen [1984].
The idea of collapsing non-standard classical models is to be found in Mortensen [1987].
Di�erent structures can be collapsed to provide inconsistent models of other kinds of
number, e.g., real numbers. See Mortensen [1995].
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every member. We may thus say that p is a period of the nucleus itself. It
also follows that if N1 � N2 and p is a period of N1 it is a period of N2.

If a nucleus has a regular non-zero period, m, then it must have a mini-
mum (in the usual sense) non-zero period, since the sequence 0; 1; 2; :::;m is
�nite. If N1 � N2 and N1 has minimum regular non-zero period, p, then p
is a period of N2. Moreover, the minimum non-zero period of N2, q, must
be a divisor (in the usual sense) of p. For suppose that q < p, and that q is
not a divisor of p. For some 0 < k < q, p is some �nite multiple of q plus k.
So if x 2 N2, x = x + q = x + p+ ::: + p+ k. Hence x = x+ k, i.e., k is a
period of N2, which is impossible.

If a nucleus has period p � 1, I will call it proper. Every proper nucleus
is closed under successors. For suppose that j 2 N with period p. Then
j � j0 � j + p = j. Hence, j0 2 N . In an inconsistent model, a number
may have more than one predecessor, i.e., there may be more than one x
such that x0 = j. (Although x0 = y0 � x = y holds in the model, we cannot
necessarily detach to obtain x = y.)142 But if j is in a proper nucleus, N ,
it has a unique predecessor in N . For let the period of N be q0. Then
(j + q)0 = j + q0 = j. Hence, j + q is a predecessor of j; and j � j + q0 = j.
Hence, j + q 2 N . Next, suppose that x and y are in the nucleus, and
that x0 = y0 = j. We have that x � y _ y � x. Suppose, without loss of
generality, the �rst disjunct. Then for some z, x+ z = y; so j + z = j, and
z is a period of the nucleus. But then x = x+ z = y. I will write the unique
predecessor of j in the nucleus as 0j.

Now let N be any proper nucleus, and i 2 N . Consider the sequence
:::;00 i;0 i; i;
i0; i00:::. Call this the chromosome of i. Note that if i, j 2 N , the chro-
mosomes of i and j are identical or disjoint. For if they have a common
member, z, then all the �nite successors of z are identical, as are all its �nite
predecessors (in N). Thus they are identical. Now consider the chromosome
of i, and suppose that two members are identical. There must be members
where the successor distance between them is a minimum. Let these be j
and j0:::0 where there are n primes. Then j = j + n, and n is a period of
the nucleus|in fact, its minimum non-zero period|and the chromosome
of every member of the nucleus is a successor cycle of period n.

Hence, any proper nucleus is a collection of chromosomes, all of which
are either successor cycles of the same �nite period, or are sequences iso-
morphic to the integers (positive and negative). Both sorts are possible in
an inconsistent model. Just consider the collapse of a non-standard model,
of the kind given in the last section, by an equivalence relation which leaves
all the standard numbers alone and identi�es all the others modulo p. If p
is standard, the non-standard numbers collapse into a successor cycle; if it

142In fact, it is not diÆcult to show that there is at most one number with multiple
predecessors; and this can have only two.
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is non-standard, the nucleus generated is of the other kind.
To summarise so far, the general structure of a model is a liner sequence

of nuclei. There are three segments (any of which may be empty). The
�rst contains only improper nuclei. The second contains proper nuclei with
linear chromosomes. The �nal segment contains proper nuclei with cyclical
chromosomes of �nite period. A period of any nucleus is a period of any
subsequent nucleus; and in particular, if a nucleus in the third segment has
minimum non-zero period, p, the minimum non-zero period of any subse-
quent nucleus is a divisor of p. Thus, we might depict the general structure
of a model as follows (where m+ 1 is a multiple of n+ 1):

0; 1; :::

:::a! a0:::
:::b! b0:::

...

:::
d0:::di e0:::ei
" # " # :::
dm:::d

0
i em:::e

0
i

:::

: : :
f0:::fi g0:::gi
" # " # :::
fn:::f

0
i gn:::g

0
i

:::

Another obvious question is what possible orderings the proper nuclei can
have. For a start, they can have the order-type of any ordinal. To prove
this, one establishes by trans�nite induction that for any ordinal, �, there
is a classical model of arithmetic in which the non-standard numbers can
be partitioned into a collection of disjoint blocks with order-type �, closed
under arithmetic operations. One then collapses this interpretation in such
a way that each block collapses into a nucleus.

The proper nuclei need not be discretely ordered. They can also have
the order-type of the rationals. To prove this, one considers a classical non-
standard model of arithmetic, where the order-type of the non-standard
numbers is that of the rationals. It is possible to show that these can
be partitioned into a collection of disjoint blocks, closed under arithmetic
operations, which themselves have the order-type of the rationals. One can
then collapse this model in such a way that each of the blocks collapses into
a proper nucleus, giving the result. This proof can be extended to show that
any order-type that can be embedded in the rationals in a certain way, can
also be the order-type of the proper nuclei. This includes !� (the reverse of
!) and !� + !, but not ! + !�. For details of all this, see Priest [1997b].

What other linear order-types proper nuclei may or may not have, is still
an open question.

9.4 Finite Models of Arithmetic

First-order arithmetic has many classical nonstandard models, but none
of these is �nite. One of the intriguing features of LP is that it permits
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�nite models of arithmetic, e.g., the cycle models. For these, a complete
characterisation is known.

Placing the constraint of �nitude on the results of the previous section,
we can infer as follows. The sequence of improper nuclei is either empty or
is composed of the singletons of 0; 1; :::; n, for some �nite n. There must be
a �nite collection of proper nuclei, N1 � ::: � Nm; each Ni must comprise a
�nite collection of successor cycles of some minimum non-zero �nite period,
pi. And if 1 � i � j � m, pj must be a divisor of pi.

143

Moreover, there are models of any structure of this form. To show this,
we can generalise the construction of 9.2. Take any non-standard classical
model of arithmetic. This can be partitioned into the �nite collection of
blocks:

C0; C10 ; :::; C1k(1) ; :::Ci0 ; :::; Cik(i) ; :::; Cm0 ; :::; Cmk(m)

where C0 is either empty or is of the form f0; :::; ng, each subsequent block
is closed under arithmetic operations, and there are k(i) successor cycles in
Ni. We now de�ne a relation, x � y, as follows:

(x; y 2 C0 and x = y) or
for some 1 � i � m:

(for some 0 < j < k(i), x; y 2 Cij , and x = y mod pi) or
( x; y 2 Ci0 [ Cik(i) and x = y mod pi)

One can check that � is an equivalence relation, and also that it is a con-
gruence relation on the arithmetic operations. Hence we can construct the
collapsed model. � leaves all members of C0 alone. For every i it collapses
every Cij into a successor cycle of period pi, and it identi�es the blocks Ci0
and Cik(i) . Thus, the sequence Ci0 ; :::Cik(i)collapses into a nucleus of size

k(i). The collapsed model therefore has exactly the required structure.144

There are many interesting questions about inconsistent models, even the
�nite ones, whose answer is not known. For example: how many models
of each structure are there? (The behaviour of the successor function in
a model does not determine the behavior of addition and multiplication,
except in the tail.) Perhaps the most important question is as follows. Not
all inconsistent model of arithmetic are collapses of classical models. Let
M be any model of arithmetic; ifM0 is obtained from M by adding extra
pairs to the anti-extension of =, call M0 an extension in M. If M0 is an
extension ofM, monotonicity ensures that it is a model of arithmetic. Now,
consider the extension of the standard model obtained by adding h0; 0i to
the anti-extension of =. This is not a collapsed model, since, if it were, 0
would have to have been identi�ed with some x > 0. But then 1 would have

143It is also possible to show that each nucleus is closed under addition and
multiplication.
144For further details, see Priest [1997a].
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been identi�ed with x0 > 1. Hence, 00 6= 00 would also be true in the model,
which it is not. Maybe, however, each inconsistent model is the extension
of a collapsed classical model. If this conjecture is correct, collapsed models
can be investigated via an analysis of the classical models of arithmetic and
their congruence relations.

9.5 The Limitative Theorems of Metamathematics

Let us now turn to the limitative theorems of Metamathematics in the
context of LP . These are the theorems of L�owenheim-Skolem, Church,
Tarski and G�odel. I will take them in that order.145 In what follows, let
P be the set of theorems of classical Peano Arithmetic, and let Q be any
non-trivial theory that contains P .

According to the classical L�owenheim-Skolem, Q has models of every
in�nite cardinality but has no �nite models. Moving to LP changes the
situation somewhat. Q still has a model of every in�nite cardinality.146 But
it has models of �nite size too: any inconsistent model may be collapsed to a
�nite model merely by identifying all numbers greater than some cut-o�.147

The situation with second order P is again di�erent in LP . Classically,
this is known to be categorical, having the standard model as its only in-
terpretation. But as I noted in 9.1, the Collapsing Lemma holds for second
order LP . Hence, second order P is not categorical in LP . For example, it
has �nite models.

Turning to Church's theorem, this says, classically, that Q is undecidable.
In LP , extensions of Q may be decidable. For example, letM be any �nite
model of A (= Th(N )), and let Q be Th(M). Then Q is a theory that
contains P . Yet Q is decidable, as is the theory of any �nite interpretation.
In the language of M there is only a �nite number of atomic sentences;
their truth values can be listed. The truth values of truth functions of these
can be computed according to (LP ) truth tables, and the truth values of
quanti�ed sentences can be computed, since 9x� has the same truth value

145For a statement of these in the classical context, see Boolos and Je�rey [1974]. This
section expands on the appendix of Priest [1994].
146The standard classical proof of this adds a new set of constants, fci, i 2 Ig, to the

language, and all sentences of the form ci 6= cj , i 6= j, to Q. It then uses the compactness
theorem. Things are more complex in LP , since the fact that ci 6= cj holds in an
interpretation does not mean that the denotations of these constants are distinct. After
extending the language, we observe that ci = cj cannot be proved. We then construct a
prime theory in the manner of 4.3, keeping things of this form out. This is then used to
de�ne an appropriate interpretation.
147Let us say that M is an exact model of a theory i� the truths of M are exactly the

members of the theory. Classically, for complete theories, there is no di�erence between
modelling and exact modelling. The situation for LP is more complex. It can be shown
that if Q has an in�nite exact model it has exact models of every greater cardinality.
On the other hand, if Q has a �nite model, M, in which every number is denoted by a
numeral, M can be shown to be the only exact model of Q (up to isomorphism).
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as the disjunction of all formulas of the form �(x=a), where a is in the
domain of M; dually for 8.

Tarski's Theorem: this says that Q cannot contain its own truth predi-
cate, in the sense that even if Q is a theory in an extended language, there
is no formula, �, of one free variable, x, such that �(x= h�i) � � 2 Q, for
all closed formulas, �, of the language. This, too, fails for LP . Let M be
any (classical) model of P , letM0 be any �nite collapse ofM, and let Q be
Th(M0). By the Collapsing Lemma, Q contains P . Since Q is decidable,
it is representable in (classical) P by a formula, �, of one free variable, x.
That is, we have :

If � 2 Q then �(x= h�i) 2 P
If � 62 Q then :�(x= h�i) 2 P

By the Collapsing Lemma, `P ' may be replaced by `Q'. If � 2 Q, �(x= h�i) 2
Q, and so �(x= h�i) � � 2 Q (since ; Æ j=LP  � Æ); and if � 62 Q,
:�(x= h�i) 2 Q, and so �(x= h�i) � � 2 Q (since :� 2 Q and :;:Æ j=LP

 � Æ).
There is no guarantee that � and �(x= h�i) have the same truth value in

M0. In particular, then, � may not satisfy the T -schema in the form of a
two-way rule of inference. So it might be said that � is not really a truth
predicate. Whether or not this is so, we have already seen that there are
Qs where there is a predicate satisfying this condition (though this has to
be added to the language of arithmetic): the theory T1 of section 8.1.148

Finally, let us turn to G�odel's undecidability theorems. A statement of the
�rst of these is that if Q is axiomatisable then there are sentences true in the
standard model that are not in Q. It is clear that this may fail in LP . Let
M be any �nite model of arithmetic. Then if Q is Th(M), Q contains all
of the sentences true in the standard model of arithmetic, but is decidable,
as we have noted, and hence axiomatisable (by Craig's Theorem).

It is worth asking what happens to the \undecidable" G�odel sentence
in such a theory. Let � be any formula that represents Q in Q. (There
are such formulas, as we just saw.) Then a G�odel sentence is one, �, of
the form :�(x= h�i). If � 2 Q then :�(x= h�i) 2 Q, but �(x= h�i) 2 Q
by representability. If � 62 Q then :�(x= h�i) 2 Q by representability,
i.e., � 2 Q, so �(x= h�i) 2 Q by representability. In either case, then,

148The construction of 8.1 can be applied to any model of arithmetic|not just the
standard model|as the ground model. However, if we apply it to a �nite model care needs
to be exercised. The construction will not work as given, since di�erent formulas may
be coded by the same number in the model, which renders the de�nition of the sequence
of interpretations illicit. We can switch to evaluational semantics, as in 8.2, though the
construction then no longer validates the substitutivity of identicals. Alternatively, we
can refrain from using numbers as names, but just augment the language with names for
all sentences.
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� ^ :� 2 Q.
G�odel's second undecidability theorem says that the statement that canon-

ically asserts the consistency of Q is not in Q; this statement is usually taken
to be :�(x= h�0i), where �0 is 0 = 00, and � is the canonical proof predicate
of Q. This also fails in LP .149 Let Q be as in the previous two paragraphs.
Then Q is not consistent. However, it is still the case that �0 62 Q (pro-
vided that the collapse is not the trivial one). Consider the relationship:
n is (the code of) a proof of formula (with code) m in Q. Since this is
recursive, it is represented in A by a formula Prov(x; y). If � is provable
in Q then for some n, Prov(n; h�i) 2 A (where n is the numeral for n);
thus, 9xProv(x; h�i) 2 A and so Q. If � is not provable in Q then for all n,
:Prov(n; h�i) 2 A; thus, 8x:Prov(x; h�i) 2 A (since A is !-complete) and
:9xProv(x; h�i) 2 A and so Q. Thus, 9xProv(x; y) represents Q in Q. In
particular, since �0 62 Q, :9xProv(x; h�0i) 2 Q, as required.

9.6 The Philosophical Signi�cance of G�odel's Theorem

People have tried to make all sorts of philosophical capital out of the nega-
tive results provided by the limitative theorems of classical Metamathemat-
ics. As we have seen, all of these, save the L�owenheim-Skolem Theorem,
fail for arithmetic based on a paraconsistent logic. Setting this theorem
aside, then, nothing can be inferred from these negative results unless one
has reason to rule out paraconsistent theories. At the very least, this adds
a whole new dimension to the debates in question.

This is not the place to discuss all the philosophical issues that arise in
this context, but let me say a little more about one of the theorems by way of
illustration. Doubtless, the incompleteness result that has provoked most
philosophical rumination is G�odel's �rst incompleteness theorem: usually
in a form such as: for any axiomatic theory of arithmetic (with suÆcient
strength, etc.), which we can recognise to be sound, there will be an arith-
metic truth|viz., its G�odel sentence|not provable in it, but which we can
establish as true.150 This is just false, paraconsistently. If the theory is
inconsistent, the G�odel sentence may well be provable in the theory, as we
have seen.

An obvious thought at this point is that if we can recognise the theory
to be sound then it can hardly be inconsistent. But unless one closes the
question prematurely, by a refusal to consider the paraconsistent possibility,
this is by no means obvious. What is obvious to anyone familiar with the
subject, is that at the heart of G�odel's theorem, is a paradox. The paradox
concerns the sentence, , `This sentence is not provable', where `provable'

149It is worth noting that there are consistent arithmetics based on some relevant logics,
notably R, for which the statement of consistency is in the theory. See Meyer [1978].
150For example, the theorem is stated in this form in Dummett [1963]; it also drives

Lucas' notorious [1961], though it is less clearly stated there.
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is not to be understood to mean being the theorem of some axiom system
or other, but as meaning `demonstrated to be true'. If  is provable, then
it is true and so not provable. Thus we have proved . It is therefore true,
and so unprovable. Contradiction. The argument can be formalised with
one predicate, B, satisfying the conditions:

` B h�i ! �

If ` � then ` B h�i

for all closed �|including sentences containing B. For if  is of the form
:B hi, then, by the �rst, ` B hi ! :B hi, and so ` :B hi, i.e., ` .
Hence, ` B hi, by the second.

And we do recognise these principles to be sound. Whatever is provable
is true, by de�nition; and demonstrating � shows that � is provable, and so
counts as a demonstration of this fact.151

B is a predicate of numbers, but we do not have to assume that B is
de�nable in terms of 0, + and � using truth functions and quanti�ers. The
argument could be formalised in a language with B as primitive. As we saw
in the previous part in connection with truth, it is quite possible to have
an inconsistent theory with a predicate of this kind, where the sentences
de�nable in terms of 0, + and � using truth functions and quanti�ers behave
quite consistently.

Of course, if B is so de�nable, which it will be if the set of things we
can prove is axiomatic, then the set of things that hold in this language is
inconsistent. And there are reasons for supposing that this is indeed the
case.152 Even this does not necessarily mean that the familiar natural num-
bers behave strangely, however. As the model with the \point at in�nity" of
9.2 showed, it is quite possible for inconsistent models to have the ordinary
natural numbers as a substructure.153 There are just more possibilities in
Heaven and Earth than are dreamt of in a consistent philosophy.

10 PHILOSOPHICAL REMARKS

In previous parts I have touched occasionally on the philosophical aspects
of paraconsistency. In this section I want to take up a few of the philosoph-
ical implications of paraconsistency at slightly greater length. Its major

151The paradox is structurally the same as a paradox often called the `Knower paradox'.
In this, B is interpreted as `It is known that'. For references and discussion of this paradox
and others of its kind, see Priest [1991b].
152See Priest [1987], ch. 3. This chapter discusses the connection between G�odel's

theorem, the paradoxes of self-reference and dialetheism at greater length.
153Though whether the theory of that particular model is axiomatisable is currently

unknown.
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implication is very simple. As I noted in 3.1, the absolute unacceptability
of inconsistency has been deeply entrenched in Western philosophy. It is
an assumption that has hardly been questioned since Aristotle. Whilst the
law of non-contradiction is a traditional statement of this fact, it is ECQ
which expresses the real horror contradictionis: contradictions explode into
triviality. Paraconsistency challenges exactly this, and so questions any
philosophical claim based on this supposed unacceptability. This does not
mean that consistency cannot play a regulative function: it may still be
an expected norm, departure from which requires a justi�cation; but it can
no longer provide a constraint of absolute nature. Given the centrality of
consistency to Western thought, the philosophical rami�cations of para-
consistency are bound to be profound, and this is hardly the place to take
them all|or even some|up at great length. What I will do here is consider
various objections to employing a paraconsistent logic, and explore a little
some of the philosophical issues that arise in this context. In the process
we will need to consider not only the purposes of logic, but also the natures
of negation, denial, rational belief and belief revision.154

10.1 Instrumentalism and Information

Why, then, might one object to paraconsistent logic? Logic has many uses,
and any objection to the use of a paraconsistent logic must depend on what
it is supposedly being used for. One thing one may want a logic for is to
draw out consequences of some information in a purely instrumental way.
In such circumstances one may use any logic one likes provided that it gives
appropriate results. And if the information is inconsistent, an explosive
logic is hardly likely to do this.

Referring back to the list of motivations for the use of a paraconsistent
logic in 2.2, drawing inferences from a scienti�c theory would fall into this
category if one is a scienti�c instrumentalist. Drawing inferences from the
information in a computer data base could also fall into this category. If the
logic gives the right results|or at least, does not give the wrong results|use
it.

The only objection that there is likely to be to the use of a paraconsistent
logic in this context is that it is too weak to be of any serious use. One might
note, for example, that most paraconsistent logics invalidate the disjunctive
syllogism, a special case of resolution, on the basis of which many theorem-
provers work.155 This objection carries little weight, however. Theorem-

154Other philosophical aspects of paraconsistency are discussed in numerous places, e.g.,
da Costa [1982], Priest [1987], Priest et al. [1989], ch. 18.
155It is worth noting, however, that some theorem-provers that use resolution are not

complete with respect to classical semantics. For example, to determine whether � fol-
lows from the information in a data base, some theorem-provers employ a heuristic that
requires them resolve :� with something on the data base, and so on recursively. Em-
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provers can certainly be based on other mechanisms.156 Moreover, the
inferential moves of the standard programming language PROLOG can all
be interpreted validly in many paraconsistent logics (when `:-' is interpreted
as `a').

One will often require a logic for something other than merely instru-
mental use. This does not mean that one is necessarily interested in truth-
preservation, however. One might, for example, require a logic whose valid
inferences preserve, not truth, but information. The computer case could
also be an example of this. Other natural examples of this in the list of 2.2
are the �ctional and counterfactual situations. By de�nition, truth is not
at issue here.157

Information-preservation implies truth preservation, presumably, but the
converse is not at all obvious, and not even terribly plausible. The informa-
tion that the next ight to Sydney leaves at 3.45 and does not leave at 3.45
would hardly seem to contain the information that there is life on Mars. A
paraconsistent logic is therefore a plausible one in this context.

What information, and so information-preservation, are, is an issue that
is currently much discussed. One popular approach is based on the situation
semantics of Barwise and Perry [1983].158 This takes a unit of information
(an infon) to be something of the form hR; a1; :::; an; si, where R is an n-
place relation, the ai's are objects, and s is a sign-bit (0 or 1). A situation is
a set of infons. The situations in question do not have to be veridical in any
sense. In particular, they may be both inconsistent and incomplete. In fact,
it is easy to see that a situation, so characterised, is just a relational FDE
evaluation. This approach to information therefore naturally incorporates
a paraconsistent logic, which may be thought of as a logic of information
preservation.159

10.2 Negation

Another major use of logic (perhaps the one that many think of �rst) is
in contexts where we want inference to be truth-preserving; for example,

ploying this procedure when the data base is fp;:pg and the query is q will result in a
negative answer. Such inference engines are therefore paraconsistent, though they do not
answer to any principled semantics that I am aware of.
156For details of some automated paraconsistent logics, see, e.g., Blair and Subrahma-

nian [1988], Thistlewaite et al. [1988].
157One might also take the other example on that list, constitutions and other legal

documents, to be an example of this. Such documents certainly contain information.
And one might doubt that this information is the sort of thing that is true or false: it
can, after all, be brought into e�ect by �at|and may be inconsistent. However, if it is
that sort of thing, legal reasoning concerning it would seem to require truth-preservation.
158See, e.g., Devlin [1991].
159It is worth noting that North American relevant logicians have very often|if not

usually|thought of the FDE valuations information-theoretically, as told true and told
false. See, e.g., Anderson et al. [1992], sect. 81.



PARACONSISTENT LOGIC 379

where we are investigating the veridicality of some theory or other. And
here, it is very natural to object to the use of a paraconsistent logic. Since
truth is never inconsistent a paraconsistent logic is not appropriate.

A paraconsistent logician who thinks that truth is consistent may agree
with this, in a sense. We have already seen in 7.6 how a paraconsistent logic,
applied to a consistent situation, may give classical reasoning. However, a
dialetheist will object; not to the need for truth preservation, but to the
claim that truth is consistent: some contradictions are true: dialetheias.

This is likely to provoke the �ercest objections. Let me start by divid-
ing these into two kinds: local and global. Global objections attack the
possibility of dialetheias on completely general grounds. Local objections,
by contrast, attack the claim that some particular claims are dialetheic on
grounds speci�c to the situation concerned.

Let us take the global objections �rst. Why might one think that di-
aletheias can be ruled out quite generally, independently of the consid-
erations of any particular case? A �rst argument is to the e�ect that a
contradiction cannot be true, since contradictions entail everything, and
not everything is true. It is clear that in the context where the use of a
paraconsistent logic is being defended, this simply begs the question.

Of more substance is the following objection. The truth of contradic-
tions is ruled out by the (classical) account of negation, which is manifestly
correct. The amount of substance is only slightly greater here, though: the
claim that the classical account of negation is manifestly correct is just plain
false.

An account of negation is a theory concerning the behaviour of something
or other. It is sometimes suggested that it is an account of how the particle
`not', and similar particles in other languages, behaves. This is somewhat
naive. Inserting a `not' does not necessarily negate a sentence. (The nega-
tion of `All logicians do believe the classical account of negation' is not `All
logicians do not believe the classical account of negation'.) And `not' may
function in ways that have nothing to do with negation at all. Consider,
e.g.: `I'm not a Pom; I'm English', where it is connotations of what is said
that are being rejected, not the literal truth.

It seems to me that the most satisfactory understanding of an account
of negation is to regard it as a theory of the relationship between state-
ments that are contradictories. Note that this by no means rules out a
paraconsistent account of negation.160 Even supposing that we characterise
contradictories as pairs of formulas such that at least one must be true
and at most one can be true|with which an intuitionist would certainly
disagree|it is quite possible to have both 2(�_:�) and :3(�^:�) valid
in a paraconsistent logic, as we saw in 7.3.

Anyway, whatever we take a theory of negation to be a theory of, it is but

160As Slater [1995] claims.
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a theory. And di�erent theories are possible. As we have already observed,
Aristotle gave an account of this relationship that was quite di�erent from
the classical account as it developed after Boole and Frege. And modern
intuitionists, too, give a quite di�erent account. Which account is correct
is to be determined by the usual criteria for the rational acceptability of
theories. (I will say a little more about this later.) The matter is not at all
obvious.

Quine is well known for his objection to non-classical logic in general,
and paraconsistent logic in particular, on the ground that changing the
logic (from the classical one) is `changing the subject', i.e., succeeds only in
giving an account of something else ([1970], p. 81). This just confuses logic,
qua theory, with logic, qua object of theory. Changing one's theory of logic
no more changes what it is one is theorising about|in this case, relation-
ships grounding valid reasoning|than changing one's theoretical geometry
changes the geometry of the cosmos. Nor does it help to suppose that logic,
unlike geometry, is analytic (i.e., true solely in virtue of meanings). Whether
or not, e.g., `There will be a sea battle tomorrow or there will not' is ana-
lytic in this sense, is no more obvious than is the geometry of the cosmos.
And changing from one theory, according to which it is analytic, to another,
according to which it is not, does not change the facts of meaning.161

How plausible a paraconsistent account of negation is depends, of course,
on which paraconsistent account of negation is given. As we saw in part 4,
there are many. One of the simplest and most natural is provided by the
relational semantics of 4.5. This is just the classical account, except that
classical logic makes the extra assumption that all statements have exactly
one truth value. And logicians as far back as Aristotle have questioned that
assumption.162

10.3 Denial

Another global objection to dialetheism goes by way of a supposed connec-
tion between negation and denial. It is important to be clear about the
distinction between these two things for a start. Negation is a syntactic
and/or semantic feature of language. Denial is a feature of language use:
it is one particular kind of force that an utterance can have, one kind of
illocutionary act, as Austin put it. Speci�cally, it is to be contrasted with
assertion.163 Typically, to assert something is to express one's belief in, or
acceptance of, it (or some Gricean sophistication thereof). Typically, to
deny something is to express ones rejection of it, that is, one's refusal to ac-

161The analogy between logic and geomety is discussed further in Priest [1997a].
162The topics of this section and the next are discussed at greater length in Priest [1999].
163Traditional logic usually drew the distinction, not in terms of saying, but in terms of

judging. It can be found in these terms, for example, in the Port-Royal Logic of Arnauld
and Nicole.
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cept it (or some Gricean sophistication thereof). Clearly, if one is uncertain
about a claim, one may wish neither to assert nor to deny it.

Although assertion and denial are clearly di�erent kinds of speech act,
Frege argued, and many now suppose, that denial may be reduced to the
assertion of negation.164 If this is correct, then dialetheism faces an obvious
problem. Even if some contradictions were true, no one could ever endorse
a contradiction, since they could not express an acceptance of one of the
contradictories without expressing a rejection of the other.165

Frege's reduction has no appeal if we take the negation of a statement
simply to be its contradictory. In asserting `Some men are not mortal', I
am not denying `All men are mortal'. I might not even realise that these
are contradictories, and neither might anyone else. And if this does not
seem plausible in this simple case, just make the example more complex,
and recall that there is no decision procedure for contradictories.

The reduction takes on more plausibility if we identify the negation of
a sentence as that sentence pre�xed by `It is not the case that'. But even
in this case, the claim that to assert a negation is invariably to deny the
sentence negated appears to be false. Dialetheists who asserts both, e.g.,
`The Liar sentence is true' and `It is not the case that the Liar sentence is
true', are not expressing the rejection of the former with the latter: they
are simply expressing their acceptance of a certain negated sentence.166 It
may well be retorted that this reply just begs the question, since what is at
issue is whether a dialetheist can do just this. This may be so; but it may
now be fairly pointed out that the original objection just begs the question
against the dialetheist too.

In any case, there would appear to be plenty of other examples where
to assert a negation is not to deny. For example, we may be brought to
see that our views are inconsistent by being questioned in Socratic fashion
and thus made to assert an explicit contradiction. When this happens, we
are not expressing the rejection of any view. What the questioning exposes
is exactly our acceptance of contradictory views. We may, in the light of
the questioning, come to reject one of the contradictories, and so revise our
views, but that is another matter.167

To assert a negated sentence is not, then, ipso facto to deny the sentence
negated. Some, having taken this point to heart, object on the other side of
the street: dialetheists have no way of expressing some of their views, specif-
ically their rejection of certain claims: we need take nothing a dialetheist

164See Frege [1919].
165For an objection along these lines, see Smiley in Priest and Smiley [1993].
166And even those who take negation to express denial must hold that there is more to

the meaning of negation than this. It cannot, for example, perform that function when
it occurs attached to part of a sentence.
167Some non-dialetheists have even argued that it may not even be rational to revise

our views in some contexts. See, e.g., Prior on the paradox of the preface [1971], pp. 84f.
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says as a denial.168

This objection is equally awed. For a start, even if to assert a negated
sentence is to deny it, it is certainly not the only way to deny it. One can
do so by a certain shake of the head, or by the use of some other body
language. A dialetheist may deny in this way. Moreover, just because the
assertion of a negated sentence by a dialetheist (or even a non-dialetheist,
as we have seen) may not be a denial, it does not follow that it is not. In
denial, a person aims to communicate to a listener a certain mental state,
that of rejection; and asserting a negated sentence with the right intonation,
and in the right context, may well do exactly that|even if the person is a
dialetheist.169

10.4 The Rational Acceptability of Contradictions

This does not exhaust the possible global objections to dialetheism,170 but
let us move on to the local ones. These do not object to the possibil-
ity of dialetheism in general, but to particular (supposed) cases of it. We
noted in 2.2 that a number of these have been proposed, which include legal
dialetheias, descriptions of states of change, borderline cases of vague pred-
ications and the paradoxes of self-reference. Though the detailed reasons
for endorsing dialetheism in each case are di�erent, their general form is the
same: a dialetheic account of the phenomenon in question provides the most
satisfactory way of handling the problems it poses. A local objection may
therefore be provided by producing a consistent account of the phenomenon,
and arguing this is rationally preferable. The precise issues involved here
will, again, depend on the topic in question; but let us examine one issue
in more detail. This will allow the illustration of a number of more general
points.

The case we will look at is that of the semantic paradoxes. The back-
ground to this needs no long explanation, since a logician or philosopher who
does not know it may fairly be asked where they have been this century.
Certain arguments such as the Liar paradox, and many others discovered
in the middle ages and around the turn of this century, appear to be sound
arguments to the e�ect that certain contradictions employing self-reference
and semantic notions are true. A dialetheic account simply endorses the
semantic principles in question, and thus the contradictions to which these
give rise. A consistent account must �nd some way of rejecting the reason-
ing, notably by giving a di�erent account of how the semantic apparatus

168Objections along these lines can be found in Batens [1990], and Parsons [1990]. A
reply can be found in Priest [1995].
169That the same sentence may have di�erent forces in di�erent contexts is hardly a

novel observation. For example, an utterance of `Is the door closed', can be a question,
a request or a command, depending on context, intonation, power-relationships, etc.
170Some others, together with appropriate discussion, can be found in Sainsbury [1995],

ch. 6.
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functions. This account must both do justice to the data, and avoid the
contradictions.

Many such accounts have, of course, been o�ered. But they are all well
known to su�er from various serious problems. For example, they may
provide no independent justi�cation for the restrictions on the semantic
principles involved, and so fail to explain why we should be so drawn to the
general and contradiction-producing principles. They are often manifestly
contrived and/or y in the face of other well established views. Perhaps
most seriously, none of them seems to avoid the paradoxes: all seem to be
subject to extended paradoxes of one variety or another.171 If the global
objections to dialetheism have no force, then, the dialetheic position here
seems manifestly superior.172

It might be said that the inconsistency of the theory is at least a prima
facie black mark against it. This may indeed be so; but even if one of the
consistent theories could �nd plausible replies to it problems, as long as the
theory is complex and �ghting a rearguard action, the dialetheic account
may still have a simplicity, boldness and mathematical elegance that makes
it preferable.

As orthodox philosophy of science realised a long time ago, there are many
criteria which are good-making for theories: simplicity, adequacy to the
data, preservation of established problem-solutions, etc.; and many which
are bad-making: being contrived, handling the data in an ad hoc way, and,
let us grant, being inconsistent, amongst others.173 These criteria are usu-
ally orthogonal, and may even pull in opposite directions. But when applied
to rival theories, the combined e�ect may well be to render an inconsistent
theory rationally preferable to its consistent rival.

General conclusion: a theory in some area is to be rationally preferred to
its rivals if it best satis�es the standard criteria of theory choice, familiar
from the philosophy of science. An inconsistent theory may be the only
viable theory; and even if it is not, it may still, on the whole, be rationally
preferable.174

171All this is documented in Priest [1987], ch. 2.
172One strategy that may be employed at this point is to argue that a dialetheic theory

is trivial, and hence that any other theory, even one with problems, is better. As we
have seen, dialetheic truth-theory is non-trivial, but one might nonetheless hope to prove
that it is trivial when conjoined with other unobjectionable apparatus. Such arguments
have been put forward by Denyer [1989], Smiley, in Priest and Smiley [1993], and Everett
[1995] and elsewhere. Replies can be found in, respectively, Priest [1989b], Priest and
Smiley [1993], and Priest [1996]. Since my aim here is to illustrate general features of the
situation, I will not discuss these arguments.
173Though one might well challenge the last of these as a universal rule. There might be

nothing wrong with some contradictions at all. See Priest [1987], sect. 13.6, and Sylvan
[1992], sect. 2.
174For a longer discussion of the relationship between paraconsistency and rationality,

see Priest [1987], ch. 7.
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10.5 Boolean Negation

Another sort of local objection to some dialetheic theories is based on the
claim that, whatever one says about negation, there is certainly an operator
that behaves in the way that Boolean negation does|call it what you like.
Some paraconsistent logicians may even agree with this. (As we saw in 5.3,
such an operator is de�nable in some of the da Costa systems.) And if
the point is correct, it suÆces to dispose of any dialetheic account of the
semantic paradoxes which endorses the T -schema; similarly, any account
of set theory that endorses the Comprehension schema. For as I observed
in the introduction to part 8, these schemas will then generate Boolean
contradictions, and so entail triviality.

Someone who endorses such an account of semantics or set theory must
therefore object to the claim that there is an operator that behaves as does
Boolean negation. Why, after all, should we suppose this?175 It might
be suggested that we can simply de�ne an operator, �, satisfying the proof
theoretic principles of Boolean negation, and in particular: �;�� ` �. Such
a suggestion would fail: the reason is simply that there is no guarantee
that a connective, so characterised, has any determinate sense. The point
was made by Prior [1960], who illustrated it with the operator \tonk", �,
supposedly characterised by the rules � ` ���, ��� ` �. Such an operator
induces triviality and can make no sense. Similarly, a paraconsistent logician
who endorses the T -schema may fairly point out that the supposition that
there is an operator satisfying the proof-theoretic conditions of Boolean
negation induces triviality, and so makes no sense.176

The claim is theory laden, in the sense that it presupposes that the T -
schema is correct. (The addition of such an operator need not produce
triviality if only more limited machinery is present.) But any claim about
what makes sense is bound to be theory-laden in a similar way. Prior's
argument, for example, presupposes the transitivity of deducibility, which
may be questioned, as we have seen. The thought that Boolean negation is
meaningless may initially be somewhat shocking. But the point has been
argued by intuitionist logicians for many years. And though the grounds
are quite di�erent,177 the paraconsistent logician sides with the intuitionist
against the classical logician on this occasion.

Can we not, though, characterise Boolean negation semantically, and so
show that it is a meaningful connective? The answer is, again, no; not
without begging the question. How one attempts to characterise Boolean
negation semantically will depend, of course, on one's preferred sort of se-

175The following material is covered in more detail in Priest [1990].
176There may, of course, be operators that behave like Boolean negation in a limited

domain. That is another matter.
177The intuitionist reason is that meaningful logical operators cannot generate state-

ments with recognition-transcendent truth conditions, which Boolean negation does. See,
e.g., Dummett [1975].
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mantics. Let me illustrate the matter with the Dunn semantics. Similar
considerations apply to others. With these semantics, the natural attempt
to characterise Boolean negation is:

���1 i� it is not the case that ��1
���0 i� ��1

And such a characterisation makes perfectly good semantic sense. However,
it does not entail that � satis�es the Boolean proof-theoretic principles.
Why should one suppose, crucially, that it validates �;�� j= �? From the
characterisation, it certainly follows that for all �, it is not the case that
��1 and ���1; but to infer from this that for all �, if ��1 and ���1 then
��1 (which states that the inference is valid), just employs the principle of
inference that a conditional is true if the negation of its antecedent is. And
no sensible paraconsistent conditional validates this.

In other words, to insist that �, so characterised, is explosive, just begs
the question against the paraconsistentist. And if it is claimed that the
negation in the statement of the truth conditions is itself Boolean, and so
the inference is acceptable, this again begs the question: whether there is a
connective satisfying the Boolean proof-theoretic conditions is exactly what
is at issue.178

10.6 Logic as an Organon of Criticism

We have now noted three reasons why one might employ a logic: as a
purely instrumental means of generating consequences, as an organon of
information preservation, and as an organon of truth preservation. This
does not exhaust the uses for which one might employ a logic. Another
very traditional one is as an organon of criticism, to force others to revise
their views. One may object to the use of a paraconsistent logic in this
context as follows. If one subscribes to a paraconsistent logic, then there is
nothing to stop a person from accepting any inconsistency to which their
views lead. Hence, paraconsistency renders logic useless in this context.179

The move from the premise that contradictions do not entail everything
to the claim that there is nothing to stop a person subscribing to a contra-
diction is a blatant non-sequitur. The threat of triviality may be a reason

178I have sometimes heard it said that the logic of a metatheory must be classical. This
is just false, as the existence of intuitionist metatheories serves to remind. For certain
purposes a dialetheist may, in any case, use a classical metatheory. If, for example, we
are trying to show a certain theory to be non-trivial, it suÆces to show all the theorems
have some property which not all sentences have. This might well be shown using ZF .
As we saw in 8.6, ZF makes perfectly good dialetheic sense.
179An objection of this kind is to be found in Popper [1963], pp. 316-7. The following

is discussed at greater length in Priest [1987], ch. 7.
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for revision; it is not the only reason. This is quite obvious in the case of
non-dialetheic paraconsistency. If a contradiction is entailed by one's views,
then even though they do not explode into triviality, they are still not true.
One will still, therefore, wish to revise. One may not, as in the classical case,
have to revise immediately. It may not be at all clear how to revise; and
in the meantime, an inconsistent but non-trivial belief set is better than no
belief set at all. But the pressure will still be there to revise in due course.

The situation may be thought to change if one brings dialetheism into
the picture. For the contradiction may then be true, and the pressure to
revise is removed. Again, however, the conclusion is too swift. It is certainly
true that showing that a person's views are inconsistent may not necessarily
force a dialetheist to revise, but other things may well do so. For example, if
a person is committed to something of the form �! ?, and their views are
shown to entail �, there will be pressure to revise, for exactly the classical
reason.180

Even if a dialetheist's views do not collapse into triviality, the inference
to the claim that there is no pressure to revise is still too fast. The fact that
there is no logical objection to holding on to a contradiction does not show
there are no other kinds of objection. There is a lot more to rationality than
consistency. Even those who hold consistency to be a constraint on ratio-
nality hold that there are many other such constraints. In fact, consistency
is a rather weak constraint. That the earth is at, that Elvis is alive and
living in Melbourne, or, indeed, that one is Kermit the Frog, are all views
that can be held consistently if one is prepared to make the right kinds of
move elsewhere; but these views are manifestly irrational. For a start, there
is no evidence for them; moreover, to make things work elsewhere one has
to make all kinds of ad hoc adjustments to other well-supported views. And
whatever constraints there are on rational belief|other than consistency|
these work just as much on a dialetheist, and may provide pressure to revise.
Not, perhaps, pressure of the stand 'em up - knock 'em down kind. But such
would appear to be illusory in any case. As the history of ideas has shown,
rational debates may be a long and drawn out business. There is no magic
strategy that will always win the debate|other than employing (or at least
showing) the instruments of torture.181

180Provided that one is not a person who believes that everything is true, then asserting
�!? is a way of denying �. A dialetheist might do this for a whole class of sentences,
and so rule out contradictions occurring in certain areas, wholesale.
181Avicenna, apparently, realised this. According to Scotus, he wrote that those who

deny the law of non-contradiction `should be ogged or burned until they admit that it
is not the same thing to be burned and not burned, or whipped and not whipped'. (The
Oxford Commentary on the Four Books of the Sentences, Bk. I, Dist. 39. Thanks to
Vann McGee for the reference.)
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11 CONCLUSION

Let me conclude this essay by trying to put a little perspective into the de-
velopment of paraconsistent logic. Paraconsistent and explosive accounts of
validity are both to be found in the history of logic. The revolution in logic
that started around the turn of the century, and which was constituted by
the development and application of novel and powerful mathematical tech-
niques, entrenched explosion on the philosophical scene. The application of
the same techniques to give paraconsistent logics had to wait until after the
second world war.

The period from then until about the late 1970s saw the development of
many paraconsistent logics, their proof theories and semantics, and an ini-
tial exploration of their possible applications. Though there are still many
open problems in these areas, as I have indicated in this essay, the sub-
ject was well enough developed by that time to permit the beginning of a
second phase: the investigation of inconsistent mathematical theories and
structures in their own rights. Whereas the �rst period was dominated by
a negative metaphor of paraconsistency as damage control, the second has
been dominated by a more positive attitude: let us investigate inconsis-
tent mathematical structures, both for their intrinsic interest and to see
what problems|philosophical, mathematical, or even empirical|they can
be used to solve.182

Where this stage will lead is as yet anyone's guess. But let me speculate.
Traditional wisdom has it that there have been three foundational crises
in the history of mathematics. The �rst arose around the Fourth Century
BC, with the discovery of irrational numbers, such as

p
2. It resulted in

the overthrow of the Pythagorean doctrine that mathematical truths are
exhausted by the domain of the whole numbers (and the rational numbers,
which are reducible to these); and eventually, in the development of an
appropriate mathematics. The second started in the Seventeenth Century
with the discovery of the in�nitesimal calculus. The appropriate mathemat-
ics came a little faster this time; and the result was the overthrow of the
Aristotelian doctrine that truth is exhausted by the domain of the �nite (or
at least the potential in�nite, which is a species of the �nite). The third
crisis started around the turn of this century, with the discovery of appar-
ently inconsistent entities (such as the Russell set and the Liar sentence)
in the foundations of logic and set theory|or at least, with the realisation
that such entities could not be regarded as mere curiosities. This provided
a major|perhaps the major|impetus for the development of paraconsis-
tent logic and mathematics (as far as it has got). And the philosophical
result may be the overthrow of another Aristotelian doctrine: that truth is

182It must be said that both stages have been pursued in the face of an attitude
sometimes bordering on hostility from certain sections of the establishment logico-
philosophical, though things are slowly changing.
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exhausted by the domain of the consistent.183

University of Queensland, Australia.
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PREFACE TO THE SECOND EDITION

It is with great pleasure that we are presenting to the community the
second edition of this extraordinary handbook. It has been over 15 years
since the publication of the �rst edition and there have been great changes
in the landscape of philosophical logic since then.

The �rst edition has proved invaluable to generations of students and
researchers in formal philosophy and language, as well as to consumers of
logic in many applied areas. The main logic article in the Encyclopaedia
Britannica 1999 has described the �rst edition as `the best starting point
for exploring any of the topics in logic'. We are con�dent that the second
edition will prove to be just as good!

The �rst edition was the second handbook published for the logic commu-
nity. It followed the North Holland one volume Handbook of Mathematical
Logic, published in 1977, edited by the late Jon Barwise. The four volume
Handbook of Philosophical Logic, published 1983{1989 came at a fortunate
temporal junction at the evolution of logic. This was the time when logic
was gaining ground in computer science and arti�cial intelligence circles.

These areas were under increasing commercial pressure to provide devices
which help and/or replace the human in his daily activity. This pressure
required the use of logic in the modelling of human activity and organisa-
tion on the one hand and to provide the theoretical basis for the computer
program constructs on the other. The result was that the Handbook of
Philosophical Logic, which covered most of the areas needed from logic for
these active communities, became their bible.

The increased demand for philosophical logic from computer science and
arti�cial intelligence and computational linguistics accelerated the devel-
opment of the subject directly and indirectly. It directly pushed research
forward, stimulated by the needs of applications. New logic areas became
established and old areas were enriched and expanded. At the same time, it
socially provided employment for generations of logicians residing in com-
puter science, linguistics and electrical engineering departments which of
course helped keep the logic community thriving. In addition to that, it so
happens (perhaps not by accident) that many of the Handbook contributors
became active in these application areas and took their place as time passed
on, among the most famous leading �gures of applied philosophical logic of
our times. Today we have a handbook with a most extraordinary collection
of famous people as authors!

The table below will give our readers an idea of the landscape of logic
and its relation to computer science and formal language and arti�cial in-
telligence. It shows that the �rst edition is very close to the mark of what
was needed. Two topics were not included in the �rst edition, even though

D. Gabbay and F. Guenthner (eds.),
Handbook of Philosophical Logic, Volume 7, vii{ix.
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viii

they were extensively discussed by all authors in a 3-day Handbook meeting.
These are:

� a chapter on non-monotonic logic

� a chapter on combinatory logic and �-calculus

We felt at the time (1979) that non-monotonic logic was not ready for
a chapter yet and that combinatory logic and �-calculus was too far re-
moved.1 Non-monotonic logic is now a very major area of philosophi-
cal logic, alongside default logics, labelled deductive systems, �bring log-
ics, multi-dimensional, multimodal and substructural logics. Intensive re-
examinations of fragments of classical logic have produced fresh insights,
including at time decision procedures and equivalence with non-classical
systems.

Perhaps the most impressive achievement of philosophical logic as arising
in the past decade has been the e�ective negotiation of research partnerships
with fallacy theory, informal logic and argumentation theory, attested to by
the Amsterdam Conference in Logic and Argumentation in 1995, and the
two Bonn Conferences in Practical Reasoning in 1996 and 1997.

These subjects are becoming more and more useful in agent theory and
intelligent and reactive databases.

Finally, �fteen years after the start of the Handbook project, I would
like to take this opportunity to put forward my current views about logic
in computer science, computational linguistics and arti�cial intelligence. In
the early 1980s the perception of the role of logic in computer science was
that of a speci�cation and reasoning tool and that of a basis for possibly
neat computer languages. The computer scientist was manipulating data
structures and the use of logic was one of his options.

My own view at the time was that there was an opportunity for logic to
play a key role in computer science and to exchange bene�ts with this rich
and important application area and thus enhance its own evolution. The
relationship between logic and computer science was perceived as very much
like the relationship of applied mathematics to physics and engineering. Ap-
plied mathematics evolves through its use as an essential tool, and so we
hoped for logic. Today my view has changed. As computer science and
arti�cial intelligence deal more and more with distributed and interactive
systems, processes, concurrency, agents, causes, transitions, communication
and control (to name a few), the researcher in this area is having more and
more in common with the traditional philosopher who has been analysing

1I am really sorry, in hindsight, about the omission of the non-monotonic logic chapter.
I wonder how the subject would have developed, if the AI research community had had
a theoretical model, in the form of a chapter, to look at. Perhaps the area would have
developed in a more streamlined way!
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such questions for centuries (unrestricted by the capabilities of any hard-
ware).

The principles governing the interaction of several processes, for example,
are abstract an similar to principles governing the cooperation of two large
organisation. A detailed rule based e�ective but rigid bureaucracy is very
much similar to a complex computer program handling and manipulating
data. My guess is that the principles underlying one are very much the
same as those underlying the other.

I believe the day is not far away in the future when the computer scientist
will wake up one morning with the realisation that he is actually a kind of
formal philosopher!

The projected number of volumes for this Handbook is about 18. The
subject has evolved and its areas have become interrelated to such an extent
that it no longer makes sense to dedicate volumes to topics. However, the
volumes do follow some natural groupings of chapters.

I would like to thank our authors are readers for their contributions and
their commitment in making this Handbook a success. Thanks also to
our publication administrator Mrs J. Spurr for her usual dedication and
excellence and to Kluwer Academic Publishers for their continuing support
for the Handbook.

Dov Gabbay
King's College London
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JOHN P. BURGESS

BASIC TENSE LOGIC

1 WHAT IS TENSE LOGIC?

We approach this question through an example:

Smith: Have you heard? Jones is going to Albania!
Smythe: He won't get in without an extra-special visa.

Has he remembered to apply for one?
Smith: Not yet, so far as I know.
Smythe: Then he'll have to do so soon.

(1)

In this bit of dialogue the argument, such as it is, turns on issues of temporal
order. In English, as in all Indo-European and many other languages, such
order is expressed in part through changes in verb-form, or tenses. How
should the logician treat such tensed arguments?

A solution that comes naturally to mathematical logicians, and that has
been forcefully advocated in [Quine, 1960], is to regiment ordinary tensed
language to make it �t the patterns of classical logic. Thus Equation 1
might be reduced to the quasi-English Equation 1 below, and thence to the
`canonical notation' of Equation 3:

(2) Jones/visits/Albania at some time later than the present.

At any time later than the present, if Jones/visits/Albania then, then
at some earlier time Jones/applies/for a visa.

At no time earlier than or equal to the present it is the case that
Jones/applies/for a visa.

Therefore, Jones/applies/for a visa at some time later than the present.

9t(c < t ^ P (t))
8t(c < t ^ P (t) ! 9u(u < t ^Q(u)))
:9t((t < c _ t = c) ^Q(t))
) 9t(c < t ^Q(t)):

(3)

Regimentation involves introducing quanti�cation over instants t; u; : : : of
time, plus symbols of the present instant c and the earlier- later relation
<. Above all, it involves treating such a linguistic item as `Jones is visiting
Albania' not as a complete sentence expressing a proposition and having a
truth-value, to be symbolised by a sentential variable p; q; : : :, but rather as
a predicate expressing a property on instants, to be symbolised by a one-
place predicate variable P;Q; : : :. Regimentation has been called detensing

D. Gabbay and F. Guenthner (eds.),
Handbook of Philosophical Logic, Volume 7, 1{42.
c 2002, Kluwer Academic Publishers. Printed in the Netherlands.



2 JOHN P. BURGESS

since the verb in, say, `Jones/visits/Albania at time t', written here in the
grammatical present tense, ought really to be regarded as tenseless; for it
states not a present fact but a timeless or `eternal' property of the instant t.
Bracketing is one convention for indicating such tenselessness. The knack
for regimenting or detensing, for reducing something like Equation 1 to
something like Equation 3, is easily acquired. The analysis, however, cannot
stop there. For a tensed argument like that above must surely be regarded
as an enthymeme, having as unstated premises certain assumptions about
the structure of Time. Smith and Smythe, for instance, probably take it
for grated that of any two distinct instants, one is earlier than the other.
And if this assumption is formalised and added as an extra premise, then
Equation 3, invalid as it stands, becomes valid.

Of course, it is the job of the cosmologist, not the logician, to judge
whether such an assumption is physically or metaphysically correct. What
is the logician's job is to formalise such assumptions, correct or not, in logical
symbolism. Fortunately, most assumptions people make about the structure
of Time go over readily into �rst- or, at worst, second-order formulas.

1.1 Postulates for Earlier-Later

(B0) Antisymmetry 8x8y:(x < y ^ y < x)
(B1) Transitivity 8x8y8z(x < y ^ y < z ! x < z)
(B2) Comparability 8x8y(x < y _ x = y _ y < x)
(B3) (a) Maximum 9x8y(y < x _ y = x)

(b) Minimum 9x8y(x < y _ x = y)
(B4) (a) No Maximals 8x9y(x < y)

(b) No Minimals 8x9y(y < x)
(B5) Density 8x8y(x < y ! 9z(x < z ^ z < y))
(B6) (a) Successors 8x9y(x < y ^ :9z(x < z ^ z < y))

(b) Predecessors 8x9y(y < x ^ :9z(y < z ^ z < x))
(B7) Completeness 8U((9xU(x) ^ 9x:U(x)^

8x8y(U(x)^
^:U(y) ! x < y)) !
(9x(u(x)^
^8y(x < y ! :U(y)))_
9x(:U(x)^
^8y(y < x! U(y))))

(B8) Wellfoundedness 8U(9xU(x) ! 9x(U(x) !
^8y(y < x! :U(y)))

(B9) (a) Upper Bounds 8x8y9z(x < z ^ y < z)
(b) Lower Bounds 8x8y9z(z < x ^ z < y).

For more on the development of the logic of time as a branch of applied
�rst- and second-order logic, see [van Benthem, 1978].
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The alternative to regimentation is the development of an autonomous
tense logic (also called temporal logic or chronological logic), �rst undertaken
in [Prior, 1957] (though several precursors are cited in [Prior, 1967]). Tense
logic takes seriously the idea that items like `Jones is visiting Albania' are
already complete sentences expressing propositions and having truth-values,
and that they should therefore by symbolised by sentential variables p; q; : : :.
Of course, the truth-value of a sentence in the present tense may well di�er
from that of the corresponding sentence in the past or future tense. Hence,
tense logic will need some way of symbolising the relations between sentences
that di�er only in the tense of the main verb. At its simplest, tense logic
adds for this purpose to classical truth-functional sentential logic just two
one-place connectives: the future-tense or `will' operator F and the past-
tense or `was' operator P . Thus, if p symbolises `Jones is visiting Albania',
then Fp and Pp respectively symbolise something like `Jones is sooner or
later going to visit Albania' and `Jones has at least once visited Albania'. In
reading tense-logical symbolism aloud. F and P may be read respectively
as `it will be the case that' and `it was the case that'. Then :F:, usually
abbreviated G, and :P:, usually abbreviated H , may be read respectively
as `it is always going to be the case that' and `it has always been the case
that'. Actually, for many purposes it is preferable to take G and H as
primitive, de�ning F and P as :G: and :H: respectively. Armed with
this notation, the tense-logician will reduce Equation 1 above to the stylised
Equation 1.1 and then to the tense-logical Equation 5:

(4) Future-tense (Jones visits Albania)

Not future-tense (Jones visits Albania and not past-tense (Jones applies
for a visa)).

Not past-tense (Jones applies for a visa) and not Jones applies for a
visa.

Therefore, future-tense (Jones applies for a visa)

Fp
:F (p ^ :Pq)
:Pq ^ :q
) Fq:

(5)

Of course, we will want some axioms and rules for the new temporal op-
erators F; P; g;H . All the axiomatic systems considered in this survey will
share the same standard format.

1.2 Standard Format

We start from a stock of sentential variables p0; p2; p2; : : :, usually writing
p for p0 and q for p1. The (well-formed) formulas of tense logic are built
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up from the variables using negation (:), and conjunction (^), and the
strong future (G) and strong past (H) operators. The mirror image of
a formula is the result of replacing each occurrence of G by H and vice
versa. Disjunction (_), material conditional (!), material biconditional
($), constant true (>), constant false (?), weak future (F ), and weak past
(P ) can be introduced as abbreviations.

As axioms we take all substitution instances of truth-functional tautolo-
gies. In addition, each particular system will take as axioms all substitution
instances of some �nite list of extra axioms, called the characteristic axioms
of the system. As rules of inference we take Modus Ponens (MP) plus the
speci�cally tense-logical:

Temporal Generalisation(TG): From � to infer G� and H�

The theses of a system are the formulas obtainable from its axioms by these
rules. A formula is consistent if its negation is not a thesis; a set of formulas
is consistent if the conjunction of any �nite subset is. These notions are, of
course, relative to a given system.

The systems considered in this survey will have characteristic axioms
drawn from the following list:

1.3 Postulates for a Past-Present-Future

(A0) (a) G(p! q) ! (Gp! Gq) (b) H(p! q) ! (Hp! Hq)
(c) p! GPp (d) p! HFp

(A1) (a) Gp! GGp (b) Hp! HHp
(A2) (a) Pp ^ Fq ! F (p ^ Fq) _ F (p ^ q) _ F (Fp ^ q)

(b) Pp ^ Pq ! P (p ^ Pq) _ P (p ^ q) _ P (Pp ^ q)
(A3) (a) G?_ FG? (b) H?_ PH?
(A4) (a) Gp! Fp (b) Hp! Pp
(A5) (a) Fp! FFp (b) Pp! PPp
(A6) (a) p ^Hp! FHp (b) p ^Gp! PGp
(A7) (a) Fp ^ FG:p! F (HFp ^G:p)

(b) Pp ^ PH:p! P (GPp ^H:p)
(A8) H(Hp! p) ! Hp
(A9) (a) FGp! GFp (b) PHp! HPp.
A few de�nitions are needed before we can state precisely the basic prob-

lem of tense logic, that of �nding characteristic axioms that `correspond' to
various assumptions about Time.

1.4 Formal Semantics

A frame is a nonempty set C equipped with a binary relation R. A valuation
in a frame (X;R) is a function V assigning each variable pi a subset of X .
Intuitively, X can be thought of as representing the set of instants of time, R
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the earlier-later relation, V the function telling us when each pi is the case.
We extend V to a function de�ned on all formulas, by abuse of notation
still called V , inductively as follows:

V (:�) = X � V (�)
V (� ^ �) = V (�) \ V (�)
V (G�) = fx 2 X : 8y 2 X(xRy ! y 2 V (�))g
V (H�) = fx 2 X : 8y 2 X(yRx! y 2 V (�))g:

(Some writers prefer a di�erent notion. Thus, what we have expressed as
x 2 V (�) may appear as k�kVx = TRUE or as (X;R; V ) � �[x].) A formula
� is valid in a frame (X;R) if V (�) = X for every valuation V in (X;R),
and is satis�able in (X;R) if V (� 6= ? for some valuation V in (X;R), or
equivalently if :� is not valid in (X;R). Further, � is valid over a class K
of frames if it is valid in every (X;R) 2 K, and is satis�able over K if it is
satis�able in some (X;R) 2 K, or equivalently if :� is not valid over K. A
system L in standard format is sound for K if every thesis of L is valid over
K, and a sound system L is complete for K if conversely every formula valid
over K is a thesis of L, or equivalently, if every formula consistent with L
is satis�able over K. Any set (let us say, �nite) � of �rst- or second-order
axioms about the earlier-later relation < determines a class K(�) of frames,
the class of its models. The basic correspondence problem of tense logic is,
given � to �nd characteristic axioms for a system L that will be sound and
complete for K(�). The next two sections of this survey will be devoted to
representing the solution to this problem for many important �.

1.5 Motivation

But �rst it may be well to ask, why bother? Several classes of motives for
developing an autonomous tense logic may be cited:

(a) Philosophical motives were behind much of the pioneering work of A.
N. Prior, to whom the following point seemed most important: whereas our
ordinary language is tensed, the language of physics is mathematical and so
untensed. Thus, there arise opportunities for confusions between di�erent
`terms of ideas'. Now working in tense logic, what we learn is precisely
how to avoid confusing the tensed and the tenseless, and how t clarify their
relations (e.g. we learn that essentially the same thought can be formulated
tenselessly as, `Of any two distinct instants, one /is/ earlier and the other
/is/ later', and tensedly as, `Whatever is going to have been the case either
already has been or now is or is sometime going to be the case). Thus, the
study of tense logic can have at least a `therapeutic' value. Later writers
have stressed other philosophical applications, and some of these are treated
elsewhere in this Handbook.
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(b) Exegetical applications again interested Prior (see his [Prior, 1967, Chap-
ter 7]). Much was written about the logic of time (especially about fu-
ture contingents) by such ancient writers as Aristotle and Diodoros Kronos
(whose works are unfortunately lost) and by such mediaeval ones as William
of Ockham or Peter Auriole. It is tempting to try to bring to bear insights
from modern logic to the interpretation of their thought. But to pepper
the text of an Aristotle or an Ockham with such regimenters' phrases as `at
time t' is an almost certain guarantee of misunderstanding. For these earlier
writers thought of such an item as `Socrates is running' as being already
complete as it stands, not as requiring supplementation before it could ex-
press a proposition or have a truth-value. Their standpoint, in other words,
was like that of modern tense logic, whose notions and notations are likely
to be of most use in interpreting their work, if any modern developments
are.

(c) Linguistic motivations are behind much recent work in tense logic. A
certain amount of controversy surrounds the application of tense logic to
natural language. See, e.g. van Benthem [1978; 1981] for a critic's views.
To avoid pointless disputes it should be emphasised from the beginning
that tense logic does not attempt the faithful replication of every feature of
the deep semantic structure (and still less of the surface syntax) of English
or any other language; rather, it provides an idealised model giving the
sympathetic linguist food for thought. an example: in tense logic, P and F
can be iterated inde�nitely to form, e.g. PPPFp or FPFPp. In English,
there are four types of verbal modi�cations indicating temporal reference,
each applicable at most once to the main verb of a sentence: Progressive (be
+ ing), Perfect (have + en), Past (+ ed), and Modal auxiliaries (including
will, would). Tense logic, by allowing unlimited iteration of its operators,
departs from English, to be sure. But by doing so, it enables us to raise the
question of whether the multiple compounds formable by such iteration are
really all distinct in meaning; and a theorem of tense logic (see Section 3.5
below) tells us that on reasonable assumptions they are not, e.g. PPPFp
and FPFPp both collapse to PFp (which is equivalent to PPp). and this
may suggest why English does not need to allow unlimited iteration of its
temporal verb modi�cations.

(d) Computer Science: Both tense logic itself and, even more so, the closely
related so-called dynamic logic have recently been the objects of much in-
vestigation by theorists interested in program veri�cation. temporal opera-
tors have been used to express such properties of programs as termination,
correctness, safety, deadlock freedom, clean behaviour, data integrity, acces-
sibility, responsiveness, and fair scheduling. These studies are mainly con-
cerned only with future temporal operators, and so fall technically within
the province of modal logic. See Harel et al.'s chapter on dynamic logic in
Volume 4 of this Handbook, Pratt [1980] among other items in our bibliog-
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raphy.

(e) Mathematics: Some taste of the purely mathematical interest of tense
logic will, it is hoped, be apparent from the survey to follow. Moreover,
tense logic is not an isolated subject within logic, but rather has important
links with modal logic, intuitionistic logic, and (monadic) second-order logic.

Thus, the motives for investigating tense logic are many and varied.

2 FIRST STEPS IN TENSE LOGIC

Let L0 be the system in standard format with characteristic axioms (A0a,
b, c, d). Let K0 be the class of all frames. We will show that L0 is (sound
and) complete for L0, and thus deserves the title of minimal tense logic.
The method of proof will be applied to other systems in the next section.
Throughout this section, thesishood and consistency are understood relative
to L0, validity and satis�ability relative to K0.

THEOREM 1 (Soundness Theorem). L0 is sound for K0.

Proof. We must show that any thesis (of L0) is valid (over K0). for this
it suÆces to show that each axiom is valid, and that each rule preserves
validity. the veri�cation that tautologies are valid, and that substitution
and MP preserves validity is a bit tedious, but entirely routine.

To check that (A0a) is valid, we must show that for all relevant X;R; V
and x, if x 2 V (G(p ! q0) and x 2 V (Gp), then x 2 V (Gq). Well,
the hypotheses here mean, �rst that whenever xRy and y 2 V (p), then
y 2 V (q); and second that whenever xRy, then y 2 V (p). The desired
conclusion is that whenever xRy, then y 2 V (q); which follows immediately.
Intuitively, (A0a) says that if q is going to be the case whenever p is, and p
is always going to be the case, then q is always going to be the case. The
treatment of (A0b) is similar.

To check that (A0c) is valid, we must show that for all relevant X;R; V ,
and x, if x 2 V (p), then x 2 V (GPp). Well, the desired conclusion here is
that for every y with xRy there is a z with zRy and z 2 V (p). It suÆces to
take z = x. Intuitively, (A0c) says that whatever is now the case is always
going to have been the case. The treatment of (A0d) is similar.

To check that TG preserves validity, we must show that if for all relevant
X;R; V , and x we have x 2 V (�), then for all relevant X;R; V , and x we
have x 2 V (H�) and x 2 V (G�), in other words, that whenever yRx we
have y 2 V (�) and whenever xRy we have y 2 V (�). But this is immediate.
Intuitively, TG says that if something is now the case for logical reasons
alone, then for logical reasons alone it always has been and is always going
to be the case: logical truth is eternal. �

In future, veri�cations of soundness will be left as exercises for the reader.
Our proof of the completeness of L0 for K0 will use the method of maximal



8 JOHN P. BURGESS

consistent sets, �rst developed for �rst-order logic by L. Henkin, system-
atically applied to tense logic by E. J. Lemmon and D. Scott (in notes
eventually published as [Lemmon and Scott, 1977]), and re�ned [Gabbay,
1975].

The completeness of L0 for K0 is due to Lemmon. We need a number of
preliminaries.

THEOREM 2 (Derived rules). The following rules of inference preserve
thesishood:

1. from �1; �2; : : : ; �n to infer any truth- functional consequence �

2. from �! � to infer G�! G� and H�! H�

3. from �$ � and �(�=p) to infer �(�=p)

4. from � to infer its mirror image.

Proof.

1. To say that � is a truth-functional consequence of �1; �2; : : : ; �n is to
say that (�1^�2^: : :^�n ! �) or equivalently �1 ! (�2 ! (: : : (�n !
�) : : :)) is an instance of a tautology, and hence is an axiom. We then
apply MP.

2. From � ! � we �rst obtain G(� ! �) by TG, and then G� ! G�
by A0a and MP. Similarly for H .

3. Here (�=p) denotes substitution of � for the variable p. It suÆces to
prove that if � ! � and � ! � are theses, then so are �(�=p) !
�(�=p) and �(�=p) ! �(�=p). This is proved by induction on the
complexity of �, using part (2) for the cases � = G� and � = H�. In
particular, part (3) allows us to insert and remove double negations
freely. We write � � � to indicate that �$ � is a thesis.

4. This follows from the fact that the tense-logical axioms of L0 come in
mirror-image pairs, (A0a, b) and (A0c, d). Unlike parts (1){(3), part
(4) will not necessarily hold for every extension of L0. �

THEOREM 3 (Theses). Items (a){(h) below are theses of L0.

Proof. We present a deduction, labelling some of the lines as theses for
future reference:
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(1) G(p! q) ! G(:q ! :p) from a tautology by 1.2b
(2) G(:q ! :p) ! (G:q ! G:p) (A0a)

(a) (3) G(p! q) ! (Fp! Fq) from 1,2 by 1.2a
(4) Gp! G(q ! p ^ q) from a tautology by 1.2b
(5) G(q ! p ^ q) ! (Fq ! F (p ^ q)) 3

(b) (6) Gp ^ Fq ! F (p ^ q) from 4, 5 by 1.2a
(7) p! GPp (A0c)
(8) GPp ^ Fq ! F (Pp ^ q) 6

(c) (9) p ^ Fq ! F (Pp ^ q) from 7, 8 by 1.2a
(10) G(p ^ q) ! Gp

G(p ^ q) ! Gq from tautologies by 1.2b
(11) G(q ! p ^ q) ! (Gq ! G(p ^ q)) (A0a)

(d) (12) Gp ^Gq $ G(p ^ q) 12
(14) G:p ^G:q ! G:(p _ q) from 13 by 1.3c

(e) (15) Fp _ Fq $ F (p _ q) from 14 by 1.2a
(16) Gp! G(p _ q)

Gq ! G(p _ q) from tautologies by 1.2b
(f) (17) Gp _Gq ! G(p _ q) from 16 by 1.2a

(18) G:q _G:q ! G(:p _ :q) 17
(19) G:p _G:q ! G:(p ^ q) from 18 by 1.2c

(g) (20) F (p ^ q ! Fp ^ Fq from 19 by 1.2a
(21) :p! HF:p (A0d)
(22) :p! H:Gp from 21 by 1.2c

(h) (23) PGp! p from 22 by 1.2a
Also the mirror images of 1.3a{h are theses by 1.2d. �

We assume familiarity with the following:

LEMMA 4 (Lindenbaum's Lemma). Any consistent set of formulas can be
extended to a maximal consistent set.

LEMMA 5. Let Q be a maximal consistent set of formulas. For all formulas
we have:

1. If �1; : : : ; �n 2 A and �1 ^ : : : ^ �n ! � is a thesis, then � 2 A.

2. :� 2 A i� � 62 A

3. (� ^ �) 2 A i� � 2 A and � 2 A

4. (� _ �) 2 A i� � 2 A or � 2 A.

They will be used tacitly below.

Intuitively, a maximal consistent set|henceforth abbreviated MCS|
represents a full description of a possible state of a�airs. For MCSs A;B we
say that A is potentially followed by B, and write A 3B, if the conditions
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of Lemma 6 below are met. Intuitively, this means that a situation of the
sort described by A could be followed by one of the sort described by B.

LEMMA 6. For any MCSs A;B, the following are equivalent:

1. whenever � 2 A, we have P� 2 B,

2. whenever � 2 B, we have F� 2 A,

3. whenever G 2 A, we have  2 B,

4. whenever HÆ 2 B, we have Æ 2 A.

Proof. To show (1) implies (3): assume(1) and let G 2 A. Then PG 2
B, so by Thesis 3(h) we have  2 B as required by (3).

To show (3) implies (2): assume (3) and let � 2 B. then :� 62 B, so
G:� 62 A, and F� = :G:� 2 A as required by (2).

Similarly (2) implies (4) and (4) implies (1). �

LEMMA 7. Let C be an MCS,  any formula:

1. if F 2 C, then there exists an MCS B with C 3B and  2 B,

2. if P 2 C, then there exists an MCS A with A 3C and  2 A.

Proof. We treat (1): it suÆces (by the criterion of Lemma 6(a)) to obtain
an MCS B containing B0 = fP� : � 2 Cg [ fg. For this it suÆces (by
Lindenbaum's Lemma) to show that B0 is consistent. For this it suÆces
(by the closure of C under conjunction plus the mirror image of Theorem
3(g)) to show that for any � 2 C;P� ^  is consistent. For this it suÆces
(since TG guarantees that :FÆ is a thesis whenever :Æ is) to show that
F (P� ^ ) is consistent. And for this it suÆces to show that F (P� ^ )
belongs to C|as it must by 3(c). �

DEFINITION 8. A chronicle on a frame (X;R) is a function T assigning
each x 2 X an MCS T (x). Intuitively, if X is thought of as representing
the set of instants, and R the earlier-later relation, T should be thought
of as providing a complete description of what goes on at each instant. T
is coherent if we have T (x) 3T (y) whenever xRy. T is prophetic (resp.
historic) if it is coherent and satis�es the �rst (resp. second) condition
below:

1. whenever F 2 T (x) there is a y with xRy and  2 T (y),

2. whenever P 2 T )(x) there is a y with yRx and  2 T (y).

T is perfect if it is both prophetic and historic. Note that T is coherent i�
it satis�es the two following conditions:
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3. whenever  2 T (x) and xRy, then  2 T (y),

4. whenever H 2 T (x), and yRx, then  2 T (y).

If V is a valuation in (X;R), the induced chronicle TV is de�ned by TV (x) =
f : x 2 V (0g;TV is always perfect. If T is a perfect chronicle on (X;R),
the induced valuation VT is de�ned by VT (pi) = fx : pi 2 T (x)g. We have:

LEMMA 9 (Chronicle Lemma). Let T be a perfect chronicle on a frame
(X;R). If V = VT is the valuation induced by T , then T = TV the chronicle
induced by V . In other words, for all formulas  we have:

(+) V () = fx :  2 T (x)g

In particular, any member of any T (x) is satis�able in (X;R).

Proof. (+) is proved by induction on the complexity of . As a sample,
we treat the induction step for G: assume (+) for , to prove it for G:

On the one hand, if G 2 T (x), then by De�nition 8(3), whenever xRy
we have  2 T (y) and by induction hypothesis y 2 V (). This shows
x 2 V (G).

On the other hand, if G 62 T (x), then F: � :G 2 T (x), so by
De�nition 8(1) for some y with xRy we have : 2 T (y) and  62 T (y),
whence by induction hypothesis, y 62 V (). This shows x 62 V (G). �

To prove the completeness of L0 for K0 we must show that every consis-
tent formula 0 is satis�able. Now Lemma 9 suggests an obvious strategy
for proving 0 satis�able, namely to construct a perfect chronicle T on some
frame (X;R) containing an x0 with 0 2 T (x0). We will construct X;R,
and T piecemeal.

DEFINITION 10. Fix a denumerably in�nite set W . Let M be the set of
all triples (X;R; T ) such that :

1. X is a nonempty �nite subset of W ,

2. R is an antisymmetric binary relation on X ,

3. T is a coherent chronicle on (X;R).

For � = (X;R; T ) and �0 = (X 0; R0; T 0) in M we say �0 extends � if (when
relations and functions are identi�ed with sets f ordered pairs) we have:

10. X � X 0

20. R = R0 \ (X �X)

30. T � T 0.
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A conditional requirement of form 8(1) or (2) will be called unborn for
� = (X;R; T ) 2 M if its antecedent is not ful�lled; that is, if x 62 X or if
x 2 X but F or P a the case may be does not belong to T (x). It will
be called alive for � if its antecedent is ful�lled but its consequent is not;
in other words, there is no y 2 X with xRy or yRx as the case may be and
 2 T (y). It will be called dead for � if its consequent is ful�lled.

Perhaps no member of M is perfect; but any imperfect member of M can
be improved:

LEMMA 11 (Killing Lemma). Let � = (X;R; T ) 2M . For any requirement
of form 8(1) or (2) which is alive for �, there exists an extension u0 =
(X 0; R0; T 0) 2M of � for which that requirement is dead.

Proof. We treat a requirement of form 8(1). If x 2 X and F 2 T (x), by
7(1) there is an MCS B with T (x) 3B and  2 B. It therefore suÆces to
�x y 2 W �X and set

1. X 0 = X [ fyg

2. R0 = R [ f(x; y)g

3. T 0 = T [ f(y;B)g. �

THEOREM 12 (Completeness Theorem). L0 is complete for K0.

Proof. Given a consistent formula 0, we wish to construct a frame (X;R)
and a perfect chronicle T on it, with 0 2 t(x0) for some x0. To this end we
�x an enumeration x0; x1; x2; : : : of W , and an enumeration 0; 1; 2; : : : of
all formulas. To the requirement of form 8(1) (resp. 8(2)) for x = xi and
 = j we assign the code number 2�5i�7j (resp. 3�5i�7j). Fix an MCS C0

with 0 2 C0, and let �0 = (X0; R0; T0) where X0 = fx0g; R0 = ?, and
T0 = f(x0; C0)g. If �n is de�ned, consider the requirement, which among
all those which are alive for �n, has the least code number. Let �n+1 be
an extension of �n for which that requirement is dead, as provided by the
Killing Lemma. Let (X;R; T ) be the union of the �n = (Xn; Rn; Tn); more
precisely, let X be the union of the Xn; R of the Rn, and T of the Tn. It is
readily veri�ed that T is a perfect chronicle on (X;R), as required. �

The observant reader may be wondering why in De�nition 10(2) the re-
lation R was required to be antisymmetric. the reason was to enable us to
make the following remark: our proof actually shows that every thesis of L0

is valid over the class K0 of all frames, and that every formula consistent
with L0 is satis�able over the class Kanti of antisymmetric frames. Thus, K0

and Kanti give rise to the same tense logic; or to put the matter di�erently,
there is no characteristic axiom for tense logic which `corresponds' to the as-
sumption that the earlier-later relation on instants of time is antisymmetric.
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In this connection a remark is in order: suppose we let X be the set
of all MCSs, R the relation 3 ; V the valuation V (pi) = fx : pi 2 xg.
Then using Lemmas 6 and 7 it can be checked that V () = fx :  2
xg for all . In this way we get a quick proof of the completeness of L0

for K0. However, this (X;R) is not antisymmetric. Two MCSs A and B
may be clustered in the sense that A 3B and B 3A. There is a trick,
known as `bulldozing', though, for converting nonantisymmetric frames to
antisymmetric ones, which can be used here to give an alternative proof
of the completeness of L0 for Kanti. See Bull and Segerberg's chapter in
Volume 3 of this Handbook and [Segerberg, 1970].

3 A QUICK TRIP THROUGH TENSE LOGIC

The material to be presented in this section was developed piecemeal in
the late 1960s. In addition to persons already mentioned, R. Bull, N. Coc-
chiarella and S. Kripke should be cited as important contributors to this
development. Since little was published at the time, it is now hard to assign
credits.

3.1 Partial Orders

Let L1 be the extension for L0 obtained by adding (A1a) as an extra axiom.
Let K1 be the class of partial orders, that is, of antisymmetric, transitive
frames. We claim L1 is (sound and) complete for K1. Leaving the veri�ca-
tion of soundness as an exercise for the reader, we sketch the modi�cations
in the work of the preceding section needed to establish completeness.

First of all, we must now understand the notions of thesishood and con-
sistency and, hence, of MCS and chronicle, as relative to L0. Next, we must
revise clause 10(2) in the de�nition of M to read:

21. R is a partial order on X .

This necessitates a revision in clause 11(2) in the proof of the Killing Lemma.
Namely, in order to guarantee that R0 will be a partial order on X 0, that
clause must now read:

21. R0 = R [ f(x; y)g [ f(v; y) : vRxg.

But now it must be checked that T 0, as de�ned by clause 11(3), remains a
coherent chronicle under the revised de�nition of R0. Namely, it must be
checked that if vRx, then T (v) 3B. To show this (and so complete the
proof) the following suÆces:

LEMMA Let A;C;B be MCSs. If A 3C and C 3B, then A 3B.
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Proof. We use criterion 6(3) for 3 : assume G 2 A, to prove  2 B.
Well, by the new axiom (A1a) we have GG 2 A. Then since A 3C, we
have G 2 C, and since C 3B, we have  2 B. �

It is worth remarking that the mirror image (A1b) of (A1a) is equally
valid over partial orders, and must thus by the completeness theorem be a
thesis of L0. To �nd a deduction of it is a nontrivial exercise.

3.2 Total Orders

Let L2 be the extension of L1 obtained by adding (A2a, b) as extra axioms.
Let K1 be the class of total orders, or frames satisfying antisymmetry, tran-
sitivity, and comparability. Leaving the veri�cation of soundness to the
reader, we sketch the modi�cations in the work of Section 3.1 above, be-
yond simply understanding thesishood and related notions as relative to L2,
needed to show L2 complete for K2.

To begin with, we must revise clause 10(2) in the de�nition of M to read:

22. R is a partial order on X .

This necessitates revisions in the proof of the Killing Lemma, for which the
following will be useful:

LEMMA Let A;B;C be MCSs. If A 3B and A 3C, then either B = C
or B 3C or C 3B.

Proof. Suppose for contradiction that the two hypotheses hold but none of
the three alternatives in the conclusion holds. Using criterion 6(2) for 3 ,
we see that there must exist a 0 2 C with F0 62 b (else B 3C) and a �0 2
B with F�0 62 C (else C 3B). Also there must exist a Æ with Æ 2 B; Æ 62 C
(else B = C). Let � = �0 ^ :F0 ^ Æ 2 B;  = 0 ^ :F�0 ^ :Æ 2 C. We
have F� 2 A (since A 3B) and F 2 A (since A 3C). hence, by A2a, one
of F (� ^F); F (F� ^ ); F (� ^ ) must belong to A. But this is impossible
since all three are easily seen (using 3(7)) to be inconsistent. �

Turning now to the Killing Lemma, consider a requirement of form 8(1)
which is alive for a certain � = (X;R; T ) 2 M . We claim there is an
extension �0 = (X 0; R0; T 0) for which it is dead. This is proved by induction
on the number n of successors which x has in (X;R). We �x an MCS B
with T (x) 3B and  2 B. If n = 0, it suÆces to de�ne �0 as was done in
Section 3.1 above.

If n > 0, let x0 be the immediate successor of x in (X;R). We cannot
have  2 T (x0) or else our requirement would already be dead for �. If
F 2 T (x0), we can reduce to the case n � 1 by replacing x by x0. So
suppose F 62 T (x0). Then we have neither B = T (x0) nor T (x0) 3B.
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Hence, by the Lemma, we must have B 3T (x0). Therefore it suÆces to �x
y 2 W �X and set:

X 0 = X [ fyg
R0 = R]cupf(x; y); (y; x0)g [ f(v; y) : vRxg [ f(y; v) : (x0Rv)g
I 0 = T [ f(y;B)g:

In other words, we insert a point between x and x0, assigning it the set B.
Requirements of form 8(2) are handled similarly, using a mirror image of
the Lemma, proved using (A2b). No further modi�cations in the work of
Section 3.1 above are called for.

The foregoing argument also establishes the following: let Ltree be the
extension of L1 obtained by adding (A2b) as an extra axiom. Let Ktree

be the class of trees, de�ned for present purposes as those partial orders in
which the predecessors of any element are totally ordered. Then Ltree is
complete for Ktree.

It is worth remarking that the following are valid over total orders:

FPp! Pp _ p _ Fp; PFp! Pp _ p _ Fp:

To �nd deductions of them in L2 is a nontrivial exercise. As a matter of
fact, these two items could have been used instead of (A2a, b) as axioms
for total orders. One could equally well have used their contrapositives:

Hp ^ p ^Gp! GHp; Hp ^ p ^Gp! HGp:

The converses of these four items are valid over partial orders.

3.3 No Extremals (No Maximals, No Minimals)

Let L3 (resp. L4) be the extension of L2 obtained by adding (A3a, b)
(resp. (A4a, b)) as extra axioms. Let K3 (resp. K4) be the class of total
orders having (resp. not having) a maximum and a minimum. Beyond
understanding the notions of consistency and MCS relative to L3 or L4 as
the case may be, no modi�cation in the work of Section 3.2 above is needed
to prove L3 complete for K3 and L4 for K4. The following observations
suÆce:

On the one hand, understanding consistency and MCS relative to L3, if
(X;R) is any total order and T any perfect chronicle on it, then for any
x 2 X , either G? 2 T (x) itself, or FG? 2 T (x) and so G? 2 t(y) for
some y with xRy|this by (A3a). But if G? 2 T (z), then with w with
zRw would have to have ? 2 T (w), which is impossible so z must be the
maximum of (X;R). Similarly, A3b guarantees the existence of a minimum
in (X;R).

On the other hand, understanding consistency and MCS relative to L4,
if (X;R) is any total order and T any perfect chronicle on it, then for any
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x 2 X we have G> ! F> 2 T (x), and hence F> 2 T (x), so there must be
a y with (> 2 T (y) and) xRy| this by (A4a). Similarly, (A4b) guarantees
that for any x there is a y with yRx.

The foregoing argument also establishes that the extension of L1 ob-
tained by adding (A4a, b) is complete for the class of partial orders having
nonmaximal or minimal elements.

It hardly needs saying that one can axiomatise the view (characteristic
of Western religious cosmologies) that Time had a beginning, but will have
no end, by adding (A3b) and (A4a) to L2.

3.4 Density

The extension L5 of L2 obtained by adding (A5a) (or equivalently (A5b))
is complete for the class K5 of dense total orders. The main modi�cation
in the work of Section 3.2 above needed to show this is that in addition to
requirements of forms 8(1,2) we need to consider requirements of the form:

5. if xRy, then there exists a z with xRz and zRy.

To `kill' such a requirement, given a coherent chronicle T on a �nite total
order (X;R and x; y 2 X with y immediately succeeding x, we need to be
able to insert a point z between x and y, and �nd a suitable MCS to assign
to z. For this the following suÆces:

LEMMA Let A;B be MCSs with A 3B. Then there exists an MCS C with
A 3C and C 3B.

Proof. The problem quickly reduces to showing fP� : � 2 Ag [ fF� : � 2
Bg consistent. For this it suÆces to show that if � 2 A and � 2 b, then
F (P� ^ F�) 2 A. Now if � 2 B, then since A 3B;F� 2 A, and by (A5a),
FF� 2 A. An appeal to 3(3) completes the proof. �

HGp � GHp
FHp PGp

Hp Gp
Php FGp

p
HPp GFp

Pp Fp
GPp HFp

FPp � PFp

Figure 1.
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Table 1.

GGHp � GHp FGHp � GHp
GFHp � GHp FFHp � FHp
GPGp � Gp FPGp � FGp
GPHp � PHp FPHp � PHp
GFGp � FGp FFGp � FGp
GHPp � HPp FHPp � HPp
GGFp � GFp FGFp � GFp
GGPp � GPp FGPp � FPp
GHFp � GFp FHFp � Fp
GFPp � FPp FFPp � FPp

Similarly, the extension LQ of L2 obtained by adding (A4a, b) and (A5a)
is complete for the class of dense total orders without maximum or mini-
mum. A famous theorem tells us that any countable order of this class is
isomorphic to the rational numbers in their usual order. Since our method
of proof always produces a countable frame, we can conclude that LQ is
the tense logic of the rationals. The accompanying diagram (1) indicates
some implications that are valid over dense total orders without maximum
or minimum, and hence theses of LQ; no further implications among the
formulas considered are valid. A theorem of C. L. Hamblin tells us that in
LQ any sequence of Gs, Hs, F s and P s pre�xed to the variable p is provably
equivalent to one of the 15 formulas in our diagram. It obviously suÆces
to prove this for sequences of length three. The reductions listed in the
accompanying Table 1 together with their mirror images, suÆce to prove
this. It is a pleasant exercise to verify all the details.

3.5 Discreteness

The extension L6 of L2 obtained by adding (A6a, b) is complete for the
class K6 of total orders in which every element has an immediate successor
and an immediate predecessor. The proof involves quite a few modi�cations
in the work of Section 3.2 above, beginning with:

LEMMA For any MCS A there exists an MCS B such that:

1. whenever F 2 A then  _ F 2 B.

Moreover, any such MCS further satis�es:

2. whenever PÆ 2 B, then Æ _ PÆ 2 A,
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3. whenever A 3C, then either B = C or B 3C,

4. whenever C 3B, then either A = C or C 3A.

Proof.

1. The problem quickly reduces to proving the consistency of any �nite
set of formulas of the forms P� for � 2 A and  _F for F 2 A. To
establish this, one notes that the following is valid over total orders,
hence a thesis of (L2 and a fortiori of) L6:

Fp0 ^ Fp1 ^ : : : ^ Fpn !
F ((p0 _ Fp0) ^ (p1 _ Fp1) ^ : : : ^ (pn _ Fpn))

2. We prove the contrapositive. Suppose Æ_PÆ 62 A. By (A6a), FH:Æ 2
A. by part (1), H:Æ_FH:Æ 2 B. But FHp! Hp is valid over total
orders, hence a thesis of L2 and a fortiori of) L6. So H:Æ 2 B and
PÆ 62 B as required.

3. Assume for contradiction that A 3C but neither B = C nor B 3C.
Then there exist a 0 2 C with 0 62 B and a 1 2 C with F1 62 B.
Let  = 0 ^ 1. Then  2 C and since A 3C;F 2 A. but  _ F 62
B, contrary to (1).

4. Similarly follows from (2). �

We write A 3 0B to indicate that A;B are related as in the above Lemma.
Intuitively this means that a situation of the sort described by A could be
immediately followed by one of the sort described by B.

We now take M to e the set of quadruples (X;R; S; T ) where on the one
hand, as always X is a nonempty �nite subset of W;R a total order on X ,
and T a coherent chronicle on (X;R); while on the other hand, we have:

4. whenever xSy, then y immediately succeeds x in (X;R),

5. whenever xSy, then T (x) 3 0T (y),

Intuitively xSy means that no points are ever to be added between x and
y. We say (X 0; R0; S0; T 0) extends (X;R; S; T ) if on the one hand, as always,
De�nition 10(10, 20, 30) hold; while on the other hand, S � S0. In addition
to requirements of the form 8(1, 2) we need to consider requirements of the
form:

5. there exists a y with xSy,

4. there exists a y with ySx.
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To `kill' a requirement of form (5), take an MCS B with T (x) 3 0B. If x is
the maximum of (X;R) it suÆces to �x z 2W �X and set:

X 0 = X [ fzg; R0 = R [ f(x; z)g [ f(v; z) : vRxg;
S0 = S [ f(x; z)g; T 0 = T [ f(z;B)g

Otherwise, let y immediately succeed x in (X;R). If B = T (y) set:

X 0 = X; R0 = R;
S0 = S [ f(x; y)g T 0 = T:

Otherwise, we have B 3T (y), and it suÆces to �x z 2 W �X and set:

X 0 = X; R0 = R [ f(x; z); (z; y)g[
[f(v; z) : vRxg [ f(z; v) : yRvg;

S0 = S [ f(x; z)g; T 0 = T [ fz;B)g

Similarly, to kill a requirement of form (6) we use the mirror image of
the Lemma above, proved using (A6b).

It is also necessary to check that when xSy we never need to insert a
point between x and y in order to kill a requirement of form 8(1) or (2).
Reviewing the construction of Section 3.2 above, this follows from parts (3),
(4) of the Lemma above. The remaining details are left to the reader.

A total order is discrete if every element but the maximum (if any) has
an immediate successor, and every element but the minimum (if any) has
an immediate predecessor. The foregoing argument establishes that we get
a complete axiomatisation for the tense logic of discrete total orders by
adding to L2 the following weakened versions of (A6a, b):

p ^Hp! G? _ FHp; p ^Gp! H?_ PGp:

A total order is homogeneous if for any two of its points x; y there exists
an automorphism carrying x to y. Such an order cannot have a maximum
or minimum and must be either dense or discrete. In Burgess [1979] it is
indicated that a complete axiomatisation of the tense logic is homogeneous
orders is obtainable by adding to L4 the following which should be compared
with (A5a) and (A6a, b):

(Fp! FFp) _ [(q ^Hq ! FHq) ^ (q ^Gq ! PGq)]:

3.6 Continuity

A cut in a total order (X;R) is a partition (Y; Z) of X into two nonempty
pieces, such that whenever y 2 Y and z 2 Z we have yRz. A gap is a cut
(Y; Z) such that Y has no maximum and Z no minimum. (X;R) is complete
if it has no gaps. The completion (X+; R+) of a total order (X;R) is the
complete total order obtained by inserting, for each gap (Y; Z) in (X;R),



20 JOHN P. BURGESS

an element w(Y; Z) after all elements of Y and before all elements of Z.
For example, the completion of the rational numbers in their usual order is
the real numbers in their usual order. The extension L7 of L2 obtained by
adding (A7a, b) is complete for the class K7 of complete total orders. The
proof requires a couple of Lemmas:

LEMMA Let T be a perfect chronicle on a total order (X;R), and (Y; Z) a
gap in (X;R). Then if G� 2 T (z) for all z 2 Z, then G� 2 T (y) for some
y 2 Y .

Proof. Suppose for contradiction that G� 2 T (z) for all z 2 Z but F:� �
:G� 2 T (y) for all y 2 Y . For any y0 2 Y we have F:� ^ FG� 2 T (y).
Hence, by A7a, F (G� ^HF:�) 2 T )y0), and there is an x with y0Rx and
G� 2 HF:� 2 T (x). But this is impossible, since if x 2 Y then G� 62 T (x),
while if x 2 Z then HF:� 62 T (x). �

LEMMA Let T be a perfect chronicle on a total order (X;R). Then T can
be extended to a perfect chronicle T+ on its completion (X+; R+).

Proof. For each gap (Y; Z) in (X;R), the set:

C(Y; Z) = fP� : 9y 2 Y (� 2 T (y))g [ fF� : 9z 2 Z(� 2 T (z))g

is consistent. This is because any �nite subset, involving only y1; : : : ; ym
form Y and z1; : : : ; zn from Z will be contained in T (x) where x is any
element of Y after all the yi or any element of Z before all the zj . Hence,
we can de�ne a coherent chronicle T+ on (X+; R+) by taking T+(w(Y; Z))
to be some MCS extending C(Y; Z). Now if F� 2 T+(w(Y; Z)), we claim
that F� 2 T (z) for some z 2 Z. For if not, then G:� 2 T (z) for al
z 2 Z, and by the previous Lemma, G:� 2 T (y) for some y 2 Y . But then
PG:�, which implies :F�, would belong to C(Y; Z) � T+(w(Y; Z)), a
contradiction. It hardly needs saying that if F� 2 T (z), then there is some
x with zRx and a fortiori w(Y; Z)R+x having � 2 T (x). This shows T+ is
prophetic. Axiom (A7b) gives us a mirror image to the previous Lemma,
which can be used to show T+ historic. �

To prove the completeness of L7 for K7, given a consistent 0 use the
work of Section 2.2 above to construct a perfect chronicle T on a frame
(X;R) such that 0 2 T (x0) for some x0. Then use the foregoing Lemma
to extend to a perfect chronicle on a complete total order, as required to
prove satis�ability. �

Similarly, LR, the extension of L2 obtained by adding (A4a, b) and (A5a)
and (A7a, b) is complete for the class of complete dense total orders without
maximum or minimum, sometimes called continuous orders. As a matter of
fact, our construction shows that any formula consistent with this theory is
satis�able in the completion of the rationals, that is, in the reals. Thus LR
is the tense logic of real time and, hence, of the time of classical physics.
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3.7 Well-Orders

The extension L8 of L2 obtained by adding (A8) is complete for the class
K8 of all well-orders. For the proof it is convenient to introduce the abbre-
viations Ip for Pp _ p _ Fp or `p sometime', and Bp for p ^ :Pp or `p for
the �rst time'. an easy consequence of (A8) is Ip! IBp: if something ever
happens, then there is a �rst time when it happens the reader can check
that the following are valid over total orders; hence, theses of (L2 and a
fortiori of L9):

1. Ip ^ Iq ! I(Pp ^ q) _ I(p ^ q) _ I(p ^ Pq),

2. I(q ^ Fr) ^ I(PBp ^ Bq) ! I(p ^ Fr).

Now, understanding consistency, MCS, and related notions relative to L8,
let Æ0 be any consistent formula and D0 any MCS containing it. Let
Æ1; : : : ; Æk be all the proper subformulas of Æ0. Let � be the set of formulas
of form

(:)Æ0 ^ (:)Æ1 ^ : : : ^ (:)Æk

where each Æi appears once, plain or negated. Note that distinct elements
of � are truth-functionally inconsistent. Let �0 = f 2 � : I 2 D0g. Note
that for each  2 �0 we have IB 2 D0, and that for distinct ; 0 2 �0 we
must by (1) have either I(PB ^B0) or I(PB0 ^B) in D0. Enumerate
the elements of �0 as 0; 1; : : : ; n so that I(PBi ^ Bj) 2 D0 i� i < j.
We write i� j if I(i ^ Fj) 2 D0. This clearly holds whenever i < j, but
may also hold in other cases. A crucial observation is:

(+) If i < j � k and k � i; then j � i

This follows from (2). These tedious preliminaries out of the way, we will
now de�ne a set X of ordinals and a function t from X to �0. Let a; b; c; : : :
range over positive integers:

We put 0 2 X and set t(0) = 0.
If 0� 0 we also put each a 2 X and set t(a) = 0.
We put ! 2 X and set t(!) = 1.
If 1� 1 we also put each � = ! � b 2 X and set t(�) = 1.
If 1� 0 we also put each � = ! � b+ a 2 X and set t(�) = 0.
We put !2 2 X and set t(!2) = 2.
If 2� 2 we also put each � = !2 � c 2 X and set t(�) = 2.
If 2�1 we also put each � = !2 � c+! � b 2 X , and set t(�) = 1.
If 2� we also put each � = !2 �c+! �b+a 2 X and set t(�) = 0.
and so on.

Using (+) one sees that whenever �; � 2 X and � < �, then i� j where
t(�) = i and t(�) = j . Conversely, inspection of the construction shows
that:
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1. whenever � 2 X and t(�) = j and j � k, then there is an � 2 X with
� < � and t(�) = k

2. whenever � 2 X and t(�) = j and i < j, then there is an � 2 X with
� < � and t(�) = i.

For � 2 X let T (�) be the set of conjuncts of t(�) . Using (1) and (2) one
sees that T satis�es all the requirements 8(1,2,3,4) for a perfect chronicle,
so far as these pertain to subformulas of Æ0. Inspection of the proof of
Lemma 9 then shows that this suÆces to prove Æ0 satis�able in the well-
order (X;<). �

Without entering into details here, we remark that variants of L8 provide
axiomatisations of the tense logics of the integers, the natural numbers, and
of �nite total orders. In particular, for the natural numbers one uses L!,
the extension of L2 obtained by adding (A8) and p ^ Gp ! H? _ PGp.
L! is the tense logic of the notion of time appropriate for discussing the
working of a digital computer, or of the mental mathematical constructions
of Brouwer's `creative subject'.

3.8 Lattices

The extension L9 of L1 obtained by adding (A4a, b) and (A9a, b) is com-
plete for the class K9 of partial orders without maximal or minimal elements
in which any two elements have an upper and a lower bound. We sketch
the modi�cations in the work of Section 3.2 above needed to prove this:

To begin with, we must revise clause 10(2) in the de�nition of M to read:

2g. R is a partial order on X having a maximum and a minimum.

This necessitates revisions in the proof of the Killing Lemma, for which the
following will be useful:

LEMMA Let A;B;C be MCSs. If A 3B and A 3C, then there exists an
MCS D such that B 3D and C 3D.

Proof. The problem quickly reduces to showing f� : G� 2 Bg [ f : G 2
Cg consistent. For this it suÆces (using 3(4)) to show that �^ is consistent
whenever G� 2 B;G 2 C. Now in that case we have FG�; FG 2 A,
since A 3B;C. By A9a, we then have GF� 2 A, and by 3(2) we then
have F (F� ^ G) 2 A and FF (� ^ ) 2 A, which suÆces to prove � ^ 
consistent as required. �

Turning now to the Killing Lemma, trouble arises when for a given
(X;R; T ) 2 M a requirement of form De�nition 8(1) is said to be `killed'
for some x other than the maximum y of (X;R) and some F 2 T (x).
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Fixing an MCS B with T (x) 3B and  2 B, and az 2 W �X , we would
like to ad z to x placing it after x and assigning it the MCS B. But we
cannot simply do this, else the resulting partial order would have no maxi-
mum. (For y and z would be incomparable.) So we apply the Lemma (with
A = T (x); C = T (y)) to obtain an MCS D with B 3D and T (y) 3D. We
�x a w 2 W �X distinct from z, and set:

X 0 = X [ fz; wg;
R0 = R [ f(x; z); (z; w)g [ f(v; z) : vRxg [ f(v; w) : v 2 Xg:
T 0 = T [ f(z;B); (w;D)g:

Similarly, a requirement of form 8(2) involving an element other than the
minimum is treated using the mirror image of the Lemma above, proved
using (A9b).

Now given a formula 0 consistent with L9, the construction of De�nition
10 above produces a perfect chronicle T on a partial order (X;R) with
0 2 T (x0) for some x0. The work of Section 2.4 above shows that (X;R)
will have no maximal or minimal elements. Moreover, (X;R) will be a union
of partial orders (Xn; Rn) satisfying (2g). Then any x; y 2 X will have an
R-upper bound and an R-lower bound, namely the Rn- maximumand Rn-
minimum elements of any Xn containing them both. Thus, (X;R) 2 K9

and 0 is satis�able over K9. �

A lattice is a partial order in which any two elements have a least upper
bound and a greatest lower bound. Actually, our proof shows that L9 is
complete for the class of lattices without maximum or minimum. It is
worth mentioning that (A9a, b) could have been replaced by:

Fp ^ Fq ! F (Pp ^ Pq); Pp ^ Pq ! P (Fp ^ Fq):

Weakened versions of these axioms can be used to give an axiomatisation
for the tense logic of arbitrary lattices.

4 THE DECIDABILITY OF TENSE LOGICS

All the systems of tense logic we have considered so far are recursively de-
cidable. Rather than give an exhaustive (and exhausting) survey, we treat
here two examples, illustrating the two basic methods of proving decidabil-
ity: one method, borrowed from modal logic, is that of using so- called �l-
trations to establish what is known as the �nite model property. The other,
borrowed from model theory, is that of using so-called interpretations in
order to be able to exploit a powerful theorem of [Rabin, 1966].

THEOREM 13. L9 is decidable.

Proof. Let K be the class of models of (B1) and (B9a, b); thus K is like K9

except that we do not require antisymmetry. Let K0 be the class of �nite
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elements of K. It is readily veri�ed that L9 is sound for K and a fortiori
for K0. We claim that L9 is complete for K0. This provides an e�ective
procedure for testing whether a given formula � is a thesis of L9 or not,
as follows: search simultaneously through all deductions in the system L9

and through all members of K0|or more precisely, of some nice countable
subclass of K0 containing at least one representative of each isomorphism-
type. Eventually one either �nds a deduction of �, in which case � is a
thesis, or one �nds an element of K0 in which :� is satis�able, in which case
by our completeness claim, � is not a thesis.

To prove our completeness claim, let 0 be consistent with L9. We showed
in Section 2.9 above how to construct a perfect chronicle T on a frame
(X;R) 2 K9 � K having 0 2 T (x0) for some x0. For x 2 X , let t(x) be the
set of subformulas of 0 in T (x). De�ne an equivalence relation on X by:

x$ y i� t(x) = t(y):

Let [x] denote the equivalence class of x;X 0 the set of all [x]. Note that
X 0 is �nite, having no more than 2k elements, where k is the number of
subformulas of 0. Consider the relations on X 0 de�ned by:

aR+b i� xRy for some x 2 a and y 2 b;
aR0b i� for some �nite sequence a = c0; c1; : : : ; cn�1; cn = b

we have ciR
+ci+1 for all i < n.

Clearly R0 is transitive, while R+ and, hence, R0 inherit from R the prop-
erties expressed by B9a, b. Thus (X 0; R0) 2 K0. De�ne a function t0 on X 0

by letting t0(a) be the common value of t(x) for all x 2 a. In particular for
a0 = [x0] we have 0 2 t0(a0). We claim that t0 satis�es clauses 8(1, 2, 3, 4)
of the de�nition of a perfect chronicle so far as these pertain to subformulas
of 0. As remarked in Section 3.8 above, this suÆces to show 0 satis�able
in (X 0; R0) and, hence, satis�able over K0 as required.

In connection with De�nition 8(1), what we must show is:

1. whenever F 2 t(a) there is a b with aR0b and  2 t(b)

Well, let a = [x], so F 2 t(x) � T (x). There is a y with xRy and  2 t(y)
since T is prophetic. Letting b = [y] we have aR+b and so aR0b.

In connection with De�nition 8(3) what we must show is:

30. whenever G 2 t(a) and aR0b, then  2 t(b).

For this it clearly suÆces to show:

3+ whenever G 2 t(a) and aR+b, then  2 t(b) and G 2 t(b).

To show this, assuming the two hypotheses, �x x 2 a and y 2 b with xRy.
We have G 2 t(x) � T (x), so by (A1a), GG 2 T (x). Hence,  2 t(y) and
G 2 t(y), since T is coherent|which completes the proof.

De�nitions 8(2, 4) are treated similarly. �
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THEOREM 14. LR is decidable.

Proof. We introduce an alternative de�nition of validity which is useful in
other contexts. To each tense-logical formula � we associate a �rst-order
formula �̂ as follows: for a sentential variable pi we set p̂i = Pi(x) where Pi
is a one-place predicate variable. We then proceed inductively:

(:�)̂ = :�̂;

(� ^ �)̂ = �̂ ^ �̂
(G�)̂ = 8y(x < y ! �̂(y=x));
(H�)̂ = 8y(y < x! �̂(y=x)):

Here (y=x) represents the result of substituting for x the alphabetically �rst
variable y not occurring yet. Given a valuation V in a frame (X;R) we
have an interpretation in the sense of �rst-order model theory, in which R
interprets the symbol < and V (pi) the symbol Pi. Unpacking the de�nitions
it is entirely trivial that we always have:

(�) a 2 V (�) i� (X;R; V (p0); V (p1); V (p2); : : :) � �̂(x);

where � is the usual satisfaction relation of model theory. We now further
de�ne:

a+ = 8P08P1; : : : ;8Pk8x�̂(x);

where p0; p1; : : : ; pk include all the variables occurring in �. Note that �+

is a second-order formula of the simplest kind: it is monadic (all its second-
order variables are one- place predicate variables) and universal (consisting
of a string of universally-quanti�ed second-order variables pre�xed to a �rst-
order formula). It is entirely trivial that:

(+) � is valid in (X;R) i� (X;R) � �+

It follows that to prove the decidability of the tense logic of a given class
K of frames it will suÆce to prove the decidability of the set of universal
monadic (second-order) formulas true in all members of K.

Let 2<! be the set of all �nite 0; 1-sequences. Let �0 be the func-
tion assigning the argument s = (i0; i1; : : : ; in) 2 2<! the value s � 0 =
(i0; i1; : : : ; in; 0), and similarly for �1. Rabin proves the decidability of the
set S2S of monadic (second order) formulas true in the structure (2<!; �0; �1).
He deduces as an easy corollary the decidability of the set of monadic for-
mulas true in the frame (Q ; <) consisting of the rational numbers with their
usual order. This immediately yields the decidability of the system LQ of
Section 2.5 above. Further corollaries relevant to tense logic are the decid-
ability of the set of monadic formulas true in all countable total orders, and
similarly for countable well-orders.
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It only remains to reduce the decision problem for LR to that for LQ. The
work of 2.7 above shows that a formula � is satis�able in the frame (R ; <)
consisting of the real numbers with their usual order, i� it is satis�able in
the frame (Q ; <) by a valuation V with the property:

1. V (�) = Q for every substitution instance � of (A7a or b).

Inspection of the proof actually shows that it suÆces to have:

2. V (�0) = Q where �0 is the conjunction of al instances of (A7a or b)
obtainable by substituting subformulas of � for variables.

A little thought shows that this amounts to demanding:

3. V (� ^GH�0) 6= ?.

In other words, � is satis�able in (R; <) i� �^GH�0 is satis�able in (R ; <),
which e�ects the desired reduction. For the lengthy original proof see [Bull,
1968]. Other applications of Rabin's theorem are in [Gabbay, 1975]. Ra-
bin's proof uses automata-theoretic methods of B�uchi; these are avoided by
[Shelah, 1975]. �

5 TEMPORAL CONJUNCTIONS AND ADVERBS

5.1 Since, Until, Uninterruptedly, Recently, Soon

All the systems discussed so far have been based on the primitives :;^; G;H .
It is well-known that any truth function can be de�ned in terms of :;^. Can
we say something comparable about temporal operators and G;H? When
this question is formulated precisely, the answer is a resounding NO.

DEFINITION 15. Let ' be a �rst-order formula having one free variable
x and no nonlogical symbols but the two-place predicate < and the one-
place predicates P1; : : : ; Pn. corresponding to ' we introduce a new n-place
connective, the (�rst-order, one-dimensional) temporal operator O('). We
describe the formal semantics of O(') in terms of the alternative approach
of Theorem 14 above: we add to the de�nition of ^ the clause:

(O(')(�1 ; : : : ; �n))̂ = '(�̂1=P1; : : : ; �̂n=Pn):

Here �̂=P denotes substitution of the formula �̂ for the predicate variable
P . We then let formula (*) of Theorem 14 above de�ne V (�) for formulas �
involving O('). Examples 16 below illustrate this rather involved de�nition.
If O = fO('1); : : : ; O('k)g is a set of temporal operators, an O-formula is
one built up from sentential variables using :;^, and elements of O. A
temporal operator O(') is O- de�nable over a class K of frames if there
is an O- formula � such that O(')(p1; : : : ; pn) $ � is valid over K. O is
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temporally complete over K if every temporal operator is O-de�nable over
K. Note that the smaller K is|it may consist of a single frame| the easier
it is to be temporally complete over it.

EXAMPLES 16.

1. 8y(x < y ! P1(y))

2. 8y(y < x! P1(y))

3. 9y(x < y ^ 8z(x < z ^ z < y ! P1(z)))

4. 9y(y < x ^ 8z(y < z ^ z < x! P1(z)))

5. 9y(x < y ^ P1(y) ^ 8z(y < z ^ z < x! P1(z)))

For (1), O(') is just G. For (2), O(') is just H . For (3), O(') will be
written G0, and may be read `p is going to be uninterruptedly the case for
some time'. For (4), O(') will be written H 0, and may be read `p has been
uninterruptedly the case for some time. For (5), O(') will be written U ,
and U(p; q may be read `until p; q'; it predicts a future occasion of p's being
the case, up until which q is going to be uninterruptedly the case. For (6),
O(') will be written S, and S(p; q) may be read `since p; q'. In terms of
G0 we de�ne F 0 = :G;:, read `p is going to be the case arbitrarily soon'.
In terms of H 0 we de�ne P 0 = :H 0:, read `p has been the case arbitrarily
recently'. Over all frames, Gp is de�nable as :U(:p;>), and G0 as U(>; p).
Similarly, H and H 0 are de�nable in terms of S. The following examples
are due to H. Kamp:

PROPOSITION 17. G0 is not G, H-de�nable over the frame (R; <).

Sketch of Proof. De�ne two valuations over that frame by:

V (p) = f0;�1;�2;�3; : : :g W (p) = V (p) [ f� 1
2 ;�

1
4 ;�

1
8 ; : : :g

Then intuitively it is plausible, and formally it can be proved that for any
G, H-formula � we have 0 2 V (�) i� 0 2 W (�). But 0 2 V (G0p) �
W (G0p). �

PROPOSITION 18. U is not G;H;G0; H 0-de�nable over the frame (R; <).

Sketch of Proof. De�ne two valuations by:

V (p) = f�1;�2;�3;�4; : : :g W (p) = f�2;�3;�4; : : :g
V (q) = W (q) = the union of the open intervals

: : : ; (�5;�4); (�3;�2); (�1;+1);
(+2;+3); (+4;+5); : : :

Then intuitively it is plausible, and formally it can be proved that for any
G;H;G0; H 0-formula � we have 0 2 V (�) i� 0 2W (�). But 0 2 V (U(p; q)�
W (U(p; q)). �



28 JOHN P. BURGESS

Such examples might inspire pessimism, but [Kamp, 1968] proves:

THEOREM 19. The set fU; Sg is temporally complete over continuous or-
ders.

We will do no more than outline the diÆcult proof (in an improved version
due to Gabbay): Let O be a set of temporal operators, K a class of frames.
An O-formula � is purely past over K if whenever (X;R) 2 K and x 2
K and V;W are valuations in (X;R) agreeing before x (so that for all i,
V (pi) \ fy : yRxg = W (pi) \ fy : yRxg) then x 2 V (�) i� x 2 W (�).
Similarly, one de�nes purely present and purely future, and one de�nes pure
to mean purely past, or present, or future. Note that Hp;H 0p; S(p; q), are
purely past, their mirror images purely future, and any truth-functional
compound of variables purely present. O has the separation property over
K if for every O-formula � there exists a truth- functional compound � of
O-formulas pure over K such that � $ � is valid over K. O is strong over
K if G;H are O-de�nable over K. Gabbay [1981a] proves:

Criterion 20. Over any given class K of total orders, if O is strong and
has the separation property, then it is temporally complete.

A full proof being beyond the scope of this survey (see, however, the
next chapter `Advanced Tense Logic'), we o�er a sketch: we wish to �nd
for any �rst-order formula '(x;<; P1; : : : ; Pn) an O-formula �(p1; : : : ; pn)
representing it in the sense that for any (X;R) 2 K and any valuation V
and any a 2 X we have:

a 2 V (�) i� (X;R; V (p1); : : : ; V (pn) � '(a=x):

The proof proceeds by induction on the depth of nesting of quanti�ers in ',
the key step being '(x) = 9y (x; y). In this case, the atomic subformulas
of  are of the forms Pi(x); Pi(z); z < x; z = x; x < z; z = w; z < w, where z
and w are variables other than x. Actually, we may assume there are no sub-
formulas of the form Pi(x) since these can be brought outside the quanti�er
9y. We introduce new singulary predicates Q�; Q0; Q+ and replace the sub-
formulas of  of forms z < x; z = x; x < z by Q�(z); Q0(z); Q+(z), to obtain
a formula #(y;<; P1; : : : ; Pn; Q

�; Q0; Q+) to which we can apply our induc-
tion hypothesis, obtaining an O-formula Æ(p1; : : : ; pn; q

�; q0; q+) represent-
ing it. Let (p1; : : : ; spn) = Æ(p�1; : : : ; pn; F q; q; P q), and � = P__F.
It is readily veri�ed that for any (X;R) 2 K and any a; b 2 X and any
valuation V with V (q) = fag that we have:

b 2 V () i� (X;R; V (p1); : : : ; V (pn)) �  (a=x; b=y);
a 2 V (�) i� (X;R; V (p1); : : : ; V (pn)) � '(a=x):

By hypothesis, � is equivalent over K to a truth-functional compound of
purely past formulas ��i , purely present ones �0j , and purely future ones
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�+k . In each ��i (resp. �0j ) (resp. �+k ) replace q by ? (resp. >) (resp. ?)
to obtain an O-formula �. It is readily veri�ed that � represents '.

It `only' remains to show:

LEMMA 21. The set fU; Sg has the separation property over complete or-
ders.

Though a full proof is beyond the scope of this survey, we sketch the
method for achieving the separation for a formula � in which there is a
single occurrence of an S within the scope of a U . This case (and its mirror
image) is the �rst and most important in a general inductive proof.

To begin with, using conjunctive and disjunctive normal forms and such
easy equivalences as:

U(p _ q; t) $ U(p; t) _ U(q; t);
U(p; q ^ r) $ U(p; q) ^ U(p; r);
:S(q; r) $ S(:r;:q) _ P 0:r;

we can achieve a reduction to the case where � has one of the forms:

1. U(p ^ S(q; r); t)

2. U(p; q ^ S(r; t))

For (1), an equivalent which is a truth-functional compound of pure for-
mulas is provided by :

10. [(S(q; r) _ q) ^ U(p; r ^ t)] _ U(q ^ U(p; r ^ t); t)

For (2) we have:

20. f[(S(r; t) ^ t) _ r] ^ [U(p; t) _ U(�; t)]g _ �

where � is: F 0:t ^ U(p; q _ S(r; t)). This, despite its complexity, is purely
future. The observant reader should be able to see how completeness is
needed for the equivalence of (2) and w0).

Unfortunately, U and S take us no further, for Kamp proves:

PROPOSITION 22. The set fU; Sg is not temporally complete over (Q ; <).

Without entering into details, we note that one unde�nable operator is
O(') where ' says:

9y(x < y ^ 8z(x < z ^ z < y !
(8w(x < w ^ w < z ! P1((w)) _ 8w(z < w ^ w < y ! P2(w)))))

Over complete orders O(')(p; q) amounts to U(G0q ^ (p _ q); p).
J. Stavi has found two new operators U 0; S0 and proved:

THEOREM 23. The set fU; S; U 0; S0g is temporally complete over total or-
ders.
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Gabbay has greatly simpli�ed the proof: the idea is to try to prove the
separation property over arbitrary total orders, and see what operators one
needs. One quickly hits on the right U 0; S0. The combinatorial details
cannot detain us here.

What about axiomatisability for U; S-tense logic? Some years ago Kamp
announced (but never published) �nite axiomatisability for various classes
of total orders. Some are treated in [Burgess, 1982], where the system for
dense orders takes a particularly simple form: we depart from standard
format only to the extent of taking U; S as our primitives. As characteristic
axioms, it suÆces to take the following and their mirror images:

G(p! q) ! (U(p; r) ! U(q; r)) ^ ((U(r; p) ! U(r; q))
p ^ U(q; r) ! U(q ^ S(p; r); r);
U(p; q) $ U(p; q ^ U(p; q)) $ U(q ^ U(p; q); q);
U(; q) ^ :U(p; r) ! U(q ^ :r; q);
U(p; q) ^ U(r; s) ! U(p ^ r; q ^ s _ U(p ^ s; q ^ s) _ U(q ^ r; q ^ s):

A particularly important axiomatisabiity result is in [Gabbay et al., 1980].
What about decidability? Rabin's theorem applies in most cases, the

notable exceptions being complete orders, continuous orders, and (R ; <).
Here techniques of monadic second-order logic are useful. Decidability for
the cases of complete and continuous orders is established in [Gurevich,
1977, Appendix]; and for (R; <) in [Burgess and Gurevich, 1985]. A fact
(due to Gurevich) from the latter paper worth emphasising is that the U; S-
tense logics of (R; <) and of arbitrary continuous orders are not the same.

5.2 Now, Then

We have seen that simple G;H-tense logic is inadequate to express certain
temporal operators expressible in English. Indeed it turns out to be inade-
quate to express even the shortest item in the English temporal vocabulary,
the word `now'. Just what role this word plays is unclear| some incautious
writers have even claimed it is semantically redundant| but [Kamp, 1971]

gives a thorough analysis. Let us consider some examples:

0. The seismologist predicted that there would be an earthquake.

1. The seismologist predicted that there would be an earthquake now.

2. The seismologist predicted that there would already have been an
earthquake before now.

3. The seismologist predicted that there would be an earthquake, but
not till after now.
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As Kamp says:

The function of the word `now' in (1) is to make the clause
to which it applies|i.e. `there would be an earthquake'|refer
to the moment of utterance of (1) and not to the moment of
moments (indicated by other temporal modi�ers that occur in
the sentence) to which the clause would refer (as it does in (0))
if the word `now' were absent.

5.3 Formal Semantics

To formalise this observation, we introduce a new one-place connective J
(for jetzt). We de�ne a pointed frame to be a frame with a designated
element. A valuation in a pointed frame (X;R; x0) is just a valuation in
(X < R). We extend the de�nition of 0.4 above to G;H; J-formulas by
adding the clause:

V (J�) = X if x0 2 V (�);? if x0 62 V (�)

is valid in (X;R; x0) if x0 2 V (�) for all valuations V .
An alternative approach is to de�ne a 2-valuation in a frame (X;R) to b

a function assigning each pi a subset of the Cartesian product X2. Parallel
to 1.4 above we have the following inductive de�nition:

V (:�) = X2 � V (�);
V (� ^ �) = V (�) \ V (�);
V (G�) = f(x; y) : 8x0(xRx0 ! (x0; y) 2 V (�)g;
V (H�); similarly;
V (J�) = f(x; y) : (y; y) 2 V (�)g

� is valid in (X;R) if f(y; y) : y 2 Xg � V (�) for all 2-valuations V .
The two alternatives are related as follows: Given a 2-valuation V in the

frame (X;R), for each y 2 X consider the valuation Vy in the pointed frame
(X < R; y) given by Vy(pi) = fx : (x; y) 2 V (pi)g. Then we always have
(y; y) 2 V (�) i� y 2 Vy(�).

The second approach has the virtue of making it clear that though J is
not a temporal operator in the sense of the preceding section, it is in a sense
that can be made precise a two-dimensional tense operator. This suggests
the project of investigating two-and multi-dimensional operators generally.
Some such operators, for instance the `then' of [Vlach, 1973], have a natural
reading in English. Among other items in our bibliography, [Gabbay, 1976]

and [Gabbay and Guenthner, 1982] contain much information on this topic.
Using J we can express (0){(3) as follows:

00. P (seismologist says: F (earthquake occurs)),

10. P (seismologist says: J (earthquake occurs)),
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20. P (seismologist says: JP (earthquake occurs)),

30. P (seismologist says: JF (earthquake occurs)).

The observant reader will have noted that (00){(30) are not really repre-
sentable by G;H; J-formulas since they involve the notion of `saying' or
`predicting'), a propositional attitude. Gabbay, too, gives many examples of
uses of `now' and related operators, and on inspection these, too, turn out
to involve propositional attitudes. That this is no accident is shown by the
following result of Kamp:

THEOREM 24 (Eliminability theorem). For any G;H; J-formula � there
is a G;H-formula �� equivalent over all pointed frames.

Proof. Call a formula reduced if it contains no occurrence of a J within
the scope of a G or an H . Our �rst step is to �nd for each formula � an
equivalent reduced formula �R. This is done by induction on the complexity
of �, only the cases � = G� or � = H� being nontrivial. In, for instance,
the latter case, we use the fact that any truth-function can be put into
disjunctive normal form, plus the following valid equivalence:

(R) H((Jp ^ q) ^ r) $ ((Jp ^H(q _ r)) _ (:Jp ^Hr))

Details are left to the reader. Our second step is to observe that if � is
reduced, then it is equivalent to the result �� of dropping all its occurrences
of J . It thus suÆces to set �� = (�R)�. �

The foregoing theorem says that in the presence of truth-functions and G
and H , the operator J is, in a sense, redundant. By contrast, examples (0){
(3) suggest that in contexts with propositional attitudes, J is not redundant;
the lack of a generally-accepted formalisation of the logic of propositional
attitudes makes it impossible to turn this suggestion into a rigorous theorem.
But in contexts with quanti�ers, Kamp does prove rigorously that J is
irredundant. Consider:

4. The Academy of Arts rejected an applicant who was to become a
terrible dictator and start a great war.

5. The Academy of arts has rejected an applicant who is to become a
terrible dictator and start a great war.

The following formalisations suggest themselves:

40. P (9x(R(x) ^ FD(x))

50. P (9x(R(x) ^ JFD(x)),
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the di�erence between (4) and (5) lying precisely in the fact that the latter,
unlike the former, de�nitely places the dictatorship and war in the hearer's
future. What Kamp proves is that (50) cannot be expressed by a G;H-
formula with quanti�ers.

Returning to sentential tense logic, Theorem 24 obviously reduces the
decision problem for G;H; J-tense logic to that for G;H- tense logic. As for
axiomatisability, obviously we cannot adopt the standard format of G;H-
tense logic, since the rule TG does not preserve validity forG;H; J-formulas.
For instance:

(D0) p$ Jp

is valid, but G(p $ Jp) and H(p $ Jp) are not. Kamp overcomes this
diÆculty, and shows how, in very general contexts, to obtain from a com-
plete axiomatisation of a logic without J , a complete axiomatisation of the
same logic with J . For the sentential G;H; J- tense logic of total orders,
the axiomatisation takes a particularly simple form: take as sole rule MP.
Let Lp abbreviate Hp ^ p ^ Gp. Take as axioms all substitution instances
of tautologies, of (Do) above, and of L�, where � may be any item on the
lists (D1), (D2) below, or the mirror image of such an item:

(D1) G(p! q) ! (Gp! Gq)
p! GPp
Gp$ GGp
Lp$ GHp

(D2) J:p$ :Jp
J(p ^ q) $ Jp ^ Jq
:L:Jp$ LJp
Lp! Jp:

(In outline, the proof of completeness runs thus: using (D1) one deduces
Lp! LLp. It follows that the class of theses deducible without use of (D0)
is closed under TG. Our work in Section 3.2 shows that we then get the
complete G;H-tense logic of total orders. We then use (D2) to prove the
equivalence (R) in the proof of Theorem 24 above. More generally, for any
�; � $ �R is deducible without using (D0). Moreover, using D0, � $ ��

is deducible for any reduced formula �. Thus in general �$ �� is a thesis,
completing the proof.)

6 TIME PERIODS

The geometry of Space can be axiomatised taking unextended points as
basic entitites, but it can equally well be axiomatised by taking as basic
certain regular open solid regions such as spheres. Likewise, the order of
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Time can be described either (as in Section 1.1) in terms of instants in terms
of periods of non zero duration. Recently it has become fashionable to try to
redo tense logic, taking periods rather than instants as basic. Humberstone
[1979] seems to be the �rst to have come out in print with such a proposal.
This approach has become so poplar that we must give at least a brief
account of it; further discussion can be found in [van Benthem, 1991]. (See
also Kuhn's discussion in the last chapter of this Volume of the Handbook.)

In part, the switch from instants to periods is motivated by a desire to
model certain features of natural language. One of these is aspect, the verbal
feature which indicates whether we are thinking of an occurrence as an event
whose temporal stages (if any) do not concern us, or as a protracted process,
forming, perhaps the backdrop for other occurrences. These two ways of
looking at death (a popular, if morbid, example) are illustrated by:

When Queen Anne died, the Whigs brought in George.

While Queen Anne was dying, the Jacobites hatched treasonable
plots.

Another feature of linguistic interest is the peculiar nature of accomplish-
ment verbs, illustrated by:

1. The Amalgamated Conglomerate Building was built during the pe-
riod March{August 1972.

10. The ACB was built during the period April{July, 1972.

2. The ACB was being built (i.e. was under construction) during the
period March{August, 1972.

20. The ACB was under construction during the period April{ July,
1972.

Note that (1) and (10) are inconsistent, whereas (2) implies (20)!
In part, the switch is motivated by a philosophical belief that periods are

somehow more basic than instants. This motivation would be more con-
vincing were `periods' not assumed (as they are in too many recent works)
to have sharply-de�ned (i.e. instantaneous) beginnings and ends. It may
also be remarked that at the level of experience some occurrences do appear
to be instantaneous (i.e. we don't discern stages in them). Thus `bubbles
when they burst' seem to do so `all at once and nothing �rst'. While at
the level of reality, some occurrences of the sort studied in quantum physics
may well take place instantaneously, just as some elementary particles may
well be pointlike. Thus the philosophical belief that every occurrence takes
some time (period) to occur is not obviously true on any level.

Now for the mechanics of the switch: for any frame (X, R) we consider the
set I(X;R) of nonempty bounded open intervals of form fz : xRz ^ zRyg.
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Among the many relations on this set that could be de�ned in terms of R
we single out two:

Inclusion : a � b i� 8x(x 2 a! x 2 b);
Order : a� b i� 8x8y(x 2 a ^ y 2 b! xRy):

To any class K of frames we associate the class K0 of those structures of form
(I(X;R);�;�) with (X < R) 2 K, and the class K+ of those structures
(Y; S; T ) that are isomorphic to elements of K0.

A �rst problem in switching from instants to periods as the basis for the
logic of time is to �nd each important class K of frames a set of postulates
whose models will be precisely the structures in K+. For the case of dense
total orders without extrema, and for some other cases, suitable postulate
sets are known, though none is very elegant. Of course this �rst problem
is not yet a problem of tense logic; it belongs rather to applied �rst- and
second-order logic.

To develop a period-based tense logic we de�ne a valuation in a structure
(Y; S; T )|where S; T are binary relations on Y|to be a function V assign-
ing each pi a subset of Y . Then from among all possible connectives that
could be de�ned in terms of S and T , we single out the following:

V (:�) = Y � V (�)
V (� ^ �) = V (�) \ V (�)
V (r�) = fa : 8b(bSa! b 2 V (�))g
V (��) = fa : 8b(aSb! b 2 V (�))g
V (F�) = fa : 9b(aTb ^ b 2 V (�))g
V (P�) = fa : 9b(bTa ^ b 2 V (�))g:

The main technical problem now is, given a class L of structures (Y; S; T )|
for instance, one of form L = K+ for some class K of frames|to �nd a sound
and complete axiomatisation for the tense logic of L based on the above con-
nectives. Some results along these lines have been obtained, but none as
de�nitive as those of instant-based tense logic reported in Section 3. Indeed,
the choice of relations (� and �), and of admissible classes L (should we
only consider classes of form K+?), and of connectives (:;^;�;r; F; P ), and
of admissible valuations (should we impose restrictions, such as requiring
b 2 V (pi) whenever a 2 V (pi) and b � a?) are all matters of controversy.

The main problem of interpretation|one to which advocates of period-
based tense logic have perhaps not devoted suÆcient attention|is how to
make intuitive sense of the notion a 2 V (p) of a sentence p being true with
respect to a time-period a. One proposal is to take this as meaning that p
is true throughout a. Now given a valuation W in a frame (X;R), we can
de�ne a valuation I(W ) in I(X;R) by I(W )(pi) = fa : a � W (pi)g. When
and only when V has the form I(W ) is `p is true throughout a' a tenable
reading of a 2 V (p). It is not, however, easy to characterise intrinsically
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those V that admit a representation in the form V = I(W ). Note that even
in this case, a 2 V (:p) does not express `(:p) is true throughout a' (but
rather `:(p is true throughout a)'). Nor does a 2 V (p _ q) express `(p _ q)
is true throughout a'.

Another proposal, originating in [Burgess, 1982] is to read a 2 V (p) as
`++ is almost always true during a'. This reading is tenable when V has the
form J(W ) for some valuation W in (X;R), where J(W )(pi) is by de�nition
fa : a �W (pi) is nowhere dense in the order topology on (XR)g. In this
case, `(:p) is almost always true during a' is expressible by a 2 V (r:p),
and `(p _ q) is almost always true during a; by a 2 V (r:r:(p _ q)). But
the whole problem of interpretation for period-based tense logic deserves
more careful thought.

There have been several proposals to redo tense logic on the basis of 3-
or 4- of multi-valued truth-functional logic. It is tempting, of instance, to
introduce a truth-value `unstatable' to apply to, say, `Bertrand Russell is
smiling' in 1789. In connection with the switch from instants to periods,
some have proposed introducing new truth-values `changing from true to
false' and `changing from false to true' to apply to, say, `the rocket is at
rest' at take-o� and landing times. Such proposals, along with proposals
to combine, say, tense logic and intuitionistic logic, lie beyond the scope of
this survey.

7 GLIMPSES AROUND

7.1 Metric Tense Logic

In metric tense logic we assume Time has the structure of an ordered Abelian
group. We introduce variables x; y; z; : : : ranging over group elements, and
simples 0;+; < for the group identity, addition, and order. We introduce
operators F ;P joining terms for group elements with formulas. Here, for
instance, F(x + y)(p ^ q) means that it will be the case (x + y) time-units
hence that p and q. Metric tense logic is intended to reect such ordinary-
language quantitative expressions as `10 years from now' or `tomorrow about
this time' or `in less than �ve minutes'. The qualitative F; P of nonmetric
tense logic can be recovered by the de�nitions Fp $ 9x > 0Fxp; Pp $
9x > 0Pxp. Actually, the `ago' operator P is de�nable in terms of the
`hence' operator F since Pxp is equivalent to F�xp. It is not hard to write
down axioms for metric tense logic whose completeness can be proved by a
Henkin-style argument.

But decidability is lost: the decision problem for metric tense logic is
easily seen to be equivalent to that for the set of all universal monadic
(second- order) formulas true in all ordered Abelian groups. We will show
that the decision problem for the validity of �rst-order formulas involving
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a single two-place predicate 2|which is well known to be unsolvable|is
reducible to the latter: given a �rst-order 2-formula ', �x two one-place
predicate variables U; V . Let '0 be the result of restricting all quanti�ers
in ' to U (i.e. 8x is replaced 8x(U(x) ! : : :) and 9x by 9x(U(x) ^ : : :).)
Let '1 be the result of replacing each atomic subformula x 2 y of '0 by
9z(V (z) ^ V (z + x) ^ V (z + x + y)). Let '2 be the universal monadic
formula 8U8V (9xU(x) ! '2). Clearly if ' is logically valid, then so is
'2 and, in particular, the latter is true in all ordered Abelian groups. If
' is not logically valid, it has a countermodel consisting of the positive
integers equipped with a binary relation E. Consider the product Z� Z
where Z is the additive group of integers; addition in this group is de�ned
by (x; y)+(x0; y0) = (x+x0; y+y0); the group is orderable by (x; y) < (x0; y0)
i� x < x0 or (x = x0 and y < y0). Interpret U in this group as f(n; 0) :
n > 0g; interpret V as the set consisting of the (2m3n; 0); (2m3n;m) and
(2m3n;m+n) for those pairs (m;n) with mEn. This gives a countermodel
to the truth of '2 in Z�Z. Thus the desired reduction of decision problems
has been e�ected.

Metric tense logic is, in a sense, a hybrid between the `regimentation' and
`autonomous tense logic' approaches to the logic of time. Other hybrids of
a di�erent sort|not easy to describe briey|are treated in an interesting
paper of [Bull, 1978].

7.2 Time and Modality

As mentioned in the introduction, Prior attempted to apply tense logic
to the exegesis of the writings of ancient and mediaeval philosophers and
logicians (and for that matter of modern ones such as C. S. Peirce and J.
 Lukasiewicz) on future contingents. The relations between tense and mode
or modality is properly the topic of Richmond H. Thomason's chapter in
this volume.

We can, however, briey consider here the topic of so-called Diodorean
and Aristotelian modal fragments of a tense logic L. The former is the set
of modal formulas that become theses of L when �p is de�ned as p ^ Gp;
the latter is the set of modal formulas that becomes theses of L when �p
is de�ned as Hp ^ p ^ Gp. Though these seem far-fetched de�nitions of
`necessity', the attempt to isolate the modal fragments of various tense
logics undeniable was an important stimulus for the earlier development of
our subject. Briey the results obtained can be tabulated as follows. It
will be seen that the modal fragments are usually well-known C. I. Lewis
systems.
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Class of frames Tense logic Diodorean Aristotelian
fragment fragment

All frames L0 T(=M) B
Partial orders L1 S4 B
Lattices L0 S4.2 B
Total orders L2;L5 S4.3 S5
Dense orders

The Diodorean fragment of the tense logic L6 of discrete orders has been
determined by M. Dummett; the Aristotelian fragment of the tense logic of
trees has been determined by G. Kessler. See also our comments below on
R. Goldblatt's work.

7.3 Relativistic Tense Logic

The cosmic frame is the set of all point-events of space-time equipped
with the relation of causal accessibility, which holds between u and v if
a signal (material or electromagnetic) could be sent from u to v. The
(n+ 1)-dimensional Minkowski frame is the set of (n+ 1)-tuples f real num-
bers equipped with the relation which holds between (a0;1 ; : : : ; an) and
(b0; b1; : : : ; bn) i�:

nX
i�1

(bn � an)2 � (b0 � a0)2 > 0 and b0 > a0:

For present purposes, the content of the special theory of relativity is that
the cosmic frame is isomorphic to the 4-dimensional Minkowski frame.

A little calculating shows that any Minkowski frame is a lattice without
maximum or minimum, hence the tense logic of special relativity should
at least include L0. Actually we will also want some axioms to express
the density and continuity of a Minkowski frame. A surprising discovery of
Goldblatt [1980] is that the dimension of a Minkowski frame inuences its
tense logic. Indeed, he sows that for each n there is a formula n+1 which is
valid in the (m+ 1)-dimensional Minkowski frame i� m < n. For example,
writing Ep for p ^ Fp; 2 is:

Ep ^ Eq ^Er ^ :E(p ^ q) ^ :E(p ^ r) ^ :E(q ^ r) !
E((Ep ^ Eq) _ (Ep ^ Er) _ (Eq ^ Er)):

On the other hand, he also shows that the dimension of a Minkowski frame
does not inuence the diodorean modal fragment of its tense logic: the
Diodorean modal logic of special relativity is the same as that of arbitrary
lattices, namely S4.2. Combining Goldblatt's argument with the `trousers
world' construction in general relativity, should produce a proof that the
Diodorean modal fragment of the latter is the same as that of arbitrary
partial orders, namely S4.
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Despite recent advances, the tense logic of special relativity has not yet
been completely worked out; that of general relativity is even less well un-
derstood. Burgess [1979] contains a few additional philosophical remarks.

7.4 Thermodynamic Time

One of the oldest metaphysical concepts (found in Hindu theology and pre-
Socratic philosophy, and in modern psychological dress in Nietzsche and
celestial mechanical dress in Poincar�e) is that everything that has ever hap-
pened is destined to be repeated over and over again. This leads to a
degenerate tense logic containing the principles Gp ! Hp and Gp ! p
among others.

An antithetical view is that traditionally associated with the Second Law
of Thermodynamics, according to which irreversible change are taking place
that will eventually drive the Universe to a state of `heat-death', after which
no further change on a macroscopically observable level will take place. The
tense logic of this view, which raises several interesting technical points, has
been investigated by S. K. Thomason [1972]. The �rst thing to note is that
the principle:

(A10) GFp! FGp

is acceptable for p expressing propositions about macroscopically observable
states of a�airs provided these do not contain hidden time references; e.g. p
could be `there is now no life on Earth', but not `particle � currently has a
momentum of precisely k gram- meters/second' or `it is now an even number
of days since the Heat Death occurred'. For the antecedent of (A20) says
that arbitrarily far in the future there will be times when p is the case. But
for the p that concern us, the truth-value of p is never supposed to change
after the Heat Death. So in that case, there will come a time after which p
is always going to be true, in accordance with the consequent of (A10).

The question now arises, how can we formalise the restriction of p to a
special class of sentences? In general, propositions are represented in the
formal semantics of tense logic by subsets of X in a frame (X;R). A re-
stricted class of propositions could thus be represented by a distinguished
family B of subsets of X . This motivates the following de�nition: an aug-
mented frame is a triple (X;R;B) where (X;R) is a frame, B a subset of
the lower set B(X) of X closed under complementation, �nite intersection,
and the operations:

gA = fx 2 X : 8y 2 X(xRy ! y 2 A)g
hA = fx 2 X : 8y 2 X(yRx! y 2 A)g:

A valuation in (X;R;B) is a function V assigning each variable pi an element
of B. The closure conditions on B guarantee that we will then have V (�) 2 B
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for all formulas �. It is now clear how to de�ne validity. Note that if
B = P(X), then the validity in (X;R;B) reduces to validity in (X;R);
otherwise more formulas may be valid in the former than the latter.

It turns out that the extension L10 of LQ obtained by adding (A10) is
(sound and) complete for the class of augmented frames (X;R;B) in which
(X;R) is a dense total order without maximum or minimum and:

8B 2 B9x(8y(xRy ! y 2 B) _ 8y(xRy ! y 62 B)):

We have given complete axiomatisations for many intuitively important
classes of frames. We have not yet broached the questions: when does
the tense logic of a given class of frames admit a complete axiomatisation?
Wen does a given axiomatic system of tense logic correspond to some class
of frames in the sense of being complete for that class? For information
on these large questions, and for bibliographical references, we refer the
reader to Johan van Benthem's chapter in Volume 3 of this edition of the
Handbook on so-called `Correspondence Theory'. SuÆce it to say here that
positive general theorems are few, counterexamples many. The thermody-
namic tense logic L10 exempli�es one sort of pathology. Though it is not
inconsistent, there is no (unaugmented) frame in which all its theses are
valid!

7.5 Quanti�ed Tense Logic

The interaction of temporal operators with universal and existential quan-
ti�ers raises many diÆcult issues, both philosophical (over identity through
changes, continuity, motion and change, reference to what no longer ex-
ists or does not exist, essence, and many, many more) and technical (over
undecidability, nonaxiomatisability, unde�nability or multi-dimensioal op-
erators, and so forth) that it is pointless to attempt even a survey of the
subject in a paragraph or tow. We therefore refer the reader to Nino Coc-
chiarella's chapter in this volume and James W. Garson's chapter in Volume
3 of this edition of the Handbook, both on this subject.

Princeton University, USA.
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M. FINGER, D. GABBAY AND M. REYNOLDS

ADVANCED TENSE LOGIC

1 INTRODUCTION

In this chapter we consider the tense (or temporal) logic with until and
since connectives over general linear time. We will call this logic US=LT .
This logic is an extension of Prior's original temporal logic of F and P
over linear time [Prior, 1957], via the introduction of the more expressive
connectives of Kamp's U for \until" and S for \since" [Kamp, 1968b]. U
closely mimics the natural language construct \until" with U(A;B) holding
when A is constantly true from now up until a future time at which B holds.
S is similar with respect to the past. We will see that U and S do indeed
extend the expressiveness of the temporal language.

In the chapter we will also be looking at other related temporal logics.
The logics di�er from each other in two respects. Logics may di�er in the
kinds of structures which they are used to describe. Structures vary in
terms of their underlying model of time (or frame): this can be like the
natural numbers, or like the rationals or like the reals or some other linear
order or some non-linear branching or multi-dimensional shape. Logics are
de�ned with respect to a class of structures. Considering a logic de�ned
by the class of all linear structures is a good base from which to begin
our exploration. Temporal logics also vary in their language. For various
purposes, until and since may be not expressive enough. For example, if we
want to be able to reason about alternative avenues of development then we
may want to allow branches in the ow of time and, in order to represent
directly the fact of alternative possibilities, we may need to add appropriate
branching connectives. Equally, until and since may be too strong: for
simple reasoning about the forward development of a mechanical system,
using since may not only be unnecessary, but may require additional axioms
and complexity of a decision procedure.

In this chapter we will not be looking at temporal logics based on branch-
ing. See the handbook chapter by Thomason for these matters. We will also
avoid consideration of temporal logics incorporating quanti�cation. Instead,
see the handbook chapter by Garson for a discussion of predicate temporal
and modal logics and see the reference [Gabbay et al., 1994] for a discussion
of temporal logics incorporating quanti�cation over propositional atoms.

So we will begin with a tour of the many interesting results concerning
US=LT including axiom systems, related logics, decidability and complex-
ity. In section 3 we sketch a proof of the expressive completeness of the logic.

D. Gabbay and F. Guenthner (eds.),
Handbook of Philosophical Logic, Volume 7, 43{203.
c 2002, Kluwer Academic Publishers. Printed in the Netherlands.
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Then, in section 4 we investigate combinations of logics with a temporal
element. In section 5, we develop the proof theory for temporal logic within
the framework of labelled deductive systems. In section 6, we show how
temporal reasoning can be handled within logic programming. In section 7,
we survey the much studied temporal logic of the natural numbers and
consider the powerful automata technique for reasoning about it. Finally,
in section 8, we consider the possibility of treating temporal logic in an
imperative way.

2 U; S LOGIC OVER GENERAL LINEAR TIME

Here we have a close look at the US logic over arbitrary linear orders.

2.1 The logic

Frames for our logic are linear. Thus we have a non-empty set T and a
binary relation <� T � T which is:

1. irreexive, i.e. 8t 2 T , we do not have t < t;

2. total, i.e. 8s; t 2 T , either s < t, s = t or t < s;

3. transitive, i.e. 8s; t; u 2 T , if s < t and t < u then s < u.

The underlying model of time for a temporal logic is captured by the frame
(T;<).

Any use of a temporal logic will involve something happening over time.
The simplest method of trying to capture this formally is to use a proposi-
tional temporal logic. So we �x a countable set L of atoms. The truth of a
particular atom will vary in time. For example, points of time (i.e. t 2 T )
may correspond to days and the truth of the atom r on a particular day
may correspond to the event of rain on that day.

A structure is a particular history of the truth of all the atoms over the
full extent of time. Structures (T;<; h) are linear so we have a linear frame
(T;<) and we have a valuation h for the atoms, i.e. for each atom p 2 L,
h(p) � T . The set h(p) is the set of all time points at which p is true.

The language L(U; S) is generated by the 2-place connectives U , S along
with classical : and ^. That is, we de�ne the set of formulas recursively
to contain the atoms and > (i.e. truth) and for formulas A and B we
include :A, A^B, U(A;B) and S(A;B), We read U(A;B) as \until A, B"
corresponding to B being true until A is. Similarly S is read as \since".

Formulas are evaluated at points in structures. We write T ; x j= A when
A is true at the point x 2 T . This is de�ned recursively as follows. Suppose
that we have de�ned the truth of formulas A and B at all points of T . Then
for all points x:
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T ; x j= p i� x 2 h(p), for p atomic;

T ; x j= >;
T ; x j= :A i� T ; x 6j= A;

T ; x j= A ^B i� both T ; x j= A and T ; x j= B;

T ; x j= U(A;B) i� there is a point y > x in T such that T ; y j= A
and for all z 2 T such that x < z < y
we have T ; z j= B;

T ; x j= S(A;B) i� there is a point y < x in T such that T ; y j= A
and for all z 2 T such that y < z < x

we have T ; z j= B;

Often de�nitions and results involving S can be given by simply exchang-
ing U and S and swapping < and >. In that situation we just mention that
a mirror image case exists and do not go into details.

There are many abbreviations that are commonly used in the language.
As well as the classical ? (i.e. :> for falsity), _, ! and $, we have the
following temporal abbreviations:

FA = U(A;>) A will happen (sometime);

GA = :F:A A will always hold;

PA = S(A;>) A was true (sometime);

HA = :P:A A was always true;

K+(A) = :U(>;:A) A will be true arbitrarily soon;

K�(A) = :S(>;:A) A was true arbitrarily recently.

Notice that Prior's original connectives F and P appear as abbreviations
in this logic. The reader should check that their original semantics (see
[Burgess, 2001]) are not compromised.

A formula � is satis�able if it has a model: i.e. there is a structure
T = (T;<; h) and x 2 T such that T ; x j= �. A formula is valid i� it is true
at all points of all structures. We write j= A i� A is a validity. Of course,
a formula is valid i� its negation is not satis�able.

We can also de�ne (semantic) consequence in the logic. Suppose that �
is a set of formulas and A a formula. We say that A is a consequence of
� and write � j= A i� whenever we have T ; t j= C for all C 2 �, for some
point t from some structure T , then we also have T ; t j= A.

First-Order Monadic Logic of Order

For many purposes such as assessing the expressiveness of temporal lan-
guages or establishing their decidability, it is useful to be able to move from
the internal tensed view of the world to an external untensed view. In doing
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so we can also make use of logics with more familiar syntax. In the case of
our linear temporal logics we �nd it convenient to move to the �rst-order
monadic logic of linear order which is a sub-logic of the full second-order
monadic logic of linear order.

The language of the full second-order monadic logic of linear order has
formulas built from <, =, quanti�cation over individual variable symbols
and quanti�cation over monadic (i.e. 1-ary) predicate symbols. To be
more formal, suppose that X = fx0; x1; :::g is our set of individual variable
symbols and Q = fP0; P1; :::g is our set of monadic predicates. The formulas
of the language are xi < xj , xi = xj , Pi(xj), :�, �^�, 9xi�, and 9Pj� for
any i; j < ! and any formula �. We use the usual abbreviations xi > xj ,
xi � xj , xi < xj < xk, 8xi� and 8Pi� etc.

As usual we de�ne the concept of a free individual variable symbol in a
formula. We similarly de�ne the set of free monadic variables of a formula.
Write �(x1; :::; xm; P1; :::; Pn) to indicate that all the free variables (of both
sorts) in the formula � are contained in the lists x1; :::; xm and P1; :::; Pn.

The language is used to describe linear orders. Suppose that (T;<) is a
linear order. As individual variable symbols we will often use t; s; r; u etc,
instead of x1; x2; :::.

An individual variable assignment V is a mapping from X into T . A
predicate variable assignment W is a mapping from Q into }(T ) (the set
of subsets of T ). For an individual variable assignment V , an individual
variable symbol x 2 X and an element t 2 T , we de�ne the individual
variable assignment V [x 7! t] by:

V [x 7! t](y) =

�
V (y) y 6= x
t y = x:

Similarly for predicate variable assignments and subsets of T .

For a formula �, variable assignments V (individual) and W (predicate),
we de�ne whether (or not resp.) � under V and W is true in (T;<), written
(T;<); V;W j= � by induction on the quanti�er depths of �.

Given some �, suppose that for all its subformulas  , for all variable
assignments V and W , we have de�ned whether or not (T;<); V;W j=  .
For variable assignments V and W we de�ne:
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(T;<); V;W j= xi < xj i� V (xi) < V (xj);

(T;<); V;W j= xi = xj i� V (xi) = V (xj);

(T;<); V;W j= Pi(xj) i� V (xj) 2 W (Pi);

(T;<); V;W j= :� i� (T;<); V;W 6j= �;

(T;<); V;W j= � ^ � i� (T;<); V;W j= � and (T;<); V;W j= �;

(T;<); V;W j= 9xi� i� there exists some t 2 T such that

(T;<); V [xi 7! t];W j= �.

(T;<); V;W j= 9Pj� i� there is some S � T such that

(T;<); V;W [Pj 7! S] j= �.

This is standard second-order semantics. Note that it is easy to show
that the truth of a formula does not depend on the assignment to variables
which do not appear free in the formula.

Mostly we will be interested in fragments of the full second-order monadic
logic. In particular, we refer to the �rst-order monadic logic of linear or-
der which contains just those formulas with no quanti�cation of predicate
variables. We will also mention the universal second-order monadic logic
of linear order which contains just those formulas which consist of a �rst-
order monadic formula nested under zero or more universal quanti�cations
of predicate variables.

The important correspondence for us is that between temporal logics such
as US=LT and the �rst-order monadic logic. Most of the temporal logics
which we will consider allow a certain equivalence between their formulas
and �rst-order monadic formulas. To de�ne this we need to use a �xed one-
to-one correspondence between the propositional atoms of the temporal
language and monadic predicate variables. Let us suppose that pi 2 L
corresponds to Pi 2 Q.

The translation will propagate upwards through the full temporal lan-
guage provided that each of the connectives have a �rst-order translation.
In particular we require for any n-ary temporal connective C some �rst-
order monadic formula �C(t; P1; :::; Pn) which corresponds to C(p1; :::; pn).
We say that �C is the (�rst-order) table of C i� for every linear order (T;<),
for all h : L ! }(T ), for all t0 2 T , for all variable assignments V and W ,

(T;<; h); t0 j= C(p1; :::; pn)
i� (T;<); V [t 7! t0];W [P1 7! h(p1); :::; Pn 7! h(pn)] j= �C :

U and S have �rst-order tables as follows: the table of U is
�U = 9s((t < s) ^ P1(s) ^ 8r((t < r ^ r < s) ! P2(r)))).
The table of S is the mirror image.

If we have a temporal logic with �rst-order tables for its connectives then
it is straightforward to de�ne a meaning-preserving translation (to the �rst-
order monadic language) of all formulas in the language. The translation is
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as follows:

�pi = Pi(t)

�> = (t = t)

�:A = : �A

�(A ^ B) = �A ^ �B

�U(A;B) = �U [�A=P1][�B=P2]

�S(A;B) = �S [�A=P1][�B=P2]

Here, if � is a �rst-order monadic formula with one free individual variable
t, we use the notation �[�=P ] to mean the result of replacing every (free)
occurrence of the predicate variable symbol P in the �rst-order monadic
formula � by the monadic formula �: i.e. P (xi) gets replaced by �[xi=t].
This is a little complex as we must take care to avoid clashes of variable
symbols. We will not go into details here.

For any temporal formula A, �A is a �rst-order monadic formula with t
being the only free individual variable symbol. If atom pi appears in A then
�A will also have a free predicate symbol Pi. There are no other predicate
symbols in �A.

We then have:

LEMMA 1. For each linear order (T;<), for any t0 2 T , for any temporal
A, if A uses atoms from p1; :::; pn then for all variable assignments V and
W ,

(T;<; h); t0 j= A i� (T;<); V [t 7! t0];W [P1 7! h(p1)]:::
[Pn 7! h(pn)] j= �A:

Proof. By induction on the construction of A. �

Below, when we discuss expressive power in section 3, we will consider
whether there is a reverse translation from the �rst-order monadic language
to the temporal language.

Uses of US=LT

In the previous chapter [Burgess, 2001], we saw a brief survey of the moti-
vations for developing a tense logic. There are particular reasons for con-
centrating on the logic US=LT . It is a basis for reasoning about events and
states in general linear time or particularly dense or continuous time.

For example, it is certainly the case that most use of tense and aspect
in natural language occur in the context of an assumed dense linear ow
of time. Any kind of reasoning about the same sorts of situations, as in
many branches of AI or cognitive science, also requires a formalism based
on dense, continuous or general linear time.
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In computer science the most widely used temporal logic (PTL which
we will meet later) is based on a discrete natural numbers model of time.
However, there has been much recent work on developing logics based on
more general models for many applications. Particular applications include
re�nement, analogue devices, open systems, and asynchronous distributed
or concurrent systems.

Re�nement here concerns the process of making something more concrete
or more speci�c. This can include making a speci�cation for a system
(or machine, or software system) less ambiguous, or more detailed, or less
nondeterministic. This can also include making an algorithm, or program,
or implementation, or design, more detailed, or more low level. There are
several di�erent ways of producing a re�nement but one involves breaking
up one step of a process into several smaller steps which accomplish the
same overall e�ect. If a formal description of a less re�ned process assumes
discrete steps of time then it is easy to see that it may be hard to relate it
to a description of a more re�ned process. Extra points of time may have to
be introduced in between the assumed ones. Using a dense model of time
from the outset will be seen to avoid this problem. Comparing the formal
descriptions of more and less re�ned processes is essential for checking the
correctness of any re�nement procedure.

It can also be seen that a general linear model of time will be useful in
describing analogue devices (which might vary in state in a continuous way),
open systems (which might be a�ected by an unbounded number of di�erent
environmental events happening at all sorts of times) and asynchronous and
distributed systems (which may have processes going through changes in
state at all sorts of times).

In general the logics are used to describe or specify, to verify, to model-
check, to synthesize, or to execute. A useful description of these activities
can be found in [Emerson, 1990]. Speci�cation is the task of giving a com-
plete, precise and unambiguous description of the behaviour expected of a
system (or device). Veri�cation is the task of checking, or proving, that a
system does conform to a speci�cation and this includes the more speci�c
task of model-checking, or determining whether a given system conforms
to a particular property. Synthesis is the act of more of less automatically
producing a correct system from a speci�cation (so this avoids the need for
veri�cation). Finally execution is the process of directly implementing a
speci�cation, treating the speci�cation language as an implementation (or
programming) language.

In many of these applications it is crucial to determine whether a formula
is a consequence of a set of formulas. For example, we may have a large and
detailed set of formulas exactly describing the behaviour of the system and
we have a small and very interesting formula describing a crucial desired
property of the system (e.g., \it will y") and we want to determine whether
the latter follows from the former. We turn to this question now.
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2.2 An Axiomatization for the Logic

We have seen the importance of the consequence relation in applications
of temporal logic. Because of this there are good reasons to consider syn-
tactical ways of determining this relation between sets of formulas and a
single formula. One of the most widely used and widely investigated such
approaches is via a Hilbert system. Here we look in detail at a Hilbert style
axiom system for our US=LT logic.

The system, which we will call Ax(U; S), was �rst presented in [Burgess,
1982] but was later simpli�ed slightly in [Xu, 1988]. It has what are the
usual inference rules for a temporal logic: i.e. modus ponens and two gen-
eralizations, temporal generalization towards the future and temporal gen-
eralization towards the past:

A;A! B

B

A

GA

A

HA

Each rule has a list of formulas (or just one formula) as antecedents
shown above the horizontal line and a single formula, the consequent below
the line. An instance of a rule is got by choosing any particular L(U; S)
formulas for the A and B. We describe the role of a rule below.

The axioms of Ax(U; S) are all substitution instances of truth-functional
tautologies and the following temporal schemas:

(1) G(A! B) ! (U(A;D) ! U(B;D)),

(2) G(A! B) ! (U(D;A) ! U(D;B)),

(3) A ^ U(B;D) ! U(B ^ S(A;D); D),

(4) U(A;B) ! U(A;B ^ U(A;B)),

(5) U(B ^ U(A;B); B) ! U(A;B),

(6) U(A;B) ^ U(D;E) !
(U(A ^D;B ^ E) _ U(A ^ E;B ^ E) _ U(B ^D;B ^E)).

along with the mirror images of (1) to (6). Notice that (1) and (2) are
closely related to the usual axioms for the modal logic K, (3) relates the
mirror image connectives, (4) and (5) have something to do with transitivity
and (6) captures an aspect of linearity.

We say that a formula B follows from a list A1; :::; An of formulas by one
of the rules of inference i� there is an instance of the rule with A1; :::; An
as the antecedents and B as the consequent. A deduction in Ax(U; S) is a
�nite sequence of formulas with each being either an instance of one of the
axioms or following from a list of previous formulas in the sequence by one
of the rules of inference. Any formula which appears as the last element in
a derivation is called a thesis of the system. If A is a thesis then we write
` A.
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We say that a formulaD is a (syntactic) consequence of a set � of formulas
i� there are C1; :::; Cn 2 � such that ` (

Vn
i=1 Ci) ! D. In that case we

write � ` D. Note that in some other logics it is possible to use a Hilbert
system to de�ne consequence via the idea of a deduction from hypotheses.
In general in temporal logic, we do not do so because of problems with the
generalization rules.

Note that alternative presentations of such a system may use what is
known as the substitution rule:

A

A[B=q]

We have a whole collection of instances of the substitution rule: one
for each ( formula, atom , formula) triple. If B is a formula and q is an
atom then we de�ne the substitution A[B=q] of q by B in a formula A
by induction on the construction of A. We simply have q[B=q] = B and
p[B=q] = p for any atom p other than q. The induction then respects every
other logical operator, e.g., (A1 ^ A2)[B=q] = (A1[B=q]) ^ (A2[B=q]). If
we include the substitution rule in an axiom system then axioms can be
given in terms of particular atoms. For example, we could have an axiom
G(p! q) ! (U(p; r) ! U(q; r)).

Soundness of The System

We will now consider the relation between syntactic consequence and se-
mantic consequence.

We say that an axiom system is sound (with respect to a semantically
de�ned logic) i� any syntactic consequence ( of the axiom system) is also
a semantic consequence. This can readily be seen to be equivalent to the
property of every thesis being valid.

We can show that:

LEMMA 2. The system Ax(U; S) is sound for US=LT .

Proof. Via a simple induction it is enough to show that every axiom is valid
and that each rule of inference preserves validity, i.e. that the consequent
is valid if all the antecedents are.

The axioms are straightforward to check individually using obvious se-
mantic arguments.

The inference rules are equally straightforward to check. For example,
let us look at temporal generalization towards the future. Suppose that A is
valid. We are required to show that GA is valid. So suppose that (T;<; g)
is a linear structure and t 2 T . Consider any s > t. By the validity of A we
have (T;<; g); s j= A. This establishes that (T;<; g); t j= GA as required.

�
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Completeness of the System

An axiom system is said to be (sound and) complete for a logic i� syntactic
consequence exactly captures semantic consequence.

In fact, this is sometimes called strong completeness because there is a
weaker notion of completeness which is still useful. We say that an axiom
system is weakly complete for a logic i� it is sound and every validity is a
thesis. Clearly weak completeness follows strong completeness. As we will
see, there are temporal logics for which we can only obtain weakly complete
axiom systems.

However,

THEOREM 3. Ax(U; S) is strongly complete for US=LT .

Proof. We sketch the proof from [Burgess, 1982].
We need some common de�nitions in order to proceed. We say that a set

of formulas is consistent (in the context of an axiom system) i� it is not the
case that � ` ?. If � is maximal in being consistent, i.e. the addition to
� of any other formula in the language would result in inconsistency, then
we say that � is a maximal consistent set (MCS). A useful result, due to
Lindenbaum (see [Burgess, 2001]), gives us,

LEMMA 4. If � is a consistent set then there is an MCS � � �.

There are many useful properties of MCSs, e.g.,

LEMMA 5. If � is an MCS then A 2 � i� :A 62 �.

In order to show the completeness of the axiom system we need only
show that each MCS is satis�able. To see this suppose that � j= A. Thus
� [ f:Ag is unsatis�able. It can not be consistent as then by lemma 4 it
could be extended to an MCS which we know would be satis�able. Thus
we must be able to derive ? from � [ f:Ag, say

Vn
i=1 Ci ^ :A ` ?. It is a

simple matter to show that then we have `
Vn
i=1 Ci ! A, i.e. that A is a

syntactic consequence of �.
So suppose that �0 is an MCS: we want to show that it is satis�able.

We use the rationals as a base board on which we successively place whole
maximal consistent sets of formulas as points which will eventually make
up a ow of time. So, at each stage, we will have a subset T � Q and an
MCS �(t) for each t 2 T .

Starting with our given maximal consistent set placed at zero, say, we
look for counter-examples to either of the following rules:

1. if U(A;B) 2 �(t) then there should be some �(s) placed at s > t with
A 2 �(s) and so that theories placed in between t and s all contain B
and

2. if :U(A;B) 2 �(t) and A 2 �(s) placed at s > t then there should be
�(r) placed somewhere in between with :B 2 �(r).
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By carefully choosing a single maximal consistent set to right the counter-
example and satisfy some other stringent conditions kept holding through-
out the construction, we can ensure that the particular tuple (t,U(A;B)) or
(t,s,:U(A;B)) never again forms a counter-example. In order to do so we
need to record, for each interval between adjacent sets, which formulas must
be belong to any set subsequently placed in that interval. Because there
are only countable numbers of points and formulas involved, in the limit
we can e�ect that we end up with a counter-example-free arrangements of
sets. This is so nice that if we de�ne a valuation h on the �nal T � Q via
t 2 h(p) i� p 2 �(t), then for all t 2 T , for all A 2 L(U; S),

(T;<; h); t j= A i� A 2 �(t):

This is thus our model. �

The IRR rule

Here we will examine a powerful alternative approach to developing Hilbert
systems for temporal logics like US=LT . It is based on the use of rules such
as the IRR (or irreexivity) rule of [Gabbay, 1981]. Recall that a binary
relation < on a set T is irreexive if we do not have t < t for any t 2 T .
The IRR rule allows

q ^H(:q) ! A

A
provided that the atom q does
not appear in the formula A.

A short proof (see for example [Gabbay and Hodkinson, 1990], Proposition
2.2.1) establishes that,

LEMMA 6. if I is a class of (irreexive) linear orders, then IRR is a
valid rule in the class of all structures whose underlying ow of time comes
from I.

Proof. Suppose that q ^ H(:q) ! A is valid. Consider any structure
(T;<; h) with (T;<) from I and any t 2 T . Let g be a valuation of the atoms
on T which is like h but di�ers only in that g(q) = ftg, i.e. g = h[q 7! ftg].
By the assumed validity, (T;<; g) j= q ^H(:q) ! A. But notice that also
(T;<; g) j= q^H(:q). Thus (T;<; g) j= A. Clearly, since q does not appear
in A, (T;<; h) j= A. Thus A is valid in the logic. �

The original motivation for the use of this rule concerned the impossi-
bility of writing an axiom to enforce irreexivity of ows (see for example
[van Benthem, 1991]). The usual technique in a completeness proof is to
construct some model of a consistent formula and then turn it into an ir-
reexive model. IRR allows immediate construction of an irreexive model.
This is because it is always consistent to posit the truth of q ^H(:q) (for
some `new' atom q) at any point as we do the construction.
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The bene�ts of this rule for doing a completeness proof are enormous.
Much use of it is made in [Gabbay et al., 1994]. Venema [Venema, 1993]

gives a long list of results proved using IRR or similar rules: examples
include branching time logics [Zanardo, 1991] and two-dimensional modal
logics [Kuhn, 1989]. In fact, the major bene�t of IRR is a side-e�ect of its
purpose. Not only can we construct a model which is irreexive but we can
construct a model in which each point has a unique name (as the �rst point
where a certain atom holds).

As an example, consider our logic US=LT . We can, in fact mostly just
use the standard axiomatization for F and P over the class of all linear
orders. This is because if you have a unique name of the form r ^ H(:r)
for each point then their axiom

(UU) r ^H(:r) ! [U(p; q) $ F (p ^H [Pr ! q])]

and its mirror image (SS) essentially de�ne U and S in terms of F and P .
So here is an axiom system for US=LT similar to those seen in [Gabbay

and Hodkinson, 1990] and [Gabbay et al., 1994]. Call it Z. The rules are
modus ponens, two generalizations, substitution:

A;A! B

B

A

GA

A

HA

A

A[B=q]

and the IRR:

q ^H(:q) ! A

A
provided that the atom q does
not appear in the formula A.

The axioms are:

1. all truth functional tautologies,

2. G(p! q) ! (Gp! Gq),

3. Gp! GGp,

4. G(p ^Gp! q) _G(q ^Gq ! p),

5. r ^H:r ! (U(p; q) $ F (p ^H(Pr ! q))),

And mirror images of the above.

THEOREM 7. The axiom system is sound and (weakly) complete for US=LT .

Soundness is the usual induction on the lengths of proofs.
For completeness we have to do quite a bit of extra work. However

this extra work is quite general and can form the basis of many and varied
completeness proofs. The general idea is along the lines of the usual Henkin-
style completeness proof for Prior's logic over linear time (see [Burgess,
2001]) but there is no need of bulldozing of clusters. It is as follows.
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Say that a set is Z-consistent i� there is no conjunction A of its formulas
such that Z derives A! ?. We are interested in maximal consistent sets of
a particular sort which we call IRR theories. They contain a `name' of the
form :q ^Hq and also similarly name any other time referred to by some
zig-zagging sequence of F s and P s.

DEFINITION 8. A theory � is said to be an IRR-theory if (a) and (b)
hold:

(a) For some q, :q ^Hq 2 �.

(b) Whenever X = �1(A1 ^ �2(A2 ^ : : : ^ �nAn)) � � �) 2 �,
then for some new atom q,
X(q) = �1(A1 ^ �2(A2 ^ : : : ^ �n(An ^ :q ^Hq)) � � �) 2 �,
where �i is either P or F .

We say that a theory � is complete i� for all formulas A, A 2 � i�
:A 62 �. The following lemma plays the part of the Lindenbaum lemma in
allowing us to work with maximal consistent IRR-theories.

LEMMA 9. Let A be any Z-consistent formula. Then there exists a com-
plete, Z-consistent IRR-theory, �, such that A 2 �. In fact, if �0 is any
Z-consistent theory such that an in�nite number of atomic propositions qi
do not appear in �0, then there exists an IRR Z-consistent and complete
theory � � �0.

Note that we are only proving a weak completeness result as we need to
have a large number of spare atoms.

The main work of the truth lemma of the completeness proof is done by
the following lemma in which we say that � < � i� for all GA 2 �, A 2 �.

LEMMA 10. Let � be a Z-consistent complete IRR-theory. Let FA 2 �
(PA 2 � respectively). Then there exists a Z-consistent complete IRR-
theory � such that A 2 � and � < � (� > � respectively).

We can �nish the completeness proof by then constructing a model from
the consistent complete IRR-theories in the usual way: i.e. as worlds in
our structure we use all those theories which are connected by some �nite
amount of < zig-zagging with �0 which contains our formula of interest.
The frame of such sets under < is made a structure by making an atom p
true at the point � i� p 2 �. So far this is the usual Henkin construction
as seen in [Burgess, 2001] for example. The frame will automatically be
irreexive because every set contains an atom which is true there for the
�rst time. So there is no need for bulldozing. Transitivity and linearity
follow from the appropriate axioms.

Now the IRR rule, as well as making the completeness proof easier, also
arguably makes proving from a set of axioms easier. This is because, being
able to consistently introduce names for points into an axiomatic proof
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makes the temporal system more like the perhaps more intuitive �rst-order
one. There are none of the problems such as with losing track of \now".

So given all these recommendations one is brought back to the question
of why is it useful to do away with IRR. The growing body of theoretical
work (see for example Venema [1991; 1993]) trying to formalize conditions
under which the orthodox (to use Venema's term) system of rules needs to
be augmented by something like IRR can be justi�ed as follows:

� adding a new rule of inference to the usual temporal ones is arguably a
much more drastic step than adding axioms and it is always important
to question whether such additions are necessary;

� in making an unorthodox derivation one may need to go beyond the
original language in order to prove a theorem, which makes such ax-
iomatizations less attractive from the point of view of `resource aware-
ness';

� (as argued in [Venema, 1991]), using an atom to perform the naming
task of an individual variable in predicate logic is not really in the
spirit of temporal/modal logic;

and

� (also as mentioned in [Venema, 1991]), unorthodox axiomatizations
do not have some of the nice mathematical properties that orthodox
systems have.

2.3 Decidability of US=LT

We have seen that it is often useful to be able to approach the question of
consequence in temporal logics in a syntactic way. For many purposes it is
enough to be able to determine validity as this is equivalent to determining
consequence between �nite sets of formulas. A decision procedure for a logic
is an algorithm for determining whether any given formula is valid or not.
The procedure must give correct \yes" or \no" answers for each formula of
the language. A logic is said to be decidable i� there exists such a decision
procedure for its validities.

Notice that a decision procedure is able to tell us more about validities
than a complete axiom system. The decision procedure can tell us when a
formula is not a validity while an axiom system can only allow us to derive
the validities. This is important for many applications.

For many of the most basic temporal logics some general results allow us
to show decidability. The logic US=LT is such a logic.

A traditional way of showing decidability for temporal logics is via the so-
called �nite model property. We say that a logic has a �nite model property
i� any satis�able formula is satis�able in a �nite model, a model with a
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�nite number of time points. A systematic search through all �nite models
coupled with a systematic search through all validities from a complete
axiom system gives us a decision procedure. See [Burgess, 2001] for further
details of the �nite model approach to decidability: this can not be used
with US=LT as there are formulas, such as U(>;?) ^GU(>;?) which are
satis�able in in�nite models only.

The logic US=LT can be shown to be decidable using the translation � of
section 2.1 into the �rst-order monadic logic of order. In [Ehrenfeucht, 1961]

it was shown that the �rst-order logic of linear order is decidable. Other
proofs in [Gurevich, 1964] and [L�auchli and Leonard, 1966] show that this
also applies to the �rst-order monadic logic of linear order. The decidability
of US=LT follows immediately via lemma 1 and the e�ectiveness of �.

An alternative proof uses the famous result in [Rabin, 1969] showing the
decidability of a second-order monadic logic. The logic is S2S, the second-
order logic of two successors. The language has two unary function symbols
l and r as well as a countably in�nite number of monadic predicate symbols
P1; P2; :::. The formulas are interpreted in the binary tree structure (T; l; r)
of all �nite sequences of zeros and ones with:

l(a) = a^0; r(a) = a^1 for all a 2 T:

As usual a sentence of the language is a formula with no free variables.
Rabin shows that S2S is decidable: i.e. there is an algorithm which given a
sentence of S2S, correctly decides whether or not the sentence is true of the
binary tree structure. Proofs of Rabin's diÆcult result use tree automata.

Rabin's is a very powerful decidability result and much used in estab-
lishing the decidability of other logics. For example, Rabin uses it to show
that the full monadic second-order theory of the rational order is decidable.
That is, there is an algorithm to determine whether a formula in the full
monadic second-order language of order (as de�ned in section 2.1) is true of
the order (Q ; <). A short argument via the downward L�owenheim-Skolem
theorem (see [Gurevich, 1964] or [Gabbay et al., 1994]) then establishes that
the universal monadic second-order theory of the class of all linear ows of
time is decidable. Thus US=LT is too.

Once a decision procedure is known to exist for a useful logic it becomes
an interesting problem to develop an eÆcient decision procedure for it. That
is an algorithm which gives the \yes" or \no" answers to formulas. We
might want to know about the fastest possible such algorithms, i.e. the
complexity of the decision problem. To be more precise we need to turn the
decision problem for a logic into a question for a Turing machine. There is a
particular question about the symbolic representation of atomic propositions
since we allow them to be chosen from an in�nite set of atoms. A careful
approach (seen in a similar example in [Hopcroft and Ullman, 1979]) is to
suppose (by renaming) that the propositions actually used in a particular
formula are p1; :::; pn and to code pi as the symbol p followed by i written
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in binary. Of course this means that the input to the machine might be a
little longer than the length of the formula. In fact a formula of length n
may correspond to an input of length about n log2 n. There is no problem
with output: we either want a \1" for, \yes, the formula is a validity" or a
\0" for, \no, the formula is not a validity".

Once we have a rigorously de�ned task for a Turing machine then we
can ask all the usual questions about which complexity classes e.g., P, NP,
PSPACE, EXPTIME, etc the problem belongs to. A further, very practical
question then arises in the matter of actually describing and implement-
ing eÆcient decision procedures for the logic. We return briey to such
questions later in the chapter.

For US=LT the complexity is an open problem. A result in [Reynolds,
1999] shows that it is PSPACE-hard. Essentially we can encode the run-
ning of a polynomially space-bounded Turing Machine in the logic. It is
also believed that the decision problem for the logic is in PSPACE but,
so far, this is just conjecture. The procedures which are contained within
the decidability proofs above are little help as the method in [L�auchli and
Leonard, 1966] relies on an enumeration of the validities in the �rst-order
logic (with no clear guide to its complexity) and the complexity of Rabin's
original procedure is non-elementary.

2.4 Other ows of time

We have had a close look at the logic US=LT . There are many other
temporal logics. We can produce other logics by varying our language and
its semantics (as we will see in subsection 2.5 below) and we can produce
other logics by varying the class of structures which we use to de�ne validity.
Let K be some class of linear orders. We de�ne the L(U; S) (or Kamp) logic
over K to have validities exactly those formulas A of L(U; S) which are true
at all points t from any structure (T;<; h) where (T;<) 2 K.

For example, the formula :U(>;?) is a validity of the L(U; S) logic over
the class of all dense linear orders. Let us have a closer look at this logic.
In fact we can completely axiomatize this logic by adding the following two
axioms to our complete axiomatization of US=LT :

:U(>;?);

:S(>;?);

Soundness is clear. To show completeness, strong completeness, assume
that � is a maximally consistent set of formulas, and here, this means con-
sistent with the new axioms system. However, � will also be consistent with
Ax(U; S) and so will have a linear model by theorem 1. Say that (T;<) is
linear, t0 2 T , and for all C 2 �, (T;<; h); t0 j= C. Now G:U(>;?) 2 �
because it this formula is a theorem derivable by generalization from one
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of the new axioms. Thus, it is clear that no point in the future of t0 has
a discrete successor. Similarly there are no such discrete jumps in the past
or immediately on either side of t0. Thus (T;<; h) was a dense model all
along.

Decidability of the L(U; S) logic over dense time follows almost directly
from the decidability of L(U; S) over linear time: to decide A over dense
time just decide

A ^ :U(>;?) ^G:U(>;?) ^ :S(>;?) ^H:S(>;?):

A more speci�c logic still is the L(U; S) logic of rational (numbers) time.
Here we de�ne validity via truth at all points in any structure (Q ; <; g)
(where < is the usual irreexive ordering on the rationals). Such a logic has
uses in reasoning about events and states when it might be inconvenient to
assume that time is Dedekind complete. For example, a well situated gap
in time could save arguments about whether there is a last moment when
a light is on or a �rst moment when it is o�. To axiomatize this logic it is
enough to add to the system for dense time axioms asserting that there is
neither an end of time nor a beginning:

GF>; HP>:

The system is clearly sound. There are two ways to see that it is complete,
both using the fact that any countable dense ordering without end points is
(isomorphic to) the rationals. One way is to notice that Burgess' construc-
tion for a model of a set of formulas consistent with Ax(U; S) does construct
a countable one. The other way is to use the downward L�owenheim-Skolem
theorem on the monadic translations of the temporal formulas.

The same sorts of moves give us decidability of the L(U; S) logic of the
rationals via the decidability over general linear time.

Another useful speci�c dense logic is the L(U; S) logic over real (num-
bers) time, sometimes loosely called continuous time temporal logic. This is
used in many applications as the real numbers seem to be the right model of
time for many situations. Unfortunately the real numbers are not straight-
forward to describe with temporal axioms. The logic was �rst axiomatized
in [Gabbay and Hodkinson, 1990] using a combination of techniques from
[L�auchli and Leonard, 1966], [Burgess and Gurevich, 1985] and [Doets, 1989]

to do with de�nable equivalence classes, the IRR approach to axiomatizing
the L(U; S) logics over linear time and expressive completeness ideas which
we will see in section 3 below.

The axiomatization in [Gabbay and Hodkinson, 1990] consists of the basic
axiom system for L(U; S) logic over general linear time using the IRR rule
(see above) plus:
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P>^ F> no end points,

Fp! FFp density,

FGq ^ F:q ! F (Gq ^ :PGq) future Dedekind completeness,

PHq ^ P:q ! P (Hq ^ :FHq) past Dedekind completeness,

and a new axiom,

F (q ^ F (q ^ r ^H:r)) ^ U(r; q ! :U(q;:q))

! F (K+q ^K�q ^ F (r ^H:r))

called the SEP rule.
The Dedekind completeness axioms are due to Prior and, as we will see,

can be used with F and P logics to capture Dedekind completeness, the
property of there being no gaps in the ow of time. In fact, these axioms
just ensure de�nable Dedekind completeness, i.e. that there are no gaps in
time in a structure which can be noticed by looking at the truth values of
formulas.

The axiom SEP is interesting. Nothing like it is needed to axiomatize
continuous temporal logic with only Prior's connectives as the property it
captures is not expressible without U or S and hence without K+ or K�.
SEP is associated with the separability of R, i.e. the fact that it has a dense
countable suborder (e.g., the rationals). It says roughly that if a formula is
densely true in an interval then there is a point at which the formula is true
both arbitrarily soon before and afterwards. That SEP is necessary in the
axiom system is shown in [Gabbay and Hodkinson, 1990] when a structure
is built in which all substitution instances of the other axioms including the
Prior ones are valid while SEP is not. Such structures also show that the
L(U; S) logic over the reals is distinct from the amp logic over arbitrary
continuous ows of time i.e. those that are dense, Dedekind complete and
without end points.

The completeness proof only gives a weak completeness result: i.e. the
axiom system allows derivation of all validities but it does not give us the
general consequence relation between a possibly in�nite set of formulas and
a formula. In fact it is impossible to give a strongly complete axiom system
for this logic because it is not compact: there is an in�nite set of formulas
which is inconsistent but every �nite subset of it is consistent. Here is one
example:

� = fFG:p;G:K�p;A0; A1; :::g

where A0 = Fp and for each n, An+1 = FAn.
The proof relies on building a not necessarily real owed model M of a

given satis�able formula A, say, and then showing that for each n, there
is a real owed structure which satis�es the same monadic sentences to
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quanti�er depth n as M does. By choosing n to be one more than the depth
of quanti�ers in �A one can see that we have a model of A by reasoning
about the satis�ability of the monadic sentence 9x �A(x).

The later axiom system in [Reynolds, 1992] is complete for the L(U; S)
logic over the reals and does not use the IRR rule. Instead it adds the
following axioms to Ax(U; S):

K+>, K�>, F>, P> as before,

U(>; p) ^ F:p! U(:p _K+:p; p) Prior-U,

S(>; p) ^ P:p! S(:p _K�:p; p) Prior-S, and

K+p ^ :K+(p ^ U(p;:p)) ! K+(K+p ^K�p) SEP2

Prior-U and its mirror image are just versions of the Dedekind complete-
ness axioms and SEP2 is a neater version of SEP also developed by Ian
Hodkinson. The proof of completeness is similar to that in [Gabbay and
Hodkinson, 1990] but requires quite a bit more work as the \names" pro-
duced by the IRR rule during construction are not available to help reason
about de�nable equivalence classes.

The decidability of the L(U; S) logic over real time is also not straight-
forward to establish. It was proven by two di�erent methods in [Burgess
and Gurevich, 1985]. One method uses a variant of a traditional approach:
show that a formula that is satis�able over the reals is also satis�able over
the rationals under a valuation which conforms to a certain de�nition of
\niceness", show that a formula satis�able under a \nice" valuation on the
rationals is satis�able over the reals, and show that deciding satis�ability
under nice valuations over the rationals is decidable. The other method
uses arguments about de�nable equivalence relations as in the axiomati-
zation above. Both methods use Rabin's decidability result for S2S and
Kamp's expressive completeness result which we will see in a later section.

The complexity of the decision problem for the L(U; S) logic over the
reals is an open problem.

Now let us consider the L(U; S) logics over discrete time. To axiomatize
the L(U; S) logic over the integers it is not enough to add the following
discreteness and non-endedness axioms to the Burgess system Ax(U; S):

U(>;?) and S(>;?):

In fact, we must add these and Prior-style Dedekind completeness axioms
such as:

Fp! U(p;:p)

and its mirror image. To prove weak completeness ({it is clear that this logic
is not compact{) requires a watered down version of the mechanisms for real
numbers time or other ways of �nding an integer-owed model from a model
with a de�nably Dedekind complete valuation over some other countable,
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discrete ow without end points. There is a proof in [Reynolds, 1994]. An
alternative axiom system in the usual IRR style is probably straightforward
to construct. The decidability of this logic follows from the decidability of
the full monadic second-order theory of the integers which was proved in
[B�uchi, 1962]. Again the complexity of the problem is open.

When we turn to natural numbers time we �nd the most heavily stud-
ied temporal logics. This is because of the wide-ranging computer science
applications of such logics. However, it is not the L(U; S) logic which is
studied here but rather logics like PTL which concentrate on the future and
which we will meet in section 7 below. The S connective can be shown to
be unnecessary in expressing properties: to see this is a straightforward use
of the separation property of the L(U; S) logic over the natural numbers
(see section 3 below). Despite this it has been argued (e.g., in [Lichten-
stein et al., 1985]) that S can help in allowing natural expression of certain
useful properties: it is not necessarily easy or eÆcient to re-express the
property without using S. Thus, axioms systems for the L(U; S) logic over
the natural numbers have been presented. In [Lichtenstein et al., 1985],
such a complete system is given which is in the style of the axiom systems
for the logic PTL which we will meet in section 7 below (and so we will
not describe it here). In [Venema, 1991] a di�erent but still complete ax-
ioms system is given along with others for L(U; S) logics over general classes
of well-orderings. This system is simply Ax(U; S) with axioms for discrete-
ness, Dedekind completeness beginning and no end. Again the completeness
proof is subtle because the logic is not compact and there are many di�erent
countable, discrete, Dedekind complete orderings with a beginning and no
end. The L(U; S) logic over the natural numbers is known to be decidable
via monadic logic arguments (via [B�uchi, 1962]) and, in [Lichtenstein et al.,
1985], a PSPACE decision procedure is given and the problem is shown to
be PSPACE-complete.

2.5 Other linear time logics

We have met a variety of temporal logics based on using Kamp's U and
S connectives (on top of propositional logic) over various classes of linear
orders. Basing a logic on other classes of not necessarily linear orders can
also give us useful or interesting logics as we will see in section 4 below.
However, there is another way of constructing other temporal logics. For
various reasons it might be interesting to build a language using other tem-
poral connectives. We may want the temporal language to more closely
mimic a particular natural language with its own ways of representing tense
or aspect. We may think that U and S do not allow us to express some
important properties. Or we may think that U and S allow us to express
too much and so the L(U; S) language is unnecessarily complex to reason
with for our particular application.
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In the next few sections we will consider temporal logics for reasoning
about certain classes of linear ows of time based on a variety of temporal
languages. By a temporal language here we will mean a language built on
top of propositional logic via the recursive use of one or more temporal
connectives. By a temporal connective we will mean a logical connective
symbol with a �rst order table as de�ned above.

Some of the common connectives include, as well as U and S,:

Fp 9s > tP (s),
it will sometime be the case that p;

Pp 9s < tP (s),
it was sometime the case that p;

Xp 9s > tP (s) ^ :9r(t < r < s),
there is a next instant and p will hold then;

Y p 9s < tP (s) ^ :9r(s < r < t),
there was a previous instant and p held then.

Note that some (all) of these connectives can be de�ned in terms of U and S.
A traditional temporal (or modal) logic is that with just the connective

F over the class of all linear ows of time. This logic (often with the symbol
� used for F ) is traditionally known as K4.3 because it can be completely
axiomatized by axioms from the basic modal system K along with an axiom
known as 4 (for transitivity) and an axiom for linearity which is not called 3
but usually L. The system includes modus ponens substitution and (future)
temporal generalization and the axioms:

G(p! q) ! (Gp! Gq)

Gp! GGp

G(p ^Gp! q) _G(q ^Gq ! p)

where GA is the abbreviation :F:A in terms of F in this language. The
proof of (strong) completeness involves a little bit of rearranging of maximal
consistent sets as can be seen in [Burgess, 2001] or [Bull and Segerberg, in
this handbook]. The decidability and NP-completeness of the decision prob-
lem can be deduced from the result of [Ono and Nakamura, 1980] mentioned
shortly.

Adding Prior's past connective P to the language, but still de�ning con-
sequence over the class of all linear orders results in the basic linear L(F; P )
logic which is well described in [Burgess, 2001]. A strongly complete axiom
system can be obtained by adding mirror images of the rules and axioms in
K4:3.

To see that the linear L(F; P ) logic is decidable one could simply call on
the decidability of the L(U; S) logic over linear time (as seen above). It is a
trivial matter to see that a formula in the L(F; P ) language can be translated
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directly into an equivalent formula in the L(U; S) language. An alternative
approach is to show that the L(F; P ) logic has a �nite model property: if A
is satis�able (in a linear structure) then A is satis�able in a �nite structure
(of some type). As described in [Burgess, 2001], in combination with the
complete axiom system, this gives an e�ective procedure for deciding the
validity of any formula.

A third alternative is to use the result in [Ono and Nakamura, 1980]

that if a L(F; P ) formula of length n is satis�able in a linear model then
it is satis�able in a �nite connected, transitive, totally ordered but not
necessarily anti-symmetric or irreexive model containing at most n points.
This immediately gives us a non-deterministic polynomial time decision
procedure. Since propositional logic is NP-complete we conclude that the
linear L(F; P ) logic is too.

Another linear time logic has recently been studied in [Reynolds, 1999].
This is the linear time logic with just the connective U . It was studied
because, despite the emerging applications of reasoning over general linear
time, as we saw above, it is not known how computationally complex it is
to decide validity in the linear L(U; S) logic. As a �rst step to solving this
problem the result in this paper shows that the problem of deciding formulas
with just U is PSPACE-complete. The proof uses new techniques based on
the \mosaics" of [N�emeti, 1995]. A mosaic-based decision procedure consists
in trying to establish satis�ability by guessing and checking a set of model
pieces to see if they can be put together to form a model. Mosaics were
�rst used in deciding a temporal logic in [Reynolds, 1998]. It is conjectured
that similar methods may be used to show that deciding the L(U; S) logic
is also PSPACE-complete.

The logics above have all been obviously not more expressive than the
L(U; S) logic of linear time. Are there linear time temporal logics which are
more expressive than the L(U; S) logic? We will see later that the answer
is yes and that a completely expressive language (in a manner to be de�ned
precisely) contains two more connectives along with Kamp's. These are the
Stavi connectives which were de�ned in [Gabbay et al., 1980]. U 0(A;B)
holds if B is true from now until a gap in time after which B is arbitrarily
soon false but after which A is true for a while: U 0(A;B) is as pictured

()
<... . .B

A

:B

a gap
now

S0 is de�ned via the mirror image. Despite involving a gap, U 0 is in fact
a �rst-order connective. Here is the �rst-order table for U 0:
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U 0(p; q) �
9s t < s

^ 8u ( t < u < s!
([ 9v(u < v ^ 8w(t < w < v ! q(w)) ]

_ [ 8v(u < v < s! p(v))
^ 9v(t < v < u ^ :q(v)) ]))

^ 9u[t < u < s ^ :q(u)]
^ 9u[t < u < s ^ 8v(t < v < u! q(v))]

Of course, S0 has the mirror image table.
We will see in section 3 below that the logic with U , S, U 0 and S0 is

expressively complete for the class of structures with linear ow of time.
There is no known complete axiom system for the logic with this rather
complicated set of connectives. The decidability of the logic follows from
the decidability of �rst-order monadic logic. However, the complexity of the
decision problem is also open. If it was shown to be PSPACE-complete for
example, then we would have the very interesting result that this temporal
logic is far far easier to reason with than the equally expressive monadic
logic (with one free variable).

Probably the most useful dense linear time temporal logics are those
based on the real-numbers ow of time. Because it is expressively complete
(as we will see), the L(U; S) logic over the reals is the most important such
logic. The Stavi connectives are useless over the reals. We have seen that
this logic can be axiomatized in several ways, and is decidable. However, the
complexity of the decision procedure is not known. Other, less expressive,
real-owed temporal logics can be de�ned. Logics built with any combina-
tion of connectives from fF; P; U; Sg will clearly be decidable. There is an
axiomatization of the L(F; P ) logic over the reals in [Burgess, 2001].

Various authors have studied a real-owed temporal logic with a slightly
unusual semantics. We say that a structure (R ; <; h) has �nite variability
i� in any bound interval of time, there are only �nitely many points of
time between which the truth values of all atoms are constant. A logic
can be de�ned by evaluating U and S only on �nitely variable structures.
This allows the logic to be useful for reasoning about many situations but
makes it amenable to the sorts of techniques which are used to reason about
sequences of states and natural numbers time temporal logics. See [Kesten
et al., 1994] and [Rabinovich, 1998] for more details.

3 THE EXPRESSIVE POWER OF TEMPORAL CONNECTIVES

The expressivity of a language is always measured with respect to some
other language. That is, when talking about expressivity, we are always
comparing two or more languages. When measuring the expressivity of a
large number of languages, it is usually more convenient to have a single
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language with respect to which all other languages can be compared, if such
a language is known to exist.

In the case of propositional one-dimensional temporal languages de�ned
by the presence of a �xed number of temporal connectives (also called tem-
poral modalities), the expressivity of those languages can be all measured
against a fragment of �rst-order logic, namely the monadic �rst-order lan-
guage. This is the fragment that contains a binary < (to represent the
underlying temporal order), = (which we assume is always in the language)
and a set of unary predicates Q1(x); Q2(x); : : : (which account for the in-
terpretation of the propositional letters, that are interpreted as a subset of
the temporal domain T ). Indeed, any one-dimensional temporal connective
can be de�ned as a well-formed formula in such a fragment, known as the
connective's truth table; one-dimensionality forces such truth tables to have
a single free variable.

In the case of comparing the expressivity of temporal connectives, another
parameter must be taken into account, namely the underlying ow of time.
Two temporal languages may have the same expressivity over one ow of
time (say, the integers) but may di�er in expressivity over another (e.g.
the rationals); see the discussion on the expressivity of the US connectives
below.

Let us exemplify what we mean by those terms. Consider the connectives
since(S), until(U), future(F ), and past(P ). Given a ow of time (T;<; h),
the truth value of each of the above connectives at a point t 2 T is deter-
mined as follows:

(T;<; h); t j= Fp i� (9s > t)(T;<; h); s j= p;

(T;<; h); t j= Pp i� (9s < t)(T;<; h); s j= p;

(T;<; h); t j= U(p; q) i� (9s > t)((T;<; h); s j= p^
8y(t < y < s! (T;<; h); y j= q));

(T;<; h); t j= S(p; q) i� (9s < t)((T;<; h); s j= p^

8y(s < y < t! (T;<; h); y j= q))

If we assume that h(p) represents a �rst-order unary predicate that is
interpreted as h(p) � T , then these truth values above can be expressed as
�rst-order formulas. Thus:

(a) (T;<; h); t j= Fq i� �F (t; h(q)) holds in (T;<),

(b) (T;<; h); t j= Pq i� �P (t; h(q)) holds in (T;<),

(c) (T;<; h); t j= U(q1; q2) i� �U (t; h(q1); h(q2)) holds in (T;<), and

(d) (T;<; h); t j= S(q1; q2) i� �S(t; h(q1); h(q2)) holds in (T;<).

where
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(a) �F (t; Q) = (9s > t)Q(s);

(b) �P (t; Q) = (9s < t)Q(s);

(c) �U (t; Q1; Q2) = (9s > t)(Q1(s) ^ 8y(t < y < s! Q2(y)));

(d) �S(t; Q1; Q2) = (9s < t)(Q1(s) ^ 8y(s < y < t! Q2(y))):

�#(t; Q1; : : : ; Qn) is called the truth table for the connective #. The
number n of parameters in the truth table will be the number of places
in the connective, e.g. F and P are one place connective, and their truth
tables have a single parameter; S and U are two-place connectives, with
truth tables having two parameters.

It is clear that in such a way, we start de�ning any number of connectives.
For example consider �(t; Q) = 9xy(t < x < y ^ 8s(x < s < y ! Q(s)));
then �(t; Q) means `There is an interval in the future of t inside which P is
true.' This is a table for a connective Fint: (T;<; h); t j= Fint(p) i� �(t; h(p))
holds in (T;<):

We are in condition of presenting a general de�nition of what a temporal
connective is:

DEFINITION 11.

1. Any formula �(t; Q1; :::; Qm) with one free variable t, in the monadic
�rst-order language with predicate variable symbols Qi, is called an
m-place truth table (in one dimension).

2. Given a syntactic symbol # for an m-place connective, we say it has
a truth table �(t; Q1; :::; Qm) i� for any T; h and t, (�) holds:

(�) : (T;<; h); t j= #(q1; :::; qm) i� (T;<) j= �(t; h(q1); :::; h(qm)):

This way we can de�ne as many connectives as we want. Usually, some
connectives are de�nable using other connectives. For example, it is well
known that F is de�nable using U as Fp � U(p;>). As another example,
consider a connective that states the existence of a \next" time point: Æ �
U(>;?).

The connective Æ is a nice example on how the de�nability of a connec-
tive by others depends on the class of ows of time being considered. For
example, in a dense ow of time, Æ can be de�ned in terms of F and P |
actually, since there are no \next" time points anywhere, Æ � ?. Similarly,
in an integer-like ow of time, Æ is equivalent to >.

On the other hand, consider the ow (T;<) of time with a single point
without a \next time": T = f:::� 2;�1; 0; 1; 2; :::g [ f(1=n) j n = 1; 2; 3:::g,
with < being the usual order; then Æ is not de�nable using P and F . To see
that, suppose for contradiction that Æ is equivalent to A where A is written
with P and F and, maybe, atoms. Replace all appearances of atoms by ?
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to obtain A0. Since Æ $ A holds in the structure (T;<; h0) with all atoms
always false, in this structure Æ $ A0 holds. As neither Æ nor A0 contain
atoms, Æ $ A0 holds in all other (T;<; h) as well. Now A0 contains only
P and F , >, and ? and the classical connectives. Since F> � P> � >
and F? � P? � ?, at every point, A0 must be equivalent (in (T;<)) to
either > or ? and so cannot equal Æ which is true at 1 and false at 0. As a
consequence, Æ is not de�nable using P and F over linear time.

In general, given a family of connectives, e.g. fF; Pg or fU; Sg, we can
build new connectives using the given ones. That these new connectives are
connectives in the sense of De�nition 11 follows from the following.

LEMMA 12. Let #1(q1; :::; qm1
); :::;#n(q1; :::; qmn

) be n temporal connec-
tives with tables �1; :::; �n. Let A be any formula built up from atoms
q1; :::; qm, the classical connectives, and these connectives. Then there exists
a monadic  A(t; Q1; :::; Qm) such that for all T and h,

(T;<; h); t j= A i� (T;<) j=  A(t; h(q1); :::; h(qm)):

Proof. We construct  A by induction on A. The simple cases are:  qj =
Qj(t),  :A = : A and  A^B =  A ^  B .

For the temporal connective case, we construct the formula  #i(A1;:::;Ami
)

= �i(t;  A1
; :::;  Ami

); the right-hand side is a notation for the formula
obtained by substituting  Aj (x) in �i wherever Qj(x) appears, with the
appropriate renaming of bound variables to avoid clashes. The induction
hypothesis is applied over  A1

; :::;  Ami
and the result is simply obtained

by truth table of the connective #i. �

The formula  A built above is called the �rst-order translation of a tem-
poral formula A. An m-palce connective # with truth table �(t; Q1; :::; Qm)
is said to be de�nable from connectives #1; : : : ;#n in a ow of time (T;<)
if there exists a temporal formula A built from those connectives whose �rst
order translation is  A such that

(T;<) j=  A $ �:

The expressive power of a family of connectives over a ow of time is
measured by how many connectives it can express over the ow of time.
If it can express any conceivable connective (given by a monadic formula),
then that family of connectives is expressively complete.

DEFINITION 13. A temporal language with one-dimensional connectives
is said to be expressively complete or, equivalently, functionally complete, in
one dimension over a class T of partial orders i� for any monadic formula
 (t; Q1; :::; Qm), there exists an A of the language such that for any (T;<)
in T , for any interpretation h for q1; :::; qm,

(T;<) j= 8t( $  A)(t; h(q1); :::; h(qm)):
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In the cases where T = f(T;<)g we talk of expressive completeness
over (T;<). For example, the language of Since and Until is expressively
complete over integer time and real number ow of time, as we are going
to see in Section 3.2; but they are not expressively complete over rational
numbers time [Gabbay et al., 1980].

DEFINITION 14. A ow of time (T;<) is said to be expressively complete
(or functionally complete) (in one dimension) i� there exists a �nite set of
(one-dimensional) connectives which is expressively complete over (T;<),
in one dimension.

The quali�cation of one-dimensionality in the de�nitions above will be
explained when we introduce the notion of H-dimension below.

These notions parallel the de�nability and expressive completeness of
classical logic. We know that in classical logic f:;!g is suÆcient to de�ne
all other connectives. Furthermore, for any n-place truth table  : 2n ! 2
there exists an A(q1; :::; qn) of classical logic such that for any h,

h(A) =  (h(q1); :::; h(qn)):

This is the expressive completeness of f:;!g in classical logic.
The notion of expressive completeness leads us to formulate two ques-

tions:

(a) Given a �nite set of connectives and a class of ows of time, are these
connectives expressively complete?

(b) In case the answer to (a) is no, we would like to ask: given a class of
ows, does there exist a �nite set of one-dimensional connectives that
is expressively complete?

These questions occupy us to the rest of this section. We show that
the notion of expressive completeness is intimately related to the separation
property .

The answer to question (b) is related to the notion of H-dimension, dis-
cussed in Section 3.3.

3.1 Separation and Expressive Completeness

The notion of separation involves partitioning a ow of time in disjoint
parts (typically: present, past and future). A formula is separable if it is
equivalent to another formula whose temporal connectives refer only to one
of the partitions.

If every formula in a language is separable, that means that we have at
least one connective that has enough expressivity over each of the partitions.
So we might expect that that set of connectives is expressively complete over
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a class of ows that admits such partitioning, provided the partitioning is
also expressible by the connectives.

The notion of separation was initially analysed in terms of linear ows,
where the notion of present, past and future most naturally applies. So
we start our discussion with separation over linear time. We later extend
separation to generic ows.

Separation over linear time

Consider a linear ow of time (T;<). Let h; h0 be two assignments and
t 2 T . We say that h; h0 agree on the past of t, h =<t h

0, i� for any atom q
and any s < t,

s 2 h(q) i� s 2 h0(q):

We de�ne h0 ==t h for agreement of the present , i� for any atom q

t 2 h(q) i� t 2 h0(q):

and h0 =>t h, for agreement on the future, i� for any atom q and any s > t,

s 2 h(q) i� s 2 h0(q):

Let T be a class of linear ows of time and A be a formula in a temporal
language over (T;<). We say that A is a pure past formula over T , i� for
all (T;<) in T , for all t 2 T ,

8h; h0; (h =<t h
0) implies that (T;<; h); t j= A i� (T;<; h0); t j= A:

Similarly, we de�ne pure future and pure present formulas.
Such a de�nition of purity is a semantic one. In a temporal language

containing only S and U there is also have a notion of syntactic purity as
follows. A formula is a Boolean combination of �1, . . . , �n if it is built from
�1, . . . , �n using only Boolean connectives. A syntactically pure present
formula is a Boolean combination of atoms only. A syntactically pure past
formula is a Boolean combination of formulas of the form S(A;B) where A
and B are either pure present or pure past. Similarly, a syntactically pure
future formula is a Boolean combination of formulas of the form U(A;B)
where A and B are either pure present or pure future.

It is clear that if A is a syntactically pure past formula, then A is a
pure past formula; similarly for pure present and pure future formulas. The
converse, however, is not true. For example, from the semantical de�nition,
all temporal temporally valid formulas are pure future (and pure past, and
pure present), including those involving S.

We are now in a position to de�ne the separation property.

DEFINITION 15. Let T be a class of linear ows of time and A be a formula
in a temporal language L. We say A is separable in L over T i� there exists
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a formula in L which is a Boolean combination of pure past, pure future,
and atomic formulas and is equivalent to A everywhere in any (T;<) from
T .

A set of temporal connectives is said to have the separation property
over T i� every formula in the temporal language of these connectives is
separable in the language (over T ).

We now show that separation implies expressive completeness.

THEOREM 16. Let L be a temporal language built from any number (�nite
or in�nite) of connectives in which P and F are de�nable over a class T
of linear ows of time. If L has the separation property over T then L is
expressively complete over T .

Proof. If T is empty, L is trivially expressively complete, so suppose not.
We have to show that for any '(t; Q) in the monadic theory of linear order
with predicate variable symbols Q = (Q1; :::; Qn), there exists a formula
A = A(q1; :::; qn) in the temporal language such that for all ows of time
(T;<) from T , for all h; t, (T;<; h); t j= A i� (T;<) j= '(t; h(q1); :::; h(qn)).

We denote this formula by A['] and proceed by induction on the depth
m of nested quanti�ers in '. For m = 0, '(t) is quanti�er free. Just replace
each appearance of t = t by >, t < t by ?, and each Qj(t) by qj to obtain
A['].

For m > 0, we can assume ' = 9x (t; x;Q) where  has quanti�er depth
� m (the 8 quanti�er is treated as derived).

Assuming that we do not use t as a bound variable symbol in  and that
we have replaced all appearances of t = t by > and t < t by ? then the
atomic formulas in  which involve t have one of the following forms: Qi(t),
t < y, t = y, or y < t, where y could be x or any other variable letter
occurring in  .

If we regard t as �xed, the relations t < y; t = y; t > y become unary and
can rewritten, respectively, as R<(y), R=(y) and R>(y), where R<, R= and
R> are new unary predicate symbols.

Then  can be rewritten equivalently as

 t0(x;Q;R=; R>; R<);

in which t appears only in the form Qi(t). Since t is free in  , we can go
further and prove (by induction on the quanti�er depth of  ) that  t0 can
be equivalently rewritten as

 t =
_
j

[�j(t) ^  
t
j(x;Q;R=; R>; R<)];

where

� �j(t) is quanti�er free,
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� Qi(t) appear only in �j(t) and not at all in  tj ,

� and each  tj has quanti�er depth � m.

By the induction hypothesis, there is a formula Aj = Aj(q; r=; r>; r<) in
the temporal language such that, for any h; x,

(T;<; h); x j= Aj i�
(T;<) j=  tj(x; h(q1); : : : ; h(qn); h(r=); h(r>); h(r<)):

Now let 3q be an abbreviation for a temporal formula equivalent (over
T ) to Pq _ q _ Fq whose existence in L is guaranteed by hypothesis. Then
let B(q; r=; r>; r<) =

W
j(A[�j ] ^ 3Aj). A[�j ] can be obtained from the

quanti�er free case.
In any structure (T;<) from T for any h interpreting the atoms q, r=; r>

and r<, the following are straightforward equivalences

(T;<; h); t j= B

(T;<; h); t j=
W
j(A[�j ] ^3Aj)W

j((T;<; h); t j= A[�j ] ^ (T;<; h); t j= 3Aj)W
j(�j(t) ^ 9x((T;<; h); x j= Aj))W

j(�j(t) ^ 9x 
t
j(x; h(q1); :::; h(qn); h(r=); h(r>); h(r<)))

9x
W
j(�j(t) ^  

t
j(x; h(q1); :::; h(qn); h(r=); h(r>); h(r<)))

9x t0(x; h(q1); :::; h(qn); h(r=); h(r>); h(r<)):

Now provided we interpret the r atoms as the appropriate R predicates,
i.e.:

� h�(r=) = ftg,

� h�(r<) = fs j t < sg, and

� h�(r>) = fs j s < tg,

we obtain

(T;<; h�); t j= B i� 9x (t; x; h�(q1); :::; h�(qn)) i�
'(t; h�(q1); :::; h�(qn)):

B is almost the A['] we need except for one problem. B contains, be-
sides the qi, also three other atoms, r=; r>, and r<, and equation (�) from
De�nition 9.1.1 above is valid for any h� which is arbitrary on the qi but
very special on r=; r>; r<. We are now ready to use the separation property
(which we haven't used so far in the proof). We use separation to eliminate
r=; r>; r< from B. Since we have separation B is equivalent to a Boolean
combination of atoms, pure past formulas, and pure future formulas.
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So there is a Boolean combination � = �(p+; p�; p0) such that

B $ �(B+; B�; B0);

whereB0(q; r>; r=; r<) is a combination of atoms, B+(q; r>; r=; r<) are pure
future, and B�(q; r>; r=; r<) are pure past formulas.

Finally, B� = �(B�
+; B

�
�; B

�
0 ) where

� B�
0 = B0(q;?;>;?);

� B�
+ = B+(q;>;?;?);

� B�
� = B�(q;?;?;>).

Then we obtain for any h�,

(T;<; h�); t j= B i�(T;<; h�); t j= �(B+; B�; B0)

i�(T;<; h�); t j= �(B�
+; B

�
�; B

�
0)

i�(T;<; h�); t j= B�:

Hence

(T;<; h�); t j= B� i� (T;<) j= '(t; h�(q)):

This equation holds for any h� arbitrary on q, but restricted on r<; r>; r=.
But r<; r>; r= do not appear in it at all and hence we obtain that for any
h, (T;<; h); t j= B� i� (T;<) j= '(t; h�(q)). So make A['] = B� and we are
done. �

The converse is also true: expressive completeness implies separation
over linear time. The proof involves using the �rst-order theory of linear
time to �rst separate a �rst-order formula over linear time; a temporal
formula is translated into the �rst-order language, where it is separated;
expressive completeness is needed then to translate each separated �rst-
order subformula into a temporal formula. Details are omitted, but can be
found in [Gabbay et al., 1994].

Generalized Separation

The separation property is not restricted to linear ows of time. In this
section we generalize the separation property over any class of ows of time
and see that Theorem 16 has a generalised version.

The basic idea is to have some relations that will partition every ow of
time in T , playing the role of <, > and = in the linear case.

DEFINITION 17. Let 'i(x; y); i = 1; :::; n be n given formulas in the monadic
language with < and let T be a class of ows of time. Suppose 'i(x; y) par-
tition T , that is, for every t in each (T;<) in T the sets T (i; t) = fs 2 T j
'i(s; t)g for i = 1; :::; n are mutually exclusive and

S
i T (i; t) = T .
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In analogy to the way that F and P represented < and >, we assume
that for each i there is a formula �i(t; x) such that 'i(t; x) and �i(t; x) are
equivalent over T and �i is a Boolean combination of some 'j(x; t). Also
assume that < and = can be expressed (over T ) as Boolean combinations
of the 'i:

Then we have the following series of de�nitions:

� For any t from any (T;<) in T , for any i = 1; :::; n, we say that truth
functions h and h0 agree on T (i; t) if and only if h(q)(s) = h0(q)(s) for
all s in T (i; t) and all atoms q.

� We say that a formula A is pure 'i over T if for any (T;<) in T , any
t 2 T and any two truth functions h and h0 which agree on T (i; t), we
have

(T;<; h); t j= A i� (T;<; h0); t j= A:

� The logic L has the generalized separation property over T i� every
formula A of L is equivalent over T to a Boolean combination of pure
formula.

THEOREM 18 (generalized separation theorem). Suppose the language L
can express over T the 1-place connectives #i, i = 1; :::; n, de�ned by:

(T;<; h); t j= #i(p) i� 9s 'i(s; t) holds in (T;<)
and (T;<; h); s j= p:

If has the generalized separation property over a class T of ows of time
then L is expressively complete over T .

A proof of this result appears in [Amir, 1985]. See also [Gabbay et al.,
1994].

The converse does not always hold in the general case, for it depends on
the theory of the underlying class T .

A simple application of the generalised separation theorem is the follow-
ing. Suppose we have a �rst order language with the binary order predicates
<, >, = with their usual interpretation, and suppose it also contains a par-
allel operator j de�ned by:

xjy =def :[(x = y) _ (x < y) _ (y < x)]:

Suppose we have a new temporal connective D, de�ned by

(T;<; h); t j= Dq i� 9xjtsuchthat(T;<; h); x j= q:

Finally, A is said to be pure parallel over a class T of ows of time i� for all
t from any (T;<) from T , for all h =jt h

0,

(T;<; h); t j= Ai�(T;<; h0); t j= A;
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where h =jt h
0 i� 8xjt8q(x 2 h(q) $ x 2 h0(q)):

It is clear what separation means in the context of pure present, past,
future, and parallel. It is simple to check that the <;>;=; j satisfy the gen-
eral separation property and other preconditions for using the generalized
separation theorem. Thus that theorem gives immediately the following.

COROLLARY 19. Let L be a language with F; P;D over any class of ows
of time. If L has a separation then L is expressively complete.

3.2 Expressive Completeness of Since and Until over Integer
Time

As an example of the applications of separation to the expressive complete-
ness of temporal language, we are going to sketch the proof of separation
of the Since and Until-temporal logic containing over linear time. The full
proof can be found in [Gabbay, 1989; Gabbay et al., 1994]. With separation
and Theorem 16 we immediately obtain that the connectives S and U are
expressively complete over the integers; the original proof of the expressive
completeness of S and U over the integers is due to Kamp [Kamp, 1968b].

The basic idea of the separation process is to start with a formula in which
S and U may be nested inside each other and through several transformation
steps we are going to systematically remove U from inside S and vice-versa.
This gives us a syntactical separation which, obviously, implies separation.

As we shall see there are eight cases of nested occurrences of U within an
S to worry about. It should be noted that all the results in the rest of this
section have dual results for the mirror images of the formulas. The mirror
image of a formula is the formula obtained by interchanging U and S; for
example, the mirror image of U(p ^ S(q; r); u) is S(p ^ U(q; r); u).

We start dealing with Boolean connectives inside the scope of temporal
operators, with some equivalences over integer ows of time. We say that
a formula A is valid over a ow of time (T;<) if it is true at all t 2 T ;
notation: (T;<) j= A

LEMMA 20. The following formulas (and their mirror images) are valid
over integer time:

� U(A _ B;C) $ U(A;C) _ U(B;C);

� U(A;B ^ C) $ U(A;B) ^ U(A;C);

� :U(A;B) $ G(:A) _ U(:A ^ :B;:A);

� :U(A;B) $ G(:A) _ U(:A ^ :B;B ^ :A).

Proof. Simply apply the semantical de�nitions. �
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We now show the eight separation cases involving simple nesting and
atomic formulas only.

LEMMA 21. Let p; q; A, and B be atoms. Then each of the formulas below
is equivalent, over integer time, to another formula in which the only appear-
ances of the until connective are as the formula U(A;B) and no appearance
of that formula is in the scope of an S:

1. S(p ^ U(A;B); q),

2. S(p ^ :U(A;B); q),

3. S(p; q _ U(A;B)),

4. S(p; q _ :U(A;B)),

5. S(p ^ U(A;B); q _ U(A;B)),

6. S(p ^ :U(A;B); q _ U(A;B)),

7. S(p ^ U(A;B); q _ :U(A;B)), and

8. S(p ^ :U(A;B); q _ :U(A;B)):

Proof. We prove the �rst case only; omitting the others. Note that S(p ^
U(A;B); q) is equivalent to

S(p; q) ^ S(p;B) ^ B ^ U(A;B)

_ [A ^ S(p;B) ^ S(p; q)]

_ S(A ^ q ^ S(p;B) ^ S(p; q); q):

Indeed, the original formula holds at t i� there is s < t and u > s such
that p holds at s, A at u, B everywhere between s and u, and q everywhere
between s and t. The three disjuncts correspond to the cases u > t,u = t,
and u < t respectively. Note that we make essential use of the linearity of
time. �

We now know the basic steps in our proof of separation. We simply keep
pulling out Us from under the scopes of Ss and vice versa until there are
no more. Given a formula A, this process will eventually leave us with a
syntactically separated formula, i.e. a formula B which is a Boolean com-
bination of atoms, formulas U(E;F ) with E and F built without using S
and formulas S(E;F ) with E and F built without using U . Clearly, such a
B is separated.

We start dealing with more than one U inside an S. In this context, we
call a formula in which U and S do not appear pure.
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LEMMA 22. Suppose that A and B are pure formulas and that C and D
are such that any appearance of U is as U(A;B) and is not nested under
any Ss. Then S(C;D) is equivalent to a syntactically separated formula in
which U only appears as the formula U(A;B).

Proof. If U(A;B) does not appear then we are done. Otherwise, by rear-
rangement of C and D into disjunctive and conjunctive normal form, respec-
tively, and repeated use of Lemma 20 we can rewrite S(C;D) equivalently
as a Boolean combination of formulas S(C1; D1) with no U appearing. Then
the preceding lemma shows that each such Boolean constituent is equivalent
to a Boolean combination of separated formulas. Thus we have a separated
equivalent. �

Next let us begin the inductive process of removing Us from more than
one S. We present the separation in a crescendo. Each step introduces
extra complexity in the formula being separated and uses the previous case
as a starting point.

LEMMA 23. Suppose that A;B, possibly subscripted, are pure formulas.
Suppose C;D, possibly subscripted, contain no S. Then E has a syntacti-
cally separated equivalent if:

� the only appearance of U in E is as U(A;B);

� the only appearances of U in E are as U(Ai; Bi);

� the only appearances of U in E are as U(Ci; Di);

� E is any U; S formula.

We omit the proof, referring to [Gabbay et al., 1994, Chapter 10] for a
detailed account. But note that since each case above uses the previous
one as an induction basis, this process of separation tends to be highly
exponential. Indeed, the separated version of a formula can be many times
larger than the initial one. We �nally have the main results.

THEOREM 24 (separation theorem). Over the integer ow of time, any
formula in the fU; Sg-language is equivalent to a separated formula.

Proof. This follows directly from the preceding lemma because, as we have
already noted, syntactic separation implies separation. �

THEOREM 25. The language fU; Sg is expressively complete over integer
time.

Proof. This follows from the separation theorem and Theorem 16. �

Other known separation and expressive completeness results over linear
time are [Gabbay et al., 1994]:
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� The language fU; Sg is separable over real time. Indeed, it is separable
over any Dedekind complete linear ow of time. As a consequence, it
is also expressively complete over such ows.

� The language fU; Sg is not separable over the rationals; as a result,
it is not separable over the class of linear ows of time, nor is it
expressively complete over such ows.

The problem of fU; Sg over generic linear ows of time is that they may
contain gaps. It is possible to de�ne a �rst order formula that makes a
proposition true up until a gap and false afterwards. Such formula, how-
ever, cannot be expressed in terms of fU; Sg. So is there an extra set of
connectives that is expressively complete over the rationals? The answer
in this case is yes, and they are called the Stavi connectives. These are
connectives whose truth value depends on the existence of gaps in the ow
of time, and therefore are always false over integers or reals. For a detailed
discussion on separation in the presence of gaps, please refer to [Gabbay et
al., 1994, Chapters 11 and 12].

We remain with the following generic question: given a ow of time, can
we �nd a set of connectives that is expressively complete over it? This is
the question that we investigate next.

3.3 H-dimension

The notion of Henkin- or H-dimension involves limiting the number of bound
variables employed in �rst-order formulas. We will see that a necessary
condition for there to exist a �nite set of connectives which is expressively
complete over a ow of time is that such ow of time have a �nite H-
dimension.

As for a suÆcient condition for a �nite expressively complete set of con-
nectives, we will see that if many-dimensional connectives are allowed, than
�nite H-dimension implies the existence of such �nite set of connectives.
However, when we consider one-dimensional connectives such as Since and
Until, �nite H-dimension is no longer a suÆcient condition.

In fact our approach in this discussion will be based on a weak many-
dimensional logic. It is many dimensional because the truth value of a
formula is evaluates at more than one time-point. It is weak because atomic
formulas are evaluated only at a single time point (called the evaluation
point), while all the other points are the reference points). Such weak many
dimensionality allows us to de�ne the truth table of many dimensional sys-
tems as formulas in the monadic �rst-order language, as opposed to a full
m-dimensional system (in which atoms are evaluated at m time points)
which would require an m-adic language.

An m-dimensional table for an n-place connective is a formula of the form
�(x1; : : : ; xm;R1; : : : ; Rn), where � is a formula of the �rst-order predicate
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language, written with symbols from f<g[fR1; : : : ; Rng, where R1; : : : ; Rn
are special m-place relation symbols. Without loss of expressivity, we will
further assume that each term yj ocurring in Ri(y1; : : : ; ym) is a always a
variable.

Fix a temporal system T whose language contains atoms q1; q2; : : : ; the
classical connectives, and the special symbols #1; : : : ;#j , standing for n1-
,: : : ; nj-place connectives respectively. Let �1; : : : ; �j be theirm-dimensional
n1-,: : : ; nj-place tables respectively.

REMARK 26. Since there are �nitely many �i to consider, we can further
assume that there is b � m such that each �i is written with variables
x1; : : : ; xb only.

The semantics of m-dimensional formulas is given by:

DEFINITION 27. Let (T;<) be a ow of time. Let h be an assignment
into T , i.e. for any atom q, h(q) � T . We de�ne the truth value of each
formula A of the language of T at m indices a1; : : : ; am�1; t 2 T under h,
as follows:

1. (T;<; h); a1; : : : ; am�1; t j= q i� t 2 h(q), q atomic.

2. (T;<; h); a1; : : : ; am�1; t j= A ^ B i� (T;<; h); a1; : : : ; am�1; t j= A
and (T;<; h); a1; : : : ; am�1; t j= B.

3. (T;<; h); a1; : : : ; am�1; t j= :A i� (T;<; h); a1; : : : ; am�1; t 6 j= A.

4. For each i (1 � i � j), (T;<; h); a1; : : : ; am�1; t j= #i(A1; : : : ; Ani) i�

T j= �i(a1; : : : ; am�1; t; h(A1); : : : ; h(Ani)), where

h(Ak) =def: f(t1; : : : ; tm) 2 Tm j (T;<; h); t1; : : : ; tm j= Akg:

Let LM denote the monadic language with <, �rst-order quanti�ers over
elements, and an arbitrary number of monadic predicate symbols Qi for
subsets of T . We will regard theQi as predicate (subset) variables, implicitly
associated with the atoms qi. We de�ne the translation of an m-dimensional
temporal formula A into a monadic formula ÆA:

1. If A is an atom qi, we set ÆA = (x1 = x1) ^ : : : ^ (xm�1 = xm�1) ^
Qi(xm).

2. Æ(A ^ B) = ÆA ^ ÆB, and Æ(:A) = :ÆA.

3. Let A = #i(A1; : : : ; Ani), where �i(x1; : : : ; xm;R1; : : : ; Rni) is the
table of #i. Since we can always rewrite � such that all occurrences
of Rk(y1; : : : ; ym) in � are such that the terms yi are variables, after a
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suitable variable replacement we can write ÆA using only the variables
x1; : : : ; xb as:

ÆA = �i(x1; : : : ; xm; ÆA1; : : : ; ÆAni):

Clearly, a simple induction gives us that:

(T;<; h); a1; :::; am j= B i� T j= ÆB(a1; :::; am; h(q1); : : : ; h(qk)):

such that ÆB(a1; :::; am; h(q1); : : : ; h(qk)) uses only the variables x1; : : : ; xb.
Suppose that K is a class of ows of time, �x = x1; : : : ; xm are variables,

and �Q=Q1; : : : ; Qr are monadic predicates. If �(�x; �Q), �(�x; �Q) are formulas
in LM with free variables �x and free monadic predicates �Q, we say that �
and � are K-equivalent if for all T 2 K and all subsets S1; : : : ; Sr � T ,

T j= 8�x
�
�(�x; S1; : : : Sr) $ �(�x; S1; : : : ; Sr)

�
:

We say the temporal system T is expressively complete over K in n di-
mensions (1 � n � m) if for any �(x1; : : : ; xn; �Q) of LM with free variables
x1; : : : ; xn, there exists a temporal formula B(�q) of T built up from the
atoms �q = q1; : : : ; qr, such that � ^

V
n<i�m xi = xi and ÆB are equivalent

in K. In this case, K is said to be m-functionally complete in n dimensions
(symbolically, FCmn ); K is functionally complete if it is FCm1 for some m.

Finally, we de�ne the Henkin or H-dimension d of a class K of ows as
the smallest d such that:

� For any monadic formula �(x1; : : : ; xn; Q1; : : : ; Qr) in LM with free
variables among x1; : : : ; xn and monadic predicates Q1; : : : ; Qr (with
n; r arbitrary), there exists an LM -formula �0(x1; : : :, xn, Q1; : : : ; Qr)
that is K-equivalent to � and uses no more than d di�erent bound
variable letters.

We now show that for any class of ows, �nite Henkin dimension is equiv-
alent to functional completeness (FCm1 for some m).

THEOREM 28. For any class K of ows of time, if K is functionally com-
plete then K has �nite H-dimension.

Proof. Let �( �Q) be any sentence of LM . By functional completeness, there
exists a B(�q) of T such that the formulas x1 = x1 ^ ::: ^ xm = xm ^ �( �Q)
and ÆB(x1; : : : ; xm; �Q) are K-equivalent. We know that ÆB is written using
variables x1; : : : ; xb only. Hence the sentence �� = 9x1:::9xmÆB(x1; : : : ;
xm; �Q) has at most b variables, and is clearly K-equivalent to �. So every
sentence of LM is K-equivalent to one with at most b variables. This means
that K has H-dimension at most b, so it is �nite. �
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We now show the converse. That is, we assume that the class K of
ows of time has �nite H-dimension m. Then we are going to construct a
temporal logic that is expressively complete over K and that is weaklym+1-
dimensional (and that is why such proof does not work for 1-dimensional
systems: it always constructs a logic of dimension at least 2).

Let us call this logic system d. Besides atomic propositions q1; q2; : : :
and the usual Boolean operators, this system has a set of constants (0-place
operators) C<i;j and C=

i;j and unary temporal connectives �i and �i, for
0 � i; j � m. If h is an assignment such that (h(q) � T for atomic q, the
semantics of d-formulas is given by:

1. (T;<; h); x0; :::; xm j= q i� x0 2 h(q) for q atomic.

2. The tables for :;^ are the usual ones.

3. (T;<; h); x0; : : : ; xm j= C<i;j i� xi < xj . Similarly we de�ne the se-
mantics of C=

i;j . C
=
i;j are thus called diagonal constants.

4. (T;<; h); x0; :::; xm j= �iA i� (T;<; h); xi; : : : ; xi j= A. So �i \projects"
the truth value on the i-th dimension.

5. (T;<; h); x0; :::; xm j= �iA i� (T;<; h); x0; : : : ; xi�1; y; xi+1; : : : ; xm j=
A for all y 2 T . So �i is an \always" operator for the i-th dimension.

LEMMA 29. Let � be a formula of LM written only using the variable
letters u0; : : : ; um, and having ui1 ; ::; uik free for arbitrary k � m. Then
there exists a temporal formula A of d such that for all h; t0; : : : ; tm 2 T ,

(T;<; h); t0; :::; tm j= A i� K; h j= �(ti1 ; : : : ; tik ):

Proof. By induction on �. Assume �rst that � is atomic. If � is ui < uj
let A = C<i;j if i 6= j, and ? otherwise. Similarly for ui = uj . If � is Q(ui),
let A be �i(q).

The classical connectives present no diÆculties. We turn to the case
where � is 8ui�(ui1 ; ::; uik). By induction hypothesis, let A be the formula
corresponding �; then �iA is the formula suitable for �. �

We are now in a position to prove the converse of Theorem 28.

THEOREM 30. For any class K of ows of time, if K has �nite H-dimen-
sion then K is functionally complete.

Proof. Let �(u0) be any formula of LM with one free variable u0. As K has
H-dimension m, we can suppose that � is written with variables u0; :::; um.
By Lemma 29 there exists an A of T such that for any T 2 K, t 2 T , and
assignment h into T; (T;<; h); t; :::; t j= A i� K; h j= �(t). �
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As an application of the results above, we show that the class of partial
orders is not functionally complete. For consider the formula corresponding
to the statement there are at least n elements in the order :

�n = 9x1; : : : ; xn
^
i6=j

[(xi 6= xj) ^ :(xi < xj)]:

It can be shown that such formula cannot be written with less then n vari-
ables (e.g. [Gabbay et al., 1994]). Since we are able to say that there are at
least n elements in the order for any �nite n, the class partial orders have
in�nite H-dimension and by Theorem 28 it is not functionally complete.

On the other hand, the reals and the integers must have �nite H-dimen-
sion, for the fU; Sg temporal logic is expressively complete over both. In-
deed, [Gabbay et al., 1994] shows that it has H-dimension at most 3, and
so does the theory of linear order.

4 COMBINING TEMPORAL LOGICS

There is a profusion of logics proposed in the literature for the modelling
of a variety of phenomena, and many more will surely be proposed in the
future. A great part of those logics deal only with \static" aspects, and the
temporal evolution is left out. But eventually, the need to deal with the
temporal evolution of a model appears. What we want to avoid is the so
called reinvention of the wheel, that is, reworking from scratch the whole
logic, its language, inference system and models, and reproving all its basic
properties, when the temporal dimension is added.

We therefore show here several methods for combining logic systems and
we study if the properties of the component systems are transferred to
their combination. We understand a logic system LL as composed of three
elements:

(a) a language LL , normally given by a set of formation rules generating
well formed formulas over a signature and a set of logical connectives.

(b) An inference system, i.e. a relation, `L, between sets of formulas,
represented by � `L A. As usual, `L A indicates that ? `L A.

(c) The semantics of formulas over a class K of model structures. The fact
that a formulas A is true of or holds at a model M 2 K is indicated
by M j= A.

Each method for combining logic systems proposes a way of generat-
ing the language, inference system and model structures from those of the
component system.

The �rst method presented here adds a temporal dimension T to a logic
system L, called the temporalisation of a logic system T(L), with an auto-
matic way of constructing:
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� the language of T(L);

� the inference system of T(L); and

� the class of temporal models of T(L).

We do that in a way that the basic properties of soundness, completeness
and decidability are transfered from the component logics T and L to the
combined system T(L).

If the temporalised logic is itself a temporal logic, we have a two dimen-
sional temporal logic T(T0). Such a logic is too weak, however, because, by
construction, the temporal logic T0 cannot refer to the the logic system T.
We therefore present the independent combination T� T0 in which two tem-
poral logics are symmetrically combined. As before, the language, inference
systems and models of T� T0, and show that the properties of soundness,
completeness and decidability are transferred form T and T0 to T� T0.

The independent combination is not the strongest way to combine logics;
in particular, the independent combination of two linear temporal logic
does not necessarily produce a two-dimensional grid model. So we show
how to produce the full join of two linear temporal logics T� T0, such that
all models will be two-dimensional grids. However, in this case we cannot
guarantee that the basic properties of T and T0 are transferred to T� T0.
In this sense, the independent combination T� T0 is a minimal symmetrical
combination of logics that automatically transfers the basic properties. Any
further interaction between the logics has to be separately investigated.

As a �nal way of combining logics, we present methods of combination
that are motivated by the study of Labelled Deductive Systems (LDS) [Gab-
bay, 1996].

All temporal logics considered for combination here are assumed to be
linear.

4.1 Temporalising a Logic

The �rst of the combination methods, known as \adding a temporal dimen-
sion to a logic system" or simply \temporalising a logic system", has been
initially presented in [Finger and Gabbay, 1992].

Temporalisation is a methodology whereby an arbitrary logic system L

can be enriched with temporal features from a linear temporal logic T to
create a new, temporalised system T(L).

We assume that the language of temporal system T is the US language
and its inference system is an extensions of that of US=Klin, with its corre-
sponding class of temporal linear models K � Klin.

With respect to the logic L we assume it is an extension of classical logic,
that is, all propositional tautologies are valid in it. The set LL is partitioned
in two sets, BCL and MLL. A formula A 2 LL belongs to the set of Boolean
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combinations , BCL, i� it is built up from other formulas by the use of one
of the Boolean connectives : or ^ or any other connective de�ned only in
terms of those; it belongs to the set of monolithic formula MLL otherwise.

If L is not an extension of classical logic, we can simply \encapsulate" it
in L0 with a one-place symbol # not occurring in either L or T, such that for
each formula A 2 LL, #A 2 LL0 , `L Ai� `L0 #A and the model structures
of #A are those of A. Note that MLL0 = LL0 , BCL0 = ?.

The alphabet of the temporalised language uses the alphabet of L plus
the two-place operators S and U , if they are not part of the alphabet of L;
otherwise, we use S and U or any other proper renaming.

DEFINITION 31. Temporalised formulas The set LT(L) of formulas of the
logic system L is the smallest set such that:

1. If A 2MLL, then A 2 LT(L);

2. If A;B 2 LT(L) then :A 2 LT(L) and (A ^ B) 2 LT(L);

3. If A;B 2 LT(L) then S(A;B) 2 LT(L) and U(A;B) 2 LT(L).

Note that, for instance, if 2 is an operator of the alphabet of L and A
and B are two formulas in LL, the formula 2U(A;B) is not in LT(L). The
language of T(L) is independent of the underlying ow of time, but not its
semantics and inference system, so we must �x a class K of ows of time
over which the temporalisation is de�ned; if ML is a model in the class of
models of L, KL, for every formula A 2 LL we must have either ML j= A
or ML j= :A. In the case that L is a temporal logic we must consider a
\current time" o as part of its model to achieve that condition.

DEFINITION 32. Semantics of the temporalised logic. 1 Let (T;<) 2 K be
a ow of time and let g : T ! KL be a function mapping every time point
in T to a model in the class of models of L. A model of T(L) is a triple
MT(L) = (T;<; g) and the fact that A is true in MT(L) at time t is written
as MT(L); t j= A and de�ned as:

MT(L); t j= A, A 2MLL i� g(t) = ML and ML j= A.

MT(L); t j= :A i� it is not the case that MT(L); t j= A.

MT(L); t j= (A ^ B) i� MT(L); t j= A and MT(L); t j= B.

MT(L); t j= S(A;B) i� there exists s 2 T such that s < t and
MT(L); s j= A and for every u 2 T , if
s < u < t then MT(L); u j= B.

1We assume that the a model of T is given by (T;<; h) where h maps time points into
sets of propositions (instead of the more common, but equivalent, mapping of propositions
into sets of time points); such notation highlights that in the temporalised model each
time point is associated to a model of L.
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MT(L); t j= U(A;B) i� there exists s 2 T such that t < s and
MT(L); s j= A and for every u 2 T , if
t < u < s then MT(L); u j= B.

The inference system of T(L)=K is given by the following:

DEFINITION 33. Axiomatisation for T(L) An axiomatisation for the tem-
poralised logic T(L) is composed of:

� The axioms of T=K;

� The inference rules of T=K;

� For every formula A in LL, if `L A then `T(L) A, i.e. all theorems of L
are theorems of T(L). This inference rule is called Persist.

EXAMPLE 34. Consider classical propositional logic PL = hLPL;`PL; j=PLi.
Its temporalisation generates the logic system T(PL) = hLT(PL);`T(PL);
j=T(PL)i. It is not diÆcult to see that the temporalised version of PL over
any K is actually the temporal logic T = US=K.

If we temporalise over K the one-dimensional logic system US=K we
obtain the two-dimensional logic system T(US) = hLT(US);`T(US); j=T(US)i
= T2(PL)=K. In this case we have to rename the two-place operators S and
U of the temporalised alphabet to, say, S and U . Note, however, how weak
this logic is, for S and U cannot occur within the scope of U and S.

In order to obtain a model for T(US), we must �x a \current time", o1,
in MUS = (T1; <1; g1) , so that we can construct the model MT(US) =
(T2; <2; g2) as previously described. Note that, in this case, the ows of
time (T1; <1) and (T2; <2) need not to be the same. (T2; <2) is the ow of
time of the upper-level temporal system whereas (T1; <1) is the ow of time
of the underlying logic which, in this case, happens to be a temporal logic.
The satis�ability of a formula in a model of T(US) needs two evaluation
points, o1 and o2; therefore it is a two-dimensional temporal logic.

The logic system we obtain by temporalising US-temporal logic is the
two-dimensional temporal logic described in [Finger, 1992].

This temporalisation process can be repeated n times, generating an n
dimensional temporal logic with connectives Ui; Si, 1 � i � n, such that for
i < j Uj ; Sj cannot occur within the scope of Ui; Si.

We analyse now the transfer of soundness, completeness and decidability
from T and L to T(L); that is, we are asuming the logics T and L have sound,
complete and decidable axiomatisations with respect to their semantics, and
we will analyse how such properties transfer to the combined system T(L).
It is a routine task to analyse that if the inference systems of T and L

are sound, so is T(L). So we concentrate on the proof of transference of
completeness.
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Completeness

We prove the completeness of T(L)=K indirectly by transforming a consis-
tent formula A of T(L) into "(A) and then mapping it into a consistent
formula of T. Completeness of T=K is used to �nd a T-model for A� that
is used to construct a model for the original T(L) formula A.

We �rst de�ne the transformation and mapping. Given a formula A 2
LT(L), consider the following sets:

Lit(A) = Mon(A) [ f:B j B 2Mon(A)g

Inc(A) = f
^

� j � � Lit(A) and � `L ?g

where Mon(A) is the set of maximal monolithic subformulae of A. Lit(A)
is the set of literals occurring in A and Inc(A) is the set of inconsistent
formulas that can be built with those. We transform A into A as: "(A):

"(A) = A ^
V
B2Inc(A)(:B ^ G:B ^ H:B)

The big conjunction in"(A) is a theorem of T(L), so we have the following
lemma.

LEMMA 35. `T(L) "(A) $ A

If K is a subclass of linear ows of time, we also have the following
property (this is where linearity is used in the proof).

LEMMA 36. LetMT be a temporal model over K � Klin such that for some
o 2 T , MT; o j= �(�A). Then, for every t 2 T , MT; t j= �(�A).

Therefore, if some subset of Lit(A) is inconsistent, the transformed for-
mula "(A) puts that fact in evidence so that, when it id mapped into T,
inconsistent subformulae will be mapped into falsity.

Now we want to map a T(L)-formula into a T-formula. For that, consider
an enumeration p1, p2, : : :, of elements of P and consider an enumerationA1,
A2, : : :, of formulae in MLL. The correspondence mapping � : LT(L) ! LT
is given by:

�(Ai) = pi for every Ai 2MLL; i = 1; 2 : : :

�(:A) = :�(A)

�(A ^ B) = �(A) ^ �(B)

�(S(A;B)) = S(�(A); �(B))

�(U(A;B)) = U(�(A); �(B))

The following is the correspondence lemma.

LEMMA 37. The correspondence mapping is a bijection. Furthermore if A
is T(L)-consistent then �(A) is T-consistent.
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LEMMA 38. If A is T(L)-consistent, then for every t 2 T , GA(t) = fB 2
Lit(A) j MT; t j= �(B)g is �nite and L-consistent.

Proof. Since Lit(A) is �nite, GA(t) is �nite for every t. Suppose GA(t) is
inconsistent for some t, then there exist fB1; : : : ; Bng � GA(t) such that
`L
V
Bi ! ?. So

V
Bi 2 Inc(A) and �:(

V
Bi) is one of the conjuncts of

"(A). Applying Lemma 36 to MT; o j= �("(A)) we get that for every t 2 T ,
MT; t j= :(

V
�(Bi)) but by, the de�nition of GA, MT; t j=

V
�(Bi), which

is a contradiction. �

We are �nally ready to prove the completeness of T(L)=K.

THEOREM 39 (Completeness transfer for T(L)). If the logical system L is
complete and T is complete over a subclass of linear ows of time K � Klin,
then the logical system T(L) is complete over K.

Proof. Assume that A is T(L)-consistent. By Lemma 38, we have (T;<) 2
K and associated to every time point in T we have a �nite and L-consistent
set GA(t). By (weak) completeness of L, every GA(t) has a model, so we
de�ne the temporalised valuation function g:

g(t) = fMt
L j M

t
L is a model of GA(t)g

Consider the model MT(L) = (T;<; g) over K. By structural induction
over B, we show that for every B that is a subformula of A and for every
time point t,

MT; t j= �(B) i� MT(L); t j= B

We show only the basic case, B 2 Mon(A). Suppose MT; t j= �(B); then
B 2 GA(t) and Mt

L
j= B, and hence MT(L); t j= B. Suppose MT(L); t j= B

and assume MT; t j= :�(B); then :B 2 GA(t) and Mt
L
j= :B, which

contradicts MT(L); t j= B; hence MT; t j= �(B). The inductive cases are
straightforward and omitted.

So, MT(L) is a model for A over K and the proof is �nished. �

Theorem 39 gives us sound and complete axiomatisations for T(L) over
many interesting classes of ows of time, such as the class of all linear ows
of time, Klin, the integers, Z, and the reals, R. These classes are, in their T
versions, decidable and the corresponding decidability of T(L) is dealt next.

Note that the construction above is �nitistic, and therefore does not itself
guarantee that compactness is transferred. However, an important corollary
of the construction above is that the temporalised system is a conservative
extension of both original systems, that is, no new theorem in the language
of an original system is provable in the combined system. Formally, L1 is a
conservative extension of L2 if it is an extension of L2 such that if A 2 LL2 ,
then `L1 A only if `L2 A.
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COROLLARY 40. Let L be a sound and complete logic system and T be
sound and complete over K � Klin. The logic system T(L) is a conservative
extension of both L and T.

Proof. Let A 2 LL such that `T(L) A. Suppose by contradiction that
6`l ogicLA, so by completeness of L, there exists a model ML such that
ML j= :A. We construct a temporalised model MT(L) = (T;<; g) by
making g(t) = ML for all t 2 T . MT(L) clearly contradicts the soundness of
T(L) and therefore that of T, so `L A. This shows that T(L) is a conservative
extension of L; the proof of extension of T is similar. �

Decidability

The transfer of decidability is also done using the correspondence mapping
� and the transformation �. Such a transformation is actually computable,
as the following two lemmas state.

LEMMA 41. For any A 2 LT(L), if the logic system L is decidable then there
exists an algorithm for constructing "(A).

LEMMA 42. Over a linear ow of time, for every A 2 LT(L),

`T(L) A i� `T �("(A)):

Decidability is a direct consequence of these two lemmas.

THEOREM 43. If L is a decidable logic system, and T is decidable over
K � Klin, then the logic system T(L) is also decidable over K.

Proof. Consider A 2 LT(L). Since L is decidable, by Lemma 41 there is
an algorithmic procedure to build "(A). Since � is a recursive function, we
have an algorithm to construct �("(A)), and due to the decidability of T
over K, we have an e�ective procedure to decide if it is a theorem or not.
Since K is linear, by Lemma 42 this is also a procedure for deciding whether
A is a theorem or not. �

4.2 Independent Combination

We now deal with the combination of two temporal logic systems. One of
the will be called the horizontal temporal logic US, while the other will
be the vertical temporal logic �U�S. If we temporalise the horizontal logic
with the vertical logic, we obtain a very weakly expressive system; if US is
the internal (horizontal) temporal logic in the temporalisation process (F
is derived in US), and �U�S is the external (vertical) one (F is de�ned in �U�S),
we cannot express that vertical and horizontal future operators commute,

FF A$ F FA:
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In fact, the subformula FF A is not even in the temporalised language of
�U�S(US), nor is the whole formula. In other words, the interplay between
the two-dimensions is not expressible in the language of the temporalised
�U�S(US).

The idea is then to de�ne a method for combining temporal logics that
is symmetrical. As usual, we combine the languages, inference systems and
classes of models.

DEFINITION 44. Let Op(L) be the set of non-Boolean operators of a
generic logic L. Let T and T be logic systems such that Op(T)\Op(T) = ?.
The fully combined language of logic systems T and T over the set of atomic
propositions P , is obtained by the union of the respective set of connectives
and the union of the formation rules of the languages of both logic systems.

Let the operators U and S be in the language of US and U and S be in
that of �U�S. Their fully combined language over a set of atomic propositions
P is given by

� every atomic proposition is in it;

� if A;B are in it, so are :A and A ^ B;

� if A;B are in it, so are U(A;B) and S(A;B).

� if A;B are in it, so are U(A;B) and S (A;B).

Not only are the two languages taken to be independent of each other,
but the set of axioms of the two systems are supposed to be disjoint; so we
call the following combination method the independent combination of two
temporal logics.

DEFINITION 45. Let US and �U�S be two US-temporal logic systems
de�ned over the same set P of propositional atoms such that their languages
are independent. The independent combination US � �U�S is given by the
following:

� The fully combined language of US and �U�S.

� If (�; I) is an axiomatisation for US and (�; I) is an axiomatisation
for �U�S, then (� [ �; I [ I) is an axiomatisation for US � �U�S. Note
that, apart from the classical tautologies, the set of axioms � and �
are supposed to be disjoint, but not the inference rules.

� The class of independently combined ows of time is K�K composed of
biordered ows of the form ( ~T ;<; < ) where the connected components
of ( ~T ;<) are in K and the connected components of ( ~T ; < ) are in K,
and ~T is the (not necessarily disjoint) union of the sets of time points
T and T that constitute each connected component.
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A model structure for US � �U�S over K � K is a 4-tuple ( ~T ;<;<; g),
where ( ~T ;<; < ) 2 K�K and g is an assignment function g : ~T ! 2{.

The semantics of a formula A in a model M = ( ~T ;<; < ; g) is de�ned
as the union of the rules de�ning the semantics of US=K and �U�S=K.
The expression M; t j= A reads that the formula A is true in the
(combined) model M at the point t 2 ~T . The semantics of formulas
is given by induction in the standard way:

M; t j= p i� p 2 g(t) and p 2 P :

M; t j= :A i� it is not the case that M; t j= A.

M; t j= A ^ B i� M; t j= A and M; t j= B.

M; t j= S(A;B) i� there exists an s 2 ~T with s < t and M; s j= A
and for every u 2 ~T , if s < u < t then
M; u j= B.

M; t j= U(A;B) i� there exists an s 2 ~T with t < s and M; s j= A
and for every u 2 ~T , if t < u < s then
M; u j= B.

M; t j= S (A;B) i� there exists an s 2 ~T with s< t and M; s j= A
and for every u 2 ~T , if s<u<t then M; u j= B.

M; t j= U(A;B) i� there exists an s 2 ~T with t< s and M; s j= A
and for every u 2 ~T , if t<u<s then M; u j= B.

The also independent combination of two logics appears in the literature
under the names of fusion or join.

As usual, we will assume that K;K � Klin, so < and < are transitive,
irreexive and total orders; similarly, we assume that the axiomatisations
are extensions of US/Klin.

The temporalisation process will be used as an inductive step to prove
the transference of soundness, completeness and decidability for US � �U�S
over K�K. We de�ne the degree alternation of a (US � �U�S)-formula A for
US, dg(A):

dg(p) = 0

dg(:A) = dg(A)

dg(A ^ B) = dg(S(A;B)) = dg(U(A;B)) = maxfdg(A); dg(B)g

dg(U (A;B)) = dg(S (A;B)) = 1 +maxf dg(A); dg(B)g

and similarly de�ne dg(A) for �U�S.
Any formula of the fully combined language can be seen as a formula

of some �nite number of alternating temporalisations of the form
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US(�U�S(US(: : :))); more precisely, A can be seen as a formula of US(Ln),
where dg(A) = n, US(L0) = US, �U�S(L0) = �U�S, and Ln�2i = �U�S(Ln�2i�1),
Ln�2i�1 = US(Ln�2i�2), for i = 0; 1; : : : ; dn2 e � 1.

Indeed, not only the language of US��U�S is decomposable in a �nite num-
ber of temporalisation, but also its inferences, as the following important
lemma indicates.

LEMMA 46. Let US and �U�S be two complete logic systems. Then, A is a
theorem of US � �U�S i� it is a theorem of US(Ln), where dg(A) = n.

Proof. If A is a theorem of US(Ln), all the inferences in its deduction can
be repeated in US � �U�S, so it is a theorem of US � �U�S.

Suppose A is a theorem of US � �U�S; let B1; : : : ; Bm = A be a deduction
of A in US � �U�S and let n0 = maxfdg(Bi)g, n0 � n. We claim that each
Bi is a theorem of US(Ln0). In fact, by induction on m, if Bi is obtained
in the deduction by substituting into an axiom, the same substitution can
be done in US(Ln0); if Bi is obtained by Temporal Generalisation from Bj ,
j < i, then by the induction hypothesis, Bj is a theorem of US(Ln0) and so
is Bi; if Bi is obtained by Modus Ponens from Bj and Bk, j; k < i, then by
the induction hypothesis, Bj and Bk are theorems of US(Ln0) and so is Bi.

So A is a theorem of US(Ln0) and, since US and �U�S are two complete
logic systems, by Theorem 39, each of the alternating temporalisations in
US(Ln0) is a conservative extension of the underlying logic; it follows that A
is a theorem of US(Ln), as desired. �

Note that the proof above gives conservativeness as a corollary. The
transference of soundness, completeness and decidability also follows di-
rectly from this result.

THEOREM 47 (Independent Combination). Let US and �U�S be two sound
and complete logic systems over the classes K and K, respectively. Then
their independent combination US � �U�S is sound and complete over the
class K �K. If US and �U�S are complete and decidable, so is US � �U�S.

Proof. Soundness follows immediately from the validity of axioms and
inference rules.

We only sketch the proof of completess here. Given a US� �U�S-consistent
formula A, Lemma 46 is used to see that it is also consistent in US(Ln),
so a temporalised US(Ln)-model is built for it. Then, by induction on the
degree of alternation of A, this US(Ln) is used to construct a US��U�S-model;
each step of such construction preserves the satisfatibility of formulas of a
limited degree of alternation, so in the �nal model, A, is satis�able; and
completeness is proved. For details, see [Finger and Gabbay, 1996].

For decidability, suppose we want to decide whether a formula A 2 US�
�U�S is a theorem. By Lemma 46, this is equivalent to deciding whether A 2
US(Ln) is a theorem, where n = dg(A). Since US/K and �U�S/K are both
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complete and decidable, by successive applications of Theorems 39 and 43,
it follows that the following logics are decidable: US(�U�S), �U�S(US(�U�S)) =
�U�S(L2), : : :, �U�S(Ln�1)= Ln; so a the last application of Theorems 39 and 43
yields that US(Ln) is decidable. �

The minimality of the independent combination

The logic US � �U�S is the minimal logic that conservatively extends both
US and �U�S. This result was �rst shown for the independent combination
of monomodal logics independently by [Kracht and Wolter, 1991] and [Fine
and Schurz, 1991].

Indeed, suppose there is another logic T1 that conservatively extends
both US and �U�S but some theorem A of US � �U�S is not a theorem of T1.
But A can be obtained by a �nite number of inferences A1; : : : ; An = A
using only the axioms of US and �U�S. But any conservative extension of
US and �U�S must be able to derive Ai, 1 � i � n, from A1; : : : ; Ai�1, and
therefore it must be able to derive A; contradiction.

Once we have this minimal combination between two logic systems, any
other interaction between the logics must be considered on its own. As
an example, consider the following formulas expressing the commutativity
of future and past operators between the two dimensions are not generally
valid over a model ofUS � �U�S:

I1 FF A$ F FA

I2 FPA$ PFA

I3 PF A$ F PA

I4 PPA$ PPA

Now consider the product of two linear temporal models, given as follows.

DEFINITION 48. Let (T;<) 2 K and (T ;<) 2 K be two linear ows of
time. The product of those ows of time is (T � T ;<;<). A product model
over K � K is a 4-tuple M = (T � T ;<;<; g), where g : T � T ! 2{ is a
two-dimensional assignment. The semantics of the horizontal and vertical
operators are independent of each other:

M; t; x j= S(A;B) i� there exists s < t such that M; s; x j= A
and for all u, s < u < t, M; u; x j= B.

M; t; x j= S (A;B) i� there exists y<x such that M; t; y j= A
and for all z, y<z<x, M; t; z j= B.

Similarly for U and U , the semantics of atoms and Boolean connectives
remaining the standard one. A formula A is valid over K � K if for all
models M = (T;<; T ;<; g), for all t 2 T and x 2 T we have M; t; x j= A.
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It is easy to verify that the formulas I1{I4 are valid over product mod-
els. We wonder if such product of logics transfers the properties we have
investigated for the previous logics. The answer is: it depends. We have
the following results.

PROPOSITION 49.

(a) There is a sound and complete axiomatisation for US � �U�S over the
classes of product models Klin�Klin, Kdis�Kdis, Q�Q , Klin�Kdis,
Klin � Q and Q �Kdis [Finger, 1994].

(b) There are no �nite axiomatisations for the valid two-dimensional for-
mulas over the classes Z�Z, N � N and R � R [Venema, 1990].

Note that the all the component one-dimensional mentioned above logic
systems are complete and decidable, but their product sometimes is com-
plete, sometimes not. Also, the logics in (a) are all decidable and those in
(b) are undecidable.

This is to illustrate the following idea: given an independent combination
of two temporal logics, the addition of extra axioms, inference rules or an
extra condition on its models has to be studied on its own, just as adding a
new axiom to a modal logic or imposing a new property on its accessibility
relation has to be analysed on its own.

Combinations of logics in the literature

The work on combining temporal logics presented here has �rst appeared
in the literature in [Finger and Gabbay, 1992; Finger and Gabbay, 1996].

General combinations of logics have been addressed in the literature in
various forms. Combinations of tense and modality were discussed in the
next chapter in this volume, (which reproduces [Thomason, 1984]), without
explicitly providing a general methodology for doing so. A methodology
for constructing logics of belief based on existing deductive systems is the
deductive model of Konolige [Konolige, 1986]; in this case, the language of
the original system was the base for the construction of a new modal lan-
guage, and the modal logic system thus generated had its semantics de�ned
in terms of the inferences of the original system. This is a methodology
quite di�erent from the one adopted here, in which we separately combine
language, inference systems and class of models.

Combination of two monomodal logics and the transference of properties
have been studied by Kracht and Wolter [1991] and Fine and Schurz [1991];
the latter even considers the transference of properties through the combi-
nation of n-monomodal logics. These works di�er from the combination of
temporal logics in several ways: their modalities have no interaction what-
soever (unlike S and U , which actually interact with each other); they only
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consider one-place modalities (�); and their constructions are not a recur-
sive application of the temporalisation (or any similar external application
of one logic to another).

A stronger combination of logics have been investigated by Gabbay and
Shehtman [Gabbay and Shehtman, 1998], where the starting point is the
product of two Kripke frames, generating the product of the two monomodal
logics. It shows that the transference of completeness and decidability can
either succeed or fail for the product, depending on the properties of the
component logics. The failure of transference of decidability for temporal
products in FP=Klin � FP=Klin has been shown in [Marx and Reynolds,
1999], and fresh results on the products of logics can be found in [Reynolds
and Zakharyaschev, 2001].

The transference of soundness, completeness and decidability are by no
means the only properties to study. Kracht and Wolter [Kracht and Wolter,
1991] study the transference of interpolation between two monomodal log-
ics. The complexity of the combination of two monomodal logics is studied
in [Spaan, 1993]; the complexity of products are studied in [Marx, 1999].
Gabbay and Shehtman [Gabbay and Shehtman, 1998] report the failure of
transference of the �nite model property for their product of modal log-
ics. With respect to speci�c temporal properties, the transference of the
separation property is studied in [Finger and Gabbay, 1992].

For a general combining methdology, see [Gabbay, 1998].

5 LABELLED DEDUCTION PRESENTATION OF TEMPORAL
LOGICS

5.1 Introducing LDS

This section develops proof theory for temporal logic within the framework
of labelled deductive systems [Gabbay, 1996].

To motivate our approach consider a temporal formula � = FA^PB^C.
This formula says that we want A to hold in the future (of now), B to
hold in the past and C to hold now. It represents the following temporal
con�guration:

� t < d < s; t � B; d � C and s � A

where d is now and t; s are temporal points.

Suppose we want to be very explicit about the temporal con�guration
and say that we want another instance of B to hold in the past of s but not
in the past or future of d, i.e. we want an additional point r such that:

� r < s;� (r = d _ r < d _ d < r) and r � B.
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The above cannot be expressed by a formula. The obvious formula � =
F (A^PB)^PB^C will not do. We need extra expressive power. We can,
for example, use an additional atom q and write

 = q ^Hq ^Gq ^ F (A ^ P (B^ � q)) ^ PB ^ C:

This will do the job.
However, by far the simplest approach is to allow names of points in the

language and write s : A to mean that we want s � A to hold. Then we can
write a theory � as

� = ft < d < s; t : A; d : C; s : B; r : A;� (r < d _ r = d _ d < r)g:

� is satis�ed if we �nd a model (S;R; a; h) in which d can be identi�ed
with g(d) = a and t; s; r can be identi�ed with some points g(t); g(s); g(r)
such that the above ordering relations hold and the respective formulae are
satis�ed in the appropriate points.

The above language has turned temporal logic into a labelled deductive
system (LDS). It has brought some of the semantics into the syntax.

But how about proof theory?
Consider t : FFPB. This formula does hold at t (because B holds at r).

Thus we must have rules that allow us to show that

� ` FFPB:

It is convenient to write � as:

Assumptions Con�guration
t : B t < d < s
d : C � (r < d _ d = r _ d < r)
s : A r < s
r : B

and give rules to manipulate the con�guration until we get t : FFPB.
Thus formally a temporal database is a set of labelled formulae fti : Aig

together with a con�guration on ftig, given in the form of an earlier{later
relation <. A query is a labelled formula t : Q. The proof rules have the
form

t1 : A1; : : : ; tn : An; con�guration

s : B con�guration0

where the con�guration is a set of conditions on the ordering of ftig.
The use of labels is best illustrated via examples:

EXAMPLE 50. This example shows the LDS in the case of modal logic.
Modal logic has to do with possible worlds. Thus we think of our ba-
sic database (or assumptions) as a �nite set of information about possible
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worlds. This consists of two parts. The con�guration part, the �nite con�g-
uration of possible worlds for the database, and the assumptions part which
tells us what formulae hold in each world. The following is an example of a
database:

Assumptions Con�guration
(1) t : ��B t < s
(2) s : �(B ! C)

The conclusion to show (or query) is

t : ��C:

The derivation is as follows:

(3) From (2) create a new point r with s < r and get r : B ! C.

We thus have

Assumptions Con�guration
(1), (2), (3) t < s < r

(4) From (1), since t < s get s : �B.

(5) From (4) since s < r get r : B.

(6) From (5) and (3) we get r : C.

(7) From (6) since s < r get s : �C.

(8) From (7) using t < s we get t : ��C.

Discussion The object rules involved are:
�E rule:

t < s; t : �A

s : A

�I rule:

t < s; s : B

t : �B

�E rule:

t : �A

create a new point s with t < s and deduce s : A
:
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Note that the above rules are not complete. We do not have rules for
deriving, for example, �A. Also, the rules are all for intuitionistic modal
logic.

The metalevel considerations which determine which logic we are working
in, may be properties of <, e.g. t < s ^ s < r ! t < r, or linearity, e.g.
t < s _ t = s _ s < t etc.

There are two serious problems in modal and temporal theorem proving.
One is that Skolem functions for 9x�A(x) and �9xA(x) are not logically
the same. If we `Skolemize' we get �A(c). Unfortunately it is not clear
where c exists, in the current world (9x = c�A(x)) or the possible world
(�9x = cA(x)).

If we use labelled assumptions then t : 9x�A(x) becomes t : �A(c) and
it is clear that c is introduced at t.

On the other hand, the assumption t : �9xA(x) will be used by the
�E rule to introduce a new point s; t < s and conclude s : 9xA(x). We
can further `Skolemize' at s and get s : A(c), with c introduced at s. We
thus need the mechanism of remembering or labelling constants as well, to
indicate where they were �rst introduced.

EXAMPLE 51. Another example has to do with the Barcan formula

Assumption Con�guration
(1) t : 8x�A(x) t < s

We show

(2) s : 8xA(x):

We proceed intuitively

(3) t : �A(x) (stripping 8x, remembering x is arbitrary).

(4) Since the con�guration contains s; t < s we get

s : A(x):

(5) Since x is arbitrary we get

s : 8xA(x):

The above intuitive proof can be restricted.
The rule

t : �A(x); t < s

s : A(x)

is allowed only if x is instantiated.
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To allow the above rule for arbitrary x is equivalent to adopting the
Barcan formula axiom

8x�A(x) ! �8xA(x):

EXAMPLE 52. To show 8x�A(x) ! �8xA(x) in the modal logic where it
is indeed true.

(1) Assume t : 8x�A(x).
We show �8xA(x) by the use of the metabox:

create �; t < �
(2) t : �A(x) from (1)
(3) � : A(x) from (2) using a rule

which allows this with x a variable.
(4) � : 8xA(x) universal generalization.

(5) Exit: t : �8xA(x).

This rule has the form

Create �; t < �
Argue to get � : B
Exit with t : �B

5.2 LDS semantics

We can now formally de�ne a simpli�ed version of LDS, suÆcient for our
temporal logics. The reader is referred to [Gabbay, 1996] for full details.

An algebraic LDS is built up from two components: an algebra A and a
logic L. To make things speci�c, let us assume that we are dealing with a
particular algebraic model A = (S;<; f1; : : : ; fk), where S is the domain of
the algebra, < is a strict order, i.e. irreexive and transitive, relation on S
and f1; : : : ; fk are function symbols on S of arities r1; : : : ; rk respectively.
The sequence � = (<;f1; : : : ; fk) is called the signature of A. It is really
the language of A in logical terms but we use � to separate it from L.
We assume the functions are isotonic, i.e. they are either monotonic up or
monotonic down in each variable, namely for each coordinate x in f we have
that either

8x; y(x < y ! f(: : : ; x; : : :) < f(: : : ; y; : : :))

or

8x; y(x < y ! f(: : : ; y; : : :) < f(: : : ; x; : : :))

holds.
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A typical algebra is a binary tree algebra where each point x in the tree
has two immediate successor points r1(x) and r2(x) and one predecessor
point p(x). < is the (branching) earlier{later relation and we have p(x) <
x < ri(x); i = 1; 2.

The general theory of LDS (see [Gabbay, 1996, Section 3.2]) requires a
source of labels and a source of formulae. These together are used to form
the declarative units of the form t : A, where t is a label and A is a formula.

The labels can be syntactical terms in some algebraic theory. The alge-
braic theory itself can be characterized either syntactically by giving axioms
which the terms must satisfy or semantically by giving a class of models (al-
gebras) for the language.

The formulae part of an LDS declarative unit is de�ned in the traditional
way in some language L.

An LDS database (theory) � is a set of terms and their formulae (i.e.
a set of declarative units) with some relationships between the terms. In
a general LDS, the terms themselves are syntactical and one always has to
worry whether the required relations between the terms of � are possible
(i.e. are consistent).

If, however, we have a semantic theory for the labels characterized by one
single model (algebra), then we can take the labels to be elements of this
model and consistency and relationships among the labels (elements) of �
will always be clear|they are as dictated by the model. This represents a
temporal logic with a concrete speci�c ow of time (e.g. integers, rationals,
reals, etc.).

We therefore present for the purpose of this chapter, a concrete de�nition
of LDS based on a single model as an algebra of labels.

DEFINITION 53 (Concrete algebraic LDS).

1. A concrete algebraic LDS has the form (A;L) where:

(a) A = (S;<; f1; : : : ; fk) is a concrete algebraic model. The ele-
ments of S are called labels.

(b) L is a predicate language with connectives ]1; : : : ; ]m with ari-
ties r1; : : : ; rm, and quanti�ers (Q1x); : : : ; (Qm0x). The connec-
tives can be some well-known modalities, binary conditional, etc.,
and the quanti�ers can be some known generalized or traditional
quanti�ers. We assume that the traditional syntactical notions
for L are de�ned. We also assume that L has only constants, no
function symbols and the constants of L are indexed by elements
of the algebra A, i.e. have the form cti; t 2 S; i = 1; 2; 3; : : :.

2. A declarative unit has the form t : A, where A is a w� and t 2 S, or it
has the form t : csi . The unit t : A intuitively means `A holds at label
t' and the unit t : csi means `the element ci which was created at label
s does exist in the domain of label t'.
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3. A database has the form � = (D; f; d; U) where D � S is non-empty
and f is a function associating with each t 2 D a set of w�s f(t) = �t.
U is a function associating with each t 2 D a set of terms Ut. d 2 D is
a distinguished point in D. The theory � can be displayed by writing
ft : A1; t : A2; s : B; r : cs3; : : :g, where t : A indicates A 2 f(t) and
r : cs indicates cs 2 Ur.

DEFINITION 54 (Semantics for LDS). Let (A;L) be a concrete algebraic
LDS, with algebra A and language L with connectives f]1; : : : ; ]mg and
quanti�ers fQ1; : : : ; Qm0g where ]i is ri place.

1. A semantical interpretation for the LDS has the form I = (	0(x;X);
	1; : : : ;	i(x;X1; : : : ; Xri); : : : ;	m;	

0
1(x; Z); : : : ;	0

m0(x; Z)) where 	i

is a formula of the language of A, possibly second order, with the sin-
gle free element variable x and the free set variables X as indicated,
and 	0

i have a single free element variable x and free binary relation
variable Z. We need to assume that 	i and 	0

j have the property that
if we substitute in them for the set variables closed under � then the
element variable coordinate is monotonic up under �. In symbols:

�
V
j 8x; y(x 2 Xj ^ x � y ! y 2 Xj) ! [x � y ! 	(x;Xj) !

	(y;Xj)].

2. A model for the LDS has the form m = (V; h; g; d) where d 2 S is the
distinguished world, V is a function associating a domain Vt with each
t 2 S, h is a function associating with each n-place atomic predicate
P a subset h(t; P ) � V nt .

g is an assignment giving each variable x an element g(x) 2 Vd and
for each constant csi an element g(csi ) 2 Vs.

3. Satisfaction is de�ned by structural induction as follows:

� t � P (b1; : : : ; bn) i� (b1; : : : ; bn) 2 h(t; P );

� t � 9xA(x) i� for some b 2 Vt; t � A(b);

� t � A ^B i� t � A and t � B;

� t �� A i� t 2 A;

� t � ]i(A1; : : : ; Ari) i� A � 	i(t; Â1; : : : ; Âri), where Â = fs 2 S j
s � Ag;

� t � (Qiy)A(y) i� A � 	0
i(t;

\�yA(y)), where \�yA(y) = f(t; y) j t �
A(y)g.

4. We say A holds in m i� A � 	0(d; Â).
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5. The interpretation I induces a translation � of L into a two-sorted
language L� based on the two domains S (of the algebra A) and
U =

S
t Vt (of the predicates of L) as follows:

� each atomic predicate P (x1; : : : ; xn) (interpreted over the domain
U) is translated into

[P (x1; : : : ; xn)]�t = P �(t; x1; : : : ; xn);

where P � is a two-sorted predicate with one more variable t rang-
ing over S and x1; : : : ; xn ranging over U ;

� [A ^B]�t = [A]�t ^ [B]�t ;

� [� A]�t =� [A]�t ;

� []i(A1; : : : ; Ari ]
�
t = 	i(t; �s[A1]�s ; : : : ; �s[Ari ]

�
s);

� [(Qiy)A(y)]�t = 	0
i(t; �y�s[A(y)]�s);

� Let kAk� = 	0(d; �t[A]�t ).

6. It is easy to show by induction that:

� t � A i� [A]�t holds in the naturally de�ned two-sorted model.

The reader should compare this de�nition with [Gabbay, 1996, De�nition
3.2.6] and with Chapter 5 of [Gabbay et al., 1994].

Gabbay's book on LDS contains plenty of examples of such systems.
In the particular case of temporal logic, the algebra has the form (D;<;d),

where D is the ow of time and < is the earlier{later relation. d 2 D is the
present moment (actual world).

5.3 Sample temporal completeness proof

The previous section presented the LDS semantics. This section will choose
a sample temporal logical system and present LDS proof rules and a com-
pleteness theorem for it. We choose the modal logic Kt (See Section 3.2
of [Gabbay et al., 1994]). This is the propositional logic with H and G
complete for all Kripke frames (S;R; a); a 2 S, such that R is transitive and
irreexive. A w� A is a theorem of Kt i� for all models (S;R; a; h) with
assignment h, we have a � A.

We want to turn Kt into a quanti�ed logic QKt. We take as semantics
the class of all models of the form (S;R; a; V; h) such that Vt for t 2 S is
the domain of world t. The following is assumed to hold:

� tRs ^ sRs0 and a 2 Vs0 and a 2 Vt imply a 2 Vs (i.e. elements are
born, exist for a while and then possibly die).
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DEFINITION 55 (Traditional semantics for QKt).

1. A QKt Kripke structure has the form (S;R; a; V; h), where S is a non-
empty set of possible worlds, R � S2 is the irreexive and transitive
accessibility relation and a 2 S is the actual world. V is a function
giving for each t 2 S a non-empty domain Vt.

� Let VS =
S
t2S Vt.

h is the assignment function assigning for each t and each n-place
atomic predicate P its extension h(t; P ) � V nt , and for each constant
c of the language its extension h(c) 2 VS .

Each n-place function symbol of the language of the form f(x1; : : : ; xn)
and t is assigned a function h(f) : V nS 7! VS .

Note that function symbols are rigid, i.e. the assignment to a constant
c is a �xed rigid element which may or may not exist at a world t.2

2. Satisfaction � is de�ned in the traditional manner.

(a) h can be extended to arbitrary terms by the inductive clause
h(f(x1; : : : ; xn)) = h(f)(h(x1); : : : ; h(xn)).

(b) We de�ne for atomic P and terms x1; : : : ; xn

t �h P (x1; : : : ; xn) i� (h(x1); : : : ; h(xn)) 2 h(t; P ):

(c) The cases of the classical connectives are the traditional ones.

(d) t �h 9xA(x) i� for some a 2 Vt; t �h A(a).

(e) t �h 8xA(x) i� for all a 2 Vt; t �h A(a).

3. t �h GA(a1; : : : ; an) (resp. t � HA) i� for all s, such that tRs (resp.
sRt) and a1; : : : ; an 2 Vs; s � A.

4. t � U(A(a1; : : : ; an); B(b1; : : : ; bk)) i� for some s; tRs and ai 2 Vs; i =
1; : : : ; n, we have s � A and for all s0; tRs0 and s0Rs and bj 2 Vs0 ; j =
1; : : : ; k, imply s0 � B. (The mirror image holds for S(A;B).)

5. Satisfaction in the model is de�ned as satisfaction in the actual world.

2Had we wanted non-rigid semantics we would have stipulated that the extension of
a function symbol is h(t; f) : V n

t 7! Vt. There is no technical reason for this restriction
and our methods still apply. We are just choosing a simpler case to show how LDS
works. Note that by taking h(t; P ) � V n

t as opposed to h(t; P ) � V n
S , we are introducing

peculiarities in the semantic evaluation. t � P (a1; : : : ; an) becomes false if not all ai are
in Vt. We can insist that we give values to t � A(a1; : : : ; an) only if all elements are in
Vt, but then what value do we give to t � GA? One option is to let t � GA(a1; : : : ; an)
i� for all s such that tRs and such that all ai 2 Vs we have s � A.

Anyway, there are many options here and a suitable system can probably be chosen
for any application area.
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Note that the logic QKt is not easy to axiomatize traditionally.
We now de�ne an LDS corresponding to the system QKt.

DEFINITION 56 (The algebra of labels).

1. Consider the �rst-order theory of one binary relation < and a single
constant d. Consider the axiom @ = 8x � (x < x) ^ 8xyz(x <
y ^ y < z ! x < z). Any classical model of this theory has the form
m = (S;R; a; g), where S is the domain, R is a binary relation on S
giving the extension of the syntactical `<' and g gives the extension
of the variables and of d. g(d) equals a and is the interpretation of
the constant `d'. Since (S;R; a; g) � @, we have that R is irreexive
and transitive.

2. Let U = ft1; t2; : : :g be a set of additional constants in the predicate
language of < and d. Let A be the set of all terms of the language.
By a diagram � = (D;<; d), with D = (D1; D2), we mean a set
D1 � A; d 2 D1 of constants and variables and a set D2 of formulae
'(t; s) of the form t < s;� (t < s); t = s; t 6= s, with constants and
variables from D1.

3. A structure m = (S;R; a; g) is a model of � i� the following hold:

(a) g : D1 7! S, with g(d) = a;

(b) R is irreexive and transitive (i.e. it is a model of @);

(c) whenever '(t; s) 2 D2 then '(g(t); g(s)) holds in the model.

4. Note that g assigns elements of S also to the variables of D1. Let x
be a constant or a variable. Denote by g =x g

0 i� for all variables and
constants y 6= x we have g(y) = g0(y).

DEFINITION 57 (LDS language for QKt).

1. Let L be the predicate modal language with the following:

(a) Its connectives and quanti�ers are ^;_;!;?;>;8; 9; G; F;H; P .

(b) Its variables are fx1; x2; : : :g.

(c) It has atomic predicates of di�erent arities.

(d) It has function symbols e1; e2; : : : ; of di�erent arities.

(e) Let A be the language of the algebra of labels of De�nition 56.
We assume that A may share variables with L but its constants
are distinct from the constants of L. For each constant t 2 U
of A and each natural number n, we assume we have in L a
sequence of n-place function symbols

ctn;1(x1; : : : ; xn); ctn;2(x1; : : : ; xn) : : :

parameterized by t.
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t3 :� C; t3 : c2(t3)

t2 : B ^ �B; t2 : c1(t1)

t1 : �A
t1 : c1(t1)

�

���
��

��
��

PPPPPPPPq

��
��
��

���*

Figure 1.

Thus in essence we want an in�nite number of Skolem functions
of any arity parameterized by any t 2 U . The elements of A are
our labels.

The LDS language is presented as (A;L).

2. A declarative unit is a pair t : A, where t is a constant from A and A
is a w� of L.

Note that because some of the function symbols of L are parameterized
from U , we can get labels in A as well. For example,

t : P (x; ct1;1(x))

is a declarative unit.

3. A con�guration has the form (D;<; f; d; U), where (D;<; d) is a dia-
gram as de�ned in De�nition 56 and f and U are functions associating
with each t 2 D1 a set f(t) of w�s of L and a set Ut of terms of L.

We also write:
t : A to indicate that A 2 f(t);
t : c to indicate that c 2 Ut.

Con�gurations can also be presented graphically. See for example
Fig. 1.
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DEFINITION 58 (LDS semantics for QKt).

1. A model for an LDS language (A;L) has the form n = (S;R; a; V; h; g)
where (S;R; a; V; h) is a traditional QKt model for the language L and
g is an assignment from the labelling language A into S, giving values
in S to each label and each variable. The following must hold:

(a) for a variable or a constant x common to both A and L, g(x) =
h(x);

(b) for any c = ctn;k(x1; : : : ; xn) we have h(x) 2 Vg(t);

(c) let t1(x); t2(y) be two terms of L containing the subterms x and
y. Assume that @ (when augmented with the function symbols
of L and equality axioms) satis�es

@ `A (x = y) ! (t1 = t2);

then if g(x) = g(y) then h(t1) = h(t2).

(d) g(d) = a.

2. Let � = (D;<; f; d; U) be a modal con�guration in a language L. We
de�ne the notion of n � � to mean that the following hold:

(a) for every t 2 D and A 2 f(t) we have g(t) �h A in (S;R; a; V; h),
according to De�nition 55;

(b) (S;R; a; g) � (D;<; d) according to De�nition 56;

(c) if x 2 D1 is a variable then for all g0 =x g we have n0 =
(S;R; a; V; h; g0)
� �, provided n0 is an acceptable model (satisfying the restric-
tions in 1). This means that the free variables occuring in D are
interpreted universally.

3. Let n = (S;R; a; V; h; g) be a model in a language (A;L). Let (A0;L0)
be an extension of the language. Then n0 is said to be an extension
of n to (A0;L0) if the restriction of V 0; h0; g0 to (A;L) equals V; h; g
respectively.

4. Let � be a temporal con�guration in (A;L) and �0 in (A0;L0). We
write � � �0 i� any model n of � can be extended to a model n0 of
�0.

5. We write ? � � or equivalently � � i� for any model n;n � �.

DEFINITION 59 (LDS proof rules for QKt). Let � = (D;<; f; d; U) and
�0 = (D0; <0; f0; d; U 0) be two temporal con�gurations. We say that �0 is
obtained from � by the application of a single forward proof rule if one of
the following cases hold (let � 2 fP; Fg, and � 2 fG;Hg).
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1. � introduction case
For some t; s 2 D1; t < s 2 D2, A 2 f(s) and �0 is the same as �
except that f0(t) = f(t) [ f�Ag.

Symbolically we can write �0 = �[t<s;s:A] for F and �[s<t;s:A] for P .

2. � elimination case
For some t 2 D1 and some A, �A 2 f(t) and for some new atomic
s 2 U , that does not appear in �, we have that �0 is the same as �
except that D0

1 = D1 [ fsg. D0
2 = D2 [ ft < sg for � = fF (resp.

s < t for � = P ). f0(s) = fAg.

Symbolically we can write �0 = �[t:�A;s].

3. � elimination case
For some t; s 2 D1 such that t < s 2 D2 for � = G (resp. s < t
for � = H) we have �A 2 f(t) and �0 is like � except that f0(s) =
f(s) [ fAg.

Symbolically we can write �0 = �[t<s;t:GA], and �0 = �[s<t;t:HA].

4. Local classical case
�0 is like � except that for t 2 D1 we have f0(t) = f(t) [ fAg, where
A follows from f(t) using classical logic inference only.3

Symbolically we can write �0 = �[t`A].

5. Local 8 elimination
For some t 2 D1 we have 8xA(x) 2 f(t) and c 2 Ut, �0 is like � except
f0(t) = f(t) [ fA(c)g.

Symbolically we can write �0 = �[t:8xA(x);x=c].

6. Local 9 elimination
For some t 2 D1 and 8x1; : : : ; xn9yA(x1; : : : ; xn; y) 2 f(t) and some
new function symbol ct(x1; : : : ; xn) we have

f0(t) = f(t) [ f8x1; : : : ; xnA(x1; : : : ; xn; c
t(x1; : : : ; xn))g:

Otherwise �0 is like �.

Symbolically we can write �0 = �[t:8x1;:::;x29yA;y=ct].

3Every formula of QKt can be presented in the form B(Q1=�1A1; : : : ;Qn=�nAn)
where �i 2 fG;Hg and B(Q1; : : : ;Qn) is a modal free classical formula and Ai are
general QKt formulae. P=A means the substitution of A for P . A set of formulae of the
form Bi(Q

i
j=�jA

i
j) proves using classical rules only a formula B(Qj=�jAj) i� fBi(Q

i
j)g

proves classically B(Qj).
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7. Visa rules

(a) For t; s 2 D1; t < s < t0 2 D2 and c 2 Ut and c 2 Ut0 , �0 is like
� except that U 0

s = Us [ fcg.

(b) U 0
t = Ut [ fctg. In other words any ct can be put in the domain

of world t.

Symbolically we write �0 = �[t:c;t0:c to s:c] and �0 = �[t:ct] respec-
tively.

8. Inconsistency rules

(a) If t; s 2 D1 and ? 2 f(t) then let �0 be like � except that
f0(s) = f(s) [ f?g and f0(x) = f(x), for x 6= s.

Symbolically we write �0 = �[t:? to s:?].

(b) If (D;<; d) is classicaly inconsistent and s 2 D1, we let �0 be as
in (a) above.

Symbolically we write �0 = �[? to s:?].

9. � introduction rule
We say �0 is obtained from � by a single-level n+ 1 introduction rule
if the following holds. For some t 2 D1 we have f0(t) = f(t) [ f�Ag,
� 2 fG;Hg and �2 follows from �1 using a sequence of applications
of single, forward rules or of single-level m � n introduction rules, and
�1 is like � except that

D1
1 = D1 [ ft1g; D1

2 = D2 [ ft < t1g for � = G

(and respectively D1
2 = D2 [ ft1 < tg for � = H)

where t1 is a completely new constant label and f1(t1) = f>g.

�2 is like �1 except that f2(t1) = f1(t1) [ fAg.

Symbolically we write �0 = �[t:�A].

10. Diagram rule
�0 is an extension of � as a diagram, i.e. D � D0; f0; (t) = f(t); t 2 D1

and f0(t) = f>g, for t 2 D0
1�D1, and we have (D;<; d) `A (D0; <; d).

Symbolically we write �0 = �[D`D0].
Note that for our logic, QKt, this rule just closes < under transitivity.

11. We write � ` �0 i� there exists a sequence of steps of any level leading
from � to �0. We write ` �0 if �0 ` �0, for �0 the theory with fdg
only with f(d) = f>g.

Let t be a label of �. We write � ` t : A i� for any �0 such that
� ` �0 there exists a �00 such that �0 ` �00 and A 2 f00(t). In other
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words, � can be proof-theoretically manipulated until A is proved at
node t.

12. Notice that if � ` �0 then the language L0 of �0 is slightly richer in
labels and Skolem functions than the language L.

Note also that if � ` �0 then there is a sequence of symbols �1; : : : ; �n
such that �0 = ��1;:::;�n .

In fact �0 is uniquely determined up to symbolic isomorphism by the
sequence �1; : : : ; �n.

13. Local cut rule
` of item 11 above is without the following local cut rule. Let �t:B

denote the database obtained from � by adding B at label t. Then
�t:B ` �0 and �t:�B ` �0 imply � ` �0.

14. The consequence � ` �0 can be implicitly formulated in a `sequent'-
like form as follows:

� � ` �� (axiom)
for � as in any of items 1{10 above.

�
� ` �0; �0 ` �00

:
� ` �00

� Local cut rule.

DEFINITION 60 (Inconsistency).

1. A theory � = (D;<; f; d; U) is immediately inconsistent i� either
(D;<; d) is inconsistent as a classical diagram or for some t 2 D1;? 2
f(t).

2. � is inconsistent i� � ` �0 and �0 is immediately inconsistent.

3. Note that if we do not provide the following inconsistency rules, namely

t : ?

s : ?

and

(D;<; d) is inconsistent
;

s : ?

then two inconsistent modal con�gurations cannot necessarily prove
each other.
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THEOREM 61 (Soundness). Let � be in L and �0 in L0. Then � ` �0

implies � � �0. In words, if n is a model in L such that n � �, then n can
be extended to n0 � �0, where n0 is like n except that the assignments are
extended to L0. In particular ` �0 implies � �0.

Proof. By induction on the number of single steps proving �0 from �. We
can assume � is consistent. It is easy enough to show that if �0 is obtained
from � by a single step then there is an n0 � �0.

Let n = (S;R; a; V; h; g) be a model of � = (D;<; f; d; U). Let �0 be
obtained from � by a single proof step and assume n � �. We show how
to modify n to an n0 such that n0 � �0.

We follow the proof steps case by case:

1. � introduction case
Here take n0 = n.

2. � elimination case
Here �0 contains a completely new constant s 2 D0

1. We can assume
g is not de�ned for this constant. Since n � �, we have g(t) � �A and
so for some b 2 S; g(t)Rb and b � A. Let g0 be like g except g0(s) = b.
Then n0 � �0.

3. � elimination case
Here let n0 = n.

4. Local classical case
Let n0 = n.

5. Local 8 elimination
Let n0 = n.

6. Local 9 elimination
We can assume the new function ct(x1; : : : ; xn) is new to the language
of � and that h is not de�ned for ct. Since in n, t � 8x1; : : : ; xn9y
A(x1; : : : ; xn; y), for every (x1; : : : ; xn) 2 V nt a y 2 Vt exists such that
t � A(xi; y). Thus an assignment h0(ct) can be given to ct by de�ning
it to be this y for (x1; : : : ; xn) 2 V nt and to be a �xed element of Vt
for tuples (x1; : : : ; xn) not in V nt . Let n0 be like n except we take h0

instead of h.

7. Visa rules

(a) Take n0 = n.

(b) Take n0 = n.

(c) Take n0 = n.

8. Inconsistency rules are not applicable as we assume � is consistent.
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9. Let n1 be a model for the language of �1 and assume n1 � �1. Then
by the induction hypothesis there exists n2 � �2, where n2 extends n1.

Assume now that n 6� �0. Then t 6� �A, and hence for some b such
that tRb; b 6� A.

Let n1 be de�ned by extending g to g1(t1) = b. Clearly n1 � �1.
Since �1 ` �2, g1 can be extended to g2 so that n2 � �2, i.e. b � A,
but this contradicts our previous assumption. Hence n � �0.

10. Let n0 = n.

The above completes the proof of soundness. �

THEOREM 62 (Completeness theorem for LDS proof rules). Let � be a
consistent con�guration in L; then � has a model n � �.

Proof. We can assume that there are an in�nite number of constants, labels
and variables in L which are not mentioned in �. We can further assume
that there are an in�nite number of Skolem functions ctn;i(x1; : : : ; xn) in L,
which are not in �, for each t and n.

Let Æ(n) be a function such that

Æ(n) = (tn; Bn; t
0
n; �n; kn);

where tn; t
0
n are labels or variables, �n a term of L and Bn a formula of L,

and kn a number between 0 and 7.
Assume that for each pair of labels t; t0 of L and each term � and each

formula B of L and each 0 � k � 7 there exist an in�nite number of
numerals m such that Æ(m) = (t; B; t0; �; k).

Let �0 = �. Assume we have de�ned �n = (Dn; <; fn; d; Un) and it is
consistent.

We now de�ne �n+1. Our assumption implies that (Dn; <; d) is clas-
sically consistent as well as each fn(t). Consider (tn; Bn; t

0
n; �n; kn). It is

possible that the formulae and labels of Æ(n) are not even in the language
of �n, but if they are we can carry out a construction by case analysis.
Case kn = 0
This case deals with the attempt to add either the formula Bn or its negation
�Bn to the label tn in Dn. We need to do that in order to build eventually
a Henkin model. We �rst try to add Bn and see if the resulting database
(�n)tn:Bn is LDS-consistent. If not then we try to add �Bn. If both are
LDS-inconsistent then �n itself is LDS-inconsistent, by the local cut rule
(see item 13 of De�nition 59).

The above is perfectly acceptable if we are prepared to adopt the local
cut rule. However, if we want a system without cut then we must try to add
Bn or �Bn using possibly other considerations, maybe a di�erent notion of
local consistency, which may be heavily dependent on our particular logic.
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The kind of notion we use will most likely be correlated to the kind of
traditional cut elimination available to us in that logic.

Let us motivate the particular notion we use for our logic, while at the
same time paying attention to the principles involved and what possible
variations are needed for slightly di�erent logics.

Let us consider an LDS-consistent theory � = (D;<; f; d; U) and an
arbitrary B. We want a process which will allow us to add either B or �B
at node t (i.e. form �t:B or �t:�B) and make sure that the resulting theory
is LDS-consistent. We do not have the cut rule and so we must use a notion
of local consistency particularly devised for our particular logic.

Let us try the simplest notion, that of classical logic consistency. We
check whether f(t)[fBg is classically consistent. If yes, take �t:B , otherwise
take �t:�B . However, the fact that we have classical consistency at t does
not necessarily imply that the database is LDS-consistent. Consider ft :
FA ! �B; s : A; t < sg. Here f(t) = FA ! �B. f(s) = A. If we add
B to t then we still have local consistency but as soon as we apply the F
introduction rule at t we get inconsistency.

Suppose we try to be more sophisticated. Suppose we let f�(t) = f(t) [
fF kX j X 2 f(s), for some k; t <k sg[ fY j GkY 2 f(s), for some k; s <k tg
and try to add either B or �B to f�(t) and check for classical consistency.
If neither is consistent then for some Xi; Yk; X

0
i ; Y

0
j we have

f(t); Xi; Yj `�B

f(t); X 0
i ; Y

0
j ` B:

Hence f�(t) is inconsistent. However, we do have LDS rules that can bring
the X and Y into f(t) which will make � LDS-inconsistent.

So at least one of B and � B can be added. Suppose �t:B is locally
consistent. Does that make it LDS-consistent?

Well, not necessarily. Consider

ft < s; t : F kA! �B; s : Ag

and assume we have a condition @1 on the diagrams

@1 = 8xy(x < y ! 9z(x < z < y)):

We would have to apply the diagram rule k times at the appropriate labels
to get inconsistency.

It is obvious from the above discussion that to add B or �B at node t we
have to make it consistent with all possible w�s that can be proved using
LDS rules to have label t (i.e. to be at t).

Let us de�ne then, for t in �,

�(t) = fA j � ` t : Ag:
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We say B is locally consistent with � at t, or that f(t) [ fBg is locally
consistent i� it is classically consistent with �(t). Note that if �(t) ` A
classically then � ` t : A.

We can now proceed with the construction:

1. if tn 62 Dn
1 then �n+1 = �n;

2. if tn 2 Dn
1 and fn(tn)[ fBng is locally consistent, then let fn+1(tn) =

fn(tn) [ fBng.

Otherwise fn(tn) is locally consistent with �Bn and we let fn+1(tn) =
fn(tn) [ f�Bng. For other x 2 Dn

1 , let fn+1(x) = fn(x). Let �n+1 =
(Dn; <; d; fn+1; Un).

We must show the following:

� if � is LDS-consistent and �ti:Bi is obtained from � by simultaneously
adding the w�s Bi to f(ti) of � and if for all i f(ti) [ fBig is locally-
consistent, then �ti:Bi is LDS-consistent.

To show this, assume that �ti:Bi is LDS-inconsistent. We show by induc-
tion on the complexity of the inconsistency proof that � is also inconsistent.
Case one step
In this case �ti:Bi is immediately inconsistent. It is clear that � is also
inconsistent, because the immediate inconsistency cannot be at any label
ti, and the diagram is consistent.
Case (l + 1) steps
Consider the proof of inconsistency of �ti:Bi . Let � be the �rst proof step
leading to this inconsistency. Let �0 = (�ti:Bi)� . � can be one of several
cases as listed in De�nition 59. If � does not touch the labels ti, then it can
commute with the insertion of Bi, i.e. �0 = (��)ti:Bi and by the induction
hypothesis �� is LDS-inconsistent and hence so is �.

If � does a�ect some label ti, we have to make a case analysis:

� � = [ti < s; s : A], i.e. �A is put in t. In this case consider (��)ti:Bi .
If adding Bi is still locally consistent then by the induction hypothesis
(��)ti:Bi is consistent. But this is �0 and so �0 is consistent. If adding
Bi is locally inconsistent, this means that �(ti)[fBig classically proves
?, contrary to assumption.

� � = [s < ti; s : GA] (resp. � = [ti < s; s : HA]) i.e. A is put in ti. The
reasoning is similar to the previous case.

� � = [ti : �A], � 2 fG;Hg, the reasoning is similar to previous cases.

� � = [ti ` A], similar to the previous ones.

� � = classical quanti�er rules. This case is also similar to previous
ones;
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� � = visa rule. This means some new constants are involved in the
new inconsistency from �(ti) [ fBig. These will turn into universal
quanti�ers and contradict the assumptions.

� The inconsistency rules are not a problem.

� The diagram rule does not a�ect ti.

� � applies to Bi itself. Assume that Bi = �Ci where � is G (resp. H)
and that Ci is put in some s; ti < s (resp. s < ti).

Let us �rst check whether Ci is locally consistent at s. This will not be
the case if �(s) `�Ci. This would imply �(t) ` � �Ci contradicting
the fact that Bi is consistent with �(t). Thus consider �ti:Bi;s:Ci .
This is the same as �0. It is LDS-inconsistent, by a shorter proof;
hence by the induction hypothesis � is LDS-consistent;

� Bi is �Ci and � eliminates �, i.e. a new point s is introduced with
ti < s for � = F (resp. s < ti for � = P ) and s : Ci is added to the
database.

We claim that Ci is locally consistent in s, in �+, where �+ is the
result of adding s to � but not adding s : Ci. Otherwise �+

(s) `�Ci,

and since s is a completely new constant and �+ ` s : � Ci this
means that � ` ti : � � Ci, a contradiction. Hence Ci is locally
consistent in �+

(s). Hence by the induction hypothesis if �+
s:Ci;ti:Bi

is

LDS-inconsistent so is �+. If �+ is LDS-inconsistent then �+ ` s :�
Ci and hence � ` t : � �Ci contradicting the local consistency of Bi
at t.

� � applies to Bi and � adds �Bi to s < ti for � = F (resp. ti < s for
� = P ).

Again we claim �Bi is locally consistent at s. Otherwise �(s) ` � �Bi
and so Bi would not be locally consistent at ti. We now consider
�ti:Bi;s:�Bi and get a contradiction as before.

� � is a use of a local classical rule, i.e. f(t) [ fBig ` Ci, and � adds Ci
at ti.

We claim we can add Bi ^ Ci at t, because it is locally consistent.
Otherwise �(t) ` Bi ! �Ci contradicting consistency of �(t)[fBig
since f(t) ` Bi ! Ci.

� � is a Skolemization on Bi or an instantiation from Bi. All these
classical operations are treated as in the previous case.
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Case kn = 1

1. If tn; t
0
n 2 D

n
1 and tn < t0n 2 D

n
2 and Bn 2 f

n(t0n) then let fn+1(tn) =
fn(tn) [ f�Bng and fn+1(x) = fn(x), for x 6= tn. Let �n+1 =
(Dn; <;fn+1; d;
Un).

2. Otherwise let �n+1
= �n.

Case kn = 2

1. If tn 2 Dn
1 and Bn = �C 2 fn(tn), then let s be a completely new

constant and let Dn+1
1 = Dn

1 [ fsg; D
n+1
2 = Dn

2 [ ftn < sg for � = F
(resp. s < tn for � = P ). Let fn+1 be like fn or D1 and let fn+1(s) =
fCg. Let �n+1 = (Dn+1; <; fn+1; d; Un) and let the new domain at
s; Un+1

s , contain all free variables of C.

2. Otherwise let �n+1 = �n.

Case kn = 3

1. If tn; t
0
n 2 Dn

1 and tn < t0n 2 Dn
2 and Bn = �C and � = G (resp.

t0n < tn and � = H) and Bn 2 fn(tn) and all free variables of C are
in the domain Unt0n then let fn+1 = fn(x), for x 6= t0n and fn+1(t0n) =

fn(x) [ fCg.

Let �n+1 = (Dn; <; fn+1; d; Un).

2. Otherwise let �n+1 = �n.

Case kn = 4

1. We have tn 2 Dn
1 and fn(tn) ` Bn classically. Let fn+1(x) = fn(x) for

x 6= tn and let fn+1(tn) = fn(tn) [ fBng.

Let �n+1 = (Dn; <; fn+1; d; Un).

2. Otherwise let �n+1 = �n.

Case kn = 5

1. tn 2 Dn
1 and Bn = 8xC(x) 2 fn(tn) and �n 2 Un. Then let

fn+1(tn) = fn(tn) [ fC(�n)g and fn+1(x) = fn(x) for x 6= tn and
�n+1 = (Dn; <;fn+1; d; Un).

2. Otherwise let �n+1 = �n.
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Case kn = 6

1. tn 2 Dn
1 and Bn 2 f

n(tn) and Bn = 9uC(u; y1; : : : ; yk).

Let ctn(y1; : : : ; yk) be a completely new Skolem function of this arity
not appearing in �n and let

fn+1(tn) = fn(tn) [ fC(ct(y1; : : : ; yk); y1; : : : ; yk)g:

This is consistent by classical logic. Let Un+1
tn = Untn[fc

t(y1; : : : ; yk)g.

Let Un+1 and fn+1 be the same as Un and fn respectively, for x 6= tn.
Take �n+1 = (Dn; <; fn+1; d; Un+1).

2. Otherwise let �n+1 = �n.

Case kn = 7

1. If tn; t
0
n < sn 2 Dn

1 and tn < t0n < sn 2 Dn
2 and �n 2 Untn\U

n
sn then let

Un+1
t0n

= Unt0n [ f�ng and Un+1
x = Unx for x 6= t0n. Let �n+1 = (Dn; <;

fn; d; Un+1).

2. Otherwise let �n+1 = �n.

Let �1 be de�ned by D1
i =

S
nD

n
i , f1 =

S
n f

n, U1 =
S
n U

n.
�1 is our Henkin model. Let n = (S;R; a; V; h; g), where

S = D1
1

R = f(x; y) j x < y 2 D1
2 g

a = d

Vt = Ut

V = U1

g = identity;

then h(t; P ) = f(x1; : : : ; xn) j P (x1; : : : ; xn) 2 f1(t)g for t 2 S and P
n-place atomic predicate, and x1; : : : ; xn 2 Vt. �

LEMMA 63.

1. n is an acceptable structure of the semantics.

2. For any t and B, t � B i� B 2 f1(t).

Proof.

1. We need to show that R is irreexive and transitive. This follows from
the construction and the diagram rule.
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2. We prove this by induction. Assume �A 2 f1(t). Then for some
n we have t 2 Dn

1 and �A 2 fn(t). Thus at some n0 � n we put
s 2 Dn0

1 ; t < s 2 Dn0

2 for � = F (resp. s < t for � = P ) and

A 2 fn
0

(s).

Assume �A 62 f1(t). At some n;Bn = �A and had fn(t)[f�Ag been
consistent, Bn would have been put in fn+1.

Hence � �A 2 fn+1.

Assume t < s (resp. s < t), s 2 D1
1 . Hence for some n00 � n0 we have

Æ(n00) = (t;� �A; s;�; 3). At this stage �A would be in fn
00+1(s).

Thus for all s 2 S such that tRs (resp. sRt) we have s ��A.

The classical cases follow the usual Henkin proof.
This completes the proof of the lemma and the proof of Theorem 62. �

5.4 Label-dependent connectives

We saw earlier that since and until cannot be de�ned from fG;H; F; Pg but
if we allow names for worlds we can write

�q ^Gq ^Hq ! [U(A;B) $ F (A ^H(P �q ! B))]:

We can introduce the label-dependent connectives GxA;HxA meaning

t � GxA i� for all y(t < y < x! y � A);

t � HxA i� for all y(x < y < t! y � A):

We can then de�ne

t : U(A;B) as t : F (A ^HtB):

Let F xA be �Gx �A and P xA be �Hx �A. Then

t � F xA i� for some y; t < y < x and y � A hold:

t � P xA i� for some y; x < y < t and y � A hold:

Consider t � Gx? and t � F x>. The �rst holds i� �9y(t < y < x) which
holds if either � (t < x) or x is an immediate successor of t. The second
holds if 9y(t < y < x).

Label-dependent connectives are very intuitive semantically since they
just restrict the temporal range of the connectives. There are many ap-
plications where such connectives are used. In the context of LDS such
connectives are also syntactically natural and o�er no additional complex-
ity costs.

We have the option of de�ning two logical systems. One is an ordinary
predicate temporal logic (which is not an LDS) where the connectives G;H
are labelled. We call it LQKt (next de�nition). This is the logic analogous
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to QKt. The other system is an LDS formulation of LQKt. This system
will have (if we insist on being pedantic) two lots of labels: labels of the
LDS and labels for the connectives. Thus we can write t : F xA, where t is
an LDS label from the labelling algebra A and x is a label from L; when
we give semantics, both t and x will get assigned possible worlds. So to
simplify the LDS version we can assume L = A.

DEFINITION 64 (The logic LQKt).

1. Let L be a set of labels, and for each x 2 L, let Gx and Hx be temporal
connectives. The language of LQKt has the classical connectives, the
traditional connectives G;H and the labelled connectives Gx; Hx, for
each x 2 L.

2. An LQKt model has the form(S;R; a; V; h; g), where (S;R;A; V; h) is
a QKt model (see De�nition 55) and g : L 7! S, assigning a world to
each label. Satisfaction for Gx (resp. Hx) is de�ned by

(3x) t �h;g G
x(a1; : : : ; an) i� for all s such that tRs ^ sRg(x) such

that a1; : : : ; an 2 Bs, we have s �h;g A.

The mirror image condition is required for Hx.

DEFINITION 65 (LDS version of LQKt). Our de�nition is in parallel to
De�nitions 56{58. We have the added feature that the language L of the
LDS allows for the additional connectives F t; P t; Gt; Ht, where t is from
the labelling algebra. For this reason we must modify the LDS notion of an
LQKt theory and require that all the labels appearing in the connectives
of the formulae of the theory are also members of D1, the diagram of labels
of the theory.

DEFINITION 66 (LDS proof rules for LQKt). We modify De�nition 59 as
follows:

1. F x introduction case
For some t; s 2 D1; t < s < x 2 D2 and A 2 f(s), �0 is the same as �
except that f0(t) = f(t) [ fF xAg.

Symbolically we write

�0 = �x
[t<s<x;s:A]:

2. F x elimination case
For some t 2 D1 and some A, F xA 2 f(t), and for some new atomic
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s 2 U that does not appear in �, we have that �0 is the same as �
except that

D0
1 = �1 [ fsg:

D0
2 = D2 [ ft < s < xg:

f0(s) = fAg:

Note that it may be that �2 [ ft < s < xg is inconsistent in which
case � is inconsistent.

3. Gx elimination case
For some t 2 D1 such that t < s < x 2 D2 we have GxA 2 f(t) and
�0 is like � except that f0(s) = f(s) [ fAg.

The P x; Hx rules are the mirror images of all the above and all the other
rules remain the same.

4. Gx; Hx introduction case
This case is the same as in De�nition 59 except that in the tex twe
replace

D1
2 = D2 [ ft < t1g

by D1
2 = D2 [ ft < t1 < xg for the case of Gx and the mirror image

for the case of Hx.

Similarly we write �0 = �[t:�xA].

THEOREM 67 (Soundness and completeness). The LDS version of LQKt

is sound and complete for the proposed semantics.

Proof. The soundness and completeness are proved along similar lines to
the QKt case see Theorems 61 and 62. �

6 TEMPORAL LOGIC PROGRAMMING

We can distinguish two views of logic, the declarative and the imperative.
The declarative view is the traditional one, and it manifests itself both syn-
tactically and semantically. Syntactically a logical system is taken as being
characterized by its set of theorems. It is not important how these theorems
are generated. Two di�erent algorithmic systems generating the same set of
theorems are considered as producing the same logic. Semantically a logic is
considered as a set of formulae valid in all models. The model M is a static
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semantic object. We evaluate a formula ' in a model and, if the result of
the evaluation is positive (notation M j= '), the formula is valid. Thus the
logic obtained is the set of all valid formulae in some class K of models.

In contrast to the above, the imperative view regards a logic syntactically
as a dynamically generated set of theorems. Di�erent generating systems
may be considered as di�erent logics. The way the theorems are generated
is an integral part of the logic. From the semantic viewpoint, a logical
formula is not evaluated in a model but performs actions on a model to get
a new model. Formulae are accepted as valid according to what they do to
models. For example, we may take ' to be valid in M if '(M) = M. (i.e.
M is a �xed point of ').

Applications of logic in computer science have mainly concentrated on
the exploitation of its declarative features. Logic is taken as a language for
describing properties of models. The formula ' is evaluated in a model M.
If ' holds in M (evaluation successful) then M has property '. This view
of logic is, for example, most suitably and most successfully exploited in the
areas of databases and in program speci�cation and veri�cation. One can
present the database as a deductive logical theory and query it using logical
formulae. The logical evaluation process corresponds to the computational
querying process. In program veri�cation, for example, one can describe in
logic the properties of the programs to be studied. The description plays
the role of a model M. One can now describe one's speci�cation as a
logical formula ', and the query whether ' holds in M (denoted M ` ')
amounts to verifying that the program satis�es the speci�cation. These
methodologies rely solely on the declarative nature of logic.

Logic programming as a discipline is also declarative. In fact it advertises
itself as such. It is most successful in areas where the declarative component
is dominant, e.g. in deductive databases. Its procedural features are not
imperative (in our sense) but computational. In the course of evaluating
whether M ` ', a procedural reading of M and ' is used. ' does not
imperatively act on M, the declarative logical features are used to guide a
procedure|that of taking steps for �nding whether ' is true. What does not
happen is that M and ' are read imperatively, resulting in some action. In
logic programming such actions (e.g. assert) are obtained by side-e�ects and
special non-logical imperative predicates and are considered undesirable.
There is certainly no conceptual framework within logic programming for
allowing only those actions which have logical meaning.

Some researchers have come close to touching upon the imperative read-
ing of logic. Belnap and Green [1994] and the later so-called data semantics
school regard a formula ' as generating an action on a model M, and
changing it. See [van Benthem, 1996]. In logic programming and deduc-
tive databases the handling of integrity constraints borders on the use of
logic imperatively. Integrity constraints have to be maintained. Thus one
can either reject an update or do some corrections. Maintaining integrity
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constraints is a form of executing logic, but it is logically ad hoc and has
to do with the local problem at hand. Truth maintenance is another form.
In fact, under a suitable interpretation, one may view any resolution mech-
anism as model building which is a form of execution. In temporal logic,
model construction can be interpreted as execution. Generating the model,
i.e. �nding the truth values of the atomic predicates in the various moments
of time, can be taken as a sequence of execution.

As the need for the imperative executable features of logic is widespread
in computer science, it is not surprising that various researchers have touched
upon it in the course of their activity. However, there has been no conceptual
methodological recognition of the imperative paradigm in the community,
nor has there been a systematic attempt to develop and bring this paradigm
forward as a new and powerful logical approach in computing.

The area where the need for the imperative approach is most obvious and
pressing is temporal logic. In general terms, a temporal model can be viewed
as a progression of ordinary models. The ordinary models are what is true
at each moment of time. The imperative view of logic on the other hand
also involves step-by-step progression in virtual `time', involving both the
syntactic generation of theorems and the semantic actions of a temporal
formula on the temporal model. Can the two intuitive progressions, the
semantic time and the action (transaction) time, be taken as the same? In
the case of temporal logic the answer is `yes'. We can act upon the models in
the same time order as their chronological time. This means acting on earlier
models �rst. In fact intuitively a future logical statement can be read (as
we shall see) both declaratively and imperatively. Declaratively it describes
what should be true, and imperatively it describes the actions to be taken
to ensure that it becomes true. Since the chronology of the action sequence
and the model sequence are the same, we can virtually create the future
model by our actions. The logic USF, presented in Chapter 10 of [Gabbay
et al., 1994], was the �rst attempt at promoting the imperative view as
a methodology, with a proposal for its use as a language for controlling
processes.

The purpose of this section is twofold:

1. to present a practical, sensible, logic programming machine for han-
dling time and modality;

2. to present a general framework for extending logic programming to
non-classical logics.

Point 1 is the main task of this section. It is done within the framework
of 2.

Horn clause logic programming has been generalized in essentially two
major ways:
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1. using the metalevel features of ordinary Horn clause logic to handle
time while keeping the syntactical language essentially the same;

2. enriching the syntax of the language with new symbols and introduc-
ing additional computation rules for the new symbols.

The �rst method is basically a simulation. We use the expressive power
of ordinary Horn clause logic to talk about the new features. The Demo
predicate, the Hold predicate and other metapredicates play a signi�cant
role.

The second method is more direct. The additional computational rules
of the second method can be broadly divided into two:

2.1 Rewrites

2.2 Subcomputations

The rewrites have to do with simplifying the new syntax according to
some rules (basically eliminating the new symbols and reducing goals and
data to the old Horn clause language) and the subcomputations are the new
computations which arise from the reductions.

Given a temporal set of data, this set has the intuitive form:

`A(x) is true at time t'.

This can be represented in essentially two ways (in parallel to the two meth-
ods discussed):

1. adding a new argument for time to the predicate A, writing A�(t; x)
and working within an ordinary Horn clause computational environ-
ment;

2. leaving time as an external indicator and writing `t : A(x)' to represent
the above temporal statement.

To compare the two approaches, imagine that we want to say the follow-
ing:

`If A(x) is true at t, then it will continue to be true'.

The �rst approach will write it as

8s(A�(t; x) ^ t < s! A�(s; x)):

The second approach has to talk about t. It would use a special temporal
connective `G' for `always in the future'. Thus the data item becomes

t : A(x) ! GA(x):
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It is equivalent to the following in the �rst approach:

A�(t; x) ! 8s[t < s! A�(s; x)]:

The statement `GA is true at t' is translated as

8s(t < s! A�(s)):

The second part of this section introduces temporal connectives and
wants to discover what kind of temporal clauses for the new temporal lan-
guage arise in ordinary Horn clause logic when we allow time variables in
the atoms (e.g. A�(t; x); B�(s; y)) and allow time relations like t < s, t = s
for time points. This would give us a clue as to what kind of temporal Horn
clauses to allow in the second approach. The computational tractability
of the new language is assured, as it arises from Horn clause computation.
Skolem functions have to be added to the Horn clause language, to eliminate
the F and P connectives which are existential. All we have to do is change
the computational rules to rely on the more intuitive syntactical structure
of the second approach.

6.1 Temporal Horn clauses

Our problem for this section is to start with Horn clause logic with the
ability to talk about time through time coordinates, and see what expres-
sive power in term of connectives (P; F;G;H , etc.) is needed to do the
same job. We then extend Prolog with the ability to compute directly with
these connectives. The �nal step is to show that the new computation de-
�ned for P; F;G;H is really ordinary Prolog computation modi�ed to avoid
Skolemization.

Consider now a Horn clause written in predicate logic. Its general form is
of course

V
atoms ! atom. If our atomic sentences have the form A(x) or

R(x; y) or Q(x; y) then these are the atoms one can use in constructing the
Horn clause. Let us extend our language to talk about time by following the
�rst approach; that is, we can add time points, and allow special variables
t; s to range over a ow of time (T;<) (T can be the set of integers, for
example) and write Q�(t; x; y) instead of Q(x; y), where Q�(t; x; y) (also
written as Q(t; x; y), abusing notation) can be read as

`Q(x; y) is true at time t:0

We allow the use of t < s to mean `t is earlier than s'. Recall that we do
not allow mixed atomic sentences like x < t or x < y or A(t; s; x) because
these would read as

`John loves 1980 at 1979' or

`John < 1980' or

`John < Mary'.
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Assume that we have organized our Horn clauses in such a manner: what
kind of time expressive power do we have? Notice that our expressive power
is potentially increased. We are committed, when we write a formula of the
form A(t; x), to t ranging over time and x over our domain of elements. Thus
our model theory for classical logic (or Horn clause logic) does not accept
any model for A(t; x), but only models in which A(t; x) is interpreted in this
very special way. Meanwhile let us examine the syntactical expressive power
we get when we allow for this two-sorted system and see how it compares
with ordinary temporal and modal logics, with the connectives P; F;G;H .

When we introduce time variables t; s and the earlier{later relation into
the Horn clause language we are allowing ourselves to write more atoms.
These can be of the form

A(t; x; y)

t < s

(as we mentioned earlier, A(t; s; y); x < y; t < y; y < t are excluded).
When we put these new atomic new sentences into a Horn clause we get

the following possible structures for Horn clauses. A(t; x); B(s; y) may also
be truth.

(a0) A(t; x) ^ B(s; y) ! R(u; z).
Here < is not used.

(a1) A(t; x) ^ B(s; y) ^ t < s! R(u; z).
Here t < s is used in the body but the time variable u is not the same
as t; s in the body.

(a2) A(t; x) ^ B(s; y) ^ t < s! R(t; z).
Same as (a1) except the time variable u appears in the body as u = t:

(a3) A(t; x) ^ B(s; y) ^ t < s! R(s; z).
Same as (a1) with u = s.

(a4) A(t; x) ^ B(s; y) ! R(t; z).
Same as (a0) with u = t, i.e. the variable in the head appears in the
body.

The other two forms (b) and (c) are obtained when the head is di�erent:
(b) for time independence and (c) for a pure < relation.

(b) A(t; x) ^ B(s; y) ! R1(z)

(b0) A(t; x) ^ B(s; y) ^ t < s! R1(z).

(c) A(t; x) ^ B(s; y) ! t < s.

(d) A((1970, x), where 1970 is a constant date.
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Let us see how ordinary temporal logic with additional connectives can
express directly, using the temporal connectives, the logical meaning of the
above sentences. Note that if time is linear we can assume that one of t < s
or t = s or s < t always occur in the body of clauses because for linear time

` 8t8s[t < s _ t = s _ s < t];

and hence A(t; x) ^B(s; y) is equivalent to

(A(t; x) ^ B(t; y)) _ (A(t; x) ^ B(s; y) ^ t < s)_
(A(t; x) ^ B(s; y) ^ s < t):

Ordinary temporal logic over linear time allows the following connectives:

Fq; read: `q will be true'

Pq; read: `q was true'

�q = q _ Fq _ Pq

�q =� � � q

�q is read: `q is always true'.

If [A](t) denotes, in symbols, the statement that A is true at time t, then
we have

[Fq](t) � 9s > t([q](s))

[Pq](t) � 9s < t([q](s))

[�q](t) � 9s([q](s))

[�q](t) � 8s([q](s)]:

Let us see now how to translate into temporal logic the Horn clause
sentences mentioned above.

Case (a0)

Statement (a0) reads

8t8s8u[A(t; x) ^ B(s; y) ! R(u; z)]:

If we push the quanti�ers inside we get

9tA(t; x) ^ 9sB(x; y) ! 8uR(u; z);

which can be written in the temporal logic as

�A(x) ^ �B(y) ! �R(z):

If we do not push the 8u quanti�er inside we get �(�A(x)^�B(y) ! R(z)).
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Case (a1)

The statement (a1) can be similarly seen to read (we do not push 8t inside)

8tfA(t; x) ^ 9s[B(s; y) ^ t < s] ! 8uR(u; z)g

which can be translated as: �fA(x) ^ FB(y) ! �R(z)g. Had we pushed
8t to the antecedent we would have got

9t[A(t; x) ^ 9s(B(s; y) ^ t < s)] ! 8uR(u; z);

which translates into

�[A(x) ^ FB(y)] ! �R(z):

Case (a2)

The statement (a2) can be rewritten as

8t[A(t; x) ^ 9s(B(s; y) ^ t < s) ! R(t; z)];

and hence it translates to �(A(x) ^ FB(y) ! R(z)).

Case (a3)

Statement (a3) is similar to (a2). In this case we push the external 8t
quanti�er in and get

8s[9t[A(t; x) ^ t < s] ^ B(s; y) ! R(s; z)];

which translates to

�[PA(x) ^ B(y) ! R(z)]:

Case (a4)

Statement (a4) is equivalent to

8t[A(t; x) ^ 9sB(s; y) ! R(t; z)];

and it translates to

�(A(x) ^ �B(y) ! R(z)):

Case (b)

The statement (b) is translated as

�(A(x) ^ �B(y)) ! R1(z):
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Case (b0)

The statement (b0) translates into

�(A(x) ^ FB(y)) ! R1(z):

Case (c)

Statement (c) is a problem. It reads 8t8s[A(t; x) ^ B(s; y) ! t < s]; we do
not have direct connectives (without negation) to express it. It says for any
two moments of time t and s if A(x) is true at t and B(y) true at s then
t < s. If time is linear then t < s _ t = s _ s < t is true and we can write
the conjunction

� �(A(x) ^ PB(y)) ^ �(A(x) ^ B(y)):

Without the linearity of time how do we express the fact that t should be
`<-related to s'?

We certainly have to go beyond the connectives P; F;�;� that we have
allowed here.

Case (d)

A(1970, x) involves a constant, naming the date 1970. The temporal logic
will also need a propositional constant 1970, which is true exactly when the
time is 1970, i.e.

Mt � 1970 i� t = 1970:

Thus (d) will be translated as �(1970 ! A(x)). 1970 can be read as the
proposition `The time now is 1970'.

The above examples show what temporal expressions we can get by us-
ing Horn clauses with time variables as an object language. We are not
discussing here the possibility of `simulating' temporal logic in Horn clauses
by using the Horn clause as a metalanguage. Horn clause logic can do that
to any logic as can be seen from Hodges [Hodges, 1985].

DEFINITION 68. The language contains ^;!; F (it will be the case) P (it
was the case) and � (it is always the case).

We de�ne the notions of:

Ordinary clauses;

Always clauses;

Heads;

Bodies;

Goals.
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1. A clause is either an always clause or an ordinary clause.

2. An always clause is �A where A is an ordinary clause.

3. An ordinary clause is a head or an A ! H where A is a body and H
is a head.

4. A head is either an atomic formula or FA or PA, where A is a con-
junction of ordinary clauses.

5. A body is an atomic formula, a conjunction of bodies, an FA or a PA,
where A is a body.

6. A goal is any body.

EXAMPLE 69.

a! F ((b! Pq) ^ F (a! Fb))

is an acceptable clause.

a! �b

is not an acceptable clause.

The reason for not allowing � in the head is computational and not con-
ceptual. The di�erence between a (temporal) logic programming machine
and a (temporal) automated theorem prover is tractability. Allowing dis-
junctions in heads or � in heads crosses the boundary of tractability. We
can give computational rules for richer languages and we will in fact do so
in later sections, but we will lose tractability; what we will have then is a
theorem prover for full temporal logic.

EXAMPLES 70.

P [F (FA(x) ^ PB(y) ^ A(y)) ^ A(y) ^B(x)] !
P [F (A(x) ! FP (Q(z) ! A(y)))]

is an ordinary clause. So is a! F (b! Pq)^F (a! Fb), but not A! �b.
First let us check the expressive power of this temporal Prolog. Consider

a! F (b! Pq):

This is an acceptable clause. Its predicate logic reading is

8t[a(t) ! 9s > t[b(s) ! 9u < sq(u)]]:

Clearly it is more directly expressive than the Horn clause Prolog with time
variables. Ordinary Prolog can rewrite the above as

8t(a(t) ! 9s(t < s ^ (b(s) ! 9u(u < s ^ q(u)))));
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which is equivalent to

8t(9s9u(a(t) ! t < s ^ (b(s) ! u < s ^ q(u)))):

If we Skolemize with s0(t) and u0(t)we get the clauses

8t[(a(t) ! t < s0(t)) ^ (a(t) ^ b(s0(t)) ! u0(t) < s0(t))^
(a(t) ^ b(s0(t)) ! q(u0(t)))]:

The following are representations of some of the problematic examples men-
tioned in the previous section.

(a1) �(A(x) ^ FB(y) ! �R(z)):
This is not an acceptable always clause but it can be equivalently
written as

�(�(A(x) ^ FB(y)) ! R(z)):

(a2) �(A(x) ^ FB(y) ! R(z)):

(b0) �(A(x) ^ FB(y)) ! R1(z).

(b) can be written as the conjunction below using the equation

�q = Fq _ Pq _ q :

(A(x) ^ FB(y) ! R1(z))^

(F (A(x) ^ FB(y)) ! R1(z)):

(a2) Can be similarly written.
(c) can be written as

8t; s(A(x)(t) ^ B(y)(s) ! t < s):

This is more diÆcult to translate. We need negation as failure here and
write

�(A(x) ^ PB(y) ! ?)
�(A(x) ^ B(y) ! ?)

From now on we continue to develop the temporal logic programming
machine.
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s : PB(x)

t : B(y) ! FA(y)

t : A(x)

st

-

Figure 2. A temporal con�guration.

6.2 LDS|Labelled Deductive System

This section will use the labelled deductive methodology of the previous
section as a framework for developing the temporal Prolog machine. We
begin by asking ourselves what is a temporal database? Intuitively, looking
at existing real temporal problems, we can say that we have information
about things happening at di�erent times and some connections between
them. Figure 2 is such an example.

The diagram shows a �nite set of points of time and some labelled formu-
lae which are supposed to hold at the times indicated by the labels. Notice
that we have labelled not only assertions but also Horn clauses showing
dependences across times. Thus at time t it may be true that B will be
true. We represent that as t : FB. The language we are using has F and
P as connectives. It is possible to have more connectives and still remain
within the Horn clause framework. Most useful among them are `t : F sA'
and `t : P sA', reading `t < s and s : A' and `s < t and s : A'. In words: `A
will be true at time s > t'.

The temporal con�guration comprises two components.

1. A (�nite) graph (�;<) of time points and the temporal relationships
between them.

2. With each point of the graph we associate a (�nite) set of clauses and
assertions, representing what is true at that point.

In Horn clause computational logic, there is an agreement that if a
formula of the form A(x) ! B(x) appears in the database with x free
then it is understood that x is universally quanti�ed. Thus we assume
8x(A(x) ! B(x)) is in the database. The variable x is then called universal
(or type 1). In the case of modal and temporal logics, we need another
type of variable, called type 2 or a Skolem variable. To explain the reason,
consider the item of data
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`t : FB(x)'.

This reads, according to our agreement,

`8xFB(x) true at t.'

For example, it might be the sentence: t: `Everyone will leave'.
The time in the future in which B(x) is true depends on x. In our

example, the time of leaving depends on the person x. Thus, for a given
unknown (uninstantiated) u, i.e. for a given person u which we are not yet
specifying, we know there must be a point t1 of time (t1 is dependent on u)
with t1 : B(u). This is the time in which u leaves.

This u is by agreement not a type 1 variable. It is a u to be chosen later.
Really u is a Skolem constant and we do not want to and cannot read it as
t1 : 8uB(u). Thus we need two types of variables. The other alternative is
to make the dependency of t1 on u explicit and to write

t1(x) : B(x)

with x a universal type 1 variable, but then the object language variable
x appears in the world indices as well. The world indices, i.e. the t, are
external to the formal clausal temporal language, and it is simpler not to
mix the t and the x. We chose the two types of variable approach. Notice
that when we ask for a goal ?G(u), u is a variable to be instantiated, i.e. a
type 2 variable. So we have these variables anyway, and we prefer to develop
a systematic way of dealing with them.

To explain the role of the two types of variables, consider the following
classical Horn clause database and query:

A(x; y) ! B(x; y) ?B(u; u)

A(a; a):

This means `Find an instantiation u0 of u such that 8x; y[A(x; y) !
B(x; y)] ^A(a; a) ` B(u0; u0)'. There is no reason why we cannot allow for
the following

A(u; y) ! B(x; u) ?B(u; u)

A(a; a):

In this case we want to �nd a u0 such that

8x; y[A(u0; y) ! B(x; u0)] ^ A(a; a) ` B(u0; u0)

or to show

` 9uf[8x; y[A(u; y) ! B(x; u)] ^ A(a; a) ! B(u; u)]g
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u is called a type 2 (Skolem) variable and x; y are universal type 1 variables.
Given a database and a query of the form �(x; y; u)?Q(u), success means
` 9u[8x; y�(x; y; u) ! Q(u)].

The next sequence of de�nitions will develop the syntax of the temporal
Prolog machine. A lot depends on the ow of time. We will give a general
de�nition (De�nition 73 below), which includes the following connectives:

� Always.

F It will be the case.

P It was the case.

G It will always be the case (not including now).

H It has always been the case (up to now and not including now);.

gNext moment of time (in particular it implies that such a moment of
time exists).

wPrevious moment of time (in particular it implies that such a moment
of time exists).

Later on we will also deal with S (Since) and U (Until).
The ows of time involved are mainly three:

� general partial orders (T;<);

� linear orders;

� the integers or the natural numbers.

The logic and theorem provers involved, even for the same connectives,
are di�erent for di�erent partial orders. Thus the reader should be careful
to note in which ow of time we are operating. Usually the connectives g
and wassume we are working in the ow of time of integers.

Having �xed a ow of time (T;<), the temporal machine will generate
�nite con�gurations of points of time according to the information available
to it. These are denoted by (�;<). We are supposed to have � � T (more
precisely, � will be homomorphic into T ), and the ordering on � will be
the same as the ordering on T . The situation gets slightly complicated if
we have a new point s and we do not know where it is supposed to be in
relation to known points. We will need to consider all possibilities. Which
possibilities do arise depend on (T;<), the background ow of time we are
working with. Again we should watch for variations in the sequel.

DEFINITION 71. Let (�;<) be a �nite partial order. Let t 2 � and let s
be a new point. Let �0 = � [ fsg, and let <0 be a partial order on �0. Then



132 M. FINGER, D. GABBAY AND M. REYNOLDS

(�0; <; t) is said to be a (one new point) future (resp. past) con�guration of
(�;<; t) i� t <0 s (resp. s <0 t) and 8xy 2 �(x < y $ x <0 y).

EXAMPLE 72. Consider a general partial ow (T;<) and consider the
subow (�;<).

The possible future con�gurations (relative to T;<) of one additional
point s are displayed in Fig. 3.
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Figure 3.

For a �nite (�;<) there is a �nite number of future and past non-isomorphic
con�gurations. This �nite number is exponential in the size of �. So in the
general case without simplifying assumptions we will have an intractable
exponential computation. A con�guration gives all possibilities of putting
a point in the future or past.

In the case of an ordering in which a next element or a previous element
exists (like t+ 1 and t�1 in the integers) the possibilities for con�gurations
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are di�erent. In this case we must assume that we know the exact distance
between the elements of (�;<).

For example, in the con�guration ft < x1; t < x2g of Fig. 4 we may have
the further following information as part of the con�guration:

x2

x1

t
-��

��
��

��
��
��
��

��1

Figure 4.

t = w18x1
t = w6x2

so that we have only a �nite number of possibilities for putting s in.
Note that although woperates on propositions, it can also be used to

operate on points of time, denoting the predecessor function.

DEFINITION 73. Consider a temporal Prolog language with the following
connectives and predicates:

1. atomic predicates;

2. function symbols and constants;

3. two types of variables:
universal variables (type 1) V = fx1; y1; z1; x2; y2; z2; : : :g
and Skolem variables (type 2) U = fu1; v1; u2; v2; : : :g;

4. the connectives ^;!;_; F; P; g; w;� and :.

FA reads: it will be the case that A.

PA reads: it was the case that A.gA reads: A is true tomorrow (if a tomorrow exists; if tomorrow
does not exist then it is false).wA reads: A was true yesterday (if yesterday does not exist then it
is false).

:: represents negation by failure.

We de�ne now the notions of an ordinary clause, an always clause, a body,
a head and a goal.
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1. A clause is either an always clause or an ordinary clause.

2. An always clause has the form �A, where A is an ordinary clause.

3. An ordinary clause is a head or an A! H , where A is a body and H
is a head.

4. A head is an atomic formula or an FA or a PA or an gA or an wA,
where A is a �nite conjunction of ordinary clauses.

5. A body is an atomic formula or an FA or a PA or an gA or an wA
or :A or a conjunction of bodies where A is a body.

6. A goal is a body whose variables are all Skolem variables.

7. A disjunction of goals is also a goal.

REMARK 74. De�nition 73 included all possible temporal connectives. In
practice di�erent systems may contain only some of these connectives. For
example, a modal system may contain only � (corresponding to F ) and �.
A future discrete system may contain only gand F etc.

Depending on the system and the ow of time, the dependences between
the connectives change. For example, we have the equivalence

�(a! gb) and �( wa! b)

whenever both wa and gb are meaningful.

DEFINITION 75. Let (T;<) be a ow of time. Let (�;<) be a �nite partial
order. A labelled temporal database is a set of labelled ordinary clauses of
the form (ti : Ai); t 2 �, and always clauses of the form �Ai; Ai a clause. A
labelled goal has the form t : G, where G is a goal.

� is said to be a labelled temporal database over (T;<) if (�;<) is ho-
momorphic into (T;<).

DEFINITION 76. We now de�ne the computation procedure for the tem-
poral Prolog for the language of De�nitions 73 and 75. We assume a ow
of time (T;<). � � T is the �nite set of points of time involved so far in
the computation. The exact computation steps depend on the ow of time.
It is di�erent for branching, discrete linear, etc. We will give the de�nition
for linear time, though not necessarily discrete. Thus the meaning of gA
in this logic is that there exists a next moment and A is true at this next
moment. Similarly for wA. wA reads: there exists a previous moment and
A was true at that previous moment.

We de�ne the success predicate S(�;<;�; G; t; G0; t0;�) where t 2 �,
(�;<) is a �nite partial order and � is a set of labelled clauses (t : A); t 2 �.
S(�;<;�; G; t; G0; t0;�) reads: the labelled goal t : G succeeds from �

under the substitution � to all the type 2 variables of G and � in the
computation with starting labelled goal t0 : G0.
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When � is known, we write S(�;<;�; G; t; G0; t0) only.
We de�ne the simultaneous success and failure of a set � of metapred-

icates of the form S(�;<;�; G; t; G0; t0) under a substitution � to type 2
variables. To explain the intuitive meaning of success or failure, assume �rst
that � is a substitution which grounds all the Skolem type 2 variables. In
this case (�;�) succeeds if by de�nition all S(�;<;�; G; t; G0; t0;�) 2 �
succeed and (�;�) fails if at least one of S 2 � fails. The success or
failure of S for a � as above has to be de�ned recursively. For a general
�; (�;�) succeeds, if for some �0 such that ��0 grounds all type 2 vari-
ables (�;��0) succeeds. (�;�) fails if for all �0 such that ��0 grounds
all type 2 variables we have that (�;��0) fails. We need to give recursive
procedures for the computation of the success and failure of (�;�). In the
case of the recursion, a given (�;�) will be changed to a (�0;�0) by taking
S(�;<;�; G; t; G0; t0) 2 � and replacing it by S(�0; <0;�0; G0; t0; G0; t0).
We will have several such changes and thus get several �0 by replacing
several S in �. We write the several possibilities as (�0

i;�
0
i). If we write

(�;�) to mean (�;�) succeeds and � (�;�) to read (�;�) fails, then
our recursive computation rules have the form: (�;�) succeeds (or fails) if
some Boolean combination of (�0

i;�
0
i) succeeds (or fails). The rules allow

us to pick an element in �, e.g. S(�;<;�; G; t; G0; t0), and replace it with
one or more elements to obtain the di�erent (�0

i;�
0
i), where �0

i is obtained
from �. In case of failure we require that � grounds all type 2 variables.
We do not de�ne failure for a non-grounding �.

To summarize the general structure of the rules is:
(�;�) succeeds (or fails) if some Boolean combination of the successes
and failures of some (�0

i;�
0
i) holds and (�;�) and (�0

i;�
0
i) are related

according to one of the following cases:

Case I If � = ? then (�;�) succeeds (i.e. the Boolean combination of
(�i;�i) is truth).

Case II (�;�) fails if for some S(�;<;�; G; t; G0; t0) in � we have G is
atomic and for all �(A! H) 2 � and for all (t : A! H) 2 �; H�
does not unify with G�. Further, for all 
 and s such that t = 
s
and for all s : A ! 
H and all �(A ! 
H) we have H� does not
unify with G�, where 
 is a sequence of gand w.

REMARK 77. We must qualify the conditions of the notion of failure. If
we have a goal t : G, with G atomic, we know for sure that t : G �nitely
fails under a substitution �, if G� cannot unify with any head of a clause.
This is what the condition above says. What are the candidates for uni�-
cation? These are either clauses of the form t : A ! H , with H atomic, or
�(A! H), with H atomic.

Do we have to consider the case where H is not atomic? The answer
depends on the ow of time and on the con�guration (�;<) we are dealing
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with. If we have, say, t : A ! FG then if A ! FG is true at t, G would
be true (if at all) in some s, t < s. This s is irrelevant to our query ?t : G.
Even if we have t0 < t and t0 : A! FG and A true at t0, we can still ignore
this clause because we are not assured that any s such that t0 < s and G
true at s would be the desired t (i.e. t = s).

The only case we have to worry about is when the ow of time and
the con�guration are such that we have, for example, t0 : A ! g5G and
t = g5t0.

In this case we must add the following clause to the notion of failure: for
every s such that t = gns and every s : A ! gnH , G� and H� do not
unify.

We also have to check what happens in the case of always clauses.
Consider an integer ow of time and the clause �(A! g5 w27H). This

is true at the point s = w5 g27t and hence for failure we need that G�
does not unify with H�.

The above explains the additional condition on failure.

The following conditions 1{10, 12{13 relate to the success of (�;�) if
(�0

i;�
0
i) succeed. Condition (11) uses the notion of failure to give the suc-

cess of negation by failure. Conditions 1{10, 12{13 give certain alternatives
for success. They give failure if each one of these alternatives ends up in
failure.

1. Success rule for atomic query:
S(�;<;�; G; t; G0; t0) 2 � and G is atomic and for some head H ,
(t : H) 2 � and for some substitutions �1 to the universal variables of
H and �2 to the existential variables of H and G we have H�1��2 =
G��2 and �0 = �� fS(�;<;�; G; t; G0; t0)g and �0 = ��2.

2. Computation rule for atomic query:
S(�;<;�; G; t; G0; to) 2 � and G is atomic and for some (t : A !
H) 2 � or for some �(A ! H) 2 � and for some �1;�2, we
have H�1��2 = G��2 and �0 = (� � fS(�;<;�; G; t; G0; t0)g) [
fS(�;<;�; A�1; t; G0; t0)g and �0 = ��2.

The above rules deal with the atomic case. Rules 3, 4 and 4* deal with
the case the goal is FG. The meaning of 3, 4 and 4* is the following. We
ask FG at t. How can we be sure that FG is true at t? There are two
possibilities, (a) and (b):

(a) We have t < s and at s : G succeeds. This is rule 3;

(b) Assume that we have the fact that A ! FB is true at t. We ask for
A and succeed and hence FB is true at t. Thus there should exist
a point s0 in the future of t where B is true. Where can s0 be? We
don't know where s0 is in the future of t. So we consider all future
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con�gurations for s0. This gives us all future possibilities where s0 can
be. We assume for each of these possibilities that B is true at s0 and
check whether either G follows at s0 or FG follows at s0. If we �nd
that for all future constellations of where s0 can be G _ FG succeeds
in s0 from B, then FG holds at t. Here we use the transitivity of <.
Rule 4a gives the possibilities where s0 is an old point s in the future
of t; Rule 4b gives the possibilities where s0 is a new point forming a
new con�guration. Success is needed from all possibilities.

3. Immediate rule for F :
S(�;<;�; FG; t; G0; t0) 2 � and for some s 2 � such that t < s we
have �0 = (��fS(�;<;�; FG; t; G0; t0)g)[fS(�;<;�; G; s;G0; t0)g
and �0 = �.

4. First con�guration rule for F :
S(�;<;�; FG; t; G0; t0) 2 � and for some (t : A! F ^j Bj) 2 � and
some �1;�2 we have both (a) and (b) below are true. A may not
appear in which case we pretend A = truth.

(a) For all s 2 � such that t < s we have that
�0

s = (�� fS(�;<;�; FG; t; G0; t0)g) [ fS(�;<;�; E�1; t; G0;
t0)g [ fS(�;<;� [ f(s : Bj�1) j j = 1; 2; : : :g; D; s;G0; t0)g
succeeds with �0

s = ��2 and D = G _ FG and E = A.

(b) For all future con�gurations of (�;<; t) with a new letter s, de-
noted by the form (�s; <s), we have that
�0

s = (�� fS(�;<;�; FG; t; G0; t0g)

[ fS(�;<;�; E�1; t; G0; t0)g

[ fS(�s; <s;� [ f(s : Bj) j j = 1; 2; : : :g; D; s;G0; t0)g
succeeds with �0

s = ��2 and D = G _ FG and E = A.

The reader should note that conditions 3, 4a and 4b are needed only when
the ow of time has some special properties. To explain by example, assume
we have the con�guration of Fig. 5 and � = ft : A ! FB; t0 : Cg as data,
and our query is ?t : FG.

Then according to rules 3, 4 we have to check and succeed in all the
following cases:

1. from rule 3 we check ft0 : C; t : A! FBg?t0 : G;

2. from rule 4a we check ft0 : C; t : A! FB; t0 : Bg?t0 : G;

3. from rule 4b we check ft0 : C; t : A! FB; s : Bg?s : G;

for the three con�gurations of Fig. 6.
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If time is linear, con�guration 3.3, shown in Fig. 6, does not arise and
we are essentially checking 3.1, 3.2 of Fig. 6 and the case 4a corresponding
to t0 = s.

If we do not have any special properties of time, success in case 3.2 is
required. Since we must succeed in all cases and 3.2 is the case with least
assumptions, it is enough to check 3.2 alone.

Thus for the case of no special properties of the ow of time, case 4 can
be replaced by case 4 general below:
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4 general S(�;<;�; FG; t; G0; t0) 2 � and for the future con�guration
(�1; <1) de�ned as �1 = � [ fsg and <1=< [ ft < sg; s a new
letter, we have that: �0s = (��fS(�;<;�; FG; t; G0; t0)g [ fS(�;<
;�; E�1; t; G0; t0)g[fS(�1; <1;�[f(s : Bj) j j = 1; 2; : : :g; D; s;G0; t0)g
succeeds with �0

s = ��1 and D = G _ FG and E = A.

4*. Second con�guration rule for F :
For some S(�;<;�; FG; t; G0; t0) and some �(A! F ^j Bj) 2 � and
some �1�2 we have both cases 4a and 4b above true with E = A_FA
and D = G _ FG.

4* general Similar to (4 general) for the case of general ow.

5. This is the the mirror image of 3 with `PG' replacing `FG' and `s < t'
replacing `t < s'.

6; 6* This is the mirror image of 4 and 4* with `PG' replacing `FG', `s < t'
replacing `t < s' and `past con�guration' replacing `future con�gura-
tion'.

6 general This is the image of 4 general.

We now give the computation rules 7-10 for gand w for orderings in
which a next point and/or previous points exist. If t 2 T has a next point
we denote this point by s = gt. If it has a previous point we denote it
by s = wt. For example, if (T;<) is the integers then gt = t + 1 andwt = t�1. If (T;<) is a tree then wt always exists, except at the root, butgt may or may not exist. For the sake of simplicity we must assume that
if we have gor win the language then gt or wt always exist. Otherwise
we can sneak negation in by putting (t : gA) 2 � when gt does not exist!

7. Immediate rule for g:
S(�;<;�; gG; t;G0; t0) 2 � and gt exists and gt 2 � and �0 = �
and�0 = (��fS(�;<;�; gG; t;G0; t0)g)[fS(�;<;�; G; gt; G0; t0)g.

8. Con�guration rule for g:
S(�;<;�; gG; t;G0; t0) 2 � and for some �1;�2 some (t : A !g^j Bj) 2 � and �0 = (� � fS(�;<;�; gG; t;G0; t0)g [ fS(�;<
;�; A�1; t; G0; t0)g[fS(�[f gtg; <0;�[f( gt : Bj)g; G; gt; G0; t0)g
succeeds with �0 = ��2, and <0 is the appropriate ordering closure
of < [f(t; gt)g.
Notice that case 8 is parallel to case 4. We do not need 8a and 8b
because of gt 2 �; then what would be case 8b becomes 7.

9. The mirror image of 7 with ` w' replacing ` g'.
10. The mirror image of 8 with ` w' replacing ` g'.
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11. Negation as failure rule:
S(�;<;�;:G; t;G0; t0) 2 � and � grounds every type 2 variable and
the computation for success of S(�;<;�; G; t;�) ends up in failure.

12. Disjunction rule:
S(�;<;�; G1 _ G2; t; G0; t0) 2 � and �0 = (� � fS(�;<;�; G1 _
G2; t; G0;
t0)g) [ fS(�;<;�; Gi; t; G0; t0)g and �0 = � and i 2 f1; 2g:

13. Conjunction rule:
S(�;<;�; G1 ^ G2; t; G0; t0) 2 � and �0 = (� � fS(�;<;�; G1 ^
G2; t; G0;
t0)g) [ fS(�;<;�; Gi; t; G0; t0) j i 2 f1; 2gg.

14. Restart rule:
S(�;<;�; G; t; G0; t0) 2 � and �0 = (��fS(�;<;�; G; t; G0; t0)g)[
fS(�;<;�; G1; t0; G0; t0)g where G1 is obtained from G0 by substi-
tuting completely new type 2 variables u0i for the type 2 variables ui
of G0, and where �0 extends � by giving �0(u0i) = u0i for the new
variables u0i.

15. To start the computation:
Given � and t0 : G0 and a ow (T;<), we start the computation
with � = fS(�;<;�; G0; t0; G0; t0)g, where (�;<) is the con�guration
associated with �, over (T;<) (De�nition 75).

Let us check some examples.

EXAMPLE 78.
Data:

1. t : a! Fb

2. �(b! Fc)

3. t : a.

Query: ?t : Fc
Con�guration: ftg

Using rule 4* we create a future s with t < s and ask the two queries
(the notation A?B means that we add A to the data 1, 2, 3 and ask ?B).

4. ?t : C _ Fb
and

5. s : c?s : c _ Fc

5 succeeds and 4 splits into two queries by rule 4.
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6. ?t : a
and

7. s0 : b?s0 : b:

EXAMPLE 79.
Data:

1 t : FA

2 t : FB

Query: t : F' where ' = (A ^ B) _ (A ^ FB) _ (B ^ FA).
The query will fail in any ow of time in which the future is not linear.

The purpose of this example is to examine what happens when time is linear.
Using 1 we introduce a point s, with s : A, and query from s the following:

?s : ' _ F'

If we do not use the restart rule, the query will fail. Now that we are
at a point s there is no way to go back to t. We therefore cannot reason
that we also have a point s0 : B and t < s and t < s0 and that because of
linearity s = s0 or s < s0 or s0 < s. However, if we are allowed to restart,
we can continue and ask t : F' and now use the clause t : FB to introduce
s0. We now reason using linearity in rule 4 that the con�gurations are:

t < s < s0

or t < s0 < s

or t < s = s0

and ' succeeds at t for each con�guration.
The reader should note the reason for the need to use the restart rule.

When time is just a partial order, the two assumptions t : FA and t : FB do
not interact. Thus when asking t : FC, we know that there are two points
s1 : A and s2 : B;, see Fig. 7.
C can be true in either one of them. s1 : A has no inuence on s2 : B.
When conditions on time (such as linearity) are introduced, s1 does inuence
s2 and hence we must introduce both at the same time. When one does
forward deduction one can introduce both s1 and s2 going forward. The
backward rules do not allow for that. That is why we need the restart
rule. When we restart, we keep all that has been done (with, for example,
s1) and have the opportunity to restart with s2. The restart rule can be
used to solve the linearity problem for classical logic only. Its side-e�ect
is that it turns intuitionistic logic into classical logic; see Gabbay's paper
on N -Prolog [Gabbay, 1985] and [Gabbay and Olivetti, 2000]. In theorem
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proving based on intuitionistic logic where disjunctions are allowed, forward
reasoning cannot be avoided. See the next example.

It is instructive to translate the above into Prolog and see what happens
there.

EXAMPLE 80.

1. t : FA translates into (9s1 > t)A�(s1).

2. t : FB translates into (9s2 > t)A�(s2).
The query translates into the formula  (t):
 = 9s > t[A�(s)^B�(s)]_9s1 > t[A�(s1)^9s2 > s1B

�(s2)]_ 9s2 >
t[B�(s2) ^ 9s1 > s2A

�(s2)]
which is equivalent to the disjunction of:

(a) [t < s ^ A�(s) ^ B�(s)];

(b) t < s1 ^ s1 < s2 ^A�(s1) ^ B�(s2);

(c) t < s1 ^ s2 < s1 ^A�(s1) ^ B�(s2).

All of (a), (b), (c) fail from the data, unless we add to the data the
disjunction

8xy(x < y _ x = y _ y < x):

Since this is not a Horn clause, we are unable to express it in the database.

The logic programmer might add this as an integrity constraint. This is
wrong as well. As an integrity constraint it would require the database to
indicate which of the three possibilities it adopts, namely:
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x < y is in the data;

or x = y is in the data;

or y < x is in the data.

This is stronger than allowing the disjunction in the data.
The handling of the integrity constraints corresponds to our metahan-

dling of what con�gurations (�;<) are allowed depending on the ordering
of time. By labelling data items we are allowing for the metalevel consider-
ations to be done separately on the labels.

This means that we can handle properties of time which are not neces-
sarily expressible by an object language formula of the logic. In some cases
(�niteness of time) this is because they are not �rst order; in other cases
(irreexivity) it is because there is no corresponding formula (axiom) and
in still other cases because of syntactical restrictions (linearity).

We can now make clear our classical versus intuitionistic distinction. If
the underlying logic is classical then we are checking whether � `  in
classical logic. If our underlying logic is intuitionistic, then we are checking
whether � `  in intuitionistic logic where � and  are de�ned below.

� is the translation of the data together with the axioms for linear or-
dering, i.e. the conjunction of:

1. 9s1 > tA�(s1);

2. 9s2 > tB�(s2);

3. 8xy(x < y _ x = y _ y < x);

4. 8x9y(x < y);

5. 8x9y(y < x);

6. 8xyz(x < y ^ y < z ! x < z);

7. 8x:(x < x).

 is the translation of the query as given above.
The computation of Example 79, using restart, answers the question

� `? in classical logic. To answer the question � `? in intuitionistic
logic we cannot use restart, but must use forward rules as well.

EXAMPLE 81. See Example 79 for the case that the underlying logic is
intuitionistic. Data and Query as in Example 79.

Going forward, we get:
3 s : A from 1;
4 s0 : B from 2.

By linearity,

t < s < s0
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or t < s0 < s

or t < s = s0:

 will succeed for each case.
Our language does not allow us to ask queries of the form �G(x), where

x are all universal variables (i.e. 8x�G(x)). However, such queries can be
computed from a database �. The only way to get always information out
of � for a general ow of time is via the always clauses in the database.
Always clauses are true everywhere, so if we want to know what else is true
everywhere, we ask it from the always clauses. Thus to ask

?�G(x); x a universal variable

we �rst Skolemize and then ask

fX;�X j �X 2 �g?G(c)

where c is a Skolem constant.
We can add a new rule to De�nition 76:

16. Always rule:
S(�;<;�;�G; t;G0; t0) 2 � and
�0 = (�� fS(�;<;�;�G; t;G0; t0)g) [ fS(fsg;?;�0; G0; s; g0; s)g
where s is a completely new point and G0 is obtained from G by
substituting new Skolem constants for all the universal variables of G
and

�0 = fB;�B j �B 2 �g:

We can use 16 to add another clause to the computation of De�nition 76,
namely:

17. S(�;<;�; F (A ^ B); t; G0; t0) 2 �
and �0 = (�� fS(�;<;�; F (A ^ B); t; G0; t0)g) [
fS(�;<;�; FA; t; G0; t0);S(�;<;�;�B; t;G0; t0)g.

EXAMPLE 82.

Data Query Con�guration
�a t : F (a ^ b) ftg

t : Fb

First computation
Create s; t < s and get

Data Query Con�guration
�a s : a ^ b t < s

t : Fb
s : b
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s : b succeeds from the data. s : a succeeds by rule 2, De�nition 76.

Second computation
Use rule 17. Since ?�a succeeds ask for Fb and proceed as in the �rst
computation.

6.3 Di�erent ows of time

We now check the e�ect of di�erent ows of time on our logical deduction
(computation). We consider a typical example.

EXAMPLE 83.

Data Query Con�guration
t : FFA ?t : FA ftg

The possible world ow is a general binary relation.
We create by rule 4b of De�nition 76 a future con�guration t < s and

add to the database s : FA. We get

Data Query Con�guration
t : FFA ?t : FA t < s
s : FA

Again we apply rule 4a of De�nition 76 and get the new con�guration
with s < s0 and the new item of data s0 : A. We get

Data Query Con�guration
t : FFA ?t : FA t < s
s : FA s < s0

s0 : A

Whether or not we can proceed from here depends on the ow of time. If <
is transitive, then t < s0 holds and we can get t : FA in the data by rule 3.

Actually by rule 4* we could have proceeded along the following sequence
of deduction. Rule 4* is especially geared for transitivity.

Data Query Con�guration
t : FFA t : FA t

Using rule 4* we get

Data Query Con�guration
t : FFA s : FA _ FFA t < s
s : FA

The �rst disjunct of the query succeeds.
If < is not transitive, rule 3 does not apply, since t < s0 does not hold.
Suppose our query were ?t : FFFA.
If < is reexive then we can succeed with ?t : FFFA because t < t.
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If < is dense (i.e. 8xy(x < y ! 9z(x < z ^ z < y))) we should also
succeed because we can create a point z with t < z < s.
z : FFA will succeed and hence t : FFFA will also succeed.
Here we encounter a new rule (density rule), whereby points can always

be `landed' between existing points in a con�guration.
We now address the ow of time of the type natural numbers, f1; 2; 3;

4; : : :g. This has the special property that it is generated by a function
symbol s:

f1; s(1); ss(1); : : :g:

EXAMPLE 84.

Data Query Con�guration
�(q ! gq) 1 : F (p ^ q) f1g

1 : gq
1 : Fp

If time is the natural numbers, the query should succeed from the data. If
time is not the natural numbers but, for example, f1; 2; 3; : : : ; w; w+ 1; w+
2; : : :g then the query should fail.

How do we represent the fact that time is the natural numbers in our
computation rule? What is needed is the ability to do some induction. We
can use rule 4b and introduce a point t with 1 < t into the con�guration
and even say that t = n, for some n. We thus get

Data Query Con�guration
�(q ! gq) 1 : F (p ^ q) 1 < n

1 : gq
1 : Fp
n : p

Somehow we want to derive n : q from the �rst two assumptions. The
key reason for the success of F (p^ q) is the success of �q from the �rst two
assumptions. We need an induction axiom on the ow of time.

To get a clue as to what to do, let us see what Prolog would do with the
translations of the data and goal.

Translated data

8t[1 � t ^Q�(t) ! Q�(t+ 1)]

Q�(1)

9tP �(t):

Translated query

9t(P �(t) ^Q�(t)):

After we Skolemize, the database becomes:
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1. 1 � t ^Q�(t) ! Q�(t+ 1)

2. Q�(1)

3. P �(c)

and the query is

P �(s) ^Q�(s):

We proceed by letting s = c. We ask Q�(c) and have to ask after a
slightly generalized form of uni�cation ?1 � c ^Q�(c� 1).

Obviously this will lead nowhere without an induction axiom. The in-
duction axiom should be that for any predicate PRED

PRED(1) ^ 8x[1 � x ^ PRED(x) ! PRED(x+ 1)] ! 8xPRED(x):

Written in Horn clause form this becomes

9x8y[PRED(1) ^ [1 � x ^ PRED(x)
! PRED(x+ 1)] ! PRED(y)]:

Skolemizing gives us

4. PRED(1) ^ (1 � d ^ PRED(d) ! PRED(d+ 1)) ! PRED(y)

where d is a Skolem constant.
Let us now ask the query P �(s)^Q�(s) from the database with 1{4. We

unify with clause 3 and ask Q�(c). We unify with clause 4 and ask Q�(1)
which succeeds and ask for the implication

?1 � d ^Q�(d) ! Q�(d+ 1):

This should succeed since it is a special case of clause 1 for t = d.
The above shows that we need to add an induction axiom of the form

gx ^�(x! gx) ! �x:

Imagine that we are at time t, and assume t0 < t. If A is true at t0 and
�(A! gA) is true, then A is true at t.

We thus need the following rule:

18. Induction rule:
t : F (A ^ B) succeeds from � at a certain con�guration if the following
conditions all hold.

1. t : FB suceed.

2. For some s < t; s : A succeeds.
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3. m : gA succeeds from the database �0, where �0 = fX;�X j �X 2
�g [ fAg and m is a completely new time point and the new con�g-
uration is fmg.

The above shows how to compute when time is the natural number. This
is not the best way of doing it. In fact, the characteristic feature involved
here is that the ordering of the ow of time is a Herbrand universe generated
by a �nite set of function symbols. FA is read as `A is true at a point
generated by the function symbols'. This property requires a special study.
See Chapter 11 of [Gabbay et al., 1994].

6.4 A theorem prover for modal and temporal logics

This section will briey indicate how our temporal Horn clause computation
can be extended to an automated deduction system for full modal and
temporal logic. We present computation rules for propositional temporal
logic with F; P; g; w;^ ! and ?. We intend to approach predicate logic
in Volume 3 as it is relatively complex. The presentation will be intuitive.

DEFINITION 85. We de�ne the notions of a full clause, a body and a head.

(a) A full clause is an atom q or ? or B ! H , or H where B is a body
and H is a head.

(b) A body is a conjunction of full clauses.

(c) A head is an atom q or ? or FH or PH or gH or wH , where H is
a body.

Notice that negation by failure is not allowed. We used the connectives
^;!;?. The other connectives, _ and �, are de�nable in the usual way:
� A = A ! ? and A _ B = (A ! ?) ! B. The reader can show that
every formula of the language with the connectives f�;^;_; F;G; P;Hg is
equivalent to a conjunction of full clauses. We use the following equivalences:

A! (B ^ C) = (A! B) ^ (A! C);

A! (B ! C) = A ^ B ! C;

GA = F (A! ?) ! ?;

HA = P (A! ?) ! ?:

DEFINITION 86. A database is a set of labelled full clauses of the form
(�; �; <), where � = ft j t : A 2 �; for some Ag. A query is a labelled full
clause.

DEFINITION 87. The following is a de�nition of the predicate S(�;<;
�; G; t; G0; t0), which reads: the labelled goal t : G succeeds from (�; �; <)
with parameter (initial goal) t0 : G0.



ADVANCED TENSE LOGIC 149

1(a) S(�;<;�; q; t; G0; t0) for q atomic or ? if for some t : A ! q, S(�;<;
�; A; t; G0; t0).

(b) If t : q 2 � or s : ? 2 � then S(�;<;�; q; t; G0; t0).

(c) S(�;<;�;?; t; G0; t0) if S(�;<;�;?; s; G0; t0).
This rule says that if we can get a contradiction from any label, it is
considered a contradiction of the whole system.

2. S(�;<;�; G; t; G0; t0) if for some s : A! ?; S(�;<;�; A; s;G0; t0).

3. S(�;<;�; t; FG;G0; t0) if for some s 2 �; t < s and S(�;<;�; G; s;
G0; t0).

4. S(�;<;�; FG; t; G0; t0) if for some t : A ! FB 2 � we have that
both (a) and (b) below hold true:

(a) For all s 2 � such that t < s we have S(�;<;��; s;D;G0; t0)
and S(�;<;�; E; t; G0; t0) hold, where �� = � [ fs : Bg and
D 2 fG;FGg and E 2 fA;FAg.
Note: The choice of D and E is made here for the case of tran-
sitive time. In modal logic, where < is not necessarily transitive,
we take D = G;E = A. Other conditions on < correspond to
di�erent choices of D and E.

(b) For all future con�gurations of (�;<; t) with a new letter s, de-
noted by (�s; <s), we have S(�s; <s;�

�; s;D;G0; t0) and
S(�s; <s;�; E; t; G0; t0) hold, where ��; E;D are as in (a).

5. This is the mirror image of 3.

6. This is the mirror image of 4.

7(a) S(�;<;�; A1 ^ A2; t; G0; t0) if both S(�;<;�; Ai; t; G0; t0) hold for
i = 1; 2.

(b) S(�;<;�; A! B; t;G0; t0) if S(�;<;� [ ft : Ag; B; t; G0; t0).

8. Restart rule:
S(�;<;�; G; t; G0; t0) if S(�;<;�; G0; t0; G0; t0).

If the language contains gand wthen the following are the relevant rules.

9. S(�;<;�; gG; t;G0; t0) if gt exists and gt 2 � and S(�;<;�; G; gt;
G0; t0).

10. S(�;<;�; gG; t;G0; t0) if for some t : A! gB 2 � both S(�;<;�;
A; t; G0; t0) and S(�[f gtg; <0;�[f gt : Bg; G; gt; G0; t0) hold where
<0 is the appropriate ordering closure of < [ft < gtg.
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11. This is the mirror image of 9 for w.
12. This is the mirror image of 10 for w.

EXAMPLE 88. (Here � can be either G or H .)

Data Query Con�guration
1. t : �a ?t : �b ftg
2. t : �(a! b) t is a constant

Translation:

Data Query Con�guration
1. t : F (a! ?) ! ? t : F (b! ?) ! ? ftg
2. t : F ((a! b) ! ?) ! ?

Computation
The problem becomes

Additional data Current query Con�guration
3. t : F (b! ?) ?t : ? ftg

from 2 ?t0 : F ((a! b) ! ?)

From 3 using ** create a new point s:

Additional data Current query Con�guration
4. s : b! ? ?s : (a! b) ! ? t < s

Add s : a! b to the database and ask

5. s : (a! b) ?s : ?

From 4 and 5 we ask:

?s : a:

From computation rule 2 and clause 1 of the data we ask

?t : F (a! ?):

From computation rule 2 we ask

?s : a! ?

We add s : a to the data and ask

Additional data Current query Con�guration
6. s : a ?s : ? t < s

The query succeeds.
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6.5 Modal and temporal Herbrand universes

This section deals with the soundness of our computation rules. In conjunc-
tion with soundness it is useful to clarify the notion of modal and temporal
Herbrand models. For simplicty we deal with temporal logic with P; F only
and transitive irreexive time or with modal logic with one modality �

and a general binary accessibility relation <. We get our clues from some
examples:

EXAMPLE 89. Consider the database

1. t : a! �b

2. �(b! c)

3. t : a.

The constellation is ftg.
If we translate the clauses into predicate logic we get:

1. a�(t) ! 9s > tb�(s)

2. 8x[b�(x) ! c�(x)]

3. a�(t).

Translated into Horn clauses we get after Skolemising:

1.1 a�(t) ! b�(s)

1.2 a�(t) ! t < s

2 b�(x) ! c�(x)

3 a�(t).

t; s are Skolem constants.
From this program, the queries

a�(t);:b�(t);:c�(t);:a(s); b(s); c�(s)

all succeed. : is negation by failure.
It is easy to recognize that :a�(s) succeeds because there is no head which

uni�es with a�(s). The meaning of the query :a�(s) in terms of modalities
is the query �:a.

The question is: how do we recognize syntactically what fails in the
modal language? The heads of clauses can be whole databases and there is
no immediate way of syntactically recognizing which atoms are not heads
of clauses.
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EXAMPLE 90. We consider a more complex example:

1. t : a! �b

2. �(b! c)

3. t : a

4. t : a! �d.

We have added clause 4 to the database in the previous example. The
translation of the �rst three clauses will proceed as before. We will get

1.1 a�(t) ! c�(s)

1.2 a�(t) ! t < s

2 b�(x) ! c�(x)

3 a�(t).

We are now ready to translate clause 4. This should be translated like
clause 1 into

4.1 a�(t) ! d�(r)

4.2 a�(t) ! t < r.

The above translation is correct if the set of possible worlds is just an
ordering. Suppose we know further that in our modal logic the set of possible
worlds is linearly ordered. Since t < s ^ t < r ! s = r _ s < r _ r < s, this
fact must be reected in the Horn clause database. The only way to do it
is to add it as an integrity constraint.

Thus our temporal program translates into a Horn clause program with
integrity constraints.

This will be true in the general case. Whether we need integrity con-
straints or not will depend on the ow of time.

Let us begin by translating from the modal and temporal language into
Horn clauses. The labelled w� t : A will be translated into a set of formulae
of predicate logic denoted by Horn(t; A). Horn(t; A) is supposed to be log-
ically equivalent to A. The basic translation of a labelled atomic predicate
formula t : A(x1 : : : xn) is A�(t; x1 : : : xn). A� is a formula of a two-sorted
predicate logic where the �rst sort ranges over labels and the second sort
over domain elements (of the world t).

DEFINITION 91. Consider a temporal predicate language with connectives
P and F , and : for negation by failure.

Consider the notion of labelled temporal clauses, as de�ned in De�ni-
tion 73.
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Let Horn(t; A) be a translation function associating with each labelled
clause or goal a set of Horn clauses in the two-sorted language described
above. The letters t; s which appear in the translation are Skolem constants.
They are assumed to be all di�erent.

We assume that we are dealing with a general transitive ow of time. This
is to simplify the translation. If time has extra conditions, i.e. linearity, ad-
ditional integrity constraints may need to be added. If time is characterized
by non-�rst-order conditions (e.g. �niteness) then an adequate translation
into Horn clause logic may not be possible.

The following are the translation clauses:

1. Horn(t; A(x1 : : : xn)) = A�(t; x1 : : : xn), for A atomic;

2. Horn(t; FA) = ft < sg [ Horn(s; A)
Horn (t; PA) = fs < tg [ Horn(s; A);

3. Horn(t; A ^ B) = Horn(t; A) [ Horn(t; B);

4. Horn(t;:A) = :
V
Horn(t; A);

5. Horn(t; A! F ^Bj) = f
V
Horn(t; A) ! t < sg[

S
Bj
f
V
Horn(s; A)^

C ! D j (C ! D) 2 Horn(s;Bj)g;

6. Horn(t; A! P ^Bj) = f
V
Horn(t; A) ! s < tg[

S
Bj
f
V
Horn(s; A)^

C ! D j (C ! D) 2 Horn(s;Bj)g;

7. Horn(t;�A) = Horn(x;A) where x is a universal variable.

EXAMPLE 92. To explain the translation of t : A! F (B1 ^ (B2 ! B3)),
let us write it in predicate logic. A ! F (B1 ^ (B2 ! B3)) is true at t if A
true at t implies F (B1 ^ (B2 ! B3)) is true at t. F (B1 ^ (B2 ! B3)) is
true at t if for some s, t < s and B1 ^ (B2 ! B3) are true at s.

Thus we have the translation

A�(t) ! 9s(t < s ^B�
1 (s) ^ (B�

2 (s) ! B�
3(s))):

Skolemizing on s and writing it in Horn clauses we get the conjunction

A�(t) ! t < s

A�(t) ! B�
1(s)

A�(t) ^ B�
2(s) ! B�

3(s):

Let us see what the translation Horn does:
Horn (t; A ! F (B1 ^ (B2 ! B3))) = f

V
Horn(t; A) ! t < sg [

f
V
Horn(t; A) ! Horn(s;B2)g [ f

V
Horn(t; A) ^

V
Horn(s;B2) !V

Horn(s;B3)g = fA�(t) ! t < s;A�(t) ! B�
2(s); A�(t) ^B�

2(s) ! B�
3(s)g.
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We prove soundness of the computation of De�nition 76, relative to
the Horn clause computation for the Horn database in classical logic. In
other words, if the translation Horn(t; A) is accepted as sound, as is in-
tuitively clear, then the computation of S(�;<;�; G; t; G0; t0;�) can be
translated isomorphically into a classical Horn clause computation of the
form Horn(t;�)?Horn(t; G), and the soundness of the classical Horn clause
computation would imply the soundness of our computation.

This method of translation will also relate our temporal computation to
that of an ordinary Horn clause computation.

The basic unit of our temporal computation is S(�;<;�; G; t; G0; t0;�).
The current labelled goal is t : G and t0 : G0 is the original goal. The
database is (�;<;�) and � is the current substitution. t0 : G0 is used in
the restart rule. For a temporal ow of time which is ordinary transitive
<, we do not need the restart rule. Thus we have to translate (�;<;�) to
classical logic and translates t : G and � to classical logic and see what each
computation step of S of the source translates into the classical logic target.

DEFINITION 93. Let (�;<) be a constellation and let � be a labelled
database such that

� = ft j for some A; t : A 2 �g:

Let Horn((�;<);�) = ft < s j t; s 2 � and t < sg [
S
t:A2�Horn(t; A):

THEOREM 94 (Soundness). S(�;<;�; G; t;�) succeeds in temporal logic if
and only if in the sorted classical logic Horn((�;<);�)?Horn(t; G) succeeds
with �.

Proof. The proof is by induction on the complexity of the computation
tree of S(�;<;�; G; t;�).

We follow the inductive steps of De�nition 75. The translation of (�;�)
is a conjunction of Horn clause queries, all required to succeed under the
same subsitution �.

Case I The empty goal succeeds in both cases.

Case II (�;�) fails if for some S(�;<;�; G; t), we have G is atomic and
for all �(A ! H) 2 � and all t : A ! H 2 �; G� and H�
do not unify. The reason they do not unify is because of what �
substitutes to the variables ui.

The corresponding Horn clause predicate programs are

^
Horn(x;A) ! H�(x)

and ^
Horn(t; A) ! H�(t)

and the goal is ?G�(t).
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Clearly, since x is a general universal variable, the success of the two-
sorted uni�cation depends on the other variables and �. Thus uni�cation
does not succeed in the classical predicate case i� it does not succeed in the
temporal case.

Rules 1 and 2 deal with the atomic case: the query is G�(t) and in the
database among the data are^

Horn(t; A) ! H�(t) and
^
Horn(x;A) ! H�(x)

for the cases of t : A! H and �(A! H) respectively.
For the Horn clause program to succeed G�(t) must unify with H�(t).

This will hold if and only if the substitution for the domain variables allows
uni�cation, which is exactly the condition of De�nition 75.

Rules 3, 4(general) and 4*(general) deal with the case of a goal of the
form ?t : FG. The translation of the goal is t < u ^

V
Horn(u;G) where u

is an existential variable.
Rule 3 gives success when for some s; t < s 2 � and ?s : G succeeds. In

this case let u = s; then t < u succeeds and
V
Horn(s;G) succeeds by the

induction hypothesis.
We now turn to the general rules 4(general) and 4*(general). These rules

yield success when for some clause of the form

t : A! F ^ Bj

or

�(A! F ^ Bj):

�?t : A succeeds and � [ f(s : Bj)g?s : G _ FG both succeed. s is a new
point.

The translation
V
Horn(t; A) succeeds by the induction hypothesis.

The translation of

t : A! F ^ Bj

or

�(A! F ^ Bj)

contains the following database:

1.
V
Horn(t; A) ! t < s.

2. For everyBj and everyC ! D in Horn(s;Bj) the clause
V
Horn(s; A)^

C ! D.

Since ^Horn(t; A) succeeds we can assume we have in our database:

1* t < s;
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2* C ! D, for C ! D 2 Horn(s;Bj) for some j.

These were obtained by substituting truth in 1 and 2 for
V
Horn(t; A):

The goal is to show t < u ^
V
Horn(u;G).

Again for u = s; t < u succeeds from (1*) and by the induction hypothe-
sis, since � [ fs : Bjg?s : G _ FG is successful, we get

[
j

Horn(s;Bj)?
^

Horn(s;G) _ (s < u0 ^
^

Horn(u0; G))

should succeed, with u0 an existential variable.
However, 2* is exactly

S
jHorn(s;

V
Bj). Therefore we have shown that

rules 4(general) and 4*(general) are sound.
Rules 6(general) and 6*(general) are sound because they are the mirror

images of 4(general) and 4*(general).
The next relevant rules for our soundness cases are 11{13. These follow

immediately since the rules for ^;_;: are the same in both computations.
Rule 14, the restart rule, is de�nitely sound. If we try to show in general

that � ` A then since in classical logic � A ! A is the same as A (� is
classical negation) it is equivalent to show �;� A ` A.

If � A is now in the data, we can at any time try to show A instead of
the current goal G. This will give us A (shown) and � A (in Data) which
is a contradiction, and this yields any goal including the current goal G.

We have thus completed the soundness proof. �

6.6 Tractability and persistence

We de�ned a temporal database � essentially as a �nite piece of information
telling us which temporal formulae are true at what times. In the most
general case, for a general ow of time (T;<), all a database can do is to
provide a set of the form fti : Aig, meaning that Ai is true at time ti and
a con�guration (ftig; <), giving the temporal relationships among ftig. A
query would be of the form ?t : Q, where t is one of the ti. The computation
of the query from the data is in the general case exponential, as we found
in Section 6.2, from the case analysis of clause 4 of De�nition 76 and from
Example 72. We must therefore analyse the reasons for the complexity and
see whether there are simplifying natural assumptions, which will make the
computational problem more tractable.

There are three main components which contribute to complexity:

1. The complexity of the temporal formulae allowed in the data and in
the query. We allow t : A into the database, with A having temporal
operators. So, for example, t : FA is allowed and also t : gA. t : FA
makes life more diÆcult because it has a hidden Skolem function in
it. It really means 9s[t < s and (s : A)]. This gives rise to case
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analysis, as we do not know in general where s is. See Example 80
and Examples 89 and 90. In this respect t : gA is a relatively simple
item. It says (t+1) : A. In fact any temporal operator which speci�es
the time is relatively less complex. In practice, we do need to allow
data of the form t : FA. Sometimes we know an event will take place
in the future but we do not know when. The mere fact that A is going
to be true can a�ect our present actions. A concrete example where
such a case may arise is when someone accepts a new appointment
beginning next year, but has not yet resigned from their old position.
We know they are going to resign but we do not know when;

2. The ow of time itself gives rise to complexity. The ow of time may
be non-Horn clause (e.g. linear time which is de�ned by a disjunctive
axiom

8xy[x < y _ y < x _ x = y]:

This complicates the case analysis of 1 above.

3. Complexity arises from the behaviour. If atomic predicates get truth
values at random moments of time, the database can be complex to
describe. A very natural simplifying assumption in the case of tem-
poral logic is persistence. If atomic statements and their negations
remain true for a while then they give rise to less complexity. Such
examples are abundant. For example, people usually stay at their res-
idences and jobs for a while. So for example, any payroll or local tax
system can bene�t from persistence as a simplifying assumption. Thus
in databases where there is a great deal of persistence, we can use this
fact to simplify our representation and querying. In fact, we shall see
that a completely di�erent approach to temporal representation can
be adopted when one can make use of persistence.

Another simplifying assumption is recurrence. Saturdays, for example,
recur every week, so are paydays. This simpli�es the representation
and querying. Again, a payroll system would bene�t from that.

We said at the beginning that a database � is a �nitely generated piece of
temporal information stating what is true and when. If we do not have any
simplifying assumptions, we have to represent � in the form � = fti : Aig
and end up needing the computation rules of Section 6.2 to answer queries.

Suppose now that we adopt all three simplifying assumptions for our
database. We assume that the Ai are only atoms and their negations, we
further assume that each Ai is either persistent or recurrent, and let us
assume, to be realistic, that the ow of time is linear. Linearity does not
make the computation more complicated in this particular case, because we
are not allowing data of the form t : FA, and so complicated case analysis
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does not arise. In fact, together with persistence and recurrence, linearity
becomes an additional simplifying assumption!

Our aim is to check what form our temporal logic programming machine
should take in view of our chosen simplifying assumptions.

First note that the most natural units of data are no longer of the form:

t : A

reading A is true at t, but either of the form

[t; s] : A; [t < s]

reading A is true in the closed interval [t; s], or the form

tkd : A

reading A is true at t and recurrently at t + d, t + 2d; : : :, that is, every d
moments of time.
A is assumed to be a literal (atom or a negation of an atom) and [t; s] is

supposed to be a maximal interval where A is true. In tkd, d is supposed to
be the minimal cycle for A to recur. The reasons for adopting the notation
[t; s] : A and tkd : A are not mathematical but simply intuitive and practical.
This is the way we think about temporal atomic data when persistence
or recurrence is present. In the literature there has been a great debate
on whether to evaluate temporal statements at points or intervals. Some
researchers were so committed to intervals that they tended, unfortunately,
to disregard any system which uses points. Our position here is clear and
intuitive. First perform all the computations using intervals. Evaluation at
points is possible and trivial. To evaluate t : A, i.e. to ask ?t : A as a query
from a database, compute the (maximal) intervals at which A is true and
see whather t is there. To evaluate [t; s] : A do the same, and check whether
[t; s] is a subset.

The query language is left in its full generality. i.e. we can ask queries of
the form t : A where A is unrestricted (e.g. A = FB etc.). It makes sense
also to allow queries of the form [t; s] : A, although exactly how we are
going to �nd the answer remains to be seen. The reader should be aware
that the data representation language and the query language are no longer
the same. This is an important factor. There has been a lot of confusion,
especially among the AI community, in connection with these matters. We
shall see later that as far as computational tractability is concerned, the
restriction to persistent data allows one to strengthen the query language
to full predicate quanti�cation over time points.

At this stage we might consider allowing recurrence within an interval,
i.e. we allow something like

`A is true every d days in the interval [t; s].'
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We can denote this by

[tkd; s] : A

meaning A is true at t; t+ d; t+ 2d, as long as t+ nd � s; n = 1; 2; 3; : : :.
We may as well equally have recurrent intervals. An example of that

would be taking a two-week holiday every year. This we denote by

[t; s]kd : A; t < s; (s� t) < d;

reading A is true at the intervals [t; s]; [t+ d; s+ d]; [t+ 2d; s+ 2d], etc.
The reader should note that adopting this notation takes us outside the

realm of �rst-order logic. Consider the integer ow of time. We can easily
say that q is true at all even numbers by writing [0; 0]k1 as a truth set for q
and [1; 1k1 as a truth set for � q (i.e. q is true at 0 and recurs every 1 unit
and � q is true at 1 and recurs every 1 unit).

The exact expressive power of this language is yet to be examined. It is
connected with the language USF which we meet later.

The above seem to be the most natural options to consider. We can
already see that it no longer makes sense to check how the computation
rules of De�nition 76 simplify for our case. Our case is so specialized that
we may as well devise computation rules especially for it. This should not
surprise us. It happens in mathematics all the time. The theory of Abelian
groups, for example, is completely di�erent from the theory of semigroups,
although Abelian groups are a special case of semigroups. The case of
Abelian groups is so special that it does not relate to the general case any
more.

Let us go back to the question of how to answer a query from our newly
de�ned simpli�ed databases. We start with an even more simple case, as-
suming only persistence and assuming that the ow of time is the integers.
This simple assumption will allow us to present our point of view of how
to evaluate a formula at a point or at an interval. It will also ensure we
are still within what is expressible in �rst-order logic. Compare this with
Chapter 13 of [Gabbay et al., 1994].

Assume that the atom q is true at the maximal intervals [Xxn; yn]; xn �
yn < xn+1. Then � q is true at the intervals [yn + 1; xn+1 � 1], a sequence
of the same form, i.e. yn + 1 � xn+1 � 1 and xn+1 � 1 < yn+1 + 1.

It is easy to compute the intervals corresponding to the truth values of
conjunctions: we take the intersection:

If Ij =
S
n[xjn; y

j
n] then I1 \ I2 =

S
n[xn; yn] and the points xn; yn can

be e�ectively linearly computed. Also, if Ij is the interval set for Aj , the
interval set for U(A1; A2) can be e�ectively computed.

In Fig. 8, U(A1; A2) is true at [uk; yn� 1]; [uk; yn+1� 1] which simpli�es
to the maximal [uk; yn+1 � 1].

The importance of the above is that we can regard a query formula of the
full language with Until and Since as an operator on the model (database)
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Figure 8.

to give a new database. If the database � gives for each atom or its negation
the set of intervals where it is true, then a formula A operates on � to give
the new set of intervals �A; thus to answer �?t : A the question we ask is
t 2 �A. The new notion is that the query operates on the model.

This approach was adopted by I. Torsun and K. Manning when imple-
menting the query language USF. The complexity of computation is polyno-
mial (n2). Note that although we have restricted the database formulae to
atoms, we discovered that for no additional cost we can increase the query
language to include the connectives Since and Until. As we have seen in
Volume 1, in the case of integers the expressive power of Since and Until is
equivalent to quanti�cation over time points.

To give the reader another glimpse of what is to come, note that intu-
itively we have a couple of options:

1. We can assume persistence of atoms and negation of atoms. In this
case we can express temporal models in �rst-order logic. The query
language can be full Since and Until logic. This option does not al-
low for recurrence. In practical terms this means that we cannot
generate or easily control recurrent events. Note that the database
does not need to contain Horn clauses as data. Clauses of the form
�(present w�1 ! present w�2) are redundant and can be elimi-
nated (this has to be properly proved!). Clauses of the form �(past
w�1 ! present w�2) are not allowed as they correspond to recur-

rence;

2. This option wants to have recurrence, and is not interested in �rst-
order expressibility. How do we generate recurrence?

The language USF (which was introduced for completely di�erent rea-
sons) allows one to generate the database using rules of the form
�(past formula ! present or future formula).
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The above rules, together with some initial items of data of the form
t : A, A a literal, can generate persistent and recurrent models.

7 NATURAL NUMBERS TIME LOGICS

Certainly the most studied and widely used temporal logic is one based on
a natural numbers model of time. The idea of discrete steps of time heading
o� into an unbounded future is perfect for many applications in computer
science. The natural numbers also form quite a well-known structure and so
a wide-range of alternative techniques can be brought to bear. Here we will
have a brief look at this temporal logic, PTL, at another, stronger natural
numbers time temporal logic USF and at the powerful automata technique
which can be used to help reason in and about such logics.

7.1 PTL

PTL is a propositional temporal logic with semantics de�ned on the natural
numbers time. It does not have past time temporal connectives because,
as we will see, they are not strictly necessary, and, anyway, properties of
programs (or systems or machines) are usually described in terms of what
happens in the future of the start. So PTL is somewhat, but not exactly, like
the propositional logic of the until connective over natural numbers time.
By the way, PTL stands for Propositional Temporal Logic because computer
scientists are not very interested in any of the other propositional temporal
logics which we have met. PTL is also sometimes known as PLTL, for
Propositional Linear Temporal Logic, because the only other propositional
temporal logic of even vague interest to computer scientists is one based on
branching time.

PTL does have a version of the until connective and also a next-time (or
tomorrow) connective. The until connective, although commonly written as
U , is not the same as the connective U which we have met before. Also, and
much less importantly, it is usually written in an in�x manner as in pUq.
In PTL we write pUq i� either q is true now or q is true at some time in
the future and we have p true at all points between now and then, including
now but not including then. This is called a non-strict version of U : hence
here we will use the notation Uns. From the beginning in [Pnueli, 1977],
temporal logic work with computer science applications in mind has used
the non-strict version of until. In much of the work on temporal logic with
a philosophical or linguistic bent, and in this chapter, U(q; p) means that q
is true in the future and p holds at all points strictly in between. This is
called the strict version of until.

To be more formal let us here de�ne a structure as a triple (N ; <; h)
where h : L! }(N ) is the valuation of the atoms from L. In e�ect, we have
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an !-long sequence � = h�0; �1; :::i of states (i.e. subsets of L) with each
�i = fp 2 Lji 2 h(p)g. Many presentations of PTL use this sequence of
states notation. The truth of a PTL formula A at a point n of a structure
T , written T ; n j= A is de�ned by induction on the construction of A as
usual. The clauses for atoms and Booleans are as usual. De�ne:

T ; n j= XA i� T ; n+ 1 j= A, and

T ; n j= AUnsB i� there is some m � n such that T ;m j= B and

for all j, if n � j < m then T ; j j= A.

Note that in PTL, there are also non-strict versions of all the usual ab-
breviations. For example FA = >UnsA holds i� A holds now or at some
time in the future, and GA = :F:A holds i� A holds now and at all time
sin the future. In many presentations of PTL, the symbols � and � are
used instead of F and G.

In the case of natural numbers time (as in PTL) it is easy to show that the
language with strict U is equally expressive as the language with both the
next operator X and non-strict Uns. We can de�ne a meaning preserving
translation � which preserves atoms and respects Boolean connectives via:

�U(A;B) = X(�(B)Uns�(A)).

Similarly we can de�ne a meaning preserving translation � which preserves
atoms and respects Boolean connectives via:

�XA = U(A; p0 ^ :p0),

�(BUnsA) = �(A) _ (�(B) ^ U(�(A); �(B))).

It is easy to show that these are indeed meaning preserving. Notice, though,
that is computationally expensive to translate between the non-strict until
and strict until (using �) as there may be an exponential blow-up in formula
length.

In some earlier presentations of PTL, the de�nitions of the concepts of
satisfaction and satis�ability are di�erent from ours. In typical PTL ap-
plications, it makes sense to concentrate almost exclusively on the truth of
formulas in structures when evaluated at time 0. Thus we might say that
structure (N ; <; h) satis�es A i� (N ; <; h); 0 j= A. Other presentations de-
�ne satisfaction by saying (N ; <; h) satis�es A i� for all n, (N ; <; h); n j= A.
Recall that in this chapter we actually say that (N ; <; h) satis�es A i� there
is some n such that (N ; <; h); n j= A. In general it is said that a formula A
is satis�able i� there is some structure which satis�es A (whatever notion
of satisfaction is used). We will not explore the subtle details of what is
sometimes known as the anchored versus oating version of temporal log-
ics, except to say that no diÆcult or important issues of expressiveness or
axiomatization etc, are raised by these di�erences. See [Manna and Pnueli,
1988] for more on this.
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Given the equivalence of PTL and the temporal logic with U over natural
numbers time and our separation result for the L(U; S) logic over the natural
numbers, it is easy to see why S (and any other past connective) is not
needed. Suppose that we want to check the truth of a formula A in the
L(U; S) language at time 0 in a structure T = (N ; <; h). If we separate
A into a Boolean combination of syntactically pure formulas we will see
that, for each of the pure past formulas C, either C evaluates at time 0 to
true in every structure or C evaluates at time 0 to false in every structure.
Thus, we can e�ectively �nd some formula B in the language with U such
that evaluating A at time 0 is equivalent to evaluating B at time 0. We
know that B is equivalent to some formula of PTL which we can also �nd
e�ectively. Thus adding S adds no expressiveness to PTL (in this speci�c
sense). However, some of the steps in eliminating S may be time-consuming
and it may be natural to express some useful properties with S. Thus there
are motivations for introducing past-time connectives into PTL. This is the
idea seen in [Lichtenstein et al., 1985].

7.2 An axiomatization of PTL

We could axiomatize PTL using either the IRR rule or the techniques of
[Reynolds, 1992]. However, the �rst axiomatization for PTL, given in [Gab-
bay et al., 1980], uses a di�erent approach with an interesting use of some-
thing like the computing concept of fairness. The axioms and proof in [Gab-
bay et al., 1980] were actually given for a strict version of the logic but, as
noted in [Gabbay et al., 1980], it is easy to modify it for the non-strict
version, what has now become the oÆcial PTL.

The inference rules are modus ponens and generalization,

A;A! B

B

A

GnsA
:

The axioms are all substitution instances of the following:

(1) all classical tautologies,

(2) Gns(A! B) ! (GnsA! GnsB)

(3) X:A! :XA

(4) X(A! B) ! (XA! XB)

(5) GnsA! A ^XGnsA

(6) Gns(A! XA) ! (A! GnsA)

(7) (AUnsB) ! FnsA

(8) (AUnsB) $ (B _ (A ^X(AUnsB)))

The straightforward induction on the lengths of proof gives us the sound-
ness result. The completeness result which is really a weak completeness
result | the logic is not compact | follows.
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THEOREM 95. If A is valid in PTL then ` A (A is a theorem of the axiom
system).

Proof. We give a sketch. The details are left to the reader: or see [Gabbay
et al., 1980] (but note the use of strict versions of connectives in that proof).
It is enough to show that if A is consistent then A is satis�able.

We use the common Henkin technique of forming a model of a consistent
formula in a modal logic out of the maximal consistent sets of formulae.
These are the in�nite sets of formulae which are each maximal in not con-
taining some �nite subsets whose conjunction is inconsistent. In our case
this model will not have the natural numbers ow of time but will be a more
general, not necessarily linear structure with a more general de�nition of
truth for the temporal connectives.

Let C contain all the maximally consistent sets of formulae. This is a non-
linear model of A with truth for the connectives de�ned via the following
(accessibility) relations: for each �;� 2 C, say �R+� i� fB j XB 2 �g � �
and �R<� i� fB j XGnsB 2 �g � �. For example, if we call this model
M then for each � 2 C, we de�ne M;� j= p i� p 2 � for any atom p and
M;� j= XB i� there is some � 2 C, such that �R+� and M;� j= B. The
truth of formulas of the form B1U

nsB2 is de�ned via paths through C in a
straightforward way.

The Lindenbaum technique shows us that there is some �0 2 C with
A 2 �0. Using this and the fact that R< is the transitive closure of R+, we
can indeed show that M;�0 j= A.

There is also a common technique for taking this model and factoring
out by an equivalence relation to form a �nite but also non-linear model.
This is the method of �ltration. See [Gabbay et al., 1994].

To do this in our logic, we �rst limit ourselves to a �nite set of interesting
formulae:

cl(A) = fB;:B;XB;X:B;FnsB;Fns:B j B is a subformula of Ag:

Now we de�ne C = f� \ cl(A)j� 2 Cg and we impose a relation RX on C
via aRXb i� there exist �;� 2 C such that a = �\ cl(A), b = �\ cl(A) and
�R+�.

To build natural numbers owed model of A we next �nd an !-sequence
� of sets from C starting at �0 \ cl(A) and proceeding via the RX relation
in such a way that if the set � appears in�nitely often in the sequence then
each of its RX -successors do too. This might be called a fair sequence. We
can turn � into a structure (N ; <; h) via i 2 h(p) i� p 2 �i (for all atoms
p). This is enough to give us a truth lemma by induction on all formulae
B 2 cl(A): namely, B 2 �i i� (N ; <; h); i j= B. Immediately we have
(N ; <; h); 0 j= A as required. �
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7.3 S1S and Fixed point languages

PTL is expressively complete in respect of formulas evaluated at time 0.
That is, for any �rst-order monadic formula �(P1; :::; Pn; x) in the language
with < with one free variable, there is a PTL formula A such that for any
structure (N ; <; h),

(N ; <; h); 0 j= A i� (N ; <) j= �(h(p1); :::; h(pn); 0):

To see this just use the expressive completeness of the L(U; S) logic over
natural numbers time, separation, the falsity of since at zero, and the trans-
lation to PTL.

However, there are natural properties which can not be expressed. For
example, there is no PTL formula which is true exactly at the even numbers
(see [Wolper, 1983] for details) and we can not say that property p holds at
each even-numbered time point. The reason for this lack of expressivity in
an expressively complete language is simply that there are natural properties
like evenness which can not be expressed in the �rst-order monadic theory
of the natural numbers.

For these reasons there have been many and varied attempts to increase
the expressiveness of temporal languages over the natural numbers. There
has also been a need to raise a new standard of expressiveness. Instead
of comparing languages to the �rst-order monadic theory of the natural
numbers, languages are compared to another traditional second-order logic,
the full second-order logic of one successor function, commonly known as
S1S.

There are several slightly di�erent ways of de�ning S1S. We can regard
it as an ordinary �rst-order logic interpreted in a structure which actually
consists of sets of natural numbers. The signature contains the 2-ary subset
relation � and a 2-ary ordering relation symbol succ. Subset is interpreted
in the natural way while succ(A;B) holds for sets A and B i� A = fng and
B = fn+ 1g for some number n. To deal with a temporal structure using
atoms from L we also allow the symbols in L as constant symbols in the
language: given an !-structure �, the interpretation of the atom p is just
the set of times at which p holds.

Consider the example of the formula

J(a; b; z)(b � z) ^ 8uv(succ(u; v) ^ (v � z) ^ (u � a) ! (u � z))

with constants a; b and z. This will be true of a natural numbers owed
temporal structure with atoms a; b and z i� at every time at which aUnsb
holds, we also have z holding.

In fact, it is straightforward to show that the language of S1S is exactly as
expressive as the full second-order monadic language of the natural number
order. Thus it is more expressive than the �rst-order monadic language.
A well-known and straightforward translation gives an S1S version of any
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temporal formula. We can translate any temporal formula � using atoms
from L into an S1S formula (��)(x) with a free variable x:

�p = (x = p)

�(:�) = :(��)

�(� ^ �) = �� ^ ��

�(X�) = 8y((��)(y) ! 8uv(succ(u; v) ^ (u � x) ! (v � y))

�(�Uns�) = 8ab((��)(a) ^ (��(b)) !

(J(a; b; x) ^ ((8y(J(a; b; y) ! (x � y))))

where J(a; b; z) = (b � z)

^8uv(succ(u; v) ^ (v � z) ^ (u � a) ! (u � z))

An easy induction (on the construction of �) shows that � j= (��)(S) i� S
is the set of times at which � holds.

In order to reach the expressiveness of S1S, temporal logics are often
given an extra second-order capability involving some kind of quanti�cation
over propositions. See, for example, ETL [Wolper, 1983] and the quanti�ed
logics in chapter 8 of [Gabbay et al., 1994]. One of the most computationally
convenient ways of adding quanti�cation is via the introduction of �xed-
point operators into the language. This has been done in [Bannieqbal and
Barringer, 1986] and in [Gabbay, 1989]. We briey look at the example of
USF from [Gabbay, 1989].

In chapter 8 of [Gabbay et al., 1994] it is established that S1S is exactly as
expressive as USF . In order to use the automata-based decision procedures
(which we meet in subsection 7.5 below) to give us decision procedures about
temporal logics we need only know that the temporal logic of interest is less
expressive than USF (or equivalently S1S) | as they mostly are. So it is
worth here briey recalling the de�nition of USF .

In fact we start with the very similar language UY F . We often write
�x; �a,. . . , for tuples | �nite sequences of variables, atoms, elements of a
structure, etc. If S � N , we write S + 1 (or 1 + S) for fs+ 1 j s 2 Sg.

We start by developing the syntax and semantics of the �xed point op-
erator. This is not entirely a trivial task. We will �x an in�nite set of
propositional atoms, with which our formulae will be written; we write
p; q; r; s; : : : for atoms.

DEFINITION 96.

1. The set of formulae of UYF is the smallest class closed under the
following:

(a) Any atom q is a formula of UYF, as is >.

(b) If A is a formula so is :A.
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(c) If A is a formula so is Y A. We read Y as `yesterday'.

(d) If A and B are formulae, so are A^B and U(A;B). ( A_B and
A! B are regarded as abbreviations.)

(e) Suppose that A is a formula such that every occurrence of the
atom q in A not within the scope of a 'q is within the scope of
a Y but not within the scope of a U . Then 'qA is a formula.
(The conditions ensure that 'qA has �xed point semantics.)

2. The depth of nesting of 's in a formula A is de�ned by induction on
its formation: formulae formed by clause (a) have depth 0, clause (e)
adds 1 to the depth of nesting, clauses (b) and (c) leave it unchanged,
and in clause (d), the depth of nesting of U(A;B) and A ^ B is the
maximum of the depths of nesting of A and B. So, for example,
:'r(:Y r ^ 'qY (q ! r)) has depth of nesting of 2.

3. A UYF-formula is said to be a YF-formula if it does not involve U .

4. Let A be a formula and q an atom. A bound occurrence of q in A is
one in a subformula of A of the form 'qB. All other occurrences of
q in A are said to be free. An occurrence of q in A is said to be pure
past in A if it is in a subformula of A of the form Y B but not in a
subformula of the form U(B;C). So 'qA is well-formed if and only if
all free occurrences of q in A are pure past.

An assignment is a map h providing a subset h(q) of N for each atom
q. If h; h0 are assignments, and �q a tuple of atoms, we write h =�q h

0 if
h(r) = h0(r) for all atoms r not occurring in �q. If S � N and q is an atom,
we write hq=S for the unique assignment h0 satisfying: h0 =q h, h0(q) = S.

For each assignment h and formula A of UYF we will de�ne a subset
h(A) of N , the interpretation of A in N . Intuitively, h(A) = fn 2 N j A
is true at n under hg = fn 2 N j (N ; <; h); n j= Ag. We will ensure that,
whenever 'qA is well-formed,

(�) h('qA) is the unique S � N such that S = hq=S(A).

DEFINITION 97. We de�ne the semantics of UYF by induction. Let h be
an assignment. If A is atomic then h(A) is already de�ned. We set:

� h(>) = N .

� h(:A) = N n h(A).

� h(Y A) = h(A) + 1.

� h(A ^ B) = h(A) \ h(B).

� h(U(A;B)) = fn 2 N j 9m > n(m 2 h(A) ^ 8m0(n < m0 < m! m0 2
h(B)))g.
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� Finally, if 'qA is well-formed we de�ne h('qA) as follows. First de�ne
assignments hn (n 2 N ) by induction: h0 = h; hn+1 = (hn)q=hn(A).

Then h('qA)
def
= fn 2 N j n 2 hn(A)g = fn 2 N j n 2 hn+1(q)g:

To establish (�) we need a theorem.

THEOREM 98 (�xed point theorem).

1. Suppose that A is any UYF-formula and 'qA is well formed. Then if
h is any assignment, there is a unique subset S = h('qA) of N such
that S = hq=S(A). Thus, regarding S 7! hq=S(A) as a map � : }(N ) !
}(N ) (depending on h;A), � has a unique �xed point S � N , and we
have S = h('qA). For any h, h(A) = h(q) () h('qA) = h(q).

2. If q has no free occurrence in a formula A and g =q h, then g(A) =
h(A).

3. If 'qA is well-formed and r is an atom not occurring in A, then for
all assignments h, h('qA) = h('rA(q=r)), where A(q=r) denotes sub-
stitution by r for all free occurrences of q in A.

We de�ne USF using the �rst-order connectives Until and Since as well
as the �xed point operator. The logic UYF is just as expressive as USF:
Y q is de�nable in USF by the formula S(q;?), while S(p; q) is de�nable
in UYF by 'rY (p _ (q ^ r)). Using UYF allows easier proofs and stronger
results.

As an example, consider the formula

A = 'q(:Y q):

It is easy to see that A holds in a structure i� q holds exactly at the even
numbered times.

7.4 Decision Procedures

There are many uses for PTL (and extensions such as USF) in describing
and verifying systems. Once again, an important task required in many of
these applications is determining the validity (or equivalently satis�ability)
of formulas. Because it is a widely-used logic and because the natural
numbers a�ord a wide-variety of techniques of analysis, there are several
quite di�erent ways of approaching decision procedures here. The main
avenues are via �nite model properties, tableaux, automata and resolution
techniques.

The �rst proof of the decidability of PTL was based on automata. The
pioneer in the development of automata for use with in�nite linear structures
is B�uchi in [1962]. He was interested in proving the decidability of S1S as
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a very restricted version of second-order arithmetic. We will look at his
proof briey in subsection 7.5 below. By the time that temporal logic was
being introduced to computer scientists in [Pnueli, 1977], it was well known
(via [Kamp, 1968b]) that temporal logic formulae can be expressed in the
appropriate second-order logic and so via S1S we had the �rst decision
procedure for PTL (and USF).

Unfortunately, deciding S1S is non-elementarily complex (see [Robert-
son, 1974]) and so this is not an eÆcient way to decide PTL. Tableaux
[Wolper, 1983; Lichtenstein et al., 1985; Emerson, 1990], resolution [Fisher,
1997] and automata approaches (which we meet in subsection 7.5 below)
can be much more eÆcient.

The �rst PSPACE algorithm for deciding PTL was given in [Sistla and
Clarke, 1985]. This result uses a �nite model property. We show that if a
PTL formula A of length n is satis�able over the natural numbers then it is
also satis�able in a non-linear model of size bounded by a certain exponential
in n. The model has a linear part followed by a loop. It is a straightforward
matter to guess the truths of atoms at the states on this structure and then
check the truth of the formula. the guessing and checking can be done \on
the y", i.e. simultaneously as we move along the structure in such a way
that we do not need to store the whole structure. So we have an NPSPACE
algorithm which by the well-known result in [Savitch, 1970] can give us a
PSPACE one.

In [Sistla and Clarke, 1985] it was also shown that deciding PTL is
PSPACE-hard. This is done by encoding the running of any polynomial
space bounded Turing machine into the logic.

For complexities of deciding the logic with strict U and the USF version
see chapter 15 of [Gabbay et al., 1994]. They are both PSPACE-complete.
The same �nite model property ideas are used.

7.5 Automata

Automata are �nite state machines which are very promising objects to help
with deciding the validity of temporal formulae. In some senses they are
like formulae: they are �nite objects and they distinguish some temporal
structures{the ones which they accept{ from other temporal structures in
much the same way that formulae are true (at some point) in some struc-
tures are not in others. In other senses automata are like structures: they
contain states and relate each state with some successor states. Being thus
mid-way between formulae and structures allows automata to be used to an-
swer questions{such as validity{ about the relation between formulae and
structures.

An automaton is called empty i� it accepts no structures and it turns
out to be relatively easy to decide whether a given automaton is empty or
not. This is surprising because empty automata can look quite complicated
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in much the same way as unsatis�able formulae can. This fact immedi-
ately suggests a possible decision procedure for temporal formulae. Given
a formula we might be able to �nd an automaton which accepts exactly the
structures which are models of the formula. If we now test the automaton
for emptiness then we are e�ectively testing the formula for unsatis�ability.
Validity of a formula corresponds to emptiness of an automaton equivalent
to the negation of the formula.

This is the essence of the incredibly productive automata approach to
theorem proving. We only look in detail at the case of PTL on natural
numbers time.

The idea of (�nite state) automata developed from pioneering attempts
by Turing to formalize computation and by Kleene [1956] to model human
psychology. The early work (see, for example, [Rabin and Scott, 1959]) was
on �nite state machines which recognized �nite words. Such automata have
provided a formal basis for many applications from text processing and biol-
ogy to the analysis of concurrency. There has also been much mathematical
development of the �eld. See [Perrin, 1990] for a survey.

The pioneer in the development of automata for use with in�nite linear
structures is B�uchi in [1962] in proving the decidability of S1S. This gives
one albeit ineÆcient decision procedure for PTL. There are now several
useful ways of using the automata stepping stone for deciding the validity
of PTL formulae.

The general idea is to translate the temporal formula into an automaton
which accepts exactly the models of the formula and then to check for
emptiness of the automaton. Variations arise when we consider that there
are several di�erent types of automata which we could use and that the
translation from the formula can be done in a variety of ways.

Let us look at the automata �rst. For historical reasons we will switch
now to a language � of letters rather than keep using a language of propo-
sitional atoms. The nodes of trees will be labelled by a single letter from �.
In order to apply the results in this section we will later have to take the
alphabet � to be 2P where P is the set of atomic propositions.

A � (linear) B�uchi automaton is a 4-tuple A = (S; T; S0; F ) where

� S is a �nite non-empty set called the set of states,

� T � S ��� S is the transition table,

� S0 � S is the initial state set and

� F � S is the set of accepting states.

A run of A on an !-structure � is a sequence of states hs0; s1; s2; :::i from
S such that s0 2 S0 and for each i < !, (si; �i; si+1) 2 T . We assume that
automata never grind to a halt: i.e. we assume that for all s 2 S, for all
a 2 �, there is some s0 2 S such that (s; a; s0) 2 T .
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We say that the automaton accepts � i� there is a run hs0; s1; :::i such
that si 2 F for in�nitely many i.

One of the most useful results about B�uchi automata, is that we can
complement them. That is given a B�uchi automata A reading from the
language � we can always �nd another � B�uchi automata A which accepts
exactly the !-sequences which A rejects. This was �rst shown by B�uchi in
[1962] and was an important step on the way to his proof of the decidability
of S1S. The automaton A produced by B�uchi's method is double exponen-
tial in the size of A but more recent work in [Sistla et al., 1987] shows that
complementation of B�uchi automata can always be singly exponential.

As we will see below, it is easy to complement an automaton if we can �nd
a deterministic equivalent. This means an automaton with a unique initial
state and a transition table T � S���S which satis�es the property that
for all s 2 S, for all a 2 �, there is a unique s0 2 S such that (s; a; s0) 2 T .
A deterministic automaton will have a unique run on any given structure.

Two automata are equivalent i� they accept exactly the same structures.
The problem with B�uchi automata is that it is not always possible to

�nd a deterministic equivalent. A very short argument, see example 4.2 in
[Thomas, 1990], shows that the non-deterministic fa; bg automaton which
recognizes exactly the set

L = f�ja appears only a �nite number of times in �g

can have no deterministic equivalent.
One of our important tasks is to decide whether a given automaton is

empty i.e. accepts no !-structures. For B�uchi automata this can be done
in linear time [Emerson and Lei, 1985] and co-NLOGSPACE [Vardi and
Wolper, 1994].

The lack of a determinization result for B�uchi automata led to a search for
a class of automata which is as expressive as the class of B�uchi automata but
which is closed under �nding deterministic equivalents. Muller automata
were introduced by Muller in [Muller, 1963] and in [Rabin, 1972] variants,
now called Rabin automata, were introduced.

The di�erence is that the accepting condition can require that certain
states do not come up in�nitely often. There are several equivalent ways
of formalizing this. The Rabin method is, for a �-automata with state set
S, to use a set F , called the set of accepting pairs, of pairs of sets of states
from S, i.e. F � }(S)� }(S).

We say that the Rabin automaton A = (S; S0; T;F) accepts � i� there
is some run hs0; s1; s2; :::i (as de�ned for B�uchi automata) and some pair
(U; V ) 2 F such that no state in V is visited in�nitely often but there is
some state in U visited in�nitely often.

In fact, Rabin automata add no expressive power compared to B�uchi
automata, i.e. for every Rabin automaton there is an equivalent B�uchi
automaton. The translation [Choueka, 1974] is straightforward and, as it
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essentially just involves two copies of the Rabin automata in series with a
once-only non-deterministic transition from the �rst to the second, it can
be done in polynomial time. The converse equivalence is obvious.

The most important property of the class of Rabin automata is that
it is closed under determinization. In [1966], McNaughton, showed that
any B�uchi automaton has a deterministic Rabin equivalent. There are use-
ful accounts of McNaughton's theorem in [Thomas, 1990] and [Hodkinson,
200]. McNaughton's construction is doubly exponential. It follows from Mc-
Naughton's result that we can �nd a deterministic equivalent of any Rabin
automaton: simply �rst �nd a B�uchi equivalent and then use the theorem.

The determinization result gives us an easy complementation result for
Rabin automata: given a Rabin automata we can without loss of generality
assume it is deterministic and complementing a deterministic automaton is
just a straightforward negation of the acceptance criteria.

To decide whether Rabin automata are empty can be done with almost
the same procedure we used for B�uchi case. Alternatively, one can deter-
minize the automaton A, and translate the deterministic equivalent into
a deterministic Rabin automaton A0 recognizing !-sequences from the one
symbol alphabet fa0g such that A0 accepts some sequence i� A does. It is
very easy to tell if A0 is empty.

Translating formulae into Automata

The �rst step in using automata to decide a temporal formula is to translate
the temporal formula into an equivalent automata: i.e. one that accepts
exactly the models of the formula. There are direct ways of making this
translation, e.g., in [Sherman et al., 1984] (via a nonelementarily complex
procedure). However, it is easier to understand some of the methods which
use a stepping stone in the translation: S1S.

We have seen that the translation from PTL into S1S is easy. The
translation of S1S into an automaton is also easy, given McNaughton's
result: it is via a simple induction. Suppose that the S1S sentence uses
constants from the �nite set P . We proceed by induction on the construction
of the sentence The automaton for p � q simply keeps checking that p! q
is true of the current state and falls into a fail state sink if not. The other
base cases, of p = q and succ(p; q) are just as easy. Conjunction requires a
standard construction of conjoining automata using the product of the state
sets. Negation can be done using McNaughton's result to determinize the
automaton for the negated subformula. It is easy to �nd the complement of
a deterministic automaton. The case of an existential quanti�cation, e.g.,
9y�(y), is done by simply using non-determinism to guess the truth of the
quanti�ed variable at each step.

Putting together the results above gives us several alternative approaches
to deciding validity of PTL formulae. One route is to translate the formula
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into S1S, translate the S1S formula into a B�uchi automaton as above and
then check whether that is empty.

The quickest route is via the alternating automata idea of [Brzozowski
and Leiss, 1980] | a clever variation on the automata idea. By translating a
formula into one of these automata, and then using a guess and check on the
y procedure, we need only check a polynomial number of states (in the size
of �) and then (nondeterministically) move on to another such small group
of states. This gives us a PSPACE algorithm. From the results of [Sistla
and Clarke, 1985], we know this is best possible as a decision procedure.

Other Uses of Automata

The decision algorithm above using the translation into the language S1S
can be readily extended to allow for past operators or �xed point operators
or both to appear in the language. This is because formulae using these
operators can be expressed in S1S.

Automata do not seem well suited to reasoning about dense time or
general linear orders. However, the same strategy as we used for PTL also
works for the decidability of branching time logics such as CTL*. The only
di�erence is that we must use tree automata. These were invented by Rabin
in his powerful results showing the decidability of S2S, the second-order
logic of two successors. See [Gurevich, 1985] for a nice introduction.

8 EXECUTABLE TEMPORAL LOGIC

Here we describe a useful paradigm in executable logic: that of the declar-
ative past and imperative future. A future statement of temporal logic can
be understood in two ways: the declarative way, that of describing the fu-
ture as a temporal extension; and the imperative way, that of making sure
that the future will happen the way we want. Since the future has not yet
happened, we have a language which can be both declarative and imper-
ative. We regard our theme as a natural meeting between the imperative
and declarative paradigms.

More speci�cally, we describe a temporal logic with Since, Until and �xed
point operators. The logic is based on the natural numbers as the ow of
time and can be used for the speci�cation and control of process behaviour
in time. A speci�cation formula of this logic can be automatically rewritten
into an executable form. In an executable form it can be used as a program
for controlling process behaviour. The executable form has the structure `If
A holds in the past then do B'. This structure shows that declarative and
imperative programming can be integrated in a natural way.

Let E be an environment in which a program P is operating. The exact
nature of the environment or the code and language of the program are not
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immediately relevant for our purposes. Suppose we make periodic checks at
time t0; t1; t2; t3; : : : on what is going on in the environment and what the
program is doing. These checks could be made after every unit execution of
the program or at some key times. The time is not important to our discus-
sion. What is important is that we check at each time the truth values of
some propositions describing features of the environment and the program.
We shall denote these propositions by a1; : : : ; am; b1; : : : ; bk. These proposi-
tions, which we regard as units taking truth values > (true) or ? (false) at
every checkpoint, need not be expressible in the language of the program P ,
nor in the language used to describe the environment. The program may,
however, in its course of execution, change the truth values of some of the
propositions. Other propositions may be controlled only by the environ-
ment. Thus we assume that a1; : : : ; am are capable of being inuenced by
the program while b1; : : : ; bk are inuenced by the environment. We also
assume that when at checktime tn we want the program to be executed in
such a way as to make the proposition ai true, then it is possible to do so.
We express this command by writing exec (ai). For example, a1 can be
`print the screen' and b1 can be `there is a read request from outside'; a1
can be controlled by the program while b1 cannot. exec (a1) will make a1
true.

To illustrate our idea further, we take one temporal sentence of the form

G[ va) Xb]:(1)

v is the `yesterday' operator, X is the `tomorrow' operator, and G is the
`always in the future' operator. One can view (1) as a w� of temporal
logic which can be either true or false in a temporal model. One can use a
temporal axiom system to check whether it is a temporal theorem etc. In
other words, we treat it as a formula of logic.

There is another way of looking at it. Suppose we are at time n. In
a real ticking forward temporal system, time n + 1 (assume that time is
measured in days) has not happened yet. We can �nd the truth value ofva by checking the past. We do not know yet the value of Xb because
tomorrow has not yet come. Checking the truth value of va is a declarative
reading of va. However, we need not read Xb declaratively. We do not
need to wait and see what happens to b tomorrow. Since tomorrow has not
yet come, we can make b true tomorrow if we want to, and are able to. We
are thus reading Xb imperatively: `make b true tomorrow'.

If we are committed to maintaining the truth of the speci�cation (1)
throughout time, then we can read (1) as: `at any time t, if va holds then
execute Xb', or schematically, `if declarative past then imperative future'.
This is no di�erent from the Pascal statement

if x<5 then x:=x+1

In our case we involve whole formulae of logic.
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The above is our basic theme. This section makes it more precise. The
rest of this introduction sets the scene for it, and the conclusion will describe
existing implementations. Let us now give several examples:

EXAMPLE 99 (Simpli�ed Payroll). Mrs Smith is running a babysitter ser-
vice. She has a list of reliable teenagers who can take on a babysitting job.
A customer interested in a babysitter would call Mrs Smith and give the
date on which the babysitter is needed. Mrs Smith calls a teenager em-
ployee of hers and arranges for the job. She may need to call several of her
teenagers until she �nds one who accepts. The customer pays Mrs Smith
and Mrs Smith pays the teenager. The rate is $10 per night unless the job
requires overtime (after midnight) in which case it jumps to $15.

Mrs Smith uses a program to handle her business. The predicates in-
volved are the following:

A(x) x is asked to babysit

B(x) x does a babysitting job

M(x) x works after midnight

P (x; y) x is paid y pounds .

In this set-up, B(x) and M(x) are controlled mainly by the environment
and A(x) and P (x; y) are controlled by the program.

We get a temporal model by recording the history of what happens with
the above predicates. Mrs Smith laid out the following (partial) speci�ca-
tion:

1. Babysitters are not allowed to take jobs three nights in a row, or two
nights in a row if the �rst night involved overtime.

2. Priority in calling is given to babysitters who were not called before
as many times as others.

3. Payment should be made the next day after a job is done.

Figure 9 is an example of a partial model of what has happened to a babysit-
ter called Janet. This model may or may not satisfy the speci�cation.

We would like to be able to write down the speci�cation in an intuitive
temporal language (or even English) and have it automatically transformed
into an executable program, telling us what to do day by day.

EXAMPLE 100 (J. Darlington, L. While [1987]). Consider a simple pro-
gram P , written in a rewrite language, to merge two queues. There are two
merge rules:

R1 Merge(a:x, y) = a:merge(x,y);

R2 Merge(x,a:y) = a:merge(x,y).
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A(J); B(J);:M(J)1

A(J); B(J);M(J)2

A(J); B(J);M(J)3

:A(J); B(J);:M(J)4

A(J); B(J);M(J)5

A(J); B(J);M(J)6

:A(J);:B(J);:M(J)7

Figure 9. A model for Janet.

That is, we have left or right merges. The environment E with which P
interacts consists of the two queues x and y which get bigger and bigger
over time. A real-life example is a policeman merging two queues of traÆc.
We use t0; t1; t2; : : : as checktimes. The propositions we are interested in
are:

A1 The program uses the R1 merge rule (left merge).

A2 The program uses the R2 merge rule (right merge).

B The left queue is longer than the right queue.

Notice that the proposition B is not under the complete control of the
program. The environment supplies the queuing elements, though the merge
process does take elements out of the queue. The propositions A1 and A2

can be made true by the program, though not in the framework of the
rewrite language, since the evaluation is non-deterministic. The program
may be modi�ed (or annotated) to a program P1 which controls the choice
of the merge rules. In the general case, for other possible programs and
other possible languages, this may not be natural or even possible to do.
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EXAMPLE 101 (Loop checking in Prolog). Imagine a Prolog program P
and imagine predicates A1; : : : ; Am describing at each step of execution
which rule is used and what is the current goal and other relevant data.
Let B describe the history of the computation. This can be a list of states
de�ned recursively. The loop checking can be done by ensuring that certain
temporal properties hold throughout the computation. We can de�ne in this
set-up any loop-checking system we desire and change it during execution.

In the above examples, the propositions Ai; Bj change the truth value
at each checktime tk. We thus obtain a natural temporal model for these
propositions (see Fig. 10).

...
3 a1 = ? b2 = >

2 a1 = ? b2 = >

1 a1 = > b2 = >

0 a1 = > b2 = ?

Figure 10. An example temporal model.

In the above set-up the programmer is interested in inuencing the exe-
cution of the program within the non-deterministic options available in the
programming language. For example, in the merge case one may want to
say that if the left queue is longer than the right queue then use the left
merge next. In symbols

G[B ) XA1]:

In the Prolog case, we may want to specify what the program should do in
case of loops, i.e.

G[C ^ PC ) D];

where C is a complex proposition describing the state of the environment
of interest to us (P is the `in the past' operator). C ^ PC indicate a loop
and D says what is to be done. The controls may be very complex and can
be made dependent on the data and to change as we go along.

Of course in many cases our additional controls of the execution of P
may be synthesized and annotated in P to form a new program P�. There
are several reasons why the programmer may not want to do that:

1. The programming language may be such that it is impossible or not
natural to synthesize the control in the program. We may lose in
clarity and structure.
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2. Changes in the control structure may be expensive once the program
P� is de�ned and compiled.

3. It may be impossible to switch controlling features on and o� during
execution, i.e. have the control itself respond to the way the execution
ows.

4. A properly de�ned temporal control module may be applicable as a
package to many programming languages. It can give both practical
and theoretical advantages.

In this section we follow option 4 above and develop an executable temporal
logic for interactive systems. The reader will see that we are developing a
logic here that on the one hand can be used for speci�cation (of what we
want the program to do) and on the other hand can be used for execution.
(How to pass from the speci�cation to the executable part requires some
mathematical theorems.) Since logically the two formulations are equiva-
lent, we will be able to use logic and proof theory to prove correctness.

This is what we have in mind:

1. We use a temporal language to specify the desirable behaviour of
fai; bjg over time. Let S be the speci�cation as expressed in the
temporal language (e.g. G[b2 ) Xa1]).

2. We rewrite automatically S into E , E being an executable temporal
module. The program P can communicate with E at each checktime
ti and get instructions on what to do.

We have to prove that:

� if P follows the instructions of E then any execution sequence satis�es
S, i.e. the resulting temporal model for fai; bjg satis�es the temporal
formula S;

� any execution sequence satisfying S is non-deterministically realizable
using P and E .

The proofs are tough!
Note that our discussion also applies to the case of shared resources.

Given a resource to be shared by several processes, the temporal language
can specify how to handle concurrent demands by more than one process.
This point of view is dual to the previous one. Thus in the merge example,
we can view the merge program as a black box which accepts items from two
processes (queues), and the speci�cation organizes how the box (program)
is to handle that merge. We shall further observe that since the temporal
language can serve as a metalanguage for the program P (controlling its
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execution), P can be completely subsumed in E . Thus the temporal lan-
guage itself can be used as an imperative language (E) with an equivalent
speci�cation element S. Ordinary Horn logic programming can be obtained
as a special case of the above.

We can already see the importance of our logic from the following point of
view. There are two competing approaches to programming:the declarative
one as symbolized in logic programming and Prolog, and the imperative
one as symbolized in many well-known languages. There are advantages to
each approach and at �rst impression there seems to be a genuine conict
between the two. The executable temporal logic described in this section
shows that these two approaches can truly complement each other in a
natural way.

We start with a declarative speci�cation S, which is a formula of temporal
logic. S is transformed into an executable form which is a conjunction of
expressions of the form

hold C in the past ) execute B now.

At any moment of time, the past is given to us as a database; thus hold(C)
can be evaluated as a goal from this database in a Prolog program.
execute(B) can be performed imperatively. This creates more data for
the database, as the present becomes past. Imperative languages have a lit-
tle of this feature, e.g. if x<5 let x:=x+1. Here hold(C) equates to x<5
and execute(B) equates to x:=x+1. The x<5 is a very restricted form
of a declarative test. On the other hand Prolog itself allows for imperative
statements. Prolog clauses can have the form

write(Term) ) b

and the goal write(Term) is satis�ed by printing. In fact, one can accom-
plish a string of imperative commands just by stringing goals together in a
clever way.

We thus see our temporal language as a pointer in the direction of unifying
in a logical way the declarative and imperative approaches. The temporal
language can be used for planning. If we want to achieveB we try to execute
B. The temporal logic will give several ways of satisfying execute(B) while
hold(C) remains true. Any such successful way of executing B is a plan.
In logical terms we are looking for a model for our atoms but since we
are dealing with a temporal model and the atoms can have an imperative
meaning we get a plan. We will try and investigate these points further.

8.1 The logic USF

We describe a temporal system for speci�cation and execution. The logic
is USF which we met briey in section 6 above. It contains the temporal



180 M. FINGER, D. GABBAY AND M. REYNOLDS

connectives since(S) and until(U) together with a �xed point operator '.
The formulae of USF are used for specifying temporal behaviour and these
formulae will be syntactically transformed into an executable form. We
begin with the de�nitions of the syntax of USF. There will be four types
of well-formed formulae, pure future formulae (talking only about the strict
future), pure past formulae (talking only about the strict past), pure present
formulae (talking only about the present) and mixed formulae (talking about
the entire ow of time).

DEFINITION 102 (Syntax of USF for the propositional case). Let Q be a
suÆciently large set of atoms (atomic propositions). Let ^;_;:;);>;? be
the usual classical connectives and let U and S be the temporal connectives
and ' be the �xed point operator. We de�ne by induction the notions of

wff (well-formed formula);

wff+ (pure future w�);

wff� (pure past w�);

wff0 (pure present w�).

1. An atomic q 2 Q is a pure present w� and a w�. Its atoms are q.

2. Assume A and B are w�s with atoms fq1; : : : ; qng and fr1; : : : ; rmg
respectively. Then A ^ B, A _ B, A ) B, U(A;B) and S(A;B) are
w�s with atoms fq1; : : : ; qn; r1; : : : ; rmg.

(a) If both A and B are in wff0 [wff+, then U(A;B) is in wff+.

(b) If both A and B are in wff0 [wff�, then S(A;B) is in wff�.

(c) If both A and B are in wff�, then so are A^B, A_B, A) B,
where wff� is one of wff+, wff� or wff0.

3. :A is also a w� and it is of the same type as A with the same atoms
as A.

4. > (truth) and ? (falsity) are w�s in wff0 with no atoms.

5. If A is a w� in wff� (pure past) with atoms fq; q1; : : : ; qng then ('q)A
is a pure past w� (i.e. in wff�) with the atoms fq1; : : : ; qng.

The intended model for the above propositional temporal language is the
set of natural numbers N = 0; 1; 2; 3; : : : with the `smaller than' relation <
and variables P;Q � N ranging over subsets. We allow quanti�cation 8x9y
over elements of N . So really we are dealing with the monadic language
of the model (N ; <;=; 0; Pi; Qj � N ). We refer to this model also as the
non-negative integers (ow of) time. A formula of the monadic language
will in general have free set variables, and these correspond to the atoms of
temporal formulae. See Volume 1 for more details.
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DEFINITION 103 (Syntax of USF for the predicate case). Let Q� = fQ1
n1 ;

Q2
n2 ; : : :g be a set of predicate symbols. Qini is a symbol for an ni-place

predicate. Let f� = ff1n1 ; f
2
n2 ; : : :g be a set of function symbols. f ini is a

function symbol for an ni-place function. Let V � = fv1; v2; : : :g be a set of
variables. Let ^, _, :, ), >, ?, 8, 9 be the usual classical connectives and
quanti�ers and let U and S be the temporal connectives and ' be the �xed
point operator. We de�ne by induction the notions of:

wfffx1; : : : ; xng w� with free variables fx1; : : : ; xng;

wff+fx1; : : : ; xng pure future w� with the indicated free variables;

wff�fx1; : : : ; xng pure past w� with the indicated free variables;

wff0fx1; : : : ; xng pure present w� with the indicated free variables;

term fx1; : : : ; xng term with the indicated free variables.

1. x is a term in term fxg, where x is a variable.

2. If f is an n-place function symbol and t1; : : : ; tn are terms with vari-
ables V �

1 ; : : : ; V
�
n � V � respectively, then f(t1; : : : ; tn) is a term with

variables
Sn
i=1 V

�
i .

3. If Q is an n-place atomic predicate symbol and we have t1; : : : ; tn as
terms with variables V �

1 ; : : : ; V
�
n � V � respectively, then Q(t1; : : : ; tn)

is an atomic formula with free variables,
Sn
i=1 V

�
i . This formula is

pure present as well as a w�.

4. Assume A, B are formulae with free variables fx1; : : : ; xng and fy1; : : : ;
ymg respectively. Then A ^ B, A _ B, A ) B, U(A;B) and S(A;B)
are w�s with the free variables fx1; : : : ; xn; y1; : : : ; ymg.

(a) If both A and B are in wff0 [wff+, then U(A;B) is in wff+.

(b) If both A and B are in wff0 [wff�, then S(A;B) is in wff�.

(c) If both A and B are in wff�, then so are A^B, A_B, A) B,
where wff� is one of wff+, wff� or wff0.

5. :A is also a w� and it is of the same type and has the same free
variables as A.

6. > and ? are in wff0 with no free variables.

7. If A is a formula in wff�fx; y1; : : : ; ymg then 8xA and 9xA are w�s
in wff�fy1; : : : ; ymg.

8. If ('q)A(q; q1; : : : ; qn) is a pure past formula of propositional USF as
de�ned in De�nition 102, and if Bi 2 wff V �

i ; i = 1; : : : ;m, as de�ned
in the present De�nition 103, then A0 = ('q)A(q; B1; : : : ; Bm) is a w�
in wff

Sm
i=1 V

�
i . If all of the Bi are pure past, then so is A0.
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9. A w� A is said to be essentially propositional i� there exists a w�
B(q1; : : : ; qn) of propositional USF and w�s B1; : : : ; Bn of classical
predicate logic such that A = B(B1; : : : ; Bn).

REMARK 104. Notice that the �xed point operator ('x) is used in propo-
sitional USF to de�ne the new connectives, and after it is de�ned it is
exported to the predicate USF. We can de�ne a language HTL which will
allow �xed-point operations on predicates as well; we will not discuss this
here.

DEFINITION 105. We de�ne the semantic interpretation of propositional
USF in the monadic theory of (N ; <;=; 0). An assignment h is a function
associating with each atom qi of USF a subset h(qi) of N (sometimes denoted
by Qi). h can be extended to any w� of USF as follows:

h(A ^ B) = h(A) \ h(B);

h(A _ B) = h(A) [ h(B);

h(:A) = N � h(A);

h(A) B) = (N � h(A)) [ h(B);

h(U(A;B)) = ftj9s > t(s 2 h(A) and 8y(t < y < s) y 2 h(B)))g;

h(S(A;B)) = ftj9s < t(s 2 h(A) and 8y(s < y < t) y 2 h(B)))g:

The meaning of U and S just de�ned is the Until and Since of English, i.e.
`B is true until A becomes true' and `B is true since A was true', as in
Fig. 11 (notice the existential meaning in Uand S).

Finally we have the �xed point operator

h(('q)A(q; qi)) = fnjn 2 Qng

where the sets Qn � N are de�ned inductively by

Q0 = h(A)

Q(n+1) = hn(A(q; qi))

where for n � 0

hn(r) = h(r) for r 6= q

Qn for r = q:

This is an inductive de�nition. If n is a natural number, we assume in-
ductively that we know the truth values of the formula ('q)A(q; qi) at each
m < n; then we obtain its value at n by �rst changing the assignment so
that q has the same values as ('q)A for all m < n, and then taking the new
value of A(q; qi) at n. Since A is pure past, the values of q at m � n do not
matter. Hence the de�nition is sound. So ('q)A is de�ned in terms of its
own previous values.
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S(A;B)

-�

A

B ts

st B

AU(A;B)

� -

Figure 11.

This gives a �xed point semantics to formulae ('q)A(q; qi), in the follow-
ing sense. Suppose we have an assignment h. For any subset S of N , let hS
be the assignment given by hS(r) = h(r) if r 6= q, and S if r = q. Then given
A as above, we obtain a function f : }N ) }N , given by f(S) = hS(A). f
depends on h and A.

It is intuitively clear from the above that if S = h(('q)A) then f(S) = S,
and that S is the unique solution of f(x) = x. So h(('q)A) is the unique
�xed point of f . This is what we mean when we say that ' has a �xed
point semantics. There are some details to be checked, in particular that
the value at n of any past formula (even a complicated one involving ')
depends only on the values of its atoms at each m < n. For a full proof
see [Hodkinson, 1989].

DEFINITION 106 (Semantic de�nition of predicate USF). Let D be a non-
empty set, called the domain, and g be a function assigning the following:

1. for each m-place function symbol f and each n 2 N a function g(n; f) :
Dm ) D;

2. for each variable x and each n 2 N , an element g(n; x) 2 D;

3. for each m-place predicate symbol Q and each n 2 N , a function
g(n;Q) : Dm ) f0; 1g.
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The function g can be extended to a function g(n;A), giving a value in
f0; 1g for each w� A(x1; : : : ; xn) of the predicate USF as follows:

1. g(n; f(t1; : : : ; tm)) = g(n; f)(g(n; t1); : : : ; g(n; tm));

2. g(n;Q(t1; : : : ; tm)) = g(n;Q)(g(n; t1); : : : ; g(n; tm));

3. g(n;A ^ B) = 1 i� g(n;A) = 1 and g(n;B) = 1;

4. g(n;A _ B) = 1 i� either g(n;A) = 1 or g(n;B) = 1 or both;

5. g(n;A) B) = 1 i� either g(n;A) = 0 or g(n;B) = 1 or both;

6. g(n;:A) = 1 i� g(n;A) = 0;

7. g(n;>) = 1 and g(n;?) = 0 for all n;

8. g(n;U(A;B)) = 1 i� for some m > n; g(m;A) = 1 and for all n <
k < m; g(k;B) = 1;

9. g(n; S(A;B)) = 1 i� for some m < n; g(m;A) = 1 and for all m <
k < n; g(k;B) = 1;

10. g(n;8xA(x)) = 1 for a variable x i� for all g0 such that g0 gives the
same values as g to all function symbols and all predicate symbols and
all variables di�erent from x, we have g0(n;A(x)) = 1;

11. g(n; 9xA(x)) = 1 for a variable x i� for some g0 such that g0 gives the
same values as g to all function symbols and all predicate symbols and
all variables di�erent from x, we have g0(n;A(x)) = 1;

12. let ('q)A(q; q1; : : : ; qm) be a pure past formula of propositional USF,
and let Bi 2 wffV �

i for i = 1; : : : ;m. We want to de�ne g(n;A0),
where A0 = ('q)A(q; B1; : : : ; Bm). First choose an assignment h such
that h(qi) = fn 2 N jg(n;Bi) = 1g. Then de�ne g(n;A0) = 1 i� n 2
h(('q)A(q; q1; : : : ; qm)).

REMARK 107. If we let h�g(A) be the set fnjg(n;A) = 1g we get a function
h� like that of De�nition 105.

EXAMPLE 108. Let us evaluate ('x)A(x) for A(x) = H:x, where Hx =
:S(:x;>); see Example 109.1. We work out the value of ('x)A(x) at each
n, by induction on n. If we know its values for all m < n, we assume that
the atom x has the same value as ('x)A(x) for m < n. We then calculate
the value of A(x) at n. So, really, ('x)A(x) is a de�nition by recursion.

Since H:x is a pure past formula, its value at 0 is known and does not
depend on x. Thus A(x) is true at 0. Hence ('x)A(x) is true at 0.

Let us compute A(x) at 1. Assume that x is true at 0. Since A(x) is
pure past, its value at 1 depends on the value of x at 0, which we know. It
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does not depend on the value of x at n � 1. Thus at 1, ('x)A(x) = A(x) =
H:> = ?.

Assume inductively that we know the values of ('x)A(x) at 0; 1; : : : ; n,
and suppose that x also has these values at m � n. We compute A(x) at
n + 1. This depends only on the values of x at points m � n, which we
know. Hence A(x) at n+ 1 can be computed; for our example we get ?. So
('x)A(x) is false at n + 1. Thus ('x)H:x is (semantically) equivalent to
H?, because H? is true at 0 and nowhere else.

Another way to get the answer is to use the �xed point semantics directly.
Let f(S) = h(A), where h(x) = S, as above. Then by de�nition of f and g,

f(S) = fn 2 N j:9m < n(m 2 S ^ 8k(m < k < n) k 2 h(>))g
= fn 2 N j8m < n(m =2 S))g:

So f(S) = S i� S = f0g. Hence the �xed point is f0g, as before.

Let us evaluate ('x)B(x) where B(x) = S(S(x; a);:a). At time 0 the
value of B(x) is ?. Let x be ? at 0. At time 1 the value of B(x) is
S(S(?; a);:a) = S(?;:a) = ?. Let x be ? at 1 etc. . . . It is easy to see
that ('x)B(x) is independent of a and is equal to ?.

EXAMPLE 109. We give examples of connectives de�nable in this system.

1. The basic temporal connectives are de�ned as follows:

Connective Meaning De�nitionvq q was true `yesterday' S(q;?)

Xq q will be true `tomorrow' U(q;?)

Gq q `will always' be true :U(:q;>)

Fq q `will sometimes' be true U(q;>)

Hq q `was always' true :S(:q;>)

Pq q `was sometimes' true S(q;>)

Note that at 0, both vq and Pq are false.

2. The �rst time point (i.e. n = 0) can be identi�ed as the point at which
H? is true.

3. The �xed point operator allows us to de�ne non-�rst-order de�nable
subsets. For example, e = ('x)( v vx _ H?) is a constant true
exactly at the even points f0; 2; 4; 6; : : :g.

4. S(A;B) can be de�ned from v using the �xed point operator.:

S(A;B) = ('x)( vA _ v(x ^ B))`:
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5. If we have

block(a; b)
^
= ('x)S(b ^ S(a ^ (x _H?_HH?); a); b)

then block(a; b) says that we have the sequence of the form

(block of bs)+(block of as)+. . .

recurring in the pure past, beginning yesterday with b and going into
the past. In particular block(a; b) is false at time 0 and time 1 because
the smallest recurring block is (b; a) which requires two points in the
past.

DEFINITION 110 (Expressive power of USF). Let 	(t; Q1; : : : ; Qn) be a
formula in the monadic language of (N ; <;=; 0; Q1; : : : ; Qn � N ). Let Q =
ftj	(t; Qi) is trueg. Then Q is said to be monadic �rst-order de�nable from
Qi.

EXAMPLE 111. even = f0; 2; 4; : : :g is not monadic �rst-order de�nable
from any family of �nite or co�nite subsets. It is easy to see that every
quanti�cational w� 	(t; Qi), with Qi �nite or co�nite subsets of N , de�nes
another �nite or co-inite subset. But even is de�nable in USF (Exam-
ple 109.3 above). even is also de�nable in monadic second-order logic. In
fact, given any formula A(q1; : : : ; qn) of USF, we can construct a formula
A0(x; Y1; : : : ; Yn) of monadic second-order logic in the language with rela-
tions � and <, such that for all h,

h(A) = fmjA0(m;h(q1); : : : ; h(qn)) holds in Ng:

(See [Hodkinson, 1989].) Since this monadic logic is decidable, we get the
following theorem.

THEOREM 112. Propositional USF is decidable. In other words, the set
of w�s fAjh(A) = N for all hg is recursive. See for example [Hodkinson,
1989].

THEOREM 113. Many nested applications of the �xed point operator are no
stronger than a single one. In fact, any pure past w� of USF is semantically
equivalent to a positive Boolean combination (i.e. using ^;_ only) of w�s
of the form ('x)A, where A is built from atoms using only the Boolean
connectives and v (as in Example 109.1,4). See [Hodkinson, 1989].

THEOREM 114 (Full expressiveness of S and U [Kamp, 1968a]). Let
Q1; : : : ; Qn � N be n set variables and let 	(t; Q1; : : : ; Qn) be a �rst-order
monadic formula built up from Q1; : : : ; Qn using <, = and the quanti�ers
over elements of N and Boolean connectives. Then there exists a w� of
USF, A	(q1; : : : ; qn), built up using S and U only (without the use of the
�xed point operator ') such that for all h and all Qi the following holds:

If h(qi) = Qi then h(A	) = ftj	(t; Qi) holds in Ng:
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Proof. H. Kamp proved this theorem directly by constructing A	. Another
proof was given in [Gabbay et al., 1994]. The signi�cance of this theorem is
that S and U alone are exactly as expressive (as a speci�cation language)
as �rst-order quanti�cation 8, 9 over temporal points. The use of ' takes
USF beyond �rst-order quanti�cation. �

THEOREM 115 (Well known). Predicate USF without �xed point applica-
tions is not arithmetical ([Kamp, 1968a]).

8.2 USF as a speci�cation language

The logic USF can be used as a speci�cation language as follows. Let
A(a1; : : : ; am; b1; : : : ; bk) be a w� of USF. Let h be an assignment to the
atoms fai; bjg. We say that h satis�es the speci�cation A i� h(A) = N .

In practice, the atoms bj are controlled by the environment, and the
atoms ai are controlled by the program. Thus the truth values of bj are
determined as events and the truth values of ai are determined by the
program execution. As time moves forward and the program interacts with
the environment, we get a function h, which may or may not satisfy the
speci�cation.

Let event(q, n) mean that the value of q at time n is truth, as deter-
mined by the environment and let exec(q, n) mean that q is executed at
time n and therefore the truth value of q at time n is true. Thus out of
event and exec we can get a full assignment h = event + exec by letting:
h(q) = fnjevent(q, n) holdsg for q controlled by the environment;
h(q) = fnjexec(q, n) holdsg for q controlled by the program.

Of course our aim is to execute in such a way that the h obtained satis�es
the speci�cation.

We now explain how to execute any w� of our temporal language. Recall
that the truth values of the atoms ai come from the program via exec(ai,
m) and the truth values for the atoms bj come from the environment via
the function event(bj, m). We de�ne a predicate exec*(A, m) for any
w� A, which actually de�nes the value of A at time m.

For atoms of the form ai, exec*(ai, m) will be exec(ai, m) and for
atoms of the form bj (i.e. controlled by the environment) exec*(bj, m)

will be event(bj, m). We exec* an atom controlled by the environment
by `agreeing' with the environment. For the case of A a pure past formula,
exec*(A, m) is determined by past truth values. Thus exec* for pure
past sentences is really a hold predicate, giving truth values determined al-
ready. For pure future sentences B, exec*(B, m) will have an operational
meaning. For example, we will have

exec*(G print, m) = exec*(print, m) ^ exec*(G print,

m+ 1).
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We can assume that the w�s to be executed are pure formulae (pure
past, pure present or pure future) such that all negations are pushed next
to atoms. This can be done because of the following semantic equivalences.

1. :U (a; b) = G:a _ U(:b ^ :a;:a);

2. :S(a; b) = H:a _ S(:b ^ :a;:a);

3. :Ga = F:a;

4. :Ha = P:a;

5. :Fa = G:a;

6. :Pa = H:a;

7. :[('x)A(x)] = ('x):A(:x).

See [Gabbay et al., 1994] for 1 to 6. For 7, let h be an assignment and
suppose that h(:[('x)A(x)]) = S. Because ' has �xed point semantics, to
prove 7 it is enough to show that if h0 is the assignment that agrees with
h on all atoms except x, and h0(x) = S, then h0(:(A:x)) = S. Clearly,
h(:[('x)A(x)]) = N nS. We may assume that h(x) = N nS. Then h(A(x)) =
N n S. So h(:A(x)) = S and h0(:(A:x)) = S as required; 7 is also easy to
see using the recursive approach.

DEFINITION 116. We assume that exec*(A,m) is de�ned for the system
for any m and any A which is atomic or the negation of an atom. For
atomic b which is controlled by the environment, we assume event(b,m) is
de�ned and exec*(b,m)=event(b,m). For exec*(a,m), for a controlled
by the program, execution may be done by another program. It may be a
graphical or a mathematical program. It certainly makes a di�erence what
m is relative to now. If we want to exec*(a,m) for m in the past of now,
then a has already been executed (or not) and so exec*(a,m) is a hold

predicate. It agrees with what has been done. Otherwise (if m � now) we
do execute*.

1. exec*(>,m) = >.

2. exec*(?,m) = ?.

3. exec*(A ^B, m) = exec*(A,m)^ exec � (B,m).

4. exec*(A _B, m) = exec*(A,m)_ exec � (B,m).

5. exec*(S(A;B), 0)) = ?.

6. exec*(S(A;B), m+ 1) = exec*(A,m)

_ [exec*(B,m) ^ exec*(S(A;B),m)].
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7. exec*(U(A;B), m) = exec*(A,m+ 1)
_ [exec*(B,m+ 1)^ exec*(U(A;B),m+ 1)].

8. exec*(('x)A(x), 0) = A0, where A0 is obtained from A by substi-
tuting > for any w� of the form HB and ? for any w� of the form
PB or S(B1; B2).

9. exec*(('x)A(x), m + 1) = exec*(A(C), m + 1) , where C is a
new atom de�ned for n � m by exec*(C, n) = exec*(('x)A(x),
n). In other words exec*(('x)A(x), m+1) = exec*(A(('x)A(x)),
m + 1) and since in the execution of A at time m + 1 we go down
to executing A at time n � m, we will have to execute ('x)A(x) at
n � m, which we assume by induction that we already know.

10. In the predicate case we can let

exec*(8y A(y)) = 8y exec*(A(y))

exec*(9y A(y)) = 9y exec*(A(y)).

We are now in a position to discuss how the execution of a speci�cation
is going to be carried out in practice. Start with a speci�cation S. For
simplicity we assume that S is written in essentially propositional USF
which means that S contains S, U and ' operators applied to pure past
formulae, and is built up from atomic units which are w�s of classical logic.
If we regard any �xed point w� ('x)D(x) as atomic, we can apply the
separation theorem and rewrite S into an executable form E , which is a
conjunction of formulae such that
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where Ci;k are pure past formulae (containing S only) and Bj;k are either
atomic or pure future formulae (containing U). However, since we regarded
any ('x) formula as an atom, the Bj;k can contain ('x)D(x) formulae in
them. Thus Bj;k can be for example U(a; ('x)[ v:x]). We will assume that
any such ('x)D(x) contains only atoms controlled by the environment; this
is a restriction on E . Again, this is because we have no separation theorem
as yet for full propositional USF, but only for the fragment US of formulae
not involving '. We conjecture that|possibly in a strengthened version of
USF that allows more �xed point formulae|any formula can be separated.
This again remains to be done.

However, even without such a result we can still make progress. Although
('x)[ v:x] is a pure past formula within U , it is still an executable formula
that only refers to environment atoms, and so we do not mind having it
there. If program atoms were involved, we might have a formula equivalent
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to X vprint (say), so that we would have to execute vprint tomorrow.
This is not impossible: when tomorrow arrives we check whether we did in
fact print yesterday, and return > or ? accordingly. But it is not a very
intelligent way of executing the speci�cation, since clearly we should have
just printed in the �rst instance. This illustrates why we need to separate S.

Recall the equation for executing U(A;B):

exec*(U(A;B)) � Xexec*(A) _(X(exec*(B) ^ exec*(U(A;B)).

If either A or B is of the form ('x)D(x), we know how to compute
exec*(('x) D(x)) by referring to past values. Thus ('x)D(x) can be
regarded as atomic because we know how to execute it, in the same way as
we know how to execute write.

Imagine now that we are at time n. We want to make sure the speci�-
cation E remains true. To keep E true we must keep true each conjunct of
E . To keep true a conjunct of the form C ) B where C is past and B is
future, we check whether C is true in the past. if it is true, then we have to
make sure that B is true in the future. Since the future has not happened
yet, we can read B imperatively, and try to force the future to be true. Thus
the speci�cation C ) B is read by us as

hold(C) ) exec*(B).

Some future formulae cannot be executed immediately. We already saw
that to execute U(A;B) now we either execute A tomorrow or execute B
tomorrow together with U(A;B). Thus we have to pass a list of formulae
to execute from today to tomorrow. Therefore at time n+ 1, we have a list
of formulae to execute which we inherit from time n, in addition to the list
of formulae to execute at time n+ 1. We can thus summarize the situation
at time n+ 1 as follows:

1. Let G1; : : : ; Gm be a list of w�s we have to execute at time n + 1.
Each Gi is a disjunction of formulae of the form atomic or negation
of atomic or FA or GA or U(A;B).

2. In addition to the above, we are required to satisfy the speci�cation
E , namely

^
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for each k such that
V
i Ci;k holds (in the past). We must execute the

future (and present) formulaBk =
W
j Bj;k which is again a disjunction

of the same form as in 1 above.

We know how to execute a formula; for example,
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exec*(FA) = Xexec*A_X exec*(FA).

FA means `A will be true'. To execute FA we can either make A true
tomorrow or make FA true tomorrow. What we should be careful not to
do is not to keep on executing FA day after day because this way A will
never become true. Clearly then we should try to execute A tomorrow and
if we cannot, only then do we execute FA by doing X exec*(FA). We
can thus read the disjunction exec*(A_B) as �rst try to exec*A and then
only if we fail exec*B. This priority (left to right) is not a logical part of
`_' but a procedural addition required for the correctness of the model. We
can thus assume that the formulae given to execute at time n are written
as disjunctions with the left disjuncts having priority in execution. Atomic
sentences or their negations always have priority in execution (though this
is not always the best practical policy).

Let D =
W
j Dj be any w� which has to be executed at time n+ 1, either

because it is inherited from time n or because it has to be executed owing
to the requirements of the speci�cation at time n+ 1. To execute D, either
we execute an atom and discharge our duty to execute, or we pass possibly
several disjunctions to time n+2 to execute then (at n+2), and the passing
of the disjunctions will discharge our obligation to execute D at time n+ 1.
Formally we have

exec*(D) =
W
j exec*(Dj).

Recall that we try to execute left to right. The atoms and their negations are
supposed to be on the left. If we can execute any of them we are �nished with
D. If an atom is an environment atom, we check whether the environment
gives it the right value. If the atom is under the program's control, we
can execute it. However, the negation of the atom may appear in another
formula D0 to be executed and there may be a clash. See Examples 117 and
118 below. At any rate, should we choose to execute an atom or negation
of an atom and succeed in doing so, then we are �nished. Otherwise we can
execute another disjunct of D of the form Dj = U(Aj ; Bj) or of the form
GAj or FAj . We can pass the commitment to execute to the time n + 2.
Thus we get

exec*(D) =
W

exec*(atoms of D) _
exec*(future formulae of D).

Thus if we cannot execute the atoms at time n+ 1, we pass to time n+ 2 a
conjunction of disjunctions to be executed, ensuring that atoms and subfor-
mulae should be executed before formulae. We can write the disjunctions
to reect these priorities. Notice further that although, on �rst impression,
the formulae to be executed seem to multiply, they actually do not.

At time n = 0 all there is to execute are heads of conditions in the
speci�cation. If we cannot execute a formula at time 0 then we pass ex-
ecution to time 1. This means that at time 1 we inherit the execution of
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A_(B^U (A;B)), where U(A;B) is a disjunct in a head of the speci�cation.
This same U(A;B) may be passed on to time 2, or some subformula of A or
B may be passed. The number of such subformulae is limited and we will
end up with a limited stock of formulae to be passed on. In practice this
can be optimized. We have thus explained how to execute whatever is to
be executed at time n. When we perform the execution sequence at times
n; n+ 1; n+ 2; : : :, we see that there are now two possibilities:

� We cannot go on because we cannot execute all the demands at the
same time. In this case we stop. The speci�cation cannot be satis�ed
either because it is a contradiction or because of a wrong execution
choice (e.g. we should not have printed at time 1, as the speci�cation
does not allow anything to be done after printing).

� Another possibility is that we see after a while that the same formulae
are passed for execution from time n to time n+ 1 to n+ 2 etc. This
is a loop. Since we have given priority in execution to atoms and to
the A in U(A;B), such a loop means that it is not possible to make a
change in execution, and therefore either the speci�cation cannot be
satis�ed because of a contradiction or wrong choice of execution, or
the execution is already satis�ed by this loop.

EXAMPLE 117. All atoms are controlled by the program. Let the speci�-
cation be

Ga ^ F:a:

Now the rules to execute the subformulae of this speci�cation are

exec*(Ga) � exec*(a) ^ exec*(Ga)

exec*(F:a) � exec*(:a) _ exec*(F:a).

To execute Ga we must execute a. Thus we are forced to discharge our
execution duty of F:a by passing F:a to time n+ 1. Thus time n+ 1 will
inherit from time n the need to execute Ga ^ F:a. This is a loop. The
speci�cation is unsatis�able.

EXAMPLE 118. The speci�cation is

b _Ga

Pb) F:a ^Ga:

According to our priorities we execute b �rst at time 0. Thus we will have
to execute F:a ^ Ga at time 1, which is impossible. Here we made the
wrong execution choice. If we keep on executing :b^Ga we will behave as
speci�ed.
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In practice, since we may have several choices in execution we may want
to simulate the future a little to see if we are making the correct choice.

Having de�ned exec*, we need to add the concept of updating. Indeed,
the viability of our notion of the declarative past and imperative future
depends on adding information to our database. In this section we shall
assume that every event that occurs in the environment, and every action
exec-ed by our system, are recorded in the database. This is of course
unnecessary, and in a future paper we shall present a more realistic method
of updating.

8.3 The logic USF2

The �xed point operator that we have introduced in propositional USF has
to do with the solution of the equation

x$ B(x; q1; : : : ; qm)

where B is a pure past formula. Such a solution always exists and is unique.
The above equation de�nes a connective A(q1; : : : ; qm) such that

A(q1; : : : ; qm) $ B(A(q1; : : : ; qm); q1; : : : ; qm):

Thus, for example, S(p; q) is the solution of the equation

x$ vp _ v(q ^ x)

as we have S(p; q) $ vp _ v(q ^ S(p; q)). Notice that the connective to
be de�ned (x = S(p; q)) appears as a unit in both sides of the equation.

To prove existence of a solution we proceed by induction. Suppose we
know what x is at time f0; : : : ; ng. To �nd what x is supposed to be at time
n+ 1, we use the equation x$ B(x; qi). Since B is pure past, to compute
B at time n+ 1 we need to know fx; qig at times � n, which we do know.
This is the reason why we get a unique solution.

Let us now look at the following equation for a connective Z(p; q). We
want Z to satisfy the equation

Z(p; q) $ vp _ v(q ^ Z( vp; q)):
Here we did not take Z(p; q) as a unit in the equation, but substituted
a value vp in the right-hand side, namely Z( vp; q). vp is a pure past
formula. We can still get a unique solution because Z(p; q) at time n + 1
still depends on the values of Z(p; q) at earlier times, and certainly we can
compute the values of Z( vp; q) at earlier times.

The general form of the new �xed point equation is as follows:

DEFINITION 119 (Second-order �xed points). Let Z(q1; : : : ; qm) be a can-
didate for a new connective to be de�ned. Let B(x; q1; : : : ; qm) be a pure
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past formula and let Di(q1; : : : ; qm) for i = 1 : : :m be arbitrary formulae.
Then we can de�ne Z as the solution of the following equation:

Z(q1; : : : ; qm) $ B(Z[D1(q1; : : : ; qm); : : : ; Dm(q1; : : : ; qm)]; q1; : : : ; qm):

We call this de�nition of Z second order, because we can regard the equation
as

Z � Application(Z;Di; qj):

We de�ne USF2 to be the logic obtained from USF by allowing nested
applications of second-order �xed point equations. USF2 is more expressive
than USF (Example 120).

Predicate USF2 is de�ned in a similar way to predicate USF.

EXAMPLE 120. Let us see what we get for the connective Z1(p; q) de�ned
by the equation

Z1(p; q) $ vp _ v(q ^ Z1( vp; q)):
The connective Z1(p; q) says what is shown in Fig.12:

k points

m1 = 2m� n� 1

time

p true

time m = n� k time n

Z1(p; q)

q is true

k points
-�

� -

-

Figure 12.

Z1(p; q) is true at n i� for some m � n, q is true at all points j with
m � j < n, and p is true at the point m1 = m�(n�m+1) = 2m�n�1. If
we let k = n�m, then we are saying that q is true k times into the past and
before that p is true at a point which is k + 1 times further into the past.
This is not expressible with any pure past formula of USF; see [Hodkinson,
1989].

Let us see whether this connective satis�es the �xed point equation

Z1(p; q) $ vp _ v(q ^ Z1( vp; q)):
If vp is true then k = 0 and the de�nition of Z1(p; q) is correct. If v(q ^
Z1( vp; q)) is true, than we have for some k the situation in Fig. 13:
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p is true

vp now

k points

q is true

k points
-�

� -

-

Figure 13.

The de�nition of Z1(p; q) is satis�ed for k + 1.

EXAMPLE 121 (Coding of dates). We can encode dates in the logic as
follows:

1. The proposition : v> is true exactly at time 0, since it says that
there is no yesterday. Thus if we let

n = ? if n � 0

0 = : v>
n = v(n� 1):

then we have that n is true exactly at time n. This is a way of naming
time n. In predicate temporal logic we can use elements to name time.
Let date(x) be a predicate such that the following hold at all times
n:

9x date(x)

8x(date(x) ) G: date(x) ^H: date(x))

8x(date(x) _P date(x) _F date(x)).

These axioms simply say that each time n is identi�ed by some element
x in the domain that uniquely makes date(x) true, and every domain
element corresponds to a time.

2. We can use this device to count in the model. Suppose we want to
de�ne a connective that counts how many times A was true in the
past. We can represent the number m by the date formula m, and
de�ne count(A;m) to be true at time n i� the number of times before
n in which A was true is exactly m. Thus in Fig. 14, count(A; v>^
: v v>) is false at time 3, true at time 2, true at time 1 and false at
time 0.
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0 A

1 :A

2 A

3

6

Figure 14.

The connective count can be de�ned by recursion as follows:

count(p;n) $ v(:p ^ count(p;n))

_ v(p ^ count(p;Xn))

_ (: v>^ n):

Note that Xn is equivalent to n� 1. We have cheated in this example. For
the formula B(x; q1; q2) in the de�nition of second-order �xed points is here

v(:q1 ^ x) _ v(q1 ^ x) _ (: v>^ q2):

This is not pure past, as q2 occurs in the present tense. To deal with this
we could de�ne the notion of a formula B(x; q1; : : : ; qm) being pure past in
x. See [Hodkinson, 1989]. We could then amend the de�nition to allow any
B that is pure past in x. This would cover the B here, as all xs in B occur
under a v. So the value of the connective at n still depends only on its
values at m � n, which is all we need for there to be a �xed point solution.
We do not do this formally here, as we can express count in standard USF2;
see the next example.

EXAMPLE 122. We can now de�ne the connective more(A;B) reading `A
was true more times than B'.

more(A;B) $ v(A ^ more(A;B))

_ v(:A ^ :B ^ more(A;B))

_ v(:A ^ more((A ^ PA); B)):
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(If k > 0, then at any n, A ^ PA has been true k times i� A has been true
k + 1 times.)

Note that for any k > 0, the formula Ek = : vk> is true exactly k times,
at 0; 1; : : : ; k � 1. If we de�ne

count�(p; k) = more(Ek+1; p) ^ :more(Ek; p);

then at any n, p has been true k times i� count*(p; k) holds. So we can do
the previous example in standard USF2.

THEOREM 123 (For propositional USF2). Nested applications of the second-
order �xed point operator are equivalent to one application. Any w� A of
USF2 is equivalent to a w� B of USF2 built up using no nested applications
of the second-order �xed point operator.

8.4 Payroll example in detail

This section will consider in detail the execution procedures for the payroll
example in Section 8.

First let us describe, in the temporal logic USF2, the speci�cation re-
quired by Mrs Smith. We translate from the English in a natural way. This
is important because we want our logical speci�cation to be readable and
have the same structure as in English.

Recall that the intended interpretation of the predicates to be used is

A(x) x is asked to babysit

B(x) x does a babysitting job

M(x) x works after midnight

` P (x; y) x is paid y pounds.

`Babysitters are not allowed to take jobs three nights in a row, or two nights
in a row if the �rst night involves overtime' is translated as

(a) 8x:[B(x) ^ vB(x) ^ v vB(x)]

(b) 8x:[B(x) ^ v(B(x) ^M(x))]

(c) 8x[M(x) ) B(x)].

Note that these w�s are not essentially propositional.
`Priority in calling is given to those who were not called before as many

times as others' is translated as

(d) :9x9y[more(A(x); A(y))^A(x)^:A(y)^: vM(y)^: v(B(y)^ vB(y))].

`Payment should be made the next day after the job was done, with $15
for a job involving overtime, and $10 for a job not involving overtime' is
translated as
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(e) 8x[M(x) ) XP (x; 15)]

(f) 8x[B(x) ^ :M(x) ) XP (x; 10)]

(g) 8x[:B(x) ) X:9yP (x; y)]:

Besides the above we also have

(h) 8x[B(x) ) A(x)].

Babysitters work only when they are called.
We have to rewrite the above into an executable form, namely

Past ) Present _ Future.

We transform the speci�cation to the following:

(a0) 8x[ vB(x) ^ v vB(x) ) :B(x)]

(b0) 8x[ v(B(x) ^M(x)) ) :B(x)]

(c0) 8x[:M(x) _ B(x)].

(d0) 8x8y[more(A(x); A(y)) ^ : vM(y) ^ : v(B(y) ^ vB(y)) )
:A(x) _ :A(y)]

(e0) 8x[:M(x) _XP (x; 15)]

(f0) 8x[:B(x) _M(x) _XP (x; 10)]

(g0) 8x[B(x) _X8y:P (x; y)]

(h0) 8x[:B(x) _A(x)].

Note that (e0), (f0) and (h0) can be rewritten in the following form using
the v operator.

(e00) 8x[ vM(x) ) P (x; 15)]

(f00) 8x[ v(B(x) ^ :M(x)) ) P (x; 10)]

(g00) 8x[: vB(x) ) 8y:P (x; y)].

Our executable sentences become

(a*) hold( vB(x) ^ v vB(x)) ) exec(:B(x))

(b*) hold( v(B(x) ^M(x))) ) exec(:B(x))

(c*) exec(:M(x) _ B(x))

(d*) hold(more(A(x); A(y)) ^ : vM(y) ^ : v(B(y) ^ vB(y))) )
exec(:A(x) _ :A(y))
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(e*) exec(:M(x) _XP (x; 15))

(f*) exec(:B(x) _M(x) _XP (x; 10))

(g*) exec(B(x) _X8y:P (x; y))

(h*) exec(:B(x) _ A(x)).

If we use (e00), (f00), (g00) the executable form will be

(e**) hold( vM(x)) ) exec(P (x; 15))

(f**) hold( v(B(x) ^ :M(x))) ) exec(P (x; 10))

(g**) hold(: vB(x)) ) exec(8y:P (x; y)).

In practice there is no di�erence whether we use (e**) or (e*). We execute
XP by sending P to tomorrow for execution. If the speci�cation is (e**),
we send nothing to tomorrow but we will �nd out tomorrow that we have
to execute P .
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RICHMOND H. THOMASON

COMBINATIONS OF TENSE AND MODALITY

1 INTERACTIONS WITH TIME

Physics should have helped us to realise that a temporal theory of a phe-
nomenon X is, in general, more than a simple combination of two compo-
nents: the statics of X and the ordered set of temporal instants. The case in
which all functions from times to world-states are allowed is uninteresting;
there are too many such functions, and the theory has not begun until we
have begun to restrict them. And often the principles that emerge from the
interaction of time with the phenomena seem new and surprising. The most
dramatic example of this, perhaps, is the interaction of space with time in
relativistic space-time.

The general moral, then, is that we shouldn't expect the theory of time
+X to be obtained by mechanically combining the theory of time and the
theory of X .1

Probability is a case that is closer to our topic. Much ink has been
spilled over the evolution of probabilities: take, for instance, the mathe-
matical theory of Markov processes (Howard [1971a; 1971b] make a good
text), or the more philosophical question of rational belief change (see, for
example, Chapter 11 of Je�rey [1990] and Harper [1975].) Again, there is
more to these combinations than can be obtained by separate reection on
probability measure and the time axis.

probability shares many features with modalities and, despite the fact
that (classical) probabilities are numbers, perhaps in some sense probability
is a modality. It is certainly the classic case of the use of possible worlds in
interpreting a calculus. (Sample points in a state space are merely possible
worlds under another name.) But the literature on probability is enormous,
and almost none of it is presented from the logician's perspective. So, aside
from the references I have given, I will exclude it from this survey. However,
it seems that the techniques we will be using can also help to illuminate
problems having to do with probability; this is illustrated by papers such
as D. Lewis [1981] and Van Fraassen [1971]. For lack of space, these are not
discussed in the present essay.

1For a treatment that follows this procedure, see [Woolhouse, 1973]; [Werner, 1974]

may also �t into this category, but I have not been able to obtain a copy of it. The tense
logic of Woolhouse's paper is fairly crude: e.g. moments of time appear both in models
and in the object language. The paper seems mainly to be of historical interest.

D. Gabbay and F. Guenthner (eds.),
Handbook of Philosophical Logic, Volume 7, 205{234.
c 2002, Kluwer Academic Publishers. Printed in the Netherlands.
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2 INTRODUCTION TO HISTORICAL NECESSITY

Modern modal logic began with necessity (or with things de�nable with
respect to necessity), and the earliest literature, like C. I. Lewis [1918], con-
fuses this with validity. Even in later work that is formally scrupulous about
distinguishing these things, it is sometimes diÆcult to tell what concepts
are really metalinguistic. Carnap, for instance [1956, p. 10], begins his
account of necessity by directing our attention to l- truth; a sentence of a
semantical system (or language) is L-true when its truth follows form the
semantical rules of the language, without auxiliary assumptions. This, of
course, is a metalinguistic notion. But later, when he introduces necessity
into the object language [Carnap, 1956, p. 174], he stipulates that �' is
true if and only if ' is L-true.

Carnap thinks of the languages with which he is working as fully deter-
minate; in particular, their semantical rules are �xed. This has the con-
sequence that whatever is L-true in a language is eternally L-true in that
language. (See [Schlipp, 1963, p. 921], for one passage in which Carnap is
explicit on the point: he says `analytic sentences cannot change their truth-
value'.) Combining this consequence with Carnap's explication of necessity,
we see that2

(1) �'! HG�'

will be valid in languages containing both necessity and tense operators:
necessary truths will be eternally true. The combination of necessity with
tense would then be trivialised.

But there are diÆculties with Carnap's picture of necessity; indeed, it
seems to be drastically misconceived.3 For one thing, many things appear
to be necessary, even though the sentences that express them can't be de-
rived from semantical rules. In Kripke [1982], for instance, published 26
years after Meaning and Necessity, Saul Kripke argues that it is necessary
that Hesperus is Phosphorous, though `Hesperus' and `Phosphorous' are by
no means synonymous. Also at work in Kripke's conception of necessity, and
that of many other contemporaries, is the distinction between ' expressing
a necessary truth, and ' necessarily expressing a truth. In a well-known de-
fence of the analytic-synthetic distinction, Grice and Strawson [1956] write
as follows:

2I use the tense logical notation of the �rst Chapter in this volume.
3For an early appreciation of the philosophical importance of making necessity time-

dependent (the point I myself am leading up to), see [Lehrer and Taylor, 1965]. The
puzzles they raise in this paper are genuine and well presented. But the solution they
suggest is very implausible, and the considerations that motivate it seem to confuse
semantic and pragmatic phenomena. This is a good example of a case in which philo-
sophical reections could have been aided by an appeal to the technical apparatus of
model theory (in this case, to the model theory of tense logic).
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Any form of words at one time held to express something true
may, no doubt, at another time come to be held to express some-
thing false. but it is not only philosophers who would distinguish
between the case where this happens as the result of a change
of opinion solely as to matters of fact, and the case where this
happens at least partly as a result of shift in the sense of the
words (p. 157).

This distinction, at lest in theory, makes it possible that a sentence ' should
necessarily (perhaps, because of semantical rules) express a truth, even
though the truth that it expresses is contingent. This idea is developed
most clearly in [Kaplan, 1978].

On this vie of necessity, it attaches not primarily to sentences, but to
propositions. A sentence will express a proposition, which may or may not
be necessary. This can be explicated using possible worlds: propositions
take on truth values in these worlds, and a proposition is necessary if and
only if it is true in all possible worlds.4

This conception can be made temporal without trivialising the results.
Probably the simplest way of managing this is to begin with nonempty sets
T of times and W of worlds;5 T is linearly ordered by a relation <. I will
call this the T �W approach.

Recall that a tensed formula, say F' , is true at hw; ti, where w 2 W
and t 2 T , if and only if ' is true at hw; t0i, for some t0 such that t < t0.6

We now want to ask under what conditions �' is true at hw; ti. (In putting
it this way we are suppressing propositions; this is legitimate, as long as
we treat propositional attitudes as unanalysed, and assume that sentences
express the same proposition everywhere.)

If we appeal to intuitions about languages like English, it seems that we
should treat formulas like �' as nontrivially tensed. This is shown most
clearly by sentences involving the adjective `possible', such as `In 1932 it
was possible for Great Britain to avoid war with Germany; but in 1937
it was impossible'. This suggests that when �' is evaluated at hw; ti we

4To simplify matters, I con�ne the discussion to the absolute necessity of S5. But
perhaps I should mention in passing that in explicating the relative breeds of necessity,
such as that of S4, it is easy to confuse modal relations with temporal relations, relative
necessity with evanescent necessity. And, of course, tense logic was inspired in part by
work on relative necessity. But the two notions are separate; an S5 breed of necessity,
for instance, can be evanescent. And when tense and modality are combined, it is very
important to attend to the distinction.

5I dislike this way of arranging things for philosophical reasons. it doesn't strike me
as a logical truth that all worlds have the same temporal orderings: some may have an
earliest time, for instance, and others not. Also, the notion of di�erent worlds sharing the
same time is philosophically problematic; it is hard to reconcile with a plausible theory
of time, when the possible worlds di�er widely. Finally, I like to think of possible worlds
as overlapping, so that at the same moment may have alternative futures. This requires
a more complicated representation. However, the T �W arrangement will do for now.

6See the discussion of the interpretation of tense in Chapter 1 of this volume.
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are considering what is then necessary; what is true in all worlds at that
particular time, t.

The rule then is that �' is true at hw; ti if and only if ' is true at hw0; ti
for all w0 2 W . If we like, we can make this relational. Let f�t: t 2 Tg be
a family of equivalence relations on W , and let �' be true at ht; wi if and
only if ' is true at ht; w0i for all w0 2 W such that w �t w0.

The resulting theory generates some validities arising from the assump-
tion that the worlds share a common temporal ordering. Formulas (2) and
(3) are two such validities, corresponding to the principle that one world
has a �rst moment if and only if all worlds do.

(2) P [' _ :'] $ �P [' _ :']

(3) H [' ^ :'] $ �H [' ^ :']

In case �t is the universal relation for every t (or the relations �t are simply
omitted from the satisfaction conditions) there are other validities, such as
(4) and (5).

(4) P�'! �P'

(5) F�'! �F'

As far as I know, the general problem of axiomatising these logics has not
been solved. But I'm not sure that it is worth doing, except as an exercise.
The completeness proofs should not be diÆcult, using Gabbay's techniques
(described in Section 4, below). and these logics do not seem particularly
interesting from a philosophical point of view.

But a more interesting case is near to hand. The tendency we have
noted to bring Carnap's metalinguistic notion of necessity down to earth
has made room for the reintroduction of one of the most important notions
of necessity: practical necessity, or historical necessity.7 This is the sort
of necessity that �gures in Aristotle's discussion of the Sea Battle (De Int.
18b25{19b4), and that arises when free will is debated. It also seems to be
an important background notion in practical reasoning. Jonathan Edwards,
in his usual lucid way, gives a very clear statement of the matter.

Philosophical necessity is really nothing else than the full and
�xed connection between the things signi�ed by the subject and
predicate of a proposition, which aÆrms something to be true
. . . . [This connection] may be �xed and made certain, because
the existence of that thing is already come to pass; and either

7I am note sure if there are personal, ore relational varieties of inevitability; it seems
a bit peculiar to my ear to speak of an accident John caused as inevitable for Mary, but
not inevitable for John. If there are such sorts of inevitability I mean to exclude them,
and to speak only of impersonal inevitability. Thus `inevitable' does not belong to the
same modal family as `able', since the latter is personal.
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now is, or has been; and so has as it were made sure of existence.
And therefore, the proposition which aÆrms present and past
existence of it, may be this means be made certain, and neces-
sarily and unalterably true; the past event has �xed and decided
that matter, as to its existence; and has made it impossible but
that existence should be truly predicted of it. Thus the existence
of whatever is already come to pass, is not become necessity; 'tis
become impossible it should be otherwise than true, that such
a thing has been. [Edwards, 1957, pp. 152{3]

Historical necessity can be �tted into the T�W framework; it is merely a
matter of adjusting the relations �t so that if w �t w0, then w and w0 share
the same past up to and including t. So for t0 < t, atomic formulas must be
treated the same way in w and w0. furthermore, we have to stipulate that
historical possibilities diminish monotonically with the passage of time: if
t < t0, then fw0 : w �t0 w0g � fw; : w �t w0g. This interaction between
time and relative necessity creates distinctive validities, such as (6) and (7).

(6) '$ �', if ' contains no occurrences of F .

(7) P�'! �P'

Formula (8), on the other hand, is clearly invalid.

(8) �Pp! P�p

These correspond to rather natural intuitions relating the ow of time to
the loss of possibilities.

There is another way of representing historical necessity, which perhaps
will seem less straightforward to logicians steeped in possible worlds. Time
can be treated as non-linear (branching only towards the future), and worlds
represented as branches on the resulting ordered structure. This corre-
sponds very closely to the T �W account: (6) and (7) remain valid, and
(8) invalid. But the validities are not the same. This matter will be taken
up below, in Section 4.

So much for necessity; I will deal more briey with `ought' and condi-
tionals.

As Aristotle points out, we don't deliberate about just anything; in par-
ticular, we deliberate only about what is in our power to determine. [Ne
1112a 19f.] But the past, and the instantaneous present, are not in our
power: deliberation is con�ned to future alternatives.

This suggests that deontic logic, insofar as it investigates practical oughts,
should identify its possibilities with the ones of historical necessity. Unfor-
tunately, this conception played little or no role in the early interpretation
of deontic logic; those who developed the deontic applications of possible
worlds semantics seemed to think of deontic possibilities ahistorically, as
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`perfect worlds' in which all norms are ful�lled.8 Historical possibilities , on
the other hand, are typically imperfect; life is full of occasions on which we
have to make the best of a bad situation. In my opinion, this is one reason
why deontic logic has seemed to most philosophers to consist largely of a
sterile assortment of paradoxes, and why its inuence on moral philosophy
has been so fruitless.

Conditionals have been intensively studied by philosophical logicians over
the last �fteen years, and this has created an extensive literature. Relatively
little of this e�ort has been devoted to the interaction of conditionals with
tense. But there is reason to think that important insights may be lost
if conditionals are studied ahistorically. One very common sort of condi-
tional (the philosopher's novel example of a `subjunctive conditional') is
exempli�ed by (9).

(9) If Oswald hadn't shot Kennedy, then Kennedy would be alive today.

These conditionals seem to be closely related to historical possibilities; they
envisage courses of events that diverge at some point in the past from the
actual one. And this in turn suggests that there may be close connections
between historical necessity and some conditionals.

Examples like the following four provide evidence of a di�erent sort.

(10) He would go if she would go.

(11) He will go if she will go.

(12) he would have gone if she were to have gone.

(13) he went if she went.

Sentences (10) and (11) seem hardly to di�er in meaning, if (109) has to do
with the future. On the other hand, (12) and (13) are very di�erent. If he
didn't go, but would have gone if she had, (12) is true and (13) false.

This suggests that there may be systematic connections between tense,
mood and the truth conditions of conditionals. According to one extreme
proposal, the di�erence in `mood' between (9) and the past-present condi-
tionals form `If Oswald didn't shoot Kennedy, then Kennedy is alive today'
can be accounted for solely in terms of the interaction of tense operators and
the conditional.9 This has in favour of it the grammatical fact that `would'
is the past tense of `will'. But the matter is complex, and it is diÆcult to
see how much merit there is in the suggestion.

There have been recent signs of interest in the interaction of tense and
conditionals; the most systematic of these is [Thomason and Gupta, 1981]

8See [Von Wright, 1968] and Hintikka [1969; 1971].
9See [Thomason and Gupta, 1981, pp. 304{305].
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If this study is any indication, the topic is surprisingly complicated. But
the complications may prove to be of philosophical interest.

The relation between historical necessity and quantum mechanics is a
topic that I will not discuss at any great length. The indeterminacy that is
associated with microphenomena seems at �rst glance to invite a treatment
using alternative futures; and one of the approaches to the measurement
problem in quantum theory, the `many-worlds interpretation', does appear
to do just this. (See [DeWitt and Graham, 1973] for more information about
the approach.)

But alternative futures don't provide in themselves an adequate repre-
sentation of the physical situation, because the quantum mechanical prob-
abilities can't be treated as distributions over a set of fully determinate
worlds.10 Some further apparatus would have to be introduced to secure
the right system of nonboolean probabilities, and as far as I can see, what
is required would have to go beyond the resources of possible worlds se-
mantics: there is no escaping an analysis of measurement interactions, or
of interactions in general.

Possible world semantics may help to make the `many worlds' approach to
quantum indeterminacy seem less frothy; the prose of philosophical modal
realists, such as D. Lewis [1970], is much more judicious than that in which
the physicists sometimes indulge. (See, for instance, [DeWitt, 1973, p.
161].) So, modal logic may be of some help in sorting out the philosophical
issues; but this leaves the fundamental problems untouched. Possible worlds
are not in themselves a key to the problem of measurement in quantum
mechanics.

The following sections will aim at eshing out this general introduction
with further historical information, more detailed descriptions of the rele-
vant logical theories, and more extensive references to the literature.

3 HISTORICAL NECESSITY

The �rst sustained discussion of this topic, from the standpoint of modern
tense logic is (as far as I know) Chapter 7 of [Prior, 1967] entitled `Time and
determinism'.11 Prior's judgement and philosophical depth, as well as his

10See, for instance [Wigner, 1971] and [Fine, 1982].
11The mention of historical necessity and its combination with deontic operators in the

tour de force at the end of [Montague, 1968] probably takes precedence if you go by date
of composition. But Montague's discussion is very compressed, and neglects philosophical
motivation. And some interesting things are said about indeterminism in Prior's earlier
book [Prior, 1957]. But the connection does not seem to be made there between the
philosophical issues and the problem of interpreting future tense in treelike frames. The
ingredients of a model theoretic treatment of historical necessity also occurred at an
early date to Dana Scott. Like much of his work in modal and tense logic, it remained
unpublished, but there is a mimeographed paper [Scott, 1967].
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readable style, make this required reading for anyone seriously interested in
historical necessity.

Prior's exposition is informal, and sprinkled with historical references
to the philosophical debate over determinism. In this debate he unearths
a logical determinist argument, that probably goes back to ancient times.
According to this argument, if ' is true then, at any previous time, F' must
have been true. But choose such a time, and suppose that at this earlier
time ' could have failed to come about; then F' could not have been true
at this time. It seems to follow that the determinist principle

(14) '! H�F'

holds good.

In discussing the argument and some ways of escaping from it, Prior is
fairly exible about this object language; in particular, he allows metric
tense operators. Since these complicate matters from a semantic point of
view, I will ignore them, and consider languages whose only modal operators
are � and the nonmetric tenses.

Also (and this is more unfortunate), Prior [1967] speaks loosely in describ-
ing models. At the place where his indeterminist models are introduced, for
instance, he writes as follows.

. . . we may de�ne an Ockhamist model as a line without begin-
ning or end which may break up into branches as it moves from
left to right (i.e. from past to future), though not the other way
. . . (p. 126)

From this description it is clear that Prior is representing historical necessity
by means of non-linear time, rather than according to the T �W format
described in Section 2, above. But it is a little diÆcult to tell exactly what
mathematical structures have been characterised; probably, Prior had in
mind trees whose branches all have the order type of the (negative and non-
negative) integers.

To bring this into accord with the usual treatment of linear nonmetric
tense logic, we will liberalise Prior's account.

DEFINITION 1. A treelike frame A for tense logic is a pair hT;<i, where
T is a non-empty set and < is a transitive ordering on T such that if t1 < t
and t2 < t then either t1 = t2 or t1 < t2 or t2 < t1.

As in ordinary tense logic, we imagine an assignment of truth values to
atomic formulas at each t 2 T , and truth-functional connectives are treated
in the usual way. But things become perplexing when you try to interpret
future tense in these structures. Take a very simple branching case, with
just three moments, and imagine that p is true at t0 and t1, an false at t2.
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Is Fp true at t0? It is hard to say.

Moreover, as you reect on the problem, it becomes clear that Prior's jux-
taposition of this technical problem with bits from �gures like Diodorous
Cronus, Peter de Rivo, and Jonathan Edwards is not merely an antiquarian
quirk. There is a genuine connection. These treelike frames represent ways
in which things can evolve indeterministically. A de�nition of satisfaction
for a language with tense operators that is suited to such structures would
automatically provide a way of making tense compatible with indeterminis-
tic cases. And it is just this that the logical argument for determinism claims
can't be done. The technical problem can't be solved without getting to
the bottom of this argument.

If the argument is correct, any de�nition of satisfaction for these struc-
tures will be incorrect{will generate validities that are at variance with the
intended interpretation.  Lukasiewicz's [1967] earlier three-valued solution
is like this, I believe. Not because it makes some formulas neither true nor
false, but because the formulas it endorses as valid are so far o� the mark.
It is bad enough that Fp_:Fp is invalid, but also the approach would make
[[�Fp^�:Fp]^ [�Fq ^�:Fq]] ! [Fp$ Fq] valid, if ' is true if and only
if ' takes the intermediate truth value.12

Nor does the logic that Prior calls `Peircian' strike me as more satisfac-
tory, from a philosophical standpoint, though it does lead to some interest-
ing technical problems relating to axiomatisability. Here, Fvarphi is treated
as true at t in case the moments at which ' is true bar the future paths
through t; i.e., every branch through t contains a moment subsequent to
t at which ' is true. On the Peircian approach, F' _ :F' is valid, but
Fp _ F:p is not; nor is p ! PFp.13 As Prior says, sense can be made of
this by reading F as `will inevitably'. Though this helps us to see what is
going on, it is not the intended interpretation.

The most promising of Prior's suggestions for dealing with indeterminist
future tense is the one he calls `Ockhamist'. The theory will be easier to
present if we �rst work out the satisfaction conditions for �' in treelike
frames. Intuitively, �' is true at t if ' is true at t no matter what the

12Prior briey criticises  Lukasiewicz's treatment of future tense [Prior, 1967, p. 135];
for a more extended criticism, see [Seeskin, 1971].

13Notice that this corresponds to one of the informal principles used in the logical
argument for determinism.
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future is like. And a way the future can be like will be represented by a
fully determinate|i.e. linear| path beyond t. Since the frames are treelike,
these correspond to the branches, or maximal chains, through t.

DEFINITION 2. Where hT;<i is a treelike model structure and t 2 T , a
branch through t is a maximal linearly ordered subset of T containing t; Bt.

To make sense of ' being true at t no matter what the future is like, we
will have to think of formulas being satis�ed not just at moments t, but at
pairs ht; bi, where b 2 Bt. prior explains it this way. On the Ockhamist
approach formulas like Fp are given `prima facie assignments' at t; such
an assignment is made by choosing a particular b in Bt. His idea seems to
be that there is something more provisional about the selection of b than
about that of t; but this he does not articulate or defend very fully. In the
technical formulation of the theory there is no asymmetry between moments
and branches; it is just that two parameters need to be �xed in evaluating
formulas.

Once satisfaction is made relative to pairs ht; bi for some formulas, it
must be relativised in the same way for all formulas; otherwise the recursive
de�nition of satisfaction will become snarled. So, except for future tense,
the de�nition will go like this.

DEFINITION 3. A function h assigning each atomic formula a subset of T
is called an (Ockhamist) assignment, as in Chapter 1 of this volume.

DEFINITION 4. The h truth value k'khht;bi of ' at the pair ht; bi is de�ned

as follows. We assume here that k'khht;bi = 0 i� k'khht;bi 6= 1.

k'khht;bi = 1 i� t 2 h('); if ' is atomic;

k:'khht;bi = 1 i� k'khht;bi = 0;

k' ^  khht;bi = 1 i� k'khht;bi = 1 and k khht;bi = 1;

k' _  khht;bi = 1 i� k'khht;bi = 1 or k khht;bi = 1;

k'!  khht;bi = 1 i� k'khht;bi = 0 or k khht;bi = 1;

kP'khht;bi = 1 i� for some t0 < t; k'khht;bi = 1;

k�'khht;bi = 1 i� for all b 2 Bt; k'khht;bi = 1:

This de�nition renders p ! �p valid, though not every substitution
instance of it is valid. This can be easily changed by letting assignments
take atomic formulas into subsets of fht; bi : t 2 T and b 2 Btg; [Prior,
1967, pp. 123{123] discusses the matter.

At this point, the way to handle F' is forced on us. We use the branch
that is provided by the index.

kF'khht;bi = 1 i� for some t0 2 b such that t < t0; k'khht;bi = 1:
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The Ockhamist logic is conservative; it's easy to show that if ' contains
no occurrences of � then ' is valid for treelike frames if and only if ' is
valid in ordinary tense logic. So indeterminist frames can be accommodated
without sacri�cing any orthodox validities. This is good for those who
(like me) are not determinists, but feel that these validities are intuitively
plausible. Finally, the Ockhamist solution thwarts the logical argument for
determinism by denying that if ' is true at t (i.e. at hb; ti, for some selected
b in Bt) then �' is.

This way out of the argument bears down on its weakest joint; but the
argument is so powerful that even this link resists the pressure; it is hard for
an indeterminist to deny that �' must be true if ' is. To a thoroughgoing
indeterminist, the choice of a branch b through t has to be entirely prima
facie; there is no special branch that deserves to be called the `actual' future
through t.14 Consider two di�erent branches b1 and b2, through t, with
t < t1 2 b1 and t < t2 2 b2. From the standpoint of t1; b1 is actual (at least
up to t1). From the standpoint of t2; b2 is actual (at least up to t2). And
neither standpoint is correct in any absolute sense. In exactly the same way,
no particular moment of linear time is `present'.

But then it seems that the Ockhamist theory gives no account of truth
relative to a moment t, and it also suggests very strongly that if ' is true
at t then �' is also true at t. The only way that a thing can be true at a
moment is for it to be settled at that moment.

In Thomason [1970], it is suggested that such an absolute notion of truth
can be introduced by superimposing Van Fraassen's treatment of truth-
value gaps onto Prior's Ockhamist theory.15 The resulting de�nition is very
simple.

DEFINITION 5.

k'ht = 1 i� k'khht;bi = 1 for all b 2 Bt;

k'ht = 0 i� k'khht;bi = 0 for all b 2 Bt:

This logic preserves the validities of linear tense logic; indeed, ' is Ock-
hamist valid if and only if it is valid here. Also, the rule holds good that if
k'kht = 1 then k�'kht = 1.

Thus, this theory endorses the principle (rejected by the Ockhamist the-
ory) that if a thing is true at t then its truth at t is settled. It may seem
at �rst that it validates all the principles needed for the logical determinist
argument, but of course (since the logic allows branching frames) it must
sever the argument somewhere. the way in which this is done is subtle. The
scheme '! HF' is valid, but this does not mean that if ' is true at t hen
F' is true at any t0 < t. That is, it is not the case that if k'kht = 1 then

14See [Lewis, 1970], and substitute `the actual future' for `the actual world' in what he
says. That is the view of the thoroughgoing indeterminist.

15See, for instance Van Fraassen [1966; 1971].
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kF'kht0 = 1 for all t0 < t. The validity of this scheme only means that for
all b 2 Bt, if k'khht;bi = 1 then kF'khht0;bi = 1 for all t0 < t. But there may

be b0 2 Bt0 which are not in Bt.

To put it another way, the fact that F' is true at t from the perspective
of a later t0 does not make F' absolutely true at t, and so need not imply
that �F' is true at t.

This manoeuvre makes use of the availability of truth-value gaps. To
make this clearer, take a future-oriented version of the logical determinist
argument: F' _ F:' is true at any t; so F' is true at t or :F' is true at
t; so �F' is true at t or �:F' is true at t. The supervaluational theory
blocks the second step of this argument: in any such theory, the truth of
 _ : does not imply that  is true or : is true.

Thomason suggests that this logic represents the position endorsed by
Aristotle in De Int. 18b25� 19b4, but his suggestion is made without any
analysis of the very controversial text, or discussion of the exegetical litera-
ture. For a close examination of the texts, with illuminating philosophical
discussion, see [Frede, 1970]; see also [Sorabji, 1980]. for a broadly-based
examination of Aristotle's views that nicely illustrates the value of treelike
frames as an interpretive device, see [Code, 1976]. The suggestion is also
made in [Je�rey, 1979]. For information about the medieval debate on this
topic, see [Normore, 1982].

4 THE TECHNICAL SIDE OF HISTORICAL NECESSITY

The mathematical dimension of the picture painted in the above section is
still relatively undeveloped. At present, most of the results known to me
deal with axiomatisability in the propositional case.

We have already characterised one important variety of propositional
validity: ' is Ockhamist valid if it is satis�ed at all pairs ht; bi, relative
to all Ockhamist assignments on all treelike frames. (See De�nitions 2{ 4,
above.) The time has come to give an oÆcial de�nition of T �W validity.

DEFINITION 6. A T �W frame is a quadruple hW;T;<;�i, where W and
T are non-empty sets, < is a transitive relation on T which is also irreexive
and linear (i.e. t 6< t for all t 2 T , and either t < t0 or t0 < t or t = t0 for
all, t; t0 2 T ), and � is a 3-place relation on T �W �W , such that (1) for
all t;�t is an equivalence relation (i.e. w �t w for all t 2 T and 2 2 W ,
etc.), and (2) for all w1; w2 2 W and t; t0 2 T , if w1 �t w2 and t0 < t
then w1 �t w2. The intention is that w �t w0 if w and w0 are historical
alternatives through t, and so di�er only in what is future to t.

DEFINITION 7. A function h assigning each atomic formula a subset of
T �W is an assignment, provided that if w �t w0 and t1 � t then ht1; wi 2
h(' i� ht1; w0i 2 h(').
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DEFINITION 8. The h-truth value k'khht;wi of ' at the pair ht; wi is de�ned
by a recursion that treats truth-functional connectives in the usual way. The
clauses for tense and necessity run as follows.

kP'khht;wi = 1 i� for some t0 < t; k'khht;wi = 1;

kF'khht;wi = 1 i� for some t0 such that t < t0; k'khht;wi = 1;

k�'khht;wi = 1 i� for all w0 such that w �t w0; k'khht;wi = 1:

A formula is T � W valid if it is satis�ed at every pair ht; wi by every
assignment on every T �W frame.16

There are some validities that are peculiar to these T �W frames, and
that arise from the fact that only a single temporal ordering is involved in
these frames: (15) and (16) are examples,

(15) FG[p ^ :p] ! �FG[p ^ :p]

(16) GF [p _ :p] ! �GF [p _ :p]

Example (15) is valid because its antecedent is true at ht; wi if and only if
there is a t0 that is <-maximal with respect to w; but this holds if and only
if there is a t0 that is <-maximal absolutely. Example (16) is similar, except
that this time what is at stake is the non-existence of a maximal time.

Burgess remarked (in correspondence) that T �W validity is recursively
axiomatisable, since it is essentially �rst-order. But as far as I know the
problem of �nding a reasonable axiomatisation for T �W validity is open.
I would expect the techniques discussed below, in connection with Kamp
validity, to yield such an axiomatisation.

Although (15) and (16) may be reasonable given certain physical assump-
tions, they do not seem so plausible from a logical perspective. After all, if
w �t w0, all that is required is that w and w0 should share a certain segment
of the past, and this implies that the structure of time should be the same
in w and w0 on this segment. But it is not so clear that w and w0 should
participate in the same temporal structure after t. This suggests a more
liberal sort of T �W frame, �rst characterised by Kamp [1979].17

16I will adhere to this terminology here, but I am not con�dent that it is the best
terminology, over the long run. Varieties of T �W validity tend to proliferate, and this
is only one of them, and probably not the most interesting. Perhaps it would be better
to speak of (Fixed T ) �W validity| but this is awkward.

17This paper of Kamp's deserves summary because it became widely known and is
historically important, though it was never published. Kamp had evidently been thinking
about these matters for several years; the latest draft of the paper that I have seen was
�nished early in 1979. The paper contains much valuable philosophical discussion of
historical necessity, and de�nes the type of validity that I here call `Kamp validity'. An
axiomatisation is proposed in the paper, which was never published because of diÆculties
that came to light in the completeness argument that Kamp had sketched for validity
in dense Kamp frames. In 1979, Kamp discovered a formula that was Kamp valid but
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DEFINITION 9. A Kamp frame is a triple hT ;W;�i where W is a non-
empty set, T is a function from W to transitive, irreexive linear orderings
(i.e. if w 2 W then T (w) = hTw; <wi, where <w is an ordering on Tw
as in T �W frames), and � is a relation on fht; w; w0i : w;w0 2 W and
t 2 T (w) \ T (w0)g such that for all t;�t is an equivalence relation, and if
w �t w0 then ft1 : t1 2 Tw and t1 <w tg = ft1 : t1 2 Tw0 and t+ 1 <w0 tg.
Also, if w �t w0 and t0 <w t then w �t0 w0.

The de�nitions of an assignment, and of the h-truth value k'khht;wi of '

at the pair ht; wi (where t 2 Tw and h is an assignment) are readily adapted
from De�nitions 7 and 8.

Besides (AK0) all classical tautologies, Kamp takes as axioms all in-
stances of the following schemes.18

(AK1) H ['!  ] ! [P'! P ]

(AK2) G['!  ] ! [F'! F ]

(AK3) PP'! P'

(AK4) FF'! F'

(AK5) PG'! '

(AK6) FH'! '

(AK7) PF'! [P' _ ' _ F']

(AK8) FP'! [P' _ ' _ F']

(AK9) �['!  ] ! [�'! � ]

(AK10) �'! '

(AK11) �'! ��'

(AK12) �P'! P�'

(AK13) �' _�:', if ' is atomic.

not provable from the axioms of the paper. Later, Thomason discovered other sorts of
counterexamples. As far as I know, the axiomatisation problem for Kamp validity was
open until Dov Gabbay encountered the problem at a workshop for [the �rst edition
of] this Handbook, in the fall of 1981. Due to the wide circulation of [Kamp, 1979], a
number of erroneous references have crept into the literature concerning the existence of
an axiomatisation of Kamp validity. Gabbay has not yet published his result [Editors'
note: see Section 7.7 of D. M. Gabbay, I. Hodkinson and M. Reynolds. Temporal Logic,
volume 1, Oxford University Press, 1994.], and any such reference in a work published
before [1981, the �rst edition of] this Handbook is likely to be mistaken.

18I omit the axiom scheme for density, and omit a redundant axiom for �. And the
system I describe is only one of several discussed by Kamp.
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As well as (RK0) modus ponens, Kamp posits the rules given by the
following three schemes.

(RK1) '=H'

(RK2) '=G'

(RK3) '=�'

Readers familiar with axioms for modal and tense logic will see that
this list falls into three natural parts. Classical tautologies, modus ponens,
(RK1), (RK2) and (AK1){(AK8) are familiar principles of ordinary tense
logic without modality. Classical tautologies, modus ponens, (RK3), and
(AK9){(AK11) are principles of the modal logic S5. Axiom (AK12) is a
principle combining tense and modality; this principle was explained infor-
mally in Section 2. The validity of (AK13) reects the treatment of atomic
formulas as noncontingent; see the provision in De�nition 7. If tense opera-
tors were not present, (AK13) would of course trivialise �, rendering every
formula noncontingent.

To establish the incompleteness of (AK0){(AK13) + (RK0){(RK3), con-
sider the formula (17), discovered by Kamp, where E1(') is F'^G['_P'].

(17) [PE1(p)^�PE1(q)] ! [P [E1(p)^P�E1(q)]__P [�E1(q)^�E1(p)]_
P [E1(p) ^ �E1(q)]].

The validity of (17) in Kamp frames follows from the fact that these
frames are closed under the sort of diagram completion given in Figure 1.
Given t1; t2; t3; t

0
1; t

0
3 and the relations of the diagram, it must be possible to

interpolate at t02 in w0 alternative to t2, with t03 < t02 < t01.19 Formula (17)
is complicated, but I think I can safely leave the task to checking its Kamp
validity to the reader.

One proof that (17) is independent of (AK0){(AK13) + (RK0){ (RK3)
makes use of still another sort of frame, which is closer to a Henkin construc-
tion than the T �W frames. If our task is to build models out of maximal
consistent sets of formulas, the `times' of a T �W frame are rather arti-
�cial; they would have to be equivalence sets of maximal consistent sets.
In neutral frames, the basic elements are moments, or instantaneous slices
of evolving worlds, which are organised by intra-world temporal relations,
and interworld alternativeness relations. Neutral frames tend to proliferate,
because of the many conditions that can be imposed on the relations; hence
my use of subscripts in describing them.

DEFINITION 10. A neutral frame1 is a triple hW;U ;�i, where (1) W is a
nonempty set, (2) U is a function whose arguments are members of w of W

19In fact, since we are working with Kamp frames, t0
2

= t2. But I put it in this more
general way in anticipation of what I will call neutral frames, so that Figure 1 will be
similar in format to Figure 2.
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Figure 1. Interpolation

b0

a0

b

a

w0w

_ _

�

� s

ss

s

-

Figure 2. One-way completion.

and whose values are orderings hUw; <wi such that U �w is a nonempty set
and <w is a transitive20 ordering on Uw such that for all a; b 2 Uw either
a < b or b < a or a = b, (3) if w;w;2 W and w 6= w0 then Uw and Uw0 are
disjoint, and (4) � is an equivalence relation on [fUw : w 2 Wg, and (5) if
a � a0 and b <w a then there is some b0 2 Uw0 (where a0 2 Uw0) such that
b � b0 and b0 <w a

0.

Here, each Uw corresponds to the set of instantaneous slices of the world
w; � is the alternativeness relation between these slices.

The diagram-completion property expressed in (5) looks as shown in this
picture. It's important to realise that nothing prevents a 6= b while at the
same time a0 = b0 in Figure 2. Of course, in this case we will also have
a � b, which would be something like history repeating itself, at least in all
respects that are settled by the past.

Everything generated by (AK0){(AK13) + (RK0){(RK3) is valid in neu-
tral frames1. (And the fact that the converse holds, so that we have a
completeness result; see [Thomason, 1981c].) But it is easy to show that
(17) is invalid in neutral frames1.

20But not necessarily irreexive!
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This process can be continued; for instance, stronger conditions of di-
agram completion can be imposed on neutral frames, which extend the
propositional validities, and completeness conditions obtained for the re-
sulting sorts of frames. Details can be found in [Thomason, 1981c]; but this
e�ort did not produce an axiomatisation of Kamp validity.

Using his method of constructing irreexive models (see [Gabbay, 1981]),
Gabbay has shown that all the Kamp validities will be obtained if (AG1) and
(RG1) are added to (AK0){(AK13) + (RK0){(RK3). Some terminology is
needed to formulate (RG1); we need a way of talking, to put it intuitively,
about formulas which record a �nite number of steps forwards, backwards
and sideways in Kamp frames.

DEFINITION 11. Let �i 2 fP; F;�g for 1 � i � n; n � 0. Then f(') = ',
and

f�1;:::;�n('0; : : : ; 'n�1; 'n) =
'0 ^ �1['1 ^ : : : ^ �n�1['n�1 ^ �n'n] : : :]:

So, for instance, fF;�;P (p0; p1; p2; p3) is p0 ^ F [p1 ^ �[p2 ^ Pp3]].
The axiom and rule are as follows:

(AG1) [�:' ^H�' ^� ] ! G�H [[:' ^H'] !  ]

(RG2)
f�1;:::;�n('0; : : : ; 'n�1; ['n ^ :p ^Hp]) !  

f�1;:::;�n('0; : : : ; 'n�1; 'n) !  

In RG2, p must be foreign to  and '0; : : : ; 'n.
I leave it to the reader to verify that the axiom and rules are Kamp valid.
It looks as if the ordering properties of linear frames that can be ax-

iomatised in ordinary tense logic (endlessness towards the past, endlessness
towards the future, density, etc.)21 can be axiomatised against the back-
ground of Kamp frames, using Gabbay's techniques. But even so, there are
still many simple questions that need to be settled; to take just two exam-
ples, it would be nice to know whether Kamp satisfaction is compact, and
whether (RG2) is independent.

The situation with respect to treelike frames (i.e. with respect to Ock-
hamist validity) was even less well explored until recently. To begin with, a
number of people have noticed that, although every propositional formula
that is Kamp valid is Ockhamist valid,22 the converse fails. Nishimura
[1979b] points this out, giving (18) as a counterexample.23

(18) GH�FP [H:p ^ :p ^Gp] ! FP�FP [:p ^�Gp]

21See Chapter 1 of this Volume.
22This follows from the fact that a Kamp model can be made from a treelike model,

by making worlds out of its branches.
23Kamp [1979] ascribes a similar example to Burgess.
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Figure 3.

In 1977, Burgess discovered (19), the simplest counterexample known to me.

(19) �G�Fp! �GFp.

And in 1978, Thomason independently constructed the following counterex-
ample.

(20) [p ^�GH [p! Fp]] ! GFp

Both examples trade on the fact that any linearly-ordered subset of a
tree can be extended to a branch (a consequence of the Axiom of Choice).
If the antecedent of (20) is true at ht; bi in a frame hT;<i then there is a
linear set X of moments such that p is true at every member of X , and such
that there is no upper bound to T to X . This set X can be extended to a
branch b�, and GFp will be true at ht; b�i.

But the situation shown in Figure 3 can arise in Kamp models, allowing
(19) to be falsi�ed. If we make a Kamp model out of fbi : i 2 !g, omitting
b!, (19) is false at ht0; b0i.

Nishimura [1979a; 1979b] seems to feel that these examples show treelike
frames to be inadequate. But the technical results only establish a di�erence
between the treelike and the T �W approaches. Adequacy has to do with
intuitions about what should be valid. Intuitions may di�er, but to me the
natural notion is that of a possible future|not that of a possible course
of events. Thus, (20) strikes me as clearly valid. The metric examples
discussed in Nishimura [1979a] a�ect me similarly. the person who holds
both (21) and (22) seems to me to have contradicted himself.
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(21) Inevitably, life on earth will l come to an end at some date in the
future.

(22) For every date in the future, it is not inevitable that life on earth
will have come to an end by that date.

For this reason, it seems to me that the T � W frames do not have
the philosophical interest of the treelike ones, though they are certainly
interesting for technical reasons. this makes Ockhamist validity appear
worth investigating; until recently, however, very little was known about
it.24 In [Burgess, 1979], it is claimed that Ockhamist validity is recursively
axiomatisable, and a proof is sketched. Later (in conversation), Kripke
challenged the proof and Burgess has been unable to substantiate all the
details. Very recently, Gurevich and Shelah have proved a result implying
that Ockhamist validity is decidable. (See [Gurevich and Shelah, 1985].) At
present (October 1982) their paper is not yet written, and I have not had
an opportunity to se their proof. The main result is that the theory of trees
with second-order quanti�cation over maximal chains is decidable.

Of course a proof of decidability would allow axioms to be recovered for
Ockhamist validity; but this would be done in Craigian fashion. And un-
fortunately, Gabbay's completeness techniques do not seem (at �rst glance,
anyway) to extend to the treelike case. Burgess' example [1979, p. 577],
of an Ockhamist invalid formula valid in countable treelike frames, helps to
bring home the complexity of the case.25

There are some interesting technical results regarding logics other than
the treelike and T �W ones that I have stressed here; the most important
of these is Burgess' [1980] proof that the Peircian validities are decidable.
Burgess has pointed out to me that the method of Section 5 of burgess
[1980] can be used to prove Kamp validity decidable, as well as T � W
validity with dense time. He also remarks that the most interesting technical
questions about the case in which atomic formulas are treated like complex
ones (so that p ! �p is not valid, and substitution is an admissible rule)
are unresolved, and may prove more diÆcult.

5 DEONTIC LOGIC COMBINED WITH HISTORICAL NECESSITY

For a general discussion of deontic logic, with historical background, see
F�llesdal and Hilpinen [1971] and Aqvist's chapter on Deontic Logic in Vol-
ume 8 of this Handbook. This presentation will concentrate on combinations

24In note 15 of [Thomason, 1970], Thomason says that he `means to present an ax-
iomatisation' of Ockhamist validity in a forthcoming paper. Since the paper has never
appeared, this intention was evidently premature.

25I owe much of the information in this paragraph to Burgess and Gurevich.
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of deontic modalities with temporal ones, and, in particular, with historical
necessity.

Deontic logic seems to have su�ered from a lack of communication. Even
now, papers are written in which the relevant literature is not mentioned
and the authors appear to be reinventing the wheel. In the hope that a
survey of the literature will help to correct this situation, I have tried to
make the bibliographical coverage of the present discussion thorough.

One facet of this lack of communication can be seen at work in the late
1960s. One the one hand, quite sophisticated model theoretic studies were
developed during this time, treating deontic possibilities historically, as fu-
ture alternatives. Montague [1968, pp. 116{117] and Scott [1967] represent
the earliest such studies. (Unfortunately, Montague's presentation is tucked
away in a rather forbidding technical paper that discusses many other top-
ics, and the publication of the paper was delayed. And Scott's paper was
never published.) But in 1969 Chellas [1969] appeared, giving an extended
and very readable presentation of the California Theory.26 (Montague's,
Scott's and Chellas' theories are quite similar variations of the T �W ap-
proach; the treatment of historical necessity is similar, and indeed identical
in all important respects to Kamp's.)

But although Chellas' monograph contains an extensive and valuable
bibliography of deontic logic, including many references to the literature in
moral philosophy and practical reasoning, and though Chellas is evidently
familiar with this literature, there is no attempt in the work to relate the the-
ory to the more general philosophical issues, or even to discuss its application
to the `paradoxes' of deontic logic, which by then were well known, Chel-
las concentrates on the mathematical portion of the task. Thus although
the presentation is less compressed than Montague's it remains relatively
impenetrable to most moral philosophers, and there is no advertisement of
the genuine help that the theory can give in dealing with these puzzles.

On the other hand, in the philosophical literature, it is easy to �nd studies
that would have bene�ted from vigorous contact with logical theories such
as Chellas'. To consider an example almost at random, take [Chisholm,
1974]. This paper has the word `logic' in its title and deals with a topic
that is thoroughly entangled with Chellas' investigation, but Chisholm's
paper has no references to such logical work and seems entirely ignorant of
it. Moreover, the paper is written in an axiomatic style that makes no use
of semantical techniques that had been current in the logical literature for
many years. And Chisholm commits errors that could have been avoided
by awareness of these things. ([Chisholm, 1974, D9 on p. 13] is an example;

26Chellas' study is concerned with imperatives; but he starts with the assumption
that these express obligations, so that the work belongs to deontic logic. Chellas [1969] is
diÆcult to obtain; the theory is also presented in [Chellas, 1971], which is more accessible.
McKinney [1975], a dissertation written under Chellas, is a later work belonging to this
genre.
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compare this with [Thomason, 1981a, pp. 183{184].)

To take another example, Wiggins [1973] provides an informal discussion,
within the context of the determinist-libertarian debate in moral philoso-
phy, of issues very similar to those treated by Chellas [1971] (and, so far as
historical necessity goes in [Prior, 1967, Chapter 7]). Again, the paper con-
tains no references to the logical literature. Though Wiggins' �rm intuitive
grasp of the issues prevents his argument from being a�ected,27 it would
have been nice to see him connect his account to the very relevant modal
theoretic work.

There are a number of general discussions of the `paradoxes' of deontic
logic: see, for example, �Aqvist [1967, pp. 364{ 373], F�llesdal and Hilpinen
[1971, pp. 21{ 26], Hannson [1971, pp. 130{133], Al-Hibri [1978, pp. 22{29]

and Van Eck [1981, pp. 28{35]. It should be apparent from the shudder
quotes that I prefer not to dignify these puzzles with the same term that is
applied to profoundly deep (perhaps unanswerable) questions like the Liar
Paradox. The puzzles are a disparate assortment, and require a spectrum of
solutions, some of which have little to do with tense. The Good Samaritan
problem, for instance (the problem of reparational obligations), seems from
one point of view to simply be a rediscovery of the frailties of the material
conditional as a formalisation of natural language conditionals.

But part of the solution28 of this problem seems to lie in the development
of an ought kinematics,29 in analogy to the probability kinematics that is the
topic of [Je�rey, 1990, Chapter 11]. As we would expect from probability,
where there are interactions (surprisingly complex ones) between the rules
of probability kinematics and locutions that combine conditionality and
probability, we should expect there to be close relationships between ought
kinematics and the semantics of conditional oughts. Nevertheless, we can
formulate the kinematics of ought without having to work with conditional
oughts in the object language.

27The one exception is Wiggins' de�nition of `deterministic theory' and his assumption
that macroscopic physical theories are determinsitic. Here his argument could have been
genuinely improved by familiarity with Montague [1962]. I haven't discussed this much-
neglected paper here, because it belongs more to philosophy of science than to modal
logic.

28Another part consists in developing an account of conditional oughts. Since this is a
combination of the modalities rather than of tense and modality, I do not discuss it here.
See De Cew [1981] for a recent survey of the topic.

29I have coined this term, since there seems to be a terminological niche for it. The
sources are Je�rey's `probability kinematics' (I believe the term is his) and Greenspan's
use of `ought' as a substantive. I think there are good reasons for the terminology she
recommends in [Greenspan, 1975] where she speaks of `having an ought'. A theory like
Chellas' cannot, of course, be deployed without containing an ought kinematics; but, as
I said, the California writers did not advertise the theory as a solution of some of the
deontic puzzles. Powers [1967] juxtaposes the two, though his pay-o� machines present
the model theory informally. Thomason [1981b] states the modal theory in terms of
treelike frames, and discusses it in relation to some of the deontic puzzles.
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The technical resolution of this problem is very simple, and this is pre-
cisely what the California theory that I referred to above provides: e.g. the
theory of Chellas [1969]. for the sake of variety, I will formulate it with
respect to treelike frames; this is something that, to my knowledge, was
�rst done in Thomason [1981b].30

DEFINITION 12. A treelike frame A for deliberative deontic tense logic is
a pair hT;<;Oi, where hT;<i is a treelike frame for tense logic and O is a
function on T such that for all t 2 T; (1)Ot is nonempty, (2) Ot � Bt, and
(3) if t < t0 and t0 2 b for some b 2 Ot, then Ot0 = Ot \ Bt0 .

The satisfaction clause for oughts is as follows.

kO'k
h
ht;bi = 1 i� for all b0 = Ot; k'hht;b0i = 1:

We are dealing with the result of extending a propositional language of the
sort we discussed in previous sections (truth- functional connectives, past
and future tense, and historical �) by adding a one-place connective O for
ought.31

Something needs to be said about Condition (3) on frames, which is not
to be found in Thomason [1981b], and, as far as I know, has also been
overlooked by other authors who (like Chellas) formulate the model theory
of ought kinematics. This condition yields validities such as the following
two.

(23) OG[F'! :OG:']

(24) OG'! OGO'

These do strike me as valid in this context, and at any rate are interesting
tense-deontic principles having to do with the coherence of plans. Princi-
ple (23), for instance, disallows an alternative future in Ot along which
some outcome will happen, but is forbidden from ever happening. Such an
alternative can't correspond to a coherent plan.

This set-up can readily deal with reparational obligations. Suppose that,
because of a promise to my aunt, at 4:00 I ought to catch an airplane at
5:00, but that at 5:00 I have broken my promise because of the attractions
of the airport bar. Then at 5:00 I should call my aunt to tell her I won't
be on the plane. Thought this is the sort of situation that is sometimes
represented as paradoxical in the literature, it is easily modelled in ought
kinematics, with no apparent conceptual strain. At one time we have O:Fp
true, where p stands for `I tell my aunt I won't be on the plane'. At a later
time (one that involves the occurrence of something that shouldn't have
happened) OFp is true.

30The theory of Thomason [1981b] is more general, but yields an account of deliberative
ought as a special case.

31Since `P ' is already used for past tense, I will not use any special symbol for the dual
of O.
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If we press the account a bit harder, we can change the example; it also
is true at 5:00 that I ought to inform my aunt I won't be on the plane, and
this can be taken to entail that I ought not to be on the plane, since I can
only inform someone of what is true, and because �['!  ] ! [O'! O ]
is a validity of our logic.

The response to this pressure is, of course, a Gricean manoeuvre;32 it
is true at 5:00 (on the understanding of `ought' in question) that I ought
not to be on the plane. But it is not worth saying at 5:00, and if I were
to say it then, I would be taken to have said something else, something
false. And all of this can be made plausible in terms of general principles
of reasonable conversation. I will not give the details here, since they can
easily be reconstructed from [Lewis, 1979b].33 On balance, the approach
seems to be well braced against pressure from this direction. It is hard to
imagine a reasonable theory of truth conditions that will not have to deploy
Gricean tactics at some point. And this can be made to look like a very
reasonable place to deploy them.

These linguistic reections are nicely supported by quite independent
philosophical considerations. Greenspan [1975] is a sustained study of ought
kinematics from a philosophical standpoint, in which it is argued that a
time- bound treatment of oughts is essential to an understanding of their
logic, and that the proper view of deontic detachment is that a conditional
ought licenses a `consequent ought' when the antecedent is unalterably true.
The paper contains many useful references to the philosophical literature,
and provides a good example of the results that can be obtained by com-
bining this philosophical material with the logical apparatus.

The fact that `I ought to be on the plane' would ordinarily be taken to
be false at 5:00 in the example we discussed above shows that `ought' has
employments that are not practical or deliberative: ones that perhaps have
to do with wishful thinking. Also, there is its common use to express a kind
of necessity: `The butter is warm enough now; it ought to melt'.

Philosophers are inclined to speak of ambiguity in cases like this, but this
is either a failure to appreciate the facts or an abuse of the word `ambiguity'.
The word `ought' is indexical or context- sensitive, not ambiguous. The
matter is argued, and some of its consequences are explored , in Kratzer
[1977]; see [Lewis, 1979b] for a study of the consequences in a more general
setting.

In Thomason [1981b] this is taken into account by a more general inter-
pretation of O, according to which the relevant alternatives at t need not
be possible futures for t. Probably the most general account would make
the interpretation of O in a context relative to a set of alternatives which
are regarded as possible in some sense relative to that context.

32With an added wrinkle, due to the contextual adjustibility of oughts.
33See especially [Lewis, 1979b, pp. 354{ 355].
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This is of course related to the philosophical debate over whether `ought'
implies `can'.34 The most sophisticated linguistic account makes the issue
appear rather boring: if we attend to a reasonable distinction between am-
biguity and context-sensitivity, `ought' doesn't imply `can', since there are
contexts that provide counterexamples. But in practical contexts, when the
one is true the other will be, even if for technical reasons we can't relate
this to an implication among linguistic forms.35 This result is rather disap-
pointing. But maybe there are ways of extracting interesting consequences
for moral philosophy from a pragmatic account of oughts and other practi-
cal phenomena. An idea that I �nd intriguing is that manipulation of the
context is the typical| perhaps the only|mechanism of moral weakness.
The idea is suggested in [Thomason, 1981a], but is not much developed.

There seems to be no point in discussing the technical side of temporal
deontic logic here. Not much work has been done in the area,36 and the
best strategy seems to be to let the matter wait until more is known about
the interpretation of historical necessity.

Strictly speaking, conditional oughts are more closely related to the com-
bination of conditionals with oughts than that of tense with modalities.
Because the topic is complex and a thorough discussion of it would take
up much space I have decided to neglect it in this article, even though (as
Greenspan [1975] makes clear) tense enters into the matter. for an illumi-
nating discussion of some of the problems, see DeCew [1981].37

6 CONDITIONAL LOGIC COMBINED WITH HISTORICAL
NECESSITY

In the present essay, `modality' has been con�ned to what can be interpreted
using possible worlds semantics. So here, `conditional logic' has to do with
the modern theories that were introduced by Stalnaker and then by D.
Lewis; see [Lewis, 1973].38 For surveys of this work, see the chapter on

34See, for instance [Hare, 1963, Chapter 4].
35The fate of the validity of `I exist' seems to be much the same. Maybe linguistics is

a graveyard for some philosophical slogans.
36Some results are presented in [�Aqvist and Hoepelman, 1981].
37I have not discussed Casta~neda's work here, though it may o�er an alternative to the

kinematic approach to some of the deontic puzzles; see for instance [Casta~neda, 1981].
for one thing, the work falls outside the topic of this article; for another, Casta~neda's
writings on deontic logic strike me as too confused and poorly presented to repay close
study.

38Thus, for instance, I will not discuss [Slote, 1978], for although it deals with condi-
tionals and the time it seeks to replace the possible worlds semantics with an analysis
in the philosophical tradition. Another recent paper, [Kvart, 1980] uses techniques that
are more model theoretic; but philosophical preconceptions have crept into the semantic
theory at every point and ugli�ed it. The usefulness of logical techniques in philosophy
is largely dependent on the independence of the intuitions that guide the two disciplines;
this enables them to reinforce one another in certain instances.
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Conditional Logic by Nute and Cross in Volume 4 of this Handbook, and
[Harper, 1981] and the volume in which it appears: Harper et al. [1981].

The interaction of conditionals and historical necessity is a topic that is
only beginning to receive attention.39 As in the case of deontic logic there
is a fairly venerable philosophical tradition, involving issues that are still
debated in the philosophical literature, and a certain amount of technical
model theoretic work that may be relevant to these issues. But this time,
the philosophical topic is causality.40

A conditional like D. Lewis', which does not satisfy the principle of con-
ditional excluded middle, [' >  ] _ [' > : ], is much more easy to relate
to causal notions than Stalnaker's, since it is possible to say (with only a
little hedging) that such a conditional is true in case there is a connection
of determination of some sort between the antecedent and the consequent.
But it has seemed less easy to reconcile the theory of such a conditional
with simple tensed examples, like the case of Jim and Jack, invented much
earlier by Downing [1959].

Jim and Jack quarrelled yesterday; Jack is unforgiving, and Jim is proud.
The example is this.

(25) If Jim were to ask Jack for help today,

Jack would help him.

Most authors feel that (25) could be taken in two ways. It could be taken
to be false, because they quarrelled and Jack is so unforgiving. It could be
taken to be true, because Jim is so proud that if he were to ask for help
they would not have quarrelled yesterday. But the preferred understanding
of (25) seems to be the �rst of these; and this is only one way in which
a systematic preference for alternatives that involve only small changes in
the past41 seems to a�ect our habits of evaluating such conditionals. An
examination of such preferences and their inuence on the sort of similarity
that is involved in interpreting conditions can be found in [Lewis, 1979a].
Further information can be found in [Bennett, 1982; Thomason, 1982].

This, of course, relates conditionals to time in a philosophical way. But
Lewis' informal way of attacking the problem assumes that the logic has

39Judging from some unpublished manuscripts that I have recently received, it is likely
to receive more before long. But these are working drafts, which I should not discuss
here.

40See [Sosa, 1975] for a collection juxtaposing some recent papers on causality with
ones on conditionals. (Many of the papers seek to establish links between the two.) Also
see [Downing, 1959; Jackson, 1977].

41Though I put it this way D. Lewis (who assumes determinism for the sake of argument
in [Lewis, 1979a], so that changes in the future must be accompanied by changes in the
past) has to resort to a hierarchy of maxims to achieve a like e�ect. (In particular, Maxim
1, [Lewis, 1979a, p. 472], enjoins us to avoid wholesale violations of law, and Maxim 2
tells us to seek widespread perfect match of particular fact; together, these have much
the same e�ect as the principle I stated in the text.
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to come to an end, and in particular that there are no new validities to be
discovered by placing conditionals in a temporal setting.42 In view of the
lessons we have learned about the combination of tense with other modali-
ties, this may be a methodological oversight; it runs the risk of not getting
the most out of the possible worlds semantics that is to be put to philo-
sophical use.43

Thomason and Gupta [1981] and Van Fraassen [1981] are two recent
studies that pursue this model theoretic route: the former uses treelike
frames and the latter a version of the T �W approach. The two treatments
are very similar in essentials, though a decision about how to secure the
validity of (27) leads to much technical complexity in [Thomason and Gupta,
1981]. Since Van Fraassen's exposition is so clear, and I fear I would be
repeating myself if I attempted a detailed account of [Van Fraassen, 1981],
I will be very brief.

Both papers endorse certain validities involving a mixture of tense, his-
torical necessity, and the conditional. The following examples are represen-
tative.

(26) [�' ^ [' >  ]] ! � 

(27) [�:' ^�[' >  ]] ! ['! �['!  ]]

The �rst of these represents one way in which selection principles for >
can be formulated in terms of alternative histories; the validity of (26)
corresponds to a preference at ht; wi for alternatives that are possible futures
for ht; wi.

Example (27) called the Edelberg inference after Walter Edelberg, who
�rst noticed it, represents a principle of `conditional transmission of set-
tledness' that can be made quite plausible; see the discussion in Thomason
and Gupta [1981, pp. 306{ 307]. Formally, its validity depends on there
being no `unattached' counterfactual futures|ones that are not picked out
as counterfactual alternatives on condition ' with respect to actual futures.
At least, this is the way that Van Fraassen secures the validity of (28);
Thomason and Gupta do it in a circuitous way, at the cost of making their
theory much more diÆcult to explain.

If there advantages to o�set this cost, they have to do with causality.
The key notion introduced in [Thomason and Gupta, 1981], which is not

42I mean that in [Lewis, 1979a], Lewis phrases the discussion in terms of `similarity'.
This is the intuitive notion used to explicate the technical gadgets (assignments of sets
of possible worlds to each world) that yield Lewis' theory in [Lewis, 1973] of the satisfac-
tion conditions for the conditional. In [Lewis, 1979a], he leaves things at this informal
level, and doesn't try to build temporal conditional frames which can be used to de�ne
satisfaction for an extended language.

43If Lewis' adoption of a determinist position in [Lewis, 1979a] is not for the sake of
argument, there may be a philosophical issue at work here. A philosophical determinist
would be much more likely to follow an approach like Lewis' than to base conditional
logic on the logic of historical necessity.



COMBINATIONS OF TENSE AND MODALITY 231

needed by Van Fraassen,44 is that of a future choice function: a function F
that for each moment t in a treelike frame chooses a branch in Bt. future
choice functions must choose coherently, so that if t0 2 Ft then Ft = Ft0 . By
considering restricted sets of choice functions, Thomason and Gupta are able
to introduce a modal notion that, they claim, may help to explicate causal
independence. If this claim could be made good it would be worth the added
complexity, since so far the techniques of possible worlds semantics have
not been of much direct help in clarifying the philosophical debate about
causality. But in [Thomason and Gupta, 1981], the idea is not developed
enough to see very clearly what the prospects of success are.

University of Michigan, USA.

EDITORIAL NOTE

The present chapter is reproduced from the �rst edition of the Handbook.
A continuation chapter will appear in a later volume of the present, second
edition. The logic of historical necessity is technically a special combination
of modality and temporal operators. Combinations with temporal logic, (or
temporalising) are discussed in chapter 2 of this volume. Branching temporal
logics with modalities in the spirit of the logics of this chapter have been
very successfully introduced in theoretical computer science. These are the
CTL (computation tree lgoic) family of logics. For a survey, see the chapter
by Colin Stirling in Volume 2 of the Handbook of Logic in Computer Science,
S. Abramsky, D. Gabbay and T, Maibaum, editors, pp. 478{551. Oxford
University Press, 1992.

The following two sources are also of interest:

1. E. Clarke, Jr., O. Grumberg and D. Peled. Model Checking, MIT
Press, 2000.

2. E. Clarke and B.-H. Schlinglo�. Model checking. In Handbook of
Automated Reasoning, A. Robinson and a. Voronkov, eds. pp. 1635
and 1790. Elsevier and MIT Press, 2001.
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NINO B. COCCHIARELLA

PHILOSOPHICAL PERSPECTIVES ON

QUANTIFICATION IN TENSE AND MODAL

LOGIC

INTRODUCTION

The trouble with modal logic, according to its critics, is quanti�cation into
modal contexts|i.e. de re modality. For on the basis of such quanti�ca-
tion, it is claimed, essentialism ensues, and perhaps a bloated universe of
possibilia as well. The essentialism is avoidable, these critics will agree, but
only by turning to a Platonic realm of individual concepts whose existence
is no less dubious or problematic than mere possibilia. Moreover, basing
one's semantics on individual concepts, it is claimed, would in e�ect ren-
der all identity statements containing only proper names either necessarily
true or necessarily false| i.e. there would then be no contingent identity
statements containing only proper names.

None of these claims is true quite as it stands, however; and in what
follows we shall attempt to separate the cha� from the grain by examining
the semantics of (�rst-order) quanti�ed modal logic in the context of di�er-
ent philosophical theories. Beginning with the primary semantics of logical
necessity and the philosophical context of logical atomism, for example, we
will see that essentialism not only does not ensue but is actually rejected in
that context by the validation of the modal thesis of anti-essentialism, and
that in consequence all de re modalities are reducible to de dicto modalities.

Opposed to logical atomism, but on a par with it in its referential inter-
pretation of quanti�ers and proper names, is Kripke's semantics for what he
properly calls metaphysical necessity. Unlike the primary semantics of logi-
cal necessity, in other words, Kripke's semantics for metaphysical necessity
is in direct conict with some of the basic assumptions of logical atomism;
and in the form which that conict takes, which we shall refer to here as
the form of a secondary semantics for necessity, Kripke's semantics amounts
to the initial step toward a proper formulation of Aristotelian essentialism.
(A secondary semantics for necessity stands to the primary semantics in
essentially the same way that non-standard models for second-order logic
stand to standard models.) The problem with this initial step toward Aris-
totelian essentialism, however, is the problem of all secondary semantics;
viz. that of its objective, as opposed to its merely formal, signi�cance|a
problem which applies all the more so to Kripke's deepening of his formal
semantics by the introduction of an accessibility relation between possible
worlds. This, in fact, is the real problem of essentialism.

D. Gabbay and F. Guenthner (eds.),
Handbook of Philosophical Logic, Volume 7, 235{275.
c 2002, Kluwer Academic Publishers. Printed in the Netherlands.
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There are no individual concepts, it will be noted in what follows, in ei-
ther logical atomism or Kripke's implicit philosophical semantics, and yet in
both contexts proper names are rigid designators; that is, in both there can
be no contingent identity statements containing only proper names. One
need not, accordingly, turn to a Platonic realm of individual concepts in or-
der to achieve this result. Indeed, quite the opposite is the case. That is, it
has in fact been for the defence of contingent identity, and not its rejection,
that philosophical logicians have turned to a Platonic realm of individual
concepts, since, on this view, it is only through the mere coincidence of
the denotations of the individual concepts expressed by proper names that
an identity statement containing those names can be contingent. More-
over, unless such a Platonic realm is taken as the intensional counterpart of
logical atomism (a marriage of dubious coherence), it will not validate the
modal thesis of anti-essentialism. That is, one can in fact base a Platonic
or logical essentialism|which is not the same thing at all as Aristotelian
essentialism|upon such a realm. However, under suitable assumptions, es-
sentialism can also be avoided in such a realm; or rather it can in the weaker
sense in which, given these assumptions, all de re modalities are reducible
to de dicto modalities.

Besides the Platonic view of intensionality, on the other hand, there is also
a socio-biologically based conceptualist view according to which concepts are
not independently existing Platonic forms but cognitive capacities or related
structures of the human mind whose realisation in thought is what informs a
mental act with a predicable or referential nature. This view, it will be seen,
provides an account in which there can be contingent identity statements,
but not such as to depend on the coincidence of individual concepts in the
platonic sense. Such a conceptualist view will also provide a philosophical
foundation for quanti�ed tense logic and paradigmatic analyses thereby of
metaphysical modalities in terms of time and causation. The problem of the
objective signi�cance of the secondary semantics for the analysed modalities,
in other words, is completely resolved on the basis of the nature of time, local
or cosmic. The related problem of a possible ontological commitment to
possibilia, moreover, is in that case only the problem of how conceptualism
can account for direct references to past or future objects.

1 THE PRIMARY SEMANTICS OF LOGICAL NECESSITY

We begin by describing what we take to be the primary semantics of logical
necessity. Our terminology will proceed as a natural extension of the syntax
and semantics of standard �rst-order logic with identity. Initially, we shall
assume that the only singular terms are individual variables. As primitive
logical constants we take !;:;8;=, and � for the material conditional
sign, the negation sign, the universal quanti�er, the identity sign and the
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necessity sign, respectively. (The conjunction, disjunction, biconditional,
existential quanti�er and possibility signs|^;_;$; 9 and �, respectively|
are understood to be de�ned in the usual way as metalinguistic abbreviatory
devices.) The only non-logical or descriptive constants at this point are
predicates of arbitrary (�nite) degree. We call a set of such predicates a
language and understand the well-formed formulas (w�s) of a language to
be de�ned in the usual way.

A model A indexed by a language L, or for brevity, an L-model, is a
structure of the form hD;Ri, where D, the universe of the model, is a non-
empty set and R is a function with L as domain and such that for each
positive integer n and each n-place predicate Fn in L, R(Fn) � Dn, i.e.
R(Fn) is a set of n -tuples of members of D. An assignment in D is a
function A with the set of individual variables as domain and such that
A(x) 2 D, for each variable x. Where d 2 D, we understand A(d=x) to be
that assignment in D which is exactly like A except for its assigning d to x.
The satisfaction of a w� ' of L in A by an assignment A in D, in symbols
A; A � ', is recursively de�ned as follows:

1. A; A � (x = y) i� A(x) = A(y);

2. A; A � Pn(x1; : : : ; xn) i� hA(x1); : : : ; A(xn)i 2 R(Pn);

3. A; A � :' i� A; A 2 ';

4. A; A � ('!  ) i� either A; A 2 ' or A; A �  ;

5. A; A � 8x' i� for all d 2 D;A; A(d=x) � '; and

6. A; A � �' i� for all R0, if hD;R0i is an L-model, then hD;R0i, A � '.

The truth of a w� in a model (indexed by a language suitable to that w�)
is as usual the satisfaction of the w� by every assignment in the universe
of the model. Logical truth is then truth in every model (indexed by any
appropriate language). One or another version of this primary semantics
for logical necessity, it should be noted, occurs in [Carnap, 1946]; [Kanger,
1957]; [Beth, 1960] and [Montague, 1960].

2 LOGICAL ATOMISM AND QUANTIFIED MODAL LOGIC

These de�nitions, as already indicated, are extensions of essentially the same
semantical concepts as de�ned for the modal free w�s of standard �rst-order
predicate logic with identity. The clause for the necessity operator has a
particularly natural motivation within the framework of logical atomism.
In such a framework, a model hD;Ri for a language L represents a possible
world of a logical space based upon (1) D as the universe of objects of that
space and (2) L as the predicates characterising the atomic states of a�airs
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of that space. So based, in other words, a logical space consists of the
totality of atomic states of a�airs all the constituents of which are in D and
the characterising predicates of which are in L. A possible world of such a
logical space then amounts in e�ect to a partitioning of the atomic states of
a�airs of that space into two cells: those that obtain in the world in question
and those that do not.

Every model, it is clear, determines both a unique logical space (since it
speci�es both a domain and a language) and a possible world of that space.
In this regard, the clause for the necessity operator in the above de�nition of
satisfaction is the natural extension of the standard de�nition and interprets
that operator as ranging over all the possible worlds (models) of the logical
space to which the given one belongs.

Now it may be objected that logical atomism is an inappropriate frame-
work upon which to base a system of quanti�ed modal logic; for if any
framework is a paradigm of anti-essentialism, it is logical atomism. The
objection is void, however, since in fact the above semantics provides the
clearest validation of the modal thesis of anti-essentialism. Quanti�ed modal
logic, in other words, does not in itself commit one to any non-trivial form
of essentialism (cf. [Parsons, 1969]).

The general idea of the modal thesis of anti-essentialism is that if a pred-
icate expression or open w� ' can be true of some individuals in a given
universe (satisfying a given identity- di�erence condition with respect to
the variables free in '), then ' can be true of any individuals in that uni-
verse (satisfying the same identity -di�erence conditions). In other words,
no conditions are essential to some individuals that are not essential to all,
which is as it should be if necessity means logical necessity.

The restriction to identity-di�erence conditions mentioned (parentheti-
cally) above can be dropped, it should be noted, if nested quanti�ers are
interpreted exclusively and not (as we have done) inclusively where, e.g. it
is allowed that the value of y in 8x9y'(x; y) can be the same as the value of
x. (Cf. [Hintikka, 1956] for a development of the exclusive interpretation.)
Indeed, as Hintikka has shown, when nested quanti�ers are interpreted ex-
clusively, identity and di�erence w�s are superuous|which is especially
apropos of logical atomism where an identity w� does not represent an
atomic state of a�airs. (Cf. Wittgenstein's Tractatus Logico-Philosophicus
5.532{ 5.53 and [Cocchiarella, 1975a, Section V].)

Retaining the inclusive interpretation and identity as primitive, however,
an identity-di�erence condition for distinct individual variables x1; : : : ; xn
is a conjunction of one each but not both of the w�s (xi = xj) or (xi 6= xj),
for all i; j such that 1 � i < j � n. It is clear of course that such a con-
junction speci�es a complete identity-di�erence condition for the variables
x1; : : : ; xn. Since there are only a �nite number of non-equivalent such con-
ditions for x1; : : : ; xn, moreover, we understand IDj(x1; : : : ; xn) , relative
to an assumed ordering of such non-equivalent conjunctions, to be the jth
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conjunction in the ordering . The modal thesis of anti-essentialism may now
be stated as the thesis that every w� of the form

9x1 : : : 9xn(IDj(x1; : : : ; xn) ^ �')
! 8x1 : : :8xn(IDj(x1; : : : ; xn) ! �')

is to be logically true, where x1; : : : ; xn are all the distinct individual vari-
ables occurring free in '. (Where n = 0, the above w� is understood
to be just (�' ! �'); and where n = 1, it is understood to be just
9x�' ! 8x�').) The validation of the thesis in our present semantics is
easily seen to be a consequence of the following lemma (whose proof is by
a simple induction on the w�s of L).

LEMMA If L is a language, A;B are L-models, and h is an isomorphism of
A with B, then for all w�s ' of L and all assignments A in the universe of
A, A; A � ' i� B; A=h � '.

One of the nice consequences of the modal thesis of anti-essentialism in
the present semantics, it should be noted, is the reduction of all de re w�s
to de dicto w�s. (A de re w� is one in which some individual variable has
a free occurrence in a subw� of the form � . A de dicto w� is a w� that
is not de re.) Naturally, such a consequence is a further sign that all is well
with our association of the present semantics with logical atomism.

THEOREM (De Re Elimination Theorem) For each de re w� ', there is a
de dicto w�  such that ('$  ) is logically true.1

These niceties aside, however, another result of the present semantics
is its essential incompleteness with respect to any language containing at
least one relational predicate. (It is not only complete but even decidable
when restricted to monadic w�s|of which more anon.) The incompleteness
is easily seen to follow from the following lemma and the well-known fact
that the modal free non-logical truths of a language containing at least one
relational predicate is not recursively enumerable (cf. [Cocchiarella, 1975b]).
(It is also for the statement of the in�nity condition of this lemma that a
relational predicate is needed.)

LEMMA If  is a sentence which is satis�able, but only in an in�nite model,
and ' is a modal and identity-free sentence, then ( ! :�') is logically
true i� ' is not logically true.

1A proof of this theorem can be found in [McKay, 1975]. Briey, where
x1; : : : ; xn are all the distinct individual variables occurring free in ' and
ID1(x1; : : : ; xn); : : : ; IDk(x1; : : : xn) are all the non-equivalent identity-di�erence condi-
tions for x1; : : : ; xn, then the equivalence in question can be shown if  is obtained from
' by replacing each subw� �� of ' by:

[ID1(x1; : : : xn) ^�8x1 : : :8xn(ID1(x1; : : : ; xn) ! �)] _ : : :
_[IDk(x1; : : : ; xn) ^�8x1 : : :8xn(IDk(x1; : : : ; xn) ! �)]:
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THEOREM If L is a language containing at least one relational predicate,
then the set of w�s of L that are logically true is not recursively enumerable.

This last result does not a�ect the association we have made of the pri-
mary semantics with logical atomism. Indeed, given the L�owenheim{Skolem
theorem, what this lemma shows is that there is a complete concurrence be-
tween logical necessity as an internal condition of modal free propositions
(or of their corresponding states of a�airs) and logical truth as a semanti-
cal condition of the modal free sentences expressing those propositions (or
representing their corresponding states of a�airs). And that of course is as
it should be if the operator for logical necessity is to have only formal and
no material content.

Finally, it should be noted that the above incompleteness theorem ex-
plains why Carnap was not able to prove the completeness of the system of
quanti�ed modal logic formulated in [Carnap, 1946]. For on the assumption
that the number of objects in the universe is denumerably in�nite, Carnap's
state description semantics is essentially that of the primary semantics re-
stricted to denumerably in�nite models; and, of course, precisely because
the models are denumerably in�nite, the above incompleteness theorem ap-
plies to Carnap's formulation as well. Thus, the reason why Carnap was
unable to carry though his proof of completeness is �nally answered.

3 THE SECONDARY SEMANTICS OF METAPHYSICAL
NECESSITY

Like the situation in standard second-order logic, the incompleteness of the
primary semantics can be avoided by allowing the quanti�cational interpre-
tation of necessity in the metalanguage to refer not to all the possible worlds
(models) of a given logical space but only to those in a given non-empty
set of such worlds. Of course, since a model may belong to many such sets,
the relativisation to the one in question must be included as part of the
de�nition of satisfaction.

Accordingly, where L is a language and D is a non-empty set, we un-
derstand a model structure based on D and L to be a pair hA;Ki, where
K is a set of L-models all having D as their universe and A 2 K. The
satisfaction of a w� ' of L in such a model structure by an assignment A
in D, in symbols hA;Ki; A � ', is recursively de�ned exactly as in Section
1, except for clause (6) which is de�ned as follows:

6. hA;Ki; A � �' i� for all B 2 K; hB;Ki; A � '.

Instead of logical truth, a w� is understood to be universally valid if it is
satis�ed by every assignment in every model structure based on a language
to which the w� belongs. Where QS5 is standard �rst-order logic with
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identity supplemented with the axioms of S5 propositional modal logic, a
completeness theorem for the secondary semantics of logical necessity was
proved by Kripke in [1959].

THEOREM (Completeness Theorem). A set � of w�s is consistent in QS5
i� all the members of � are simultaneously satis�able in a model struc-
ture;and (therefore) a w� ' is a theorem of QS5 i� ' is universally valid.

The secondary semantics, despite the above completeness theorem, has
too high a price to pay as far as logical atomism is concerned. In particular,
unlike the situation in the primary semantics, the secondary semantics does
not validate the modal thesis of anti-essentialism|i.e. it is false that every
instance of the thesis is universally valid. This is so of course because
necessity no longer represents an invariance through all the possible worlds
of a given logical space but only through those in arbitrary non-empty sets
of such worlds; that is, necessity is now allowed to represent an internal
condition of propositions (or of their corresponding states of a�airs) which
has maternal and not merely formal content|for what is invariant through
all the members of such a non-empty set need not be invariant though all
the possible worlds (models) of the logical space to which those in the set
belong.

One example of how such material content a�ects the implicit metaphys-
ical background can be found in monadic modal predicate logic. It is well-
known, for example, that modal free monadic predicate logic is decidable
and that no modal free monadic w� can be true in an in�nite model unless
it is true in a �nite model as well. Consequently, any substitution instance
of a modal free monadic w� for a relational predicate in an in�nity axiom is
not only false but logically false. It follows, accordingly, that there can be
no modal free analysis or reduction otherwise of all relational predicates or
open w�s in terms only of monadic predicates, i.e. in terms only of modal
free monadic w�s.

Now it turns out that the same result also holds in the primary seman-
tics for quanti�ed modal logic. That is, in the primary semantics, modal
monadic predicate logic is also decidable and no monadic w�, modal free or
otherwise, can be true in an in�nite model unless it is also true in a �nite
model (cf. [Cocchiarella, 1975b]). Consequently, there can also be no modal
analysis or reduction otherwise of all relational predicates or open w�s in
terms only of monadic w�s, modal free or otherwise.

With respect to the secondary semantics, however, the situation is quite
di�erent. In particular, as Kripke has shown in [1962], modal monadic
predicate logic, as interpreted in the secondary semantics, is not decidable.
Moreover, on the basis of that semantics a modal analysis of relational
predicates in terms of monadic predicates can in general be given. E.g.,
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substituting �(Fx ^Gy) for the binary predicate R in the in�nity axiom

8x:R(x; x) ^ 8x9yR(x; y) ^ 8x8y8z[R(x; y)
^ R(y; z) ! R(x; z)]

results in a modal monadic sentence which is true in some model structure
based on an in�nite universe and false in all model structures based on a
�nite domain. Somehow, in other words, relational content has been incor-
porated in the semantics for necessity, and thereby of possibility as well. In
this respect, the secondary semantics is not the semantics of a merely formal
or logical necessity but of a necessity having additional content as well.

Kripke himself, it should be noted, speaks of the necessity of his semantics
not as a formal or logical necessity but as a metaphysical necessity (cf.
[Kripke, 1971, p. 150]). Indeed, it is precisely because he is concerned with a
metaphysical or material necessity and not a logical necessity that not every
necessary proposition needs to be a priori, nor every a posteriori proposition
contingent (ibid.). Needless to say, however, but that the latter result should
obtain does not of itself amount to a refutation, as it is often taken, of
the claim of logical atomism that every logically necessary proposition is a
priori and that every a posteriori proposition is logically contingent. We are
simply in two di�erent metaphysical frameworks, each with its own notion
of necessity and thereby of contingency as well.

4 PROPER NAMES AS RIGID DESIGNATORS

Ordinary proper names in the framework of logical atomism are not what
Bertrand Russell called `logically proper names', because the things they
name, if they name anything at all, are not the simple objects that are
the constituents of atomic states of a�airs. However, whereas the names of
ordinary language have a sense (Sinn) insofar as they are introduced into
discourse with identity criteria (usually provided by a sortal common noun
with which they are associated|cf. [Geach, 1962, p. 43 f]), the logically
proper names of logical atomism have no sense other than what they des-
ignate. In other words, in logical atomism, `a name means (bedeutet) an
object. The object is its meaning (Bedeutung)' (Tractatus 3.203). Di�erent
identity criteria have no bearing on the simple objects of logical atomism,
and (pseudo) identity propositions, strictly speaking, have no sense (Sinn)|
i.e. they do not represent an atomic state of a�airs.

Semantically, what this comes to is that logically proper names, or indi-
vidual constants, are rigid designators; that is, their introduction into formal
languages requires that the w�

9x�(a = x)
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be logically true in the primary semantics for each individual constant a.
Carnap, in his formulation of the primary semantics, also required that
(a 6= b) be logically true for distinct individual constants; but that was be-
cause his semantics was given in terms of state descriptions where redundant
proper names have a complicating e�ect. Carnap's additional assumption
that there is an individual constant for every object in the universe is, of
course, also an assumption demanded by his use of state descriptions and
is not required by our present model-theoretic approach. (It is notewor-
thy, however, that the assumption amounted in e�ect to perhaps the �rst
substitution interpretation of quanti�ers, and that in fact it was Carnap
who �rst observed that a strong completeness theorem even for modal free
w�s could not be established for an in�nite domain on the basis of such an
interpretation. Cf. [Carnap, 1938, p. 165].)

Kripke also claims that proper names are rigid designators, but his proper
names are those of ordinary language and, as already noted, his necessity
is a metaphysical and not a logical necessity. Nevertheless, in agreement
with logical atomism the function of a proper name, according to Kripke,
is simply to refer, and not to describe the object named [Kripke, 1971, p.
140]; and this applies even when we �x the reference of a proper name by
means of a de�nite description |for the relation between a proper name
and a description used to �x the reference of the name is not that of syn-
onymy [Kripke, 1971, p. 156f]. To the objection that we need a criterion
of identity across possible worlds before we can determine whether a name
is rigid or not, Kripke notes that we should distinguish how we would speak
in a counterfactual situation from how we do speak of a counterfactual sit-
uation [Kripke, 1971, p. 159]. That is, the problem of cross-world identity,
according to Kripke, arises only through confusing the one way of speaking
with the other and that it is otherwise only a pseudo-problem.

5 NON-CONTINGENT IDENTITY AND THE CARNAP{BARCAN
FORMULA

As rigid designators, proper names cannot be the only singular terms oc-
curring in contingent identity statements. That is, a contingent identity
statement must contain at least one de�nite description whose descriptive
content is what accounts for the possibility of di�erent designata and thereby
of the contingency of the statement in question. However, in general, as
noted by [Smullyan, 1948], there is no problem about contingent identity
in quanti�ed modal logic if one of the singular terms involved is a de�nite
description; or rather there is no problem so long as one is careful to observe
the proper scope distinctions. On the other hand, where scope distinctions
are not assumed to have a bearing on the occurrence of a proper name, the
problem of contingent identity statements involving only proper names is
trivially resolved by their construal as rigid designators. That is, where a
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and b are proper names or individual constants, the sentences

(a = b) ! �(a = b); (a 6= b) ! �(a 6= b)

are to be logically true in the primary semantics and universally valid in
the secondary. In other words, whether in the context of logical atomism
or Kripke's metaphysical necessity, there are only non-contingent identity
statements involving only proper names.

Now it is noteworthy that the incorporation of identity-di�erence condi-
tions in the modal thesis of anti-essentialism disassociates these conditions
from the question of essentialism. This is certainly as it should be in logical
atomism, since in that framework, as F. P. Ramsey was the �rst to note,
`numerical identity and di�erences are necessary relations' [Ramsey, 1960,
p. 155]. In other words, even aside from the use of logically proper names,
the fact that there can be no contingent identities or non-identities in logical
atomism is reected in the logical truth of both of the w�s

8x8y(x = y ! �x = y); 8x8y(x 6= y ! �x 6= y)

in the primary semantics. But then even in the framework of Kripke's
metaphysical necessity (where quanti�ers also refer directly to objects), an
object cannot but be the object that it is, nor can one object be identical
with another|a metaphysical fact which is reected in the above w�s being
universally valid as well.

Another observation made by Ramsey in his adoption of the framework
of logical atomism was that the number of objects in the world is part of
its logical sca�olding [Ramsey, 1960]. That is, for each positive integer n,
it is either necessary or impossible that there are exactly n individuals in
the world; and if the number of objects is in�nite, then, for each positive
integer n, it is necessary that there are at least n objects in the world
(cf. [Cocchiarella, 1975a, Section 5]. This is so in logical atomism because
every possible world consists of the same totality of objects that are the
constituents of the atomic states of a�airs constituting the actual world. In
logical atomism, in other words, an object's existence is not itself an atomic
state of a�airs but consists in that object's being a constituent of atomic
states of a�airs.

One important consequence of the fact that every possible world (of a
given logical space) consists of the same totality of objects is the logical
truth in the primary semantics of the well-known Barcan formula (and its
converse):

8x�'$ �8x':

Carnap, it should be noted, was the �rst to argue for the logical truth of
this principle (in [Carnap, 1946, Section 10] and [1947, Section 40]) which
he validated in terms of the substitution interpretation of quanti�ers in
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his sate description semantics. The validation does not depend, of course,
on the number of objects being denumerably in�nite, though, as already
noted, Carnap did impose that condition on his state descriptions. But
then|even though Carnap himself did not give this argument| given the
non-contingency of identity, the logical truth of the Carnap{Barcan formula,
and the assumption for each positive integer n that it is not necessary that
there are just n objects in the world, it follows that the number of objects in
the world must be in�nite. (For if everything is one of a �nite number n of
objects, then, by the non-contingency of identity, everything is necessarily
one of n objects, and therefore by the Carnap{Barcan formula, necessarily
everything is one of n objects; i.e. contrary to the assumption, it is necessary
after all that there are just n objects in the world.)

As the above remarks indicate, the validation of the Carnap{Barcan for-
mula in the framework of logical atomism is unproblematic; and therefore
its logical truth in the primary semantics is as it should be. However,
besides being logically true in the primary semantics the principle is also
universally valid in the secondary semantics; and it is not clear that this is
as it should be for Kripke's metaphysical necessity. Indeed, Kripke's later
modi�ed semantics for quanti�ed modal logic in [Kripke, 1963] suggests he
thinks otherwise, since there the Carnap{Barcan formula is no longer val-
idated. Nevertheless, as indicated above, even with the rejection of the
Carnap{Barcan formula, it is clear that Kripke intends his metaphysical
context to be such as to support the validation of the non-contingency of
identity.

6 EXISTENCE IN THE PRIMARY AND SECONDARY SEMANTICS

In rejecting the Carnap{Barcan formula, one need not completely reject the
assumption upon which it is based, viz. that every possible world (of a given
logical space) consists of the same totality of objects. All one need do is
take this totality not as the set of objects existing in each world but as the
sum of objects that exist in some world or other (of the same logical space),
i.e. as the totality of possible objects (of that logical space). Quanti�cation
with respect to a world, however, is always to be restricted to the objects
existing in that world|though free variables may, as it were, range over
the possible objects, thereby allowing a single interpretation of both de re
and de dicto w�s. The resulting quanti�cational logic is of course free of
the presupposition that singular terms (individual variables and constants)
always designate an existing object and is for this reason called free logic
(cf. [Hintikka, 1969]).

Thus, where L is a language and D is a non-empty set, then hhA; Xi;Ki
is a free model structure based on D and L i� (1) hA; Xi 2 K, (2) K is a
set every member of which is a pair hB; Y i where B is an L-model having
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D as its universe and Y � D and (3) D = [fY : for some L- model
B; hB; Y i 2 Kg. Possible worlds are now represented by the pairs hB; Y i,
where the (possibly empty) set Y consists of just the objects existing in the
world in question; and of course the pair hA; Xi is understood to represent
the actual world. Where A is an assignment in D, the satisfaction by A of
a w� ' of L in hhA; Xi;Ki is de�ned as in the secondary semantics, except
for clause (5) which is now as follows:

5. hhA; Xi;Ki; A � 8x' i� for all d 2 X; hhA; Xi;Ki; A(d=x) � '.

Now if K is the set of all pairs hB; Y i, where B is an L-model having D
as its universe and Y � D, then hhA; Xi;Ki is a full free model structure.
Of course, whereas validity with respect to all free model structures (based
on an appropriate language) is the free logic counterpart of the secondary
semantics, validity with respect to all full free model structures is the free
logic version of the primary semantics. Moreover, because of the restricted
interpretation quanti�ers are now given, neither the Carnap{Barcan formula
nor its converse is valid in either sense, i.e. neither is valid in either the
primary or secondary semantics based on free logic.

If a formal language L contains proper names or individual constants,
then their construal as rigid designators requires that a free model structure
hhA; Xi;Ki based on L be such that for all hB; Y i 2 K and all individual
constants a in L, the designation of a in B is the same as the designation
of a in A, i.e. in the actual world. Note that while it is assumed that every
individual constant designates a possible object, i.e. possibly designates an
existing object, it need not be assumed that it designates an existing object,
i.e. an object existing in the actual world. In that case, the rigidity of such
a designator is not given by the validity of 9x�(a = x) but by the validity
of �9x�(a = x) instead. Existence of course is analysable as follows:

E!(a) = df 9x(a = x):

Note that since possible worlds are now di�erentiated from one another
by the objects existing in them, the concept of existence, despite its analysis
in logical terms, must be construed here as having material and not merely
formal content. In logical atomism, however, that would mean that the ex-
istence or non-existence of an object is itself an atomic state of a�airs after
all, since now even merely possible objects are constituents of atomic states
of a�airs. To exclude the later situation, i.e. to restrict the constituents of
atomic states of a�airs to those that exist in the world in question, would
mean that merely possible worlds are not after all merely alternative combi-
nations of the same atomic states of a�airs that constitute the actual world;
that is, it would involve rejecting one of the basic features of logical atom-
ism, and indeed one upon which the coherence of the framework depends.
In this regard, it should be noted, while it is one thing to reject logical
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atomism (as probably most of us do) as other than a paradigm of logical
analysis, it is quite another to accept some of its basic features (such as
the interpretation of necessity as referring to all the possible worlds of a
given logical space) while rejecting others (such as the constitutive nature
of a possible world); for in that case, even if it is set-theoretically consis-
tent, it is no longer clear that one is dealing with a philosophically coherent
framework.

That existence should have material content in the secondary semantics,
on the other hand is no doubt as it should be, since as already noted, neces-
sity is itself supposed to have such content in that semantics. The diÆculty
here, however, is that necessity can have such content in the secondary se-
mantics only in a free model structure that is not full; for with respect to
the full free model structure, the modal thesis of anti-essentialism (with
quanti�ers now interpreted as respecting existing objects only) can again
be validated, just as it was in the original primary semantics. (A full free
model structure, incidentally, is essentially what Parsons in [1969] calls a
maximal model structure.) The key lemma that led to its validation be-
fore continues to hold, in other words, only now for free model structures
hhA; Xi;Ki and hhB; Y i;Ki instead of the models A and B, and for an
isomorphism h between A and B such that Y = h\(X). Needless to say,
moreover, but the incompleteness theorem of the primary semantics for log-
ical truth also carries over to universal validity with respect to all full free
model structures.

No doubt one can attempt to avoid this diÆculty by simply excluding full
free model structures; but that in itself would hardly constitute a satisfac-
tory account of the metaphysical content of necessity (and now of existence
as well). For there remains the problem of explaining how arbitrary non-
empty subsets of the set of possible worlds in a free model structure can
themselves be the referential basis for necessity in other free model struc-
tures. Indeed, in general, the problem with the secondary semantics is
that it provides no explanation of why arbitrary non-empty sets of pos-
sible worlds can be the referential basis of necessity. In this regard, the
secondary semantics of necessity is quite unlike the secondary semantics of
second-order logic where, e.g. general models are subject to the constraints
of the compositional laws of a comprehension principle.

7 METAPHYSICAL NECESSITY AND RELATIONAL MODEL
STRUCTURES

It is noteworthy that in his later rejection of the Carnap{Barcan formula,
Kripke also introduced a further restriction into the quanti�cational seman-
tics of necessity, viz. that it was to refer not to all the possible worlds in
a given model structure but only to those that are possible alternatives to
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the world in question. In other words, not only need not all the worlds in a
given logical space be in the model structure (the �rst restriction), but now
even the worlds in the model structure need not all be possible alternatives
to one another (the second restriction). Clearly, such a restriction within
the �rst restriction only deepens the sense in which the necessity in question
is no longer a logical but a material or metaphysical modality.

The virtue of a relational interpretation, as is now well-known, is that
it allows for a general semantical approach to a whole variety of modal
logics by simply imposing in each case certain structural conditions on the
relation of accessibility (or alternative possibility) between possible worlds.
Of course, in each such case, the question remains as to the real nature and
content of the structural conditions imposed, especially if our concern is
with giving necessity a metaphysical or material interpretation as opposed
to a merely formal or set-theoretical one. How this content is explained
and �lled in, needless to say, will no doubt a�ect how we are to understand
modality de re and the question of essentialism.

Retaining the semantical approach of the previous section where the re-
strictions on possible worlds (models with a restricted existence set) are
rendered explicit, we shall understand a relational model structure based
on a universe D and a language L to be a triple hhA; Xi;K;Ri where (1)
hhA; Xi;Ki is a free model structure and (2) R � K � K. If A is an as-
signment in D, then satisfaction by A is de�ned as in Section 6, except for
clause (6) which now is as follows:

6. hhA; Xi;K;Ri; A � �' i� for all hB; Y i 2 K, if hA; XiRhB; Y i, then
hhB; Y i;K;Ri; A � '.

Needless to say, but if R = K � K and K is full, then once again we
are back to the free logic version of the primary semantics; and, as before,
even excluding relational model structures that are full in this extended
sense still leaves us with the problem of explaining how otherwise arbitrary
non-empty sets of possible worlds of a given logical space, together now
with a relation of accessibility between such worlds, can be the basis of a
metaphysical modality.

No doubt it can be assumed regarding the implicit metaphysical frame-
work of such a modality that in addition to the objects that exist in a given
world there are properties and relations which these objects either do or do
not have and which account for the truths that obtain in that world. They
do so, of course, by being what predicate expressions stand for as opposed to
the objects that are the designata of singular terms. (Nominalism, it might
be noted, will not result in a coherent theory of predication in a framework
which contains a metaphysical modality|a point nominalists themselves
insist on.)

On the other hand, being only what predicates stand for, properties and
relations do not themselves exist in a world the way objects do. That
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is, unlike the objects that exist in a world and which might not exist in
another possible world, the properties and relations that are predicable of
objects in one possible world are the same properties and relations that
are predicable of objects in any other possible world. In this regard, what
is semantically peculiar to a world about a property or relation is not the
property or relation itself but only its extension, i.e. the objects that are
in fact conditioned by that property or relation in the world in question.
Understood in this way, a property or relation may be said to have in itself
only a transworld or non-substantial mode of being.

Following Carnap [1955], who was the �rst to make this sort of proposal,
we can represent a property or relation in the sense indicated by a function
from possible worlds to extensions of the relevant sort. With respect to the
present semantics, however, it should be noted that the extension which a
predicate expression has in a given world need not be drawn exclusively
from the objects that exist in that world. That is, the properties and
relations that are part of the implicit metaphysical framework of the present
semantics may apply not only to existing objects but to possible objects as
well|even though quanti�cation is only with respect to existing objects.
Syntactically, this is reected in the fact that the rule of substitution:

if � '; then � �S
F (x1;:::;xn)
 ' j

is validated in the present semantics; and this in turn indicates that any
open w�  , whether de re or de dicto, may serve as the de�niens of a
possible de�nition for a predicate. That is, it can be shown by means of
this rule that such a de�niens will satisfy both the criterion of eliminability
and the criterion of non- creativity for explicit de�nitions of a new predicate
constant. (Beth's De�nability Theorem fails for the logic of this semantics,
however, and therefore so does Craig's Interpolation Lemma which implies
the De�nability Theorem, cf. [Fine, 1979].)

We can, of course, modify the present semantics so that the extension of
a predicate is always drawn exclusively from existing objects. That perhaps
would make the metaphysics implicit in the semantics more palatable|
especially if metaphysical necessity in the end amounts to a physical or
natural necessity and the properties and relations implicit in the framework
are physical or natural properties and relations rather than properties and
relations in the logical or intensional sense. However, in that case we must
then also give up the above rule of substitution and restrict the conditions
on what constitutes a possible explicit de�nition of a predicate; e.g. not
only would modal w�s in general be excluded as possible de�niens but so
would the negation of any modal free w� which itself was acceptable. In
consequence, not only would many of the predicates of natural language not
be representable by predicates of a formal modal language|their associated
`properties' being dispositional or modal|but even their possible analyses
in terms of predicates that are acceptable would also be excluded.
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8 QUANTIFICATION WITH RESPECT TO INDIVIDUAL
CONCEPTS

One way out of the apparent impasse of the preceding semantics is the
turn to intensionality, i.e. the turn to an independently existing Platonic
realm of intensional existence (and inexistence) and away from the meta-
physics of either essentialism (natural kinds, physical properties, etc.) or
anti-essentialism (logical atomism). In particular, it is claimed, problems
about states of a�airs, possible objects and properties and relations (in the
material sense) between such objects are all avoidable if we would only turn
instead to propositions, individual concepts and properties and relations in
the logical sense, i.e. as the intensions of predicate expressions and open w�s
in general. Thus, unlike the problem of whether there can be a state of af-
fairs having merely possible objects among its constituents, there is nothing
problematic, it is claimed, about the intensional existence of a proposition
having among its components intensionally inexistent individual concepts,
i.e. individual concepts that fail to denote (bedeuten) an existing object.

Intensional entitites (Sinne), on this approach, do not exist in space and
time and are not among the individuals that di�erentiate one possible world
from another. They are rather non-substantial transworld entities which,
like properties and relations, may have di�erent extensions (Bedeutungen)
in di�erent possible worlds. For example, the extension of a proposition in
a given world is its truth-value, i.e. truth or falsity (both of which we shall
represent here by 1 and 0, respectively), and the extension of an individual
concept in that world is the object which it denotes or determines. We
may, accordingly, follow Carnap once again and represent di�erent types
of intensions in general as functions from possible worlds to extensions of
the relevant type. In doing so, however, we shall no longer identify possible
worlds with the extensional models of the preceding semantics; that is,
except for the objects that exist in a given world, the nature and content of
that world will otherwise be left unspeci�ed. Indeed, because intensionality
is assumed to be conceptually prior to the functions on possible worlds
in terms of which it will herein be represented, the question of whether a
merely possible world, or of whether a merely possible object existing in such
a world, has an ontological status independent of the realm of intensional
existence (or inexistence) is to be left open on this approach (if not closed
in favour of an analysis or reduction of such worlds and objects in terms of
propositions and the intensional inexistence of individual concepts).

Accordingly, a triple hW;R;Ei will be said to be a relational world system
if W is a non-empty set of possible worlds, R is an accessibility relation
between the worlds in W , i.e. R � W � W , and E is a function on W
into (possibly empty) sets, though for some w 2 W (representing the actual
world), E(w) is non-empty. (The sets E(w), for w 2 W , consist of the
objects existing in each of the worlds in W .) Where D = [w2WE(w), an
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individual concept in hW;R;Ei, is a function in DW ; and for each natural
number n, P is an n-place predicate intension in hW;R;Ei i� P 2 fX :
X � DngW . (Note: for n = 0, we take an n-place predicate intension in
hW;R;Ei to be a proposition in hW;R;Ei, and therefore since D0 = f0g
and 2 = f0; 1g, P is a proposition in hW;R;Ei i� P 2 2W . For n � 2, an
n-place predicate intension is also called an n-ary relation-in-intension, and
for n = 1, it is taken as a property in the logical sense.)

Where L is a language, I is said to be an interpretation for L based
on a relational world system hW;R;Ei if I is a function on L such that
(1) for each individual constant a 2 L; I(a) is an individual concept in
hW;R;Ei; and (2) if Fn is an n-place predicate in L, then I(Fn) is an
n-place predicate intension in hW;R;Ei. An assignment A in hW;R;Ei is
now a function on the individual variables such that A(x) is an individual
concept in hW;R;Ei, for each such variable. The intension with respect to
I and A of an individual variable or constant b in L, in symbols Int(b; I; A)
is de�ned to be (I [ A)(b).

Finally, the intension with respect to I and A of an arbitrary w� ' of L
is de�ned recursively as follows:

1. where a; b are individual variables or constants in L, Int(a = b; I; A) =
the p 2 2W such that for w 2 W;P (w) = 1 i� Int(a; I; A)(w) =
Int(b; I; A)(w);

2. where a1; : : : ; an are individual variables or constants in L and Fn 2 L,
Int(F (a1; : : : ; an); I; A) = the P 2 2W such that for w 2 W;P (w) = 1
i� hInt(a1; I; A)(w); : : : ; Int(an; I; A)(w)i 2 I(Fn)(w);

3. Int(:'; I; A) = the P 2 2W such that for w 2 W;P (w) = 1 i�
Int('; I; A)(w) = 0;

4. Int((' !  ); I; A) = the P 2 2W such that for w 2 W;P (w) = 1 i�
either Int('; I; A)(w) = 0 or Int( ; I; A)(w) = 1;

5. Int(8x'; I; A) = the P 2 2W such that for w 2 W;P (w) = 1 i� for all
individual concepts f in hW;R;Ei, Int('; I; A(f=x))(w) = 1; and

6. Int(�'; I; A) = the P 2 2W such that for w 2 W;P (w) = 1 i� for all
v 2 W , if wRv, then Int('; I; A)(v) = 1.

Di�erent notions of intensional validity, needless to say, can now be de-
�ned as in the earlier semantics depending on the di�erent structural prop-
erties that the relation of accessibility might be assumed to have. It can
be shown, however, from results announced by Kripke in [1976] that if the
relation is only assumed to be reexive, or reexive and symmetric but not
also transitive, or reexive and transitive but not also symmetric, then the
w�s that are intensionally valid with respect to the relational structures in
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question are not recursively enumerable; that is, the resulting semantics is
then essentially incomplete. Whether the semantics is also incomplete for
intensional validity with respect to the class of relational world systems in
which the relation of accessibility is an equivalence relation, or, equivalently,
in which it is universal between all the worlds in the system, has apparently
not yet been determined (or at any rate not yet announced or published
in the literature). However, because of its close similarity to Thomason's
system Q2 in [Thomason, 1969], the S5 version of which Kripke in [1976]

has claimed to be complete, we conjecture that it too is complete, i.e. that
the set of w�s (of a given language) that are intensionally valid with re-
spect to all relational world systems in which the relation of accessibility is
universal is recursively enumerable. For convenience, we shall speak of the
members of this set hereafter as being intensionally valid simpliciter; that
is, we shall take the members of this set as being intensionally valid in the
primary sense (while those that are valid otherwise are understood to be so
in a secondary sense).

It is possible of course to give a secondary semantics in the sense in which
quanti�cation need not be with respect to all of the individual concepts in a
given relational world system but only with respect to some non-empty set of
such. (Cf. [Parks, 1976] where this gambit is employed|but in a semantics
in which predicates have their extensions drawn in a given world from the
restricted set of individual concepts and not from the possible objects.)
As might be expected, completeness theorems are then forthcoming in the
usual way even for classes of relational world systems in which the relation of
accessibility is other than universal. Of course the question then arises as to
the rationale for allowing arbitrary non-empty sets of individual concepts to
be the basis for quantifying over such in any given relational world system.
This question, moreover, is not really on a par with that regarding allowing
arbitrary non-empty subsets of the set of possible worlds to be the referential
basis of necessity (even where the relation of accessibility is universal); for
in a framework in which the realm of intensionality is conceptually prior to
its representation in terms of functions on possible worlds, the variability
of the sets of possible world may in the end be analogous to the similar
variability of the universes of discourses in standard (modal free) �rst-order
logic. Such variability within the intensional realm itself, on the other hand,
would seem to call for a di�erent kind of explanation.

Thomason's semantical system Q2 in [Thomason, 1969], it should be
noted, di�ers from the above semantics for intensional validity simpliciter
in requiring �rst that the set of existing objects of each possible world be
non-empty, and, secondly, that although free individual variables range over
the entire set of individual concepts, quanti�cation in a given world is to
be restricted to those individual concepts which denote objects that exist
in that world. (Thomason also gives an `outer domain' interpretation for
improper de�nite descriptions which we can ignore here since de�nite de-
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scriptions are not singular terms of the formal languages being considered.)
Thus, clause (5) for assigning an intension to a quanti�ed w� is replaced in
Q2 by:

(50) Int(8x'; I; A) = the P 2 2W such that for w 2 W;P (w) = 1 if for
all individual concepts f in hW;R;Ei, if f(w) 2 E(w), then Int('; I;
A(f=x))(w) = 1.

Intensional Q2-validity can now be de�ned as intensional validity with
respect to all relational world systems in which (1) the set of objects existing
in each world is non-empty, (2) the relation of accessibility is universal,
and (3) quanti�cation is interpreted as in clause(50). According to Kripke
[1976], the set of w�s (of a given language) that are intensionally Q2-valid
is recursively enumerable. (Cf. [Bacon, 1980] for some of the history of
these results and of an earlier erroneous claim by David Kaplan.) The
completeness proof given in [Kamp, 1977], it should be noted, is not for Q2-
validity (as might be thought from Kamp's remark that he is reconstructing
Kripke's proof), but for a semantics in which individual concepts always
denote only existing objects and in which the extension of a predicate's
intension in a given world is drawn exclusively from the objects that exist
in that world. Both conditions are too severe, however|at least from the
point of view of the realm of intensional existence (an inexistence). In
particular, whereas the rule of substitution:

if � '; then � �S
F (x1;:::;xn)
 ' j

is validated in both the semantics of intensional validity simplicter and in the
Q2-semantics, it is not validated in Kamp's more restricted semantics. Not
all open w�s, in other words, represent predicate intensions, i.e. properties
or relations in the logical sense, in Kamp's semantics{a result contrary to
one of the basic motivations for the turn to intensionality.

9 INDIVIDUAL CONCEPTS AND THE ELIMINATION OF DE RE
MODALITIES

One of the nice things about Thomason's Q2-semantics is that existence
remains essentially a quanti�er concept; that is, the de�nition of E! given
earlier remains in e�ect in the Q2 semantics. This is not so of course in
the semantics for intensional validity simpliciter where E! would have to be
introduced as a new intensional primitive (cf. [Bacon, 1980]). There would
seem to be nothing really objectionable about doing so, however; or at
least not from the point of view of the realm of intensional existence (and
inexistence). Quantifying over all individual concepts, whether existent
or inexistent|i.e. whether they denote objects that exist in the world in
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question or not|can hardly be compared from this point of view with the
di�erent situation of quantifying over all possible objects in the semantics
of a metaphysical necessity (as opposed to quantifying only over the objects
that exist in the world in question in that metaphysical context).

One of the undesirable features of the Q2-semantics, however, is its val-
idation of the w�

9x�E!(x)

which follows from the Q2-validity of

�9x'! 9x�' and �9xE!(x):

This situation can be easily recti�ed, of course, by simply rejecting the
semantics of the latter w�, i.e. by not requiring the set of objects existing
in each world of the Q2-semantics to be non- empty. The converse of the
above conditional is not intensionally Q2-valid, incidentally, though both
are intensionally valid in the primary sense; that is

(�9=9�) 9x�'$ �9x'

is intensionally valid simpliciter. So of course is the Carnap{Barcan formula
(and its converse), which also fails (in both directions) in the Q2-semantics;
for this formula and its converse, it is well-known, is a consequence of the S5
modal principles together with those of standard �rst-order predicate logic
without identity (LPC). Of course, whereas every w� which is an instance
of a theorem of LPC is intensionally valid in the primary sense, it is only
their modal free-logic counterparts that are valid in the Q2-semantics. For
example, whereas

8x'! '(a=x)

is intensionally valid simpliciter, only its modal free-logic counterpart

9x�(a = x) ! [8x'! '(a=x)]

is intensionally Q2-valid.

One rather important consequence of these results of the semantics for
intensional validity in the primary sense, it should be noted, is the validation
in this sense, of Von Wright's principle of predication (cf. [von Wright, 1951])
i.e. the principle (as restated here in terms of individual concepts) that if
a property or relation in the logical sense is contingently predicable of the
denotata of some individual concepts, then it is contingently predicable of
the denotata of all individual concepts:

(Pr) 9x1 : : : 9xn(�' ^ �:') ! 8x1 : : :8xn(�' ^ �:').
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The fact that (Pr) is intensionally valid simpliciter can be seen from the
syntactic proof in [Broido, 1976] that

LPC + S5+ (�9=9�) ` (Pr):

That is, since every w� which is an axiom of LPC + S5 + (�9=9�) is in-
tensionally valid simpliciter, and modus ponens and universal modal gener-
alisation preserve validity in this sense, then (Pr) is also intensionally valid
simpliciter.

Now although not every w� which is an axiom of LPC+(�9=9�) is valid
in the Q2- semantics, nevertheless, it follows from the intensional validity
of (Pr) in the primary sense that (Pr) is intensionally Q2-valid as well. To
see this, assume that E! is added as a new intensional primitive with the
following clause added to the semantics of the preceding section:

Int (E!(a); I; A) = the P 2 2W such that for w 2 W;P (w) = 1
i� Int(a; I; A)(w) 2 E(w).

Then, where t translates each w� into its E! restricted counterpart, i.e.
where t(') = ', for atomic w�s, t(:') = :t('); t(' !  ) = (t(') !
t( )); t(�') = �t(') and t(8x') = 8x(E!(x) ! t(')), it can be readily seen
that a w� ' is intensionally Q2-valid i� [9x�E!(x) ! t(')] is intensionally
valid simpliciter; and therefore if t(') is intensionally valid simpliciter, then
' is intensionally Q2-valid. Now since

9x1 : : :9xn[�t(') ^ �:t(')] ! 8x1 : : :8xn[�t(') ^ �:t(')]

is an instance of (Pr), it is intensionally valid simpliciter, and therefore so
is

9x1 : : : 9xn[E!(x1) ^ : : : ^ E!(xn) ^ �t(') ^ �:t(')] !
! 8x1 : : :8xn[E!(x1) ^ : : : ^ E!(xn) ! �t(') ^ �:t(')]:

This last w�, however, is trivially equivalent to t(Pr). That is, t(Pr) is
intensionally valid simpliciter, and therefore (Pr) is intensionally Q2-valid.

It is noteworthy, �nally, that on the basis of LPC +S5+(Pr)+(�9=9�),
[Broido, 1976] has shown that every de re w� is provably equivalent to a
de dicto w�. Accordingly, since all of the assumptions or w�s essential to
Borido's proof are intensionally valid simpliciter, it follows that every de re
w� is eliminable in favour of only de dicto w�s (of modal degree � 1) in the
semantics of intensional validity in the primary sense.

THEOREM (De Re Elimination Theorem) For each de re w� ', there is a
de dicto w�  such that ('$  ) is intensionally valid simpliciter.

Kamp [1977] has shown, incidentally, that a de re elimination theorem
also holds for the more restricted semantics in which individual concepts
always denote existing objects and the extensions of predicate intensions



256 NINO B. COCCHIARELLA

are always drawn exclusively from the objects existing in the world in ques-
tion. (This theorem is in fact the basis of Kamp's completeness theorem for
his semantics|and therefore perhaps also the basis for a similar proof of
completeness for the semantics of intensional validity simpliciter.) Accord-
ingly, since the logic of the Q2-semantics is intermediate between Kamp's
semantics and the semantics of intensional validity in the primary sense, it
is natural to conjecture that a similar de re elimination theorem also holds
for intensional Q2-validity|though of course not one which depends on the
consequences of LPC + (�9=9�).

10 CONTINGENT IDENTITY

Identity in logical atomism, as we have already noted, does not stand for an
atomic state of a�airs; that is, despite its being represented by an atomic
w�, an object's self-identity is part of the logical sca�olding of the world
(which the world shares with every other possible world) and not part of
the world itself. This is why identity is a non-contingent relation in logical
atomism.

Identity in the realm of intensionality, on the other hand, is really not
an identity of individual concepts but a world-bound relation of coincidence
between these concepts. That is, as a relation in which individual concepts
need not themselves be the same but only have the same denotation in a
given world, `identity' need not hold between the same individual concepts
from world to world. This is why `identity' can be a contingent relation
from the intensional point of view.

In other words, whereas

9x9y(x = y ^ �x 6= y); 9x9y(x 6= y ^ �x = y)

are logically false from the point of view of the primary semantics for logical
atomism, both can be true (and in fact must be true if there are at least two
objects in the world) from the point of view of the realm of intensionality.

One argument in favour of contingent identity as a relation of coincidence
between individual concepts is given in [Gibbard, 1975]. In Gibbard's ex-
ample a clay statue named Goliath (hereafter represented by a) is said to be
contingently identical with the piece of clay of which it is made and which
is named Lumpl (hereafter represented by b). For convenience, we may sup-
pose that a and b begin to exist at the same time; e.g. the statue is made �rst
in two separate pieces which are then struck together `thereby bringing into
existence simultaneously a new piece of clay and a new statue' [Gibbard,
1975, p. 191]. Now although Goliath is Lumpl|i.e. (a = b) is true in the
world in question|it is nevertheless possible that the clay is squeezed into
a ball before it dries; and if that is done, then `at that point . . . the statue
Goliath would have ceased to exist, but the piece of clay Lumpl would still
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exist in a new shape. Hence Lumpl would not be Goliath, even though both
existed' [Gibbard, 1975]. That is, according to Gibbard, the w�

a = b ^ �[a 6= b ^E!(a) ^ E!(b)]

would be true in the world in question.
Contrary to Gibbard's claim, however, the above w� is not really a correct

representation of the situation he describes. In particular, it is not true that
Goliath exists in the world in which Lumpl has been squeezed into a ball.
The correct description, in other words, is given by

a = b ^ �[:E!(a) ^ E!(b)];

which, since

a = b! [E!(a) $ E!(b)]

is both intensionally valid simpliciter and intensionally Q2-valid, implies:

a = b ^ �[a 6= b ^ :E!(a) ^ E!(b)]

and this w� in turn implies

:[a = b! �a = b];

which is the conclusion Gibbard was seeking in any case. That is, the
identity of Goliath with Lumpl, though true, is only contingently true.

Now it should be noted in this context that the thesis that proper names
are rigid designators can be represented neither by

9x�(a = x) nor �9x�(a = x)

in the present semantics. For both w�s are in fact intensionally valid sim-
plicter, and the latter would be Q2-valid if we assumed that any individual
concept expressed by a proper name always denotes an object which ex-
ists in at least one possible world|and yet, it is not required in either of
these semantics that the individual concept expressed by a proper name
is to denote the same object in every possible world. The question arises,
accordingly, whether and in what sense Gibbard's example shows that the
names `Goliath' and `Lumpl' are not rigid designators. For surely there is
nothing in the way each name is introduced into discourse to indicate that
its designation can change even when the object originally designated has
continued to exist; and yet if it is granted that `Goliath' and `Lumpl' are
rigid designators in the sense of designating the same object in every world
in which it exists, then how is it that `Goliath' can designate Lumpl in the
one world where Goliath and Lumpl exist but not in the other where Lumpl
but not Goliath exists? Doesn't the same object which `Goliath' designates
in the one world exist in the other? An answer to this problem is forth-
coming, as we shall see, but from an entirely di�erent perspective of the
realm of intensionality; and indeed one in which identity is not a contingent
relation either between objects or individual concepts.
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11 QUANTIFIERS AS REFERENTIAL CONCEPTS

Besides the Platonic view of intensionality there is also the conceptualist
view according to which concepts are not independently existing Platonic
forms but cognitive capacities or related structures whose realisation in
thought is what informs our mental acts with a predicable or referential
nature. However, as cognitive capacities which may or may not be exer-
cised on a given occasion, concepts, though they are not Platonic forms,
are also neither mental images nor ideas in the sense of particular mental
occurrences. That is, concepts are not objects or individuals but are rather
unsaturated cognitive structures or dispositional abilities whose realisation
in thought is what accounts for the referential and predicable aspects of
particular mental acts.

Now the conceptual structures that account for the referential aspect of
a mental act on this view are not the same as those that inform such acts
with a predicable nature. A categorical judgement, for example, is a mental
act which consists in the joint application of both types of concepts; that
is, it is a mental event which is the result of the combination and mutual
saturation of a referential concept with a predicable concept. Referential
concepts, in other words, have a type of structure which is complementary
to that of predicable concepts in that each can combine with the other in
a kind of mental chemistry which results in a mental act having both a
referential aspect and a predicable nature.

Referential concepts, it should be noted, are not developed initially as a
form of reference to individuals simpliciter but are rather �rst developed as
a form of reference to individuals of a given sort of kind. By a sort (or sortal
concept) we mean in this context a type of common noun concept whose use
in thought and communication is associated with certain identity criteria,
i.e. criteria by which we are able to distinguish and count individuals of
the kind in question. Typically, perceptual criteria such as those for shape,
size and texture (hard, soft, liquid, etc.) are commonly involved in the
application of such a concept; but then so are functional criteria (especially
edibility) as well as criteria for the identi�cation of natural kinds of things
(animals, birds, �sh, trees, plants, etc.) (cf. [Lyons, 1977, Vol. 2, Section
11.4]).

Though sortal concepts are expressed by common (count) nouns, not ev-
ery common (count) noun, on the other hand, stands for a sort or kind in
the sense intended here. Thus, e.g., whereas `thing' and `individual' are
common (count) nouns, the concept of a thing or individual simpliciter is
not associated in its use with any particular identity criteria, and therefore
it is not a sortal concept in the sense intended here. Indeed, according to
conceptualism, the concept of a thing or individual simpliciter has come
to be constructed on the basis of the concept of a thing or individual of a
certain sort (cf. [Sellars, 1963]). (It might be noted in this context, inci-
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dentally, that while there are no explicit grammatical constructions which
distinguish sortal common nouns from non-sortal common (count) nouns
in the Indo-European language family, nevertheless there are `classi�er-
languages'|e.g. Tzeltal, a Mayan language spoken in Mexico, Mandarin
Chinese, Vietnamese, etc.|which do contain explicit and obligatory con-
structions involving sortal classi�ers (cf. [Lyons, 1977]).)

Reference to individuals of a given sort, accordingly, is not a form of
restricted reference to individuals simpliciter; that is, referential concepts
regarding these individuals are not initially developed as derived concepts
based on a quanti�cational reference to individuals in general, but are them-
selves basic or underived sortal quanti�er concepts. Thus, where S and T
stand for sortal concepts, (8xS); (8yT ); (9zS); (9xT ), etc. can be taken on
the view in question as basic forms of referential concepts whose application
in thought enable us to refer to all S, all T , some S , some T , etc. respec-
tively. For example, where S stands for the sort man and F stands for the
predicable concept of being mortal, a categorical judgement that every man
is mortal, or that some man is not mortal, can be represented by (8xS)F (x)
and (9xS):F (x), respectively. These formulas, it will be noted, are espe-
cially perspicuous in the way they represent the judgements in question as
being the result of a combination and mutual saturation of a referential and
predicable concept.

Though they are themselves basic or underived forms of referential con-
cepts, sortal quanti�ers are nevertheless a special type of common (count)
noun quanti�er|including, of course, the ultimate common (count) noun
quanti�ers 8x and 9x (as applied with respect to a given individual variable
x). Indeed, the latter, in regard to the referential concepts they represent,
would be more perspicuous if written out more fully as (8x Individual) and
(9x Individual), respectively. The symbols 8 and 9, in other words, do not
stand in conceptualism for separate cognitive elements but are rather `in-
complete symbols' occurring as parts of common (count) noun quanti�ers.
For convenience, however, we shall continue to use the standard notation 8x
and 9x as abbreviations of these ultimate common (count) noun quanti�ers.

12 SINGULAR REFERENCE

As represented by common (count) noun quanti�ers, referential concepts are
indeed complementary to predicable concepts in exactly the way described
by conceptualism; that is, they are complementary in the sense that when
both are applied together it is their combination and mutual saturation in a
kind of mental chemistry which accounts for the referential and predicable
aspects of a mental act. It is natural, accordingly, that a parallel interpre-
tation should be given for the refereential concepts underlying the use of
singular terms.
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Such an interpretation, it will be observed, is certainly a natural con-
comitant of Russell's theory of de�nite descriptions|or rather of Russell's
theory somewhat modi�ed. Where S, for example, is a common (count)
noun, including the ultimate common (count) noun `individual', the truth-
conditions for a judgement of the form

1. the S wh. is F is G

will be semantically equivalent in conceptualism to those for the w�

2. (9xS)[(8yS)(F (y) $ y = x) ^G(x)]

if, in fact, the de�nite description is being used in that judgement with
an existential presupposition. If it is not being so used, however, then the
truth-conditions for the judgement are semantically equivalent to

3. (8xS)[(8yS)[F (y) $ y = x) ! G(x)]

instead. Note however that despite the semantical equivalence of one of
these w�s with the judgement in question, neither of them can be taken as
a direct representation of the cognitive structure of that judgement. Rather,
where `S wh F ; abbreviates `S wh. is F ', a more perspicuous representation
of the judgement can be given either by

4. (91xS wh F )G(x)

or

5. (81xS wh F )G(x)

respectively, depending on whether the description is being used with or
without an existential presupposition. (The `incomplete' quanti�er sym-
bols 91 and 81 are, of course, understood here in such a way as to ren-
der (4) and (5) semantically equivalent to (2) and (3), respectively.) The
referential concept which underlies using the de�nite description with an
existential presupposition, in other words, is the concept represented by
(91xS wh F ); and of course the referential concept which underlies using
the description without an existential presupposition is similarly represented
by (81xS wh F ).

Now while de�nite descriptions are naturally assimilated to quanti�ers,
proper names are in turn naturally assimilated to sortal common nouns.
For just as the use of a sortal is associated in thought with certain identity
criteria, so too is the introduction and use of a proper name (whose identity
criteria are provided in part by the most speci�c sortal associated with the
introduction of that name and to which the name is thereafter subordinate).
In this regard, the referential concept underlying the use of a proper name is
determined by the identity criteria associated with that name's introduction
into discourse.
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On this interpretation, accordingly, the referential concept underlying the
use of a proper name corresponds to the referential concept underlying the
use of a sortal common noun; that is, both are to be represented by sortal
quanti�ers (where `sortal' is now taken to encompass proper names as well).
The only di�erence between the two is that when such a quanti�er contains a
proper name, it is always taken to refer to at most a single individual. Thus,
if in someone's statement that Socrates is wise, `Socrates' is being used with
an existential presupposition, then the statement can be represented by

(9x Socrates)(x is wise):

If `Socrates' is being used without an existential presupposition, on the other
hand, then the statement can be represented by

(8x Socrates)(x is wise)

instead. That is, the referential concepts underlying using `Socrates'
with and without an existential presupposition can be represented by
(9x Socrates) and (8x Socrates), respectively. (Such a quanti�er interpreta-
tion of the use of proper names will also explain, incidentally, why the issue
of scope is relevant to the use of a proper name in contexts involving the
expression of a propositional attitude.)

Now without committing ourselves at this point as to the sense in which
conceptualism can allow for the development of alethic modal concepts, i.e.
modal concepts other than those based upon a propositional attitude, it
seems clear that the identity criteria associated with the use of a proper
name do not change when that name is used in such a modal context.
That is, the demand that we need a criterion of identity across the possible
worlds associated with such a modality in order to determine whether a
proper name is a rigid designator or not is without force in conceptualism
since, in fact, such a criterion is already implicit in the use of a proper name.
In other words, where S is a proper name, we can take it as a conceptual
truth that the identity criteria associated with the use of S (1) always picks
out at most one object and (2) that it is the same object which is so picked
out whenever it exists:

(PN) (8xS)[�(8yS)(y = x) ^�(E!(x) ! (9yS)(x = y)]:

Nothing in this account of proper names conicts, it should be noted, with
Gibbard's example of the statue Goliath which is identical with Lumpl, the
piece of clay of which it consists, during the time of its existence, but which
ceases to be identical with Lumpl because it ceases to exist when Lumpl
is squeezed into a ball. Both names, in other words, can be taken as rigid
designators in the above sense without resulting in a contradiction in the
situation described by Gibbard. Where S and T , for example, are proper
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name sortals for `Goliath' and `Lumpl', respectively, the situation described
by Gibbard is consistently represented by the following w�:

(9xS)(9yT )(x = y) ^ �(9yT )(8xS)(x 6= y):

That is, whereas the identity criteria associated with `Goliath' and `Lumpl'
enable us to pick out the same object in the original world or time in ques-
tion, it is possible that the criteria associated with `Lumpl' enable us to
pick out an object identi�able as Lumpl in a world or time in which there
is no object identi�able as Goliath. In this sense, conceptualism is compat-
ible with the claim that there can be contingent identities containing only
proper names|even though proper names are rigid designators in the sense
of satisfying (PN).

It does not follow, of course, that identity is a contingent relation in
conceptualism; and, indeed, quite the opposite is the case. That is, since
reference in conceptualism is directly to objects, albeit mediated by referen-
tial concepts, it is a conceptual truth to say that an object cannot but be
the object that it is or that one object cannot be identical with another. In
other words, the following w�s:

8x8y(x = y ! �x = y); 8x8y(x 6= y ! �x 6= y)

are to be taken as valid theses of conceptualism. This result is the complete
opposite, needless to say, from that obtained on the Platonic view where
reference is directly to individual concepts (as independently existing pla-
tonic forms) and only indirectly to the objects denoted by these concepts
in a given possible world.

13 CONCEPTUALISM AND TENSE LOGIC

As forms of conceptual activity, thought and communication are inextrica-
bly temporal phenomena, and to ignore this fact in the semantics of a formal
representation of such activity is to court possible confusion of the Platonic
with the conceptual view of intensionality. Propositions, for example, on the
conceptual view, are not abstract entitites existing in a platonic realm in-
dependently of all conceptual activity. Rather, according to conceptualism,
they are really conceptual constructs corresponding to the truth-conditions
of our temporally located assertions; and on the present level of analysis
where propositional attitudes are not being considered, their status as con-
structs can be left completely in the metalanguage.

What is also a construction, but which should not be left to the meta-
language, are certain cognitive schemata characterising our conceptual ori-
entation in time and implicit in the form and content of our assertions as
mental acts. These schemata, whether explicitly recognised as such or not,
are usually represented or modelled in terms of a tenseless idiom (such as
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our set-theoretic metalanguage) in which reference can be made to moments
or intervals of time (as individuals of a special type); and for most purposes
such a representation is quite in order. But to represent them only in this
way in a context where our concern is with a perspicuous representation of
the form of our assertions as mental acts might well mislead us into think-
ing that the schemata in question are not essential in conceptualism to the
form and content of an assertion after all|the way they are not essential
to the form and content of a proposition on the Platonic view. Indeed,
even though the cognitive schemata in question can be modelled in terms
of a tenseless idiom of moments or intervals of time (as in fact they will
be in our set-theoretic metalanguage), they are themselves the conceptually
prior conditions that lead to the construction of our referential concepts
for moments or intervals of time, and therefore of the very tenseless idiom
in which they are subsequently modelled. In this regard, no assumption
need be made in conceputalism about the ultimate nature of moments or
intervals of time, i.e. whether such entities are really independently existing
individuals or only constructions out of the di�erent events that actually
occur.

Now since what the temporal schemata implicit in our assertions fun-
damentally do is enable us to orientate ourselves in time in terms of the
distinction between the past, the present, and the future, a more appro-
priate or perspicuous representation of these schemata is one based upon a
system of quanti�ed tense logic containing at least the operators P ;N ;F
for `it was the case that', `it is now the case that', and `it will be the case
that', respectively. As applied in thought and communication, what these
operators correspond to is our ability to refer to what was the case, what is
now the case, and what will be the case|and to do so, moreover, without
having �rst to construct referential concepts for moments or intervals of
time.

Keeping our analysis as simple as possible, accordingly, let us now under-
stand a language to consist of symbols for common (count) nouns, including
always one for `individual', as well as proper names and predicates. Where
L is such a language, the atomic w�s of L are expressions of the form (x = y)
and F (x1; : : : ; xn), where x; y; x1; : : : ; xn are variables and F is an n-place
predicate in L. The w�s of L are then the expressions in every set K contain-
ing the atomic w�s of L and such that :';P';N';F'; (' !  ); (8xS)'
are all in K whenever ';  2 K;x is an individual variable and S is either
a proper name or a common (count) noun symbol in L. As already noted,
where S is the symbol for `individual', we take 8x' to abbreviate (8xS)',
and similarly 9x' abbreviates :(8xS):'.

In regard to a set-theoretic semantics for these w�s, let us retain the
notion of a relational world system hW;R;Ei already de�ned, but with the
understanding that the members of W are now to be the moments of a
local time (Eigenzeit) rather than complete possible worlds, and that the
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relation R of accessibility is the earlier-than relation between the moments
of that local time. The only constraint imposed by conceptualism on the
structure of R is that it be a linear ordering of W , i.e. that R be asymmetric,
transitive and connected in W . This constraint is based upon the implicit
assumption that a local time is always the local time of a continuant.

There is nothing in set theory itself, it should be noted, which directly
corresponds to the unsaturated nature of concepts as cognitive capacities;
and for this reason we shall once again follow the Carnapian approach and
represent concepts as functions from the moments of a local time to the
classes of objects falling under the concepts at those times. Naturally, on
this approach one and the same type of function will be used to represent
the concepts underlying the use of common (count) nouns, proper names,
and one-place predicates|despite the conceptual distinctions between them
and in the way they account for di�erent aspects of a mental act.

Accordingly, where L is a language and hW;R;Ei is a relational world sys-
tem, we shall now understand an interpretation for L based upon hW;R;Ei
to be a function I on L such that (1) for each n-place predicate Fn in
L, I(Fn) is an n-place predicate intension in hW;R;Ei; (2) for each com-
mon (count) noun symbol S in L, I(S) is a one-place predicate intension
in hW;R;Ei; and for the symbol S for `individual' in particular, I(S)(w) =
E(w), for all w 2 W ; and (3) for each proper name S in L, I(S) is a one-
place predicate intension in hW;R;Ei such that for some d 2 [w2WE(w);
I(S)(w) � fdg, for all w 2 W . (Note that at any given time w 2 W , noth-
ing need, in fact, be identi�able by means of the identity criteria associated
with the use of a proper name|though if anything is so identi�able, then
it is always the same individual. In this way we trivially validate the thesis
(PN) of the preceding section that proper names are rigid designators with
respect to the modalities analysable in terms of time.)

By a referential assignment in a relational world system hW;R;Ei, we
now understand a function A which assigns to each variable x a member of
[w2WE(w), hereafter called the realia of hW;R;Ei. Realia, of course, are
the objects that exist at some time or other of the local time in question.
Referential concepts, at least in the semantics formulated below, do not
refer directly to realia, but only indirectly (of which more anon); and in this
regard realia are in tense logic what possibilia are in modal logic.

Finally, where t is construed as the present moment of a local time
hW;R;Ei, i.e. t 2 W , A is a referential assignment in hW;R;Ei and I
is an interpretation for a language L based on hW;R;Ei, we recursively de-
�ne with respect to I and A the proposition (or intension in the sense of the
truth-conditions) expressed by a w� ' of L when part of an assertion made
at t as follows:
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1. Intt(x = y); I; A) = the P 2 2W such that for w 2 W;P (w) = 1 i�
A(x) = A(y);

2. Intt(F
n(x1; : : : ; xn); I; A) = the P 2 2W such that for w 2 W , P (w) =

1 i� hA(x1); : : : ; A(xn)i 2 I(Fn)(w);

3. Intt(:'; I; A) = the P 2 2W such that for w 2 W;P (w) = 1 i�
Intt('; I; A)(w) = 0;

4. Intt(' !  ; I; A) = the P 2 2W such that for w 2 W;P (w) = 1 i�
Intt('; I; A)(w) = 0 or Intt( ; I; A)(w) = 1;

5. Intt((8xS)'; I; A) = the P 2 2W such that for w 2 W;P (w) = 1 i�
for all d 2 E(w), if d 2 I(S)(w), then Intt('; I; A(d=x))(w)) = 1;

6. Intt(P'; I; A) = the P 2 2W such that for all w 2 W;P (w) = 1 i�
Intt('; I; A)(u) = 1, for some u such that uRw;

7. Intt(N'; I; A) = the P 2 2W such that for all w 2 W;P (w) = 1 i�
Intt('; I; A)(t) = 1; and

8. Intt(F'; I; A) = the P 2 2W such that for all w 2 W;P (w) = 1 i�
Intt('; I; A)(u) = 1, for some u such that wRu.

The double-indexing involved in this semantics and critically used in
clause (7) is to account for the role of the now-operator. It was �rst given in
[Kamp, 1971] and, of course, is particularly appropriate for conceptualism's
concern with the semantics of assertions as particular mental acts. That is,
as constructed in terms of the truth-conditions for assertions, propositions
on the conceptualist's view of intensionality di�er from those of the Platonist
in being bound to the time at which the assertion in question occurs. For
the Platonist, propositions exist independently of time, and therefore of the
truth-conditions for assertions as well.

In regard to truth and validity, we shall say, relative to an interpretation
I and referential assignment A in a local time hW;R;Ei, that a w� ' of the
language in question is true if Intt('; I; A)(t) = 1, where t is the present
moment of the local time hW;R;Ei. The w� ' is said to be valid or tense-
logically true, on the other hand, if for all local time systems hW;R;Ei, all
t 2 W , all referential assignments A in hW;R;Ei, and all interpretations I
for a language of which ' is a w�, Intt('; I; A)(t) = 1.

A completeness theorem is forthcoming for this semantics, but we shall
not concern ourselves with establishing one in the present essay|especially
since the overall logic is rather weak or minimal in the way it accounts for our
conceptual orientation in time. Instead, let us briey examine the problem
of referring to realia in general, and in particular to past or future objects|
i.e. the problem of how the conceptual structure of such a minimal system
can either account for such reference or lead to a conceptual development
where such an account can be given.
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14 THE PROBLEM OF REFERENCE TO PAST AND FUTURE
OBJECTS

Our comparison of the status of realia in tense logic with possibilia in modal
logic is especially appropriate, it might be noted, insofar as quanti�cational
reference to either is said to be feasible only indirectly|i.e. through the
occurrence of a quanti�er within the scope of a modal or tense operator (cf.
[Prior, 1967, Chapter 8]). The reference to a past individual in `Someone did
exist who was a King of France', for example, can be accounted for by the
semantics of P(9xS)(9yT )(x = y), where S and T are sortal common noun
symbols for `person' and `King of France', respectively. What is apparently
not feasible about a direct quanti�cational reference to such objects, on this
account, is our present inability to actually confront and apply the relevant
identity criteria to objects which do not now exist.

A present ability to identify past or future objects of a given sort, however,
is not the same as the ability to actually confront and identify those objects
in the present; that is, our existential inability to do the latter is not the
same as, and should not be confused with, what is only presumed to be
our inability to directly refer to past or future objects. Indeed, the fact is
that we can and do make direct reference to realia, and to past and future
objects in particular, and that we do so not only in ordinary discourse but
also, and especially, in most if not all of our scienti�c theories. The real
problem is not that we cannot directly refer to past and future objects, but
rather how it is that conceptually we come to do so.

One explanation of how this comes to be can be seen in the analysis of
the following English sentences:

1. There did exist someone who is an ancestor of everyone now existing.

2. There will exist someone who will have everyone now existing as an
ancestor.

Where S is a sortal common noun symbol for `person' and R(x; y) is read
as `x is an ancestor of y', it is clear that (1) and (2) cannot be represented
by:

3. P(9xS)(8yS)R(x; y)

4. F(9xS)(8yS)R(y; x).

For what (3)and (4) represent are the di�erent sentences:

5. There did exist someone who was an ancestor of everyone then exist-
ing.

6. There will exist someone who will have everyone then existing as an
ancestor.



PHILOSOPHICAL PERSPECTIVES 267

Of course, if referential concepts that enabled us to refer directly to past
and future objects were already available, then the obvious representation
of (1) and (2) would be:

7. (9x Past-S)(8yS)R(x; y)

8. (9x Future-S)(8yS)FR(y; x)

where `Past-' and `Future-' are construed as common noun modi�ers. (We
assume here that the relational ancestor concept is such that x is an ancestor
of y only at those times when either y exists and x did exist, though x need
not still exist at the time in question, or when x has continued to exist even
though y has ceased to exist. When y no longer exists as well as x, we say
that x was an ancestor of y; and where y has yet to exist, we say that x will
be an ancestor of y.)

Now although these last analyses are not available in the system of tense
logic formulated in the preceding section, nevertheless semantical equiva-
lences for them are. In this regard, note that although the indirect ref-
erences to past and future objects in (3) and (4) fail to provide adequate
representations of (1) and (2), the same indirect references followed by the
now-operator succeed in capturing the direct references given in (7) and (8):

9. P(9xS)N (8yS)R(x; y)

10. F(9xS)N (8yS)FR(y; x).

In other words, at least relative to any present tense context, we can in
general account for direct reference to past and future objects as follows:

(8x Past-S)'$ :P:(8xS)N'

(8x Future-S)'$ :F:(8xS)N':

These equivalences, it should be noted, cannot be used other than in a
present tense context; that is, the above use of the now-operator would be
inappropriate when the equivalences are stated within the scope of a past- or
future-tense operator, since in that case the direct reference to past or future
objects would be from a point of time other than the present. Formally, what
is needed in such a case is the introduction of so-called `backwards-looking'
operators, such as `then', which can be correlated with occurrences of past
or future tense operators within whose scope they lie and which semantically
evaluate the w�s to which they are themselves applied in terms of the past
or future times already referred to by the tense operators with which they
are correlated (cf. [Vlach, 1973] and [Saarinen, 1976]). Backwards-looking
operators, in other words, enable us to conceptually return to a past or
future time already referred to in a given context in the same way that the
now-operator enables us to return to the present. In that regard, their role
in the cognitive schemata characterising our conceptual orientation in time



268 NINO B. COCCHIARELLA

and implicit in each of our assertions is essentially a projection of the role
of the now-operator.

We shall not formulate the semantics of these backwards-looking oper-
ators here, however; but we note that with their formulation equivalences
of the above sort can be established for all contexts of tense logic, past
and future as well as present. In any case, it is clear that the fact that
conceptualism can account for the development of referential concepts that
enable us to refer directly to past or future objects is already implicit in
the fact that such references can be made with respect to the present alone.
for this already shows that whereas the reference is direct at least in e�ect,
nevertheless the application of any identity criteria associated with such
reference will itself be indirect, and in particular, not such as to require a
present confrontation, even if only in principle, with a past or future object.

15 TIME AND MODALITY

One important feature of the cognitive schemata characterising our concep-
tual orientation in time and represented in part by quanti�ed tense logic,
according to conceptualism, is the capacity they engender in us to form
modal concepts having material content. Indeed, some of the �rst such
modal concepts every to be formulated in the history of thought are based
precisely upon the very distinction between the past, the present, and the
future which is contained in these schemata. For example, the Megaric lo-
gician Diodorus is reported as having argued that the possible is that which
either is or will be the case, and that therefore the necessary is that which
is and always will be the case (cf.[Prior, 1967, Chapter 2]):

�f' = df ' _ F'; �f' = df ' ^ :F:':

Aristotle, on the other hand, included the past as part of what is possible;
that is, for Aristotle the possible is that which either was, is, or will be
the case (in what he assumed to be the in�nity of time),and therefore the
necessary is what is always the case (cf. [Hintikka, 1973]):

�t' = df P' _ ' _ F'; �t' = df :P:' ^ ' ^ :F:':

Both Aristotle and Diodorus, it should be noted, assumed that time is
real and not ideal|as also does the socio-biologically based conceptualism
being considered here. The temporal modalities indicated above, accord-
ingly, are in this regard intended to be taken as material or metaphysical
modalities (of a conceptual realism); and, indeed, they serve this purpose
rather well, since in fact they provide a paradigm by which we might bet-
ter understand what is meant by a material or metaphysical modality. In
particular, not only do these modalities contain an explanatory, concrete
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interpretation of the accessibility relation between possible worlds (now re-
construed as momentary states of the universe), but they also provide a
rationale for the secondary semantics of a metaphysical necessity|since
clearly not every possible world (of a given logical space) need ever actually
be realised in time (as a momentary state of the universe). Moreover, the
fact that the semantics (as considered here) is concerned with concepts and
not with independently real material properties and relations (which may
or may not correspond to some of these concepts but which can in any case
also be considered in a supplementary semantics of conceptual realism) also
explains why predicates can be true of objects at a time when those objects
do not exist. For concepts, such as that of being an ancestor of everyone
now existing, are constructions of the mind and can in that regard be ap-
plied to past or future objects no less so than to presently existing objects.
In addition, because the intellect is subject to the closure conditions of the
laws of compositionality for systematic concept-formation, there is no prob-
lem in conceptualism regarding the fact that a concept can be constructed
corresponding to every open w�|thereby validating the rule of substitution
of w�s for predicate letters.

As a paradigm of a metaphysical modality, on the other hand, one of the
defects of Aristotle's notion of necessity is its exclusion of certain situations
that are possible in special relativity. For example, relative to the present
of a given local time, a state of a�airs can come to have been the case,
according to special relativity, without its ever actually being the case (cf.
[Putnam, 1967]). That is, where FP' represents ''s coming (future) to
have been (past) the case, and :�t' represents ''s never actually being the
case, the situation envisaged in special relativity might be thought to be
represented by:

FP' ^ :�t':

This conjunction, however, is incompatible with the linearity assumption
of the local time in question; for on the basis of that assumption

FP'! P' _ ' _ F'

is tense-logically true, and therefore FP', the �rst conjunct, implies �t',
which contradicts the second conjunct, :�t'. The linearity assumption,
moreover, cannot be given up without violating the notion of a local time
or that of a continuant upon which it is based; and the notion of a contin-
uant, as already indicated, is a fundamental construct of conceptualism. In
particular, the notion of a continuant is more fundamental even than that
of an event, which (at least initially) in conceptualism is always an occur-
rence in which one or more continuants are involved. Indeed, the notion of
a continuant is even more fundamental in a socio-biologically based concep-
tualism than the notion of the self as a centre of conceptual activity, and it
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is in fact one of the bases upon which the tense-logical cognitive schemata
characterising our conceptual orientation in time are constructed.

This is not to say, on the other hand, that in the development of the
concept of a self as a centre of conceptual activity we do not ever come to
conceive of the ordering of events from perspectives other than our own.
Indeed, by a process which Jean Piaget calls decentering, children at the
stage of concrete operational thought (7{11 years) develop the ability to
conceive of projections from their own positions to that of others in their
environment; and subsequently, by means of this ability, they are able to
form operational concepts of space and time whose systematic co-ordination
results essentially in the structure of projective geometry. Spatial considera-
tions aside, however, and with respect to time alone, the cognitive schemata
implicit in the ability to conceive of such projections can be represented in
part by means of tense operators corresponding to those already represent-
ing the past and the future as viewed from one's own local time. That is,
since the projections in question are to be based on actual causal connec-
tions between continuants, we can represent the cognitive schemata implicit
in such projections by what we shall here call causal tense operators, viz.
Pc for `it causally was the case that' and Fc for `it casually will be the case
that'. Of course, the possibility in special relativity of a state of a�airs
coming to have been the case without its ever actually being the case is a
possibility that should be represented in terms of these operators and not
in terms of those characterising the ordering of events within a single local
time.

Semantically, in other words, the causal tense operators go beyond the
standard tenses by requiring us to consider not just a single local time
but a causally connected system of such local times. In this regard, the
causal connections between the di�erent continuants upon which such local
times are based can simply be represented by a signal relation between the
momentary states of those continuants|or rather, and more simply yet,
by a signal relation between the moments of the local times themselves,
so long as we assume that the sets of moments of di�erent local times
are disjoint. (This assumption is harmless if we think of a moment of a
local time as an ordered pair one constituent of which is the continuant
upon which that local time is based.) The only constraint that should be
imposed on such a signal relation is that it be a strict partial ordering,
i.e. transitive and asymmetric. Of course, since we assume that there is
a causal connection from the earlier to the later momentary states of the
same continuant, we shall also assume that the signal relation contains the
linear temporal ordering of the moments of each local time in such a causally
connected system. (Cf. [Carnap, 1958, Sections 49{50], for one approach to
the notion of a causally connected system of local times.) Needless to say,
but such a signal relation provides yet another concrete interpretation of the
accessibility relation between possible worlds (reconstrued as momentary
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states of the universe); and it will be in terms of this relation that the
semantics of the causal tense operators will be given.

Accordingly, by a system of local times we shall understand a pair hK;Si
such that (1) K is a non-empty set of relational world systems hW;R;Ei for
which (a) R is a linear ordering of W and (b) for all hW 0; R0; E0i 2 K, if,
hW;R;Ei 6= hW 0; R0; E0i, then W and W 0 are disjoint; and (2) S is a strict
partial ordering of fw : for some hW;R;Ei 2 K;w 2 Wg and such that for
all hW;R;Ei 2 K;R � S. Furthermore, if hW;R;Ei; hW 0; R0; E0i 2 K; t 2
W , and t0 2W 0, then t is said to be simultaneous with t0 in hK;Si i� neither
tSt0 nor t0St; and t is said to coincide with t0 i� for all hW 00; R00; E00i 2 K
and all w 2W 00, (1) w is simultaneous with t in hK;Si i� w is simultaneous
with t0 in hK;Si, and (2) tSw if t0Sw.

Now a system hK;Si of local times is said to be causally connected i� for
all hW;R;Ei; hW 0; R0; E0i 2 K, (1) for all t 2W; t0 2 W 0, if t coincides with
t0 in hK;Si, then E(t) = E0(t0), i.e. the same objects exist at coinciding
moments of di�erent local times; and (2) for all t; w 2W , all t0; w0 2 W 0, if
t is simultaneous with t0 in hK;Si, w is simultaneous with w0 in hK;Si; tRw
and t0R0w0, then fht; ui : tRu ^ uRwg �= fht0; ui : t0R0u ^ uR0w0g; i.e. the
structure of time is the same in any two local intervals whose end-points
are simultaneous in hK;Si.

Note that although the relation of coincidence in a causally connected
system is clearly an equivalence relation, the relation of simultaneity, at
least in special relativity, need not even be transitive. This will, in fact, be
a consequence of the principal assumption of special relativity, viz. that the
signal relation S of a causally connected system hK;Si has a �nite limiting
velocity; i.e. for all hW;R;Ei; hW 0; R0; E0i 2 K and all w 2 W , if w does
not coincide in hK;Si with any moment of W 0, then there are moments
u; v of W 0 such that uR0v and yet w is simultaneous with both u and v in
hK;Si (cf. [Carnap, 1958]). It is, of course, because of this assumption that
a state of a�airs can come (causal future) to have been (causal past) the
case without its ever actually being the case (in the local time in question).

Finally, where

[t]hK;Si = ft0 : t0 coincides with t in hK;Sig;

WhK;Si = f[t]hK;Si : for some hW;R;Ei 2 K; t 2Wg;

RhK;Si = fh[t]hK;Si; [w]hK;Sii : tSwg;

EhK;Si = fh[t]hK;Si; E(t)i : for some W;R; hW;R;Ei 2 K and t 2Wg;

then hWhK;Si; RhK;Si; EhK;Sii is a relational world system (in which every
theorem of S4 is validated). Accordingly, if I is an interpretation for a
language L based on hWhK;si; RhK;si; EhK;sii, A is a referential assignment
in hWhK;si; RhK;si; EhK;sii; hW;R;Ei 2 K, and t 2 W , then we recursively
de�ne with respect to I and A the proposition expressed by a w� ' of
L when part of an assertion made at t (as the present of the local time
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hW;R;Ei which is causally connected in the system hK;Si), in symbols
Intt('; I; A), exactly as before (in Section 13), except for the addition of
the following two clauses:

9. Intt(Pc'; I; A) = the P 2 2W such that for w 2W;P (w) = 1 i� there
are a local time hW 0; R0; E0i 2 K and moments t0; u 2W 0 such that t
is simultaneous with t0 in hK;Si; uSw, and Intt0('; I; A)(u) = 1; and

10. Intt(Fc'; I; A) = the P 2 2W such that for w 2 W;P (w) = 1 i� there
are a local time hW 0; R0; E0i 2 K and moments t0; u 2W 0 such that t
is simultaneous with t0 in hK;Si; wSu and Intt0('; I; A)(u) = 1.

Except for an invariance with respect to the added parameter hK;Si,
validity or tense-logical truth is understood to be de�ned exactly as before.
It is clear of course that although

P'! Pc'; F'! Fc'

are valid, their converses can be invalidated in a causally connected system
which has the �nite limiting velocity. On the other hand, were we to exclude
such systems (as was done in classical physics) and validate the converse
of the above w�s as well (as perhaps is still implicit in our common sense
framework), then, of course, the causal tense operators would be completely
redundant (which perhaps explains why they have no counterparts in nat-
ural language). It should perhaps be noted here that unlike the cognitive
schemata of the standard tense operators whose semantics is based on a
single local time, those represented by the causal tense operators are not
such as must be present in one form or another in every act of thought.
That is, they are derived schemata, constructed on the basis of those de-
centering abilities whereby we are able to conceive of the ordering of events
from a perspective other than our own. Needles to say, but the importance
and real signi�cance of these derived schemata was unappreciated until the
advent of special relativity.

One important consequence of the divergence of the causal from the stan-
dard tense operators is the invalidity of

FcPc'! Pc' _ ' _ Fc'

and therefore the consistency of

FcPc' ^ :�
t':

Unlike its earlier counterpart in terms of the standard tenses, this last w� of
course is the appropriate representation of the possibility in special relativity
of a state of a�airs coming (in the causal future) to have been the case (in
the causal past) without its ever actually being the case (in a given local
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time). Indeed, not only can this w� be true at some moment of a local time
of a causally connected system, but so can the following w�:

[Pc�
t' _ Fc�

t'] ^ :�t':

Quanti�cation over realia, incidentally, �nds further justi�cation in spe-
cial relativity. For just as some states of a�airs can come to have been the
case (in the causal past of the causal future) without their actually ever
being the case, so too there can be things that exist only in the past or fu-
ture of our own local time, but which nevertheless might exist in a causally
connected local time at a moment which is simultaneous with our present.
In this regard, reference to such objects as real even if not presently existing
would seem hardly controversial|or at least not at that stage of conceptual
development where our decentering abilities enable us to construct referen-
tial concepts that respect other points of view causally connected with our
own.

Finally, it should be noted that whereas the original Diodorean notion
of possibility results in the modal logic S4.3, i.e. the system S4 plus the
additional thesis

�f' ^ �f ! �f (' ^  ) _ �f (' ^ �f ) _ �f ( ^ �f');

the same Diodorean notion of possibility, but rede�ned in terms of Fc in-
stead, results in the modal logic S4. If we also assume, as is usual in special
relativity, that the causal futures of any two moments t; t0 of two local times
of a causally connected system hK;Si eventually intersect, i.e. that there is
a local time hW;R;Ei 2 K and a moment w 2W such that tSw and t0Sw,
then the thesis

Fc:Fc:'! :Fc:Fc'

will be validated, and the Diodorean modality de�ned in terms of Fc will
result in the modal system S4.2 (cf. [Prior, 1967, p. 203]), i.e. the system
S4 plus the thesis

�fc�fc'! �fc�fc':

Many other modal concepts, it is clear, can also be characterised in terms
of the semantics of a causally connected system of local times, including,
e.g. the notion of something being necessary because of the way the past has
been. What is distinctive about them all, moreover, is the unproblematic
sense in which they can be taken as material or metaphysical modalities.
This may indeed not be all there is to such a modality, but taking account
of more will confront us once again with the problem of providing a philo-
sophically coherent interpretation of the secondary semantics for such.

Indiana University, USA.
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STEVEN T. KUHN AND PAUL PORTNER

TENSE AND TIME

1 INTRODUCTION

The semantics of tense has received a great deal of attention in the con-
temporary linguistics, philosophy, and logic literatures. This is probably
due partly to a renewed appreciation for the fact that issues involving
tense touch on certain issues of philosophical importance (viz., determinism,
causality, and the nature of events, of time and of change). It may also be
due partly to neglect. Tense was noticeably omitted from the theories of
meaning advanced in previous generations. In the writings of both Russell
and Frege there is the suggestion that tense would be absent altogether
from an ideal or scienti�cally adequate language. Finally, in recent years
there has been a greater recognition of the important role that all of the
so-called indexical expressions must play in an explanation of mental states
and human behavior. Tense is no exception. Knowing that one's friend died
is cause for mourning, knowing that he dies is just another con�rmation of
a familiar syllogism.

This article will survey some attempts to make explicit the truth condi-
tions of English tenses, with occasional discussion of other languages. We
begin in Section 2 by discussing the most inuential early scholarship on the
semantics of tense, that of Jespersen, Reichenbach, and Montague. In Sec-
tion 3 we outline the issues that have been central to the more linguistically-
oriented work since Montague's time. Finally, in Section 4 we discuss recent
developments in the area of tense logic, attempting to clarify their signif-
icance for the study of the truth-conditional semantics of tense in natural
language.

2 EARLY WORK

2.1 Jespersen

The earliest comprehensive treatment of tense and aspect with direct in-
uence on contemporary writings is that of Otto Jespersen. Jespersen's A
Modern English Grammar on Historical Principles was published in seven
volumes from 1909 to 1949. Jespersen's grammar includes much of what
we would call semantics and (since he seems to accept some kind of identi-
�cation between meaning and use) a good deal of pragmatics as well. The

D. Gabbay and F. Guenthner (eds.),
Handbook of Philosophical Logic, Volume 7, 277{346.
c 2002, Kluwer Academic Publishers. Printed in the Netherlands.
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aims and methods of Jespersen's semantic investigations, however, are not
quite the same as ours.1

First, Jespersen is more interested than we are in cataloging and system-
atizing the various uses of particular English constructions and less inter-
ested in trying to characterize their meanings in a precise way. This leads
him to discuss seriously uses we would consider too obscure or idiomatic to
bother with. For example, Jespersen notes in the Grammar that the ex-
pressions of the form I have got A and I had got A are di�erent than other
present perfect and past perfect sentences. I have got a body, for example,
is true even though there was no past time at which an already existent me
received a body. Jespersen suggests I have in my possession and I had in
my possession as readings for I have got and I had got. And this discussion
is considered important enough to be included in his Essentials of English
Grammar, a one volume summary of the Grammar.

Jespersen however does not see his task as being merely to collect and
classify rare ora. He criticizes Henry Sweet, for example, for a survey of
English verb forms that includes such paradigms as I have been being seen
and I shall be being seen on the grounds that they are so extremely rare
that it is better to leave them out of account altogether. Nevertheless there
is an emphasis on cataloging, and this emphasis is probably what leads Jes-
persen to adhere to a methodological principle that we would ignore; viz.,
that example sentences should be drawn from published literature wher-
ever possible rather than manufactured by the grammarian. Contemporary
linguists and philosophers of language see themselves as investigating fun-
damental intuitions shared by all members of a linguistic community. For
this reason it is quite legitimate for them to produce a sentence and assert
without evidence that it is well-formed or ill-formed, ambiguous or univocal,
meaningful or unmeaningful. This practice has obvious dangers. Jespersen's
methodological scruples, however, provide no real safety. On the one hand,
if one limits one's examples to a small group of masters of the language one
will leave out a great deal of commonly accepted usage. On the other hand,
one can't accept anything as a legitimate part of the language just because
it has appeared in print. Jespersen himself criticizes a contemporary by
saying of his examples that `these three passages are the only ones adduced
from the entire English literature during nearly one thousand years'.

A �nal respect in which Jespersen di�ers from the other authors discussed
here is his concern with the recent history of the language. Although the
Grammar aims to be a compendium of contemporary idiom, the history
of a construction is recited whenever Jespersen feels that such a discus-
sion might be illuminating about present usage. A good proportion of the
discussion of the progressive form, for example, is devoted to Jespersen's

1By `ours' we mean those of the authors discussed in the remainder of the article.
Some recent work, like that of F. Palmer and R. Huddleston, is more in the tradition of
Jespersen than this.
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thesis that I am reading is a relatively recent corruption of I am a-reading
or I am on reading, a construction that survives today in expressions like
I am asleep and I am ashore. This observation, Jespersen feels, has en-
abled him to understand the meaning of the progressive better than his
contemporaries.2 In discussing Jespersen's treatment of tense and aspect,
no attempt will be made to separate what is original with Jespersen from
what is borrowed from other authors. Jespersen's grammar obviously ex-
tends a long tradition. See Binnick for a recent survey.3 Furthermore there
is a long list of grammarians contemporaneous with Jespersen who inde-
pendently produced analyses of tenses. See, for example, Curme, Kruisinga
and Poutsma. Jespersen, however, is particularly thorough and insightful
and, unlike his predecessors and contemporaries, he continues to be widely
read (or at least cited) by linguists and philosophers. Jespersen's treatment
of tense and aspect in English can be summarized as follows:

2.1.1 Time

It is important to distinguish time from tense. Tense is the linguistic device
which is used (among other things) for expressing time relations. For ex-
ample, I start tomorrow is a present tense statement about a future time.
To avoid time-tense confusion it is better to reserve the term past for time
and to use preterit and pluperfect for the linguistic forms that are more
commonly called past tense and past perfect. Time must be thought of as
something that can be represented by a straight line, divided by the present
moment into two parts: the past and the future. Within each of the two
divisions we may refer to some point as lying either before or after the main
point of which we are speaking. For each of the seven resulting divisions of
time there are retrospective and prospective versions. These two notions are
not really a part of time itself, but have rather to do with the perspective
from which an event on the time line is viewed. The prospective present
time, for example, is a variety of present that looks forward into the future.
In summary, time can be pictured as in Figure 2.1.1. The three divisions
marked with A's are past; those marked with C's are future. The short
pointed lines at each division indicate retrospective and prospective times.

2.1.2 Tense morphology

The English verb has only two tenses proper, the present tense and the
preterit. There are also two tense phrases, the perfect (e.g., I have writ-
ten) and the pluperfect or anteperfect (e.g., I had written). (Modal verbs,

2A similar claim is made in Vlach [1981]. For the most part, however, the history of
English is ignored in contemporary semantics.

3Many of the older grammars have been reprinted in the series English Linguistics:
1500{1800 (A Collection of Facsimile Reprints) edited by R.C. Alston and published by
Scholar Press Limited, Menston, England in 1967.
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-@@I ��� @@I ��� @@I ��� @@I ��� @@I ��� @@I ���
Aa Ab Ac B Ca Cb Cc

Before-past Past After-past Present Before-future Future After future

Figure 1.

including can, may, must, ought, shall, and will, cannot form perfects and
pluperfects.) Corresponding to each of the four tenses and tense phrases
there is an expanded (what is more commonly called today the progressive)
form. For example, had been writing is the expanded pluperfect of write.
It is customary to admit also future and future perfect tenses, as in I will
write and I shall have written. But these constructions lack the �xity of
the others. On the one hand, they are often used to express nontemporal
ideas (e.g., volition, obstinacy) and on the other hand future time can be
indicated in many other ways.

The present tense is primarily used about the present time, by which
we mean an interval containing the present moment whose length varies
according to circumstances. Thus the time we are talking about in He is
hungry is shorter than in None but the brave deserve the fair. Tense tells
us nothing about the duration of that time. The same use of present is
found in expressions of intermittent occurrences (I get up every morning
at seven and Whenever he calls, he sits close to the �re). Di�erent uses of
the present occur in statements of what might be found at all times by all
readers Milton defends the liberty of the press in his Areopagitica) and in
expressions of feeling about what is just happening or has just happened
(That's capital!). The present can also be used to refer to past times. For
example, the dramatic or historical present can alternate with the preterit:
He perceived the surprise, and immediately pulls a bottle out of his pocket,
and gave me a dram of cordial. And the present can play the same role
as the perfect in subordinate clauses beginning with after: What happens
to the sheep after they take its kidney out? Present tense can be used to
refer to future time when the action described is considered part of a plan
already �xed: I start for Italy on Monday. The present tense can also refer
to future events when it follows I hope, as soon as, before, or until.

The perfect is actually a kind of present tense that seems to connect the
present time with the past. It is both a retrospective present, which looks
upon the present as a result of what happened in the past and an inclusive
present, which speaks of a state that is continued from the past into the
present time (or at least one that has results or consequences bearing on
the present time).
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The preterit di�ers from the perfect in that it refers to some time in
the past without telling anything about its connection with the present
moment. Thus Did you �nish? refers to a past time while Have you �n-
ished? is a question about present status. It follows that the preterit is
appropriate with words like yesterday and last year while the perfect is
better with today, until now and already. This morning requires a perfect
tense when uttered in the morning and a preterit in the afternoon. Often
the correct form is determined by context. For example, in discussing a
schoolmate's Milton course, Did you read Samson Agonistes? is appropri-
ate,
whereas in a more general discussion Have you read Samson Agonistes?
would be better. In comparing past conditions with present the preterit
may be used (English is not what it was), but otherwise vague times are
not expressed with the preterit but rather by means of the phrase used to (I
used to live at Chelsea). The perfect often seems to imply repetition where
the preterit would not. (Compare When I have been in London, with When
I was in London).

The pluperfect serves primarily to denote before-past time or retrospec-
tive past, two things which cannot easily be kept apart. (An example of the
latter use is He had read the whole book before noon.) After after, when, or
as soon as, the pluperfect is interchangeable with the preterit.

The expanded tenses indicate that the action or state denoted provides
a temporal frame encompassing something else described in the sentence
or understood from context. For example, if we say He was writing when
I entered, we mean that his writing (which may or may not be completed
now) had begun, but was not completed, at the moment I entered. In the
expanded present the shorter time framed by the expanded time is generally
considered to be very recently. The expanded tenses also serve some other
purposes. In narration simple tenses serve to carry a story forward while
expanded tenses have a retarding e�ect. In other cases expanded tense
forms may be used in place of the corresponding simple forms to indicate
that a fact is already known rather than new, than an action is incomplete
rather than complete or that an act is habitual rather than momentary.
Finally, the expanded form is used in two clauses of a sentence to mark the
simultaneity of the actions described. (In that case neither really frames
the other.)

In addition to the uses already discussed, all the tenses can have some-
what di�erent functions in passive sentences and in indirect speech. They
also have uses apparently unrelated to temporal reference. For example,
forms which are primarily used to indicate past time are often used to de-
note unreality, impossibility, improbability or non-ful�llment, as in If John
had arrived on time, he would have won the prize.4

4From the contemporary perspective we would probably prefer to say here that had
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2.1.3 Tense syntax

In the preceding discussion we started with the English tense forms and
inquired about their meanings. Alternatively we can start with various
temporal notions and ask how they can be expressed in English. If we do
so, several additional facts emerge:

1. The future time can be denoted by present tense (He leaves on Mon-
day), expanded present tense (I am dining with him on Monday), is
sure to, will, shall, come to or get to.

2. The after-past can be expressed by would, should, was to, was destined
to, expanded preterit (They were going out that evening and When
he came back from the club she was dressing) or came to (In a few
years he came to control all the activity of the great �rm).

3. The before-future can be expressed by shall have, will have or present
(I shall let you know as soon as I hear from them or Wait until the
rain stops).

4. The after-future is expressed by the same means as the future (If you
come at seven, dinner will soon be ready).

5. Retrospective pasts and futures are not distinguished in English from
before-pasts and before-futures. (But retrospective presents, as we
have seen, are distinct from pasts. The former are expressed by the
perfect, the latter by the preterit.)

6. Prospectives of the various times can be indicated by inserting expres-
sions like on the point of, about to or going to. For example, She is
about to cry is a prospective present.

2.2 Reichenbach

In his general outlook Reichenbach makes a sharp and deliberate break
with the tradition of grammarians like Jespersen. Jespersen saw himself as
studying the English language by any means that might prove useful (in-
cluding historical and comparative investigations). Reichenbach saw himself
as applying the methods of contemporary logic in a new arena. Thus, while
Jespersen's writings about English comprise a half dozen scholarly treatises,
Reichenbach's are contained in a chapter of an introductory logic text. (His
treatment of tense occupies twelve pages.) Where Jespersen catalogs dozens
of uses for an English construction, Reichenbach is content to try to charac-
terize carefully a single use and then to point out that this paradigm does
not cover all the cases. While Jespersen uses, and occasionally praises, the

arrived is a subjunctive preterit which happens to have the same form as a pluperfect.



TENSE AND TIME 283

e�orts of antecedent and contemporary grammarians, Reichenbach declares
that the state of traditional grammar is hopelessly muddled by its two-
millennial ties to a logic that cannot account even for the simplest linguistic
forms.

Despite this di�erence in general outlook, however, the treatment of
tenses in Reichenbach is quite similar to that in Jespersen. Reichenbach's
chief contribution was probably to recognize the importance of the distinc-
tion between what he calls the point of the event and the point of refer-
ence (and the relative unimportance and obscurity of Jespersen's notions
of prospective and retrospective time.) In the sentence Peter had gone, ac-
cording to Reichenbach, the point of the event is the time when Peter went.
The point of reference is a time between this point and the point of speech,
whose exact location must be determined by context. Thus Reichenbach's
account of the past perfect is very similar to Jespersen's explanation that
the past perfect indicates a `before past' time. Reichenbach goes beyond
Jespersen, however, in two ways.

First, Reichenbach is a little more explicit about his notion of reference
times than is Jespersen about the time of which we are speaking. He iden-
ti�es the reference time in a series of examples and mentions several rules
that might be useful in determining the reference time in other examples.
Temporally speci�c adverbials like yesterday, now or November 7, 1944, for
example, are said to refer to the reference point. Similarly, words like when,
after, and before relate the reference time of a adjunct clause to that of the
main clause. And if a sentence does not say anything about the relations
among the reference times of its clauses, then every clause has the same
point of reference.

Second, Reichenbach argues that the notion of reference time plays an
important role in all the tenses. The present perfect, for example, is dis-
tinguished by the fact that the event point is before the point of reference
and the point of reference coincides with the point of speech. (So I have
seen Sharon has the same meaning as Now I have seen Sharon.) In general,
each tense is determined by the relative order of the point of event (E), the
point of speech (S), and the point of reference (R). If R precedes S we have
a kind of past tense, if S precedes R we have a kind of future tense and
if R coincides with S we have a kind of present. This explains Jespersen's
feeling that the simple perfect is a variety of the present. Similarly the
labels `anterior', `posterior' and `simple' indicate that E precedes, succeeds
or coincides with R. The account is summarized in the following table.
Each of the tenses on this table also has an expanded form which indicates,
according to Reichenbach, that the event covers a certain stretch of time.

Notice that the list of possible tenses is beginning to resemble more closely
the list of tenses realized in English. According to Jespersen there are seven
divisions of time, each with simple, retrospective and prospective versions.
This makes twenty-one possible tenses. According to Reichenbach's scheme
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Structure New Name Traditional Name

E R S Anterior past Past perfect

E;R S Simple past Simple past

R E S

R S;E Posterior past

R S E

E S;R Anterior present Present perfect

S;R;E Simple present Present

S;R E Posterior present Simple future

S E R

S;E R Anterior future Future perfect

E S R

S R;E Simple future Simple future

S R E Posterior future

there should be thirteen possible tenses, corresponding to the thirteen or-
derings of E; S, and R. Looking more closely at Reichenbach, however, we
see that the tense of a sentence is determined only be the relative order
of S and R, and the aspect by the relative order of R and E. Since there
are three possible orderings of S and R, and independently three possible
orderings of R and E, there are really only nine possible complex tenses
(seven of which are actually realized in English).5

Finally, Reichenbach acknowledges that actual language does not always
keep to the scheme set forth. The expanded forms, for example, sometimes
indicate repetition rather than duration: Women are wearing larger hats
this year. And the present perfect is used to indicate that the event has a
certain duration which reaches up to the point of speech: I have lived here
for ten years.

2.3 Montague

Despite Reichenbach's rhetoric, it is probably Montague, rather than Re-
ichenbach, who should be credited with showing that modern logic can be
fruitfully applied to the study of natural language. Montague actually had
very little to say about tense, but his writings on language have been very
inuential among those who do have something to say. Two general princi-
ples underlie Montague's approach.

5There are actually only six English tense constructions on Reichenbach's count, be-
cause two tenses are realized by one construction. The simple future is ambiguous between
S;R E, as in Now I shall go or S R;E, as in I shall go tomorrow. Reichenbach suggests
that, in French the two tenses may be expressed by di�erent constructions: je vais voir
and je verrai.
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(1a) Compositionality. The meaning of an expression is determined
by the meaning of its parts.

(1b) Truth conditions. The meaning of a declarative sentence is
something that determines the conditions under which that
sentence is true.

Neither of these principles, of course, is original with Montague, but it
is Montague who shows how these principles can be used to motivate an
explicit account of the semantics of particular English expressions.

Initially, logic served only as a kind of paradigm for how this can be
done. One starts with precisely delineated sets of basic expressions of various
categories. Syntactic rules show how complex expressions can be generated
from the basic ones. A class of permissible models is speci�ed, each of which
assigns interpretations to the basic expressions. Rules of interpretation show
how the interpretation of complex expressions can be calculated from the
interpretations of the expressions from which they are built.

The language of classical predicate logic, for example, contains predi-
cates, individual variables, quanti�ers, sentential connectives, and perhaps
function symbols. Generalizations of this logic are obtained by adding ad-
ditional expressions of these categories (as is done in modal and tense logic)
or by adding additional categories (as is done in higher order logics). It was
Montague's contention that if one generalized enough, one could eventually
get English itself. Moreover, clues to the direction this generalization should
take are provided by modal and tense logic. Here sentences are interpreted
by functions from possible worlds (or times or indices representing aspects
of context) to truth values. English, for Montague, is merely an exceedingly
baroque intensional logic. To make this hypothesis plausible, Montague
constructed, in [1970; 1970a] and [1973], three `fragments' of English of in-
creasing complexity. In his �nal fragment, commonly referred to as PTQ,
Montague �nds it convenient to show how the expressions can be translated
into an already-interpreted intensional logic rather than to specify an inter-
pretation directly. The goal is now to �nd a translation procedure by which
every expression of English can be translated into a (comparatively simple)
intensional logic.

We will not attempt here to present a general summary of PTQ. (Read-
able introductions to Montague's ideas can be found in Montague [1974]

and Dowty [1981].) We will, however, try to describe its treatment of tense.
To do so requires a little notation. Montague's intensional logic contains
tense operators W and H meaning roughly it will be the case that and it
was the case that. It also contains an operator ^ that makes it possible to
refer to the intension of an expression. For example, if a is an expression
referring to the object a, then ^a denotes the function that assigns a to
every pair of a possible world w and a time t.
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Among the expressions of English are terms and intransitive verb phrases.
An intransitive verb phrase B is translated by an expression B0 which de-
notes a function from entities to truth values. (That is, B0 is of type he; ti.)
A term A is translated by an expression A0 which denotes a function whose
domain is intensions of functions from entities to truth values and whose
range is truth values. (That is, A0 is of type hhs, he; ti, tii.) Tense and
negation in PTQ are treated together. There are six ways in which a term
may be combined with an intransitive verb phrase to form a sentence. These
generate sentences in the present, future, present perfect, negated present,
negated future and negated present perfect forms. The rules of translation
corresponding to these six constructions are quite simple. If B is an intran-
sitive verb phrase with translation B0 and A is a term with translation A0

then the translations of the six kinds of sentences that can be formed by com-
bining A and B are just A0(^B0);WA0(^B0);HA0(^B0);:A0(^B0);
:WA0(^B0) and :HA0(^B0).

A simple example will illustrate. Suppose that A is Mary and that B
is sleeps. The future tense sentence Mary will sleep is assigned translation
WMary (^sleeps). Mary denotes that function which assigns `true' to a
property P in world w at time t if and only if Mary has P in w at t.The
expression ^sleeps denotes the property of sleeping, i.e. the function f from
indices to functions from individuals to truth values such that f(hw; ti)(a)
= `true' if and only if a is an individual who is asleep in world w at time
t (for any world w, time t, and individal a). Thus Mary(^sleeps) will
be true at hw; ti if and only if Mary is asleep in w at t. Finally, the
sentence WMary(^sleeps) is true in a world w at a time t if and only if
Mary(^sleeps) is true at some hw; t0i, where t0 is a later time than t.

This treatment is obviously crude and incomplete. It was probably in-
tended merely as an illustration of now tense might be handled within Mon-
tague's framework. Nevertheless, it contains the interesting observation
that the past tense operator found in the usual tense logics corresponds
more closely to the present perfect tense than it does to the past. In saying
John has kissed Mary we seem to be saying that there was some time in
the past when John kisses Mary was true. In saying John kissed Mary, we
seem to be saying that John kisses Mary was true at the time we happen
to be talking about. This distinction between de�nite and inde�nite past
times was pointed out by Jespersen, but Jespersen does not seem to have
thought it relevant to the distinction between present perfect and past.

Reichenbach's use of both event time and reference time, leading to a
three-dimensional logic, may suggest that it will not be easy to add the
past tenses to a PTQ-like framework. However, one of the di�erences be-
tween Reichenbach's reference time and event time seems to be that the
former is often �xed by an adverbial clause or by contextual information
whereas the latter is less often so �xed. So it is approximately correct to say
that the reference time is determinate whereas the event time is indetermi-
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nate. This may help explain the frequent remarks that only two times are
needed to specify the truth conditions of all the tenses. In one sense these
remarks are wrong. S;R and E all play essential roles in Reichenbach's
explanation of the tenses. But only S and R ever need to be extracted
from the context. All that we need to know about E is its position relative
to R and this information is contained in the sentence itself. Thus a tense
logic following Reichenbach's analysis could be two-dimensional, rather than
three-dimensional. If s and r are the points of speech and reference, for ex-
ample, we would have (s; r) � PASTPERFECT(A) if and only if r < s

and, for some t < r; t � A.(See Section 4 below.)

Still, it seems clear that the past tenses cannot be added to PTQ without
adding something like Reichenbach's point of reference to the models. More-
over, adherence the idea that there should be a separate way of combining
tenses and intransitive verb phrases for every negated and unnegated tense
would be cumbersome and would miss important generalizations. Mon-
tague's most important legacies to the study of tense were probably his
identi�cation of meaning with truth conditions, and his high standards of
rigor and precision. It is striking that Jespersen, Reichenbach and Montague
say successively less about tense with correspondingly greater precision. A
great deal of the contemporary work on the subject can be seen as an at-
tempt to recapture the insights of Jespersen without sacri�cing Montague's
precision.

3 CONTEMPORARY VIEWS

In Sections 3.1 and 3.2 below we outline what seem to us to be two key issues
underlying contemporary research into the semantics of tense. The �rst has
to do with whether tense should be analyzed as an operator or as something
that refers to particular time or times; this is essentially a type-theoretic
issue. The second pertains to a pair of truth-conditional questions which
apparently are often confused with the type-theoretic ones: (i) does the
semantics of tense involve quanti�cation over times, and if so how does this
quanti�cation arise?, and (ii) to what extent is the set of times relevant to
a particular tensed sentence restricted or made determinate by linguistic or
contextual factors? Section 3.3 then outlines how contemporary analytical
frameworks have answered these questions. Finally, Section 3.4 examines
in more detail some of the proposals which have been made within these
frameworks about the interpretation of particular tenses and aspects.

3.1 Types for Tense

The analyses of Reichenbach and Montague have served as inspiration for
two groups of theorists. Montague's approach is the one more familiar
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from traditional tense logics developed by Prior and others. The simplest
non-syncategorematic treatment of tense which could be seen as essentially
that of Montague would make tenses propositional operators, expressions of
type hhs; ti,ti or hhs; ti,hs; tii, that is, either as functions from propositions
to truth values or as functions from propositions to propositions (where
propositions are taken to be sets of world-time pairs). For example, the
present perfect might have the following interpretation:

(2) PrP denotes that function f from propositions to proposi-
tions such that, for any proposition p,f(p) = the proposition
q, where for any world w and time t, q(hw; ti)= `true' i� for
some time t0 preceding t; p(hw; t0i)= `true'.

Two alternative, but closely related, views would take tense to have the
type of a verb phrase modi�er hhs,he; tii,he; tii ([B�auerle, 1979; Kuhn, 1983])
or as a `mode of combination' in htype(TERM),hhs,he; tii,tii or hhs,he; tii,
htype(TERM),tii. We will refer to these approaches as representative of the
operator view of tense.

The alternative approach is more directly inspired by Reichenbach's views.
It takes the semantics of tense to involve reference to particular times. This
approach is most thoroughly worked out within the framework of Discourse
Representation Theory (DRT; [Kamp, 1983; Kamp and Roher, 1983; Hin-
richs, 1986; Partee, 1984]), but for clarity we will consider the type-theoretic
commitments of the neo-Reichenbachian point of view through the use of a
Predicate Calculus-like notation. We may take a tense morpheme to intro-
duce a free variable to which a time can be assigned. Depending on which
tense morpheme is involved, the permissible values of the variable should be
constrained to fall within an appropriate interval. For example, the sentence
Mary slept might have a logical form as in (3).

(3) PAST(t) & AT(t, sleeps(Mary)).

With respect to an assignment g of values to variables, (3) should be true if
and only if g(t) is a time that precedes the utterance time and one at which
Mary sleeps. On this approach the semantics of tense is analogous to that
of pronouns, a contention defended most persuasively by Partee.

A more obviously Reichenbachian version of this kind of analysis would
introduce more free variables than simply t in (3). For example, the plu-
perfect Mary had slept might be rendered as in (4):

(4) PAST(r) & t < r & AT(t, sleeps(Mary)).

This general point of view could be spelled out in a wide variety of ways.
For example, times might be taken as arguments of predicates, or events and
states might replace times. We refer to this family of views as referential.
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3.2 Quanti�cation and determinacy

3.2.1 Quanti�cation

In general, the operator theory has taken tense to involve quanti�cation
over times. Quanti�cation is not an inherent part of the approach, however;
one might propose a semantics for the past tense of the following sort:

(5) (r; u) � PAST(S) i� r < u and (r; r) � S.

Such an analysis of a non-quanti�cational past tense might be seen as espe-
cially attractive if there are other tense forms that are essentially quanti�-
cational. An operator-based semantics would be a natural way to introduce
this quanti�cation, and in the interest of consistency one might then prefer
to treat all tenses as operators-just as PTQ argues that all NP's are quan-
ti�ers because some are inherently quanti�cational. On the other hand, if
no tenses are actually quanti�cational it might be preferable to utilize a less
powerful overall framework.

The issue of quanti�cation for the referential theory of tense is not en-
tirely clear either. If there are sentences whose truth conditions must be
described in terms of quanti�cation over times, the referential theory can-
not attribute such quanti�cation to the tense morpheme. But this does not
mean that such facts are necessarily incompatible with the referential view.
Quanti�cation over times may arise through a variety of other, more gen-
eral, means. Within DRT and related frameworks, several possibilities have
been discussed. The �rst is that some other element in the sentence may
bind the temporal variable introduced by tense. An adverb of quanti�cation
like always, usually, or never would be the classical candidate for this role.

(6) When it rained, it always poured.

(7) 8t[(PAST(t) & AT(t, it-rains)) ! (PAST(t) & AT(t,it-
pours))].

DRT follows Lewis [1975] in proposing that always is an unselective universal
quanti�er which may bind any variables present in the sentence. Hinrichs
and Partee point out that in some cases it may turn out that a variable
introduced by tense is thus bound; their proposals amount to assigning (6)
a semantic analysis along the lines of (7).

The other way in which quanti�cation over times may arise in referen-
tial analyses of tense is through some form of default process. The most
straightforward view along these lines proposes that, in the absence of ex-
plicit quanti�cational adverbs, the free variable present in a translation like
(3), repeated here, is subject to a special rule that turns it into a quanti�ed
formula like (8):
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(3) PAST(t) & AT(t, sleeps(Mary)).

(8) 9t [ PAST(t) & AT(t, sleeps(Mary))].

This operation is referred to as existential closure by Heim; something sim-
ilar is proposed by Parsons [1995]. It is also possible to get the e�ect of
existential quanti�cation over times through the way in which the truth of
a formula is de�ned. This approach is taken by DRT as well as Heim [1982,
Ch. III]. For example, a formula like (3) would be true with respect to a
model M if and only if there is some function g from free variables in (3)
to appropriate referents in M such that g(t) precedes the utterance time in
M and g(t) is a time at which Mary is asleep in M .

To summarize, we may say that one motivation for the operator theory
of tense comes from the view that some tense morphemes are inherently
quanti�cational. The referential analysis, in contrast, argues that all ex-
amples of temporal quanti�cation are to be attributed not to tense but to
independently needed processes.

3.2.2 Determinacy

An issue which is often not clearly distinguished from questions of the type
and quanti�cational status of tense is that of the determinacy or de�nite-
ness of tense. Classical operator-based tense logics treat tense as all but
completely indeterminate: a past tense sentence is true if and only if the
untensed version is true at any past time. On the other hand, Reichenbach's
referential theory seemingly considers tense to be completely determinate:
a sentence is true or false with respect to the particular utterance time,
reference time, and event time appropriate for it. However, we have already
seen that a referential theory might allow that a time variable can be bound
by some quanti�cational element, thus rendering the temporal reference less
determinate. Likewise, we have seen that an operator-based theory may be
compatible with completely determinate temporal reference, as in (5). In
this section, we would like to point out how varying degrees of determinacy
can be captured within the two systems.

If temporal reference is fully indeterminate, it is natural to adopt an op-
erator view: PAST(B) is true at t if and only if B is true at some t0 < t.
A referential theory must propose that in every case the time variable in-
troduced by tense is bound by some quanti�cational operator (or e�ectively
quanti�ed over by default, perhaps merely through the e�ects of the truth
de�nition). In such cases it seems inappropriate to view the temporal pa-
rameters as `referring' to times.

If temporal reference is fully determinate, the referential theory need
make no appeal to any ancillary quanti�cation devices. The operator theory
may use a semantics along the lines of (3). Alternatively, tense might be seen
as an ordinary quanti�cational operator whose domain of quanti�cation has
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been severely restricted. We might implement this idea as follows: Suppose
that each tense morpheme bears an index, as Mary PAST3sleeps. Sentences
are interpreted with respect to a function R from indices to intervals. (The
precedence order is extended from instants to intervals and instants in the
appropriate way, with < indicating `completely precedes'.) The formula in
(9a) would then have the truth conditions of (9b).

(9a) PAST3 (sleeps(Mary)).

(9b) (R; u) � PAST3(sleeps(Mary)) i� for some time t 2
R(3); t < u and (R; t) � sleeps(Mary).

Plainly, R in (9b) is providing something very similar to that of the reference
time in Reichenbach's system. This can be seen by the fact that the identity
of R(3) should be �xed by temporal adverbs like yesterday, as in Yesterday,
Mary slept.

Finally, we should examine what could be said about instances of tense
which are partially determinate. The immediately preceding discussion
makes it clear what the status of such examples would be within an opera-
tor account; they would simply exemplify restricted quanti�cation ([Bennett
and Partee, 1972; Kuhn, 1979]). Instead of the analysis in (9), we would
propose that R is a function from indices to sets of intervals, and give the
truth conditions as in (10).

(10) (R; u) � PAST3(sleeps(Mary)) i� for some time t 2
R(3); t < u and (R; t) � sleeps(Mary ).

According to (10), (9a) is true if and only if Mary was asleep at some past
time which is within the set of contextually relevant past times. Temporal
quanti�cation would thus be seen as no di�erent from ordinary nominal
quanti�cation, as when Everyone came to the party is taken to assert that
everyone relevant came to the party.

Referential analyses of tense would have to propose that partial deter-
minacy arises when temporal variables are bound by restricted quanti�ers.
Let us consider a Reichenbach-style account of Mary slept along the lines
of (11).

(11) 9t [PAST(r) & t 2 r & AT(t, sleeps(Mary))]:

The remaining free variable in (11), namely r, will have to get its value
(the reference set) from the assignment function g. The formula in (11)
has t 2 r where Reichenbach would have t = r; the latter would result in
completely determinate semantics for tense, while (11) results in restricted
quanti�cation. The sentence is true if and only if Mary slept during some
past interval contained in g(r).
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The only di�erence between (10) and (11) is whether the quanti�cational
restriction is represented in the translation language as a variable, the r in
(11), or as a special index on the operator, the subscripted 3 in (10). In each
case, one parameter of interpretation must be some function which identi�es
the set of relevant times for the quanti�cation. In (11), it is the assignment
function, g, while in (10) it is R. Clearly at this point the di�erences
between the two theories are minor. To summarize, we need to distinguish
three closely related ways in which theories of tense may di�er: (i) They
may take tense to be an operator or to introduce elements which refer to
times; (ii) they may involve quanti�cation over times through a considerable
variety of means|the inherent semantics of tense itself, the presence of
some other quanti�cational element within the sentence, or a default rule;
and (iii) they may postulate that the temporal reference of sentences is fully
determinate, fully indeterminate, or only partially determinate.

3.3 Major contemporary frameworks

Most contemporary formal work on the semantics of tense takes place within
two frameworks: Interval Semantics and Discourse Representation Theory.
In this section we describe the basic commitments of each of these, noting in
particular how they settle the issues discussed in 3.1 and 3.2 above. We will
then consider in a similar vein a couple of other inuential viewpoints, those
of Situation Semantics [Cooper, 1986] and the work of En�c [1986; 1987].

By Interval Semantics we refer to the framework which has developed
out of the Intensional Logic of Montague's PTQ. There are a number of
implementations of a central set of ideas; for the most part these di�er in
fairly minor ways, such as whether quanti�cation over times is to be ac-
complished via operators or explicit quanti�ers. The key aspects of Interval
Semantics are: (i) the temporal part of the model consists of set I of inter-
vals, the set of open and closed intervals of the reals, with precedence and
temporal overlap relations de�ned straightforwardly; (ii) the interpretation
of sentences depends on an evaluation interval or event time, an utterance
time, and perhaps a reference interval or set of reference intervals; (iii) in-
terpretation proceeds by translating natural language sentences into some
appropriate higher-order logic, typically an intensional �-calculus; and (iv)
tenses are translated by quanti�cational operators or formulas involving
�rst-order quanti�cation to the same e�ect. The motivation for (i) comes
initially from the semantics for the progressive, a point which we will see
in Section 3.4 below. We have already examined the motivation for (ii),
though in what follows we will see more clearly what issues arise in trying
to understand the relationship between the reference interval and the eval-
uation interval. Points (iii) and (iv) are implementation details with which
we will not much concern ourselves.

From the preceding, it can be seen what claims Interval Semantics makes
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concerning the issues in 3.1 and 3.2. Tense has the type of an operator. It
is uniformly quanti�cational, but shows variable determinacy, depending on
the nature of the reference interval or intervals.

Discourse Representation Theory is one of a number of theories of dy-
namic interpretation to be put forth since the early 1980's; others include
File Change Semantics [Heim, 1982] and Dynamic Montague Grammar
[Groenendijk and Stokhof, 1990]. What the dynamic theories share is a
concern with the interpretation of multi-sentence texts, concentrating on
establishing means by which information can be passed from one sentence
to another. The original problems for which these theories were designed
had to do with nominal anaphora, in particular the relationships between
antecedents and pronouns in independent sentences like (12) and donkey
sentences like (13).

(12) A man walked in. He sat down.

(13) When a man walks in, he always sits down.

Of the dynamic theories, by far the most work on tense has taken place
within DRT. It will be important over time to determine whether the
strengths and weaknesses of DRT analyses of tense carry over to the other
dynamic approaches.

As noted above, work on tense within DRT has attempted to analogize
the treatment of tense to that of nominal anaphora. This has resulted in
an analytical framework with the following general features: (i) the tem-
poral part of the model consists of a set of eventualities (events, processes,
states, etc.), and possibly of a set of intervals as well; (ii) the semantic rep-
resentation of a discourse (or sub-part thereof) contains explicit variables
ranging over to reference times, events, and the utterance time; (iii) in-
terpretation proceeds by building up a Discourse Representation Structure
(DRS), a partial model consisting of a set of objects (discourse markers)
and a set of conditions specifying properties of and relations among them;
the discourse is true with respect to a model M if and only if the partial
model (DRS) can be embedded in the full model M ; (iv) tenses are trans-
lated as conditions on discourse markers representing events and/or times.
For example, consider the discourse in (14).

(14) Pedro entered the kitchen. He took o� his coat.

We might end up with discourse markers representing Pedro (x), the kitchen
(y), the coat (z), the event of entering the kitchen (e1), the event of taking o�
the coat (e2), the utterance time (u), the reference time for the �rst sentence
(r1) and the reference time for the second sentence (r2). The DRS would
contain at least the following conditions: Pedro=x, kitchen(y), coat(z),
entering(e1; x; y), taking-o�(e2; x; z); r1 < u; r2 < u; r1 < r2; e1Æ
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r1, and e2Ær2 (where Æ represents temporal overlap). The algorithms for
introducing conditions may be rather complex, and typically are sensitive
to the aspectual class of the eventualities represented (that is, whether they
are events, processes, states, etc.).

DRT holds a referential theory of tense, treating it via discourse markers
plus appropriate conditions. It therefore maintains that tense is not inher-
ently quanti�cational, and that any quanti�cational force which is observed
must come from either an independent operator, as with (6), or default rule.
Given the de�nition of truth mentioned above, tense will be given a default
existential quanti�cational force|the DRS for (14) will be true if there is
some mapping from discourse markers to entities in the model satisfying the
conditions. The DRT analysis of tense also implies that temporal reference
is highly determinate, since the events described by a discourse typically
must overlap temporally with a contextually determined reference time.

Closely related to the DRT view of tense are a pair of indexical the-
ories of tense. The �rst is developed by Cooper within the framework
of Situation Semantics (Barwise and Perry [1983]). Situation Semantics
constructs objects known as situations or states of a�airs set-theoretically
out of properties, relations, and individuals (including space-time loca-
tions). Let us say that the situation of John loving Mary is represented
as hl; hhlove; John;Maryi; 1ii, l being a spatiotemporal location and 1
representing `truth'. A set of states of a�airs is referred to as a history, and
it is the function of a sentence to describe a history. A simple example is
given in (15).

(15) John loved Mary describes a history h with respect to a spatio-
temporal location l i� hl,hhlove, John, Maryi,1ii2 h.

Unless some theory is given to explain how the location l is arrived at, a
semantics like (15) will of course not enlighten us much as to the nature
of tense. Cooper proposes that the location is provided by a connections
function; for our purposes a connections function can be identi�ed with a
function from words to individuals. When the word is a verb, a connections
function c will assign it a spatiotemporal location. Thus,

(16) John loved Mary describes a history h with respect to a con-
nections function c i� hc(loved), hhlove, John, Maryi,1ii2 h:

Cooper's theory is properly described as an `indexical' approach to tense,
since a tensed verb directly picks out the location which the sentence is
taken to describe.6

6Unlike ordinary indexicals, verbs do not refer to the locations which they pick out.
The verb loved still denotes the relation love.
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En�c's analysis of tense is somewhat similar to Cooper's. She proposes that
tense morphemes refer to intervals. For example, the past tense morpheme
-ed might refer, at an utterance time u, to the set of moments preceding
u. For En�c, a verb is a semi-indexical expression, denoting a contextually
relevant subrelation of the relation which it is normally taken to express|
e.g., any occurrence of kiss will denote a subset of fhx; yi: x kisses y (at
some time)g. Tense serves as one way of determining which subrelation is
denoted. The referent of a verb's tense morpheme serves to constrain the
denotation of the verb, so that, for instance, the verb kissed must denote a
set of pairs of individuals where the �rst kissed the second during the past,
i.e. during the interval denoted by the tense.

(17) kissed denotes a (contextually relevant) subset of fhx; yi: for
some t 2-ed, x kissed y at tg.

In (17), -ed is the set of times denoted by -ed, i.e. that set of times preceding
the utterance time.

Both En�c's theory and the Situation Semantics approach outlined above
seem to make the same commitments on the issues raised in Sections 3.1 and
3.2 as DRT. Both consider tense to be non-quanti�cational and highly de-
terminate. They are clearly referential theories of tense, taking its function
to be to pick out a particular time with respect to which the eventualities
described by the sentence are temporally located.

3.4 The compositional semantics of individual tenses and as-
pects

Now that we have gone through a general outline of several frameworks
which have been used to semantically analyze tense in natural language, we
turn to seeing what speci�c claims have been made about the major tenses
(present, past, and future) and aspects (progressive and perfect) in English.

3.4.1 Tense

Present Tense. In many contemporary accounts the semantic analysis of
the present underlies that of all the other tenses.7 But despite this allegedly
fundamental role, the only use of the present that seems to have been treated
formally is the `reportive' use, in which the sentence describes an event
that is occurring or a state that obtains at the moment of utterance.8 The
preoccupation with reportive sentences is unfortunate for two reasons. First,
the reportive uses are often the less natural ones|consider the sentence

7This is true, for example, of Bennett and Partee. But there is no consensus here.
Kuhn [1983], for example, argues that past, present, and future should be taken as
(equally fundamental) modes of combination of noun phrases and verb phrases.

8Many authors restrict the use of the term `reportive' to event sentences.



296 STEVEN T. KUHN AND PAUL PORTNER

Jill walks to work (though many languages do not share this feature with
English). Second, if the present tense is taken as fundamental, the omission
of a reading in the present tense can be transferred to the other tenses.
(John walked to work can mean that John habitually walked to work.) The
neglect is understandable, however, in view of the variety of uses the present
can have and the diÆculty of analyzing them. One encounters immediately,
for example, the issue discussed below.

Statives and non-statives. There is discussion in the philosophical liter-
ature beginning with Aristotle about the kinds of verb phrases there are and
the kinds of things verb phrases can describe. Details of the classi�cation
and terminology vary widely. One reads about events, processes, accom-
plishments, achievements, states, activities and performances. The labels
are sometimes applied to verb phrases, sometimes to sentences and some-
times to eventualities. There seems to be general agreement, however, that
some kind of classi�cation of this kind will be needed in a full account of the
semantics of tense. In connection with the present tense there is a distinc-
tion between verb phrases for which the reportive sense is easy (e.g., John
knows Mary, The cat is on the mat, Sally is writing a book) and those for
which the reportive sense is diÆcult ( e.g., John swims in the channel, Mary
writes a book). This division almost coincides with a division between verb
phrases that have a progressive form and those that do not. (Exceptions|
noted by Bennett and Partee|include John lives in Rome and John resides
in Rome, both of which have easy reportive uses but common progressive
forms.) It also corresponds closely to a division of sentences according to
the kind of when clauses they form . The sentence John went to bed when
the cat came in indicates that John went to bed after the cat came in, while
John went to bed when the cat was on the mat suggests that the cat re-
mained on the mat for some time after John went to bed. In general, if the
resultof pre�xing a sentence by when can be paraphrased using just after it
will have diÆcult reportive uses and common progressive forms. If it can
be paraphrased using still at the time it will have easy reportive uses and
no common progressive forms. (Possible exceptions are `inceptive readings'
like She smiled when she knew the answer; see the discussion in Section 3.4.4
below.)

The correspondence among these three tests suggests that they reect
some fundamental ways in which language users divide the world. The usual
suggestion is that sentences in the second class (easy reportive readings,
no progressives and when = still at the time) describe states. States are
distinguished by the fact that they seem to have no temporal parts. The way
Emmon Bach puts it is that it is possible to imagine various states obtaining
even in a world with only one time, whereas it is impossible to imagine events
or processes in such a world. (Other properties that have been regarded as
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characteristic of states are described in Section 4.2 below.) Sentences that
describe states are statives; those that do not are non-statives.

There is some disagreement about whether sentences in the progressive
are statives. The fact that Harry is building a house, for example, can go on
at discontinuous intervals and the fact that Mary is swimming in the Chan-
nel is composed of a sequence of motions, none of which is itself swimming,
lead Gabbay and Moravcsik to the conclusion that present progressives do
not denote states. But according to the linguistic tests discussed above
progressives clearly do belong with the state sentences. For this reason,
Vlach, Bach, and Bennett all take the other side. The exact importance of
this question depends on what status one assigns to the property of being
a stative sentence. If it means that the sentence implies that a certain kind
of eventuality known as a state obtains, then it seems that language users
assume or pretend that there is some state that obtains steadily while Mary
makes the swimming motions and another while Harry is involved in those
house-building activities. On the other hand, if `stative' is merely a label for
a sentence with certain temporal properties, for example passing the tests
mentioned above, then the challenge is just to assign a semantics to the
progressive which gives progressive sentences the same properties as primi-
tive statives; this alternative does not commit us to the actual existence of
states (cf. Dowty's work). Thus, the implications of deciding whether to
treat progressives as statives depends on one's overall analytical framework,
in particular on the basic eventuality/time ontology one assumes.

A recent analysis of the present tense which relates to these issues has
been put forth by Cooper. As mentioned above, Cooper works within the
Situation Semantics framework, and is thereby committed to an analysis of
tense as an element which describes a spatiotemporal region. A region of
this kind is somewhat more like an eventuality, e.g. a state, than a mere
interval of time; however, his analysis does not entail a full-blown even-
tuality theory in that it doesn't (necessarily) propose primitive classes of
states, events, processes, etc. Indeed, Cooper proposes to de�ne states, ac-
tivities, and accomplishments in terms very similar to those usual in interval
semantics. For instance, stative and process sentences share the property
of describing some temporally included sublocation of any spatiotemporal
location which they describe (temporal ill-foundedness); this is a feature
similar to the subinterval property, which arises in purely temporal analyses
of the progressive (see 3.4.2 below).

Cooper argues that this kind of framework allows an explanation for
the di�ering e�ects of using the simple present with stative, activity, and
accomplishment sentences. The basic proposal about the present tense is
that it describes a present spatiotemporal location|i.e. the location of
discourse. Stative sentences have both temporal ill-foundedness and the
property of independence of space, which states that, if they describe a
location l, they also describe the location l+ which is l expanded to include
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all of space. This means that if, for example, John loves Mary anywhere for
a length of time including the utterance time, John loves Mary will describe
all of space for the utterance time. This, according to Cooper, allows the
easy use of the present tense here. It seems, though, that to get the result
we need at least one more premise: either a stative must describe any spatial
sublocation of any location it describes (so that it will precisely describe the
utterance location) or we must count the location of utterance for a stative
to include all of space.

Activity sentences do not have independence of space. This means that,
if they are to be true in the present tense, the utterance location will have
to correspond spatially to the event's location. This accounts for the im-
mediacy of sentences like Mary walks away. On the other hand, they do
have temporal ill-foundedness, which means that the sentence can be said
even while the event is still going on. Finally, accomplishment sentence lack
the two above properties but have temporal well-foundedness, a property
requiring them not to describe of any temporal subpart of any location they
describe. This means that the discourse location of a present tense accom-
plishment sentence will have to correspond exactly to the location of the
event being described. Hence such sentences have the sense of narrating
something in the vicinity just as it happens (He shoots the ball!)

Cooper goes on to discuss how locations other than the one where a
sentence is actually uttered may become honorary utterance locations. This
happens, for example, in the historical present or when someone narrates
events they see on TV (following Ejerhed). Cooper seems correct in his
claim that the variety of ways in which this occurs should not be a topic
for formal semantic analysis; rather it seems to be understandable only in
pragmatic or more general discourse analytic terms.

Past Tense. Every account of the past tense except those of Dowty and
Parsons accommodates in some way the notion that past tense sentences
are more de�nite than the usual tense logic operators. Even Dowty and
Parsons, while claiming to treat the more fundamental use of the past tense,
acknowledge the strength of the arguments that the past can refer to a
de�nite time. Both cite Partee's example:

When uttered, for instance, half way down the turnpike such a sen-
tence [as I didn't turn o� the stove] clearly does not mean that there
exists some time in the past at which I did not turn o� the stove or
that there exists no time in the past at which I turned o� the stove.

There are, however, some sentences in which the past does seem com-
pletely inde�nite. We can say, for example, Columbus discovered America
or Oswald killed Kennedy without implying or presupposing anything about
the date those events occurred beyond the fact that it was in the past. It
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would be desirable to have an account of the past that could accommodate
both the de�nite and inde�nite examples. One solution, as discussed in Sec-
tion 3.2, is that we interpret the past as a quanti�er over a set of possible
reference times.9 I left the oven on is true now only if the oven was left on
at one of the past times I might be referring to. The context serves to limit
the set of possible reference times. In the absence of contextual clues to
the contrary the set comprises all the past times and the past is completely
inde�nite. In any case, the suggestion that the context determines a set
of possible reference times seems more realistic than the suggestion that it
determines a unique such time.

There is still something a little suspicious, however, about the notion
that context determines a reference interval or a range of reference times
for past tense sentences to refer to. One would normally take the `context
of utterance' to include information like the time and place the utterance is
produced, the identity of the speaker and the audience, and perhaps certain
other facts that the speaker and the audience have become aware of before
the time of the utterance. But in this case it is clear that Baltimore won
the Pennant and Columbus discovered America uttered in identical contexts
would have di�erent reference times.

A way out of the dilemma might be to allow the sentence itself to help
identify the relevant components of a rich utterance context. Klein [1994]

emphasizes the connection between the topic or background part of a sen-
tence and its reference time (for him topic time). A full explanation of the
mechanism will require taking into account the presupposition-focus struc-
ture of a sentence|that is, what new information is being communicated
by the sentence. For example, when a teacher tells her class Columbus dis-
covered America, the sentence would most naturally be pronounced with
focal intonation on Columbus:

(18) COLUMBUS discovered America.

(19) ??Columbus discovered AMERICA.

??Columbus DISCOVERED America.

9The proposal is made in these terms in Kuhn [1979]. In Bennett{Partee the idea
is rather that the reference time is an interval over whose subintervals the past tense
quanti�es. Thus the main di�erence between these accounts has to do with whether
the reference time (or range of reference times) can be discontinuous. One argument for
allowing it to be is the apparent reference to such times in sentences like John came on a
Saturday. Another such argument might be based on the contention of Kuhn [1979] that
the possible reference times are merely the times that happen to be maximally salient
for speaker and audience. Vlach [1980] goes Partee{Bennett one further by allowing the
past to indicate what obtains in, at, or for the reference interval.
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The teacher is presupposing that someone discovered America, and com-
municating the fact that the discovery was made by Columbus. Similarly,
when the teacher says Bobby discovered the solution to problem number
seven, teacher and students probably know that Bobby was trying to solve
problem number seven. The new information is that he succeeded. In those
cases it is plausible to suppose that possible reference times would be the
times at which the sentence's presupposition is true|the time of America's
discovery and the times after which Bobby was believed to have started
working on the problem. (As support for the latter claim consider the fol-
lowing scenario: Teacher assigns the problems at the beginning of class
period. At the end she announces Bobby discovered the solution to problem
seven. Susy objects No he didn't. He had already done it at home.)

A variety of theories have been proposed in recent years to explain how
the intonational and structural properties of a sentence serve to help iden-
tify the presuppositions and `new information' in a sentence.10 We will not
go into the details of these here, but in general we can view a declarative
sentence as having two functions. First, it identi�es the relevant part of
our mutual knowledge. Second, it supplies a new piece of information to be
added to that part. It is the �rst function that helps delimit possible ref-
erence times. Previous discourse and non-linguistic information, of course,
also play a role. When I say Baltimore won the Pennant it matters whether
we have just been talking about the highlights of 1963 or silently watching
this week's Monday Night Baseball.

Frequency. B�auerle and von Stechow point out that interpreting the past
tense as a quanti�er ranging over possible reference times (or over parts of
the reference time) makes it diÆcult to explain the semantics of frequency
adverbs. Consider, for example, the sentence Angelika sneezed exactly three
times, uttered with reference to the interval from two o'clock to three o'clock
yesterday morning. We might take the sentence to mean that there are ex-
actly three intervals between two and three with reference to which Angelika
sneezed is true. But if Angelika sneezed means that she sneezed at least once
within the time interval referred to, then whenever there is one such inter-
val there will be an in�nite number of them. So Angelika sneezed exactly
three times could never be true. Alternatively we might take the sentence
to mean that there was at least one time interval within which Angelika
sneezed-three-times. But the intervals when Angelika sneezed three times
will contain subintervals in which she sneezed twice. So in this case Angelika
sneezed exactly three times would imply Angelika sneezed exactly twice.

This problem leads B�auerle and von Stechow to insist that the past tense
itself indicates simply that the eventuality described occupies that part of

10On the theory of focus, see for example Jackendo�, Rooth [1985; 1992], and Cresswell
and von Stechow. On the nature of presupposition and factivity more generally, Levinson
provides a good overview.
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the reference time that lies in the past. On this interpretation, it does
make sense to say that Angelika sneezed three times means that there were
three times with reference to which Angelika sneezed is true. Tich�y, using
a di�erent framework, arrives at a similar analysis. Unfortunately, this
position also has the consequence that the simple sentence Angelika sneezed,
taken literally, would mean that Angelika's sneeze lasted for the full hour
between two and three. B�auerle{von Stechow and Tich�y both suggest that
past tense sentences without explicit frequency operators often contain an
implicit `at least once' adverb. In a full treatment the conditions under
which the past gets the added implicit adverb would have to be spelled out,
so it is not clear how much we gain by this move. The alternative would
seem to be to insist that the `at least once' quali�cation is a normal part
of the meaning of the tense which is dropped in the presence of frequency
adverbs. This seems little better.

Vlach handles the frequency problem by allowing sentences to be true
either `in' or `at' a time interval. Angelika sneezed exactly three times is
true at the reference interval if it contains exactly three subintervals at which
Angelika sneezes. On the other hand Angelika sneezed would normally be
taken to assert that Angelika sneezed in the reference interval, i.e., that
there is at least one time in the interval at which she sneezed. Again, a
complete treatment would seem to require a way of deciding, for a given
context and a given sentence, whether the sentence should be evaluated in
or at the reference time.

We might argue that all the readings allowed by Vlach (or B�auerle{von
Stechow) are always present, but that language users tend to ignore the
implausible ones|like those that talk about sneezes lasting two hours. But
the idea that ordinary past tense sentences are riddled with ambiguities is
not appealing.

The DRT analysis, on which frequency adverbs are examples of adverbs
of quanti�cation, can provide a somewhat more attractive version of the
B�auerle{von Stechow analysis. According to this view, three times binds the
free time (or eventuality) variable present in the translation, as always did
in (6){(7) above. The situation is more straightforward when an additional
temporal expression is present:

(20) On Tuesday, the bell rang three times.

(21) three-timest(past(t) & Tuesday(t))(rang(the-bell,t)).

Here Tuesday helps to identify the set of times three-times quanti�es over.
Tuesday(t) indicates that t is a subinterval of Tuesday. A representation of
this kind would indicate that there were three assignments of times during
Tuesday to t at which the bell rang, where we say that the bell rang at t i� t
is precisely the full interval of bell-ringing. The issue is more diÆcult when
there is no restrictive argument for the adverb, as with Angelika sneezed
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three times. One possibility is that it ranges over all past times. More
likely, context would again provide a set of reference times to quantify over.
In still other cases, as argued by Klein [1994], it ranges over times which
are identi�ed by the `background' or presuppositions of the sentence. Thus,
Columbus sailed to AMERICA four times means that, of the times when
Columbus sailed somewhere, four were ones at which he sailed to America.

In terms of a DRT analysis, when there is no adverbial, as with Angelika
sneezed, the temporal variable would be bound by whatever default process
normally takes care of free variables (`existential closure' or another, as
discussed above). This parallels the suggestion in terms of B�auerle{von
Stechow's analysis, that `at least once' is a component of meaning which is
`dropped' in the presence of an overt adverbial. Thus, in the DRT account
there wouldn't need to be a special stipulation for this.

There is still a problem with adverbials of duration, such as in On Tues-
day, the bell rang for �ve minutes. This should be true, according to the
above, if for some subinterval t of Tuesday, t is precisely the full time of the
bell's ringing and t lasts �ve minutes. Whether the sentence would be true
if the bell in fact rang for ten minutes depends on whether for �ve minutes
means `for at least �ve' or `for exactly �ve'. If the former, the sentence
would be true but inappropriate (in most circumstances), since it would
generate an implicature that the bell didn't ring for more than �ve minutes.
If the latter, it would be false. It seems better to treat the example via
implicature, since it is not as bad as The bell rang for exactly �ve minutes
in the same situation, and the implication seems defeasible (The bell rang
for �ve minutes, if not more.)

Future Tense. The architects of fragments of English with tense seem
to have comparatively little to say about the future. Vlach omits it from
his very comprehensive fragment, suggesting he may share Jespersen's view
that the future is not a genuine tense. Otherwise the consensus seems to
be that the future is a kind of mirror image of the past with the exception,
noted by Bennett and Partee, that the times to which the future can refer
include the present. (Compare He will now begin to eat with He now began
to eat.)

There appears to be some disagreement over whether the future is de�nite
or inde�nite. Tich�y adopts the position that it is ambiguous between the
two readings. This claim is diÆcult to evaluate. The sentence Baltimore
will win can indicate either that Baltimore will win next week or that
Baltimore will win eventually. But this di�erence can be attributed to a
di�erence in the set of possible reference times as easily as to an ambiguity
in the word will. It is of course preferable on methodological grounds to
adopt a uniform treatment if possible.
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3.4.2 Aspect

The Progressive. Those who wrote about the truth conditions of English
tenses in the 1960's assumed that sentences were to be evaluated at instants
of time. Dana Scott suggested (and Mongague [1970] seconds) a treatment
of the present progressive according to which Mary is swimming in the
Channel is true at an instant t if Mary swims in the Channel is true at every
instant in an open interval that includes t. This account has the unfortunate
consequence of making the present progressive form of a sentence imply its
(inde�nite) past. For a large class of sentences this consequence is desirable.
If John is swimming in the Channel he did, at some very recent time, swim
in the Channel. On the other hand there are many sentences for which this
property does not hold. John is drawing a circle does not imply that John
drew a circle. Mary is climbing the Zugspitze does not imply that Mary
climbed the Zugspitze.

In Bennett{Partee, Vlach [1980] and Kuhn [1979] this diÆculty avoided
by allowing some present tense sentences to be evaluated at extended in-
tervals of time as well as instants. John is drawing a circle means that the
present instant is in the interior of an interval at which John draws a circle
is true. The present instant can clearly be in such an interval even though
John drew a circle is false at that instant. Sentences like John swims in
the Channel, on the other hand, are said to have what Bennett and Partee
label the subinterval property: their truth at an interval entails their truth
at all subintervals of that interval. This stipulation guarantees that Mary
is swimming in the Channel does imply Mary swam in the Channel.

Instantaneous events and gappy processes. Objections have been
made to the Bennett{Partee analysis having to do with its application to two
special classes of sentences. The �rst class comprises sentences that cannot
plausibly be said to be true at extended intervals, but that do have progres-
sive forms. Vlach, following Gilbert Ryle, calls these achievement sentences.
We will follow Gabbay{Moravcsik and Bach in calling them instantaneous
event sentences. They include Baltimore wins, Columbus reaches North
America, Columbus leaves Portugal and Mary starts to sweat. It seems
clear that instantaneous event sentences fail all the tests for statives. But
if they are really true only instantaneously then the interval analysis would
predict that they would never form true progressives.

The second class contains just the sentences whose present progressive
implies their inde�nite past. These are the process sentences. The Bennett{
Partee analysis (and its modalized variation discussed below) have the con-
sequence that process sentences can't have `gappy' progressives. If I sat in
the front row of the Jupiter theater was true at the interval from two o'clock
to four o'clock last Saturday afternoon, then I was sitting in the front row
of the Jupiter theater was true at all instants between those times including,
perhaps, some instants at which I was really buying popcorn. This accord-
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ing to Vlach, Bennett, and Gabbay{Moravcsik, is a conclusion that must
be avoided.11

Vlach's solution to the problems of instantaneous events and gappy pro-
cesses is to give up the idea that a uniform treatment of the progressive is
possible. For every non-stative sentence A, according to Vlach, we under-
stand a notion Vlach calls the process of A or, simply proc(A). The present
progressive form of A simply says that our world is now in the state of
proc(A)'s going on.

The nature of proc(A), however, depends on the kind of sentence A is. If
A is a process sentence then proc(A) is `the process that goes on when A is
true.' For the other non-stative sentences, proc(A) is a process that `leads
to' the truth of A, i.e., a process whose `continuation: : : would eventually
cause A to become true.' In fact, Vlach argues, to really make this idea
precise we must divide the non-process, non-stative sentences into at least
four subclasses.

The �rst subclass contains what we might (following Bach) call extended
event sentences. Paradigm examples are John builds a house and Mary
swims across the Channel. If an extended event sequence is true at an
interval I then proc(A) starts at the beginning of I and ends at the end of
I. For the second subclass (John realizes his mistake, Mary hits on an idea)
proc is not de�ned at all. For the third class (Mary �nishes building the
house, Columbus reaches North America) the progressive indicates that the
corresponding process is in its �nal stages. For the fourth class (Max dies,
The plane takes o�) proc must give a process that culminates in a certain
state.

Vlach's account is intended only as a rough sketch. As Vlach himself
acknowledges, there remain questions of clari�cation concerning the bound-
aries of the classes of sentences and the formulation of the truth conditions.
Furthermore, Vlach's account introduces a new theoretical term. If the ac-
count is to be really enlightening we would like to be sure that we have an
understanding of proc that is independent of, but consistent with, the truth
conditions of the progressive. Even if all the questions of clari�cation were
resolved, Vlach's theory might not be regarded as particularly attractive
because it abandons the idea of a uniform account of the progressive. Not
even the sources of irregularity are regular. The peculiarity of the truth
conditions for the progressive form of a sentence A are explained sometimes
by the peculiarity of A's truth conditions, sometimes by the way proc op-
erates on A and sometimes by what the progressive says about proc(A). In

11This argument is not completely decisive. It would seem quite natural to tell a friend
one meets at the popcorn counter I am sitting in the front row. On the other hand,
if one is prepared to accept I am not sitting in the front row at popcorn buying time,
then perhaps one should be prepared to accept I sat in the front row before I bought the
popcorn and again after. This would suggest the process went on twice during the long
interval rather than at one time with a gap.
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this sense, Vlach's account is pessimistic. Other attempts have been made
to give a more uniform account of the progressive. These optimistic theories
may be divided into two groups depending on whether they propose that
the progressive has a modal semantics.

Non-Modal Accounts. The analysis of Bennett-Partee discussed above
was the �rst optimistic account presented developed in the formal semantic
tradition. Since that time, two other inuential non-modal proposals have
been put forth. One is by Michael Bennett [1981] and one by Terence
Parsons [1985; 1990]. The accounts of Vlach, Bennett and Parsons (and
presumably anyone else) must distinguish between statives and non-statives
because of the di�erences in their ability to form progressives. Non-statives
must be further divided between processes and events if the inference from
present progressive to past is to be selectively blocked. But in the treatments
of Bennett and Parsons, as opposed to that of Vlach, all the di�erences
among these three kinds of sentences are reected in the untensed sentences
themselves. Tenses and aspects apply uniformly.

Bennett's proposal is extremely simple.12 The truth conditions for the
present perfect form of A (and presumably all the other forms not involving
progressives) require that A be true at a closed interval with the appropriate
location. The truth conditions for the progressive of A require that A be
true in an open interval with the appropriate location. Untensed process
sentences have two special properties. First, if a process sentence is true at
an interval, it is true at all closed subintervals of that interval. Second, if
a process sentence is true at every instant in an interval (open or closed)
then it is true at that interval. Neither of these conditions need hold for
event sentences. Thus, if John is building a house is true, there must be
an open interval at which John builds a house is true. But if there is no
closed interval of that kind, then John has built a house will be false. On
the other hand, Susan is swimming does imply Susan has (at some time)
swum because the existence of an open interval at which Susan swims is
true guarantees the existence of the appropriate closed intervals.

If this proposal has the merit of simplicity, it has the drawback of seeming
very ad hoc|`a logician's trick' as Bennett puts it. Bennett's explanatory
remarks are helpful. Events have a beginning and an end. They therefore
occupy closed intervals. Processes, on the other hand, need not. But a
process is composed, at least in part, of a sequence of parts. If Willy walks
then there are many subintervals such that the eventualities described by
Willy walks are also going on at these intervals. Events, however, need not
be decomposable in this way.

The account o�ered by Parsons turns out to be similar to Bennett's.
Parson's exposition seems more natural, however, because the metaphys-
ical underpinnings discussed above are exposed. Parsons starts with the

12Bennett attributes the idea behind his proposal to Glen Helman.
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assumption that there are three kinds of eventualities: states, processes,
and events. Eventualities usually have agents and sometimes objects. An
agent may or may not be in a state at a time. Processes may or may not
be going on at a time. Events may or may not be in development at a time.
In general, if e is an eventuality, we say that e holds at time t if the agent
of e is in e at t or e is in development or going on at t. In addition, events
can have the property of culminating at a time. The set of times at which
an event holds is assumed to be an open interval and the time, if any, at
which it culminates is assumed to be the least upper bound of the times at
which it holds.

The structure of language mirrors this metaphysical picture. There are
three kinds of untensed sentences: statives, process sentences and event
sentences. Tensed sentences describe properties of eventualities. Stative and
process sentences say that an eventuality holds at a time. Event sentences
say that an eventuality culminates at a time. So, for example, John sleeps
can be represented as (22) and Jill bought a cat as (23):

(22) 9e9t[pres(t) ^ sleeping(e) ^ holds(e; t) ^ agent(e; john)]

(23) 9e9t9x[past(t) ^ buying (e) ^ culm(e; t) ^ agent(e; jill) ^
cat(x) ^obj(e; x)].

The treatment of progressives is remarkably simple. Putting a sentence
into the progressive has no e�ect whatsoever, other than changing the sen-
tence from a non-stative into a stative. This means that, for process sen-
tences, the present and progressive are equivalent. John swims is true if and
only if John is swimming is true. Similarly, John swam is true if and only if
John was swimming is true. For event sentences, the change in classi�cation
does a�ect truth conditions. John swam across the Channel is true if the
event described culminated at some past time. John was swimming across
the Channel, on the other hand, is true if the state of John's swimming
across the Channel held at a past time. But this happens if and only if the
event described by John swims across Channel was in development at that
time. So it can happen that John was swimming across the Channel is true
even though John never got to the other side.

Landman [1992] points out a signi�cant problem for Parsons' theory. Be-
cause it is a purely extensional approach, it predicts that John was building
a house is true if and only if there is a house x and a past event e such
that e is an event of John building x and e holds. This seems acceptable.
But Landman brings up examples like God was creating a unicorn (when he
changed his mind). This should be true i� there is a unicorn x and a past
event e such that e is an event of God creating x and e holds. But it may
be that the process of creating a unicorn involves some mental planning or
magic words but doesn't cause anything to appear until the last moment,
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when all of a sudden there is a fully formed unicorn. Thus no unicorn need
ever exist for the sentence to be true. Landman's problem arises because of
Parsons' assumption that eventualities are described primarily by the verb
alone, as a swimming, drawing, etc., and by thematic relations connecting
them to individuals, as agent(e; jill) or obj(e; x). There is no provision for
more complex descriptions denoting a property like `house-building'. The
question is how intrinsic this feature is to Parsons' analysis of tense and
aspect. One could adjust his semantics of verbs to make them multi-place
intensional relations, so that John builds a house could be analyzed as:

(24) 9e9t[pres(t)^building(e; john, a house)^culm(e; t)].

But then we must worry about how the truth conditions of building(e;
john, a house) are determined on a compositional basis and how one knows
what it is for an eventuality of this type to hold or culminate. However,
while the challenge is real, it is not completely clear that it is impossible
to avoid Landman's conclusion that the progressive cannot be treated in
extensional terms.

It seems likely that, with the proper understanding of theoretical terms,
Parsons, Vlach, and Bennett could be seen as saying very similar things
about the progressive. Parsons' exposition seems simpler than Vlach's, how-
ever, and more natural than Bennett's. These advantages may have been
won partly by reversing the usual order of analysis from ordinary to pro-
gressive forms. Vlach's account proceeds from A to proc(A) to the state of
proc(A)'s holding. In Bennett's, the truth conditions for the progressive of
A are explained in terms of those for A. If one compares the corresponding
progressive and non-progressive forms on Parson's account, however, one
sees that in the progressive of an event sentence, something is subtracted
from the corresponding non-progressive form. The relations between the
progressive and non-progressive forms seem better accommodated by view-
ing events as processes plus culminations rather than by viewing processes
as eventualities `leading to' events.

On the other hand the economy of Parsons' account is achieved partly
by ignoring some of the problems that exercise Vlach. The complexity of
Vlach's theory increases considerably in the face of examples like Max is
dying. To accommodate this kind of case Parsons has two options. He
can say that they are ordinary event sentences that are in development
for a time and then culminate, or he can say that they belong to a new
category|achievement|of sentences that culminate but never hold. The
�rst alternative doesn't take account of the fact that such eventualities can
occur at an instant (compare Max was dying and then died at 5:01 with Jane
was swimming across the Channel and then swam across the Channel at
5:01). The second requires us to say that the progressive of these sentences,
if it can be formed at all, involves a `change in meaning' (cf. Parsons [1990,
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p. 24, 36]). But the progressive can be formed and spelling out the details of
the meaning changes involved will certainly spoil some of Parsons' elegance.

Un�nished progressives and Modal Accounts. According to the
Bennett{Partee account of progressives, John was building a house does
not imply that John built a house. It does, however, imply that John will
eventually have built a house. Yet it seems perfectly reasonable to say:

(25) John was building a house when he died.

One attempt to modify the account to handle this diÆculty is given by
Dowty [1979]. Dowty's proposal is that we make the progressive a modal
notion.13 The progressive form of a sentence A is true at a time t in world
w just in case A is true at an interval containing t in all worlds w0 such that
w0 and w are exactly alike up to t and the course of events after t develops
in the way most compatible with past events. The w0-worlds mentioned
are referred to as `inertia worlds'. (25) means that John builds a house is
eventually true in all the worlds that are inertia worlds relative to ours at
the interval just before John's death.

If an account like this is to be useful, of course, we must have some un-
derstanding of the notion of inertia world independent of its role in making
progressive sentences true. The idea of a development maximally compati-
ble with past events may not be adequate here. John's death and consequent
inability to �nish his house may have been natural, even inevitable, at the
time he was building it. In Kuhn [1979] the suggestion is that it is the
expectations of the language users that are at issue. But this seems equally
suspect. It is quite possible that because of a bad calculation, we all mis-
takenly expect a falling meteor to reach earth. We would not want to say
in this case that the meteor is falling to earth.

Landman attempts to identify in more precise terms the alternate possible
worlds which must be considered in a modal semantics of the progressive.
We may label his the counterfactual analysis, since it attempts to formalize
the following intuition: Suppose we are in a situation in which John fell o�
the roof and died, and so didn't complete the house, though he would have
�nished it if he hadn't died. Then (25) is true because he would have �nished
if he hadn't died. Working this idea out requires a bit more complexity,
however. Suppose not only that John fell o� the roof and died, but also
that if he hadn't fallen, he would have gotten ill and not �nished the house
anyway. The sentence is still true, however, and this is because he would
have �nished the house if he hadn't fallen and died and hadn't gotten ill.
We can imagine still more convoluted scenarios, where other dangers lurk
for John. In the end, Landman proposes that (25) is true i� John builds a

13Dowty attributes this idea to David Lewis.
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house would be true if nothing were to interrupt some activity that John
was engaged in.

Landman formalizes his theory in terms of the notion of the continuation
branch of an event e in a world w. He assumes an ontology wherein events
have stages (cf. Carlson [1977]); the notion of `stage of an eventuality' is
not de�ned in a completely clear way. Within a single world, all of the
temporally limited subeventualities of e are stages of e. An eventuality e0

may also be a stage of an eventuality e in another world. It seems that
this can occur when e0 is duplicated in the world of e by an eventuality
which is a stage of e. The continuation branch of e in w;C(e; w), is a set of
event-world pairs; C(e; w) contains all of the pairs ha,wi where a is a stage
of e in w. If e is a stage of a larger event in some other possible world, we
say that it stops in w (otherwise it simply ends in w). If e stops in w at
time t, the continuation branch moves to the world w1 most similar to w in
which e does not stop at t. Suppose that e1 is the event in w1 of which e
is a stage; then all pairs ha; w1i, where a is a stage of e1 in w1, are also in
C(e; w). If e1 stops in w1, the continuation branch moves to the world most
similar to w1 in which e1 does not stop, etc. Eventually, the continuation
branch may contain a pair hen; wni where a house gets built in en. Then
the continuation branch ends. We may consider the continuation branch to
be the maximal extension of e. John was building a house is true in w i�
there is some event in w whose continuation branch contains an event of
John building a house.

Landman brings up one signi�cant problem for his theory. Suppose Mary
picks up her sword and begins to attack the whole Roman army. She kills
a few soldiers and then is cut down. Consider (26):

(26) Mary was wiping out the Roman army.

According to the semantics described above, (26) ought to be true. Whichever
soldier actually killed Mary might not have, and so the continuation branch
should move to a world in which he didn't. There some soldier kills Mary
but might not have, so : : : Through a series of counterfactual shifts, the con-
tinuation branch of Mary's attack will eventually reach a world in which she
wipes out the whole army. Landman assumes that (26) ought not be true
in the situation envisioned. The problem, he suggests, is that the worlds
in which Mary kills a large proportion of the Roman army, while possible,
are outlandishly unreasonable. He therefore declares that only `reasonable
worlds' may enter the continuation branch.

Landman's analysis of the progressive is the most empirically successful
optimistic theory. Its major weaknesses are its reliance on two unde�ned
terms: stage and reasonable. The former takes part in the de�nition of when
an event stops, and so moves the continuation branch to another world. How
do we know with (as) the event John was engaged in didn't end when he
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died? Lots of eventualities did end there; we wouldn't want to have John
was living to be 65 to be true simply because he would probably have lived
that long if it weren't for the accident. We know that the construction event
didn't end because we know it was supposed to be a house-building. Thus,
Landman's theory requires a primitive understanding of when an event is
complete, ending in a given world, and when it is not complete and so
may continue on in another world. In this way, it seems to recast in an
intensional theory Parsons' distinction between holding and culminating.
The need for a primitive concept of reasonableness of worlds is perhaps less
troubling, since it could perhaps be assimilated to possible worlds analyses
of epistemic modality; still, it must count as a theoretical liability.

Finally, we note that Landman's theory gives the progressive a kind of
interpretation quite di�erent from any other modal or temporal operator.
In particular, since it is nothing like the semantics of the perfect, the other
aspect we will consider, one wonders why the two should be considered
members of a common category. (The same might be said for Dowty's
theory, though his at least resembles the semantics for modalities.)

The Perfect. Nearly every contemporary writer has abandoned Mon-
tague's position that the present perfect is a completely inde�nite past.
The current view (e.g. [McCoard, 1978; Richards, 1982; Mittwoch, 1988])
seems to be that the time to which it refers (or the range of times to which
it might refer) must be an Extended Now, an interval of time that begins in
the past and includes the moment of utterance. The event described must
fall somewhere within this interval. This is plausible. When we say Pete has
bought a pair of shoes we normally do not mean just that a purchase was
made at some time in the past. Rather we understand that the purchase
was made recently. The view also is strongly supported by the observation
that the present perfect can always take temporal modi�ers that pick out
intervals overlapping the present and never take those that pick out inter-
vals entirely preceding the present: Mary has bought a dress since Saturday,
but not �Mary has bought a dress last week. These facts can be explained if
the adverbials are constrained to have scope over the perfect, so that they
would have to describe an extended now.

There is debate, however, about whether the extended now theory should
incorporate two or even three readings for the perfect. The uncontrover-
sial analysis, that suggested above, locates an event somewhere within the
extended now. This has been called the existential use. Others have ar-
gued that there is a separate universal or continuative use. Consider the
following, based on some examples of Mittwoch:

(27) Sam has lived in Boston since 1980.

This sentence is compatible with Sam's still living in Boston, or with his
having come, stayed for a while, and then left. Both situations are com-
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patible with the following analysis: the extended now begins in 1980, and
somewhere within this interval Sam lives in Boston. However, supporters of
the universal use (e.g. [McCawley, 1971; Mittwoch, 1988; Michaelis, 1994])
argue that the there is a separate reading which requires that Sam's res-

idence in Boston continue at the speech time: (27) is true i� Sam lives in
Boston throughout the whole extended now which begins in 1980.

Michaelis argues that the perfect has a third reading, the resultative use.
A resultative present perfect implies that there is a currently existing result
state of the event alluded to in the sentence. For example, John has eaten
poison could be used to explain the fact that John is sick. Others (McCawley
[1971], Klein [1994]) argue that such cases should be considered examples of
the existential use, with the feeling that the result is especially important
being a pragmatic e�ect. At the least one may doubt analyses in terms of
result state on the grounds that precisely which result is to be focused on
is never adequately de�ned. Any event will bring about some new state,
if only the state of the event having occurred, and most will bring about
many. So it is not clear how this use would di�er in its truth conditions
from the existential one.

Stump argues against the Extended Now theory on the basis of the oc-
currence of perfects in non�nite contexts like the following (his Chapter IV,
(11); cf. McCoard, Klein, Richards who note similar data):

(28) Having been on the train yesterday, John knows exactly why
it derailed.

Stump provides an analysis of the perfect which simply requires that no part
of the event described be located after the evaluation time. In a present
perfect sentence, this means that the event can be past or present, but not
future. Stump then explains the ungrammaticality of �Mary has bought a
dress last week in pragmatic terms. This sentence, according to Stump, is
truth conditionally equivalent to Mary bought a dress last week. Since the
latter is simpler and less marked in linguistic terms, the use of the perfect
should implicate that the simple past is inappropriate. But since the two
are synonymous, it cannot be inappropriate. Therefore, the present perfect
with a de�nite past adverbial has an implicature which can never be true.
This is why it cannot be used (cf. Klein [1992] for a similar explanation).

Klein [1992; 1994] develops a somewhat di�erent analysis of perfect aspect
from those based on interval semantics. He concentrates on the relevance of
the aspectual classi�cation of sentences for understanding di�erent `uses' of
the perfect. He distinguishes 0-state, 1-state, and 2-state clauses: A 0-state
clause describes an unchanging state of a�airs (The Nile is in Africa); a
1-state sentence describes a state which obtains at some interval while not
obtaining at adjoining intervals (Peter was asleep); and a 2-state clause de-
notes a change from one lexically determined state to another (John opened
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the window). Here, the �rst state (the window's being closed) is called the
source state, and the second (the window's being open) the target state. He
calls the maximal intervals which precede and follow the interval at which
a state holds its pretime and posttime respectively.

Given this framework, Klein claims that all uses of the perfect can be
analyzed as the reference time falling into the posttime of the most salient
situation described by the clause. Since the states described by 0-state
sentences have no posttime, the perfect is impossible (�The Nile has been
in Africa). With 1-state sentences, the reference time will simply follow
the state in question, so that Peter has been asleep will simply indicate
that Peter has at some point slept (`experiential perfect'). With 2-state
sentences, Klein stipulates that the salient state is the source state, so that
John has opened the window literally only indicates that the reference time
(which in this case corresponds to the utterance time) follows a state of
the window being closed which itself precedes a state of the window being
open. It may happen that the reference time falls into the target state, in
which case the window must still be open (`perfect of result'); alternatively,
the reference time may follow the target state as well|i.e. it may be a
time after which the window has closed again|giving rise to another kind
of experiential perfect.

One type of case which is diÆcult for Klein is what he describes as the
`perfect of persistent situation', as in We've lived here for ten years. This
is the type of sentence which motived the universal/continuative seman-
tics within the Extended Now theory. In Klein's terms, here it seems that
the reference time, the present, falls into the state described by a 1-state
sentence, and not its posttime. Klein's solution is to suggest that the sen-
tence describes a state which is a substate of the whole living-here state,
one which comprises just the �rst ten years of our residency, a `living-here-
for-ten-years' state. The example indicates that we are in the posttime of
this state, a fact which does not rule out that we're now into our eleventh
year of living here. On the other hand, such an explanation does not seem
applicable to other examples, such as We've lived here since 1966.

Existence presuppositions. Jespersen's observation that the present per-
fect seems to presuppose the present existence of the subject in cases where
the past tense does not has been repeated and `explained' many times. We
are now faced with the embarrassment of a puzzle with too many solu-
tions. The contemporary discussion begins with Chomsky, who argues that
Princeton has been visited by Einstein is all right, but Einstein has visited
Princeton is odd. James McCawley points out that the alleged oddity of
the latter sentence actually depends on context and intonation. Where the
existence presupposition does occur, McCawley attributes it to the fact that
the present perfect is generally used when the present moment is included
in an interval during which events of the kind being described can be true.
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Thus, Have you seen the Monet exhibition? is inappropriate if the addressee
is known to be unable to see it. (Did you is appropriate in this case.) Frege
has contributed a lot to my thinking is appropriate to use even though Frege
is dead because Frege can now contribute to my thinking. My mother has
changed my diapers many times is appropriate for a talking two year old,
but not for a normal thirty year old. Einstein has visited Princeton is odd
because Einsteinean visits are no longer possible. Princeton has been visited
by Einstein is acceptable because Princeton's being visited is still possible.

In Kuhn [1983] it is suggested that the explanation may be partly syntac-
tic. Existence presuppositions can be canceled when a term occurs in the
scope of certain operators. Thus Santa is fat presupposes that Santa exists,
but According to Virginia, Santa is fat does not. There are good reasons
to believe that past and future apply to sentences, whereas perfect applies
only to intransitive verb phrases. But in that case it is natural that presup-
positions concerning the subject that do hold in present perfect sentences
fail in past and future sentences.

Guenthner requires that at least one of the objects referred to in a present
perfect sentence (viz., the topic of the sentence) must exist at utterance
time. Often, of course, the subject will be the topic.

The explanation given by Tich�y is that, in the absence of an explicit
indication of reference time, a present perfect generally refers to the lifetime
of its subject. If this does not include the present, then the perfect is
inappropriate.

Overall, the question of whether these explanations are compatible, and
whether they are equally explanatory, remains open.

3.4.3 Tense in Subordinate Clauses

The focus in all of the preceding discussion has been on occurrences of
tense in simple sentences. A variety of complexities arise when one tries
to accommodate tense in subordinate clauses. Of particular concern is the
phenomenon known as Sequence of Tense. Consider the following:

(29) John believed that Mary left.

(30) John believed that Mary was pregnant.

Example (29) says that at some past time t John had a belief that at some
time t0 < t, Mary left. This reading is easily accounted for by a classic
Priorean analysis: the time of evaluation is shifted into the past by the
�rst tense operator, and then shifted further back by the second. (30),
which di�ers from (29) in having a stative subordinate clause, has a similar
reading, but has another as well, the so-called `simultaneous reading', on
which the time of Mary's alleged pregnancy overlaps with the time of John's
belief. It would seem that the tense on was is not semantically active. A
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traditional way of looking at things is to think of the tense form of was as
triggered by the past tense of believed by a morphosyntactic sequence of
tense (SOT) rule. Following Ogihara [1989; 1995], we could formalize this
idea by saying that a past tense in a subordinate clause governed by another
past tense verb is deleted prior to the sentence's being interpreted. For
semantic purposes, (30) would then be John believed that Mary be (tenseless)
pregnant. Not every language has the SOT rule. In Japanese, for example,
the simultaneous reading of (30) would be expressed with present tense in
the subordinate clause.

The SOT theory does not explain why simultaneous readings are possible
with some clauses and not with others. The key distinction seems to be
between states and non-states. One would hope to be able to relate the
existence of simultaneous readings to the other characteristic properties of
statives discussed in Section 3.4.1 above.

Sentences like (31) pose special problems. One might expect for it to be
equivalent to either (30), on the simultaneous reading, or (32).

(31) John believed that Mary is pregnant.

(32) John believed that Mary would now be pregnant.

A simultaneous interpretation would be predicted by a Priorian account,
while synonymy with (32) would be expected by a theory which said that
present tense means `at the speech time'. However, as pointed out by En�c
[1987], (31) has a di�erent, problematical interpretation; it seemingly re-
quires that the time of Mary's alleged pregnancy extend from the belief
time up until the speech time. She labels this the Double Access Reading
(DAR). Recent theories of SOT, in particular those of Ogihara [1989; 1995]

and Abusch [1991; 1995], have been especially concerned with getting a
correct account of such `present under past' sentences.

En�c's analysis of tense in intensional contexts begins with the proposal
that tense is a referential expression. She suggests that the simultaneous
interpretation of (30) should be obtained through a `binding' relationship
between the two tenses, indicated by coindexing as in (33). The connection
is similar to that holding with nominal anaphora, as in (34).

(33) John PAST1 believed that Mary PAST1 was pregnant.

(34) John1 thinks that he1 is smart.

This point of view lets En�c say that both tense morphemes have a usual
interpretation. Her mechanisms entail that all members of a sequence of
coindexed tense morphemes denote the same time, and that each establishes
the same temporal relationship as the highest (`�rst') occurrence. Ogihara
elucidates the intended interpretation of structures like (33) by translating
them into Intensional Logic.
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(35) t1 < s�& believe'(t1; j;
^ [t1 < s�^ be-pregnant (t1;m)]).

Here s� denotes the speech time. If the two tenses were not coindexed, as
in (36), the second would introduce t2 < t1 to the translation:

(36) John PAST1 believed that Mary PAST2 was pregnant.

(37) t1 < s�& believe'(t1; j;
^ [t2 < t1^ be-pregnant(t2;m)]).

This represents the non-simultaneous (`shifted') reading.

Accounting for the DAR is more complex. En�c proposes that there need
to be two ways that temporal expressions may be linked. Expressions receive
pairs of indices, so that with a con�guration Ahi; ji : : : Bhk; li, if i = k, then

A and B refer to the same time, while if j = l, then the time if B is
included in that of A. The complement clause that Mary is pregnant is then
interpreted outside the scope of the past tense. The present tense is linked
to the speech time. As usual, however, the two tenses may be coindexed,
but only via their second indices. This gives us something like (38).

(38) 9x(x =[Mary PRESh0,1i be pregnant] John PASTh2,1i
believes x).

This representation says that Mary is pregnant at the speech time and that
the time of John's belief is a subinterval of Mary's pregnancy. Thus it
encodes the DAR.

The mechanisms involved in deriving and interpreting (38) are quite com-
plicated. In addition, examples discussed by Abusch [1988], Baker [1989]

and Ogihara [1995] pose a serious diÆculty for En�c's view.

(39) John decided a week ago that in ten days at breakfast he would
say to his mother that they were having their last meal to-
gether.

Here, on the natural interpretation of the sentence, the past tense of were
does not denote a time which is past with respect to either the speech time
or any other time mentioned in the sentence. Thus it seems that the tense
component of this expression cannot be semantically active.

As mentioned above, Ogihara proposes that a past tense in the right
relation with another past tense may be deleted from a sentence prior to
semantic interpretation. (Abusch has a more complex view involving feature
passing, but it gets similar e�ects.) This would transform (39) into (40).

(40) John PAST decided a week ago that in ten days at breakfast
he ; woll say to his mother that they ; be having their last
meal together.
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Notice that we have two deleted tenses (marked `;') here. Would has become
tenseless woll, a future operator evaluated with respect to the time of the
deciding. Then breakfast time ten days after the decision serves as the time
of evaluation for he say to his mother that they be having their last meal
together. Since there are no temporal operators in this constituent, the
time of the saying and that of the last meal are simultaneous.

The double access sentence (31) is more diÆcult story. Both Ogihara
and Abusch propose that the DAR is actually a case of de re interpretation,
similar to the famous Ortcutt examples of Quine [1956]. Consider example
(31), repeated here:

(31) John believed that Mary is pregnant.

Suppose John has glimpsed Mary two months ago, noticing that she is
quite large. At that time he thought `Mary is pregnant'. Now you and I are
considering why Mary is so large, and I report John's opinion to you with
(31). The sentence could be paraphrased by John believed of the state of
Mary's being large that it is a state of her being pregnant. (Abusch would
frame this analysis in terms of a de re belief about an interval, rather than
a state, but the di�erence between these two formulations appears slight.)
Both Ogihara and Abusch give their account in terms of the analysis of de
re belief put forward by Lewis [1979] and extended by Cresswell and von
Stechow [1982]. These amount to saying that (31) is true i� the following
conditions are met: (i) John stands in a suitable acquaintance relation R to
a state of Mary's (such as her being large), in this case the relation of having
glimpsed it on a certain occasion, and (ii) in all of John's belief-worlds, the
state to which he stands in relation R is a state of Mary being pregnant.

A de re analysis of present under past sentences may hope to give an
account of the DAR. Suppose we have an analysis of tense whereby the
present tense in (31) entails that the state in question holds at the speech
time. Add to this the fact that the acquaintance relation, that John had
glimpsed this state at the time he formed his belief, entails that the state
existed already at that time. Together these two points require that the
state stretch from the time of John's belief up until the speech time. This
is the DAR.

The preceding account relies on the acquaintance relation to entail that
the state have existed already at the past time. The idea that it would do
so is natural in light of Lewis' suggestion that the relation must be a causal
one: in this case that John's belief has been caused, directly or indirectly,
by the state. However, as Abusch [1995] points out, there is a problem
with this assumption: it sometimes seems possible to have a future-oriented
acquaintance relation. Consider Abusch's example (41) (originally due to
Andrea Bonomi).
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(41) Leo will go to Rome on the day of Lea's dissertation. Lia
believes that she will go to Rome with him then.

Here, according to Abusch, we seem to have a de re attitude by Lia towards
the future day of Lea's dissertation. Since the acquaintance relation cannot
be counted on to require in (31) that the time of Mary's being large overlaps
the time when John formed his belief, both Abusch and Ogihara have had
to introduce extra stipulations to serve this end. But at this point the
explanatory force of appealing to a de re attitude is less clear.

There are further reasons to doubt the de re account, at least in the
form presented. Suppose that we're wondering whether the explanation for
Mary's appearance is that she's pregnant. John has not seen Mary at all,
but some months ago her mother told John that she is, he believed her,
and he reported on this belief to me. It seems that I could say (31) as
evidence that Mary is indeed pregnant. In such a case it seems that the
sentence is about the state we're concerned with, not one which provided
John's evidence.

3.4.4 Tense and discourse

One of the major contributions of DRT to the study of tense is its focus
on `discourse' as the unit of analysis rather than the sentence. Sentential
analyses treat reference times as either completely indeterminate or given by
context. In fact the `context' that determines the time a sentence refers to
may just be the sentences that were uttered previously. Theorists working
within DRT have sought to provide a detailed understanding of how the
reference time of a sentence may depend on the tenses of the sentence and
its predecessors.

As mentioned above, DRS's will include events, states, and times as
objects in the universe of discourse and will specify relations of precedence
and overlap among them. Precisely which relations hold depends on the
nature of the eventualities being described. The key distinction here is
between `atelic' eventualities (which include both states and processes) and
`telic' ones. Various similar algorithms for constructing DRS's are given
by Kamp, Kamp and Rohrer, Hinrichs, and Partee, among others. Let us
consider the following pair of examples:

(42) Mary was eating a sandwich. Pedro entered the kitchen.

(43) Pedro went into the hall. He took o� his coat.

In (42), the �rst sentence describes an atelic eventuality, a process, whereas
the second describes a telic event. The process is naturally taken to tem-
porally contain the event. In contrast, in (43) both sentences describe telic
events, and the resulting discourse indicates that the two happened in se-
quence.
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A DRS construction procedure for these two could work as follows: With
both the context provides an initial past reference time r0. Whenever a past
tense sentence is uttered, it is taken to temporally coincide with the past
reference time. A telic sentence introduces a new reference time that follows
the one used by the sentence, while an atelic one leaves the reference time
unchanged. So, in (42), the same reference time is used for both sentences,
implying temporal overlap, while in (43) each sentence has its own reference
time, with that for the second sentence following that for the �rst.

Dowty [1986a] presents a serious critique of the DRT analysis of these
phenomena. He points out that whether a sentence describes a telic or
atelic eventuality is determined by compositional semantics, and cannot be
read o� of the surface form in any direct way. He illustrates with the pair
(44){(45).

(44) John walked. (activity)

(45) John walked to the station. (accomplishment)

Other pairs are even more syntactically similar (John baked a cake vs. John
baked cakes.) This consideration is problematical for DRT because that
theory takes the unit of interpretation to be the entire DRS. A complete
DRS cannot be constructed until individual sentences are interpreted, since
it must be determined whether sentences describe telic or atelic eventualities
before relations of precedence and overlap are speci�ed. But the sentences
cannot be interpreted until the DRS is complete.

Dowty proposes that the temporal sequencing facts studied by DRT can
be accommodated more adequately within interval semantics augmented by
healthy amounts of Gricean implicature and common-sense reasoning. First
of all, individual sentences are compositionally interpreted within a Mon-
tague Grammar-type framework. Dowty [1979] has shown how di�erences
among states, processes, and telic events can be de�ned in terms of their
temporal properties within interval semantics. (For example, as mentioned
above, A is a stative sentence i�, if A is true at interval I , then A is true at
all moments within I .) The temporal relations among sentence are speci�ed
by a single, homogeneous principle, the Temporal Discourse Interpretation
Principle (TDIP), which states:

(46) TDIP Given a sequence of sentences S1; S2; : : : ; Sn to be in-
terpreted as a narrative discourse, the reference time of each
sentence Si (for i such that 1 < i � n) is interpreted to be:

(a) a time consistent with the de�nite time adverbials in Si, if
there are any;

(b) otherwise, a time which immediately follows the reference time
of the previous sentence Si�1:
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Part (b) is the novel part of this proposal. It gives the same results as
DRT in all-telic discourses like (43), but seems to run into trouble with
atelic sentences like the one in (42). Dowty proposes that (42) really does
describe a sequence of a process or state of Mary eating a sandwich followed
by an event of Pedro entering the kitchen; this is the literal contribution of
the example (Nerbonne [1986] makes a similar proposal.) However, common
sense reasoning allows one to realize that a process of eating a sandwich gen-
erally takes some time, and so the time at which Mary was actually eating a
sandwich might have started some time before the reference time and might
continue for some time afterwards. Thus (42) is perfectly consistent with
Mary continuing to eat the sandwich while Pedro entered the kitchen. In
fact, Dowty would suggest, in normal situations this is just what someone
hearing (42) would be likely to conclude.

Dowty's analysis has an advantage in being able to explain examples of
inceptive readings of atelic sentences like John went over the day's preplexing
events once more in his mind. Suddenly, he was fast asleep. Suddenly tells
us that the state of being asleep is new. World knowledge tells us that
he could not have gone over the days events in his mind if he were asleep.
Thus the state must begin after the event of going over the perplexing events
in his mind. DRT would have a more diÆcult time with this example; it
would have to propose that be asleep is ambiguous between an atelic (state)
reading and a telic (achievement) reading, or that the word suddenly cancels
the usual rule for atelics.

As Dowty then goes on to discuss, there are a great many examples of
discourses in which the temporal relations among sentences do not follow
the neat pattern described by the DRT algorithms and the TDIP. Consider:

(47) Mary did the dishes carefully. She �lled the sink with hot
water. She added a half cup of soap. Then she gently dipped
each glass into the sudsy liquid.

Here all of the sentences after the �rst one describe events which comprise
the dish-washing. To explain such examples, an adherent of DRT must
propose additional DRS construction procedures. Furthermore, there exists
the problem of knowing which procedures to apply; one would need rules to
determine which construction procedures apply before the sentences within
the discourse are interpreted, and it is not clear whether such rules can be
formulated in a way that doesn't require prior interpretation of the sen-
tences involved. Dowty's interval semantics framework, on the other hand,
would say that the relations among the sentences here are determined prag-
matically, overriding the TDIP. The weakness of this approach is its reliance
on an undeveloped pragmatic theory.
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4 TENSE LOGICS FOR NATURAL LANGUAGE

4.1 Motivations

General surveys of tense logic are contained elsewhere in this Handbook
(Burgess, Finger, Gabbay and Reynolds, and Thomason, all in this Volume).
In this section we consider relations between tense logic and tense and aspect
in natural language. Work on tense logic, even among authors concerned
with linguistic matters, has been motivated by a variety of considerations
that have not always been clearly delineated. Initially, tense logic seems to
have been conceived as a generalization of classical logic that could better
represent logical forms of arguments and sentences in which tense plays an
important semantic role. To treat such items within classical logic requires
extensive `paraphrase'. Consider the following example from Quine [1982]:

(48) George V married Queen Mary, Queen Mary is a widow, there-
fore George V married a widow.

An attempt to represent this directly in classical predicate logic might yield

(48a) Mgm;Wm � 9x(Mgx ^Wx),

which fallaciously represents it as valid. When appropriately paraphrased,
however, the argument becomes something like:

(49) Some time before the present is a time when George V mar-
ried Queen Mary, Queen Mary is a widow at the present time,
therefore some time before the present is a time at which
George V married a widow,

which, in classical logic, is represented by the nonvalid:

(49a) 9t(T t^Btn^Mgmt);Wmn � 9t(T t^Btn^9x(Wxn^Mgmt)).

If we want a logic that can easily be applied to ordinary discourse, however,
such extensive and unsystematized paraphrase may be unsatisfying. Arthur
Prior formulated several logical systems in which arguments like (48) could
be represented more directly and, in a series of papers and books in the �fties
and sixties, championed, chronicled and contributed to their development.
(See especially [Prior, 1957; Prior, 1967] and [Prior, 1968].) A sentence like
Queen Mary is a widow is not to be represented by a formula that explicitly
displays the name of a particular time and that is interpreted simply as
true or false. Instead it is represented as Wm, just as in (48), where such
formulas are now understood to be true or false only relative to a time. Past
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and future sentences are represented with the help of tense logical operators
like those mentioned in previous sections. In particular, most of Prior's
systems contained the past and future operators with truth conditions:

(50) t � PA if and only if 9s(s < t & s � A)

t � FA if and only if 9s(t < s & s � A)

(where t � A means A is true at time t and s < t means time s is before
time t). This allows (48) to be represented:

(48b) PMgm; Wm � P9x(Mgx ^Wx).

Quine himself thought that a logic to help prevent us misrepresenting (48)
as (48a) would be `needlessly elaborate'. `We do better,' he says, `to make
do with a simpler logical machine, and then, when we want to apply it,
to paraphrase our sentences to �t it.' In this instance, Quine's attitude
seems too rigid. The advantages of the simpler machine must be balanced
against a more complicated paraphrase and representation. While (49a)
may represent the form of (49), it does not seem to represent the form of
(48) as well as (48b) does. But if our motivation for constructing new tense
logics is to still better represent the logical forms of arguments and sentences
of natural language, we should be mindful of Quine's worries about their
being needlessly elaborate. We would not expect a logical representation
to capture all the nuances of a particular tense construction in a particular
language. We would expect a certain economy in logical vocabulary and
rules of inference.

Motivations for many new systems of tense logic may be seen as more
semantical than logical. A semantics should determine, for any declarative
sentence S, context C, and possible world w, whether the thought expressed
when S is uttered in C is true of w. As noted in previous sections, the truth
conditions associated with Prior's P and F do not correspond very closely to
those of English tenses. New systems of tense logic attempt to forge a closer
correspondence. This might be done with the view that the tense logic would
become a convenient intermediary between sentences of natural language
and their truth conditions. That role was played by tensed intensional logic
in Montague's semantics. An algorithm translates English sentences into
formulas of that system and an inductive de�nition speci�es truth conditions
for the formulas. As noted above, Montague's appropriation of the Priorean
connectives into his intensional logic make for a crude treatment of tense,
but re�ned systems might serve better. Speci�cations of truth conditions
for the tensed intensional logic (and, more blatantly for the re�ned tense
logics), often seem to use a �rst order theory of temporal precedence (or
containment, overlap, etc.) as yet another intermediary. (Consider clauses
(50) above, for example.) One may wonder, then, whether it wouldn't be
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better to skip the �rst intermediary and translate English sentences directly
into such a �rst order theory. Certainly the most perspicuous way to give
the meaning of a particular English sentence is often to `translate' it by a
formula in the language of the �rst order theory of temporal precedence,
and this consideration may play a role in some of the complaints against
tense logics found, for example, in [van Benthem, 1977] and [Massey, 1969].
Presumably, however, a general translation procedure could be simpli�ed
by taking an appropriate tense logic as the target language.

There is also another way to understand the attempt to forge a closer
correspondence between tense logical connectives and the tense construc-
tions of natural language. We may view tense logics as `toy' languages,
which, by isolating and idealizing certain features of natural language, help
us to understand them. On this view, the tense logician builds models or
simulations of features of language, rather than parts of linguistic theories.
This view is plausible for, say Kamp's logic for `now' and Galton's logic of
aspect (see below), but it is diÆcult to maintain for more elaborate tense
logics containing many operators to which no natural language expressions
correspond.

Systems of tense logic are sometimes defended against classical �rst order
alternatives on the grounds that they don't commit language users to an
ontology of temporal moments, since they don't explicitly quantify over
times. This defense seems misguided on several counts. First, English
speakers do seem to believe in such an ontology of moments, as can be seen
from their use of locutions like `at three o'clock sharp'. Second, it's not
clear what kind of `commitment' is entailed by the observation that the
language one uses quanti�es over objects of a certain kind. Quine's famous
dictum, `to be is to be the value of a bound variable,' was not intended to
express the view that we are committed to what we quantify over in ordinary
language, but rather that we are committed to what our best scienti�c
theories quantify over, when these are cast in �rst order logic. There may
be some weaker sense in which, by speaking English, we may be committing
ourselves to the existence of entities like chances, sakes, average men and
arbitrary numbers, even though we may not believe in these objects in any
ultimate metaphysical sense. Perhaps we should say that the language is
committed to such objects. (See Bach [1981].) But surely the proper test
for this notion is simply whether the best interpretation of our language
requires these objects: `to be is to be an element of a model.' And, whether
we employ tense logics or �rst order theories, our best models do contain
(point-like and/or extended) times. Finally, even if one were sympathetic to
the idea that the weaker notion of commitment was revealed by the range
of �rst order quanti�ers, there is reason to be suspicious of claims that a
logic that properly models any substantial set of the temporal features of
English would have fewer ontological commitments than a �rst order theory
of temporal precedence. For, as Cresswell has argued in detail [1990; 1996],
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the languages of such logics turn out to be equivalent in expressive power to
the language of the �rst order theories. One might reasonably suppose in
this case that the ontological commitments of the modal language should be
determined by the range of the quanti�ers of its �rst order equivalent. As
discussed in Section 3.1, then, the proper defense of tense logic's replacement
of quanti�ers by operators is linguistic rather than metaphysical.

4.2 Interval based logics

One of the most salient di�erences between the traditional tense logical
systems and natural language is that all the formulas of the former are
evaluated at instants of time, whereas at least some of the sentences of the
latter seem to describe what happens at extended temporal periods. We are
accustomed to thinking of such periods as comprising continuous stretches
of instants, but it has been suggested, at least since Russell, that extended
periods are the real objects of experience, and instants are abstractions from
them. Various recipes for constructing instants from periods are contained
in Russell [1914], van Benthem [1991], Thomason [1984; 1989] and Burgess
[1984]. Temporal relations among intervals are more diverse than those
among instants, and it is not clear which of these relations should be taken
as primitive for an interval based tense logic. Figure 4.2 shows 13 possible
relations that an interval A can bear to the �xed interval B.

We can think of < and > as precedence and succession, � and � as
immediate precedence and succession and �;�; and Æ as inclusion, contain-
ment and overlap. The subscripts l and r are for `left' and `right'. Un-
der reasonable understandings of these notions and reasonable assumptions
about the structure of time, these can all be de�ned in elementary logic
from precedence and inclusion. For example, A � B can be de�ned by
A < B^:9x(A < x^x < B), and A ÆlB by 9x(x � A^x < B)^ (9x)(x �
A ^ x � B) ^ 9x(x � A ^ x > B). It does not follow, however, that a
tense operator based on any of these relations can be de�ned from opera-
tors based on < and �. Just as instant based tense logics include both P
and F despite the fact that > is elementarily de�nable from <, we may wish
to include operators based on a variety of the relations above in an interval
based tense logic. For each of the relations R listed in the above chart, let
[R] and hRi be the box and diamond operators de�ned with R as the acces-
sibility relation. (We are presupposing some acquaintance with the Kripke
semantics for modal logics here. See Bull and Segerberg in this Handbook
for background.) Then h<i and h>i are interval analogs of Prior's P and
F , and h�i is a connective that Dana Scott suggested as a rough analog
of the progressive. Halpern and Shoham [1986] (and Shoham [1988]) point
out that if we take the three converse pairs [�] and [�]; [�l] and [�l] and
[�r] and [�r] as primitive we can give simple de�nitions of the connectives
associated with the remaining relations:
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B

( )

1. A < B ( )

2. A� B ( )

3. A Æl B ( )

4. A �r B ( )

5. A � B ( )

6. A �l B ( )

7. A = B ( )

8. A �l B ( )

9. A � B ( )

10. A �r B ( )

11. A Ær B ( )

12. A� B ( )

13. A > B ( )

Figure 2.
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[<] = [�][�] [>] = [�][�]

[�] = [�l][�r] [�] = [�l][�r]

[Æl] = [�l][�r] [Ær] = [�r][�l]

If it is assumed that intervals always contain durationless atoms, i.e., subin-
tervals s such that :9t(t � s), then Venema shows that we can do better.
For then [�l] ? and [�r] ? will be true only at atoms, and there are for-
mulas [l]A = (A ^ [�l] ?)_ h�li(A ^ [�l] ?) and [r]A = (A ^ [�l] ?)_
h�ri (A ^ [�l] ?) saying that A is true at the left and right `endpoints' of
an interval. [�] and [�] can now be de�ned by [r][�l] and [l][�r]. (The
assumption that there are durationless `intervals' undercuts the idea that
instants are mere abstractions, but it seems appropriate for linguistic appli-
cations of tense logic, since language users do, at some level, presume the
existence of both intervals and instants.)

Call the tense-logical language with operators [�l]; [�l]; [�r] and [�r],
HSV in honor of its inventors. Since HSV can so easily express all the
relations on the table above, one might expect it to be suÆcient to express
any temporal relations that common constructions in natural language do.
As Venema shows, however, there are limitations to its expressive power.
Consider the binary connective ^� such that (s; t) � (A ^� B) i�, for some
r; s < r < t; (s; r) � A and (r; t) � B). Lloyd Humberstone argues that ^� is
the tense logical connective that properly expresses temporal conjunction,
i.e., and in the sense of and next. But no formula in HSV can express
^�. Further, as Venema shows, there is a sense in which this expressive
poverty is unavoidable in interval logics. Call a model M = (I;�l;�r
;�l;�r; V ) for HSV `instant generated' if there is some nonempty set T
ordered by < such that I is the set of all (x; y) 2 (T � T ) for which x � y,
and �l;�r;�l and �r are the appropriate relations on I . (For example
(r; s) �l (u; v) i� u = r and s > v:) Instant generated HSV-models, then, are
models in which formulas are evaluated at pairs of indices, i.e., they are two-
dimensional models. The truth conditions for the connectives determine a
translation that maps formulas of HSV to `equivalent' formulas in predicate
logic with free variables r and s. Similar translations could be obtained
for any language in which the truth conditions of the connectives can be
expressed in elementary logic. Venema shows, however, that for no �nite
set of connectives will this translation include in its range every formula
with variable r and s. This result holds even when the equivalent formulas
are required to agree only on models for which the instants form a dense
linear order. This contrasts with a fundamental result in instant-based tense
logics, that for dense linear orders, the two connectives `since' and `until'
are suÆcient to express everything that can be said in elementary logic with
one free variable. (See Burgess [2001]).
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Several authors have suggested that in tense logics appropriate for natural
language there should be constraints on the set of intervals at which a
formula can be true. The set k A kM of indices at which formula A is
true in model M is often called the truth set of A. Humberstone requires
that valuations be restricted so that truth sets of sentence letters be closed
under containment. That `downward closure' property seems natural for
stative sentences (see Section 3.4.2). The truth of The cat is on the mat
at the interval from two to two to two thirty apparently entails its truth
at the interval from two ten to two twenty. But downward closure is not
preserved under ordinary logical negation. If The cat is on the mat is true at
(2:00,2:30) and all its subintervals, but not at (1:30, 3:00) then :(the cat is
on the mat) is true at (1:30,3:00) but not all of its subintervals. Humberstone
suggests a stronger form of negation, which we might call [:]. [:]A is true
at interval i if A is false at all subintervals of i. Such a negation may occur
in one reading of The cat isn't on the mat. It can also be used to express a
more purely tense logical connective: [�] can be de�ned as [:][:]. We obtain
a reasonable tense logic by adding the standard past and future connectives
h<i and h>i.

Statives also seem to obey an upward closure constraint. If A is true in
each of some sequence of adjoining or overlapping intervals, it is also true
in the `sum' of those intervals. Peter R�oper observes that, in the presence
of downward closure, upwards closure is equivalent to the condition that A
is true in i if it is true `almost everywhere' in i, i.e., if every subinterval
of i contains a subinterval at which A is true. (See Burgess [1982a] for an
interesting list of other equivalents of this and related notions.) Following
R�oper, we may call a truth set homogeneous if it satis�es both upwards and
downwards closure. Humberstone's strong negation preserves homogeneity,
but the tense connectives h<i and h>i do not. For suppose the temporal
intervals are the open intervals of some densely ordered set of instants, and
A is true only at (s; t) and its subintervals. Then the truth set of A is
homogeneous. But every proper subinterval of (s; t) veri�es h>iA, and so
every subinterval of (s; t) contains a subinterval that veri�es the formula,
whereas (s; t) itself does not verify the formula, and so the truth set of
h<iA is not homogeneous. To ensure that homogeneity is preserved, R�oper
replaces the standard truth conditions for the future operator by a condition
stating that h<iA is true at i if every subinterval of i contains a subinterval
i0 such that A is true at some w > i0. The past operator is similarly altered.
This ensures that all formulas have homogeneous truth sets and the resulting
system admits a simple axiomatization. One may wonder whether the future
and past tenses of statives really are themselves statives in natural language,
and thus whether homogeneity really ought to be preserved. But if one is
thoroughgoing (as Humberstone and R�oper seem to be, but Venema does
not), about the attitude that (extended) intervals are the genuine temporal
objects, then it does seem reasonable to suppose that for stative A;A !
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h>iA and A! h<iA are logical truths. If the cat is on the mat, then, if one
looks suÆciently close to the present, it will be on the mat, and if one looks
suÆciently close in the other direction, it was on the mat. For otherwise we
would have to believe that the present was the instant at which it came or
left. Indeed, the `present implies past' property was cited by Aristotle (in
Metaphysics IX) as a distinguishing feature of `energaie,' a category that
surely includes the statives. The formulas A ! h<iA and A ! h>iA are
not theorems of HSV or standard tense logics unless < is reexive, but they
are theorems of R�oper's homogeneous interval tense logic.

4.3 `Now', `then', and keeping track of times

Another way in which natural language di�ers from Priorean tense logics is
its facility in conveying that the eventualities described in various scattered
clauses of a sentence obtain simultaneously. Consider �rst an example in
which exterior and interior clauses describe what obtains at the moment of
utterance.

(51) This is 1996 and one day everyone now alive will be dead.

If we represent this as P ^8x(Lx! FDx), we fail to imply that those alive
today will all be dead at a common future moment. If we pull the future
operator outside the quanti�er, we get P ^F8x(Lx! Dx), which wrongly
implies that there will be a time when live people are (simultaneously)
dead. A solution (following Kamp [1971] and Prior [1968]) is to evaluate
formulas at pairs of times, the �rst of which `keeps track' of the moment of
utterance and the second of which is used to evaluate expressions inside tense
operators. (s; t) � A can be understood as asserting that A is true at t when
part of an expression uttered at s. The truth conditions for the Priorean
operators use the second coordinate: (s; t) � PA i� 9t0 < t(s; t0) � A and
(s; t) � FA i� 9t0 > t(s; t0) � A. A new connective N corresponding to
the adverb now is added satisfying (s; t) � NA i� (s; s) � A. Validity in
a model is to be understood as truth whenever uttered, i.e., M � A i� for
every time t in M; (t; t) � A. On this understanding A $ NA is valid,
so it may appear that N is vacuous. Its e�ect becomes apparent when
it appears within the scope of the other tense operators. P(A $ NA),
for example, is false when A assumes a truth value at utterance time that
di�ers from the value it had until then. This condition can still be expressed
without the new connective by (A^:PA)_(:A^:P:A), and in general, as
Kamp shows, N is eliminable in propositional Priorean tense logics. If the
underlying language has quanti�ers, however, N does increase its expressive
power. For example, the troublesome example above can be represented as

(51a) P ^ F8x(NLx! Dx).
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The new connective can be used to ensure that embedded clauses get evalu-
ated after the utterance moment as well as simultaneously with it. Consider
Kamp's

(52) A child was born who will be king.

To represent this as P(A ^ FB) would imply only that the child is king
after its birth. To capture the sense of the English will, that the child is
king after the utterance moment, we need P(A ^NFB).

Vlach [1973] shows that in a somewhat more general setting N can be
used to cause evaluation of embedded clauses at still other times. Take the
sentence It is three o'clock and soon Jones will cite all those who are now
speeding, which has a structure like (51), and put it into the past:

(53) It was three o'clock and Jones would soon cite those who were
then speeding.

We cannot represent this by simply applying a past operator to (51a) be-
cause the resulting formula would imply that Jones was going to ticket
those who were speeding at the time of utterance. Vlach suggests we add
an `index' operator to the language with truth conditions very similar to
N's

(s; t) � IA i� (t; t) � A.

If an N occurs within the scope of an I it can be read as then. This allows,
for example, the sentence (44) to be represented as

PI(P ^ 8x(NSx! Cx).

In general, if A contains no occurrence of I, the utterance time is `�xed' in
the sense that the truth value of A at hu; ti depends on the truth values of
its subformulas at pairs hu; t0i. The occurrence of an I `shifts' the utterance
time so that evaluating A at hu; ti may require evaluating the subformulas
that are within the scope of the I at pairs hu0; t0i for u0 di�erent than u.

With Kamp's now, we can keep track of the utterance time and one other
time. With Vlach's then, we still track two times, although neither need
coincide with utterance. Several authors have suggested that a tense-logical
system adequate to represent natural language must allow us to keep track
of more than two times. The evidence is not entirely convincing, but it has
motivated some interesting revisions in the Priorean framework. Gabbay
[1974; 1976] points to examples like the following:
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(54) John said he would come.

(55) Ann will go to a school her mother attended and it will become
better than Harvard,

which, he maintains, have interpretations suggested by the formulas

(54a) 9t1 < t0(John says at t1 that 9t2(t1 < t2 < t0^ John comes at
t2))

(55a) 9t1 > t09s(s is a school Ann goes to s at t1 ^ 9t2 < t0(Ann's
mother goes to s at t2 ^ 9t3 > t1(s is better than Harvard at
t3))):

Saarinen's exhibits include

(56) Every man who ever supported the Vietnam War believes now
that one day he will have to admit that he was an idiot then,

interpreted as

(56a) 8x(x is a man ! 8t1 < t0(x supports the Vietnam War at
t1)(x believes at t0 that 9t2 > t0(x has to admit at t2 that x
is an idiot at t1)),

and
(57) Joe said that a child had been born who would become ruler

of the world,

which, Saarinen argues, has at least the two readings

(57a) 9t < t0(Joe says at t that 9s < t9x(Child x^ Born xs^9u > s
Ruler xu)))

(57b) 9t < t0(Joe says at t that 9s < t9x(Child x^ Born xs^9u > t
Ruler xu)))

according to whether the sentence reported is A child was born who would
become ruler, or A child was born who will become ruler. (Note that the
sequence of tense theories discussed in Section 3.4.3 above conict with the
readings proposed here for (54) and (57).)14

Cresswell [1990] points to examples of a more explicitly quanti�cational
form:

14They hold that requirement in (54a) that t2 precede t0 is not part of the truth
conditions for (54) (though it may be implicated). Similarly, they hold that (57a) is the
sole reading of (57).
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(58) There will be times such that all persons now alive will be A1

at the �rst or A2 at the second or: : : An at the nth.

(58a) 9t1 : : : 9tn(t0 < t1 ^ : : : ^ t0 < tn ^ 8x(x is alive at t0 ! (x is
A1 at t1 _ : : : _ x is An at tn))):

Some of the troublesome examples could be expressed in a Priorean lan-
guage. For example, for (55) we might propose:

(55b) 9s(SCHOOL(s)^PATTEND (ann's mother, s)^F(ATTEND
(ann, s)^FBETTER (s, harvard))))

But as a toy version of (55) or the result of applying a uniform English-to-
tense-logic translation procedure, this may seem implausible. It requires a
reordering of the clauses in (55), which removes that her mother attended
from inside the scope of the main tense operator. Other troublesome exam-
ples can be represented with the help of novel two-dimensional operators.
For example, Gabbay suggests that the appropriate reading of (54) might
be represented PJohnsaythatF2A, where hu; ti � F2A i� either t < u and
9s(t < s < u^ hu; si � A) or u < t and 9s(u < s < t^ hu; si � A). (A
variety of other two dimensional tense operators are investigated in �Aqvist
and Guenthner ([1977; 1978]). This approach, however, seems somewhat ad
hoc. In the general case, Gabbay argues, \we must keep record of the entire
sequence of points that �gure in the evaluation of a formula] and not only
that, but also keep track of the kind of operators used."

We sketch below �ve more general solutions to the problem of tracking
times. Each of these introduces an interesting formal system in which the
times that appear at one stage in the evaluation of a formula can be remem-
bered at later stages, but none of these seems to provide a fully accurate
model of the time-tracking mechanisms of natural language.

4.3.1 Backwards-looking operators (Saarinen)

Add to the language of tense logic a special `operator functor' D. For any
operator �, D (�) is a connective that `looks back' to the time at which
the preceding � was evaluated. For example, (47) can be represented

(56b) 8x(x is a man ! :P:(x supported the Vietnam war ! D

(P)(x believesthat F(x hastoadmitthatD (D(P))(x is
an idiot)))))

if we have the appropriate believesthat and hastoadmitthat operators.
Within a more standard language,

(59) A ^ F(B ^ P(C ^ F(D^ D (P)E)^ D(F)F )
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is true at w i� 9x9y9z(w < x; y < x; y < z; w � A; x � B; y � C; z � D; x �
E and y � F ). In this example D (P) and D(F) `look back' to the times
at which the preceding P and F were evaluated, namely, x and y. This
condition can expressed without the backwards operators by

(59a) A ^ F(B ^ E ^ P(C ^ F ^ FD)),

but (as with (55b)) this requires a reordering of the clauses, and (as with
(56b)) the reordering may be impossible in a richer formal language. It is a
little hard to see how the semantics for D might be made precise in Tarski-
style truth de�nition. Saarinen suggests a game-theoretic interpretation, in
which each move is made with full knowledge of previous moves. Iterated
D (�)'s look back to more distant �'s so that, for example,

A ^ P(B ^ F(C ^ F(D ^D (F)D (F)E) ^ D(P)F ))

is true at w i� 9x9y9z(x < w; x < y < z;w � A; x � B;� C; z � D; x � E
and w � A). Logics based on this language would di�er markedly from
traditional ones. For example, if time is dense FA ! FFA is valid when
A does not contain D's, but not when A is of the form D(F)B.

4.3.2 Dating sentences (Blackburn [1992; 1994])

Add a special sort of sentence letters, each of which is true at exactly one
moment of time. Blackburn thinks of these as naming instants and calls
his systems `nominal tense logics,' but they are more accurately viewed as
`dating sentences', asserting, for example It is now three pm on July 1, 1995.
Tense logical systems in this language can be characterized by adding to the
usual tense logical axioms the schema

n ^ E(n ^ A) ! A

where n is a dating sentence and E is any string of P 's and F 's. In place of
(59), we can now write:

(59b) A ^ F(B^ i P(C^ j^FD)) ^ PF(i ^E) ^ PF( j^F ).

Here i and j `date' the relevant times at which B and C are true, so that
the truth of i^E and j ^F requires the truth of E and F at those same
times.

4.3.3 Generalization of N{I (Vlach [1973, appendix])

To the language of Priorean tense logic, add connectives Ni and Ii for
all non-negative integers i. Let formulas be evaluated at pairs (s; i) where
s= (s0; s1; : : :) is an in�nite sequence of times and i is a non-negative integer,
specifying the coordinate of s relevant to the evaluation. NiA indicates that
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A is to be evaluated at the time referred to when Ii was encountered. More
precisely,

(s; i) � PA i� 9t < si((s0; : : : ; si�1; t; si+1; : : :); i) � A

(s; i) � FA i� 9t < si((s0; : : : ; si�1; t; si+1; : : :); i) � A

(s; i) � IjA i� ((s0; : : : ; sj�1; si; sj+1; : : :); i) � A

(s; i) � NjA i� (s; j) � A

The truth of sentence letters at (s; i) depend only on si and formulas are
to be considered valid in a model if they are true at all pairs ((t; t; : : :); 0).
In this language (59) can be expressed

(59c) A ^ FI1(B ^ PI2(C ^ F(D ^N2E ^ N1F ))).

Here I1 and I2 `store' in s1 and s2 the times at which B and C are evaluated
and N2 and N1 shift the evaluation to s2 and s1, causing F and E to be
evaluated at times there stored.

4.3.4 The backspace operator (Vlach [1973, appendix])

Add to the language of Priorean tense logic a single unary connective B.
Let formulas be evaluated at �nite (nonempty) sequences of times according
to the conditions:

(t1; : : : ; tn) � PA i� 9tn+1 < tn((t1; : : : ; tn+1) � A)

(t1; : : : ; tn) � FA i� 9tn+1 > tn((t1; : : : ; tn+1) � A)

(t1; : : : ; tn+1)� BA i� (t1 : : : ; tn) � A

(and, if n = 0; (t1) BAi� (t1) � A)

The truth value of sentence letters depends only on the last time in the
sequence, and formulas are considered valid in a model when they are true
at all length-one sequences. (59) is now represented

(59d) A ^ F(B ^ P(C ^ F(D^ B E^ BB F )).

The indices of evaluation here form a stack. In the course of evaluating
a formula a new time is pushed onto the stack whenever a Priorean tense
connective is encountered and it is popped o� whenever a B is encountered.
Thus, B is a `backspace' operator, which causes its argument to be evaluated
at the time that had been considered in the immediately preceding stage
of evaluation. In terms of this metaphor, Kamp's original `now' connective
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was, in contrast, a `return' operator, causing its argument to be evaluated
at the time that was given at the initial moment of evaluation.

4.3.5 Generalization of N{I (Cresswell [1990])

Generalize the language of Vlach's N{I system just as in solution 3. Let
formulas be evaluated at in�nite sequences of times and let the truth de�-
nition contain the following clauses:

(s0; s1; s2; : : :) � PA i� 9s < s0((s; s1; s2; : : :) � A)

(s0; s1; s2; : : :) � FA i� 9s > s0((s; s1; s2; : : :) � A)

(s0; s1; : : : si; : : :) � IiA i� (s0; s1; : : : ; si�1; s0; si+1; : : :) � A)

(s0; s1; : : : ; si; : : :) � NiA i� (si; s1; s2; : : :) � A

A formula is considered valid if it is true at all constant sequences (s; s; : : :).
Then we can express (59) above as:

(59e) A ^ FI1(B ^ PI2(C ^ F(D ^ N2E ^ N1F ))).

As in solution 3, I1 and I2 store in s1 and s2 the times at which B and C
are evaluated. Subsequent occurrences of N2 and N1 restore those times to
s0 so that E and F can be evaluated|with respect to them.

Each of the systems described in 4.3.1{4.3.5 has a certain appeal, and
we believe that none of them has been investigated as thoroughly as it de-
serves. We con�ne ourselves here to a few remarks about their expressive
powers and their suitability to represent tense constructions of natural lan-
guage. Of the �ve systems, only Cresswell's N{I generalization permits
atomic formulas to depend on more than one time. This makes it pos-
sible, for example, to represent Johnson ran faster than Lewis, meaning
that Johnson ran faster in the 1996 Olympics than Lewis did in the 1992
Olympics, by Rmn. We understand R to be a predicate (runs faster than)
which, at every pair of times, is true or false of pairs of individuals. Since
the issues involved in these representations are somewhat removed from the
ones discussed here, and since the other systems could be generalized in
this way if desired, this di�erence is not signi�cant. If we stipulate that the
truth value of a sentence letter at s in Cresswell's system depends only
on s0 then, for each of the systems, there is a translation of formulas into
the classical �rst order language with identity and a countable collection of
temporally monadic predicates and a single temporally dyadic predicate <
(and, in the case of nominal tense logic, a countable collection of temporal
constants). We say `temporally' monadic and dyadic because, if the base
language of these systems is the language of predicate logic, it will already
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contain polyadic predicates that apply to tuples of individuals. The trans-
lation maps these to predicates with an additional temporal argument, and
it maps tense formulas with free individual variables into classical formu-
las with those same free variables and additional free temporal variables.
The sentential version of Cresswell's N{I provides an example. Associate
with each sentence letter p a unary predicate letter p� and �x two (dis-
joint) sequences of variables x0; x1; : : : and y0; y1; : : : A translation � from
Cresswell-formulas into classical formulas is de�ned by the following clauses
(where Ax=y is the result of replacing all free occurrences of y in A by x):

i) �p = p�x0

ii) �PA = 9y < x0(�A)y=x0, where y is the �rst yi that does not occur
in �A

iii) �FA = 9y > x0(�A)y=x0, where y is as above

iv) �IjA = (�A)x0=xj

v) �NjA = (�A)xj=x0

To every model M for Cresswell's language there corresponds a classical
model M 0 with the same domain which assigns to each predicate letter p�

the set of times at which p is true in M . �A expresses A in the sense that
(s0; s1; : : :) �M A i� �A is true in M 0 under the assignment that assigns si
to xi for i = 0; 1; : : :. Viewing M and M 0 as the same model, we can say
that a tense-logical formula expresses a classical one when the two formulas
are true in the same models. (Of course in de�ning a tense-logical system,
we may restrict the class of appropriate models. By `true in the same
models' we mean true in the same models appropriate for the tense logic.)
A formula with one free variable in the �rst order language with unary
predicates and < might be called a `classical tense'. From the translation
above we may observe that every Cresswell formula in which each occurrence
of a connective Nj lies within the scope of an occurrence of Ij expresses a
classical tense. If every classical tense is expressible in tense-logical system,
the system is said to be temporally complete.

An argument in Chapter IV of Cresswell establishes that, as long as < is
assumed to be connected (so that quanti�cation over times can be expressed
in the tense language), every classical tense without < can be expressed
in his generalization of the N{I language. It is not diÆcult to see that
this holds as well for Vlach's generalization. For consider the following
translation � mapping Cresswell's system into Vlach's:
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�A = N0A if A is a sentence letter,

�PA = P�A;

�FA = F�A;

�Ii = Ii�A;

�NiA = IxIx+1 : : : I2xNiIx�iNx�i�A where x is the successor
of the least integer greater than every subscript that occurs in
Ni; A:

Then, using the subscripts C and V for Vlach's system and Cresswell's, s
�C A i� (s,0) �V �A. So, if A is a classical tense without <, there is a
formula AC that expresses A in Cresswell's system, and �AC will express A
in Vlach's system.

The question of whether every classical tense is expressible is more dif-
�cult. As we saw with Kamp's N , questions about expressive power are
sensitive to the underlying language. N adds nothing to the expressive
power of sentential tense logic, but it does add to the expressive power of
predicate tense logic. The examples suggest that the same is true of the
backwards-looking and backspace operators. A well known result of Kamp
(see Burgess [2001]) states that, if time is like the reals, every tense can
be expressed with the connectives U (until) and S (since) with truth con-
ditions U(A;B) i� 9t > t0(t � A ^ 8s(t0 < s < t ! s � B) and S(A;B)
i� 9t < t0(t � A ^ 8s(t < s < t0 ! s � B). By constructing a pair of
models that can be discriminated by formulas with U and S but not by any
Priorean formulas, one can show that Priorean tense logic is not temporally
complete. A reduction of the sentential backwards-looking and backspace
systems to the ordinary ones, therefore, would imply their temporal incom-
pleteness. From the pairs of ordinary models that are indistinguishable by
Priorean formulas, we can easily construct pairs that are indistinguishable
in the language of Blackburn's dating sentences. (Pick corresponding times
t and t0 in the two models and require that every dating sentence be true
exactly at t in the �rst model and exactly at t0 in the second.) So that
system also fails to be temporally complete.15

For a number of reasons, the suitability of a system of tense logic for
natural language should not be identi�ed with its expressive power, and
the observation that the formulas in the �ve systems described here are all
expressible as classical tenses does not imply that the language of classical
tenses is itself a suitable tense logical system. Although we can express all

15There is a weaker sense in which U and S can be expressed with dating sentences. Let
U(i; A;B) be i^F(A^:P:(Fi_i_B)) and S(i; A;B) be i^P(A^:F(Pi_i_B)). Then
U(i;A;B) is satis�able in Blackburn's system i� U(A;B) is satis�able in the since-until
system and S(i;A;B) is satis�able i� S(A;B) is.
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the classical tenses in English, it is not the tense mechanism that allows us
to do so. English sentences like For every instant t, if t succeeds t0 there is
an instant t0, such that t0 succeeds t and t succeeds t0 and John is asleep at t0,
however useful in explaining the meaning of �rst order formulas, are not the
sort of sentences for which one would expect to �nd a phrase-by-phrase rep-
resentatives in an idealized language isolating the tense-and-aspect features
of English. One can object to Saarinen's D, Blackburn's dating sentences,
Vlach's B,and Vlach and Cresswell's Ij 's and Nj 's on similar grounds. It
is possible, of course, that some of these systems make particularly good
intermediaries between tense constructions of natural language and truth
conditions, or that there is some other sense in which they are especially
suitable as tense logics for natural language, but such claims need argu-
ments beyond demonstrations of expressive capacity. Indeed the fact that
we can express very simply in these languages ideas that in English require
complex constructions (perhaps involving quanti�er phrases variable expres-
sions) suggests that they are unsuitable on some conceptions of tense logic.
On the other hand, if there are ideas we can express simply and uniformly
in English, the mere observation that a tense-logical system has suÆcient
expressive power to somehow express them, may not be evidence in favor
of the system. For example, the fact that pre�xing a suÆciently long string
of backspace operators to an embedded formula causes it to be evaluated
at the moment of utterance does not mean that the backspace system is a
good model of the English now.

Part of the diÆculty in judging the adequacy of tense logical systems for
natural language is discerning the linguistic data itself. It is not clear, for
example, whether John said he would come does have the reading indicated
in (54a) implying that he said he would come by now, or whether that
inference, when legitimate, is based on (extralinguistic) contextual cues.
Similarly, the observation that Joe said that a child had been born who
would become ruler of the world is consistent with two possible utterances
by Joe does not establish that (57) is ambiguous between (57a) and (57b).
Saarinen maintains that a sentence of the form A reported that B believed
that C said John would go has at least four readings, according to whether
John's alleged departure occurs in the future of C's saying, B's believing,
A's reporting, or the utterance time. Since the �rst of these readings is
true if any of the others is, one can't expect to �nd a case which requires
readings other than the �rst. The plausibility of there being such readings
is undermined by observation that a similar ambiguity does not occur when
the would is in the scope of future operators. A will report (next week)
that B said (the previous day) that C would go is not made true by A's
reporting next week that B said `C went yesterday,' as it would if `C would
go' could refer to a time future to the utterance moment. While an adequate
logic for the tenses of natural language may require greater `time-tracking'
capabilities than Priorean tense logic, there is not strong evidence for the
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thesis that it be able to `remember' at each stage in the evaluation times at
which previous clauses were evaluated.

4.4 Galton's logic of aspects and events

English discourse presumes a universe of events and states with internal
structure as well as temporal location. The language of Priorean tense
logic is built solely from formulas, boolean connectives, and operators of
temporal location. It is reasonable to try to enrich the language so that
more of the internal structure of events can be described. In recent years
there has been a proliferation of work in this area motivated by concerns
in deontic logic and action theory. (See, for example, Jones and Sergot
[1996]and the references therein.) For the most part, however, that work
has not focussed on temporal or natural language considerations. There is
a large and growing semantics literature on events and aspect, but much of
it is too detailed to be considered part of a `logic' of tense. In this section
we sketch some ideas in the spirit of Galton [1984; 1987a], which seem to
strike a good balance between simplicity and �delity to `surface' phenomena
of English.

The idea that sentences in the future and present perfect can be repre-
sented by attaching F and P to some more basic sentence is plausible for
sentences describing states but not those describing events. The cat has
been on the mat is true now if the cat is on the mat was true before, but
to say that John has built a house is true now if John builds a house was
true before is confusing, since we don't normally use the present tense to
indicate that an event is true at the present time. (Indeed, since events
like house building occur over extended intervals, it is not clear what the
`present' time would be in this case.) Let us instead add a class of event let-
ters E1; E2; : : : to the language along with two event-to-formula e{f aspect
operators Perf and Pros, which attach to event letters to produce formu-
las.16 (The tense operators P and F and the boolean operators, as usual,
apply to formulas to form formulas.) Let us provisionally say that an in-
terpretation assigns to each event letter a set I(E) of occurrence intervals.
ProsE is true at t if t precedes (all of) some interval in I(E); PerfE, if
t succeeds (all of) some interval in I(E). One may wonder what hinges
on the distinction between an event's occurring at a time and a formulas's
being true at a time. Granting that we don't normally say that John builds
a house is true, say, in the spring of 1995, we might �nd it convenient to
stipulate that it be true then if one of John's house buildings occurs at that
time. One advantage of not doing so is that the event/formula distinction

16Galton uses the label `imperfective' in place of `e{f ', and the label `perfective' in
place of our f{e.
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provides a sorting that blocks inappropriate iterations of aspect operators.
Another is that the distinction makes it possible to retain the Priorean no-
tion that all formulas are to be evaluated at instants even when the events
they describe occupy extended intervals. The tense logical systems that
result from this language so interpreted will contain the usual tense logical
principles, like FA ! FPA as well as event analogs of some of these, like
ProsE ! FPerfE. Some tense theorems logic lack event analogs. For ex-
ample, FPA! (FA_PA_A) is valid when time does not branch towards
the past, but FPerfE ! PerfE _ ProsE is not (because E may occur only
at intervals containing the present moment).

We may add to this logic another e{f operator Prog such that ProgE
is true at t i� t belongs to an interval at which E occurs. Thus ProgE
asserts that event E is in progress. In view of the discussion in Section
3.4 above, it should be obvious that Prog is a poor representation of the
English progressive. It can perhaps be viewed as an idealization of that
construction which comes as close to its meaning as is possible with a purely
temporal truth condition. (Analogous justi�cations are sometimes given
for claims that the material conditional represents the English `if. . . then'
construction.) The new connective allows us to express the principle that
eluded us above: FPerfE ! PerfE _ ProsE _ ProgE.

Since Zeno of Elea posed his famous paradoxes in the �fth century BC,
accounts of events and time have been tested by a number of puzzles. One
Zeno-like puzzle, discussed in Hamblin [1971; 1971a], Humberstone, and
Galton [Humberstone, 1979; Galton, 1984; Galton, 1987a], is expressed by
the following question. `At the instant a car starts to move, is it moving or
at rest?' To choose one alternative would seem to distort the meaning of
starting to move, to choose both or neither would seem to violate the laws
of non-contradiction or excluded middle. Such considerations lead Galton
to a slightly more complicated interpretation for event logic. Events are
not assigned sets of occurrence intervals, but rather sets of interval pairs
(B;A), where B and A represent the times before the event and the times
after the event (so that, if time is linear, B and A are disjoint initial and
�nal segments of the set of times.) The clauses in the truth de�nition
are modi�ed appropriately. For example, ProgE is true at t if, for some
(B;A) 2 I(E); t 2 �B \ �A, where �A and �B are those times of the
model that do not belong to A and B. PerfE is true at t if, for some
(B;A) 2 I(E); t 2 B. For an event like the car's starting to move, any
(B;A) in the occurrence set will be exhaustive, i.e., B [ A will contain all
times. Such events are said to be punctual (although we must distinguish
these from events that occupy a `point' in the sense that B[A always omits
a single time). A punctual event does not really occur `at' a time, nor is
it ever in the process of occurring. Instead, it marks a boundary between
two states, like the states of rest and motion. When E is punctual, ProgE
is always false, and so the principle FPerfE ! PerfE _ ProsE _ ProgE
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reduces to FPerfE ! PerfE _ ProsE, which we have observed not to be
valid without the stipulation that E is punctual.

We may also wish to add f{e aspect operators that apply to formulas
to form event-expressions. Galton suggests the `ingressive' operator Ingr
and the `pofective' operator Po, where, for any formula A; IngrA is the
event of A's beginning to be true, and PoA is the event (or state) of A's
being true for a time. In the `before-after' semantics, these operators can
be interpreted by the clauses below:

I(IngrA) = f(B;�B) : A is true throughout a non-empty
initial segment of �B, and false throughout a
nonempty �nal segment of Bg

I(PoA) = f(B;C) : �B \ �C is not empty, A is true
throughout �B\�C and A is false at some point
in every interval that properly contains�B\�Cg

Thus, IngrA is always punctual, and PoA is never punctual. Notice that
�B \ �C can be a singleton, so that being true for `a time,' on this in-
terpretation, includes being true for an instant. We get principles like
Pros IngrA! (:A ^ FA) ^ F(:A ^ FA);Perf IngrPerfE ! PerfE, and
ProgPoA! P:A ^ A ^ F:A. It is instructive to consider the converses of
these principles. If A is true and false at everywhere dense subsets of the
times (for example if time is the reals and A is false at all rationals and
true at all irrationals), then at the times A is false :A ^ FA is true, but
IngrA has no occurrence pairs, and so ProsIngrA is false. Thus the con-
verse of the �rst principle fails. Likewise, if E occurs repeatedly throughout
the past (for example, if time is the reals and I(E) = f(�1; n][n+ 1;1)g)
then PerfE is true at all times, which implies that IngrPerfE has an empty
occurrence set, PerfIngrPerfE is everywhere false, and the converse to the
second principle fails. The converse to the third principle is valid, for if
P:A ^ A ^ F:A is true at t, then, letting \S be the intersection of all
intervals S such that t 2 S and A is true throughout S, the occurrence set
of PoA includes the pair (fx : 8y 2 \S; x < yg; fx : 8y 2 \S; x > yg) and
ProgPoA is true at t. (The principle would fail, however, if we took PoA to
require that A be true throughout an extended period.) As a �nal exercise
in Galtonian event logic, we observe that it provides a relatively straightfor-
ward expression of Dedekind continuity (see Burgess [2001]). The formula
PerfIngrPerfE ! P(PerfE ^ :PPerfE)_ P(:PerfE ^ :F:PerfE) states
that, if there was a cut between times at which PerfE was false and times
at which it was true, then either there was a �rst time when it was true
or a last time when it was false. It corresponds to Dedekind continuity in
the sense that a dense frame veri�es the formula if and only if the frame is
Dedekind continuous.
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The view represented by the `before-after' semantics suggests that events
of the form IngrA and other punctual events are never in the process of
occurring, but somehow occur `between' times. However plausible as a
metaphysical theory, this idea seems not to be reected in ordinary lan-
guage. We sometimes accept as true sentences like the car is starting to
move, which would seem to be of the form ProgIngrA. To accommodate
these ordinary-language intuitions, we might wish to revert to the simpler
occurrence-set semantics. IngrA can be assigned short intervals, each con-
sisting of an initial segment during which A is false and a �nal segment at
which A is true. On this view, IngrA exhibits vagueness. In a particular
context, the length of the interval (or a range of permissible lengths) is un-
derstood. When the driver engages the gear as the car starts to move he
invokes one standard, when the engineer starts the timer as the car starts
to move she invokes a stricter one. As in Galton's account, the Zeno-like
puzzle is dissolved by denying that there is an instant at which the car starts
to move. The modi�ed account concedes, however, that there are instants
at which the car is starting to move while moving and other instants at
which it is starting to move while not moving.

Leaving aside particular issues like the semantics of punctual events and
the distinction between event-letters and sentence-letters, Galton's frame-
work suggests general tense-logical questions. The f{e aspect operators, like
Ingr and Po can be viewed as operations transforming instant-evaluated ex-
pressions into interval-evaluated (or interval-occupying?) expressions, and
the e{f aspect operators, like Perf and Prog, as operations of the opposite
kind. We might say that traditional tense logic has investigated general
questions about instant/instant operations and that interval tense logic has
investigated general questions about operations taking intervals (or pairs of
intervals) to intervals. A general logic of aspect would investigate questions
about operations between instants and intervals. Which such operations
can be de�ned with particular metalinguistic resources? Is there anything
logically special about those (or the set of all those) that approximate as-
pects of natural language? The logic of events and aspect would seem to be
a fertile ground for further investigation.
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PREFACE TO THE SECOND EDITION

It is with great pleasure that we are presenting to the community the
second edition of this extraordinary handbook. It has been over 15 years
since the publication of the �rst edition and there have been great changes
in the landscape of philosophical logic since then.

The �rst edition has proved invaluable to generations of students and
researchers in formal philosophy and language, as well as to consumers of
logic in many applied areas. The main logic article in the Encyclopaedia
Britannica 1999 has described the �rst edition as `the best starting point
for exploring any of the topics in logic'. We are con�dent that the second
edition will prove to be just as good!

The �rst edition was the second handbook published for the logic commu-
nity. It followed the North Holland one volume Handbook of Mathematical
Logic, published in 1977, edited by the late Jon Barwise. The four volume
Handbook of Philosophical Logic, published 1983{1989 came at a fortunate
temporal junction at the evolution of logic. This was the time when logic
was gaining ground in computer science and arti�cial intelligence circles.

These areas were under increasing commercial pressure to provide devices
which help and/or replace the human in his daily activity. This pressure
required the use of logic in the modelling of human activity and organisa-
tion on the one hand and to provide the theoretical basis for the computer
program constructs on the other. The result was that the Handbook of
Philosophical Logic, which covered most of the areas needed from logic for
these active communities, became their bible.

The increased demand for philosophical logic from computer science and
arti�cial intelligence and computational linguistics accelerated the devel-
opment of the subject directly and indirectly. It directly pushed research
forward, stimulated by the needs of applications. New logic areas became
established and old areas were enriched and expanded. At the same time, it
socially provided employment for generations of logicians residing in com-
puter science, linguistics and electrical engineering departments which of
course helped keep the logic community thriving. In addition to that, it so
happens (perhaps not by accident) that many of the Handbook contributors
became active in these application areas and took their place as time passed
on, among the most famous leading �gures of applied philosophical logic of
our times. Today we have a handbook with a most extraordinary collection
of famous people as authors!

The table below will give our readers an idea of the landscape of logic
and its relation to computer science and formal language and arti�cial in-
telligence. It shows that the �rst edition is very close to the mark of what
was needed. Two topics were not included in the �rst edition, even though

D. Gabbay and F. Guenthner (eds.),
Handbook of Philosophical Logic, Volume 8, vii{ix.
c 2002, Kluwer Academic Publishers. Printed in the Netherlands.



viii

they were extensively discussed by all authors in a 3-day Handbook meeting.
These are:

� a chapter on non-monotonic logic

� a chapter on combinatory logic and �-calculus

We felt at the time (1979) that non-monotonic logic was not ready for
a chapter yet and that combinatory logic and �-calculus was too far re-
moved.1 Non-monotonic logic is now a very major area of philosophi-
cal logic, alongside default logics, labelled deductive systems, �bring log-
ics, multi-dimensional, multimodal and substructural logics. Intensive re-
examinations of fragments of classical logic have produced fresh insights,
including at time decision procedures and equivalence with non-classical
systems.

Perhaps the most impressive achievement of philosophical logic as arising
in the past decade has been the e�ective negotiation of research partnerships
with fallacy theory, informal logic and argumentation theory, attested to by
the Amsterdam Conference in Logic and Argumentation in 1995, and the
two Bonn Conferences in Practical Reasoning in 1996 and 1997.

These subjects are becoming more and more useful in agent theory and
intelligent and reactive databases.

Finally, �fteen years after the start of the Handbook project, I would
like to take this opportunity to put forward my current views about logic
in computer science, computational linguistics and arti�cial intelligence. In
the early 1980s the perception of the role of logic in computer science was
that of a speci�cation and reasoning tool and that of a basis for possibly
neat computer languages. The computer scientist was manipulating data
structures and the use of logic was one of his options.

My own view at the time was that there was an opportunity for logic to
play a key role in computer science and to exchange bene�ts with this rich
and important application area and thus enhance its own evolution. The
relationship between logic and computer science was perceived as very much
like the relationship of applied mathematics to physics and engineering. Ap-
plied mathematics evolves through its use as an essential tool, and so we
hoped for logic. Today my view has changed. As computer science and
arti�cial intelligence deal more and more with distributed and interactive
systems, processes, concurrency, agents, causes, transitions, communication
and control (to name a few), the researcher in this area is having more and
more in common with the traditional philosopher who has been analysing

1I am really sorry, in hindsight, about the omission of the non-monotonic logic chapter.
I wonder how the subject would have developed, if the AI research community had had
a theoretical model, in the form of a chapter, to look at. Perhaps the area would have
developed in a more streamlined way!
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such questions for centuries (unrestricted by the capabilities of any hard-
ware).

The principles governing the interaction of several processes, for example,
are abstract an similar to principles governing the cooperation of two large
organisation. A detailed rule based e�ective but rigid bureaucracy is very
much similar to a complex computer program handling and manipulating
data. My guess is that the principles underlying one are very much the
same as those underlying the other.

I believe the day is not far away in the future when the computer scientist
will wake up one morning with the realisation that he is actually a kind of
formal philosopher!

The projected number of volumes for this Handbook is about 18. The
subject has evolved and its areas have become interrelated to such an extent
that it no longer makes sense to dedicate volumes to topics. However, the
volumes do follow some natural groupings of chapters.

I would like to thank our authors are readers for their contributions and
their commitment in making this Handbook a success. Thanks also to
our publication administrator Mrs J. Spurr for her usual dedication and
excellence and to Kluwer Academic Publishers for their continuing support
for the Handbook.

Dov Gabbay
King's College London
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DAVID HARRAH

THE LOGIC OF QUESTIONS

1 INTRODUCTION

1.1 Basic Notions

Most theorists use `interrogative' to refer to a type of sentence. Some the-
orists posit questions as distinct entities that may be asked, or put, or ex-
pressed by interrogatives, just as propositions may be expressed by declara-
tives and commands may be expressed by imperatives. Intuitively it seems
that some questions may be expressed by sentences other than interroga-
tives, and some interrogatives can be used to do other things besides ask
questions. Thus it is reasonable to say that there are two overlapping sub-
ject matters: the logic of interrogatives, and the logic of questions.

Most theorists use `reply' to refer to any verbal response that can be
given to a question, and use `answer' to refer to a distinguished kind of
reply. Many kinds of reply may be appropriate from the respondent's point
of view, but the replies that are appropriate from the questioner's point of
view, the replies that the question calls for, are the answers.

Most theorists de�ne various types of answer. The most important dis-
tinction is between direct answers, each of which gives exactly what the
question calls for, and partial answers, each of which may give some (but
perhaps not all) of what the question calls for. The label `direct' was in-
troduced in Harrah [1961] because it connotes both logical suÆciency and
immediacy, as in the request:

`Please give me a direct answer?'

Just as statements and commands can be `good' or `bad' in various ways
(valid or not, true or not, possible or not, and the like), so too with questions.
The details, however, vary from theory to theory.

Most theorists agree on labels for question-types approximately as fol-
lows:

Label Example
whether `Is two even or odd?'
yes-no `Is two a prime number?'
which `Which even numbers are prime?'
what `What is Church's Thesis?'
who `Who is Bourbaki?'
why `Why does two divide zero?'
deliberative `What shall I do now?'

D. Gabbay and F. Guenthner (eds.),
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disjunctive `How long is your new proof, or do you have a shorter one?'
hypothetical `If you had a proof, how long would it be?'
conditional `If you now have a proof, how long is it?'
given-that `Given that Turing's Conjecture is provable, is Church's

Thesis provable?'

No theorist holds that this is a complete list of question-types, and most
would divide each of the types listed here into several sub-types. For discus-
sions, see Hamblin [1967], Prior and Prior [1955], Belnap and Steel [1976],
and Wi�sniewski [1995].

To see how problematic these basic notions can be, and how theorists'
intuitions may di�er, consider the English sentence:

`Where is Jane or Ann?'

Harrah [1975] formalizes this as a disjunction of two interrogatives (one
about Jane, one about Ann); each of these interrogatives expresses one
question that has its own set of answers. Belnap and Steel [1976] formal-
izes this as one interrogative that expresses one disjunctive question whose
answers are the answers about Jane plus the answers about Ann. Groe-
nendijk and Stokhof [1984] construes it as one interrogative that expresses
two questions; the semantics of the interrogative yields one set of answers
that contains the Jane answers and the Ann answers.

There is another subject matter that is a generalization on the �rst two:
erotetic logic. In the narrow sense, `erotetic' can be paraphrased as `per-
taining to questioning'. In this sense erotetic logic is the theory of questions,
interrogatives, and the use of interrogatives. Generalizing on this notion, we
may use `erotetic' with the sense of `pertaining to calling-for-reply'. Under
such an interpretation, erotetic logic is the theory of all the sentences (inter-
rogative, imperative, declarative, or whatever) that call for reply, or that are
vulnerable to replies of certain sorts, and the theory of all the entities that
can thus be called for. Erotetic logic in this general sense has not yet been
developed to any signi�cant depth, and we discuss it only briey in Sections
7.7 { 7.8. For this reason, and because most of the theories discussed in
this chapter are logics of questions, this chapter is most appropriately titled
`The Logic of Questions'.

(Helpful comments and advice concerning this chapter were supplied by
Andrzej Wi�sniewski.)

1.2 Motivations

The theories that have been developed up to now di�er not only in super-
structure and points of detail but also in foundation and basic conception.
Many of these di�erences are due to di�erences in motivation. For this
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reason we take note of motivation in our survey below. The following de-
scriptive labels are used in our exposition:

Empirical. This is the motivation of linguists and psychologists, for ex-
ample, who wish to describe the sentences of a natural language and de-
scribe how those sentences are understood and used by the speakers of the
language.

Platonic. This is the motivation of some philosophers and logicians who
wish to describe linguistic or semantic entities considered as mathematical
objects, objects that exist in their own right, so to speak.

Normative. This is the motivation of some philosophers and logicians
who wish to describe how one ought to ask and answer question, or how a
rational person asks and answers.

Engineering. This is the motivation of those whose purpose is simply
to construct a system that will be usable for certain practical purposes
(e.g. computer-assisted information-retrieval) and satisfy certain criteria
(e.g. eÆciency, e�ectiveness).

Metalogical. This is the motivation of one who wishes to study how
far, within a given logical system, a system of question-and-answer can be
developed, or, more generally, to study what sorts of question-and answer
system can be developed within a given logical system, where the given
system might or might not have been intended by its creators to provide a
question-and-answer system.

Technical and aesthetic. These are additional motivations felt by the
theorist in the course of constructing the theory. The most important of
course are the desire to facilitate construction of theory and the desire to
achieve simplicity or elegance of other kinds.

Two cautions: First, the foregoing characterizations are rough and usu-
ally require some quali�cation when applied to particular cases. Second,
in any particular case there may be more than one motivation present; we
note some examples below.

1.3 History and Bibliography

Discussion of questions is at least as old as Aristotle; Kubi�nski [1980], pp.
118 { 119, says that Cohen [1929] \is the earliest known to me in which
the logic of questions is treated by means of formal logic". Cohen suggested
identifying questions with sentential functions having free variables. Closely
related ideas were considered by Carnap and Reichenbach. Gornstein [1967],
p. v { 1, says that Carnap seems to be the �rst author who wrote a question
in a formalized manner.

Current activity in the �eld began in the 1950s, stimulated to a large
extent by Prior and Prior [1955], Stahl [1956], Hamblin [1958], and Kubi�nski
[1960]. Since then many approaches have been suggested, and several have
been developed in detail.
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For a general discussion of the history of the �eld to about 1965, see Ham-
blin [1967]. Gornstein [1967] presents a detailed summary and discussion of
many theories and logics from Aristotle to the 1960s. Kubi�nski [1980] o�ers
many historical remarks and useful bibliography.

Probably the most comprehensive and complete bibliography published
to 1976 is the one by Egli and Schleichert that is included in Belnap and
Steel [1976]. It contains sections on Logic and Philosophy of Language;
Linguistics; Automatic Question-Answering; and Psychology and Pedagogy.
Abstracts are included for many of the items listed. Ficht [1978] presents an
updated version of this bibliography with an additional section on dialogue.
Other bibliographies, more limited in scope but quite useful, are found in Hi_z
(ed.) [1978], Lehnert [1978], Belnap [1981] and [1983], and Higginbotham
[1993]. The bibliography presented in Wi�sniewski [1995] is valuable in many
ways and has good coverage of the important work done up to 1994. Note:
The list of References given at the end of this chapter is very selective.
In general it concentrates on logic and ignores psychology, pedagogy, and
heuristics. In particular it concentrates on the topics and authors discussed
in this chapter.

1.4 Scope of this Chapter

The main aims of this chapter are to indicate the variety of motivations,
basic conceptions, and approaches to theorizing that are now evident in
the �eld, and to outline some topics and aspects that invite further study.
This chapter does not aim at a complete historical account, or a complete
catalogue of possible theories. We concentrate on some work, by a few
logicians, that is especially signi�cant and fruitful for further developments
in various directions.

1.5 Abbreviations and Notation

In most cases, when summarizing the work of another author, we use that
author's terminology and notation. In a few cases we depart for the sake of
clarity or simplicity. Occasionally, where there is no danger of ambiguity,
we use symbols as names of themselves. Except where noted otherwise, we
use

wff for well-formed formula
iff if and only if
d(I) direct answer to I (or, in Sections 7.3 { 7.4,

the set of these answers)
D(I) the set of direct answers to I
:X the negation of X
� the empty set
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2 SET-OF-ANSWERS METHODOLOGY

2.1 Hamblin's Postulates

In an informal paper Hamblin [1958] proposed three postulates:

1. An answer to a question is a statement.

2. Knowing what counts as an answer is equivalent to knowing the ques-
tion.

3. The possible answers to a question are an exhaustive set of mutually
exclusive possibilities.

Hamblin also suggested a calculus of questions to formalize such ideas as
containment and equivalence. For example, one question contains another
when from every answer to the �rst we can deduce an answer to the second;
and the two questions are equivalent if they contain each other. This paper
stimulated much formal work by others (see, e.g. Belnap and Steel [1976],
p. 35).

Some linguists and logicians have argued against adopting Postulate (1)
(Hintikka [1976], Tich�y [1978]). For those who adopt it, however, it e�ects
an important simpli�cation. Replies that are not statements (e.g. noun
phrases, nods, grunts) can be treated as coded answers that are abbrevi-
ations of statements. Thus the logic of answers is concerned only with
statements.

Some logicians have argued against adopting Postulate (2) (�Aqvist [1965],
Hintikka [1976]). For those who adopt it, however, it represents another
giant step toward formalization. The techniques inspired by it are per-
haps best thought of under the label `set-of-answers methodology' (or `SA
methodology' for short). Hamblin's own technique for de�ning containment
and equivalence is one example; others appear below.

Postulate (2), and SA methodology in general, are compatible with sev-
eral di�erent theories about the logical nature of questions, and about the
connection between a question and its answers. In fact, most of the ap-
proaches to theorizing surveyed in this chapter exemplify SA methodology
at various points.

(Note: Postulate (3) is controversial and there is much un�nished business
connected with it, but we do not discuss it in this chapter beyond the brief
mentions in 6.6 and 7.2.)

2.2 The SA Reduction of Questions

One idea, not required by SA methodology but obviously compatible with
it, is to identify a question with its set of answers. Let us call this the
SA reduction of questions. In radical versions of SA reduction one allows
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arbitrary sets of sentences to count as questions, regardless of whether these
sets have de�ning characteristics that can be expressed in a given language.
In conservative versions one considers only certain kinds of sets | e.g. sets
that are de�nable in terms of the syntactical form of the sentences that are
their members.

In several papers in the 1960s Stahl developed an SA reduction. The
following is a summary of Stahl [1962].

We assume a higher-order function calculus, and then distinguish three
types of questions: (1) individual questions (e.g. [Hx?], read `Which things
satisfy H?'), (2) function questions (e.g. [F ?a], read `Which functions are
satis�ed by a?'), and (3) truth questions (e.g. [Af?B], read `Which truth-
functions hold between A and B?'). To (1), simple answers are Ha, Hb,
etc.; direct answers are simple answers that are not negations of theorems.
We can form �nite conjunctions [Ha ^ Hb ^ Hd], (:Ha ^ :Hc), etc., and
also in�nite conjunctions (x):Hx, (x)(H 0x ! Hx), etc. A perfect answer
is such a conjunction which is not the negation of a theorem. A suÆcient
answer is a wff F such that F is not the negation of a theorem, and either
F implies a perfect answer which is not a theorem or else F is a theorem
and some perfect answer is a theorem. We now de�ne the question [Hx?]
as the class of its suÆcient answers.

To (2) the simple answers are Ha, H 0a, H 00a, etc.; as before we then
form direct, perfect, and suÆcient answers, and the question is de�ned as
the class of its suÆcient answers. For (3) we proceed likewise, except that
there are no in�nite conjunctions; e.g. ((A _ B) ^ (A! B)) is in [Af?B].

The initial de�nitions can be generalized and made relative to a system
X and a set of premises S; we write [P ]XS to mean that P is a question in
X relative to S. Here the suÆcient answers are required to be consistent
with consequences of S. For discussion and criticism of Stahl [1962], see
Harrah [1963b]. See also Section 7.5 below.

2.3 Motivation

There are several motivations for adopting an SA reduction. Besides the
metalogical one (to see what can be done within set theory) there are tech-
nical and aesthetic motivations. All the operations on sets and relations
between sets are directly available as operations on questions and relations
between questions, and theorems about sets become theorems about ques-
tions.

For some researchers there are also Platonic, normative, and engineering
motivations. It has been argued that for a rational decision-maker in a
choice situation the only essential thing about a question is its set of answers
(e.g. Szaniawski [1973] and Dacey [1981]).

Another motivation (a technical one?) appears in connection with Fregean
principles of language construction. If every declarative sentence is to be
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assigned a sense and a denotation, uniformity would suggest a similar treat-
ment for interrogatives. The natural technique is to let each interrogative
denote the set of its direct answers. Some logicians and linguists have
adopted this technique, though others have argued that an interrogative
denotes just the set of its true direct answers. For an entry into the lit-
erature of this topic, see Karttunen [1978], Belnap [1981], Kiefer [1983],
Groenendijk and Stokhof [1984], and Higginbotham [1993].

2.4 Some Problems

Some logicians have argued that the SA reduction is not intuitively or em-
pirically plausible (e.g. Tich�y [1978], pp. 279 { 280). Even for those who
favor it, however, it presents the problem of deciding what kind of answers
are to be in the sets under consideration. It might seem that all the direct
answers must be included; but, as noted above, some theorists in the tra-
dition of Montague Grammar have equated questions with the sets of just
their true direct answers.

Regardless of whether a question includes all of its direct answers, should
it be allowed to include partial answers? and replies like `I don't know'?
Some linguists have argued for a view that in e�ect obliterates the distinc-
tion between direct and partial, and that would (on the SA reduction) treat
a question as the set of its direct and partial answers together (e.g. Bolinger
[1978], p. 104). For logicians who wish to preserve a sharp distinction be-
tween the direct and partial the simplest course (with the SA reduction) is
to identify a question with the direct (or, true direct) answers, and then to
de�ne the partial answers separately. As noted above, this is the technique
used in Stahl [1962].

On some motivations one who adopts SA reduction cares about questions
but not about interrogatives, and speci�cally does not care whether there
are enough interrogatives to express all questions. On other motivations
one is not so indi�erent, and decisions about what sets are to count as ques-
tions depend on what sentences are available as interrogatives for expressing
questions.

Among many possible policies of question-de�nition the following are the
natural ones:

1. Choose any arbitrary collection C of sets S of sentences.

2. Choose any C such that every S in C is describable in the assumed
metalanguage.

3. Choose any C such that there is a set S0 of sentences of L (the `inter-
rogatives') with this property: There is a many-one mapping from S0

onto C (so that every question S in C is expressible by at least one
interrogative in S0).



8 DAVID HARRAH

4. As in (3), with the additional requirement that there is an e�ective
procedure for recognizing interrogatives, and an e�ective procedure
whereby, given an interrogative, we can recognize the question that it
expresses.

5. Choose a C only if it, in e�ect, represents the set of questions belonging
to some given natural language.

In fact, most logicians in the �eld thus far have followed (5) or (4). An
empirical motivation of course leads to (5). A Platonic motivation might
lead to any of (1){(5), and would lead also to metatheoretic questions about
completeness. The topics of e�ectiveness and completeness are of such im-
portance that we discuss them in a separate section below.

3 EFFECTIVENESS AND COMPLETENESS

3.1 Introduction

It is usually of interest to investigate whether certain aspects of a question-
and-answer system are e�ective, and whether the system is complete in
certain respects. On some motivations it is required that certain kinds of
completeness and e�ectiveness do indeed obtain. Probably the �rst theorist
to note the importance of these properties and to study them in a systematic
way was Belnap [1963]; we outline his ideas and results in Section 4. In this
section we give a more general discussion, because the topic is important
for many theories of questions.

3.2 The Problem of E�ectiveness

Should the notion of interrogative, or question-expresser, be e�ective? Sup-
pose it is not. Then, when questioner Q utters X , respondent R might have
to ask `Are you asking a question?' and then Q might have to ask `Is the
latter a question?' and so on back and forth inde�nitely. This argument
does not prove that all interrogatives must be recognizable as such, but it
does suggest that some must be. Either all must be, or else there must be
in the language some interrogatives with the force of `Does the expression
X express a question?', where these are recognizable as such.

A similar argument applies to answers. Suppose that Q utters X , and
R recognizes that X expresses a question, but that answer-to-X is not
e�ective. Then, when R gives a reply, Q must ask `Was that an answer?'
As before, this argument does not prove that every question must have an
e�ective set of answers, but it does suggest that some must. Either all must,
or there must be some question with the force of `Is W an answer to X?'
and with an e�ective set of answers.
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On the other hand one might want to allow none�ectiveness for certain
types of question and answer. There seems to be no e�ective method for
determining whether English sentences of the form `I wonder whether . . . '
express questions as distinct from statements. Also it seems that many
who-, what-, and why- questions do not have e�ective answer sets.

3.3 Concepts of Expressive Completeness

A question system might be expressively complete (or fail to be complete)
in any of several senses. First, it might be empirically complete, in that it
provides for all the questions that natural languages do. Second, it might
be complete in a Platonic sense, in that it provides for all the questions that
`really exist'.

The Platonic conception may be made precise via model theory without
reference to a particular language. One theory for which this would be
possible is that of Tich�y [1978]; see below in Section 6.6. Alternatively,
we may speak of `all the questions that really exist, relative to a given
language'. This is Belnap's conception; see Section 4. With this conception
the problem of completeness is to determine whether everything that counts
as a real question is expressible by an interrogative in the given language.

Further senses of completeness are generated by semantic and pragmatic
considerations. For example, a system that fails to provide for all the real
questions may nevertheless provide for all the questions that have a true
direct answer, or all that are truly answerable by a human being.

With respect to answers, a system may be complete if, for each of its
questions, all the `real answers' (again, see Belnap) are expressible. A more
reasonable alternative is to require merely that, for each question that has
true real answers, at least one true real answer is expressible. For further
discussion of concepts of completeness, see Belnap and Steel [1976] and
Harrah [1969].

3.4 Diagonalization and Expressive Incompleteness

In the logic of questions generally, and in SA methodology especially, we deal
with sets of linguistic expressions, or sets of sets of them. Sometimes there
is enough structure in the situation to permit Cantorian diagonalization.
We give one example here, from Harrah [1969].

We assume that we have a language L with denumerably many expres-
sions, and that an e�ective alphabetical ordering of them has been estab-
lished. We assume that there is a set S of questions, and that S is recursively
enumerable. Suppose that each question has denumerably many direct an-
swers, or can be assigned denumerably many in a harmless way (e.g. by
adding instances of (P ^ :P )). Suppose next that, given a question q, the
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set of direct answers to q is recursively enumerable. Finally suppose that
direct answers are sentences, and that sentence is e�ective.

Now we can diagonalize to construct new sets of sentences each of which is
not the set of direct answers to any question in the assumed enumeration of
questions. Viz: Choose any positive integer j. Then for the alphabetically
�rst member of the new set D we choose the alphabetically jth sentence
after the �rst direct answer of the �rst question, and for the alphabetically
(i + 1)th member of D we choose the alphabetically jth sentence after the
�rst direct answer d of the (i + 1)th question such that d is alphabetically
later than the ith member of D. To make D more interesting we can specify
in advance some recursive property P and stipulate that the construction
is to move at least j sentences and keep going until it �nds a sentence with
the property P .

One consequence that is relevant to many theories but to the SA reduction
in particular is this: If question and direct answer are e�ective (or merely
enumerable, as assumed above), then the system is incomplete in the sense
that not every set of sentences can be the set of direct answers to a question.
For further discussion, see Harrah [1969].

3.5 Deductive Completeness

There is another family of completeness concepts that has been suggested by
work of Kubi�nski and Wi�sniewski (see 8.5 in Wi�sniewski [1995]). The basic
idea is that relations like implication can hold between (1) wffs and questions
and (2) questions, and the particular relationships that do hold can be
described or expressed via statements of a certain form F in a metalanguage
ML of the given language L. Then, in analogy with the development of
systems of logic for declarative sentences, we may choose some set S of
statements of ML and ask whether S is a complete axiom set for all of the
true statements of the form F .

This area invites and awaits exploration.

4 BELNAP'S ANALYSIS

In this section we summarize a part of Belnap and Steel [1976]. That book
presents (1) a formal system for question-and-answer, (2) a rich metatheory
for the system, (3) discussion of application to English, (4) discussion of
application to data processing and information retrieval, and (5) an exten-
sive bibliography by U. Egli and H. Schleichert. Here we summarize just
(1) and (2). Because they were the work of Belnap (completed in 1968), we
shall call them Belnap's system and Belnap's theory. We present Belnap's
theory in detail because many of his concepts apply to systems other than
his own, and many of his concepts deserve to become standard.
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4.1 Motivation

The main motivation is a normative one: to construct a rational system
applicable in situations of a certain kind | namely, where questioner Q
and respondent R are motivated to help each other, and R has access to a
well structured information source. In particular R may be a machine, and
the information source may be a data bank.

For Belnap, a system is adequate for these situations only if it meets cer-
tain conditions of e�ectiveness. First, the interrogatives must be e�ectively
recognizable as such. Second, given any question, its direct answers must
be e�ectively recognizable as such. The latter is the fundamental criterion,
emphasized in both Belnap [1963] and Belnap and Steel [1976].

4.2 The Assertoric Basis

The language L is an applied �rst-order functional calculus with identity.
There are denumerably many individual variables w, x, y, z, . . . , and count-
ably many individual constants, n-ary function constants f , g, . . . , and n-
ary predicate constants F , G, . . . . There are signs = for identity, ^ for
conjunction, _ for disjunction, ! for the material conditional, $ for the
material biconditional, 9 and 8 for the existential and universal quanti-
�ers. Term and wff are de�ned as usual, except that n-ary conjunctions
(A1^ : : :^An) and disjunctions (A1_ : : :_An) are permitted for each n. We
use a, b, c, . . . for terms and A, B, . . . for wffs. An n-place condition is a wff
with exactly n free variables. A statement is a wff with no free variables.
A name is a term with no free variables. Given Ax1 : : : xn, we understand
that Ab1 : : : bn comes from Ax1 : : : xn by proper substitution of bi for xi.

Some one-place conditions are designated as elementary category condi-
tions (including (x = a) for each name a). The set of category conditions is
de�ned recursively by:

1. Every elementary category condition is a category condition.

2. If Ax and Bx are category conditions with x as the only free variable,
then (Ax ^Bx) and (Ax _Bx) are category conditions, and so too is
any result of changing variables (free or bound) in Ax.

With each elementary category condition Ax there is associated a decid-
able set of names, called the nominal category determined by Ax. If Ax is
(x = a), the nominal category must be fag. If Ax and By di�er only in their
variables (free or bound), they determine the same nominal category. If Ax
is (Bx ^Cx) or (Bx _Cx), then its nominal category is the intersection or
union of the nominal categories determined by Bx and Cx.

For the semantics of L, a candidate interpretation consists of a nonempty
domain of individuals D and an interpretation function of the usual exten-
sional kind. Denotation and truth are de�ned as usual. The range of a
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one-place condition Ax in a candidate interpretation M is the set of indi-
viduals i in the domain of M such that Ax is true in M 0, where M 0 is like
M except in assigning i to the free variable x in Ax. The range in M of a
category condition is also called the real range, or the real category deter-
mined by that condition in M . Category conditions di�ering only in their
free or bound variables are equivalent; we write Cx for the set of conditions
that are equivalent to Cx.

An interpretation is a candidate interpretation M in which, for every
category condition Ax, every name in the nominal category determined by
Ax denotes in M some individual in the real category determined by Ax in
M . Consistency, validity, logical implication and logical equivalence are de-
�ned as usual. Where there is no explicit reference to an interpretation, it is
understood that there is implicit reference to some principal interpretation.

4.3 Elementary Questions

The elementary questions are whether-questions and which-questions. An
elementary question is expressed by an elementary interrogative. These have
the form ?��, where � denotes a request, � denotes a subject and ? denotes
the function which takes a request and a subject as arguments and produces
a question as value.

An abstract whether-subject is a �nite set of wffs. The range determined
by this subject is the set itself; likewise, the set of alternatives presented
by this subject is the set itself. A lexical whether-subject is a �nite list of
wffs enclosed in parentheses, as: (A1; : : : ; An). To simplify matters it is re-
quired of both abstract whether-subjects fA1; : : : ; Ang and lexical whether-
subjects (A1; : : : ; An) that there be no repetitions among A1; : : : ; An, and
that no Ai be a conjunction of other statements in the list A1; : : : ; An. The
lexical whether-subject (A1; : : : ; An) signi�es the abstract whether-subject
fA1; : : : ; Ang.

An abstract which-subject is a triple hX; g;Ai such that X is a nonempty
set of variables (the queriables), g is a category mapping in X (i.e. a mapping
from a subset of X into the set of equivalence classes of category conditions),
and A is a matrix (a wff whose free variables include the queriables).

Let hX; g;Ax1 : : : xni be an abstract which-subject, where X = fx1; . . . ,
xng, and g is a category mapping in X . Then the nominal alternatives
making up the nominal range determined by this subject and presented by
any question with this subject are the results Aa1 : : : an of substituting a
name ai for a queriable xi (for each i) in the matrix Ax1 : : : xn, under the
restriction that, if g(xi) is de�ned and is Cx, then ai must be in the nominal
category determined by Cx.

For any interpretation M , the real M-alternatives, or alternatives in M ,
which make up the real M-range or range in M , determined by hX; g;
Ax1 : : : xni, and presented by any question with this subject are all the
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pairs hf;Ax1 : : : xni, where f is a function from X into the domain in M ,
under the restriction that, if g(xi) is de�ned and is Cx, then f(xi) is in the
real range in M of Cx. A real M -alternative hf;Ax1 : : : xni is true in M
just in case Ax1 : : : xn is true in that M 0 which is like M except in assigning
f(xi) to xi for each i. Roughly, a nominal alternative Aa1 : : : an signi�es
in M the real alternative hf;Ax1 : : : xni, provided that ai denotes in M the
individual f(xi).

A lexical which-subject is an expression of the form

(C1x1; : : : ; Crxr ; xr+1; : : : ; xnkAx1 : : : xn);

where x1, . . . , xn is a nonempty nonrepeating sequence of variables, and
C1x1, . . . , Crxr is a possibly empty sequence of category conditions, each
Cixi being a category condition with xi as its one free variable. Here each xi
is governed by the category condition Cixi, while xr+1, . . . , xn are category-
free.

Given such a lexical which-subject, we can recover the abstract which-
subject that it signi�es, in the obvious way. The queriables are all of x1,
. . . , xn, but g is de�ned only for x1, . . . , xr .

In a footnote added late (p. 26), Belnap and Steel say that it was a mis-
take to de�ne an abstract which-subject as the triple hX; g;Ai, because then
(xkFx) and (ykFy) signify distinct abstract which-subjects. They suggest
de�ning an abstract which-subject not as hX; g;Ai but rather as \some-
thing amounting to the equivalence-class generated from this by means of
uniform substitution for queriables". To avoid complicating our exposition
here we shall not make this change but will continue as in Belnap's original
development.

A which-interrogative has the form

?�(C1x1; : : : ; Crxr ; xr+1; : : : ; x1kAx1 : : : xn):

The variables x1; : : : ; xn occur free in Ax1 : : : xn, and are said to be free in
the list C1x1; : : : ; Crxr; xr+1; : : : ; xn, but are considered to be bound in the
interrogative as a whole.

Roughly: Every direct answer to an elementary question is a conjunction
(S^C^D), where S is a selection drawn from among the presented alterna-
tives, C is a completeness-claim, and D is a distinctness-claim. The selection
S is itself a conjunction (S1 ^ : : : ^ Sp) without repetitions. (S1 ^ : : : ^ Sp)
is a lexical selection, and the corresponding set fS1; : : : ; Spg is an abstract
selection. In the case of which-questions, the nominal selection signi�ed by
(S1 ^ : : : ^ Sp) is fS1; : : : ; Spg; if each of the Si is in the range of a which-
subject �, then the real selection signi�ed by (S1 ^ : : : ^ Sp) in M relative
to � is the set of real alternatives signi�ed by the Si in M relative to �.

Because direct answers have (S ^ C ^D) structure, the request � in ?��
has a structure of the form (s c d). Here s is a selection-size speci�cation,
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which is a pair of numerals
�
�, where � is a positive numeral representing

a lower bound on the selection size, and � is either a positive numeral
(� �) representing an upper bound, or a dash signifying the absence of an

upper bound. The
�
� notation is a lexical selection-size speci�cation, and it

signi�es the corresponding abstract selection-size speci�cation, which is the
corresponding ordered pair of cardinals (or the dash).

A subject � sanctions a selection (S1 ^ : : :^Sp) if each Si is in the range
determined by �. A request � sanctions a selection if the length of the
selection falls within the limits speci�ed by the selection-size speci�cation
of �. An interrogative ?�� sanctions a selection if both � and � do.

Roughly: The completeness-claim made by a direct answer is a claim
as to how complete the selection is when measured against the totality
of true alternatives presented by the question. Completeness-claims may
be analyzed in terms of quanti�ers, where a quanti�er Q is de�ned as a
binary relation between classes T and S (here T would be the set of true
alternatives, and S would be the selection) such that whether or not Q(T; S)
holds depends on the cardinalities of T \ S and T � S (e.g. the universal
quanti�er is the quanti�er in which T � S = 0). Belnap mentions various
examples of quanti�ers that might be used, and the possibility of letting
the speci�cation indicate a range of completeness-claims. To develop these
possibilities would require an enrichment of the assertoric basis, so Belnap
con�nes attention to just the universal quanti�er and the claim it represents,
the maximal completeness-claim. Notation: Max(�; S).

For whether-questions: Given a lexical whether-subject and a selection
S(S1^ . . .^Sp) sanctioned by that subject, we de�ne Max(�; S), the maxi-
mum completeness-claim in � and S, as (:B1^ . . .^:Br), where B1, . . . ,
Br are (in order) all the members of the subject that are not in the selection
S.

For which-questions: Assume as given a lexical which-subject

� = (C1x1; : : : ; Crxr; xr+1; : : : ; xnkAx1 : : : xn)

and a selection

S = (Aa11 : : : a1n ^ : : : ^ Aap1 : : : apn)

sanctioned by �. Then we de�ne Max(�; S) as

8x1 : : :8xn[C1x1 ^ : : : ^ Crxr ! [Ax1 : : : xn ! [(x1;n =

= a11;n) _ : : : _ (x1;n = ap1;n)]]];

where (x1;n = ak1;n) = [(x1 = ak1) ^ : : : ^ (xn = akn)].
A dash is used for the lexical empty completeness-claim speci�cation.

Then ?(s � d)� speci�es no completeness-claim, and ?(s8d)� speci�es the
maximum completeness-claim. Given an interrogative I and a selection S
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sanctioned by I , the completeness-claim sanctioned by I relative to S, or
Comp(I; S), is not de�ned if I speci�es no completeness-claim, and is de�ned
as Max(�; S) if I speci�es the maximum completeness-claim.

Single-example questions have the form ?(
1
1 �d)�.

Some-examples questions have the form ?(
�
1 �d)�.

Unique-alternative questions have the form ?(
1
1 8d)�.

Complete-list questions have the form ?(
�
1 8d)�.

For the following theorem we say that I1 is erotetically equivalent to I2
iff, for every d(I1) there is an equivalent d(I2), and for every d(I2) there is
an equivalent d(I1).

THEOREM 1. The completeness-claim speci�cation is dispensable in some
cases but not in all. Viz: (A) For each whether-question interrogative,
there is an erotetically equivalent single-example whether-interrogative. (B)
Unique-alternative which-interrogatives are erotetically equivalent to certain
single-example which-interrogatives. (C) There are certain complete-list
which-interrogatives that are not erotetically equivalent to any some-examp-
les which-interrogative.

Result (B) can be generalized from exactly-one to exactly-n. The trick
is to add to the subject the appropriate completeness-clause 8y(Ay ! (y =
x1 _ : : : _ y = xn)). Compare �Aqvist [1965], pp. 123�. Further results on
equivalence of this sort are noted in �Aqvist [1965] and Kubi�nski [1980], pp.
61{68.

Concerning distinctness-claims, Belnap says that only two kinds have a
systematic use in question logic: the empty and the nonempty. Let � and S
be as in the de�nition of Max. Then Dist(�; S) is de�ned as a conjunction
of disjunctions of the form ((ai1 6= aj1) _ : : : _ (ain 6= ajn)) which says that
the conjuncts of S signify, relative to �, distinct real alternatives.

Notation. � for the lexical empty distinctness-claim speci�cation, and 6=
for the lexical nonempty distinctness-claim speci�cation. Given an interrog-
ative I and a selection sanctioned by I , the distinctness-claim sanctioned
by I relative to S, or Dist(I; S), is not de�ned if I speci�es no distinctness-
claim, and is de�ned as Dist(�; S) if I does specify a distinctness-claim.

4.4 Answers

Let I be an elementary interrogative and S be a selection sanctioned by I .
Then A is a direct answer to I iff I and A have the corresponding forms
indicated:
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I A
?(s��)� S
?(s8�)� S ^Comp(I; S)
?(s� 6=)� S ^Dist(I; S)
?(s8 6=)� S ^Comp(I; S) ^ Dist(I; S)

4.5 E�ectivity, Univocity, Completeness

Belnap says that his elementary interrogatives and their answers as de-
�ned above satisfy criteria of e�ectivity and univocity. One can e�ectively
tell whether an expression is an elementary interrogative (e�ectivity) and,
given that it is, what question it puts (univocity). Given a wff A and in-
terrogative I , one can e�ectively tell whether A is a d(I) (e�ectivity) and,
if it is, how it answers I (univocity). It is for the sake of e�ectivity that
we require the nominal ranges of category conditions to be e�ective, allow
n-ary conjunction, and bar conjunctions of alternatives from counting as
alternatives.

Roughly, a real answer to a which-question is a sequence of real alterna-
tives presented by that question, and the system is complete only if every
real answer is expressible by some nominal answer. Completeness can fail
if some entities do not have names, or do not have names in the proper
nominal categories, and also if some true real answers are in�nite. Also,
as Belnap points out, no category system can be complete; for there are
only denumerably many one-place wffs available to serve as category con-
ditions, while there are nondenumerably many sets of names that might
be wanted as categories. Roughly speaking, the positive result is that, for
any given category system, Belnap's answer system is complete up to these
limitations: the real answers must be �nite, the entities involved must have
names, and the names must be in the right nominal categories. (For the
precise account, see Belnap and Steel [1976], Section 1.34.)

4.6 Useful Abbreviations

Belnap suggests the following rules for abbreviating requests: (1) Drop
parentheses around the request. (2) Omit dashes. (3) Omit `1' as a lower
limit. Then, where � is a subject, these rules allow

?1� for single-example questions,
?� some-examples questions,
? 6= � some-distinct-examples questions,
?18� unique alternative questions,
?8� complete-list questions,
?8 6= � complete-and-distinct-list questions.
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For abbreviating subjects, where A has no free variables, A abbreviates
(A;:A); and, where A contains exactly x1; : : : ; xn free (given in order),
then A abbreviates (x1; : : : ; xnkA). Then `Is it the case that A?' can be
expressed by either ?1A or ?A.

4.7 Elementary-like Questions

In �rst-order functional calculi there are six parts of speech: open and closed
wffs, open and closed terms, connectives, and quanti�ers. These generate 36
types of elementary-like questions, each type positing an entity of some part
of speech and having as desiderata entities of some parts of speech; e.g. a
whether-question can be analyzed as positing a sequence of statements and
asking for a truth-functional connection between them. Belnap credits this
idea to Stahl [1962].

As noted above, Stahl assumed a higher-order function calculus and an-
alyzed just individual-questions, function-questions, and truth-questions.
Kubi�nski has considered enriched languages in which one can ask these and
related questions (Kubi�nski [1980], Section I.12). It does not appear that
anyone has yet made a full study of all 36 of the possibilities noted above,
or of the analogous set for higher-order languages. The possibilities that
Belnap discusses are six:

1. Whether-questions. Each of these posits a sequence (conjunction?) of
statements and has truth-functional connectives as desiderata. The
presented alternatives are formed by constructing truth-functional
compounds of the posited wffs.

2. Which-questions. Each of these posits an open wff and has closed
terms as desiderata. The presented alternatives are formed by sub-
stituting one of the closed terms for one of the free variables in the
posited wff.

3. Description-questions. Each of these posits a closed term and has
descriptors (i.e. open wffs) as desiderata. One way to formalize is
this: Let L have a list of determinables, which are open wffs, and with
each determinable let there be associated a list of descriptors. (E.g.
with `x is a color' we associate `x is red', `x is green', etc.) For semantic
coherence each candidate interpretation must be such that an individ-
ual satis�es a determinable only if also satisfying some descriptor as-
sociated with it. Where Hx is a determinable with H1x; : : : ; Hix; : : :
with it, to posit a term b and call for H1x; : : : ; Hix; : : : as desider-
ata we would use a new sort of subject Des(Hxkb) whose range is
the set of presented alternatives H1b; : : : ; Hib; : : :. For this sort of
question distinctness-claims can be expressed via wffs of the form
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:8x(Hix $ Hjx). Completeness-claims can be expressed in a �rst-
order way only in special cases, however | e.g. in the case where the
set of the associated descriptors is �nite.

4. Identity-questions. Each of these posits a closed term and has closed
terms as desiderata. We de�ne the subject as Ident(Cxkb), where b
is the posit and Cx is a category condition with associated names
a1; : : : ; ai; : : :. The presented alternatives are (b = a1), (b = a2); : : :.

5. What-questions. Belnap distinguishes four sub-types: equivalence
questions, with subject Equiv(HxkAx) and alternatives 8x(Ax $
Hix); necessity-questions, with subject Nec(HxkAx) and alternatives
8x(Ax ! Hix); suf�ciency-questions, with subject Suf(HxkAx) and
alternatives 8x(Hix ! Ax); and intersection-questions, with subject
Inter(HxkAx) and alternatives 9x(Hix ^ Ax). In all cases here the
Hi are descriptors associated with Hx. As with description-questions,
completeness-claims can be expressed in a �rst-order language only in
the �nite case.

6. How-many Questions. Each of these posits an open wff and has quan-
ti�ers as desiderata. The alternatives are formed by pre�xing the
quanti�er to the wff. Full study of this awaits further work on the
logic of quanti�ers.

4.8 Compounding

Given interrogatives I1; : : : ; In, we write (I1 [ : : : [ In) for the unionized
interrogative of I1; : : : ; In. For this interrogative the concepts of subject
and request are not de�ned. We say that A is a direct answer to it iff
A is a direct answer to at least one of the Ii. In a similar way we can
form intersection, complement, and set-di�erence questions. Belnap says
that intersections and complements of questions do not appear to be useful,
but set-di�erence might be (cf. `Tell me about . . . , without telling me
about | ').

The above-mentioned operations are boolean. In contrast there are other
operations best thought of as logical or syntactical. Viz:

We de�ne (I1 ^ : : : ^ In) as the conjunction of I1; : : : ; In. Its direct
answers are conjunctions (A1 ^ : : : ^ An), where each Ai is a direct answer
to Ii. Belnap says that negation, disjunction, implication, and equivalence,
conceived as logical operations on questions, do not seem to be of much
interest.

Incidentally, the connective `or' in English interrogatives is ambiguous.
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Compare:

`Who or what killed the dog?' [exclusive or ]

`Have you been to Sweden, or have you been to Germany?'
[inclusive or ]

`What day have you chosen, or what week?' [nonsymmetric or ]

`Is it a bird or is it a plane?' [simple whether-question]

For discussion see Stahl [1962], and Belnap and Steel [1976], p. 91.
Given a list of whether- and which-subjects �1; : : : ; �n, we can form the

unionized subject (�1 [ : : : [ �n). The set of presented alternatives is the
union of the sets presented by �1; : : : ; �n, but the selections sanctioned by
the unionized subject are conjunctions of alternatives presented by it. Ex-
pression of the appropriate completeness- and distinctness-claims is tedious.

Given elementary requests �1; : : : ; �n, we let (�1[ : : :[�n) be a unionized
request. The interrogative ?(�1 [ : : : [ �n)� is to be treated like the union
of the interrogatives ?�1�; : : : ; ?�n�.

To formalize hypothetical questions, Belnap introduces hypothetical in-
terrogatives (P j!j I), where P is a wff and I is an interrogative. The
direct answers are wffs (P ! A), where A is a d(I).

To formalize given-that questions, Belnap introduces interrogatives
(P j ^ j I), with direct answers (P ^ A), where A is a d(I).

Belnap says that (P j!j I) could be called an added-condition question,
and (P j ^ j I) an added-conjunct question. \We leave it to the reader to
determine whether there is any point in introducing `added disjunction' or
`added equivalence' questions" (pp. 98 { 99).

Let I be an interrogative with x free (hence, not a queriable). Then
we can allow 8xIx to be an interrogative, and de�ne the direct answers as
conjunctions

(A1a1 ^ : : : ^Anan ^ 8x(x 6= a1 ^ : : : ^ x 6= an ! Bx));

where A1x; : : : ; Anx;Bx are all direct answers to I .
To allow for quali�cation in terms of a category condition Cx, we use

8[Cx]I and de�ne its direct answers as conjunctions

(A1a1 ^ : : : ^Anan ^ 8x(Cx! (x 6= a1 ^ : : : ^ x 6= an ! Bx)))

as above, but requiring also that each ai is in the nominal category deter-
mined by Cx.

To formalize `Answer I for some x in the domain' (where x is not free in
I), Belnap uses not 9xI but [xI , whose direct answers are the wffs Aa such
that Ax is a direct answer to Ix. Thus [x?1(Px) has the same answers
as ?1(x k Px). Belnap says that 9xI might have a use if the operation of
disjunction on questions can be shown to have a use.
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As emphasized by many writers, conditional questions call for an answer
only if a given condition obtains. A general theory may use these basic no-
tions: I calls for an answer in an interpretation M , and A is a direct answer
to I in M . The latter is unde�ned unless I is operative (i.e. calls for an
answer) in M . Absolute interrogatives are those for which direct answer is
de�ned without relativization to M . Relativized interrogatives are those for
which direct answerhood is relativized to interpretations. Categorical inter-
rogatives call for an answer in every M and have the same direct answers
in every M .

Belnap writes (P=I) for a conditional interrogative with condition P and
conditioned interrogative I . Then (P=I) calls for an answer in an interpre-
tation M iff P is true in M and I calls for an answer in M . If (P=I) calls
for an answer in M , then A is a direct answer to (P=I) iff A is a direct
answer to I in M .

Belnap also discusses conjunction and union of relativized interrogatives,
and points out the natural generalization via universal quanti�cation.

4.9 Presupposition and Truth

Belnap's intention is, roughly, that every question presupposes precisely
that at least one of its direct answers is true. (For relativized questions
we should pre�x `if the question is operative, then . . . '.) Presuppositions
can be attached to interrogatives in a way that parallels their attachment
to questions. For simplicity we formulate the discussion here in terms of
interrogatives. We assume throughout that A is any wff, and M is any
interpretation. As before, d(I) abbreviates `direct answer to I ', and D(I)
denotes the set of direct answers to I .

Let I be a whether-interrogative. Then: I is true in M iff some d(I) is
true in M , and I is false in M otherwise. I presupposes A if A is true in
every M in which I is true. A expresses-the-presupposition-of I if A is true
in exactly those M in which I is true.

Let I be a which-interrogative. Then: I is really true [really false] in
M iff some real answer to I is true in M [every real answer to I is false
in M ]. I is nominally true [nominally false] in M iff some (nominal) d(I)
is true in M [every d(I) is false in M ]. I really [nominally ] presupposes A
iff A is true in every M in which I is really [nominally] true. A expresses-
the-real- [nominal-] presupposition of I iff A is true in exactly those M in
which I is really [nominally] true. For uniformity we use unquali�ed `I is
true in M ', `I presupposes A', and `A expresses-the-presupposition-of I ' for
both which- and whether-interrogatives, meaning for which-interrogatives
the `real' variety.

If there is an A that expresses-the-presupposition-of I , then there are
inde�nitely many such A, so it is convenient to pick one such and call it
the presupposition of I ; notation: Pres(I). For whether-interrogatives we
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choose some disjunction of the direct answers. For which-interrogatives the
construction is straightforward but tedious. Belnap's example: Let I be
?�(Cx k Fx). Then Pres(I) will be a conjunction (P1 ^ P2 ^ P3) of at most
three conjuncts. P1 is always present, and says that at least one C is an F .

P2 is present just in case � is (
�
� 8d), where � is an integer; P2 says that at

most � C's are F 's. P3 is present just in case � has the form (
�
� c 6=); P3

says that at least �C's are F 's.

It is possible to de�ne Pres(I) in such a way that, for each elementary
interrogative I , Pres(I) is an e�ectively speci�ed wff that expresses-the-
presupposition-of I . In the case of nominal presuppositions it is not in
general possible to �nd for each which-interrogative I a wff that expresses-
the-presupposition-of I . See Belnap [1963], Section 7.5.

Let us say that X is a quasi-wff iff X is a wff or an interrogative. Then,
using X for quasi-wffs and H for sets of quasi-wffs, we de�ne: M is an
H-interpretation iff every member of H is true in M . X is logically H-true,
H-consistent, or H-inconsistent according as X is true in all, some, or no
H-interpretations. H 0 propositionally H-implies X iff X is true in every
H-interpretation in which every member of H 0 is true. Similarly with other
semantic concepts. For brevity the `propositionally' may be omitted before
`H-implies' and `H-equivalent'.

4.10 Types of Answer

Let us say that a wff, considered as a reply to I , is H-uninformative if it is
H-implied by I , and otherwise H-informative. Such a wff is H-foolish if it
is H-inconsistent, and otherwise H-possible. It is relatively H-foolish if it is
H-inconsistent with I , and otherwise relatively H-possible.

Such a wff is an H-complete answer to I iff it H-implies some d(I), and an
H-just-complete answer if it is H-equivalent to some d(I). It is an H-partial
answer iff it is H-implied by some d(I). It is an H-eliminative answer iff
it H-implies the negation of some d(I), and H-quasi-eliminative answer iff
it is H-implied by the negation of some d(I).

Belnap says that A is a Harrah-H-complete answer to I iff A is a (H [
fIg)-complete answer to I . The essential idea, which was suggested by
Harrah [1961], is that in normal cases the questioner believes that I is
true and thus includes Pres(I) in his background knowledge. Example:
Let I be ?1((A _ B), (C ^ D)). Then :C is not a complete answer, but
it is a Harrah-complete answer. The same idea can be used to generate
`Harrah' variants on many other concepts, some of which are noted below.
Suggestion: Find a substitute for the label `Harrah', preferably a short word
meaning `presupposition-aided'.

A proper H-partial answer is a partial answer that is implied by some
H-consistent d(I). A is a highly proper H-partial answer iff A is both H-
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informative and a proper H-partial answer. (In contrast, the safe answers
are the uninformative partial answers.)

A is a nominal H-corrective answer to I iff A implies the negation of
every d(I). A is an H-corrective answer to I iff I is (really) false in every
M in which A is true. For a standard corrective answer we may choose
:Pres(I) and abbreviate it (following �Aqvist [1965]) by Corr(I).

Any wff that counts as an answer to I relative to H , in any of the senses
of answer de�ned above, may be said to be erotetically H-relevant to I .

4.11 Properties of Interrogatives

An interrogative I is H-safe iff I is logically H-true (i.e., H implies I);
otherwise I is H-risky. I is H-foolish iff I is H-inconsistent; otherwise I
is H-possible. (Thus I is H-safe if H implies Pres(I), and H-foolish if H
implies Corr(I).) Parallel to these (real) concepts for interrogatives there
are nominal variants, and there are concepts for questions.

THEOREM 2. [Belnap's Hauptsatz, or, the Theorem of the Fifth Gym-
nosophist (see Plutarch's Alexander)] Ask a foolish question and you get a
foolish answer.

Belnap gives a proof of the corresponding result for interrogatives. The
proof is straightforward. (See Belnap and Steel [1976], pp. 131 { 133.)

Continuing in terms of interrogatives: I is dumb iff I has no direct an-
swers. I is H-exclusive if in each H-interpretation there is at most one
true real answer (for which-interrogatives) or abstract answer (for whether-
interrogatives). (Thus ?18(: : :) and ?8(A1; : : : ; An) turn out to be exclusive.)
I is a Hobson's Choice if I has exactly one direct answer (e.g. ?1(A)).

I is answerable by H iff H implies some d(I); otherwise I is H-unanswer-
able. I is Harrah-answerable by H if (H [ fIg) implies some d(I). Here, if
H is the questioner's beliefs, we can say that I is H-rhetorical. Similarly,
I may be Harrah-unanswerable by H , and, if H is the questioner's beliefs,
we say that I is moot, or open. I is hyper-H-moot, or H-wide-open, if H
provides neither a Harrah-complete answer nor an eliminative answer.

Following the suggestion of �Aqvist (who used the label `normal'), I is
H-independent if no d(I) H-implies any other d(I). I is H-minimal if, for
every A in D(I), there is an H-interpretation M in which A is the one and
only true d(I). Minimality implies independence, but not conversely.

I1 H-contains I2 just in case every H-consistent d(I1) is an H-complete
answer to I2. I1 Harrah-H-contains I2 iff every d(I1) is a Harrah-H-
complete answer to I2.

Example: ?1(A;B) Harrah-contains ?18(A;B).

I1 is erotetically H-equivalent to I2 iff for every d(I1) there is an H-
equivalent d(I2), and, for every d(I2) there is an H-equivalent d(I1). I1 is
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Harrah-erotetically H-equivalent to I2 iff I1 is erotetically (fI1; I2g [ H)-
equivalent to I2. Example: ?1(A;B) and ?18(A;B).
I1 is erotetically H-relevant to I2 iff some d(I1) is erotetically H-relevant

to I2.

Example: ?1(A;:A) is (propositionally) equivalent to ?1(B;:B) but is not
erotetically relevant to it.
I1 H-obviates I2 iff every d(I1) is either an H-corrective answer or an

H-complete answer to I2.

4.12 Extending Belnap's Analysis

There are many possibilities for further development of Belnap's system.
Some of these are suggested in an obvious way by the system itself.

First: Belnap formalizes six types of elementary-like question (4.7 above),
but, as Belnap and Steel point out, thirty types remain. How should they be
formalized? Do they have a natural semantics? Do they have any interesting
use? (For a relevant discussion, see Hi_z [1962].)

Second: Belnap formalizes the maximum completeness-claim. As he
points out, inde�nitely many other types of completeness-claim remain to
be studied.

Third: Belnap and Steel say that only one type of distinctness-claim
seems to have a systematic use in question logic. This may be doubted,
however, because of examples like the police chief who says

`Give me a (nominal) list of at least ten suspects, of whom at
least seven are (really) distinct.'

Surely the matter warrants further study.
Fourth: Several possibilities are suggested by ideas of Kubi�nski. (For a

summary in English, see Kubi�nski [1980].) Kubi�nski assumes an inde�nitely
large stock of interrogative operators. Simple interrogatives are formed by
pre�xing an interrogative operator to a sentential function that contains
free variables (which are then bound by the queriables in the operator).
One interesting di�erence from Belnap concerns answer-size speci�cations.
Belnap's interrogatives contain a selection-size speci�cation, but each of
Kubi�nski's interrogative operators is in e�ect a string of numerical quanti-
�ers, with each quanti�er binding its corresponding queriable, so the quan-
tity speci�cations are attached to the queriables individually. This makes
possible a straightforward formalization of interrogatives like:

`Which two ministers voted against which three projects on
which �ve committees?'

`Which at most three kings have ruled which at least two coun-
tries?'
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(Possible objection: English does not provide interrogatives like these. Re-
ply: Polish shows that it ought to.) For more on interrogatives like these,
and eÆcient ways of formalizing them, see Wi�sniewski [1995], x2.2.6.2. In
connection with Belnap's system, what remains to be studied are (1) which
of these are warranted in the system, and (2) how they can be accommo-
dated in a smooth way.

Fifth: As noted by many authors, the more one enriches the underlying
assertoric logic, the more questions one can construct. Some possible en-
richments mentioned by Belnap and Steel are: adding variables of higher
type, adding modal operators, and allowing in�nite conjunctions.

Sixth: Although Belnap has argued for the importance of e�ectiveness
at certain points in a logic of questions, and indeed one might take this as
essential to his approach, we might study how the system could be extended
if various of the e�ectivity requirements were relaxed. One example: If we
drop the requirement that nominal categories be decidable, we can allow
questions like

`Which theorems of set theory should a number-theorist know?'

5 EPISTEMIC ANALYSIS OF QUESTIONS

5.1 Motivation

In this section we outline what is called the imperative-epistemic approach
to questions. The object of study is said to be the `standard' situation,
in which (1) the questioner does not know any direct answer, and (2) the
interrogative is taken to be synonymous with an imperative of the form

`Let it be the case that I know . . . ' or

`Make it the case that I know . . . '.

In our discussion below we may refer to this as the MMK (or `Make Me
Know') approach.

Kubi�nski mentions Bolzano and Loeser as precursors of this approach
(Kubi�nski [1980], p. 131), but the �rst to give a substantial formal analysis
was �Aqvist. Accordingly we begin here by summarizing, in 5.2 { 5.6, the
work presented in �Aqvist [1965].

In the next sections (5.7 { 6.3) we outline some re�nements and further
developments, and some other theories that analyze questions in terms of
imperatives of various kinds. Many of these theories have an empirical
(perhaps phenomenological) motivation, with an implied claim that most
actual question situations are \standard" (see, e.g., Wachowicz [1978], p.
157). Complications may arise if one formalizes via a logical framework
(e.g., epistemic logic) that has a normative motivation.
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On all variants of this general approach one may use SA methodology,
but it is not necessary. It is possible to develop a substantial part of the logic
of questions within the logic of imperatives, without considering answers at
all. To show this in detail is a contribution of �Aqvist.

5.2 Foundations

�Aqvist assumes an applied �rst-order predicate calculus with the quanti�ers
(Ux) and (Ex) and identity, supplemented with the operators

! (`Let it turn out to be the case that')
i (`It is permissible that')
K (`I know that')
P (`It is compatible with everything that I know that')

To refer to free individual symbols (individual constants and free vari-
ables) �Aqvist uses: a, b, c. To refer to bound individual variables: x, y, z.
For one-place predicate constants: Ji. For n-place predicate constants: Fn

i .
For the result of putting x for all free occurrences of the variable a in p we
write: p(x=a).

For QIE (quanti�ed imperative-epistemic) logic:

1. Every propositional constant, predication (predicate followed by its
arguments), and identity (a = b) is a QIE-wff.

2. If p and q are QIE-wffs, then so are :p, (p ^ q), (p _ q).

3. If p is a QIE-wff containing free occurrences of a, but not containing
! or i, then (Ux)p(x=a) and (Ex)p(x=a) are QIE-wffs.

4. If p is a QIE-wff not containing ! or i, then Kp and Pp are QIE-wffs.

5. If p is a QIE-wff not containing ! or i or any free variables, then !p
and ip are QIE-wffs.

A sentence is a QIE-wff with no free variables. A statement is a sentence
that does not contain ! or i. An ordinary statement is a sentence that does
not contain !, i, K, or P .

For the semantics �Aqvist adopts (with some re�nements) Hintikka's no-
tions of model set and model system for the logic of K and P , and (following
Kanger) adds a relation of imperative alternativeness and imposes appro-
priate conditions, e.g. if � is a model set in a model system 
 and �+

is an imperative alternative to � in 
, then, if !p is in � then p is in �+.
On the other hand, ! and i are to act as genuine imperative operators only
when their arguments are epistemic statements; if p is an ordinary state-
ment in � and �+ is an imperative alternative to �, then p is in �+. To have
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a complete logic of imperatives one would have to add further imperative
operators (with distinct properties) that apply to ordinary statements.

If one wants to satisfy both normative and empirical motivations, one
must impose a relatively complex set of conditions on model systems. We
omit details. The culminating idea is the usual one: A set of sentences is
consistent if it can be embedded in a model set that is a member of a model
system. A sentence p is valid if f:pg is not consistent, and p entails q if
fqg is embeddable wherever fpg is.

5.3 De�nition of Questions

�Aqvist de�nes interrogatives by introducing various interrogative operators
in abbreviations of sentences of the form !p. The following are examples.

Whether-questions.

(1) ?n(p1; : : : ; pn) =df !(Kp1 _ : : : _Kpn);

where n � 2 and each pi is an ordinary statement.

(2) ?n=m(p1; : : : ; pn j r1; : : : ; rm) =df !(r1 ^ : : : ^ rm ! (Kp1 _ : : : _Kpn))

where n � 2, m � 1, and each pi and ri is an ordinary statement.
Monadic complete-list which-questions. Let p be a QIE-wff not containing

!, i, K, or P and containing just one free variable a; let x, y, z be the
alphabetically earliest variables not bound in p. Then we de�ne:

(3) (?Aa)p =df !(Ux)(p(x=a) ! (Ey)(y = x ^ (Ez)K(z = y)))

(4) (?Ba)p =df !(Ux)(p(x=a) ! (Ey)(y = x ^Kp(y=a)))

(5) (?KBa)p =df !K(Ux)(p(x=a) ! (Ey)(y = x ^Kp(y=a)))

(6) (?EBa)p =df !((Ex)Kp(x=a) ^ (Ux)(p(x=a) !
(Ey)(y = x ^Kp(y=a))))

(7) (?EKBa)p =df !((Ex)Kp(x=a) ^K(Ux)(p(x=a) !
(Ey)(y = x ^Kp(y=a))))

The latter two are equivalent to

(8) (Ex)p(x=a) ^ (?Ba)p

(9) (Ex)p(x=a) ^ (?KBa)p

Thus (?EKBa) and (?EBa) carry a nonemptiness claim; (?EKBa) and (?KBa)
carry a completeness request. �Aqvist says that (?Aa) is too weak to be of
interest, and that (?EKBa) best reects ordinary use.
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Monadic at-least-which and exactly-which.

(10) (?Cna)p =df !(Ex1) : : : (Exn)K(p(x1=a) ^ : : : ^ p(xn=a) ^ xi 6= xj)

(11) (?Dn
a)p =df !(Ex1) : : : (Exn)K(p(x1=a) ^ : : : ^ p(xn=a) ^ xi 6= xj ^

^ (Uy)(p(y=a) ! y = x1 _ : : : _ y = xn))

where x1, . . . , xn, y are the earliest distinct variables not bound in p, and
where `xi 6= xj ' abbreviates the obvious distinctness-clause.

The interrogative (?Dn
a)p is equivalent to (?Cna)p0, where p0 is

(p ^ (Uy)(p(y=a) ! y = x1 _ : : : _ y = xn)):

Cf. the comments on the Theorem in Section 4.3 above.
Pure polyadic relational which-questions. The generalization to the case

where monadic p is replaced by polyadic p is straightforward. Here, the
de�ned operators have the form (?m� a1; : : : ; am), where � is B, KB, EB,
EKB, Cn, or Dn.

Mixed polyadic which-questions. Let R be a binary relation. �Aqvist
shows how to de�ne operators for: `Which [At least which n] [Exactly
which n] objects bear R to which (or, at least which k, or, exactly which k)
objects?' e.g., the interrogative (?2Dn�B

a; b) is introduced to abbreviate

!(Ex)(Ey)K((Ez)Rxz ^ (Ez)Ryz ^ x 6= y ^

^(Ut)((Ez)Rtz ! t = x _ t = y) ^ (Uu)(Rxu!

! (Ew)(w = u ^KRxw) ^

^(Uu)(Ryu! (Ew)(w = u ^KRyw))));

which expresses

`Exactly which two objects bear R to which things?'

Generalization from binary R to n-ary R is straightforward but tedious.
Categoreally quali�ed which-questions. One way to provide for categoreal

quali�cation is to use many sorts of variables x� and then de�ne interroga-
tives of the form

(?m� x
�1
1 : : : x�mm )p:

�Aqvist prefers to retain one-sorted theory and de�ne interrogatives of the
form

(?mJ1;:::;Jm�a1;:::;am )p:

Roughly, the latter are de�ned by inserting [Jixi !] or [Jixi^] in the
appropriate places.
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Mixed whether-which and conditional-which questions. �Aqvist de�nes
CoreQ as the epistemic statement that is the scope of the ! operator in Q.
Now let r1; : : : ; rk be ordinary QIE-statements. Then:

(?mEKBa1; : : : ; am; + k)(p;r1; : : : ; rk)(12)

=df !(Core(?mEKBa1; : : : ; am)p _Kr1 _ : : : _Krk)

(?mEKBa1; : : : ; am j k)(p j r1; : : : ; rk)(13)

=df !(r1 ^ : : : ^ rk ! Core(?mEKBa1; : : : ; am)p):

Similar operators can be de�ned for EB, Cn, Dn. Also, categoreal quali�-
cation can be added in the obvious way.

5.4 Presupposition, Riskiness, and Guarding

Let us use Q as a variable over questions. Then: Q presupposes p iff p is an
ordinary statement, and CoreQ entails p. [For Core, see above.] A statement
p is a correction to Q iff p is the negation of some presupposition of Q.
A safe question is one whose presuppositions are valid. A risky question is
one that is not safe.

PresQ is the result of dropping all occurrences of imperative and epis-
temic operators from Q. Claim: If Q entails an ordinary statement p, then
PresQ entails p (�Aqvist [1965], p. 133). We interpret PresQ as being the
presupposition of Q.

The correction of Q = CorrecQ = :PresQ.

Roughly, guarding a risky question consists of transforming it into a safe
one. Three methods for guarding a risky whether-question of the form
?n(p1; : : : ; pn) are:

I. [Whether-Whether Method] Use

?n+1(Correc(?n(p1; : : : ; pn)); p1; : : : ; pn)

II. [Whately-Prior Method] Use

(?1Pres(?n(p1; : : : ; pn))^?n=1(p1; : : : ; pn=Pres(?n(p1; : : : ; pn))))

III. [Whether-If Method] Use

?n=1(p1; : : : ; pn=Pres(?n(p1; : : : ; pn)))

Here methods I and II are equivalent.
Four methods for guarding a risky which-question of the form (?mEKBa1,

. . . , am)p are:
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IV. [Mixed Whether-Which Method] Use

(?mEKBa1; : : : ; am; +1)(p; Correc((?mEKBa1; : : : ; am)p))

V. [Whately-Prior Method] Use

(?1Pres((?mEKBa1; : : : ; am)p) ^

(?mEKBa1; : : : ; am=1)(p=Pres((?mEKBa1; : : : ; am)p)))

VI. [Which-If Method] Use

(?mEKBa1; : : : ; am=1)(p=Pres((?mEKBa1; : : : ; am)p))

VII. [Weak Mixed Whether-Which Method] Use

(?mKBa1; : : : ; am)p:

Here methods IV and V are equivalent. Similar techniques can be used for
the cases of EB, Cn, and Dn.

5.5 Direct Answers

Roughly, a direct answer d to Q should be such that, if the questioner
comes to know that d is true, then the epistemic request expressed by Q is
satis�ed. Speci�c criteria that a theory should meet include the following.
(These criteria will become clear in terms of the examples below.) First, if p
is either a direct answer to Q [relative to r] or a direct pseudo-answer to Q,
then p[p^ r] should entail PresQ. Second, Q1 is to entail Q2 iff every direct
proper answer to Q1, as well as every direct pseudo-answer (if any) to Q1,
entails some direct proper answer or direct pseudo-answer to Q2. �Aqvist
does not yet have a complete theory of direct answers, but makes at least
the following speci�c proposals. The numbers refer to the questions de�ned
above in section 5.3.

To (1) the direct answers are p1; : : : ; pn.
To (2) the direct answers are p1; : : : ; pn; and :(r1 ^ : : : ^ rm) is a direct

pseudo-answer.
To (7) the direct answers are

(p(c1=a) ^ : : : ^ p(ck=a) ^ (Ux)(p(x=a) !

! (x = c1 _ : : : _ x = ck)) ^ [: : : (Ey)(y = ck)]):

Here, and below, x and y are to be the earliest variables not bound in p,
and [: : : (Ey)(y = ck)] abbreviates

((Ey)(y = c1) ^ : : : ^ (Ey)(y = ck)):

To (6) the statements

(p(c1=a) ^ : : : ^ p(ck=a) ^ [: : : (Ey)(y = ck)])
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are direct answers relative to the ordinary statement

(Ux)(p(x=a) ! (x = c1 _ : : : _ x = ck)):

To (10) the direct answers are

(p(c1=a) ^ : : : ^ p(cn=a) ^ [(ci 6= cj)] ^ [: : : (Ey)(y = cn)]);

where there are no repetitions among the c's and [(ci 6= cj)] is the obvious
conjunction of nonidentities.

To (11) the direct answers are

(p(c1=a) ^ : : : ^ p(cn=a) ^ [(ci 6= cj)] ^ (Ux)(p(x=a) !

! (x = c1 _ : : : _ x = cn)) ^ [: : : (Ey)(y = cn)]):

To (12) the direct answers are the direct answers to (7), plus r1; : : : ; rk .
To (?EBa; +k)(p; r1; : : : ; rk) the direct answers are the relativized direct

answers to (6), plus r1; : : : ; rk.

Each direct answer to (?Cna)p [i.e. (10)] is a direct answer to (?Cn
J
a)p

relative to the statement (Jc1 ^ : : : ^ Jcn).

Each direct answer to (?Dn
a)p [i.e. (11)] is a direct answer to (?Dn

J
a)p

relative to (Jc1^: : :^Jcn), except that in the direct answer we insert [Jx!]
after (Ux).

(?EKB
J
a) is handled in the same way (?Dn

J
a) is. For (?EB

J
a) we relativize

to a complete-list statement.
For all the cases given above the generalization from monadic p to polyadic

p is straightforward. For details see �Aqvist [1965], pp. 156 { 158.
�Aqvist indicates, but does not prove, that the foregoing proposals satisfy

the criteria mentioned at the beginning of Section 5.5 (�Aqvist [1965], p.
156). On the other hand, he says that the theory is not yet complete.
There is, e.g., an open problem concerning how to de�ne direct answer for
(?KB) questions (Ibid., p. 158).

�Aqvist cites the following as an incoherence. Let Q be (?1EKBx)Nx,
expressing `Which things are the natural numbers?'. Then PresQ is true,
but no d(Q) is true. He conjectures that this is the only type of question
that falsi�es the Coherence Principle: For every Q and M , PresQ is true in
M iff some d(Q) is true in M . (Ibid., p. 160) (Cf. Section 4.9 above.)

5.6 Extending the System

�Aqvist conjectures: We can accommodate all of Belnap's questions if we
add set theory to QIE, construe questions as presenting sets of alternatives,
construe Belnap's request-indicators as quanti�ers over these sets, and in-
terpret these quanti�ers in terms of imperative, epistemic, and ordinary
quanti�ers (Ibid., p. 82). This program remains to be carried out.
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5.7 Revising the Foundations

Several motivations led to a revised proposal in �Aqvist [1971]. Roughly:
The 1965 analysis assumed a single context of use, a single knower, a nonin-
dexical K, and monadic imperative operators ! and i. The revision assumes
a set of possible contexts (each context being a tuple C = hs; r; t; : : :i, where
s is a sender, r a receiver, t a time, . . . ). It also assumes a set of possible
knowers, an indexical K, and imperative operators ! and i that are dyadic
(to express conditional obligation and permission) and may be indexical as
well.

The new K carries a subscript for the knower and may carry other sub-
scripts for other parameters such as time. Thereby we have not only stan-
dard questions (`Make me know') but also test questions (`Make me know
that you know').

Because ! is conditional, the basic form of interrogative is now the con-
ditional. However, unconditional forms can be de�ned straightforwardly,
e.g.

?n(p1; : : : ; pn) =df !(Kp1 _ : : : _Kpn=p1 _ : : : _ pn) ^

^(p1 _ : : : _ pn):

To make the epistemic logic work more smoothly, �Aqvist introduces sev-
eral new kinds of existential quanti�er. These might generate new types of
interrogative, but this matter has not been studied in detail.

5.8 Hintikka's Development

In general, on the MMK approach the point of a question is to express
an epistemic request, and the point of an answer is to satisfy this request.
Loosely speaking, in the 1960s �Aqvist developed a theory of epistemic re-
quests, and, since the mid 1970s, Hintikka has been articulating a theory of
epistemic request-satisfaction.

Consider

`Bring it about that I know that A or I know that B.'

In Hintikka's exposition this has a presupposition | namely,

`A or B'

and a desideratum | namely,

`I know that A or I know that B.'

A reply that satis�es the epistemic request of the questioner completely is a
conclusive or full answer. A reply that is not conclusive but does contribute
some information toward satisfying the request is a partial answer. One of
Hintikka's aims is to develop the logic of conclusiveness.
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The conditions for conclusiveness may di�er from one type of question to
another. For example, the question

`Who killed Julius Caesar?'

has

`I know who killed Julius Caesar.'

as desideratum, and the reply

`Cassius killed Julius Caesar.'

is a conclusive answer only if the questioner knows who Cassius is. Hintikka
says that, for all simple questions (without intensional operators), if the
desideratum has the form

(9x)KS(x);

then b is a conclusive answer to the question if and only if

(9x)K(b = x)

is established. Loosely speaking, conclusiveness requires that bound vari-
ables range over the questioner's domain of acquaintance, and singular terms
denote things in that domain. One consequence is that conclusive answer
is not e�ectively recognizable from the syntactical form of the question.

For an introduction to Hintikka's theory, see Hintikka [1976], [1983], and
[1992], and Hintikka (ed.) [1988]. For further discussion and criticism of
Hintikka, see Harrah [1979] and [1987]. For further studies of the epistemics
and pragmatics of questions, see Kiefer (ed.) [1983] and Groenendijk and
Stokhof [1984].

Hintikka and others have developed what has come to be called an inter-
rogative model of inquiry that is intended to correspond to rational inquiry
in science and other �elds. In general, using the basic concepts of a given
theory of questions one can formulate rules for rational question-and-answer
procedures, including question-and-answer dialogues. In the case of Hin-
tikka's approach the idea is to choose rules whose rationale derives from his
epistemic logic and game theoretic semantics.

One promising way of developing the semantics for this approach uses
the concept of interrogative tableau. Such tableaux are formed from Beth-
style deductive tableaux by adding interrogative rules | namely, rules that
concern the formula that is being queried and the responses that might
be given. Di�erent sets of rules are possible, and correspondingly di�erent
systems of tableaux may be developed. For an introduction to this approach
and the techniques involved, see Hintikka (ed.) [1988], Hintikka [1992], and
Harris [1994].
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6 OTHER APPROACHES

6.1 MMB (`Make Me Believe')

The MMK analysis of questions, and especially Hintikka's development of it,
is really a family of di�erent analyses. Family members share the reference
to knowledge; family members may di�er in their conception of knowledge.
Consider the following (where B means `I believe that'):

1. KP ! P

2. KP ! KKP

3. KP ! BP

4. (KP ^ [P implies P 0]) ! KP 0

This set of assertions articulates a conception of knowledge that is appro-
priate for some normative models of knowledge and belief.

One might for various reasons hold that such a conception is too strong.
One might decide to drop (4) and perhaps also (2). One might decide
to drop knowledge altogether. Instead of using epistemic imperatives, one
would use doxastic imperatives like

`Bring it about that I believe that A or I believe that B.'

Conclusive answers would bring suÆcient evidence to produce stable �rm
belief. Obviously there is a spectrum of possible systems, corresponding to
possible conceptions of belief and evidence. This spectrum awaits detailed
study.

6.2 TMT (`Tell Me Truly')

D. and S. Lewis criticize �Aqvist's MMK approach and argue that a more
adequate theory results if one takes interrogatives to be synonymous with
imperatives of the form `Tell me truly . . . ' (Lewis [1975]). Adopting some of
the Lewises' ideas, �Aqvist [1983] outlines a way of developing this approach.

�Aqvist assumes a three-place relation of presentation (sender X presents
sentence S to receiver Y ). The language includes an `empty' sentence rep-
resenting silence, so that each X always presents some S to each Y . Then
the question `Is it the case that P ?' is to be analyzed as

Let it be the case in the immediate future that either there is a
sentence S such that (i) you present S to me, (ii) S is true iff
P , and (iii) S is true, or there is a sentence S such that (i) you
present S to me, (ii) S is true iff not-P , and (iii) S is true.
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The question `For which time x is it the case that Fx?' is to be analyzed
as:

Let it be the case in the immediate future that, for some time
x, there is a sentence S such that (i) you present S to me, (ii)
S is true iff Fx, and (iii) S is true.

The locution `S is true' is to be analyzed as suggested in Kripke [1975].
A detailed working out of this approach remains to be undertaken.

6.3 GMA (`Give Me an Answer')

In some situations the questioner doesn't need MMK or TMT. What will
suÆce is simply `Give me an answer.' For arguments and examples, see
Harrah [1987].

One way to develop this approach is to assume set theory and a predicate
like �Aqvist's presentation predicate. Suppose that b is a term denoting a
set D of sentences. Then, to ask the question whose direct answers are the
members of D, we use `Let it be the case that, for some x in b, you present
me with x'.

Suppose we want GMACT (Give me an answer and claim that it is true').
One method is to add syntax (including the theory of the concatenation
operator^) and a sentential operator `, so that we have \. . . you present me
with ``'̂x."

The GMA and GMACT approaches, like TMT, await detailed study. The
general problem is to determine which systems model the GMA or GMACT
idea at some level of abstraction (see Belnap [1969], p. 122, concerning his
own system). The speci�c problem is to develop systems in which the GMA
or GMACT idea is directly expressed by interrogative-imperatives.

6.4 Questions as Context Descriptions

Hamblin discusses analyses like that of Je�reys, in which an interrogative
is taken to be synonymous with

`I do not know . . . ; I want to know . . . ; and I think you know
. . . '

He says that even if such analyses can be made precise in a noncircular way
(avoiding the phrase `know whether'), they nevertheless confuse two things
that should always be kept distinct: (1) the description of the situation,
and (2) the content of the question (Hamblin [1958]).
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6.5 Questions as their Presuppositions

Another kind of analysis takes an interrogative to be synonymous with
the declarative sentence that is (roughly) the presupposition in the sense
of Belnap or �Aqvist (see Section 4.9 and 5.4 above). In Harrah [1961,
1963a] a whether-question is an exclusive disjunction; its direct answers are
the disjuncts. A which-question is an existential generalization (the exis-
tentially quanti�ed variables being the queriables); the direct answers are
substitution-instances of the quanti�ed matrix. In Harrah [1961] a question
is required to be true. In Harrah [1963a] a question may be true or false; if
false, it is said to commit the fallacy of many questions.

The motivation for this sort of analysis is metalogical (to see what can
be done within �rst-order languages) and technical, rather than empirical.
The analysis becomes plausible for application if the question-and-answer
situation is interpreted as an information-matching game. The questioner
begins by making an assertion (e.g. (A1 _ A2)), and the respondent then
replies by making another assertion (e.g. A1) that gives more information
about the given subject matter.

There is of course no provision for `tagging' sentences to indicate when
they are being used to ask questions and when they are being used simply
to make assertions. Thus the analysis is plausible where the communication
situation can be interpreted as a question-and-answer situation and hence
as an information-matching game, but is less plausible in wider contexts
where this interpretation is not possible.

6.6 Questions as Intensional Entities

According to Tich�y [1978], an interrogative expresses a question, and a ques-
tion is an oÆce | i.e. a function de�ned on possible worlds. The common-
est types of question are propositions, individual concepts, and properties.
These are functions whose values for a given world are a truth value, an
individual, and a set of individuals, respectively.

To answer a question is to cite an entity of the right type (depending
on the type of question); the answer is right if the entity is a value of the
function at the actual world. A complete answer cites a single entity of the
right type. An incomplete answer cites a class of entities of the right type.
An incomplete answer is correct if the right complete answer is one of its
members.

The motivation here is partly empirical (to account for intuitions about
the informativeness of answers to questions), partly metalogical (to see what
can be done within the logic of propositional entities), and partly philosoph-
ical. It is based on the assumption that logic is the study of logical objects
or topics, rather than speakers' concerns and attitudes. It assumes that the
declarative-interrogative distinction is not one of logic, and that the logi-
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cian does not have to provide distinct syntactic forms corresponding to the
various distinct speech acts such as asserting, asking, and the like.

Higginbotham [1993] presents an intensional analysis that is motivated
in large part by empirical-linguistic considerations. The aim is to discover
the semantics of English interrogatives. The strategy is to develop a theory
of questions as intensional entities, and then show how questions may be
expressed by interrogatives.

For Higginbotham, an elementary abstract question is a nonempty parti-
tion � of the possible states of nature into cells P such that no more than
one cell corresponds to the true state of nature. A partition is proper if at
least one cell must correspond to the true state of nature. (The elements
of a cell may be thought of as statements; the cell corresponds to the true
state of nature if all the statements in the cell are true.) An answer to a
question � is a set S of sentences that is inconsistent with one or more cells
in �. An answer is proper if it is consistent with at least one cell. A partial
answer is one that is inconsistent with some (but not with all but one) of
the cells. X is a presupposition of � if every cell in � implies X .

Complex abstract questions are constructed from elementary ones by
quanti�cation, conjunction, or disjunction; these form a hierarchy of orders,
with abstract questions of order n being sets of abstract questions of order
n � 1. Elementary abstract questions may be expressed by simple inter-
rogatives and referred to by indirect-question phrases. Complex abstract
questions may be expressed by various syntactical means. Most abstract
questions are not expressed by any interrogative (there are too many of
them).

Each interrogative may indicate partition of a limited universe, or parti-
tion of a limited part of a given universe.

`Who did John see?'

has the form

[WH� : person(�)]? John saw �

where the quanti�cation is restricted to persons. This interrogative ex-
presses a partition whose cells describe the possibilities of John's seeing (or
not seeing) persons.

To account for multiple questions (see below), Higginbotham generalizes
as follows. Where Q is a restricted quanti�er, ' is the restriction on Q, and
� is another interrogative, an interrogative of the form

[Qv : ']�

expresses a question that is composed of sets of questions, one set for each
way in which the quanti�er, construed as a function from pairs of extensions
to truth values, gives the value true. Consider
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`Where can I �nd two screwdrivers?'

This has the form

[Two x : screwdriver(x)][What � : place(�)]x at �

and the question it expresses is the class of all classes of partitions each
of which, for at least two screwdrivers a and b as values of x (and for no
objects other than screwdrivers as values of x), contains the partition for
the interrogatives

[What � : place(�)]a at �

[What � : place(�)]b at �

Classes of partitions are blocs, and classes of them are questions of order 1.
To answer a question of order 1 is to answer every question in one of its
blocs.

On this approach the interrogative-question-answer relationship is not
e�ective; one reason is that some English interrogatives are ambiguous. For
example, where an interrogative seems to involve quanti�ers, the semantics
might not involve quanti�ers and sets of questions but might instead involve
a functional interpretation. E.g., to

`Which of his poems does every poet like least?'

the answers that are wanted are not lists of poet-poem pairs but are replies
like

`His earliest poems.'

Concerning the various motivations for, and the rich potential of, the
intensional approach, see Tich�y [1978], Materna [1981], Belnap [1981], Hig-
ginbotham [1993], and Groenendijk and Stokhof [1984]. The latter work is
rich in discussion and examples, and it argues that many theories can be ar-
ticulated to provide a semantic equivalent of some Hintikka-type pragmatic
dimensions.

(Incidental note: On many approaches, Hamblin's Postulate (3) [recall
2.1 above] is false. On the intensional approach it might be true; see 7.2
below.)

6.7 Questions as Incomplete Entities

Several linguists have proposed theories in which the semantically meaning-
ful unit (or at least the unit of truth) is not the question but the question-
answer pair. One example is Keenan and Hull [1973]. Here the motivation
is to account for our intuitions about the presuppositions of questions in
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natural language | in particular, the intuitions that (1) questions have no
truth value, but (2) questions have presuppositions, and (3) presuppositions
are to be analyzed in terms of truth-value.

Keenan and Hull in e�ect identify questions with interrogatives. They
de�ne the class of L-sentences so that every declarative is an L-sentence,
and, if Q is a question and A is a de�nite noun phrase, then hQ;Ai is an
L-sentence.

For the case of wh-L-questions Q, which have the form (which, NP, S ),
we say: Q is valid in a state of a�airs iff NP speci�es a nonempty set
(the domain of the question) and S, which is an L-sentence expressing the
question property, is true of some members of the domain. The answer set
determined by hQ;Ai is the set of objects denoted by A that are also in the
domain. The L-sentence hQ;Ai is true in i iff (1) Q is valid in i, (2) the
answer set determined by hQ;Ai is nonempty in i, and (3) S is true in i of
every member of the answer set. Similarly, hQ;Ai is false in i iff (1) and (2)
hold but S is false of some member of the answer set. In addition, hQ;Ai
is zero in i iff it is neither true nor false in i.

On the basis of these de�nitions we can in an obvious way de�ne conse-
quence and presupposition. This de�nitional chain rests on (begins with)
the de�nition of valid, and the concept of validity adopted here is similar
to Belnap's concept of real truth. Thus it remains to be seen whether there
is any formal advantage in using this framework rather than Belnap's or
�Aqvist's.

Hi_z [1978] presents a development of the question-answer pair approach
that is like Keenan and Hull's in some of its basic conceptions but di�ers
considerably in details of superstructure. It remains to be seen whether
there are any advantages from a formal point of view.

6.8 Questions as Hyper-complete Entities

According to an approach suggested by Finn [1974] (generalizing on Har-
rah [1963a]), a question may be treated as an ordered pair hA;Bi such that
(roughly) B is an interrogative (or `inquiry') term, and A is a statement that
expresses the presuppositions of the question. In general this approach is
motivated by technical and engineering considerations; and, if the context of
application is narrowly conceived, then A and B can be narrowly conceived.
This idea leads, however, to the following generalization. If the context of
application is a relatively general type of problem-solving or inquiry situa-
tion, then A and B can be conceived in a relatively general way. Among the
interrogative terms B there may be noun phrases like `an x such that . . . ';
this phrase indicates what sort of entity is to be found. Among the pre-
supposition statements A there may be any statements giving background
information or imposing constraints on the search.
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6.9 IQW (`It Is the Question Whether')

Hoepelman [1983] proposes to read the propositional operator ? as

`It is the question whether'

Cf. the German

`Es ist die Frage ob'

and in English

`[For me] there is the question whether'
`[For me] it is an open question whether'

The basic assumption is that

`Is it the case that p?'

is a question for me not when p has a truth value for me but when its
truth value is still undetermined for me. Hoepelman develops a truth value
analysis of interrogatives to serve an empirical motivation | in general, to
account for interrogatives in natural language, and in particular to account
for distinctions that reect di�erences in the questioner's certainty, as in
the following pairs:

`Is John ill?'
`Isn't John ill?'

Inter alia, Hoepelman adopts the following truth tables:
:p (p! q) (p$ q) ?p

q . . . 11 10 01 00 11 10 01 00 . . .
p
11 00 11 10 01 00 11 10 01 00 00
10 01 11 11 01 01 10 11 00 01 00
01 10 11 10 11 10 01 00 11 10 10
00 11 11 11 11 11 00 01 10 11 00

The idea here is to articulate the questioner's certainty in terms of a
comparison of two worlds | the world known by the questioner and the
world known by the authority to whom the question is to be put. In the
truth tables each pair of numbers represents a comparison; think of the �rst
number as the questioner's certainty about the given statement, and the
second number as what the questioner believes is the authority's certainty.
According to these truth tables, the following are valid:

:?(p! p)
?:p! :?p
?p!?:?p
?(p! q) ! (?p!?q)
?p! (p! q)
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The following are not valid:

?p!?:p
(p$ q) ! (?p$?q)

To accommodate predicate logic and wh-questions Hoepelman extends
the propositional apparatus by assuming a pair of models (each with its
domain of individuals and assignment of denotations), incorporating the
propositional truth value conditions, and then adding truth value conditions
for the two quanti�ers and wffs with free variables. Loosely speaking:

1. ?'x = 10 if 'x = 01, and ?'x = 00 otherwise.

2. The value of 8x'x is the minimum of the values for 'x.

3. The value of 9x'x is the maximum of the values for 'x.

If the two domains of individuals are identical, then the following are valid:

8x?'!?8x'
?9x' ! 9x?'

If we add = as a predicate, then

8x8y8z(x = y^?(y = z) !?(x = z))

is valid, but

8x8y(?(x = y) ^ Px!?Py)

is not.
For some readers it is an open question whether all of the validity results

noted above accord well enough with intuition; but the assertion that this
sort of approach is interesting and worth exploring further is not in question.

7 OTHER TOPICS AND FURTHER WORK

7.1 Other Types of Question

Some logicians have been concerned to theorize in a global way about ques-
tions in general, setting aside or de-emphasizing the problem of distinguish-
ing and analyzing particular types of question (e.g. Tich�y [1978], and radical
SA reduction). Most logicians, however, have concentrated on distinguish-
ing and analyzing question types, one at a time; and most have concentrated
on whether- and which-questions.

Little progress was made on who, what, and why questions until the
1970s. See Belnap and Steel [1976], pp. 78 { 87. Hintikka, beginning with
Hintikka [1976], has made an aggressive attack on who questions. See also,
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e.g., Grewendorf [1983]. Since the 1970s many logicians and linguists have
studied the various types of wh-question found in natural languages, but
everyone would agree that much more work needs to be done. In particular,
why questions pose a special challenge.

Bromberger [1992] contains illuminating and suggestive discussion of why
questions, and proposals concerning one important type. This type is ex-
empli�ed by:

`Why is it the case that X has property Y (instead of property
Z)?'

Bromberger's conception is that normally, for such questions, the questioner
has had in mind a general rule R that represents some expectation E about
X but the questioner fails to observe E and hence asks the question. The re-
spondent answers the question by citing (1) an abnormic law L that speci�es
exceptions to the rule R, and (2) one or more exceptions that are speci�ed
by L. E.g., expecting the milk to taste good, the child asks

`Why does this milk taste sour?'

and is told

`All milk tastes good unless it is spoiled or adulterated, and this
milk is spoiled.'

To formulate this proposal in a way that is general, precise, and not subject
to counterexamples is a task that is not yet complete; see Bromberger [1992],
pp. 88 { 97. On the diÆculties of accommodating a Bromberger-style
analysis within an extensional framework see Belnap and Steel [1976], pp.
84 { 87.

Koura [1988] outlines a Hintikka-style analysis of one family of why ques-
tions. In these the explanandum is the occurrence of event e, and the ques-
tion in e�ect is

`Which event caused the event e?'

Di�erent subtypes correspond to di�erent types of causation. For example,
let

E(x) =df 9y(y = x)

and let N be a primitive signifying nomical necessity. Then

N [E(x) ! E(y)]

expresses that x is a possible (suÆcient) cause of y, and to say that x causes
y we use

E(x) ^N [E(x) ! E(y)]:

Following Hintikka's approach the desideratum of
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`What caused e?'

is

9xK[E(x) ^N [E(x) ! E(e)]]:

Koura shows that a reply f is an adequate answer | i.e., brings about the
desideratum | if and only if the conclusiveness conditions

KN [E(f) ! E(e)] (relevance)
9xKN(x = f) (uniqueness)

both hold. Koura discusses other concepts of cause and suggests that some
types of why question might involve pragmatic parameters.

Hintikka and Halonen [1995] (hereafter `H&H') rejects this approach and
says in particular that no modal element is needed for why questions per
se. The gist of the H&H proposal is as follows. Consider

`Why does b have property P ?'

Suppose we have a sentence T (e.g., a general theory) and a sentence A
(e.g., some additional ad hoc information supplied by an oracle) such that

1. (T ^ A) ` P (b)

2. not T ` P (b)

3. not A ` P (b)

4. b does not occur in T

5. P does not occur in A

where ``' indicates derivability in a Hintikka-style interrogation game based
on �rst-order logic. Then by Craig's Interpolation Theorem it follows that
there is a formula H [b] such that

1. T ` (8x)(H [x] ! P (x))

2. All the constants in H , except for b, occur in both T and A.

3. A ` H [b]

Call H [b] the initial condition and (8x)(H [x] ! P (x)) the covering law.
The proposal is that we answer the given why question by citing the initial
condition or the covering law or both. The claim is that these answers are
conclusive for anyone who believes that (T ^ A) is true and sees that P (b)
is derivable from (T ^ A).

(Comment: Those who are not committed to Hintikka-style interrogation
games or criteria of conclusiveness may wish to say simply that to `Why
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P (b)?' the direct answers are all sentences of the form (H [b]^ (8x)(H [x] !
P (x))), where H [x] is restricted in certain ways to exclude cases that are
trivial or unacceptable for other reasons. The restrictions imposed by H&H
are probably minimal; in practice, users of why interrogatives usually want
to put further restrictions on the size or content of H [x]. This matter of
restrictions on T , A, and H deserves much more study.)

Concerning how questions: H&H suggests briey that, if b is allowed to
occur in T , then no covering law is obtainable in general and deriving P (b)
from (T ^ A) seems more like answering a how question than answering a
why question. This suggestion deserves to be clari�ed and studied in detail.

Another type of question awaiting further study is the deliberative ques-
tion, exempli�ed by,

`What shall I do?'

These seem to call for a decision or resolution (Wheatley [1955]). They
might be analyzed as genuine questions, but of a type peculiar to one-
person decision-making situations. Alternatively they might be analyzed as
having properties appropriate to the usual two-person question-and-answer
situation, plus further pragmatic properties as well (so that they call for
both an answer and a resolution). Alternatively, as suggested by Mayo
[1956], they might be interpreted as calling for an imperative (`Do X !').

7.2 Other Types of Reply

As noted in Section 2.1, Hamblin's Postulate (1) has not been universally
accepted. In the �rst place, as already noted, some logicians and many
linguists have argued for allowing noun phrases to count as direct answers.
There is much un�nished business here, e.g. no one has yet provided a
comprehensive formal system for connecting noun phrases with the system
of completeness-claims and distinctness-claims. Natural language seems to
have at least a rudimentary system; e.g. to questions like

`Who were all the students who passed?'

we give answers like

`Only two: Shane and Mark.'

The problems for research are: What exactly is the system in natural lan-
guage? and How can we formalize analogs for arti�cial languages?

In the second place, we might accept Hamblin's assumption that every di-
rect answer is a sentence, but question whether it must be a statement. The
suggestion of Mayo (see Section 7.1) that imperatives like `Do X !' should
count as direct answers presumably applies to deliberative questions and
their close relatives. In the case of most other kinds of question, however,
it often seems appropriate to reply with certain kinds of imperative, as in
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`Ask someone who knows the Lexitron!'

or interrogative, as in

`How detailed an answer do you want?'

Also, of course, there are nonanswer declaratives like

`I don't know' and
`That's a long story'

It might be argued that some of these nonanswer sentences are evasions
(or possibly corrections) of the given question, but some should count as
illuminations or at least helps. In any case the �eld awaits formalization.
For a beginning, on `I don't know' replies at least, see Todt and Schmidt-
Radefeldt [1979], p. 15.

There is much work to be done on the general topic of appropriate re-
sponse, and in particular on the topic of �nding or constructing an appro-
priate response. See, e.g., Lehnert [1978].

The notions of incomplete answer and partial answer invite further study.
In the usual conception a partial answer is one that is implied by a direct
answer. Belnap and Steel [1976] emphasize that this conception is relative to
the type of implication assumed, and that we may re�ne the type of partial
answerhood by re�ning the type of implication. For other problems and
other perspectives on partial answerhood, see Cresswell [1965], Kubi�nski
[1967], Groenendijk and Stokhof [1984], pp. 233 { 236, Higginbotham [1993],
and Wi�sniewski [1995], pp. 114 { 115, 179 { 180.

Finally, there is the challenge of Hamblin's Postulate (3). If it is inter-
preted as saying that, for every question, exactly one answer is true, then
it seems obviously false. Is there some other plausible interpretation un-
der which it is true? Consider Higginbotham's concept of proper partition
(noted in 6.6 above), in which exactly one cell corresponds to the true state
of nature. This might provide an intensional-analytic rationale for Postulate
(3). On this and related matters, see Groenendijk and Stokhof [1984].

7.3 Implying, Raising, and Suppressing

Hamblin's containment (recall 2.1 above) may be thought of as a kind of
implication between questions. When that relation holds, each answer to
the �rst question implies an answer to the second, so the �rst covers the
second, so, if you ask the �rst, you need not ask the second. Belnap's propo-
sitional implication (recall 4.9) is a simple generalization from implication
between statements to, loosely speaking, implication between statements
and questions. When that relation holds, truth of the implying statements
and questions guarantees truth of the implied statements and questions; so,
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if you know that the �rst question is good, you know that the second is
good.

Wi�sniewski [1994a and 1995] de�nes a cluster of concepts that are less
like the Hamblin and Belnap concepts and more like the informal notion of
raising, as in

`Your statement raises some hard questions.'
`Your question raises a more basic question.'

Loosely speaking, Wi�sniewski's concept of implication expresses the idea
that, if you need to ask the �rst question, then you would be well advised
to ask the second also. The remainder of this section, except for the �nal
three paragraphs, summarizes part of Wi�sniewski's analysis.

Wi�sniewski de�nes his concepts for a very wide class of languages. This
class includes more than the usual �rst-order languages, but it will be help-
ful here for the reader to think of a �rst-order language with the usual
extensional semantics. Wi�sniewski uses `d-wff' for `declarative well-formed
formula', Q for questions, and dQ for the set of direct answers to Q. Some
interpretations are distinguished as normal. A set X entails a d-wff A iff A
is true in every normal interpretation in which all the d-wffs in X are true.
X logically entails A iff A is true in every interpretation in which all the
d-wffs in X are true. X multiple-conclusion entails Y (or, X mc-entails Y )
iff, for each normal interpretation I where all the d-wffs in X are true, at
least one d-wff in Y is true in I .

Assumptions about questions:

1. Each question has at least two direct answers.

2. Direct answers are sentences (d-wffs without free variables). (Hence
each dQ is at most denumerable.)

3. Each set of sentences that is �nite and has at least two members is
the dQ for some Q.

Q is sound in an interpretation I iff some A in dQ is true in I . Q is safe
iff Q is sound in every normal I . Q is sound relative to X iff X mc-entails
dQ. Q is risky iff Q is not safe.
X evokes Q iff (i) X mc-entails dQ, (ii) for each A in dQ, X does not

entail A.
X generates Q iff X evokes Q and Q is risky.
Q implies Q0 on the basis of a set X of d-wffs [or Im(Q;X;Q0)] iff (i) for

each A in dQ: X + A mc-entails dQ0, and (ii) for each B in dQ0: there is a
nonempty proper subset Y of dQ such that X +B mc-entails Y . (Roughly,
the implying question Q raises the implied Q0 because Q0 helps to answer
Q; Q0 helps because each B in dQ0 directs attention to a proper subset of
dQ.) Q implies Q0 [or Im(Q;Q0)] iff Im(Q;�; Q0).
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It is not the case that every safe question is implied by every Q on the
basis of every X ; safety guarantees that clause (i) holds but does not guar-
antee that clause (ii) holds. On the other hand, if Im(Q;Q0), then Q0 is safe
iff Q is safe.

THEOREM 3. If Q is sound relative to X, then there exists a sequence Z
of simple yes-no questions (i.e., questions of the form ?fA;:Ag) such that:

1. each question in Z is implied by Q on the basis of X,

2. each set consisting of direct answers to the questions in Z that contains
exactly one direct answer to each question in Z entails along with X
some A in dQ, and

3. each nonlogical constant that occurs in some direct answer to a ques-
tion in Z occurs in some A in dQ.

(Note: If dQ is �nite, then Z can be �nite.)

Let X be a �nite nonempty set of d-wffs. Then the pair hX;Qi is an
e1-argument, and is valid iff X evokes Q. The triple hQ;X;Q0i is an e2-
argument, and is valid iff Q implies Q0 on the basis of X . For any given
language L having d-wffs and questions, we can construct a metalanguage
ML that has statements asserting that evocation and implication hold be-
tween particular X 's and Q's. Then, for the given L, the set of all of these
ML statements that are true can be regarded as the logic of questions of L.
(The basic idea for this conception was suggested by Kubi�nski.)

In addition to establishing his general framework as outlined above,
Wi�sniewski studies several particular languages of the usual kinds (propo-
sitional, �rst-order, etc.) and gives many results and examples for these.
Many of these results and examples are for the case where everything has a
name | i.e., where every entity in the universe of the assumed interpreta-
tion I is denoted by some closed term in the language (under I). A problem
for future research is to explore in detail the cases in which this is not so |
i.e., where there are `real answers' (in Belnap's sense) that are not expressed
by nominal answers.

Another area that awaits development is the case of questions in logic and
mathematics, questions whose direct answers are logical or normal truths.
Wi�sniewski's de�nition of evocation is tailored to �t the case of factual ques-
tions, where no direct answer is normally or logically true. The challenge
is to extend the analysis to capture the concept of evocation for the wider
class of questions.

Questions can be raised. Can questions be suppressed? Is suppression
a dual of evocation? Is it suÆcient to say simply that X suppresses Q
iff X entails :A for all A in dQ, and that Q0 suppresses Q iff every B
in dQ0 suppresses Q? Or are there other conditions that are suÆcient for
suppression? Why don't we know more about suppression? Don't ask.
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7.4 Reduction of Questions

As noted in earlier sections, some theorists hold that questions are reducible
to entities of other kinds. E.g., some hold that each interrogative is seman-
tically or pragmatically equivalent to an imperative sentence. We might
say that this sort of reduction is inter-categorial. In contrast, as common
speech has long recognized, there is what we might call intra-categorial re-
duction, where one interrogative is construed as equivalent to some other
interrogative, as indicated by locutions like

`Let me rephrase my question; what I am really asking is . . . '

There are several problems of interest to logicians. One is to develop precise
concepts for the general notions of equivalence and reduction, another is to
�nd techniques for demonstrating reducibility, and another is to establish
particular results.

Wi�sniewski [1994b and 1995] has suggested some general concepts and
established some results. The basic de�nition is this: [Concerning notation,
see 7.3 above.] A question Q is reducible to a nonempty set S of questions
iff:

1. for each A in dQ, for each question Q0 in S, A mc-entails dQ0,

2. each set consisting of direct answers to questions in S that contains
exactly one direct answer to each question in S entails some A in dQ,
and

3. no question in S has more direct answers than Q.

Some of Wi�sniewski's theorems are these: [Concerning terminology see
7.3.]

1. A question Q is safe iff Q is reducible to some set of simple yes-no
questions that are implied by Q.

2. If dQ is �nite, then Q is safe iff Q is reducible to some �nite set of
simple yes-no questions that are implied by Q.

3. If Q is risky but dQ is �nite, then Q is reducible to a �nite set of
conditional yes-no questions [i.e., questions of the form ?fA ^ B;A ^
:Bg] that are implied by Q.

4. If Q is risky but there is a d-wff B such that (i) B is entailed by every
A in dQ and (ii) B mc-entails dQ, then Q is reducible to some set of
conditional yes-no questions that are implied by Q.

Wi�sniewski proves these and other theorems using straightforward model-
theoretic arguments, and it might seem that such arguments are the only
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means available for establishing reducibility results. Without making any
claims, we conjecture that there might also be exotic methods available,
perhaps di�erent methods for di�erent types of question. We mention two
examples:

The �rst is the set of techniques suggested in the paper of Todt and
Schmidt-Radefeldt [1979]. Among the primitive signs of the language
adopted are > (for the true) and ? (for the false). This allows interrogatives
of the form

?�b(�b $ A)

which literally say

`Which Boolean truth-value is equivalent to the statement A?'

or colloquially

`Is it the case that A?'.

It remains to be seen how much can be done with this sort of apparatus,
and in general what its advantages are.

The second is the methodology suggested by Leszko [1980]. According to
that work certain types of question can be represented via graphs. (Leszko
concentrates on the Kubi�nski questions noted in Section 4.12 above, ques-
tions like `For which n x's and m y's is it the case that . . . ?'.) Once a
question type has been represented via graphs, we can study the questions
by studying the matrices associated with the graphs. See also Leszko [forth-
coming].

7.5 Sequencing and Programming

The general problems here are to evaluate sequences of questions with re-
spect to their answer-yield, their safety, or other properties, and to compare
sequences with respect to various concepts of containment, implication, and
equivalence. One special class of problems concerns question trees, includ-
ing the case of trees in which the nodes represent questions and the branches
represent answers. Such a question tree can be used to represent a strategy
or plan for asking questions one at a time, where at any time the choice
of question depends on what previous questions have been asked and what
answers have been given. Some problems for study are:

Under what conditions does a question tree represent a safe
plan?
Under what conditions are two trees equivalent?
Under what conditions is a tree equivalent to a single question?
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Not much has been done on these matters in general, but a few useful
concepts have been developed. In Belnap and Steel [1976], p. 138, a se-
quence of interrogatives (I1; : : : ; In) is said to be a direct partition of an
interrogative I if the conjunctive interrogative (I1 ^ : : : ^ In) is erotetically
equivalent to I , and a subdirect partition if (I1 ^ : : : ^ In) is erotetically
equivalent to (I ^ : : : ^ I), i.e. I conjoined n times.

One special kind of sequence that has received some attention is the
`corrections-accumulating' sequence. The basic idea was presented in Stahl
[1962]. Consider the three questions:

1. Which are the two primes between 13 and 17?

2. Which are at least two primes between 13 and 17?

3. Is there any prime between 13 and 17, or not?

Stahl pointed out that in natural language we occasionally put the sequence
1-2-3 by saying `1, or 2, or 3,' where the or is understood to be noncommu-
tative.

Stahl generalized and formalized as follows [recall Section 2.2 above]: An
inferential question series is a series in which the �rst question is relative
to some S and the n + 1st question is relative to S [ fAng, where An is a
suÆcient answer to the nth question, An is not a consequence of S, and all
the suÆcient answers to the nth question which neither imply An nor are
consequences of S are not compatible with An. A suÆcient answer of the
nth degree is a wff which either is a consequence of S or implies a conjunction
(A1^A2^ : : :^An�1^B) which is consistent with S, where B is a suÆcient
answer to the nth question which does not imply An. The intention is to
yield the theorem: A suÆcient answer of nth degree is incompatible with
suÆcient answers of lower degree, unless these are consequences of S.

�Aqvist develops this idea within his framework as follows. Let Q be a
QIE-question, and let fp1; : : : ; png be a �nite set of ordinary statements.
De�ne Q[p1; : : : ; pn] as (p1 ^ : : : ^ pn ^ Q), de�ne its Core as (p1 ^ : : : ^
pn ^ CoreQ), and de�ne its Pres as (p1 ^ : : : ^ pn ^ PresQ). Recall that
CorrecX = :PresX .

Now let S = fQ1; : : : ; Qng be any �nite set of QIE-questions. Form out
of S the n! distinct n-termed sequences such that each member of S occurs
exactly once in the sequence. Next, name these sequences and arrange them
in some �xed order:

S1 = hQ11 ; : : : ; Qn1i; S2 = hQ12 ; : : : ; Qn2i; : : : ;

Sn! = hQ1n! ; : : : ; Qnn!i:

Then, for each Sj , de�ne the simplest corrections-accumulating sequence
associated with Sj (or sca(Sj) for short) as

hQ1j ; Q2j [CorrecQ1j ]; : : : ;
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Qnj [CorrecQ1j ;CorrecQ2j ; : : : ;CorrecQ(n�1)
j
]i:

Finally, for each Sj , let its QIE-translation = the QIE-translation of
sca(Sj) =

!(CoreQ1j _ Core(Q2j [CorrecQ1j ]) _ : : : _

Core(Qnj [CorrecQ1j ; : : : ;CorrecQ(n�1)j
])):

Let S = hQ1; : : : ; Qni be a question sequence. We say that S is correct-
ions-accumulable iff, for all 1 � i < j � n, PresQj does not entail PresQi.
It is successively presupposition-containing iff, for all 1 � i < j � n, PresQi

entails PresQj . It is quite reasonable iff all the disjuncts inside the ! in the
QIE-translation of sca(S) are consistent.

It turns out that, for each �nite question-set S = fQ1; : : : ; Qng, there
is at most one sequence Sj (1 � j � n!) formable out of S that is both
corrections-accumulable and successively presupposition-containing. In the
example above, the sequence would be h1; 2; 3i. Also, for a sequence to be
quite reasonable it is necessary that it be corrections-accumulable.

One other fact: A corrections-accumulable sequence can have a safe ques-
tion Q (i.e. with valid PresQ) only in its �nal position. (For all of the above,
see �Aqvist [1969].)

Similar concepts and constructions can be developed in Belnap's frame-
work by using his conditional and given-that questions. We form the ap-
propriate sequence of interrogatives and then construct their union. See
Belnap [1969].

Picard [1980] studies question sequences in the light of practical consid-
erations like probability, cost, and utility. The general problem is how to
replace a single complex and costly question Q by a questionnaire Q0 (which
is a sequence of simple which and whether questions), such that Q0 will yield
the true answer to Q but asking Q0 will be more eÆcient and economical
than asking Q. Questionnaires are represented as weighted �nite circuit-
less graphs meeting certain conditions. (Think of a questionnaire as a bush
| starting from one node | whose non-terminal nodes are questions and
whose branches are the direct answers.) Each answer is assigned a proba-
bility. Answers and questions can be assigned utilities and costs. For more
in this area see, e.g., Kamp�e de Feriet and Picard (eds.) [1974].

7.6 Comparison of Approaches

Is there a correct approach to the theory and logic of questions? It is not
yet clear that we have a correct approach to clarifying and answering that
question; especially, it is not yet clear that we have a correct criterion for
recognizing a correct answer.

What is clear is that much more work remains to be done in comparing
di�erent approaches and evaluating their respective advantages. A little
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work of this sort has been done, but most of it has been done on small
aspects and points of detail. What we o�er below are some rough surmises.
We don't claim that these are accurate or correct; we do hope that they are
clear enough to stimulate further study.

1. The systems that can provide the most questions are those that as-
sume questions as metaphysical or intensional entities | as in the
theories of Tich�y [1978] or Higginbotham [1993].

2. Is one approach better than others at providing interrogatives? There
is some appeal in the idea noted in 6.8 above, that we can adopt
a very rich language and thus have interrogatives that specify a de-
tailed description of what is wanted and how to search for it. On the
other hand, interrogatives are instruments for communication, and
our choice of interrogative system is inuenced by the purposes at
hand. Thus it is meaningful or useful to compare interrogative sys-
tems relative to speci�c motivations (e.g. the motivation to model
the question-and-answer system of the Danish people, or the motiva-
tion to construct an information-retrieval system for the Yale Medical
School Library), but not useful to make comparisons otherwise.

3. The systems that would be most useful in machine-assisted inter-
actions, and especially in formal systems of information retrieval,
will have the e�ectiveness properties emphasized in Belnap and Steel
[1976].

4. For empirical models of the question-and-answer process in natural
language several di�erent kinds of system will be needed, including
not only those of the MMK approach (designed to �t the `standard'
situation, as noted in 5.1 above) but also others (designed to �t other
types of situation).

5. Theorizing about questions requires theorizing about interrogatives.
We can be con�dent that an intensional theory of questions is com-
plete and correct only if we are con�dent that we have a complete and
correct theory of human concepts and intentions, and we can be con�-
dent of the latter only if we are con�dent that we have a complete and
correct theory of human language, including a complete and correct
theory of interrogatives.

7.7 General Erotetic Logic: Motivations

There are several motivations for generalizing from erotetic logic in the
narrow sense, concerned with question and answer, to erotetic logic in a
broader sense, concerned with all the kinds of expression that call for reply.

First consider mixed sentences | e.g.:
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1. `The old machine is broken, or does it need fuel?'

2. `The new one is missing, but do we need it?'

3. `What is wrong with the old one? or �nd the new one.'

To provide for such sentences we want a logic that will specify for declara-
tives, imperatives, interrogatives, . . . (?) what compounds are permissible,
what expressions call for replies, and what replies are called for.

Second, consider vectored sentences such as

`As Provost, I ask you, Dean Smith, will the plan be approved?'

This may be construed as a sentence that, at some level of analysis, consists
of two parts:

1. the body (`Will the plan be approved?'), and

2. the vector (indicating that the message comes from `I' qua Provost
and is for Smith qua Dean).

For discussions of vectored sentences see Harrah [1994]. To provide for
such sentences we want a logic that will specify what expressions count as
vectored sentences, and what expressions (vectored or unvectored) count as
replies.

Third, consider vectored messages such as the formal memos used in
large organizations and the formal letters used in commercial and legal
correspondence. These have a vector that speci�es a to, a from, a when,
and possibly other parameters, and a body that may contain any number of
sentences of various kinds. For such messages we want a logic that speci�es
what expressions count as messages and, for each message, what counts as
a suÆcient reply.

In 7.8 below we outline a way of developing a logic that provides for
mixed sentences, vectored sentences, and vectored messages. This logic may
be viewed as a system of general erotetic logic, and our sketch of it should
serve to indicate what a general erotetic logic is. From another perspective
it may be viewed as a logic of message and reply, or a communicational
logic. Perhaps the concepts of general erotetic logic and communicational
logic coincide, for in both cases the essential concern is with (a) a set of
expressions and (b) for each expression, its set of suÆcient replies.

7.8 General Erotetic Logic: Systems

In this section we outline a way of developing a particular system of general
erotetic logic. It will be clear that we are in e�ect describing a class of
systems, and indeed a fairly wide approach. We don't claim that this is
the only correct or fruitful approach. The motivation for this approach is
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both empirical and engineering; the aim is to construct systems that will be
useful in connection with human communication. (For more on motivation,
empirical grounding, and details of development, see Harrah [1985, 1987,
1994].) In the paragraphs below we �rst describe the part of the system
that handles unvectored sentences, and then the part for vectored sentences
and vectored messages.

We begin with a standard �rst-order system having identity, descriptions,
and some nonlogical axioms for set theory and syntax. We write U and E
for its quanti�ers and F , G, H , . . . for its wffs, which we call d-wffs. We
add an in�nite stock of speech act operators O, O0, O00, . . . . A basic speech
act wff (or bsa-wff ) is an expression OV Y such that O is a speech act
operator, V is a (possibly empty) string of distinct variables, and Y is a list
(Y1; : : : ; Yn) in which each Yi is a term or d -wff.

The basic wffs (or b-wffs) are the d -wffs and bsa-wffs. To every b-wff F
we assign a d -wff CA, a d -wff CP , a set IR, and a set WR, such that:

1. IR consists of d -wffs (the indicated replies to F ).

2. CA (the core assertion in F ) is implied by every d -wff in IR.

3. WR (the wanted replies to F ) is a subset of IR.

4. CP (the core projection in F ) is implied by every d -wff in WR.

5. CA is implied by CP .

Given a bsa-wff F , with its CA and CP , we say that:

The negative reply to F is :CP .
The corrective reply to F is :CA.
The direct replies to F are:

1. the wanted replies, and :CP , if WR is nonempty;

2. the indicated replies, and :CA, if WR is empty but IR is
not;

3. CP , (CA ^ :CP ), and :CA, if IR is empty.

The full replies to F are the d -wffs that imply direct replies.
The partial replies to F are the d -wffs that are implied by direct
replies.
The relevant replies to F are the full replies plus the partial
replies.

To give examples, we use the signs

!u; !c; !d; :d; :as; :an; ?w; ?1



54 DAVID HARRAH

to refer to distinct speech act operators (expressing respectively ultima-
tum, command, directive, declaration, assertion, announcement, whether-
question, one-example question). To the eight kinds of bsa-wffs at the left
below, content may be assigned as follows:

CA CP IR WR
!u(G) (G _G0) G fGg fGg
!c(G) (G _G0) G fGg �
!d(G) (G _G0) G � �
:d (G) G G fGg fGg
:as (G) G G fGg �
:an (G) G G � �
?w(G;G0) (G _G0) (G _G0) fG;G0g fG;G0g
?1x(Gx) ExGx ExGx fGa; : : :g fGa; : : :g

For smoothness, in the case of each d -wff F , we say that CP (F ) =
CA(F ) = F , and the WR(F ) = IR(F ) = �. (Note: occasionally, as here,
we use `CA', . . . , `WR' as functors.)

An erotetic wff (or e-wff) is a bsa-wff F such that WR(F ) 6= �. The
speech act wffs (or sa-wffs) are de�ned recursively:

1. Every b-wff is an sa-wff.

2. If F and G are sa-wffs and x is a variable, then (F ^ G), (F _ G),
UxF , ExF are sa-wffs, and (F ! G) is an sa-wff if F is a d -wff.

A proper sa-wff is an sa-wff that is not a d -wff, and a non-basic sa-wff
is an sa-wff that is not a b-wff.

If F is an sa-wff, then G is the core assertion in F (or CA(F ) for short)
iff G is like F except that, wherever F contains a bsa-wff H , G contains
CA(H). Similarly for CP (F ).

To any non-basic sa-wff F :

1. The negative reply is :CP (F ).

2. The corrective reply is :CA(F ).

3. The direct replies are CP (F ), (CA(F ) ^ :CP (F )), and :CA(F ).

4. The full replies are the d -wffs that imply direct replies.

5. The partial replies are the d -wffs implied by direct replies.

6. The relevant replies are the full replies plus the partial replies.

(Note that the non-basic sa-wffs do not have indicated or wanted replies.)
We assume that for the d -wffs we have a �rst-order predicate logic of

the usual kind, and that in addition there might be axioms for set theory,
syntax, or the like. To provide for analysis of sa-wffs we add the following
rules of ca-derivation:
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(1) (F ^G) ` F
(2) (F ^G) ` (G ^ F )
(3) ((F ^G) ^H) ` (F ^ (G ^H))
(4) F , G ` (F ^G)
(5) (F _ F ) ` F
(6) (F _G) ` (G _ F )
(7) ((F _G) _H) ` (F _ (G _H))
(8) (F _G) ` (CA(F ) ! F )
(9) :G, (G _ F ) ` F
(10) G, (G! F ) ` F
(11) UxFx ` Ft
(12) ExFx ` (CA(Ft) ! Ft)
(13) F ` G, where G is any one-step alphabetic variant of F
(14) F ` CA(F )

Z is a ca-derivation from S iff Z is a �nite nonempty sequence of sa-wffs
such that, for every member F of Z, either F is an axiom, F is a member
of S, or F comes from preceding members of Z by a rule of ca-derivation.
If F is the last member of Z, we say that Z is a ca-derivation of F from S
and that F is ca-derivable from S, and we write S `ca F .

The following theorem shows that ca-derivation is conservative with re-
spect to the derivation of d -wffs. Let F be any d -wff, let S be any set of
sa-wffs, and let CA(S) be the set of d -wffs that are the core assertions in
the members of S. Let us say that F is standardly derivable from a set S0

just in case there is a �nite nonempty sequence Z of d -wffs G (including F )
such that every G either is in S0 or is an axiom or comes from preceding
members of Z by some rule of �rst-order predicate logic. Then:

THEOREM 4. F is ca-derivable from S iff F is standardly derivable from
CA(S).

Various types of content are now de�nable. E.g. the assertive commit-
ment of S is the set of all d -sentences F such that S `ca F ; the projective
commitment of S is the set of all d -sentences F such that S0 `ca F (where
S0 is the union of S and the set of core projections in members of S); and the
erotetic commitment of S is the set of all e-sentences F such that S `ca F .

Let Z be a ca-derivation from S, and let S0 be a �nite set of closed terms.
Then Z is ca-complete for S relative to S0 iff all the members of S have been
put into Z and all the rules that can be applied have been applied. More
precisely:

1. For any proper sa-wff (F ^G), if it is in Z, so is F . [and analogously
for ca-rules 2, 3, 5, 6, 7, 9, 10, and 14]

2. For any proper sa-wff (F _G), if it is in Z, and some X is such that
X is a proper sa-wff, X is either F or G, and S `ca CA(X), then, for
at least one such X , (CA(X) ! X) is in Z.
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3. For any proper sa-wff (G _ F ), if it is in Z, and S `ca :G, then :G
is in Z.

4. For any proper sa-wff (G ! F ), if it is in Z, and S `ca G, then G is
in Z.

5. For any proper sa-wff UxFx, if it is in Z, and t is a closed term in
S0, then Ft is in Z.

6. For any proper sa-wff ExFx, if it is in Z, and some closed term t
in S0 is such that S `ca CA(Ft), then, for at least one such term t,
(CA(Ft) ! Ft) is in Z.

Where S is a �nite set of sa-wffs, a suÆcient reply to S is constructed in
the following way: First �nd a ca-derivation Z from S that is ca-complete
for S relative to the set of closed terms that occur in members of S. Choose
b-sentences F1; : : : ; Fn that occur in Z, provided that all the e-sentences in
Z are included among F1; : : : ; Fn. Then choose G1; : : : ; Gn such that each
Gi is a direct reply to Fi. Then (G1 ^ : : : ^Gn) is a suÆcient reply to S.

Unfortunately ca-complete derivations are not e�ectively recognizable as
such, so suÆcient replies are not e�ectively recognizable as such. On the
other hand, by making certain additions and changing some details, we can
make the reply process more e�ective in certain respects. The key is to
extend the language by adding a stock of reply indicators ri and r -wffs of
the form

(rj1F1 : G1) ^ : : : ^ (rjnFn : Gn)

Roughly, each (riF : G) says that G is a reply to F of the kind i. In part-
icular, a suÆcient reply to S would have the form displayed above, where
each ri would be an indicator for direct reply. For details, see Harrah [1985].

Concerning vectored sentences and vectored messages: Each such expres-
sion X consists of a body B and a vector V ; the content of X is a function
of the content of B and the content of V . To simplify here we assume that
the body of a vectored message is a �nite nonempty string of sa-sentences;
thus each vectored sentence counts as a vectored message, but a vectored
sentence cannot occur inside a vectored message.

Vectors are expressions of various kinds, and each kind of vector brings
certain presumptions. Example:

`To: Jane Smith, Dean of the College'

brings the presumption

`Jane Smith is Dean of the College'
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(For discussion of vectors and presumptions, see Harrah [1994].) The con-
tent of the vector is determined by these presumptions. We assume that
each vectored X has �nitely many presumptions, that the presumptions
are d -sentences, and that each presumption of X is e�ectively recognizable
from `X .

For message analysis: Let M be a vectored message, and let S(M) be
the set consisting of (1) the sa-sentences in the body of M and (2) the
presumptions of M . Then Z is an ma-derivation from M iff Z is a ca-
derivation from S(M), and Z is ma-complete for M iff Z is ca-complete for
S(M) relative to the set of terms that occur in M .

We construct a suÆcient reply to M in either of three ways:
Option I: First �nd an ma-derivation Z from M that is ma-complete

for M . Choose b-sentences F1; : : : ; Fn that occur in Z and include all the
e-sentences in Z. Then choose direct replies Gi to these Fi and form (G1 ^
: : : ^Gn) as a suÆcient reply to M .

Option II: Find a d -sentence F that is ca-derivable from the set of pre-
sumptions of M (an F that you believe is false). Then the negation :F is
a vector-challenge to M and may be given as a suÆcient reply to M .

Option III: Find a d -sentence F such that (1) F is ma-derivable from M ,
and (2) every ma-derivation of F from M contains at least one presumption
of M . Then the negation :F is a vector-challenge and is a suÆcient reply
to M .

University of California, Riverside, USA.
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HEINRICH WANSING

SEQUENT SYSTEMS FOR MODAL LOGICS

INTRODUCTION

[T]he framework of ordinary sequents is not capable of handling
all interesting logics. There are logics with nice, simple seman-
tics and obvious interest for which no decent, cut-free formula-
tion seems to exist : : :. Larger, but still satisfactory frameworks
should, therefore, be sought. A. Avron [1996, p. 3]

This chapter surveys the application of various kinds of sequent systems
to modal and temporal logic, also called tense logic. The starting point
are ordinary Gentzen sequents and their limitations both technically and
philosophically. The rest of the chapter is devoted to generalizations of
the ordinary notion of sequent. These considerations are restricted to for-
malisms that do not make explicit use of semantic parameters like possible
worlds or truth values, thereby excluding, for instance, Gabbay's labelled
deductive systems, indexed tableau calculi, and Kanger-style proof systems
from being dealt with. Readers interested in these types of proof systems
are referred to [Gabbay, 1996], [Gor�e, 1999] and [Pliu�skevien

:
e, 1998]. Also

Orlowska's [1988; 1996] Rasiowa-Sikorski-style relational proof systems for
normal modal logics will not be considered in the present chapter. In rela-
tional proof systems the logical object language is associated with a language
of relational terms. These terms may contain subterms representing the ac-
cessibility relation in possible-worlds models, so that semantic information
is available at the same level as syntactic information. The derivation rules
in relational proof systems manipulate �nite sequences of relational formulas
constructed from relational terms and relational operations. An overview of
ordinary sequent systems for non-classical logics is given in [Ono, 1998], and
for a general background on proof theory the reader may consult [Troelstra
and Schwichtenberg, 2000]. In this chapter we shall pay special attention to
display logic, a general proof-theoretic approach developed by Belnap [1982].
Two applications of the modal display calculus are included as case studies:
the formulas-as-types notion of construction for temporal logic and a display
calculus for propositional bi-intuitionistic logic (also called Heyting-Brouwer
logic). This logic comprises both constructive implication and coimplica-
tion (see, for example, [Gor�e, 2000], [Rauszer, 1980], [Wolter, 1998]), and its
sequent-calculus presentation to be given is based on a modal translation
into the temporal propositional logic S4t.1

1The chapter consists of revised and expanded material from [Wansing, 1998] and
includes the contents of the unpublished report [Wansing, 2000] on formulas-as-types for
temporal logics. Moreover, the sequent calculus for bi-intuitionistic logic and subsystems
of bi-intuitionistic logics in Section 3.8 and the translation of multiple-sequent systems
into higher-arity sequent systems in Section 4.1 are new.

D. Gabbay and F. Guenthner (eds.),
Handbook of Philosophical Logic, Volume 8, 61{145.
c 2002, Kluwer Academic Publishers. Printed in the Netherlands.
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A note on notation. In the present chapter, both classical and constructive
logics will be considered. Therefore it makes sense to reect this distinction
in the notation for the logical operations. In particular, the following sym-
bols will be used: B (constructive, intuitionistic implication), J (coimplica-
tion), � (Boolean implication), a (intuitionistic negation), ` (conegation),
: (Boolean negation).

1 ORDINARY SEQUENT SYSTEMS

The presentation of normal modal logics as ordinary (standard) sequent sys-
tems has turned out to be problematic for both technical and philosophical
reasons. The technical problems chiey result from a lack of exibility of
the ordinary notion of sequent for dealing with the multitude of interesting
and important modal logics in a uniform and perspicuous way. In this sec-
tion a number of standard Gentzen systems for normal modal propositional
logics is reviewed in order to give an impression of what has been and what
can be done to present normal modal logics as ordinary Gentzen calculi.
An ordinary Gentzen system is a collection of rule schemata for manipulat-
ing Gentzen sequents; these are derivability statements of the form � ! �;
where � and � are �nite, possibly empty sets of formulas. The set terms `�'
and `�' are called the antecedent and the succedent of � ! �, respectively.
Often, a sequent

fA1; : : : ; Amg ! fB1; : : : ; Bng

is written as A1; : : : ; Am ! B1; : : : ; Bn. This notation supports viewing
the `,' (the comma) as a structure connective in the language of sequents.
Indeed, the sequent arrow in Gentzen's [1934] denotes a derivability relation
between �nite sequences of formulas separated by the comma. Gentzen,
however, postulated structural rules that justify thinking of antecedents
and succedents as denoting sets:

(permutation) �; A;B;� ! � � ! �; A;B;�
�; B;A;� ! � � ! �; B;A;�

(contraction) �; A;A;� ! � � ! �; A;A;�
�; A;� ! � � ! �; A;�

Gentzen also postulated

(monotonicity) �;� ! � � ! �;�

�; A;� ! � � ! �; A;�

These three rules are structural in the sense of exhibiting no operation
from an underlying logical object language. If the polymorphic comma is
interpreted as a binary structure connective that may or may not be asso-
ciative, the antecedent and the succedent of a sequent are Gentzen terms,
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and in generalized sequent calculi, the sequents display Gentzen terms or
other, much more complex data structures. We shall use ``' to denote the
derivability relation in a given axiomatic system or a consequence relation
between �nite sets of sequents and single sequents satisfying identity, cut,
and monotonicity. In other words, if � and � are �nite sets of sequents and
s, s0 are sequents, then we assume that fsg ` s,

� ` s

� [ fs0g ` s
and

� ` s � [ fsg ` s0

� [ � ` s0
:

1.1 Ordinary Gentzen systems for normal modal logics

The syntax of modal propositional logic (in Backus-Naur form, see for ex-
ample [Goldblatt, 1992, p. 3]) is given by:

A ::= p j t j f j :A j A ^ B j A _ B j A � B j A �
B j 3A j 2A:

The smallest normal modal propositional logic K admits a simple presen-
tation as an ordinary Gentzen system (see, for instance, [Leivant, 1981],
[Mints, 1990], [Sambin and Valentini, 1982]). In the language with 2 (\nec-
essarily") as the only primitive modal operator and3A (\possibly A") being
de�ned as :2:A, one may just add the rule

(! 2)1 � ! A ` 2� ! 2A

to the standard sequent system LCPL for classical propositional logicCPL,
where 2� = f2A j A 2 �g. A sequent calculus LK4 for K4 can be
obtained by supplementing LCPL with the rule

(! 2)2 �;2� ! A ` 2� ! 2A

(see [Sambin and Valentini, 1982]). In [Goble, 1974] it is shown that the
pair of modal sequent rules (! 2)1 and

(2!)1 �; A! ; ` 2�;2A! ;

yields a sequent system for KD (where `;' denotes the empty set) and that
a sequent calculus for KD4 is obtained, if (! 2)1 is replaced by the rule

(! 2)3 �0 ! A ` 2� ! 2A;

where �0 results from � by pre�xing zero or more formulas in � by 2.
Shvarts [1989] gives a sequent calculus formulation of KD45 by adjoining
to LCPL the following rule for 2:

[2] 2�1;�2 ! 2�1;�2 ` 2�1;2�2 ! 2�1;2�2;

where �2 contains at most one formula. If in addition �1 and �2 are required
to be non-empty, this results in a sequent system for K45.
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Among the most important modal logics are the almost ubiquitous sys-
tems S4 and S5. Standard sequent systems for the axiomatic calculi S4 (=
KT4) and S5 (= KT5 = KT4B) were studied by Ohnishi and Matsumoto
[1957]. They considered the following schematic sequent rules for 2 and 3:

(! 2)0 2� ! 2�; A ` 2� ! 2�;2A;

(2!)0 �; A! � ` �;2A! �;

(! 3)0 � ! �; A ` � ! �;3A;

(3!)0 3�; A! 3� ` 3�;3A! 3�;

where 3� = f3A j A 2 �g. If either the rules (! 2)0 and (2 !)0 or
the rules (! 3)0 and (3 !)0 are adjoined to LCPL, then the result is a
sequent calculus LS5� for S5. If � is empty in (! 2)0 or (3 !)0, this
yields a sequent calculus LS4 for S4. Several other modal logics can be
obtained by imposing suitable constraints on the structures exhibited in
(! 2)0 and (3 !)0, respectively. Ohnishi and Matsumoto show that if
(! 2)0 and (3!)0 are replaced by (! 2)1 and

(3!)1 A! � ` 3A! 3�;

one obtains a Gentzen-system LKT for KT (= T). Kripke [1963] noted
that the equivalences between 2A and :3:A and between 3A and :2:A
cannot be proved by means of Ohnishi's and Matsumoto's rules. In the case
of S4, Kripke suggested remedying this by using sequent rules which exhibit
both 2 and 3, namely in addition to (2!)0 and (! 3)0 the rules

(! 2)0 2� ! A;3� ` 2� ! 2A;3�

and (3!)0 A;2� ! 3� ` 3A;2� ! 3�:

Such rules fail to give a separate account of the inferential behaviour of 2
and 3, since only the combined use of these operations is speci�ed. Another
problem with Ohnishi's and Matsumoto's sequent rules for S5 is that the
cut-rule

� ! �; A; �; A! � ` �;� ! �;�

cannot be eliminated: the system without cut allows proving less formulas
than the full system containing cut. Ohnishi and Matsumoto [1959] give
the following counter-example to cut-elimination:

2p! 2p
; ! :2p;2p p! p

; ! 2:2p;2p 2p! p

; ! 2:2p; p

A solution to the problem of de�ning a cut-free ordinary Gentzen system
for S5 has been given in [Bra�uner, 2000].2 The logic S5 can be faithfully

2Another, perhaps less convincing solution has been presented by Ohnishi [1982].
De�ne the degree deg(A) of a modal formula in the language with 2 primitive as follows:
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embedded into monadic predicate logic, the �rst-order logic of unary pred-
icates, under a translation t employing a single individual variable x, see
for instance [Mints, 1992]. The translation t assigns to every propositional
variable p an atomic formula P (x), and for compound formulas it is de�ned
as follows:

t(t) = t,
t(:A) = :t(A),
t(A]B) = t(A) ] t(B), for ] 2 f�;^;_g,
t(2A) = 8xt(A),
t(3A) = 9xt(A).

THEOREM 1. A modal formula A is provable in S5 if and only if t(A) is
provable in monadic predicate logic.

The familiar cut-free sequent calculus for monadic predicate logic can serve
as a starting point for de�ning a cut-free ordinary sequent system for S5
with side-conditions on the introduction rules for 2 on the right and 3 on
the left of the sequent arrow. The side conditions are simple, though their
precise formulation requires some terminology that will be useful also in
other contexts. An inference inf is a pair (�; s), where � is a set of sequents
(the premises of inf ) and s is a single sequent (the conclusion of inf ). A
rule of inference R is a set of inferences. If inf 2 R, then inf is said to be
an instantiation of R. The rule R is an axiomatic rule, if � = ; for every
(�; s) 2 R. We assume that inference rules are stated by using variables for
structures (in the present case �nite sets of formulas) and formulas. Every
structure occurrence in an inference inf (a sequent s) is called a constituent
of inf (s). The parameters of inf 2 R are those constituents which occur as
substructures of structures assigned to structure variables in the statement
of R. Constituents of inf are de�ned as congruent in inf if and only if (i�)
they are occupying similar positions in occurrences of structures assigned
to the same structure variable, in the present case i� they belong to a set
assigned to the same set variable.

DEFINITION 2. Two formula occurrences are immediately connected in
a proof � i� � contains an inference inf such that one of the following

1. deg(p) = 0, for every propositional variable p;

2. deg(:A) = deg(A);

3. deg(A ^ B) = max(deg(A), deg(B));

4. deg(2A) = deg(A) + 1.

Ohnishi adds to (2 !)0 and (! 2)0 two further rules that deviate considerably from
familiar introduction schemata:

�; A�;� ! � ` �; A;� ! � and � ! �; A�;� ` � ! �; A;�;

where the formula A� is de�ned in such a way that (i) A and A� are equivalent in S5
and (ii) deg(A�) � 1:
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conditions holds:

1. both occurrences are non-parametric, one in the conclusion and the
other in a premise of inf;

2. inf belongs to an axiomatic sequent rule and both occurrences are
non-parametric in inf;

3. inf 2 cut and both occurrences are non-parametric in inf;

4. the occurrences are parametric and congruent in inf.

A list of formula occurrences A1; : : : ; An in a proof � is called a connection
between A1 and An in � i� for every i 2 f1; : : : ; n{1g, the occurrences Ai

and Ai+1 are immediately connected in �. A formula is said to be modally
closed if every propositional variable in the formula occurs in the scope of
an occurrence 3 or 2.

DEFINITION 3. Two formula occurrences in a proof � are said to be
dependent on each other in � i� there exists a connection between these
occurrences that does not contain any modally closed formula.

The sequent system LS5 extends LCPL by (2 !)0, (! 3)0 and the
rules:

(! 2)00 � ! �; A ` � ! �;2A

and (3!)00 �; A! � ` �;3A! �;

where applications of (! 2)00 and (3!)00 in a proof � must be such that
in � none of the formula occurrences in � and � depends on the displayed
occurrence of A. A cut-free proof of the notorious sequent ; ! 2:2p; p is
then easily available (as it is also in Ohnishi's [1982] calculus):

p! p
2p! p

; ! :2p; p
; ! 2:2p; p

THEOREM 4. ([Bra�uner, 2000]) A sequent � ! � is provable in LS5 i�V
� �

W
� is provable in S5.

Avron [1984] (see also [Shimura, 1991]) presents a sequent calculus
LS4Grz for S4Grz (= KGrz). He replaces the rule (! 2)0 in Ohnishi
and Matsumoto's sequent calculus for S4 by the rule

(! 2)4 2(A � 2A);2� ! A ` 2� ! 2A

exhibiting both 2 and �. In [Takano, 1992], Takano de�nes sequent calculi
LKB, LKTB, LKDB, and LK4B for KB, KTB (= B), KDB, and K4B.
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The systems LKB and LK4B are obtained from LCPL by including the
rules

(! 2)B � ! 2�; A ` 2� ! �;2A

and (! 2)4BE �;2� ! 2�;2�; A ` 2� ! 2�;�;2A

respectively. LKTB and LKDB result from LKB by adjoining (2 !)0
and

(2!)D � ! 2� ` 2� ! �

respectively. Standard sequent systems for several other modal logics can
be found in [Gor�e, 1992] and [Zeman, 1973]. The sequent calculus for S4.3
(= S4 + 2(2A � B) _ 2(2B � A)) in [Zeman, 1973] results from LS4 by
the addition of the axiomatic sequent

2(A _ 2B);2(2A _ B) ! 2A;2B:

Shimura [1991] obtains a cut-free sequent system LS4.3 by adding to LCPL
the rules (2!)0 and

(! 2)5 2� ! (2�) r f2A1g : : :2� ! (2�)r f2Ang ` 2� ! 2�;

where � = fA1; : : : ; Ang and r is set-theoretic di�erence.

1.2 Ordinary Gentzen systems for normal temporal logics

The syntax of temporal propositional logic is given by:

A ::= p j t j f j :A j A ^ B j A _ B j A � B j A �
B j hP iA j [P ]A j hF iA j [F ]A:

Also a number of normal temporal propositional logics have been presented
as ordinary sequent calculi. Nishimura [1980], for example, de�nes sequent
systems LKt and LK4t for the minimal normal temporal logic Kt and the
tense-logical counterpart K4t of K4. The sequent calculus LKt comprises
the following introduction rules for forward-looking necessity [F ] (\always
in the future") and backward-looking necessity [P ] (\always in the past"):3

(! [F ]) � ! A; [P ]� ` [F ]� ! [F ]A;�;

(! [P ]) � ! A; [F ]� ` [P ]� ! [P ]A;�;

where [F ]� = f[F ]A j A 2 �g and [P ]� = f[P ]A j A 2 �g. In K4t, these
rules are replaced by the following pair of rules:

(! [F ])4 [F ]�;� ! A; [P ]�; [P ]� ` [F ]� ! [F ]A;�; [P ]�;

(! [P ])4 [P ]�;� ! A; [F ]�; [F ]� ` [P ]� ! [P ]A;�; [F ]�:
3Nishimura allows in�nite sets in antecedent and succedent position. It is proved,

however, that if a sequent � ! � is provable, then there are �nite sets �0 � � and
�0 � � such that the sequent �0 ! �0 is provable.
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In both systems, hP i (\sometimes in the past") and hF i (\sometimes in the
future") are treaded not as primitive but as de�ned by hP iA := :[P ]:A
and hF iA := :[F ]:A: Note also that this approach gives completely parallel
rules for [F ] and [P ] and that these rules do not exploit the interrelation
between the backward and the forward-looking modalities, that shows up,
for instance, in the provability of A � [F ]hP iA and A � [P ]hF iA:

In summary, it may be said that many normal modal and temporal logics
are presentable as ordinary Gentzen calculi, and that in some cases suitable
constraints on the structures exhibited in the statement of the sequent rules
for the modal operators allow for a number of variations. However, no
uniform way of presenting only the most important normal modal and tem-
poral propositional logics as ordinary Gentzen calculi is known. Further,
the standard approach fails to be modular : in general it is not the case
that a single axiom schema is captured by a single sequent rule (or a �nite
set of such rules). In the following section a more philosophical critique of
ordinary Gentzen systems is advanced.

1.3 Introduction schemata and the meaning of the logical oper-
ations

The philosophical (and methodological) problems with applying the notion
of a Gentzen sequent to modal logics have to do with the idea of de�ning
the logical operations by means of introduction schemata (together with
structural assumptions about derivability formulated in terms of structural
rules). This `anti-realistic' conception of the meaning of the logical opera-
tions is often traced back to a certain passage on natural deduction from
Gentzen's Investigations into Logical Deduction [Gentzen, 1934, p. 80]:

[I]ntroductions represent, as it were, the `de�nitions' of the sym-
bols concerned, and the eliminations are no more, in the �nal
analysis, than the consequences of these de�nitions.

To qualify as a de�nition of a logical operation, an introduction schema
must satisfy certain adequacy criteria. Such conditions are discussed, for
instance, by Hacking [1994]. Following Hacking, if introduction rules are to
be regarded as de�ning logical operations, these rules must be such that the
structural rules monotonicity (also called weakening, thinning, or dilution),
reexivity, and cut can be eliminated. Hacking claims that

[i]t is not provability of cut-elimination that excludes modal
logic, but dilution-elimination : : :. The serious modal logics such
as T, S4 and S5 have cut-free sequent-calculus formalizations,
but the rules place restrictions on side formulas. Gentzen's rules
for sentential connections are all `local' in that they concern
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only the components from which the principal formula is built
up, and place no restrictions on the side formulas. Gentzen's
own �rst-order rules, though not strictly local, are equivalent
to local ones. That is why dilution-elimination goes through for
�rst-order logic but not for modal logics ([Hacking, 1994, p. 24]).

By dilution-elimination Hacking means that the monotonicity rules

� ! � ` �; A! �; � ! � ` � ! �; A

may be replaced by atomic thinning rules

� ! � ` �; p! �; � ! � ` � ! �; p:

without changing the set of provable sequents. Similarly, reexivity-elimin-
ation amounts to replaceability of ` A ! A by ` p ! p. The term \cut-
elimination" is reserved for something stronger than replaceability of cut by
the atomic cut-rule

� ! �; p; �; p! � ` �;� ! �;�:

A cut-elimination proof shows the admissibility of cut: the rule has no e�ect
on the set of provable sequents.

The introduction rules for 2 in LS4 prevent dilution-elimination. Ob-
viously, the sequent 2B;2A ! 2A, for example, cannot be proved using
only these rules and atomic thinning. A problem with the requirement
of dilution-elimination is the weak status monotonicity has acquired as a
de�ning characteristic of logical deduction. In view of the substantial work
on relevance logic, many other substructural logics, and a plethora of non-
monotonic reasoning formalisms extending a monotonic base system, mono-
tonicity of inference is not generally viewed as a touchstone of logicality any-
more. Moreover, also reexivity and cut have been questioned. Unrestricted
transitivity of deduction as expressed by the cut-rule does not hold, for in-
stance, in Tennant's intuitionistic relevant logic [1994], and both reexivity
and cut fail to be validated by Update-to-Test semantic consequence as de-
�ned in Dynamic Logic, see [van Benthem, 1996]. Reexivity-elimination
and cut-elimination are, however, important. According to Belnap [1982,
p. 383], the provability of A! A constitutes

half of what is required to show that the \meaning" of formulas
: : : is not context-sensitive, but that instead formulas \mean the
same" in both antecedent and consequent position. (The [Cut]
Elimination Theorem : : : is the other half of what is required for
this purpose).

A similar remark can be found in [Girard, 1989, p. 31]. Cut-elimination is
indispensable, because it amounts to the familiar non-creativity requirement
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for de�nitions (see, for instance, [Hacking, 1994], [von Kutschera, 1968]). If
one adds introduction rules for a (�nitary) operation f to a sequent calculus,
this addition ought to be conservative, so that in the extended formalism,
every proof of an f -free formula A is convertible into a proof of A without
any application of an introduction rule for f .

There are other reasons why the eliminability of cut is a desirable prop-
erty. Usually, cut-elimination implies the subformula property: every cut-
free proof of a sequent s contains only subformulas of formulas in s. In
sequent calculi for decidable logics, the subformula property can often be
used to give a syntactic proof of decidability. According to Sambin and
Valentini [1982, p. 316], it

is usually not diÆcult to choose suitable [sequent] rules for each
modal logic if one is content with completeness of rules. The
real problem however is to �nd a set of rules also satisfying the
subformula-property.

The sequent calculi for S5 in [Mints, 1970], [Sato, 1977], and [Sato, 1980],
although admitting cut-elimination, do not have the subformula property.
In a sequent calculus with an enriched structural language, the subformula
property need not be accompanied by a substructure property. In such sys-
tems the subformula property for the logical vocabulary need neither imply
nor be of direct use for syntactic decidability proofs. Avron [1996, p. 2] re-
quires of a decent sequent calculus simplicity of the structures employed and
a `real' subformula property. But even without the substructure property,
the subformula property may be useful, for instance in proving conservative
extension results, see also Section 3.8.

It is well-known that cut-elimination itself does not guarantee eÆcient
proof search (see [D'Agostino and Mondadori, 1994], [Boolos, 1984]), so
that it may be attractive to work with an analytic, subformula property
preserving cut-rule, if possible. An application of cut

� ! �; A �; A! � ` �;� ! �;�

is analytic (see [Smullyan, 1968]), if the cut-formula A is a subformula of
some formula in the conclusion sequent �;� ! �;�. Let Sub(�) denote
the set of all subformulas of formulas in �. Applications of the sequent
rules

(! 2)B � ! 2�; A ` 2� ! �;2A

(! 2)4BE �;2� ! 2�;2�; A ` 2� ! 2�;�;2A

and (2!)D � ! 2� ` 2� ! �

may be said to be analytic if 2� � Sub(�[fAg), 2� � Sub(2�[2�[fAg),
and 2� � Sub(�), respectively. Takano [1992] shows that the cut-rule in
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LS5�, LKB, LKTB, LKDB, LK4B, LKt and LK4t can be replaced by
the analytic cut-rule: every proof in these sequent calculi can be transformed
into a proof of the same sequent such that every application of cut (and,
moreover, every application of the rules (! 2)B , (! 2)4BE , and (! 2)D)
in this proof is analytic.

Although admissibility of analytic cut is a welcome property, in general,
unrestricted cut-elimination is to be preferred over elimination of analytic
cut. Admissibility of cut has great conceptual signi�cance. The cut-rule
justi�es certain substitutions of data; in particular it justi�es the use of
previously proved formulas. Moreover, if the cut-rule is assumed, the non-
creativity requirement for de�nitions implies that cut must be eliminable.

There are other nice properties of introduction schemata as de�nitions
in addition to enabling cut-elimination and reexivity-elimination. The
assignment of meaning to the logical operations should, for instance, be
non-holistic, and hence sequent rules like the above (! 2)0 and (3!)0 are
unsuitable. If (the statement of) an introduction rule for a logical operation
f exhibits no connective other than f , the rule is called separated, see [Zucker
and Tragesser, 1978]. An even stronger condition is segregation, requiring
that the antecedent (succedent) of the conclusion sequent in a left (right)
introduction rule must not exhibit any structure operation. Segregation
has been suggested (although not under this name) by Belnap [1996] who
explains that

[t]he nub is this. If a rule for � only shows how A � B behaves
in context, then that rule is not merely explaining the meaning
of �. It is also and inextricably explaining the meaning of the
context. Suppose we give suÆcient conditions for

A � B;� ! �

in part by the rule

� ! A B ! �

A � B;� ! �

Then we are not explaining A � B alone. We are simultane-
ously involving the comma not just in our explicans (that would
surely be all right), but in our explicandum. We are explaining
two things at once. There is no way around this. You do not
have to take it as a defect, but it is a fact. : : : If you are a
`holist', probably you will not care; but then there is not much
about which holists much care. [Belnap, 1996, p. 81 f.] (notation
adjusted)
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Moreover, the rules for f may be required to be weakly symmetrical in the
sense that every rule should either belong to a set of rules (f !) which
introduce f on the left side of ! in the conclusion sequent or to a set of
rules (! f) which introduce f on the right side of ! in the conclusion
sequent. The introduction rules for f are called symmetrical, if they are
weakly symmetrical and both (! f) and (f !) are non-empty. The sequent
rules for f are called weakly explicit, if the rules (! f) and (f !) exhibit f
in their conclusion sequents only, and they are called explicit, if in addition
to being weakly explicit, the rules in (! f) and (f !) exhibit only one
occurrence of f on the right, respectively the left side of !. Separation,
symmetry, and explicitness of the rules imply that in a sequent calculus for
a given logic �, every connective that is explicitly de�nable in � also has
separate, symmetrical, and explicit introduction rules. These rules can be
found by decomposition of the de�ned connective, if it is assumed that the
deductive role of f(A1; : : : ; An) only depends on the deductive relationships
between A1; : : : ; An. It is therefore desirable to have introduction rules for
2, 3, hP i, [P ], hF i and [F ] as primitive operations, so that the familiar
mutual de�nitions are derivable.

A further desirable property, reminiscent of implicit de�nability in pred-
icate logic, is the unique characterization of f by its introduction rules.
Suppose that � is a logical system with a syntactic presentation S in which
f occurs. Let S� be the result of rewriting f everywhere in S as f�, and let
��� be the system presented by the union SS� of S and S� in the combined
language with both f and f�. Let Af denote a formula (in this language)
that contains a certain occurrence of f , and let Af� denote the result of re-
placing this occurrence of f in A by f�. The connectives f and f� are said
to be uniquely characterized in ��� i� for every formula Af in the language
of ���, Af is provable in SS� i� Af� is provable in SS�. Do�sen [1985] has
proved that unique characterization is a non-trivial property and that the
connectives in his higher-level systems S4p/D and S5p/D for S4 and S5,
respectively, are uniquely characterized.

As we have seen, the standard sequent-style proof-theory for normal
modal and temporal logic fails to be modular. The idea that modularity can
be achieved by systematically varying structural features of the derivabil-
ity relation while keeping the introduction rules for the logical operations
untouched can be traced back to Gentzen [1934] and has been referred to
as Do�sen's Principle in [Wansing, 1994]. In [Do�sen, 1988, p. 352], Do�sen
suggests that \the rules for the logical operations are never changed: all
changes are made in the structural rules." This methodology is adopted,
for example in Do�sen's [1985] higher-level sequent systems for S4 and S5,
Blamey and Humberstone's [1991] higher-arity sequent calculi for certain
extensions of K, Nishimura's [1980] higher-arity sequent systems for Kt
and K4t, and the presentation of normal modal and temporal logics as
cut-free display sequent calculi.
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Another methodological aspect is generality. Is there a type of sequent
system that allows not only a uniform treatment of the most important
modal and temporal logics but also a treatment of substructural logics, other
non-classical logics and systems combining operations from di�erent families
of logics and that, moreover, is rich enough to suggest important, hitherto
unexplored logics? The framework of display logic to be presented in the
next section has been devised explicitly as an instrument for combining
logics (see [Belnap, 1982]), and has been suggested, for example, as a tool
for de�ning subsystems of classical predicate logic (see [Wansing, 1999]). In
addition to generality, a `real' subformula property, and Do�sen's principle,
Avron [1996] requires of a good sequent calculus framework also semantics
independence. The framework should not be so closely tied to a particular
semantics that one can more or less read o� the semantic structures in
question. Moreover, the proof systems instantiating the framework should
lead to a better understanding of the respective logics and the di�erences
between them.

Note that each of the ordinary sequent systems presented in the present
section fails to satisfy some of the more philosophical requirements men-
tioned. The same holds true for the ordinary sequent systems for various
non-normal, classical modal logics investigated in [Lavendhomme and Lu-
cas, 2000]. There are thus not only technical but also methodological and
philosophical reasons for investigating generalizations of the notion of a
Gentzen sequent.

2 GENERALIZED SEQUENT SYSTEMS

In this section the application of a number of generalizations of the ordinary
notion of sequent to normal modal propositional and temporal logics is
surveyed.

2.1 Higher-level sequent systems

Do�sen [1985] has developed certain non-standard sequent systems for S4
and S5. In these Gentzen-style systems one is dealing with sequents of
arbitrary �nite level. Sequents of level 1 are like ordinary sequents, whereas
sequents of level n + 1 (0 < n < !) have �nite sets of sequents of level n
on both sides of the sequent arrow. The main sequent arrow in a sequent
of level n carries the superscript n, and ; is regarded as a set of any �nite
level. The rules for logical operations are presented as double-line rules. A
double-line rule

s1; : : : ; sn

s0
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involving sequents s0; : : : ; sn, denotes the rules

s1; : : : ; sn
s0

;
s0
s1
; : : : ;

s0
sn
:

Do�sen gives the following double-line sequent rules for 2 and 3:

X + f; !1 fAgg !2 X2 + fX3 !1 X4g

X1 !2 X2 + fX3 + f2Ag !1 X4g

X1 + ffAg !1 ;g !2 X2 + fX3 !1 X4g

X1 !2 X2 + fX3 !1 X4 + f3Agg
;

where + refers to the union of disjoint sets. If these rules are added to
Do�sen's higher-level sequent calculus Cp/D for CPL, this results in the
sequent system S5p/D for S5. The sequent calculus S4p/D for S4 is then
obtained by imposing a structural restriction on the monotonicity rule of
level 2:

X !2 Y ` X [ Z1 !
2 Y [ Z2:

The restriction is this: if Y = ;, then Z2 must be a singleton or empty;
if Y 6= ;, then Z2 must be empty. If the same restriction is applied to
monotonicity of level 1 in Cp/D, then this gives a higher-level sequent
system for intuitionistic propositional logic IPL.

Note that 3 and 2 are interde�nable in S4p/D and S5p/D. The double-
line rules for 2 and 3, however, do not satisfy weak symmetry and weak
explicitness, but the upward directions of these rules can be replaced by:

; !1 fAg ` ; !1 f2Ag and fAg !1 ; ` f3Ag !1 ;:

Whereas cut can be eliminated at levels 1 and 2, cut of all levels fails to
be eliminable [Do�sen, 1985, Lemma 1]. Moreover, in Do�sen's higher-level
framework it is not clear how restrictions similar to the one used to obtain
S4p/D from S5p/D would allow to capture further axiomatic systems of
normal modal propositional logic.

2.2 Higher-dimensional sequent systems

A `higher-dimensional' proof theory for modal logics has been developed by
Masini [1992; 1996]. This approach is based on the notion of a 2-sequent.
In order to de�ne this notion, various preparatory de�nitions are useful.
Any �nite sequence of modal formulas is called a 1-sequence. The empty
1-sequence is denoted by �. A 2-sequence is an in�nite `vertical' succession
of 1 sequences, � = f�ig0<i<! such that 9j � 1, 8k � j : �k = �. For each
i, �i is said to be at level i. The depth of � (\�) is de�ned as minfi j i �
0; 8k > i : �k = �g. A 2-sequent is an expression � ! �, where � and �
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are 2-sequences. The depth of � ! � (\(� ! �)) is de�ned as max(\�; \�).
If � ! � is a 2-sequent and A an occurrence of a modal formula in � ! �,
then A is said to be maximal in � ! �, if A is at level k in � or in �
and k = \(� ! �). A is the maximum in � ! �, if A is the unique
maximal formula in � ! �. The sequent rules for 2 are based on the idea
of \internalizing the level structure of 2-sequents" [Masini, 1992, p. 231]:

(2!)

�
�
�;A
�0

! �

�
�;2A
�
�0

! �

(! 2)

� !
�
�
A

� !
�
�;2A

(3!)

�
�
A

! �

�
�;3A

! �

(! 3)

� !

�
�
�;A
�0

� !

�
�;3A
�
�0

where �, �, �, and � denote arbitrary 1-sequences, and A must be the
maximum of the premise 2-sequent in (! 2) and (3 !). According to
Masini, these introduction rules give rise to a \general basic proof theory
of modalities" [Masini, 1992, p. 232]. If added to a 2-sequent calculus for
CPL, the above rules result, however, in a sequent calculus for KD instead
of the basic system K. This sequent system for KD admits cut-elimination,
2 and 3 are interde�nable, and the introduction rules are separate, sym-
metrical, and explicit, but no indication is given of how to present axiomatic
extensions of KD as higher-dimensional sequent systems. Moreover, it is
not clear how Masini's framework may be modi�ed in order to obtain a
2-sequent calculus for K.

2.3 Higher-arity sequent systems

In search of generalizations of the standard Gentzen-style sequent format,
it is a natural move to consider consequence relations with an arity greater
than 2. It seems that the �rst higher-arity sequent calculus was formulated
by Schr�oter [1955], see also [Gottwald, 1989]. This formalism is a natural
generalization of Gentzen's sequent calculus for CPL to truth-functional
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n-valued logic. The intended truth-functional reading of a Gentzen sequent
s = � ! � is given by a translation � of s into a formula:

�(� ! �) =
^

� �
_

�;

The sequent s thus is true under a given interpretation if either some for-
mula in � is false, or some formula in � is true, and the two places of
the sequent arrow correspond to the two truth-values of classical logic. In
general, in n-valued logic (with 2 � n) one obtains n-place sequents s =
�1; �2; : : : ; �n, with the understanding that s is true under an interpreta-
tion if for every i � n, some formula in �i has truth-value i; for a com-
prehensive treatment of sequent calculi for truth-functional many-valued
logics see [Zach, 1993]. We shall here briefly review some relevant parts
of the work of Blamey and Humberstone [1991], who investigate an appli-
cation of three-place and, ultimately, four-place sequent arrows to normal
modal logic. This approach is congenial to display logic with respect to a
realization of the Do�sen-Principle insofar as Blamey and Humberstone em-
phasize that distinctions between various well-known normal modal logics
can \be reected at the purely structural level, if an appropriate notion of
sequent" is adopted [Blamey and Humberstone, 1991, p. 763]. Let �, �, �,
and � range over �nite sets of formulas in the modal propositional language
with 2 as primitive. The four-place sequent

� !�
� �

has the following heuristic reading:

(
^

� ^
^
2�) � (

_
� _

_
2�):

This kind of sequent had independently been used by Sato [1977], where a
cut-free sequent calculus for S5 is presented containing a left introduction
rule for 2 that fails to be weakly explicit. Blamey's and Humberstone's
introduction rules for 2 are:

(2 #)0 ` ; !;
A 2A (2 ")0 ` 2A!A

; ;:

In order to obtain a sequent calculus for K the following structural rules
are assumed:

(R) ` A!;
; A (vertical R) ` ; !A

A ;

(M) � !�
� � ` �;�0 !�;�0

�;�0 �;�0

(undercut) � !;
; A � !�

�0;A � ` � !�
�;�0 �

(T ) �; A!�
� � � !�

� A;� ` � !�
� �

(vertical T ) � !�
�;A � � !�;A

� � ` � !�
� �:
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Against the background of these rules, the introduction rules (2 #)0 and
(2 ")0 are interreplaceable with the following rules, respectively:

(2 #) �;2A!�
� � ` � !�

�;A �

(2 ") � !�
�;A � ` �;2A!�

� �:

The introduction rules for the Boolean operations are adaptations of the fa-
miliar rules to the higher-arity case. Here is a simple example of a derivation
in this formalism (using some obvious notational simpli�cations):

2A;2B ! 2A ^ 2B (2#)

A ^ B ! A 2A!B 2A ^2B (2#)

A ^ B ! A;B ; !A;B 2A ^ 2B (undercut) twice
; !A^B 2A ^ 2B (2")

2(A ^ B) ! 2A ^ 2B

The axiom schemata D, T , 4, and B are captured by purely structural rules
not exhibiting any logical operations:

D � !;
; ; ` ; !

;
� ;

T ` ; !;
A A

4 � !�
� A � !�

�0;A � ` � !�
�;�0 �

B � !�
; A � !�

�;A � ` � !�
� �:

Since Blamey and Humberstone are primarily interested in semantical
aspects of their sequent systems, they do not consider cut-elimination.
Although their calculi satisfy Do�sen's Principle, it remains unclear whether
their approach is fully modular for the most important systems of normal
modal propositional logic. They do not present a structural equivalent of
the 5-axiom schema, but rather treat S5 as KTB4.

In [Nishimura, 1980], Nishimura uses six-place sequents

�1; �; �2 ! �1; �; �2:

These higher-arity sequents can intuitively be read as follows:

(
^

[P ]�1 ^
^

� ^
^

[F ]�2) � (
_

[P ]�1 _
_

� _
_

[F ]�2):

Nishimura de�nes introduction rules for the tense logical operations [F ] and
[P ], which are explicit in the sense of Section 1.3:

(! [F ])0 �1; �; �2 ! �1; �;A;�2

�1; �; �2 ! �1; �; [F ]A; �2

([F ] !)0 �1; �;A;�2 ! �1; �; �2

�1; �; [F ]A; �2 ! �1; �; �2

(! [P ])0 �1; �; �2 ! �1; A; �; �2

�1; �; �2 ! �1; [P ]A;��2

([P ] !)0 �1; A; �; �2 ! �1; �; �2

�1; [P ]A;�; �2 ! �1; �; �2
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In accordance with the Do�sen Principle, these rules are held constant in
sequent systems for Kt and K4t. The di�erence between these logics is
accounted for by di�erent structural rules, namely

(r-trans) ;; �; ; ! �;A; ; (l-trans) ;; �; ; ! ;;A; �
;; ;; � ! ;; �;A �; ;; ; ! A; �; ;

in the case of Kt and

(r-trans)4 ;; �; � ! �;�;A; ; (l-trans)4 �; �; ; ! ;;A; �;�
;; ;; � ! �; �;A �; ;; ; ! A; �; �

in the case of K4t. Nishimura observes that although in the introduction
rules for hF i and hP i subformulas are preserved from premise sequent to
conclusion sequent, cut-elimination fails to hold in the six-place sequent
systems for Kt and K4t. There is, for instance, no cut-free proof of ; p;!
; [F ]:[P ]:p;.4

2.4 Multiple-sequent systems

Indrzejczak, in [1997; 1998], suggested non-standard sequent systems for
certain extensions of the minimal regular modal logic C using three sequent
arrows !, 2! , and 3! . These sequent arrows denote binary relations
between �nite sets of S-formulas, where the set of S-formulas is de�ned as
the union of the set of modal formulas and f�A j A is a modal formulag.
As before, we shall use A, B, C, : : : to denote modal formulas. The symbol
`�' is a unary structure connective that may not be nested, and the sequent
arrows 2! and 3! are auxiliary in the sense that they fail to represent
consequence relations, because (in general) neither ` A2!A nor ` A3!A.
The logics presented by such multiple-sequent systems are given by the
set of provable sequents � ! �. The intended meaning of a sequent is
captured by a translation � from sequents into ordinary sequents using a
translation Æ from S-formulas to modal formulas. For every modal formula
A, Æ(�A) := :A and Æ(A) := A. The translation � is de�ned as follows:

�(� ! �) =
V
Æ(�) !

W
Æ(�)

�(�2!�) =
V
Æ(�) ! 2

W
Æ(�)

�(�3!�) = 3
V
Æ(�) !

W
Æ(�)

Here Æ(�) := fA j A 2 �g [ f:A j �A 2 �g. For every modal formula
A, A� is de�ned as �A and �A� as A. If � is a set of S-formulas, �� :=

4Note that Nishimura allows in�nite sets in antecedent and succedent position. It
is, however, shown that if a sequent �1; �; �2 ! �1; �; �2 is provable, then there are
�nite sets �0

i � �i, �0
i � �i, (i = 1; 2), �0 � �, and �0 � � such that the sequent

�0
1; �0; �0

2 ! �0
1; �0; �0

2 is provable.
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fA j �A 2 �g [ f�A j A 2 �g. Let (!) be any of !, 2! , 3! . The
following reexivity and monotonicity rules are assumed:

` A! A; � (!) � ` � (!) �; A; � (!) � ` �; A (!) �:

Next, there are further structural rules called shifting rules:

[!�] A;� ! � ` � ! �; A� [�!] � ! �; A ` �; A� ! �

[TR] �2!� ` ��3!�� �3!� ` ��2!��

The introduction rules for ^, _, � and : are formulated for arbitrary se-
quent arrows. Whereas the rules for ^ and _ are versions of the familiar
introduction rules, the rules for : and � can be formulated such that they
make use of the structure connective �:

�;�A (!) � ` �;:A (!) �

� (!) �;�A ` � (!) �;:A

�;�A (!) � �; B (!) � ` �;�; A � B (!) �;�

� (!) �;�A;B ` � (!) �; A � B

The introduction rules for the modal operators are not formulated for arbi-
trary sequent arrows:

[22! ] A! � ` 2A2!� [! 2] �2!A ` � ! 2A

[33! ] A3!� ` 3A! � [3!3] � ! A ` �3!3A

[3!3] �A;�3!� ` �3!�;3A [22! ] �2!�;�A ` �2A2!�

The above collection of sequent rules forms a multiple-sequent calculus MC
for the system C. An axiomatization of C can be obtained by replacing the
necessitation rule in the familiar axiomatization of K by the weaker rule

(RR) if (A ^B) � C is provable, then so is (2A ^ 2B) � 2C;

see [Chellas, 1980]. The necessitation rule and the modal axiom schemata
D, T , and 4 can be captured in a modular fashion by pairs of sequent rules:

[nec] � ! ; ` �3!; ; ! � ` ;2!�

[D] �2!; ` � ! ; ;3!� ` ; ! �

[T ] �2!� ` � ! � �3!� ` � ! �

[4] � ! � ` �2!� � ! � ` �3!�;

where in rule [4], every S-formula in � has the shape 2A or �3A and every
S-formula in � has the shape 3A or �2A. All sequent systems obtained in
this way satisfy a generalized subformula property: for every modal formula
A, it holds that if A or �A is used in a proof of � ! �, then A is a subfor-
mula of �[� (where the notion of a subformula of an S-formula is de�ned
in the obvious way). Indrzejczak does not investigate the admissibility of



80 HEINRICH WANSING

cut for ! or the admissibility of cut for 2! and 3! in extensions of CT
(where ` A2!A and ` A3!A). Note that the introduction rules for the
modal operators fail to be symmetrical, since there are no introduction rule
for 2 on the left and 3 on the right of !. Moreover, the side conditions
on [4] are such that the status of this rule as a purely structural rule is
doubtful. The multiple-sequent systems for extensions of KB make use of
denumerably many sequent arrows n! (n � 0), where logics are de�ned by
the provable sequents � 0!�. The introduction rules

A n!� ` 2A n+1!� � n+1!A ` � n!2A

A n+1!� ` 3A n!� � n!A ` � n+1!3A

fail to introduce 2 on the left and 3 on the right of 0!, so that also these
rules are not symmetrical.

In Section 4.1, we shall point to a simple relation between Indrzejczak's
multiple-sequent systems and higher-arity sequent systems for modal logics.

2.5 Hypersequents

Hypersequents were introduced into the literature by Pottinger [1983], and
have later systematically been studied by Avron [1991; 1991a; 1996]. A
hypersequent is a sequence

�1 ! �1 j �2 ! �2 j : : : j �n ! �n

of ordinary sequents (or, more generally, sequents in which �i and �i are
sequences of formula occurrences) as their components. The symbol `j' in
the statement of a hypersequent enriches the language of sequents and is in-
tuitively to be read as disjunction. This expressive enhancement \makes it
possible to introduce new types of structural rules, and : : : to allow greater
versatility in developing interesting logical systems" [Avron, 1996, p. 6]. In
particular, a distinction may be drawn between internal and external ver-
sions of structural rules. The internal rules deal with formulas within a cer-
tain component, whereas the external rules deal with components within a
hypersequent. Let G, H , H1, H2 etc. be schematic letters for possibly empty
hypersequents. External monotonicity, for instance, can be contrasted with
internal monotonicity:

H1 j H2 ` H1 j G j H2 vs. H1 j � ! � j H2 ` H1 j A;� ! � j H2:

Cut only has an internal version:

G1 j �1 ! �1; A j H1 G2 j A;�2 ! �2 j H2

G1 j G2 j �1;�2 ! �1;�2 j H1 j H2

The use of hypersequents allows a cut-free presentation GS5 of S5 satisfy-
ing the subformula property. The system GS5 consists of hypersequential
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versions of the rules of LS4, in particular, external and internal versions of
contraction and monotonicity, the above cut-rule, and a structural rule of a
new kind, namely the modalized splitting rule:

(MS) G j 2�1;�2 ! 2�1;�2 j H ` G j 2�1 ! 2�1 j �2 ! �2 j H:

In the next section we shall de�ne display sequents, and in Section 4.2 we
shall de�ne a translation of hypersequents into display sequents.

3 DISPLAY LOGIC

We shall develop display logic only to the extent needed to cover a vari-
ety of normal modal and temporal logics based on classical or intuitionistic
logic. A more comprehensive presentation of display logic and its appli-
cation to modal and non-classical logics can be found in [Belnap, 1982],
[Belnap, 1990], [Belnap, 1996], [Gor�e, 1998], [Kracht, 1996], [Restall, 1998],
[Wansing, 1998]. Note that except for the substructure property, all require-
ments examined in the previous sections are satis�ed by the display sequent
systems to be presented.

3.1 Introduction rules through residuation

Whereas the ordinary sequent systems for temporal logics presented in Sec-
tion 1.2 fail to exploit the interaction between the backward and the forward
looking modalities, the modal display calculus is based on observing that
the operators hP i and [F ] form a residuated pair. The following de�nition
is taken from Dunn [1990, p. 32]:

DEFINITION 5. Consider two partially ordered sets A = (A;�) and B =
(B;�0) with functions f: A �! B and g: B �! A: The pair (f; g) is called

residuated i� (fa �0 b i� a � gb);
a Galois connection i� (b �0 fa i� a � gb);

a dual Galois connection i� (fa �0 b i� gb � a);
a dual residuated pair i� (b �0 fa i� gb � a):

Obviously, (hP i; [F ]) forms a residuated pair with respect to the prov-
ability relation in normal extensions of Kt, and (:hF i;:hP i) is a Galois
connection.5 These ideas of residuation and Galois connection can be gen-
eralized. In [Dunn, 1990], [Dunn, 1993], Dunn has de�ned an abstract law of

5The fact that hP i and [F ] form a residuated pair is also used in Kashima's [1994]

sequent calculi for various normal temporal logics. The approach of Kashima is simi-
lar to the modal display calculus and the modal signs approach developed by Cerrato
[1993; 1996] insofar as the structural language of sequents is extended by unary struc-
ture operations. Whereas nesting of these operations is not allowed in Cerrato's sequent
systems for normal modal propositional logics, Kashima allows iteration. Kashima in-
ductively de�nes a notion of sequent as follows:
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residuation for n-place connectives f and g. The formulation of this princi-
ple refers to traces of operations and assumes the presence (or de�nability)
of a truth constant t and a falsity constant f . We shall use A a` B to
express that A and B are interderivable in a given axiom system.

DEFINITION 6. An n-place connective f (n � 0) has a trace (�1; : : : ; �n) 7!
+ (in symbols T (f) = (�1; : : : ; �n) 7! +) i�

f(A1; : : : ; t; : : : ; An) a` t; if �i = + (the indicated t is in position i);

f(A1; : : : ;f ; : : : ; An) a` t; if �i = � (the indicated f is in position i);

if A ` B and �i = +; then f(A1; : : : ; A; : : : ; An) ` f(A1; : : : ; B; : : : ; An);

if A ` B and �i = �; then f(A1; : : : ; B; : : : ; An) ` f(A1; : : : ; A; : : : ; An):

The operation f has a trace (�1; : : : ; �n) 7! � (T (f) = (�1; : : : ; �n) 7! �) i�

f(A1; : : : ;f ; : : : ; An) a` f ; if �i = + (the indicated f is in position i);

f(A1; : : : ; t; : : : ; An) a` f ; if �i = � (the indicated t is in position i);

if A ` B and �i = +; then f(A1; : : : ; B; : : : ; An) ` f(A1; : : : ; A; : : : ; An);

if A ` B and �i = �; then f(A1; : : : ; A; : : : ; An) ` f(A1; : : : ; B; : : : ; An):

In Kt, : has traces � 7! + and + 7! �, whereas [F ] has trace + 7! + and
hP i has trace � 7! �.

DEFINITION 7. Two n-place operations f and g are contrapositives in
place j i� T (f) = (�1; : : : ; �j ; : : : ; �n) 7! � implies T (g) = (�1; : : : ;��; : : : ;
�n) 7! ��j , where �+ = � and �� = +.

DEFINITION 8. Let

S(f;A1; : : : ; An; B) i�

�
B ` f(A1; : : : ; An) if T (f) = (: : :) 7! +
f(A1; : : : ; An) ` B if T (f) = (: : :) 7! �

1. every temporal formula is a sequent;

2. if � is a sequent, then so is P f�g and F f�g;

3. if n � 0 and every �i (1 � i � n) is a sequent, then so is �1; : : : ;�i.

The intuitive meaning of a sequent is given by the following inductively de�ned translation
(�)� from sequents into formulas:

1. (�)� = A, if � is the formula A;

2. (P f�g)� = [P ]P (�)�; (F f�g)� = [F ]F (�)�;

3. if n > 0, then (�1; : : : ;�n)� =
W
f(�1)�; : : : ; (�n)�g;

4. ( )� = (p ^ :p), for some atom p.

Residuation then shows up in Kashima's \turn rules":

�;F f�g ` P�;�; �;P f�g ` F�;�:

Most of Kashima's sequent rules used to capture various structural properties of acces-
sibility either fail to be explicit or separated in the sense of Section 1.3. Cut-elimination
for these systems is shown semantically, i.e., in a non-constructive way.
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A pair of n-place connectives f and g satis�es the abstract law of residuation
just in case for some j (1 � j � n), f and g are contrapositives in place j,
and

S(f;A1; : : : ; Aj ; : : : ; An; B) i� S(f;A1; : : : ; B; : : : ; An; Aj):

OBSERVATION 9. The abstract law of residuation holds for the pairs
(t, f), (:;:), (hP i; [F ]), (^;B), (J;_), (^;:���_:::), and (��� ^ ::::;_), where
B is intuitionistic implication and J is coimplication.

Coimplication J is characterized by

A ` B _ C;� i� A J B ` C;�:

In classical logic, the residual of disjunction is de�nable, since

A ` B _ C;� i� A ^ :B ` C;� i� :(A � B) ` C;

but in bi-intuitionistic logic it is not, see Section 3.8. For each of the pairs
(t, f), (:;:), (hP i; [F ]), (^;B), (J;_), the structural language of display
sequents contains one structure connective. Since in classical logic ^ and _
are interde�nable using :, the pairs (^;:��� _ :::) and (��� ^ ::::;_) require
only a single structure connective in addition to the unary structure opera-
tion associated with (:;:). We shall use X , Y , Z (possibly with subscripts)
as variables for structures. A display sequent is an expression X ! Y ; X
is called the antecedent and Y is called the succedent of X ! Y . The
structures are de�ned by:

X ::= A j I j �X j �X j X Æ Y j X o Y j X n Y:

The association of structure connectives with pairs of operations satisfying
the abstract law of residuation is accomplished by the following translations
�1 of antecedents and �2 of succedents into formulas:

�1(A) = A �2(A) = A

�1(I) = t �2(I) = f

�1(�X) = :�2(X) �2(�X) = :�1(X)

�1(�X) = hP i�1(X) �2(�X) = [F ]�2(X)

�1(X o Y ) = �1(X) ^ �1(Y ) �2(X o Y ) = �2(X) B �2(Y )

�1(X n Y ) = �1(X) J �1(Y ) �2(X n Y ) = �2(X) _ �2(Y )

�1(X Æ Y ) = �1(X) ^ �1(Y ) �2(X Æ Y ) = �2(X) _ �2(Y )

Under these translations, the following basic structural rules are valid ((1){
(4) in normal temporal logic; (5) and (6) in bi-intuitionistic logic) if ! is
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understood as provability:

Basic structural rules

(1) X Æ Y ! Z a` X ! Z Æ �Y a` Y ! �X Æ Z
(2) X ! Y Æ Z a` X Æ �Z ! Y a` �Y ÆX ! Z
(3) X ! Y a` �Y ! �X a` X ! � � Y
(4) X ! �Y a` �X ! Y
(5) X o Y ! Z a` Y ! X o Z a` X ! Y o Z
(6) X ! Y n Z a` X n Y ! Z a` X n Z ! Y;

where X1 ! Y1 a` X2 ! Y2 abbreviates X1 ! Y1 ` X2 ! Y2 and
X2 ! Y2 ` X1 ! Y1. If two sequents are interderivable by means of (1){
(6), then these sequents are said to be structurally or display equivalent.
The following pairs of sequents, for example, are display equivalent on the
strength of (1){(3):

X Æ Y ! Z �Z ! �Y Æ �X ; X ! Y Æ Z �Z Æ �Y ! �X ;
X ! Y �Y ! X ; X ! �Y Y ! �X ;
X ! Y � �X ! Y:

The name `display logic' derives from the fact that any substructure of
a given display sequent s may be displayed as the entire antecedent or
succedent of a structurally equivalent sequent s0. In order to state this
fact precisely, we de�ne the notion of a polarity vector and antecedent and
succedent part of a sequent (cf. [Gor�e, 1998]).

DEFINITION 10. To each n-place structure connective c we assign two
polarity vectors ap(c;�1; : : : ;�n) and sp(c;�1; : : : ;�n), where �i 2 f+;�g
and 1 � i � n:

ap(�;�) ap(�;+) ap(Æ;+;+) ap(o;+;+) ap(n;+;�)
sp(�;�) sp(�;+) sp(Æ;+;+) sp(o;�;+) sp(n;+;+)

We write ap(c; j;�) and sp(c; j;�) to express that c has antecedent, respec-
tively succedent polarity � at place j.

DEFINITION 11. Let s = X ! Y . The exhibited occurrence of X is
an antecedent part of s, and the exhibited occurrence of Y is a succedent
part of s. If c(X1; : : : ; Xn) is an antecedent [succedent] part of s, then the
substructure occurrence Xj (1 � j � n) is

1. an antecedent [succedent] part of s if ap(c; j;+) [sp(c; j;+)];

2. a succedent [antecedent] part of s if ap(c; j;�) [sp(c; j;�)].

THEOREM 12. (Display Theorem, Belnap) For each display sequent s and
each antecedent [succedent] part X of s there exists a display sequent s0

structurally equivalent to s such that X is the entire antecedent [succedent]
of s0.
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Proof. The theorem was �rst proved in [Belnap, 1982]; we shall follow the
proof in [Restall, 1998]. A context results from a structure by replacing
one occurrence of a substructure by the `Void' (in symbols `�'). If f is a
context and X is a structure, then f(X) is the result of substituting X for
the Void in f . A context f is called antecedent positive (negative) if the
indicated X is an antecedent part (a succedent part) of f(X) ! Y ; f is
said to be succedent positive (negative) if the indicated X is a succedent
part (an antecedent part) of Y ! f(X). A contextual sequent has the
shape f ! Z or Z ! f , and a pair of contextual sequents is said to be
structurally equivalent if the sequents are interderivable by means of rules
(1){(6). The Display Theorem then follows from the following lemma.

LEMMA 13. (i) Suppose f is a context in antecedent position. If f is an-
tecedent positive, then f(X) ! Y is structurally equivalent to X ! fa(Y ),
where fa is a context obtained by unraveling the Void in f . If f is an-
tecedent negative, then f(X) ! Y is structurally equivalent to fa(Y ) ! X.
(ii) Suppose f is a context in succedent position. If f is succedent positive,
then Y ! f(X) is structurally equivalent to fc(Y ) ! X, where fc is a
context obtained by unraveling the Void in f . If f is succedent negative,
then Y ! f(X) is structurally equivalent to X ! fc(Y ).

The proof is by induction on the complexity of contexts.
Case 1: f = �. Then f is antecedent and succedent positive, and fa(Y ) =
fc(Y ) = Y .
Case 2: f = �g. Then f(X) ! Y is structurally equivalent to g(X) ! �Y ,
and Y ! f(X) is equivalent to �Y ! g(X). By the induction hypothesis,
these sequents are equivalent to X ! fa(�Y ), fa(�Y ) ! X , fc(�Y ) ! X ,
or X ! fc(�Y ). Hence fa = ga(��) and fc = gc(��).
Case 3: f = �g. Then f(X) ! Y is equivalent to �Y ! g(X). Depending
on whether g is succedent positive or negative, f(X) ! Y is structurally
equivalent to gc(�Y ) ! X or to X ! gc(�Y ). Therefore, by the induction
hypothesis, fa = gc(��). Similarly, fc = ga(��).
Case 4: f = Z Æ g. Then f(X) ! Y is equivalent to g(X) ! �Z Æ Y . By
the induction hypothesis, this sequent is equivalent to X ! ga(�Z Æ Y ) or
ga(�Z Æ Y ) ! X , and hence fa = ga(�Z Æ �). Similarly, fc = ga(� Æ �Z).
Case 5: f = g Æ Z. Similar to Case 4.
Case 6: f = g o Z. Then Y ! f(X) is equivalent to g(X) ! Y o Z, and
by the induction hypothesis, the latter is equivalent to X ! ga(Y o Z) or
to ga(Y o Z) ! X . Thus fc = ga(�o Z). Similarly, fa = gc(Z o�).
Case 7: f = Z o g. Analogous to the previous case.
Cases 8 and 9: f = g nZ and f = Z n g. Analogous to Cases 6 and 7. �

If (for suitable notions of structural equivalence, antecedent part, and
succedent part) a sequent calculus satis�es the Display Theorem, it is said to
enjoy the display property. Note that the set of rules (1){(6) is not the only
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truth and falsity rules

(! f) X ! I ` X ! f
(f !) ` f ! I

(! t) ` I! t
(t!) I! X ` t! X

Boolean introduction rules

(! :) X ! �A ` X ! :A
(: !) �A! X ` :A! X

(! ^) X ! A Y ! B ` X Æ Y ! A ^B
(^ !) A ÆB ! X ` A ^ B ! X

(! _) X ! A ÆB ` X ! A _ B
(_ !) A! X B ! Y ` A _ B ! X Æ Y

(!�) X ÆA! B ` X ! A � B
(�!) X ! A B ! Y ` A � B ! �X Æ Y
(!�) X ÆA! B X ÆB ! A ` X ! A � B
(�!) X ! A B ! Y X ! B A! Y ` A � B ! �X Æ Y

tense logical introduction rules

(! [F ]) �X ! A ` X ! [F ]A
([F ] !) A! X ` [F ]A! �X

(! hF i) X ! A ` � � �X ! hF iA
(hF i !) � � �A! Y ` hF iA! Y

(! [P ]) X ! � � �A ` X ! [P ]A
([P ] !) A! X ` [P ]A! � � �X

(! hP i) X ! A ` �X ! hP iA
(hP i !) A! �X ` hP iA! X

nonclassical introduction rules

(! ^)0 X ! A Y ! B ` X o Y ! A ^ B
(^ !)0 AoB ! X ` A ^B ! X

(!B) X ! AoB ` X ! A B B
(B!) X ! A B ! Y ` A B B ! X o Y

(! _)0 X ! AnB ` X ! A _ B
(_ !)0 A! X B ! Y ` A _ B ! X n Y

(!J) X ! A B ! Y ` X n Y ! A J B
(J!) AnB ! X ` A J B ! X

Table 1. Introduction rules.
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(IÆ+) X ! Z ` I ÆX ! Z X ! Z ` X Æ I! Z
X ! Z ` X ! Z Æ I X ! Z ` X ! I Æ Z

(IÆ�) I ÆX ! Z ` X ! Z X Æ I! Z ` X ! Z
X ! Z Æ I ` X ! Z X ! I Æ Z ` X ! Z

(I) I! X ` Z ! X X ! I ` X ! Z
(I�) I! X a` �I! X X ! I a` X ! �I

(PÆ) X1 ÆX2 ! Z ` X2 ÆX1 ! Z Z ! X1 ÆX2 ` Z ! X2 ÆX1

(CÆ) X ÆX ! Z ` X ! Z Z ! X ÆX ` Z ! X
(EÆ) X ! Z ` X ÆX ! Z Z ! X ` Z ! X ÆX
(MÆ) X1 ! Z ` X1 ÆX2 ! Z X1 ! Z ` X2 ÆX1 ! Z

Z ! X1 ` Z ! X1 ÆX2 Z ! X1 ` Z ! X2 ÆX1

(AÆ) X1 Æ (X2 ÆX3) ! Z a` (X1 ÆX2) ÆX3 ! Z
Z ! X1 Æ (X2 ÆX3) a` (X1 ÆX2) ÆX3 ! Z

(MN) I! X ` I! �X X ! I ` X ! �I
I! X ` I! � � �X X ! I ` X ! � � �I

Table 2. Additional structural rules.

possible choice of display rules warranting the display property, see [Belnap,
1996] and [Gor�e, 1998].6 The display property allows an \ `essentials-only'
proof of cut elimination relying on easily established and maximally general
properties of structural and connective rules" [Belnap, 1996, p. 80]. Further,
the display property enables a statement of the introduction rules that satis-
�es the segregation requirement. Belnap emphasizes that the display prop-
erty may be used to keep certain proof-theoretic components as separate as
possible. In a sequent calculus enjoying the display property, the behaviour
of the structural elements can be described by the structural rules, and
the right (left) introductions rules for an n-place logical operation f can
be formulated with f(A1; : : : ; An) standing alone as the entire succedent
(antecedent) of the conclusion sequent. Since f(A1; : : : ; An) plays no in-
ferential roles beyond being derived and allowing to derive, these left and
right rules provide a complete explanation of the inferential meaning of
f . The constant I induces introduction rules for t and f . The operations
� and Æ give rise to introduction rules for the Boolean connectives. The
structure operation � permits formulating introduction rules for the modal-

6Gor�e [Gor�e, 1998] introduces binary structure connectives < and > to be inter-
preted as directional versions of implication in succedent position and coimplication in
antecedent position. The display property is guaranteed by the following structural rules
(notation adjusted):

X ! Z < Y a` X Æ Y ! Z a` Y ! X > Z
Z < Y ! X a` Z ! X Æ Y a` X > Z ! Y:
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ities, whereas o and n give rise to introduction schemata for conjunction,
disjunction, implication, and coimplication in bi-intuitionistic logic. These
introduction rules are assembled in Table 1. The further structural rules in
Table 2 contain many redundancies when they are assumed as a set. Such
a rich inventory of structural inference rules is, however, an advantage in a
treatment of substructural subsystems of normal modal and temporal log-
ics, see [Gor�e, 1998]. In addition to a set of structural rules and a set of
introduction rules, every display sequent system contains two logical rules
exhibiting neither structural nor logical operations, namely reexivity for
atoms (alias identity) and cut:

(id) ` p! p and (cut) X ! A A! Y ` X ! Y:

The identity rule (id) can be generalized to arbitrary formulas from temporal
or bi-intuitionistic logic.

OBSERVATION 14. For every formula A, ` A! A.

Proof. The proof is by induction on the complexity of A. For example,

A! A
A! A �A! hP iA A! A B ! B

[P ]A! � � �A A! �hP iA AnB ! A J B

[P ]A! [P ]A hP iA! hP iA A J B ! A J B:

�

DEFINITION 15. The display sequent system DCPL is given by (id),
(cut), the Boolean rules, and the structural rules exhibiting I, �, and Æ.
The system DKt consists of DCPL plus the tense logical rules and the
structural rules exhibiting �. The system DK results from DKt by remov-
ing the introduction rules for [P ] and hP i.

A sequent rule is invertible if every premise sequent can be derived from
the conclusion sequent.

OBSERVATION 16. The following holds in every purely structural exten-
sion ofDKt andDK. (i) The logical operations are uniquely characterized.
(ii) The introduction rules for :, ^, and _, the left introduction rules for t,
hP i, and hF i, and the right introduction rules for f , �, �, [P ], and [F ] are
invertible. (iii) The modalities [F ] and hF i ([P ] and hP i) are interde�nable
using :.

Note that there exist various duality and symmetry transformations on
proofs in display logic, see [Gor�e, 1998], [Kracht, 1996].
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3.2 Completeness

We shall �rst consider weak completeness of DKt and DK, that is, the
coincidence of Kt (K) and DKt (DK) with respect to provable formulas.
We shall then strengthen this result and in Section 3.4 turn to axiomatic
extensions of K and Kt.

THEOREM 17. (i) If ` A in Kt, then ` I! A in DKt. (ii) If ` X ! Y
in DKt, then �1(X) ` �2(Y ) in Kt.

Proof. (i) We may take any axiomatization of Kt and show that the axiom
schemata are provable in DKt, and the proof rules preserve provability in
DKt. The following is a cut-free proof of the K axiom schema for [F ]; the
proof for [P ] is analogous:

A! A
[F ]A! �A

[F ](A � B) Æ [F ]A! �A

�([F ](A � B) Æ [F ]A) ! A B ! B

A � B ! � � ([F ](A � B) Æ [F ]A) ÆB

[F ](A � B) ! �(� � ([F ](A � B) Æ [F ]A) ÆB)

[F ](A � B) Æ [F ]A! �(� � ([F ](A � B) Æ [F ]A) ÆB)

�([F ](A � B) Æ [F ]A) ! � � ([F ](A � B) Æ [F ]A) ÆB

�([F ](A � B) Æ [F ]A) Æ �([F ](A � B) Æ [F ]A) ! B

�([F ](A � B) Æ [F ]A) ! B

[F ](A � B) Æ [F ]A! [F ]B

[F ](A � B) ! [F ]A � [F ]B

I Æ [F ](A � B) ! [F ]A � [F ]B

I! [F ](A � B) � [F ]A � [F ]B

Necessitation for [F ] and [P ] is taken care of by the (MN) rules. It remains
to derive the tense logical interaction schemata A � [F ]hP iA and A �
[P ]hF iA:

A! A
�A! hP iA

A! [F ]hP iA

A! A

� � �A! hF iA

�hF iA! � �A

� � hF iA! �A

A! � � �hF iA

A! [P ]hF iA

(ii) By induction on the complexity of proofs in DKt. �

COROLLARY 18. (i) In Kt, ` A i� ` I! A in DKt. (ii) In K, ` A i�
` I! A in DK.
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Proof. (i) By the previous theorem. (ii) This follows from the fact that
every frame complete normal propositional tense logic is a conservative ex-
tension of its modal fragment. �

LEMMA 19. In every extension of DKt by structural inference rules, it
holds that ` X ! �1(X) and ` �2(X) ! X.

Proof. By induction on the complexity of X . �

This lemma allows one to prove strong completeness.

THEOREM 20. In DKt, ` X ! Y i� �1(X) ` �2(Y ) in Kt.

Proof. ()): This is Theorem 17, (ii). ((): Suppose that in Kt, �1(X) `
�2(Y ). Hence `Kt �1(X) � �2(Y ). By Corollary 18, `DKt I ! �1(X) �
�2(Y ) and thus `DKt �1(X) ! �2(Y ): Since by Lemma 19, ` X ! �1(X)
and ` �2(Y ) ! Y in DKt, an application of cut gives ` X ! Y . �

COROLLARY 21. DK is strongly sound and complete with respect to K.

COROLLARY 22. DCPL is strongly sound and complete with respect to
CPL.

3.3 Strong cut-elimination

A remarkable quality of display logic is that a strong cut-elimination theo-
rem holds for every properly displayable and every displayable logic. Proper
displayability and displayability are easily checkable properties. A proper
display calculus is a calculus of sequents whose rules of inference satisfy the
following eight conditions (recall the terminology from Section 1.1):

C1 Preservation of formulas. Each formula which is a constituent of some
premise of inf is a subformula of some formula in the conclusion of inf.

C2 Shape-alikeness of parameters. Congruent parameters are occurrences
of the same structure.

C3 Non-proliferation of parameters. Each parameter of inf is congruent
to at most one constituent in the conclusion of inf.

C4 Position-alikeness of parameters. Congruent parameters are either all
antecedent or all succedent parts of their respective sequents.

C5 Display of principal constituents. A principal formula of inf is either
the entire antecedent or the entire succedent of the conclusion of inf.

C6 Closure under substitution for consequent parts. Each rule is closed
under simultaneous substitution of arbitrary structures for congruent
formulas which are consequent parts.
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C7 Closure under substitution for antecedent parts. Each rule is closed
under simultaneous substitution of arbitrary structures for congruent
formulas which are antecedent parts.

C8 Eliminability of matching principal formulas. If there are inferences
inf1 and inf2 with respective conclusions (1) X ! A and (2) A ! Y
with A principal in both inferences, and if cut is applied to obtain
(3) X ! Y , then either (3) is identical to one of (1) or (2), or there
is a proof of (3) from the premises of inf1 and inf2 in which every
cut-formula of any application of cut is a proper subformula of A.

Obviously, every display calculus satisfying C1 enjoys the subformula prop-
erty, that is, every cut-free proof of any sequent s contains no formulas
which are not subformulas of constituents of s. If a logical system can be
presented as a proper display calculus, it is said to be properly displayable.
Belnap [1982] showed that in every properly displayable logic, a proof of a
sequent s can be converted into a proof of s not containing any application
of cut

(1) X ! A (2) A! Y

(3) X ! Y
:

The proof of strong cut-elimination reveals that every suÆciently long se-
quence of steps in a certain process of cut-elimination terminates with a
cut-free proof. The elimination process consists of various kinds of actions,
principal moves, parametric moves, and a combination of parametric and
principal moves. If the cut-formula A is principal in the �nal inference in
the proofs of both (1) and (2), a principal move is performed. Otherwise, if
there is no previous application of cut, a parametric move or a combination
of parametric and principal moves is executed. According to this distinction
we de�ne primitive reductions of proofs � ending in an application of cut.
Recently, Jeremy Dawson and Rajeev Gor�e discovered a gap in the proof of
strong normalization presented in [Wansing, 1998]. To avoid the problem,
the primitive reduction steps have to be rede�ned. Let �i be the proof of
(i) we are dealing with, (i = 1; 2).

Principal moves. By C8, there are two subcases:

Case 1. (3) is the same as (i):
�1 �2 ; �i

(3)
Case 2. There is a proof � of (3) from the premises s1; : : : ; sn of (1) and
s01; : : : ; s

0
m of (2) in which every cut-formula of any application of cut is a

proper subformula of A:

�1 �2

s1; : : : ; sn s01; : : : ; s
0
m

(1) (2)

(3)

;

�1 �2

�
(3)



92 HEINRICH WANSING

Parametric moves. The parametric moves modify proofs on a larger scale
than the principal moves. The parametric moves show that applications of
structural rules need never immediately precede applications of cut. Sup-
pose that A is parametric in the inference ending in (1). The case for (2)
is completely symmetrical. In order to de�ne the parametric moves, we
inductively de�ne a set Q of occurrences of A, called the set of `parametric
ancestors' of A (in �1), cf. [Belnap, 1982, p. 394]. We start with putting
the displayed occurrence of A in (1) into Q. Then, by working up �1, we
add for every inference inf in �1 each constituent of a premise of inf which
is congruent (with respect to inf ) to a constituent of the conclusion of inf
already in Q. What we obtain is a �nite tree of parametric ancestors of
A rooted in the displayed occurrence of A in (1). This tree and the tree
of parametric ancestors of the displayed occurrence of A in (2) either con-
tain an application of cut or not. If so, we do not perform a reduction,
but instead consider one of these applications of cut above (1) or (2) for
reduction. If not, that is, if there is no application of cut in the trees of
parametric ancestors, then for each path of parametric ancestors of A in �1,
we distinguish two subcases. Let Au be the uppermost element of the path
and let inf be the inference ending in the sequent s which contains Au.

Case 1. Au is not parametric in inf. By C4 and C5, it is the entire con-
sequent of s. We cut with �2 and replace every parametric ancestor of A
below Au in the path by Y .

Case 2. Au is parametric in inf. Then, with respect to inf, Au is congruent
only to itself, and we just replace every parametric ancestor of A below Au

in the path by Y . Moreover, we delete �2, which is now superuous.

Call the result of simultaneously carrying out these operations for every
path of parametric ancestors of A in �1 and removing the initial occurrence
of (3) (since now (2) = (3)) �l. If the tree of parametric ancestors of the
displayed occurrence of A in (1) contains at most one element Au that is
not parametric in inf, � reduces to �l: � ; �l. Typically we have the
situation of Figure 1.

By C3 and the bottom-up de�nition of Q, for every inference inf in �1, Q
must contain the whole congruence class of inf, if Q is inhabited at all. By
C4, Q only consists of consequent parts. Hence, by C2 and C6, the result
of such a reduction is in fact a proof of (3), since on the path from (1) to
Z ! A we have the same sequence of inference rules being applied as on the
path from (3) to Z ! Y . If the cut-formula A is parametric in the inference
ending in (2), we rely on C7 instead of C6 and obtain a proof �r.

If the tree of parametric ancestors of the displayed occurrence of A in (1)
contains more than one element Au that is not parametric in inf, parametric
and principal moves have to be combined. If A is non-parametric in the �nal
inference of �2, we apply to �l a principal move on every cut with �2. Call
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Z ! A
�
�� � �

H
H

(1) �2

(3)

�
�

H
H

;

�
�� � �

H
H

Z ! A �2

Z ! Y

�
�

H
H

(3)

Figure 1.

the resulting proof �l�: �; �l�. If A is parametric in the �nal inference of
�2, consider �lr. We apply to �lr a principal move on every cut with any
subproof of �2 ending in a sequent containing a parametric ancestor Au.
Call the resulting proof �lr�: � ; �lr�. Thus, if the tree of parametric
ancestors of the displayed occurrence of A in (1) contains more than one
element Au that is not parametric in inf, the primitive reduction of � gives
a proof that is calculated via some intermediate steps. Moreover, instead of
a cut with cut-formula A, we obtain several cuts with subformulas of A as
the cut-formula. Here is a worked out example:

� =

�1

�(A ÆB) ÆX ! (A ÆB)

�(A ÆB) ÆX ! (A _ B)

�(A _ B) ÆX ! (A ÆB) �21 �22

�(A _ B) ÆX ! (A _ B) A! Y B ! Z

X ! (A _ B) Æ (A _ B) (A _ B) ! (Y Æ Z)

X ! (A _ B) (A _ B) ! (Y Æ Z) ÆW

X ! (Y Æ Z) ÆW

�l =

�1

�(A ÆB) ÆX ! (A ÆB)

�(A ÆB) ÆX ! (A _ B) �2

�(A ÆB) ÆX ! (Y Æ Z) ÆW

�((Y Æ Z) ÆW ) ÆX ! (A ÆB)

�((Y Æ Z) ÆW ) ÆX ! (A _ B) �2

�((Y Æ Z) ÆW ) ÆX ! (Y Æ Z) ÆW

X ! ((Y Æ Z) ÆW ) Æ ((Y Æ Z) ÆW )

X ! ((Y Æ Z) ÆW )
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�lr =

�1 �21 �22

�(A ÆB) ÆX ! (A ÆB) A! Y B ! Z

�(A ÆB) ÆX ! (A _ B) (A _B) ! (Y Æ Z)

�(A ÆB) ÆX ! (Y Æ Z)

�(A ÆB) ÆX ! (Y Æ Z) ÆW �21 �22

�((Y Æ Z) ÆW ) ÆX ! (A ÆB) A! Y B ! Z

�((Y Æ Z) ÆW ) ÆX ! (A _ B) (A _ B) ! (Y Æ Z)

�((Y Æ Z) ÆW ) ÆX ! (Y Æ Z)

�((Y Æ Z) ÆW ) ÆX ! (Y Æ Z) ÆW

X ! ((Y Æ Z) ÆW ) Æ ((Y Æ Z) ÆW )

X ! ((Y Æ Z) ÆW )

�; �lr� =

�1

�(A ÆB) ÆX ! (A ÆB) �21

(�(A ÆB) ÆX) Æ �B ! A A! Y

(�(A ÆB) ÆX) Æ �B ! Y �22

�Y Æ (�(A ÆB) ÆX) ! B B ! Z

�Y Æ (�(A ÆB) ÆX) ! Z

�(A ÆB) ÆX ! (Y Æ Z)

�(A ÆB) ÆX ! (Y Æ Z) ÆW

�((Y Æ Z) ÆW ) ÆX ! A ÆB �21

(�((Y Æ Z) ÆW ) ÆX) Æ �B ! A A! Y

(�((Y Æ Z) ÆW ) ÆX) Æ �B ! Y �22

�Y Æ (�((Y Æ Z) ÆW ) ÆX) ! B B ! Z

�Y Æ (�((Y Æ Z) ÆW ) ÆX) ! Z

�((Y Æ Z) ÆW ) ÆX ! (Y ÆZ)

�((Y Æ Z) ÆW ) ÆX ! ((Y Æ Z) ÆW )

X ! ((Y Æ Z) ÆW ) Æ ((Y Æ Z) ÆW )

X ! ((Y Æ Z) ÆW )

THEOREM 23. Every proper display calculus enjoys strong cut-elimination.

Proof. See Appendix A. �

COROLLARY 24. Cut is an admissible rule of every proper display
calculus.

Theorem 23 can straightforwardly be applied to DK and DKt. It can
easily be checked that in these systems conditions C1 { C7 are satis�ed.
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Veri�cation of C8 is also a simple exercise. We have for instance:

�X ! A A! Y
X ! [F ]A [F ]A! �Y

X ! �Y
;

�X ! A A! Y
�X ! Y
X ! �Y

X ! A � � �A! Y
� � �X ! hAi hAi ! Y

� � �X ! Y
;

� � �A! Y
�Y ! � �A
� � Y ! �A

X ! A A! � � �Y
X ! � � �Y
� � Y ! �X
�Y ! � �X
� � �X ! Y:

THEOREM 25. Strong cut-elimination holds for DK and DKt.

COROLLARY 26. DKt is a conservative extension of DK.

We shall now briey consider generalizations of Theorem 23. By conditions
C6 and C7, the inference rules of a proper display calculus are closed under
simultaneous substitution of arbitrary structures for congruent formulas.
The proof of strong normalization can be generalized to logics which for
formulas of a certain shape satisfy closure under substitution either only
for congruent formulas (of this shape) which are consequent parts or only
for congruent formulas (of this shape) which are antecedent parts. In order
to extend the proof of strong cut-elimination to such systems, C6 and C7
have to be replaced by the more general condition of regularity, see [Belnap,
1990]. A formula A is de�ned as cons-regular if the following holds: (i) if
A occurs as a consequent parameter of an inference inf in a certain rule R,
then R contains also the inference resulting by replacing every member of
the congruence class of A in inf with an arbitrary structure X , and (ii) if
A occurs as an antecedent parameter of an inference inf in a certain rule
R, then R contains also the inference resulting by replacing every member
of the congruence class of A in inf with any structure X such that X ! A
is the conclusion of an inference in which A is not parametric. The notion
of ant-regularity is de�ned in exactly the dual way. The new condition on
rules then is

C6/C7 Regularity. Every formula is regular.

A display calculus simpliciter is a calculus of sequents satisfying C1 - C5,
C6/7, and C8. If a logic can be presented as a display calculus, then it is said
to be displayable. Obviously, every properly displayable logic is displayable.
Also the parametric moves must be rede�ned. Suppose in what follows that
the cut-formula A is parametric in both the �nal inference of �1 and the �nal
inference of �2. Moreover, suppose that the trees of parametric ancestors
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of A in �1 and in �2 do not contain any application of cut. If Au is the
tip of a path of parametric ancestors of A in �i, let inf be the inference
ending in the sequent which contains Au. Let us call Au signi�cant, if it
is not parametric in inf. Then, in a proper display calculus we may choose
whether we cut every signi�cant tip Au in the tree of parametric ancestors
of A in �1 with �2 or whether we cut every signi�cant tip Au in the tree of
parametric ancestors of A in �2 with �1 to obtain �l or �r. Both operations
form an essential part in the de�nition of certain primitive reductions. In a
display calculus simpliciter this indeterministic choice has to be abandoned.
If the cut-formula is cons-regular, we cut with �2, and if the cut-formula is
ant-regular, we cut with �1. This further restriction on parametric moves
does not a�ect the proof of strong cut-elimination.

THEOREM 27. Every displayable logic enjoys strong cut-elimination.

A further strengthening of the strong cut-elimination theorem has re-
cently been proved in [Demri and Gor�e, 1999], where it is shown that con-
dition C8 may be relaxed. A proof � ending in a principal application of
cut may also be replaced by a proof �0 of the same sequent if the degree
of any application of cut in �0 is the same as the degree of the cut-formula
in �, and in �0, every inference except possibly one falls under a structural
rule with a single premise. Moreover, in [Demri and Gor�e, 1999] a display
sequent calculus for the minimal nominal tense logic is de�ned, and it is
shown that every extension of this calculus by structural rules satisfying
conditions C1 { C7 enjoys strong cut-elimination.

3.4 Kracht's algorithm

The class of all properly displayable normal propositional tense logics has
been characterized by Kracht [1996]. The idea is to obtain a canonical way
of capturing axiomatic extensions of Kt by purely structural inference rules
over DKt.

DEFINITION 28. Let Kt + � be an extension of Kt by a tense logical
axiom schema �, and let DKt + �0 be an extension of DKt by a set �0

of purely structural inference rules. Kt + � is said to be properly displayed
by DKt + �0 if (i) DKt + �0 is a proper display calculus and (ii) every
derived rule of Kt + � is the � -translation of a sequent rule derivable in
DKt + �0.

Now, every axiom schema is equivalent to a schema of the form A � B,
where A and B are implication-free. The schema A � B has the same
deductive strength as the rule

B ! X ` A! X:

Moreover, if A and B are only built up from propositional variables, t, ^,
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_, hF i, and hP i, then by classical logic and distribution of hF i and hP i over
disjunction, we have

A �
_

i�m
Ci and B �

_
j�n

Dj ;

where every Ci and Dj is only built up from t, ^, hF i, and hP i. Therefore
A � B may as well be replaced by the rule schemata

D1 ! Y : : : Dn ! Y

Ci ! Y:

These rule schemata can now be translated into purely structural display se-
quent rules, using the following translation � from formulas of the fragment
under consideration into structures:

�(p) = p �(t) = I

�(hF iA) = � � ��(A) �(hP iA) = ��(A)

�(A ^ B) = �(A) ^ �(B)

The resulting structural rules

�(D1) ! Y : : : �(Dn) ! Y

�(Ci) ! Y

may still violate condition C3. In order to avoid this obstruction of proper
display, it must be required that in the inducing schema A � B, the
schematic formula A contains each formula variable only once. A tense
logical formula schema is then said to be primitive if it has the form A � B,
A contains each formula variable only once, and A, B are built up from t,
^, _, hF i, and hP i.

LEMMA 29. Every extension of Kt by primitive axiom schemata can be
properly displayed.

Next, if DKt + �0 properly displays Kt + �, by condition (ii) of De�-
nition 28, the structural rules in �0 may all have the form

X1 ! Y : : : Xn ! Y

Z ! Y:

This rule has the same deductive strength as the axiom schema

�1(Z) �
_

i
�1(Xi);

which is a primitive formula schema.

THEOREM 30. (Kracht) An axiomatic extension of Kt can be properly
displayed in precisely the case that it is axiomatizable by a set of primitive
axiom schemata.
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The question whether an axiomatically presented normal temporal logic
� is properly displayable thus reduces to the question whether � can be
axiomatized by primitive axioms over Kt. The implicit use of tense logic
in the structural language of sequents may help to �nd simple structural
sequent rules expressing less simple modal axiom schemata. The following
example is taken from [Kracht, 1996]. The :3 axiom schema 2(2A � 2B)_
2(2B � 2A) has the primitive modal equivalent

(3A ^3B) � ((3(A ^3B) _3(B ^3A)) _3(A ^ B));

which in tense logic is equivalent to the simpler primitive schema

hP ihF iA � ((hF iA _ A) _ hP iA):

Application of Kracht's algorithm results in the following structural rule:

X ! Y �X ! Y � � �X ! Y ` � � � �X ! Y:

Kracht also proves a semantic characterization of the properly displayable
tense logics. Let F be a class of Kripke frames hW;R;R�1i for temporal
logics, where R�1 is the inverse of R (i.e., R = f(x; y) j (y; x) 2 Rg). A
�rst-order sentence (open formula) over two binary relation symbols R and
R�1 is said to be primitive if it has the form (8)(9)A, where every quanti�er
is restricted with respect to R or R�1, and A is built up from ^, _, and
atomic formulas x = y, xRy, xR�1y, where at least one of x, y is not in the
scope of an existential quanti�er.

THEOREM 31. (Kracht) A class F of Kripke frames for temporal logics is
describable by a set of primitive �rst-order sentences i� the tense logic of F
can be properly displayed.

The characteristic axiom schemata of quite a few fundamental systems of
modal and tense logic are equivalent to primitive schemata, and therefore
these systems can be presented as proper display calculi, cf. Table 3.7 A
set of structural sequent rules �0 is said to correspond to a property of an
accessibility relation R (with a modal or tense logical axiom schema �) i�
under the � -translation the rules in �0 are admissible just in the event that

7Gor�e recently observed that Theorem 20 in [Kracht, 1996] is incorrect. This theorem
states that an axiomatic extension of K can be properly displayed i� it is axiomatizable by
a set of primitive modal axiom schemata. There are, however, �rst-order frame properties
that correspond to a primitive tense logical schema but fail to correspond to a primitive
modal axiom schema. An example of such a frame property is weak directedness:

8s8t8u(sRt ^ sRu � 9v(tRv ^ uRv)):

Weak directedness corresponds to the .2 schema32A � 23A (alias hF i[F ]A � [F ]hF iA).
Although .2 has no primitive modal equivalent, it has a primitive tense logical equivalent,
namely hP ihF iA � hF ihP iA: The latter schema induces a structural rule that may be
added to display calculi for (extensions of) K. Therefore, K.2 is properly displayable,
although .2 is not primitive.
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R enjoys the property (the rules in �0 have the same deductive strength
as �). Every axiom schema � in Table 3 corresponds to a purely structural
sequent rule �0 which can directly be determined from �, see Table 4.

schema primitive equivalent

D [F ]A � hF iA t � hF it

T [F ]A � A A � hF iA

4 [F ]A � [F ][F ]A hF ihF iA � hF iA

5 hF iA � [F ]hF iA hP ihF iA � hF iA

B A � [F ]hF iA (A ^ hF iB) � hF i(B ^ hF iA)

Alt1 hF iA � [F ]A (hF iA ^ hF iB) � hF i(A ^B)

T c A � [F ]A hF iA � A

4c [F ][F ]A � [F ]A hF iA � hF ihF iA

:2 hF i[F ]A � [F ]hF iA hP ihF iA � hF ihP iA

:3 [F ]([F ]A � [F ]B) _ [F ]([F ]B � [F ]A) hP ihF iA � ((hF iA _A) _ hP iA)

linf hF iA � [F ]((hF iA _A) _ hP iA) hP ihF iA � ((hF iA _A) _ hP iA)

linp hP iA � [P ]((hP iA _A) _ hF iA) hF ihP iA � ((hP iA _A) _ hF iA)

V [F ]A hP it � A

Dp [P ]A � hP iA t � hP it

Tp [P ]A � A A � hP iA

4p [P ]A � [P ][P ]A hP ihP iA � hP iA

5p hP iA � [P ]hP iA hF ihP iA � hP iA

Bp A � [P ]hP iA (A ^ hP iB) � hP i(B ^ hP iA)

Alt1p hP iA � [P ]A (hP iA ^ hP iB) � hP i(A ^B)

T c
p A � [P ]A hP iA � A

4cp [P ][P ]A � [P ]A hP iA � hP ihP iA

Vp [P ]A hF it � A

Table 3. Axioms and primitive axioms.

Let � (�) be the set of all (all purely modal) axiom schemata from Table
3, � � �, � � �, �0 = f�0 j � 2 �g, and �0 = f�0 j � 2 �g.

THEOREM 32. In DKt[�0, ` X ! Y i� ` �1(X) � �2(Y ) in Kt[�. In
DK[�0, ` X ! Y i� ` �1(X) � �2(Y ) in K[�.

Proof. This follows from axiomatizability by primitive schemata. �

THEOREM 33. Strong cut-elimination holds for DKt [�0 and DK [�0.

Proof. The rules in �0 and �0 satisfy conditions C2 { C7. �

COROLLARY 34. DKt [�0 is a conservative extension of DK [�0.

Kracht's algorithm can be dualized. Every schema A � B is interreplace-
able with the rule

X ! A ` X ! B:
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D0 � � �I! Y ` I! Y
T 0 � � �X ! Y ` X ! Y
40 � � �X ! Y ` � � � �X ! Y
50 � � �X ! Y ` � � � �X ! Y
B0 � � �(X Æ � � �Y ) ! Z ` Y Æ � � �X ! Z
Alt10 � � �(X Æ Y ) ! Z ` � � �X Æ � � �Y ! Z
T c0 X ! Y ` � � �X ! Y
4c0 � � � �X ! Y ` � � �X ! Y
:20 � � � �X ! Y ` � � � �X ! Y
:30 X ! Y �X ! Y � � �X ! Y ` � � � �X ! Y
linf 0 = :30

linp0 X ! Y �X ! Y � � �X ! Y ` � � � �X ! Y
V 0 X ! Y ` �I! Y
Dp

0 �I! Y ` I! Y
Tp

0 �X ! Y ` X ! Y
4p
0 �X ! Y ` � �X ! Y

5p
0 �X ! Y ` � � � �X ! Y

Bp
0 �(X Æ �Y ) ! Z ` Y Æ �X ! Z

Alt1p
0 �(X Æ Y ) ! Z ` �X Æ �Y ! Z

T cp
0 X ! Y ` �X ! Y

4cp
0 � �X ! Y ` �X ! Y

Vp
0 X ! Y ` � � �I! Y

Table 4. Structural rules corresponding to axiom schemata.

If A and B are only built up from propositional variables, f , ^, _, [F ], and
[P ], then by classical logic and distribution of [F ] and [P ] over conjunction,
we have

A �
^

i�m
Ci and B �

^
j�n

Dj ;

where every Ci and Dj is only built up from f , _, [F ], and [P ]. Therefore
A � B may be replaced by the rule schemata

X ! C1 : : : X ! Cm
X ! Dj :

These schemata are translatable into purely structural sequent rules using
the following translation �0 from formulas of the fragment under considera-
tion into structures:

�0(p) = p �0(f) = I

�0([F ]A) = ��0(A) �0([P ]A) = � � ��0(A)

�0(A _ B) = �0(A) _ �0(B)
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The resulting structural rules

X ! �0(C1) : : : X ! �0(Cm)

X ! �0(Dj)

again may still violate condition C3. In order to avoid the obstruction of
proper display, it must be required that in the inducing schema A � B,
the schematic formula B contains each formula variable only once. A tense
logical formula schema is then said to be dually primitive if it has the form
A � B, B contains each formula variable only once, and A, B are built up
from f , ^, _, [F ], and [P ].

THEOREM 35. An axiomatic extension of Kt can be properly displayed i�
it is axiomatizable by a set of dually primitive axiom schemata.

For instance, rule T 0 is equivalent to X ! �Y ` X ! Y and 40 with
X ! �Y ` X ! � � Y . Moreover, D0 is equivalent to �X Æ �Y ! �I `
X ! �Y , Alt10 with X ! Y ` X ! � � � � Y , and V 0 with ` �I ! X , see
[Wansing, 1994].

The properly displayable modal and tense logics satisfy Do�sen's Principle.
They are all based on the same set of left and right introduction rules, so
that the logical operations indeed have the same proof-theoretic, operational
meaning in each of these systems. Kracht's characterization results show
that many interesting and important intensional logics admit a cut-free dis-
play sequent calculus presentation. In Sections 3.8 and 4 other applications
of the display calculus are pointed out. Display sequent systems for various
non-normal modal logics may be found in [Belnap, 1982].

3.5 Formulas-as-types for temporal logics

It is well-known that every derivation in Gentzen's natural deduction calcu-
lus for intuitionistic implicational logic can be encoded by a typed �-term,
and vice versa [Howard, 1980]. In particular, every natural deduction proof
can be encoded by a closed term, and every closed term encodes a proof. It
is also well-known that every pair of non-convertible typed �-terms de�nes
di�erent functionals of �nite type [Friedman, 1975]. Every type A is asso-
ciated with an in�nite set DA, every term variable xA of type A denotes
an element from DA, and every term M (ABB) of type A B B denotes an

element from the set (DB)D
A

of all functions from DA to DB . Together
with the encoding, this interpretation results in a set-theoretic semantics of
proofs in intuitionistic implicational logic. In this section, we shall develop
a set-theoretic interpretation of sequent proofs in the ft; [F ]; hP i;B;^g{
fragment of the smallest normal temporal intuitionistic (or, for that pur-
pose, minimal) logic IntKt. The interpretation is based on the observation
that the modalities hP i and [F ] form a residuated pair with respect to
derivability. The encoding of proofs by typed terms should be such that
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proof-simpli�cation (or normalization) corresponds with a suitable reduc-
tion relation on terms, and therefore the set-theoretic semantics of terms
has to validate the equalities underlying the reduction rules. The principal
cut-elimination steps for hP i and [F ] reveal that two pairs of term forming
operations o1 and o2 are needed such that o1(o2(M)) = M . We shall use
the following identities:

S
Pa = a and

T
Sa = a;

where P is the familiar powerset operation and Sa =def fb j a � bg). Since
in general Sa is a proper class, we shall restrict the denotations of terms to
the universe V!1 . This is enough to accommodate the sets used as domains
of the intended models in Section 3.7.

We shall �rst de�ne a display sequent system DIntKt for the fragment of
IntKt under consideration, and then present an extension �t of the typed
�-calculus. The set of types in �t is the set of all formulas in the language
L = ft; [F ]; hP i;B;^g based on a denumerable set Atom of propositional
variables. In Section 3.6 it is proved that term reduction is a homomor-
phic image of proof-simpli�cation. Next, an encoding of terms by proofs
is presented. A set-theoretic semantics of proofs in DIntKt is obtained in
Section 3.7 by showing that every pair of non-convertible �t-terms de�nes
di�erent sets in the set-theoretic universe under consideration. In particu-
lar, every term M [F ]A denotes an element from fPa j a 2 DAg, and every
term M hP iA denotes an element from fSa j a 2 DAg: Also the formulas-as-
types notion of construction for various extensions of DIntKt is dealt with
and remarks on some related work about formulas-as-types for modal logics
are made.

First, we shall de�ne the sequent system DIntKt. We assume the fol-
lowing language of structures:

X ::= A j I j �X j X o Y:

A sequent now is an expression X ! Y , provided Y 6= I. The declarative
meaning of the structure connectives can be made explicit by a translation
� from the set of sequents into the set of L-formulas:

�(X ! Y ) := �1(X) B �2(Y );

where �i (i = 1; 2) is de�ned as follows:

�i(A) = A �1(I) = t

�1(X o Y ) = �1(X) ^ �1(Y ) �2(X o Y ) = �1(X) B �2(Y )

�1(�X) = hP i�1(X) �2(�X) = [F ]�2(X)

Given this understanding of the structure connectives, the basic structural
rules (4) and (5) from Section 3.1 are assumed. Clearly, the Display Theo-
rem holds for this structural language and calculus.
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DEFINITION 36. The display sequent calculus DIntKt is given by the
logical rules (id) and (cut), the basic structural rules (4) and (5), the intro-
duction rules for t, B, hP i, [F ], and the rules (! ^)0 and (^ !)0, together
with the following structural rules:

(empty structure) X ! Y ` IoX ! Y; X ! Y ` X o I! Y

IoX ! Y ` X ! Y; X o I! Y ` X ! Y

(associativity) (X1 oX2)oX3 ! Y a` X1 o (X2 oX3) ! Y

(permutation) X o Y ! Z ` Y oX ! Z

(contraction) X oX ! Y ` X ! Y

(expansion) X ! Y ` X oX ! Y

(monotonicity) X ! Z ` X o Y ! Z; X ! Z ` Y oX ! Z

(necessitation) I! X ` �I! X:

To show that DIntKt is a display calculus for IntKt, we de�ne an ax-
iomatic calculus HIntKt.

DEFINITION 37. The system HIntKt consists of the axiom schemata
and rules of the ft;^;Bg{fragment of positive intuitionistic logic, together
with

1. ([F ]A ^ [F ]B) B [F ](A ^ B)

2. [F ]t

3. A B [F ]hP iA

4. ` A B B
` [F ]A B [F ]B

5. ` A B B
` hP iA B hP iB

The relational semantics to be presented is a straightforward adaptation of
the semantics developed by Bo�si�c and Do�sen [1984]. A comprehensive survey
of intuitionistic modal logics and their algebraic and relational semantics is
[Wolter and Zakharyaschev, 1999]. A temporal frame is de�ned as a struc-
ture hW;RI ; RT i, where W is a non-empty set (of states), RI and RT are
binary relations on W , RI is both reexive and transitive, and, moreover,
(i) RIRT � RTRI (i.e. the composition of RT and RI is a subset of the com-
position of RI and RT ) and (ii) R�1I R�1T � R�1T R�1I . If F = hW;RI ; RT i is
a temporal frame, the temporal model based on F is the structure hF ; vi,
where v is a function from Atom �W into f0; 1g satisfying:

(Heredity) (v(p; u) = 1 and uRIt) implies v(p; t) = 1:
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Let M = hW;RI ; RT ; vi be a temporal model. Veri�cation of a formula A
at a state u 2W (M; u j= A) is inductively de�ned as follows:

M; u j= p i� v(p; u) = 1

M; u j= t

M; u j= A ^ B i� M; u j= A and M; u j= B

M; u j= A B B i� (8t 2 W )uRIt implies [M; t 6j= A or M; t j= B]

M; u j= [F ]A i� (8t 2 W )uRT t implies M; t j= A

M; u j= hP iA i� (9t 2 W ) tRTu and M; t j= A

For every formula A, if A is veri�ed at state u and uRIt, then A is also ver-
i�ed at t. Condition (i) ensures this general heredity property for formulas
[F ]A, and condition (ii) ensures it for formulas hP iA. A formula A is true
in a model hW;RT ; RI ; vi if A is veri�ed at every u 2 W , and A is said to
be true on a frame F , if A is valid in every model based on F . If K is a
class of models (frames), A is said to be valid in K i� A is valid in every
model (valid on every frame) in K.

THEOREM 38. HIntKt is sound and complete with respect to the class of
all temporal frames, i.e. for every L{formula A, A is provable in HIntKt
i� A is valid in the class of all temporal frames.

Proof. Soundness is shown by induction on proofs in HIntKt; for com-
pleteness see Appendix B. �

LEMMA 39. (1) If ` A in HIntKt, then ` I ! A in DIntKt, and (2)
If ` X ! Y in DIntKt, then ` �(X ! Y ) in HIntKt.

Proof. (1) By induction on proofs in HIntKt. We shall consider only two
example cases:

A! A
�A! hP iA

A! [F ]hP iA

Ao I! [F ]hP iA

I! Ao [F ]hP iA

I! A B [F ]hP iA

A! A
[F ]A! �A

[F ]Ao [F ]B ! �A

�([F ]Ao [F ]B) ! A

B ! B
[F ]B ! �B

[F ]Ao [F ]B ! �B

�([F ]Ao [F ]B) ! B

�([F ]Ao [F ]B)o �([F ]Ao [F ]B) ! A ^ B

�([F ]Ao [F ]B) ! A ^ B

([F ]Ao [F ]B) ! [F ](A ^ B)

([F ]A ^ [F ]B) ! [F ](A ^ B)

([F ]A ^ [F ]B)o I! [F ](A ^ B)

I! ([F ]A ^ [F ]B)o [F ](A ^ B)

I! ([F ]A ^ [F ]B) B [F ](A ^B)

(2) By induction on proofs in DIntKt. �
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COROLLARY 40. In HIntKt, ` A i� ` I! A in DIntKt.

By induction on the complexity of X , one can prove the following

LEMMA 41. In every extension of DIntKt by structural rules, it holds
that ` X ! �1(X) and ` �2(X) ! X.

THEOREM 42. In DIntKt, ` X ! Y i� ` �(X ! Y ) in HIntKt.

Proof. Analogous to the proof of Theorem 20. �

Since DIntKt is a proper display calculus, we have the following

THEOREM 43. DIntKt enjoys strong cut-elimination.

Take any terminating cut-elimination algorithm elimc for DIntKt. We
may also de�ne a binary relation s on the set of proofs in DIntKt by the
following stipulations:

A! A B ! B
AoB ! A ^ B
A ^ B ! A ^ B

 s A ^ B ! A ^B

A! A B ! B
A B B ! AoB
A B B ! A B B

 s A B B ! A B B

If � s �0, we say that in �0 a redundant part of � has been removed. Let
elimr denote the terminating algorithm that removes redundant parts of a
proof in top-down left to right order, so that a redundant part is removed
only if it has no redundant part above it. Obviously, in any extension of
DIntKt, every proof of a sequent s can be converted into a proof of s con-
taining no redundant part. Let elim denote elimrelimc, i.e. the composition
of elimr and elimc. The algorithm elim is the process of proof simpli�cation
to be considered. We assume that elim(�) = � if � contains no application
of (cut) and no redundant part.

3.6 The typed �-calculus �t

The set T of type symbols (or just types) is the set of all L-formulas. The
set V of term variables is de�ned as fvAi j 0 < i 2 !;A 2 Tg.

DEFINITION 44. The set Term of typed terms is de�ned as the smallest
set � such that

1. V � �;

2. if MA, NB 2 �, then hMA; NBi(A^B) 2 �;

3. M (A^B) 2 �, then (M (A^B))A0 , (M (A^B))B1 2 �;
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4. if xA 2 V and MB 2 �, then (�xAMB)(ABB) 2 �;

5. if M (ABB), NA 2 �, then (M (ABB); NA)B 2 �;

6. if MA 2 �, then (PM)[F ]A, (SM)hP iA 2 �;

7. if M [F ]A 2 �, then ([M [F ]A)A 2 �;

8. if M hP iA 2 �, then (\M hP iA)A 2 �.

A term MA is said to be a term of type A; obviously, every term has a
unique type. If confusion is unlikely to arise, we shall often write M instead
of MA and omit parentheses not needed for disambiguation. The set fv(M)
of free variables of M , the set of subterms of M , and M [xA := NA], the
result of substituting term N of type A for every occurrence of xA in M
are inductively de�ned in the obvious way. If a variable x in M is not an
element of fv(M), x is said to be a bound variable of M . The set of bound
variables of M is denoted as bv (M). We shall also write M(xA1

1 ; : : : ; xAn
n )

to express that x1; : : : ; xn 2 fv(M). If M(xA1

1 ; : : : ; xAn
n ) and N1; : : : ; Nn are

terms of types A1; : : : ; An, then M(N1; : : : ; Nn) is the result of substituting
in M the variables xi by Ni. We shall use `�' to denote syntactic identity
between term.

DEFINITION 45. The typed �-calculus �t consists of the following rules
and axiom schemata:

1. �xAM = (�yAM [x := y]), if y 62 (fv (M) [ bv(M));

2. �x(M;x) = M , if x 62 fv (M);

3. (�xM)N = M [x := N ], if bv(M) [ fv(N) = ;;

4. (hM0;M1i)i = Mi;

5. h(M)0; (M)1i = M ;

6. [PM = M ;

7. \SM = M ;

8. MA = MA;

9. M = N ` N = M ; M = N; N = G `M = G;

10. M = N ` (G;M) = (G;N); M = N ` (M;G) = (N;G);

11. M = N ` �xM = �xN ;

12. M = N ` PM = PN ; M = N ` [M = [N .
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DEFINITION 46. The binary relations on Term, !r (one-step reduction),
�r (reduction), and =r (equality) are de�ned as follows:

1. � �x(Mx) !r M , if x 62 fv(M);

� (�xM)N !r M [x := N ], if bv(M) [ fv (N) = ;;

� (hM;Ni)0 !r M ; (hM;Ni)1 !r N ;

� h(M)0; (M)1i !r M ;

� [PM !r M ; \SM !r M ;

� if MABB !r N
ABB , then (M;GA) !r (N;G);

� if MA^B !r N
A^B , then (M)i !r (N)i;

� if MA !r N
A, then �xM !r �xN , (GABBM) !r (GN),

hM;Gi !r hN;Gi, hG;Mi !r hG;Ni, PM !r PN ,
SM !r SN , \M !r \N , [M !r [N .

2. �r is the reexive transitive closure of !r;

3. =r is the equivalence relation generated by �r.

DEFINITION 47. �t-terms �x(Mx) (where x 62 fv (M)), (�xM)N (where
bv(M) [ fv (N) = ;), (hM;Ni)0; (hM;Ni)1; h(M)0; (M)1i; [PM; and \SM
are called redexes. A term M is a normal form (nf ) if it has no redex as a
subterm, and M has a nf if there is a nf N such that M =r N . M is said
to be strongly normalizable with respect to �r (sn(M)) if every sequence
of reduction steps starting at M is �nite.

THEOREM 48. Every M 2 Term is strongly normalizable with respect to
�r.

Proof. See Appendix C. �

Let norm(M) refer to the iterated contraction of the leftmost redex in M .
Since by the previous theorem, every reduction starting at M is �nite, norm
is a terminating normalization algorithm with respect to �r.

We shall now encode proofs by giving recipes for building up constructions
of sequents. Every formula occurring in an antecedent part of a sequent s
is said to be an antecedent formula component of s.

DEFINITION 49. A construction of a sequent s is a term MA such that an
occurrence of A is the succedent part of s, and every type of a free variable
of M is an antecedent formula component of s.

This notion of construction is a straightforward adaptation of the notion of
construction for ordinary natural deduction and sequent calculi. The set of
types of the free variables occurring in the term encoding a derivation � is a
subset of the set of assumptions on which � depends. Therefore applications
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of structural inference rules are not reected by term modi�cations, and
variations of structural rules are captured by imposing conditions on variable
binding and occurrences of free variables in the encoding terms (see, for
instance, [van Benthem, 1986, Chapter 7], [van Benthem, 1991], [Helman,
1977], [Wansing, 1992]).

OBSERVATION 50. Given a proof in DIntKt of a sequent s, one can �nd
a construction M of s.

Proof. We de�ne a function f from the set �DIntKt of proofs in DIntKt
to Term such that f(�) is a construction of the conclusion sequent of �.
The pairs of sequent rules and terms or term construction rules in Table 5
amount to an inductive de�nition of f . The variables newly introduced into
the conclusion of a term construction rule are the numerically �rst variables
of the types indicated not occurring in the premise term. �

Clearly, norm is a function on Term . Let �+DIntKt denote the set of
all proofs in DIntKt containing an application of (cut) or a redundant
part, and let ��DIntKt denote the set of all cut-free proofs in DIntKt
containing no redundant part. Let +Term denote the set of all terms that
are not normal forms, and let �Term denote the set of all terms that are
normal forms.

THEOREM 51. Let A = h�DIntKt; elimi and B = hTerm ;normi. The
function f de�ned in the proof of Observation 50 is a homomorphism from
A to B.

Proof. See Appendix D. �

Under the encoding of proofs by terms, surjective pairing (h(M)0; (M)1i
!r M) and �{reduction (�x(Mx) !r M , if x 62 fv(M)) correspond with
replacing proofs

A! A B ! B
Ao B ! A ^B
A ^ B ! A ^ B

and
A! A B ! B
A B B ! AoB
A B B ! A B B

by the axiomatic sequents A^B ! A^B and A B B ! A B B, respectively.
Note that there are no analogues of surjective pairing and �{reduction that
correspond with a replacement of proofs of [F ]A! [F ]A and hP iA! hP iA
from A ! A by the axiomatic sequents [F ]A ! [F ]A and hP iA ! hP iA.
Moreover, since in the encoding applications of structural rules are not
reected by term formation steps, it is in general not the case that if M =
f(�), � can be uniquely reconstructed from M .
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Logical rules
A! A vA1

X ! A A! Y MA N(xA)

X ! Y N [x := M ]
Structural rules

s M
s0 M

Intuitionistic connective rules

I! t vt1

I! X M
t! X M

X ! A Y ! B MA NB

X o Y ! A ^ B hM;Ni

AoB ! X M(xA; yB)

A ^B ! X M((zA^B)0; (zA^B)1)

X ! AoB M(xA)

X ! A B B �xAM

X ! A B ! Y MA N(xB)

A B B ! X o Y N [x := (y(ABB);M)]
Modal connective rules

�X ! A M

X ! [F ]A PM

A! X

[F ]A! �X

M(xA)

M([y[F ]A)

X ! A

�X ! hP iA
M
SM

A! �X M(xA)

hP iA! X M(\yhP iA)

Table 5. Sequent rules and term construction rules.
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3.7 A denotational semantics of proofs

We shall now de�ne models for �t. The completeness proof to be given
straightforwardly extends H. Friedman's [1975] completeness proof for typed
�{calculus. The plan of the proof is as follows: �rst it is shown that �t
is sound and complete with respect to the class of all models. This is
achieved by de�ning a canonical model that itself characterizes �t. Then a
notion of intended model is de�ned. In such models the typed terms have
their intended set-theoretic interpretation. In order to characterize provable
equality of terms in �t by validity in all intended models, it is shown that
for every intended model M, there exists a `partial homomorphism' from
M onto the canonical model. Since such partial homomorphisms turn out
to preserve validity, �t is sound and complete with respect to the class of
all intended models.

DEFINITION 52. A structure F = hfDAg; fAPA;Bg; fPRO
0
A;Bg,

fPRO1
A;Bg; fPAIRA;Bg, fPAg, fSAg, fP#Ag, fS#Ag i is called a type struc-

ture frame (or just a frame) i� for all types A, B:

1. DA (the domain of type A) is a non-empty set;

2. APA;B : D(ABB) �DA �! DB ,
PRO0

A;B : D(A^B) �! DA,

PRO1
A;B : D(A^B) �! DB ,

PAIRA;B : DA �DB �! D(A^B),
PA : DA �! D[F ]A;
SA : DA �! DhP iA;
P#A: D[F ]A �! DA;
S#A: DhP iA �! DA;

3. (extensionality) if a; b 2 D(ABB) and (8c 2 DA) we have (APA;B(a; c)
= APA;B(b; c)), then a = b;

4. (pro) for all a 2 DA, b 2 DB :
PRO0

A;B(PAIRA;B(a; b)) = a, PRO1
A;B(PAIRA;B(a; b)) = b;

5. (pair) for all a 2 DA^B : PAIRA;B(PRO0
A;B(a);Pro1A;B(a)) = a;

6. (future) for all a 2 DA: P# (Pa) = a;

7. (past) for all a 2 DA: S# (Sa) = a.

An assignment in a frame hfDAg, fAPA;Bg, fPRO0
A;Bg, fPRO1

A;Bg;
fPAIRA;Bg, fPAg, fSAg, fP#Ag, fS#Ag i is a function f de�ned on the set
V of term variables such that f(xA) 2 DA. The set of all assignments in a
given frame is denoted by Asg . If y 2 V , then fya is de�ned by fya (x) = f(x),
if x 6= y, fya (y) = a.
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DEFINITION 53. Suppose that F = hfDAg, fAPA;Bg, fPRO
0
A;Bg,

fPRO1
A;Bg; fPAIRA;Bg, fPAg, fSAg, fP #Ag, fS #Ag i is a frame. Then

hF ; vali is said to be a type structure model (or just a model) based on F
i� val is the valuation function from Term �Asg to

S
A2TD

A such that:

1. val (x; f) = f(x);

2. APA;B(val ((�xM); f); a) = val(M; fxa ), 8a 2 DA;

3. val ((M (ABB); NB); f) = APA;B(val (M; f); val(N; f));

4. val (hMA; NBi; f) = PAIRA;B(val (M; f); val(N; f));

5. val ((M (A^B))i; f) = PROi
A;B(val (M; f)), i = 0; 1;

6. val ((PMA)[F ]A; f) = PA(val (M; f));

7. val ((SMA)hP iA; f) = SA(val (M; f));

8. val (([M [F ]A)A; f) = P#A (val(M; f));

9. val ((\M hP iA)A; f) = S#A (val (M; f)).

Let M = hF ; vali be a model.

LEMMA 54. (1) val(M [x := N ]; f) = val(M; fx
val(N;f)), if bv(M)\fv (N) =

;. (2) val(M [x := y]; fya ) = val(M; fxa ), if y 62 bv(M) [ fv(M).

Proof. (1) By induction on M , for �xed N ; (2) by (1). �

The equality M = N is said to hold in M under assignment f (M; f j= M =
N) i� val (M; f) = val(N; f). M = N is called valid in M (M j= M = N)
i� M; f j= M = N , for all f 2 Asg . M = N is said to be valid in a class K
of models, if M j= M = N , for each M 2 K.

OBSERVATION 55. (Soundness) If M = N is provable in �t, then M = N
is valid in the class of all models.

Proof. By induction on proofs in �t. We must show that every axiom is
valid in every model, and that the rules of inference preserve validity. We
shall consider two cases not already dealt with in [Friedman, 1975].
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h(M)0; (M)1i = M :
val ((hM;Ni)0; (hM;Ni)1i; f)

= PAIR(val((hM;Ni)0; f); val((hM;Ni)1; f))

= PAIR(PRO0(PAIR(val (M; f); val(N; f))),

PRO1(PAIR(val (M; f); val(N; f))))
= PAIR(val(M; f); val (N; f)) = val(hM;Ni; f).

\SM = M :
val (\SM; f)

= S# (val (SM; f)
= S# (S(val (M; f))
= val (M; f) �

Next, we de�ne the frame F0 on which the canonical model is based. Let
jM j = fN j`�t M = Ng; jM j is the equivalence class of M with respect
to provable equality in �t.

DEFINITION 56. F0 = hfDAg, fAPA;Bg, fPRO0
A;Bg, fPRO1

A;Bg;
fPAIRA;Bg, fPAg, fSAg, fP#Ag, fS#Ag i is de�ned as follows:

� DA = fjM j jM is of type Ag;

� APA;B(jMABB j; j NA j) = j (M;N) j;

� PRO0
A;B(jMA^B j) = j (M)0 j;

� PRO1
A;B(jMA^B j) = j (M)1 j;

� PAIRA;B(jMA j; j NB j) = j hM;Ni j;

� PA(jMA j) = j PM j;

� SA(jMA j) = j SM j;

� P#A (jMA j) = j [M j;

� S#A (jMA j) = j \M j.

LEMMA 57. F0 is a frame.

Proof. Clearly, DA is a non-empty set, and APA;B , PRO0
A;B , PRO1

A;B;
PAIRA;B , PA, SA, P#A, and S#A are functions with appropriate domain and
range, for all types A and B. For (extensionality) see [Friedman, 1975]. For
(pro), (pair), (future), and (past), use the obvious equalities. �

A function g : V �! Term is called a substitution, if g(x) and x are of the
same type. A substitution is called regular, if for pairwise distinct variables
x; y, fv(g(x)) \ fv (g(y)) = ;. Let M(g) denote the result of simultaneously
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replacing in M every free occurrence of each variable x by g(x). It can
easily be shown that if M 2 Term and � is a �nite set of variables, then
there is an N such that `�t M = N , fv(M) = fv (N), and bv (N) \ � = ;.

DEFINITION 58. Suppose f is an assignment in F0 and g is a regular
substitution such that f(x) = j g(x) j, for every x 2 V . For a given term
M , choose a term N such that `�t M = N and for every x 2 fv (N),
bv(N) \ fv (g(x)) = ;. Then val (M; f) is de�ned by val(M; f) = j N(g) j.

It can be shown that val : Term � Asg �!
S
AD

A, and `�t M = N
implies val (M; f) = val(N; f), cf. [Friedman, 1975].

LEMMA 59. M0 = hF0; vali is a type structure model.

Proof. We consider those conditions not already assumed in Friedman's
paper. Let g be a regular substitution and f(x) = j g(x) j, for f 2 Asg .
Choose M1, N1 such that `�t M = M1, `�t N = N1, and bv (M1)\fv (g(x))
= bv(N1) \ fv(g(x)) = ;, for every x 2 fv(M1) [ fv(N1).

4 : val (hM;Ni; f) = j hM1; N1i(g) j =
PAIR(jM1(g) j; j N1(g) j) = PAIR(val(M; f); val (N; f)).

5 : val ((M)i; f) = j (M1)i(g) j = PROi(jM1(g) j) = PROi(val (M; f)).

6 : val ((PMA)[F ]A; f) = j PM1(g) j = PA(jM1(g) j) = PA(val (M; f)).

8 : val (([M [F ]A)A; f) = j [M1(g) j = P#A (jM1(g) j) = P#A (val (M; f)).

7 and 9 : analogous to the previous two cases. �

THEOREM 60. (Completeness) If M = N is valid in the class of all mod-
els, then `�t M = N .

Proof. Suppose 6`�t M = N . Choose M1, N1 such that `�t M = N1,
`�c N = N1, and bv (M1) \ fv(M1) = bv (N1)\fv (N1) = ;. Then val(M; f)
= jM1 j 6= j N1 j = val(N; f), for f(x) = j id(x) j, for all x 2 V , where id is
the identity function on V . Thus, M0 6j= M = N . �

We now de�ne the intended models. Following the terminology of Friedman,
we shall call the frames underlying an intended model `full temporal type
structures over in�nite sets'.

DEFINITION 61. A type structure frame F = hfDAg, fAPA;Bg,
fPRO0

A;Bg, fPRO
1
A;Bg; fPAIRA;Bg, fPAg, fSAg, fP#Ag, fS#Agi is said

to be a full temporal type structure over in�nite sets, if

� Dt is in�nite, and for every p 2 Atom; Dp is in�nite;

� DA^B = DA �DB ;

� DABB = (DB)D
A

;
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� D[F ]A = fPa j a 2 DAg; DhP iA = fSa j a 2 DAg;

� APA;B(a; b) = a(b);

� PRO0
A;B(ha; bi) = a; PRO1

A;B(ha; bi) = b;

� PAIRA;B(a; b) = ha; bi;

� PA(a) = Pa; SA(a) = Sa;

� P#A (a) = [a; S#A (a) = \a:

DEFINITION 62. Let F = h fDAg, fAPA;Bg, fPRO
0
A;Bg, fPRO

1
A;Bg;

fPAIRA;Bg, fPAg, fSAg, fP #Ag, fS #Ag i, F� = hfD�Ag, fAP�A;Bg,

fPRO�0A;Bg, fPRO
�1
A;Bg; fPAIR

�
A;Bg, fP

�
Ag, fS

�
Ag, fP#

�
Ag, fS#

�
Ag i be frames,

and let M = hF ; val i and M� = hF�; val�i be models. A family of functions
ffAg is called a partial homomorphism from M onto M� i�

1. for each type A, fA is a partial function from DA onto D�A;

2. if fABB(a) exists, then fB(APA;B(a; b)) = AP�A;B(fABB(a); fA(b)),
for all b in the domain of fA,

3. if fA(a), fB(b) exist,
then fA^B(PAIRA;B(a; b)) = PAIR�A;B(fA(a); fB(b));

4. if fA^B(a) exists, then fA(PRO0
A;B(a)) = PRO�0A;B(fA^B(a));

5. if fA^B(a) exists, then fB(PRO1
A;B(a)) = PRO�1A;B(fA^B(a));

6. if fA(a) exists, then
f[F ]A(PA(a)) = P�A(fA(a)); fhP iA(SA(a)) = S�A(fA(a));

7. if f[F ]A(a); fhP iA(b) exist, then
fA(P#A (a)) = P#�A (f[F ]A(a)); fA(S#A (b)) = S#�A (fhP iA(b)).

LEMMA 63. Let M, M� be as in the previous de�nition, and let ffAg
be a partial homomorphism from M onto M�. If g, g� are assignments
in F and F� respectively, and fA(g(xA)) = g�(x), then fA(val (MA; g)) =
val�(M; g�).

Proof. By induction on M . We consider the cases not already dealt with
in [Friedman, 1975]. Note that we may assume fA(g(xA)) = g�(x), since
fA is onto.

� M � hNA; GBi: fA^B(val (hN;Gi; g))
= fA^B(PAIR(val (N; g); val(G; g)))
= PAIR�A;B(fA(val (N; g)); fB(val (G; g)))
= PAIR�A;B(val�(N; g�); val�(G; g�)) by the induction hypothesis
= val�(hN;Gi; g�).
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� M � (NA^B)i: f(val((N)i; g)) = f(PROi(val (N; g)))
= PRO�i(fA^B(val (N; g)))
= PRO�i(val�(N; g�)) by the induction hypothesis
= val�((N)i; g

�).

� M � PNA: f[F ]A(val(PN; g)) = f[F ]A(PA(val(N; g)))
= P�A(fA(val(N; g))) = P�A(val�(N; g�)) = val�(PN; g�).

� M � [N [F ]A: fA(val([N; g)) = fA(P#A (val(N; g)))
= P#�A (f[F ]A(val(N; g))) = P#�A (val�(N; g�)) = val�([N; g�).

� M � SN;\N : analogous to the previous two cases. �

COROLLARY 64. Let M = hF ; vali, M� = hF�; val�i be models. If there
is a partial homomorphism from M onto M�, then M j= M = N implies
M� j= M = N .

Proof. Suppose M j= MB = NB , ffAg is a partial homomorphism from
M onto M�, and g� is an assignment in M�. We choose an assignment g in
M such that for every A 2 T , g�(x) = fA(g(xA)). By the previous lemma,
val�(M; g�) = fB(val(M; g) = fB(val(N; g) = val�(N; g�) �

THEOREM 65. Let M be a model based on a full temporal type structure
over in�nite sets. Then `�t M = N i� M j= M = N .

Proof. It suÆces to show that M j= M = N implies M0 j= M = N . To
prove this, we de�ne by induction on A a partial homomorphism ffAg from
M onto M0 as follows:

� A = p, A = t, p 2 Atom:
fA is any function from DA onto M0's domain DA.
(Such a function exists, since DA is in�nite and DA is denumerable.)

� A = (B ^ C):
If fB(b), fC(c) exist, then fB^C(hb; ci) = fB^C(PAIR(b; c)) is de�ned
as PAIRB;C(fB(b); fC(c)):

� A = (B B C):
fBBC(a) is de�ned as the unique member of D(BBC) (if it exists) such
that fC(a(b)) = APB;C(fBBC(a); fB(b)), for all b in the domain of fB .

� A = [F ]A:
f[F ]A(a) = f[F ]A(PA(b)) for some b 2 DA is de�ned as PA(fA(b)) if
fA(b) exists.

� A = hP iA:
fhP iA(a) = fhP iA(SA(b)) for some b 2 DA is de�ned as SA(fA(b)) if
fA(b) exists.
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That ffAg is a partial homomorphism follows from the de�nition of ffAg
and the following equations:

fA(PRO
0
A;B(ha; bi))

= fA(a)
= PRO

0
A;B(PAIRA;B(fA(a); fB(b)))

= PRO
0
A;B(fA^B(PAIRA;B(a; b)))

= PRO
0
A;B(fA^B(ha; bi))

fB(PRO
1
A;B(ha; bi))

= fB(b)
= PRO

1
A;B(PAIRA;B(fA(a); fB(b)))

= PRO
1
A;B(fA^B(PAIRA;B(a; b)))

= PRO
1
A;B(fA^B(ha; bi))

fA(P#A (Pa))
= fA(a)
= P#A (f[F ]A(Pa))

fA(S#A (Sa))
= fA(a)
= S#A (fhP iA(Sa))

It remains to be shown that fA is onto, for every type A. For A = t and
A = p 2 Atom, this follows from the de�nitions of ft, fp and F0. For
the remaining cases we consider two examples. A = [F ]B. Assume d =
j PM j 2 D[F ]B . Choose a 2 D[F ]B such that a = Pb for b 2 DB and
b = f�1B (j MB j). Since fB is onto, such an element a from D[F ]B exists.
Then f[F ]B(a) = f[F ]B(PB(b)) = PB(fB(b)) = j PM j = d. Consider now

A = (B B C), and assume d 2 D(BBC). Choose a 2 D(BBC) such that for
every b in the domain of fB , a(b) 2 f�1C (Ap(d; fB(b))). Then f(BBC)(a) =

d. Since fC and fB may be assumed to be onto, the set of such a 2 D(BBC)

is non-empty. �

Whereas the encoding of substructural subsystems of DIntKt obtained
by giving up all or part of DIntKt's structural rules will require modi�ca-
tions of the notion of construction, in order to encode structural extensions
of DIntKt, the notion of construction need not be altered. Various ex-
tensions of HIntKt can be presented as structural extensions of DIntKt.
The following axiom schemata are those schematic axioms from Table 3,
which are in L. Each axiom schema Ax in this table corresponds with the
associated structural rule Ax0 in the sense that an L{formula A is provable
in HIntKt + Ax i� I! A is provable in DIntKt + Ax0.

In the literature, several proposals have been made to extend the formulas-
as-types notion of construction from positive logic to modal logics based on
it. We shall here briey point to �ve such approaches.

1. Gabbay and de Queiroz [1992] interpret the necessity modality 2 \as a
sort of second-order universal quanti�cation (quanti�cation over structured
collections of formulas)" [Gabbay and de Quieroz, 1992, p. 1359]. Using the
framework of Labelled Natural Deduction [de Queiroz and Gabbay, 1999],
proofs in various modal logics are encoded by imposing conditions on ab-
straction over possible-world variables [de Queiroz and Gabbay, 1997]. How-
ever, Gabbay and de Queiroz do not consider a Friedman-style completeness
proof for the �{calculi under consideration.
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name axiom schema name structural rule

T [F ]A B A T 0 X ! �Y ` X ! Y

4 [F ]A B [F ][F ]A 40 X ! �Y ` X ! � � Y

V [F ]A V 0 X ! Y ` �I! Y

T c A B [F ]A T c 0 X ! Y ` X ! �Y

4c [F ][F ]A B [F ]A 4c 0 X ! � � Y ` X ! �Y

Dp t B hP it Dp
0 �I! Y ` I! Y

Tp A B hP iA Tp
0 �X ! Y ` X ! Y

4p hP ihP iA B hP iA 4p
0 �X ! Y ` � �X ! Y

Bp (A ^ hP iB) B hP i(B ^ hP iA) Bp
0 �(X o �Y ) ! Z ` Y o �X ! Z

Alt1p (hP iA ^ hP iB) B hP i(A ^ B) Alt1p
0 �(X o Y ) ! Z ` �X o �Y ! Z

Tp
c hP iA B A Tp

c 0 X ! Y ` �X ! Y

4p
c hP iA B hP ihP iA 4p

c 0 � �X ! Y ` �X ! Y

Table 6. Axioms in L.

2. Borghuis [1993; 1994; 1998] investigates the formulas-as-types-notion of
construction for several normal modal propositional logics based on CPL.
Fitch-style natural deduction proofs in these modal logics are interpreted in
a second-order �{calculus. In this approach, unary type-forming operators
are introduced to encode applications of import and export rules for 2 in
Fitch-style natural deduction. The operations k̂ and �k encoding the export
and import rules for 2 in the smallest normal modal logic K, for example,
satisfy the following reduction rule: k̂(�kM) !r M . Borghuis proves strong
normalization results for the modal typed �{calculi under consideration.
However, the term-forming operations used to encode applications of import
and export rules for 2 are not provided with a set-theoretic interpretation.

3. Martini and Masini [1996] consider formulas-as-types for 2-sequent cal-
culi, cf. Section 2.2. They introduce two unary term-forming operations
gen and ungen to encode applications of 2{introduction and 2{elimination
rules. A strong normalization theorem is proved for the typed �{calculus
encoding proofs in the 2-sequent calculus for the modal logic S4. However,
the typed terms do not receive a set-theoretic interpretation.

4. Recently, Sasaki [1999] suggested understanding a �{term of type 2A
as either denoting an element from the domain associated with A, or being
unde�ned. A term MAB2B would then denote a partial function from DA

to DB . Sasaki de�nes an extended typed �{calculus with various formation
rules for obtaining terms of type 2A. Moreover, natural deduction proofs in
the extension of the intuitionistic modal logic IntK by the axiom schemata

Tc A B 2A and 4c 22A B 2A
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are encoded by terms in the extended typed �{calculus. Unfortunately, no
denotational semantics for this �{calculus is developed.

5. The approach that comes closest to the one presented here is Restall's
[1999, Chapter 7], who also applies Belnap's display calculus. Introductions
of [F ] on the right (left) of the sequent arrow are encoded using a unary
operator up (down), lifting (lowering) terms of type A ([F ]A) to terms of
type [F ]A (A), just like the operation P ([). Backward-looking possibility
is treated quite di�erently. Introductions of hP i (in Restall's notation {�)
on the right are encoded using a unary type-lifting operation � (not to be
confused with the structure connective �). Introductions on the left are
encoded by a unary term-forming operation turning terms NB , M hP iA into
the term let M be �x in N of type B. Whereas the term down upN reduces
in one step to N , let �G be �x in N reduces in one step to N [x := G]. Restall
proves normalization for the extended typed �{calculus under consideration,
however, no set-theoretic interpretation of up, down, �, and let M be �x in

is suggested.

In the literature on functional programming there are various proposals for
providing an operational semantics of proofs in modal logics, notably in in-
tuitionistic S4. Natural deduction in the framework of Martin-L�of's type
theory is considered in [Davis and Pfenning, 2000] and [Pfenning, 2000].
Also, further references can be found in these papers.

3.8 Bi-intuitionistic logic

Suppose a connective f1 is introduced in a �nite-set-to-formula sequent
calculus, whereas another connective f2 is introduced in a formula-to-�nite-
set sequent system. Then the right introduction rules for f1 and the left
introduction rules for f2 satisfy the segregation condition. However, if we
just combine the sets of rules of both sequent calculi, neither Af1B nor Af2B
is introduced in the most general context, namely in an arbitrary �nite
set of formulas, because there are no structure operations like in display
logic that allow keeping track of succedent (antecedent) formulas on the
left (right) of !. This leads to a problem encountered in formulating an
ordinary sequent calculus for bi-intuitionistic logic BiInt, the combination
of intuitionistic logic and dual-intuitionistic logic. It can be shown that in
the ordinary �nite-set-to-formula sequent calculus no binary operation ] is
de�nable such that ] satis�es (in the �nite-set-to-formula setting) the dual
Deduction Theorem characteristic of coimplication: A ! B i� A]B ! ;,
see [Gor�e, 2000]. Bi-intuitionistic logic extends the language of intuitionistic
logic by coimplication, the residual of disjunction, and conegation. The
syntax of BiInt is given by:

A ::= p j aA j `A j A ^ B j A _ B j A B B j A J B:
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In the presence of a falsity constant f , intuitionistic negation a can be
de�ned by aA := (A B f), and in the presence of a truth constant t,
conegation ` can be de�ned by `A := (t J A).

Bi-intuitionistic logic has a natural algebraic and possible-worlds seman-
tics, see [Rauszer, 1980]. The possible-worlds semantics adds to Kripke
models for intuitionistic logic evaluation clauses for conegation and coimpli-
cation. A frame is a pair hI;vi, where I a is non-empty set (of states), and
v is a reexive and transitive binary relation on I . A structure hI;v; vi is
a bi-intuitionistic model if v is a function assigning to every propositional
variable p a subset v(p) of I and, moreover, for every t; u 2 I , if t v u and
t 2 v(p), then u 2 v(p). Veri�cation of a formula A in the model M =
hI;v; vi at state t (in symbols M; t j= A) is inductively de�ned as follows:

M; t j= p i� t 2 v(p); for every propositional variable p;
M; t j= aA i� for all u 2 I; t v u implies M; u 6j= A
M; t j= `A i� there exists u 2 I; u v t; andM; u 6j= A
M; t j= A ^ B i� M; t j= A and M; t j= B;
M; t j= A _ B i� M; t j= A or M; t j= B;
M; t j= A B B i� for all u 2 I; if t v u then M; u 6j= A orM; u j= B;
M; t j= A J B i� there is a u 2 I; u v tM; u j= A and M; u 6j= B;

where M; t 6j= A is the (classical) negation of M; t j= A. A formula A is
valid in M = hI;v; vi if for every t 2 I , M; t j= A; and A is valid on a
frame F = hI;vi if A is valid in every model hF ; vi based on F . A formula
A is said to be valid in a class K of models (frames) if A is valid in every
model (frame) from K.

The axiomatic system HBiInt consists of axiom schemata for intuition-
istic logic Int, modus ponens, the rule

from A infer a`A

and the following axiom schemata:

1. A B (B _ (A J B))

2. (A J B) B `(A B B)

3. ((A J B) J C) B (A J (B _ C))

4. a(A J B) B (A B B)

5. (A B (B J B)) B aA

6. aA B (A B (B J B))

7. ((B B B) J A) B `A

8. `A B ((B B B) J A)
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THEOREM 66. A formula A in the language of BiInt is valid in the class
of all models i� A is provable in HBiInt.

In the present section, we shall apply the modal display calculus and use
a modal translation of BiInt into S4t to give a display sequent calculus for
BiInt based on the structure connectives I, �, Æ, and �, cf. [Gor�e, 1995],
[Wansing, 1998, Chapter 10]. A direct display sequent system for BiInt not
relying on a modal translation has been presented in [Gor�e, 2000]. Some-
times making a detour via a modal translation may be useful. In [Wansing,
1999], a modal translation into S4 has been used to give a cut-free display
sequent calculus for a certain constructive modal logic of consistency, for
which no other proof system is known. In view of the possible-worlds se-
mantics for BiInt and the familiar modal translation of Int into S4 (see
[G�odel, 1933]), a faithful modal translation m of BiInt into S4t can be
straightforwardly de�ned as follows:

1. m(p) = [F ]p, for every propositional variable p;

2. m(t) = t;

3. m(f ) = f ;

4. m(A]B) = m(A)]m(B), ] 2 f^;_g;

5. m(A B B) = [F](m(A) � m(B));

6. m(A J B) = hP i:(m(A) � m(B)).

THEOREM 67. ([ Lukowski, 1996]) A formula A in the language of BiInt
is provable in HBiInt i� m(A) is provable in S4t.

DEFINITION 68. The display sequent system DBiInt consists of (id),
(cut), the basic structural rules (1) { (4) of Section 1.3, rules (! t), (t!),
(! f ), (f !), (! ^), (^ !), (! _), (_ !), the structural rules from
Table 2 and:

(! a) �X ! �A ` X ! aA
(a!) �A! X ` aA! �X
(! `) X ! �A ` �X ! `A
(`!) �A! �X ` `A! X

(!B)m �X ÆA! B ` X ! A B B
(B!)m X ! A B ! Y ` A B B ! �(�X Æ Y )
(!J)m X ! A B ! �X ` �X ! A J B
(J!)m � �X ÆA! B ` A J B ! X

(persistence) p! X ` �p! X
(reflexivity) X ! �Y ` X ! Y
(transitivity) X ! �Y ` X ! � � Y
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It can be shown that the persistence rule for arbitrary formulas is an ad-
missible rule of DBiInt. This can be used to prove weak completeness of
DBiInt with respect to HBiInt.

LEMMA 69. In DBiInt, A! X ` �A! X:

Proof. By induction on A; for example:

A! A
�A! �A
aA! � �A
aA! � � �A
�aA! � �A
� �aA! �A
�aA! aA aA! X (cut)
�aA! X

A! A
�A! �A

�A! �A ÆB
�(�A ÆB) ! A

B ! B
B ! �A ÆB

B ! � � (�A ÆB)

� � (�A ÆB) ! A J B

�(�A ÆB) ! �(A J B)

�(�A ÆB) ! � � (A J B)

� � �(A J B) ! �A ÆB

A Æ � � �(A J B) ! B

� � �(A J B) ÆA! B

A J B ! �(A J B)

�(A J B) ! A J B A J B ! X

�(A J B) ! X

�

THEOREM 70. In DBiInt ` I! A i� in HBiInt ` A:

Proof. (: By induction on proofs in HBiInt. As an example, we here
consider only the proof of one axiom schema of HBiInt:
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B ! B
� � � � I ÆB ! B

A! A B J B ! � � I
A B (B J B) ! �(�A Æ � � I)

A B (B J B) ! �A Æ � � I (reflexivity)

A B (B J B) ! � � I Æ �A

�I Æ (A B (B J B)) ! �A

�I Æ (A B (B J B)) ! � �A (persistence)

�(�I Æ (A B (B J B))) ! � �A

�I Æ (A B (B J B)) ! aA

I! (A B (B J B)) B aA

): We de�ne the translations �1 and �2 from structures into tense logical
formulas as in Section 1.3, except that now �1(A) = �2(A) = m(A). By
induction on proofs in DBiInt, it can be shown that ` X ! Y in DBiInt
implies ` �1(X) � �2(Y ) in S4t. Therefore, ` I ! A in DBiInt implies
` m(A) in S4t. By the previous theorem we have ` A in HBiInt. �

THEOREM 71. Strong cut-elimination holds for DBiInt.

Proof. DBiInt is a proper display calculus. As to the ful�llment of con-
dition C8, the derivation on the left, for example, reduces to the derivation
on the right, using contraction:

X ! A B ! �X � � Y ÆA! B
�X ! A J B A J B ! Y

�X ! Y

� � Y ÆA! B
X ! A A! �Y ÆB
X ! �Y ÆB
� � Y ÆX ! B B ! �X
� � Y ÆX ! �X
X ! �Y Æ �X
X ÆX ! �Y
X ! �Y
�X ! Y

�

COROLLARY 72. DBiInt [ DS4t is a conservative extension of both
DBiInt and DS4t.

As in Section 3.1, let for modal formulas A the translations �i (i = 1, 2)
be de�ned by �i(A) = A.

LEMMA 73. In DBiInt [ DS4t, (i) ` X ! �1(X) and (ii) ` �2(X) !
X.
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Proof. Both (i) and (ii) are proved simultaneously by induction on X . In
particular we have to verify that for every formula of the language of BiInt,
` A! m(A) and ` m(A) ! A. But this is the case, see for example:

A! m(A) m(B) ! B

m(A) � m(B) ! �A ÆB

�(�A ÆB) ! �(m(A) � m(B))

�(�A ÆB) ! :(m(A) � m(B))

� � (�A ÆB) ! hP i:(m(A) � m(B))

�(�A ÆB) ! �hP i:(m(A) � m(B))

� � hP i:(m(A) � m(B)) ! �A ÆB

� � hP i:(m(A) � m(B)) ! B Æ �A

� � hP i:(m(A) � m(B)) ÆA! B

A J B ! hP i:(m(A) � m(B))

m(A) ! A

m(A) ! A Æm(B)

�A Æm(A) ! m(B)

�A! m(A) � m(B)

�(m(A) � m(B)) ! A

:(m(A) � m(B)) ! A

B ! m(B)

B Æm(A) ! m(B)

B ! m(A) � m(B)

�(m(A) � m(B)) ! �B

:(m(A) � m(B)) ! �B

B ! �:(m(A) � m(B))

�:(M(A) � m(B)) ! A J B

:(M(A) � m(B)) ! �(A J B)

hP i:(M(A) � m(B)) ! A J B

�

THEOREM 74. In DBiInt ` X ! Y i� �1(X) � �2(Y ) is valid on every
frame (understood as a frame for S4t).

Proof. ()): This follows by induction on proofs in DBiInt. ((): Suppose
that �1(X) � �2(Y ) is valid on every frame. Hence �1(X) � �2(Y ) is a
theorem of S4t and hence ` �1(X) ! �2(Y ) in DBiInt [ DS4t. By
the previous lemma, ` X ! Y in DBiInt [ DS4t and by Corollary 72,
` X ! Y in DBiInt. �

One advantage of the translation-based sequent system DBiInt is
that by abandoning combinations of the structural rules (persistence);
(reflexivity), and (transitivity), one obtains cut-free sequent calculus pre-
sentations of the subsystems of BiInt that arise from giving up the corre-
sponding semantic requirements: persistence of atomic information, reex-
ivity, and transitivity of the relation v. Also seriality of v, a weakening of
reexivity, is expressible by a purely structural sequent rule, see condition
D0 in Table 4.
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4 INTERRELATIONS AND EXTENSIONS

While the existence of a rich inventory of types of proof systems for modal
and other logics may be welcomed, for instance, from the point of view
of designing and combining logics, there also exists the need of comparing
di�erent approaches and investigating their interrelations and their relative
advantages and disadvantages. Mints [1997], for example, presents cut-
free systems of indexed sequents for certain extensions of K and de�nes
a translation of these sequent systems into equivalent display calculi. In
this �nal section a translation of multiple-sequent systems into higher-arity
sequent systems and a translation of hypersequents into display sequents
are de�ned, showing that multiple-sequent systems can be simulated within
higher-arity proof systems and that the method of hypersequents can be
simulated within display logic. Moreover, one interesting aspect of extend-
ing the sequent-style proof systems for modal and temporal propositional
logics to sequent calculi for modal and temporal predicate logics is consid-
ered, namely avoiding the provability of the Barcan formula and its converse.
We also briey refer to recent work on display calculi for extended modal
languages. Finally, the relation between display logic and Dunn's Gaggle
Theory is pointed out.

4.1 Translation of multiple-sequent systems

The translation � in Section 2.4 reveals a straightforward relation between
Indrzejczak's multiple-sequent systems and higher-arity sequent systems for
modal logics. The intended meaning of the multiple-sequents can be ex-
pressed by four-place sequents using a translation �:

�(� ! �) = Æ(�) !;
; Æ(�)

�(�2!�) = Æ(�) !
W
Æ(�)

; ;

�(�3!�) = ; !
:
V
Æ(�)

; Æ(�):

If S is a multiple-sequent system, then let �(S) be the result of the �-
translation of the rules of S. Let �� denote the translation of four-place
sequents into modal formulas stated in Section 2.3. If s1; : : : ; sn=s is a rule
of MC, then ��(�(s1)); : : : ; ��(�(sn))=��(�(s)) is validity preserving in C.
For the rule [TR], for instance, we have ��(�([TR])) =

V
Æ(�) � 2

W
Æ(�)

3:
W
Æ(�) � :

V
Æ(�)

=

V
Æ(�) � 2

W
Æ(�)

3
V
Æ(��) �

W
Æ(��)

Moreover, (RR) is derivable and CPL is contained in �(MC). Hence,

OBSERVATION 75. The system �(MC) is sound and complete with re-
spect to C: ` � ! � in �(MC) i� ��(�(� ! �)) is valid in C.
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The translation � is also faithful for the extension of MC by the rules
[nec], [D], [T ], and [4] and extensions of C by the necessitation rule and the
axiom schemata D, T and 4.

4.2 Translation of hypersequents

In order to characterize various non-classical logics by means of hyperse-
quential calculi, Avron [1996] uses di�erent semantical readings of hyper-
sequents. Basically a distinction can be drawn between interpreting the
sequent arrow of a component in a hypersequent as material implication
or as a constructive implication not de�nable in terms of Boolean nega-
tion and disjunction. This di�erence in interpretation requires di�erent
translations of hypersequents into display sequents. If the sequent arrow is
interpreted constructively, a suitable translation may, for example, exploit
a faithful embedding of the logic under consideration into a normal modal
or temporal logic. In such a case, the sequent arrow is interpreted as strict
material implication. In [Wansing, 1998, Chapter 11] translations of hyper-
sequents into display sequents are de�ned that simulate hypersequents in
Avron's hypersequential calculi GL3, GS5, and GLC for  Lukasiewicz 3-
valued logic L3, S5, and Dummett's superintuitionistic logic LC, also called
G�odel-Dummett logic. We shall here consider only the translations suitable
for S5 and LC. The treatment of GL3 is slightly more involved, because L3
comprises connectives from di�erent `families' of logical operations. To deal
with this composite character of L3 in display logic, the structure connec-
tive Æ is replaced by two binary structure operations Æc and Æi, see [Wansing,
1998]. If � = fA1; : : : ; Ang, let �� = f�A1; : : : ; �Ang. Since Æ is assumed
to be associative and commutative, we may put (Æ�) = A1 Æ : : : Æ An. If
� = ;, let �� = (Æ�) = I. Recall the notion of hypersequent from Section
2.5.

DEFINITION 76. The translation �0 of ordinary sequents into display
structures is de�ned by

�0(� ! �) = �((Æ ��) Æ (Æ�));

and the translation � of non-empty hypersequents into display sequents is
de�ned by

�(s1 j : : : j sn) = I! �0(s1) Æ : : : Æ �0(sn):

THEOREM 77. For every hypersequent H, ` �(H) in DS5 i� ` H in
GS5.

In the hypersequential system GLC the components of a hypersequent
are restricted to be ordinary Gentzen sequents with at most a single con-
clusion. Dummett's LC is the logic of linearly ordered intuitionistic Kripke
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models. An axiomatization of LC is obtained from an axiomatization HInt
of Int by adding the axiom schema (A B B) _ (B B A). It is well-known
that the modal translation m de�ned in Section 3.8 (restricted to the lan-
guage of intuitionistic logic, i.e. the language of LC) is a faithful embedding
of LC into S4.3, the logic of linearly ordered modal Kripke models.

THEOREM 78. For every formula A in the language of LC, ` A in LC
i� ` m(A) in S4:3.

DEFINITION 79. The translation �0 of a single-conclusion ordinary se-
quent s = A1; : : : ; An ! B is de�ned by

�0(s) = �(�A1 Æ �(�A2 Æ : : : � (�An ÆB) : : :)):

If s = A1; : : : ; An ! ;, then �(s) = �(�A1 Æ �(�A2 Æ : : : � (�An Æ I) : : :)): If s
= ; ! B, then �(s) = �(�I Æ B), and if s = ; ! ;, �(s) = �(�I Æ I). The
translation � of hypersequents with at most single-conclusion components
into display sequents is de�ned by

�(s1 j : : : j sn) = I! �0(s1) Æ : : : Æ �0(sn):

THEOREM 80. For every hypersequent H with at most single-conclusion
components, ` �(H) in DLC i� ` H in GLC.

4.3 Predicate logics and other logics

Modal predicate logic is still a largely unexplored area. As to sequent
systems for modal predicate logics, one notorious problem is providing
introduction rules for the modal operators and the quanti�ers such that
neither the Barcan formula (BF) 8x2A � 28xA nor its converse (BFc)
28xA � 8x2A are provable on the strength of only these rules. It is well-
known that (BF) corresponds to the assumption of constant domains and
(BFc) to the persistence of individuals along the accessibility relation; cf.
for example [Fitting, 1993]. One way of avoiding the provability of the Bar-
can formula and its converse is described in [Wansing, 1998, Chapter 12].
The idea is to exploit the well-known similarity between 2 [3] and 8x [9x]
to develop display introduction rules for 8x [9x]; i.e., instead of thinking of
the modal operators as quanti�ers, one thinks of the quanti�ers as modal
operators, see also [Andreka et al., 1998]. The addition of quanti�ers to
display logic is briey discussed in [Belnap, 1982]:

Quanti�ers may be added with the obvious rules:

(UQ) Aa ` X
(x)Ax ` X

X ` Aa
X ` (x)Ax

provided, for the right rule, that a does not occur free in the
conclusion. : : : The rule for the existential quanti�er would be
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dual. : : : [A]s yet this addition provides no extra illumination.
I think that is because these rules for quanti�ers are \structure
free" (no structure connectives are involved; : : :). One upshot is
that adding these quanti�ers to modal logic brings along Bar-
can and its converse : : : willy-nilly, which is an indication of
an unre�ned account; alternatives therefore need investigating.
[Belnap, 1982, p. 408 f.]

Using the structure-independent rules (UQ), we would have the following
proofs of (BF) and (BFc):

A! A
2A! �A (UQ)

8x2A! �A
�8x2A! A (UQ)

�8x2A! 8xA
8x2A! 28xA
I Æ 8x2A! 28xA
I! 8x2A � 28xA

A! A (UQ)

8xA! A
28xA! �A
�28xA! A
28xA! 2A (UQ)

28xA! 8x2A
I Æ28xA! 8x2A
I! 28xA � 8x2A

Structure-dependent introduction rules for 8x and 9x are, however, avail-
able. For every binary relation Rx on a non-empty set S of states, we may
de�ne the following functions on the powerset of S:

8xA := fa j 8b (aRxb ) b 2 A)g; 9x�A := fa j 9b (bRxa & b 2 A)g;
8x�A := fa j 8b (bRxa ) b 2 A)g; 9xA := fa j 9b (aRxb & b 2 A)g:

We then have

9x�A � B i� A � 8xB; 9xA � B i� A � 8x�B;

and for every individual variable x, we may introduce a structure connective
�x, which in succedent position is to be understood as 8x and in antecedent
position as a backward-looking existential quanti�er 9x�. Semantically, what
is required to account for these quanti�ers is a generalization of the Tarskian
semantics for �rst-order logic, see [Andreka et al., 1998]. Let M be any �rst-
order model and let �, �, : : : range over variable assignments in M. Tarski's
truth de�nition for the existential quanti�er is:

M j= 9xA[�] i� for some assignment � on jMj:
� =x � and M j= A[�];

where � =x � means that � and � di�er at most with respect to the object
assigned to x. In the more general semantics the concrete relations =x

between variable assignments are replaced by abstract binary relations Rx

of `variable update' between `states' �, �, , : : : from a set of states S.
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Assuming an interpretation of atoms containing free variables, the truth
de�nition for the existential quanti�er becomes:

M; � j= 9xA i� for some � 2 S : �Rx� and M; � j= A

Thus, to every individual variable x there is associated a transition relation
Rx on states. The resulting minimal predicate logic, KFOL, is nothing
but the !-modal version of the minimal normal modal logic K. In order
to obtain an axiomatization of KFOL, one may just take any axiomatic
presentation of K and replace every occurrence of 3 and 2 by one of 9x
and 8x, respectively. The basic structural rules for the structure connective
�x are:

X ! �xY a` �xX ! Y:

In analogy to the case for 2 and 3, we obtain the following structure-
dependent introduction rules for 8x and 9x:

(! 8x) �xX ! A ` X ! 8xA (! 9x) X ! A ` � �x �X ! 9xA
(8x!) A! X ` 8xA! �xX (9x!) � �x �A! X ` 9xA! X

In addition to these introduction rules we need further structural assump-
tion in order to take care of the necessitation rules in axiomatic presentations
of normal modal and tense logics:

(MN�x) I! X ` I! �xX X ! I ` X ! �xI

The structural account of the quanti�ers as modal operators blocks the
above proofs of (BF) and (BFc). In the presence of additional structural
sequent rules, however, these schemata become derivable:

OBSERVATION 81. BF and BFc correspond to the structural rules

rBF X ! �x � Y ` X ! � �x Y ; rBFc X ! ��x ` X ! �x � Y:

The apparatus of display logic has also been applied to other extensions of
normal modal propositional logic. A result of Kracht concerns the undecid-
ability of decidability of display calculi. Consider the fusion or `independent
sum' of Kf and Kf, i.e. the bimodal logic Kf 
 Kf of two functional ac-
cessibility relations R1, R2. In this system there are two pairs of modal
operators, say, [1], h1i and [2], h2i each satisfying the D and the Alt1 axiom
schemata. The structural language of sequents for this logic comes with two
unary operations �1 and �2 satisfying the display equivalence

�iX ! Y a` X ! �iY;

i = 1; 2: Clearly, Kf 
 Kf has many properly displayable extensions. Using
an encoding of Thue-processes into frames of Kf 
 Kf, Grefe and Kracht
[1996] have proved a theorem about the undecidability of decidability.



SEQUENT SYSTEMS FOR MODAL LOGICS 129

THEOREM 82. (Grefe and Kracht) It is undecidable whether or not a dis-
play calculus is decidable.

According to Kracht, Theorem 82 indicates a serious weakness of dis-
play logic. In any case, the theorem provides insight into the expressive
power of display logic; it shows that the subformula property and the strong
cut-elimination theorem for displayable logics fail to guarantee decidabil-
ity. Undecidability of the decidability of properly displayable extensions
of Kf 
Kf is a remarkable property of this particular family of bimodal
logics, but is not a defect of the modal display calculus, at least insofar as
the proof of the theorem also shows that it is undecidable whether or not
a �nite axiomatic calculus is decidable. Would it be desirable to have a
proof-theoretic framework in which only decidable logics can be presented?
A weakness of display logic is that it does not lend itself easily to obtain de-
cidability proofs. Restall [1998] uses a display presentation to prove, among
other things, decidability of certain relevance logics which are not known to
have the �nite model property. In [Wansing, 1998, Chapter 6] display logic
is used to prove decidability of Kf and deterministic dynamic propositional
logic without Kleene star.

Display calculi for logics with relative accessibility relations can be found
in [Demri and Gor�e, 2000] and for nominal tense logics in [Demri and Gor�e,
1999]. In both cases the calculi are obtained using modal translations.

4.4 Gaggle Theory

The generality of display logic has been highlighted by Restall [1995], who
observes a close relation between display logic and J. Michael Dunn's Gaggle
Theory [1990; 1993; 1995]. The relation between gaggle theory and display
logic has also been investigated and worked out by Gor�e [1998]. A gaggle
is an algebra G = hG;�;OPi, where � is a distributive lattice ordering on
G, and OP is a founded family of operations. The latter means that there
is an f 2 OP such that for every g 2 OP, f and g satisfy the abstract
law of residuation, see Section 3. If one only requires that � is a partial
order, and every f 2 OP has a trace, then G is said to be a tonoid. Restall
de�nes the notion of mimicing structure. An n-place logical operation f
mimics antecedent structure if there is a possibly complex n-place structure
connective ] such that the following rules are admissible:

s = ](A1; : : : ; An) ! X ` f(A1; : : : ; An) ! X

C(X1; A1) : : : C(Xn; An) ` ](A1; : : : ; An) ! f(A1; : : : ; An)

where ](A1; : : : ; An) is an antecedent part of s, C(Xi; Ai) = Xi ! Ai, if
Ai is an antecedent part of ](A1; : : : ; An), and C(Xi; Ai) = Ai ! Xi, if Ai

is a succedent part of ](A1; : : : ; An). Dually, f mimics succedent structure
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if there is a possibly complex n-place structure connective ] such that the
following rules are admissible:

s = X ! ](A1; : : : ; An) ` X ! f(A1; : : : ; An)

C(X1; A1) : : : C(Xn; An) ` f(A1; : : : ; An) ! ](A1; : : : ; An)

where ](A1; : : : ; An) is a succedent part of s, C(Xi; Ai) = Xi ! Ai, if Ai is
an antecedent part of ](A1; : : : ; An), and C(Xi; Ai) = Ai ! Xi, if Ai is a
succedent part of ](A1; : : : ; An).

THEOREM 83. (Restall [1995]) If a logical operation f in a display calculus
presentation D� of a logic � mimics structure, then f is a tonoid operator
on the Lindenbaum algebra of �.

If every logical operation of D� mimics structure, mutual provability is
a congruence relation and � has an algebraic semantics. Dunn's represen-
tation theorem for tonoids supplies also a Kripke-style relational semantics.

5 APPENDICES

5.1 Appendix A

The proof of Theorem 23 takes its pattern from the proof of strong nor-
malization for typed �-calculus (see for instance [Hindley and Seldin, 1986,
Appendix 2]) and follows the argument given in [Roorda, 1991, Chapter 2,
reprinted in [Troelstra, 1992]]. This proof has been extracted from the proof
of strong cut-elimination for classical predicate logic in [Dragalin, 1988, Ap-
pendix B]. Suppose that � is a proof containing an application of cut. A
(one-step) reduction of � is the proof � resulting by applying a primitive
reduction to a subproof of �. If � reduces to �, this is denoted by � > �
(or � < �). � is said to be reducible i� there is a � such that � > �.

LEMMA 84. If a proof cannot be reduced, then it is cut-free.

Proof. Since the case distinction in the de�nition of primitive reductions
is exhaustive, every proof that contains an application of cut is reducible.

�

DEFINITION 85. We inductively de�ne the set of inductive proofs.

a Every instantiation of an axiomatic rule is an inductive proof.

b If � ends in an inference inf di�erent from cut, and every premise si

of inf has an inductive proof �i in �, then � is inductive.

c � =
�1 �2

(3)
cut is inductive, if every � such that � > � is inductive.
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LEMMA 86. If � is inductive, and � > �, then � is inductive.

Proof. By induction on the construction of �. If � is inductive by a,
then no reduction can be performed. If � is inductive by b, then every
reduction on � takes place in the �i's, which are inductive. Hence, by the
induction hypothesis, � is inductive due to b. If � is inductive by c, then
� is inductive by de�nition. �

DEFINITION 87. Let � be an inductive proof. The size ind(�) of � is in-
ductively de�ned as follows (the clauses correspond to those in the previous
de�nition):

a ind(�) = 1;

b ind(�) =
P

i ind(�i) + 1;

c ind(�) =
P

�<� ind(�) + 1.

A proof � is said to be strongly normalizable i� every sequence of reductions
starting at � terminates.

LEMMA 88. Every inductive proof is strongly normalizable.

Proof. By induction on ind(�). If ind(�) = 1, no reduction is feasible.
If � is inductive by b, then every reduction is in the premises �i, and we
can apply the induction hypothesis. If � is inductive by c, then every proof
to which � reduces is inductive and therefore every such proof is strongly
normalizable, by the induction hypothesis. But then � is also strongly
normalizable. �

LEMMA 89. Let � be an inductive proof and let inf be the �nal inference
of �. If � > �0 by reducing a proof �j of a premise sequent of inf, then
ind(�) > ind(�0).

Proof. By induction on ind(�). If ind(�) = 1, then � cannot be reduced.
Whence � is inductive by b or c. If � is inductive by c, then by de�nition,
ind(�) > ind(�0). If � is inductive by b, then �j is inductive by de�nition.
If �j is inductive by a, it cannot be reduced. If �j is inductive by b, then
the reduction of �j to �0

j takes place in the proof of some premise sequent of
the �nal inference of �j . By the induction hypothesis, ind(�j) > ind(�0

j).
Hence ind(�) > ind(�0). If �j is inductive by c, then by de�nition, ind(�j)
> ind(�0

j) and thus ind(�) > ind(�0). �

LEMMA 90. Suppose � ends in an application inf of cut, and �1 and �2

are the proofs of the premises of inf. If �1 and �2 are inductive, then so is
�.
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Proof. We must show that every � < � is inductive. For this purpose,
we de�ne two complexity measures for �: r(�), the rank of �, and h(�),
the height of �. r(�) is the number of symbols in the cut-formula. h(�) is
de�ned by:

h(�) = ind(�1) + ind(�2):

We use induction on r(�) and, for �xed rank, induction on h(�).

Case 1. � is obtained by reduction in �1 or �2, say �1 > �0
1. It follows

from Lemma 89 that ind(�0
1) < ind(�1). Then h(�) < h(�). Since �1

and �2 are inductive, by Lemma 86, � has inductive premises, and by the
induction hypothesis for h(�), � is inductive.

Case 2. � is obtained by reducing inf. Then this reduction was either a
principal or a parametric move.

Principal move.
Case 1. Since � proves one of (1) or (2), � is inductive by assumption.

Case 2. Since for every new proof �0 ending in an application of cut, r(�)
> r(�0), � is inductive by the induction hypothesis for r(�).

Parametric move. Suppose A is parametric in the inference ending in (1)
(the case for (2) is analogous). If the tree of parametric ancestors of the
displayed occurrence of A in (1) contains at most one element Au that is
not parametric in inf, we have Figure 1, and we may assume that there is
no application of cut on the path from (1) to Z ! A.

Let �0 =
�1

Z ! A �2

Z ! Y
and �00 =

�1

Z ! A
:

Consider � and �0. Clearly, r(�) = r(�0), hence we use induction on the
height. Since both �1 and �00 are inductive by b, ind(�00) < ind(�1):
Hence h(�0) < h(�). By the induction hypothesis for h(�), �0 is inductive,
and thus � is inductive by de�nition. If the primitive reduction of � to
� requires cutting with �2 more than once, analogously every new �0 and
hence � can be shown to be inductive.

If the tree of parametric ancestors of the displayed occurrence of A in (1)
contains more than one element Au that is not parametric in inf, � = �l�

or � = �lr�. Since for every new proof �0 ending in an application of cut,
r(�) > r(�0), � is inductive by the induction hypothesis for r(�). �

COROLLARY 91. Every proof is inductive.

Now Theorem 23 follows by Lemma 88 and Corollary 91, and cut is an
admissible rule by Lemma 84.
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5.2 Appendix B

To prove completeness of HIntKt with respect to the class of all temporal
models we shall adopt completely standard methods as applied, for example,
in [Sch�utte 1969, pp. 48{51]. Suppose � and � are �nite sets of formulas,
where � is empty or a singleton, and let p be a new propositional variable
not already in Atom. The formula � B � is de�ned as follows:

� B � =

8>><
>>:

V
� B B if � 6= ;; � = fBg

t B B if � = ;; � = fBgV
� B p if � 6= ;; � = ;

t B p if � = � = ;

The pair (�;�) is said to be consistent if � B � is unprovable in HIntKt
based on L+ = L [ fpg. In what follows, let A 2 L. Let sub(A) denote
the �nite set of all subformulas of A. If C = (A1 B : : : (An�1 B An) : : :),
then sub�(fCg) = (

S
1�i�nsub(Ai)) n fpg; sub

�(;) = ;. The pair (�;�) is

called A-complete, if � [ sub�(�) = sub(A). A pair (��;��) is called an
expansion of (�;�), if �� is a �nite superset of �, and either �� = � or ��

has the shape (A1 B : : : (An�1 B An) : : :) and n > 1.

LEMMA 92. If (�;�) is consistent, then so is (� [ fAg;�) or (�; fA B
Bg), where B = p if � = ;, and � = fBg otherwise.

Proof. Suppose neither (� [ fAg;�) nor (�; fA B Bg) are consistent.
Then both (

V
� ^ A) B B and

V
� B (A B B) are derivable in HIntKt

based on L+. But then also
V

� B B is derivable, and hence (�;�) is not
consistent; a contradiction. �

COROLLARY 93. Every consistent pair (�;�) such that �; sub�(�) �
sub(A) can be expanded to an A{complete consistent pair.

Let � � sub(A): Then � is said to be A{designated, if some A{complete
pair (�;�), where sub�(�) = sub(A) n � is consistent. By soundness of
HIntKt based on L+, the formula t B p fails to be provable. Therefore
(;; ;) is consistent. By the previous corollary, for every formula A, (;; ;)
can be expanded to an A{complete consistent pair. Hence, for every A, the
set D(A) of all A{designated subsets of sub(A) is non-empty.

LEMMA 94. If C 2 sub(A), then C belongs to an A{designated set � i�
� B fCg is provable in HIntKt.

Proof. If C 2 �, then clearly � B fCg is provable in HIntKt. If C 62 �,
then C 2 sub(A) n�, and since � is A{designated, (�; fCg) is consistent.
In other words, � B fCg is not provable in HIntKt. �
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DEFINITION 95. For every formula A, the structure MA = hWA; RA
I ;

RA
T ; v

Ai is called the canonical model for A if

WA = D(A)
RA
I = �

uRA
T t i� [F ]B 2 u implies B 2 t

vA(p; u) = 1 i� p 2 u:

As we have seen, the set WA is non-empty, and it can easily be shown that
MA is indeed a temporal model.

LEMMA 96. Let u; t 2 D(A). For every formula B, ([F ]B 2 u implies
B 2 t) i� for every formula C, (C 2 u implies hP iC 2 t).

Proof. First, suppose (i) for all B, [F ]B 2 u implies B 2 t but (ii) there is
a formula C 2 u such that hP iC 62 t. By (i), [F ]hP iC 62 u. By the previous
lemma, u B [F ]hP iC is not provable in HIntKt. Since C B [F ]hP iC
is provable, also u B C fails to be provable. But then, by the previous
lemma, C 62 u, which contradicts (ii). Suppose now (iii) for all C, C 2 u
implies hP iC 2 t but (iv) there is a formula [F ]B 2 u such that B 62 t. By
(iii), hP i[F ]B 2 t, and by the previous lemma, t B hP i[F ]B is provable in
HIntKt. Since hP i[F ]B B B is provable, also t B B is provable. Hence
B 2 t, a contradiction with (iv). �

LEMMA 97. (Veri�cation Lemma) Consider MA = hWA; RA
I ; R

A
T ; v

Ai.
For every C 2 sub(A) and every u 2 D(A), MA; u j= C i� C 2 u.

Proof. By induction on C. We shall consider only two cases. Let
V
u

denote t, if u = ;; and note that for all B 2 u, ` hP i
V
u B hP iB. Hence

for every u; t 2 WA we have: (*) if hP i
V
u 2 t, then for every B 2 u,

hP iB 2 t.
1. C = [F ]B.
): Suppose [F ]B 62 u. This is the case i�

V
u B [F ]B cannot be proved

i� hP i
V
u B B cannot be proved

i� (hP i
V
u; fBg) is consistent

i� (9t 2 D(A)) u � t; hP i
V
u 2 t; B 62 t by Corollary 93

only if (9t 2 D(A)) uRA
T t; B 62 t by Lemma 96 and (*)

i� M; u 6j= [F ]B by the ind. hyp.

(: Suppose [F ]B 2 u. Then for all t 2 WA, uRA
T t implies B 2 t. By the

induction hypothesis, Mc; u j= [F ]B:
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2. C = hP iB.
): Suppose MA; u j= hP iB: This is the case i�

(9t 2 WA) tRA
T u and MA; t j= B

only if (9t 2 WA) (B 2 t implies hP iB 2 u); B 2 t by Lem. 96;
ind. hyp.

only if hP iB 2 u:

(: Suppose hP iB 2 u. Put t0 := fC j hP iC 2 ug. Clearly, the pair (t0; ;)
is consistent. Hence

(9t 2WA) t0 � t;
V
t0 2 t by Corollary 85

only if (9t 2WA) tRA
T u and MA; t j= B by Lemma 88 and the

ind. hyp.
i� MA; u j= hP iB

�

COROLLARY 98. If A is valid in every temporal model, then A is provable
in HIntKt.

Proof. Suppose A is not provable in HIntKt. Then the pair (;; fAg) is
consistent, and, by the previous corollary, there exists a u 2 D(A) such that
A 62 u. By the Veri�cation Lemma, MA; u 6j= A: �

COROLLARY 99. HIntKt is decidable.

Proof. This follows easily by the fact that sub(A) is �nite. �

5.3 Appendix C

In order to prove strong normalization for �t, we shall follow R. de Vri-
jer's [1987] proof of strong normalization for typed �{calculus with pairing
and projections satisfying surjective pairing. Let h(M) (the height of the
reduction tree of M) be the length of a reduction sequence of M that has
maximal length.

DEFINITION 100. MA 2 Term is said to be computable i�

1. sn(M);

2. if A = B B C, M �r N1, and NB
2 is computable, then (N1; N2)

C is
computable;

3. if A = B ^ C and M �r hN1; N2i, then NB
1 ; N

C
2 are computable;

4. if A = [F ]B and M �r PN , then NB is computable;

5. if A = hP iB and M �r SN , then NB is computable.
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The set of all computable terms is denoted by C.

By this de�nition, every computable term is strongly normalizable. The
aim is to show that every term is computable.

LEMMA 101.

(a) If M 2 C and M �r N , then N 2 C.

(b) C is closed under repeated formation of application terms (M;N).

(c) If x 2 V , then x 2 C.

(d) If for every NA 2 C, (M (ABB); N) 2 C; then M 2 C:

(e) If (MA^B)0 2 C and (MA^B)1 2 C, then M 2 C.

(f) If N1, N2 2 C, and G 2 C, for every G such that hN1; N2i !r G,
then hN1; N2i 2 C.

(g) If N 2 C and G 2 C, for all G such that (N)i !r G, then (N)i 2 C.

(h) If N 2 C, and G 2 C, for all G such that PN !r G, then PN 2 C.

(i) If N 2 C, and G 2 C, for all G such that SN !r G, then SN 2 C.

(j) If N 2 C, and G 2 C, for all G such that [N !r G, then [N 2 C.

(k) If N 2 C, and G 2 C, for all G such that \N !r G, then \N 2 C.

Proof. (a): By induction on h(M). (b) By reexivity of �r and Clause 2
in the de�nition of C. (c): By induction on A 2 T . If A = B B C, the claim
follows by (b). (d): If for every NA 2 C, (M;N) 2 C, then sn(M), since by
(c) and the assumption (M;xB) 2C. Now suppose M �r N1, N2 2 C, and
for every N , (M;N) 2 C. Then (M;N2)� (N1; N2) and, by (a), (N1; N2) 2
C. Thus M 2 C. (e): Since sn((M)i), also sn(M). Suppose M �r hN0; N1i.
Then (M)i �r (hN0; N1i)i !r Ni. Since (M)i 2 C and C is closed under
�r, also Ni 2 C. (f): Obviously, for every M , sn(M) i� sn(N), for each
N such that M !r N . Moreover, suppose that hN1; N2i �r hG1; G2i.
This is the case i� hN1; N2i � hG1; G2i or there is a term M� such that
hN1; N2i !r M�, and M� �r hG1; G2i. In both cases G1; G2 2 C. (g):
By induction on the type A of (N)i. If A is atomic, Clauses 2{5 in the
de�nition of C hold trivially. A = hP iB: Suppose (N)i �r SM . If N �
hM1;M2i, then (N)i !r Mi, and Mi 2 C. If SM 6� Mi, then Mi �r SM ,
and SM 2 C, by closure of C under �r. If N 6� hM1;M2i, then there is a
term M� 2 C such that (N)i !r M

� and M� �r SM . In each subcase,
M 2 C. The cases A = [F ]B and A = B ^ C are analogous. If A = B B C,
we may use closure of C under application. (h): Suppose PN �r PG.
This holds i� N � G or there is a term M� such that PN !r M� and
M� �r PG. In both cases G 2 C. (i): Analogous to (h). (j): By induction
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on the type A of [N . The only interesting case is A = [F ]B. Suppose
[N �r PM . If N � PN1, then [N !r N1 and N1 2 C. If PM 6� PN1,
then N1 �r PM , and PM 2 C. In each case M 2 C. (k): Analogous to (j).

�

THEOREM 102. If M 2 Term is �{free, then M 2 C.

Proof. By induction on M . (1): M is a variable: Lemma 101 (c). (2)
M � (N1; N2): Lemma 101 (b) and the induction hypothesis. (3) M =
hNA

1 ; N
B
2 i: In view of Lemma 101 (f), it is enough to show that G 2 C, for

every G such that hN1; N2i !r G. There are tow subcases. (i): N1 � (G)0
and N2 � (G)1. Then the claim follows by (e). (ii): G � hN1; N

�i and
N2 !r N

� or G � hM�; N2i and N1 !r M
�. We may use induction on

h(N1) + h(N2). (4) M � (N)i. In view of Lemma 101 (g), it is enough
to show that G 2 C, for every G such that M !r G. There are tow cases.
(i) N � hN0; N1i and G � Ni. Then we may use the induction hypothesis.
(ii) G � (N�)i, N !r N

�, and we may use induction on h(N). (5) M �
PN : In view of Lemma 101 (h), it is enough to show that G 2 C, for every
G such that M !r G. If M !r G, then G � PN�, N !r N

�, and we may
use induction on h(N). (6) M � SN : Analogous to (5), using Lemma 101
(i). (7) M � \N : Given Lemma 101 (k), it suÆces to show that G 2 C, for
every G such that M !r G. There are two cases. (i) N � SG1 and G � G1.
Then we may use the induction hypothesis. (ii) G � \N�, N !r N

�, and
we may use induction on h(N). (8) M � [N : Analogous to (7), using
Lemma 101 (j). �

Strong normalizability of all terms is derived from computability of all terms
under substitution.

DEFINITION 103. MA 2 Term is said to be computable under substi-
tution i� any substitution of free variables in M by computable terms of
suitable type results in a computable term.

Let Cs denote the set of all terms computable under substitution.

THEOREM 104. Every �t{term M is computable under substitution.

Proof. By induction on M . For term variables the claim is obvious. More-
over, since C is closed under application, Cs is also closed under application.
If M � hN1; N2i, M � (N)i, M � PN , or M � SN , the claim follows by
the induction hypothesis. If M � �xAN , it must be show that �xN 2 Cs

if N 2 Cs. Suppose that �xN� is the result of substituting a computable
term for a free variable in �xN , and suppose that GA is a computable term
such that (M;G) does not have a type B B C. Then, by Lemma 101 (f) {
(k), ((�xN�)G) 2 C, if for every term H , ((�xN�)G) !r H implies H 2 C.
Since by assumption N 2 Cs, we have N� 2 C. Therefore we may use
induction on h(N�) + h(G) to show that ((�xN�)G) 2 C. There are three
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Figure 2. Normalization as a homomorphic image of proof-simpli�cation.

subcases. (i) H � N�[x := G] and x 2 fv(N�). Then N� 2 C� implies
H 2 C. (ii) H � N�[x := G] and x 62 fv (N�). Then H � N� 2 C. (iii) H is
obtained from ((�xN�)G) by executing one reduction step either in N� or
G. In this case we may use the induction hypothesis. �

COROLLARY 105. If M is a �t{term, then M is strongly normalizable.

5.4 Appendix D

It has to be shown that f is a homomorphism from A to B, i.e., for every
� 2 �+DIntKt, we have f(elim(�)) = norm(f(�)), see Figure 2. The
proof is by induction on �. If the rule applied to obtain the conclusion
sequent sc of � is an axiomatic sequent A ! A, then f(elim(�)) = f(�),
and f(�) is a nf. If the rule applied to obtain sc is such that the term
construction step associated with it cannot generate a redex, we may apply
the induction hypothesis. We shall consider the remaining cases.

Case 1. � =
�0

AoB ! X
A ^ B ! X

A redex could be generated if the free variables xA, yB in the construction
of AoB ! X occur in the context hx; yi. But then X = A^B, AoB ! X
has been derived from fA ! A;B ! Bg, and elim(�) = A ^ B ! A ^ B.
The claim holds, since h(vA^B1 )0; (v

A^B
1 )1i !r v

A^B
1 .

Case 2. � =
�0

X ! AoB
X ! A B B

A redex could be generated if the free variable xA in the construction of
X ! A o B occurs in the context (NABB ; xA). But then X = A B B,
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X ! A o B has been derived from fA ! A;B ! Bg, and elim(�) =
A B B ! A B B. The claim holds, since �vA1 (vABB1 ; vA1 ) !r v

ABB
1 .

Case 3. � =
�1 �2

X ! A A! Y
X ! Y

Suppose the exhibited application of cut in � is not principal. If this appli-
cation is reduced in one step, either the f{images of the resulting proof and
� are the same, or some principal cuts have been performed on subformulas
of A. Thus, there are �ve remaining cases to be considered.

Case 3.1 (t):

�
I! X

I! t t! X
I! X

is converted into
�

I! X

# f # f

M

vt1 M

M !r M

Case 3.2 (^):

�1

X ! A
�2

Y ! B

X o Y ! A ^ B

�3

Ao B ! Z

A ^ B ! Z

X o Y ! Z

is conv. into

�3

�1 Ao B ! Z
X ! A A! B o Z

X ! B o Z

�2 X oB ! Z

Y ! B B ! X o Z

Y ! X o Z

X o Y ! Z

# f # f

MA
1 MB

2 N(xA; yB)

hM1;M2i N((zA^B)0; (zA^B)1)

N(xA; yB)

MA
1 N

N(M1)

N(M1)

MB
2 N(M1)

N(M1;M2)

N((hM1;M2i)0; (hM1;M2i)1) �r N(M1;M2)
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Case 3.3 (B):

�1

X ! AoB

X ! A B B

�2 �3

Y ! A B ! Z
A B B ! Y o Z

X ! Y o Z

is conv. into

�1

X ! Ao B �3

X o A! B B ! Z

�2 X oA! Z
Y ! A A! X o Z

Y ! X o Z
X o Y ! Z
X ! Y o Z

# f # f

MB(xA) NA
1 N2(yB)

�xAM N2(zABB); N1)

MB(xA)

MB N2(yB)

N2(M)

N2(M)

NA
1 N2(M(xA))

N2(M(N1))

N2(M(N1))

N2(�xAM;N1) !r N2(M(N1))

Case 3.4 ([F ]):

�1

�X ! A

X ! [F ]A

�2

A! Y

[F ]A! �Y
X ! �Y

is converted into

�1 �2

�X ! A A! Y

�X ! Y
X ! �Y

# f # f

MA N(xA)

PM N([y[F ]A)

MA N(xA)

N(M)

N([PM) !r N(M)

Case 3.5 (hP i): analogous to the previous case. �
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LENNART �AQVIST

DEONTIC LOGIC

I. INTRODUCTION

1 THE PROTAGORAS PARADOX: AN EXERCISE IN
ELEMENTARY LOGIC FOR LAWYERS AND MORALISTS

An ancient paradox is about the famous Greek law teacher Protagoras and
goes like this: Protagoras and Euathlus agree that the former is to instruct
the latter in rhetoric and is to receive a certain fee which is to be paid if
and only if Euathlus wins his �rst court-case (in some versions: as soon as
he has won his �rst case). Well, Euathlus completed his course but did not
take any law cases. Some time elapsed and Protagoras sued his student for
the sum. The following arguments were presented to the judge in court.

Protagoras: If I win this case, then Euathlus has to pay me by virtue of
your verdict. On the other hand, if he wins the case, then he will won his
�rst case, hence he has to pay me, this time by virtue of our agreement. In
either case, he has to pay me. Therefore, he is obliged to pay me my fee.

Euathlus: If I win this case, then, by your verdict, I don't have to pay.
If, however, Protagoras wins the case, then I will not yet have won my �rst
case, so, by our agreement, I don't have to pay. Hence I am not obliged to
pay the fee.

Let us now raise two questions:
Who was right?
Could deontic logic, in the sense of the logical theory of norms and nor-

mative systems, be helpful in providing a solution to this problem, or kind
of problem?

In this chapter we shall not attempt to answer the �rst question, but just
refer the reader to the attempts made by Lenzen [1977], Smullyan [1978] and
�Aqvist [1981]. But we shall indeed argue for an aÆrmative answer to the
second question, agreeing with the following statement made by Bertrand
Russell in `On Denoting':

A logical theory may be tested by its capacity for dealing with
puzzles, and it is a whole-some plan, in thinking about logic,
to stock the mind with as many puzzles as possible, since these
serve much the same purpose as is served by experiments in
physical science.

As we shall see in Section 9 below, however, our aÆrmative answer will
have to be carefully quali�ed as a result of the examination we undertake

D. Gabbay and F. Guenthner (eds.),
Handbook of Philosophical Logic, Volume 8, 147{264.
c 2002, Kluwer Academic Publishers. Printed in the Netherlands.
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in Part II of a number of paradoxes and dilemmas that have beset recent
developments in deontic logic in the last thirty years. First of all, though,
let us have a somewhat closer look at the subject as it stands nowadays.

2 THE IMPORTANCE OF VON WRIGHT'S AND ANDERSON'S
WORK

What is deontic logic? It is tempting to answer with Rescher [1966], �a pro-
pos the closely related area of the logic of imperatives and commands, that it
is a �eld with the property that there is virtually no single issue in it upon
which a settled consensus has been reached. Resisting that temptation,
though, we say that deontic logic, broadly conceived, is the logical study
of the normative use of language and that its subject matter is a variety
of normative concepts, notably those of obligation (prescription), prohibi-
tion (forbiddance), permission and commitment. The �rst one among these
concepts is often expressed by such words as `shall', `ought' and `must', the
second by `shall not', `ought not' and `must not', and the third one by `may';
the fourth notion amounts to an idea of conditional obligation, expressible
by `if..., then it shall (ought, must) be the case that '.

A powerful trend of research in the area was initiated by the famous con-
tribution of Von Wright [1951], where the formal properties of monadic (`un-
conditional', `absolute') normative concepts were systematically explored.
Certain paradoxical results were seen to arise in Von Wright's monadic
deontic logic, however, which led him to propose systems for and permis-
siondyadic (`conditional', `relative') normative concepts, where the notions
of obligation, permission etc. are made relative to, or conditional on, cer-
tain circumstances. Thus, the dyadic deontic logic of Von Wright [1956]

was proposed as a reaction to the Prior [1954] paradoxes of commitment
(`derived obligation'), and that of Von Wright [1964; 1965] as a reaction
to the Chisholm [1963] contrary-to-duy imperative paradox. One major
problem-area, with which we shall deal in this chapter, concerns the math-
ematical structure and interpretation of the Von Wright-type deontic logics
just mentioned, whether they be of the monadic kind or the dyadic one.

In Anderson [1956] the author interestingly argued that the study of
normative concepts undertaken by deontic logic could pro�t a good deal
from our considering their behavior in the context of normative systems,
like systems of ethics (moral theories) and systems of positive law. He then,
naturally, noticed and emphasized the role played by sanctions or penalties
in actual normative systems, and went on to de�ne the deontic or normative
notions of obligation, forbiddance etc. along the following lines: letting
S be a constant proposition, describing a situation which will count as a
penalty or sanction relatively to the normative system under investigation,
we say that a state-of-a�airs p is obligatory if and only if (i�) the absence
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of p entails the sanction S; that p is forbidden i� p (itself) entails the
sanction S; and that p is permitted i� it is possible that p obtains without
the sanction S being realized. (For graphic pictures of essentially these
de�nitions, in the style of traditional `squares of opposition', see Anderson
[1968] and �Aqvist [1987, Section 5.3].) Anderson [1956; 1958] then sets out
to add these de�nitions to various systems of alethic modal logic (i.e. the
logic of `ordinary' necessity and possibility), whereby he achieves a kind of
reduction of monadic deontic logic to alethic modal logic, provided only that
the alethic system is supplemented with the constant S and (possibly) with
some axiom governing S. Anderson [1956; 1959] also suggests a de�nition in
terms of S and alethic modal notions of the dyadic concept of commitment.

A second major problem-area which will occupy us in the present work,
concerns the mathematical structure and interpretation of Anderson-style
systems of alethic modal logic with a propositional constant added to their
basic machinery. Also, we shall be highly interested in the relation of such
Anderson-style systems to Von Wright-type deontic logics of the two sorts
mentioned above.

Let me now briey say something about the current state of the subject
of deontic logic. I think it is only fair to claim with Von Wright [1977] (his
introduction to the proceedings of the international and interdisciplinary
Bielefeld Colloquium in March 1975 | presumably the �rst one of its kind)
that the widespread and intense interest aroused by deontic logic indicates
that we have to deal with a new logical discipline, which has come to stay
and is not just `eine vor�ubergehende Erscheinung'. On the other hand, he
points out, it is still a relatively poorly developed branch of exact research
for the following reasons:

(i) The number of open problems is very big.

(ii) There is a good deal of controversy and disagreement about fundamen-
tal matters in the area, e.g. about the interpretation and the validity
of its basic principles.

(iii) The high expectations as to the applicability of deontic logic to actual
and potential normative systems, notably in the areas of ethics and
legal theory, can hardly be said to have been satis�ed to more than a
very slight and modest degree.

The energy and dedication with which Von Wright himself has, since the
'�fties, labored to improve and re�ne on his originally proposed systems,
bear out conclusions (i) and (ii) very clearly in my opinion. And there is
no doubt that the optimism in regard to applications | so characteristic of
Anderson | has turned into pessimism.

My third main concern in this chapter will then be to do something to
remove that pessimism. Suppose we want to achieve a logical analysis [Op-
penheim, 1944] or a rational reconstruction [Wedberg, 1951] of some system
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of positive law, say, some relevant part of any existing commercial or crimi-
nal code. It is then clear that the languages of the current systems of deontic
logic, which we will encounter below, are almost totally inadequate for the
formulation of even very simple rules of the system. A main reason for this
being so is that these languages are just propositional and thus lack quan-
ti�cational resources of expression. What is even worse, they lack explicit
temporal resources, which fact makes them especially useless from the legal
point of view. In Section 9 below, we follow Van Eck [1981] in arguing that,
for any serious purposes of application, the expressive resources of deontic
languages must be enriched so as to include temporal and quanti�cational
ones. If this is done, the hope of deontic logicians and others concerned
to be able to contribute substantively to ethical and legal theory might be
regained. Maybe also to a linguistically important branch such as speech
act theory.

Let me close this introductory section with a cursory historical note.
Suggestions about a logic of normative concepts and sentences (including
one for imperatives and commands) may be found in Aristotle, in the Stoics
(see Rescher [1966]), in medieval philosophers (see Knuuttila [1981]), in
Leibniz, as well as in Bentham and his followers in legal philosophy (see
Lindahl [1977]). The �rst systematic attempt to build a formal theory of
normative concepts is due to Mally [1926] (for a nice exposition of Mally's
Deontik, see F�llesdal and Hilpinen [1971], who also cover later twentieth-
century developments in an exemplary way).

3 PLAN OF THIS CHAPTER

The present work can be divided into two. The �rst deals with certain much-
discussed diÆculties in connection with the application of formal systems
of deontic logic to a natural language such as English (Part II: Paradoxes
and Dilemmas), and the other half is devoted to the purely mathematical
presentation and elaboration of a number of formal systems of deontic logic
(Parts III{VI).

In Part III we deal with ten systems of monadic deontic logic, which
go back to the work of Timothy J. Smiley in [1963], to that of William
H. Hanson in [1965], and, in the three cases of OM+, OS4+ and OS5+,
to the mixed alethic-deontic systems OM, OM' and OM00 of Anderson
[1956]; among other things, Smiley [1963] proved the three former systems
to be identical with the deontic fragments of the three latter ones. The ten
Smiley{Hanson systems, as I pertinently call them, are studied both from
a proof-theoretical or axiomatic point of view (Section 10.2) and from that
of model-theoretical `possible worlds' semantics in a sense deriving from
Hintikka [1957], Kanger [1957], Montague [1960] and, above all, Kripke
[1963] (Section 10.3). In Section 11 we prove the semantic soundness and
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completeness of the ten Smiley{Hanson systems, replacing the method of
semantic tableaux used by Kripke [1963] and Hanson [1965] with the Henkin
technique of maximal consistent (`saturated') sets, as transferred to modal
logic by Makinson [1966] (see also Lemmon and Scott [1966]).

In Part IV we introduce ten Anderson-style systems of alethic modal
logic with a propositional constant Q, interpreted as the negation of the
Andersonian sanction S and due to Kanger [1957]. Each of these systems is
supplemented by the famous Anderson-style de�nitions of monadic deontic
operators, expressing obligation, permission and prohibition, respectively:

OA = df �(Q! A)

PA = df �(Q ^ A)

FA = df �(Q! :A):

Several of these `mixed' alethic-deontic systems were considered by Smiley
[1963], to whom, essentially, we owe what I take to be one of the main
mathematical results on propositional monadic deontic logic: the Transla-
tion Theorem stated in Theorem 45 and proved (in very broad outline) in
the proof thereafter. The gist of that result is that the ten Smiley{Hanson
systems are, in the well de�ned sense of De�nition 44, the deontic fragments
of the corresponding alethic systems, as supplemented with Q and with the
above de�nitions of O;P and F:

In Parts V and VI we try to pursue the very same line of thought in the
area of propositional dyadic deontic logic, for which a good deal of motiva-
tion was provided in Part II, notably by Prior's paradoxes of commitment
and Chisholm's contrary-to-duty imperative paradox (Sections 7 and 8).
Thus, we are concerned about logics of conditional obligation and permis-
sion, expressed by such dyadic forms as OBA and PBA (Section 15), and
also about the possibility of representing such dyadic logics in systems of
alethic modal logic to which a monadic, or one-place, Q-connective is added
as well as the de�nitions given in Section 15.1:

OBA = df �(QB ! A)

PBA = df �(QB ^ A)

FBA = df �(QB ! :A):

We are then able, in Part V, to extend the Smileyan Translation Theorem
to the following pairs of logical systems:

(1)
OdyS4 and S4Qmo
OdyS5 and S5Qmo

�
(Section 16)

(2) OdyS5
N and S5NQmo (Section 17)

where the �rst member in each pair is a system of (propositional) dyadic
deontic logic and where the second one is a (propositional) alethic modal
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logic supplemented with the monadic Q-operator and with the above Section
15.1 de�nitions of dyadic deontic operators.

In Part VI we consider certain axiomatic extensions of the systems
OdyS5

N (Section 18) and S5NQmo (Section 19). In Section 20 we then ob-
tain a weakened version of the projected Smileyan Translation theorem, but
have to leave open the problem of establishing it fully.

In Sections 21{22 we make an attempt to reconstruct and identify three
dyadic deontic logics due to Bengt Hansson [1969] on the basis of certain
further extensions of the calculi OdyS5

N and S5nQmo. A highly interesting
feature of those extensions is that, in their semantics, we work with an
explicitly speci�ed preference relation with which we connect the remaining
items in the models considered. Again, in Section 23, we deal with the
completeness problem for the most important one among the extensions of
OdyS5

N , called the `strongly normal' core system G, and o�er a positive
solution to that problem. Finally, in three concluding sections (Sections
24{26) we present some further quite recent results on that `core' system
G, which were obtained in �Aqvist [1996; 1997].

The idea of basing Dyadic Deontic Logic, or the Logic of Conditional
Obligation/Permission, on some kind of preference theory was proposed by
several writers in the late 1960s and early 1970s. Pioneering contributions
are due to Sven Danielsson [1968] and to Bengt Hansson [1969]; of these two,
[Hansson, 1969] is more easily accessible from a mathematical standpoint,
whence our aforementioned attempt to reconstruct his systems in our own
framework. Danielsson's work is considered in the Appendix of [�Aqvist,
1987], where it is compared with that of Bas C. van Fraassen, Franz von
Kutschera and David Lewis.

So much for the logical technicalities of various systems of formal deontic
logic. Going back to Part II, then, we start out with certain preliminary
considerations of the relation between formal languages (like that of the
Smiley{Hanson systems of monadic deontic logic) and natural languages
such as English. Thus, in Section 5, we explain in some detail how a system
of formal deontic logic can be supplemented with de�nitions of locutions in
ordinary English in much the same way as systems of alethic modal logic
were extended with de�nitions of deontic modalities by Anderson; e.g. we
stipulate the following:

(D6) It is obligatory that A = df OA
(D7) It is permitted that A = df PA
(D8) You post the letter = df p

where p is the �rst proposition letter in the formal language, which, on the
basis of de�nition-theoretical considerations, we regard as a propositional
constant and hence as a logical symbol. We then end up with a `mixed'
formal-English system which contains, on the basis of the de�nitions added,
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certain expressions that count as reasonably good English sentences. In
Section 5.1 and 5.2 we then show how our approach leads to (i) a fragment
of normative English generated by those de�nitions, and (ii) a translation
(formalization, symbolization) of that fragment into the original formal lan-
guage | a translation which is in an obvious sense induced by those de�-
nitions. After having generalized these ideas in a straightforward way, we
go on to introduce (in Section 5.3) the conception of a natural deontic logic
over the English fragment just generated; this conception is based on an
admittedly vague and imprecise notion of logical validity (truth), which is
supposedly applicable to some major part of the English language or, at
the very least, to the sentences of the fragment. In Section 5.5 we consider
one well known attempt to make such an intuitive notion of validity more
precise, viz. the so called Bolzano criterion.

The whole argument of the crucially important Section 5 provides a ba-
sis for comparing and contrasting our natural deontic logic with systems of
formal deontic logic, like the Smiley{Hanson ones. As appears from Section
5.3, such a comparison will, in general, lead to one of two results: either (i)
the natural deontic logic is `perfectly matched' by the formal one, or (ii)
it is not so `perfectly matched', because there are `clashes', or `discrepan-
cies' between the two. In turn, such a clash may be of two di�erent kinds,
at least (as is explained under (I) and (II) in Section 5.3). All this leads
up to the three notions of adequacy and faithful representation de�ned in
Section 5.4. That section and its de�nitions are the main outcome of the
discussion of formalization and translation in Section 5. We regard that
preparatory discussion as indispensable to any orderly presentation of the
deontic paradoxes: it gives us a framework, viz. de�nitional extensions of
formal theories, which enables us to present those paradoxes with a suÆcient
degree of mathematical precision and, at the same time, is of some inde-
pendent methodological interest to the study of the connections between
natural and formal languages in general.

In Section 6{8 we proceed to an exposition of the familiar puzzles known
respectively as Alf Ross' paradox, Arthur N. Prior's paradoxes of commit-
ment, and Roderick M. Chisholm's contrary-to-duty imperative paradox.
A vital reason for dealing with the latter two is to show how the idea of
dyadic deontic logic, originally proposed by Von Wright [1956], naturally
suggests itself in any attempt to overcome them. In Section 9, however,
we follow Van Eck [1981] in giving a survey of various problems which, as
it seems, cannot be satisfactorily handled on the dyadic approach, nor, for
that matter, on the monadic one. In Section 9.2 we diagnose the current
state of the subject as a whole by agreeing with Van Eck [1981] that there
is an urgent need in the area for explicitly temporal and quanti�cational
resources in the basic languages of workable and useful deontic logics; as
far as the latter sort of resources are concerned, the point has been made
by quite a few writers, of course, e.g. Anderson [1956, p. 200]. In Section
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9.2.1, we comment on a powerful research trend in present-day deontic logic,
which combines our subject with the logic of action.

As for problems not dealt with in this essay, but which are nevertheless
of a very fundamental nature, let us just mention the following two:

(i) The problem of truth-or-falsity of deontic (normative) sentences: are
there any true-or-false deontic sentences, expressing obligations, per-
missions or prohibitions? If not, why? If yes, what are the conditions
under which such sentences are true/false, respectively? The discus-
sion in the early twentieth century of this basic issue led some moral
and legal philosophers as well as precursors of modern Von Wright-
style deontic logic to emphasize a highly important distinction, which
may be found in Bentham and which is nowadays usually credited to
Ingemar Heden̂�us [1941]. So our second problem is:

(ii) The problem of explicating formally the Hedenius [1941] distinction be-
tween `genuine' and `spurious' deontic sentences. According to Hede-
nius [1941], a sentence like `You shall not kill!' normally directly
expresses a prohibition against killing and is then a genuine deon-
tic sentence. But the very same sentence, when uttered, e.g. by a
Swedish lawyer, may well be interpreted as an elliptical formulation
for `According to Swedish law in 1982 you shall not kill' and func-
tion as a spurious deontic sentence, which just asserts the existence
of a norm prohibiting killing within a speci�ed legal system (with-
out `directly expressing' that prohibition, as it were). So the present
problem concerns the formal explication of the Hedenius genuine vs.
spurious distinction. We note here that Wedberg [1951] draws a simi-
lar distinction in dividing deontic sentences relatively to a given legal
system into such as are internal and such as are external to the sys-
tem. Again, Stenius [1963] stresses a modal vs. factual distinction
applicable to interpretations of normative sentences, Hansson [1969]

an analogous imperative vs. descriptive one. Finally, Von Wright
[1963] distinguishes norms from norm-propositions.

As a quick reaction to this second problem, I recommend that deontic
logicians consider more seriously the scarce attempts in the literature to
construct logics of commanding as opposed to logics of commands, e.g.
Fisher [1961a], Hanson [1966] and Bailhache [1981], where authorities and
addressees are explicitly brought to the fore. These attempts look very
promising indeed for future developments of our subject.



DEONTIC LOGIC 155

4 ELEMENTARY PROPERTIES OF SOME VON WRIGHT-TYPE
DEONTIC LOGICS

In this section we shall �rst introduce two notions of a normal Von Wright-
type deontic logic, secondly, comment on our suggested de�nition of those
notions and, thirdly, list some obvious properties of these logics. Con-
sider the formal language of the ten Smiley{Hanson systems of proposi-
tional monadic deontic logic studied in Parts III and IV below. Its set �
of we formed sentences is de�ned as the smallest set which (i) has every
proposition letter as an element, and (ii) is closed under the usual truth-
functional connectives including the constants verum and falsum as well as
under the two primitive monadic deontic operators O (for obligation) and
P (for permission). We then propose the following:

DEFINITION 1.

Let L be any subset of �. Then:

(I) L is a normal propositional monadic Von Wright-type deontic logic i�

(a) every thesis, i.e. provable sentence, of the system OK (Section
10.2) is a member of L, and

(b) L is closed under uniform substitution for proposition letters, de-
tachment for material implication and the rule of O-necessitation
(Section 10.2).

(II) L is a strongly normal (propositional monadic) Von Wright-type de-
ontic logic i�

(a) every thesis of the system OK+ (Section 10.2) is a member of
L, and

(b) L is closed under substitution, detachment and O-necessitation.

REMARK 2.

(i) The system OK is determined as follows:

Axiom schemata:

(A0) All tautologies over �

(A1) PA, :O:A

(A2) O(A! B) ! (OA! OB):
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Rules of proof:

(R1)
A;A! B

B
(modus ponens, detachment).

(R2)
A

OA
(O-necessitation):

In the spirit of Section 10.2 we then de�ne the set of OK-provable
sentences (of OK-theses) as the smallest set which contains every
instance of the schemata (A0){(A2) as its member and which is closed
under the rules (R1) and (R2). Since in this work we usually identify
a logic(al system) with the set of its theses, we may even say that the
system OK is identical to that set. Note also that our use of axiom
schemata instead of single axioms guarantees that OK is closed under
(uniform) substitution (for proposition letters), so no primitive rule
of proof to that e�ect is needed.

The system OK+ results from OK by adding to the latter every
instance of the schema

(A3) OA! PA (whatever is obligatory is also permitted)

as a new axiom; for sure, OK+ is to remain closed under (R1) and (R2).

(ii) Our de�nition of `normality' is meant to harmonize with the de�ni-
tion of a normal (alethic) modal logic given, e.g. by Makinson [1966],
Segerberg [1971a] and Hansson and G�ardenfors [1973]. Many writers,
including Von Wright [1951], Prior [1955] and Anderson [1956], are
likely to regard this notion of normality (i.e. the one de�ned in (I))
as too weak, since not every instance of the schema (A3) is provable
in OK; they are then likely to prefer, other things being equal, OK+

to OK and our concept of strong normality as the better notion. But
quite a few authors, say, Erik Stenius [1963, (interesting argument on
p. 254)] and Manfred Moritz [1963] (to mention just one specimen
from a large production), have reacted against accepting (A3) (or its
equivalent OK+1 stated in Section 4.1 below) as a valid principle of
deontic logic which is satis�ed by every existing system of norms (at
best, according to Stenius, (A3) is satis�ed by every system of norms
which is possible to obey); such authors are likely to prefer our weaker
notion of normality.

Our de�nition of normality might still seem to be objectionable on
the ground that every normal logic is required to be closed under
the rule (R2) of O-necessitation. Roughly speaking, accepting this
rule commits us to the position that every logically true proposition
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(e.g. every tautology) is obligatory and, dually, every logical falsehood
(contradictory state-of-a�airs) is forbidden. Prior [1955] �nds `no evi-
dent reasonableness' in this position, and Von Wright [1951] explicitly
rejects it when he proposes a principle of deontic contingency to the
e�ect that such schemata as

O(A _ :A) and :P (A ^ :A)

should not be accepted as valid.

It seems to me, however, that the rule of O-necessitation (or something
very much like it) has been successfully defended by Stenius [1963, p.
253], and by Anderson [1956, pp. 181{183]. Also, in Anderson [1956,
Section IX], he outlines an interesting way of doing justice to the
intuitions underlying Von Wright's principle of deontic contingency.
Essentially, his method amounts to this: we may accept a system
admitting rule R2 as our basic (monadic) deontic logic; then, if such
a system has resources for expressing alethic contingency in the sense
of absence of necessity and of impossibility, we could de�ne in it new
concepts of obligation, permission and prohibition, which will apply
only to contingent propositions (state-of-a�airs). Clearly, the logic of
these new concepts will not be normal in the sense of our de�nition
above; but it may be developed as a de�nitional extension of a normal
deontic logic in our sense. And this, I take it, is highly advantageous
from a methodological standpoint.

(iii) Somewhat cautiously, we speak in the de�nition above of normal
(strongly normal) propositional monadic Von Wright-type deontic log-
ics for the following reasons. Although our notions are ultimately in-
spired by the pioneering contribution of Von Wright [1951], the main
di�erence between his original system and those discussed in this es-
say is that for Von Wright O and P are deontic predicates, which form
sentences when applied to names of acts (in the sense of `act-types'),
whereas for us, and many others, O and P are deontic modalities
(modal operators or connectives), which form sentences when applied
to sentences (which may possibly assert that such and such an act is
performed, though). An advantage of viewing O and P as modalities
is that questions concerning the status and acceptability of `mixed
formulae', like OA ! A, and of formulae involving iterated modali-
ties, like O(OA ! A), can be meaningfully raised and discussed; on
Von Wright's original approach, such questions were ruled out at the
outset, since those kinds of formulae did not even count as well formed
sentences.
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(iv) Our proposed concepts of normality deviate from the Andersonian
notion of a normal deontic logic, de�ned in Anderson [1956, p. 168],
in the following respects:

(a) Whereas we require closure under the rule of O-necessitation,
Anderson only requires closure under a rule allowing for the in-
tersubstitutability of provably equivalent expressions from the
classical two-valued propositional calculus.

(b) As was pointed out under (ii) above, he wants the schema (A3) to
be provable in any normal deontic logic; we make this a condition
of strong normality.

(c) In addition to requiring certain schemata to be provable in any
normal deontic logic Anderson also requires that certain schemata
should not be provable in such logics, e.g..

PA! A (whatever is permitted is the case)

A! PA (whatever is the case is permitted).

Now, I think our considerations under (ii) above explain suÆciently
well why we prefer to deviate from the Andersonian concept of nor-
mality in the respects (a) and (b). As far as (c) goes, I take his sugges-
tion that certain schemata be unprovable in normal deontic logics to
be perfectly sound; negative requirements of the sort may well be used
to de�ne new and stronger notions of normality, if properly defended,
that is to say. Anderson's list of `unprovables' could even be extended
with a huge number of diÆcult items; let me just pick a few from the
vast literature:

(1) OA, A (whatever is obligatory is the
case and conversely).

(2) O(A _B) ! (OA _OB) (if A-or-B is obligatory, then A
is obligatory or B is obligatory).

(3) (PA ^ PB) ! P (A ^ B) (if A is permitted and B is
permitted, then A-and-B is
permitted).

(4) (OA ^ (A! OB)) ! OB (if A is obligatory and if A then
it is obligatory that B, then B is
obligatory).

The strange result (1) is provable in the Mally [1926] system, see
also F�llesdal and Hilpinen [1971, p. 4]. For interesting comments
on the Mally system from the fresh standpoint of deontic temporal
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logic, see Van Eck [1981, p. 81 f]. The unacceptable results 2 and
3 would seem to be provable in natural extensions of the Kalinowski
[1953] systems K1 and K2, which are based on a suggestive (2 + 3)
valued matrix; see Prior [1956]. Again, (4), due to Prior [1955], is
criticized by Hintikka [1957] and [1971]; but it receives an interesting
vindication in terms of the Hintikka notion of deontic (as opposed
to logical) consequence. Note that this notion of Hintikka's is very
de�nitely based on a conception of O and P as modalities as opposed
to predicates (see remark (iii) above).

(v) We readily verify that the ten Smiley{Hanson systems (Section 10) are
normal propositional monadic Von Wright-type deontic logics in the
sense of clause (I) of our de�nition; and that the �ve +-systems (start-
ing with OK+) are strongly normal ones. The question now arises:
can we extend the notions of normality to the systems of dyadic deon-
tic logic studied in Parts V and VI? My answer will be a bit tentative,
because dyadic deontic logic does not yet appear to be a suÆciently
well established discipline; as will be clear from the Appendix of �Aqvist
[1987], there is still too much controversy and disagreement about fun-
damentals to justify a �rm answer. Nevertheless, I believe that our
argument in Parts V and VI shows that the basic language of dyadic
deontic logic must contain the operators N and M of universal neces-
sity and universal possibility (for this terminology, see Scott [1970, p.
157]. The set of sentences of such a language will then be �2

O;N (Sec-

tion 17) rather than �2
O (Section 15), and the weakest dyadic logic

over �2
O;N is the system OdyS5

N (see again Section 17). So we pro-
pose to de�ne a normal propositional dyadic Von Wright-type deontic
logic as any subset of �2

O;N which contains every thesis of OdyS5
N

and which is closed under its rules of inference (detachment and N -
necessitation; as usual, closure under substitution is guaranteed by
the use of axiom schemata). Again, a strongly normal dyadic logic of
this sort will, we propose, have to contain the system G (Sections 22
and 23) and to be closed under the above rules. Note that OdyS5

N

and G are much richer theories than, e.g. the Smiley{Hanson systems,
in point of expressive and deductive power.

4.1 Theorems and rules of OK and OK+

We now list some theorem-schemata, or thesis-schemata, ofOK, i.e. schemata
of which each instance (in �) is provable in OK. By our de�nition of nor-
mality, they will then be provable in every normal monadic deontic logic as
well.
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OK1. OA, :P:A:

OK2. :OA, P:A:

OK3. O:A, :PA:

OK4. O>:

OK5. O(A ^ B) , (OA ^ OB):

OK6. P (A _ B) , (PA _ PB):

OK7. OA ^ PB ! P (A ^ B):

OK8. OA _ OB ! O(A _ B):

OK9. P (A ^ B) ! (PA ^ PB):

OK10. (OA ^ O(A! B)) ! OB:

OK11. (PA ^ O(A! B)) ! PB:

OK12. (O:B ^ O(A! B)) ! O:A

OK13. (O(A ! (B _ C)) ^ (O:B ^ O:C)) ! O:A:

OK14. OB ! O(A! B):

OK15. O:A! O(A ! B):

Suggested readings of many of these items can be found in Anderson
[1956, pp. 180 �]. Note that the compound operator O: may be read as `it
is forbidden that'.

Furthermore, OK (and hence any normal monadic logic) is closed under
the following rules of proof:

OKa.
A! B

OA! OB
:

OKb.
A, B

OA, OB
:

OKc.
A! B

PA! PB
:

OKd.
A, B

PA, PB
:

Again, the following schemata are provable in OK+ and, hence, in any
strongly normal monadic calculus:
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OK+1. OA! :O:A:

OK+2. :(OA ^ O:A):

OK+3. PA _ P:A:

OK+4. P>:

OK+5. :(O(A _ B) ^ (O:A ^ O:B)):

Schema OK+5 may be taken to assert that it is impossible to be obliged
to choose between forbidden alternatives (see, e.g. Von Wright [1951]). Note
that OK+5 is not a theorem-schema of OK; hence, it is not forthcoming
in every normal monadic calculus.

Finally, OK+ is closed under the following rule of proof:

OK+a.
A

PA
:

whereas OK fails to be closed under that rule.

II. PARADOXES AND DILEMMA`S

5 PRELIMINARIES ON FORMALIZATION AND TRANSLATION

Consider the formal, or symbolic, language common to the ten Smiley{
Hanson systems of monadic deontic logic to be studied in Part III. That
formal language can be conceived of as a structure

L = hBas, LogCon, Aux, Senti
where:

(i) Bas (= the set of basic sentences of L) is a denumberable set Prop of
proposition letters p; q; r; p1; p2; : : : .

(ii) LogCon (= the set of primitive logical connectives or constants of L)
is the set f>;?;:;^;_;!;,; O; Pg.

(iii) Aux (= the set of auxiliary symbols of L) is the set consisting of the
left parenthesis and the right parenthesis; thus, Aux = f(; )g:

(iv) Sent (= the set of all well formed sentences of L) is identical to the
set � as de�ned Section 10.1 i.e. the smallest set S such that

(a) every proposition letter in Prop is in S,

(b) > and ? are in S,

(c) if A is in S, then so are :A;OA and PA,
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(d) if A;B are in S, then so are (A ^ B); (A _ B); (A ! B) and
(A, B).

This `recursive' or `inductive' de�nition of � may be summarized by say-
ing that the set of sentences of L is the smallest set which (i) contains every
basic sentence in Bas as an element, this according to clause (a), and (ii) is
closed under every logical connective in LogCon, this being the joint e�ect of
clauses (b){(d). Note that these connectives are of di�erent degrees, which
are revealed, so to speak, by the way they are used to form new sentences :
by clause (c), :; O and P do so when applied to one single sentence as their
argument and, hence, are said to be of degree 1; by clause (d),^;_;! and
, do so when applied to any two sentences as their arguments, and are,
consequently, said to be of degree 2; �nally, by clause (b), > and ? require
no argument at all when used to form sentences, hence, they are said to
be of degree 0 and to be propositional constants (as opposed to so called
propositional variables.

Now, assume that we are interested in theories, or logics, formulated in
the language L as just described; for instance, any of the Smiley{Hanson sys-
tems to be studied below. Generally speaking, such a logic is a subset of �
determined by a �nite number of classes of axioms having a common and pe-
culiar form or Gestalt (these classes are usually known as `axiom schemata')
as well as by certain rules of inference (perhaps more appropriately: rules of
proof). Now, why have deontic logicians and moral philosophers alike paid
so much attention to systems of the Smiley{Hanson kind rather than to
other subsets of � that might just as well have been selected for attention?
An obvious reason appears to be this: certain de�nite ordinary language
readings are associated with the logical connectives in L and, on these read-
ings, the principles of these logics have more or less good claims to being
true, valid, correct, acceptable, or whatnot, in a pre-systematic, informal or
intuitive sense.

Which English readings are we then to associate with the connectives in
LogCon? Here is a familiar list:

:: not (more fully: it is not the case that)

^: and (more fully: both , and...)

_: or (more fully: either , or...)

!: if , then...

,: if and only if (alternatively: if and only if , then...)

O; it is obligatory that (alternatively: it ought to be that)

P : it is permitted that (alternatively: it may be that).

Thus, :;^;_;! and , are to be symbols for the �ve best known so-
called truth-functions of classical propositional logic, viz. negation, con-
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junction, disjunction, material implication and material equivalence, respec-
tively. Again, O and P are to symbolize the normative (or deontic) notions
of obligation and permission. Finally, > (verum in Latin) symbolizes some
arbitrary, but �xed logical truth or tautology, and ? (falsum in Latin) some
arbitrary, but �xed logical falsehood, contradiction or absurdity; their pre-
cise reading in English is less important.

We may think of the list above as presenting items in a little logical
dictionary or lexicon: they tell us both

(i) how to translate connectives in LogCon into plain English, and

(ii) how to translate certain English locutions, viz. those appearing to the
right in the list, `back' into the formal language L.

In this way, we suggest, we get an idea about the intended interpretation
of the language L or, at least, of its logical connectives. But it still remains
unclear how to understand the list of lexical items (the `logical dictionary')
itself; what is its status in a formal theory, like any one of the Smiley{
Hanson systems of monadic deontic logic? What does it mean to assign an
English reading to a connective in L on the basis of a lexical item in the
list?

In answer to these questions, we propose to equate that list with the
following series of de�nitions, applicable to any L-sentences A and B:

(D1) It is not the case that A =df:A.

(D2) Both A and B = df (A ^ B).

(D3) Either A or B =df (A _ B).

(D4) If A then B =df (A! B).

(D5) If and only if A then B =df (A, B).

(D6) It is obligatory that A =df OA.

(D7) It is permitted that A =df PA.

Let us now distinguish some e�ects of adding this series D1{D7 to our
language L or to any theory formulated in L.

(I) We obtain a new language, call it L(D1{D7), which is like L in having
(i) the same set Bas of basic sentences, viz. the set Prop, and (ii) the
same set Aux consisting of the two brackets. But L(D1{D7) di�ers
from L in having (i) a larger set LogCon than L and (ii) a larger set
of sentences than L; because the seven de�ned English connectives `it
is not the case that', `both and...' etc. will be among the logical
connectives of L(D1{D7), though not among those of L; and because
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the set of sentences of L(D1{D7), call it �(D1{D7), will be closed, not
only under the old, `symbolic' connectives of L, but under the new,
de�ned English ones as well. For example, the following strings:

(3)
it is not the case that p
it is obligatory that q

�
(where p; q are in Prop)

are sentences of L(D1{D7), though not of L. We shall call the new
language L(D1{D7) a de�nitional enrichment of L (reserving the more
familiar label `de�nitional extension' for theories, or logics, formulated
in L).

REMARK 3. A description of the �rst sentence above, which is agreeable
to fans of use and mention, is this: the result of writing the pre�x `it is not
the case that' immediately in front of the proposition letter in Prop that is
denoted by `p'. In this work we mostly stick to the familiar convention of
using logical connectives autonomously, i.e. as names of themselves.

(II) Usually, one conceives of a de�nition as something added to a theory
rather than to a `bare' language (see e.g. Suppes [1957, p. 152 f.]).
Suppose, then, that we add the series D1{D7 to any of the Smiley{
Hanson systems below, e.g. to the logic OK as described in Section
10.2. How are we to understand D1{D7 within OK, then? In partic-
ular, what does the symbol `=df' mean? We suggest here that `=df'
can throughout be replaced by the sign , for material equivalence or
`biconditionality', and that every resulting sentence is to be regarded
as a new axiom which is added to those of the logic OK. (We assume
then that the outermost pair of parentheses has been dropped from
D1{D7, complying with the customary convention.) From the stand-
point of the logic OK, D1{D7 di�er from its `proper' axiom schemata
A0{A2 chiey in respect of introducing into it new symbols that are
not already in its language L, viz. the seven English connectives de-
�ned by D1{D7 (they also di�er from A0{A2 in other respects not
commented upon here), Thus, the logic OK supplemented with D1{
D7 as here understood, call it OK(D1{D7), will be a certain subset
of the larger sentence-set �(D1{D7), not of �, and is determined not
only by A0{A2 and the rules of inference R1 and R2, but by the `def-
initional axiom schemata' D1{D7 as well. Finally, just as L(D1{D7)
was said above to be a de�nitional enrichment of the language L, we
now say that the logic OK(D1{D7) is a de�nitional extension of the
logic OK; the same thing goes for any theory over, i.e. formulated in,
L, to which D1{D7 are added.

(III) We observed a moment ago that such strings as

(3)
it is not the case that p
it is obligatory that q

(with p; q in Prop)
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count as sentences in the enrichment L(D1{D7) of L. Now, these
strings are hardly acceptable as sentences of English, although they
surely involve nice English components, viz. the de�nienda of D1 and
D6, respectively. At best, they could count as sentences of pseudo-
English or quasi-English. The reason for this being so is that, as such,
p and q fail to make any sense in English; as one often says, they are
just empty place-holders for genuine English sentences. But couldn't
we begin to assign English readings to these letters, just as we did to
the logical connectives in L by means of D1{D7? If this were possible,
we might be able to generate some genuinely English sentences within
some de�nitional enrichment of L. Let us try. Consider the English
sentence �guring in the Alf Ross paradox, viz.

(0) You post the letter.

Again, let p be the �rst proposition letter in an assumed enumeration,
or ordering, of the set Prop. We now lay down the de�nition:

(D8) You post the letter =df p

which, in accordance with the decisions taken under (II) above, is to
be understood as a single axiom:

You post the letter , p

(or, perhaps, as a degenerate axiom schema having that single axiom
as its only instance).

We must now raise a vitally important question: is D8, thus under-
stood, acceptable from a standpoint of the theory of de�nitions? Well,
its answer depends on which of the following alternatives applies:

(A) In D8, p is, a propositional variable, and any theory T formulated
in the language L enriched by D8, call it L(D8), is closed under
a rule of substitution for propositional variables.

(B) In D8, p is, and indeed has to be, a propositional constant, which
is syntactically and grammatically on a par with the logical 0-
place connectives > and ? of L. Otherwise, D8 is altogether un-
acceptable from the point of view of de�nition theory.

Let us explore these two alternatives in turn.

Alternative A. What does it mean to say that any theory over L(D8)
is closed under substitution for propositional variables? At least the
following, I suggest:

(1) For each sentence A of L(D8):

You post the letter , A

is provable (as a `thesis' or `theorem') in any such theory.



166 LENNART �AQVIST

More leisurely expressed: D8 is an axiom of any theory T over
L(D8). Hence, D8 is provable in T . And so is any result of
substituting a sentence A of L(D8) for the variable p in D8.

Now, an obvious consequence of adding D8 to L is this:

(2) The strings:

You post the letter

: You post the letter

are sentences of L(D8).

Therefore, by (1) and (2), we conclude that the string

($) You post the letter , : You post the letter

is not only a sentence of L(D8) but also provable in any theory
over L(D8), since ($) is the result of substituting the L(D8)-
sentence

: You post the letter

for p in D8. But ($) is obviously a contradiction in any such
theory (of any interest), hence, any such theory is inconsistent.
Hence, alternative A must be rejected.

Another way of explaining its failure is as follows. On alternative A,
D8 violates a basic de�nition-theoretic principle according to which
no proper de�nition of a sentence-forming connective is allowed to use
any free (i.e. not bound to any quanti�er) variable in the de�niens
which does not occur already in the de�niendum. Well, in D8, on this
alternative, p is a free propositional variable which obviously does not
occur in the English sentence (or sentence-forming connective of de-
gree 0) `You post the letter' (although, for sure, the 16th letter `p' of
the English alphabet does). For a statement of the de�nition-theoretic
principle in a somewhat di�erent context, see Suppes [1957, p. 156 f.];
for its motivation in the present context, recall that we just proved ev-
ery theory over L(D8) to be inconsistent. Note also that the principle
is a consequence of more general criteria in de�nition theory known
as those of non-creativity and relative consistency (Suppes [1957, pp.
154{5]).

Alternative B. Having rejected A, this is the alternative we must accept
in order to protect D8. Let us pay attention to two consequences of
regarding p in D8 as a constant, and indeed a logical one. (Note that
in the context we disregard any subdivision of constants into logical
vs. non-logical (descriptive) ones; this is a deliberate, but remediable
oversimpli�cation.)

(i) The disastrous sentence ($) will not be provable in any consistent
theory over L(D8), or over L(D1{D7, D8), because D8 is now
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a proper de�nition which conforms to the rules and criteria of
de�nition theory. In particular, there is nothing like a `rule of
substitution' for logical constants.

(ii) Let us continue to think of the set Prop of `proposition letters' as
a set of free propositional variables, which form the stock of non-
logical symbols of L and its enrichments. But then, obviously, the
�rst letter p, used in D8 as now understood, is wrongly classi�ed,
being a constant symbol. So in any enrichment of L containing
D8, p has to be re-classi�ed as a logical constant, i.e. moved
from Prop into the set LogCon of the enrichment. Similarly, the
English sentence `You post the letter', de�ned by D8, should be
classi�ed as a constant symbol and placed in the set LogCon of
such enrichments.

EXERCISE 4. Consider the language L(D1{D7, D8) and think of it as a
structure L(D1{D7, D8) = hBas, LogCon, Aux, Senti. Specify the com-
ponents of that structure, observing the instructions just given under (ii)
above!

REMARK 5. One might object to our argument concerning the status of
p in D8 that we have overlooked a third alternative: p is a propositional
parameter. Here is my answer: either a parameter is a free variable and the
present alternative amounts to Alternative A and is `out'; or a parameter
is a constant, so the present alternative amounts to Alternative B and we
gladly accept it. Is the objection thereby met?

5.1 On the fragment of normative English constructible
in L(D1{D7, D8).

Consider the language L(D1{D7, D8). The following are sentences of
L(D1{D7, D8):

It is obligatory that you post the letter.

Either it is not the case that you post the letter or it is permitted that
you post the letter.

If it is obligatory that you post the letter then it is permitted that
you post the letter.

which are also, indeed, reasonably good sentences of English. (We don't
deny that they can be improved from the standpoint of stylistic elegance,
using devices like better punctuation, inversion of word order, pronomi-
nalization, attaching some negation- or obligation-expressing phrase to the
main verb in the in�nitive, and so on.) Now, is it possible somehow to char-
acterize rigorously the set of those English sentences which we can generate
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in the language L(D1{D7, D8)? Yes, easily, as follows: it is the smallest set
containing (i) the English sentence (0) (= `You post the letter'), de�ned in
D8, and which (ii) is closed under the seven English connectives de�ned in
the series D1{D7. We now propose the following, somewhat more compre-
hensive notion:

DEFINITION 6 (FNE(D1{D7, D8)). Let L(D1{D7, D8) be the de�nitional
enrichment of L that arises from adding D1{D7, D8 to L. Think of it as a
structure whose components are speci�ed as in the Exercise above! Then,
by the fragment of normative English constructible in L(D1{D7, D8) we
shall mean the structure

FNE(D1{D7, D8) = hBas, LogCon, Aux, Senti

where:

(i) Bas = fYou post the letterg.

(ii) LogCon = fit is not the case that, both and...,
either or..., if then..., if and only
if then..., it is obligatory that, it is
permitted thatg.

(iii) Aux = ; (i.e. the empty set).

(iv) Sent = (as usual) the smallest set which contains
every basic sentence in Bas as an element
and is closed under every logical connective
in LogCon.

REMARK 7.

(a) The basic sentence as well as the logical connectives are used autony-
mously in this description, i.e. as names of themselves. Hence, no
quotation marks are needed.

(b) Note that, although the English sentence `You post the letter' was
classi�ed as a logical connective (of degree 0) in L(D1{D7, D8), it
is not so classi�ed in the fragment FNE(D1{D7, D8) but as a basic
sentence. The reason for this decision is that we want Sent to be
de�nable as the result of closing a non-empty set Bas under certain
connectives.

(c) There is no need for parentheses in the fragment. This is due to the
`smart' reading in English of the binary connectives that is codi�ed
by the de�nitions D2{D5; the point being that every English sentence
in the fragment, which has any of the de�nienda of D2{D5 as its
principal sign or main connective, begins with that very connective.
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Thus, no ambiguities of grouping are forthcoming in the fragment,
and its notation is Polish or  Lukasiewiczean.

5.2 The translation induced by D1{D7, D8; An extension of
that translation

Let us quickly rehearse what has been done so far. We started out by con-
sidering the purely symbolic, or formal language L common to the Smiley{
Hanson systems of monadic deontic logic and its set � of purely symbolic
sentences. Then, we added to L eight de�nitions D1{D7, D8, thereby obtain-
ing a richer language L(D1{D7, D8), whose set LogCon contained eight fresh
English connectives, viz. the de�nienda of D1{D8; also, the �rst proposition
letter in an assumed ordering of Prop, i.e. p, was moved into that set Log-
Con. The set of sentences of that richer language, call it SentL(D1�D7;D8),
was then seen not only to be larger than that of L, but indeed to contain
as a subset a certain class of `reasonably good' sentences of English, viz.
the set of sentences of the fragment FNE(D1{D7, D8) of Normative English
constructible in L(D1{D7, D8), as de�ned above. Call that class either by
the fancy name of

SentFNE(D1��D7;D8) (=Sent, as de�ned by clause (iv))

or call it simply �.
Now, can we say anything informative about the relation of the original

sentence-set � to that of the fragment FNE, i.e. �, apart from the claim
that the fragment and its sentences were somehow generated by the addition
of D1{D7, D8 to the original language L? (Assume, for safety, that the letter
p is reclassi�ed and moved into LogCon already in L, so that we are free to
add D8 to L.) Well, we can obviously assert the following:

There exists a translation (formalization, symbolization) of the frag-
ment into the original formal language L in the sense of a function t
which maps � one-to-one into �, where t is de�ned by the following
recursive conditions:

(i) t(`You post the letter') = p; cf. D8.

Again, assume that t has been de�ned for any English sentences A;B in �.
Then:

(ii) t(it is not the case that A) = :t(A); cf. D1.

(iii) t(both A and B)=(t(A) ^ t(B)); cf. D2.

(iv) t(either A or B)=(t(A) _ t(B)); cf. D3.
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(v) t(if A then B)=(t(A) ! t(B)); cf. D4.

(vi) t(if and only if A then B)=(t(A) , t(B)); cf. D5.

(vii) t(it is obligatory that A)=(Ot(A); cf. D6.

(viii) t(it is permitted that A)=(Pt(A); cf. D7.

It is obvious that, as de�ned, t is a function from � into �. It is almost
just as obvious that t is one-one in the sense that for any two distinct
sentences A;B in � we have that t(A) and t(B) are distinct sentences in �;
the inductive proof of this fact is rather tedious, although basically easy to
grasp.

We see that each clause in the de�nition of t corresponds to exactly one
member in the series D1{D8. Hence, it is appropriate to speak of the trans-
lation t as being induced by that series. Again, in the present case of � and
�, we speak alternatively of t as a formalization or a symbolization, because
� is the set of sentences of a fragment of a natural language, viz.English,
and � is the set of sentences of a purely symbolic language, viz. L, and t
translates the former into the latter. Not every translation function has this
special character, of course.

Suppose now that we add further de�nitions in the style of D8 to the
language L(D1{D7, D8), of the general form:

(D9) =df p1:
(D10) =df p2:

.

.

.
(D8+k.) =df pk:

where:

(i) k is a positive integer � 1.

(ii) p1; : : : ; pk are distinct proposition letters that have been reclassi�ed
already in the original language L and moved into its set LogCon,
where we also �nd p which is distinct from all of them.

(iii) The blanks are �lled by distinct English sentences considered as un-
analyzed wholes (`ungetrenntes Ganzes' in the terminology of Hilbert
and Ackermann [1928]), and all distinct from `You post the letter'.

Then, the fragment of normative English constructible in the enrichment
L(D1{D7, D8{D8+k) is easy to identify: its set Bas of basic sentences
contains exactly k + 1 English members and, as usual, its total set Sent
of sentences is the result of closing Bas under the by now familiar seven
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English connectives. Now, let � be that total set, this time, and let � still
be the set of purely symbolic sentences of L (with p; p1; : : : ; pk reclassi�ed
as indicated above). How are we to de�ne the extended translation, let us
still call it t, which is induced by the series D1{D7, D8{D8+k? Very easy:
just add to our earlier de�nition of t the following k clauses in the recursion
(or induction) basis:

(i1) t(de�niendum of D9) = p1; cf. D9.
(i2) t(de�niendum of D10) = p2; cf. D10.

.

.

.
(ik) t(de�niendum of D8+k) = pk; cf. D8+k.

EXERCISE 8. Verify that, as just de�ned, the extended translation t re-
mains a one-one mapping of �, as presently understood, into �!

5.3 On the natural deontic logic over FNE(D1{D7, D8{D8+k)

Let FNE(D1{D7, D8{D8+k), or FNEk for short, be the fragment of nor-
mative English constructible in the enrichment L(D1{D7, D8{D8+k) of L,
as described above. Let � still be the set of sentences of FNEk; thus,
all members of � are English sentences (some of them, though, less then
fully elegant from the stylistic point of view). Then, by the Natural Deontic
Logic over FNEk we shall mean a certain subset NDL of �, which is vaguely
characterized as follows:

NDL = the set of sentences of FNEk which are logically
valid or logically correct (or, if you have no qualms
about applying that notion to normative sen-
tences: logically true).

Suppose, at least for the time being and for the sake of argument, that
this admittedly vague characterization of NDL makes `some reasonable'
sense to you and to me. Let A be any sentence in English. We then have
the following immediate result:

A 2 NDL i� A belongs to � and A is logically valid.

Writing ` A' for `A is logically valid', we may alternatively express the
result as a set-theoretical identity:

NDL = fA 2 � :  Ag

Some further notions can now be de�ned:
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DEFINITION 9 (Logical consequence, inconsistency and consistency in
NDL). Let � be a set of sentences in �, and let A be a sentence in �.
Then we say:

(i) A is a logical consequence in NDL of � (in symbols: � kNDL A) i�
there are sentences B1; B2; : : : ; Bn in �, with n � 0, such that

 If both B1 and both B2 and ... and both Bn�1 and Bn, then A

(i.e. that sentence is to be logically valid).

(ii) � is inconsistent in NDL i� there is a sentence B in � such that the
sentence

Both B and it is not the case that B

is a logical consequence in NDL of �.

(iii) � is consistent in NDL i� � is not inconsistent in NDL.

The three notions just introduced should be compared with the proof-
theoretical concepts of derivability, inconsistency and consistency in certain
formal deontic logics L (see Section 10.2.1 below). Also, we observe that
the usefulness of the de�nition above rests on our having recourse to a
viable notion of logical validity, which is applicable to English sentences in
� and, hopefully, even to larger sets of English sentences. We now face
the diÆculty that such an intuitive, natural-language-oriented conception
is vague, imprecise and the source of endless disputes and disagreement; in
this respect it di�ers unfavorably from the well-de�ned notions of provability
and validity in a speci�ed formal system of deontic logic. The diÆculty is
interestingly illustrated by the so-called `paradoxes of deontic logic' in the
following way.

Let L be some formal system of deontic logic over our language L, to
which de�nitions D1{D7, D8{D8+k are added, so that the fragment FNEk

and its sentence-set � are available as well as the natural deontic logic
NDL over that fragment. Consider the set � of all sentences in � whose
t-translations are provable in L; thus

� = fA 2 � : t(A) is provable in Lg:

Now, suppose we start to compare NDL and �. If we �nd that they are
identical, then the notion of provability in L `matches perfectly' the intu-
itive conception of logical validity determining NDL and everything is �ne;
there is no clash between the well-de�ned formal notion and the intuitive
conception. This possibility is not very likely to arise. It is much more likely
that we face one of the following possibilities:
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(I) We �nd a sentence in � which is such that (a) it is not in NDL because
we feel that it is not logically valid, but (b) its t-translation is indeed
provable in L (which is usually easy to verify); so the sentence is in �.
Then we have a clash between the formal notion of provability in L and
the intuitive concept of validity of a kind I call below failure of right-
to-left adequacy. Roughly speaking, the clash is due to the fact that L
sanctions more English sentences as valid than our `logical intuition'
is willing to accept as members of NDL. Most deontic paradoxes will
be seen to be of this kind in subsequent sections.

(II) We �nd a sentence in � which is such that (a) it is logically valid from
an intuitive viewpoint and hence is in NDL, but (b) its t-translation
fails to be provable in L (as is usually easy to verify); so the sentence
is not in �. This situation illustrates an opposite sort of clash which I
call below failure of left-to-right adequacy. The import of such a clash
is then that there are intuitive validities in NDL, which fail to be
representable in the formal system L. In Section 9.2.2 below I argue
that the Good Samaritan paradox illustrates this failure with respect
to the Smiley{Hanson systems of monadic deontic logic; admittedly,
it is usually cited as an instance of the former kind of failure, just as
the majority of paradoxes are.

These considerations were designed to show how the vagueness and impre-
ciseness of an intuitive, natural-language-oriented notion of logical validity
leads to `clashes' when confronted with formal systems of deontic logic. In
order to eliminate to some extent the vagueness from which our character-
ization of NDL thus su�ers we propose below (Section 5.5) a criterion of
validity known as the Bolzano Criterion, which will be seen `at work' in
Section 7. Other criteria are possible, however, as will be seen in Section 6.

Since the concepts of (failure of) adequacy met with in (I) and (II) above
are, we suggest, highly important to any orderly discussion and even presen-
tation of the deontic paradoxes, we shall now introduce them in a rigorous
way.

5.4 Some notions of adequate translation and faithful represen-
tation

DEFINITION 10 (Three concepts of adequacy). Let L, to begin with, be
any of the ten Smiley{Hanson systems of monadic deontic logic, character-
ized in Section 10.2 below in proof-theoretical terms. We write `jLA' to
indicate that the formal sentence A (in �) is provable in L. Consider the
Natural Deontic Logic NDL (� �) over the English fragment FNEk as well
as the extended translation t from � into �. We then say the following:
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(i) t is left-to-right adequate with respect to NDL and L, i�, for each A
in �, if A 2 NDL then jLt(A):

(ii) t is right-to-left adequate with respect to NDL and L, i�, for each A
in �, if A 62 NDL then jL6 t(A); where `jL6 ' means `not provable in
L'.

(iii) t is fully adequate with respect to NDL and L, i�, for each A in �; A 2
NDL if and only if jLt(A):

REMARK 11.

(a) Clearly, t is fully adequate w.r.t. NDL and L, just in case t is both
left-to-right and right-to-left adequate w.r.t. NDL and L. Again, in
order to show that t is not fully adequate w.r.t. NDL and L, it is
enough to show that either t fails to be left-to-right adequate or t fails
to be right-to-left adequate w.r.t. NDL and L.

(b) We may use clauses(i){(iii) in the present de�nition as a basis for
introducing the following notions of faithful representation, applicable
to L:

(i0) L is a left-to-right faithful representation of NDL under t, i�, t is left-
to-right adequate w.r.t. NDL and L.

(ii0) L is a right-to-left faithful representation of NDL under t, i�, t is
right-to-left adequate w.r.t. NDL and L.

(iii0) L is a faithful representation of NDL under t, i�, t is fully adequate
w.r.t. NDL and L.

5.5 On the Bolzano criterion of logical validity for sentences in
natural languages

Consider the fragment FNEk and its sentence-set �. As applied to members
of �, what I shall call the Bolzano criterion of logical validity asserts the
following:

BCLV. Let A 2 �: Then, A is logically valid ( A) i� (i) A is true, and
(ii) every result of uniformly substituting a sentence in � for any
basic sentence in A is true as well.

For examples of this criterion `in use', see Section 7 below.
The present version of the Bolzano criterion is, of course, a bit restrictive,

since it only applies to members of �. Inspired by Quine [1963], F�llesdal
and Hilpinen [1971, p. 1] suggest a less restrictive version:
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A deontic sentence is a truth of deontic logic if it is true and
remains true for all variations of its non-logical and non-deontic
words (that is, expressions which are not logical or deontic words).

Again, Kanger [1957, p. 50] gives the following version of the Bolzano
criterion:

By a logically true statement we understand a statement A such
that the result of generalizing all extralogical constants in A is
true.

If we assume all deontic words in the sense of F�llesdal and Hilpinen to
be logical constants in the sense of Kanger, we could perhaps prove their
respective versions of the Bolzano criterion to be equivalent.

For our purposes in the following Sections, however, the version BCLV
given above should hopefully turn out to be suÆcient.

6 ALF ROSS'S PARADOX

Consider the English sentences:

(0) You post the letter.

(1) You burn the letter.

Consider also the enrichment L(D1{D7,D8,D9) of L, where D8 and D9 are
as follows:

(D8) You post the letter = df p.

(D9) You burn the letter = df p1.

Again, let FNE1 be the fragment of normative English constructible in
that enrichment, where, speci�cally, Bas = f(0); (1)g and � = the smallest
superset of Bas closed under our seven English connectives de�ned in D1{
D7. The translation t induced by the series D1{D9 is then de�ned as in
Section 5.2 above, where, in particular, we have the following clauses in the
recursion basis:

(i) t(`You post the letter') = t((0)) = p:

(i1) t(`You burn the letter') = t((1)) = p1.

The Alf Ross paradox, �rst presented in Ross [1944], is to be taken, we
suggest, as an argument against t being fully adequate with respect to the
natural deontic logic NDL over FNEk and any Smiley{Hanson system L of
monadic deontic logic. In order to state the argument let us �rst consider
the sentence
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(1.1) It is obligatory that either you post the letter or you burn the letter

which is in �; a nicer stylistic variant of (1.1) in the sense of Kalish
and Montague [1964, pp. 10f.] is perhaps the following:

(1.2) You ought to post the letter or burn it

Furthermore, we consider the sentences:

(0.1) It is obligatory that you post the letter,

(0.2) If it is obligatory that you post the letter then it is obligatory that
either you post the letter or you burn the letter,

which are both in �. Note that (0.2) is the conditional having (0.1)
as its antecedent and (1.1) as its consequent.

Now, the `paradox' starts out with the following claim, which we shall
treat as an hypothesis in the proof-theoretical sense by so indicating its
status to the right:

1. The sentence (1.1) is not a logical
consequence in NDL of the unit
set of (0.1).

`claim' or hypothesis

In symbols: f(0:1)g kNDL6 (1.1)

By our de�nition of logical consequence in NDL and the fact that (0.1)
is in � and is the only sentence in f(0:1)g, we then obtain from the hypoth-
esis 1:

2. (0.2) is not logically valid.
In symbols: 6 (0.2).

from 1 by the de�nition of kNDL
and the fact etc.

where we indicate to the right how this line 2 is obtained. Hence:

3. (0.2) 62 NDL from 2 by the de�nition of NDL.

Again, let L be any of the Smiley{Hanson systems of monadic deontic
logic. The following is a demonstration that the L-sentence Op! O(p_p1)
is provable in L; where we write `jL' for `provable in L':

4. jL p! (p _ p1) since all tautologies over L are
provable in L by virtue of axiom
schema A0.

5. jL Op! O(p _ p1) from 4 by the fact that the set of
L-provable L-sentences is closed
under the rule of inference

A! B

OA! OB
:
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Here, to say that the set of L-provable L-sentences is closed under that
rule of inference means that for all L-sentences A;B: if jLA ! B, then
jLOA! OB.

We continue the argument by making the following straightforward
observation:

6. t((0:2)) = Op! O(p _ p1) by the de�nition of t, clauses
(i),(i1),(iv),(vii) and (v).

Therefore:

7. jLt((0:2)) from 5 and 6 by the logic of =.

8. There is a sentence A in �, viz.
(0.2), such that A 62 NDL but
jLt(A)

from 3 and 7 by adjunction and
existential generalization.

9. t is not right-to-left adequate
with respect to NDL and L

from 8 by the de�nition of right-
to-left adequacy.

10. t is not fully adequate w.r.t.
NDL and L

from 9 by the de�nition of full
adequacy.

Thus, on the basis of the hypothesis 1, we have used the conditional sen-
tence (0.2) to show that t fails to be right-to-left, and hence fully, adequate
w.r.t. NDL and any Smiley{Hanson system L of monadic deontic logic.
In other words, no such system is a faithful representation of NDL under
t. Before embarking on a discussion of this argument, we stick in a little
exercise:

EXERCISE 12.

(i) Prove that the set of L-provable L-sentences is closed under the rule
A ! B=OA ! OB, for any of the ten Smiley{Hanson systems L, as
described in Section 10 below!

(ii) Give a rigorous proof in full detail of line 6 above!

Let us now try to assess the above argument. Clearly, the proof of lines 9
and 10 rests, or is conditional, on the hypothesis 1, which is to the e�ect that
(1.1) is not a logical consequence (in NDL) of (the unit set of) (0.1). What
motivation or reason could then be given for this claim? The following line
of thought is indicated and discussed by Wedberg [1969, p. 217], and by
Hansson [1969, p. 383].

A way for the addressee of (1.1) to obey the command expressed by it is
surely that he burns the letter. By so doing, however, he does not obey the
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command expressed by (0.1), which he even positively disobeys. So there
is a way of obeying (1.1), which is at the same time a way of disobeying
(0.1) and, hence, a way of not obeying it. Therefore, (1.1) cannot be a
logical consequence of (0.1). (The following terminological replacements
are all right with me: `norm' for `command', `satisfy' or `ful�l' for `obey',
`dissatisfy' or `violate' for `disobey'.)

As is clearly enough indicated by the aforementioned authors, this argu-
ment is rather confused. I would like to add the following point to their
valuable discussion. The criterion of logical consequence to which the argu-
ment tacitly appeals appears to be this:

LC0. Let A;B be any command-expressing sentences in English. Then, B
is a logical consequence of A i� every way of obeying B is a way of
obeying A.

Putting (1.1) = B and (0.1) = A in LC0, we indeed arrive at the strange
result under debate. But hasn't LC0 got things turned upside down? Ac-
cording to criteria in terms of obedience or satisfaction (suggested, e.g. by
Von Wright [1955] and Rescher [1966]), we should rather have something
like:

LC1. B is a logical consequence of A i� every way of obeying A (= the
implicans) is a way of obeying B (= the implicatum).

Using LC1 in the place of LC0, we cannot derive hypothesis 1 any longer. On
the contrary, using LC1, we have that (1.1) is indeed a logical consequence
of (0.1), since every way of posting the letter is a way of either-posting-or-
burning it.

Are we then entitled to dismiss the Ross Paradox on the basis of having
removed one basic confusion that seems to underlie it? I don't think so, nor
does, e.g. Von Wright [1968, pp. 21 �], where an interesting argument in
favor of hypothesis 1 is indicated, having the form of a reductio ad absurdum
of its negation, which is to the e�ect that (1.1) is a logical consequence of
(0.1). Von Wright's reductio is presented and discussed in some detail in
�Aqvist [1987, Section 5]. Here we just call the reader's attention to some
main conclusions emerging from that discussion.

(i) The argument of Von Wright [1968, pp. 21 �], is seen to depend
crucially on a so-called principle of free choice permission, the status
and acceptability of which has since been the object of a still lively
and intensive debate. We mention the following contributions from
the literature: Von Wright [1971], F�llesdal and Hilpinen [1971], Kamp
[1973; 1979], Lewis [1978], Hilpinen [1979; 1981] as well as Nute [1981].

(ii) Although the principle of free choice permission fails to be valid for
the weak notion of permission reected by the `standard' P-operator
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in normal monadic Von-Wright-type deontic logics (Section 4 above),
there remains the possibility of de�ning notions of strong permission
for which that principle is indeed valid | after all, permissive phrases
are well known to be ambiguous in ordinary discourse. An interesting
attempt to de�ne such a notion of strong permission was made by
Von Wright [1971]; the idea is based on the Andersonian reduction of
deontic logic to alethic modal logic with a propositional constant. We
also mention that Anderson [1968] uses the very same idea to develop
what he calls eubouliatic logic, in the sense of a logic of prudence,
safety, risk and related concepts of a decision-theoretic brand.

(iii) Contrary to the view of its originator, the Alf Ross paradox does not
seem to be a serious threat to the very possibility of constructing a
viable deontic logic. But it usefully directs our attention to the am-
biguity of normative phrases in natural language as a possible source
of error and confusion | in viable deontic logics we should be able to
express, to do justice to, and to pinpoint such ambiguities. For this
reason I agree with Von Wright in claiming that the puzzle deserves
serious consideration.

7 ARTHUR N. PRIOR'S PARADOXES OF DERIVED OBLIGATION
(`COMMITMENT')

Consider the English sentences:

(2) John Doe impregnates Suzy Mae.

(3) John Doe marries Suzy Mae.

as well as the enrichment L(D1{D11) of L, where D10 and D11 as follows:

(D10) John Doe impregnates Suzy Mae =df p2.

(D11) John Doe marries Suzy Mae =df p3.

We let FNE3 be the fragment of normative English constructible in L(D1{
D11), where Bas contains (2) and (3) as new members and where � is
de�ned as usual. Fresh clauses in the basis of the recursive de�nition of the
translation t:

(i2) t(`John Doe impregnates Suzy Mae') = p2.

(i3) t(`John Doe marries Suzy Mae') = p3.

The paradoxes of commitment, or derived obligation, go back at least to
Prior [1954] and can be viewed as arguments against t being fully adequate
with respect to NDL and any Smiley{Hanson system L of monadic deontic
logic. Consider the sentences:
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(2.1) If it is not the case that John Doe impregnates Suzy Mae then if
John Doe impregnates Suzy Mae then it is obligatory that John Doe
marries Suzy Mae.

(2.2) If it is obligatory that John Doe marries Suzy Mae then if John Doe
impregnates Suzy Mae then it is obligatory that John Doe marries
Suzy Mae.

(2.3) If it is obligatory that it is not the case that John Doe impregnates
Suzy Mae then it is obligatory that if John Doe impregnates Suzy
Mae then John Doe marries Suzy Mae.

(2.4) If it is obligatory that John Doe marries Suzy Mae then it is obliga-
tory that if John Doe impregnates Suzy Mae then John Doe marries
Suzy Mae.

Although they are all in �, the sentences (2.1){(2.4) give a somewhat
queer impression and may be diÆcult to understand. So here are their
t-translations into L:

t((2.1)) :p2 ! (p2 ! Op3).

t((2.2)) Op3 ! (p2 ! Op3).

t((2.3)) O:p2 ! O(p2 ! p3).

t((2.4)) Op3 ! O(p2 ! p3).

We now state four paradoxes of commitment in `one fell swoop':

1. None of the sentences (2.i), for
i = 1; 2; 3; 4 are logically valid.
In symbols: 6(2.i).

`claim' or hypothesis

Now, let L be any of the Smiley{Hanson systems of Monadic Deontic
Logic. Then:
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2. jLt((2.i)), for all i = 1; : : : ; 4 exercise

3. There are sentences Ai (with i =
1; : : : ; 4) in �, viz. (2.i), such
that Ai 62 NDL but jLt(Ai)

from 1 and 2 by the de�nition of
NDL, adjunction and existential
generalization

4. t is not right-to-left adequate
with respect to NDL and L

from 3 by the de�nition of right-
to-left adequacy

5. t is not fully adequate w.r.t.
NDL and L

from 4 by the de�nition of full
adequacy

Before trying to assess this argument, we stick in a little exercise:

EXERCISE 13.

(i) Prove assertion 2 in the above argument!

(ii) Find more idiomatic stylistic variants of the English (?) sentences
(2.i), for i = 1; 2; 3; 4!

What motivation could reasonably be given for the claim 1 in this argu-
ment? I suggest the following: the common consequent of (2.1) and (2.2)
as well as that of (2.3) and (2.4) may both be said to involve the notion of
commitment or conditional (`derived') obligation in such a way that

(2.5) Impregnating Suzy Mae commits John to marrying her

is a stylistic variant (in the sense of Kalish and Montague [1964]) of both
these common consequents. Let us now consider four cases in turn, with a
view to illustrate the Bolzano criterion of logical validity (see above Section
5.5).

Case I. Suppose that (2.1) is logically valid. Then, by the Bolzano criterion,
not only is (2.1) itself true, but so is every result of uniformly substituting
a sentence of the fragment FNE3 for any basic sentence in (2.1). Therefore,
the following sentence in � must be true:

(2.1.1) If it is not the case that John Doe impregnates Suzy Mae, then
if John Doe impregnates Suzy Mae then it is obligatory that
it is not the case that John Doe marries Suzy Mae

the t-translation of which is

t((2:1:1)) = :p2 ! (p2 ! O:p3):
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But this result is unpalatable for the following reason: on the basis of it
we may infer from the mere fact that John does not impregnate Suzy that
impregnating her commits John both to the act of marrying her as well as
to the act of not marrying her. There are certainly legal systems where such
an inference is rejected as absurd. Hence, (2.1) cannot be logically valid.

Case II. Here we consider an extended fragment FNE4, whose set Bas con-
tains the new sentence

(4) John Doe kills Suzy Mae

which is introduced by a de�nition D12 in the obvious way so as to yield
the fresh clause for t:

(i4) t(`John Doe kills Suzy Mae') = p4.

Now, suppose that (2.2) is logically valid. Then, by the Bolzano criterion,
not only is (2.2) true itself, but so is the result of substituting (4) for (2) in
(2.2). Call this result (2.2.1) and observe that

t((2:2:1)) = Op3 ! (p4 ! Op3)

Again, (2.2.1) being true is a strange result, because it seemingly entitles
us to say that if John has a duty to marry Suzy, then, by logic alone, he has
such a duty (even) if he kills her. But, we are told by some plain man in the
street, when she is dead, John cannot marry her and so is not obliged or
committed to marry her. For, as the saying goes, ought implies can. Hence,
to sum up, if (2.2) is logically valid, then (2.2.1) is true. But (2.2.1) is not
true (for the reasons just given); therefore, by modus tollens, (2.2) is not
logically valid.

Case III. Suppose that (2.3) is logically valid. Then, by the Bolzano crite-
rion, not only is (2.3) true itself, but so is the result of inserting the word
`it is not the case that' immediately in front of (3) in (2.3). Call that result
(2.3.1) and note that

t((2:3:1)) = O:p2 ! O(p2 ! :p3):

The argument against (2.3.1) being true is similar to the one used in Case
I: on the basis of it we may infer from the mere fact that it is forbidden for
John to impregnate Suzy that impregnating her commits John both to the
act of marrying her and to that of not marrying her. But this is absurd for
the same reason as in Case I.

Case IV. The point of departure here is the assumption that (2.4) is logically
valid. The refutation of that assumption proceeds (rightly or wrongly) along
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the lines followed in Case II. The result analogous to (2.2.1) is called (2.4.1)
where

t((2:4:1)) = Op3 ! O(p4 ! p3):

We have now got an idea about what kind of counterexamples people are
apt to give against the alleged logical validity of the sentences (2.i). We
may then try to pin down certain patterns of `intuitive reaction' to these
paradoxes of commitment, which are fairly well discernible or recognizable
in the vast literature on the subject. (Incidentally, they will also be seen
to apply to the Alf Ross paradox.) Let me distinguish the following two
tendencies: (i) the deprivation-of-counterintuitive-force tendency, and (ii)
the improved-formalization tendency, and briey comment on them in turn.

7.1 The deprivation-of-counterintuitive-force tendency

One argues as follows. Admittedly, formulations like (2.i) are ambiguous in
ordinary English, so there are di�erent ways of understanding or interpret-
ing (2.i). Now, each of the Smiley{Hanson systems L is based on a clearcut
model-theoretic semantics, which provides a mathematically precise inter-
pretation of its logical constants in terms of truth conditions stated relatively
to certain set-theoretical structures called models (see Section 10.3 below).
Via our de�nitions D1{D7 etc. generating fragments of normative English,
this precise interpretation is automatically transferred to every sentence of
such an English fragment. So, if we just stick to that interpretation of (2.i)
and, most importantly, do not `read into' them anything `beyond' it, their
counterintuitive appearance will simply vanish.

To illustrate a bit: since every `if ... then '-connective in any of (2.i)
is intended to mean the same as the arrow ! of material implication, as
ordinarily understood in the classical propositional calculus (on which all
the Smiley{Hanson systems are based), we have the following results on the
t-translations of (2.i):

jLt((2:1)) , (:p2 ! (:p2 _ Op3))

jLt((2:2)) , (Op3 ! (:p2 _ Op3))

jLt((2:3)) , (O:p2 ! O(:p2 _ p3))

jLt((2:4)) , (Op3 ! O(:p2 _ p3))

According to the strategy of interpretation just outlined, we are to under-
stand the sentences (2.i) to mean exactly what is meant by the corresponding
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right members in these equivalences according to the semantics for L; most
importantly, we are not to read anything more into them. We then observe
the following:

(i) Sentences (2.1) and (2.2) as well as their t-translations are instances
of familiar tautologies, which cannot fail to be true by virtue of the
usual truth-table test. Hence, their counterintuitive force disappears
as soon as this fact is grasped and strictly adhered to.

(ii) Sentences (2.3) and (2.4) as well as their t-translations are not in-
stances of any truth-table tautologies. Instead, their validity in L
depends on and is due to the model-theoretic truth condition for the
O-operator (in terms of `possible worlds', the relation of `deontic ac-
cessibility' etc. ; see Section 10.3 below). Once this fact is grasped and
strictly adhered to, their counter-intuitive force will vanish. Note here
that, on the basis of the last two of the equivalences above, the para-
doxical conditionals (2.3) and (2.4) both reduce to Ross-paradoxical
sentences, with which we have already dealt.

Let us also note, �nally, that the present Deprivation-of-Counterintuitive-
Force Tendency is nicely illustrated, e.g. by Von Wright [1956, p. 508] and
by Anderson [1956, p.185], as well as by Prior [1955, p. 224]. This tendency,
however, is not the only one emerging from their valuable discussion, as we
shall now see.

7.2 The improved-formalization tendency

Even1 if the argument just reported is successful in `explaining away' the
counterintuitiveness of the sentences (2.i), it is diÆcult to remain satis�ed
with it `as giving the full story of the matter'. As we said above, formu-
lations like (2.i) are admittedly ambiguous in ordinary language, so the
possibility of understanding their consequents as expressing some notion of
commitment (as illustrated by (2.5)) remains an interesting fact of linguistic
usage. But then the problem arises how to formalize the notion adequately,
which is surely a problem in view of the diÆculties pinpointed in Cases
I{IV above. Let us now quickly �nd out what attitudes Von Wright and
Anderson took on this issue.

In the second part of Von Wright [1956] we are warned against interpret-
ing the form

O(A! B)

to mean `doing A commits us (morally) to do B' (p. 508). Von Wright says
that if we do so
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: : : then a `paradox' instantly arises. For then we should have
to say that a forbidden act commits us to any other act (whether
obligatory, permitted, or forbidden). And this, obviously, con-
icts with our `intuitions' in the matter.

Perhaps we can say that Von Wright's reason for his caveat amounts es-
sentially to Case III. Again, Anderson [1956, p. 185], expresses a similar
warning: \... we should be wary in interpreting OCpq as meaning `p com-
mits us to q'."

Being thus dissatis�ed with O(A! B) (and with A! OB, we may add
in the case of Anderson) as adequately reecting the everyday notion of
commitment, our authors are naturally led to look for new ways of formal-
izing that notion. They tried di�erent approaches, though, which we are
now going to describe.

Von Wright [1956] introduces a new primitive symbol P (p=c), to be read
as: p is permitted under conditions c. He then de�nes O(p=c) as :P (:p=c),
for which he suggests the reading: p is obligatory under conditions c, or:
c commits us to (do) p. Furthermore, he gives two axioms for the new
primitive operator, on the basis of which, to the best of my knowledge, the
�rst known system of dyadic deontic logic was developed. Further addi-
tions to and re�nements of the system were suggested in Von Wright [1964]

and [1965]. This idea of using binary (i.e. two-place) primitives, express-
ing conditional or `relative' permission, prohibition and obligation, initiated
a very fruitful line of research in the history of modern deontic logic. In
e�ect, dyadic deontic logic as originating with Von Wright [1956], can be
said to have dominated recent work in the �eld up to this date. For the
moment, we just remind the reader of the following contributions: Rescher
[1958; 1962], Powers [1967], Danielsson [1968], Hansson [1969], Segerberg
[1971], F�llesdal and Hilpinen [1971], Van Fraassen [1972], Von Kutschera
[1973; 1974], Lewis [1974], Chellas [1974] and Spohn [1975].

Let us now turn to Anderson. He was able to make a di�erent suggestion,
because he had at his disposal a more powerful logical apparatus on which he
wished to base the theory of deontic notions, including commitment: that
of alethic modal logic with a propositional constant S symbolizing some
penalty or sanction. So already in Anderson [1956] we �nd him suggesting
(p. 185) that an alternative (to OCpq) candidate for the formal analogue
of commitment is C 0pOq: `p entails that q is obligatory'. Here `C 0 denotes
strict implication; using the symbolism adopted in the present essay, we
write in the place of C 0pOq:

�(A! OB):

In Anderson [1959], written as a reaction to the Rescher [1958] attempt
to elaborate further the Von Wright [1956] proposal about dyadic deontic
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logic, Anderson repeats his suggestion and, highly importantly in my opin-
ion, proceeds to lay down a number of adequacy criteria for a theory of
commitment (or a viable analysis of that notion).

Let us pause for a while to consider the import of the Anderson proposal.
To start with, let us replace the Von Wright [1956] dyadic notation O(p=c)
with the one adopted in the present essay, viz. OBA to be read: `if B then it
is obligatory that A' or: `B commits us to A'. For this notation, see Section
15 below. The Anderson proposal is then to the following e�ect: consider
the following

DEFINITION 14.

Defcom: OBA = df �(B ! OA):

Then, add Defcom to any suitable system K of alethic modal logic with the
constant S (or with Kanger's Q), which already has de�nitions of `standard
monadic' obligation and permission (see below Sections 12 and 13).

Suppose that K is well determined: we are then able to investigate the
logic of commitment (i.e. the laws governing locutions of the form OBA)
within K supplemented with Defcom.

Having now broadly outlined the respective approaches of Von Wright
and Anderson to the problem of formalizing a `reasonable' concept of com-
mitment or conditional obligation, we have to face the obvious questions:
What expectations are to guide us in this enterprise? What properties do
we expect that concept to have (and not to have)? I call this the problem
of adequacy criteria and will devote a special section to it.

7.3 Adequacy criteria for a theory of commitment or condi-
tional obligation

Consider the language of Dyadic Deontic Logic as described in Section 17
below. Its set of sentences is called �2

0;N and is such that, for any A;B in

�2
0;N ; OBA and PBA are in �2

0;N as well. We now adhere to the just adopted
reading of OBA as `B commits us to A'. We are looking for a theory L over
this language in the sense of a proper subset of �2

0;N (why proper?), which
is to serve as a viable and plausible logic of commitment. Let provability
and unprovability in L be denoted by jL and jL6 , respectively.

Adequacy criteria for L may now be divided into (i) those to the e�ect
that certain sentence schemata are to be unprovable in L, and (ii) those to
the e�ect that certain schemata are to be provable in L. Let us begin by
giving some examples of the �rst category.

In the light of our discussion of the sentences (2.i) (i = 1; : : : ; 4) we
consider certain generalized sentence schemata arising from the translations
t((2.i)) as follows. First, generalize p2 to an arbitrary formal sentence A
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and p3 to an arbitrary formal sentence B. We then obtain, e.g. from t((2.1))
the schema

:A! (A! OB)

Secondly, replace the consequent in this schema by the appropriate formal
analogue of commitment available in our language of dyadic deontic logic,
viz. OAB. We thus obtain in our present example:

:A! OAB

Performing the same operations with all the t(2.i)), we obtain three schemata
which, in the light of the diÆcult Cases I{IV, we expect all to be unprovable
in L. In other words, we expect L to satisfy the following three adequacy
criteria belonging to the unprovability category:

(C1) jL6 :A! OAB:

(C2) jL6 OB ! OAB:

(C3) jL6 O:A ! OAB:

where the monadic, i.e. without subscript, O-operator is de�ned by

OB = dfO>B

where the constant >, known as verum, denotes some arbitrary tautologous
condition. This proposal for handling monadic or `absolute' obligations in
dyadic deontic logic was made already by Von Wright [1956, p. 509].

I shall now make two observations.

(i) All systems of Dyadic Deontic Logic dealt with in Sections 17{23
satisfy the criteria C1{C3. In particular, this is true of the strongly
normal \core" system G. (see Section 23 below).

(ii) Von Wright [1956] claims that his new deontic logic satis�es C2 and
C3. And Anderson [1959] explicitly adopts C3 (writing Fp for O:p,
where F means `it is forbidden that').

EXERCISE 15.

(1) Prove assertion (i) just made above!

(2) Suppose Von Wright were to prove the claim reported in (ii) above;
how should he go about doing so?
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As a further adequacy criterion for L, we consider

(C4) jL6 OBA! OB^CA.

A classical intuitive counterexample to the validity of the schema in C4
is provided by the following instance of it:

Op2p3 ! Op2^p4p3

which is read: if impregnating Suzy Mae commits John Doe to marrying
her, then both-impregnating-and-killing-her commits John to marrying her.
This is absurd, though, since the antecedent may be accepted as true while
the consequent is rejected as false. This counterexample, or argument for
C4, apparently originated with Powers [1967] and is elaborated by various
subsequent writers, notably Danielsson [1968, p. 66 f], Hansson [1969, p.
392], Van Fraassen [1972, p. 418 f] and Van Eck [1981, p. 8]. The objec-
tionable schema in C4 is pertinently called a principle of augmentation by
Chellas [1974, p. 31].

EXERCISE 16. (after Danielsson [1968, p.67]).

(1) Suppose that our desired theory L satis�es one of the following ade-
quacy criteria belonging to the provability category:

(C5) jLOBA, O(B ! A).

(C6) jLOBA, (B ! OA).

Show that in each case L will violate C4! Show also that in each case
L violates at least one of C1{C3!

(2) Let K be a system of alethic modal logic with the constant S (or Q)
to which Defcom is added so that K satis�es the following criterion:

(C7) jKOBA, �(B ! OA):

Then, show that K or, strictly speaking, its deontic fragment, violates
C4!

(3) What assumptions concerning deducibility in L(K) have minimally to
be made in order for your proofs to work?

(4) Suppose that C1{C4 are accepted as reasonable adequacy criteria for
L. What conclusion as to the status of C5{C7 are we to draw in the
light of the above results?

EXERCISE 17. Show that all systems of dyadic deontic logic considered in
Sections 17{23 satis�es the criterion C4! Hint: it is enough to prove that
our strongly normal system G (Section 23 below) has this property.
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In Anderson [1959] it is suggested that our desired theory L of commit-
ment is to meet the following six adequacy criteria, which are all to the
e�ect that certain schemata should be provable in L (and thus belong to
our second category):

(C8) jL(A ^ OAB) ! OB:

(C9) jL(OA ^ OAB) ! OB:

(C10) jL(PA ^OAB) ! PB:

(C11) jL(OAB ^ OBC) ! OAC:

(C12) jLOAB ! O(A! B):

(C13) jLO:AA! OA:

EXERCISE 18.

(1) Show that the system G, as described in Section 23 below, satis�es
the criteria C9,C10,C12 (which is a weakened version of C5) and C13!

(2) Consider any system of dyadic deontic logic which is an axiomatic
extension of OdyS5

N (see Section 18 below) and is dealt with in Part
VI. Determine, for each of the four criteria just mentioned, which is
the weakest system satisfying that criterion!

(3) Consider again our strongly normal system G (Section 23). Show that
it neither satis�es C8 nor C11!

In �Aqvist [1963] the following criticism was levelled against the Ander-
sonian set C8{C13 of criteria. (On page 25, note 2 of that paper, the gist
of the argument was credited to T. Dahlquist.) Suppose that L satis�es
both C8 and C9. Then, provided only that L possesses a certain minimal
deductive power, L will satisfy the following condition C14:

(C14) jL(OAB ^ O:A:B ^ OA ^ :A) ! (OB ^ O:B):

Suppose further that L meets this condition:

(C15) jL:(OB ^O:B):

Then, as we easily show using modus tollens, L will also meet this con-
dition:

(C16) jL:(OAB ^ O:A:B ^ OA ^ :A):

The refutability in L of the schema inside the negation-sign in C16 now
amounts to this: whatever be meant by A and B here, the following con-
junction (or set) of assumptions is logically impossible or provably false
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in L:

A commits us to B
(not: A) commits us to (not B)

and

it is obligatory that A
it is not the case that A.

But, the argument goes on, this result is counterintuitive, because we can
�nd A and B, as well as English readings of them, for which that conjunction
(or set) appears to be perfectly possible or consistent logically. A famous
case in point is the so-called Chisholm contrary-to-duty imperative paradox,
�rst stated in Chisholm [1963] and later discussed by a number of authors,
e.g. Von Wright [1964; 1965], Sellars [1967], �Aqvist [1966; 1967], Powers
[1967], Hansson [1969], F�llesdal and Hilpinen [1971], Mott [1973], al-Hibri
[1978], Tomberlin [1981], Van Eck [1981], and presumably several others.
We now address ourselves to that puzzle.

8 RODERICK M. CHISHOLM'S CONTRARY-TO-DUTY
IMPERATIVE PARADOX

Several versions of the puzzle are known in the literature. Following Van
Eck [1981] I shall consider a Suzy Mae version of it, which explicitly involves
the notion of commitment:

I. It ought to be that John does not impregnate Suzy Mae.

II. Not-impregnating Suzy Mae commits John to not marrying her.

III. Impregnating Suzy Mae commits John to marrying her.

IV. John impregnates Suzy Mae.

Let C = fI,II,III,IVg. We note that the set C is, from an intuitive stand-
point, both consistent in the sense that no contradiction follows from it
and non-redundant in the sense that none of its members follows from the
remainder of the set. We then expect any adequate formalization of I{IV
to preserve both these properties. Let us call this adequacy criterion our
requirement of consistency and non-redundancy.

We now consider three attempts to formalize the sentences I{IV, using
only the resources of Monadic Deontic Logic.
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First attempt:

Ia. O:p2:

IIa. O(:p2 ! :p3):

IIIa. O(p2 ! p3):

IVa. p2:

Objection: Let L be any of the ten Smiley{Hanson systems. We have that
IIIa is L-derivable (L-deducible) from Ia, although III does not follow logi-
cally from I. Hence, the non-redundancy part of our requirement is violated
by this proposal.

Second attempt:

Ib(=Ia). O:p2:

IIb. :p2 ! O:p3:

IIIb. p2 ! Op3:

IVb(=IVa). p2:

Objection: IIb is L-derivable from IVb, although II is not a logical conse-
quence of IV. Therefore, non-redundancy is not preserved by this formal-
ization either, contrary to our requirement.

Third attempt:

Ic(=Ia). O:p2:

IIc(=IIa). O(:p2 ! :p3):

IIIc(=IIIb). p2 ! Op3:

IVc(=IVa). p2:

Objection: Let L be any of the Smiley{Hanson +-systems, having the char-
acteristic axiom schema A3: OA! PA, which, by A1, is equivalent to

OA! :O:A (see Section 10:2 below):

We then observe that fIc,IIcg jLO:p3 and that fIIIc,IVcg jLOp3. Hence
fIc,IIc, IIIc,IVcg jL ?, so the present formalization fails to preserve the
consistency of C, contrary to our requirement.

EXERCISE 19.

(i) The objections to the three attempts just considered rest on claims
about derivability in all, or certain, Smiley{Hanson systems L. Give
careful proofs (in full detail) of these claims!
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(ii) What happens to the objection to the third attempt, if the restriction
to the Smiley{Hanson +-systems is dropped?

(iii) Consider the formal sentences Ia{IVa, IIb, IIIb, which are all in �.
Which English sentences in �, i.e. the set of sentences of the fragment
FNE3 (see Section 7 above), are such that these formal sentences are
the t-translations of the latter English sentences, respectively? What
relation do those English sentences bear to I{IV above?

Let us now pass to consideration of certain attempts to formalize the
sentences I{IV, using the stronger resources of dyadic deontic logic, i.e. the
language described in Section 17 below and its set of sentences �2

0;N .

Fourth attempt:

Id(=Ia). O:p2:

IId(=IIa). O(:p2 ! :p3):

IIId. Op2p3:

IVd(=IVa). p2:

Fifth attempt:

Ie(=Ia). O:p2:

IIe. O:p2:p3:

IIIe(=IIId). Op2p3:

IVe(=IVa). p2:

The fourth and �fth attempts to deal with Chisholm's puzzle give rise to
the following result:

THEOREM 20 (Contrary-to-duty imperative paradox). Let L be any of
the systems of dyadic deontic logic presented in Sections 15{23. Let

Cd = fId; IId; IIId; IVdg

Ce = fIe; IIe; IIIe; IVeg:

Then:

(i) Cd is L-consistent in the sense that ? (falsum) is not L-derivable from
Cd. In symbols: CdjL6 ?.

(ii) Ce is L-consistent in the same sense, i.e. CejL6 ?.
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(iii) Cd is L-non-redundant in the sense that none of its members is L-
derivable from the remainder of Cd.

(iv) Ce is L-non-redundant in the same sense.

In short, the intuitive content of the theorem is to the e�ect that the
fourth and �fth attempts both satisfy our requirement of consistency and
non-redundancy with respect to any dyadic system L of a certain kind.

Proof.[Sketch] It is enough to prove the points (i){(iv) for the case where
L = our strongly normal system G (why?). To begin with, let us have
a look at the diagram shown in Figure 1. The meaning of this is that
it represents a set W of possible worlds (or situations), consisting of four
distinct members x; y; z; u; which are ranked by a binary relation of strict
preference or strict betterness. That relation is represented by �, and the
ranking order is from left to right, so that u is the best member of W;x the
second best etc.Moreover, the proposition letters p2; p3 (read in accordance
with D10 and D11, Section 7 above) are taken to be true/false at di�erent
worlds as shown by the diagram:

p2 is true at x and y, but false at z and u
p3 is true at x and z, but false at y and u.

W
u � x � z � y
Æ Æ Æ Æ
:p2 p2 :p2 p2
:p3 p3 p3 :p3

:p2 ! :p3

Figure 1.

Molecular Boolean compounds of these `atoms' receive truth-values accord-
ing to the familiar tables. But how do we handle sentences of the forms OA
and OBA (expressing `absolute' and `conditional' obligations, respectively)?
The main suggestion embodied in the dyadic approach to deontic logic (and
perhaps most clearly stated by Hansson [1969]) comes down to this. Letting
B(A) be any sentence in �2

0;N , we mean by a B(A)-world any world in W
at which B(A) is true; then, we propose the following truth condition for
any sentences of the form OBA, relatively to any world w in W :

TC. OBA is true at w i� all the best B-worlds are A-worlds.
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Consider now the point y in W , i.e. the `worst of all possible worlds in
W ' according to the ranking �. For each member of Cd we want to �gure
out whether it is true at y or not:

Id? Remembering the Von Wright [1956] type de�nition of the monadic
O-operator (Section 7.3 above)

OB = df O>B

we obtain by TC that O>:p2 is true at y i� all the best >-worlds are :p2-
worlds. But the set of >-worlds = W (why?) and the set of best >-worlds,
according to �, = fug, i.e. the unit set of u. Now, :p2 is true at u, so all
the best >-worlds are :p2-worlds. Hence, by TC,Id is true at y.

IId? The same kind of argument is helpful in establishing the truth at y
of IId.

IIId? By TC we have that Op2p3 is true at y i� all the best p2-worlds
are p3-worlds as well. Now the set of p2-worlds = fx; yg and the set of best
p2-worlds = fxg. p3 is true at x, so all the best p2-worlds are p3-worlds.
Hence, by TC,IIId is true at y.

IVd? By our diagram, p2 (=IVd) is true at y.

Upshot so far: every sentence in the set Cd is true at y.
We can now proceed to establish point (i) of our theorem. First of all, we

claim that the `model' pictured in Figure 1 can be used to de�ne a strong
deontic H3-model U , in the strict sense introduced in Section 22 below,
which is such that all members of Cd are true at y in U . (The construction,
or de�nition of U is left as an exercise to the reader.) Suppose then, contrary
to (i), that Cd is not G-consistent. By the de�nition of the latter notion
(see already Section 10.2.1) we obtain:

jG(Id ^ IId ^ IIId ^ IVd) !?

or simply:

jG:(Id ^ IId ^ IIId ^ IVd)

which is to the e�ect that the negation of the conjunction of the members
of Cd is provable in G.

However, since that negation is provable in G, then, by the Soundness
Theorem for G (Theorem 72 below), it is strongly deontically H3-valid,
which means in particular that it is true at y in our model U just constructed.
But, as all members of Cd are true at y in U , their conjunction must be true
at y as well. Contradiction. This proves point (i) of the theorem.
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To deal with (ii) we only have to show that the sentence IIe in Ce is true
at y in the intuitive model picture in Figure 1. Well, O:p2:p3 is, by TC,
true at y i� all the best :p2-worlds are :p3-worlds as well. Now, the set
of :p2-worlds =fu; zg and the set of best :p2-worlds = fug. :p3 is true at
u (by our diagram), so all the best :p2-worlds are :p3-worlds. Hence, by
TC,IIe is true at y. The remainder of the proof of point (ii) parallels that
of (i).

Our strategy in dealing with the non-redundancy points (iii) and (iv) is
the following. Suppose we want to show that in G IVd(=p2) is independent
in Cd in the sense that fId, IId, IIIdg6`GIVd. Suppose that we �nd , i.e. are
able to construct, a strong deontic H3-model U and a world w in U such
that Id,IId,IIId as well as the negation of IVd are all true at w in U . We
then use the Soundness Theorem for G to conclude (exactly how?) that
IVd is not G-derivable from fId,IId,IIIdg.

Following this strategy, the proof of (iii) and (iv) is almost routine and
can be left to the reader. Just a few hints:

The case of the independence of IVd(=IVe) in Cd and Ce is particularly
easy: use the same model as above, but consider the point z, at which p2 is
false, instead of y.

For the case of Id(=Ie): stick to y as the `point of evaluation' in the above
model, but change � in such a way that x is ranked above u.

For the cases of IId and IIe: stick to y in the original model, but assume
p3 to be true at u.

And so on.
This completes the outline of a proof of the Theorem on the contrary-to-

duty imperative paradox. �

8.1 On the choice between the fourth and the �fth attempt

Suppose we grant that the formalizations of I{IV codi�ed in the fourth
and �fth attempts are superior to their predecessors, because they preserve
both the intuitive consistency and the intuitive non-redundancy of the set C.
Which of Cd and Ce are we then to choose? I shall now o�er an argument
for taking a neutral position on this issue: it does not matter which one we
choose, we may leave the choice open.

Let us ask, to begin with: as Cd and Ce di�er only with respect to their
second member, what is the logical relation of IId to IIe? In answer to that
question we state and prove the following result:

LEMMA 21 (IId and IIe). Let L be any of the dyadic systems dealt with in
Part VI below. Then:

(i) If L contains the system E (see Section 22 at the end), then

jLO:p2:p3 ! O(:p2 ! :p3):
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(ii) If L contains the system G (Section 22 at the end), then

jLp>:p2 ! O(:p2 ! :p3) , O:p2:p3):

Proof.

Ad (i):

1. O:p2:p3 hypothesis

2. N(:p2 , (>^ :p2)) E contains S5 for N

3. O:p2:p3 , O>^:p2:p3 from 2 by �0 (Section 18), which
is an axiom schema in E, using
modus ponens

4. O>^:p2:p3 from 1 and 3 by propositional
logic

5. O>^:p2:p3 ! O>(:p2 ! :p3) instance of �2 (Section 18),
which is an axiom schema in E

6. O>(:p2 ! :p3) from 4,5 by modus ponens

The sequence 1{6 is a deduction in E and hence in any L of the sort
under consideration. Rewriting O> as O in 6, we obtain the desired result
(i) by the rule of conditional proof (or, if you like, the Deduction Theorem),
which is valid in (for) E, of course.

Ad (ii):

1. P>:p2 ! (O:p2:p3 !
O>(:p2 ! :p3))

from (i) by propositional logic,
since G contains E

2. P>:p2 ! (O>(:p2 ! :p3) !
O>^:p2:p3)

instance of �4 (Section 18),
which is one of the characteristic
axiom schemata in G

3. P>:p2 ! (O>(:p2 ! :p3) !
O:p2:p3)

from 2 and line 3 in the proof
of (i) above, using propositional
logic

4. P>:p2 ! (O>(:p2 ! :p3) ,
O:p2:p3)

from 1 and 3 by propositional
logic
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The present sequence 1{4 is a rather fragmentary proof in G of its last
line, 4. Rewriting O> as O in 4, we obtain the desired result (ii). �

COROLLARY 22. Suppose that L contains the system G. Then:

(iii) Ce jLIId

(iv) Cd jLIIe

Proof. Here, (iii) follows from (i) and the fact that G contains E. Again,
(iv) is obtained from (ii) as follows: using �3 (Section 18), which is a some-
what controversial schema of G, together with the fact that jGM> (G
contains S5 for M), we see that the sentence Id entails P>:p2, i.e. the
antecedent of 4 above. So, using that result together with 4 and IId, we
obtained the desired conclusion IIe. �

Clearly, in spite of IId being in general weaker than IIe, (iii) and (iv) are
jointly to the e�ect that it does not matter which of Cd and Ce we choose as
the `correct' formalization of C; provided, however, that G can be accepted
as a satisfactory dyadic system. I have nothing against assuming this to
be the case. Bearing in mind that G is a generalized version of Hansson's
DSDL3, this attitude of mine should be shared, e.g. by Hansson [1969],
F�llesdal and Hilpinen [1971] and Spohn [1975].

9 PROBLEMS UNSOLVED BY THE DYADIC APPROACH; THE
NEED FOR TEMPORAL AND QUANTIFICATIONAL

RESOURCES IN THE BASIC LANGUAGE OF SATISFACTORY
DEONTIC LOGICS; ON THE LOGIC OF ACTION; FAILURE OF

LEFT-TO-RIGHT ADEQUACY

Our discussion of Prior's paradoxes of commitment and Chisholm's contrary-
to duty imperative paradox was mainly designed to show how the idea of
dyadic deontic logic naturally arises as an attempt to cope with these diÆ-
culties. The Exercises on such adequacy criteria for a logic of commitments
as C1{C13 (Section 7.3 above) as well as our Theorem on the Contrary-
to-Duty Imperative Paradox and Lemma on IId and IIe should have given
the reader a fairly clear opinion of the virtues of the dyadic approach and a
nice explanation why it has proved to be such a powerful trend of thought
in the development of modern deontic logic. It is now time to turn to its
vices, i.e. to certain problems or problem-areas which the dyadic approach
appears unable to handle. Mainly following the admirable survey given in
Van Eck [1981], we present a list of such problems or problem-areas:

(I.) The dilemma of commitment and detachment.
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(II.) Prima facie vs. actual obligation; the ceteris paribus proviso.

(III.) The ought-implies-can problem.

(IV.) The Good Samaritan paradox and the Jephta dilemma.

(V.) The problem of the relationship of act-utilitarianism to deontic logic.

I shall now briey state these diÆculties. After having done so, I shall
then, without going into details, indicate what I take to be the proper
attitude to them and what conclusions are in my opinion `reasonably' to be
drawn from them.

9.1 Survey of diÆculties (after Van Eck [1981])

I. The dilemma of commitment and detachment. Suppose we were to accept
a dyadic system L satisfying the Andersonian criterion C8 (Exercise 18
above):

(C8) jL(A ^OAB) ! OB

so that L allows a principle of detachment to be valid for commitment-
expressing formulae of the type OAB. Then, provided only that L is suÆ-
ciently strong in other respects (which?), we quickly obtain results like

Cd(e)jLOp3

Cd(e)jLO:p3 ^ Op3

Cd(e)jL ?

in violation of our requirement that the consistency of C should be preserved.
Hence, if L is of this kind, the fourth and �fth attempts both break down
as solutions to the Chisholm puzzle.

Now, these attempts may be defended by claiming that any `correct'
dyadic system must, like our G and others, not allow detachment for com-
mitment; it must de�nitely not satisfy the criterion C8. In short, in order
for the dyadic solutions to work, detachment should not be possible.

However, detachment is not so easily given up from an intuitive stand-
point. Here are some voices from the literature:

In nothing like schema (i) (sc. the one in C8) is valid, how can
conditional obligation-sentences play the important role in nor-
mative argumentation which they seem to play? (Danielsson
[1968, p. 66]).
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How can we take seriously a conditional obligation if it cannot,
by way of detachment, lead to an unconditional obligation? (Van
Eck [1981, p. 23]).

So, on the other hand, we seem to feel that detachment should be possible
after all. But we cannot have things both ways, can we? This is the dilemma
on commitment and detachment.

II. Prima Facie vs. Actual Obligation; the Ceteris Paribus Proviso. Suppose
that at a given time t John promises Suzy to marry her at a certain later
time t + 7. Assume that the promise gives rise to an obligation for John
to marry Suzy at t + 7, and that this obligation comes into force at time
t. Now, in the meantime between t and t + 7, various things might happen
that make it impossible for John to ful�ll his obligation. For instance, he
learns that his mother in Australia is dying, whence there arises, say at time
t + 3, an obligation for John to go and visit her in Australia immediately.
John takes o�, but is then unable to marry Suzy at t + 7, so he breaks his
promise and violates his �rst obligation.

Following Hintikka [1971] we may characterize this situation as one where
an earlier obligation, due to the promise, is overruled by a stronger obliga-
tion, which arises in the meantime between the moment at which the �rst
obligation comes into force (= t) and the moment of its ful�llment (= t+7).
Hintikka [1971] goes on to suggest that the famous prima facie vs. actual
duty distinction (Sir David Ross [1930; 1939], Richard Price [1948]) should
somehow be applicable to this situation. Following Van Eck [1981], then, I
think we may say that at time t + 3 the earlier obligation, though still in
force at that time, is a mere prima facie duty, whereas the later and stronger
obligation has acquired the status of an actual duty of John's. Our present
problem concerns the explication of this distinction and its formal repre-
sentation in systems of deontic logic; apparently, the issue was �rst raised
by Hintikka [1971] and further discussed by Purtill [1973], Bergstr�om [1974]

and Van Eck [1981]. Furthermore, if we try to bring out the distinction by
saying that John's �rst prima facie duty carries an implicit or tacit ceteris
paribus rider `other things being equal',whereas his second actual duty does
not, we face the problem of analyzing the import of ceteris paribus provisos,
in general as well as in the particular case at hand.

III. The Ought-Implies-Can Problem. My remarks on the celebrated Kan-
tian principle will by necessity be very brief and will fail to do justice to
the impressive richness of the literature on it. We ask: does `ought' imply
`can'? then, if the answer is Yes, in what sense of (at least) (i) `can' and (ii)
`imply'? Again, there are at least two alternatives under each heading here:
(i.i) `can' means logical possibility, and (i.ii) `can' means some stronger pos-
sibility of a more `practical' or `real' kind, which might be explicated as a
temporally dependent possibility in a sense that seemingly originates with
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Montague [1968] and is further developed, e.g. by Chellas [1969] and Van
Eck [1981]; moreover, `imply' could mean (ii.i) ordinary logical consequence,
or (ii.ii) some di�erent form of consequence, say, the interesting notion of
deontic consequence proposed in Hintikka [1957] and [1971].

Having thus surveyed some candidates in the area, I just think Van Eck
[1981, II. Section 2.2], has given excellent reasons for regarding the combi-
nation (i.ii) with (ii.i) as providing the most viable and interesting inter-
pretation of the Kantian principle: the alternative (i.i) seems to make it
trivial, and the reasons against (ii.i) and for (ii.ii) are far from clear. But
there are independent positive reasons as well for interpreting `can' as tem-
porally dependent, or historical, possibility and `imply' as ordinary logical
consequence.

IV. The Good Samaritan Paradox ant the Jephta Dilemma. The �rst puzzle
here goes back at least to Prior [1958] and has been discussed in a number of
contributions, of which we only mention Danielsson [1968], Wedberg [1969],
Van Fraassen [1972], Casta~neda [1968a; 1974], Tomberlin and McGuinness
[1977] and Van Eck [1981]. Interestingly, though, Knuuttila [1981] points
out that in the fourteenth century versions of the paradox were known to
and dealt with by Roger Rosetus in his Commentary on the Sentences.

Again, the Jephta Dilemma (see the Book of Judges) was taken by Von
Wright [1965] to be an interesting problem case for deontic logic, which
illustrates such notions as those of a predicament and a conict of duty. It
has later been discussed extensively by Van Eck [1981].

The following version of the Good Samaritan paradox is presented in
Tomberlin and McGuinness [1977] and goes back to Casta~neda [1974]; con-
sider the argument:

(5) If Bob pays $500 to the man he will murder one week hence, then
Bob will murder a man one week hence.

(6) It ought to be that Bob pays $500 to the man he will murder
one week hence (because Bob owes that amount of money to the
latter).

Therefore:

(7) It ought to be that Bob will murder a man one week hence.

In this argument, the �rst premiss, (5), may be taken to be, not only
true, but even logically true. As for the second, (6), let us just assume it
to be true. On the other hand, (7), is plainly false, in spite of the fact
that the premisses (5) and (6) are both true. Hence, the argument must
be invalid. But, if we translate it into the language of any of the Smiley{
Hanson systems L of Monadic Deontic Logic, which are all closed under the
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rule of inference:

A! B

OA! OB
(see Exercise 12 above)

we �nd that the translation of (7) is L-derivable from the translations of
the premisses (5) and (6). What has gone wrong here?

The Jephta Dilemma is reminiscent of the famous Morning Star Paradox
in quanti�ed modal logic with identity (see, e.g. Kanger [1957a]) and can
be stated as follows. Consider the argument:

(8) Miriam (i.e. the daughter of Jephta) is identical to the �rst being
that will meet Jephta on his return home.

(9) It ought to be that Jephta immolates the �rst being that will meet
him on his return home (because he has promised God to do so).

Therefore:

(10) It ought to be that Jephta immolates Miriam (his own daughter).

Again, here, as it seems, the premisses are true while the conclusion
is false. So the argument must be invalid. But if we formalize it in a
suitable system L of deontic logic, it may well turn out that the inference
is countenanced as valid in L. How are we to account for this?

V. The problem of the relationship of Act-Utilitarianism to deontic logic.
In Casta~neda [1967; 1968], Casta~neda points out the following intriguing
diÆculty for the familiar ethical theory known as Act-Utilitarianism. My
statement of the problem will involve some amount of `precization'. Let X
be any moral agent, let C be any situation or set of circumstances, and let
A be any act open to X in C (in the sense that it is possible for X to do A
in C). Then, the following is a central thesis of Act-Utilitarianism:

(U) X ought to do A in C i� for each act A0 such that (i) A0 is open
to X in C and (ii) A0 is an alternative to A in C and (iii) A0 is
distinct from A

we have that the consequences of X 's doing A in C are better than those
of X 's doing A0 in C.

It may be that condition (iii) in this formulation of (U) is redundant,
because entailed by (ii). Next, consider this set of assumptions:
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(11) X ought to do P ^Q in C (where P ^Q is a certain conjunctive
act open to X in C)

(12) The three acts P ^ Q;P;Q are all (i) open to X in C, (ii) alter-
natives to each other in C, and (iii) distinct from one another.

(13) If X ought to do P ^ Q in C, then X ought to do P in C and
X ought to do Q in C.

THEOREM 23. (after Casta~neda [1968]): The set f(11),(12),(13),(U)g is
inconsistent.

Proof. Exercise. (If you are unable to do it, see Casta~neda [1968]!) What
assumptions about the preference relation better than do we minimally have
to make in order to establish the present result? �

We should note here that (13) is reminiscent of the principle asserting that
O is distributive over ^, which is valid in all the Smiley{Hanson systems of
monadic deontic logic. Now, suppose we stick to the assumptions (11) and
(12): then we face the tough choice, described by Wedberg [1969], between

(i) maintaining (13) and rejecting the utilitarian thesis (U) already on
grounds of deontic logic; and

(ii) maintaining (U) and rejecting the deontic-logical principle (13).

Perhaps this is a `false dilemma', though: why not abandon (12) and try to
save both (13) and (U)?

I shall not discuss here this proposal and others that might be or have
been made. I just like to point out that in �Aqvist [1969] an attempt
was made to relate Casta~neda's problem to the interesting work done by
Bergstr�om [1966] on utilitarian and teleological ethics. The notion of the
alternatives to an action is seen to play a crucial role in Bergstr�om's analysis
and was further scrutinized by Prawitz [1968; 1970], Bergstr�om [1968] and
by other contributors. The discussion quickly turned out to be surprisingly
complex and it is diÆcult to give a fair assessment of its outcome.

9.2 Diagnosis

I have now �nished my survey of the problem areas I{V. In my opinion, the
existence of these diÆculties, together with various unsuccessful attempts
to overcome them, give considerable support to the diagnosis that

the languages of the current systems of deontic logic are far too
poor to function as a satisfactory medium for formulating cues
for the moral agent (Van Eck [1981, p. 1]).
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I think this conclusion is born out in an especially clear way by the Van
Eck treatment of problem II and his fascinating account of how prima facie
obligations pass into actual duties as time elapses. The account is based on
a system of temporal logic, more speci�cally: a system of temporally relative
modal and deontic predicate logic. In my view, the virtues of this system
are shown by its capacity to handle, not only the paradoxes of commitment
and the contrary-to-duty imperative, but, as Van Eck also shows, the four
problem areas I{IV as well. Handle them in a more convincing way than
has so far been done up to this date, that is to say. As Van Eck observes
in the preface to his [1981], though, he is not alone in having conceived
of the idea of constructing a semantics for a notion of temporally relative
necessity and basing a semantics of temporal deontic notions upon it: similar
ideas can be found in �Aqvist and Hoepelman [1981], going back to Chellas
[1969] and Montague [1968] (see problem III above). Also, Thomason [1981]

(deriving from an original 1970 version) and [1981a] should be mentioned
in the present context. Now, the Van Eck framework appears to be richer
than these rival ones, because it uses temporal variables, constants and
quanti�ers in the object-language. And this, I think, makes it more useful
for philosophical applications; an illustration of this claim is perhaps the
little paper �Aqvist [1981], where precisely a Van Eck-type framework is
applied to the ancient so-called Protagoras paradox (see also Lenzen [1977]

and Smullyan [1978]).
Among recent contributions in the same vein, those of Bailhache [1991]

(going back to work done in the early eighties) and [1993] strike me as
particularly valuable. See also �Aqvist [1997a].

There are strong reasons, then, for enriching the basic language of satis-
factory deontic logics with explicit temporal resources. Moreover, problems
IV and V nicely show, I take it, the need for quanti�cational resources in
that language as well; how could we otherwise even begin to state those
problems in an intelligible way? The indispensability of quanti�ers in de-
ontic logic was, on general grounds, very well argued by Hintikka already
in his [1957] (and later in his [1971]), when he comments on the fundamen-
tal work done by Von Wright [1951; 1951a] as well as by Prior [1955]. A
system of deontic predicate logic (quanti�cation theory) is also presented
in Kanger [1957]; his system is one with identity and, interestingly, blocks
deontic analogues of the Morning Star paradox such as the Jephta dilemma
in the model-theoretic semantics given for it.

Again, the need for quanti�ers in deontic logic seems to be one of the main
tenets of Casta~neda's in an impressively large number of contributions, of
which we mention here only Casta~neda [1954; 1959; 1981].

We must briey touch on the following question: given the indispensabil-
ity of quanti�ers in deontic logic, exactly over what sort of entities do we
have to quantify? agents, patients, times, places, circumstances or what?
Hintikka [1957] suggested individual acts; in Makinson [1981] this suggestion
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is shown to give rise to considerable interpretational diÆculties. See also
Robison [1964] for further suggestions. In answer to this question I would
like here to recommend a very broad, liberal and open-minded attitude: as
deontic logicians, we should be prepared to quantify over whatever entities
the ethical theory or normative (e.g. legal) system requires us to consider
seriously, and to adjust our deontic predicate logic accordingly. We should
not, I contend, worry too much about ontological commitments; in today's
research situation the important thing is to get the right kind of structure
going.

9.2.1 On the logic of action

Having now stressed the importance of temporal and quanti�cational ma-
chinery to viable deontic logics, there is a third research trend in our area, to
which I like to draw the reader's attention. This trend claims that such log-
ics ought to be combined with a logic of action; it is usually taken to have
been initiated in Von Wright [1963] and followed up, e.g. in Von Wright
[1967] (with comments by Chisholm [1967]) and Von Wright [1974]. How-
ever, if we consider the distinguishing mark of a logic of action to be the
presence in its basic language of a special `causal' operator of agency (ex-
pressing that an agent brings it about, sees to it, makes it true that so-and-so
is the case), we might just as well credit Kanger [1957], Anderson [1962] and
Kanger and Kanger [1966] with the idea. Anyway, the latter authors ap-
ply it in attempts to reconstruct and to extend the Hohfeldian system of
jural relationships as set forth by Hohfeld [1919]. In this endeavor they
are followed by, notably, P�orn [1970], Anderson [1971] and Lindahl [1977].
This movement is highly interesting and promising for the future, and any
account of present-day deontic logic would be seriously incomplete if it did
not mention it.

Finally, I like to close this Part by making a remark on the Good Samar-
itan paradox, which is intended to illustrate the notion of left-to-right ad-
equacy (Section 5.4 above) and its failure in connection with the Smiley{
Hanson systems of monadic deontic logic.

9.2.2 Remark on the Good Samaritan paradox

Consider the de�nitional enrichment L(D1{D14) of L, where D13 and D14
are as follows:

(D13) Bob pays $500 to the man he will murder one week hence =df p5

(D14) Bob will murder a man one week hence =df p6

Extending the translation t in the obvious way, we obtain the following
formalization of the sentence (5) in the paradox:
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t(5) = (p5 ! p6):

Note, then, that (5) is in � (= the sentence-set of the fragment FNE6) and
that (5) is logically true (presumably). Hence, (5) is in NDL. On the other
hand, t(5) is not provable in any of the Smiley{Hanson systems L (why?).
So we have a counterexample to the left-to-right adequacy of t with respect
to NDL and L.

The import of this counterexample is that there are validities in natural
deontic logic (NDL), or relations of `natural' logical consequence, which fail
to be representable in certain formal deontic logics, such as L. The reason
is, of course, that we need a quanti�cational formal framework with de�nite
descriptions in order adequately to formalize such a sentence as (5); the
propositional language L is simply not expressive enough.

We should contrast this counterexample with those met with above,
which purported to show that t was not right-to-left adequate with respect
to NDL and L, in the sense that the latter sanctions more logical validities
than the former. The present situation is precisely the opposite one. The
Good Samaritan paradox is usually cited as an instance of failing right-to-
left adequacy, just as those of commitment etc.I think it is of some interest
to note that it could also be used to illustrate the opposite failure.

III. TEN SMILEY{HANSON SYSTEMS OF MONADIC DEONTIC
LOGIC

10 LANGUAGE, PROOF THEORY AND SEMANTICS

10.1 Language

10.1.1 Alphabet

Our alphabet consists of

(i) a denumerable set Prop of proposition letters p; q; r; p1; p2; : : : ;

(ii) the primitive logical connectives > (verum), ? (falsum), : (negation),
O (obligation), P (permission), ^ (conjunction), _ (disjunction), !
(material implication) and , (material equivalence); and

(iii) the parentheses ( ).

10.1.2 Sentences

(well formed formulas, w�s): The set � of all sentences of our language is
de�ned as the smallest set S such that
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(a) every proposition letter in Prop is in S,

(b) > and ? are in S,

(c) if A is in S, then so are :A;OA and PA,

(d) if A;B are in S, then so are (A^B); (A^B); (A! B) and (A, B):

The sentences under (a) and (b) are the atomic sentences of the language.

10.1.3 Degrees of logical connectives

> and ? are of degree 0; :; O; P are of degree 1; and the remaining conec-
tives are all of degree 2.

10.1.4 De�nition

FA = df :PA (alternatively: O:A):

10.1.5 Conventions for dropping brackets

Brackets are omitted in accordance with these canons:

(i) Connectives of degree 1 bind more strongly than connectives of degree
2.

(ii) Among the latter, ^ and _ bind more strongly than ! and ,.

(iii) Outer brackets are mostly dropped around sentences.

10.2 Proof theory

The following two rules of inferences are common to all the ten Smiley{
Hanson systems of monadic deontic logic to be dealt with:

(R1)
A;A! B

B
(modus ponens).

(R2)
A

OA
(O-necessitation).

Consider next the following list A0{A7 of axiom schemata:
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(A0) All truth-functional tautologies (over our present language)

(A1) PA, :O:A

(A2) O(A! B) ! (OA! OB)

(A3) OA! PA

(A4) OA! OOA

(A5) POA! OA

(A6) O(OA ! A)

(A7) O(POA ! A)

The ten logics to be studied here are called OK,OM,OS4,OB,OS5,
OK+, OM+,OS4+,OB+, and OS5+. They are de�ned as follows (where
R1 and R2 are assumed for all):

OK = A0{A2

OM = A0{A2,A6

OS4 = A0{A2,A4,A6

OB = A0{A2,A6,A7

OS5 = A0{A2,A4,A5 (note that A6 and A7 are derivable in OS5)

Again, let L be any of these �ve systems. Then:

L+ = L;A3

Of these ten deontic logics, OK is (apart from unessential di�erences)
identical to the system F of Hanson [1965], OK+ to his D,OB+ to his DB,
whereas OB is discussed neither by Hanson [1965] nor by Smiley [1963].
The remaining six systems are named exactly as in Smiley [1963].

10.2.1 Provability and consistency

Let L be any of the ten systems just de�ned. Then, the set of L-provable
sentences (or the set of L-theses) is the smallest set S � � such that (i)
each instance of every axiom schema of L is in S, and (ii) S is closed under
the rules R1 and R2. We write `jLA' to indicate that A is L-provable. Also,
a set S of sentences is L-inconsistent i� there are B1; : : : ; Bn in S(n � 1)
such that jL(B1 ^ � � � ^Bn) !?; and S is L-consistent otherwise.

Again, we say that a sentence A is L-derivable from a set S of sentences,
in symbols: SjLA, just in case S [ f:Ag is L-inconsistent. Clearly, jLA i�
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;jLA, i.e. the L-provable sentences are exactly those that are L-derivable
from the empty set.

10.3 Semantics

10.3.1 Models

By a model we mean a triple U = hW ;R;Vi where:

(i) W is a non-empty set (heuristically, of `possible worlds' or `possible
situations').

(ii) R � W �W (a binary relation on W , heuristically, of `deontic alter-
nativeness' or `co-permissibility').

(iii) V is an assignment, which associates a truth-value 1 or 0 with each
ordered pair hp; xi where p is a proposition letter and x is an element
of W ; in technical jargon, V : Prop �W ! f1; 0g.

10.3.2 Truth conditions

Let U = hW ;R;Vi be any model, let x be any member of W , and let A
be in �. We want to de�ne what it means for A to be true at x in U , in

symbols:
��U=
x
A. As usual, the de�nition is recursive on the length of A:

��U=
x
p i� V (p; x) = 1 (for any p in Prop).

��U=
x
>:

not
��U=
x
?.

��U=
x
:A i� not

��U=
x
A.

��U=
x
OA i� for every y in W such that xRy;

��U=
y
A.

��U=
x
PA i� for some y in W such that xRy;

��U=
y
A.

��U=
x

(A ^ B) i�
��U=
x
A and

��U=
x
B.
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��U=
x

(A _ B) i�
��U=
x
A or

��U=
x
B (or both).

��U=
x

(A! B) i� if
��U=
x
A; then

��U=
x
B.

��U=
x

(A, B) i� (
��U=
x
A i�

��U=
x
B).

10.3.3 Conditions on R in a model

Corresponding to the �ve axiom schemata A3{A7 we now list �ve conditions
on the relation R in a model (where we assume the variables `x', `y', `z' to
range over W , and where we use the symbols &;�;8 and 9 as a shorthand
notation in the metalanguage in the obvious way):

(R3) R is serial in W : 8x9y(xRy)

(R4) R is transitive in W : 8x; y; z(xRy&yRz � xRz)

(R5) R is Euclidean in W : 8x; y; z(xRy&xRz � yRz)

(R6) R is almost reexive in W : 8x; y(xRy � yRy)

(R7) R is almost symmetric in W : 8x; y; z(xRy � (yRz � zRy))

10.3.4 Classi�cation of models

We now use the restrictions on R just listed to obtain a subcategorization
of the set of all models into various kinds. Thus, we stipulate that:

The class of OK-models = the class of all models (no condition on
R being imposed).

The class of OM-models = the class of all models with almost re-
exive R.

The class of OS4-models = the class of all models with transitive
and almost reexive R.

The class of OB-models = the class of all models with almost sym-
metric and almost reexive R.

The class of OS5-models = the class of all models with Euclidean
and transitive R.

The class of OK+-models = the class of all models with serial R.
The class of OM+-models = the class of all models with serial and

almost reexive R.
The class of OS4+-models = the class of all models with serial, tran-

sitive and almost reexive R.
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The class of OB+-models = the class of all models with serial, al-
most symmetric and almost reexive R.

The class of OS5+-models = the class of all models with serial, Eu-
clidean and transitive R.

In this chain of de�nitions, we always take the relevant restrictions on R
to be relative to the world-set W in a model, so that `serial' means `serial
in W ', and so on.

10.3.5 Validity and satis�ability

Let L be any of the ten systems OK,OM,OS4,OB,OS5, OK+,OM+,
OS4+, OB+, OS5+. We say that a sentence A is L-valid (in symbols:��=
L
A) i�

��U=
x
A for all L-models U and for all x in W . Also, we say that a

set S of sentences is L-satis�able i� there is an L-model U and member x

of W such that for all sentences A in S;
��U=
x
A. Clearly, we have that

��=
L
A i�

the unit set f:Ag is not L-satis�able.

Again, we may introduce a semantic notion parallel to that of (proof-
theoretic) derivability: we say that a sentence A is semantically L-entailed
by a set S of sentences (in symbols: S

��=
L
A) i� S[f:Ag is not L-satis�able.

We then have that
��=
L
A i� ;

��=
L
A.

11 SEMANTIC SOUNDNESS AND COMPLETENESS OF THE
SMILEY{HANSON SYSTEMS

THEOREM 24 (Soundness Theorem). Let L be any of the systems OK,
OM,OS4, : : : OS5+. Then, for all A 2 �, if jLA, then

��=
L
A. In other

words, all L-provable sentences are L-valid.

Proof. [Outlined] For each system L we must show that (i) every instance
of every axiom schema of L is L-valid, and that (ii) the rules R1 and R2
preserve L-validity. Then, we can verify by inductions on the length of
proof in L that if jLA, then

��=
L
A. To do this is a bit tedious, for sure, but

entirely routine. Let us give just one example here in order to illustrate the
methodology, or strategy, of argument. �

EXAMPLE 25. Suppose we want to check that all instances of A5 are
indeed OS5-valid. Assume otherwise, then, i.e. that there is a sentence A
such that, for some OS5-model U = hW ;R;Vi and some x in W , we have:
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(1) it is not the case that
��U=
x
POA! OA

Applying relevant truth conditions suÆciently many times to (1),
we reduce it to

(2)
��U=
x
POA and

��U=
x
P:A.

Applying the truth condition for P , we obtain from (2):

(3)
��U=
y
OA, for some y in W with xRy

as well as

(4)
��U=
z
:A, for some z in W with xRz:

Since U is an OS5-model, R is Euclidean in W ; hence we obtain

(5) yRz (because, by (3) and (4), xRy and xRz).

Then, applying the truth condition for O to (3), we get from (5):

(6)
��U=
z
A

which result contradicts (4), as the latter gives us

(7) not
��U=
z
A

by the truth condition for :. Contradiction.

COROLLARY 26. Let L be as usual and let S � � be any set of sentences.
Then, if S is L-satis�able, then S is L-consistent.

Proof. Assume otherwise, i.e. , that some S is L-satis�able but not L-
consistent. Then, by the de�nition of L-inconsistency, there areB1; : : : ; Bnin
S such that jL(B1 ^ � � � ^ Bn) !?. Hence, by the Soundness Theorem,��=
L

(B1^� � �^Bn) !?. But this means that for some x in the model U , whose

existence is guaranteed by S being L-satis�able, we have
��U=
x
B1 ^ � � � ^ Bn

as well as
��U=
x

(B1 ^ � � � ^ Bn) !?, hence
��U=
x
?. Contradiction. �

THEOREM 27 (Completeness Theorem). Version I (strong complete-
ness). Let L be as usual and let S � �. Then, if S is L-consistent, then S
is L-satis�able. Version II (weak completeness). Let L be as usual and let
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A 2 �. Then, if
��=
L
A, then jLA. In other words, all L-valid sentences are

L-provable.

Proof. Let us �rst see how the weak version can be obtained as a corollary
of the strong one. Assume, contrary to the weak version, that for some
sentence A;

��=
L
A but not jLA. Then, f:Ag must be L-consistent (otherwise,

we would have f:AgjL ?; jL:A!?, and jLA; but we assumed: not jLA).
Therefore, by the strong version I, f:Ag is L-satis�able, i.e. for some L-

model U and for some x in W;
��U=
x
:A, so not

��U=
x
A. But this result conicts

with
��=
L
A. Contradiction. �

We are then justi�ed in concentrating our e�orts on establishing the
strong version I of the Completeness Theorem. We begin by calling attention
to the following de�nitions and lemmata.

DEFINITION 28 (L-saturated sets). Let L be as usual and let x � � be
any set of sentences. We say that x is L-saturated i�

(i) x is L-consistent, and

(ii) for each sentence A, either A 2 x or :A 2 x.

LEMMA 29 (L-saturated sets). Let x be any L-saturated set of sentences.
Then, for all sentences A;B:

(i) Every L-provable sentence is in x.

(ii) x is closed under modus ponens (if A 2 x and A! B 2 x,
then B 2 x).

(iii) T 2 x.

(iv) ? 62x.

(v) :A 2 x i� A62x.

(vi) A ^ B 2 x i� A 2 x and B 2 x.

(vii) A _ B 2 x i� A 2 x or B 2 x.

(viii) A! B 2 x i� if A 2 x then B 2 x.

(ix) A, B 2 x i� A 2 x if and only if B 2 x.

Proof. Familiar. �
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LEMMA 30 (Lindenbaum's Lemma). Any L-consistent set x of sentences
can be extended to an L-saturated set x+ with x � x+ (L being as usual).

Proof. See, e.g. Makinson [1966, p. 381 f]. �

LEMMA 31 (Makinson's Lemma). Let L be as usual and let x be any
L-saturated set of sentences. Let A be any sentence such that :OA 2 x.
Let xA = fB 2 � : OB 2 xg [ f:Ag. Then xA is L-consistent.

Proof. (see Makinson [1966, p. 382]). Suppose xA is not L-consistent.
Then there are sentences B1; : : : ; Bn(n � 0) such that each OBi 2 x and
such that jL(B1 ^ � � � ^ Bn ^ :A) !?; by virtue of the fact that axiom
schema A0 is in every L, then, such that

jL(B1 ^ � � � ^ Bn) ! A:

Consider �rst the case where n = 0. This means that jLA. Then by the
rule R2 of O-necessitation (common to all our L), we have jLOA. Hence,
by the Lemma on L-saturated sets, OA 2 x. Thus, OA and :OA are both
in x, so x is L-inconsistent. Contradiction.

Consider next the case where n � 1. Since jL(B1 ^ � � � ^ Bn) ! A,
we have by a tautology under A0 and R1 that jLB1 ! (B2 ! : : : (Bn !
A) : : : ). Hence, by R2, jLO(B1 ! (B2 ! : : : (Bn ! A) : : : )). Hence,
using axiom schema A2 (common to all our L) n times, together with R1
and appropriate tautologies under A0, we obtain that jLOB1 ! (OB2 !
: : : (OBn ! OA) : : : ). Hence, by the Lemma on L-saturated sets, that
sentence is in x. But each OBi 2 x, so, by the same Lemma (clause (ii)
applied n times, OA 2 x. Thus, OA and :OA are both in x, so x is
L-inconsistent. Contradiction. �

DEFINITION 32 (Canonical L-models). Let L, as usual, be any of our ten
monadic deontic logics, and let S be any L-consistent set of sentences, so
that, by Lindenbaum's Lemma, S+ is L-saturated and S � S+. By the
canonical L-model generated by S we mean the structure

UL = hWL;RL;VLi

where:

(i) WL = the smallest collection U of L-saturated sets such that:

(a) S+ is in U .

(b) If x is in U , and A is a sentence with :OA 2 x, then (xA)+ is in
U (where xA is de�ned as in Makinson's Lemma).

(ii) RL = the binary relation on WL such that for all x; y in WL : xRLy
i� for all sentences A, whenever OA 2 x then A 2 y.
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(iii) VL = the assignment de�ned as follows: for each proposition letter p
and each x in WL; V (p; x) = 1 i� p 2 x.

LEMMA 33 (Veri�cation Lemma). As just de�ned, UL = hWL;RL;VLi is
an L-model.

LEMMA 34 (Coincidence Lemma). For each sentence A and for each x in

WL (as de�ned above),
��UL
x

A i� A 2 x.

We shall wait a little with the proofs of these two lemmata. Instead, let
us see how they together yield Version I of the Completeness Theorem.

Proof. [Completeness Theorem] (Version I): Letting L be as usual, assume
S to be any L-consistent set of sentences. We are to show that S is L-
satis�able. Well, by the Veri�cation Lemma, UL (as just de�ned) is an
L-model. By the Coincidence Lemma, we obtain in particular that for each

sentence A;
��UL
S+

A i� A 2 S+ (as S+, by de�nition, belongs to WL). Hence,

since S � S+, we have
��UL
S+

A for every A in S. In other words, assuming

S to be any L-consistent set of sentences, we have constructed an L-model,

viz. UL, such that for some x in WL, viz. S+,
��UL
x

A for each A in S; i.e. we

have shown S to be L-satis�able. �

We still need one more lemma before being able to establish the Veri�-
cation Lemma and the Coincidence Lemma (the proofs of which have not
yet been given):

LEMMA 35 (Saturation Lemma for canonical L-models). Let L be as usual,
let S be any L-consistent set of sentences, and let UL be de�ned as above.
Then, WL is such that for all sentences A and all x in WL:

(i) OA 2 x i� for all y in WL with xRLy;A 2 y.

(ii) PA 2 x i� there is a y in WL such that xRLy and A 2 y.

Proof. (From now on we shall use &;�;8; 9 etc. as metalinguistic short-
hands with their familiar meanings and use `x',`y',`z' as variables over WL.)

Ad(i): The `only if' part is easy | assume, for any x; y in WL:

1. OA 2 x hypothesis

2. xRLy hypothesis

Then:
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3. 8B(OB 2 x � B 2 y from 2 by the de�nition of RL

4. A 2 y 1,3, universal instantiation,
modus ponens

5. OA 2 x � (xRLy � A 2 y) 1{4, rule of conditional proof,
discharging 1 and 2

6. 8x; y(OA 2 x � (xRLy � A 2 y)) x; y any members of WL

Number 6 can easily be rewritten as the `only if' half of (i)

Again, to do the `if' part, assume for any x in WL:

1. OA 62 x hypothesis

Then:

2. :OA 2 x from 1 by the Lemma on L-
saturated sets

3. :A 2 xA by the de�nition of xA in
Makinson's Lemma

4. :A 2 (xA)+ xA � (xA)+ by Lindenbaum

5. A 62 (xA)+ from 4 by the Lemma on L-
saturated sets

6. (xA)+ 2WL by the de�nition of WL and
2

7. 8B(OB 2 x � B 2 (xA)+) by the de�nition of xA in
Makinson's Lemma

8. xRL(xA)+ from 7 by the de�nition of
RL

9. 9y(xRLy&A 62 y) from 5,6,8 by existential
generalization, the y at issue
being (xA)+

10. OA 62 x � 9y(xRLy&A 62 y) 1{9, conditional proof, dis-
charging 1

11. 8y(xRLy � A 2 y) � OA 2 x from 10 by contraposition

where 11 is the desired `if' half of (i).

Ad (ii): The veri�cation of (ii) can be left to the reader. Hint: appeal to
the fact that every instance of A1, i.e. PA, :O:A, is in every L-saturated



216 LENNART �AQVIST

set.
The proof of the Saturation Lemma for Canonical L-Models is complete.

�

Let us now deal with our unproven lemmas and start with the easiest one
(or, at least, the one with the shortest proof):

Proof. [The Coincidence Lemma] For each w� A and each x in WL;
��UL
x

A

i� A 2 x.
The proof proceeds by induction on the length of A.

Basis. A is either (a) >, or (b) ?, or (c) some proposition letter p.

(a)
��UL
x
> and > 2 x (by the truth condition for > and by the Lemma on

L-saturated sets),

(b) not
��UL
x

? and ? 62x (correspondingly),

(c)
��UL
x

p i� VL(p; x) = 1 i� p 2 x (by the truth condition for proposition

letters and by the de�nition of VL).

Induction Step. The inductive cases for :;^;_;! and , are trivial,
using the Lemma on L-saturated sets. Consider then Case A = OB (for

some w� B): We would like to argue that
��UL
x

OB i� for all y in WL such

that xRLy;
��UL
y

B, i�, for all y in WL such that xRLy;B 2 y, i�, OB 2 x.

Well, the �rst `i�' holds by the de�nition of truth, the second is guaranteed
by the inductive hypothesis, and the third `i�' is simply clause (i) of the
Saturation Lemma for canonical L-models. Thus, we are done. Case

A = PB: The reasoning is perfectly analogous, the third `i�' being clause
(ii) of that lemma.

The proof of the Coincidence Lemma is complete. �

Proof. Missing Proof of the Veri�cation Lemma. As de�ned in the De�ni-
tion of Canonical L-Models, UL = hWL; RL; VLi is an L-model.

We have to consider various cases in the proof, depending on how we
identify the logic L 2 fOK,OM,OS4,OB,OS5,OK+,OM+,OS4+,OB+,
OS5+g. The detailed demonstration in each case will not be given here;
instead the reader is referred to �Aqvist [1987, Section 10.1.11] for desired
details. This completes our account of the Completeness Theorem for the
ten Smiley{Hanson systems of monadic deontic logic. �
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IV. REPRESENTABILITY OF MONADIC DEONTIC LOGICS IN
SYSTEMS OF ALETHIC MODAL LOGIC WITH A PROPOSITIONAL

CONSTANT

12 TEN ALETHIC MODAL LOGICS WITH A PROPOSITIONAL
CONSTANT

In this section we de�ne ten systems KQ;MQ;S4Q;BQ;S5Q;K
+
Q;M

+
Q;

S4+Q;B
+
Q and S5+Q of alethic modal logic with a prohairetic, i.e. preference-

theoretical, propositional constant Q (after Kanger [1957]). They are all
based on a common formal language, which we are now going to describe.
Its alphabet is like that of the language of the Smiley{Hanson systems except
that:

(i) � (necessity) and � (possibility) replace O and P , respectively, among
the primitive logical connectives of degree 1.

(ii) A propositional constant Q (for `optimality' or `admissibility') is added
to the primitive logical connectives of degree 0.

The set � of all sentences of our new language is then de�ned as in the
old language except that clause (b) reads:

(b) >;? and Q are in S

and clause (c) reads:

(c) if A is in S, then so are :A;�A and �A.

We must point out here explicitly that the set Prop of our new alethic lan-
guage is assume to be identical to the set Prop of our old, deontic language.

DEFINITION 36.

OA = df �(Q! A)

PA = df �(Q ^ A)

FA = df �(Q! :A)

As for the proof theory of our ten alethic systems, the following two rules of
inference are common to all of them:

(R1)
A;A! B

B
(modus ponens)

(R20)
A

�A
(�-necessitation)
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Consider then the following list B0{B7 of axiom schemata:

(B0) All truth functional tautologies (over our new language)

(B1) �A, :�:A;

(B2) �(A! B) ! (�A! �B);

(B3) �Q;

(B4) �A! ��A;

(B5) ��A! �A;

(B6) �A! A;

(B7) ��A! A;

Assuming R1 and R2' for all ten alethic modal logics with Q, then, we
de�ne them as follows:

KQ = B0{B2

MQ = B0{B2,B6

S4Q = B0{B2,B4,B6

BQ = B0{B2,B6,B7

S5Q = B0{B2,B5,B6 (note that B4 and B7 are derivable in S5Q)

Again let K be any of these �ve systems. Then:

K+ = K;B3

We observe that, apart from the presence of Q in the alethic language,
the �rst �ve systems are familiar from literature on basic modal logic (see
e.g. Kripke [1963], Makinson [1966], Lemmon and Scott [1966], Hughes and
Cresswell [1968]). The remaining �ve logics, the + systems, are then formed
by adding a consistency postulate for Q, viz. B3, just as in Smiley [1963].

Let K be any of the ten systems just de�ned. We introduce the notions of
K-provability, K-inconsistency, K-consistency and K-derivability in perfect
analogy with the corresponding L-notions de�ned for the Smiley{Hanson
deontic logics. We write `jKA' and `SjKA' to indicate, respectively, that
the sentence A is K-provable and that A is K-derivable from a set S of
sentences.

Turning then to the semantics for our ten alethic systems, we obviously
need a fresh notion of model. So, by an alethic model (perhaps we should
even say `alethic prohairetic model', but it is too long) we shall mean an
ordered quadruple

U = hW ;Rx; opt;Vi
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where:

(i) W is a non-empty set.

(ii) Rx �W �W is a binary relation on W (of `alethic alternativeness' or
`alethic accessibility').

(iii) opt �W (heuristically, opt is to be the set of `optimal', `best' or `suÆ-
ciently good' elements of W according to some unspeci�ed preference
ordering on W ).

(iv) V : Prop �W ! f1; 0g (as usual).

Now, let U be any alethic model, let x be any member of W , and let A
be in �. The following changes in the de�nition of truth at x in U are then
called for: replace the clauses for O and P by the following, respectively:

��U
x
�A i� for every y in W with xRxy;

��U
y
A.��U

x
�A i� for some y in W with xRxy;

��U
y
A.

Moreover, we add a clause governing the constant Q:

��U
x
Q i� x 2 opt.

Conditions on Rx and opt in alethic models. Corresponding to the �ve
axiom schemata B3{B7 we now list �ve conditions on Rx and opt in an
alethic model (adhering to previously adopted notational conventions):

r3. Rx is `opt-serial' in W : 8x9y(xRxy & y 2 opt)

r4. Rx is transitive in W .

r5. Rx is Euclidean in W .

r6. Rx is reexive in W : 8x(xRxx)

r7. Rx is symmetric in W : 8x; y(xRxy � yRxx)

Classi�cation of alethic models. We summarize our categorization of alethic
models in the self-explanatory Table 1:

Validity and satis�ability. Let K 2 fKQ,MQ,S4Q,BQ,S5Q,K
+
Q,M

+
Q,S4

+
Q,

B+
Q, S5+Qg. The notions of K-validity, K-satis�ability, and semantic

K-entailment are then de�ned in perfect analogy with the corresponding
L-notions, and the notations

��
K
A and S

��
K
A will be used with their obvi-

ous meaning.
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Table 1.

Kind of alethic model Condition on Rx and opt

KQ No restriction on Rx or on opt

MQ Rx reexive (in W )

S4Q Rx transitive and reexive

BQ Rx symmetric and reexive

S5Q Rx Euclidean and reexive

K+
Q Rx opt-serial (in W )

M+
Q Rx opt-serial and reexive

S4+Q Rx opt-serial, transitive and reexive

B+
Q Rx opt-serial, symmetric and reexive

S5+Q Rx opt-serial, Euclidean and reexive (in W )

13 SEMANTIC SOUNDNESS AND COMPLETENESS OF THE TEN
ALETHIC SYSTEMS

THEOREM 37. Let K be any of the ten systems KQ;MQ; : : : ;S5
+
Q. Then,

all K-provable sentences are K-valid.

Proof.[Outlined] Proceed just as in the case of the L-systems of monadic
deontic logic. �

EXAMPLE 38. Suppose we want to check that the axiom �Q(=B3) is
indeed K+

Q-valid. Assume otherwise then, i.e. that for some K+
Q-model

U = hW ;Rx; opt;Vi and some x in W , we have:

(1) not
��U
x
�Q.

By the truth conditions for � and Q, (1) amounts to:

(2) not 9y(xRxy & y 2 opt).
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But, by the opt-seriality of Rx in K+
Q-models (see the table above), we

have:

(3) 9y(xRxy & y 2 opt).

Contradiction. Hence B3 is K+
Q-valid.

THEOREM 39 (Completeness Theorem).
Version I (strong completeness). Let K be as usual and let S � �. Then, if
S is K-consistent, then S is K-satis�able.

Version II (weak completeness). Let K be as usual. Then, all K-valid sen-
tences are K-provable.

Proof (Outlined). Obtaining the weak version as a corollary of the strong
one, we concentrate on the latter. The De�nition of and the Lemma (Lss)
on L-saturated sets are restated for the K-systems without any signi�cant
changes. Similarly for Lindenbaum's Lemma. In Makinson's Lemma we
replace every reference to O by a reference to � and use R20 and B2 in the
place of R2 and A2; the Lemma then goes through nicely for the K-systems
as well.

We come next to canonical models:

DEFINITION 40 (Canonical K-models). Let K be as usual and let S be
any K-consistent set of sentences. By the canonical K-model generated by
S we mean the structure

UK = hWK;R
x
K; optK;VKi

where:

(i) WK = the smallest collection U of K-saturated sets such that:

(a) S+ is in U .

(b) If x is in U , and A is a sentence with :�A 2 x, then (xA)+

is in U (where xA is de�ned as in our reformulated Makinson's
Lemma).

(ii) RxK = the binary relation on WK such that for all x; y in WK:

xRxKy i� 8A(�A 2 x � A 2 y):

(iii) optK = fx 2WK : Q 2 xg:

(iv) VK = the assignment de�ned as follows: VK(p; x) = 1 i� p 2 x (for all
p 2 Prop and x 2WK):
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LEMMA 41 (Veri�cation Lemma.). As just de�ned, UK = hWK;R
x
K; optK;

VKi is a K-model.

LEMMA 42 (Coincidence Lemma.). For each sentence A and each x in

WK :
��UK
x

A i� A 2 x.

Waiting a little with the proofs of these lemmata, we establish that they
together yield the strong completeness of the systems K by an argument
perfectly analogous to the one used in connection with the L-systems.

Again, the crucial clauses of the Saturation Lemma for Canonical K-
Models are as follows:

(i) �A 2 x i� for all y in WK with xRxKy;A 2 y.

(ii) �A 2 x i� there is a y in WK such that xRxKy and A 2 y.

The proof of this lemma parallels the one given in the L-case; just replace
O by �; P by �, and so on.

Proof. Proof of the Coincidence Lemma. There is a new case in the induc-
tion basis, viz.

Case A = Q. We are to show that
��UK
x

Q i� Q 2 x. Well, we have that��UK
x

Q i� x 2 optK i� Q 2 x; where the �rst `i�' comes from the truth

condition for Q and the second from the de�nition of optK in canonical
K-models (clause (iii)). So we are done.

The novel cases in the induction step are those where A = �B and
A = �B; they are handled in perfect analogy with the cases A = OB and
A = PB in the corresponding proof for the L-systems. For the critical `i�'s,
appeal to the Saturation Lemma for Canonical K-Models. �

Proof. Proof of the Veri�cation Lemma. The cases where K 2 fKQ,MQ,
S4Q, BQ, S5Qg are familiar from the literature on basic modal logic (see,
e.g. Makinson [1966] and Lemmon and Scott [1966]). The only new thing
to be veri�ed in these �ve cases is that optK, as we have de�ned it, is a
subset of WK; which is a completely trivial point in view of clause (iii) of
our De�nition of Canonical K-Models. As for the remaining �ve alethic
systems, consider:

Case K = K+
Q. We are required to show that the relation Rx

K+
Q

is opt-

serial in WK+
Q

in the sense that 8x9y(xRx
K+

Q

y & y 2 optK+
Q

). Well, in regard

of any x in WK+
Q

, we have by Lss:
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1. �Q 2 x B3 for K+
Q

2. 9y(xRx
K+
Q

y & Q 2 y) from 1 by clause (ii) of the Sat-
uration Lemma for Canonical K-
Models

3. 9y(xRx
K+

Q

y & y 2 optK+
Q

) from 2 by the de�nition of optK+
Q

4. 8x9y(xRx
K+

Q

y & y 2 optK+

Q
) from 3 by universal generaliza-

tion, x being any member of
WK+

Q

where 4 = Q.E.D. The remaining cases present no novelties, so the proof
of the Veri�cation Lemma is complete. The Completeness Theorem for the
ten alethic K-systems is thereby fully proved. �

14 THE PROBLEM OF ISOLATING THE DEONTIC FRAGMENT
OF THE K-SYSTEMS

14.1 Problem

Let � be the set of sentences of our alethic language (common to the K-
systems) and let �0 be the set of sentences of our deontic language (common
to the Smiley{Hanson L-systems); we now need di�erent labels for the two
sets. Let K, as usual, be any of the ten alethic systems with the constant
Q. Then, exactly which sentences in �0 are provable in K, using the K-
de�nitions of O and P ? where the latter are:

OA = df �(Q! A); PA = df �(Q ^ A):

In other words, the problem is to characterize, for each K, the set of deontic
sentences which are provable in K on the basis of those two de�nitions
(meaning by `deontic sentence any member of �0) A third formulation of
our task: for each K, isolate the deontic fragment of K!

Now, the locution `sentence in �0 provable in K using the K-de�nitions
of O and P ', which crops up in these formulations, is not entirely clear, or,
at least, could be made more precise. To that purpose, we suggest that the
K-de�nitions of O and P in e�ect amount to there being a certain function
which maps our deontic language into the alethic one in the following way:

DEFINITION 43 (The translation � from �0 into �). For each sentence A
in �0, de�ne �(A) 2 � by the following recursive conditions:
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(i) �(p) = p; for each proposition letter p,

(ii) �(>) = >;

(iii) �(?) =?;

(iv) �(:A) = :�(A);

(v) �(A ^ B) = �(A) ^ �(B):

Similarly for �(A _ B); �(A! B) and �(A, B):

(vi) �(OA) = �(Q! �(A))

(vii) �(PA) = �(Q ^ �(A))

Clearly, (vi) and (vii) are the only interesting clauses in this de�nition,
because we easily verify by induction on the length of A that �(A) = A,
provided that A does not contain O or P . Note how (vi) and (vii) cor-
respond to the K-de�nitions of O and P . Note also the importance of
our assumption that the alethic and the deontic language have the same
set Prop of proposition letters (why is that assumption important in the
present context?)

In the sequel we shall often write �A instead of �(A).
We need one more de�nition in order to be able to give a precise formu-

lation of our problem.

DEFINITION 44 (The deontic fragment of K under �). Let K be as usual,
and let � be the translation from �0 into � as just de�ned. By the deontic
fragment of K under � (in symbols: DF(K; �)) we mean the set of sentences
A in �0 such that �A is provable in K; more compactly expressed:

DF (K; �)= fA 2 �0 : jK�Ag:

Since the translation � is �xed, we may drop the reference to it and speak
simply of the deontic fragment of K,DF(K), in accordance with the conven-
tion

DF(K) = DF(K; �)

for K as usual.
A precise version of the problem raised at the beginning of this section

is then the following:

14.2 The problem restated

Let K be any of our ten alethic systems.Let L be any of the ten Smiley{
Hanson deontic logics and let us identify L with the set ot its theses so that
L=fA 2 �0 : jLAg. Then, for which L, if any, do we have that L =DF(K)?
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Let us illustrate the import of the restated problem a little. Suppose that
we claim that (the set of theses of) OM is in fact identical to the deontic
fragment of MQ. What are we then claiming? According to our de�nitions,
the following:

(1) OM= fA 2 �0 : jOMAg = fA 2 �0 : jMQ
�Ag = DF (MQ).

Fortunately, a more intelligible rendering of (1) is available:

(2) For each sentence A in �0 : jOMA i� jMQ
�A

i.e. in plain language, A is provable in OM i� its translation �A is provable
in MQ (for any deontic sentence A).

Smiley [1963] in e�ect proved this result (2), i.e. thatOM= DF(MQ). He
also proved, among other things, that OS4 = DF(S4Q), OS5 = DF(S5Q),
OM+ = DF(M+

Q), OS4+ = DF(S4+Q) and OS5+ = DF(S5+Q), using alge-
braic techniques. We shall now restate these Smileyan results and extend
them so as to obtain a full solution to the problem raised above. We do
so by indicating how to prove a Translation Theorem for monadic deontic
logic, applying the Henkin-style model-theoretic technique of saturated sets
instead of the matrix method used by Smiley. We think that, by doing so,
we not only facilitate the understanding of monadic deontic logics as such,
but also will be able to see more clearly their connection with dyadic deontic
logics (logics of conditional obligation and permission) and to understand
better the transition from the former to the latter.

First of all, let us correlate our alethic systems to the deontic ones by
de�ning a one-one function c from the former onto the latter. The de�nition
of c appears from the self-explanatory Table 2.

We can now state a nice result on deontic logic:

THEOREM 45 (Translation theorem for monadic deontic logic). (After
Smiley [1963]). Let K be any of the ten alethic systems KQ, MQ, : : : ,S5

+
Q,

and let c(K) be its correlate among the ten Smiley{Hanson systems according
to the above table. We identify c(K) with the set of its theses. Then, c(K)
= DF(K); i.e. for each sentence A in �0 : j

c(K)A i� jK�A.

The proof, which provides a solution to our present problem, is a bit
lengthy, so we devote a special section to it.

Proof. (The Translation Theorem) (very broad outline)

Case K = KQ and c(K) = OK.

`Only if ' part: We are to show that jOKA only if jKQ
�A, for A 2 �0. We

so so by induction on the length of the supposed OK-proof of A.

Basis. The length of the supposed OK-proof = 1, so A is an instance of
one or other of the axiom schemata A0{A2.

Suppose A is an axiom under A0 so that A is a tautology over the deontic
language. Then �A is a tautology over the alethic language (the detailed
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Table 2.

Alethic system K Deontic system c(K)

KQ OK

MQ OM

S4Q OS4

BQ OB

S5Q OS5

K+
Q OK+

M+
Q OM+

S4+Q OS4+

B+
Q OB+

S5+Q OS5+

proof of this is left to the reader), hence �A is an axiom under B0, hence
jKQ

�A.

Suppose A is an axiom under A1 so that A = PB , :O:B and �A =
�(Q ^ �B) , :�(Q ! �(:B)), for some B 2 �0. The following is then a
KQ-proof of �A:

1. �(Q ^ �B) , :�:(Q ^ �B) B1

2. :�:(Q ^ �B) , :�(Q! :�B) from B0,B2,R1,R2' by
various elementary steps

3. �(Q ^ �B) , :�(Q! �(:B)) 1,2,B0,R1, de�nition of �

where 3 = �A. Hence, jKQ
�A, as desired.

Again, suppose that A is an instance of A2 so that �A = �(Q! (�B !
�C)) ! (�(Q ! �B) ! �(Q ! �C)), for some B and C in �0. The
desired result to the e�ect that jKQ

�A is readily obtained form B0 and B2
by R2' and R1.

Induction Step. There is an OK-proof of A of length > 1, and either (i)
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A is got by applying R1 to some OK-thesis B and B ! A, or (ii) A is of
the form OB and is obtained by applying R2 to some OK-thesis B.

Case (i): By the induction hypothesis �B and �(B ! A) are both prov-
able in KQ. But, by the de�nition of �, �(B ! A) = �B ! �A, so that
�A follows by R1. Hence, jKQ

�A.

Case (ii): By the induction hypothesis we have jKQ
�B in this case. We

then obtain jKQ
�(OB) as follows:

1. Q! �B j
KQ

�B;B0; R1

2. �(Q! �B) from 1 by R2'

3. �(OB) from 2 by the de�nition of �

where 3 = �A. Hence j
KQ

�A, as desired.

This completes the proof of the `only if' part. �

`If ' part: We must show that if jKQ
�A, then jOKA, or, contrapositively,

that if 6 jOKA, (A is not OK-provable), then 6 jKQ
�A (�A is not KQ-

provable), for any sentence A in the deontic language. This part is harder,
because proof-theoretical methods seem to be less natural here; however,
in view of our soundness and completeness results for the L- and the K-
systems, the problem is not too diÆcult to cope with.

Strategy of argument. We would like to argue as follows:

1. 6 jOKA hypothesis

2. 6
��
OK

A from 1 by the completeness of
OK

3. 6
��U
x
A, for some OK-model U =

hW ;R;Vi and some x in W

from 2 by the de�nition of OK-
validity.

Consider that OK-model U . We claim that we can construct from it a
corresponding KQ-model U� = hW ;R�; opt;Vi with the property that for

all B 2 �0 and all y in W :
��U
y
B i�

��U�
y

�B. Then:
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4. 6
��U�
x

�A from 3 by the fact that U� exists
and has the property mentioned

5. 6
��
KQ

�A from 4 by the de�nition of KQ-
validity, U� being a KQ-model
where �A fails to be true at some
x in W

6. 6 jKQ
�A from 5 by the soundness of KQ

where 6 is our desired conclusion.
The crux of this argument is obviously isolated at a single point, viz.

the construction of the KQ-model U� from the given OK-model U , and the
proof that U� has the desired property indicated above. On the basis of
that construction and proof, the crucial step from 3 to 4 is fully justi�ed
and the `if' part is seen to go through in the present case. What remains to
be done, then, is to state a de�nition and to prove a couple of nice lemmata.

DEFINITION 46 (of U�). Let U = hW ;R;Vi be any OK-model. We de�ne
U� to be the structure hW;R�; opt; V i where:

(i) R� = R.

(ii) opt = fy 2W : for some x in W;xRyg.

Note that W and V are common to U and U�. As for V , this is made
possible by our assumption that the alethic and the deontic language have
the same set Prop of proposition letters. We may also remark that opt is
here de�ned to be what is known as `the converse domain' of the relation
R in OK-models.

LEMMA 47 (Easy Lemma). As de�ned, U� is a KQ-model.

Proof. Appealing to the de�nition of a KQ-model, we see that it is enough
to show (i) that R� � W � W , and (ii) that opt � W , there being no
further restrictions on Rx and opt in such alethic models. These points are
immediate in view of (i) and (ii) in the de�nition of the structure U�. �

LEMMA 48 (On relations). Let U and U� be as in the De�nition of U�.
Then, for all x; y; in W :

xRy i� xR�y and y 2 opt:

Proof.

Left-to-right: Assume, for any x; y in W :
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1. xRy hypothesis

Then:

2. 9x(xRy) from 1 by existential generalization

3. y 2 opt from 2 by the de�nition of opt in U�

4. xR�y from 1 by de�nition of R� in U�

5. xR�y&y 2 opt 3,4, adjunction

where 5 is the desired conclusion.

Right-to-left. This direction is immediate by the de�nition of R�. �

LEMMA 49 (Crucial Lemma). Let U and U� be as in the De�nition of U�.

Then, for all A 2 �0 and for all x in W :
��U
x
A i�

��U�
x

�A.

Proof. By induction on the length of A. By the de�nition of the translation
�, the three cases in the induction basis are seen to be trivial. For the
same reason, the inductive cases involving truth-functional connectives go
through easily. Consider then:

Case A = OB. We are required to show that
��U
x
OB i�

��U�
x

�(OB).

Well, for any B 2 �0 and any x in W , we clearly have:

1.
��U
x
OB i� 8y(xRy �

��U
y
B) by the de�nition of truth in U

2.
��U�
x
�(Q! �B) i�

8y(xR�y&y 2 opt �
��U�
y
�B)

by the de�nition of truth in
U�

3.
��U
y
B i�

��U�
y

�B by the induction hypothesis,
y being any member of W

Hence:

4. (Right member of 1) i� (right
member of 2)

from 3 and the Lemma on Re-
lations by elementary steps

5.
��U
x
OB i�

��U�
x
�(Q! �B) from 1,2,4 by the transitivity

of `i�'

where 5 yields the desired result by the de�nition of �.

Case A = PB. The reasoning parallels that of the preceding case; we
just make the necessary switches from O;�;!;8;� to P;�;^; 9 and &,
respectively.

The proof of the Crucial Lemma is complete.
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Armed with the de�nition of the KQ-model U� and our three lemmas
on it, we have fully justi�ed the decisive step from 3 to 4 in our strategic
argument given above. This completes the proof of the `if' part of Case
K = KQ and c(K) = OK. That case is thereby fully proved. �

Remaining Cases. For the details of the remaining nine cases, see �Aqvist
[1987, Section 13.5.2{10]. In the present survey I only want to indicate the
main novelty in each case, which appears in the proof of the `if' part at
the juncture where, given any c(K)-model U , we construct a corresponding
K-model U� with the `right' properties. Thus, in general, we lay down a
de�nition of this form:

DEFINITION 50 (De�nition of U). Let U = hW ;R;Vi be any c(K)-model,
so that R satis�es the appropriate restriction. De�ne U� to be the structure
hW;R�; opt, V i where:

(i) R� = the binary relation on W such that for all x; y in W : xR�y i�
.

(ii) opt = fy 2 W : for some x in W;xRyg = the converse domain of R
in W .

Having �lled in the blank in (i) for each case, one goes on to state and
prove a

LEMMA 51 (Easy). As de�ned, U� is a K-model

as well as the

LEMMA 52 (On relations). Let U and U� be as in the above De�nition of
U�. Then, for all x; y in W : xRy i� xR�y and y 2 opt.

Using this lemma on Relations, we give an inductive proof of the

LEMMA 53 (Crucial).
��U
x
A i�

��U�
x

�A for U and U� as above, and for A

and x as usual), just as in the case of K = KQ and c(K) =OK.

Again, armed with the de�nition of the K-model U� and our three lemmas
on it, we justify the decisive step from 3 to 4 in the strategic argument for
the `if' part. This will then complete the proof in each of the remaining
nine cases.

We now indicate how to �ll in the blank in clause (i) of the De�nition of
U�, for various cases.

Case K = MQ and c(K) = OM. Fill in the blank with this condition:
(x = y or xRy).
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Case K = S4Q and c(K) = OS4. Fill in the blank with the same condi-
tion!

Case K = BQ and c(K) = OB. Fill in the blank with the condition
(x = y or xRy or yRx)

Case K = S5Q and c(K) = OS5. Fill in the blank with this condition:
For some natural number n � 1 : xRny where R is the relation on

W de�ned by: xRy i� (x = y or xRy or yRx) and where Rn is the nth
power of the relation R, de�ned in the usual inductive way in terms of
relative products. Thus, in the present case, R� is de�ned as the chain, or
proper ancestral, of the relation R. Certain inductively provable additional
lemmata are then needed to establish the Easy Lemma and the Lemma on
Relations in this case, which is more complicated than the preceding ones.

The �ve remaining + cases. De�ne R� just as in the corresponding case
without +, i.e. the case where the axiomatic systems lack the schemata B3
and A3 and where the accessibility relations are not required to be opt-serial
or serial in the relevant models.

Our broad outline of the proof of the Translation Theorem for Monadic
Deontic Logic is complete.

V. FIRST STEPS IN DYADIC DEONTIC LOGIC

15 TWO NEW LANGUAGES AND A PROBLEM

Consider the deontic language common to the Smiley{Hanson monadic sys-
tems and its set �0 of well formed sentences. Let us now think of O and P
as dyadic (i.e. two-place) deontic connectives, expressing conditional obliga-
tion and permission, respectively. We then obtain a new deontic language,
the set of sentences of which will be called �2

0 and is de�ned as the smallest
set S such that:

(a) Every proposition letter is in S.

(b) > and ? are in S.

(c) If A is in S, then so is :A.

(d) If A;B are in S, then so are (A ^ B); (A _B); (A! B) and (A, B).

(e) If A;B are in S, then so are OBA and PBA.

REMARK 54. Apart from the fact that clause (c) has been curtailed, the
new thing about the present deontic language and its set �2

0 is of course
embodied in clause (e). So, note that we write OBA and PBA, where
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many authors would write O(A=B) and P (A=B) and where still others
would use (BOA) and (BPA); the former authors are obviously inspired by
the notation familiar from probability theory, whereas the latter (e.g. Van
Eck [1981]) stick to what might be labeled the standard binary connective
notation (cf. clause (d) above). The motivation for our choice of notation
will appear from what follows; it might be called a relative necessity or
sententially indexed modality notation (cf. e.g. Chellas [1975, Section 5]).

DEFINITION 55.

`Dyadic' De�nitions of monadic deontic connectives:

OA =df O>A

PA =df P>A

FA =df :P>A (alternatively: O>:A)

Again, consider the alethic language common to the systems K and its
set � of well formed sentences. In this language Q was thought of as a
propositional constant, i.e. as a zero-place connective, thus of degree 0.
Now, think of Q as a monadic (i.e. one-place) prohairetic connective, so
that QA might be read as `optimally A', `ideally A', or what have you. We
then obtain a new alethic language with an additional one-place connective
Q; its set of sentences will be called �1 and is de�ned as the smallest set S
such that:

(a) Every proposition letter is in S.

(b) > and ? are in S.

(c) If A is in S, then so are :A;�A; �A and QA.

(d) As usual.

As compared to the old alethic language with Q, the new one has just the
nullary connectives > and ? (clause (b)), whereas Q reappears among the
monadic ones (clause (c)).

15.1 `Alethic' De�nitions of dyadic deontic connectives

Q (the old propositional constant) =df Q>

OBA =df �(QB ! A),

PBA =df �(QB ^A),

FBA =df �(QB ! :A).
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We can now state the problem announced in the title to this section.

15.2 Problem

Consider the two sets of sentences �1 and �2
0. As usual, the new alethic

language and the new deontic one are assumed to have the same set Prop
of proposition letters. Corresponding to the de�nitions in �1 of the dyadic
connectives O and P , de�ne a translation � from �2

0 into �1 just as in the
case of �0 and �, except for the following fresh clauses:

(vi) �(OBA) = �(Q�B ! �A):

(vii) �(PBA) = �(Q�B ^ �A):

Then, �nd a system L of dyadic deontic logic and a system K of alethic
modal logic with our new monadic connective Q such that:

(i) The set of L-theses is a proper subset of �2
0.

(ii) The set of K-theses is a proper subset of �1.

(iii) The set of L-theses =the dyadic deontic fragment of K under � as just
de�ned; i.e. we are to have for each sentence A in �2

0 : jLA i� jK�A.

The word `proper' is inserted in requirements (i) and (ii) just in order to
make sure that the logics L and K are consistent. We now consider, to start
with, certain rather weak systems having the desired properties (i){(iii).

16 THE SYSTEMS OdyS4, OdyS5, S4Qmo AND S5Qmo

The system OdyS4 is determined as follows.

Rules of proof:

(R1)
A;A! B

B
(modus ponens)

(R2)
A

OBA
(OB-necessitation)
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Axiom schemata:

(a0) All truth functional tautologies over �2
0

(a1) PBA, :OB:A;

(a2) OB(A! C) ! (OBA! OBC);

(a3) OB(OBA! A);

(a4) OBA! OCOBA;

The axiomatic system OdyS5 results from OdyS4 by omitting schema a3
and by adding in its place the following new schema a5:

(a5) PCOBA! OBA;

Note that a3 will be derivable in OdyS5 as a thesis schema.
The notions of provability, consistency, derivability etc. are de�ned for

the systems OdyS4 and OdyS5 in the usual straightforward way.
The axiomatic system S4Qmo is simply the familiar modal calculus S4

over the present alethic language whose set of sentences = �1; similarly, the
system S5Qmo is S5 over that alethic language. See Section 12 above.

We now turn to the semantics of the four systems just described. By an
OdyS4-model we shall mean any ordered triple

U = hW ;R;Vi

where:

(i) W is a non-empty set and V is a function from Prop �W into the set
of truth-values f1,0g; thus, W and V are as usual.

(ii) R is a function from the set of sentences �2
0 into the set of all binary

relations on W , in symbols: R : �2
0 ! P(W �W). In other words,

then: for each sentence B in �2
0; RB �W �W so that RB is a binary

relation on W . Moreover, R is to satisfy the following two conditions,
corresponding to axiom schemata a3 and a4:

(3) For each B in �2
0 and any x; y in W : xRBy � yRBy.

(4) For any B;C in �2
0 and x; y; z in W : xRCy & yRBz � xRBz.

Again, by an OdyS5-model we mean any OdyS4-model hW;R; V i where
R satis�es the following new restriction that corresponds to the schema a5:
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(5) For any B;C in �2
0 and x; y; z in W : xRCy & xRBz � yRBz.

Truth conditions for dyadic deontic connectives: Let U = hW ;R;Vi be any
OdyS4- or OdyS5-model, let x be any member of W , and let A be in �2

0.
The only change in the de�nition of truth at x in U , given for our monadic
deontic logics, will concern sentences of the new forms OBA and PBA, for
which we adopt the following clauses:

��U
x
OBA i� for every y in W such that xRBy;

��U
y
A.��U

x
PBA i� for some y in W such that xRBy;

��U
y
A.

Notions of validity, satis�ability and semantic entailment, which are rel-
ative to OdyS4 and OdyS5, are then introduced in the usual way.

Furthermore, de�ne an S4Qmo-model to be any ordered quadruple

U = hW ;Rx; opt;Vi

with W;Rx; V as in an S4Q-model so that Rx is reexive and transitive
relation on W , and where:

opt : �1 ! PW

i.e. opt is a function which to each sentence B in �1 assigns a subset opt(B)
of W as its value.

Truth condition for the monadic Q-connective: The old truth condition
for the Kanger constant Q will have to be replaced by the following:

��U
x
QB i� x 2 opt(B)

which then governs sentences of the form QB.
Again, an S5Qmo-model is any S4Qmo-model where Rx has the additional

property of being symmetric and, hence, an equivalence relation, on W .
Validity etc. is de�ned in the usual way relatively to S4Qmo and S5Qmo.

THEOREM 56 (Soundness and completeness).

(i) For each A in �2
0 : A is provable in OdyS4 /OdyS5/ i� A is valid in

OdyS4 /OdyS5/.

(ii) For each A in �1 : A is provable in S4Qmo /S5Qmo/ i� A is valid in
S4Qmo /S5Qmo/.

Proof. See �Aqvist [1987, Sections 15 and 16]. �
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THEOREM 57 (Translation). For each A in �2
0 : A is provable in OdyS4

/OdyS5/ i� �A is provable in S4Qmo /S5Qmo/. In other words, the set of
OdyS4 /OdyS5/ theses = the dyadic deontic fragment (under �) of S4Qmo
/S5Qmo/.

Proof. See �Aqvist [1987, Sections 15 and 16]. The demonstrations are a
little bit tedious. �

17 TWO NEW SYSTEMS: OdyS5N AND S5NQmo

At this juncture we observe that in the systems S4Qmo and S5Qmo there
are no special axioms governing the monadic operator Q; correspondingly,
there are no restrictions on the function opt in the models for these systems.
So, the following is a natural expectation: if we start adding axioms for Q
to these systems as well as matching restrictions on opt in their modellings,
we should obtain a series of dyadic deontic logics as the deontic fragments
of these extended alethic calculi with monadic Q; and to begin with, we are
particularly interested in dyadic deontic logics that are in relevant respects
similar to the systemsDSDL1{DSDL3 proposed by Bengt Hansson [1969].
As it turns out, however, S4Qmo and S5Qmo are not quite �t to serve as
adequate bases for a development of dyadic deontic logic along those lines.
But they come close to the basic system we are looking for; only one further
step has to be taken.

Consider the following alethic system S5NQmo: its set of theses is identical

to that of S5Qmo, but we want � to be interpreted as what Scott [1970] calls
universal necessity and what Kanger [1957] called `analytic' necessity. This
means simply that � is to express truth at every world (point) in the set
(space) W , unconditionally. Technically, we easily achieve this by de�ning
an S5NQmo-model as any structure U = hW ;Rx; opt;Vi, where W , opt, V are

as usual and where Rx = W �W (i.e. the universal binary relation on W ).
So, in contrast to the case of S5Qmo-models, Rx is no longer an arbitrary
equivalence relation on W , but is now identi�ed with a particular equivalence
relation on W , viz. W �W ; and the set of S5NQmo-models becomes a proper
subset of the set of S5Qmo-models. As for the completeness of the system
S5NQmo as just characterized, a proof can be extracted from �Aqvist [1973,

Section 5]; note in particular the treatment and the role of the operator u
in that essay.

Now, what is the dyadic deontic fragment under � of S5NQmo? If you
believe it to be OdyS5 (once again), then try to prove a translation theorem
for OdyS5 and S5NQmo along the familiar lines! You will �nd that it doesn't
work, because we will be unable to establish either the Easy Lemma or the
Lemma on Relations. Instead, the correct answer to the above question is:
the following system OdyS5

N , which we are now going to describe quickly.
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Let us reconsider our dyadic deontic language with the set of sentences
= �2

0, and add a pair of one-place modal operators N and M to its stock
of primitive logical connectives. N(M) is to express universal necessity
(possibility) in the sense indicated above. The set of sentences of the dyadic
deontic language thus enriched will be called �2

0;N ; adjusting the formation

rule (c) in the obvious way, we have that whenever A is in �2
0;N , so are NA

and MA.

As for the proof theory of OdyS5
N , its set of theses is a proper subset

of this new set of sentences �2
0;N . More precisely, it is determined by the

following rules of inference and axiom schemata:

(R1)
A;A! B

B
(modus ponens)

(R200)
A

NA
(N -necessitation)

(a0) All truth functional tautologies over �2
0;N

(a1) PBA, :OB:A

(a2) OB(A! C) ! (OBA! OBC)

(a6) OBA! NOBA

(a7) NA! OBA

(a8) An appropriate set of S5-schemata for N and M (e.g.
B1,B2,B5 and B6, with N;M respectively replacing �;�).

EXERCISE 58. Derive the schema PBA ! NPBA in OdyS5
N as just de-

scribed! Derive the system OdyS5 as a subsystem of OdyS5
N !

Proceeding to the semantics for OdyS5
N , we de�ne an OdyS5

N -model
as any structure U = hW ;R;Vi, where W;V are as usual and where R :
�2
0;N ! P(W �W) is a function from our fresh set of sentences �2

0;N into
the set of all binary relations on W , satisfying the following condition that
corresponds to schema (a6):

(6) For each B in �2
0;N and any x; y; z in W : xRBy � zRBy.

EXERCISE 59. Show that in anyOdyS5
N -model R satis�es the restrictions

(4) and (5)!

Clearly, we must supplement our earlier de�nition of truth at x in U ,
where U is any OdyS5

N -model, with new clauses governing the operators
N and M :
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��U
x
NA i� for each y in W;

��U
y
A

��U
x
MA i� for some y in W;

��U
y
A

The notions of validity, satis�ability and semantic entailment, pertaining
to OdyS5

N , are then de�ned in the usual way.

THEOREM 60 (Soundness and completeness for OdyS5N ). For each A in
�2
0;N :

j
OdyS5N

A i�
��
OdyS5

N A

Proof. See �Aqvist [1987, Section 17.2]. �

17.1 Representation of OdyS5
N in S5NQmo

In this section we announce the result that the set of OdyS5
N -theses is the

dyadic deontic fragment under � of S5NQmo. Clearly, then, � should be a

translation from the new sentence-set �2
0;N into �1, which is e�ected by

adding the following clauses to our de�nition of �:

(viii) �(NA) = ��A;

(ix) �(MA) = ��A;

THEOREM 61 (Translation for OdyS5N and S5NQmo).

For each A in �2
0;N :

j
OdyS5N

A i� j
S5N
Qmo

�A

Proof. See �Aqvist [1987, Section 17.3.1]. �

VI. DEVELOPMENT OF DYADIC DEONTIC LOGIC THROUGH
AXIOMATIC ADDITIONS TO THE SYSTEMS OdyS5N AND S5NQmo

18 THE DYADIC CALCULI OdyS5N + �i

In this part we shall take OdyS5
N as our basic and, in a certain sense,

minimal system of dyadic deontic logic and form new calculi by adding to
it one or more axiom schemata �i from the following list �0{�4:
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�0: N(A, B) ! (OAC , OBC)

�1: OAA

�2: OA^BC ! OA(B ! C)

�3: MA! (OAB ! PAB)

�4: PAB ! (OA(B ! C) ! OA^BC)

To start with, we consider the �ve systemsOdyS5
N+�i, for i = 0; 1; : : : ; 4;

where OdyS5
N+�i is the calculus which results from OdyS5

N by adding
just the schema �i to the latter.

Turning quickly to semantics, we de�ne, for i = 0; 1; : : : ; 4, anOdyS5
N+�i

model as any OdyS5
N -model U = hW ;R;Vi where R, in addition to meet-

ing (6), satis�es the condition �i in the list �0{�4 below of restrictions on R;
where A;B are any members of �2

0;N ; x; y any members of W , and where,

for each A in �2
0;N ,

k A kU= fy 2 W :
��U
y
Ag

(in other words, k A kU is to be the truth-set or extension in U of the w�
A):

�0. k A kU=k B kU� RA = RB

�1. xRAy �
��U
y
A

�2. xRAy &
��U
y
B � xRA^By

�3. k A kU 6= ; � 8x9y(xRAy)

�4. 9z(xRAz &
��U
z
B) � (xRA^By � (xRAy &

��U
y
B))

THEOREM 62 (Soundness and completeness). For each i = 0; 1; : : : ; 4 and
for each A in �2

0;N : jOdyS5N+�iA i�
��
OdyS5

N+�i
A: In other words, the

sentences provable in OdyS5N + �i are exactly the sentences valid in that
system.

Proof. See �Aqvist [1987, Section 18.0{1]. �

19 THE ALETHIC CALCULI S5NQMO + �I

Consider the following list �0{�4 of axiom schemata that may be added to
the system S5NQmo; they all govern our monadic operator Q:
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�0: �(A, B) ! �(QA, QB);

�1: QA! A;

�2: (QA ^ B) ! Q(A ^ B);

�3: �A! �QA;

�4: �(QA ^ B) ! �(Q(A ^ B) ! (QA ^ B)):

By the system S5NQmo +�i, for i = 0; 1; : : : ; 4, we mean the calculus which

results from S5NQmo by adding just the schema �i to the latter. There are
then �ve systems of this sort to be considered.

Moving on to semantics, we de�ne, for i = 0; 1; : : : ; 4, an S5NQmo +�i

model as any structure U = hW ;Rx; opt,V i with W;V as usual, where
Rx = W �W (just as in S5NQmo-models) and where opt: �1 ! PW satis�es
the condition �i in the list �0{�4 below of restrictions on opt (where A;B
are any sentences in �1):

�0. k A kU=k B kU� opt(A) = opt(B)

�1. opt(A) �k A kU

�2. opt(A)\ k B kU� opt(A ^ B)

�3. k A kU 6= ; � opt(A) 6= ;

�4. opt(A)\ k B kU 6= ; � (opt(A ^B) � opt(A)\ k B kU )

THEOREM 63 (Soundness and completeness). For each i = 0; 1; : : : ; 4 and
each A in �1:

j
S5N
Qmo

+�i
A i�

��
S5NQmo+�i

A

Proof. See �Aqvist [1987, Section 19.0]. �

20 WEAK REPRESENTATION OF OdyS5N + �i IN S5NQmo + �i; IS
FULL REPRESENTABILITY LOST?

Bearing in mind that � is now a translation from �2
0;N into �1 (with fresh

clauses for N and M , see Section 17.1 above), we state the following result:

THEOREM 64 (Weak translation for OdyS5N + �i and S5NQmo + �i). For

each i = 0; 1; : : : ; 4 and each A in �2
0;N :

j
OdyS5N+�i

A only if j
S5N
Qmo

+�i
�A:
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In other words, the set of OdyS5
N+�i theses � the dyadic deontic frag-

ment under � of S5NQmo + �i. Note that in this theorem `=' has been weak-
ened to `�' and `i�' to `only if '.

Proof. Our task is to give an ordinary `only if' part demonstration. The
new thing here is to verify, for each i = 0; 1; : : : ; 4, that if A is an axiom
under the new schema �i, then its translation �A is provable in S5NQmo+�i.
And we easily accomplish this, appealing precisely to the schema �i. �

As to the converse result, i.e. the `if' part, I have not been able to establish
it; nor do I know whether it holds good or not. But I am inclined to believe
that it does; if it does, however, its proof will be harder than any one so far
met with in this essay | at least, so I believe.

EXERCISE 65. Try to prove the converse of the weak translation theorem
stated above! Explain why you got lost, or else: congratulations and many
thanks!

We like to add that, even if the full representability of OdyS5
N+�i in

S5NQmo + �i should turn out not to hold, this does not entail that the
enterprise of developing dyadic deontic logic and alethic modal logic with
monadic Q in a parallel fashion is without considerable heuristic value. In
fact, I think, the contrary will prove to be the case.

21 AN ATTEMPTED RECONSTRUCTION AND IDENTIFICATION
OF THE HANSSON DYADIC SYSTEMS DSDL1, DSDL2, AND

DSDL3: ALETHIC PRELIMINARIES

The main idea proposed in Hansson [1969] is that the concept of validity in
Von Wright-type deontic logic (Hansson is anxious to point out that he just
deals with this type in his paper) can be semantically explained in terms of
a preference relation `is at least as ideal as' among possible worlds; this claim
is to apply whether the Von Wright-type deontic logic be monadic or dyadic.
Hansson himself thinks of possible worlds as Boolean valuations in the sense
familiar from the teaching of elementary propositional calculus. We shall
not follow him in making this identi�cation, however, because our Kripkean
semantical technique has already supplied us with an independent notion
of (a set of) possible worlds. Again, given a preference relation (ordering,
ranking) R on a set of possible worlds W , we are automatically equipped
with the notion of the R-maximal (`best', `optimal', under R) elements of
W and of various (perhaps all ) subsets of W . We could then give the
following informal characterization of the function opt in our models U for
alethic systems with monadic Q(S4Qmo etc.):
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opt(>) = the R-maximal elements of k > kU , i.e. of W as a
whole.

Remember here that the set opt � W in models for the alethic systems
with the propositional constant Q is simply to be equated with this set
opt(>). Moreover, in general, we should have for any sentence A in �1:

opt(A) = the R-maximal elements of k A kU , i.e. of the set of
worlds in W where A is true (= the extension in U
of the w� A).

In the light of these heuristic preliminaries we now supplement our alethic
S5NQmo-models with a Hanssonian preference relation on W , consider some
possible conditions on it, and see what happens when one interprets the
sentences in �1 relatively to these new enriched structures. Later on, we
are going to perform a similar operation on our dyadic deontic models and
the sentence-set �2

0;N .

DEFINITION 66 (Various sorts of <-supplemented alethic models). Let
U = hW ;Rx, opt, <; V i be any structure where

(i) W 6= ; (as usual),

(ii) Rx = W �W (as has now become usual),

(iii) opt: �1 ! PW (as usual),

(iv) <�W �W (novelty),

(v) V : Prop �W ! f1; 0g (as usual).

If you like, call any ordered quintuple of this sort a minimal alethic H-
model. Note that we place no further conditions on opt or on < in minimal
alethic H-models. Furthermore, we say:

(b) U is an alethic H-model i� opt and < jointly satisfy the following
condition (for each A in �1):

Æ0. opt(A) = fx 2k A kU :(8y 2k A kU)x < yg:

(c) U is an alethic H1-model i� <, in addition to meeting Æ0 jointly with
opt, satis�es this condition Æ1:

Æ1. < is reexive in W (i.e. for all x in W;x < x):

(d) U is an alethic H2-model i� <, in addition to meeting Æ0 and Æ1,
satis�es this condition Æ2 (for each A in �1):

Æ2. If k A kU 6= ;, then fx 2k A kU :(8y 2k A kU )x < yg 6= ;.
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(e) U is an alethic H3-model i� <, in addition to meeting Æ0, Æ1 and Æ2,
satis�es this condition Æ3:

Æ3. < is transitive in W .

(f) U is an alethic strong H3-model i� <, in addition to meeting Æ0, Æ1,
Æ2 and Æ3, satis�es this condition Æ4:

Æ4. < is strongly connected (total, complete) in W ;

i.e. for all x; y in W : x < y or y < x (or both).

LEMMA 67 (On <-supplemented alethic models). (b) In the inductive def-
inition of truth at x in U , where U is an alethic H-models, the clause for Q
is equivalent to the following:

��U
x
QA i�

��U
x
A & 8y(

��U
y
A � x < y)

(b0) Let U be any alethic H-model so that opt and < jointly satisfy Æ0.
Then opt satis�es the three conditions �0, �1 and �2, given in Section
19 above.

(c) Let U be any alethic H1-model. Then opt satis�es the three conditions
just mentioned.

(d) Let U be any alethic H2-model. Then opt satis�es these conditions as
well as �3.

(e{f) Let U be any alethic H3-model or alethic strong H3-model. Then opt
satis�es all the �ve conditions �0{�4.

Proof. See �Aqvist [1987, Section 21]. �

THEOREM 68 (Soundness). The present result concerns axiomatic exten-
sions of the alethic system S5NQmo; we are thus dealing with subsets of �1.
The result is presented in the right-most column of Table 3; in the head of
that column, the locution `matching kind of validity' means, of course, the
same as `truth at all points in every <-supplemented alethic model of the
corresponding kind'. And the corresponding kinds of models are then to be
found in the leftmost column, and the appropriate restrictions on < in the
middle one.

Proof. See �Aqvist [1987, Section 21]. �

REMARK 69.

(i) Questions of completeness have been left open.
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Table 3.

Kind of alethic
model supple-
mented with <

Restriction(s) on < in
such a model

Axiomatic extension of
S5NQmo, sound with respect
to the matching kind of
validity

minimal H- none S5NQmo itself

H- Æ0 S5NQmo + every �i with i =
0; 1; 2

H1- Æ0 and Æ1 ditto

H2- Æ0,Æ1 and Æ2 S5NQmo + every �i with i =
0; 1; 2; 3

H3- Æ0,Æ1,Æ2 and Æ3 S5NQmo + every �i with i =
0; 1; 2; 3; 4

strong H3- Æ0,Æ1,Æ2,Æ3 and Æ4 ditto

(ii) Certain possible kinds of <-supplemented alethic models have been
left out of consideration, e.g. alethic H-models where < satis�es Æ1
and Æ3 (but not necessarily Æ2) as well as such where < satis�es Æ3
and Æ4 (and hence Æ1; but not necessarily Æ2).

22 ATTEMPTED IDENTIFICATION OF HANSSON DYADIC
SYSTEMS: <-SUPPLEMENTED DEONTIC MODELS

In this section we supplement our dyadic deontic OdyS5
N -models with a

Hanssonian preference relation <, consider possible conditions on it, and
see what happens when we interpret the sentences in the beautiful set �2

0;N

relatively to these enriched structures. The exposition will parallel the one
given in the last section.

DEFINITION 70 (Various sorts of <-supplemented dyadic deontic models).
Let U = hW ;R;<;Vi be any structure

(i) W 6= ; (as usual)
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(ii) R : �2
0;N ! P(W �W ) (as has now become usual)

(iii) <�W �W (novelty)

(iv) V : Prop �W ! f1; 0g (as usual)

Then we say:

(a) U is a minimal deontic H-model i� R meets condition (6) (see Section
17 above).

(b) U is a deontic H-model i� R and < jointly satisfy the following con-
dition 0 (for each A in �2

0;N and any x; y in W ):

0. xRAy i�
��U
y
A & 8z(

��U
z
A � y < z):

(c) U is a deontic H1-model i� < meets the reexivity condition Æ1 as well
as 0.

(d) U is a deontic H2-model i� < meets the `Limit Condition' Æ2 as well
as Æ1 and 0; where Æ2 now applies to any sentence in �2

0;N .

(e) U is a deontic H3-model i� < satis�es the transitivity condition Æ3 as
well as Æ2, Æ1 and 0.

(f) U is a deontic strong H3-model i� < satis�es the connectedness re-
quirement Æ4 in addition to meeting Æ3, Æ2, Æ1 and 0.

LEMMA 71 (<-supplemented dyadic deontic models).

(b) Let U be any deontic H-model. Then, by 0, the inductive clauses for
O and P in the de�nition of truth at x in U become equivalent to the
following:

��U
x
OBA i� 8y((

��U
y
B & 8z(

��U
z
B � y < z)) �

��U
y
A)

��U
x
PBA i� 9y((

��U
y
B & 8z(

��U
z
B � y < z)) &

��U
y
A):

(b') Let U be any deontic H-model. Then R satis�es condition (6) (stated
in Section 17 above) as well as the three conditions �0,�1 and �2
(stated in Section 18 above).

(c) Let U be any deontic H1-model. Then R satis�es those four conditions
just mentioned.
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(d) Let U be any deontic H2-model. Then R satis�es those four conditions
as well as �3.

(e{f) Let U be any deontic H3-model or a deontic strong H3-model. Then
R satis�es (6) as well as all �ve conditions �0{�4.

Proof. Straightforward and left as an exercise. �

THEOREM 72 (Soundness). The present result concerns axiomatic exten-
sions of the dyadic deontic system OdyS5

N ; we are thus dealing with subsets
of �2

0;N . We state the result in the form of a table (Table 4) analogous to
the one at the end of the last theorem (Theorem 68).

Table 4.

Kind of dyadic
deontic model
supplemented
with <

Restriction(s) on <

and/or R in such a
model

Axiomatic extension of
OdyS5

N , sound with respect
to the matching kind of
validity

minimal H- (6) OdyS5
N itself

H- 0 OdyS5
N + every �i with i =

0; 1; 2

H1- 0 and Æ1 OdyS5
N + every �i with i =

0; 1; 2

H2- 0,Æ1 and Æ2 OdyS5
N + every �i with i =

0; 1; 2; 3

H3- 0,Æ1,Æ2 and Æ3 OdyS5
N + every �i with i =

0; 1; 2; 3; 4

strong H3- 0,Æ1,Æ2,Æ3 and Æ4 OdyS5
N + every �i with i =

0; 1; 2; 3; 4

Proof. Use the soundness result for OdyS5
N + every �i, for relevant

choices if i, together with the Lemma on <-supplemented dyadic deontic
models. �
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REMARK 73. Our new<-supplemented deontic models obviously engender
new `matching kinds of validity', such as deontic H-validity, deontic H1-
validity etc. Are any of the axiomatic extensions of OdyS5

N , which appear
in the table above, complete with respect to the kind of validity associated
with them by the table? If so, which?

We shall try to answer some of these completeness questions elsewhere.
Meanwhile, we make a �rst attempt at an identi�cation of the Hansson
systems DSDL1, DSDL2 and DSDL3 and start with a few preliminary
observations.

(I) The language of these three systems is poorer than that of OdyS5
N in

the following respects: (a) it lacks the operators N and M of universal
necessity and possibility; (b) its set of well formed sentences di�ers
from �2

0;N in not allowing iterations and overlapping of dyadic deontic
operators, nor any mixed formulas, e.g. of the type OBA! A. Thus,
in the language used by Hansson, there are, for one thing, no instances
of any of our axiom schemata a3{a7. On the other hand, the set of
sentences of Hansson's language should clearly be a subset of �2

0;N

(inasmuch as we are at all able to discuss his systems in our present
framework). We attempt the following characterization of it.

Let � be the smallest set which contains as its members all proposition
letters in our set Prop as well as > and ?, and which is closed under
:;^;_;! and ,. Thus, � is simply the set of w�s of the familiar
propositional calculus with verum and falsum. We then de�ne � (=
the set of sentences of our reconstructed Hansson language) to be the
smallest set S such that:

(a) If A;B are in �, then OBA and PBA are in S.

(b) If C;D are in S, then so are :C; (C ^D); (C _D); (C ! D) and
(C , D).

Clearly, then, we have that � � �2
0 � �2

0;N .

(II) As for the semantics of the Hansson dyadic system, we pointed out
at the beginning of the previous section that we were going to use
Kripkean possible worlds rather than Boolean valuations in the ba-
sic set on which < is de�ned; this approach naturally leads to our
present sort of deontic models. Now, as characteristic conditions on
<, Hansson [1969, p. 395 f.] adopts the following:
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For the system DSDL1: reexivity (Æ1).

For the system DSDL2: limitedness (Æ2; in addition to
Æ1).

For the system DSDL3: transitivity (Æ3) and strong con-
nectedness (Æ4) (in addition to Æ1
and Æ2).

As for the notion of truth as applied to sentences in � of the forms OBA
and PBA, Hansson proposes analogues of the two conditions stated under (b)
in the Lemma on <-supplemented dyadic deontic models (we disregard here
the fact that Hansson's own concept of <-maximility does not completely
coincide with ours).

22.1 Semantic identi�cation of DSDL1, DSDL2 and DSDL3

Let A be in �2
0;N , and let

��
H1(H2;strong H3)

A mean that A is true at every

world in every deontic H1- (H2-, strong H3-)model. We then suggest the
following characterization of the Hansson systems as subsets of �2

0;N :

(i) DSDL1 = fA 2 � :
��
H1

Ag

(ii) DSDL2 = fA 2 � :
��
H2

Ag

(iii) DSDL3 = fA 2 � :
��
strong H3

Ag

So, for i = 1; 2, DSDLi is the set of deontically Hi-valid sentences in �,
and DSDL3 is the set of deontically strong H3-valid sentences in �.

What about axiomatic characterizations of the Hansson systems as de-
ductive calculi? If such were available, our identi�cation of them would be
more satisfactory from the proof theoretical point of view. As things stand
right now, however, we only have the following somewhat insuÆcient result:

22.2 Partial syntactic identi�cation of DSDL1, DSDL2 and
DSDL3

Let us introduce the following abbreviations:

E = the set of theses of OdyS5
N + every �i with i = 0; 1; 2

F = the set of theses of OdyS5
N + every �i with i = 0; 1; 2; 3

G = the set of theses of OdyS5
N + every �i with i = 0; 1; 2; 3; 4
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Furthermore, let E/� (F/�,G/�) = E(F,G) restricted to the set �; i.e.
E\� etc. Then we have three groups of more or less obvious results:

I. Soundness results II. Unsoundness results III. Incompleteness
results

(i) E=� �DSDL1 (iv) F=� 6�DSDL1 (vii) DSDL26�E=�

(ii) F=� �DSDL2 (v) G=� 6�DSDL1 (viii) DSDL36�E=�

(iii) G=� �DSDL3 (vi) G=� 6�DSDL2 (ix) DSDL36�F=�

Proof. As for Group I, appeal to our last soundness theorem; as for Groups
II and III, appeal in addition to deontic analogues of the Exercises on alethic
H-, H1-, and H2-models studied in �Aqvist [1987, Section 21]. �

What makes the given syntactic identi�cation only a partial one is, of
course, the fact that as yet we do not know whether the converses of (i){
(iii) hold, so that we could strengthen `�' to `='. Also, if it should turn
out that G/� is not complete with respect to strong deontic H3-validity
among the members of �, perhaps G/� is complete with respect to deontic
H3-validity in � simpliciter?

23 ON THE COMPLETENESS PROBLEM FOR THE DYADIC
DEONTIC LOGIC G

As in the last section we let G be the (set of theses of the) system QdyS5
N

+ every �i with i 0; 1; : : : ; 4. Thus G � �2
0;N 0 its rules of proof are modus

ponens (R1) and N -necessitation (R200), its axiom schemata are a0{a2, a6{
a8 (Section 17 above) as well as �0{�4 (Section 18).

The system G, as just characterized in purely axiomatic terms, is by far
the most important dyadic deontic logic dealt with in the present chapter|
recall that in Section 4 supra we de�ned a strongly normal dyadic deontic
logic as one containing precisely the system G. Obviously, then, the problem
of �nding an adequate semantical characterization relative to which G can
be proved complete is an equally important one. In the original version of
this chapter I conjectured that G was complete with respect to strong H3-
validity in the sense of the last section; for a `possible', rather complicated
proof of this conjectured result I referred the reader to �Aqvist [1987, Section
23.3].
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I am now convinced that the completeness problem for the system G has
a much simpler solution than was suggested by my earlier conjectured proof.
In the remainder of this section I shall then outline that simpler solution
as �rst presented in two recent papers by �Aqvist [1996; 1997]. Again, in
the three �nal sections (Sections 24{26) of this chapter I shall present some
further recent results on the crucial dyadic system G.

23.1 Improved semantics for G

DEFINITION 74 (G-structures and truth at a point in a G-structure). By
a G-structure we mean any ordered triple

U = hW;V; besti

where

(i) W 6= ?

(ii) V : Prop �W ! f1; 0g

(iii) best: �2
0;N ! PW .

We can now tell what it means for any sentence A in �2
0;N to be true at

a point (\world") x(2 W ) in a G-structure U [in symbols:
��U
x
A], starting

out with obvious clauses like
��U
x
p i� V (p; x) = 1 (for any p in Prop)

��U
x
>

not
��U
x
?

and so on for molecular sentences having Boolean connectives as their main
operator. We then handle sentences having modal and dyadic deontic op-
erators as their main operator as follows:

��U
x
NA i� for each y in W :

��U
y
A��U

x
MA i� for some y in W :

��U
y
A��U

x
OBA i� for each y in best(B) :

��U
y
A��U

x
PBA i� for some y in best(B) :

��U
y
A

DEFINITION 75 (G-models, G-validity and G-satis�ability). We now fo-
cus our attention on a special kind of G-structures called \G-models". By
a G-model we mean any G-structure satisfying the following �ve conditions
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on the function best, where, as usual, we let kAkU , or kAk for short, be the
extension in U of A:

�0 kAk = kBk only if best (A) = best (B)

�1 best (A) � kAk

�2 best (A) \ kBk � best (A ^ B)

�3 kAjj 6= ? only if best (A) 6= ?

�4 best (A) \ kBk 6= ? only if best (A ^ B) � best (A) \ kBk

for any sentences A;B in �2
0;N . The notions ofG-validity andG-satis�ability

are then de�ned in the usual way.

REMARK 76. Conditions �0{�4 are very much like the so-named condi-
tions on the function opt in Section 19 above. But note that opt was de�ned
for all sentences in the alethic language of S5NQmo, whereas best is de�ned

for those in the dyadic deontic language of OdyS5
N and G.

THEOREM 77 (Soundness and Completeness of the system G).

Weak version: for each A in �2
0;N : A is G-provable i� A is G-valid.

Strong version: for each S � �2
0;N : S isG-consistent i� S is G-satis�able.

Proof. (sketchy). The soundness parts are unproblematic. So we concen-
trate on the `only if' half of the strong version, from which the `if' half of
the weak one is immediate.

Let S be any G-consistent set of sentences, and let S+ be a maximal
G-consistent extension of S, the existence of which is guaranteed by Lin-
denbaum's Lemma. Form the canonical G-structure generated by S+ in the
sense of the structure

US
+

= hW;V; besti

where

(i) W = the set of maximal G-consistent sets x of sentences such that
for all A in �2

0;N : if NA 2 S+, then A 2 x.

(ii) V = the assignment de�ned as follows: for each p in Prop and each x
in W , V (p; x) = 1 i� p 2 x.

(iii) best = the function from �2
0;N into P(W ) de�ned by setting, for all

sentences B, best(B) = fx 2 W : for all sentences A, if OBA 2 S+,
then A 2 xg.
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Omitting details we can then prove that, as just de�ned, the generated
canonical G-structure US

+

satis�es all lemmata needed for our desired com-
pleteness result. The most interesting one among them is the Veri�cation
Lemma, to the e�ect that US

+

is a G-model satisfying the �ve conditions
�0{�4 on the function best. A proof to precisely that e�ect is easily obtained
as follows: de�ne our three-place relation R by the requirement

(*) xRBy i� y 2 best (B) (for all x; y in W and all B in �2
0;N )

On the basis of this de�nition, we quickly verify that our present truth
conditions for OBA and PBA are equivalent to those given in Section 16
supra, that R meets condition (6) laid down in Section 17 supra, and that for
each i = 0; 1; : : : ; 4, the condition �i on best is equivalent to the restriction
�i on R (Section 18). Again, this result enables us to transform the proof
given in �Aqvist [1987, Section 18.1, pp. 161{165] into a proof that the
canonical G-structure US

+

is indeed a G-model, as desired. �

24 AN INFINITE HIERARCHY OF EXTENSIONS OF G: THE
DYADIC DEONTIC LOGICS Gm[m = 1; 2; : : : ]

In this and the following sections of the present chapter we intend to shed
some more light on the system G by studying an in�nite hierarchy Gm[m =
1; 2; : : : ] of extensions of that system. The soundness and completeness of
every system in that hierarchy is then asserted in a Theorem, for the proof
of which we refer the reader to �Aqvist [1996]. The main semantical technical
device employed in our study of these extensions of G is this: in the models
of each system Gm in the hierarchy, we work with a set

fopt1; opt2; : : : ; optmg

which is to be a partition of the set W of `possible worlds' into exactly m
non-empty, pairwise disjoint and together exhaustive `optimality' classes,
viewed as so many levels of perfection. Intuitively, we think of opt1 as the
set of `best' [optimal] members of W as a whole, opt2 as the set of best
members of W � opt1 [the `second best' members of W ], opt3 as the set of
best members of W � (opt1 [ opt2) [the `third best' members of W ]; and so
on. Now, we shall represent each level of perfection in the object-language of
the systems by a so-called systematic frame constant. The truth conditions
and axioms governing those constants can then be seen to play a highly
important, characteristic role in our axiomatization.

Thus, the primitive logical vocabulary of the systems Gm (m any positive
integer) results from that of G by adding to the latter an in�nite family

fQigi = 1; 2; : : :
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of systematic frame constants, indexed by the set of positive integers. As
just explained, the Qi are to represent di�erent `levels of perfection' in
the models of the system Gm. The set Sent of their well-formedsentences
(formulas, w�s) is then de�ned in the straightforward way|we think of the
Qi as zero-place connectives on a par with > and ?.

We begin the presentation of the new dyadic deontic logics Gm by outlin-
ing their proof theory. The rules of proof modus ponens and N -necessitation
are common to G and the Gm[m = 1; 2; : : : ]. In addition to the axiom
schemata of G, each system Gm has the following:

�5: Qi ! :Qj ; for all positive integers i; j with 1 < i 6= j < !

�6: PBQi ! ((Q1 _ : : : _Qi�1) ! :B); for all i with 1 < i � m

�7: Q1 ! (OBA! (B ! A))

�8: (Q1 ^ OBA ^ B ^ :A) ! PB(Q1 _ : : : _Qi�1);
for all i with 1 < i � m

�9: Q1 _ : : : _Qm

�10: MQ1 ^ : : : ^MQm:

Then, the axiomatic system Gm[m = 1; 2; : : : ] is determined by the
axiom schemata �0{�2, �6{�8 and �0{�10 (and the usual rules of proof).
Moreover, we de�ne the notions of provability, derivability, [in]consistency
and maximal consistency for the systems Gm in the straightforward way.

Turning next to the semantics of the logics Gm, we de�ne, for any posi-
tive integer m, a Gm-structure as an ordered quintuple

U = (W;V; foptigi=1;2;:::;m; best)

where

(i) W 6= ? [W is a non-empty set of `possible worlds'].

(ii) V : Prop ! pow(W) [V is a valuation function which to each proposi-
tional variable assigns a subset of W ].

(iii) foptigi=1;2;::: is an in�nite sequence of subsets of W .

(iv) m is the positive integer under consideration.

(v) best: Sent ! pow(W) [best is a function which to each sentence in the
Gm-language assigns a subset of W , heuristically, the set of best worlds
in the extension (truth-set) of the sentence under consideration].

The de�nition of a sentence being true at a point in a Gm-structure
remains as in the case of G, or G-structures, except for the following fresh
clause governing our frame constants:��U

x
Qi i� x 2 opti (for all positive integers i):
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We now focus our attention on a special kind of Gm-structures called
`Gm-models'. By a Gm-model we shall mean any Gm-structure U where
foptig, m and best satisfy the following additional conditions:

Exactly m Non-empty levels of Perfection
This condition requires the set fopt1; opt2; : : : ; optmg to be a partition of
W in the sense that

(a) opti \ optj = ?, for all positive integers i; j with 1 � i 6= j � m

(b) opti [ : : : [ optm = W

(c) opti 6= ?, for each i with 1 � i � m.

(d) opti = ?, for each i with m < i < !.

The second condition is one on our `choice' function best; it is intended
to capture the intuitive meaning of that function:

0: x 2 best(B) i�
��U
x
B and for each y in W : i���U

y
B; then x < y:

Here, the weak preference relation <, `is at least as good (ideal) as' is to be
understood as follows. First of all, by clauses (a) and (b) in the condition
Exactly m Non-empty levels of Perfection, we have that for each x in W
there is exactly one positive integer i with 1 � i � m such that x 2 opti.
We then de�ne a `ranking' function r from W into the closed interval [1;m]
of integers by setting

r(x) = the i; with 1 < i < m; such that x 2 opti:

Finally, we de�ne < as the binary relation on W such that for all x; y in W :

x < y i� r(x) � r(y):

Armed with the notion of a Gm-model, we de�ne, for m = 1; 2; : : : , those
of Gm-validity and Gm-satis�ability in the obvious way.

THEOREM 78. (Soundness and completeness of the systems Gm[m =
1; 2; : : : ])

Weak version: For each A in Sent: A is Gm-provable i� A is Gm-valid.

Strong version: For each S � Sent: S is Gm-consistent i� S is Gm-
satis�able.

Proof. See �Aqvist [1996]. Also, we observe that a proof that the generated
canonical Gm-structure US

+

satis�es our condition 0 on the function best
is easily extracted from the proof given in �Aqvist [1993] and [1987, Ch
VI, Section 23.3.6, pp. 187{191] that the three-place relation R satis�es
essentially the same condition (use the de�nition (*) in the last section!).

�
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25 ON THE RELATION OF THE `CORE' SYSTEM G TO THE
LOGICS Gm[m = 1; 2; : : : ]

In the present section we deal with the system G and state a result to
the e�ect that G is the intersection of all the logics Gm[m = 1; 2; : : : ]
(identifying as usual a `logic' with the set of its theses, or sentences provable
in it). Thus, the result answers the question how our crucial system G is
related to the Gm.

THEOREM 79. For each G-sentence A (i.e. member of �2
0;N):

jGA i� for each positive integer m; jGmA:

Proof. See �Aqvist [1997, Section 3]. Let us just outline the main structure
of our proof as given in that paper. The non-trivial direction here is the
right-to-left one, the contraposed version of which asserts the following: if
A is not G-provable, then there exists a positive integer m such that A is
not Gm-provable (either). We then argue as follows:

1. jG6 A hypothesis

2. 6
�� U
G

from 1 by the weak completeness
of G

3. 6
��U
x

, for some G-model U =

hW;V; besti and some x in W

from 2 by the de�nition of G-
validity.

Let U� = hW �; V �; best�i be the �ltration of U through the set of sub-
sentences of A (in the sense rigorously de�ned in my 1997 paper mentioned
above), and let [x] be the equivalence class of x under a certain equivalence
relation on W (also de�ned in the paper). We then obtain:

4. 6
��U�
[x]

from 3 by the Filtration Lemma
for G proved in �Aqvist [1997].

We now observe that the �ltration U� is necessarily a �nite G-model, so
that there can be at most a �nite number of levels of perfection compatible
with and de�nable on U�. Again, this means that we can construct, for
some positive integer m, a Gm-models

U�+ = hW �; V �; foptigi=1;2;:::;m; best�i

with the property that

5. 6
��U�+
[x]

from 4 by the fact that the new
items opti and m do not a�ect
the truth-value of theG-sentence
A
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and then argue:

6. 6
��
Gm

from 5 by the de�nition of Gm-
validity

7. jGm6 A from 6 by the soundness of each
system Gm

where 7 is our desired conclusion. In �Aqvist [1997, Section 3] we then �nish
the proof by providing a detailed careful justi�cation of the two crucial steps
4 and 5 in the above overall argument. Among other things, our proof is
seen to pro�t from the fact that the system G is known to be deductively
equivalent, under appropriate de�nitions, to a certain logicPR of preference,
as shown in �Aqvist [1987, Appendix, x33]. �

26 REPRESENTABILITY OF DYADIC DEONTIC LOGICS IN
ALETHIC MODAL LOGICS WITH SYSTEMATIC FRAME

CONSTANTS

In this �nal section of the present chapter we point out that the dyadic
deontic logics Gm are representable in a hierarchy of alethic modal log-
ics Hm[m = 1; 2; : : : ], which lack deontic operators in their primitive vo-
cabulary, but which are such that we can de�ne those operators in them,
somewhat in the spirit of the well known Andersonian reduction. The de-
tailed proof of this result in e�ect forms the bulk of �Aqvist [1996]; here, we
just present enough material so as to enable us to state that result in an
intelligible way.

Consider the result of banishing the dyadic deontic operators O and P
from the primitive logical vocabulary of the systems Gm[m = 1; 2; : : : ].
Then, for any positive integer m, let the axiomatic system Hm of alethic
modal logic with frame constants be determined by the rules of proof modus
ponens and N -necessitation, and the axiom schemata a0 (= all tautologies
over the present reduced language), a8 (= S5-schemata for N;M), �5, �9
and �10; i.e. by those axiom schemata in Gm that do not contain occur-
rences of O or P . Clearly each system Gm is an extension of Hm.

As to the semantics of the alethic modal logics Hm[m = 1; 2; : : : ], a
Hm-structure will be the ordered quadruple that results from deleting the
function best in a Gm-structure, and a Hm-model will be a Hm-structure
satisfying (a){(d) in the requirement Exactly m Non-empty levels of Perfec-
tion (whereas the condition 0 on best vanishes altogether). We then have
the following result:

THEOREM 80. (Soundness and completeness of the systems Hm[m =
1; 2; : : : ])
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Weak version: For every sentence A: A is Hm-provable i� A is Hm-
valid.

Strong version: For each set S of sentences: S is Hm-consistent i� S is
Hm-satis�able.

Proof. See �Aqvist [1996]. �

What is the interest of the just considered in�nite hierarchyHm of alethic
modal logics? We take it to be this: although the operators (for conditional
obligation) and P (for conditional permission) are not primitive in the lan-
guage of the Hm, they can be de�ned in those systems as follows:

Def O.

OBA = df [M(Q1 ^ B) � N((Q1 ^ B) � A)]^
[(:M(Q1 ^B) ^M(Q2 ^ B)) � N(Q2 ^ B � A)] ^ : : :^
[(:M(Q1 ^B) ^ : : : ^ :M(Qm�1 ^B) ^M(Qm ^ B)) �
N(Qm ^ B � A)]:

Def P.
PBA = df M(Q1 ^ B ^A)_

(:M(Q1 ^B) ^M(Q2 ^ B ^A)) _ : : :_
(:M(Q1 ^B) ^ : : : ^ :M(Qm�1 ^ B) ^M(Qm ^ B ^ A)):

We can then prove the following:

THEOREM 81 (Deductive Equivalence forHm andGm). LetHm+Def O+
Def P be the result of adding the de�nitions Def O and Def P supra to the
alethic system Hm. Then, for all m = 1; 2; : : : ;Hm + Def O + Def P is
deductively equivalent to Gm in the sense that the following two conditions
are satis�ed:

(i) Hm + Def O + Def P contains Gm.

(ii) Each of Def O and Def P is provable in the form of an equivalence in
Gm.

Proof. See �Aqvist [1996]. �

An alternative, more `semantical' method of representing the dyadic de-
ontic systems Gm in the alethic modal logics Hm is this: de�ne recursively
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a certain translation � from the set of Gm-sentences into the set of Hm-
sentences by the stipulations:

�(p) = p; for each propositional variable p in Prop

�(>) = >

�(?) = ?

�(Qi) = Qi; for each positive integer i

�(:A) = :�(A)

�(A ^ B) = (�(A) ^ �(B))

and similarly for Gm sentences having _;!;, as their principal sign.

�(NA) = N�A

�(MA) = M�A

where we have written �A instead of �(A) to the right. Finally, we have
two characteristic clauses corresponding to Def O and Def P:

�(OBA) = [M(Q1 ^ �B) � N((Q1 ^ �B) � �A)]^
[(:M(Q1 ^ �B) ^M(Q2 ^ �B)) � N(Q2 ^ �B � �A)] ^ : : :^
[(:M(Q1 ^ �B) ^ : : : ^ :M((Qm�1 ^ �B) ^M(Qm ^ �B)) �
N(Qm ^ �B � �A)]

Similarly for �(PBA): write it out as an m-termed disjunction!
We then have the following result:

THEOREM 82 (Translation for Gm and Hm). For each positive integer
m, and for each Gm-sentence A:

j
GmA i� jHm�A:

Proof. Again, see �Aqvist [1996]. The left-to-right direction is more or
less immediate from the proof of the Deductive Equivalence theorem supra.
The proof of the right-to-left is reminiscent of that of the Theorem on the
relation of G to the Gm in respect of utilizing a relevant completeness result
in the second step. �

Combining the present Translation theorem with the Theorem on the
relation of G to the Gm, we obtain the obvious

COROLLARY 83. For any G-sentence A: jGA i� for all m = 1; 2; : : : ;
jHm�A.

Proof. Immediate from the two theorems just mentioned. �
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gations. Noûs 15:357{375, 1981.

[Tomberlin and F. McGuinness, 1977] J. E. Tomberlin and McGuinness. \Because" and
Good Samaritans. Critica 9:67{81, (M�exico), 1977.

[Van Eck, 1981] J. E. Van Eck. A System of Temporally Relative Modal and Deontic
Predicate Logic and its Philosophical Applications. Department of Philosophy, Uni-
versity of Groningen, The Netherlands, 1981. Also in Logique et Analyse, 25:249{290
and 25:339{381, 1982.

[Van Fraassen, 1972] B. C. Van Fraassen. The logic of conditional obligation. J. Philo-
sophical Logic 1:417{438, 1972.

[Von Kutschera, 1973] F. Von Kutschera. Einf�uhrung in die Logik der Normen, Werte
und Entscheidungen. Alber, Freiburg, 1973.

[Von Kutschera, 1974] F. Von Kutschera. Normative Pr�aferenzen und bedingte Gebote.
In H. Lenk, editor, Normenlogik, Verlag Dokumentation, Pullach bei M�unchen, pp.
137{165, 1974.

[Von Wright, 1951] G. H. Von Wright. Deontic logic. Mind 60:1{15, 1951.
[Von Wright, 1951a] G. H. Von Wright. An Essay in Modal Logic. North-Holland, Am-

sterdam, 1951.
[Von Wright, 1955] G. H. Von Wright. Om s.k. praktiska slutledningar (On so-called

Practical Inferences). Tidskrift for Retsvidenskab 68:465{495, 1955.
[Von Wright, 1956] G. H. Von Wright. A note on deontic logic and derived obligation.

Mind 65:507{509, 1956.
[Von Wright, 1963] G. H. Von Wright. Norm and Action. A Logical Inquiry. Routledge

& Kegan Paul, London, 1963.
[Von Wright, 1964] G. H. Von Wright. A new system of deontic logic. In Danish Yearbook

of Philosophy 1:173{182, 1964.
[Von Wright, 1965] G. H. Von Wright. A correction to a new system of deontic logic.

Danish Yearbook of Philosophy 2:103{107, 1965.
[Von Wright, 1967] G. H. Von Wright. The logic of action | A sketch. In N. Rescher,

editor, The Logic of Decision and Action, Univ. Pittsburgh Press, Pittsburgh, pp.
121{136, 1967.

[Von Wright, 1968] G. H. Von Wright. An Essay on Deontic Logic and the General
Theory of Action. North-Holland, Amsterdam, 1968.

[Von Wright, 1971] G. H. Von Wright. Deontic logic and the theory of conditions. In
R. Hilpinen, editor, Deontic Logic: Introductory and Systematic Readings, D. Reidel,
Dordrecht, pp. 159{177, 1971.

[Von Wright, 1974] G. H. Von Wright. Handlungslogik. In H. Lenk, editor, Normenlogik,
Verlag Dokumentation, Pullach bei M�unchen, pp. 9{24, 1974.

[Von Wright, 1977] G. H. Von Wright. Zur Einf�uhrung. In A.G. Conte, R. Hilpinen and
G.H. Von Wright, editors, Deontische Logik und Semantik, Athenaion, Wiesbaden,
pp. 7{8, 1977.

[Wedberg, 1951] A. Wedberg. Some problems in the logical analysis of legal science.
Theoria 17:246{275, 1951.

[Wedberg, 1969] A. Wedberg. Den klassiska deontiska konsekvensprincipens paradoxer:
n�agra preformella reexioner. In Logik, r�att och moral: Filoso�ska studier till�agnade
Manfred Moritz, Studentlitteratur, Lund, pp. 213{232, 1969.

[Weinberger, 1970] O. Weinberger. Rechtslogik. Versuch einer Anwendung moderner
Logik auf das juristische Denken. Springer-Verlag, Vienna, New York, 1970.



JOS�E CARMO AND ANDREW J. I. JONES

DEONTIC LOGIC AND CONTRARY-TO-DUTIES

1 INTRODUCTION

Deontic logic is concerned with the logical analysis of such normative no-
tions as obligation, permission, right and prohibition. Although its origins
lie in systematic legal and moral philosophy, deontic logic has begun to
attract the interest of researchers in other areas, particularly computer sci-
ence, management science and organisation theory. Among the application
areas which have already received some attention in the literature are: is-
sues of knowledge representation in the design of legal expert systems; the
formal speci�cation of aspects of computer systems, for instance in regard to
security and access control policies, fault tolerance, and database integrity
constraints; the formal characterisation of aspects of organisational struc-
ture, pertaining for example to the responsibilities and powers which agents
are required or authorised to exercise. The \�EON" workshop proceedings
provide some illustrations of work in these areas (see [�EON91; �EON94;
�EON96]).

Deontic logic is one of the formal tools needed in the design and spec-
i�cation of normative systems, where the latter are understood to be sets
of agents (human or arti�cial) whose interactions can fruitfully be regarded
as norm-governed; the norms prescribe how the agents ideally should and
should not behave, what they are permitted to do, and what they have
a right to do. Importantly, the norms allow for the possibility that ac-
tual behaviour may at times deviate from the ideal, i.e. that violations of
obligations, or of agents' rights, may occur.

In [Jones and Sergot, 1992; Jones and Sergot, 1993] Jones and Sergot
argue that it is precisely when the possibility of norm violation is kept open
that deontic logic has a potentially useful role to play. If agents can always
be assumed to behave in conformity to norm, the normative dimension
ceases to be of interest: the actual does not depart from the ideal, so noth-
ing is lost by merely describing what the agents in fact do. Thus, although
it is correct to say that deontic logic deals with the logic of obligation, per-
mission and other normative notions, a more insightful characterisation,
Jones and Sergot suggest, views deontic logic as essentially concerned with
representing and reasoning about the distinction between the actual and
the ideal. Systems for which that distinction is relevant are genuinely nor-
mative systems, and their speci�cation will ordinarily include \secondary"
norms which indicate what is to be done in circumstances in which actual
behaviour has deviated from the ideal. The methodological guidelines pro-
posed in [Jones and Sergot, 1992; Jones and Sergot, 1993] strongly suggest

D. Gabbay and F. Guenthner (eds.),
Handbook of Philosophical Logic, Volume 8, 265{343.
c 2002, Kluwer Academic Publishers. Printed in the Netherlands.
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that \secondary" norms of this kind (�rst dubbed \contrary-to-duty" in
[Chisholm, 1963]) will be a prominent feature of normative systems, and
thus that any adequate deontic logic must accommodate them. However,
the analysis of contrary-to-duty obligation sentences has proved to be a task
of some considerable complexity. And it is this issue | at the very core of
deontic logic | which this chapter addresses.

The plan is as follows: we �rst (Section 2) describe Standard Deontic
Logic, and a number of its defects, including problems regarding the rep-
resentation of conditional obligation sentences. In the course of Section 3
we examine a number of di�erent theories which have attempted to accom-
modate contrary-to-duty obligation sentences (CTDs), and in the course of
this examination we identify several criteria | eight in all | which, we ar-
gue, an adequate treatment of Chisholm's puzzle about CTDs should meet.
Some of these criteria are not tied to Chisholm's problem, but apply quite
generally to the analysis of CTDs. Section 4 presents a revised, and in
parts considerably modi�ed version of the [Carmo and Jones, 1997] theory
of CTDs; its application to a number of CTD \scenarios" is investigated
in some detail in Section 5, and this provides a further impression of the
broad range of representational and reasoning issues which a CTD theory
must address. Section 6 examines some possible counter-examples to the
proposed analysis, thereby relating its treatment of CTD problems to other
well-known issues in deontic logic, concerning | in particular | the clo-
sure of deontic operators under logical consequence, and the representation
of conicts of obligations. Section 7 o�ers further observations on alterna-
tive approaches based on temporal logic, the logic of action, and preference
orderings, respectively. The overall aim of the chapter is to supply a rather
detailed overview of a group of problems at the heart of deontic logic, and
a guide to existing attempts to solve them.

2 DEONTIC LOGIC: THE STANDARD APPROACH

2.1 Standard Deontic Logic

The standard approach to deontic logic takes it to be a branch of modal
logic, interpreting the necessity operator� as expressing ethical/legal ne-
cessity, i.e. as meaning \it is obligatory that", and denoting it by O ;
accordingly, the dual possibility operator� = :�: is interpreted as ex-

pressing \it is permitted that" (and is denoted by P), and the impossibility
modal contruction�: is interpreted as expressing \it is forbidden that"
(and is often denoted by F).

Axiomatically, the weakest deontic logic (called standard deontic logic,
SDL for short) is then obtained by replacing the modal necessity schema
(T) (�A ! A: unacceptable for a deontic interpretation, since what is



DEONTIC LOGIC AND CONTRARY-TO-DUTIES 267

obligatory may fail to be the case) by the (D) schema (which requires that
what is obligatory is permitted). Thus, following the Chellas classi�cation
[Chellas, 1980], SDL is the weakest normal modal system of type KD; that
is, its theorems can be characterized as the smallest set of formulas that
includes all instances of the following axiom schemas, and that is closed
under the O-necessitation rule and Modus Ponens (MP).

Axiom schemas

(PC) All instances of tautologies

(PC stands for Propositional Calculus)

(K) O (A! B) ! (OA! OB)

(D) (OA! PA)

Rules

O -necessitation:
A
OA

Modus Ponens (MP):
A; A!B

B

We here employ capital letters (A;B;C; : : :) to stand for arbitrary formulas
(well-formed sentences of the underlying propositional modal logic), and we
use lower case letters (p; q; : : :) for arbitrary atomic sentences, and ? and >
to denote, respectively, a contradiction and a tautology; parentheses will be
omitted following the usual precedence rules for the operators; the Boolean
connectives will be denoted by :, ^, _, ! and $; in the meta-language we
denote such connectives by \not", \and", \or", \if ... then ..." (or \implies")
and \i�" (if and only if), and in the meta-language we also avail ourselves
of the universal and the existential quanti�ers (these do not appear in the
object language: we are concerned only with propositional modal logics).
Moreover, as usual, we will use ` A (respectively 6` A) to denote that A is a
theorem (respectively, A is not a theorem) of the underlying logical system;
and, following the traditional philosophical/logical approach to deduction,
we say (cf. [Chellas, 1980; Hughes and Cresswell, 1984]) that A is deducible
from a set of hypotheses �, written � ` A (or simply A1; : : : An ` A if � is
�nite), i� A belongs to the smallest set of formulas that contains � and the
theorems and that is closed under (MP).1

1In this way we get a Boolean, compact, deductive system (see e.g. [Bull and
Segerberg, 2001]). Non-Boolean axiomatic approaches to deduction, where non-
tautological rules may also be applied to the hypotheses, and not only to the theorems,
may be found in some works in the �eld of mathematical logic, such as [Hamilton, 1978;
Mendelson, 1979].
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Semantically, the models M of SDL are standard models [Chellas, 1980]:
M = (W;R; V ), where W is a non-empty set (the set of worlds), R is
a binary relation on W and V is an assignment to each atomic sentence
of a set of worlds; informally, V (p) denotes the set of worlds where p is
true. In order to validate the schema (D) we require that the accessibility
relation R is serial, i.e. (8w)(9v)wRv (using w; v; : : : to denote worlds and,
as usual, writing wRv instead of hw; vi 2 R). The deontic interpretation
of the accessibility relation is as follows: wRv i� v is a deontic alternative
to, or an ideal version of, w. The truth of a formula A in a world w of
a model M is denoted by M j=w A and is de�ned as usual: for instance,
M j=w OA i� (8v) (if wRv then M j=v A); thus, informally, OA is true
in a world w i� A is true in all ideal versions of w. A formula A is true in a
model M, written M j= A, i� A is true in all the worlds of the model M;
and a formula A is valid, written j= A, i� A is true in all models.

2.2 SDL and its problems

It is widely accepted that SDL is not adequate as a basic deontic logic. In
fact, few systems of logic have been as heavily criticised as SDL; SDL gives
rise to a set of \paradoxes" (theorems of SDL that many have deemed to
be counter-intuitive) and there are some deontic concepts and constructions
which apparently cannot be expressed in SDL in a consistent manner. Some
of the main examples will be given below. We have essentially two aims
here: �rst, without any claims to originality, we comment on the reasons
underlying the so-called paradoxes; secondly, we indicate which of these
problems have a counterpart in other areas of applied modal logic (e.g.,
epistemic, doxastic and action logics), and which seem to be particular to
deontic logic.

A �rst group of paradoxes has its origin in the closure of the O-operator
under logical consequence (that is, in the fact that SDL, like any normal
modal logic, contains the (RM)-rule: \if ` A ! B then ` OA ! OB").
Some well known examples are:

� Ross paradox: (` OA! O (A _ B))

\If it is obligatory to mail the letter, then it is obligatory to mail the
letter or to burn it"

The question of the signi�cance of this paradox has been the subject
of considerable dispute. Whereas some claim that the second obliga-
tion (the one in the consequent) is a counter-intuitive consequence of
the �rst, since it seems to leave open to the agent a choice to mail
or to burn the letter, others maintain that the consequent does not
leave a choice of this kind, because burning the letter is clearly not
a way of meeting the obligation expressed by the antecedent. Given
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the perspective on deontic logic advocated in Section 1, however, we
should also look at the problem from the point of view of violation:
supposing that A is obligatory and that A is not the case, how many
obligations have been violated? If we accept the Ross theorem, then
not only has the obligation that A been violated, but | in addition |
for each state of a�airs B which actually fails to obtain, an obligation
that A _ B has also been violated. This is a peculiar result; it con-
trasts, of course, with how things look from a ful�lment perspective;
for if the obligation that A is ful�lled, then so are all the other obliga-
tions which can be derived by application of the Ross theorem. (We
are assuming, as is natural, that within SDL violation of an obligation
OC is to be expressed as the conjunction OC ^ :C.)

� Free Choice Permission paradox:

This paradox has to do with the fact that (in SDL) 6` P(A _ B) !
(PA ^ PB), whereas | ordinarily | if it is permitted that A or
B this would be understood to imply that A is permitted and B is
permitted. We include this paradox in this group, since the reason
why we cannot add P(A _ B) ! (PA ^ PB), as a new axiom, to
SDL is the fact that, by the (RM)-rule, ` PA ! P(A _ B), which
together with P(A_B) ! (PA^PB) would imply PA! (PA^PB);
so permission to go to the cinema would imply permission to kill
the President! Moreover, from any permission we could then deduce
P?, which is inconsistent with the fact that ` O>. However, in
common with some other researchers, we think that this \paradox"
is a pseudo-problem: if what we want to express is that both A and
B are permitted, then we should simply represent that formally by
PA ^PB (instead of by P(A _ B)).

� Good Samaritan paradox:

\If it is obligatory that Mary helps John who has had an accident,
then it is obligatory that John has an accident"

On the assumption that \Mary helps John who has had an accident"
is represented as the conjunction \Mary helps John and John has had
an accident", then the antecedent of the above conditional takes the
form \O (A^B)". Since, tautologically, a conjunction implies each of
its conjuncts, the (RM)-rule yields the SDL theorem: `O (A^B) !
OB. In our view, the formal concepts needed to deal with problems
about contrary-to-duty obligations can also provide an appropriate
analysis of the Good Samaritan problem. So we return to this issue
below, in Section 6.

� Deontic/epistemic paradox:
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\If it is obligatory that Mr. X knows that his wife commits adultery,
then it is obligatory that X's wife commits adultery"

We here assume, as is usual, that the (T)-schema holds for the epis-
temic operator. So this problem is again a result of the fact that,
in SDL, any logical consequence of that which is obligatory is itself
obligatory.

We note that the closure of the necessity operator under logical consequence
is also a source of problems for other applications of modal logic, for instance
epistemic and doxastic logics, where the assumption that every agent knows
(believes) every logical consequence of what he knows (believes) is an ex-
treme idealisation. In the logic of action, too, it is surely not acceptable
to suppose that an agent brings about all the logical consequences of that
which he brings about (cf. [Elgesem, 1993]).2

A second problem of SDL has to the with the O -necessitation rule itself,
according to which any tautology (more generally, any theorem) is obliga-
tory, which is incompatible with the idea that obligations should be possible
to ful�ll and possible to violate. Similar problems occur with this rule in the
epistemic and doxastic logics, where it requires that an agent knows (or be-
lieves) all theorems (called in [Hintikka, 1975] the \logical omniscience prob-
lem"), and in the logic of action, where it is in general supposed that that
which can be brought about must be avoidable (see, e.g., [Elgesem, 1993;
Santos and Carmo, 1996]).

A third problem of SDL is that, because of the (D)-schema, it is not
possible to express consistently a conict of obligations, even though, as a
matter of fact, normative systems may indeed contain conicting obliga-
tions. We shall return to this issue later in this chapter. But, again, we
note at this point that this is not a problem only of deontic logic: similar
problems may appear, for instance, in the logic of belief.

However, it is fair to say that, for most deontic logicians, the problem of
how to represent conditional obligation sentences has been their principal
reason for seeking an alternative to SDL. Let us denote by O (B=A) the
\conditional obligation of B, given A"; so O (B=A) is intended to mean
that \it is obligatory that B, if A is the case". In SDL there are two
possible ways to represent such sentences:

(option1) O (B=A)=
df
A! OB

and (option2) O (B=A)=
df
O (A! B)

2In [Konolige and Pollack, 1993] it is argued that this problem, called the \side-
e�ect problem" in [Bratman, 1987], is even worse for the logic of intentions - a logic
which, it has been suggested, has very close similarities to deontic logic (see [P�orn, 1977;
Jones, 1991]).
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Note �rst what these two options have in common. With both of them we
get (within SDL):

(UN) ` OB $ O (B=>)

(SA) ` O (B=A) ! O (B=A ^ C)

The �rst theorem is generally seen as a good property, and has been
accepted by many authors on the grounds that an unconditional obligation
is a particular (limiting) case of a conditional obligation, where the condition
is a logical truth. Here, however, we shall adopt the opposite view, in
line with the opinion expressed by Carlos Alchourr�on in [1993, pp. 62],
who argued that (UN) was one of the wrong steps followed by almost all
researchers in deontic logic.

(SA) is known as the \principle of strengthening of the antecedent"; it
is problematic, since it appears to make the expression of defeasible (condi-
tional or unconditional3) obligations impossible; but of course it is a com-
monplace feature of obligations that they are subject to exceptions. Con-
sider, for instance, a conditional obligation to the e�ect that, if your aged
mother is sick, then you should help her. Such a conditional obligation
might well leave room for exceptions, just as penguins might be the excep-
tion to the generalisation that birds y; supposing for example that your
young child has been injured in a car accident, and urgently needs you at the
hospital, the obligation to help your sick, aged mother may well be deemed
to have been defeated, or overturned. But again this problem (which has
some connections with the problem of how to deal with conicting obliga-
tions) is not a speci�c issue of deontic logic; the problem of how to deal with
defeasible conditionals appears in many other areas and has been a source
of intensive research.

So far we have not yet found a problem that sets deontic logic apart
from other branches of modal logic. But we here return to the point em-
phasised in the introduction and suggest that the issue of how to represent
contrary-to-duty obligation sentences (CTDs) | obligations which come
into force when some other obligation is violated | seems to be a speci�c
problem of deontic logic. It has sometimes been proposed, however, that
CTD obligations may be seen as handling exceptions to (primary) obliga-
tions. Although we accept that there may be some connections between
the problem of how to deal with CTDs and the problems concerning allow-
able exceptions and default reasoning, it should be stressed that there are
also crucially important di�erences (cf. [Prakken and Sergot, 1994]): when
a CTD obligation comes into force because of some violation, we do not
want then to say that the violated obligation has been defeated; it has not
been overturned, it has been violated! We need to be able to integrate in

3Note that combining the two previous theorems we get `O B !O (B=A), and so
an unconditional obligation remains obligatory under any condition.
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a single logical framework the ability to make deductions at two di�erent
levels: on the level of what ideally should be the case, and on the level of
what actually should be the case, given the circumstances (where, of course,
the circumstances might include the fact that what has happened deviates
from the ideal). The simultaneous speci�cation of both ideal behavior and
of what to do when actual behavior deviates from the ideal is a central task
of deontic logic.

3 CONTRARY-TO-DUTIES

3.1 Chisholm's CTD-paradox and SDL

Consider the following set of four sentences, formulated by Chisholm in 1963
[Chisholm, 1963]:

EXAMPLE 1.

(a) It ought to be that a certain man go to help his neighbours.

(b) It ought to be that if he goes he tell them he is coming.

(c) If he does not go, he ought not to tell them he is coming.

(d) He does not go.

There is widespread agreement in the literature that, from the intuitive point
of view, this set is consistent, and its members are logically independent
of each other; and there is a good deal of disagreement in the literature as
regards which further requirements an adequate formal representation of the
Chisholm set should meet. We start by discussing whether the Chisholm
set can be represented in SDL in a way that meets this set of two minimum
requirements, leaving the discussion of other further requirements to later.

It is straightforward to represent sentences (a) and (d) in SDL; the ques-
tion is how to represent (b) and (c), since they express conditional obliga-
tions. Let us leave that open for the moment, and represent them by the
use of our binary conditional obligation operator above; we then get (us-
ing \tell" and \help" in an obvious way as abbreviations of the sentences
concerned):

(a) O help (or O (help/>), since in SDL ` O help $ O (help/>))

(b) O (tell / help)

(c) O (:tell / :help)

(d) :help
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In regard to the representation of conditional obligations in SDL, recall the
two alternatives:

(option1) O (B=A)=
df
A! OB

and (option2) O (B=A)=
df
O (A! B)

With (option1) we get the following results:

` :A! O (B=A)

(FD) ` A ^O (B=A) ! OB

Given that an expression of the form O (B=A) is intended to mean that,
in circumstances A, B is obligatory, the �rst of these two results is clearly
problematic. From the fact that it is not raining we should not be able
to deduce that, in circumstances where it is raining, it is obligatory that
the President be assassinated. The other theorem has to do with the fun-
damental issue of how we can detach new (unconditional) obligations from
conditional obligations, and it states a kind of \factual detachment" prin-
ciple, allowing the deduction of the actual obligations of the agent, that is,
the obligations which arise given the actual facts of the situation.

With (option2) we get the following results:

` O :A! O (B=A)

(DD) ` OA ^O (B=A) ! OB

According to the �rst theorem everything is obligatory on the condition
that some forbidden fact is the case: thus (option 2) clearly does not allow
us to express CTDs. The second theorem represents a kind of \deontic
detachment" principle, allowing the deduction of the ideal obligations of the
agent, i.e. the further obligations which arise if he behaves in a way which
conforms with some existing set of obligations.

The surface structures of lines (b) and (c) in the original Chisholm set
might be taken to indicate that, within SDL, (option 2) should be chosen
for (b), and (option 1) for (c), giving:

(a) O help

(b) O (help ! tell)

(c) :help ! O :tell

(d) :help
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This was Chisholm's choice, and he rightly went on to point out that this
formalisation yields an inconsistency, since O tell is derivable from (a) and
(b), whilst O:tell is derivable from (c) and (d) (and an inconsistency follows
by the (D)-schema).

If, alternatively, we use (option 1) for both lines (c) and (b), then the
resulting set is consistent, but logical independence is lost, since (b) will
then be a consequence of (d). Likewise, if (option 2) were adopted for both
(b) and (c), then (c) would be a consequence of (a) by the (RM)-rule. So,
in SDL, the conclusion is that the Chisholm set cannot be represented in a
way which satis�es both of the two minimum requirements of consistency
and logical independence.

3.2 Some further requirements on the representation of CTDs

A number of deontic logicians have argued that the problems raised by
CTDs involve in an essential way either a temporal dimension or actions.
We shall have a good deal more to say about these lines of approach later
on (especially in Section 7), but for the moment we just want to register
agreement with Prakken and Sergot [Prakken and Sergot, 1994; Prakken
and Sergot, 1996], who have indicated that there are examples of CTD
scenarios where it is far from obvious how considerations of the temporal or
action dimensions might be applicable. Consider:

EXAMPLE 2.

(a) There ought to be no dog.

(b) If there is no dog, there ought to be no warning sign.

(c) If there is a dog, there ought to be a warning sign.

(d) There is a dog.

EXAMPLE 3.

(a) There must be no fence.

(b) -

(c) If there is a fence, then it must be a white fence.

(d) There is a fence.

Examples of these kinds suggest that a treatment of CTD's which is tied
to temporal or action aspects will not be suÆciently general in its scope.

A further question which existing treatments of CTD's raise is this: are
lines (b) and (c) of the Chisholm set to be assigned fundamentally di�erent
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logical forms? The theory we develop below gives a negative answer to this
question, and supplies a uniform treatment of deontic conditionals. Our
view is that, in the absence of strong arguments to the contrary, the surface
forms of (b) and (c) should be deemed to be merely stylistic variants of
essentially the same type of underlying logical structure. In particular,
we reject the position taken in [Prakken and Sergot, 1994; Prakken and
Sergot, 1996], where it is argued that (b) and (c) should be given distinct
logical representations just because (c), unlike (b), is a contrary-to-duty
conditional, expressing as it does the obligation which comes into force
when the obligation expressed by line (a) is violated. Prakken and Sergot's
approach makes the assignment of logical form to deontic conditionals a
highly context-dependent matter, with the consequence that any insertion
or deletion of a norm may require that some revision then has to be made to
the formalisation of some other norm in the set; (e.g., deleting line (a) of the
Chisholm set would require, on their approach, a change in the formalisation
of line (c)). Likewise, the form initially assigned to a given sentence might
have to be revised in virtue of what turns out to be derivable from other
sentences; suppose, for instance that \if A then it is obligatory that B" is
in the initial set, and is assumed not to be a CTD; if it then transpires that
\it is obligatory that not A" is derivable from other members of the initial
set, then the conditional becomes a CTD and its logical form has to be
changed accordingly. This change may, in turn, have further repercussions
regarding what can be derived . . . and so on. Now with a small initial set,
such as Chisholm's, it will of course be relatively easy to see where changes
need to be made; but with a large corpus of norms it is not diÆcult to
imagine that the problem could become intractable. The disadvantages
which accrue from this kind of context-dependence of logical form are so
great, in our opinion, that any approach to the analysis of CTDs which
manages to avoid it is - other things being equal - to be preferred.

Thus, we have so far identi�ed the following requirements that an ade-
quate formalisation of the Chisholm set should meet:

(i) consistency;

(ii) logical independence of the members;

(iii) applicability to (at least apparently) timeless and actionless CTD-
examples;

(iv) analogous logical structures for the two conditional sentences, (b) and
(c).

One important group of deontic logics that satisfy these requirements em-
ploys a primitive dyadic conditional obligation operator O ( / ), where
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O (B=A) is read \it is obligatory that B, given that A". These logics usu-
ally take the unconditional obligation OB to be equivalent to O (B=>),
and they represent the Chisholm set as follows:

(a) O (help / >)

(b) O (tell / help)

(c) O (:tell / :help)

(d) :help

Following [Lower and Belzer, 1983] we can distinguish between two main
\families" of dyadic deontic logics, according to the kind of detachment
principles they support: one supports the \factual detachment" principle
(FD), and we call it the \FD-family";4 the other supports the \deontic
detachment" principle (DD), and we call it the \DD-family".5

Returning again to the Chisholm set, it is clear that (as for its proposed
representation within SDL) acceptance of both (FD) and (DD) would permit
the derivation of O :tell (by (FD) on lines (c) and (d)) and O tell (by (DD)
on lines (a) and (b)). If the (D)-schema is accepted, then the situation
arising from adoption of both (FD) and (DD) would of course be one of
logical inconsistency. But even if the (D)-schema is not accepted, so that
the conjunction O tell ^ O:tell is not deemed to be logically inconsistent,
the derivation from the Chisholm set of a conict of obligations of the type
expressed by this conjunction is surely unacceptable from the intuitive point
of view. The situation described by the Chisholm set does not present the
agent concerned with a moral dilemma, on our view. Requirement (i), above,
should be understood as one to the e�ect that a conjunction of the form
OA ^ O:A should not be derivable from the formal representation of the
set, regardless of whether that conjunction is deemed logically inconsistent.

Of course, neither the FD-family nor the DD-family accepts both (FD)
and (DD). Nevertheless, it might be suggested that a fully adequate rep-
resentation of the Chisholm set should be able to capture, in a way which
generates neither inconsistency nor a moral dilemma, both the fact that |
given the circumstances, and particularly the occurrence of the violation
of the obligation expressed by line (a) | the agent's actual obligation is

4In general the logics in this family have a semantics based on minimal models
(proposed, independently, by Dana Scott and Montague, and popularised by [Chellas,
1980]). As representatives of this family [Lower and Belzer, 1983] mention [Mott, 1973;
al-Hibri, 1978; Chellas, 1974]; however, as regards [Chellas, 1974] it is not entirely clear
whether Chellas commits himself to acceptance of (FD).

5[Lewis, 1974] presents an overview of several members of the DD-family. These
logics introduce, in the semantics, a preference relation between the worlds, that orders

the worlds according to their ideality; then O (B=A) is true at a world i� there is some
world where A ^ B is true and that is more ideal than any world where A ^ :B is true.
See also, below, Sections 7.1 and 7.3.
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not to tell his neighbours he is coming, and the fact that | under ideal
circumstances, in the absence of violation of the obligation expressed by
line (a) | the agent's obligation would be to help his neighbours and to
tell them he is coming. Accepting these suggestions, we o�er three further
requirements which we believe an adequate representation of the Chisholm
set should meet:

(v) capacity to derive actual obligations;

(vi) capacity to derive ideal obligations;6

(vii) capacity to represent the fact that a violation of an obligation has
occurred.

Neither the FD-family nor the DD-family meet both (v) and (vi).7 We will
return later to the issues raised by (vii).

3.3 The \pragmatic oddity"

One of the logics that ful�lls all these requirements is the one proposed
in [Jones and P�orn, 1985]. Jones and P�orn adopt a completely di�erent
approach from that of the dyadic deontic logics, and de�ne a deontic logic
where non-normal obligation operators are obtained as Boolean combina-
tions of normal modal operators, following a strategy that had already been
used in the �eld of action logic by Kanger and by P�orn.

Taking as its point of departure the observation that SDL fails in its
attempt to capture CTDs because | from the semantical point of view -
SDL considers only the ideal versions of each world, Jones and P�orn propose,
in addition to SDL's accessibility relation, a second accessibility relation
which picks out the sub-ideal versions of a given world (and they further
require that each world is either an ideal or a sub-ideal version of itself).

Then they introduce into the logical language two modal necessity oper-
ators,8Note that the notation employed here for the operators di�ers in most
cases from that used in [Jones and P�orn, 1985]. here denoted by�!i and

�!s . The �rst of these is just the obligation operator of SDL, so that an

6Some might call them prima facie obligations. However, we avoid using this term
here since its meaning in the literature seems to us to be far from clear. Furthermore,
[Prakken and Sergot, 1997] provide good reasons for supposing that the term is most at
home in the discussion of defeasibility, rather than CTDs.

7In [Jones, 1993] it is argued that a further problem of the (FD)-family is that they
reject the \principle of strengthening of the antecedent" (SA) whilst at the same time
accepting unrestricted factual detachment. The problem is that one of the reasons
for rejecting (SA) is that one wants to be able to represent conjunctions of the form

O (B=A) ^O (:B=A ^ C), without getting logical inconsistency or moral dilemma of

the form O B ^O :B, even in circumstances in which both A and C are true.
8`
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expression of the form�!i A is true at a given world w i� A is true at all of
the ideal versions of w. By contrast,�!s A is true at a given world w i� A is
true at all of the sub-ideal versions of w. (A sub-ideal version w1, of w, is
informally seen as a version of w in which at least one of the obligations in
force at w is violated.) The duals of�!i and�!s are, respectively,�!i and

�!s .

Finally they introduce both a deontic necessity operator�! , de�ned as
follows:

�! A=
df�!i A ^�!s A

and an actual-obligation operator Ought , de�ned by:

Ought A=
df�!i A ^�!s :A

(the second conjunct guarantees that ` :Ought >).

The Chisholm set is then represented in [Jones and P�orn, 1985] as follows:

(a) Ought help

(b) �! (help ! Ought tell)

(c) �! (:help ! Ought :tell)

(d) :help

The set, on this representation, is consistent and its members are logically
independent of each other. Lines (c) and (d) imply Ought :tell (note that

�! is a \success" operator, i.e. it satis�es the (T)-schema), and lines (a)
and (b) imply�!i Ought tell. Furthermore, the conjunction of (a) and (d)
may be taken as expressing the fact that the unconditional obligation to
help the neighbours has been violated; and, had it been the case that \(d')
help", rather than (d), were true, then from (b) one could have deduced the
actual obligation to tell, Ought tell. Apparently, all is well!

However, [Prakken and Sergot, 1994; Prakken and Sergot, 1996] point
out that the Jones and P�orn treatment of Chisholm, in common with a
number of others, generates what they call the \pragmatic oddity": line
(a), together with the derived actual obligation Ought :tell, require that,
in all ideal versions of the given world, the agent concerned goes to help his
neighbours but does not tell them he is coming | a result which appears
highly counterintuitive.

Prakken and Sergot correctly point out that, for a number of cases, a
reasonable temporal interpretation is available which enables the pragmatic
oddity to be avoided. For instance, perhaps the obligation expressed in
line (a) would ordinarily be understood as an obligation to go to help the
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neighbours no later than a particular time, t. Then, if line (d) were to be true
after time t, the accessible deontically ideal worlds would be characterised
in such a way that, after time t, these worlds would require that the agent
does not tell his neighbours he is coming (but they would not, of course,
also require that he goes to help, since it would then be too late).

However, as we indicated above, Prakken and Sergot also point out that
there are instances of the Chisholm set which may be interpreted in such
a way that the temporal dimension is completely absent ([Jones, 1993, pp.
153-4] makes a similar point). Example 2, above, is one such case: a very
ordinary way of understanding that set takes each sentence to be true at
one and the same moment of time, and | without any insertion of temporal
quali�cations concerning when there ought to be no dog, or when there ought
to be a warning sign | allows the conclusion to be drawn that there ought,
in the circumstances, to be a warning sign, without thereby generating the
pragmatic oddity, i.e., without forcing the further conclusion that, in all
ideal versions of the given situation, there is no dog but there is a sign
warning of one.

Unfortunately, Prakken and Sergot o�er little by way of explanation of
the pragmatic oddity: they say little about what it is that creates the
sense of oddity. In [Carmo and Jones, 1997] we suggest an explanation
which exploits a parallel between examples of type Example 2, which on
the [Jones and P�orn, 1985] analysis exhibit the pragmatic oddity simpliciter,
and examples like Example 3 above (also due to Prakken and Sergot) which,
by virtue of some assumed logical truth, are inconsistent when formalised in
the style of [Jones and P�orn, 1985] (according to which, in all ideal versions
of the given world, there is a white fence and no fence at all!). The suggested
parallel is as follows: as represented in the language of [Jones and P�orn,
1985], Example 2 exhibits the pragmatic oddity because an inconsistency
would be generated were one to add to the example the further constraint
that it ought not to be the case that there is both no dog and a sign warning
of one. The sense of oddity arises because there is an interpretation of
Example 2 according to which it remains consistent even if supplemented
with that further constraint; and the problem with the [Jones and P�orn,
1985] approach is that it fails to capture that interpretation.

Thus we add another requirement which an adequate representation of
CTDs should satisfy:

(viii) capacity to avoid the pragmatic oddity (interpreted according to the
previous diagnosis).

3.4 Two attempts to resolve the \pragmatic oddity"

In [Prakken and Sergot, 1994; Prakken and Sergot, 1996], Prakken and Ser-
got argue that the proper response to the problems raised by Example 2 |
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and in particular the problem of pragmatic oddity | is to assign distinct
logical forms to primary obligations, on the one hand, and CTD obligations,
on the other. For CTD obligations, they relativise an obligation operator to
a speci�c \context of violation"; more precisely, an expression of the form
OAB is intended to be read as \there is a secondary obligation that B given
that, or presupposing, the sub-ideal context A", or \given that A, which
is a violation of some primary obligation, there is a secondary, compromise
obligation that B" [Prakken and Sergot, 1996, section 5]. They emphasise
that expressions of the form OAB are not to be read as conditional pri-
mary obligations. \The expression OAB : : : represents a particular kind of
obligation. There is no meaningful sense . . . in which the obligation OB
can be detached from the expression OAB" [loc.cit.]. Their representation
of Example 2 takes the form:

(a) O :dog

(b) :dog ! O:sign

(c) dog ! Odog sign

(d) dog

We shall not pursue the Prakken and Sergot 94 treatment of CTDs here
(although we return to their work briey in Section 7). SuÆce it to say that
their approach (in [Prakken and Sergot, 1994; Prakken and Sergot, 1996])
rejects the fourth of our requirements for a satisfactory theory in this area.
For them, the choice of logical form for an apparently conditional deontic
sentence will itself be dependent on which other norms are contained in, or
derivable from, the set of norms being formalised.9

In [Carmo and Jones, 1995]10we attempted a di�erent kind of approach
to the problem of the pragmatic oddity, distinguishing between \ideal obli-
gations" (line (a) in Examples 1, 2 and 3, for instance) and \actual obliga-
tions", which indicate what is to be done given the (perhaps less-than-ideal)
circumstances. The operator Oa , for representing actual obligations, was
de�ned in the same way as the Ought -operator of [Jones and P�orn, 1985],
described above. As regards ideal obligations, the basic model-theoretic

9There are also some diÆculties in understanding how OAB should be interpreted,

particularly since Prakken and Sergot insist that A (in OA B) necessarily represents

a context of violation. For instance, the formula (PA ^OAB) ! O B is valid, on

their account (where P is the permission operator), but not trivially so. As we see it,
intuitively the conjunction in the antecedent of this conditional (given their reading of

OAB) could only be false, so it should imply anything. Furthermore, what can they

possibly mean by the claim that O B is an abbreviation of O>B? Are we to suppose
that it is obligatory that B only if the tautology represents a context of violation?

10We there adapt the logic proposed in [Carmo and Jones, 1994; Carmo and Jones,
1996] for the analysis of deontic integrity constraints.
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idea was to distinguish between ideal versions of a given world (the fun-
damental feature of SDL), and ideal worlds themselves. Accordingly, we
divided the set of possible worlds W into two mutually exclusive sub-sets,
the set of ideal worlds and the set of sub-ideal worlds; importantly for our
purposes, we allowed that a world w1 could be an ideal version of a given
(sub-ideal) world w without also itself being an ideal world. And we �xed
truth conditions for expressions of the form Oi B (\it ought ideally to be
the case that B") in terms of the truth of B in all ideal worlds and falsity
in some sub-ideal world.11

We represented Example 2 in the following way:

(a) Oi :dog

(b) �! (:dog ! Oa :sign)

(c) �! (dog ! Oa sign)

(d) dog

All the requirements (i){(viii) are met by this analysis. In particular, the
pragmatic oddity disappears because the conjunction Oi :dog ^Oa sign,
which is clearly derivable from (a){(d), does not imply that, in all ideal
versions of the given world, there is no dog but a sign warning of one. What
the conjunction does say, essentially, is that in all ideal worlds there is no
dog, but in all ideal versions of the given (clearly sub-ideal) world there is
a warning sign. The proposal worked well for this and a number of other
examples, and we have de�ned a complete axiomatization for the logic.

However, as we now see things, this approach su�ered from a defect
similar to the one we have criticised in relation to [Prakken and Sergot,
1994; Prakken and Sergot, 1996]: the assignment of logical form for some
of the norms in the set is dependent on the other norms in it. In [Prakken
and Sergot, 1994; Prakken and Sergot, 1996] this was reected in the use
of di�erent obligation operators for representing the deontic conditionals
expressed by lines (b) and (c); in [Carmo and Jones, 1995] it is reected in
the use of di�erent obligation operators for representing line (a) and lines (b)
and (c). So, in order to capture the general issue motivating the adoption
of adequacy requirement (iv), it should be reformulated as follows:

(iv) the assignment of logical form to each of the norms in the set should
be independent of the other norms in it.

11The second conjunct simply guarantees the violability of ideal obligations (i.e. j=

:Oi >). [Carmo and Jones, 1995] contains discussion of possible connections between
the notions of ideal/sub-ideal world and ideal/sub-ideal versions of a world, but we omit
those details here.
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A related observation is that problems appear within the [Carmo and Jones,
1995] approach if we add to the Chisholm set other norms that interact in
some signi�cant way with the norms in the original set. In particular, serious
diÆculties arise as soon as a \second-level" of CTDs is considered. Suppose,
for instance, that lines (e) and (f), below, are added to Example 2:

(e) If there is a dog and no warning sign, there ought to be a high fence.

(f) There is no warning sign.

The [Carmo and Jones, 1995] representation of this extended set is:

(a) Oi :dog

(b) �! (:dog ! Oa :sign)

(c) �! (dog ! Oa sign)

(d) dog

(e) �! (dog ^ :sign ! Oa fence)

(f) :sign

And the pragmatic oddity now re-appears, since the conjunction Oa sign
^ Oa fence is derivable. So, in all ideal versions of the given world, there
is a sign and a fence. (If this does not seem \odd", imagine that the sign
says \Beware of the unfenced dog": it may well be forbidden to have both
a sign of that kind and a fence. Thus the pragmatic oddity, in the sense of
our proposed diagnosis, re-emerges.)

The problem of \further levels" of CTDs would force the [Carmo and
Jones, 1995] approach to allow the possibility of an in�nity of obligation
operators: the need to associate (in some way or other) a context to each
obligation operator seems to re-appear.

4 CONTRARY-TO-DUTIES: A NEW APPROACH

On one very common interpretation of the set (a){(f) above, the actual
obligation which applies in the circumstances is the obligation to put up a
fence, and it applies because the other two obligations (not to have a dog,
and to put up a sign if there is a dog) have been violated. As we have
emphasised above, it would be incorrect to say that the obligations not to
have a dog, and to put up a sign if there is a dog, have been defeated,
or overturned; they have been violated, and any proper representation of
the situation must register the fact that, because of these violations, the
obligation which becomes actual is the obligation to erect a fence. But how
are these points to be articulated in a formal theory? To that question we
now turn.



DEONTIC LOGIC AND CONTRARY-TO-DUTIES 283

4.1 Motivation

Consider again Example 2, particularly lines (a), (c) and (d). The norms
governing, or in force in, the situation are that there ought to be no dog,
and that if there is a dog there ought to be a warning sign; and the relevant
fact is that there is a dog. So what is the actual obligation, of the agent
concerned, in these circumstances? To erect a warning sign? But why not
insist on getting rid of the dog, rather than on erecting a warning sign12?
We wish to suggest that the answer to such questions turns on the status
assigned to the fact that there is a dog | in the following sense: so long as
there is a dog, but this, for one reason or another, is not deemed to be a
�xed, unalterable feature of the situation, then the actual obligation which
applies is that there ought to be no dog. However, as soon as, for one reason
or another, the fact that there is a dog is deemed �xed, i.e., it is seen as a
necessary, unavoidable feature of the situation, so that | in consequence
| the practical possibility of satisfying the obligation that there ought to
be no dog has to all intents and purposes been eliminated, then the actual
obligation which applies is that there ought to be a warning sign.13

What do we mean when we say that for some reason or another a fact of
the situation | in this case that there is a dog | may be deemed a �xed,
necessary, unalterable feature of that situation? Well, there are various ways
in which this \�xity" might arise; those who proposed temporal solutions
to the problems associated with CTDs focussed on one of these ways. If
books shall be returned by date due, then if you still have the books after
the date due there is no way that obligation can be met. It is too late! It is
unalterably the case that the books are not returned by the date due, and
consequently the possibility of satisfying the obligation to return the books
by date due has been eliminated.

But temporal reasons, although very common, are not the only reasons
why things become �xed, in the sense of necessity or unalterability we here
seek to explicate; for instance, it is not for temporal reasons that the deed
of killing, once done, cannot be undone. What explains �xity in this case
is not temporal necessity, but rather causal necessity. Nor need temporal
considerations have any role to play in explaining why the presence of a dog
may be, to all intents and purposes, an unalterable feature of the situation;
it may, for some reason, be practically impossible in the situation to remove
the dog; perhaps, for instance, its owner stubbornly refuses to remove it,
and nobody else dares attempt the feat. The presence of the dog is a �xed
fact: the dog remains unless the intervention of some agent leads to its

12Remember that, in keeping with our analysis of the pragmatic oddity, we seek an
answer to these questions which is compatible with a further assumption to the e�ect
that there ought not to be both no dog and a warning sign.

13Some remarks in a similar spirit are to be found in [Hansson, 1971, section XIII: \on
the interpretation of circumstances"].
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removal, and no agent is prepared to perform the required action. From the
practical point of view | from the point of view of deciding which obligation
actually applies to the situation | the key feature is that the possibility of
satisfaction of the requirement that there be no dog is e�ectively eliminated.

As a further illustration, consider next the example of the \considerate
assassin".14

EXAMPLE 4.

(a) You should not kill Mr. X.

(b) -

(c) But if you kill Mr. X, you should o�er him a cigarette.

When does the assassin have an actual obligation to o�er Mr. X a cigarette?
After killing him? But then it is too late! One intuitively acceptable inter-
pretation is that the assassin's actual obligation to o�er Mr. X a cigarette
arises when he �rmly decides that he is going to kill Mr. X. It is then that
it becomes a settled or �xed fact that Mr. X will be killed, and then that
the assassin's actual obligation is to o�er a cigarette.

Notice that the examples indicate that two di�erent notions of necessity
| and their associated notions of possibility | need to be considered.
Mr. X, once killed, cannot be o�ered a cigarette because nobody has the
ability or the opportunity to make o�ers to the dead, just as nobody has
the ability or opportunity to return a book by date due if the date due has
passed. On the other hand, the dog-owner may have both the ability and
the opportunity to remove the dog, and the assassin may have both the
ability and the opportunity to refrain from killing Mr. X; but once each
has made a �rm and de�nite decision (to keep the dog and to kill Mr. X,
respectively), then to all intents and purposes the persistent presence of the
dog and the future performance of the assassination become �xed features
of the respective situations; so questions about which actual obligations
arise in these situations have to be answered in the light of the fact that
alternatives in which there is no dog, or no assassination, are not actually
available.

Now it may well be that the judge, at the assassin's trial, insists that the
assassin should never have decided to commit the murder, just as it may
be that the manager of the housing estate refuses to accept that the dog
owner was entitled to decide that he would keep his dog. Furthermore, it
is a well known feature of, for instance, disputes in legal cases, that the
parties to the dispute may disagree about what an agent was able to do, or

14This example can also be found in [Prakken and Sergot, 1996] (using \the witness"
instead of \Mr. X"). In fact [Prakken and Sergot, 1996] provides an excellent survey of
the principal examples of CTDs, and we use them in Section 5 to test the adequacy of
our proposal.
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what he had the opportunity to do. But the existence of disagreements of
these kinds is perfectly compatible with the approach to CTD scenarios we
develop below. For it will not be the task of our logical system to determine
the reasons which justify the classi�cation of some fact as settled. Rather,
what the system will do is this: �rst, it will specify the role of assumptions
about two types of �xity in reasoning about actual and ideal obligations;
and, second, it will show which actual/ideal obligations can be derived from
a given set of norms when some facts are taken to be �xed in the one sense
or the other.15

4.2 The new theory and its fundamental semantic features

We now present the basic features of a modal-logical language designed to
capture the approach to CTDs described above in a way that conforms to
the constraints, or requirements, (i){(viii). We shall then show how the new
language may be applied to the Chisholm set, and to the analysis of some
other problematic CTD \scenarios".

We adopt the following approach to the formal representation of these
scenarios: their deontic component (the obligation norms which they explic-
itly contain) will be represented throughout in terms of a dyadic, conditional
obligation operator O ( / ); their factual component will be represented by
means of either unmodalised sentences, or modalised sentences in two cat-
egories. These two categories correspond to the two notions of necessity
(and their associated dual notions of possibility) which we shall employ to
articulate the ideas regarding �xity, or unalterability, of facts alluded to in
the previous subsection.

From the deontic and factual components taken together, some further
obligation sentences may be derivable. The derived obligation sentences
are of two types, pertaining to actual obligations and ideal obligations, re-
spectively. There is an intimate conceptual connection between these two
notions of derived obligation, on the one hand, and the two notions of neces-
sity/possibility used in characterising the factual component, on the other.

Consider �rst the dyadic conditional obligation operator. How do we
wish to interpret a sentence of the kind \if there is a dog then there shall be
a warning sign"? On our view, this sentence is to be understood as saying
that in any context in which the presence of a dog is a �xed, unalterable
fact, it is obligatory to have a warning sign, if this is possible. We think of
a context as a set of worlds | the set of relevant worlds for the situation
at hand. So the above sentence is to be understood as saying that, for any
context in which there is a dog (i.e., for any context in which there is a dog
in each world of that context), if it is possible to have a warning sign then

15Our thanks to Layman Allen for raising a question at the Sesimbra �EON96 Work-
shop related to this point.
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it is obligatory to have a warning sign.16 In order to capture this idea we
introduce in our models a function ob:}(W ) ! }(}(W )) which picks out,
for each context, the propositions which represent that which is obligatory
in that context. That is, kBk 2 ob(X) (where kBk denotes the truth set of
B in the model in question) if and only if the proposition expressed by B
represents something obligatory in context X . Accordingly, we say that a
sentence O (B=A) is true in a model if and only if, in any context X where
A is true and B is possible (i.e. in any context having A true in each of its
worlds and B true in at least one of its worlds), it is obligatory that B.17

On the basis of this operator we could now derive the obligations that
were applicable in each context, assuming that our language contained a
means of representing contexts. The question is: what are the types of
contexts that we need to be able to talk about in our formal language, given
that we want to be able to derive sentences of two kinds, describing actual
obligations and ideal obligations, respectively? We answer this question in
terms of the two notions of necessity.

The �rst of these will be denoted by�! , and its dual possibility notion
denoted by�! . Intuitively,�! is intended to capture that which | in a

particular situation | is actually �xed, or unalterable, given (among other
factors) what the agents concerned have decided to do and not to do. In,
for instance, the \dog scenario" (Example 2), if the agents concerned have
�rmly decided that the dog is not going to be removed, then the sentence

�! dog is true of that situation (the presence of the dog is actually an
unalterable fact). On the other hand, if some actual possibility existed for
getting rid of the dog, then the situation would be appropriately described
by�! :dog (i.e. :�! dog). Which actual obligations arise in the dog scenario

will depend, in particular, on whether or not�! :dog is true.

We must emphasise one important di�erence between this notion of ne-
cessity/possibility and the second one we employ. For the reasons discussed
in the previous subsection, we do not exclude, a priori, that a sentence of
the form�! A might be true even though the agents concerned have the
ability and the opportunity to see to it that :A. That is, we shall want to
consider scenarios where, despite their abilities and opportunities for action,
the agents have �rmly resolved not to see to it that :A, and where | given
that this is what the agents have decided | there is (for all intents and
purposes) no way that A could be false.

16We are here using the term \obligatory" in a weak sense; in a strict sense, for a
sentence B to be obligatory in a context X we would also claim that there must exist
at least one world in X where B is false (i.e., we would insist, for the strict sense, that
obligations must be violable). However, our actual and ideal obligations, to be de�ned
next, will be considered in this strict sense.

17We also add the further requirement that the conjunction of A and B is not contra-
dictory, in order to avoid some \absurd" vacuous conditional obligations, and as one of

the conditions needed to secure the result that if O (B=A) is true then kBk 2 ob(kAk).
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In order to capture the semantics of the necessity operator�! , our se-
mantical models will contain a function, av, which picks out (for any given
world w) a set of worlds av(w) | the set of worlds which are the actual
versions of w (the open alternatives for the current world w), those which
constitute the context that it is actually relevant to take into account in
determining which obligations are actually in force, or actually apply, at w.
Accordingly, a sentence of the form�! A will be said to be true at a given
world w if and only if A is true at all of the worlds contained in av(w).

Given the way the function ob is understood, the set of propositions
ob(av(w)) will be the set of propositions which represent that which is oblig-
atory in the context av(w) (that is to say, in the context of the alternatives
that are actually open at w). In line with this, we shall say that a sentence
of the form Oa A (read as \it is actually obligatory that A", or \it actually
ought to be the case that A") is true at a world w only if the proposition
expressed by A is one of those propositions picked out by ob for the argu-
ment av(w). In addition, the truth of Oa A at w will require that there is
at least one world in av(w) where the sentence A is false; the reason for this
second requirement is that that which is actually obligatory might actually
fail to obtain.

The second of the two notions of necessity will be denoted by� , and
its dual possibility notion denoted by �. Intuitively, � is intended to

capture that which | in a particular situation | is not only actually �xed,
but would still be �xed even if di�erent decisions had been made, by the
agents concerned, regarding how they were going to behave. For instance,
certain features of the situation will be such that it is beyond the power of
the agents to change them | they may lack the ability, or the opportunity,
or both. Of such features it is appropriate to say that they are �xed in
the sense that they could not have been avoided by the agents concerned,
no matter what they had done. It is not even potentially possible for the
agents to alter them. In the original Chisholm scenario, for example, if the
bridge that leads to the man's neighbours' house has been destroyed by a
storm, and the man is unable to repair it, then clearly it is a necessary
feature of the situation, in this second sense of necessity, that he does not
help his neighbours. This is to be understood in contrast to the situation in
which it is potentially possible for the agent to go to his neighbours' house
to help them, but the agent has made a de�nite decision, from which he
will not budge, not to go. His will is �rm, and thus in all actual relevant
alternatives open to the agent he does not go to help them (and so actually
he ought not to tell them he is coming). But given that he has the ability
and opportunity to go, it is potentially possible | in the sense expressed by
the� operator | that he does so18, and so we want then be able to derive

18So the best short readings for these two pairs of operators we can o�er are the
following:
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that his ideal obligation was to go and to tell them he was coming.
To articulate the semantics of the second pair of notions of necessity and

possibility, we introduce into the models a function, pv, which picks out
(for any given world w) a set of worlds pv(w) | the set of worlds which
are the potential versions of w. These worlds will constitute the context it
is relevant to take into account in determining which ideal obligations hold
at w (\what should have been done"). A sentence of the form �A will
be said to be true at a given world w if and only if A is true at all of the
worlds contained in pv(w). Furthermore, given the way the function ob is
understood, the set of propositions ob(pv(w)) will be the set of propositions
which represent that which is obligatory in the context pv(w). Thus we shall
say that a sentence of the form Oi A (read as \it is ideally obligatory that
A", or \it ideally ought to be the case that A") is true at a world w only
if the proposition expressed by A is one of those propositions picked out by
ob for the argument pv(w). In addition, the truth of Oi A at w will require
that there is at least one world in pv(w) where the sentence A is false |
since that which is ideally obligatory might potentially fail to obtain.

Finally, we de�ne the notion of violation in terms of the notion of ideal
obligation, as follows:

viol(A)=
df
Oi A ^ :A

This choice is in accordance with the intuitive idea that ideal obligations
express what should have been done, and �ts in well with our treatment of
the pragmatic oddity and other features of CTD scenarios, as will become
clearer when we analyse a number of examples in some detail. Briey, the
main points may already be explained as follows: in, for instance, the dog
scenario, if it is a �xed fact that there is a dog (i.e., if�! dog is true), but
it is actually possible that a sign may be erected and potentially possible
that there is no dog, then we shall be able to derive that it is actually
obligatory that a sign is erected and ideally obligatory that there is no
dog. The pragmatic oddity will be avoided because it will not, in these
circumstances, be possible to derive an actual obligation that there be no
dog. Nevertheless, we still of course want to say that an obligation (that
there be no dog) has been violated, and this result is secured if violation is
characterised as above. As the formal analysis of this example will show,

�! A : it is actually possible that A

�A : it is potentially possible that A

�! A : it is not actually possible that :A

�A : it is not potentially possible that :A

(In a number of cases, the natural reading of statements about potential possibility will
be in the past tense.)
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we shall also be able to derive a second violation in this situation, if no sign
has been erected.

The semantic models described next will be subject to various constraints,
designed to achieve a particular pattern of relationships between the dyadic
obligation operator, the two types of necessity/possibility operators, and
the operators for actual and ideal obligations.

4.3 Syntax and semantics of the formal language

Syntax

Alphabet:

� a set of (natural language) terms (dog, fence, sign, . . . ) for atomic
sentences

� : , ^ , _ , ! , $ (sentential connectives)

� ( , ) (parentheses)

� �! (dual: �! =
df
:�! :)

� � (dual: � =
df
:�:)

� O (/) (dyadic deontic operator)

� Oa (monadic deontic operator - for actual obligation)

� Oi (monadic deontic operator - for ideal obligation)

Rules for construction of well-formed sentences: as usual

� viol(A)=
df
Oi A ^ :A

Semantics

Models:

M = hW;av; pv; ob; V i, where:

1) W 6= ;

2) V - a function assigning a truth set to each atomic sentence

3) av : W ! }(W )
(alternatively: Ra �W �W and av(w) = fw1 : wRaw1g)
such that:
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3-a) av(w) 6= ;

4) pv : W ! }(W )
(alternatively: Rp �W �W and pv(w) = fw1 : wRpw1g)
such that:

4-a) av(w) � pv(w)

4-b) w 2 pv(w)

5) ob : }(W ) ! }(}(W ))
such that (where X;Y; Z designate arbitrary sets of members of W ):

5-a) ; =2 ob(X)

5-b) if Y \X = Z \X , then (Y 2 ob(X) i� Z 2 ob(X))

5-c) if Y; Z 2 ob(X); then Y \ Z 2 ob(X)

5-d) if Y � X and Y 2 ob(X) and X � Z, then ((Z�X)[Y ) 2 ob(Z)

Truth in a world w in a model M = hW;av; pv; ob; V i is characterised as
follows (where kAk = kAkM = fw 2 W : M j=w Ag):

M j=w p i� w 2 V (p)

. . . (the usual truth conditions for the connectives :, ^, _, ! and $)

M j=w�! A i� av(w) � kAk

M j=w�A i� pv(w) � kAk

M j=w O (B=A)19 i�

kAk \ kBk 6= ; and

(8X)(if X � kAk and X \ kBk 6= ;, then kBk 2 ob(X))

M j=w Oa A i� kAk 2 ob(av(w)) and av(w) \ k:Ak 6= ;

(i.e. i� kAk 2 ob(av(w)) and av(w) \ (W � kAk) 6= ;)

M j=w Oi A i� kAk 2 ob(pv(w)) and pv(w) \ k:Ak 6= ;

19An alternative would be to de�ne the dyadic obligation operator in the strict sense

referred to in footnote 16, in which case M j=w O (B=A) i� kAk \ kBk 6= ; and kAk \
k:Bk 6= ; and (8X)(if X � kAk and X\kBk 6= ; and X\k:Bk 6= ;, then kBk 2 ob(X)).
In that case we would require that if Y 2 ob(X) then X \ (W � Y ) 6= ;; and the truth

in a world w of Oa A (respectively Oi A) would be de�ned as follows: M j=w Oa A i�

kAk 2 ob(av(w)) (resp. M j=w Oi A i� kAk 2 ob(pv(w))). With both approaches we

get exactly the same semantics for Oa A and Oi A.
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(Note that the de�nition of M j=w O (B=A) entails that if M j=w O (B=A),
then kBk 2 ob(kAk).)

A sentence A is said to be true in a model M = hW;av; pv; ob; V i, written
M j= A, i� kAkM = W ; and A is said to be valid, written j= A, i� M j= A
in all models M.

Some comments about the conditions:

i) As would be expected, the set av(w) is required to be a subset of
pv(w), for any w (condition 4-a)), so that actual possibility entails
potential possibility. Conditions 3-a) and 4-b) are also obvious.

In [Carmo and Jones, 1997]20 we required that w 2 av(w) (which
implies 3-a) and, together with 4-a), also implies 4-b)). Although in
most scenarios it makes sense to say that the actual world is always an
actual alternative to itself, we sometimes need to be able to describe
situations where A is not yet the case, but nevertheless in all relevant
future alternatives open to the agent, A is the case. Consider, for
instance, the scenario of the \considerate assassin" (Example 4): there
may be situations where, although the assassin has not yet killed Mr.
X, in all the relevant future alternatives open to the assassin Mr. X
is going to be killed by him (because the assassin has so decided); the
natural way to represent this situation in our logic is: :kill ^�! kill.
But of course this can only be expressed consistently if we do not
require that, for all w;w 2 av(w).

There exist other conditions that it may seem natural to impose on av
and pv, such as the transitivity of both the actual and potential rela-
tions. But, for simplicity, we consider here only those conditions which
appear to have a direct bearing on the analysis of the key examples
of CTD scenarios in Section 5.

ii) Condition 5-a) means that we do not accept that a contradiction might
be obligatory.

iii) Condition 5-b) means that if, from the point of view of a context X ,
two propositions Y and Z are indistinguishable, then one of them is
obligatory i� the other is (this corresponds to a kind of \contextual"
RE-rule).

It is also appropriate at this point to state some of the main conse-
quences of condition 5-b), and to attach numbered labels to them, in
order to facilitate later discussion of a possible weakening of 5-b).

20Where we use va, vp and pi, instead of the more suggestive names, av, pv and ob,
used in this chapter.
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Since Y \X = (Y \X) \X , we get as particular cases of 5-b):

5-b1) if Y 2 ob(X), then Y \X 2 ob(X)

5-b2) if Y \X 2 ob(X), then Y 2 ob(X)

On the other hand, using 5-a) and 5-b1) we get the condition (which
in turn implies 5-a)):

5-ab) if Y 2 ob(X), then Y \X 6= ;

iv) Condition 5-c) requires that the conjunction of two obligatory propo-
sitions within a context X is also obligatory in that context. A natural
extension of condition 5-c) would be to require the closure of ob under
arbitrary intersections (and not only under �nite intersections):

5-c+) if � � ob(X) and � 6= ;, then (
T
�) 2 ob(X)

(where � is any set of subsets of W , (
T
�) is de�ned as:

(
T
�) = fw(2 W ) : (8X 2 �)(w 2 X)g)

If we impose this stronger condition then we would get (
T
ob(X)) 2

ob(X), if ob(X) is non-empty; note also that, by 5-b1), if ob(X) 6= ;
then (

T
ob(X)) � X ; if ob(X) = ; then, by de�nition, (

T
ob(X)) =

W . However, for reasons to be explained, what we shall in fact propose
later is a weakening of condition 5-c.

v) Condition 5-d) states that if a subset Y of X is an obligatory propo-
sition in a context X , then in a bigger context Z it is obligatory to be
either in Y or else in that part of Z which is not in X .

Taking into account condition 5-b), it may be shown that each of the
following conditions is equivalent to 5-d) - they can sometimes be used
to simplify proofs:

5-bd1) if Y � X and Y 2 ob(X) and X � Z, then ((W �X)[ Y ) 2
ob(Z)

5-bd2) if Y 2 ob(X) and X � Z, then ((Z �X) [ Y ) 2 ob(Z)

5-bd3) if Y 2 ob(X) and X � Z, then ((W �X) [ Y ) 2 ob(Z)

5-bd4) if Y 2 ob(X) and X � Z, then ((W �X)[ (X \Y )) 2 ob(Z)

Using conditions 5-b), 5-c) and 5-d), we can also prove that

if Z 2 ob(X) and Z 2 ob(Y ), then Z 2 ob(X [ Y ).

4.4 Syntactic/axiomatic characterisation of the modal
operators

In what follows we introduce the axioms and rules for the various modal
operators. For some of the axioms and theorems we introduce special labels
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| if there is no standard label | in order to facilitate reference to them
later on.

Characterisation of� :

1. � is a normal modal operator of type KT.

Characterisation of�! :

2. �! is a normal modal operator of type KD.

Relationship between� and�! :

3. �A!�! A (axiom schema (� !�! ))

Characterisation of O :

4. :O (?=A) (the schema :N for O : (O �:N))

5. O (B=A) ^O (C=A) ! O (B ^ C=A)

(the schema C for O : (O � C))

6. Restricted principle of strengthening of the antecedent - 1:

O (B=A) ! O (B=A ^ B) (SA1)

7. the RE-rule with respect to (w.r.t.) the antecedent:

if ` (A$ B) then ` O (C=A) $ O (C=B)

8. the \contextual RE-rule" w.r.t. the consequent:

if ` C ! (A$ B) then ` O (A=C) $ O (B=C)

Relationship between O and� :

9. �O (B=A) !�O (B=A) (�O !�O )

10. Restricted principle of strengthening of the antecedent - 2:

�(A ^ B ^ C) ^O (C=B) ! O (C=A ^ B) (SA2)

Characterisation of Oa / Oi :

11. Oa A ^Oa B ! Oa (A ^B) (Oa � C)

Oi A ^Oi B ! Oi (A ^B) (Oi � C)

Relationships between Oa (respectively: Oi ) and�! (resp.: � ):
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12. �! A! (:Oa A ^ :Oa :A) (:Oa )

�A! (:Oi A ^ :Oi :A) (:Oi )

13. �! (A$ B) ! (Oa A$ Oa B) ($ Oa )

� (A$ B) ! (Oi A$ Oi B) ($ Oi )

Relationships between O ;Oa (resp.: Oi ) and�! (resp.: � ):

14. Restricted factual detachment:

O (B=A) ^�! A ^�!B ^�! :B ! Oa B (Oa � FD)

O (B=A) ^�A ^�B ^�:B ! Oi B (Oi � FD)

15. O (B=A)^�! (A^B)^�! (A^:B) ! Oa (A! B) (O ! Oa !)

O (B=A)^�(A^B)^�(A^:B) ! Oi (A! B) (O ! Oi !)

Notes:

i) Simply using Propositional Calculus, we can deduce from 3. (�!�! )
the following useful theorem:

`�!A!�A (�! !�)

ii) From the contextual RE-rule (8.) it follows that if ` A $ B then
` O (A=C) $ O (B=C); thus O is classical w.r.t. to both of its
arguments.

iii) Some comments are in order regarding axiom 9. It reects the fact
that norms which comprise the deontic component of a CTD scenario
are themselves taken to be �xed, in the sense that they are features
of the scenario which the agents concerned have neither the ability
nor the opportunity to change. We maintain that this is a reasonable
assumption to make, given that our concern is not with the dynamics
of normative systems, but with the determination of which ideal and
actual obligations may be derived from a �xed set of norms, given the
facts of the case.

But it might be asked whether our analysis of the given norms (i.e.,
of the dyadic deontic conditionals) is compatible with the obvious fact
that norms are man-made and may be subject to change. Our answer
is that there is no incompatibility here: were we to switch our interest
from normative statics to normative dynamics, one natural move |
from the semantic point of view | would be to treat the models of
our current semantics as the worlds of a semantical framework for the
investigation of normative dynamics.
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iv) Axiom 10. embodies only a weak restriction on strengthening of the
antecedent and it is clear that our dyadic deontic conditionals are not
\exception-allowing" default conditionals. Any attempt to re-de�ne
them as default conditionals | and thus to eliminate 10. from the
class of theorems | would have to be acompanied by elimination of the
factual detachment principles expressed in 14. (cf. footnote 7, above).
The factual detachment principles would then need to be replaced
by a theory of default reasoning, de�ning the conditions under which
sentences about actual and ideal obligations could be drawn as default
conclusions from any given deontic and factual scenario. In our view,
changes of this kind in the underlying logic of deontic conditionals
would have no direct bearing on how the CTD problems themselves
are to be handled.

v) The counterpart to axiom 12. (�rst part) also held in the system DL
of [Jones and P�orn, 1985], where their modality Ought represented
actual obligation. The point captured by this axiom is as follows:
if it is not actually possible that A is false, then A is not actually
obligatory (for if it is guaranteed that A is true, any such obligation
has been discharged); in addition, :A is not actually obligatory (for
that which it is not actually possible to realise cannot be actually
obligatory). However, the fact that it is not actually possible that :A
does not rule out the possibility that, ideally, it ought not to be the
case that A.

vi) Using the axiom schemas ($Oa ) and ($Oi ), we can prove the RE-
rules:

if ` (A$ B) then `Oa A$ Oa B

and

if ` (A$ B) then `Oi A$ Oi B

Thus both Oa and Oi are classical operators.

vii) Using the schemas (:Oa ) and (:Oi ), we can deduce the following
theorems:

` :Oa > (Oa �:N) ` :Oi > (Oi �:N)

` :Oa ? (Oa �OD) ` :Oi ? (Oi �OD)

And any classical operator with (OD) and (C) also has the schema
(D) as a theorem; a revision of the logic which avoids (D) will be
discussed in Section 6.

It is important that neither Oa nor Oi validates the schema (M) |
the converse of (C) | otherwise we would get the (RM)-rule, to be
discussed further in Section 6.1.
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viii) We write just (FD), intead of (Oa � FD) or (Oi � FD), whenever
it is clear from the context to which of the two obligation operators
we are referring.

RESULT 1.
The previous axiomatisation is sound.21

Hint to the proof:

1.-4. Besides the relevant truth conditions, simply use (respectively)
the condition: 4-b), 3-a), 4-a), and 5-a) (for this last case recall
that M j=w O (B=A) implies kBk 2 ob(kAk)).

5. Use 5-c) and 5-ab) (plus the relevant truth condition); condition
5-ab) is needed only to prove that kA ^ B ^ Ck 6= ;.

6. Trivial (simply use the relevant truth condition).

7.-8. It is trivial to prove that these rules preserve truth in a model
(and so also preserve validity, as desired). For the contextual
RE-rule use condition 5-b).

9.-10. Simply use the relevant truth condition.

(w.r.t. 10., note that M j=w �(A^B^C) implies kA^B^Ck 6=

;.)

11.-13. Besides the relevant truth conditions, use (respectively): 5-c),
5-ab), and 5-b).

14. Simply use the relevant truth conditions.

15. Using conditions 5-b) and 5-d), prove that if M j=w O (B=A)
and Z \ kAk \ kBk 6= ;, then ((W � kAk) [ kBk) 2 ob(Z); and
then apply that result with Z = av(w) (resp. pv(w)).

End-proof

The next result provides a list of some other useful theorems and rules
concerning the obligation operators.

RESULT 2.

i) ` O (B=A) $ O (A ^ B=A)

ii) ` :O (A=?) ` :O (:A=A)

iiii) `�:O (B=A) !�:O (B=A) (�:O !�:O )

iv) `�(A ^ B) ^O (A! B=>) ! O (B=A)

v) if ` A! B then `�(A ^ C) ^O (C=B) ! O (C=A)

21Some completeness results are also available, but are not reproduced in this chapter.
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vi) `�! A! (Oa B ! Oa (A ^ B)) (Oa ! Oa ^)

`�A! (Oi B ! Oi (A ^ B)) (Oi ! Oi ^)

vii) Restricted deontic detachment:22

` Oa A ^O (B=A) ^�! (A ^B) ! Oa (A ^ B) (Oa �DD)

` Oi A ^O (B=A) ^�(A ^ B) ! Oi (A ^B) (Oi �DD)

Hint to the proof:

i) From the contextual RE-rule, since ` A! (B $ A ^B).

ii) From the contextual RE-rule and (O � :N) (since ` ? ! (? $ A)
and ` A! (? $ :A)).

iiii) From (�O !�O ).

iv) Since ` �(A ^ B) ! �(A ^ > ^ (A ! B)), using (SA2) we get

`�(A ^ B) ^O (A ! B=>) ! O (A ! B=A ^ >), and the desired

theorem follows by using the RE-rule (w.r.t. the antecedent) and the
contextual RE-rule (since ` A! ((A! B) $ B)).

v) If ` A! B then `�(A^C) !�(A^B^C); by (SA2), `�(A^C)

^O (C=B) ! O (C=A^B); the theorem follows by the RE-rule w.r.t.
the antecedent (since ` A! B implies ` A ^ B $ A).

vi) From ($ Oa ), since `�! A !�! (B $ A ^ B). (Analogously for
Oi .)

vii) Using axioms (O ! Oa !) and (Oa � C), we deduce ` �! (A ^

:B) ! (Oa A ^ O (B=A) ^�! (A ^ B) ! Oa (A ^ B)); by axiom

($ Oa ), we deduce ` :�! (A ^ :B) ! (Oa A ! Oa (A ^ B)) (since

` :�! (A^:B) !�! (A$ A^B)); thus ` Oa A^O (B=A)^�! (A^

B) ! Oa (A ^B). (Analogously for Oi .)

End-proof

As can be seen in the next section, the theorems that play the dominant

22We note, however, that we cannot detach Oa B(Oi B) from the antecedent of these
theorems. In fact, even the \weaker" formulas below are not valid:

Oa A ^O (B=A) ^�! (A ^ B) ^�! (A ^ :B) !Oa B

Oi A ^O (B=A) ^�(A ^B) ^�(A ^ :B) !Oi B.

Although it may seem, at �rst sight, that the failure of these implications represents a
weakness of the logic, the analysis of some examples, to follow, indicates that it is | on
the contrary | an advantage.
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role in determining what may, or may not, be derived from a chosen repre-
sentation of a CTD scenario are:

� the factual detachment axioms (FD);

� axioms (O ! Oa !) and (O ! Oi !);

� the deontic detachment theorems (DD);

� axioms (:Oa ) and (:Oi );

� axioms ($ Oa ) and ($ Oi );

� and the theorems (Oa ! Oa ^) and (Oi ! Oi ^).

Besides these theorems, we will also make extensive use of the T -normality
of� ; the D-normality of�! ; axiom (� !�! ) and theorem (�! !�).

5 THE ANALYSIS OF SOME CTD SCENARIOS

We shall focus on six scenarios which exhibit CTD structures: Scenario 1 is
the Chisholm set | Example 1 above; Scenario 2 is the extended version of
Example 2 | \the dog scenario" involving \contrary-to-contrary-to-duties";
Scenario 3 is \the white fence" - Example 3 above; Scenario 4 is \the gentle
murderer"; Scenario 5 is \the considerate assassin" | Example 4 above;
Scenario 6 is the so-called \Reykjavic scenario"23.

The scenarios illustrate the range of problems which a theory of CTD
should be able to handle; and they enable us to exhibit the expressive and
deductive capabilities of our logical system.

23This is also discussed in [Belzer, 1987] and [McCarty, 1994], and is one of the many
examples considered in [Prakken and Sergot, 1994; Prakken and Sergot, 1996].
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SCENARIO 1. The Chisholm Set

The deontic component

(d1) It ought to be that a certain man go to help his neighbours

(d2) It ought to be that if he goes he tell them he is coming

(d3) If he does not go, he ought not to tell them he is coming

Logical representation

(d1) O (help />)

(d2) O (tell / help)

(d3) O (: tell /: help)

Assumptions regarding the representation of the facts

In this example we assume the following obvious hypotheses regarding
the representation of the facts:

(a) help !�! help (thus, by (�! �D),�! :help ! :help)

(b) tell !�! tell (analogously,�! :tell ! :tell)

Moreover, we also assume that

(c) (help ^ :tell)!�! :tell (but not :tell !�! :tell)

since when the agent concerned has helped his neighbours but did not
tell them he was coming, it makes no sense to consider any actual
alternative where he tells them he is coming. On the other hand,
although in some of the cases it might be reasonable to accept both
:help !�! :help and :tell !�! :tell, we shall not adopt either of

these assumptions. (Nevertheless, by (� � T ), we have, for any
sentence A, ` A!�A:)

CASE 1.1.

Factual component

(f1) X (the agent concerned) decides not to go to help his neighbour
(and, of course, he has not yet gone to help them).
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(f2) But it is potentially possible for X to help and to tell and poten-
tially possible for X to help and not to tell.

(f3) X has not in fact told that he is coming, although it is still
actually possible that he does tell and actually possible that he
does not tell.

Logical representation

(f1) �! :help

(f2) �(help ^ tell) ^�(help ^ :tell)

(f3) :tell ^�! tell ^�! :tell

(Note that, without assumption (a), we would represent (f1) as :help
^�! :help, since we have not adopted the T -schema for�! .)

Conclusions

In virtue of the factual detachment axioms (FD), we may derive the
following:

� viol(help) ^ Oa :tell

that is to say, X violates his obligation to help his neighbours, and
is actually (given the circumstances) under an obligation not to tell
them he is coming. It is also possible to derive the conclusion that
X violates his obligation to \help and tell", since it is also possible
to deduce, in virtue of the deontic detachment theorem (DD), that
Oi (help ^ tell). We remark here (cf. footnote 22 regarding Result
2-vii)) that it is not also possible to conclude that X has violated an
obligation to tell simpliciter, since that particular obligation would
not come into e�ect until X's helping was a �xed fact. This result
seems to accord well with intuition.

Note also that the pragmatic oddity, as we have diagnosed it,
is avoided, for we could consistently add to the deontic component
above an obligation to the e�ect that X ought not both go to help and
not say that he is coming, i.e., an obligation of the form O (:help _
tell / >).

CASE 1.2.

Factual component

(f1) X has helped his neighbours and told them he was coming.

(f2) But it was potentially possible that X did not help his neighbours.
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Logical representation

(f1) help ^ tell

(by assumptions (a) and (b), this implies�! (help ^ tell))

(f2) �:help

Conclusions

We may derive the following (using (FD) and (DD)):

� Oi help ^ Oi (help^tell) ^ help ^ tell

So, X has met his ideal obligations, and no actual obligation arises (as
can be seen by taking into account (:Oa )).

CASE 1.3.

Factual component

(f1) X has helped his neighbours and he did not tell them he was
coming.

(f2) It was potentially possible that he both helped and told, as well
as that he did not help them.

Logical representation

(f1) help ^ :tell

(by assumptions (a) and (c), this implies�! (help ^ :tell))

(f2) �(help ^ tell) ^�:help

Conclusions

We may derive the following (using (FD) and (DD)):

� Oi help ^ help ^ viol(help ^ tell)

So, X meets his ideal obligation to help, but violates his obligation to
help and tell; and no actual obligations are derivable.

CASE 1.4.

Factual component

(f1) X has helped his neighbours, although it was potentially possible
that he did not help them.

(f2) X did not tell his neighbours he was coming, since that was poten-
tially impossible for X to do (imagine that there were no available
means of communication).
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Logical representation

(f1) help ^�:help (recall that, by (a), help !�! help)

(f2) �:tell

Conclusions

We may derive the following (using (FD)):

� Oi help ^ help

So, X has not violated any obligation: the obligation sentence Oi (help
^ tell) cannot be derived, because it would be impossible to satisfy
such an obligation; furthermore, X has met his ideal obligation to
help. No actual obligations are derivable.

CASE 1.5.

Factual component

(f1) It is not potentially possible for X to help his neighbours (for
some reason or other | perhaps, for instance, there are no avail-
able means for X to travel to his neighbours' house); however,
X tells his neighbours he is coming, but he might not have told
them so.

Logical representation

(f1) �:help ^ tell ^�:tell

Conclusions

We may derive the following (again using (FD)):

� viol(:tell)

SCENARIO 2. The dog example { extended with a second-level CTD
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The deontic component

(d1) There ought to be no dog

(d2) If there is no dog, there ought not to be a warning sign

(d3) If there is a dog, there ought to be a warning sign

(d4) If there is a dog and no warning sign, there ought to be a
high fence

Logical representation

(d1) O (:dog / >)

(d2) O (:sign / :dog)

(d3) O (sign / dog)

(d4) O (fence / dog ^ :sign)

Assumptions regarding the representation of the facts

We here adopt no speci�c hypotheses regarding the representation of
the facts.

CASE 2.1.

Factual component

(f1) There is a dog, and it is actually possible to keep it or to get
rid of it (and there is no information regarding the possibility of
having, or not, a sign or a fence).

Logical representation

(f1) dog ^�! dog ^�! :dog

Conclusions

We may derive the following regarding violation and actual obligation:

� viol(:dog) ^ Oa :dog

So, there is a violation of the obligation not to have a dog, and there
is an actual obligation to get rid of it.
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CASE 2.2.

Factual component

(f1) There is a dog and it is not actually possible that there is not
a dog (i.e., the presence of the dog is actually �xed), but it was
potentially possible that there was no dog.

Logical representation

(f1) dog ^�! dog ^�:dog

Conclusions

We may derive the following regarding violation and actual obligation:

� viol(:dog)

There is a violation of the prohibition against having a dog, and no
actual obligations may be derived - although it is possible to derive

�! sign ^�! :sign ! Oa sign

CASE 2.3.

Factual component

(f1) There is a dog and that fact is actually �xed (i.e., it is not actually
possible that there is not a dog), but there might potentially have
been no dog.

(f2) There is no sign and it is not actually possible that there is a
sign, but there might potentially have been both a dog and a
sign.

(f3) There is not a fence, and both the presence and the absence of a
fence are actual possibilities.

Logical representation

(f1) dog ^�! dog ^�:dog

(f2) :sign ^�! :sign ^�(dog ^ sign)

(f3) :fence ^�! :fence ^�! fence

Conclusions

We may derive, in particular, the following violations and actual obli-
gation:

� viol(:dog) ^ viol(dog!sign) ^ viol(dog^:sign!fence) ^Oa fence

The ideal obligation that there be no dog is obtained by applying
(FD). By application of the axiom schema (O!Oi !), we derive
that:

(i) it is ideally obligatory that if there is a dog then there is a sign



DEONTIC LOGIC AND CONTRARY-TO-DUTIES 305

(note that, from (f1) and (f2) we get dog^:sign, and so�(dog^

:sign); the application of (O!Oi !) is then trivial, taking into
account (d3) and (f2));

and

(ii) it is ideally obligatory that if there is a dog and no sign then there
is a fence

(for instance, from (f1), (f2) and (f3), plus the normality of�! ,
deduce�! (dog^:sign^fence) and�! (dog^:sign^:fence), which

imply (by (�!!�))�(dog ^:sign^fence) and�(dog^:sign^

:fence), and then use (O!Oi !) and (d4)).

Axiom (FD) enables us to derive that, given the circumstances, the
actual obligation is to put up a fence.

SCENARIO 3.The white fence case - Example 3

The deontic component

(d1) There must be no fence

(d2) But, if there is a fence it must be white

Logical representation

(d1) O (:fence / >)

(d2) O (white-fence / fence)

Assumptions regarding the representation of the facts

� (white-fence ! fence)

CASE 3.1.

Factual component

(f1) There is no fence, and it is still actually possible not to erect a
fence and actually possible to erect a fence, white or not.

Logical representation

(f1) :fence ^�! :fence ^�! white-fence ^�! (fence ^ :white-fence)

(Note that, by the assumption made, from�!white-fence we can derive

�! (fence ^ white-fence).)
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Conclusions

We may derive the following regarding ideal/actual obligations:

� Oi :fence ^ Oi (fence ! white-fence) ^ :fence ^

Oa :fence ^ Oa (fence ! white-fence)

There is an ideal obligation not to have a fence and an ideal obligation
that if there is a fence then it must be white; neither of these ideal
obligations has been violated; and both persist as actual obligations.

CASE 3.2

Factual component

(f1) There is a white fence, and it is actually �xed that there will be
a fence, possibly white or of another colour.

(f2) But it was potentially possible not to have a fence.

Logical representation

(f1) white-fence ^�! fence ^ �! white-fence ^ �! (fence ^ :white-

fence)

(f2) �:fence

Conclusions

We may derive, in particular, the following violation, and ideal and
actual obligations:

� viol(:fence) ^ Oi (fence!white-fence) ^

Oa (fence!white-fence) ^ Oa white- fence

The ideal obligation not to have a fence has been violated and does
not persist as an actual obligation, since it can no longer actually be
ful�lled; the obligation to the e�ect that if there is a fence then it must
be white has not been violated, and it persists as an actual obligation.
We may also derive the actual obligation to have a white fence.
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SCENARIO 4. The gentle murderer

The deontic component

(d1) You should not kill Mr. X

(d2) But, if you kill Mr. X, you should do it gently

Logical representation

(d1) O (:kill / >)

(d2) O (kill-gently / kill)

Assumptions regarding the representation of the facts

We make the following assumptions:

(a) � (kill-gently ! kill)

(thus: (kill-gently ! kill) and�! (kill-gently ! kill))

(b) kill !�! kill

(c) kill-gently !�! kill-gently

(d) kill ^ :kill-gently !�! :kill-gently

In the cases discussed below, assumptions (b), (c) and (d) are relevant
only in regard to determining that no actual obligations arise. Note
that the di�erence between Scenarios 4 and 3 is that the counterparts
to assumptions (b), (c) and (d) cannot be adopted for Scenario 3.

CASE 4.1

Factual component

(f1) The assassin has killed Mr. X, but gently.

(f2) It was potentially possible for the assassin not to kill and poten-
tially possible that he killed \non-gently".

Logical representation

(f1) kill-gently

(f2) �:kill ^�(kill ^ :kill-gently)

(Note that ` kill-gently !�kill-gently.)
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Conclusions

We may derive the following (using (FD) and (O!Oi !)):

� viol(:kill) ^ Oi (kill ! kill- gently) ^ kill-gently

The assassin has violated his obligation not to kill and has ful�lled his
obligation to kill Mr. X gently if he was going to kill him; no actual
obligation arises; (using, for instance, (f1), (a) and (b) we can derive

�! kill: so, it is actually impossible to ful�l the obligation not to kill
Mr. X; also we cannot derive an actual obligation to kill gently, since
that cannot actually be violated, taking into account (c)).

CASE 4.2.

Factual component

(f1) The assassin has killed Mr. X and not gently.

(f2) It was potentially possible for the assassin not to kill and poten-
tially possible for him to kill gently.

Logical representation

(f1) kill ^ :kill-gently

(f2) �:kill ^�kill-gently

Conclusions

We may derive the following:

� viol(:kill) ^ viol(kill ! kill- gently)

The assassin has violated both his obligation not to kill and his obli-
gation to kill gently if he does kill; no actual obligation arises; (use
(f1), (b) and (d)).

CASE 4.3.

Factual component

(f1) It has been proved (in court) that the \assassin" has killed Mr.
X, but gently (and this is admitted by the \assassin").

(f2) The \assassin" argues in court that he had no other choice, i.e.
that it was potentially impossible for him not to kill Mr. X,
because a real assassin had told him that he would kill his son if
he (the \assassin") did not kill Mr. X. The prosecution argues
that it was potentially possible for the \assassin" not to kill Mr.
X (for instance because he could ask the police for protection for
his son).
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Logical representation of the facts according to the point of view of the
defence

(f1) kill-gently

(f2) �kill ^�:kill-gently

Conclusions

Since it was impossible not to kill Mr. X the ideal obligation not to
kill cannot be derived; using (FD) we can derive the ideal obligation
to kill gently, and this obligation was ful�lled.

Logical representation of the facts according to the point of view of the
prosecution

(f1) kill-gently

(f2) �:kill ^�(kill ^ :kill-gently)

Conclusions

As in case 4.1, we can derive viol(:kill). So, the prosecution argues:
the \assassin" should be considered guilty.

Conclusions

Of course it may well be suggested that the tactic of the defence here
is most unwise. Perhaps they should �rst accept the prosecution's
claim that it was potentially possible for the \assassin" to refrain from
killing, and thus that the \assassin" was ideally obliged not to kill;
but then the defence should point out that obviously the \assassin"
acted under duress, because of the threat to his son, and thus that the
option of not killing was not one which the \assassin" could reasonably
be expected to choose.

Again we note here that the logic does not determine the status of the
facts; but its language is capable of representing the opposing views
concerning their status - in this case, concerning what is taken to be
potentially possible. The logic's task is to show which conclusions
regarding obligations and violations follow from a given set of norms,
once a particular proposal has been made as to the status of the facts.
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SCENARIO 5. The considerate assassin

The deontic component

(d1) You should not kill Mr. X

(d2) But, if if you kill Mr. X, you should o�er him a cigarette

Logical representation

(d1) O (:kill / >)

(d2) O (o�er / kill)

Assumptions regarding the representation of the facts

(a) kill !�! kill

(b) o�er !�! o�er

(c) kill ^ :o�er !�! :o�er

CASE 5.1.

Factual component

(f1) The assassin has not yet killed Mr. X and has not o�ered him a
cigarette.

(f2) It is still actually possible for the assassin to kill Mr. X and to
o�er him a cigarette or to kill and not o�er a cigarette or not to
kill and o�er him a cigarette or not to kill and not o�er him a
cigarette.

Logical representation

(f1) :kill ^ :o�er

(f2) �! (kill ^ o�er) ^�! (kill ^ :o�er) ^�! (:kill ^ o�er) ^

�! (:kill ^ :o�er)

Conclusions

We may derive the following (using (FD), (O!Oa !), and (O!
Oi !)):

� Oi :kill ^ Oi (kill ! o�er) ^ :kill ^ :o�er ^

Oa :kill ^ Oa (kill ! o�er)

The assassin has not violated his ideal obligations not to kill Mr. X
and to o�er Mr. X a cigarette if he was going to kill him, and these
obligations persist as actual obligations.
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CASE 5.2

Factual component

(f1) The assassin has not yet killed Mr. X but he has �rmly decided
to kill him.

(f2) It is actually possible for the assassin to o�er or not a cigarette.

Logical representation

(f1) :kill ^�! kill

(f2) �! o�er ^�! :o�er

Conclusions

We may derive, in particular:

� Oi :kill ^ Oa (kill ^ o�er) ^ Oa o�er

Given that it is actually a �xed fact that the assassin is going to
kill Mr. X, his actual obligation is to o�er Mr. X a cigarette. Of
course, his ideal obligation is not to kill. Note that from Oa o�er
(by (O!Oa !)) we can derive Oa (kill!o�er); and the obligation
Oa (kill ^ o�er) can then be obtained by (f1) and (Oa !Oa ^). We
shall comment on this conclusion in Section 6, below, but note at this
point that Oa kill is not derivable.

SCENARIO 6. The Reykjavik scenario

The deontic component
Consider the following instructions given to oÆcials accompanying
Reagan and Gorbachov at the Reykjavik meeting:

(d1) The secret shall be told neither to Reagan nor to Gorbachov

(d2) But if the secret is told to Reagan it shall also be told to
Gorbachov

(d3) And if the secret is told to Gorbachov it shall also be told to
Reagan

Logical representation
Suppose that `r' represents `Reagan knows the secret' and that `g'
represents `Gorbachov knows the secret'

(d1) O (:r ^ :g=>)

(d2) O (g=r)

(d3) O (r=g)
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Comments on the logical representation of the deontic component

(a) Sentence (d1) ought to be represented in the form indicated and not
as O (:r=>) ^O (:g=>). The reason is that there is no \absolute"
obligation according to which, e.g., Reagan is not to know the se-
cret (in just any context in which that would be possible); what is
\absolutely" obligatory is that neither of them knows the secret. In
fact, if the above alternative formulation of (d1) were to be employed,
then in the situation where, for instance, the secret has been told to
Gorbachov but not to Reagan, it would be possible to derive con-
icting actual obligations, and that derivation would be intuitively
correct. It is a merit of the logic proposed that it would detect such
a conict. (A similar point is made in [Prakken and Sergot, 1994;
Prakken and Sergot, 1996] in their discussion of this scenario.)

(b) A possible alternative representation of (d2)+(d3) would be (d2+3):
O (g ^ r=g _ r). (Although it would then be possible to generate the
same conclusions as from (d2)+(d3), di�erent patterns of derivation
would be involved.)

Assumptions regarding the representation of the facts

We make the following assumptions:

(a) r !�! r

(b) g !�! g

(c) �! (r ^ g) (which gives: �! r and�! g, as well as�(r ^ g))

(d) :r !�! :r

(e) :g !�! :g

CASE 6.1.

Factual component

(f1) The secret has not yet been told to either of them

Logical representation

(f1) :r ^ :g

Conclusions

� Oi (:r ^ :g) ^ :r ^ :g ^Oa (:r ^ :g)

The obligation to tell the secret to neither of them has not been vi-
olated, and persists as an actual obligation. Application of (FD) is
instrumental in the derivation of these conclusions.
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CASE 6.2

Factual component

(f1) Reagan knows the secret but Gorbachov does not

(f2) But it was potentially possible that neither of them knew

Logical representation

(f1) r ^ :g

(f2) �(:r ^ :g)

Conclusions

� viol(:r ^ :g) ^Oa g (it suÆces to use (FD))

We may also derive Oa (r^g), by direct application of (Oa ! Oa ^),
on the basis of the prior derivation of Oa g. On the other hand, if we
employ (d2+3) instead of (d2) and (d3), we get Oa (r ^ g) by direct
application of (FD), and then on the basis of that result we can use
($ Oa ) to obtain Oa g.

CASE 6.3

Factual component

(f1) The secret has been told at the same time to Reagan and Gor-
bachov

Logical representation

(f1) r ^ g ^�(:r ^ :g)

Conclusions

� viol(:r ^ :g)

There is violation of the obligation to tell neither of them, and no
actual obligations are now derivable.

CASE 6.4

Factual component

(f1) One, and only one, of Reagan and Gorbachev has been told the
secret

(f2) It might potentially have been the case that neither of them was
told
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Logical representation

(f1) (r _ g) ^ :(r ^ g)

(f2) �(:r ^ :g)

Conclusions

� viol(:r^:g) ^ Oa (r^g)

Note that the derivation of Oa (r ^ g) requires the use of (FD), and
then the application of (Oa ! Oa ^); the derivation could be made
directly by application of (FD) if (d2+3) were used to represent the
second and third lines of the deontic component.

6 EVALUATING THE PROPOSED APPROACH

6.1 Closure under implication

Our ideal/actual obligation operators are not closed under the (RM)-rule.
Since we have (:N) (for both Oi and Oa ), and since the operators are
classical, closure under the (RM)-rule would yield the result that any ideal
or actual obligation implies a contradiction. But even if Oi and Oa had
been de�ned in such a way that (:N) were not valid, there are still reasons
for not wanting the (RM)-rule; as we remarked in Section 2.2, from the point
of view of violation the Ross problem | which acceptance of the (RM)-rule
would generate | does seem to be genuine. So, given the focus on violation
in our approach, the Ross problem is to be avoided.

This was a main reason for not supplementing our models with respect to
`ob'. If we had imposed that \if Y�Z and Y2 ob(X), then Z2 ob(X)", then
although we would not get the (RM)-rule in its full generality (because of
the second conjunct in the truth conditions for actual and ideal obligation
sentences), we would still get weaker versions of it, such as: \if j= A ! B
then j= �:B ! (Oi A ! Oi B)",24 that are strong enough to generate

the Ross problem.
Nevertheless, some would maintain25 that at least weaker versions of the

(RM)-rule are needed, since if, for instance, it is forbidden to kill, it seems
strange that we cannot also derive that it is forbidden to strangle.

The claim seems to be this: for a particular class of pairs of sentences
(A;B), the conditional relation between A and B is such that it should
license the derivation of \if B is forbidden then A is also forbidden". Sup-
pose that we introduce a connective ) to express the kind of conditional

24Using condition 5-b), we would even get the stronger result \j= (� (A ! B) ^

�:B) ! (Oi A ! Oi B)" (and \j= (�! (A ! B) ^�! :B) ! (Oa A ! Oa B)"

with respect to actual obligations).
25We are grateful to Henry Prakken for this criticism.
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relation concerned (leaving its semantics open for the moment). Instances
of this conditional relationship (taken from the scenarios analysed in Sec-
tion 5) would be (white-fence ) fence) and (kill-gently ) kill), besides the
previously mentioned (strangle ) kill). Using this connective, one possible
way of interpreting the claim, in terms of our approach, might be to require
the validity of the following sentences:

($i) (A) B) ^�A! (Oi :B ! Oi :A)

($a) (A) B) ^�!A! (Oa :B ! Oa :A)

It would not be a diÆcult matter to de�ne appropriate truth conditions for
) and to relate them to the semantics of `ob' in such a way as to secure the
validity of these two sentences. But we do not pursue this line here, since
we think that, in terms of our approach, there are reasons for supposing
that they should not be deemed valid.

To see why, recall again the gentle murderer scenario, supposing that \A"
is \kill-gently" and \B" is \kill". (In what follows we will concentrate on
($i) although a similar argument could be raised against ($a).) Consider the
case where it was potentially possible to kill or not to kill, and potentially
possible to kill gently or not to kill gently. According to ($i) we would derive
that there is an ideal obligation not to kill gently. Is this an acceptable
derivation? We think not. In our opinion what we should derive | as we
do in our logic | is that Oi :kill ^Oi (kill ! kill-gently).

Of course, if the assassin kills gently he violates the prohibition to kill,
and that is indeed secured by our logic: assuming the obvious hypothesis
that� (kill- gently ! kill) then we may derive

(�) Oi :kill ! (kill-gently ! viol(kill))

The fact that we can derive (�) goes a long way towards accommodating
the point behind Prakken's criticism, we believe.

6.2 Axiom ($ Oa) and condition 5-b)

First possible counter-example:

Suppose that Mr. X has an actual obligation to help his friend move
on Saturday, and suppose that Mr. X (�rmly) decides that he will help
his friend move on Saturday if and only if he will borrow his brother's
convertible on Saturday. Thus we will have Oa help ^�! (help$borrow)
and, using axiom ($Oa ), we derive Oa borrow. However, it has been
suggested26 that Mr. X might have an actual obligation to help his friend,
but not an actual obligation to borrow the convertible. We disagree: the

26We are grateful to Donald Nute for this criticism.
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central point, as we see it, is that the truth of�! (help$borrow) means
that it is not actually possible that either Mr. X helps his friend and does
not borrow the convertible or Mr. X borrows the convertible and does not
help his friend. Given that actual impossibility, there can be an actual
obligation to help the friend if and only if there is an actual obligation to
borrow the convertible. The fact that the decision to help a friend involves
a commitment to another person, whereas the decision to borrow the car
perhaps does not, is irrelevant to the conception of actual obligation we
wish to explicate.

Second possible counter-example:

Suppose that Mr. X has an actual obligation to go to the cinema on
Saturday, and suppose that Mr. X decides that he will go to the cinema
on Saturday if and only if his friend, Mr. Y, also goes to the cinema on
Saturday. Thus we will have Oa go-X ^�! (go-X$go-Y) and we derive
Oa go-Y. Does this mean that Mr. Y has an actual obligation to go to
the cinema on Saturday? Clearly not! Examples of this sort indicate that
there are cases where the formal language needs to be extended to include
means of indexing decisions to particular agents, and means of relativising
obligations to particular agents. Then it could be made explicit that X has
taken the decision, that X bears the obligation to go to the cinema, and
that X also bears the obligation to secure Y's presence.

Third possible counter-example:

Recall Case 5.2, from \the considerate assassin" scenario, in Section 5.
The facts were: (f1) \The assassin has not yet killed Mr. X but he has
�rmly decided to kill him" and (f2) \It is actually open for the assassin
to o�er or not a cigarette"; from these facts, and the norms, and some
background assumptions, we concluded not only that the assassin has an
actual obligation to o�er Mr. X a cigarette (Oa o�er), but also (using
the theorem (Oa !Oa ^), which follows from the axiom ($Oa )) that the
assassin has an actual obligation to kill Mr. X and to o�er him a cigarette
(Oa (kill ^ o�er)). This result may seem odd, just because it seems odd
to say that someone has an actual obligation to kill (and whatever). But
there is a good reason why this result should indeed be forthcoming. For
remember that it is a �xed fact that the assassin will kill Mr. X | it is
assumed that it is actually impossible not to kill; thus, whatever actual
obligations now come into force do so in the context of that assumption.
Importantly, Oa kill cannot be derived from Oa (kill ^ o�er), and clearly
there cannot be an actual obligation to kill, since it must be actually possible
that that which is actually obligatory fails to obtain.

There is a connection between the last point and the Good Samaritan
paradox of SDL mentioned in Section 2.2. In our view, the proper response
to the Good Samaritan scenario is as follows: it is a �xed fact of the situation
that a man X has been robbed. The actual obligation to help him thus arises
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in the context of that �xed fact, and so it is appropriate to represent the
content of the actual obligation in terms of a conjunction: \X is robbed and
X is helped". In our system, in contrast to SDL, it does not follow that there
is an obligation to rob; and we have a good explanation for why it should
not follow, for that which is actually �xed cannot actually be otherwise, and
thus cannot be the object of an actual obligation.

6.3 Violations, and ideal and actual obligations

Violations of conditional obligations

A sentence of form viol(B) is true if we can deduce from a set of deontic
norms, and a set of facts, both that ideally it ought to be the case that
B(Oi B) and that B is not the case (:B). However, it might be suggested
that a normgiver often wants to express explicitly in the object language
sentences of the form \violation(deontic norm) ! Sanction". The question
is how \violation(O (B=A))" could be represented in our system?27

Our answer is that \violation(O (B=A))" can be characterized as:

O (B=A) ^�(A ^ B) ^ A ^ :B

The explanation is as follows:

Suppose O (B=A). Two factual situations are then possible:

� First possibility: �A is the case.

Then (by (FD) and (:Oi )) we derive an ideal obligation Oi B
i� �B ^�:B. And in order to get viol(B) we must have :B

(which implies �:B). Thus a violation occurs if �B ^ :B,

which is equivalent, given that�A, to�(A ^ B) ^ A ^ :B.

� Second possibility: :�A is the case.

In this case (using axiom (O ! Oi !)) we derive from O (B=A)
an ideal obligation of the form Oi (A! B) if�(A^B)^�(A^

:B). And in order to get viol(A ! B) we must have A ^ :B
(which implies �(A ^ :B)). Thus a violation occurs if �(A ^

B) ^A ^ :B.

In the absence of other conditional obligations, no other ideal
obligations can be deduced from O (B=A). The only other way
we could deduce an ideal obligation fromO (B=A), would be if we
already had Oi A and�(A^B), in which case we could deduce,

27We are grateful to Henry Prakken for posing us this question.
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by (DD), the further obligation Oi (A^B). We omit further de-
tails here, but it may be shown that this case too provides no diÆ-
culties for the proposed characterisation of \violation(O (B=A))".

Violation vs non-ful�llment

Consider the following new case of the Reykjavik scenario (Scenario 6 in
Section 5):

Factual component

Suppose that the following facts hold at three di�erent points in time
(t1 < t2 < t3):

(t1{f1) Neither Gorbachov nor Reagan knew the secret (which oÆ-
cial 007 knows), and oÆcial 007 tells the secret to Reagan

(t2{f1) OÆcial 007 has not yet told the secret to Gorbachov

(t3{f1) OÆcial 007 tells the secret to Gorbachov

Logical representation of the facts

(t1{f1) r ^ :g ^�(:r ^ :g)

(t2{f1) :g ^� r

(t3{f1) g ^�:g ^� r

Conclusions

At time t1: viol(:r ^ :g) ^Oa g

At time t2: Oi g ^ :g ^Oa g

At time t3: Oi g ^ g

The natural reading of these conclusions is as follows: at time t1, OÆcial
007 has violated his obligation to tell neither of them the secret, and gets
an actual obligation to tell the secret to Gorbachov; at time t2, OÆcial 007
has an ideal obligation to tell the secret to Gorbachov, which he has not yet
ful�lled, and which persists as an actual obligation; at time t3, OÆcial 007
has ful�lled his ideal obligation to tell the secret to Gorbachov, and has no
actual obligation.

However, according to our de�nition of violation, we derive that at time
t2 007 has violated his ideal obligation Oi g. Is this an intuitively correct
interpretation of the situation at t2? Surely, we can say that at time t2
there exists a violation of the deontic norm (d2) (O (g=r)), in the sense
described above. But should we conclude that at t2 the obligation Oi g has
been violated, or rather that it has not yet been ful�lled?

This suggests that in some cases where there is a clear temporal di-
mension involved it may be natural to distinguish between the violation of
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an obligation, on the one hand, and the situation in which an obligation
has not been ful�lled, on the other. The way we have de�ned violation
(Oi A ^ :A) would perhaps more appropriately be said to correspond to
the latter, weaker notion, since that de�nition does not rule out the actual
possibility of ful�lling the (ideal) obligation concerned (Oi A ^ :A ^�!A);

whereas violation in the full sense of the obligation Oi A implies that fal-
sity of A is an actual necessity. Analogously, we may wish to distinguish
between di�erent degrees of ful�llment of an ideal obligation. We do not
pursue this point here, but it seems clear that our formal language as it
stands is expressive enough to capture some of the distinctions concerned.

Relationship between ideal and actual obligations

In our approach, there is no direct logical connection between the notions
of actual and ideal obligation. However, a reasonable question to raise is
this: should it not be supposed that an ideal obligation which it is still
actually possible to ful�ll and actually possible to violate entails an actual
obligation to the same e�ect? An aÆrmative answer would require the
validity of the following sentence:

Oi A ^�! :A ^�!A! Oa A (Oi ! Oa )

This result would be secured were the following model condition to be
adopted:

5-e) if Y � X and Z 2 ob(X) and Y \ Z 6= ;, then Z 2 ob(Y )

In [Carmo and Jones, 1997], we conjecture that a condition of this kind
could be adopted without untoward consequences. However, the situation
is not quite so simple; 5-e) may conict with the other conditions on our
models.28 A deeper analysis shows that the problem depends fundamentally
on the combination of 5-d) and 5-e), together with 5-c), for reasons we now
explain.

Consider the graphical description in Figure 1 and suppose Y 2 ob(X).
Then, by condition 5-d), ((Z �X) [ Y ) 2 ob(Z): if a subset Y of X is an
obligatory proposition in a context X , then in a bigger context Z it should
be the case that either we are not in X or we are in Y . With respect to the
set S, 5-d) does not require ((S�X)[Y ) 2 ob(S), contrary to what we would
obtain if we also adopted condition 5-e) | taking also into account 5-b).

28The following counter-example is due to Bj�rn Kjos-Hanssen: Suppose O (A=>) is
true in a model where W = f�1; �2; �3g and kAk = f�1g; then it can be shown that

the conditions 5-b) and 5-d), together with the truth of O (A=>), imply that if �1 2 X,
then ob(X) = fZ : �1 2 Zg. Thus, supposing Y = f�2; �3g, if 5-e) is also assumed, then
we would get (from ob(W )) that f�1; �2g 2 ob(Y ) and f�1; �3g 2 ob(Y ); and, from 5-b),
we would get f�2g 2 ob(Y ) and f�3g 2 ob(Y ), and a contradiction would follow from
5-c) and 5-a).
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YZ X
S

That is:

Y =

S =

X =

Figure 1.

But ((S�X)[Y ) 2 ob(S) means that (S�X) 2 ob(S)! Is this acceptable?
And, if the deontic norms also require that X 2 ob(S), we would derive a
conict of obligations. The following case of the dog scenario illustrates the
point.

Factual component

Suppose that the facts are as follows:

(f1) there is no dog and there is a sign warning of one; and it was
also potentially possibly to have no dog and no sign, or to
have a dog and no sign, or to have a dog and a sign

(f2) the agent is �rmly decided to have a sign (for instance, be-
cause he wants to frighten possible robbers), and it is still
actually possibly to have, or not, a dog

Logical representation

{ (f1) :dog ^ sign ^�(:dog ^ :sign) ^�(dog ^ :sign) ^

�(dog ^ sign)

(f2) �! sign ^�! dog ^�! :dog

From these facts, as our logic stands, we can derive that the ideal obliga-
tion not to have a dog has not been violated, and that there was a violation
of the ideal obligation not to have a sign if there is no dog; with respect to
the actual obligations, we derive the actual obligation not to have a dog.
If we now adopt condition 5-e), and introduce (Oi !Oa ) as a new ax-
iom schema, then, since we have Oi (:dog!:sign),�! (:dog!:sign) and

�! :(:dog! :sign), we would derive also Oa (:dog!:sign); and, since

�! sign !�! ((:dog!:sign) $ dog)), we derive Oa dog, conicting with
Oa :dog. So the question is, in this situation which conclusion should fol-
low, from the intuitive point of view: simply the actual obligation not to
have a dog, or a conict of obligations?

If intuition indicates that a conict of obligations should not be derivable
from this scenario, then 5-e) and (Oi !Oa ) must not be adopted. Then
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there will be no direct logical connection between ideal and actual obliga-
tions - each of them will be derived, independently, directly from the deontic
norms, taking into account the relevant context; nevertheless, whenever an
ideal obligation Oi A is deduced from a deontic norm O (A=B) by factual
detachment (FD), we may still also deduce�! :A ^�!A! Oa A.

If, on the contrary, intuition indicates there does indeed exist a conict
of obligations in the previous situation, then we should adopt condition 5-
e), and we should weaken condition 5-c) so that conicting obligations can
be expressed without logical contradiction. For reasons to be explained in
the next sub-section, we think it is necessary to weaken 5-c). Although
we do not here commit ourselves to acceptance of 5-e), we note in passing
that its adoption would have some further interesting consequences, besides
providing a direct link between ideal and actual obligations.

First consequence: relationships between O (B=A) and O (A! B=>), and
the \pragmatic oddity"

Recall Result 2-iv) in subsection 4.4): ` �(A ^ B) ! (O (A !

B=>) ! O (B=A)). Adopting condition 5-e) (plus 5-b1) and 5-d)),
the formula below would also become valid:29

O (B=A) ! O (A! B=>) (O ! O !)

Thus, to represent a deontic conditional by O (B=A) rather than by
O (A ! B=>) would become almost a question of taste (the former
is only slightly more general). Moreover, were (O ! O !) to be
adopted as a new axiom, we could conclude that the \pragmatic odd-
ity", as we have diagnosed it, does not introduce anything really new
to the orginal Chisholm set, since O (B=A) ! O (:(A ^ :B)=>) |
and so, for instance, O (:sign / :dog) ! O (:(:dog ^ sign) / >)).

Second consequence: rede�nition of M j=w O (B=A)

With the condition 5-e) (plus 5-ab)), the condition forM j=w O (B=A)
becomes equivalent to the following, simpler, condition:

M j=w O (B=A) i� kBk 2 ob(kAk)

29It is trivial to see that M j=w O (B=A) implies kA ! Bk 6= ;. On the other hand,

let Z be such that Z \ kA! Bk 6= ;. We have M j=w O (B=A) implies kBk 2 ob(kAk);
by condition 5-bd3), this implies kA ! Bk 2 ob(kAk [ Z); thus, by condition 5-e),
kA! Bk 2 ob(Z).
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6.4 Unrelated deontic norms, contrary-to-duties and conicting
obligations

Consider again the Case 5.2 of the \considerate assassin" example (Scenario
5 of Section 5):

Factual situation

(f1) The assassin has not yet killed Mr. X but has �rmly decided to
kill him

(f2) It is actually possible for the assassin to o�er, or not, to Mr. X
a cigarette

and suppose now that there is also another deontic norm applicable to the
situation saying that it is forbidden to o�er cigarettes. Thus we have:

(d1) O (:kill / >)

(d2) O (o�er / kill)

(d3) O (:o�er / >)

(f1) :kill ^�! kill

(f2) �! o�er ^�!:o�er

In this case we get, using (FD): Oa o�er (from (f1), (f2) and (d2)) and
Oa :o�er (from (f2) and (d3)), and thus a contradiction (since Oa veri-
�es schemas (C) and (OD)). Is this a problem? We think not. There is a
reasonable interpretation of this situation according to which it does con-
tain a conict of obligations; the logical system we have described was not
designed to solve conicts of obligations, but it should certainly be able to
detect them when | as here | they arise. The key feature of this scenario
is as follows: (d2) was designed to be \a CTD w.r.t. (d1)", i.e. to describe
the obligations in force in a context of violation of the obligation speci�ed
by (d1); but (d1) and the new sentence (d3) express unrelated, or indepen-
dent, deontic norms; (d2) cannot be seen to be \a CTD w.r.t. (d3)", and so
the obligation not to o�er a cigarette \transports down"30 to the context
(�! kill) of violation of (d1), and a conict is obtained according to (d2).

\Now one may ask how this conict should be resolved and, of course,
one plausible option is to regard (d2) as an exception to (d3) and to for-
malize this with a suitable nonmonotonic defeat mechanisms. However, it is
important to note that this is a separate issue, which has nothing to do with
the CTD aspects of the example". This remark is quoted from [Prakken
and Sergot, 1994, pp.310-311] (replacing their sentences (2) and (3) by our

30Using the terminology of [Prakken and Sergot, 1994; Prakken and Sergot, 1996],
where a similar result is obtained for this case.
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(d2) and (d3)); and we fully agree with it, although we leave entirely open
the question of how conicts of obligations might be resolved, since that is
a matter falling outside the logical analysis of CTDs themselves.

The above example indicates that semantical condition 5-c) needs to be
weakened; consider also the following observation,31 that in our logic any
two \unrelated deontic norms" on the same \antecedent" will give rise to a
contradiction, in the following sense:

Suppose that both O (B=A) and O (C=A) are true in a model M,
and suppose that kAk \ kBk \ k:Ck 6= ; and kAk \ kCk \ k:Bk 6= ;.
Then, de�ning X = (kAk\kBk\k:Ck)[ (kAk\kCk\k:Bk), we get
kBk 2 ob(X) and kCk 2 ob(X); and, from condition 5-c), it follows
that (kBk \ kCk) 2 ob(X), contradicting 5-ab).

Our response is to replace 5-c) by 5-c�):

5-c�) if Y; Z 2 ob(X) and Y \ Z \X 6= ;, then Y \ Z 2 ob(X)

It is easy to see that a weakning of this kind does not a�ect the theorems
used in our analysis of the CTD scenarios. This move is in keeping with
our belief (a) that sets of norms, as human artifacts, may indeed be im-
perfectly designed and thus contain the possiblity for generating conicting
obligations; and (b) that it is the task of the logic to identify such conicts
when they arise, and to supply conict-free representations of those CTD
scenarios which are, from the intuitive point of view, normatively consistent.

6.5 Axiomatisation revisited

Given the weakening of condition 5-c), in order to obtain a sound axioma-
tisation we need to replace the axioms (O � C); (Oa � C) and (Oi � C)
by the weaker schemas:

50. �(A^B ^C)^O (B=A)^O (C=A) ! O (B ^C=A) (O �C�)

110. �! (A ^ B) ^Oa A ^Oa B ! Oa (A ^ B) (Oa � C�)

�(A ^ B) ^Oi A ^Oi B ! Oi (A ^ B) (Oi � C�)

All the other axioms remain unchanged. Moreover, it is easy to see that
all the theorems stated in Result 2 (of Subsection 4.4) are retained.

On the other hand, if we were also to adopt condition 5-e), then the
axiom schemas (O ! Oa !) and (O ! Oi !) would be replaced by the
new axiom (O ! O !) (since the latter, in conjunction with (FD), allows

31We are grateful to Henry Prakken for this criticism.
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the derivation of the former pair), and we would also add (Oi ! Oa ) as a
new axiom. Obviously, it is then possible to deduce some new theorems32.

7 A FURTHER LOOK AT SOME OTHER APPROACHES

7.1 Temporal approaches

A number of researchers have maintained that the problems raised by the
Chisholm set essentially involve a temporal dimension, and that previously
proposed solutions fail in as much as they do not capture this dimension.
In this section we review some aspects of temporal deontic approaches and
compare them with ours.

Temporal approaches to the semantics of deontic notions are generally
based on tree-structures, representing branching time with the same past
and open to the future. Following [Chellas, 1980, section 6.3], we can think
of time as an ordered set T of moments (or instants), and | in order to
regard the possible worlds as time-stretched | de�ne them as functions
from T into an otherwise unspeci�ed set of momentary world-states S; we
use the term history to denote this speci�c interpretation of a possible world,
and, in the models, we denote by H the set of the possible histories. Thus
we can de�ne the tree-like structures as a tuple hT;<; S;H; V i, where:

- T and S are non-empty sets;

- < is a strict linear order on T (i.e. < is irreexive, transitive and
(8i1; i2 2 T ) (i1 < i2 or i2 < i1 or i1 = i2));

- H is a non-empty subset of the set of all functions from T into S,
satisfying the following restriction (where h �i h

0 i� h(i1) = h0(i1) at
every instant i1 � i):

(�) (8h; h0 2 H) (8i 2 T ) (if h(i) = h0(i) then h �i h
0).

Constraint (�) is intended to give the tree-like form to the temporal
structures, allowing branching to the future, but not to the past.

On top of these structures, temporal deontic logics typically de�ne one
necessity modal operator plus obligation operators (either monadic or dyad-
ic33). However, a main di�erence appears in the way the temporal dimension
is syntactically reected in the formal language. One family of logics indexes

32For instance, we can prove that ` �((A _ C) ^ B) ^ O (B=A) ^ O (B=C) !

O (B=A _ C) as follows: by (O ! O !) we deduce ` O (B=A) ^ O (B=C) !

O (A ! B=>) ^O (C ! B=>); and the new theorem then follows by (O � C�) and
Result 2-iv).

33We are excluding from this comparison the analysis of other deontic operators, such
as permission operators, or the obligation-related operators proposed in [Brown, 1996].
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the modal and deontic operators with temporal terms; as representatives of
the \indexed" family, we may mention [van Eck, 1981] and [Lower and
Belzer, 1983].34 Another family introduces temporal operators that can
be iterated with the modal and deontic operators; as representatives of
the \non-indexed" family we may mention [Chellas, 1980, sections 6.3 and
6.4], [�Aqvist and Hoepelman, 1981], [Thomason, 1981; Thomason, 2001]

and [Brown, 1996]. Although the indexed family is more expressive and
less abstract than the other family, this di�erence is not essential in regard
to deontic aspects. So we shall introduce a uniform setting where we can
abstract from such di�erences and concentrate on the main distinctions they
provide regarding the deontic notions.

In order to see how the truth-value of a sentence can be evaluated within
the temporal framework, we �rst need to extend the tree structures with a
valuation of the atomic sentences. Tree-like models are then tuples hT;<;
S;H; V i, where:

- V assigns to each atomic sentence p a subset of H � T , satisfying:

(��) (8i 2 T ) (8h; h0 2 H)

(if h(i) = h0(i) then (hh; ii 2 V (p) i� hh0; ii 2 V (p))

Informally, hh; ii 2 V (p) i� p is true at the time instant i in the
world-state h(i).

Constraint (��) is intended to capture the idea that the truth-value of an
atomic sentence is a function solely of the actual current world state, and
independent of its past and future. We are here assuming that the atomic
sentences take the simple form of propositional variables, thus avoiding most
of the complications introduced by a �rst order component, such as the one
considered in [van Eck, 1981].

With respect to truth in a model, we can follow Prior's \Ockhamist"
approach to indeterminist time [Prior, 1967], and say that a sentence A is
true in M(= hT ; <;S;H;Vi) i� A is true at all pairs hh; ii (belonging to
H�T ). Thus the basic semantic unit for the truth analysis is the pair hh; ii:
intuitively i denotes the current instant; although the intuition behind h is
less obvious, we may see h as �xing the current and past states and pointing
out a possible future (that we may call actual, or prima facie, following
Prior). So kAkM = fhh; ii(2 H � T ) : M j=hh;ii Ag and kpkM = V (p); as
usual, we write kAk, leaving M implicit.

Many temporal operators can be de�ned in terms of this semantical
framework, and the various \non-indexed" temporal deontic logics vary a
good deal with respect to the kinds of temporal operators they consider.

34In [Lower and Belzer, 1983] the dyadic O -operator is not time-indexed, but all the
other modal/ deontic operators are.
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Just to give one example, we can de�ne a \sometime in the (actual) future"
operator as follows (corresponding past operators are de�ned similarly):

M j=hh;ii FA i� (9i < i1)M j=hh;i1i A

(dual: G; for past: P and H)

On the other hand, as we have mentioned, the \indexed" temporal deon-
tic logics do not adopt any temporal operator; instead, they allow a direct
reference to the underlying time structure in the proper formal (object)
language. More precisely, they include time variables and possibly other
time terms35 t; t1; : : : which refer to the time instants through a function
v, added to the temporal models, that applies each term into an element
of T . Their languages may be seen as a Boolean combination of two sub-
languages: the sublanguage of time and the modal/deontic sublanguage,
where the latter is built from atomic sentences of the form pt (for t a time
term), with time-indexed modal and deontic operators, and sentential con-
nectives. Interestingly, if we ignore this time indexing, we can see that the
modal/deontic sublanguages of the indexed and the non-indexed temporal
deontic logics are analogous. So, if we could \separate" the time index
from the modal/deontic operators, we would get a uniform semantical and
logical setting for analysing the modal/deontic component of both types of
temporal deontic logics, with obvious advantages for the purposes of com-
parison. This can be achieved by means of the temporal realisation operator
of [Rescher and Urquhart, 1971]: (t), for t a time term (Rt in [Rescher and
Urquhart, 1971]), semantically de�ned as follows:

M j=hh;ii (t)A i� M j=hh;v(t)i A

Intuitively, (t)A signi�es that A is true at time t, and using this operator
we can translate each modal/deontic indexed sentence into a non-indexed
sentence, with the same meaning, by replacing each pt by (t)p, and each
modal/deontic operator #t by (t)#. For instance, the sentence t < t1 !
Ot1 pt, valid in [van Eck, 1981]'s logic, is translated to t < t1 ! (t1)O (t)p.

Turning now to the modal/deontic component of temporal deontic logics,
we start by noting that they all introduce a necessity modality, expressing
some kind of \inevitability". However, a main division appears here between
the temporal deontic logics | independently of whether or not they are
indexed | regarding which of the following two types of necessity operator
they adopt; for instance [�Aqvist and Hoepelman, 1981], [Thomason, 1981;
Thomason, 2001], [Lower and Belzer, 1983] and [Brown, 1996] adopt the
�rst, whilst [Chellas, 1980] and [van Eck, 1981] opt for the second:

35For particular known numerical time structures T , it is usually considered that T
is directly \included" in the formal language, allowing the existence of constants and
functions, and supposing that terms (of sort T ) can be written in the formal language
as in the semantics (e.g. in the form t + 1). The same assumption will be made here
whenever appropriate.
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M j=hh;ii�A A i� (8h0 2 H)(if h �i h
0 then M j=hh0;ii A)

(dual�A )

M j=hh;ii�� A i� (8h0 2 H)(if h �i h
0 then M j=hh0;ii A)

where h �i h
0 i� h(i1) = h0(i1), at every i1 < i

(dual: �� )

Informally,�A means \for all histories, with the same past and present",
and�� means \for all histories, with the same past". Obviously,�� A !

�A A is a valid sentence within this semantics.36

A similar division also appears in the way the deontic components are
de�ned, as we explain below.

Starting with the analysis of the unary obligation operator O , with the
exception of [Brown, 1996], all the mentioned works employ a normal logic
for O , which can be obtained as follows: enrich the temporal models M =
hT;<; S;H; V; vi with a new component (\best" histories) bh : H � T !
}(H), and de�ne

M j=hh;ii OA i� (8h0 2 bh(hh; ii))M j=hh0;ii A

Obviously, the function bh must satisfy some conditions, besides the non-
emptiness of each bh(hh; ii) required by all of these researchers. Importantly,
we can distinguish between (a) those approaches | the ones that employ

�A | that can be said to interpret bh intuitively as giving the \best"
histories that are still open, given the past and present (which are �xed);
they adopt the following conditions (or conditions that imply them):

� bh(hh; ii) � fh0 : h �i h
0g

� if h �i h
0 and i1 � i then bh(hh; i1i) = bh(hh0; i1i)

and (b) those approaches | the ones that opt for�� | that can be said to
interpret bh intuitively as giving the \best" histories, that were open, given
the (�xed) past; they adopt:

� bh(hh; ii) � fh0 : h �i h
0g

� if h �i h
0 and i1 < i then bh(hh; i1i) = bh(hh0; i1i)

36The symbol� is normally used for both of them, but since we want to distinguish

them - and since the symbol� has already been used for potential necessity | we use

�A and�� . We also note that, for an integer-like time, we can express�� as Y�A X,

where Y and X denote the previous and next time operators, semantically de�ned as

follows: M j=hh;ii YA i� M j=hh;i�1i A and M j=hh;ii XA i� M j=hh;i+1i A.
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(In what follows we shall use
J

whenever we want to stress that we
are referring to the unary obligation operator under this latter class of ap-
proaches.)

Some comparison can already be made between these temporal deontic
approaches and our own. In fact, it is not diÆcult to see that the opera-
tors�� and�A have some similarities with the operators for, respectively,
potential and actual necessity, � and�! , in those contexts where they
are assigned a speci�cally temporal reading. More generally, it is easy to
�nd connections between each pair of operators (�� ,

J
) and (�A , O ), and

our pairs (� , Oi ) and (�! , Oa ). However, there are also some relevant
di�erences. We compare them both at a technical level and from the point
of view of their motivation, starting with the former.

As regards the relationships between each necessity operator and its as-
sociated obligation operator, we note that | as for our corresponding oper-
ators | what is obligatory must be possible to ful�l; that is, the following
sentences are valid:

OA!�A A

J
A!�� A

However, in contrast to ours, these logics do not require that what is
obligatory must also be violable. On the contrary, all necessary truths (in
their sense of necessary) are (vacuously) obligatory; that is, the following
sentences are valid:

�A A! OA

�� A!
J

A

Thus, since A $�A A is valid if A does not include reference to the
future, if one wanted to require that an obligation must be both possible to
ful�l and violable, then in order for OA to be true the sentence A would
have to be characterised in such a way that it refers to the future; in the
non-indexed logics this would imply that A can never be a propositional
variable and must include future operators (such as F or X); in the indexed
case, Ot pt1 could be true only if t1 > t; (for a general sentence Ot A one
would need to require that the \temporality of" A is greater than t; this
notion is from trivial: see e.g. [van Eck, 1981]). On our approach, by
contrast, we can simply write Oa p,37 abstracting both from the exact time

37The possibility of violation can be described in our logic by the valid sentence

Oa A !�! :A, where for cases where there is a meaningful temporal interpretation,

we can see�! :A as saying that there is a future instant within some of the alternatives

open to the agent where A is not the case. Note that, in contrast to what happens with

�A , our operator�! does not verify the (T )-schema.
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instant t where this obligation appears (as in the non-indexed logics), and
from the description of the other aspects related with the time of occurrence
of the \events" encoded in p.

Consider now (�� ,
J

) and (� , Oi ). There seems to be a main technical
di�erence between � and�� . For the latter, the potential alternatives
(using our terminology) to the actual current world-state correspond to the
alternatives that were open immediately before the current instant, i.e., at
tc � 1, supposing that tc denotes the current instant and assuming here,
and in what follows, an integer-like time. On the other hand, the potential
alternatives to the actual current world-state, as described by our operator

� , include the alternatives that were open at some relevant time before
the current time instant, but not necessarily the one immediately before.

Even in cases where it is appropriate to give a temporal interpretation
to our operators, it is necessary to consider only two time instants, on our
view: the current instant tc (the one relevant to determining the actual obli-
gations), and some previous time instant t�, relative to which an assessment
is made of the potential possibilities which were open to the agent | an
assessment which, in turn, will determine the agent's ideal obligations at tc
and his violations at tc.

As regards
J

, it appears that for the analysis of violations only the
instant tc�1, immediately preceding tc, is relevant. The informal idea seems
to be that one can violate only those obligations that require that something
be done immediately. But then there is a problem if the obligation was in
fact incurred at some time t� prior to tc � 1: how is the persistence of the
obligation to be represented? As is noted in [Prakken and Sergot, 1997], the
issue of the persistence of obligations through time has been poorly studied
within the temporal approaches to deontic logic, despite its apparently close
connections with CTD-problems. One of the main exceptions is [Brown,
1996], where there is some discussion of persistence conditions according
to which an obligation persists until it is (de�nitely) ful�lled or violated.
In [Thomason, 2001] we also �nd a condition related with the persistence
of obligations, a condition that more or less corresponds (in our temporal
semantics) to: if i � i1 and h1 2 bh(hh; ii), then bh(hh1; i1i) = bh(hh; ii) \
fh0 : h �i1 h1g. However, on the one hand, this condition seems too strong,
since it seems not to allow the appearance of other obligations between i
and i1; and, on the other hand, since it only refers to h1 2 bh(hh; ii), it
says nothing about how an obligation persists over time when some other
obligation is violated.

Besides these technical similarities and di�erences, there is one funda-
mental di�erence between the motivation underlying our approach and the
one underlying the temporal approaches. This di�erence has to do with
the reasons why a history h1, which was considered an alternative to the
actual history h at some time instant i � 1 (so that h1 �i h), is no longer
taken to be an alternative to h at i (i.e., not h1 �i h). For the temporal
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approaches, the essential reason why, at i; h1 is no longer an alternative to
h, is that a state h(i) makes h1 impossible (that is, h1(i) 6= h(i)). On the
other hand, in our approach, in cases for which a temporal interpretation
can meaningfully be assigned to our necessity operators, we would say that
our worlds roughly correspond to the pairs hh; ii; and although av(hh; ii)
would be seen as a subset of fhh1; ji : h1 �i h and j > ig (satisfying the
condition that if j; k > i then hh1; ji 2 av(hh; ii) i� hh1; ki 2 av(hh; ii)), it
need not necessarily be equal to the set fhh1; ji : h1 �i h and j > ig; thus a
pair hh1; ji may belong to av(hh; i� 1i), but may fail to belong to av(hh; ii),
even if h1 �i h and j > i. The essential reason for this is that the agent
may have decided to exclude from the worlds that are actual alternatives
to hh; ii all the worlds provided by the history h1, even if this history is
still potentially possible to follow. This fundamental di�erence between our
theory and the temporal approaches is the key to understanding why we are
able to accommodate such a CTD-scenario as the gentle murderer, which
remains problematic for the temporal approach.

We next note that there is a signi�cant di�erence between our dyadic
obligation operator and those proposed in, e.g., [�Aqvist and Hoepelman,
1981] and [van Eck, 1981], both of which see the unary O as a limiting
case of the dyadic O , in the sense that OA is an abbreviation of O (A=>).
As we have indicated above, we reject a move of this kind; we view unary
obligations (of types Oi and Oa ) as derivable from the dyadic, in ways
that depend on the context, and on matters pertaining to the satis�ability
and violability of obligation. The rejection of the idea that OA is an ab-
breviation of O (A=>) is also a feature of the temporal-based approach in
[Lower and Belzer, 1983], to which we now turn.

Loewer and Belzer's 3D-logic involves a combination of a temporal ap-
proach with a preference-based approach. Briey, the basic idea of [Lower
and Belzer, 1983] appears to be the following: there is a hypothetical time
instant zero, at which some deontic norms are assumed to come into force;
these are expressed by the use of a dyadic O -operator, which is not time-
indexed. Actual obligations, expressed by means of a time-indexed unary
operatorOt , evolve from this moment on in ways determined by the deontic
norms and by the facts which are taken to be settled at each time t (settled-
ness being represented by means of an operator of type�A t

). They also use
a notion of \ethical suÆciency", and introduce two versions of sentences of
the form R(A;B), one time-indexed and one not, intended to express the
idea that B is ethically suÆcient for A. (We omit here the details of their
semantical analysis of R.)

Although they have little to say regarding ideal obligations and their
violations, they do o�er a suggestion to the e�ect that ideal obligation of A
can be de�ned as an abbreviation of O (A=>); in our opinion this would lead
to diÆculties in cases where at the instant zero some of the deontic norms
cannot be potentially satis�ed. Consider, for instance, a case of Scenario
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3 in which it is potentially impossible not to have a fence - suppose that
the fence is installed in such a way that the agent concerned has neither
the ability nor the opportunity to remove it; were Oi A to be de�ned as an
abbreviation of O (A=>), then Oi :fence would be derived, instead of |
as in our logic | Oi white-fence.

The semantics of the dyadic O is de�ned �a la Lewis, imposing a ranking
� on the members of H . This ranking � is then connected with the model
component (\best" histories) bh : H � T ! }(H). In their own words,
the intuitive idea is the following [Lower and Belzer, 1983, pp. 308]: \Our
basic idea for connecting the ranking � with F (here denoted by \bh"),
that is connecting conditional obligations with actual obligations is this: At
the �rst instant of time t0, we will assume that some of the histories which
are ideal according to � can be achieved. But as time proceeds, events
and the actions of men may render the ideal histories unattainable. Still at
every moment the actual obligation is to bring about one among those best
histories that remain".

The factual and deontic detachment principles that are validated by
their semantics are as follows:

O (B=A) ^R(B=A) ^�A t
A ^�A t

B^ ! Ot B

O (B=A) ^R(B=A) ^Ot A ^�A t
B^ ! Ot B

Ignoring the \ethical suÆciency" operator R, their factual detachment
principle strongly resembles a \temporal version" of ours (although, as in
the previous logics, they do not require that an obligation must be violable).
On the other hand, their deontic detachment principle is stronger than ours,
and, for the reasons that we have previously mentioned, we suspect that it is
too strong, particularly if one also wants to address the problem of violations
of ideal obligations: recall our conclusions in Case 1.1, Section 5 above.

Finally, some further comments about the representation of CTD-sce-
narios within the temporal deontic approaches, as compared to our own.

Of the temporal approaches here analysed that explicitly discuss the rep-
resentation of CTD-scenarios ([�Aqvist and Hoepelman, 1981], [van Eck,
1981] and [Lower and Belzer, 1983]), the one most similar to ours is [Lower
and Belzer, 1983]. In fact, it is the only one of the three that respects
our requirement (iv) on the representation of CTD scenarios, and | like
us | Loewer and Belzer make a distinction between the \deontic norms"
applicable to a situation (expressed through the dyadic O ) and the spe-
ci�c obligations that can be deduced from them given the facts of the case.
However, it appears that they opt to represent the �rst sentence of the
Chisholm set by a time-indexed actual obligation rather than as a deontic
norm expressed in terms of the dyadic O -operator.

An important di�erence remains: in our approach, given the \deontic
norms", in order to derive which violations may have occurred and what
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the actual obligations are, we need only consider what it was potentially
and actually possible to do. No speci�c reference to any time instant is
needed, in contrast to what happens in [Lower and Belzer, 1983] and other
indexed temporal approaches, where sometimes one is forced to introduce
time instants in the representation of cases in a way that seems more or
less arti�cial, since their speci�c values are irrelevant. Moreover, as we have
emphasised, our potential and actual necessitation operators are not tied to
temporal settledness, and so can be used to represent cases where a temporal
dimension is absent. In short, we think that our theory o�ers patterns of
representation which are more abstract and simpler than those supplied by
the typical temporal deontic approaches.

Of course, whenever it is essential to state the exact time of realisation of
some obligatory state of a�airs | for instance because there is an obligation
to do something by a speci�c deadline | then an indexed temporal logic
seems to be necessary. The simplicity of the logic will always depend on
the degree of abstraction that we want to achieve, and when we choose, for
instance, to use a deontic propositional language we abstract from many fea-
tures | the temporality of some state of a�airs being just one of these. But
this abstraction is justi�able precisely on the grounds of the simplicity that
it provides for illustrating the essential features underlying CTD-reasoning.

7.2 Action-based approaches

In the work of Casta~neda, and of those inuenced by him, it has frequently
been maintained that the problems that beset deontic logic can be solved if
proper recognition is given to the role of the concept of action. It is perhaps
fair to say that Casta~neda's own work is not always easy to penetrate, but
fortunately in this case two papers by James Tomberlin [1983; 1986] supply
both an outline introduction to Casta~neda's system of deontic logic, and
an appraisal of (respectively) his treatments of the Chisholm set and the
Good Samaritan. And, judging by his replies | published in the same
sources | Casta~neda accepted that Tomberlin provided a faithful account
of his position. We focus here on just those aspects which seem essential in
regard to the analysis of the Chisholm set.

\Central to Casta~neda's enterprise, we encounter his pivotal distinction
between practitions and propositions" [Tomberlin, 1983, pp. 204]. Proposi-
tions are understood in the usual way, whereas practitions are understood,
roughly, as the semantical content of such sentences as commands, orders,
requests, entreaties. Within the scope of deontic operators, such as \it is
obligatory that . . . ", both types of components may occur: propositions
indicate the circumstance, or condition, of a deontic judgment, whereas
practitions indicate \. . . the target or focus of the deontic operator; compo-
nents of this sort are actions practically considered. . . " [Tomberlin, 1983,
pp. 235]. However, deontic operators are assumed to apply to practitions
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only, and thus a mixed scope formula, within the scope of a deontic oper-
ator, will have a practition as its content. Deontic judgments are said to
belong to di�erent families, where each family determines a particular sense
or type of obligation, permission, and so on. This type is indicated in the
formal language by an index on the deontic operator.

Let us turn immediately to the representation of the Chisholm set, stat-
ing in due course those principles of Casta~neda's logic which are relevant to
an assessment of that representation. Suppose that the type of obligation
concerned is denoted by \s", and that we use p; q; : : : to stand for proposi-
tions, and p�, q�, . . . to stand for practitions. Then line 1 of the Chisholm
set is assigned the form:

1. Os p�

whereas line 4 expresses a proposition and is accordingly represented by:

4. :p

As regards line 3 (the CTD), Casta~neda insists that it must be under-
stood as specifying what is obligatory in those circumstances in which the
obligation expressed by line 1 is violated. He insists, then, on factual de-
tachment, requiring that 1 and 3 must together imply

5. Os :q�

Accordingly, 3 is assigned the following form, where ! is the material
conditional:

3. :p! Os :q�

Line 2 is interpreted as an obligation sentence with a mixed component
within the scope of the deontic operator:

2. Os (p! q�)

The crucial point to note now is that lines 1 and 2 do not imply

6. Os q�

because the embedded antecedent in line 2 is a proposition, whereas the
scope formula in line 1 is a practition. So, the claim is, in essence: dis-
tinguish properly action components and propositional components, and
incorporate that distinction in the representation of the set, and the incon-
sistency which Chisholm's formalisation contained will disappear. Although
Casta~neda's deontic logic contains the theorem

(CasK) Os (p� ! q�) ! (Os p� ! Os q�)
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its application is of course restricted to instances where both the component
sentences in the antecedent express practitions. This representation of the
Chisholm set, then, is consistent.

Before moving on to Tomberlin's criticisms, note that it is already clear
that Casta~neda's solution generates the pragmatic oddity, in virtue of lines
1 and 5. Outlining the basic feature of Casta~neda's semantics of obligation
sentences, Tomberlin says that a sentence of the form Os p� \. . . is true at a
world w if and only if the practition p� belongs to every world v such that
v is deontically compossible with w : : :" [Tomberlin, 1983, pp. 237]. Then
in all the worlds which are deontically compossible with the given world in
which the four sentences of the Chisholm set are true, the agent concerned
helps his neighbours (by line 1) but does not tell them he is coming (by line
5).

Note that

(TC1) (p! Os q�) $ Os (p! q�)

is a theorem of Casta~neda's system. It follows immediately that line 4
implies line 2, and thus that the requirement of logical independence is not
met. Tomberlin and Casta~neda are among the very few deontic logicians
who do not accept this requirement; we do not discuss their reasons for this
rejection here | the reader is referred to [Tomberlin, 1983] and Casta~neda's
reply | but choose rather to focus on Tomberlin's criticism of Casta~neda's
treatment of the Chisholm set, which also begins from the observation that
(TC1) is a theorem. What troubles Tomberlin is that, in virtue of (TC1),
line 4 also implies

7. Os (p! :q�)

Putting lines 2 and 7 together we have: it is obligatory that if X goes to
help his neighbours then he tells them he is coming, and it is obligatory that
if X goes to help his neighbours then he does not tell them he is coming.
This is clearly an intuitively unacceptable consequence | it would not be
implied by a proper representation of the Chisholm set!

So what has gone wrong? Tomberlin's view, in brief, is that line 2 is
not the correct way to represent the second line of the Chisholm set. By
virtue of (TC1), which he seems inclined to accept, line 2 is equivalent
to a conditional obligation and thus, ignoring the negation signs, has the
same logical structure as line 3. But Tomberlin is of the opinion that the
second sentence of the Chisholm set should be understood as expressing an
obligation simpliciter, of the form:

20. Os (p� ! q�)
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But then, of course, as he immediately notes, the original Chisholm
\paradox" re-emerges, since line 1 and line 20 together imply line 6, by
(CasK).

Tomberlin advocates an alternative line of solution to the Chisholm prob-
lem, within the framework of Casta~neda's deontic logic. \Biting the bullet",
as he puts it, one should accept that another aspect of Casta~neda's deon-
tic logic | that deontic operators can be relativised to di�erent senses of
obligation - has a key role to play in the representation of the Chisholm
set. As Tomberlin sees it, the four sentences of the Chisholm set can be
assumed to be both true and mutually consistent if and only if the sense
or type of obligation pertaining to the third line is di�erent from the sense
or type of obligation expressed by the �rst and second lines. So, the �rst
two lines are obligation sentences whose truth conditions refer to deontically
perfect worlds (he calls these absolute obligations), whereas the third line is
an obligation sentence whose truth conditions refer to worlds which | like
the actual world in which line 4 is true - are deontically imperfect.

At this point, naturally, we begin to experience a gentle sense of d�ej�a vu.
Tomberlin is here treading one of the paths we investigated in Section 3,
above, and which | as we there tried to indicate | leads only to further
troubles. How would he cope with second-level CTDs of the kind exhibited
by Scenario 2 (the dog-sign-fence example)? By introducing a third sense of
obligation, i.e., a second sense of imperfection or sub-ideality? Clearly, this
proliferation of senses of the fundamental deontic notions is to be avoided.
To embrace it is to admit defeat.

Despite the diÆculties that arise for Tomberlin's own positive proposal,
it does seem clear that his criticism of Casta~neda casts considerable doubt
on whether the proposition/practition distinction has any role to play in
solving Chisholm' s puzzle. Our conclusion is that Casta~neda failed to sup-
ply an analysis of deontic conditionals that both copes with the pragmatic
oddity and generates suitable deontic and factual detachment principles.
And we should add, with Prakken and Sergot, the observation that such
CTD examples as Scenario 3 (the white fence) are apparently devoid of any
action component whatsoever.

Nevertheless, we think that there is at least the following to be said for
the action approach: the two notions of necessity to which we assigned
a crucial role in the analysis of CTD scenarios are intimately connected
to praxiological concepts, in particular decision, ability and opportunity.
A more elaborate development of our logical system should make these
connections explicit. But, even when that is done, we very much doubt
that the resulting picture will provide con�rmation of Casta~neda's account
of the role of action concepts.

It is suggested in [Hilpinen, 1993, pp. 89] that one interesting way to
understand Casta~neda's distinction is \. . . to consider it from the standpoint
of dynamic deontic logic. In (propositional) dynamic logic, the non-logical
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expressions are divided into action terms and propositions, and the deontic
operators behave in the same way as in Casta~neda's deontic logic . . . : they
transform action terms into deontic propositions or statements . . . the way
in which the distinction between action terms and propositions is made in
the semantics of dynamic logic corresponds nicely to Casta~neda's conception
of propositions as descriptions of the circumstances under which an action
is considered or performed."

Existing work (e.g., [Meyer, 1988]) falls short of providing convincing
evidence that an approach to deontic logic based on dynamic logic holds
the key to solving CTD problems. One diÆculty, as Hilpinen himself notes
[Hilpinen, 1993, pp. 94, footnote 4], is that the fourth line of the Chisholm
set appears to have \. . . no plausible representation in Meyer's dynamic de-
ontic logic". Hilpinen's suspicion is con�rmed in a later paper by Meyer,
Wieringa and Dignum [1997], in which they o�er a representation of what
they call the `ought-to-do' version of the Chisholm set in a deontic logic
(named PDeL) based on dynamic logic. Concerning their representation
they make the following remark: \. . . the fourth premise of the set . . . cannot
be represented in PDeL. In some sense, statements of actions in PDeL and
the underlying dynamic logic are of a hypothetical nature: `if one (would)
perform the action, the following holds'. The implication implicit in a for-
mula [�]' is therefore more like a conditional in conditional logic. As such,
it is not really important what actually happens. Here and in the sequel we
shall just ignore the fourth assertion in the formal representation" [Meyer,
Wieringa and Dignum, 1997, x 1.6.3]. (The formula [�]' says that execution
of action � leads to some state(s) where ' holds.) However, in the context
of analysing CTD scenarios, what actually happens is | as we have seen
| of paramount importance.

Meyer, Wieringa and Dignum further maintain that it is necessary to
distinguish explicitly between the logic of `ought-to-do' and the logic of
`ought-to-be', and accordingly they also o�er an analysis of the `ought-to-be'
version of the Chisholm set. We refer the reader to their paper for the details
[Meyer, Wieringa and Dignum, 1997, x 1.5], but note that their `ought-to-
be' logic relies essentially on the availability of an inde�nite number of
distinct obligation operators, each of which is relativised to a particular
`frame of reference', as they put it. They do not o�er precise criteria for
determining when one has moved from one frame of reference to another, but
they take it for granted that the �rst three lines of the Chisholm set involve
reference to three distinct frames of reference, one for each of the obligations
contained. Not surprisingly, problems of inconsistency are thereby avoided,
but at the cost of introducing an inde�nite number of obligation operators,
and in the absence of clear guidelines determining how many operators the
representation of a given scenario will need.
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7.3 Preference-based approaches

\SDL cannot distinguish between various grades or levels of non-ideality; in
the semantics of SDL worlds are either ideal or non-ideal. Yet the expression
`if you kill, kill gently' says that some non-ideal worlds are more ideal than
other non-ideal worlds; it says: presupposing that one kills, then in those
non-ideal worlds that best measure up to the deontically perfect worlds, one
kills gently. In formalising CTD reasoning the key problem is formalisation
of what is meant by `best measure up' " [Prakken and Sergot, 1997, p. 244].
This passage is quoted from the most detailed study currently available of
the treatment of CTD-phenomena within a preference-based approach to
the semantics of obligation sentences. The passage captures very succinctly
the reason why a number of researchers in deontic logic have accepted the
idea that an appropriate semantics for obligation sentences calls for an or-
dering on possible worlds, in terms of preference or relative goodness. As
the authors note, the idea stems from Bengt Hansson [1971], with the later
work of David Lewis [1974] providing a more comprehensive investigation
of the semantical framework involved.

Prakken and Sergot's paper, although in parts rather dense | it is best
read as a sequel to [Prakken and Sergot, 1996] | explores in considerable
depth the Hansson{Lewis analysis of dyadic deontic logic, assesses its short-
comings in regard to the treatment of CTDs, and o�ers a remedy for them
which draws on techniques deriving from the study of default reasoning.
We shall not attempt to give a summary of their �nal position, but con�ne
ourselves to a few observations.

A signi�cant feature of the Prakken and Sergot account of the Hansson{
Lewis approach is that they add a notion of alethic necessity, the function
of which is in part to clarify the nature of detachment properties. As was
pointed out in Section 3.2, above, the characteristic feature of the DD-family
of dyadic deontic logics (to which the Hansson{Lewis approach belongs) is
that it validates the deontic detachment principle, but does not validate the
factual detachment property. Expressed in terms of the notation used by
Prakken and Sergot in [Prakken and Sergot, 1997], this means that

(DD) O [B]A! (OB ! OA)

is valid, whereas

(FD) O [B]A! (B ! OA)

is not. (Formulas of the form O [B]A express what Prakken and Sergot
call contextual obligations, and they correspond to formulas of the form
O (A=B) in the Lewis notation. The formula OA is an abbreviation of
O [>]A, where > is any tautology.) However, since

(�O ) �B ! OB



338 JOS�E CARMO AND ANDREW J. I. JONES

is valid in the Prakken and Sergot extended version of Hansson-Lewis, (DD)
immediately yields

(SFD) O [B]A! (�B ! OA)

Prakken and Sergot call this principle `strong factual detachment', and they
say of the alethic necessity operator that it expresses the notion `objectively
settled'. They do not say much by way of further characterisation of `objec-
tively', except that they want to distinguish it from necessity in a subjective
sense, \. . . such as when an agent decides to regard it as settled for him that
there will be a fence" [Prakken and Sergot, 1997, p. 241]. They have the
further interesting comment to make about the import of (SFD) for CTD
contexts: \For CTD obligations this form of strong factual detachment
seems very appropriate, but it must be read with extreme care. As long as
it is possible to avoid violation of a primary obligation O :B a CTD obli-
gation O [B]A remains restricted to the context; it is only if the violation
of O:B is unavoidable, if�B holds, that the CTD obligation comes into
full e�ect, pertains to the context >" [loc.cit.]. Note, however, that if�B
holds, then OB holds, and thus | since the (D)-schema is valid in their
system | :O :B holds. That is, going back to the dog-and-sign scenario,
one could detach the obligation to put up a sign only in circumstances in
which there was no longer an obligation not to have a dog!

These observations bring to the fore one of the most basic di�erences
between our approach and that adopted by Prakken and Sergot: there is
a quite fundamental disagreement between us regarding what an adequate
theory of CTD scenarios should be expected to achieve. As we see mat-
ters, it is of paramount importance that the theory can show which actual
obligations are derivable in circumstances of violation of some primary obli-
gation, and can do so without also requiring that the sentence expressing
the primary obligation must be false. A deontic logic which cannot show
what actually ought to be done in circumstances of violation is, in our view,
of limited interest. Prakken and Sergot's theory, by contrast, belongs to a
tradition in deontic logic which, it seems, takes the detachment of actual
obligations to be a matter of no particular importance.

The notion of `settledness' Prakken and Sergot employ is peculiar, at
least with respect to its relation to the concept of obligation. How can that
which is settled, unalterable, be obligatory? Surely that which is genuinely
obligatory must be violable! Here again is a basic point of contrast between
our approach and that of Prakken and Sergot. The principles (:Oa ) and
(:Oi ) | Section 4.4, above | express, we believe, the correct connection
between settledness and obligation concepts, and they also play a key role,
as we saw in Section 5, in determining the consequences which can be drawn
from various CTD scenarios.

Returning to Prakken and Sergot's discussion of the Hansson{Lewis frame-
work, it should be noted that a prime reason for their dissatisfaction with
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that framework resides in the fact that it fails to capture a reading of the
`extended' considerate assassin scenario according to which that scenario is
inconsistent. (This scenario was discussed above, Section 6.4, in response
to some critical questions from Prakken. It extends the considerate assas-
sin scenario by adding the further requirement that it is forbidden to o�er
cigarettes. See [Prakken and Sergot, 1997, x 6.1].) The underlying problem,
as they diagnose it, is that the Hansson{Lewis semantics \. . . allows for the
possibility of sub-ideal worlds but has very little to say about what they
are like and nothing to say about how they compare with ideal worlds"
[Prakken and Sergot, 1997, p. 250]. Their attempted solution involves a
rather complex extension of the Hansson{Lewis framework, adapting tech-
niques from the study of default reasoning in order to provide a means of
ranking sub-ideal worlds with respect to the degree to which they measure
up to ideal worlds.

We shall not here attempt to summarise these complexities. But from
the point of view of comparison with our own theory, we observe in par-
ticular that Prakken and Sergot chose to impose on their investigation two
constraints which we feel | for reasons discussed, in particular, in Section
6, above | are best rejected: they insist on retaining the (D)-schema for
obligation sentences, and they refuse to abandon the consequential closure
principle expressed by

� (A! C) ! (O [B]A! O [B]C)

(However, one of the factors which further complicates their account is
that they also introduce a notion they call `explicit obligation', which is not
closed under consequence.)

Our rejection of the (D)-schema and consequential closure, our insistence
on the importance of (a restricted form of) factual detachment, our ex-
ploitation of a distinction between actual and ideal obligations, and our
characterisation of the relationship between settledness and obligation |
all of these factors mark fundamental di�erences between our theory and
that of Prakken and Sergot. But perhaps none of these constitutes the most
fundamental di�erence. For we have not found it necessary at all to resort
to the use of an explicit preference ordering in the semantics, in order to
capture an adequate representation of the various CTD scenarios. Recall
Lewis' claim in [Lewis, 1974, pp. 3]: \A mere division of worlds into the ideal
and the less-than-ideal will not meet our needs. We must use more compli-
cated value structures that somehow bear information about comparisons
or gradations of value." The treatment of the Chisholm scenario in [Jones
and P�orn, 1985] deliberately attempted to indicate that Lewis was wrong:
the semantics used a \mere division" into two types of worlds, de�ned two
accessibility relations pertaining to them, and de�ned some simple relations
between these relations. But it imposed no ranking, no ordering, on the
possible worlds. Yet it supplied the basis for an analysis of the Chisholm
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set that met all the standard adequacy criteria . . . until Prakken and Sergot
identi�ed the \pragmatic oddity". The question then became: is a prefer-
ence ordering in the semantics essential in order to cope with the pragmatic
oddity, and to cope with a broader class of CTD-phenomena, including but
not limited to those exposed by the Chisholm set? In contrast to Prakken
and Sergot, our answer to the last question is negative; the alternative strat-
egy is to focus on another of the notions mentioned by Hansson which, as
we have seen, also plays a role for both Loewer and Belzer and Prakken
and Sergot: the notion of settledness or �xity of the facts. Our basic con-
jecture is that, properly characterised, and appropriately connected to the
notions of actual and ideal obligation, the concept(s) of settledness provide
the fundamental key to unravelling the tangled knot of CTD-problems.

Future research, we trust, will facilitate comparison of the preference-
based approach and the approach which has formed the core of this chapter,
with a view to furthering our understanding of the Contrary-to-Duty, and
thus of normative reasoning itself.

POSTSCRIPT (SEPTEMBER, 2001)

The writing of this chapter was completed in 1999. Of relevant material
that has been published since that time, we would like in particular to
mention Makinson and van der Torre's work on \input/output" logics, which
the authors claim to be applicable to the treatment of CTD-problems; see
Makinson and van der Torre [2000; 2001].
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PREFACE TO THE SECOND EDITION

It is with great pleasure that we are presenting to the community the
second edition of this extraordinary handbook. It has been over 15 years
since the publication of the �rst edition and there have been great changes
in the landscape of philosophical logic since then.

The �rst edition has proved invaluable to generations of students and
researchers in formal philosophy and language, as well as to consumers of
logic in many applied areas. The main logic article in the Encyclopaedia
Britannica 1999 has described the �rst edition as `the best starting point
for exploring any of the topics in logic'. We are con�dent that the second
edition will prove to be just as good!

The �rst edition was the second handbook published for the logic commu-
nity. It followed the North Holland one volume Handbook of Mathematical
Logic, published in 1977, edited by the late Jon Barwise. The four volume
Handbook of Philosophical Logic, published 1983{1989 came at a fortunate
temporal junction at the evolution of logic. This was the time when logic
was gaining ground in computer science and arti�cial intelligence circles.

These areas were under increasing commercial pressure to provide devices
which help and/or replace the human in his daily activity. This pressure
required the use of logic in the modelling of human activity and organisa-
tion on the one hand and to provide the theoretical basis for the computer
program constructs on the other. The result was that the Handbook of
Philosophical Logic, which covered most of the areas needed from logic for
these active communities, became their bible.

The increased demand for philosophical logic from computer science and
arti�cial intelligence and computational linguistics accelerated the devel-
opment of the subject directly and indirectly. It directly pushed research
forward, stimulated by the needs of applications. New logic areas became
established and old areas were enriched and expanded. At the same time, it
socially provided employment for generations of logicians residing in com-
puter science, linguistics and electrical engineering departments which of
course helped keep the logic community thriving. In addition to that, it so
happens (perhaps not by accident) that many of the Handbook contributors
became active in these application areas and took their place as time passed
on, among the most famous leading �gures of applied philosophical logic of
our times. Today we have a handbook with a most extraordinary collection
of famous people as authors!

The table below will give our readers an idea of the landscape of logic
and its relation to computer science and formal language and arti�cial in-
telligence. It shows that the �rst edition is very close to the mark of what
was needed. Two topics were not included in the �rst edition, even though
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they were extensively discussed by all authors in a 3-day Handbook meeting.
These are:

� a chapter on non-monotonic logic

� a chapter on combinatory logic and �-calculus

We felt at the time (1979) that non-monotonic logic was not ready for
a chapter yet and that combinatory logic and �-calculus was too far re-
moved.1 Non-monotonic logic is now a very major area of philosophi-
cal logic, alongside default logics, labelled deductive systems, �bring log-
ics, multi-dimensional, multimodal and substructural logics. Intensive re-
examinations of fragments of classical logic have produced fresh insights,
including at time decision procedures and equivalence with non-classical
systems.

Perhaps the most impressive achievement of philosophical logic as arising
in the past decade has been the e�ective negotiation of research partnerships
with fallacy theory, informal logic and argumentation theory, attested to by
the Amsterdam Conference in Logic and Argumentation in 1995, and the
two Bonn Conferences in Practical Reasoning in 1996 and 1997.

These subjects are becoming more and more useful in agent theory and
intelligent and reactive databases.

Finally, �fteen years after the start of the Handbook project, I would
like to take this opportunity to put forward my current views about logic
in computer science, computational linguistics and arti�cial intelligence. In
the early 1980s the perception of the role of logic in computer science was
that of a speci�cation and reasoning tool and that of a basis for possibly
neat computer languages. The computer scientist was manipulating data
structures and the use of logic was one of his options.

My own view at the time was that there was an opportunity for logic to
play a key role in computer science and to exchange bene�ts with this rich
and important application area and thus enhance its own evolution. The
relationship between logic and computer science was perceived as very much
like the relationship of applied mathematics to physics and engineering. Ap-
plied mathematics evolves through its use as an essential tool, and so we
hoped for logic. Today my view has changed. As computer science and
arti�cial intelligence deal more and more with distributed and interactive
systems, processes, concurrency, agents, causes, transitions, communication
and control (to name a few), the researcher in this area is having more and
more in common with the traditional philosopher who has been analysing

1I am really sorry, in hindsight, about the omission of the non-monotonic logic chapter.
I wonder how the subject would have developed, if the AI research community had had
a theoretical model, in the form of a chapter, to look at. Perhaps the area would have
developed in a more streamlined way!
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such questions for centuries (unrestricted by the capabilities of any hard-
ware).

The principles governing the interaction of several processes, for example,
are abstract an similar to principles governing the cooperation of two large
organisation. A detailed rule based e�ective but rigid bureaucracy is very
much similar to a complex computer program handling and manipulating
data. My guess is that the principles underlying one are very much the
same as those underlying the other.

I believe the day is not far away in the future when the computer scientist
will wake up one morning with the realisation that he is actually a kind of
formal philosopher!

The projected number of volumes for this Handbook is about 18. The
subject has evolved and its areas have become interrelated to such an extent
that it no longer makes sense to dedicate volumes to topics. However, the
volumes do follow some natural groupings of chapters.

I would like to thank our authors are readers for their contributions and
their commitment in making this Handbook a success. Thanks also to
our publication administrator Mrs J. Spurr for her usual dedication and
excellence and to Kluwer Academic Publishers for their continuing support
for the Handbook.

Dov Gabbay
King's College London
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NARCISO MART�I-OLIET AND JOS�E MESEGUER

REWRITING LOGIC AS A LOGICAL AND
SEMANTIC FRAMEWORK

1 INTRODUCTION

The relationships between logic and computation, and the mutual interac-
tions between both �elds, are becoming stronger and more pervasive than
they have ever been. In fact, our way of thinking about both logic and
computation is being altered quite strongly. For example, there is such
an increasingly strong connection|in some cases to the point of complete
identi�cation|between computation and deduction, and such impressive
progress in compilation techniques and computing power, that the frontiers
between logical systems, theorem provers, and declarative programming lan-
guages are shifting and becoming more and more tenuous, with each area
inuencing and being inuenced by the others.

Similarly, in the speci�cation of languages and systems there is an increas-
ing shift from mathematically precise but somewhat restricted formalisms
towards speci�cations that are not only mathematical, but actually logical
in nature, as exempli�ed, for example, by speci�cation formalisms such as
algebraic speci�cations and structural operational semantics. In this way,
languages and systems that in principle may not seem to bear any resem-
blance to logical systems and may be completely \conventional" in nature,
end up being conceptualized primarily as formal systems.

However, any important development brings with it new challenges and
questions. Two such questions, that we wish to address in this paper are:

� How can the proliferation of logics be handled?

� Can exible logics allowing the speci�cation and prototyping of a wide
variety of languages and systems with naturalness and ease be found?

Much fruitful research has already been done with the aim of providing
adequate answers to these questions. Our aim here is to contribute in
some measure to their ongoing discussion by suggesting that rewriting logic
[Meseguer, 1992] seems to have particularly good properties recommending
its use as both a logical framework in which many other logics can be repre-
sented, and as a general semantic framework in which many languages and
systems can be naturally speci�ed and prototyped.

D. Gabbay and F. Guenthner (eds.),
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1.1 Rewriting logic as a logical framework

In our view, the main need in handling the proliferation of logics is primarily
conceptual. What is most needed is a metatheory of logics helping us to
better understand and explore the boundaries of the \space" of all logics,
present and future, and to relate in precise and general ways many of the
logics that we know or wish to develop.

Following ideas that go back to the original work of Goguen and Burstall
[1984] on institutions, we �nd very useful understanding the space of all log-
ics as a category, with appropriate translations between logics as the arrows
or morphisms between them. The work on institutions has been further
developed by their original proponents and by others [Goguen and Burstall,
1986; Goguen and Burstall, 1992; Tarlecki, 1984; Tarlecki, 1985], and has in-
uenced other notions proposed by di�erent authors [Mayoh, 1985; Poign�e,
1989; Fiadeiro and Sernadas, 1988; Meseguer, 1989; Harper et al., 1989a;
Salibra and Scollo, 1993; Ehrig et al., 1991; Astesiano and Cerioli, 1993].
Some of the notions proposed are closely related to institutions; however, in
other cases the main intent is to substantially expand the primarily model-
theoretic viewpoint provided by institutions to give an adequate treatment
of proof-theoretic aspects such as entailment and proof structures. The
theory of general logics [Meseguer, 1989] that we present in summary form
in Section 2 is one such attempt to encompass also proof-theoretic aspects,
and suggests not just one space or category of logics, but several, depending
on the proof-theoretic or model-theoretic aspects that we wish to focus on.

In our view, the quest for a logical framework, understood as a logic in
which many other logics can be represented, is important but is not the
primary issue. Viewed from the perspective of a general space of logics,
such a quest can in principle|although perhaps not in all approaches|be
understood as the search within such a space for a logic F such that many
other logics L can be represented in F by means of mappings L �! F that
have particularly nice properties such as being conservative translations.

Considered in this way, and assuming a very general axiomatic notion
of logic and ambitious enough requirements for a framework, there is in
principle no guarantee that such an F will necessarily be found. However,
somewhat more restricted successes such as �nding an F in which all the
logics of \practical interest," having �nitary presentations of their syntax
and their rules, can be represented can be very valuable and can provide a
great economy of e�ort. This is because, if an implementation for such a
framework logic exists, it becomes possible to implement through it all the
other \object logics" that can be adequately represented in the framework
logic.

Much work has already been done in this area, including the Edinburgh
logical framework LF [Harper et al., 1993; Harper et al., 1989; Gardner,
1992] and meta-theorem provers such as Isabelle [Paulson, 1989], �Prolog
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[Nadathur and Miller, 1988; Felty and Miller, 1990], and Elf [Pfenning,
1989], all of which adopt as framework logics di�erent variants of higher-
order logics or type theories. There has also been important work on what
Basin and Constable [1993] call metalogical frameworks. These are frame-
works supporting reasoning about the metalogical aspects of the logics be-
ing represented. Typically, this is accomplished by reifying as \data" the
proof theory of the logic being represented in a process that is described
in [Basin and Constable, 1993] as externalizing the logic in question. This
is in contrast to the more internalized form in which logics are represented
in LF and in meta-theorem provers, so that deduction in the object logic
is mirrored by deduction|for example, type inference|in the framework
logic. Work on metalogical frameworks includes the already mentioned pa-
per by Basin and Constable [1993], who advocate constructive type theory
as the framework logic, work of Matthews, Smaill, and Basin [1993], who
use Feferman's FS0 [Feferman, 1989], a logic designed with the explicit pur-
pose of being a metalogical framework, earlier work by Smullyan [1961],
and work by Goguen, Stevens, Hobley, and Hilberdink [1992] on the 2OBJ
meta-theorem prover, which uses order-sorted equational logic [Goguen and
Meseguer, 1992; Goguen et al., 2000].

A diÆculty with systems based on higher-order type theory such as LF
is that it may be quite awkward and of little practical use to represent
logics whose structural properties di�er considerably from those of the type
theory. For example, linear and relevance logics do not have adequate repre-
sentations in LF, in a precise technical sense of \adequate" [Gardner, 1992,
Corollary 5.1.8]. Since in metalogical frameworks a direct connection be-
tween deduction in the object and framework logics does not have to be
maintained, they seem in principle much more exible in their representa-
tional capabilities. However, this comes at a price, since the possibility of
directly using an implementation of the framework logic to implement an
object logic is compromised.

In relation to this previous work, rewriting logic seems to have great
exibility to represent in a natural way many other logics, widely di�erent
in nature, including equational, Horn, and linear logics, and any sequent
calculus presentation of a logic under extremely general assumptions about
such a logic. Moreover, quanti�ers can also be treated without problems.
More experience in representing other logics is certainly needed, but we are
encouraged by the naturalness and directness|often preserving the original
syntax and rules|with which the logics that we have studied can be repre-
sented. This is due to the great simplicity and generality of rewriting logic,
since in it all syntax and structural axioms are user-de�nable, so that the
abstract syntax of an object logic can be represented as an algebraic data
type, and is also due to the existence of only a few general \meta" rules of
deduction relative to the rewrite rules given by a speci�cation, where such
a speci�cation can be used to describe with rewrite rules the rules of deduc-
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tion of the object logic in question. In addition, the direct correspondence
between proofs in object logics and proofs in the framework logic can often
be maintained in a conservative way by means of maps of logics, so that an
implementation of rewriting logic can directly support an implementation
of an object logic. Furthermore, given the directness with which logics can
be represented, the task of proving conservativity is in many cases straight-
forward. Finally, although we do not discuss this aspect which is left for a
subsequent paper, externalization of logics to support metalogical reasoning
is also possible in rewriting logic.

Another important di�erence is that most approaches to logical frame-
works are proof-theoretic in nature, and thus they do not address the model
theories of the logics being represented. By contrast, several of the represen-
tations into rewriting logic that we consider|such as those for equational
logic, Horn logic, and linear logic|involve both models and proofs and are
therefore considerably more informative than purely proof-theoretic repre-
sentations.

The fact that rewriting logic is reective [Clavel and Meseguer, 1996;
Clavel and Meseguer, 1996a] has very important practical consequences for
its use as a logical framework. Note that a representation map 	 : L !
RWLogic for a logic L is by its very nature a metatheoretic construction
above the object levels of both L and RWLogic. In particular, 	 includes
as one of its key components a function 	Th : ThL ! ThRWLogic trans-
lating theories in L into rewrite theories. However, thanks to the fact that
the �nitely presentable rewrite theories can be rei�ed as an abstract data
type RWL-ADT, for L a logic having a �nitary presentation of its syntax and
its deduction rules, and such that 	 maps �nitely presented theories in L
to �nitely presented rewrite theories, we can often reify a metatheoretic
construction such as 	 inside rewriting logic by �rst de�ning an abstract
data type L-ADT representing the �nitely presentable theories of L, and then
reifying 	 itself as an equationally de�ned function 	 : L-ADT �! RWL-ADT.
In this way, the translation 	 becomes itself expressible and executable in-
side rewriting logic.

1.2 Rewriting logic as a semantic framework

As we have already mentioned, the distinction between a logical system and
a language or a model of computation is more and more in the eyes of the
beholder, although of course eÆciency considerations and the practical uses
intended may indeed strongly inuence the design choices. A good case in
point is the isomorphism between the Petri net model of concurrent compu-
tation [Reisig, 1995] and the tensor fragment of linear logic [Girard, 1987]

(see [Mart��-Oliet and Meseguer, 1991] and references therein). Therefore,
even though at the most basic mathematical level there may be little dis-
tinction between the general way in which a logic, a programming language,
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a system, or a model of computation are represented in rewriting logic, the
criteria and case studies to be used in order to judge the merits of rewriting
logic as a semantic framework are di�erent from those relevant for its use
as a logical framework.

One important consideration is that, from a computational point of view,
rewriting logic deduction is intrinsically concurrent. In fact, it was the
search for a general concurrency model that would help unify the somewhat
bewildering heterogeneity of existing models that provided the original im-
petus for the �rst investigations on rewriting logic [Meseguer, 1992]. Since
the generality and naturalness with which many concurrency models can
be expressed in rewriting logic has already been illustrated at length in
[Meseguer, 1992], only a brief summary is given in this paper. However,
the CCS [Milner, 1989] and the concurrent object-oriented programming
models are discussed in some detail to provide relevant examples.

Concurrent object-oriented programming is of particular interest. Given
that the semantics of object-oriented programs is still poorly understood,
and that the semantics of concurrent object-oriented systems is even less
well understood, the ease with which rewriting logic can be used to give a
precise semantics to concurrent object-oriented programs and to make such
programs declarative is quite encouraging. In this paper, only the basic
ideas of such a semantics are sketched; a much more detailed account can
be found in [Meseguer, 1993].

The similarities between rewriting logic and structural operational se-
mantics [Plotkin, 1981; Kahn, 1987] already noted in [Meseguer, 1992] are
further explored in this paper. We give examples showing that di�erent
styles of structural operational semantics can be regarded as special cases
of rewriting logic. The two main di�erences are the greater expressive power
of rewriting logic due to the ability for rewriting modulo user-de�nable ax-
ioms, and the fact that rewriting logic is a full-edged logic with both a proof
and a model theory, whereas structural operational semantics accounts are
only proof-theoretic.

Deduction with constraints can greatly increase the eÆciency of theo-
rem provers and logic programming languages. The most classical con-
straint solving algorithm is syntactic uni�cation, which corresponds to solv-
ing equations in a free algebra, the so-called Herbrand model, and is used in
resolution. However, much more eÆcient deduction techniques than those
a�orded by resolution can be obtained by building in additional knowledge
of special theories in the form of constraint solving algorithms such as, for
example, semantic uni�cation, or equalities and inequalities in a numerical
domain. In the past few years many authors have become aware that many
constraint solving algorithms can be speci�ed declaratively using rewrite
rules. However, since constraint solving is usually nondeterministic, the
usual equational logic interpretation of rewrite rules is clearly inadequate
as a mathematical semantics. By contrast, rewriting logic completely avoids
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such inadequacies and can serve as a semantic framework for logical systems
and languages using constraints, including parallel ones.

The frame problem in arti�cial intelligence is caused by the need, typical
of classical logic representations, to specify changes of state by stating not
only what changes, but also what does not change. This is basically due
to the essentially Platonic character of classical logic. Since rewriting logic
is by design a logic of change that allows sound and complete deductions
about the transitions of a system whose basic changes are axiomatized by
rewrite rules, the diÆculties associated with the frame problem disappear
[Mart��-Oliet and Meseguer, 1999]. In addition, the conservative mappings
of Horn logic with equality and of linear logic studied in Sections 4.2 and
4.3, respectively, directly show how other logics of change recently proposed
[H�olldobler and Schneeberger, 1990; Gro�e et al., 1996; Gro�e et al., 1992;
Masseron et al., 1990; Masseron et al., 1993] can be subsumed as special
cases. Added bene�ts include the straightforward support for concurrent
change and the logical support for object-oriented representation.

The paper begins with a summary of the theory of general logics proposed
in [Meseguer, 1989] that provides the conceptual basis for our discussion of
logical frameworks. Then the rules of deduction and the model theory of
rewriting logic are introduced, and the Maude and MaudeLog languages
based on rewriting logic are briey discussed. This is followed by a section
presenting examples of logics representable in the rewriting logic framework.
The role of rewriting logic as a semantic framework is then discussed and
illustrated with examples. The paper ends with some concluding remarks.

2 GENERAL LOGICS

A general axiomatic theory of logics should adequately cover all the key
ingredients of a logic. These include: a syntax, a notion of entailment of a
sentence from a set of axioms, a notion of model, and a notion of satisfaction
of a sentence by a model. A exible axiomatic notion of a proof calculus, in
which proofs of entailments, not just the entailments themselves, are �rst
class citizens should also be included. This section gives a brief review of
the required notions and axioms that will be later used in our treatment of
rewriting logic as a logical framework; a more detailed account with many
examples can be found in [Meseguer, 1989].

2.1 Syntax

Syntax can typically be given by a signature � providing a grammar on
which to build sentences. For �rst-order logic, a typical signature consists
of a list of function symbols and a list of predicate symbols, each with a
prescribed number of arguments, which are used to build up sentences by
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means of the usual logical connectives. For our purposes, it is enough to
assume that for each logic there is a category Sign of possible signatures
for it, and a functor sen assigning to each signature � the set sen(�) of all
its sentences.

2.2 Entailment systems

For a given signature � in Sign, entailment (also called provability) of a
sentence ' 2 sen(�) from a set of axioms � � sen(�) is a relation � ` '
which holds if and only if we can prove ' from the axioms � using the rules
of the logic. We make this relation relative to a signature.

In what follows, jCj denotes the collection of objects of a category C.

DEFINITION 1. [Meseguer, 1989] An entailment system is a triple E =
(Sign; sen;`) such that

� Sign is a category whose objects are called signatures,

� sen : Sign �! Set is a functor associating to each signature � a
corresponding set of �-sentences, and

� ` is a function associating to each � 2 jSignj a binary relation `�
� P(sen(�)) � sen(�) called �-entailment such that the following
properties are satis�ed:

1. reexivity: for any ' 2 sen(�), f'g `� ',

2. monotonicity: if � `� ' and �0 � � then �0 `� ',

3. transitivity: if � `� 'i, for all i 2 I , and � [ f'i j i 2 Ig `�  ,
then � `�  ,

4. `-translation: if � `� ', then for any H : � ! �0 in Sign,
sen(H)(�) `�0 sen(H)(').

Except for the explicit treatment of syntax translations, the axioms are
very similar to Scott's axioms for a consequence relation [Scott, 1974].

DEFINITION 2. [Meseguer, 1989] Given an entailment system E , its cat-
egory Th of theories has as objects pairs T = (�;�) with � a signature
and � � sen(�). A theory morphism H : (�;�) ! (�0;�0) is a signature
morphism H : �! �0 such that if ' 2 �, then �0 `�0 sen(H)(').

A theory morphism H : (�;�) �! (�0;�0) is called axiom-preserving if
it satis�es the condition that sen(H)(�) � �0. This de�nes a subcategory
Th0 with the same objects as Th but with morphisms restricted to be
axiom-preserving theory morphisms. Notice that the category Th0 does
not depend at all on the entailment relation `.
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2.3 Institutions

The axiomatization of a model theory is due to the seminal work on insti-
tutions by Goguen and Burstall [1984; 1992].

DEFINITION 3. [Goguen and Burstall, 1984] An institution is a 4-tuple
I = (Sign; sen;Mod; j=) such that

� Sign is a category whose objects are called signatures,

� sen : Sign �! Set is a functor associating to each signature � a set
of �-sentences,

� Mod : Sign �! Catop is a functor that gives for each signature � a
category whose objects are called �-models, and

� j= is a function associating to each � 2 jSignj a binary relation j=�

� jMod(�)j � sen(�) called �-satisfaction satisfying the following
satisfaction condition for each H : � ! �0 in Sign: for all M 0 2
jMod(�0)j and all ' 2 sen(�),

M 0 j=�0 sen(H)(') () Mod(H)(M 0) j=� ':

The satisfaction condition just requires that, for any syntax translation
between two signatures, a model of the second signature satis�es a translated
sentence if and only if the translation of this model satis�es the original
sentence. Note that Mod is a contravariant functor, that is, translations of
models go backwards.

Given a set of �-sentences �, we de�ne the category Mod(�;�) as the
full subcategory of Mod(�) determined by those models M 2 jMod(�)j
that satisfy all the sentences in �, i.e., M j=� ' for each ' 2 �.

Since the de�nition above of the category of theories Th0 only depends
on signatures and sentences, it also makes sense for an institution.

2.4 Logics

De�ning a logic is now almost trivial.

DEFINITION 4. [Meseguer, 1989] A logic is a 5-tuple L = (Sign; sen;Mod;
`; j=) such that:

� (Sign; sen;`) is an entailment system,

� (Sign; sen;Mod; j=) is an institution,

and the following soundness condition is satis�ed: for any � 2 jSignj,
� � sen(�), and ' 2 sen(�),

� `� ' =) � j=� ';
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where, by de�nition, the relation � j=� ' holds if and only if M j=� ' holds
for any model M that satis�es all the sentences in �.

The logic is called complete if the above implication is in fact an equiva-
lence.

2.5 Proof calculi

A given logic may admit many di�erent proof calculi. For example, in �rst-
order logic we have Hilbert style, natural deduction, and sequent calculi
among others, and the way in which proofs are represented and generated
by rules of deduction is di�erent for each of these calculi. It is useful to
make proofs relative to a given theory T whose axioms we are allowed to
use in order to prove theorems.

A proof calculus associates to each theory T a structure P (T ) of proofs
that use axioms of T as hypotheses. The structure P (T ) typically has an
algebraic structure of some kind so that we can obtain new proofs out of pre-
viously given proofs by operations that mirror the rules of deduction of the
calculus in question. We need not make a choice about the particular types
of algebraic structures that should be allowed for di�erent proof calculi; we
can abstract from such choices by simply saying that for a given proof calcu-
lus there is a category Str of such structures and a functor P : Th0 �! Str

assigning to each theory T its structure of proofs P (T ). Of course, it should
be possible to extract from P (T ) the underlying set proofs(T ) of all the
proofs of theorems of the theory T , and this extraction should be functo-
rial. Also, each proof, whatever it is, should contain information about what
theorem it is a proof of; this can be formalized by postulating a \projection
function" �T (parameterized by T in a natural way) that maps each proof
p 2 proofs(T ) to the sentence ' that it proves. Of course, each theorem of
T must have at least one proof, and sentences that are not theorems should
have no proof. To summarize, a proof calculus [Meseguer, 1989] consists of
an entailment system together with:

� A functorial assignment P of a structure P (T ) to each theory T .

� An additional functorial assignment of a set proofs(T ) to each struc-
ture P (T ).

� A natural function �T assigning a sentence to each proof p 2 proofs(T )
and such that, for � the axioms of T , a sentence ' is in the image of
�T if and only if � ` '.

It is quite common to encounter proof systems of a specialized nature.
In these calculi, only certain signatures are admissible as syntax|e.g., �-
nite signatures|, only certain sentences are allowed as axioms, and only
certain sentences|possibly di�erent from the axioms|are allowed as con-
clusions. The obvious reason for introducing such specialized calculi is that
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proofs are simpler under the given restrictions. In computer science the
choice between an eÆcient and an ineÆcient calculus may have dramatic
practical consequences. For logic programming languages, such calculi do
(or should) coincide with what is called their operational semantics, and
mark the di�erence between a hopelessly ineÆcient theorem prover and an
eÆcient programming language. In practice, of course, we are primarily
interested in proof calculi and proof subcalculi that are computationally ef-
fective. This is axiomatized by the notion of an (e�ective) proof subcalculus
which can be found in [Meseguer, 1989].

2.6 Mapping logics

The advantage of having an axiomatic theory of logics is that the \space"
of all logics (or that of all entailment systems, institutions, proof calculi,
etc.) becomes well understood. This space is not just a collection of objects
bearing no relationship to each other. In fact, the most interesting fruit
of the theory of general logics outlined in this section is that it gives us
a method for relating logics in a general and systematic way, and to ex-
ploit such relations in many applications. The simplest kind of relation is a
sublogic (subentailment system, etc.) relation. Thus, �rst-order equational
logic and Horn logic are both sublogics of �rst-order logic with equality.
However, more subtle and general ways of relating logics are possible. For
example, we may want to represent the universal fragment of �rst-order
logic in a purely functional way by taking all the predicates and formulas to
be functions whose value is either true or false so that a universal formula
then becomes an equation equating a given term to true. The general way
of relating logics (entailment systems, etc.) is to consider maps that inter-
pret one logic into another. A detailed treatment of such maps is given in
[Meseguer, 1989]; here we summarize some of the key ideas.

Let us �rst discuss in some detail maps of entailment systems. Basically,
a map of entailment systems E �! E 0 maps the language of E to that of E 0

in a way that respects the entailment relation. This means that signatures
of E are functorially mapped to signatures of E 0, and that sentences of E
are mapped to sentences of E 0 in a way that is coherent with the mapping
of their corresponding signatures. In addition, such a mapping � must
respect the entailment relations ` of E and `0 of E 0, i.e., we must have
� ` ' ) �(�) `0 �('): It turns out that for many interesting applications,
including the functional representation of �rst-order logic sketched above,
one wants to be more general and allow maps that send a signature of E
to a theory of E 0. These maps extend to maps between theories, and in
this context the coherence with the mapping at the level of signatures is
expressed by the notion of sensible functor de�ned in [Meseguer, 1989].
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DEFINITION 5. [Meseguer, 1989] Given entailment systems E = (Sign;
sen;`) and E 0 = (Sign0; sen 0;`0), a map of entailment systems (�; �) :
E �! E 0 consists of a natural transformation � : sen ) �; sen 0 and an
�-sensible functor1 � : Th0 �! Th00 satisfying the following property:

� `� ' =) �0 [ ��(�) `0�0 ��(');

where, by convention, (�0;�0) = �(�;�).

We say that (�; �) is a conservative map of entailment systems when the
above implication is an equivalence.

The property of being conservative may be essential for many applica-
tions. For example, since proof calculi are in a sense computational engines
on which the design and implementation of theorem provers and logic pro-
gramming languages can be based, we can view the establishment of a map
of proof calculi having nice properties, such as conservativity, as a proof
of correctness for a compiler that permits implementing a system based on
the �rst calculus in terms of another system based on the second. Besides
establishing correctness, the map itself speci�es the compilation function.

A map of institutions2 I �! I 0 is similar in its syntax part to a map
of entailment systems. In addition, for models we have a natural functor
� : Mod0(�(�)) �! Mod(�) \backwards" from the models in I 0 of a
translated signature �(�) to the models in I of the original signature �,
and such a mapping respects the satisfaction relations j= of I and j=0 of I 0,
in the sense that M 0 j=0 �(') () �(M 0) j= ':

DEFINITION 6. [Meseguer, 1989] Given institutions I = (Sign; sen;Mod;
j=) and I 0 = (Sign0; sen 0;Mod0; j=0), a map of institutions (�; �; �) : I �!
I 0 consists of a natural transformation � : sen ) �; sen 0, an �-sensible
functor � : Th0 �! Th00, and a natural transformation � : �op;Mod0 )
Mod such that for each � 2 jSignj, ' 2 sen(�), and M 0 2 jMod0(�(�; ;))j
the following property is satis�ed:

M 0 j=0
�0 ��(') () �(�;;)(M

0) j=� ';

where �0 is the signature of the theory �(�; ;).

A map of logics has now a very simple de�nition. It consists of a pair
of maps: one for the underlying entailment systems, and another for the
underlying institutions, such that both maps agree on how they translate
signatures and sentences.

1We refer to [Meseguer, 1989] for the detailed de�nition of �-sensible functor. Basi-
cally, what is required is that the provable consequences of the theory �(�;�) are entirely
determined by �(�; ;) and by �(�). Note that � depends only on signatures, not theories.

2Such maps are di�erent from the \institution morphisms" considered by Goguen and
Burstall in [1984; 1992].
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DEFINITION 7. [Meseguer, 1989] Given logics L = (Sign; sen;Mod;`; j=)
and L0 = (Sign0; sen 0;Mod0; `0; j=0), a map of logics (�; �; �) : L �! L0

consists of a functor � : Th0 �! Th00, and natural transformations � :
sen ) �; sen 0 and � : �op;Mod0 )Mod such that:

� (�; �) : (Sign; sen;`) �! (Sign0; sen 0;`0) is a map of entailment
systems, and

� (�; �; �) : (Sign; sen;Mod; j=) �! (Sign0; sen 0;Mod0; j=0) is a map
of institutions.

We say that (�; �; �) is conservative when if (�; �) is so as a map of
entailment systems.

There is also a notion of map of proof calculi, for which we refer the
reader to [Meseguer, 1989].

2.7 The idea of a logical framework

As we have already explained in the introduction, viewed from the perspec-
tive of a general space of logics that can be related to each other by means
of mappings, the quest for a logical framework can be understood as the
search within such a space for a logic F (the framework logic) such that
many other logics (the object logics) such as, say, L can be represented in
F by means of mappings L �! F that have good enough properties. The
minimum requirement that seems reasonable to make on a representation
map L �! F is that it should be a conservative map of entailment sys-
tems. Under such circumstances, we can reduce issues of provability in L
to issues of provability in F , by mapping the theories and sentences of L
into F using the conservative representation map. Given a computer im-
plementation of deduction in F , we can use the conservative map to prove
theorems in L by proving the corresponding translations in F . In this way,
the implementation for F can be used as a generic theorem prover for many
logics.

However, since maps between logics can, as we have seen, respect addi-
tional logical structure such as the model theory or the proofs, in some cases
a representation map into a logical framework may be particularly informa-
tive because, in addition to being a conservative map of entailment systems,
it is also a map of institutions, or a map of proof calculi. For example, when
rewriting logic is chosen as a logical framework, appropriate representation
maps for equational logic, Horn logic, and propositional linear logic can be
shown to be maps of institutions also (see Section 4). In general, however,
since the model theories of di�erent logics can be very di�erent from each
other, it is not reasonable to expect or require that the representation maps
into a logical framework will always be maps of institutions. Nevertheless,
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what it can always be done is to \borrow" the additional logical struc-
ture that F may have (institution, proof calculus) to endow L with such
a structure, so that the representation map does indeed preserve the extra
structure [Cerioli and Meseguer, 1996].

Having criteria for the adequacy of maps representing logics in a logical
framework is not enough. An equally important issue is having criteria
for the generality of a logical framework, so that it is in fact justi�ed to
call it by that name. That is, given a candidate logical framework F ,
how many logics can be adequately represented in F? We can make this
question precise by de�ning the scope of a logical frameworkF as the class of
entailment systems E having conservative maps of entailment systems E �!
F . In this regard, the axioms of the theory of general logics that we have
presented are probably too general; without adding further assumptions it
is not reasonable to expect that we can �nd a logical framework F whose
scope is the class of all entailment systems. A much more reasonable goal
is �nding an F whose scope includes all entailment systems of \practical
interest," having �nitary presentations of their syntax and their rules of
deduction. Axiomatizing such �nitely presentable entailment systems and
proof calculi so as to capture|in the spirit of the more general axioms that
we have presented, but with stronger requirements|all logics of \practical
interest" (at least for computational purposes) is a very important research
task.

Another important property that can help measuring the suitability of a
logicF as a logical framework is its representational adequacy, understood as
the naturalness and ease with which entailment systems can be represented,
so that the representation E �! F mirrors E as closely as possible. That is,
a framework requiring very complicated encodings for many object logics of
interest is less representationally adequate than one for which most logics
can be represented in a straightforward way, so that there is in fact little or
no \distance" between an object logic and its corresponding representation.
Although at present we lack a precise de�nition of this property, it is quite
easy to observe its absence in particular examples. We view representational
adequacy as a very important practical criterion for judging the relative
merits of di�erent logical frameworks.

In this paper, we present rewriting logic as a logic that seems to have
particularly good properties as a logical framework. We conjecture that
the scope of rewriting logic contains all entailment systems of \practical
interest" for a reasonable axiomatization of such systems.

2.8 Reection

We give here a brief summary of the notion of a universal theory in a logic
and of a reective entailment system introduced in [Clavel and Meseguer,
1996]. These notions axiomatize reective logics within the theory of general
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logics [Meseguer, 1989]. We focus here on the simplest case, namely entail-
ment systems. However, reection at the proof calculus level|where not
only sentences, but also proofs are reected|is also very useful; de�nitions
for that case are also in [Clavel and Meseguer, 1996].

A reective logic is a logic in which important aspects of its metatheory
can be represented at the object level in a consistent way, so that the object-
level representation correctly simulates the relevant metatheoretic aspects.
Two obvious metatheoretic notions that can be so reected are theories
and the entailment relation `. This leads us to the notion of a universal
theory. However, universality may not be absolute, but only relative to a
class C of representable theories. Typically, for a theory to be representable
at the object level, it must have a �nitary description in some way|say,
being recursively enumerable|so that it can be represented as a piece of
language.

Given an entailment system E and a set of theories C, a theory U is C-
universal if there is a recursive injective function, called a representation
function,

( ` ) :
[
T2C

fTg � sen(T ) �! sen(U)

such that for each T 2 C; ' 2 sen(T ),

T ` ' () U ` T ` ':

If, in addition, U 2 C, then the entailment system E is called C-reective.
Note that in a reective entailment system, since U itself is representable,

representation can be iterated, so that we immediately have a \reective
tower"

T ` ' () U ` T ` ' () U ` U ` T ` ' : : :

3 REWRITING LOGIC

This section gives the rules of deduction and semantics of rewriting logic,
and explains its computational meaning. The Maude and MaudeLog lan-
guages, based on rewriting logic, are also briey discussed.

3.1 Basic universal algebra

Rewriting logic is parameterized with respect to the version of the underly-
ing equational logic, which can be unsorted, many-sorted, order-sorted, or
the recently developed membership equational logic [Bouhoula et al., 2000;
Meseguer, 1998]. For the sake of simplifying the exposition, we treat here
the unsorted case.

A set � of function symbols is a ranked alphabet � = f�n j n 2 INg.
A �-algebra is then a set A together with an assignment of a function
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fA : An �! A for each f 2 �n with n 2 IN. We denote by T� the �-
algebra of ground �-terms, and by T�(X) the �-algebra of �-terms with
variables in a set X . Similarly, given a set E of �-equations, T�;E denotes
the �-algebra of equivalence classes of ground �-terms modulo the equations
E; in the same way, T�;E(X) denotes the �-algebra of equivalence classes
of �-terms with variables in X modulo the equations E. Let [t]E or just [t]
denote the E-equivalence class of t.

Given a term t 2 T�(fx1; : : : ; xng) and terms u1; : : : ; un 2 T�(X), we
denote t(u1=x1; : : : ; un=xn) the term in T�(X) obtained from t by simulta-
neously substituting ui for xi, i = 1; : : : ; n. To simplify notation, we denote a
sequence of objects a1; : : : ; an by a; with this notation, t(u1=x1; : : : ; un=xn)
can be abbreviated to t(u=x).

3.2 The rules of rewriting logic

A signature in rewriting logic is a pair (�; E) with � a ranked alphabet
of function symbols and E a set of �-equations. Rewriting will operate on
equivalence classes of terms modulo the set of equations E. In this way, we
free rewriting from the syntactic constraints of a term representation and
gain a much greater exibility in deciding what counts as a data structure;
for example, string rewriting is obtained by imposing an associativity axiom,
and multiset rewriting by imposing associativity and commutativity. Of
course, standard term rewriting is obtained as the particular case in which
the set E of equations is empty. Techniques for rewriting modulo equations
have been studied extensively [Dershowitz and Jouannaud, 1990] and can be
used to implement rewriting modulo many equational theories of interest.

Given a signature (�; E), sentences of rewriting logic are \sequents" of
the form [t]E �! [t0]E , where t and t0 are �-terms possibly involving some
variables from the countably in�nite set X = fx1; : : : ; xn; : : :g. A theory
in this logic, called a rewrite theory, is a slight generalization of the usual
notion of theory as in De�nition 2 in that, in addition, we allow the axioms|
in this case the sequents [t]E �! [t0]E|to be labelled. This is very natural
for many applications, and customary for automata|viewed as labelled
transition systems|and for Petri nets, which are both particular instances
of our de�nition.

DEFINITION 8. A rewrite theory R is a 4-tuple R = (�; E; L;R) where
� is a ranked alphabet of function symbols, E is a set of �-equations,
L is a set of labels , and R is a set of pairs R � L � T�;E(X)2 whose
�rst component is a label and whose second component is a pair of E-
equivalence classes of terms, with X = fx1; : : : ; xn; : : :g a countably in�nite
set of variables. Elements of R are called rewrite rules3. We understand a

3To simplify the exposition the rules of the logic are given for the case of unconditional
rewrite rules. However, all the ideas presented here have been extended to conditional
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rule (r; ([t]; [t0])) as a labelled sequent and use for it the notation r : [t] �!
[t0]. To indicate that fx1; : : : ; xng is the set of variables occurring in either
t or t0, we write r : [t(x1; : : : ; xn)] �! [t0(x1; : : : ; xn)], or in abbreviated
notation r : [t(x)] �! [t0(x)]:

Given a rewrite theory R, we say that R entails a sequent [t] �! [t0] and
write R ` [t] �! [t0] if and only if [t] �! [t0] can be obtained by �nite
application of the following rules of deduction:

1. Reexivity. For each [t] 2 T�;E(X),

[t] �! [t]
:

2. Congruence. For each f 2 �n, n 2 IN,

[t1] �! [t01] : : : [tn] �! [t0n]

[f(t1; : : : ; tn)] �! [f(t01; : : : ; t
0
n)]

:

3. Replacement. For each rewrite rule in the theory R of the form
r : [t(x1; : : : ; xn)] �! [t0(x1; : : : ; xn)],

[w1] �! [w01] : : : [wn] �! [w0n]

[t(w=x)] �! [t0(w0=x)]
:

4. Transitivity.
[t1] �! [t2] [t2] �! [t3]

[t1] �! [t3]
:

Equational logic (modulo a set of axioms E) is obtained from rewriting logic
by adding the following rule:

5. Symmetry.
[t1] �! [t2]

[t2] �! [t1]
:

With this new rule, sequents derivable in equational logic are bidirectional;
therefore, in this case we can adopt the notation [t] $ [t0] throughout and
call such bidirectional sequents equations.

A nice consequence of having de�ned rewriting logic is that concurrent
rewriting, rather than emerging as an operational notion, actually coincides
with deduction in such a logic.

DEFINITION 9. Given a rewrite theoryR = (�; E; L;R), a (�; E)-sequent
[t] �! [t0] is called a concurrent R-rewrite (or just a rewrite) if and only if
it can be derived from R by means of the rules 1-4, i.e., R ` [t] �! [t0].

rules in [Meseguer, 1992] with very general rules of the form

r : [t] �! [t0] if [u1] �! [v1] ^ : : : ^ [uk] �! [vk]:

This increases considerably the expressive power of rewrite theories, as illustrated by
several of the examples presented in this paper.
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3.3 The meaning of rewriting logic

A logic worth its salt should be understood as a method of correct reasoning
about some class of entities, not as an empty formal game. For equational
logic, the entities in question are sets, functions between them, and the
relation of identity between elements. For rewriting logic, the entities in
question are concurrent systems having states, and evolving by means of
transitions. The signature of a rewrite theory describes a particular struc-
ture for the states of a system|e.g., multiset, binary tree, etc.|so that
its states can be distributed according to such a structure. The rewrite
rules in the theory describe which elementary local transitions are possible
in the distributed state by concurrent local transformations. The rules of
rewriting logic allow us to reason correctly about which general concurrent
transitions are possible in a system satisfying such a description. Clearly,
concurrent systems should be the models giving a semantic interpretation
to rewriting logic, in the same way that algebras are the models giving a
semantic interpretation to equational logic. A precise account of the model
theory of rewriting logic, giving rise to an initial model semantics for Maude
modules and fully consistent with the above system-oriented interpretation,
is sketched in Section 3.5 and developed in full detail for the more general
conditional case in [Meseguer, 1992].

Therefore, in rewriting logic a sequent [t] �! [t0] should not be read
as \[t] equals [t0]," but as \[t] becomes [t0]." Clearly, rewriting logic is a
logic of becoming or change, not a logic of equality in a static sense. The
apparently innocent step of adding the symmetry rule is in fact a very strong
restriction, namely assuming that all change is reversible, thus bringing us
into a timeless Platonic realm in which \before" and \after" have been
identi�ed.

A related observation, which is particularly important for the use of
rewriting logic as a logical framework, is that [t] should not be understood as
a term in the usual �rst-order logic sense, but as a proposition or formula|
built up using the connectives in �|that asserts being in a certain state
having a certain structure. However, unlike most other logics, the logical
connectives � and their structural properties E are entirely user-de�nable.
This provides great exibility for considering many di�erent state structures
and makes rewriting logic very general in its capacity to deal with many
di�erent types of concurrent systems, and also in its capacity to represent
many di�erent logics. For the case of concurrent systems, this generality is
discussed at length in [Meseguer, 1992] (see also [Mart��-Oliet and Meseguer,
1999] for the advantages of this generality in the context of unifying AI log-
ics of action). In a similar vein, but with a broader focus, Section 5 discusses
the advantages of rewriting logic as a general semantic framework in which
to specify and prototype languages and systems. Finally, Section 4 explores
the generality of rewriting logic as a logical framework in which logics can
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be represented and prototyped.
In summary, the rules of rewriting logic are rules to reason about change

in a concurrent system, or, alternatively, metarules for reasoning about
deduction in a logical system. They allow us to draw valid conclusions
about the evolution of the system from certain basic types of change known
to be possible, or, in the alternative viewpoint, about the correct deductions
possible in a logical system. Our present discussion is summarized as follows:

State $ Term $ Proposition
Transition $ Rewriting $ Deduction
Distributed $ Algebraic $ Propositional

Structure Structure Structure

Section 4 will further clarify and illustrate each of the correspondences in
the last two columns of the diagram, and Section 5 will do the same for the
�rst two columns.

3.4 The Maude and MaudeLog languages

Rewriting logic can be used directly as a wide spectrum language support-
ing speci�cation, rapid prototyping, and programming of concurrent sys-
tems. As explained later in this paper, rewriting logic can also be used
as a logical framework in which other logics can be naturally represented,
and as a semantic framework for specifying languages and systems. The
Maude language [Meseguer, 1993; Clavel et al., 1996] supports all these
uses of rewriting logic in a particularly modular way in which modules are
rewrite theories and in which functional modules with equationally de�ned
data types can also be declared in a functional sublanguage. The exam-
ples given later in this paper illustrate the syntax of Maude. Details about
the language design, its semantics, its parallel programming and wide spec-
trum capabilities, and its support of object-oriented programming can be
found in [Meseguer, 1992; Meseguer and Winkler, 1992; Meseguer, 1993;
Meseguer, 1993b]. Here we provide a very brief sketch that should be suÆ-
cient for understanding the examples presented later.

In Maude there are three kinds of modules :

1. Functional modules, introduced by the keyword fmod,

2. System modules, introduced by the keyword mod, and

3. Object-oriented modules, introduced by the keyword omod.

Object-oriented modules can be reduced to a special case of system mod-
ules for which a special syntax is used; therefore, in essence we only have
functional and system modules. Maude's functional and system modules
are respectively of the form
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� fmod E endfm, and

� mod R endm,

for E an equational theory and R a rewrite theory4. In functional mod-
ules, equations are declared with the keywords eq or ceq (for conditional
equations), and in system or object-oriented modules with the keywords ax
or cax. In addition, certain equations, such as any combination of associa-
tivity, commutativity, or identity, for which rewriting modulo is provided,
can be declared together with the corresponding operator using the key-
words assoc, comm, id. Rules can only appear in system or object-oriented
modules, and are declared with the keywords rl or crl.

In Maude a module can have submodules, which can be imported with ei-
ther protecting or including quali�cations stating the degree of integrity
enjoyed by the submodule when imported by the supermodule.

The version of rewriting logic used for Maude in this paper is order-
sorted5. This means that rewrite theories are typed (types are called sorts)
and can have subtypes (subsorts), and that function symbols can be over-
loaded. In particular, functional modules are order-sorted equational theo-
ries [Goguen and Meseguer, 1992] and they form a sublanguage similar to
OBJ [Goguen et al., 2000].

Like OBJ, Maude has also theories to specify semantic requirements for
interfaces and to make high level assertions about modules. They are of the
three kinds:

1. Functional theories, introduced by the keyword fth,

2. System theories, introduced by the keyword th, and

3. Object-oriented theories, introduced by the keyword oth.

Also as OBJ, Maude has parameterized modules and theories, again of the
three kinds, and views that are theory interpretations relating theories to
modules or to other theories.

Maude can be further extended to a language called MaudeLog that uni-
�es the paradigms of functional programming, Horn logic programming,
and concurrent object-oriented programming. In fact, Maude's design is
based on a general axiomatic notion of \logic programming language" based
on the general axiomatic theory of logic sketched in Section 2 [Meseguer,
1989; Meseguer, 1992b]. Technically, a uni�cation of paradigms is achieved
by mapping the logics of each paradigm into a richer logic in which the

4This is somewhat inaccurate in the case of system modules having functional sub-
modules because we have to \remember" that the submodule is functional.

5The latest version of Maude [Clavel et al., 1996] is based on the recently developed
membership equational logic, which extends order-sorted equational logic and at the same
time has a simpler and more general model theory [Bouhoula et al., 2000; Meseguer, 1998].
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paradigms are uni�ed. In the case of Maude and MaudeLog, what is done
is to de�ne a new logic (rewriting logic) in which concurrent computations,
and in particular concurrent object-oriented computations, can be expressed
in a natural way, and then to formally relate this logic to the logics of the
functional and relational paradigms, i.e., to equational logic and to Horn
logic, by means of maps of logics that provide a simple and rigorous uni�ca-
tion of paradigms. As it has already been mentioned, we actually assume an
order-sorted structure throughout, and therefore the logics in question are:
order-sorted rewriting logic, denoted OSRWLogic, order-sorted equational
logic, denoted OSEqtl, and order-sorted Horn logic, denoted OSHorn.

The logic of equational programming can be embedded within (order-
sorted) rewriting logic by means of a map of logics

OSEqtl �! OSRWLogic:

The details of this map of logics are discussed in Section 4.1. At the
programming language level, such a map corresponds to the inclusion of
Maude's functional modules (essentially identical to OBJ modules) within
the language.

Since the power and the range of applications of a multiparadigm logic
programming language can be substantially increased if it is possible to solve
queries involving logical variables in the sense of relational programming, as
in the Prolog language, we are naturally led to seek a uni�cation of the three
paradigms of functional, relational and concurrent object-oriented program-
ming into a single multiparadigm logic programming language. This uni�-
cation can be attained in a language extension of Maude called MaudeLog.
The integration of Horn logic is achieved by a map of logics

OSHorn �! OSRWLogic

that systematically relates order-sorted Horn logic to order-sorted rewriting
logic. The details of this map are discussed in Section 4.2.

The di�erence between Maude and MaudeLog does not consist of any
change in the underlying logic; indeed, both languages are based on rewrit-
ing logic, and both have rewrite theories as programs. It resides, rather, in
an enlargement of the set of queries that can be presented, so that, while
keeping the same syntax and models, in MaudeLog we also consider queries
involving existential formulas of the form

9x [u1(x)] �! [v1(x)] ^ : : : ^ [uk(x)] �! [vk(x)]:

Therefore, the sentences and the deductive rules and mechanisms that are
now needed require further extensions of rewriting logic deduction. In
particular, solving such existential queries requires performing uni�cation,
speci�cally, given Maude's typing structure, order-sorted E-uni�cation for
a set E of structural axioms [Meseguer et al., 1989].
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3.5 The models of rewriting logic

We �rst sketch the construction of initial and free models for a rewrite theory
R = (�; E; L;R). Such models capture nicely the intuitive idea of a \rewrite
system" in the sense that they are systems whose states are E-equivalence
classes of terms, and whose transitions are concurrent rewrites using the
rules in R. By adopting a logical instead of a computational perspective,
we can alternatively view such models as \logical systems" in which for-
mulas are validly rewritten to other formulas by concurrent rewrites which
correspond to proofs for the logic in question. Such models have a natu-
ral category structure, with states (or formulas) as objects, transitions (or
proofs) as morphisms, and sequential composition as morphism composi-
tion, and in them dynamic behavior exactly corresponds to deduction.

Given a rewrite theory R = (�; E; L;R), the model that we are seek-
ing is a category TR(X) whose objects are equivalence classes of terms
[t] 2 T�;E(X) and whose morphisms are equivalence classes of \proof terms"
representing proofs in rewriting deduction, i.e., concurrent R-rewrites. The
rules for generating such proof terms, with the speci�cation of their re-
spective domain and codomain, are given below; they just \decorate" with
proof terms the rules 1-4 of rewriting logic. Note that we always use \dia-
grammatic" notation for morphism composition, i.e., �;� always means the
composition of � followed by �.

1. Identities. For each [t] 2 T�;E(X),

[t] : [t] �! [t]
:

2. �-structure. For each f 2 �n, n 2 IN,

�1 : [t1] �! [t01] : : : �n : [tn] �! [t0n]

f(�1; : : : ; �n) : [f(t1; : : : ; tn)] �! [f(t01; : : : ; t
0
n)]

:

3. Replacement. For each rewrite rule r : [t(xn)] �! [t0(xn)] in R,

�1 : [w1] �! [w01] : : : �n : [wn] �! [w0n]

r(�1; : : : ; �n) : [t(w=x)] �! [t0(w0=x)]
:

4. Composition.

� : [t1] �! [t2] � : [t2] �! [t3]

�;� : [t1] �! [t3]
:

Convention. In the case when the same label r appears in two di�erent
rules of R, the \proof terms" r(�) can sometimes be ambiguous. We assume
that such ambiguity problems have been resolved by disambiguating the
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label r in the proof terms r(�) if necessary; with this understanding, we
adopt the simpler notation r(�) to ease the exposition.

Each of the above rules of generation de�nes a di�erent operation taking
certain proof terms as arguments and returning a resulting proof term. In
other words, proof terms form an algebraic structure PR(X) consisting of
a graph with nodes T�;E(X), with identity arrows, and with operations f
(for each f 2 �), r (for each rewrite rule), and ; (for composing arrows).
Our desired model TR(X) is the quotient of PR(X) modulo the following
equations6:

1. Category.

(a) Associativity. For all �; �; ,

(�;�);  = �; (�; ):

(b) Identities. For each � : [t] �! [t0],

�; [t0] = � and [t];� = �:

2. Functoriality of the �-algebraic structure. For each f 2 �n,
n 2 IN,

(a) Preservation of composition. For all �1; : : : ; �n; �1; : : : ; �n,

f(�1;�1; : : : ; �n;�n) = f(�1; : : : ; �n); f(�1; : : : ; �n):

(b) Preservation of identities.

f([t1]; : : : ; [tn]) = [f(t1; : : : ; tn)]:

3. Axioms in E. For each axiom t(x1; : : : ; xn) = t0(x1; : : : ; xn) in E,
for all �1; : : : ; �n,

t(�1; : : : ; �n) = t0(�1; : : : ; �n):

4. Exchange. For each rule r : [t(x1; : : : ; xn)] �! [t0(x1; : : : ; xn)] in R,

�1 : [w1] �! [w01] : : : �n : [wn] �! [w0n]

r(�) = r([w]); t0(�) = t(�); r([w0])
:

6In the expressions appearing in the equations, when compositions of morphisms are
involved, we always implicitly assume that the corresponding domains and codomains
match.
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Note that the set X of variables is actually a parameter of these construc-
tions, and we need not assume X to be �xed and countable. In particular,
for X = ;, we adopt the notation TR. The equations in 1 make TR(X) a
category, the equations in 2 make each f 2 � a functor, and 3 forces the
axioms E. The exchange law states that any rewrite of the form r(�)|
which represents the simultaneous rewriting of the term at the top using
rule r and \below," i.e., in the subterms matched by the variables, using the
rewrites �|is equivalent to the sequential composition r([w]); t0(�), corre-
sponding to �rst rewriting on top with r and then below on the subterms
matched by the variables with �, and is also equivalent to the sequential
composition t(�); r([w0]) corresponding to �rst rewriting below with � and
then on top with r. Therefore, the exchange law states that rewriting at the
top by means of rule r and rewriting \below" using � are processes that are
independent of each other and can be done either simultaneously or in any
order. Since [t(x1; : : : ; xn)] and [t0(x1; : : : ; xn)] can be regarded as functors
TR(X)n �! TR(X), from the mathematical point of view the exchange law
just asserts that r is a natural transformation, i.e.,

LEMMA 10. [Meseguer, 1992] For each rewrite rule r : [t(x1; : : : ; xn)] �!
[t0(x1; : : : ; xn)] in R, the family of morphisms

fr([w]) : [t(w=x)] �! [t0(w=x)] j [w] 2 T�;E(X)ng

is a natural transformation r : [t(x1; : : : ; xn)]) [t0(x1; : : : ; xn)] between the
functors [t(x1; : : : ; xn)]; [t0(x1; : : : ; xn)] : TR(X)n �! TR(X):

The exchange law provides a way of abstracting a rewriting computation
by considering immaterial the order in which rewrites are performed \above"
and \below" in the term; further abstraction among proof terms is obtained
from the functoriality equations. The equations 1-4 provide in a sense the
most abstract \true concurrency" view of the computations of the rewrite
theory R that can reasonably be given.

The category TR(X) is just one among many models that can be assigned
to the rewrite theory R. The general notion of model, called an R-system,
is de�ned as follows:

DEFINITION 11. Given a rewrite theory R = (�; E; L;R), an R-system
S is a category S together with:

� a (�; E)-algebra structure given by a family of functors

ffS : Sn �! S j f 2 �n; n 2 INg

satisfying the equations E, i.e., for any t(x1; : : : ; xn) = t0(x1; : : : ; xn)
in E we have an identity of functors tS = t0S , where the functor tS is
de�ned inductively from the functors fS in the obvious way.

� for each rewrite rule r : [t(x)] �! [t0(x)] in R a natural transformation
rS : tS ) t0S .
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An R-homomorphism F : S �! S 0 between two R-systems is then a
functor F : S �! S 0 such that it is a �-algebra homomorphism|i.e.,
fS � F = Fn � fS0 , for each f in �n, n 2 IN|and such that \F preserves
R," i.e., for each rewrite rule r : [t(x)] �! [t0(x)] in R we have the identity
of natural transformations7 rS � F = Fn � rS0 , where n is the number of
variables appearing in the rule. This de�nes a categoryR-Sys in the obvious
way.

The above de�nition captures formally the idea that the models of a
rewrite theory are systems. By a \system" we mean a machine-like entity
that can be in a variety of states, and that can change its state by performing
certain transitions. Such transitions are transitive, and it is natural and
convenient to view states as \idle" transitions that do not change the state.
In other words, a system can be naturally regarded as a category, whose
objects are the states of the system and whose morphisms are the system's
transitions.

For sequential systems such as labelled transition systems this is in a sense
the end of the story; such systems exhibit nondeterminism, but do not have
the required algebraic structure in their states and transitions to exhibit
true concurrency. Indeed, what makes a system concurrent is precisely the
existence of an additional algebraic structure [Meseguer, 1992]. First, the
states themselves are distributed according to such a structure; for example,
for Petri nets [Reisig, 1995] the distribution takes the form of a multiset.
Second, concurrent transitions are themselves distributed according to the
same algebraic structure; this is what the notion of R-system captures, and
is for example manifested in the concurrent �ring of Petri nets, the evolution
of concurrent object-oriented systems [Meseguer, 1993] and, more generally,
in any type of concurrent rewriting.

The expressive power of rewrite theories to specify concurrent transition
systems is greatly increased by the possibility of having not only transitions,
but also parameterized transitions, i.e., procedures. This is what rewrite
rules with variables provide. The family of states to which the procedure
applies is given by those states where a component of the (distributed) state
is a substitution instance of the lefthand side of the rule in question. The
rewrite rule is then a procedure which transforms the state locally, by replac-
ing such a substitution instance by the corresponding substitution instance
of the righthand side. The fact that this can take place concurrently with
other transitions \below" is precisely what the concept of a natural transfor-
mation formalizes. The following table summarizes our present discussion:

7Note that we use diagrammatic order for the horizontal , � � �, and vertical , ; Æ,
composition of natural transformations [Mac Lane, 1971].
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System  ! Category
State  ! Object
Transition  ! Morphism
Procedure  ! Natural Transformation
Distributed Structure  ! Algebraic Structure

A detailed proof of the following theorem on the existence of initial and
free R-systems for the more general case of conditional rewrite theories is
given in [Meseguer, 1992], where the soundness and completeness of rewrit-
ing logic for R-system models is also proved.

THEOREM 12. TR is an initial object in the category R-Sys. More gen-
erally, TR(X) has the following universal property: Given an R-system S,
each function F : X �! jSj extends uniquely to an R-homomorphism
F \ : TR(X) �! S.

Preorder, poset, and algebra models

Since R-systems are an \essentially algebraic" concept8, we can consider
classes � of R-systems de�ned by the satisfaction of additional equations.
Such classes give rise to full subcategory inclusions � ,! R-Sys, and by
general universal algebra results about essentially algebraic theories [Barr
and Wells, 1985] such inclusions are reective [Mac Lane, 1971], i.e., for each
R-system S there is an R-system R�(S) 2 � and an R-homomorphism
��(S) : S �! R�(S) such that for any R-homomorphism F : S �! D
with D 2 � there is a unique R-homomorphism F} : R�(S) �! D such
that F = ��(S);F}. The assignment S 7�! R�(S) extends to a functor
R-Sys �! �, called the reection functor.

Therefore, we can consider subcategories of R-Sys that are de�ned by
certain equations and be guaranteed that they have initial and free objects,
that they are closed by subobjects and products, etc. Consider for example
the following equations:

8f; g 2 Arrows; f = g if @0(f) = @0(g) ^ @1(f) = @1(g)

8f; g 2 Arrows; f = g if @0(f) = @1(g) ^ @1(f) = @0(g)

8f 2 Arrows; @0(f) = @1(f);

where @0(f) and @1(f) denote the source and target of an arrow f respec-
tively. The �rst equation forces a category to be a preorder, the addition
of the second requires this preorder to be a poset, and the three equations

8In the precise sense of being speci�able by an \essentially algebraic theory" or a
\sketch" [Barr and Wells, 1985]; see [Meseguer, 1992] for more details.
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together force the poset to be discrete, i.e., just a set. By imposing the �rst
one, the �rst two, or all three, we get full subcategories

R-Alg � R-Pos � R-Preord � R-Sys:

A routine inspection of R-Preord for R = (�; E; L;R) reveals that its
objects are preordered �-algebras (A;�)|i.e., preordered sets with a �-
algebra structure such that all the operations in � are monotonic|that
satisfy the equations E and such that for each rewrite rule r : [t(x)] �!
[t0(x)] in R and for each a 2 An we have tA(a) � t0A(a): The poset case
is entirely analogous, except that the relation � is a partial order instead
of being a preorder. Finally, R-Alg is the category of ordinary �-algebras
that satisfy the equations E [ eq(R), where eq(r : [t] �! [t0]) = ft1 = t2 j
t1 2 [t] and t2 2 [t0]g; and eq(R) =

S
feq(r : [t] �! [t0]) j [t] �! [t0] 2 Rg:

The reection functor associated with the inclusion R-Preord � R-Sys
sends TR(X) to the familiar R-rewriting relation9 !R(X) on E-equivalence
classes of terms with variables in X . Similarly, the reection associated to
the inclusion R-Pos � R-Sys maps TR(X) to the partial order � R(X)

obtained from the preorder !R(X) by identifying any two [t]; [t0] such that
[t] !R(X)[t

0] and [t0] !R(X)[t]. Finally, the reection functor into R-Alg
maps TR(X) to TR(X), the free �-algebra on X satisfying the equations
E [ eq(R); therefore, the classical initial algebra semantics of (functional)
equational speci�cations reappears here associated with a very special class
of models which|when viewed as systems|have only trivial identity tran-
sitions.

4 REWRITING LOGIC AS A LOGICAL FRAMEWORK

The adequacy of rewriting logic as a logical framework in which other logics
can be represented by means of maps of logics or of entailment systems is
explored by means of relevant examples, including equational, Horn, and
linear logic, a general approach to the treatment of quanti�ers, and a very
general method for representing sequent presentations of a logic.

4.1 Mapping equational logic

As mentioned in Section 3.2, one can get equational logic from rewriting
logic by adding the symmetry rule. Moreover, the syntax of rewriting logic
includes equations in order to impose structural axioms on terms. Therefore,
it should not be surprising to �nd out that there are many connections
between both logics.

9It is perhaps more suggestive to call !R(X) the reachability relation of the system
TR(X).
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Even in the case of equational logic it can be convenient to allow some-
times a distinction between structural axioms and equations, so that an
equational theory can then be described as a triple (�; E;Q), with Q a
set of equations of the form [u]E = [v]E . This increases the expressiveness
of equational theories, because we can allow more exible description of
equations|for example, omitting parentheses in the case when E contains
an associativity axiom|and also supports a built-in treatment of the struc-
tural axioms in equational deduction. Indeed, this is fully consistent with
the distinction made in OBJ3 and in Maude's functional modules between
the equational attributes of an operator|such as associativity, commutativ-
ity, etc.|which are declared together with the operator, and the equations
given, which are used modulo such attributes.

In order to de�ne a map of entailment systems

(�; �) : ent(OSEqtl) �! ent(OSRWLogic)

in principle we need to map an equation [u]E = [v]E to a sequent, and
the obvious choices are either [u]E �! [v]E or [v]E �! [u]E . However
this choice involves giving a �xed orientation to an equation, with the well-
known problems that this causes. To avoid this choice, we would like to give
the equation both orientations. We can achieve this by slightly generalizing
De�nition 5 of map of entailment systems in such a way that a sentence is
mapped to a set of sentences10. In our case, � maps an equation [u]E = [v]E
to the set of sequents f[u]E �! [v]E ; [v]E �! [u]Eg, and � maps an equa-
tional theory T = (�; E;Q) to the rewrite theory �(T ) = (�; E; L; �(Q)),
where �(Q) =

S
f�(e) j e 2 Qg, and L is a labelling of the rewrite rules

such that, for example, each rule is labelled by itself. This map satis�es

(�; E;Q) `EL e () (�; E; L; �(Q)) `RL �(e):

This can be easily proved by induction on the deduction rules of equational
logic, using the fact that all the rules of rewriting logic are also rules of
equational logic and the following lemma.

LEMMA 13.

(�; E; L; �(Q)) `RL [u]! [v] () (�; E; L; �(Q)) `RL [v]! [u]:

Therefore, we have a conservative map of entailment systems.
In order to extend this map to a map of logics, a simple idea concerning

models is to send a �(T )-system C to RAlg(C), where RAlg is the reection
functor associated with the inclusion �(T )-Alg � �(T )-Sys, as discussed

10This generalization is also very useful in relating other logics; see for example
[Meseguer, 1998].
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in Section 3.5. By de�nition, RAlg(C) is a model of the equational theory
T . However, this map does not satisfy the condition in De�nition 6 of map
of institutions. The diÆculty is that, in general, from an equation t = t0

one can deduce that there is a chain t ! t1  t2 � � � tn  t0, but not that
t ! t0, as the reader familiar with term rewriting knows. To solve this
problem, we consider a di�erent quotient of the underlying (�; E)-algebra
jCj in which two objects A and B are identi�ed if and only if there exist
morphisms f : A! B and g : B ! A in C. In this way, we obtain a (�; E)-
algebra �T (C) that satis�es all the sentences in Q. Moreover, the condition
in De�nition 6 of map of institutions holds for this map. In short, we have
obtained a conservative map of logics

(�; �; �) : OSEqtl �! OSRWLogic:

There is also another map of logics

(�0; �0; �0) : OSEqtl �! OSRWLogic

that, instead of sending equations to sequents, sends equations to equa-
tions. This requires making explicit the fact, left implicit in Section 3, that
equations can also be considered as sentences of rewriting logic, where, by
de�nition,

(�; E; L;R) `RL t = t0 () E `EL t = t0:

From this point of view, �0 maps an equational theory (�; E) to the rewrite
theory (�; E; ;; ;), and at the level of sentences �0 is just an inclusion,
trivially satisfying the requirement for a map of entailment systems. Note
that in this context the distinction between structural axioms and equations
is not necessary.

With respect to the models, �0T maps a (�; E; ;; ;)-system C to the un-
derlying (�; E)-algebra structure on jCj, trivially satisfying also the condi-
tion in De�nition 6 and being therefore a map of institutions. Notice that
(�0; �0; �0) is conservative in a straightforward way.

On the opposite direction there is also a map of logics

(	; ; Æ) : OSRWLogic �! OSEqtl

mapping a rewrite theory (�; E; L;R) to the equational theory (�; E; (R))
where  removes the labels from the rules and turns the sequent signs \�!"
into equality signs. For the models, ÆR is the inclusion R-Alg � R-Sys
de�ned in Section 3.5.

Notice that the composition of maps of logics (�; �; �); (	; ; Æ) is the
identity.
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4.2 Mapping Horn logic

Horn logic signatures are of the form (F; P ), with F a set of function symbols
and P a set of predicate symbols. In the order-sorted case such symbols have
ranks f : s1 : : : sn ! s, and p : s1 : : : sn, speci�ed by strings of sorts in the
poset of sorts S. Models are F -algebras M together with, for each predicate
symbol p : s1 : : : sn, a subset pM �Ms1� : : :�Msn , which can alternatively
be viewed as a characteristic function pM : Ms1 � : : : �Msn �! Bool to
the two element Boolean algebra Bool. Satisfaction of a Horn clause

q1(u1); : : : ; qn(un) ) p(t)

in a model M can be expressed as either the subset containment of the
intersection of the interpretations of q1(u1); : : : ; qn(un) in M inside the cor-
responding interpretation of p(t), or, in a characteristic function description,
as the functional inequality

q1(u1)M and : : : and qn(un)M � p(t)M

between the corresponding interpretations in M of the conjunction of the
premises and of the conclusion as characteristic functions, where the inequal-
ity between the functions means inequality of their values for each of the
arguments in the Boolean algebra ordering. A homomorphism f : M !M 0

between two such models is an F -homomorphism which in addition satis�es
(fs1�: : :�fsn)(pM ) � pM 0 for each p : s1 : : : sn, or in characteristic function
form the functional inequality

pM � (fs1 � : : :� fsn); pM 0 :

Horn logic is a particularly simple logic that does not use the full power
of classical �rst-order logic and is in fact compatible with a variety of other
nonclassical interpretations such as for example intuitionistic logic. It is
therefore reasonable to enlarge the class of models just described by keeping
the F -algebra parts as before, but allowing instead interpretations of the
predicate symbols p as \characteristic functions"

pM : Ms1 � : : :�Msn �!MProp

into a partially ordered set MProp of \propositions" which is not required
to be �xed, i.e., it can vary from model to model. We require of any
such poset the \bare minimum" structure of having a top element true:
Prop and a binary associative and commutative \conjunction" operator , :
Prop Prop �! Prop that is monotonic and has true as its neutral element.
Of course, Bool is one such poset, where conjunction is interpreted as and.
Satisfaction of Horn clauses can be de�ned by a functional inequality just
as before, but changing Bool by the appropriate poset MProp being chosen
for the model.
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The natural generalization of the notion of homomorphism f : M �!M 0

is to again require an F -homomorphism for the operations in F , whereas
for predicate symbols p : s1 : : : sn we require the functional inequality

(y) pM ; fProp � (fs1 � : : :� fsn); pM 0

where fProp : MProp �!M 0
Prop is an additional component of the homomor-

phism, namely, a monotonic function preserving true and conjunction \up
to inequality" between the posets of propositions MProp and M 0

Prop chosen
for the models M and M 0, in the sense that we have fProp(trueM ) � trueM 0 ,
and fProp(x,y) � fProp(x),fProp(y), for x; y 2MProp . This de�nes a cate-
gory of models (F; P )-Mod.

In addition, we can consider the generalization to Horn theories of the
form (F; P;E;H) where E is a set of F -equations, and H is a set of Horn
clauses involving the predicates in P but not equations (again, equations
in E can be viewed as structural axioms forming part of the signature). A
model satis�es this theory when the underlying F -algebra satis�es all the
equations in E and the model satis�es the Horn clauses in H , de�ning in
this way a full subcategory (F; P;E;H)-Mod of (F; P )-Mod. We denote
by OSHorn= the logic whose theories are such generalized Horn theories
(F; P;E;H) with equational axioms E, and whose models we have just
described.

The map of logics

(�; �; �) : OSHorn= �! OSRWLogic

that we de�ne now is a considerable simpli�cation and extension of the map
described in [Meseguer, 1992b].

A Horn theory (F; P;E;H) is mapped to a rewrite theory

�(F; P;E;H) = (F [ P �; E [ACI ; f�g [H; fxProp �! trueg [H�);

where

� F [ P � is the order-sorted signature that extends F by adding the
additional sort Prop, a constant true : Prop, a binary operator , on
Prop, and, for each predicate symbol p : s1 : : : sn in P , an operator
p : s1 : : : sn �! Prop;

� ACI is the set of associativity, commutativity, and identity (true)
structural axioms for the conjunction operator , ;

� \�" is the label for the rewrite rule xProp �! true, where xProp is a
variable of sort Prop;

� H� is a set of rewrite rules labelled by the Horn clauses H themselves
in such a way that a Horn clause of the form q1(u1); : : : ; qn(un)) p(t)
labels the rewrite rule q1(u1), : : : ,qn(un) �! p(t), whereas a Horn
clause of the form p(t) labels the rewrite rule true �! p(t).
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At the level of sentences, � maps each Horn clause to its corresponding
labelled rewrite rule in the above manner.

As to models, given a Horn theory T , a �(T )-system consists of a cate-
gory Cs for each sort s in the poset S, and a category P for the sort Prop,
together with a collection of functors satisfying the equations in �(T ) and
natural transformations interpreting the rewrite rules in �(T ). The func-
tor �T sends such a system to the T -model consisting of the underlying
(order-sorted) algebra structure on the family of sets fjCsj j s 2 Sg, and
the poset RPos(P), where RPos is the reection functor associated to the
inclusion �(T )-Pos � �(T )-Sys, discussed in Section 3.5. By de�nition of
this reection functor, A � B in RPos(P) if and only if there is a morphism
A! B in P . Therefore, a Horn clause q1(u1); : : : ; qn(un) ) p(t) is satis�ed
by this T -model if and only if there is a morphism in P interpreting the
rewrite sequent q1(u1); : : : ; qn(un) �! p(t) if and only if this sequent is
satis�ed by the original �(T )-system. Thus, (�; �; �) is indeed a map of
institutions.

Notice that, by the conditions for R-homomorphisms in De�nition 11,
for the homomorphisms in the image of �T the functional inequality (y)
above becomes an equality. In addition, �T maps free �(T )-systems to
(weakly) free Horn T -models; since the entailment relation coincides with
satisfaction in free models (see the proof of Theorem 3.13 in [Meseguer,
1992]), this provides a short proof of the fact that (�; �) is indeed a map of
entailment systems, and moreover, it is conservative.

The same discussion applies to the case of preorders instead of posets, by
considering the reection functor associated to the inclusion �(T )-Preord �
�(T )-Sys, which would have given a slightly more general notion of model
for a Horn theory in which propositions would form a preorder.

4.3 Mapping linear logic

In this section, we describe a map of logics LinLogic �! OSRWLogic map-
ping theories in full quanti�er-free �rst-order linear logic to rewrite the-
ories. We do not provide much motivation for linear logic, referring the
reader to [Girard, 1987; Troelstra, 1992; Mart��-Oliet and Meseguer, 1991]

for example. We need to point out, nonetheless, the way linear logic sat-
is�es the conditions given in De�nition 1 of entailment system. If one
thinks of formulas as sentences and of the turnstile symbol \`" in a se-
quent as the entailment relation, then this relation is not monotonic, be-
cause in linear logic the structural rules of weakening and contraction are
forbidden, so that, for example, we have the sequent A ` A as an ax-
iom, but we cannot derive either A;B ` A or even A;A ` A. The point
is that, for � a linear logic signature, the elements of sen(�) should not
be identi�ed with formulas but with sequents. Viewed as a way of gener-
ating sequents, i.e., identifying our entailment relation ` with the closure
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of the horizontal bar relation among linear logic sequents, the entailment
of linear logic is indeed reexive, monotonic, and transitive. This idea
is also supported by the categorical models for linear logic [Seely, 1989;
Mart��-Oliet and Meseguer, 1991], in which sequents are interpreted as mor-
phisms, and leads to a very natural correspondence between the models of
rewriting and linear logic.

Expressing linear logic in rewriting logic

We use the syntax of the Maude language to write down the map of en-
tailment systems from linear logic to rewriting logic. Note that any se-
quence of characters starting with either \---" or \***" and ending with
\end-of-line" is a comment. Moreover, we usually drop the equivalence
class square brackets, adopting the convention that a term t denotes the
equivalence class [t]E for the appropriate set of structural axioms E.

We �rst de�ne the functional theory PROP0[X] which introduces the syn-
tax of propositions as a parameterized abstract data type. The parameter-
ization permits having additional structure at the level of atoms if desired.
In order to provide a proper treatment of negation, only equations are given,
and no rewrite rules are introduced in this theory; they are introduced af-
terwards in the LINLOG[X] theory. The purpose of the equations in the
PROP0[X] theory is to push negation to the atom level, by using the du-
alities of linear logic; this is a well-known process in classical and linear
logic.

fth ATOM is

sort Atom .

endft

--- linear logic syntax

fth PROP0[X :: ATOM] is

sort Prop0 .

subsort Atom < Prop0 .

ops 1 0 ? > : -> Prop0 .

op _? : Prop0 -> Prop0 .

op _
_ : Prop0 Prop0 -> Prop0 [assoc comm id: 1] .

op _
&
_ : Prop0 Prop0 -> Prop0 [assoc comm id: ?] .

op _�_ : Prop0 Prop0 -> Prop0 [assoc comm id: 0] .

op _&_ : Prop0 Prop0 -> Prop0 [assoc comm id: >] .

op !_ : Prop0 -> Prop0 .

op ?_ : Prop0 -> Prop0 .

vars A B : Prop0 .

eq (A 
 B)? = A?
&
B? .

eq (A
&
B)? = A? 
 B? .

eq (A & B)? = A? � B? .
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eq (A � B)? = A? & B? .

eq (!A)? = ?(A?) .

eq (?A)? = !(A?) .

eq A?? = A .

eq 1? = ? .

eq ?? = 1 .

eq >? = 0 .

eq 0? = > .

endft

Note that the equations can be used as oriented rules from left to right at
the implementation level in order to obtain a canonical form for expressions
in Prop0.

The LINLOG[X] theory introduces linear logic propositions and the rules
of the logic. Propositions are of the form [A] for A an expression in Prop0.
All logical connectives work similarly for Prop0 expressions and for propo-
sitions, except negation, which is de�ned only for Prop0 expressions.

Some presentations of linear logic are given in the form of one-sided
sequents ` � where negation has been pushed to the atom level, and there
are no rules for negation in the sequent calculus [Girard, 1987]. In this
section, in order to make the connections with category theory and with
rewriting logic more direct, we prefer to use standard sequents of the more
general form � ` �. In a later section, we will also use one-sided sequents
just in order to reduce the number of rules.

The style of our formulation adopts a categorical viewpoint for the proof
theory and semantics of linear logic [Seely, 1989; Mart��-Oliet and Meseguer,
1991]. This style exploits the close connection between the models of lin-
ear logic and those of rewriting logic which are also categories, as we have
explained in Section 3.5. Without going into details that the reader can
�nd for example in [Mart��-Oliet and Meseguer, 1991] and the references
therein, the tensor and linear implication connectives are interpreted in a
closed symmetric monoidal category hC;
;�Æi. Negation is interpreted by
means of a dualizing object ? and the de�nition A? = A�Æ? (with this
de�nition of negation, C becomes a �-autonomous category [Barr, 1979]).
The categorical product & interprets additive conjunction. The interpreta-
tion of the exponential ! is given by a comonad h!A; !A! A; !A! !!Ai that
maps the comonoid structure >  A ! A&A into a comonoid structure
1 !A! !A
!A via isomorphisms !> �= 1 and !(A&A) �= !A
!A:

The dual connectives
&
; �, and ? can be de�ned using negation: A

&
B =

(A? 
 B?)? = A?�ÆB, A � B = (A?&B?)?, ?A = (!A?)?. Without
negation, � needs the presence of coproducts and ? is interpreted by means
of a monad with a monoid structure.

When seeking the minimal categorical structure required for interpreting
linear logic, an important question is how to interpret the connective

&

without using negation, and how to axiomatize its relationship with the
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tensor
. Cockett and Seely have answered this question with the notion of a
weakly distributive category [Cockett and Seely, 1992]. A weakly distributive
category consists of a category C with two symmetric tensor products 
;

&
:

C�C ! C, and a natural transformation A
 (B
&
C) �! (A
B)

&
B (weak

distributivity) satisfying some coherence equations11. Negation is added to
a weakly distributive category by means of a function ( )? : jCj ! jCj on the
objects of C, and natural transformations 1 �! A

&
A? and A
 A? �! ?

satisfying some coherence equations. Cockett and Seely then prove that the
concepts of weakly distributive category with negation and of �-autonomous
category are equivalent, providing in this way a categorical semantics for
linear logic in which the par connective

&
is primitive and is not de�ned in

terms of tensor and negation.

In the following theory, the rewrite rules for 
;
&
, and negation corre-

spond to the natural transformations in the de�nition of a weakly distribu-
tive category, as explained above. The rules for & (�, respectively) mirror
the usual de�nition of �nal object and product (initial object and coprod-
uct, respectively). Finally, the axioms and rules for the exponential ! (?,
respectively) correspond to the comonad with a comonoid structure (monad
with monoid structure, respectively). Note that some rules are redundant,
but we have decided to include them in order to make the connectives less
interdependent, so that, for example, if the connective & is omitted we do
not need to add new rules for the modality !.

--- linear logic rules

th LINLOG[X :: ATOM] is

protecting PROP0[X] .

sort Prop .

ops 1 0 ? > : -> Prop .

op _
_ : Prop Prop -> Prop [assoc comm id: 1] .

op _
&
_ : Prop Prop -> Prop [assoc comm id: ?] .

op _�_ : Prop Prop -> Prop [assoc comm id: 0] .

op _&_ : Prop Prop -> Prop [assoc comm id: >] .

op !_ : Prop -> Prop .

op ?_ : Prop -> Prop .

op [_] : Prop0 -> Prop .

vars A B : Prop0 .

ax [A 
 B] = [A] 
 [B] .

ax [A
&
B] = [A]

&
[B] .

ax [A & B] = [A] & [B] .

ax [A � B] = [A] � [B] .

ax [!A] = ![A] .

11Cockett and Seely develop in [1992] the more general case in which the tensor prod-
ucts are not assumed to be symmetric.
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ax [?A] = ?[A] .

ax [1] = 1 .

ax [?] = ? .

ax [>] = > .

ax [0] = 0 .

*** [_] is injective

cax A = B if [A] = [B] .

*** Rules for negation

rl 1 => [A]
&
[A?] .

rl [A] 
 [A?] => ? .

vars P Q R : Prop .

*** Rules for 
 and
&

rl P 
 (Q
&
R) => (P 
 Q)

&
R .

*** Rules for &
rl P => > . *** (1)

rl P & Q => P .

crl R => P & Q if R => P and R => Q . *** (2)

*** Rules for �
rl 0 => P . *** (3)

rl P => P � Q .

crl P � Q => R if P => R and Q => R . *** (4)

*** Structural axioms and rules for !

ax !(P & Q) = !P 
 !Q . *** (5)

ax !> = 1 . *** (6)

rl !P => P .

rl !P => !!P .

rl !P => 1 . *** redundant from (1) and (6) above

rl !P => !P 
 !P . *** redundant from (2) and (5) above

*** Structural axioms and rules for ?

ax ?(P � Q) = ?P
&
?Q . *** (7)

ax ?0 = ? . *** (8)

rl P => ?P .

rl ??P => ?P .

rl ? => ?P . *** redundant from (3) and (8) above

rl ?P
&
?P => ?P . *** redundant from (4) and (7) above

endt

A linear logic formula is built from a set of propositional constants using
the logical constants and connectives of linear logic. Notice that linear
implication A�ÆB is not necessary because it can be de�ned as A?

&
B.
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Representing a linear logic theory in rewriting logic

A linear theory T in propositional linear logic consists of a �nite set C of
propositional constants and a �nite set S of double-sided sequents of the
form A1; : : : ; An ` B1; : : : ; Bm, where each Ai and Bj is a linear logic for-
mula built from the constants in C. Given such a theory T , it is interpreted
in rewriting logic as follows.

First, we de�ne a functional theory to interpret the propositional con-
stants in C. For example, if C = fa; b; cg we would de�ne

fth C is

sort Atom .

ops a b c : -> Atom .

endft

Then, we can instantiate the parameterized theory LINLOG[X] using this
functional theory, with the default view ATOM ! C:

make LINLOG0 is LINLOG[C] endmk

A linear logic formulaA (with constants in C) is interpreted in LINLOG0 as
the term [A] of sort Prop. For example, the formula (a
 b)?� (!(a& c?))?

is interpreted as the term

[(a 
 b)? � (!(a & c?))?]

which, using the equations for negation in PROP0[X] and the structural
axioms in LINLOG[X], is equal to the term

([a?]
&
[b?]) � ?([a?] � [c]).

Finally, we extend the theory LINLOG0 by adding a rule

rl [A1] 
 ... 
 [An] => [B1]
&
...

&
[Bm] .

for each sequent A1; : : : ; An ` B1; : : : ; Bm in the linear theory T . For ex-
ample, if

T = fa
 b; !c� a ` a; (c� b)?

a
&
b; ?(c?) ` (?b

&
!c)?; a� bg;

the corresponding rewrite theory is

th LINLOG(T) is

including LINLOG0 .

rl [a] 
 [b] 
 (![c] � [a]) => [a]
&
([c?] & [b?]) .

rl ([a]
&
[b]) 
 ?[c?] => (![b?] 
 ?[c?])

&
([a] � [b]) .

endt
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Note that this technique can also be used to interpret quanti�er-free �rst-
order linear logic formulas, where, instead of propositional constants, we
have literals built using functions and predicates. In general, we can allow
any abstract data type ADT de�ning constants, functions and predicates.
Then, we de�ne the instantiation

make LINLOG0 is LINLOG[ADT] endmk

which is �nally extended with the corresponding rules to a theory LINLOG(T)

corresponding to the desired theory T .
The main result is the following conservativity theorem.

THEOREM 14. Given a linear theory T , a sequentA1; : : : ; An ` B1; : : : ; Bm

is provable in linear logic from the axioms in T if and only if the sequent

[A1] 
 ... 
 [An] �! [B1]
&
...

&
[Bm]

is a LINLOG(T)-rewrite, i.e., it is provable in rewriting logic from the rewrite
theory LINLOG(T).

To show that a linear logic proof can be translated into a rewriting logic
proof, the idea is similar to the proof of the soundness theorem for the cat-
egorical semantics of linear logic, where a sequent is interpreted as a mor-
phism (see [Mart��-Oliet and Meseguer, 1991, Theorem 40]). What is impor-
tant to realize is that the categorical constructions of these morphisms can
be seen as rewriting logic proofs; for example, functoriality corresponds to
the Congruence rule of rewriting logic, something made completely explicit
in the categorical semantics of rewriting logic, as outlined in Section 3.5 and
developed in detail in [Meseguer, 1992].

The map of logics

The fully detailed development in the previous sections provides a map
of entailment systems between linear logic and rewriting logic, which is
conservative because of Theorem 14. We have already discussed briey the
models of linear logic in Section 4.3 by way of motivation to the rules in the
theory LINLOG[X]. Now, in order to complete the construction of the map
of logics LinLogic �! OSRWLogic, we need a way of getting a (categorical)
model of a linear theory T from a rewrite system that is a model of the
rewrite theory LINLOG(T).

The �rst thing to note, recalling the de�nition of R-system in Section 3.5,
is that for each rewrite rule in R we require just a natural transformation in
the system, but we do not impose any coherence or uniqueness conditions
on these natural transformations. For this reason, a LINLOG(T)-system
interprets A&B as a weak product instead of a product, for example. A
way of obtaining uniqueness would be considering the generalized rewrite
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theories de�ned in [Meseguer, 1992b], but we do not need that for our
purposes here. On the other hand, the attributes of the operations, like
associativity or commutativity, are interpreted as identities, instead of the
more general natural isomorphisms, thus satisfying all coherence conditions
automatically.

In general, given a linear theory T = (C; S), a LINLOG(T)-system con-
sists of an algebra A interpreting all the structure of the functional theory
PROP0[C], a category C with all the morphisms necessary to interpret the
rewrite rules in the theory LINLOG[C] and the rules corresponding to all the
sequents in S, and an injective homomorphism A ! jCj that, without loss
of generality, we can consider to be an inclusion. Note that, as A is closed
under all the operations in the theory LINLOG[C], the full subcategory of
C generated by A has the same structure as C, and, in addition, there is
a function ( )? : A ! A interpreting negation. Therefore, this full sub-
category is almost a weakly distributive category with negation, products,
coproducts, a comonad with a comonoid structure, and a monad with a
monoid structure. What is possibly missing is the satisfaction of a set of
equations between morphisms which ensure that all this structure is really
what we want.

Thus, in order to get a Girard category L from the original LINLOG(T)-
system, we do the quotient of the full subcategory of C generated by A
by this set of equations. Clearly, there is a morphism A ! B in L if and
only if there is a morphism A ! B in C, i.e., L satis�es a linear sequent
if and only if C satis�es the rewriting logic version of that sequent. This is
true because the constants in C are interpreted always as the corresponding
constants in A, and variables in a sequent are also interpreted as elements
of A (note that variables appear in a theory ADT that is used to instantiate
PROP0[X]). In summary, we have a conservative map of logics LinLogic �!
OSRWLogic.

4.4 Quanti�ers

In Section 4.3 we have de�ned a map of logics between quanti�er-free lin-
ear logic and rewriting logic. In this section, we show how to extend that
map at the level of entailment systems to quanti�ers. The choice of linear
logic to illustrate the treatment of quanti�ers is irrelevant; we could have
chosen any other logic. It has only the expository advantage of building
upon an example already introduced in this paper. In fact, our equational
treatment of quanti�cation, inspired by ideas of Laneve and Montanari on
the de�nition of the lambda calculus as a theory in rewriting logic [Laneve
and Montanari, 1992; Laneve and Montanari, 1996], is very general and en-
compasses not only existential and universal quanti�cation, but also lambda
abstraction and other such binding mechanisms.

The main idea is to internalize as operations in the theory the notions
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of free variables and substitution that are usually de�ned at the metalevel.
Then, the typical de�nitions of such notions by structural induction on
terms can be easily written down as equations in the theory, but, more
importantly, we can consider terms modulo these axioms and we can also
use the operation of substitution explicitly in the rules introducing or elim-
inating quanti�ers. This is similar to the lambda calculus with explicit
substitutions de�ned by Abadi, Cardelli, Curien, and L�evy in [1991], and
to the work on binding structures by Talcott [1993].

We begin by presenting the example of the lambda abstraction binding
mechanism in the lambda calculus, as de�ned by Laneve and Montanari
in [1992] (see also [Laneve and Montanari, 1996], where this technique is
generalized to combinatory reduction systems). Since in this case the syntax
is much simpler, the main ideas can become more explicit and clearer to the
reader.

We assume a parameterized functional module SET[X] that provides �-
nite sets over a parameter set X with operations U for union, - for set
di�erence, f g for singleton, emptyset for the empty set, and a predicate
is-in for membership.

--- variable names

fth VAR is

sort Var .

protecting SET[Var] .

op new : Set -> Var .

var S : Set .

eq new(S) is-in S = false . *** new variable

endft

--- lambda calculus syntax with substitution

fmod LAMBDA[X :: VAR] is

including SET[X] .

sort Lambda .

subsort Var < Lambda . *** variables

op �_._ : Var Lambda -> Lambda . *** lambda abstraction

op __ : Lambda Lambda -> Lambda . *** application

op _[_/_] : Lambda Lambda Var -> Lambda . *** substitution

op fv : Lambda -> Set . *** free variables

vars X Y : Var .

vars M N P : Lambda .

*** Free variables

eq fv(X) = fXg .

eq fv(�X.M) = fv(M) - fXg .

eq fv(MN) = fv(M) U fv(N) .

eq fv(M[N/X]) = (fv(M) - fXg) U fv(N) .
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*** Substitution equations

eq X[N/X] = N .

ceq Y[N/X] = Y if not(X == Y) .

eq (MN)[P/X] = (M[P/X])(N[P/X]) .

eq (�X.M)[N/X] = �X.M .

ceq (�Y.M)[N/X] = �Y.(M[N/X])

if not(X == Y) and (not(Y is-in fv(N)) or not(X is-in fv(M))) .

ceq (�Y.M)[N/X] = �(new(fv(MN))).((M[new(fv(MN))/Y])[N/X])

if not(X == Y) and Y is-in fv(N) and X is-in fv(M) .

endfm

Note that substitution is here another term constructor instead of a meta-
syntactic operation. Of course, using the above equations, all occurrences
of the substitution constructor can be eliminated. After having de�ned in
the previous functional module the class of lambda terms with substitution,
we just need to add the equational axiom of alpha conversion and the beta
rule in the following module:

--- lambda calculus rules

mod ALPHA-BETA[X :: VAR] is

including LAMBDA[X] .

vars X Y : Var .

vars M N : Lambda .

*** Alpha conversion

cax �X.M = �Y.(M[Y/X]) if not(Y is-in fv(M)) .

*** Beta reduction

rl (�X.M)N => M[N/X] .

endm

In order to introduce quanti�ers, we can develop a similar approach,
by �rst introducing substitution in the syntax together with the quanti�ers,
and then adding rewrite rules for the new connectives. In the same way that
we had to duplicate the logical connectives in both theories PROP0[X] and
LINLOG[X] in Section 4.3 in order to have a correct treatment of negation,
we also have to duplicate the operations and equations for substitution in
the two modules FO-PROP0[X] and FO-LINLOG[X] below. This technicality,
due to the treatment of negation, makes the exposition somewhat longer,
but should not obscure the main ideas about the treatment of quanti�cation
that have been illustrated more concisely before with the lambda calculus
example.

We assume an abstract data type ADT de�ning constants, functions and
predicates over a set Var of variable names. Substitution must also be de-
�ned in this module. For example, we can have something like the following
module:
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fmod ADT[X :: VAR] is

including SET[X] .

sort Term . *** terms

subsort Var < Term . *** variables are terms

op c : -> Term . *** constant symbol

op f : Term Term -> Term . *** function symbol

sort Atom . *** atomic formulas

op p : Term Term -> Atom . *** predicate symbol

op va : Term -> Set . *** set of variables

op va : Atom -> Set . *** set of variables

op _[_/_] : Term Term Var -> Term . *** substitution

op _[_/_] : Atom Term Var -> Atom . *** substitution

vars X Y : Var . vars T U V : Term .

var P : Atom .

*** Set of variables

eq va(X) = fXg .

eq va(c) = emptyset .

eq va(f(T,V)) = va(T) U va(V) .

eq va(p(T,V)) = va(T) U va(V) .

eq va(V[T/X]) = (va(V) - fXg) U va(T) .

eq va(P[T/X]) = (va(P) - fXg) U va(T) .

*** Substitution equations

eq X[T/X] = T .

ceq Y[T/X] = Y if not(X == Y) .

eq c[T/X] = c .

eq f(U,V)[T/X] = f(U[T/X],V[T/X]) .

eq p(U,V)[T/X] = p(U[T/X],V[T/X]) .

endfm

--- linear logic syntax with quantifiers

fmod FO-PROP0[X :: VAR] is

including PROP0[ADT[X]] .

op _[_/_] : Prop0 Term Var -> Prop0 . *** substitution

op fv : Prop0 -> Set . *** free variables

op 8_._ : Var Prop0 -> Prop0 . *** universal quantifier

op 9_._ : Var Prop0 -> Prop0 . *** existential quantifier

vars A B : Prop0 . vars X Y : Var .

var P : Atom . var T : Term .

*** Negation and quantifiers

eq (8X.A)? = 9X.A? .

eq (9X.A)? = 8X.A? .
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*** Free variables

eq fv(P) = va(P) .

eq fv(1) = emptyset .

eq ... *** similar equations for the other logical constants

eq fv(A?) = fv(A) .

eq fv(A 
 B) = fv(A) U fv(B) .

eq ... *** similar equations for the other logical connectives

eq fv(8X.A) = fv(A) - fXg .

eq fv(9X.A) = fv(A) - fXg .

eq fv(A[T/X]) = (fv(A) - fXg) U va(T) .

*** Substitution equations

eq 1[T/X] = 1 .

eq ... *** similar equations for the other logical constants

eq A?[T/X] = A[T/X]? .

eq (A 
 B)[T/X] = A[T/X] 
 B[T/X] .

eq ... *** similar equations for the other logical connectives

eq (8X.A)[T/X] = 8X.A .

ceq (8Y.A)[T/X] = 8Y.(A[T/X])
if not(X == Y) and (not(Y is-in va(T)) or not(X is-in fv(A))) .

ceq (8Y.A)[T/X] =

8(new(va(T) U fv(A))).((A[new(va(T) U fv(A))/Y])[T/X])

if not(X == Y) and Y is-in fv(T) and X is-in fv(A) .

eq ... *** similar equations for the existential quantifier

endfm

mod FO-LINLOG[X :: VAR] is

including LINLOG[ADT[X]] . ***

protecting FO-PROP0[X] . *** Note PROP0[ADT[X]] is shared

op _[_/_] : Prop Term Var -> Prop0 . *** substitution

op fv : Prop -> Set . *** free variables

op 8_._ : Var Prop -> Prop . *** universal quantifier

op 9_._ : Var Prop -> Prop . *** existential quantifier

var P Q : Prop . var A : Prop0 .

var X : Var . var T : Term .

ax [8X.A] = 8X.[A] .

ax [9X.A] = 9X.[A] .

*** Free variables

ax fv(1) = emptyset .

ax ... *** similar axioms for the other logical constants

ax fv(P 
 Q) = fv(P) U fv(Q) .

ax ... *** similar axioms for the other logical connectives
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ax fv(8X.P) = fv(P) - fXg .

ax fv(9X.P) = fv(P) - fXg .

ax fv(P[T/X]) = (fv(P) - fXg) U va(T) .

ax fv([A]) = fv(A) .

*** Substitution axioms

ax 1[T/X] = 1 .

ax ... *** similar axioms for the other logical constants

ax (P 
 Q)[T/X] = P[T/X] 
 Q[T/X] .

ax ... *** similar axioms for the other logical connectives

ax (8X.P)[T/X] = 8X.P .

cax (8Y.P)[T/X] = 8Y.(P[T/X])
if not(X == Y) and (not(Y is-in va(T)) or not(X is-in fv(P))) .

cax (8Y.P)[Q/X] =

8(new(va(T) U fv(P))).((P[new(va(T) U fv(P))/Y])[T/X])

if not(X == Y) and Y is-in va(T) and X is-in fv(P) .

ax ... *** similar axioms for the existential quantifier

ax [A][T/X] = [A[T/X]] .

*** Rules for quantifiers

rl 8X.P => P[T/X] .

rl P[T/X] => 9X.P .

crl P => 8X.A
&
Q

if P => A
&
Q and not(X is-in fv(P 
 Q)) .

crl P 
 9X.A => Q

if P 
 A => Q and not(X is-in fv(P 
 Q)) .

endm

In this way, we have de�ned a map of entailment systems

ent(FOLinLogic) �! ent(OSRWLogic)

which is also conservative.

4.5 Mapping sequent systems

In Section 4.3, we have mapped linear logic formulas to terms, and linear
logic sequents to rewrite rules in rewriting logic. There is another map of
entailment systems between linear logic and rewriting logic in which lin-
ear sequents become also terms, and rewrite rules correspond to rules in
a Gentzen sequent calculus for linear logic. In order to reduce the num-
ber of rules of this calculus, we consider one-sided linear sequents in this
section, but a completely similar treatment can be given for two-sided se-
quents. Thus, a linear logic sequent will be a turnstile symbol \`" followed
by a multiset M of linear logic formulas, that in our translation to rewriting
logic will be represented by the term ` M. Using the duality of linear logic
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negation, a two-sided sequent A1; : : : ; An ` B1; : : : ; Bm can in this notation
be expressed as the one-sided sequent ` A?1 ; : : : ; A

?
n ; B1; : : : ; Bm:

First, we de�ne a parameterized module for multisets. The elements in
the parameter are considered singleton multisets via a subsort declaration
Elem < Mset, and there is a multiset union operator , which is associa-
tive, commutative, and has the empty multiset null as neutral element.
Note that what makes the elements of Mset multisets instead of lists is the
attribute comm of commutativity of the union operator , .

fth ELEM is

sort Elem .

endft

fmod MSET[X :: ELEM] is

sort Mset .

subsort Elem < Mset .

op null : -> Mset .

op _,_ : Mset Mset -> Mset [assoc comm id: null] .

endfm

Now we can use this parameterized module to de�ne the main module
for sequents12 and give the corresponding rules. A sequent calculus rule of
the form

`M1; : : : ;`Mn

`M

becomes the rewrite rule

rl ` M1 ... ` Mn => ` M .

on the sort Configuration. Recalling that \---" introduces a comment,
this rule can be written as

rl ` M1 ... ` Mn

=> --------------

` M .

This displaying trick that makes it possible to write a sequent calculus
rule in a similar way to the usual presentation in logical textbooks is due
to K. Futatsugi.

12The multiset structure is one particular way of building in certain structural rules,
in this case exchange. Many other such data structuring mechanisms are as well possible
to build in, or to drop, desired structural properties. Appropriate parameterized data
types can similarly be used for this purpose. For example, we use later a data type of
lists to de�ne 2-sequents in which exchange is not assumed.
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--- one-sided sequent calculus for linear logic

mod LL-SEQUENT[X :: VAR] is

protecting FO-PROP0[X] .

including MSET[FO-PROP0[X]] .

--- a configuration is a multiset of sequents

sort Configuration .

op `_ : Mset -> Configuration .

op empty : -> Configuration .

op __ : Configuration Configuration -> Configuration

[assoc comm id: empty] .

op ?_ : Mset -> Mset .

vars M N : Mset .

ax ?null = null .

ax ?(M,N) = (?M,?N) .

op fv : Mset -> Set .

ax fv(null) = emptyset .

ax fv(M,N) = fv(M) U fv(N) .

var P : Atom . vars A B : Prop0 .

var T : Term . var X : Var .

*** Identity

rl empty

=> --------

` P,P? .

*** Cut

rl (` M,A) (` N,A?)

=> -----------------

` M,N .

*** Tensor

rl (` M,A) (` B,N)

=> ---------------

` M,A 
 B,N .

*** Par

rl ` M,A,B

=> -----------

` M,A
&
B .

*** Plus

rl ` M,A

=> -----------

` M,A � B .
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*** With

rl (` M,A) (` M,B)

=> ---------------

` M,A & B .

*** Weakening

rl ` M

=> --------

` M,?A .

*** Contraction

rl ` M,?A,?A

=> ----------

` M,?A .

*** Dereliction

rl ` M,A

=> --------

` M,?A .

*** Storage

rl ` ?M,A

=> ---------

` ?M,!A .

*** Bottom

rl ` M

=> -------

` M,? .

*** One

rl empty

=> -----

` 1 .

*** Top

rl empty

=> --------

` M,> .

*** Universal

crl ` M,A

=> ---------

` M,8X.A
if not(X is-in fv(M)) .
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*** Existential

rl ` M,A[T/X]

=> ----------

` M.9X.A .

endm

Note that in the module FO-PROP0[X] (via the reused theory PROP0[X])
we have imposed associativity and commutativity attributes for some con-
nectives, making syntax a bit more abstract than usual. However, in this
case, this has no signi�cance at all, except for the convenient fact that we
only need a rule for � instead of two; of course, these attributes can be
removed if a less abstract presentation is preferred.

Given a linear theory T = (C; S) (where we can assume that all the
sequents in S are of the form ` A1; : : : ; An), we instantiate the parame-
terized module LL-SEQUENT[X] using a functional module C that interprets
the propositional constants in C, as in Section 4.3, and then extend it by
adding a rule

rl empty => ` A1,...,An .

for each sequent ` A1; : : : ; An in S, obtaining in this way a rewrite theory
LL-SEQUENT(T).

With this map we have also an immediate conservativity result:

THEOREM 15. Given a linear theory T , a linear logic sequent ` A1; : : : ; An
is provable in linear logic from the axioms in T if and only if the sequent

empty �! ` A1,...,An

is provable in rewriting logic from the rewrite theory LL-SEQUENT(T).

It is very important to realize that the technique used in this conservative
map of entailment systems is very general and it is in no way restricted to
linear logic. Indeed, it can be applied to any sequent calculus, be it for
intuitionistic, classical or any other logic. In general, we need an operation

op _`_ : FormList FormList -> Sequent .

that turns two lists of formulas (multisets, or sets in some cases) into a term
representing a sequent. Then we have a sort Configuration representing
multisets of sequents, with a union operator written using empty syntax. A
sequent calculus rule

G1 ` D1; : : : ; Gn ` Dn

G ` D

becomes a rewrite rule

rl (G1 ` D1) ... (Gn ` Dn) => (G ` D) .
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on the sort Configuration, that we have displayed above also as

rl (G1 ` D1) ... (Gn ` Dn)

=> ------------------------

(G ` D) .

in order to make even clearer that the rewrite rule and the sequent notations
in fact capture the same idea. In the particular case of linear logic the
situation is somewhat simpli�ed by the use of one-sided sequents. Notice
also that sometimes the rewrite rule can be conditional to the satisfaction of
some auxiliary side conditions like, for example, in the rule for the universal
quanti�er in the module above.

As another example illustrating the generality of this approach, we sketch
a presentation in rewriting logic of the 2-sequent calculus de�ned by Masini
and Martini in order to develop a proof theory for modal logics [Masini,
1993; Martini and Masini, 1993]. In their approach, a 2-sequent is an ex-
pression of the form � ` �, where � and � are not lists of formulas as
usual, but they are lists of lists of formulas, so that sequents are endowed
with a vertical structure. For example,

A;B
C `

D
E;F
G

is a 2-sequent, which will be represented in rewriting logic as

A;B;C ` D;E;F ;G:

In order to de�ne 2-sequents, we �rst need a parameterized module for
lists, assuming a module NAT de�ning a sort Nat of natural numbers with
zero 0, a successor function s , an addition operation + , and an order
relation <= , as well as a module BOOL de�ning a sort Bool of truth values
true, false and corresponding Boolean operations.

fmod LIST[X :: ELEM] is

protecting NAT BOOL .

sort List .

subsort Elem < List .

op nil : -> List .

op _;_ : List List -> List [assoc id: nil] .

op length : List -> Nat .

op _in_ : Elem List -> Bool .

vars E E' : Elem .

vars L L' : List .

eq length(nil) = 0 .

eq length(E) = s0 .
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eq length(L;L') = length(L) + length(L') .

eq E in nil = false .

eq E in E' = if E == E' then true else false .

eq E in (L;L') = (E in L) or (E in L') .

endfm

This module is instantiated twice in order to get the module of 2-sequents,
using a sort of formulas Form whose de�nition is not presented here, and
that should have an operation

op []_ : Form -> Form .

corresponding to the modality �.

make 2-LIST is

LIST[LIST[Form]*(op _;_ to _,_)]*(sort List to 2-List,

op length to depth)

endmk

Note that in the 2-LIST module the concatenation operation ; is re-
named to , in the case of lists of formulas, whereas in the case of lists of
lists of formulas, called 2-lists, the notation ; is kept. Also, to empha-
size the vertical structure of 2-sequents, the operation length for 2-lists is
renamed to depth.

Now we can de�ne 2-sequents as follows:

fmod 2-SEQUENT is

protecting 2-LIST .

sort 2-Sequent .

op _`_ : 2-List 2-List -> 2-Sequent .

endfm

The basic rules for the modality � are

�
�
�;A
�0

` �

�
�;�A
�
�0

` �

(�-L)

� `
�
�
A

� `
�

�;�A

(�-R)

where �;�0;� denote 2-lists, �; � denote lists of formulas, and the rule �-R
has the side condition that depth(�) � depth(�) + 1, i.e., the formula A is
the only formula in the last level of the 2-sequent.

These rules are represented in rewriting logic as follows.
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mod 2-SEQUENT-RULES is

protecting 2-SEQUENT .

sort Configuration .

subsort 2-Sequent < Configuration .

op empty : -> Configuration .

op __ : Configuration Configuration -> Configuration

[assoc comm id: empty] .

vars R R' S : 2-List .

vars L L' : List .

var A : Form .

rl R ; L ; L',A ; R' ` S

=> ------------------------

R ; L,[]A ; L' ; R' ` S .

crl R ` S ; L ; A

=> --------------

R ` S ; L,[]A

if depth(R) <= s(depth(S)) .

endm

The dual rules for the modality � are treated similarly.
This general method of viewing sequents as rewrite rules can even be

applied to systems more general than traditional sequent calculi. Thus, be-
sides the possibilities of being one-sided or two-sided, one-dimensional or
two-dimensional, etc., a \sequent" can for example be a sequent presenta-
tion of natural deduction, a term assignment system, or even any predicate
de�ned by structural induction in some way such that the proof is a kind
of tree, as for example the operational semantics of CCS given later in
Section 5.3 and any other use of the so-called structural operational seman-
tics (see [Hennessy, 1990] and Section 5.4 later), including type-checking
systems. The general idea is to map a rule in the \sequent" system to a
rewrite rule over a \con�guration" of sequents or predicates, in such a way
that the rewriting relation corresponds to provability of such a predicate.

4.6 Reection in rewriting logic

Clavel and Meseguer have shown in [1996; 1996a] that rewriting logic is
reective in the sense of Section 2.8. That is, there is a rewrite theory U
with a �nite number of operations and rules that can simulate any other
�nitely presentable rewrite theory R in the following sense: given any two
terms t; t0 in R, there are corresponding terms hR; ti and hR; t0i in U such
that we have

R ` t �! t0 () U ` hR; ti �! hR; t0i:

Moreover, it is often possible to reify inside rewriting logic itself a repre-
sentation map L ! OSRWLogic for the �nitely presentable theories of L.
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Such a rei�cation takes the form of a map between the abstract data types
representing the �nitary theories of L and of OSRWLogic. In this section
we illustrate this powerful idea with the linear logic mapping de�ned in
Section 4.3.

We have de�ned a linear theory T as a �nite set C of propositional
constants together with a �nite set S of sequents of the form A1; : : : ; An `
B1; : : : ; Bm, where each Ai and Bj is a linear logic formula built from the
constants in C. Note that with this de�nition, all linear theories are �nitely
presentable. First, we de�ne an abstract data type LL-ADT to represent
linear theories. A linear theory is represented as a term <C | G>, where
C is a list of propositional constants (that is, identi�ers), and G is a list of
sequents written in the usual way. Moreover, all the propositional constants
in G must be included in C. To enforce this condition, we use a sort constraint
[Meseguer and Goguen, 1993], which is introduced with the keyword sct

and de�nes a subsort LLTheory of a sort LLTheory? by means of the given
condition. In the functional module below, we do not give the equations
de�ning the auxiliary functions const that extracts the constants of a list
of sequents, and the list containment predicate =< . These functions are
needed to write down the sort constraint for theories.

fmod LL-ADT is

protecting QID .

sorts Ids Formula Formulas Sequent .

sorts Sequents LLTheory? LLTheory .

subsort Id < Formula .

ops 1 0 ? > : -> Formula .

op _
_ : Formula Formula -> Formula .

op _
&
_ : Formula Formula -> Formula .

op _�_ : Formula Formula -> Formula .

op _&_ : Formula Formula -> Formula .

op !_ : Formula -> Formula .

op ?_ : Formula -> Formula .

op _? : Formula -> Formula .

subsort Formula < Formulas .

op null : -> Formulas .

op _,_ : Formulas Formulas -> Formulas [assoc comm id: null] .

op (_`_) : Formulas Formulas -> Sequent .

subsort Id < Ids .

op nil : -> Ids .

op _,_ : Ids Ids -> Ids [assoc id: nil] .

subsort Sequent < Sequents .

op nil : -> Sequents .
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op _,_ : Sequents Sequents -> Sequents [assoc id: nil] .

op <_|_> : Ids Sequents -> LLTheory? .

var C : Ids .

var G : Sequents .

sct <C | G> : LLTheory if const(G) =< C .

eq ...

*** several equations defining the auxiliary operations

*** "const" and "_=<_" used in the sort constraint condition

eq ...

endfm

An order-sorted rewrite theory has much more structure, and therefore
the corresponding RWL-ADT is more complex, but the basic ideas are com-
pletely similar as we sketch here. First we have an order-sorted signature,
declaring sorts, subsorts, constants, operations, and variables. Then, in
addition, we have equations and rules. Thus, a �nitely presentable rewrite
theory is represented as a term <S | E | R>, where S is a term representing
a signature, E is a list of equations, and R is a list of rules. In turn, the term
S has the form <T ; B ; C ; O ; V> where each subterm corresponds to
a component of a signature as mentioned before. In addition, several sort
constraints are necessary to ensure for example that the variables used in
equations and rules are included in the list of variables. Just to give the
avor of the construction, here is a small fragment of the module RWL-ADT,
where we have omitted most of the list constructors, operations to handle
conditional equations and rules, and sort constraints.

sorts Sort Subsort Constant Op Var .

sorts Term Equation Rule Signature RWLTheory .

op sortf_g : Id -> Sort .

subsort Sort < Sorts .

op nil : -> Sorts .

op __ : Sorts Sorts -> Sorts [assoc id: nil] .

op (_<_) : Id Id -> Subsort .

subsort Subsort < Subsorts .

op (consf_g:sortf_g) : Id Id -> Constant .

subsort Constant < Constants .

op nil : -> Constants .

op _,_ : Constants Constants -> Sorts [assoc id: nil] .

op (opf_g:_->sortf_g) : Id Sorts Id -> Op .

subsort Op < Ops .

op (varf_g:sortf_g) : Id Id -> Var .

subsort Var < Vars .
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op <_;_;_;_;_> : Sorts Subsorts Constants Ops Vars -> Signature .

subsort Var < Term .

subsort Constant < Term .

subsort Term < Terms .

op nil : -> Terms .

op opf_g[_] : Id Terms -> Term .

op _,_ : Terms Terms -> Terms [assoc id: nil] .

op (_=_) : Term Term -> Equation .

subsort Equation < Equations .

op (_=>_) : Term Term -> Rule .

subsort Rule < Rules .

op <_|_|_> : Signature Equations Rules -> RWLTheory .

Having de�ned the abstract data types to represent both linear and
rewrite theories, we de�ne a function � mapping a term in LLTheory rep-
resenting a linear theory T to a term in RWLTheory representing the cor-
responding rewrite theory LINLOG(T) as de�ned in Section 4.3. First note
that the rewrite theory LINLOG presented in Section 4.3 gives rise to a term
in RWLTheory that we denote

<<TLL ; BLL ; CLL ; OLL ; VLL> | ELL | RLL>.

The representation <C | F1 ` G1,...,Fn ` Gn> of a linear logic theory is
then mapped by � to the following term

<<TLL ; BLL ; cons(C),CLL ; OLL ; VLL> | ELL |

RLL,([tensor(F1)] => [par(G1)]),...,

([tensor(Fn)] => [par(Gn)])>

where the auxiliary operations cons, tensor and par are de�ned as follows,
and correspond exactly to the description in Section 4.3.

op tensor : Formulas -> Formula .

op par : Formulas -> Formula .

op cons : Ids -> Constants .

var F : Formula . vars F1 F2 : Formulas .

var I : Id . var L : Ids .

eq tensor(null) = 1 .

eq tensor(F) = F .

eq tensor(F1,F2) = tensor(F1) 
 tensor(F2) .

eq par(null) = ? .

eq par(F) = F .

eq par(F1,F2) = par(F1)
&
par(F2) .

eq cons(nil) = nil .

eq cons(I,L) = (consfIg:sortfAtomg),cons(L) .
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We can summarize the rei�cation � : LL-ADT �! RWL-ADT of the map of
logics � : LinLogic �! OSRWLogic we have just de�ned by means of the
following commutative diagram:

LinLogicTh OSRWLogicTh

LL-ADT RWL-ADT

�

�

-

-

? ?

This method is completely general, in that it should apply to any ef-
fectively presented map of logics 	 : L �! RWLogic that maps �nitely
presentable theories in L to �nitely presentable theories in rewriting logic.
Indeed, the e�ectiveness of 	 should exactly mean that the corresponding
	 : L-ADT �! RWL-ADT is a computable function and therefore, by the
metatheorem of Bergstra and Tucker [1980], that it is speci�able by a �nite
set of Church-Rosser and terminating equations inside rewriting logic.

5 REWRITING LOGIC AS A SEMANTIC FRAMEWORK

After an overview of rewriting logic as a general model of computation that
uni�es many other existing models, the cases of concurrent object-oriented
programming and of Milner's CCS are treated in greater detail. Structural
operational semantics is discussed as a speci�cation formalism similar in
some ways to rewriting logic, but more limited in its expressive capabilities.
Rewriting logic can also be very useful as a semantic framework for many
varieties of constraint solving in logic programming and in automated de-
duction. Finally, the representation of action and change in rewriting logic
and the consequent solution of the \frame problem" diÆculties associated
with standard logics are also discussed.

5.1 Generality of rewriting logic as a model of computation

Concurrent rewriting is a very general model of concurrency from which
many other models can be obtained by specialization. Except for concur-
rent objet-oriented programming and CCS that are further discussed in
Sections 5.2 and 5.3, respectively, we refer the reader to [Meseguer, 1992;
Meseguer, 1996] for a detailed discussion of the remaining models, and
summarize here such specializations using Figure 1, where RWL stands for
rewriting logic, the arrows indicate specializations, and the subscripts ;, AI,
and ACI stand for syntactic rewriting, rewriting modulo associativity and
identity, and rewriting modulo associativity, commutativity, and identity,
respectively.
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Figure 1. Uni�cation of models of computation.
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Within syntactic rewriting we have labelled transition systems, which are
used in interleaving approaches to concurrency; functional programming (in
particular Maude's functional modules) corresponds to the case of conu-
ent13 rules, and includes the lambda calculus and the Herbrand-G�odel-
Kleene theory of recursive functions. Rewriting modulo AI yields Post
systems and related grammar formalisms, including Turing machines. Be-
sides the general treatment by ACI -rewriting of concurrent object-oriented
programming, briey described in Section 5.2, that contains Actors [Agha,
1986], neural networks, graph rewriting, and the dataow model as a spe-
cial case [Meseguer, 1996], rewriting modulo ACI includes Petri nets [Reisig,
1995], the Gamma language of Banâtre and Le M�etayer [1990], and Berry
and Boudol's chemical abstract machine [1992] (which itself specializes to
CCS [Milner, 1989]; see [Berry and Boudol, 1992] and also the treatment in
Section 5.3), as well as Unity's model of computation [Chandy and Misra,
1988].

The ACI case is quite important, since it contains as special subcases
a good number of concurrency models that have already been studied. In
fact, the associativity and commutativity of the axioms appear in some of
those models as \fundamental laws of concurrency." However, from the per-
spective of this work the ACI case, while being important and useful, does
not have a monopoly on the concurrency business. Indeed, \fundamental
laws of concurrency" expressing associativity and commutativity are only
valid in this particular case. They are for example meaningless for the
tree-structured case of functional programming. The point is that the laws
satis�ed by a concurrent system cannot be determined a priori. They es-
sentially depend on the actual distributed structure of the system, which is
its algebraic structure.

5.2 Concurrent object-oriented programming

Concurrent object-oriented programming is a very active area of research.
An important reason for this interest is the naturalness with which this style
of programming can model concurrent interactions between objects in the
real world. However, the �eld of concurrent object-oriented programming
seems at present to lack a clear, agreed-upon semantic basis.

Rewriting logic supports a logical theory of concurrent objects that ad-
dresses these conceptual needs in a very direct way. We summarize here
the key ideas regarding Maude's object-oriented modules; a full discus-
sion of Maude's object-oriented aspects can be found in [Meseguer, 1993;
Meseguer, 1993b].

An object in a given state can be represented as a term

13Although not reected in the picture, rules conuent modulo equations E are also
functional.



REWRITING LOGIC AS A LOGICAL AND SEMANTIC FRAMEWORK 57

< O : C | a1 : v1, ... , an : vn >

where O is the object's name, belonging to a set OId of object identi�ers,
C is its class, the ai's are the names of the object's attributes, and the
vi's are their corresponding values, which typically are required to be in a
sort appropriate for their corresponding attribute. The con�guration is the
distributed state of the concurrent object-oriented system and is represented
as a multiset of objects and messages according to the following syntax:

subsorts Object Message < Configuration .

op __ : Configuration Configuration -> Configuration

[assoc comm id: null] .

where the operator is associative and commutative with identity null

and is interpreted as multiset union, and the sorts Object and Message

are subsorts of Configuration and generate data of that sort by multiset
union. The system evolves by concurrent ACI -rewriting of the con�guration
by means of rewrite rules speci�c to each particular system, whose lefthand
and righthand sides may in general involve patterns for several objects and
messages. By specializing to patterns involving only one object and one
message, we can obtain an abstract, declarative, and truly concurrent ver-
sion of the Actor model [Agha, 1986] (see [Meseguer, 1993, Section 4.7]).

Maude's syntax for object-oriented modules is illustrated by the object-
oriented module ACCNT below which speci�es the concurrent behavior of ob-
jects in a very simple class Accnt of bank accounts, each having a bal(ance)
attribute, which may receive messages for crediting or debiting the account,
or for transferring funds between two accounts. We assume an already de-
�ned functional module INT for integers with a subsort relation Nat < Int

and an ordering predicate >= .
After the keyword class, the name of the class (Accnt in this case) is

given, followed by a \|" and by a list of pairs of the form a : S separated
by commas, where a is an attribute identi�er and S is the sort inside which
the values of such an attribute identi�er must range in the given class.
In this example, the only attribute of an account is its bal(ance), which is
declared to be a value in Nat. The three kinds of messages involving accounts
are credit, debit, and transfer messages, whose user-de�nable syntax is
introduced by the keyword msg. The rewrite rules specify in a declarative
way the behavior associated to the credit, debit, and transfer messages.

omod ACCNT is

protecting INT .

class Accnt | bal : Nat .

msgs credit debit : OId Nat -> Msg .

msg transfer_from_to_ : Nat OId OId -> Msg .

vars A B : OId .
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vars M N N' : Nat .

rl credit(A,M) < A : Accnt | bal: N >

=> < A : Accnt | bal: N + M > .

crl debit(A,M) < A : Accnt | bal: N >

=> < A : Accnt | bal: N - M > if N >= M .

crl transfer M from A to B

< A : Accnt | bal: N > < B : Accnt | bal: N' >

=> < A : Accnt | bal: N - M > < B : Accnt | bal: N' + M >

if N >= M .

endom

?
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<Peter:Accnt|bal:300>

debit(Peter,200)

�
�

�
�

<Peter:Accnt|bal:100>
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debit(Paul,50)
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<Paul:Accnt|bal:200>

credit(Paul,300)

credit(Paul,300)

debit(Peter,150)

debit(Peter,150)

<Mary:Accnt|bal:1250>

credit(Mary,100)
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<Mary:Accnt|bal:1350>

Figure 2. Concurrent rewriting of bank accounts.
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The multiset structure of the con�guration provides the top level dis-
tributed structure of the system and allows concurrent application of the
rules. For example, Figure 2 provides a snapshot in the evolution by concur-
rent rewriting of a simple con�guration of bank accounts. To simplify the
picture, the arithmetic operations required to update balances have already
been performed. However, the reader should bear in mind that the values in
the attributes of an object can also be computed by means of rewrite rules,
and this adds yet another important level of concurrency to a concurrent
object-oriented system, which might be called intra-object concurrency .

Intuitively, we can think of messages as \traveling" to come into contact
with the objects to which they are sent and then causing \communication
events" by application of rewrite rules. In rewriting logic, this traveling is
accounted for in a very abstract way by the ACI structural axioms. This
abstract level supports both synchronous and asynchronous communication
and provides great freedom and exibility to consider a variety of alternative
implementations at lower levels.

Although Maude provides convenient syntax for object-oriented modules,
the syntax and semantics of such modules can be reduced to those of system
modules, i.e., we can systematically translate an object-oriented module
omod O endom into a corresponding system module mod O# endm, where
O# is a theory in rewriting logic. A detailed account of this translation
process can be found in [Meseguer, 1993].

5.3 CCS

Milner's Calculus of Communicating Systems (CCS) [Milner, 1980; Milner,
1989; Milner, 1990] is among the best well-known and studied concurrency
models, and has become the paradigmatic example of an entire approach
to \process algebras." We just give a very brief introduction to CCS, refer-
ring the reader to Milner's book [1989] for motivation and a comprehensive
treatment, before giving two alternative formulations of CCS in rewriting
logic and showing the conservativity of these formulations.

We assume a set A of names; the elements of the set A = fa j a 2 Ag
are called co-names, and the members of the (disjoint) union L = A[A are
labels naming ordinary actions. The function a 7! a is extended to L by
de�ning a = a. There is a special action called silent action and denoted � ,
intended to represent internal behaviour of a system, and in particular the
synchronization of two processes by means of actions a and a. Then the set
of actions is L [ f�g. The set of processes is intuitively de�ned as follows:

� 0 is an inactive process that does nothing.

� If � is an action and P is a process, �:P is the process that performs
� and subsequently behaves as P .
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� If P and Q are processes, P + Q is the process that may behave as
either P or Q.

� If P and Q are processes, P jQ represents P and Q running concur-
rently with possible communication via synchronization of the pair of
ordinary actions a and a.

� If P is a process and f : L ! L is a relabelling function such that
f(a) = f(a), P [f ] is the process that behaves as P but with the actions
relabelled according to f , assuming f(�) = � .

� If P is a process and L � L is a set of ordinary actions, PnL is the
process that behaves as P but with the actions in L [ L prohibited.

� If P is a process, I is a process identi�er, and I =def P is a de�ning
equation where P may recursively involve I , then I is a process that
behaves as P .

This intuitive explanation can be made precise in terms of the following
structural operational semantics that de�nes a labelled transition system
for CCS processes.

Action:

�:P
�
�! P

Summation:
P

�
�! P 0

P +Q
�
�! P 0

Q
�
�! Q0

P +Q
�
�! Q0

Composition:

P
�
�! P 0

P jQ
�
�! P 0jQ

Q
�
�! Q0

P jQ
�
�! P jQ0

P
a
�! P 0 Q

a
�! Q0

P jQ
�
�! P 0jQ0

Relabelling:

P
�
�! P 0

P [f ]
f(�)
�! P 0[f ]

Restriction:
P

�
�! P 0

PnL
�
�! P 0nL

� 62 L [ L
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De�nition:

P
�
�! P 0

I
�
�! P 0

I =def P

We now show how CCS can be described and given semantics in rewriting
logic. The following modules have been motivated by, but are considerably
di�erent from, the corresponding examples in [Meseguer et al., 1992].

fth LABEL is

sort Label . *** ordinary actions

op ~_ : Label -> Label .

var N : Label .

eq ~~N = N .

endft

--- an action is the silent action or a label

fmod ACTION[X :: LABEL] is

sort Act .

subsort Label < Act .

op tau : -> Act . *** silent action

endfm

fth PROCESSID is

sort ProcessId . *** process identifiers

endft

--- CCS syntax

fmod PROCESS[X :: LABEL, Y :: PROCESSID] is

protecting ACTION[X] .

sort Process .

subsort ProcessId < Process .

op 0 : -> Process . *** inaction

op _._ : Act Process -> Process . *** prefix

op _+_ : Process Process -> Process [assoc comm idem id: 0] .

*** summation

op _|_ : Process Process -> Process [assoc comm id: 0] .

*** composition

op _[_/_] : Process Label Label -> Process .

*** relabelling: [b/a] relabels "a" to "b"

op _n_ : Process Label -> Process . *** restriction

endfm

Before de�ning the operational semantics of CCS processes, we need an
auxiliary module in order to build contexts in which process identi�ers can
be associated with processes, providing in this way recursive de�nitions
of processes. A sort constraint [Meseguer and Goguen, 1993], which is
introduced with the keyword sct and de�nes a subsort Context by means
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of a condition, is used to enforce the requirement that the same process
identi�er cannot be associated with two di�erent processes in a context.

--- defining equations and contexts

fmod CCS-CONTEXT[X :: LABEL, Y :: PROCESSID] is

protecting PROCESS[X,Y] .

sorts Def Context Context? .

subsorts Def < Context < Context? .

op (_ =def _) : ProcessId Process -> Def .

protecting LIST[ProcessId]*(op _;_ to __) .

protecting LIST[Def]*(sort List to Context?) .

op nil : -> Context .

op pid : Context? -> List .

var X : ProcessId . var P : Process .

var C : Context . vars D D' : Context? .

eq pid(nil) = nil .

eq pid((X =def P)) = X .

eq pid(D;D') = pid(D) pid(D') .

sct (X =def P);C : Context if not(X in pid(C)) .

endfm

The semantics of CCS processes is usually de�ned relative to a given con-
text that provides de�ning equations for all the necessary process identi�ers
[Milner, 1989, Section 2.4]. The previous module de�nes the data type of
all contexts. We now need to parameterize the module de�ning the CCS
semantics by the choice of a context. This is accomplished by means of the
following theory that picks up a context in the sort Context.

fth CCS-CONTEXT*[X :: LABEL, Y :: PROCESSID] is

protecting CCS-CONTEXT[X,Y] .

op context : -> Context .

endft

As in the case of linear logic, we have two possibilities in order to write
the operational semantics for CCS by means of rewrite rules. On the one
hand, we can interpret a transition P

�
�! P 0 as a rewrite, so that the above

operational semantics rules become conditional rewrite rules. On the other
hand, the transition P

�
�! P 0 can be seen as a term, forming part of a

con�guration, in such a way that the semantics rules correspond to rewrite
rules, as a particular case of the general mapping of sequent systems into
rewriting logic that we have presented in Section 4.5.

--- CCS transitions

mod CCS1[X :: LABEL, Y :: PROCESSID, C :: CCS-CONTEXT*[X,Y]] is

sort ActProcess .
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subsort Process < ActProcess .

op f_g_ : Act ActProcess -> ActProcess .

*** fAgP means action A has been performed thus becoming process P

vars P P' Q Q' : Process . vars L M : Label .

var X : ProcessId . var A : Act .

*** Prefix

rl A . P => fAgP .

*** Summation

crl P + Q => fAgP' if P => fAgP' .

*** Composition

crl P | Q => fAg(P' | Q) if P => fAgP' .

crl P | Q => ftaug(P' | Q') if P => fLgP' and Q => f~LgQ' .

*** Restriction

crl P n L => fAg(P' n L)

if P => fAgP' and not(A == L) and not(A == ~L) .

*** Relabelling

crl P[M / L] => fMg(P'[M / L]) if P => fLgP' .

crl P[M / L] => f~Mg(P'[M / L]) if P => f~LgP' .

crl P[M / L] => fAg(P'[M / L])

if P => fAgP' and not(A == L) and not(A == ~L) .

*** Definition

crl X => fAgP' if (X =def P) in context and P => fAgP' .

endm

In the above module, the rewrite rules have the property of being sort-
increasing, i.e., in a rule [t] �! [t0] the least sort of [t0] is bigger than the
least sort of [t]. Thus, one rule cannot be applied unless the resulting term
is well-formed. This prevents, for example, rewrites of the following form:

fAg(P | Q) �! fAg(fBgP' | fCgQ')

because the term on the righthand side is not well formed according to the
order-sorted signature of the module CCS1[X,Y,C[X,Y]]. More precisely,
the Congruence rule of order-sorted rewriting logic, like the corresponding
rule of order-sorted algebra [Goguen and Meseguer, 1992], cannot be applied
unless the resulting term f(t1; : : : ; tn) is well formed according to the given
order-sorted signature. To illustrate this point further, although A.P �!
fAgP is a correct instance of the Prefix rewrite rule, we cannot use the
Congruence rule to derive

(A.P) | Q �! (fAgP) | Q
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because the second term (fAgP) | Q is not well formed.
The net e�ect of this restriction is that an ActProcess term of the form

fA1g...fAkgP can only be rewritten into another term of the same form
fA1g...fAkgfBgP', assuming that P �! fBgP' is a CCS1[X,Y,C[X,Y]]-
rewrite. As another example, a process of the form A.B.P can be rewrit-
ten �rst into fAgB.P and then into fAgfBgP, but cannot be rewritten into
A.fBgP, because this last term is not well formed. After this discussion, it
is easy to see that we have the following conservativity result.

THEOREM 16. Given a CCS process P , there are processes P1; : : : ; Pk�1
such that

P
a1�! P1

a2�! � � �
ak�1
�! Pk�1

ak�! P 0

if and only if P can be rewritten into fa1g...fakgP' using the rules in the
module CCS1[X,Y,C[X,Y]].

Note also that, since the operators + and | are declared commutative,
one rule is enough for each one, instead of the two rules in the original
presentation. On the other hand, we need three rules for relabelling, due to
the representation of the relabelling function.

Let us consider now the second possibility, using the same idea described
in Section 4.5 for the linear logic sequent calculus, that, as we have al-
ready mentioned there, is applicable to many more cases, with a very broad
understanding of the term \sequent."

--- CCS operational semantics

mod CCS2[X :: LABEL, Y :: PROCESSID, C :: CCS-CONTEXT*[X,Y]] is

sort Configuration .

op (_:_-->_) : Act Process Process -> Configuration .

op empty : -> Configuration .

op __ : Configuration Configuration -> Configuration

[assoc comm id: empty] .

*** a configuration is a multiset of transitions

vars P P' Q Q' : Process . vars L M : Label .

var X : ProcessId . var A : Act .

*** Prefix

rl empty

=> ---------------------

(A : (A . P) --> P) .

*** Summation

rl (A : P --> P')

=> --------------------

(A : P + Q --> P') .
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*** Composition

rl (A : P --> P')

=> ------------------------

(A : P | Q --> P' | Q) .

rl (L : P --> P')(~L : Q --> Q')

=> -----------------------------

(tau : P | Q --> P' | Q') .

*** Restriction

crl (A : P --> P')

=> ----------------------

(A : P n L --> P' n L)

if not(A == L) and not(A == ~L) .

*** Relabelling

rl (L : P --> P')

=> ------------------------------

(M : P[M / L] --> P'[M / L]) .

rl (~L : P --> P')

=> -------------------------------

(~M : P[M / L] --> P'[M / L]) .

crl (A : P --> P')

=> ----------------------------

(A : P[M / L] --> P'[M / L])

if not(A == L) and not(A == ~L) .

*** Definition

crl (A : P --> P')

=> --------------

(A : X --> P')

if (X =def P) in context .

endm

Except for the di�erence in the number of rules for some operators, as
already pointed out above for the module CCS1[X,Y,C[X,Y]], this presen-
tation is closer to the original one, and therefore the following conservativity
result is immediate.

THEOREM 17. For CCS processes P and P 0, a transition P
A
�! P 0 is

possible according to the structural operational semantics of CCS if and
only if

empty �! (A : P --> P')

is provable in rewriting logic from the rewrite theory CCS2[X,Y,C[X,Y]].
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5.4 Structural operational semantics

Structural operational semantics is an approach originally introduced by
Plotkin [1981] in which the operational semantics of a programming lan-
guage is speci�ed in a logical way, independent of machine architecture or
implementation details, by means of rules that provide an inductive de�ni-
tion based on the structure of the expressions in the language. We refer the
reader to Hennessy's book [1990] for a clear introduction to this subject.

Within \structural operational semantics," two main approaches coexist:

� Big-step semantics (also called natural semantics by Kahn [1987],
Gunter [1991], and Nielson and Nielson [1992], and evaluation se-
mantics by Hennessy [1990]). In this approach, the main inductive
predicate describes the overall result or value of executing a compu-
tation until its termination. For this reason, it is not well suited for
languages like CCS where most programs are not intended to be ter-
minating.

� Small-step semantics (also called structural operational semantics by
Plotkin [1981], and Nielson and Nielson [1992], computation semantics
by Hennessy [1990], and transition semantics by Gunter [1991]). In
this approach, the main inductive predicate describes in more detail
the execution of individual steps in a computation, with the overall
computation roughly corresponding to the transitive closure of such
small steps. The structural operational semantics of CCS presented
at the beginning of Section 5.3 is an example.

Both big-step and small-step approaches to structural operational seman-
tics can be naturally expressed in rewriting logic:

� Big-step semantics can be seen as a particular case of the mapping of
sequent systems described in Section 4.5, where semantics rules are
mapped to rewrite rules over a \con�guration" of sequents or predi-
cates, and the rewriting relation means provability of such a predicate.

� Small-step semantics corresponds to the use of conditional rewrite
rules, where a rewrite t �! t0 means a transition or computation step
from a state t to a new state t0 as in the explanation of rewriting logic
given in Section 3.3. This is illustrated by the CCS1[X,Y,C[X,Y]]

example in Section 5.3. However, as the CCS2[X,Y,C[X,Y]] example
shows, the technique of sequent systems of Section 4.5 can also be
used in this case.

Since the CCS example has already been discussed in detail in Section 5.3,
we give here another example, describing the operational semantics of the
functional language Mini-ML taken with slight modi�cations from Kahn's



REWRITING LOGIC AS A LOGICAL AND SEMANTIC FRAMEWORK 67

paper [1987]. The �rst thing to point out about this example is that the
speci�cation of a language's syntax is outside of the structural operational
semantics formalism. By contrast, thanks to the order-sorted type structure
of rewriting logic, such speci�cation is now given by a functional module in
Maude, as follows:

fmod NAT-TRUTH-VAL is

sort Nat .

op 0 : -> Nat .

op s : Nat -> Nat .

sort TruthVal .

ops true false : -> TruthVal .

endfm

--- syntax: values, patterns and expressions

fmod ML-SYNTAX[X :: VAR] is

protecting NAT-TRUTH-VAL .

sorts Exp Value Pat NullPat Lambda .

subsorts NullPat Var < Pat .

op () : -> NullPat .

op (_,_) : Pat Pat -> Pat .

subsorts TruthVal Nat NullPat < Value .

op (_,_) : Value Value -> Value .

subsorts Value Var Lambda < Exp .

op s : Exp -> Exp .

op _+_ : Exp Exp -> Exp [comm] .

op not : Exp -> Exp .

op _and_ : Exp Exp -> Exp .

op if_then_else_ : Exp Exp Exp -> Exp .

op (_,_) : Exp Exp -> Exp .

op __ : Exp Exp -> Exp .

op �_._ : Pat Exp -> Lambda .

op let_=_in_ : Pat Exp Exp -> Exp .

op letrec_=_in_ : Pat Exp Exp -> Exp .

endfm

--- environments are lists of pairs pattern-value

fmod AUX[X :: VAR] is

protecting ML-SYNTAX[X] .

sort Pair .

op <_,_> : Pat Value -> Pair .

protecting LIST[Pair]*(sort List to Env, op _;_ to __) .

op Clos : Lambda Env -> Value .

endfm

The following module constitutes a direct translation of the natural se-
mantics speci�cation for Mini-ML given by Kahn in [1987], using the general
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technique for sequent systems introduced in Section 4.5. Note that the natu-
ral semantics rules are particularly well suited for Prolog search, and indeed
they are so executed in the system described in [Kahn, 1987].

--- natural semantics a la Kahn

mod ML-NAT-SEMANT[X :: VAR] is

including AUX[X] .

sort Config .

op (_|-_-->_) : Env Exp Value -> Config .

op empty : -> Config .

op __ : Config Config -> Config [assoc comm id: empty] .

vars V W : Env . vars E F G : Exp .

vars X Y : Var . vars P Q : Pat .

vars A B C : Value . vars N M : Nat .

var T : TruthVal .

*** Variables

rl empty

=> -----------------------

((V <X,A>) |- X --> A).

crl (V |- X --> A)

=> ----------------------

((V <Y,B>) |- X --> A)

if not(X == Y) .

rl (V <P,A> <Q,B> |- X --> C)

=> ------------------------------

(V <(P,Q),(A,B)> |- X --> C) .

*** Arithmetic expressions

rl empty

=> ----------------

(V |- 0 --> 0) .

rl (V |- E --> A)

=> ----------------------

(V |- s(E) --> s(A)) .

crl (V |- E --> A)(V |- F --> B)

=> ----------------------------

(V |- E + F --> C)

if A + B => C .

rl 0 + N => N .

rl s(N) + s(M) => s(s(N + M)) .
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*** Boolean expressions

rl empty

=> ----------------------

(V |- true --> true) .

rl empty

=> ------------------------

(V |- false --> false) .

rl (V |- E --> true)

=> -------------------------

(V |- not(E) --> false) .

rl (V |- E --> false)

=> ------------------------

(V |- not(E) --> true) .

crl (V |- E --> A)(V |- F --> B)

=> ----------------------------

(V |- E and F --> C)

if (A and B) => C .

rl T and true => T .

rl T and false => false .

*** Conditional expressions

rl (V |- E --> true)(V |- F --> A)

=> ---------------------------------

(V |- if E then F else G --> A) .

rl (V |- E --> false)(V |- G --> A)

=> ---------------------------------

(V |- if E then F else G --> A) .

*** Pair expressions

rl empty

=> ------------------

(V |- () --> ()) .

rl (V |- E --> A)(V |- F --> B)

=> ----------------------------

(V |- (E,F) --> (A,B)) .

*** Lambda expressions

rl empty

=> ------------------------------

(V |- �P.E --> Clos(�P.E,V)) .
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rl (V |- E --> Clos(�P.G,W))(V |- F --> A)(W <P,A> |- G --> B)

=> -----------------------------------------------------------

(V |- E F --> B) .

*** Let and letrec expressions

rl (V |- F --> A)(V <P,A> |- E --> B)

=> ----------------------------------

(V |- let P = F in E --> B) .

rl (V <P,A> |- F --> A)(V <P,A> |- E --> B)

=> ----------------------------------------

(V |- letrec P = F in E --> B) .

endm

The following module gives an alternative description of the semantics of
the Mini-ML language in terms of the small-step approach. The rules can be
directly used to perform reduction on Mini-ML expressions, and therefore
constitute a very natural functional interpreter for the language.

--- sos semantics

mod ML-SOS-SEMANT[X :: VAR] is

including AUX[X] .

op [[_]]_ : Exp Env -> Value .

vars V W : Env . vars E F G : Exp .

vars X Y : Var . vars P Q : Pat .

vars A B : Value .

*** Variables

rl [[X]](V <X,A>) => A .

crl [[X]](V <Y,B>) => [[X]]V if not(X == Y) .

rl [[X]](V <(P,Q),(A,B)>) => [[X]](V <P,A> <Q,B>) .

*** Arithmetic expressions

rl 0 + E => E .

rl s(E) + s(F) => s(s(E + F)) .

rl [[0]]V => 0 .

rl [[s(E)]]V => s([[E]]V) .

rl [[E + F]]V => [[E]]V + [[F]]V .

*** Boolean expressions

rl not(false) => true .

rl not(true) => false .

rl E and true => E .

rl E and false => false .

rl [[true]]V => true .

rl [[false]]V => false .
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rl [[not(E)]]V => not([[E]]V) .

rl [[E and F]]V => [[E]]V and [[F]]V .

*** Conditional expressions

rl if true then E else F => E .

rl if false then E else F => F .

rl [[if E then F else G]]V => if [[E]]V then [[F]]V else [[G]]V .

*** Pair expressions

rl [[()]]V => () .

rl [[(E,F)]]V => ([[E]]V,[[F]]V) .

*** Lambda expressions

rl [[�P.E]]V => Clos(�P.E,V) .

rl [[E F]]V => [[E]]V [[F]]V .

rl Clos(�P.E,W) [[F]]V => [[E]](W <P,[[F]]V>) .

*** Let and letrec expressions

rl [[let P = E in F]]V => [[F]](V <P,[[E]]V>) .

crl [[letrec P = E in F]]V => [[F]](V <P,A>)

if [[E]]((V <P,A>) => A .

endm

This concludes our discussion of structural operational semantics. Com-
pared with rewriting logic, one of its limitations is the lack of support for
structural axioms yielding more abstract data representations. Therefore,
the rules must follow a purely syntactic structure, and more rules may in
some cases be necessary than if an abstract representation had been cho-
sen. In the case of multiset representations (corresponding to associativity,
commutativity, and identity axioms), this has led Milner to favor multiset
rewriting presentations [Milner, 1992] in the style of the chemical abstract
machine of Berry and Boudol [1992] over the traditional syntactic presen-
tation of structural operational semantics.

5.5 Constraint solving

Deduction can in many cases be made much more eÆcient by making use
of constraints that can drastically reduce the search space, and for which
special purpose constraint solving algorithms can be much faster than the
alternative of expressing everything in a unique deduction mechanism such
as some form of resolution.

Typically, constraints are symbolic expressions associated with a par-
ticular theory, and a constraint solving algorithm uses intimate knowledge
about the truths of the theory in question to �nd solutions for those ex-
pressions by transforming them into expressions in solved form. One of
the simplest examples is provided by standard syntactic uni�cation|the
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constraint solver for resolution in �rst-order logic without equality and in
particular for Prolog|where the constraints in question are equalities be-
tween terms in a free algebra, i.e., in the so-called Herbrand universe. There
are however many other constraints and constraint solving algorithms that
can be used to advantage in order to make the representation of problems
more expressive and logical deduction more eÆcient. For example,

� Semantic uni�cation (see for example the survey by Jouannaud and
Kirchner [1991]), which corresponds to solving equations in a given
equational theory.

� Sorted uni�cation, either many-sorted or order-sorted [Walther, 1985;
Walther, 1986; Schmidt-Schauss, 1989; Meseguer et al., 1989; Smolka
et al., 1989; Jouannaud and Kirchner, 1991], where type constraints
are added to variables in equations.

� Higher-order uni�cation [Huet, 1973; Miller, 1991], which corresponds
to solving equations between �-expressions.

� Disuni�cation [Comon, 1991], which corresponds to solving not only
equalities but also negated equalities.

� Solution of equalities and inequalities in a theory, as for example the
solution of numerical constraints built into the constraint logic pro-
gramming language CLP(R) [Ja�ar and Lassez, 1987] and in other
languages.

A remarkable property shared by most constraint-solving processes, and
already implicit in the approach to syntactic uni�cation problems proposed
by Martelli and Montanari [1982], is that the process of solving constraints
can be naturally understood as one of applying transformations to a set or
multiset of constraints. Furthermore, many authors have realized that the
most elegant and simple way to specify, prove correct, or even implement
many constraint solving problems is by expressing those transformations as
rewrite rules (see for example [Goguen and Meseguer, 1988; Jouannaud and
Kirchner, 1991; Comon, 1990; Comon, 1991; Nipkow, 1993]). In particular,
the survey by Jouannaud and Kirchner [1991] makes this viewpoint the
cornerstone of a uni�ed conceptual approach to uni�cation.

For example, the so-called decomposition transformation present in syn-
tactic uni�cation and in a number of other uni�cation algorithms can be
expressed by a rewrite rule of the form

rl f(t1,...,tn) =?= f(t'1,...,t'n)

=> (t1 =?= t'1) ... (tn =?= t'n) .

where in the righthand side multiset union has been expressed by juxtapo-
sition.
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Although the operational semantics of such rewrite rules is very obvious
and intuitive, their logical or mathematical semantics has remained am-
biguous. Although appeal is sometimes made to equational logic as the
framework in which such rules exist, the fact that many of these rules are
nondeterministic, so that, except for a few exceptions such as syntactic uni-
�cation, there is in general not a unique solution but rather a, sometimes
in�nite, set of solutions, makes an interpretation of the rewrite rules as
equations highly implausible and potentially contradictory.

We would like to suggest that rewriting logic provides a very natural
framework in which to interpret rewrite rules of this nature and, more gen-
erally, deduction processes that are nondeterministic in nature and involve
the exploration of an entire space of solutions. Since in rewriting logic
rewrite rules go only in one direction and its models do not assume either
the identi�cation of the two sides of a rewrite step, or even the possible
reversal of such a step, all the diÆculties involved in an equational inter-
pretation disappear.

Such a proposed use of rewriting logic for constraint solving and con-
straint programming seems very much in the spirit of recent rewrite rule
approaches to constrained deduction such as those of C. Kirchner, H. Kirch-
ner, and M. Rusinovitch [1990] (who use a general notion of constraint lan-
guage proposed by Smolka [1989]), Bachmair, Ganzinger, Lynch, and Sny-
der [1992], Nieuwenhuis and Rubio [1992], and Giunchiglia, Pecchiari, and
Talcott [1996]. In particular, the ELAN language of C. Kirchner, H. Kirch-
ner, and M. Vittek [1995] (see also [Borovansk�y et al., 1996]) proposes an
approach to the prototyping of constraint solving languages similar in some
ways to the one that would be natural using a Maude interpreter.

Exploring the use of rewriting logic as a semantic framework for lan-
guages and theorem-proving systems using constraints seems a worthwhile
research direction not only for systems used in automated deduction, but
also for parallel logic programming languages such as those surveyed in
[Shapiro, 1989], the Andorra language [Janson and Haridi, 1991], concur-
rent constraint programming [Saraswat, 1992], and the Oz language [Henz
et al., 1995].

5.6 Action and change in rewriting logic

In the previous sections, we have shown the advantages of rewriting logic as a
logical framework in which other logics can be represented, and as a semantic
framework for the speci�cation of languages and systems. We would like
the class of systems that can be represented to be as wide as possible, and
their representation to be as natural and direct as possible. In particular, an
important point that has to be considered is the representation of action and
change in rewriting logic. In our paper [Mart��-Oliet and Meseguer, 1999], we
show that rewriting logic overcomes the frame problem, and subsumes and
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uni�es a number of previously proposed logics of change. In this section,
we illustrate this claim by means of an example, referring the reader to the
cited paper for more examples and discussion.

The frame problem [McCarthy and Hayes, 1969; Hayes, 1987; Janlert,
1987] consists in formalizing the assumption that facts are preserved by an
action unless the action explicitly says that a certain fact becomes true or
false. In the words of Patrick Hayes [1987],

\There should be some economical and principled way of suc-
cintly saying what changes an action makes, without having to
explicitly list all the things it doesn't change as well [. . . ]. That
is the frame problem."

Recently, some new logics of action and change have been proposed,
among which we can point out the approach of H�olldobler and Schneeberger
[1990] (see also [Gro�e et al., 1996; Gro�e et al., 1992]), based on Horn
logic with equations, and the approach of Masseron, Tollu, and Vauzeilles
[1990; 1993], based on linear logic. The main interest of these formalisms is
that they need not explicitly state frame axioms, because they treat facts as
resources which are produced and consumed. Having proved in Sections 4.2
and 4.3, respectively, that Horn logic with equations and linear logic can
be conservatively mapped into rewriting logic, it is not surprising that the
advantages of the two previously mentioned approaches are also shared by
rewriting logic. In particular, the rewriting logic rules automatically take
care of the task of preserving context, making unnecessary the use of any
frame axioms stating the properties that do not change when a rule is ap-
plied to a certain state.

We illustrate this point by means of a blocksworld example, borrowed
from [H�olldobler and Schneeberger, 1990; Masseron et al., 1990].

fth BLOCKS is

sort BlockId .

endft

mod BLOCKWORLD[X :: BLOCKS] is

sort Prop .

op table : BlockId -> Prop . *** block is on the table

op on : BlockId BlockId -> Prop . *** block A is on block B

op clear : BlockId -> Prop . *** block is clear

op hold : BlockId -> Prop . *** robot hand is holding block

op empty : -> Prop . *** robot hand is empty

sort State .

subsort Prop < State .

op 1 : -> State .

op _
_ : State State -> State [assoc comm id: 1] .
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a b
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b
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Figure 3. Two states of a blocksworld.

vars X Y : BlockId .

rl pickup(X) : empty 
 clear(X) 
 table(X) => hold(X) .

rl putdown(X) : hold(X) => empty 
 clear(X) 
 table(X) .

rl unstack(X,Y) : empty 
 clear(X) 
 on(X,Y)

=> hold(X) 
 clear(Y) .

rl stack(X,Y) : hold(X) 
 clear(Y)

=> empty 
 clear(X) 
 on(X,Y) .

endm

In order to create a world with three blocks fa; b; cg, we consider the
following instantiation of the previous parameterized module.

fmod BLOCKS3 is

sort BlockId .

ops a b c : -> BlockId .

endfm

make WORLD is BLOCKWORLD[BLOCKS3] endmk

Consider the states described in Figure 3; the state I on the left is the
initial one, described by the following term of sort State in the rewrite
theory (Maude program) WORLD

empty 
 clear(c) 
 clear(b) 
 table(a) 
 table(b) 
 on(c,a) .

Analogously, the �nal state F on the right is described by the term

empty 
 clear(a) 
 table(c) 
 on(a,b) 
 on(b,c) .

The fact that the plan

unstack(c,a);putdown(c);pickup(b);stack(b,c);pickup(a);stack(a,b)
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moves the blocks from state I to state F corresponds directly to the following
WORLD-rewrite (proof in rewriting logic), where we also show the use of the
structural axioms of associativity and commutativity:

empty 
 clear(c) 
 clear(b) 
 table(a) 
 table(b) 
 on(c,a)

=

empty 
 clear(c) 
 on(c,a) 
 clear(b) 
 table(a) 
 table(b)

�! Cong[Repl[unstack(c,a)],Re]

hold(c) 
 clear(a) 
 clear(b) 
 table(a) 
 table(b)

�! Cong[Repl[putdown(c)],Re]

empty 
 clear(c) 
 table(c) 
 clear(a) 
 clear(b) 

table(a) 
 table(b)

=

empty 
 clear(b) 
 table(b) 
 clear(c) 
 table(c) 

clear(a) 
 table(a)

�! Cong[Repl[pickup(b)],Re]

hold(b) 
 clear(c) 
 table(c) 
 clear(a) 
 table(a)

�! Cong[Repl[stack(b,c)],Re]

empty 
 clear(b) 
 on(b,c) 
 table(c) 
 clear(a) 
 table(a)

=

empty 
 clear(a) 
 table(a) 
 clear(b) 
 on(b,c) 
 table(c)

�! Cong[Repl[pickup(a)],Re]

hold(a) 
 clear(b) 
 on(b,c) 
 table(c)

�! Cong[Repl[stack(a,b)],Re]

empty 
 clear(a) 
 on(a,b) 
 on(b,c) 
 table(c)

=

empty 
 clear(a) 
 table(c) 
 on(a,b) 
 on(b,c)

Hopefully this notation is self-explanatory. For example, the expression
Cong[Repl[pickup(b)],Re] means the application of the Congruence
rule of rewriting logic to the two WORLD-rewrites obtained by using Replace-
ment with the rewrite rule pickup(b) and Reexivity. The Transitivity rule
is used several times to go from the initial state I to the �nal state F .

Gro�e, H�olldobler, and Schneeberger prove in [1996] (see also [Gro�e et
al., 1992; H�olldobler, 1992]) that, in the framework of conjunctive planning,
there is an equivalence between plans generated by linear logic proofs as used
by Masseron et al. [1990; 1993], and the equational Horn logic approach of
H�olldobler and Schneeberger [1990]. In the light of the example above, it is
not surprising that we can add to the above equivalence the plans generated
by proofs in rewriting logic [Mart��-Oliet and Meseguer, 1999]. Moreover,
this result extends to the case of disjunctive planning [Br�uning et al., 1993;
Mart��-Oliet and Meseguer, 1999]. In our opinion, rewriting logic compares
favorably with these formalisms, not only because it subsumes them, but
also because it is intrinsically concurrent, and it is more exible and general,
supporting user-de�nable logical connectives, which can be chosen to �t the
problem at hand. In the words of Reichwein, Fiadeiro, and Maibaum [1992],
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\It is not enough to have a convenient formalism in which to
represent action and change: the representation has to reect
the structure of the represented system."

In this respect, we show in [Mart��-Oliet and Meseguer, 1999] that the object-
oriented point of view supported by rewriting logic becomes very helpful in
order to represent action and change.

6 CONCLUDING REMARKS

Rewriting logic has been proposed as a logical framework that seems par-
ticularly promising for representing logics, and its use for this purpose has
been illustrated in detail by a number of examples. The general way in
which such representations are achieved is by:

� Representing formulas or, more generally, proof-theoretic structures
such as sequents, as terms in an order-sorted equational data type
whose equations express structural axioms natural to the logic in ques-
tion.

� Representing the rules of deduction of a logic as rewrite rules that
transform certain patterns of formulas into other patterns modulo the
given structural axioms.

Besides, the theory of general logics [Meseguer, 1989] has been used as
both a method and a criterion of adequacy for de�ning these representations
as conservative maps of logics or of entailment systems. From this point of
view, our tentative conclusion is that, at the level of entailment systems,
rewriting logic should in fact be able to represent any �nitely presented
logic via a conservative map, for any reasonable notion of \�nitely presented
logic." Making this tentative conclusion de�nite will require proposing an
intuitively reasonable formal version of such a notion in a way similar to
previous proposals of this kind by Smullyan [1961] and Feferman [1989].

In some cases, such as for equational logic, Horn logic with equality, and
linear logic, we have in fact been able to represent logics in a much stronger
sense, namely by conservative maps of logics that also map the models.
Of course, such maps are much more informative, and may a�ord easier
proofs, for example for conservativity. However, one should not expect
to �nd representations of this kind for logics whose model theory is very
di�erent from that of rewriting logic.

Although this paper has studied the use of rewriting logic as a logical
framework, and not as a metalogical one in which metalevel resoning about
an object logic is performed, this second use is not excluded and is indeed
one of the most interesting research directions that we plan to study. For
this purpose, as stressed by Constable [1995], we regard reection as a key
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technique to be employed. Some concrete evidence for the usefulness of
reection has been given in Section 4.6.

The uses of rewriting logic as a semantic framework for the speci�cation
of languages, systems, and models of computation have also been discussed
and illustrated with examples. Such uses include the speci�cation and proto-
typing of concurrent models of computation and concurrent object-oriented
systems, of general programming languages, of automated deduction sys-
tems and logic programming languages that use constraints, and of logical
representation of action and change in AI.

From a pragmatic point of view, the main goal of this study is to serve as
a guide for the design and implementation of a theoretically-based high-level
system in which it can be easy to de�ne logics and to perform deductions in
them, and in which a very wide variety of systems, languages, and models
of computation can similarly be speci�ed and prototyped. Having this goal
in mind, the following features seem particularly useful:

� Executability, which is not only very useful for prototyping purposes,
but is in practice a must for debugging speci�cations of any realistic
size.

� Abstract user-de�nable syntax, which can be speci�ed as an order-
sorted equational data type with the desired structural axioms.

� Modularity and parameterization14, which can make speci�cations very
readable and reusable by decomposing them in small understandable
pieces that are as general as possible.

� Simple and general logical semantics, which can naturally express both
logical deductions and concurrent computations.

These features are supported by the Maude interpreter [Clavel et al.,
1996]. A very important additional feature that the Maude interpreter has
is good support for exible and expressive strategies of evaluation [Clavel
et al., 1996; Clavel and Meseguer, 1996a], so that the user can explore the
space of rewritings in intelligent ways.

POSTSCRIPT (2001)

During the �ve years that have passed since this paper was last revised until
its �nal publication, the ideas put forward here have been greatly developed
by several researchers all over the world. The survey paper [Mart��-Oliet
and Meseguer, 2001] provides a recent snapshot of the state of the art in
the theory and applications of rewriting logic with a bibliography including

14Parameterization is based on the existence of relatively free algebras in rewriting
logic, which generalizes the existence of initial algebras.
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more than three hundred papers in this area. Here we provide some pointers
to work closely related to the main points developed in this paper, and refer
the reader to [Mart��-Oliet and Meseguer, 2001] for many more references.

The paper [Clavel et al., 2001] explains and illustrates the main concepts
behind Maude's language design. The Maude system, a tutorial and a
manual, a collection of examples and case studies, and a list of related
papers are available at http://maude.csl.sri.com.

The reective properties of rewriting logic and its applications have been
developed in detail in [Clavel, 2000; Clavel and Meseguer, 2001]. A full re-
ective implementation developed by Clavel and Mart��-Oliet of the map
from linear logic to rewriting logic described in Section 4.6 appears in
[Clavel, 2000]. Reection has been used to endow Maude with a powerful
module algebra of parameterized modules and module composition opera-
tions implemented in the Full Maude tool [Dur�an, 1999]. Moreover, reec-
tion allows Maude to become a powerful metatool that has itself been used
to build formal tools such as an inductive theorem prover; a tool to check
the Church-Rosser property, coherence, and termination, and to perform
Knuth-Bendix completion; and a tool to specify, analyze and model check
real-time speci�cations [Clavel et al., 2000; Clavel et al., 1999; Olveczky,
2000].

A good number of examples of representations of logics in rewriting logic
have been given by di�erent authors, often in the form of executable speci�-
cations, including a map HOL! Nuprl between the logics of the HOL and
Nuprl theorem provers, and a natural representation map PTS ! RWLogic
of pure type systems (a parametric family of higher-order logics) in rewriting
logic [Stehr, 2002].

Thanks to reection and to the existence of initial models, rewriting logic
can not only be used as a logical framework in which the deduction of a logic
L can be faithfully simulated, but also as a metalogical framework in which
we can reason about the metalogical properties of a logic L. Basin, Clavel,
and Meseguer [2000] have begun studying the use of reection, induction,
and Maude's inductive theorem prover enriched with reective reasoning
principles to prove such metalogical properties.

Similarly, the use of rewriting logic and Maude as semantic framework
has been greatly advanced. A number of encouraging case studies giv-
ing rewriting logic de�nitions of programming languages have already been
carried out by di�erent authors. Since those speci�cations usually can be
executed in a rewriting logic language, they in fact become interpreters for
the languages in question. In addition, such formal speci�cations allow both
formal reasoning and a variety of formal analyses for the languages so spec-
i�ed. See [Mart��-Oliet and Meseguer, 2001] for a considerable number of
references related to these topics.

The close connections between rewriting logic and structural operational
semantics have been further developed by Mosses [1998] and Braga [2001] in
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the context of Mosses's modular structural operational semantics (MSOS)
[Mosses, 1999]. In particular, Braga [2001] proves the correctness of a map-
ping translating MSOS speci�cations into rewrite theories. Based on these
ideas, an interpreter for MSOS speci�cations [Braga, 2001] and a Maude
Action Tool [Braga et al., 2000; Braga, 2001] to execute Action Semantics
speci�cations have been built using Maude.

The implementation of CCS in Maude has been re�ned and considerably
extended to take into account the Hennessy-Milner modal logic by Verdejo
and Mart��-Oliet [2000]. The semantic properties of this map from CCS
to rewriting logic have been studied in detail in [Carabetta et al., 1998;
Degano et al., 2000].
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DAVID BASIN, SEÁN MATTHEWS

LOGICAL FRAMEWORKS

1 INTRODUCTION

One way to define a logic is to specify a language and a deductive system. For
example, the language of first-order logic consists of the syntactic categories of
terms and formulae, and its deductive system establishes which formulae are the-
orems. Typically we have a specific language in mind for a logic, but some flexi-
bility about the kind of deductive system we use; we are able to select from, e.g.,
a Hilbert calculus, a sequent calculus, or a natural deduction calculus. Alogical
frameworkis an abstract characterization of one of these kinds of deductive sys-
tem that we can use to formalize particular examples. Thus a logical framework for
natural deduction should allow us to formalize natural deduction for a wide range
of logics from, e.g., propositional logic to intuitionistic type-theories or classical
higher-order logic.

Exactly how a logical framework abstractly characterizes a kind of deductive
system is difficult to pin-down formally. From a high enough level of abstrac-
tion, we can see a deductive system as defining sets; i.e. we have a recursive set
corresponding to well-formed syntax, a recursive set corresponding to proofs, and
a recursively enumerable set of provable formulae.1 But this view is really too
coarse: we expect a logical framework to be able to capture more than just the sets
of well-formed and provable formulae associated with a logic. If this were all that
we wanted, then any Turing complete programming language would constitute a
logical framework, in so far as it can implement a proof-checker for any logic.

In this chapter we present and examine two different kinds of frameworks, each
representing a different view of what a deductive system is:!-frameworks (de-
duction interpreted as reasoning in a weak logic of implication) and ID-frameworks
(deduction interpreted as showing that a formula is a member of an inductively de-
fined set). Either of these can be used to formalize any recursively enumerable
relation. However, before calling a system a logical framework we will demand
that it preserves additional structure. Thus we first consider what are the important
and distinguishing characteristics of the different kinds of deductive systems, then
we examine frameworks based on different sorts of possiblemetalogic(ormetathe-
ory) and we show that these are well-suited to representing the deductive systems
for certain classes ofobject logics(or object theories). By providing procedures
by which the deductive system of any object logic in a class can be naturally en-
coded in some metalogic, we show how effective frameworks are for formalizing
particular logics.

1We make the assumption in this chapter that the property of being a well-formed syntactic entity
or a proof is recursive; i.e. we know one when we see it.

D. Gabbay and F. Guenthner (eds.),
Handbook of Philosophical Logic, Volume 9, 89–163.
c 2002, Kluwer Academic Publishers. Printed in the Netherlands.
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When we say that an encoding isnatural we shall mean not only that it is
high-level and declarative but also that there is an appropriate bijection between
derivations in the object logic and derivations manipulating the encoding in the
metalogic. For example, a Hilbert system can be naturally encoded using an in-
ductive definition where each rule in the object logic corresponds to a rule in the
metalogic. Similarly, there are natural encodings of many natural deduction sys-
tems in a fragment of the language of higher-order logic, which make use of a
simple, uniform, method for writing down rules as formulae of the metalogic, so
that it is possible to translate between natural deduction proofs of the object logic
and derivations in the metalogic.

The term ‘logical framework’ came into use in the 1980s; however the study of
metalogics and methods of representing one logic in another has a longer history
in the work of logicians interested in languages for the metatheoretic analysis of
logics, and computer scientists seeking conceptual and practical foundations for
implementing logic-based systems. Although these motivations differ and are, at
least in part, application oriented, behind them we find something common and
more general: logical frameworks clarify our ideas of what we mean by a ‘de-
ductive system’ by reducing it to its abstract principles. Thus work on logical
frameworks contributes to the work of Dummett, Gentzen, Hacking, Prawitz, and
others on the larger question of what is a logic.

1.1 Some historical background

Historically, the different kinds of deductive systems have resulted from different
views of logics and their applications. Thus the idea of a deductive system as an in-
ductive definition developed out of the work of Frege, Russell, Hilbert, Post, G¨odel
and Gentzen attempting to place mathematics on firm foundational ground. In par-
ticular, Hilbert’s program (which G¨odel famously showed to be impossible) was to
use the theory of proofs to establish the consistency of all of classical mathematics,
using only finitary methods. From this perspective, ofmetatheory as proof theory,
a deductive system defines a set of objects in terms of an initial set and a set of
rules that generate new objects from old, and a proof is the tree of rule applica-
tions used to show that an object is in the set. For Frege and Hilbert these objects
were simply theorems, but later Gentzen took them to be sequents, i.e. pairs of
collections of formulae. But, either way, a deductive system defines a recursively
enumerable set, which is suitable for analysis using inductive arguments.

How should the metatheory used to define these inductive definitions be char-
acterized? Hilbert required it to be finitary, so it has traditionally been taken
to be the primitive recursive fragment of arithmetic (which is essentially, e.g.,
what Gödel [1931] used for his incompleteness theorems). However, despite the
endorsement by Hilbert and G¨odel, arithmetic is remarkably unsuitable, in the
primitives it offers, as a general theory of inductive definitions. Thus, more re-
cent investigations, such as those of Smullyan[1961] and Feferman[1990], have
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proposed theories of inductive definitions based on sets of strings or S-expressions,
structures more tractable in actual use.

A different view of deductive systems is found in work in computer science and
artificial intelligence, where logics have been formalized for concrete applications
like machine checked proof. The work of, e.g., de Bruijn[Nederpeltet al., 1994]
does not attempt to analyze the meta-theoretic properties of deductive systems, but
concentrates rather on common operations, such as binding and substitution. The
goal is to provide an abstract characterization of such operations so that deductive
systems can be easily implemented and used to prove theorems; i.e. metatheory
is seen as providing aunifying languagefor implementing, and ultimately using,
deductive systems. A result of this concern with ease in use (i.e. building proofs)
rather than ease of metatheoretic analysis (i.e. reasoning about proofs) is that work
has emphasized technically more complex, but more usable, notations such as nat-
ural deduction, and resulted in frameworks based on higher-order logics and intu-
itionistic type-theories instead of the inductive definitions of the older proof theory
tradition.

1.2 Focus and organization

This chapter presents the concepts underlying the various logical frameworks that
have been proposed, examining the relationship between different kinds of de-
ductive systems and metatheory. Many issues thus fall outside our scope. For
example, we do not investigate semantically based approaches to formalizing and
reasoning about logics, such as theinstitutionsof Goguen and Burstall[1992] or
thegeneral logicsof Meseguer[1989]. Even within our focus, we do not attempt
a comprehensive survey of all the formalisms that have been proposed. Neither do
we directly consider implementation questions, even though computer implemen-
tations now play an important role in the field. Further references are given in the
bibliography; the reader is referred in particular to the work of Avronet al., Paul-
son, Pfenning, Pollack, and ourselves, where descriptions of first-hand experience
with logical frameworks can be found.

The remainder of this chapter is organized as follows. Inx2 we briefly survey
three kinds of deductive systems, highlighting details relevant for formalizing ab-
stractions of them. Inx3 we consider a logic based on minimal implication as an
abstraction of natural deduction. It turns out that this abstraction is closely related
to a generalization of natural deduction due to Schroeder-Heister. Inx4 we con-
sider in detail a particular metatheory that formalizes this abstraction. We also
consider quantification and so-called ‘higher-order syntax’. Inx5 we present a
case study: the problem of formalizing modal logics. Inx6 we examine sequent
calculi and their more abstract formalization as consequence relations. Inx7 we
investigate the relationship between sequent systems and inductive definitions, and
present a particular logic for inductive definitions. Finally, we draw conclusions
and point to some current and possible future research directions.
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2 KINDS OF DEDUCTIVE SYSTEMS

Many different kinds of formalization of deduction have been proposed, for a range
of purposes. However in this chapter we are interested in deductive systems de-
signed for the traditional purposes of logicians and philosophers, of investigating
the foundations of language and reasoning; in fact we restrict our interest even fur-
ther, to three kinds of system, which are commonly calledHilbert calculi, sequent
calculi andnatural deduction. But this restriction is more apparent than real since,
between them, these three cover the vast majority of deductive systems that have
been proposed. We describe only the details that are important here, i.e. the basic
mechanics; for deeper and more general discussion, the reader is referred to Sund-
holm’s articles on systems of deduction elsewhere in this handbook[1983; 1986].

For the purposes of comparison, we shall present, as an example, the same sim-
ple logics in each style: propositional logics of minimal and classical implication.
The language we will work with then is as follows.

DEFINITION 1. Given a set of atomic propositionsP , the language of proposi-
tions,L, is defined as the smallest set containingP , where ifA andB are inL,
then(A � B) is inL.

For the sake of readability we assume that� associates to the right and omit
unnecessary parentheses; for example, we abbreviate(A � (B � C)) asA �
B � C. We now proceed to the different presentations.

2.1 Hilbert calculi

Historically, Hilbert calculi are the oldest kind of presentation we consider. They
are also, in some technical sense, the simplest. A Hilbert calculus defines a set
of theoremsin terms of a set ofaxiomsAx and a set ofrules of proofR. A
rule of proof is a relation between formulaeA1; : : : ; An and a formulaA. A rule
is usually written in a two-dimensional format and sometimes decorated with its
name. For example

A1 : : : An
name

A

says that by rulename, givenA1; : : : ; An, it follows thatA. The set of formulae
defined by a Hilbert calculus is the smallest set containingAx and closed under
R; we call this set atheory, and the formulae in ittheorems.

The set of theorems in a logic of minimal implication can be defined as a Hilbert
calculus where the set of axioms contains all instances of the axiom schemataK

A � B � A

andS

(A � B) � (A � B � C) � A � C :
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We call these schemata becauseA, B andC stand for arbitrary formulae inL. In
addition, we have one rule of proof,detachment, which takes the form

A � B A
Det :

B

The Hilbert calculus defined byK,S andDet is the set of theorems of the minimal
(or intuitionistic) logic of implication. We call this theoryHJ

�.2

The set of theorems in a logic of classical implication,HK
�, is slightly larger

thanHJ
�. We can formalizeHK

� by adding toHJ
� a third axiom schema, for

Peirce’s law

((A � B) � A) � A : (1)

A proof in a Hilbert calculus consists of a demonstration that a formula is in
the (inductively defined) set of theorems. We can think of a proof as either a tree,
where the leaves are axioms, and the branches represent rule applications, or as
a list of formulae, ending in the theorem, where each entry is either an axiom, or
follows from previous entries by a rule. Following common practice, we use the
list notation here.

The following is an example of a proof ofA � A in HJ
� and thus also inHK

�:

1. A � A � A K
2. (A � A � A) � (A � (A � A) � A) � A � A S
3. A � (A � A) � A K
4. (A � (A � A) � A) � A � A Det 2,1
5. A � A Det 4,3

It turns out that proving theorems in a Hilbert calculus by hand, or even on a
machine, is not practical: proofs can quickly grow to be enormous in size, and it
is often necessary (e.g. in the proof we have just presented) to invent instances of
axiom schemata that have no intuitive relationship to the formula being proven.
However Hilbert calculi were never really intended to be used to build proofs, but
rather as a tool for the metatheoretic analysis of logical concepts such as deduction.
And from this point of view, the most important fact about Hilbert calculi is that
they are essentially inductive definitions;3 i.e. well-suited for arguments (about
provability) by induction.

2For the proof systems presented in this section, we follow the tradition where the first letter indi-
cates the kind of deduction system (H for Hilbert, N for natural deduction, andL for sequent calculus),
the second letter indicates the logic (J for minimal, or intuitionistic logic, andK for classical logic),
and superscripts name the connectives.

3The two are so closely related that, e.g., Aczel[1977] identifies them.
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2.2 Sequent calculi

Useful though Hilbert calculi are, Gentzen[1934] found them unsatisfactory for
his particular purposes, and so developed a very different style that has since be-
come the standard notation for much of proof theory, and which is known asse-
quent calculus.

With a sequent calculus we do not define directly the set of theorems; instead
we define a binary ‘sequent’ relation between collections of formulae,� and�,
and identify a subset of instances of this relation with theorems. We shall write
this relation as� ` �, where� is called theantecedentand� thesuccedent. This
is often read as ‘if all the formulae in� are true, then at least one of the formulae
in � is true’.

The rules of a sequent calculus are traditionally divided into two subsets con-
sisting of thelogical rules, which define logical connectives, and thestructural
rules, which define the abstract properties of the sequent relation itself. The basic
properties of any sequent system are given by the following rules which state that
` is reflexive for singleton collections (Basic) and satisfies a form of transitivity
(Cut):

Basic
A ` A

� ` A;� �0; A ` �0

Cut
�;�0 ` �;�0

(2)

A typical set of structural rules is then

� ` �
WL

�; A ` �

� ` �
WR

� ` A;�

�; A;A ` �
CL

�; A ` �

� ` A;A;�
CR

� ` A;�

�; A;B;�0 ` �
PL

�; B;A;�0 ` �

� ` �; A;B;�0

PR
� ` �; B;A;�0

(3)

which definè to be a relation on finite sets that is also monotonic in both argu-
ments (what we will later callordinary). The namesWL, CL andPL stand for
Weakening, ContractionandPermutation Leftof the sequent, whileWR, CR and
PR name the same operations on the right.

We can give a deductive system for classical implication, which we callLK�,
in terms of this sequent calculus by adding logical rules for�:

� ` A;� �0; B ` �0

�-L
�;�0; A � B ` �;�0

�; A ` B;�
�-R

� ` A � B;�

The names�-L and�-R indicate that these are rules for introducing the impli-
cation connective on the left and the right of`. We get a sequent calculus for
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minimal implication,LJ
�, by adding the restriction oǹ that its succedent is a

sequence containing exactly one formula.4

Like Hilbert proofs, sequent calculus proofs can be equivalently documented as
lists or trees. Since proofs are less unwieldy than for Hilbert calculi, trees are a
practical notation. A sequent calculus proof ofA � A is trivial, so instead we take
as an example a proof of Peirce’s law (1):

Basic
A ` A

WR
A ` B;A

�-R
` (A � B); A

Basic
A ` A

�-L
((A � B) � A) ` A;A

CR
((A � B) � A) ` A

�-R
` ((A � B) � A) � A

Notice that it is critical in this proof that the succedent can consist of more than
one formula, and thatCR can be applied. Neither this proof (sinceCR is not
available), nor any other, of Peirce’s law is possible inLJ

�.
Technically we can regard a sequent calculus as a Hilbert calculus for a binary

connectivè ; however the theorems of this system are in the language of sequents
overL, not formulae in the language ofL itself. The set of theorems a sequent
calculus defines is taken to be the set of formulaeA in L such that̀ A is prov-
able, i.e., there is a proof of the sequent� ` �, where� is empty, and� is the
singletonA.

2.3 Natural deduction

A second important kind of deductive system that Gentzen[1934] (and subse-
quently Prawitz[1965]) developed wasnatural deduction. In contrast to the se-
quent calculus, which is intended as a formalism that supports metatheoretic anal-
ysis, natural deduction, as its name implies, is intended to reflect the way people
‘naturally’ work out logical arguments. Thus Gentzen suggested that, e.g., in order
to convince ourselves that theS axiom schema

(A � B) � (A � B � C) � A � C

is true, we would, reading� as ‘implies’, informally reason as follows: ‘Assuming
A � B and thenA � B � C we have to show thatA � C, and to do this, it
is enough to show thatC is true assumingA. But if A is true then, from the first
assumption,B is true, and, given thatA andB are true, by the second assumption
C is true. Thus theS schema is true (under the intended interpretation)’.

4As a result, inLJ� the structural rules (WR, CR andPR) become inapplicable, and� = ; in
the logical rule�-L.
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To represent this style of argumentunder assumptionwe need a new kind of
rule, called arule of inference, that allows temporary hypotheses to be made and
discharged. This is best explained by example. Consider implication; we can
informally describe some of its properties as: (i) if, assumingA, it follows thatB,
then it follows thatA � B, and (ii) if A � B andA, then it follows thatB. We
might represent this reasoning diagrammatically as follows:

[A]
�
�
�
B

�-I
A � B

A � B A
�-E

B
(4)

where�-I and�-E are to be pronounced as ‘Implication Introduction’ and ‘Im-
plication Elimination’, since they explain how to introduce and to eliminate (i.e. to
create and to use) a formula with� as the main connective.

We callA � B in�-E themajor premise, andA theminor premise. In general,
the major premise of an elimination rule is the premise in which the eliminated
connective is exhibited and all other premises are minor premises. Square brackets
around assumptions indicate that they are considered to be temporary, and made
only for the course of the derivation; when applying the rule we candischarge
these occurrences. Thus, when applying�-I , we can discharge (zero or more)
occurrences of the assumptionA which has been made for the purposes of building
a derivation ofB, which shows thatA � B. Of course, when applying the�-I
rule, there may be other assumptions (so called open assumptions) that are not
discharged by the rule. Similarly, the two premises of�-E may each have open
assumptions, and the conclusion follows under the union of these.

To finish our account of�, we must explain how these rules can be used to
build formal proofs. Gentzen formalized natural deduction derivations just like in
sequent and Hilbert calculi, as trees, explaining how formulae are derived from
formulae. With natural deduction though, there is an added complication: we also
have to track the temporary assumptions that are made and discharged. Thus along
with the tree of formulae, a natural deduction derivation has adischarge function,
which associates with each nodeN in the tree leaf nodes aboveN that the rule
application at nodeN discharges. Moreover, there is the proviso that each leaf
node can be discharged by at most one node. A proof, then, is a derivation where
all the assumptions are discharged (i.e. all assumptions are temporary); the formula
proven is a theorem of the logic.

A natural deduction proof, with its discharge function, is a complex object
in comparison with a Hilbert or sequent proof. However, it has a simple two-
dimensional representation: we just decorate each node with the name of the rule
to which it corresponds, and a unique number, and decorate with the same number
each leaf node of the tree that it discharges. In this form we can document the pre-
viously given informal argument of the truth of theS axiom schema as a formal
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proof (we only number the nodes that discharge some formula):5

[A � B � C]2 [A]3
�-E

B � C

[A � B]1 [A]3
�-E

B
�-E

C
�-I 3

A � C
�-I 2

(A � B � C) � A � C
�-I 1

(A � B) � (A � B � C) � A � C

Once we have committed ourselves to this formalization of natural deduction,
we find that the two rules (4) together define exactly minimal implication, in a
deductive system which we callNJ

�.
While the claims of natural deduction to be the most intuitive way to reason

are plausible, the style does have some problems. First, there is the question of
how to encode classical implication. We can equally easily give a direct presenta-
tion of either classical or minimal implication, using a Hilbert or sequent calculus,
but not using natural deduction. WhileNJ

� is standard for minimal implication,
there is, unfortunately, no simple equivalent for classical implication (what we
might imagine callingNK

�): the standard presentation of classical implication
in natural deduction is as part of a larger, functionally complete, set of connec-
tives, including, e.g., negation and disjunction, through which we can appeal to
the law of excluded middle. Alternatively we can simply accept Peirce’s law as
an axiom. We cannot, however, using the language of natural deduction, define
classical implication simply in terms of introduction and elimination rules for the
� connective.

A second problem concerns proofs themselves, which are complex in compar-
ison to the formal representations of proofs in Hilbert or sequent calculi. It is
worth noting that a Hilbert calculus can be seen as a special simpler case of nat-
ural deduction, since axioms of a Hilbert calculus can be treated as rules with no
premises, and the rules of a Hilbert calculus correspond to natural deduction rules
where no assumptions are discharged.

3 NATURAL DEDUCTION AND THE LOGIC OF IMPLICATION

Given the previous remarks about the complexity of formalizations of natural de-
duction, it might seem unlikely that a satisfactory logical framework for it is possi-
ble. In fact, this is not the case. In this section we show that there is an abstraction
of natural deduction that is the basis of an effective logical framework. Prelimi-
nary to this, however, we consider another way of formalizing natural deduction
using sequents.

5It may help the reader trying to compare this formal proof diagram with the previous informal
argument, to read it ‘bottom up’; i.e. upwards from the conclusion at the root.
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3.1 Natural deduction and sequents

We can describe natural deduction informally as ‘proof under assumption’, so the
basic facility needed to formalize such a calculus is a mechanism for managing
assumptions. Sequents provide this: assumptions can be stored in the antecedent
of the sequent and deleted when they are discharged. Thus, if we postulate a
relation` satisfyingBasic and the structural rules (3), where the succedent is a
singleton set, then we can encodeNJ

� using the rules:6

�; A ` B
�-I

� ` A � B

� ` A � B � ` A
�-E

� ` B
(5)

This view of natural deduction is often technically convenient (we shall use
it ourselves later) but it is unsatisfactory in some respects. Gentzen, and later
Prawitz, had a particular idea in mind of how natural deduction proofs should look,
and they made a distinction between it and the sequent calculus, using proof trees
with discharge functions for natural deduction, and sequent notation for sequent
calculus. We also later consider ‘natural’ generalizations of natural deduction that
cannot easily be described using a sequent notation.

3.2 Encoding rules using implication

The standard notation for natural deduction, based on assumptions and their dis-
charge, while intuitive, is formally complex. Reducing it to sequents allows us
to formalize presentations in a simpler ‘Hilbert’ style; however we have also said
that this is not altogether satisfactory. We now consider another notation that can
encode not only natural deduction but also generalizations that have been indepen-
dently proposed.

A natural ‘horizontal’ notation for rules can be based on listshA1; : : : ; Ani and
an arrow!. Consider the rules (4): we can write the elimination rule in horizontal
form simply as

A � B A

B
� hA � B;Ai ! B

and the introduction rule as

[A]
�
�
�
B

A � B

� hAy ! Bi ! A � B :

In the introduction rule we have marked the assumptionA with the symboly to
indicate that it is discharged. But this is actually unnecessary; using this linear

6Importantly, we can prove that the relation defined by this encoding satisfies theCut rule above;
it thus defines a consequence relation (seex6).
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notation, precisely the formulae (here there is only one) occurring on the left-hand
side of some!-connective in the premise list are discharged.

This new notation is suggestive: Gentzen explicitly motivated natural deduction
as a formal notation for intuitive reasoning, and we have now mapped natural lan-
guage connectives such as ‘follows from’ onto the symbol!. Why not make this
explicit and read! as formal implication, and ‘h: : : i’ as a conjunction of its com-
ponents? The result, if we translate into the conventional language of (quantifier
free) predicate logic, is just:

(T (A � B) & T (A))! T (B)

(T (A)! T (B))! T (A � B)
(6)

which, reading the unary predicate symbolT as ‘True’, is practically identical with
Gentzen’s natural language formulation.

What is the significance of this logical reading of rules? The casual relationship
observed above is not sufficient justification for an identification, and we will see
that we must be careful. However, after working out the details, this interpretation
provides exactly what we need for an effective logical framework, allowing us to
trade the complex machinery of trees and discharge functions for a pure ‘logical’
abstraction.

We separate the investigation of such interpretations into several parts. First,
we present a metalogic based on (minimal) implication and conjunction and give a
uniform way of translating a set of natural deduction rulesR into a set of formulae
R� in the metalogic. For an object logicL presented by a set of natural deduction
rulesR, this yields a metatheoryL� given by the metalogic extended withR�.
Second, we demonstrate that for any suchL, the translation isadequate. This
means thatL� is ‘strong enough’ to derive (the representative of) any formula
derivable inL. Third, we demonstrate that the translation isfaithful. That is that
L� is not too strong; we can only derive inL� representatives of formulae that are
derivable inL, and further, given such a derivation, we can recover a proof inL.7

3.3 The metatheory and translation

We have previously defined natural deduction in terms of formula-trees and dis-
charge functions. We now describe the logic with which we propose to replace
it.

Thus we assume that! and& have at least the properties they have in minimal
logic. Above we have provided three separate formalizations of (the implicational
fragment of) minimal logic: as a Hilbert calculus, as a sequent calculus, and as nat-
ural deduction. Since these all formalize the same set of theorems, we could base
our analysis on any of them. However, it will be convenient for our development

7Notice that this is a stronger requirement than the model-theoretic requirement of soundness, which
requires that we should not be able to prove anything false in the model, but not that we can recover a
proof of anything that we have shown to be true.
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to use natural deduction.8 Even though this may seem circular, it isn’t: we simply
need some calculus to fix the meaning of these connectives and later to formalize
the correctness of our embeddings.

For the rest of this section, we will formalize deductive systems associated with
propositional logics. We leave the treatment of quantifiers in the object logic,
for which we need quantification in the metalogic (here we need only, as we will
see, quantifier-free schemata), and a general theory of syntax, tox4. For now,
we simply assume a suitable term algebra formalizing the language of the object
logic. We will build formulae in the metalogic from the unary predicateT and the
connectives! and&. To aid readability we assume that& binds tighter than!,
which (as usual) associates to the right. Now, letNJ!;& be the natural deduction
calculus based on the following rules:

A B
&-I

A & B A & B

[A;B]
�
�
�
C

&-E
C

[A]
�
�
�
B

!-I
A! B

A! B A
!-E

B

We also formally define the translation, given by the mapping ‘�’, from rules
of natural deduction to the above language. HereAi varies over formulae in the
logic, and�i over the premises (along with the discharged hypotheses) of a rule
�.

�
�1 : : :�n

A

��
 ��

1 & � � � & ��
n ! T (A)0

@[A1; : : : ; An]
�
�
�
A

1
A�

 T (A1) & � � � & T (An)! T (A)

(7)

Note that axioms and rules that discharge no hypotheses constitute degenerate
cases, i.e.A�  T (A). We extend this mapping to sets of rules and formulae,
i.e.R� � f�� j � 2 Rg.

8One reason is that we can then directly relate derivability in the metalogic with derivability in
the object logic. As is standard[Prawitz, 1965], derivability refers to natural deduction derivations
with possibly open assumptions. Provability is a special case where there are no open assumptions.
This generalization is also relevant to showing that we can correctly represent particular consequence
relations (seex6).
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3.4 Adequacy

If A is a theorem of an object logicL defined by rulesR, then we would like
T (A) to be provable in the metatheoryL� = NJ!;& +R� (i.e. NJ!;& extended
by the rulesR�). More generally, ifA is derivable inL under the assumptions
� = fA1; : : : ; Ang, then we would like forT (A) to be derivable inL� under the
assumptions��.

Consider, for example, the object logicL over the languagef�;
;�;+g de-
fined by the following rulesR:

+
�




+
�

�


 �


�

[+]
�
�
�
�
Æ

�

(8)

We can prove, for example,� by:

[+]1
�




[+]1
�

�


�
Æ1

�

(9)

Under our proposed encoding, the rules are translated to the following setR�:

T (+)! T (
) (��)

T (+)! T (�) (��)

T (
) & T (�)! T (�) (�)

(T (+)! T (�))! T (�) (Æ�)

and we can proveT (�) in the metatheoryL� = NJ!;& +R� by:

Æ�
(T (+)! T (�))! T (�)

[T (+)]1
�
�
�

�

T (�)
!-I 1

T (+)! T (�)
!-E

T (�)

where� is:

�

T (
) & T (�)! T (�)

��

T (+)! T (
) T (+)
!-E

T (
)

��

T (+)! T (�) T (+)
!-E

T (�)
&-I

T (
) & T (�)
!-E

T (�)
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Notice how assumptions inL are modeled directly by assumptions inL�, and how,
in general, a rule application inL corresponds to a fragment of the derivation in
L�. We have, for instance, the equivalence

[+]
�
�
�
�
Æ

�

�
Æ�

(T (+)! T (�))! T (�)

[T (+)]1
�
�
�

T (�)
!-I 1

T (+)! T (�)
!-E

T (�)

Intuitively, then, we use!-E to unpack the rule, and!-I to gather together the
subproofs and discharged hypotheses.

We call the right-hand side of this the correspondingcharacteristic fragment
for the ruleÆ. In the same way there are characteristic fragments for each of the
other rules, and out of these we can build a meta-derivation corresponding to any
derivation in our original logic. Moreover, these characteristic fragments can be
restricted to have a special form. Given a natural deduction rule� then�� (in the
general case) has the form

(T (A11) & � � � & T (A1
m1

)! T (A1)) & � � �

& (T (An1) & � � � & T (Anmn )! T (An))! T (A) ;

and we can show:

LEMMA 2. Given a rule�, there is a characteristic fragment� where for1 �
i � n, atomic assumptionsT (Ai1); : : : T (Ai

mi
) are discharged in subderivations

of T (Ai), and then these subderivations are combined together with�� to prove
T (A). Further, if we insist also that the major premise of an elimination rule is
never the result of the application of an introduction rule (i.e.!-I or &-I ), while
the minor premise is always either atomic or the result of the application of an
introduction rule, then� is unique.

Proof. By an analysis of the possible structure of�. �

For a rule� that does not discharge assumptions, i.e., of the form

A1 : : : An

A
;

the characteristic fragment is just a demonstration that, given��, the rule

T (A1) : : : T (An)

T (A)

is derivable inL�. That is, there is a derivation ofT (A) where the only open
assumptions areT (A1); : : : ; T (An). Note that this standard notion of derivabil-
ity (see, e.g., Troelstra[1982] or Hindley and Seldin[1986]), can be extended
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(see Schroeder-Heister[1984b] andx3.6 below) to account for rules that discharge
assumptions; in this extended sense, each characteristic fragment justifies a derived
rule that allows us to simulateL-derivations inL�.

Given the existence of characteristic fragments, it is a simple matter to model
L-derivations inL�. To begin with, since our metalogic is a natural deduction
calculus, we can model assumptions in the encoded logic as assumptions in the
metalogic. Each such assumptionBi is modeled by an assumptionT (Bi). Now,
given a derivation in the object logic, we can inductively replace rules by corre-
sponding characteristic fragments to produce a derivation inL�. For example, in
(9) we proved� using four rule applications; after we gave a proof inL� of T (�)
built from the four characteristic fragments that correspond to these applications.

In this form, however, this observation assumes not just a metalogic (NJ!;&)
but also a particular proof calculus for the metalogic (natural deduction), which,
since we want a purely logical characterization, we want to avoid. It is easy to
remove this assumption by observing thatA follows from the assumptionsA1 to
An in NJ!;& iff A1 & � � � & An ! A follows without the assumptions. Thus we
have a theorem that states the adequacy of encodings of natural deduction calculi
in NJ!;&.9

THEOREM 3 (Adequacy).For any natural deduction calculusL defined by a set
of rulesR, if the formulaA is derivable under assumptionsA1; : : : ; An, then
T (A1) & � � � & T (An)! T (A) is provable inL� = NJ!;& +R�.

Notice that the proof is based on translation, and hence is constructive: given a
derivation in the object logic we can construct one in the metalogic.

3.5 Faithfulness

In proving adequacy, we only used the metatheoryL� in a limited way where
derivations had a simple structure built by pasting characteristic fragments to-
gether. Of course, there are other ways to build proofs inL� and it could be that
this freedom allows us to derive representations of formulae that are not derivable
in L. We now show that our translation is faithful, i.e. this is not the case.

To see why we have to be careful about faithfulness, consider the following:
in the deductive systemNJ!;&, the! connective is minimal implication (the
logic is a conservative extension ofNJ!). But what happens if we strengthen the
metalogic to be classical, e.g. by adding classical negation or assuming Peirce’s
law? We can still show adequacy of our encodings, since derivations inNJ!;&

remain valid when additional rules are present, but we can also use the encoding
to derive formulae that are not derivable in the original system. Consider what
happens if we try to prove something that is classically but not minimally valid,

9However notice that the translation is only defined on rules without side conditions, i.e. for ‘pure’
natural deduction; for more idiosyncratic logics, see the discussion inx6.
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like, for instance, Peirce’s law itself:

T (((A � B) � A) � A) : (10)

Using the axioms in (6), we can reduce this to the problem of proving

((T (A)! T (B))! T (A))! T (A) : (11)

But this is itself an instance of Peirce’s law, and is provable if! is classical im-
plication. ThusT (�) does not here define the set of minimal logic theorems.

If ! is read as minimal implication, then the same trick does not work. We can
still reduce (10) to (11), but we are not able to take the final step of appealing to
Peirce’s law in the metalogic.

We now show that assuming! to be minimal really does lead to a faithful pre-
sentation of object logics, by demonstrating a direct relationship between deriva-
tions of formulaeT (A) in theL� and derivations ofA in L.

The desired relationship is not a simple isomorphism: we pointed out in dis-
cussing adequacy above, that for each natural deduction rule translated into our
logical language, it is possible to find a characteristic fragment, and using these
fragments we can translate derivations inL into derivations inL�. However an
arbitrary derivation inL� may not have a corresponding derivation inL (it is a
simple exercise to construct a proof ofT (�) that does not use characteristic frag-
ments). But if we look more carefully at the derivation ofT (�) we have given,
and the fragments from which it is constructed, we can see that it has a particu-
larly simple structure, and this structure has a technical characterization, similar
to that we used for the characteristic fragments themselves. The derivations we
build to show adequacy are in what is calledexpanded normal form(ENF): the
major premise of an elimination rule (i.e.!-E or &-E ) is never the result of the
application of an introduction rule (i.e.!-I or &-I ), and all minor premises are
either atomic or the result of introduction rules. Not all derivations are in ENF, but
any derivation can be transformed into one that is. We have the following:

FACT 4 (Prawitz[1971]). There is an algorithm transforming any derivation in
NJ!;& into an equivalent derivation in ENF, and this equivalent derivation is
unique.

From this we get the theorem we need; again, like for the statement of ade-
quacy, we abstract away from the deductive system to get a pure logical character-
ization:

THEOREM 5 (Faithfulness).For any natural deduction systemL defined by a set
of rulesR, if we can proveT (A1) & � � � & T (An) ! T (A) in L�, thenA is
derivable inL from the assumptionsA1; : : : ; An.

Proof. The theorem follows immediately from the existence of ENF derivations
and Lemma 6 below. �
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LEMMA 6. There is an effective transformation from ENF derivations inL� of
T (A) from atomic assumptions�, to natural deduction derivations inL ofA from
assumptionsfB j T (B) 2 �g.

Proof. We prove this by induction on the structure of ENF derivations. Intuitively,
we show that an ENF derivation is built out of characteristic fragments, and thus
can easily be translated back into the original deductive system. Consider a deriva-
tion � of T (A).

Base case:T (A) corresponds to either an assumption in� or a (premisless)
rule of the encoded theory. The translation then consists either of the assumption
A or of the corresponding premisless rule with conclusionA.

Step case: Since the derivation is in ENF and the conclusion is atomic, the last
rule applied is an elimination rule; more specifically, the derivation must have the
form

��

��
1 & � � � & ��

n ! T (A)

�
�
� �1

��
1 � � �

�
�
� �n

��
n
]

��
1 & � � � & ��

n
!-E

T (A)

(12)

where] consists only of applications of&-I and�� is

��
1 & � � � & ��

n ! T (A)

for some rule� of the encoded system.
By the definition of the encoding, each��

i , derived by a proof�i, is then of the
form

T (Ai1) & � � � & T (Ai
mi

)! T (Ai):

Since the conclusion of�i proves an implication, and is in ENF, the last rule
applied must be!-I ; thus�i must have the form

[T (Ai1) & � � � & T (Ai
mi

)]1

[T (Ai1)] : : : [T (Ai
mi

)]
�
�
� �

0
i

T (Ai)
]

T (Ai)
!-I 1

T (Ai1) & � � � & T (Ai
mi

)! T (Ai)

with open assumptions�, where] consists only of applications of&-E , which
‘unpack’ the assumptionT (Ai1) & � � � & T (Ai

mi
) into its component proposi-

tions. In other words, (12) corresponds to the characteristic fragment for�.
By induction we can apply the same analysis to each�0

i, taking account not
only of the undischarged assumptions�, but also the new atomic assumptions
� + fT (Ai1); : : : ; T (Ai

mi
)g which have been introduced, and we are finished.

�
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3.6 Generalizations of natural deduction

The distinction we mentioned above (inx3.1) that Gentzen and Prawitz make
between natural deduction and sequent calculi has recently been emphasized by
Schroeder-Heister[1984a; 1984b], who has proposed a ‘generalized natural de-
duction’. This extension, which follows directly from Gentzen’s appeal to intu-
ition to justify natural deduction, is not formalizable using sequents in the way
suggested inx3.10

Consider again Gentzen’s proposed ‘natural language’ analysis of logical con-
nectives. In these terms we can characterize Implication Elimination as

If A � B andA, then it follows thatB

which we formalize as:
A � B A

B

Now consider the slightly more convoluted

If A � B and assuming that if, given that fromA we could deriveB,
we could deriveC, then we can deriveC.

which is also true. There is a natural generalization of rules that allows us to
express this in the spirit of natural deduction; namely,

A � B

"
A

B

#
�
�
�
C

C

(13)

where we can assume rules as hypotheses (and by generalization, have rules as hy-
potheses of already hypothetical rules, and so on). Schroeder-Heister shows that it
is quite a simple matter to extend the formula-tree/discharge-function formaliza-
tion to cope with this extension: we simply allow discharge functions to point to
subtrees rather than just leaves.

Why is such a generalization interesting? Schroeder-Heister uses it to analyze
systematically the intuitionistic logical connectives. However it has more general
use, and at least one immediate application: we can use it to encode Peirce’s law
without introducing new connectives, as"

A

B

#
�
�
�
A

A
10Though see Avron[1990] for relevant discussion.
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which, in English, is equivalent to

if, by assuming that someB follows fromA, it follows thatA, then it
follows thatA.

This provides, finally, a self-contained generalized natural deduction formulation
of classical implication. (At least in the sense that the meaning of implication can
be defined by rules involving no auxiliary connectives.)

The process of generalization can obviously be continued beyond allowing rules
as hypotheses, though. There is no reason why we cannot also have them as con-
clusions. Thus, for instance, it is clearly true that

A � B
!-EC 

A

B

!

(where round brackets do not, in the manner of square brackets, represent the
discharge of an assumption, but simply grouping), which might reasonably be read
as:

If A � B then fromA it follows thatB.

By now, however, while our intuition still seems to be functioning soundly, the
formula-tree/discharge-function formalization is beginning to break down. It can
cope with rules as assumptions, but the more general treatment of both rules and
formulae in derivations that we are now proposing is more difficult. With our
proposed alternative of the metalogicNJ!;&, on the other hand, the same problems
do not arise. In fact one way of looking at the faithfulness argument developed
above is as essentially a demonstration that this sort of ‘confusion’ can be unwound
for the purpose of recovering a proof in a system that does not in the end allow it.
The question then is, how closely does our logic match the traditional formulation?

In the most general case, allowing rules as both hypotheses and conclusions,
such a question is not quite meaningful, since we do not have a traditional for-
mulation against which we can compare. However if we limit ourselves to the
restricted case where we have rules as assumptions, it is still possible to be prop-
erly formal, since we can still compare our encoding to Schroeder-Heister’s more
traditional formalization in terms of formula-trees and discharge-functions.

Such a formulation is enough to allow us, by a ‘natural’ generalization of the
encoding in (7), to formalize, for instance, (13) as

(T (A � B) & ((T (A)! T (B))! T (C)))! T (C)

and!-EC as

T (A � B)! T (A)! T (B) :

It is now possible, by a corresponding generalization of the notion of deduction
(see Schroeder-Heister[1984b]) to show adequacy and faithfulness for this larger
class of deductive systems.
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Generalized natural deduction and curryed rules

Until now we have been usingNJ!;& to encode and reason with deductive sys-
tems. If we want to show a direct relationship between the traditional notation of
natural deduction and our encoding, then we seem to need both the! and& con-
nectives in the metalogic. However, compare!-E and!-EC ; while there seems
to be large differences between the two as rules, there is very little either in natural
language or in logical framework terms: one is simply the ‘curryed’ form of the
other; in this case the conjunction seems almost redundant.

On the other hand, one generalization that we have not made so far, and one
that is suggested byNJ!;&, is to allow a natural deduction rule with multiple
conclusions; e.g. assuming an ordinary conjunction^, have a (tableau-like) rule

A ^ B
&-EMC

A;B

corresponding to the natural language

If A ^ B then it follows thatA andB.

Both of which correspond to the framework formalization

T (A ^ B)! T (A) & T (B) :

However, there seems to be less of a need for rules of this form: a single encoded
ruleC ! A & B can be replaced by a pairC ! A andC ! B.

If we are willing to accept this restriction to the language of! alone, then
we can simplify the metalogic we are using: if we have conjunctions only in the
antecedents of implications!, they can always be eliminated by ‘currying’ the
formulae conjoined in the antecedent, allowing us to dispose of conjunction com-
pletely. For example, the curryed form of the axiom for!-E in (6) is then

T (A � B)! T (A)! T (B) :

Notice that this form of!-E is indistinguishable from the encoding we give
above for!-EC : we are no longer able to distinguish some different rules in
generalized natural deduction, and thus we lose the faithfulness/adequacy bijection
that we have previously demonstrated. However this problem is not serious: we
are only identifying proofs that differ in simple ways, e.g., by the application of
curryed versus uncurryed rules. Furthermore, this possible confusion arises in the
case ofgeneralizednatural deduction, but not in the traditional form.

In the next section we describe a full logical framework based on the ideas we
have developed here. In fact it turns out that we can adopt the same notation to
formalize not only deductive systems, but also languages, in a uniform manner.
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4 FRAMEWORKS BASED ON TYPE-THEORIES

In the last section we established a relationship between natural deduction and the
logic of implication. However we considered only reasoning about fragments of
propositional logic, and when we turn to predicate logics, we find that the mecha-
nisms of binding and substitution introduce some entirely new problems for us to
solve.

The first problem is simply how to encode languages where operators bind vari-
ables. Such variable binding operators include standard logical quantifiers, the�
of the�-calculus, fixedpoint operators like� in fixedpoint logics, etc. Until now
we have been using a simple term algebra to represent syntax, where, e.g. a binary
connective like implication is represented by a binary function. However, with
the introduction of binding and substitution this approach is less satisfactory. For
instance8x: �(x) and8y: �(y) are distinct syntactically, but not in terms of the
deductive system (any proof of one proves the other). Binding operators also com-
plicate operations performed on syntax; e.g. substitution. The second problem is
that proof-rules become more complex: the rules for quantifiers place conditions
on the contexts (e.g. insisting that certain variables do not appear free) in which
they can be applied.

Now we extend our investigation to deal with these problems, and complete
the development of a practical!-framework. We tackle the two problems of lan-
guage encoding and rule encoding together, by introducing the�-calculus as a
representation language into our system. This provides us with a way to encode
quantifiers usinghigher-ordersyntax and then to encode rules for these quanti-
fiers.

There are different ways that we can combine the�-calculus with a metalogic.
One possibility is simply to add it to the term language, extending, e.g., the the-
ory NJ! to a fragment of higher-order logic.11 Another, similar, possibility, and
one which offers some theoretical advantages, is to use atype-theory. We inves-
tigate the type-theoretic approach in this section. Type-theories based on the�-
calculus are well-known to be closely related to intuitionistic logics likeNJ! via
‘Curry-Howard’ (see Howard[1980]), or propositions-as-types, isomorphisms, a
fact which allows us to carry across much of what we already know about encod-
ing deductive systems fromNJ!. Moreover, an expressive enough type-theory
provides a unified language for representing not just syntax, but also proof-rules
and proofs. Thus a type-theoretic logical framework can provide a single solution
to the apparently distinct problems of encoding languages and deductive systems:
The encoding problems are reduced to declaration of appropriate (higher-order)
signatures and the checking problems (e.g. well-formedness of syntax and the
correctness of derivations) to the problem of type checking against these signa-
tures.

11See, e.g., Felty[1989], Paulson[1994] or Simpson[1992], for examples of this approach.
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4.1 Some initial observations

We begin by considering the problem of formalizing a binding operator, taking8
as our example. Consider what happens if we follow through the analysis given
above for natural deduction in propositional logic. First we state, in Gentzen style
natural language, some of the properties of8; e.g.

if, for arbitrary t, it follows that�(t), then it follows that8x: �(x)

and

if it follows that 8x: �(x), then for anyt it follows that�(t).

These are traditionally represented, in the notation of natural deduction, as

�
8-I

8x: �
and

8x: �
8-E

�[x t]

where, in8-I , the variablex does not appear free in any undischarged assump-
tion, and the notation�[x  t] denotes the formula� where the termt has been
substituted through forx (care being taken to avoid capturing variables). The re-
lationship between these rules and their informal characterizations is less direct
here than in the propositional case; for example, we model the statement ‘If, for
arbitraryt, it follows that�(t)’ indirectly, by assuming that an arbitrary variablex
can stand for an arbitrary term, then ensuring thatx really is arbitrary by requiring
that it does not occur free in the current assumptions.

Consider how we might use a ‘logical’ language instead of rules by extending
our language based on minimal implication. To start with, we need a way of saying
that a term is arbitrary, which we can accomplish with universal quantification.
Furthermore, unlike in the propositional case, we have two syntactic categories.
As well as formulae (fm), we now have terms (tm), and we will use types to
formally distinguish between them. If we combine quantification with typing, by
writing (x:y) to mean ‘for allx of typey’, then a first attempt at translating natural
language into (semi)formal language results in the following:

T (8x: �(x))! (t:tm)T (�(t))

(t:tm)T (�(t))! T (8x: �(x))
(14)

However while this appears to capture our intuitions, it is not clear that it is for-
mally meaningful. If nothing else, one might question the cavalier way we have
treated the distinction between object-level and metalevel languages. In the fol-
lowing sections we show that this translation does in fact properly correspond to
the intuitive reading we have suggested.

4.2 Syntax as typed terms

We begin by considering how languages that include variable-binding operators
can be represented. We want a method of representing syntax where terms in the
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object logic are represented by terms in the metalogic. This representation should
be computable and we want too that it is compositional; i.e. that the representative
of a formula is built directly from the representatives of its subformulae.

Types provide a starting point for solving these problems. A type system can
be used to classify terms into types where well-typed terms correspond to well-
formed syntax. Consider the example of first-order logic; this has two syntactic
categories, terms and formulae, and, independent of whether we view syntax as
strings, trees, or something more abstract, we must keep track of the categories to
which subexpressions belong. One way to do this is to tag expressions with their
categories and have rules for propagating these tags to ensure that entire expres-
sions are ‘well-tagged’. Even if there is only one syntactic category we still need
some notion of well-formed syntax; in minimal logic, for instance, some strings
built from implication and variables, such as� �  , are well-formed formulae,
while others, like��� , are not.

In a typed setting, we can reduce the problem of syntactic well-formedness to
the problem of well-typedness by viewing syntax as a typed term algebra: we
associate a type of data with each syntactic category and regard operators over
syntax as typed functions. For instance,� corresponds to a function that builds a
formula given two formulae, i.e., a function of typefm � fm ! fm . Under this
reading, and using infix notation,� �  is a well-typed formula provided that�
and are both well-typed formulae of typefm , whereas��� is ill-typed.

This view of syntax as typed terms provides a formalization of the treatment
of propositional languages as term algebras that we have informally adopted up
to now. We will see that it also provides a basis for formalizing languages with
quantification. In fact the mechanism by which this is done is so flexible that it is
possible to claim:

THESIS 7. The typed�-calculus provides a logical basis for representing many
common kinds of logical syntax.

Note that we do not claim that the typed�-calculus, as we shall use it, is a
universal solution applicable to formalizing any language. We cannot, for instance,
formalize a syntax based on a non-context-free grammar. Neither can we give a
finite signature for languages that require infinitely many (or parameterized) sets
of productions. The notation is remarkably flexible nevertheless, and, especially
if we refine the type system a little further, can deal with a great many subtle
problems — a good example of this can be found in the analysis of the syntax of
higher-order logic developed by Harperet al. [1993].

The simply typed�-calculus

We assume that the reader is familiar with the basics of the�-calculus, e.g. reduc-
tion (we denote one-step reduction by!� and its reflexive-transitive closure by
�
!�) and conversion (=�), and review only syntax and typing here; further details
can be found in Barendregt[1984; 1991] or Hindley and Seldin[1986]. We now
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define a type theory based on this, called thesimply typed�-calculus, or more suc-
cinctly�!. Our development is based loosely on that of Barendregt and anticipates
extensions we develop later.

We start by defining the syntax we use:

DEFINITION 8. Fix a denumerable set of variablesV . The terms and types of�!

are defined relative to a signature consisting of a non-empty set ofbase typesB, a
set ofconstantsK, and aconstant signature�, which is a setf ci:Ai j 1 � i �
n; ci 2 K; Ai 2 Ty g, where theci are distinct, and:

� The set oftypesTy is given by

Ty ::= B j Ty! Ty :

� The set oftermsT is given by

T ::= V j K j T T j �VTy: T :

A variablex occursbound in a term if it is in the scope of a�x andx
occursfreeotherwise. We implicitly identify terms that are identical under
a renaming of bound variables.

� A typing contextis a sequencex1:A1; : : : ; xn:An of bindingswhere thexi
are distinct variables andAi 2 Ty for (1 � i � n).

For convenience, we shall overload the2 relation, extending it from sets to
sequences in the obvious manner (i.e. so thatxi:Ai 2 x1:A1; : : : ; xn:An iff
1 � i � n).

� A type assignment relatioǹ
�

is a binary relation, indexed by�, defined
between typing contexts� and typing assertionsM :A whereM 2 T and
A 2 Ty, by the inference rules:

c:A 2 �
assum

�
�̀
c:A

�; x:A
�̀
M :B

abst
�

�̀
(�xA:M):(A! B)

x:A 2 �
hyp

�
�̀
x:A

�
�̀
M :A! B �

�̀
N :A

appl
�

�̀
(MN):B

This definition states that types consist of the closure of a set of base types under
the connective! and that terms are either variables, constants, applications or
(typed)�-abstractions. The rules constitute a deductive system that defines when
a term is well-typed relative to a context and a signature, which in turn assign
types to free variables and constants. Notice that we do not have to make explicit
the standard side condition forabst that the variablex does not appear free in�,
since this is already implicitly enforced by the requirement that variables in a type
context must be distinct.
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As an example, iffA;Bg � Ty then

x:A 2 x:A; y:B
assum

x:A; y:B
�̀
x:A

abst
x:A

�̀
�yB : x:B ! A

abst
�̀
�xA: �yB : x:A! (B ! A)

(15)

is a proof (for any�). Further, it is easy to see that:

FACT 9. Provability for this system (and thus well-typing) is decidable.

A Curry-Howard isomorphism for�!

The rules for�! suggest the natural deduction presentation forNJ! (seex3.1): if
we rewrite all instances of�

�̀
M :A in a proof in�! as�;� ` M :A and uni-

formly replace each typing assertionc:A, x:A, andM :A by the typeA, thenabst
andappl correspond to!-I and!-E , while hyp andassum together correspond
to Basic . The following makes this correspondence more precise.

FACT 10.

1. There is a bijection between types in�! and propositions inNJ! where a
proposition inNJ! is provable precisely when the corresponding�! type
is inhabited (has a member).

2. There is a bijection between members of types in�! and proofs of the cor-
responding propositions inNJ!.

Part 1 of this characterizes the direct syntactic bijection between types and proposi-
tions where base types correspond to atomic propositions12 and the function space
constructor corresponds to the implication connective. The correspondence be-
tween provability and inhabitation then follows from the correspondence between
the proof-rules of the two systems. Then part 2 refines the bijection to the level of
inhabiting terms on the one hand, and proofs on the other.

Fact 10 states an isomorphism between types and propositions that we can char-
acterize as ‘truth is inhabitation’: ifM :A then the proposition corresponding toA
is provable and, moreover, there is a corresponding notion of reduction in the two
settings where�-reduction ofM in the�-calculus corresponds to reduction of the
proofA (in the sense of Prawitz).

We exploit this isomorphism in reasoning about encodings in this chapter. In
this section we show the correctness of encodings by reasoning about normal forms
of terms in type-theory and inx5 we will reason about normal forms of proofs.

12This fact holds for the pure version of�! without constants. We also implicitly assume a bijection
between base types and propositional variables.
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REMARK 11. For reasoning about the correctness of encodings it is sometimes
necessary to use a more complex isomorphism based on both� and�-conversion.
It is possible to establish a correspondence between so called long��-normal
forms13 and corresponding classes of derivations inNJ!. More details can be
found in [Harperet al., 1993].

Representation

In order to represent syntax in�! we define a suitable signature� and establish
a correspondence between terms in the metalogic and syntax in the object logic.
Our signature will consist of a base type for each syntactic category of the object
logic and a constant for each constructor in the object logic. We will see that we
do not need a typevariable to formalize variables in the object logic because we
can use instead variables of the metalogic. Syntax belonging to a given category in
the object logic then corresponds to terms in the metalogic belonging to the type
of that category.

This is best illustrated with a simple example: we represent the syntax of min-
imal logic itself. We follow Church’s[1940] convention, whereo is the type of
propositions, so the signature is the (singleton) set of base typesfog, and the con-
stant signature is

� � fimp: o! o! og : (16)

The constructorimp builds a proposition from two propositions. With respect to
this signature,imp x (imp y z) is a term that belongs too whenx, y, andz
belong too; i.e. x:o; y:o; z:o

�̀
imp x (imp y z):o. This corresponds to the fact

thatx � (y � z) is a proposition of minimal logic provided thatx, y, andz are
propositions.

Thus formulae of minimal logic correspond to well-typed terms of typeo. For-
mulating this correspondence requires some care though: we have to check ad-
equacy and faithfulness for the represented syntax; this amounts to showing that
(i) every formula in minimal logic is represented by a term of typeo, and (ii) that
every term of typeo represents a formula in minimal logic.

As a first attempt to establish such a correspondence, consider the following
mappingp�q, from terms in minimal logic to�-calculus terms:

pxq = x

pt1 � t2q = imp pt1q pt2q

As an example, under this representation the formulax � (y � z) corresponds
to the termimp x (imp y z). The representation function is an injection from
propositions to terms of typeo, provided that variables are declared to be of type
13A termM = �x1 : : : xn: xM1 : : :Mm is in long��-normal form when 1)x is anxi, a constant,

or a free variable ofM , 2)xM1 : : :Mn is of base type (i.e.x is applied fully to all possible arguments)
and 3) eachMi is in long��-normal form.
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o in the context. However, it is not surjective: there are too many terms of type
o. For example in a context wherex is of typeo! o andy is of typeo, thenx y
is of typeo, and so isimp ((�zo: z) y) y; but neither of these is in the image
of p�q. The problem with the first example is that the variablex is of higher type
(i.e. the function typeo ! o) and not a base type inB. The problem with the
second example is that it is not in normal form. Any such term, however, has a
unique equivalent�-normal form, which we can compute. In the above example
the term has the normal formimp y y, which ispy � yq. Our correspondence
is thus a bijection when we exclude the cases above: we consider only�-normal
form terms where free variables are of typeo.

THEOREM 12. p�q is a bijection between propositions in minimal logic with
propositional variablesx1; : : : ; xn, and�-normal form terms of typeo containing
only free variablesx1; : : : ; xn, all of typeo.

First-order syntax

The syntax of minimal logic is very simple, and we do not need all of�! to encode
it. We can be precise about what we mean by ‘not all’ if we associate types with
orders: observe that any type has a unique representation as�1 ! : : :! �n !
�, where! associates to the right and� is a base type. Now define theorder of
 to be0 if n = 0, and1 + max(Ord(�1); : : : ; Ord(�n)) otherwise.14 In our
encoding of minimal propositional logic we have used only the first-order fragment
of �!; i.e. variables are restricted to the base typeo and the only function constant
imp is first-order (since its two arguments are of base type); this is another way of
saying that an encoding using a simple term algebra is enough.

This raises an obvious question: why adopt a full higher-order notation if a
simple first-order notation is enough? Indeed, in a first-order setting, results like
Theorem 12 are much easier to prove because there are no complications intro-
duced by reduction and normal forms. The answer is that the situation changes
when we introduce quantifiers and other variable binding operators. A ‘naive’
encoding of syntax is still possible but is much more complicated.

Consider, as an example, the syntax of first-order arithmetic. This is defined in
terms of two syntactic categories, terms and formulae, which are usually specified
as:

termsT ::= x j 0 j sT j T + T j T � T

formulaeF ::= T = T j :F j F ^ F j F _ F j F � F j 8x: F j 9x: F

How should we represent this? A possible first-order notation is as follows:
we define a base typev of variables, in addition to typesi for terms (i.e. ‘indi-
viduals’) ando for formulae. Since variables are also terms, our signature re-
quires a ‘coercion’ function mapping elements of typev to elements of typei. The
14Note that there is not complete agreement in the literature about the order of base types, which is

sometimes defined to be1, not0.
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rest of the signature is formalized as we would expect; e.g.plus is a constant of
type i ! i ! i, atomic formulae are built from the equality relationeq of type
i! i! o, connectives are defined as propositional functions overo, and a quan-
tifier like 8 is formalized by declaring a function constantall of typev ! o ! o
taking a variable and a formula to a formula.

This part of the encoding presents no difficulties. However the problems with
first-order representations of a language with binding are not directly in the repre-
sentation, but rather in the way we will use that representation. It is in the formal-
ization of proof-rules where we encounter the problems, in particular with substi-
tution. Consider, for instance,8-E in (4.1), where we use the notation�[x  t];
we need to formalize an analogue for our encoding, which we can do by introduc-
ing a ternary function,sub of type o ! i ! v ! o, wheresub(�; t; x) =  is
provable precisely when�[x  t] =  . With this addition8-E is axiomatizable
as

8�;  :o:8t:i:8x:v: (sub(�; t; x) =  )! T (all x �)! T ( ) : (17)

There are several ways we might axiomatize the details ofsub. The most direct
approach is simply to formalize the standard textbook account of basic concepts
such as free and bound variables, capture, and equivalence under bound variable
renaming, which we can easily do by structural recursion on terms and formulae.
The definitions are well-known, although complex enough that some care is re-
quired, e.g. bound variables must sometimes be renamed to avoid capture. Note
too that in (17) we have used the equality predicate over formulae (not to be con-
fused with equality over terms in the object logic, i.e.eq), which must either be
provided by the metalogic or additionally formalized. Examples of such equational
encodings of logics are given by Mart´ı-Oliet and Meseguer[2002].

Other encodings have also been explored: for instance we can use a representa-
tion of terms that finesses problems involving bound variable names by eliminating
them entirely. Such an approach was originally suggested by de Bruijn[1972] who
represents terms with bound variables by replacing occurrences of such variables
with ‘pointers’ to the operators that bind them. A related approach has been pro-
posed by Talcott[1993], who has axiomatized a general theory of binding structure
and substitution, which can be used as the basis for encoding logics that require
such facilities. Another recent development, which is gaining some popularity, is
to provide extensions of the�-calculus that formalize operators for ‘explicit sub-
stitutions’[Abadiet al., 1991].

In all of these approaches, direct or indirect, there is considerable overhead,
and not only at the formalization stage itself: when we are building proofs, we
have to construct subproofs using the axiomatization ofsub at every application
of 8-E . Being forced to take such micro-steps in the metatheory simply to apply a
rule in the object logic is both awkward and tedious. And there is another serious
problem that appears when we consider a rule like8-I in (4.1), where we have
a side condition thatthe variablex does not appear free in any undischarged
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assumption. There is no direct way, in the language we have been developing, to
complete the formalization of this: we cannot reify the semiformal

8�:o:8x:v: x not free in context! T (�)! T (all x �) (18)

into a formal statement (we cannot, in general, refer to contexts in this way).
Again there are ways to get around the problem by complicating the formaliza-

tion. For instance while we cannot tell which variables are free in the context, we
can, under certain circumstances, keep track of those that might be. We can define
a new typesv, of sets of variables, with associated algebra and predicates, where,
e.g.,notin(x; c) is a predicate on typesv andsv that is true iffx does not occur in
the setc, andunion is a function of typesv ! sv ! sv that returns the union of
its arguments. In this setting we can then expandT (�) so that rather than being a
predicate ono, it is a predicate ono andsv; this yields the formalization

8�:o:8x:v:8c:sv:notin(x; c)! T (�; c)! T (all x �; c) :

In addition, we have, of course, to modify all the other rules so they keep track
of the variables that might be added to the context; for instance!-I now has the
formalization

8�;  :o:8c:sv: (T (�; c)! T ( ; union(c; fv(�)))) ! T (imp� ; c) ;

wherefv returns the set of variables free in a formula (i.e. for we have added all
the free variables of� to the free variables in the context).

Clearly, first-order syntax in combination with! is becoming unacceptably
complicated at this point, and is far removed from the ‘sketched’ characterization
in (14). If part of the motivation of a logical framework is to provide a high-level
abstraction of a deductive system, which we can then use to implement particular
systems, then, since substitution and binding are standard requirements, we might
expect them to be built into the framework, rather than encoded from scratch each
time we need them. We thus now examine a very different sort of encoding in
terms of�! that does precisely this.

Higher-order syntax

When using a first-order encoding of syntax, each time we apply a proof-rule like
8-E , we must construct a subproof about substitution. But in�! we already have
a substitution mechanism available that we can exploit if we formalize variable
binding operators a bit differently. The formalization is based on what is now
commonly calledhigher-ordersyntax.

We start by observing that in�! the � operator binds variables,�-reduction
provides the sort of substitution we want, and we have a built-in equivalence that
accounts for renaming of bound variables. Higher-order syntax is a way of exploit-
ing this, using higher-order functions to formalize the variable binding operators of
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an encoded logic directly, avoiding the complications associated with a first-order
encoding.

The idea is best illustrated with an example. If we return to the problem of how
to encode the language of arithmetic, then, using higher-order syntax our signature
need contain only the two sorts, for terms and formulae; i.e.B = fi; og.

We do not need a sort corresponding to a syntactic category of variables, be-
cause now we will represent them directly using variables of the metalogic itself,
which are either declared in the context or bound by� in the metalogic. The sig-
nature� is then

f0:i; s:i! i; plus :i ! i ! i ; times :i ! i ! i ; eq :i ! i ! o;

falsum :o;neg :o ! o; or :o ! o ! o; and :o ! o ! o;

imp:o ! o ! o; all :(i ! o)! o; exists :(i ! o)! og : (19)

In this signatureall andexists no longer have the (first-order) typev ! o ! o;
instead they are second order, taking as their arguments predicate valued functions
(which have first-order types).

Using higher-order syntax, an operator that binds a variable can be conceptually
decomposed into two parts. First, if� is an encoded formula, i.e. of typeo, possibly
including a free metavariablex of type i, then�xi: � is the abstraction of� over
x, wherex is now bound. The result is, however, of typei ! o, not of typeo.
Second, we convert�xi: � back into an object of typeo, and indicate the variable
binding operator we want, by applying that operator to it. For example, applying
all to �xi: � yields the termall (�x i : �) of type o. Similarly, for a substitution
we reverse the procedure. Givenall (�x i : �), for which we want to generate the
substitution instance�[x t], we first strip off the operatorall and apply (in�!)
the result tot, to get(�xi: �)t. But in �! this reduces to�[x  t]. Hence, we
needn’t formalize explicitly any substitution mechanism for the object logic since
we can exploit the substitution that is (already) formalized for the metalogic.

Of course we must check that all of this works. But it is easy to extend adequacy
(Theorem 12) for this signature to show that the terms and formulae of first-order
arithmetic are correctly represented by normal form members of typesi and o
respectively.

Now we can formalize8-E and8-I in a way that directly reflects the sketch
in (14):

8�i!o: (T (all �)! 8x i :T (� x ))

8�i!o: ((8xi: T (� x))! T (all �)) (20)

If we compare this with (18) above, we can see how, by using metavariables as
object variables, we are able to formalize the side condition ‘x not free in context’
in (20) by havingx bound directly by a universal quantifier at the metalevel.

In conclusion, higher-order syntax provides strong supporting evidence for The-
sis 7 by providing a mechanism for using the� of the metatheory to provide di-
rectly the machinery needed for variable binding, substitution, variable renaming,
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and the like, which are typically needed for representing and using object logics
that contain variable binding operators.

4.3 Rules of proof and dependent types

We have shown how we can use a type-theory to represent syntax, reducing the
problem of syntactic well-formedness to the problem of decidable well-typing.
We now extend the language we are developing so that we can do the same with
proof-rules.

We can use�! as a representation language for proofs too, but it is too weak
to reduce proof checking to type checking alone. To see why, consider the two
function symbolstimes andplus in the signature defined in (19). Both are of type
i ! i ! i, which means that as far as the typing enforced by�! is concerned,
they are interchangeable; i.e., ift is a well-typed term in�!, and we replace every
occurrence of the constanttimes with the constantplus , we get a well-typed term
t0. If t is supposed to represent a piece of syntax, this is what we want; for instance
if we have used the type-checking of�! to show thatt � eq (times 0 (s0 )) 0 is
a well-formed formula, i.e. thatt:o, then we immediately know thatt0 is a well-
formed formula too. Unfortunately, what is useful for encoding syntax makes it
impossible to define a type of proofs: in arithmetic we wantt, but nott0, to be
provable, but we cannot make this distinction in�!: we cannot define a typepr
such thata:pr iff a is the encoding of a proof, since we would not be able to tell
whether a ‘proof’ is oft or of t0.

This observation may seem at odds with the relationship betweenNJ! and
�! established inx3, since we have already usedNJ! to encode (propositional)
proofs. But in our discussion of the Curry-Howard isomorphism, we were care-
ful to talk about thepropositional fragmentof NJ!, but in order to encode even
propositional proofs inNJ! we have used the language ofquantifier-free predi-
catelogic, not propositional logic, and in order to encode the rules for quantifiers,
we needed explicit quantification.

To represent proofs we proceed by extending�! with dependenttypes, that is,
with types that can depend on terms. Specifically, we introduce a new operator,�,
where, ifA is a type, and for everyt 2 A, B[x  t] is a type, then so is�xA: B.
In other words, we use� to build families of types,B[x  t], indexed byA. �
is sometimes called a dependent function space constructor because its members
are functionsf where, for everyt 2 A, f(t) belongs to the typeB[x  t]. The
addition of dependent types generalizes�! since whenx does not occur free in
B, the type�xA: B is simplyA ! B because its members are just the functions
fromA toB that we have in�!.

Given dependent function types, we can define the provability relation for a
logic as a type-valued function: instead of havingpr be a single type, we index
it over the formulae it might prove, i.e. we define it to be a function from objects
� of typeo (i.e. formulae) to the type of proofs of�. Using this, we define typed
function constants that correspond to rules of proof. For example, we can now
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formalize implication elimination as

impe:�xo:�yo: pr(imp x y)! pr(x) ! pr(y)

i.e., impe is a function which, given formulaex andy (objects of typeo), and
terms provingx � y andx, returns a term provingy.

We now provide the formal details of an extension of�! in which we can build
dependent types, and show that the approach to representing deductive systems
using type systems actually works the way we want.

The metalogic�p

The particular theory we present, which we call�p, is closely related to the Edin-
burgh LF type-theory[Harperet al., 1993] and the� fragment of the AUTOMATH
language AUT-PI[de Bruijn, 1980]. Our presentation is based on a similar presen-
tation by Barendregt[1991; 1992], which we have chosen for its relative simplicity.

We define the expressions and types of�p together as follows:

DEFINITION 13 (Pseudo-Terms). LetV be an infinite set of variables andK be
a set of constants that contains at least two elements,� and2, which are called
sorts. A set ofpseudo-termsT is described by the following grammar

T :: = V j K j T T j �VT : T j �VT : T

� binds variables exactly like�. Substitution (respecting bound variables) and
bound variable renaming are defined in the standard manner.

DEFINITION 14 (A deductive system for�p). We define, together, judgments for
avalid signature, avalid contextand avalid typing. In the following,s ranges over
f�;2g:

� A signatureis a sequence given by the grammar

� ::= h i j �; c:A

wherec ranges overK. A signature� is valid when it satisfies the relation

s̀
defined by:

s̀
h i

s̀
�

�̀
A:s c 62 dom(�)

s̀
�; c:A

� A contextis a sequence given by the grammar

� ::= h i j �; x:A

wherex ranges overV . A context is validwith respect to a valid signature
� when it satisfies the relatioǹ

c
defined by:

c̀
h i

c̀
� �

�̀
A:s x 62 dom(�)

c̀
�; x:A
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� A type assignment relatioǹ
�

, indexed by a valid signature�, is defined
between valid typing contexts� and typing assertionsa:B wherea;B 2 T
is given by the rules:

axiom
�

�̀
�:2

�
�̀
A:� �; x:A

�̀
B:s

form
�

�̀
�xA: B:s

c:A 2 �
assum

�
�̀
c:A

�; x:A
�̀
b:B �

�̀
�xA: B:s

abst
�

�̀
�xA: b:�xA: B

x:A 2 �
hyp

�
�̀
x:A

�
�̀
f :�xA: B �

�̀
a:A

appl
�

�̀
f(a):B[x a]

�
�̀
a:B �

�̀
B0:s B =� B

0

conv
�

�̀
a:B0

We use the two sorts� and2 to classify entities inT into levels. We say that
� is the set of types and2 is the set of kinds. As in�!, terms, which are here a
subset of the pseudo-terms, belong to types; unlike in�!, types, which are here
also pseudo-terms, belong to�. For example, ifo is a type (i.e.o:�), then�xo: x is
a term of type�xo: o, which we can abbreviate aso ! o, sincex does not occur
free in o. It is possible to build kinds, in limited ways, using the constant�; in
particular, the rules we give allow the formation of kinds with range�, e.g.o! �
but exclude kinds with domain�, e.g.� ! o. Hence we can form kinds like
o ! � that have type-valued functions as members, but we cannot form kinds by
quantifying over the set of types.

We state without proof a number of facts about this system. They have been
proven in the more general setting of the so-called�-cube (a family of eight related
type systems) and generalized type systems examined by Barendregt[1991; 1992],
but see also Harperet al. [1993] who show that the closely related LF type-theory
has similar properties.

FACT 15. Term reduction in�p is Church-Rosser: givenA;B;B0 2 T , then if
A

�
!� B andA

�
!� B

0 there existsC 2 T where bothB
�
!� C andB0

�
!� C.

FACT 16. Terms in�p are strongly normalizing: if�
�̀
A:B, thenA andB are

strongly normalizing (all�-reductions starting withA orB terminate).

FACT 17. �p satisfies unicity of types: if�
�̀
A:B and�

�̀
A:B0, thenB =� B

0.

From the decidability of these operations it follows that:

FACT 18. All judgments of�p are decidable.

Relationship to other metalogics

The proof-rules for�p extend the rules given for�! in Definition 8. The rules
for �! essentially correspond to the identically named rules for�p restricted so
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that in every typing assertiona:B, a is a term of�! andB is a simple type. The
correspondence is not quite exact since in�p we have to prove that a signature, con-
text, and type are well-formed (i.e., the first three parts of Definition 8), whereas
this is assumed to hold in�!. The need for this explicit demonstration of well-
formedness is also reflected in the second premise of the�p rule for abstraction.

An example should clarify the connection between the two systems. Inx4.2 we
gave a signature� for minimal logic

f imp: o! o! o g :

In �p we have

� = o:�; imp:o! o! o :

According to this, ifx is of typeo, then we can show in�p that imp x x is a
well-formed proposition, i.e.,�

�̀
imp x x:o where� = x:o, as follows:

imp:o! o! o 2 �
assum

�
�̀
imp:o! o! o

x:o 2 �
hyp

�
�̀
x:o

appl
�

�̀
imp x:o! o

x:o 2 �
hyp

�
�̀
x:o

appl
�

�̀
imp x x:o

However, the rules of�p formalize a strictly more expressive type-theory than
�!, and correspond, via a Curry-Howard isomorphism, to a more expressive logic.
Terms are built, as we have already seen, by declaring function constants that form
typed objects from other typed objects, e.g.,imp x x above corresponds to a
term of typeo. An n-ary predicate symbolP , which takes arguments of types
s1; : : : ; sn, has the kinds1 ! : : : ! sn ! �. The �-type constructor corre-
sponds either to universal quantification or (in its non-dependent form) implica-
tion. For example, given the signature

� = s1:�; s2:�; p:s1 ! s2 ! �

we can show that there is at such that

�̀
t:(�xs1 :�ys2 : p(x; y))! �ys2 :�xs1 : p(x; y) ;

which corresponds to demonstrating the provability of the formula

�̀
(8x:8y: p(x; y))! 8y:8x: p(x; y)

in a traditional sorted first-order setting.
In �p we generalize�! so that types can depend on terms. We have not carried

through this generalization to allow, e.g., types depending on types, which would
allow impredicative higher-order quantification. As a result, and given the above
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discussion, logics like�p and the LF are often described as first-order. Alterna-
tively, since we can also quantify over functions (as opposed to predicates) at all
types, some authors prefer to talk about minimal implicational predicate logic with
quantification over all higher types[Simpson, 1992], or!-order logic (hh!) [Felty,
1991], to emphasize that these logics are more than first-order, but are not fully
higher-order.

4.4 Representation in�p

We have reached the point where the intuitions we have formulated about the rela-
tionship between natural deduction calculi and the logic of implication are reduced
to a single formal system, the type-theory�p. In this system, the problems of en-
coding the syntax and proof rules of a deductive system are reduced to the single
problem of providing a signature� and the problems of checking well-formedness
of syntax and proof checking are reduced to (decidable) type-checking. We will
expand on these points with two examples.

A simple example: minimal logic

A deductive system is encoded in�p by a signature that encodes

1. The language of the object logic and

2. The deductive system.

In x4.3 we gave a signature suitable for encoding the language of minimal logic.
As we have seen, this consists first of an extension of the signature with types
corresponding to syntactic categories and then with function constants over these
types. The encoding of the deductive system also proceeds in two stages. First, we
represent the basic judgments of the object logic.15 To do this, for each judgment
we augment the signature with a function from the relevant syntactic categories to
a type. For minimal logic we have one judgment, that a formula is provable, so we
add to the signature a functionpr, of kind o! �, where for any propositionp 2 o,
pr(p) should be read as saying that the formula represented byp is provable. Sec-
ond, we add constants to the signature that build (representatives of) proofs. Each
constant is associated with a type that encodes (under the propositions-as-types
correspondence) a proof rule of the object logic. For minimal logic we add con-
stants with types that encode the formulae given in (6) fromx3.2, which axiomatize
the rules for minimal logic.
15Recall thatjudgmentsare assertions such as, e.g., that a proposition is provable. Typically, a

logic only has a single judgment, but not always; for instance�p itself, in our presentation, has three
judgments: a signature is well-formed, a context is well-formed, and a typing assertion is provable
relative to a well-formed signature and context. The reader should be aware of the following possible
source of confusion. By using a metalogic we have judgments at two levels: we use the judgment in
�p that a typing assertion is provable relative to a signature and a context to demonstrate the truth of
judgments in some object logic.
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Putting the above pieces together, minimal logic is formalized by the following
signature.

� � o:�; pr:o! �; imp:o! o! o;

impi:�AoBo: (pr(A) ! pr(B))! pr(imp A B);

impe:�AoBo: pr(imp A B)! pr(A)! pr(B)

It is an easy exercise to prove in�p that this is a well-formed signature.
Now consider how we use this signature to prove the propositionA � A. We

encode this asimp A A and prove it by showing that the judgmentpr(imp A A)
has a member. We require, of course, thatA is a proposition and we formalize this
by the contextA:o, which is well-formed relative to�. (In the following proof we
have omitted rule names, but these can be easily reconstructed.)
Part I:

impi:�Ao
B
o
: (pr(A)! pr(B))! pr(impAB) 2 �

A:o
�̀
impi:�Ao

B
o
: (pr(A)! pr(B))! pr(impAB)

A:o 2 A:o

A:o
�̀
A:o

A:o
�̀
impiA:�Bo

: (pr(A)! pr(B))! pr(impAB)

A:o 2 A:o

A:o
�̀
A:o

A:o
�̀
impiAA:(pr(A)! pr(A))! pr(impAA)

Part II:

y:pr(A) 2 A:o; y:pr(A)

A:o; y:pr(A)
�̀
y:pr(A)

� � �

A:o
�̀
pr(A)! pr(A):�

A:o
�̀
�ypr(A): y:pr(A) ! pr(A)

(We have elided the subproof showing thatpr(A)! pr(A) is well-formed, which
is straightforward using the formation ruleform .) Putting the two parts together
gives:

Part I Part II

A:o
�̀
impiAA (�ypr(A): y):pr(impAA)

Note that the reader interested in actually using a metalogic for machine sup-
ported proof construction should not be frightened away by the substantial ‘meta-
level overhead’ that is associated with carrying out a proof of even very simple
propositions likeA � A. Real implementations of logical frameworks can hide
much of this detail by partially automating the work of proof construction. Be-
cause all the judgments of�p are decidable, the well-formedness of signatures and
contexts can be checked automatically, as can the typing of the terms that encode
proofs.16

16This second point is not so important: Although the decidability of syntactic well-formedness is
important, in practice, a framework is not used to decide if a given proof is valid, but as an interactive
tool for building proofs.
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This example shows how both well-formedness and proof checking are uni-
formly reduced to type checking. With respect to well-formedness of syntax, a
proof that the typepr(impAA) is inhabited is only possible ifimpAA is of
typeo, i.e. it represents a well-formed proposition. That members of typeo really
represent well-formed propositions follows from adequacy and faithfulness of the
representation of syntax, which for this example was argued (for�!) in x4.2. With
respect to proof checking, we have proven that the termimpiAA (�ypr(A): y) in-
habits the typepr(impAA). In the same way that a term of typeo represents a
proposition, a term of typepr(p) represents a proof ofp. In this example, the term
represents the following natural deduction proof ofA � A.

[A]y
�-I y

A � A

The exact correspondence (adequacy and faithfulness) between terms and the
proofs that they encode can be formalized (see Harperet al. [1993] for details),
though we do not do this here since it requires first formalizing natural deduc-
tion proof trees and the representation of discharge functions. The idea is simple
enough though: the proof rule�-I is encoded using a constantimpi, and a well-
typed application of this constructs a proof-term formalizing the operation of dis-
charging an assumption. Specifically,impi builds an object (proof representative)
of the type (proposition)pr(imp A B) given an object of typepr(A) ! pr(B),
i.e. a proof that can take any object of proofpr(A) (the hypothesis), and from it
produce an object of typepr(B).

In the example above the function must construct a proof ofpr(A) from pr(A),
and�ypr(A): y does this. In general, the question of which occurrences ofpr(A)
are discharged and how the proof ofB is built is considerably more complex.
Consider for example

impiA (impB A) (�xpr(A): impiB A (�ypr(B): x)) ; (21)

which is a member of the typepr(impA (impBA)) in a context whereA:o and
B:o. This term represents a proof where Implication Introduction has been applied
twice and the first (reading left to right) application discharges an assumptionx
and the second discharge (ofy) is vacuous. This proof-term corresponds to the
following natural deduction proof.

[A]x
�-I y

B � A
�-I x

A � (B � A)

(22)

A larger example: first-order arithmetic

A more complex example of a theory that we can easily formalize in�p is first-
order arithmetic, and in fact we can define this as a direct extension of the system



126 DAVID BASIN, SEÁN MATTHEWS

oril:�AoBo: pr(A) ! pr(or AB)
orir:�AoBo: pr(B)! pr(or AB)
ore:�AoBoCo: pr(or AB)! (pr(A)! pr(C))

! (pr(B) ! pr(C))! pr(C)
raa:�Ao: (pr(imp A falsum)! pr(falsum))! pr(A)
alli:�Ai!o: (�xi: pr(A(x))) ! pr(all(A))
alle:�Ai!oxi: pr(all(A))! pr(A(x))

existsi:�Ai!o:�xi: pr(A(x)) ! pr(exists(A))
existse:�Ai!o:�Co: pr(exists(A)) ! (�xi: pr(A(x)) ! pr(C)) ! pr(C)

ind:�Ai!o: pr(A(0))! (�xi: pr(A(x)) ! pr(A(sx))) ! pr(all(A))

Figure 1. Some proof-rules for arithmetic

we have already formalized. We extend the signature with the formalization of the
syntax of arithmetic that we developed inx4.2 then we formalize the new rules,
axioms and axiom-schemas that we need.

We have formalized some of the proof-rules in Figure 1 and most are self-
explanatory. The first five extend minimal logic to propositional logic by adding
rules for disjunction and falsum. We use the constantfalsum to encode? (from
which we can define negation asnot A � imp A falsum).

In our rules we assume a ‘classical’ falsum, i.e. the rule:

[A � ?]
�
�
�
?
?c

A

encoded asraa. If we wanted an ‘intuitionistic’ falsum, we would replace this
with the simpler rule encoded by

�Ao: pr(falsum)! pr(A):

For the quantifier rules we have not only given the rules for universal quan-
tification (alli andalle) but also the rules for existential quantification, given by
existsi andexistse.

A[x t]
9-I

9x:A 9x:A

[A]
�
�
�
C
9-E

C

These come with the usual side conditions: in8-I , x cannot be free in any undis-
charged assumptions on whichA depends and, for9-E , x cannot be free inC or
any assumptions other thanA upon which (in the subderivation)C depends.
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Object Logic Metalogic
Syntactic Categories Base Types
terms, individuals ; fi:�; o:�g

Connectives & Constructors First-Order Constants
_ ; or:o ! o! o

Variable Binding Operators Higher-Order Constants
8 ; all:(i! o)! o

Judgment Type Valued Functions
` p ; pr:o! �

Inference Rule Constant Declaration
A

_-IL
A _ B

; oril:�AoBo: pr(A) ! pr(or AB)

Deductive System Signature Declaration
Deduction Typing Proof

Figure 2. Correspondence between object logics and their encodings

If we stop with the quantifier rules, the result is an encoding of first-order logic
over the language of arithmetic. We have to add more rules to formalize the theory
of equality and arithmetic. Thus, for example,ind formalizes the induction rule

A[x 0]

[A]
�
�
�

A[x sx]

8x:A

and enforces the side condition thatx does not occur free in any assumptions other
than those discharged by the application of the rule. The other rules of arithmetic
are formalized in a similar fashion.

4.5 Summary

Figure 2 contains a summary. It is worth emphasizing that there is a relationship
between the metalogic and the way that it is used, and an!-framework like�p is
well-suited to particular kinds of encodings. The idea behind higher-order syntax
and the formalization of judgments using types is to internalize within the meta-
logic as much of the structure of terms and proofs as possible. By this we mean
that syntactic notions and operations are subsumed by operations provided by the
framework logic. In the case of syntax, we have seen how variable binding in
the object logic is implemented by�-abstraction in the framework logic and how
substitution is implemented by�-reduction. Similarly, when representing proof-
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rules and proof-terms, rather than our having to formalize, and then reason explic-
itly about, assumptions and their discharging, this is also captured directly in the
metalogic. Support for this sort of internalization is one of the principles behind
the design of these framework logics. The alternative (also possible in�p) is to
externalize, i.e., explicitly represent, such entities. The external approach is taken
when using frameworks based on inductive definitions, which we will consider in
x7.

5 ENCODING LESS WELL BEHAVED LOGICS

So far, we have restricted our attention to fairly standard, e.g. intuitionistic or clas-
sical, logics. We now consider how an!-framework can treat the more ‘uncon-
ventional’ logics that we encounter in, for example, philosophy or artificial intel-
ligence, for which such simple calculi are not available. As previously observed,
most metalogics (and all the examples examined in this chapter) are ‘universal’ in
the sense that they can represent any recursively enumerable relation, and thus any
logic expressible in terms of such relations. However, there is still the question of
how effective and natural the resulting encodings are.

We take as our example one of the more common kinds of philosophical logics:
modal logic, i.e. propositional logic extended with the unary2 connective and the
necessitationrule (see Bull and Segerberg[1984]). Modal logics, as a group, have
common features; for example, ‘canonical’ presentations use Hilbert calculi and,
when natural deduction presentations are known, the proof-rules typically are not
encodable in terms of the straightforward translation presented inx3.2. In x7 we
will see how Hilbert presentations of these logics can be directly encoded as in-
ductive definitions. Here we consider the problem of developing natural deduction
presentations in an!-framework. We explore two different possibilities,labelled
deductive systemsandmultiple judgment systems, consider how practical they are,
and how they compare.

5.1 Modal logic

We consider two modal logics in this section:K and an important extension,S4.
A standard presentation ofK is as a Hilbert system given by the axiom schemata

(A � B) � (A � B � C) � A � C

A � B � A

((A � ?) � ?) � A

2(A � B) � 2A � 2B

and the rules

A � B A
Det

B
and

A
Nec

2A
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The first of these rules is just the rule of detachment fromx2.1, and the second is
called necessitation. We getS4 from K by adding the additional axiom schemata:

2A � 22A

2A � A

As noted above, we can see a Hilbert calculus as a special case of a natural de-
duction calculus, where the rules discharge no assumptions and axioms are premis-
less rules.

There is an important difference between Hilbert and natural deduction calculi
however, which is in the nature of what they reason about: Hilbert calculi manipu-
late formulae that are true in all contexts, i.e. valid (theorems), in contrast to natural
deduction calculi, which typically manipulate formulae that are true under assump-
tion. This difference causes problems when we try to give natural deduction-like
presentations of modal logics, i.e. presentations that allow reasoning under tempo-
rary assumptions. The problem can be easily summarized:

PROPOSITION 19.The deduction theorem (seex7.3) fails forK andS4.

Proof. First, observe (e.g., semantically using Kripke structures; seex5.2) that
A � 2A is not provable inK or S4. However, if the deduction theorem held, we
could derive this formula as follows: assumeA, then, by necessitation, we have
2A, and by the deduction theorem we would have thatA � 2A is a theorem. This
is a contradiction. �

The deduction theorem is a justification for the natural deduction rule�-I , but this
in turn is precisely the rule that distinguishes natural deduction-like from Hilbert
calculi: without it, one collapses into the other.

The problem of natural deduction encodings of modal logics is well known,
and various fixes have been proposed. In some of these, the rules�-I and�-E
are kept intact by extending the language of natural deduction itself. For instance
if we allow global side conditions on rules then (following Prawitz[1965]) for S4
we have the rules

�
�
�
�

A
2-I

2A

and
2A

2-E
A

where� means thatall undischarged assumptions are boxed; i.e. of the form2B.
Notice that given this side condition, the argument we have used to illustrate the
failure of the deduction theorem no longer works. But the language of! does not
provide the vocabulary to express this side condition on2-I , so we cannot encode
such a proof rule in the same fashion as proof-rules were encoded inx3.2.
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5.2 A Kripke semantics for modal logics

A common way of understanding the meaning of formulae in a modal logic is
in terms of theKripke, or possible worldssemantics (see Kripke[1963] or van
Benthem[1984] for details). We shall use this style of interpretation in developing
our encodings.

A Kripke model (W;R; V ) for a modal logic consists of a nonempty set of
worldsW , a binaryaccessibilityrelationR defined overW , and avaluationpred-
icateV overW and the propositional variables. We then define aforcing relation
 between worlds and formulae as follows:a  A iff V (a;A) for A atomic;
a  A � B iff a  A impliesa  B; anda  2A iff for all b 2 W if a R b then
b  A.

Using the Kripke semantics, we can classify modal logics by the behavior ofR
alone. For instance we have

FACT 20. LetR be the accessibility relation of a Kripke model.

� A formulaA is a theorem ofK iff A is forced at all worlds of all Kripke
models.

� A formulaA is a theorem ofS4 iff A is forced at all worlds of all Kripke
models whereR is reflexive (x R x) and transitive (ifx R y andy R z,
thenx R z).

It is now possible to see why the deduction theorem fails. Consider a Kripke
model(W;R; V ) and a formulaA � B. In the deduction theorem we assume,
for the sake of argument,A as a new axiom, and show thatB is then a theorem;
i.e. assuming8a 2 W:a  A, we show that8a 2 W:a  B. But it does not
follow from this thatA � B is a theorem; i.e. that8a 2W:a  A � B.

It is however easy to find a correct ‘semantic’ analogue of the deduction theo-
rem:

FACT 21. For any Kripke model(W;R; V )

8a 2W: (a  A! a  B)! a  A � B :

The problem of providing a natural deduction encoding of a modal logic can be
reduced to the problem of capturing this semantic property of� in rules that can
be directly encoded in the language of implication. We will consider two ways
of doing this, which differ in the extent to which they make the Kripke semantics
explicit.

5.3 Labelled deductive systems17

The above analysis suggests one possible solution to our problem: we can inter-
nalize the semantics into the deductive calculus. Hence, instead of reasoning with
17The work described in this section was done in collaboration with Luca Vigan`o.
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formulae, we reason about formulae in worlds; i.e. we work with pairsa:A where
a is a world andA is a formula.

Taking this approach, the rules

[x:A]
�
�
�

x:B
�-I

x:A � B

[x R y]
�
�
�
y:A

2-I
x:2A

[x:A � ?]
�
�
�

y:?
?-E

x:A

x:A � B x:A
�-E

x:B

x:2A x R y
2-E

y:A

define a natural deduction calculus, which we callKL. (We also require the side
conditions that in2-I y is different fromx and does not occur in the assumptions
on whichy:A depends, except those of the formx R y that are discharged by
the inference.) These rules formalize the meaning of both� and2 in terms of
the Kripke semantics; i.e., we locate applications of�-I in some particular world,
and take account of the other worlds in defining the behavior of2 and? (where it
suffices to derive a contradiction in any world). We can show:

FACT 22 (Basinet al. [1997a]). a:A is provable inKL iff A is true in all Kripke
models, and therefore, by the completeness ofK with respect to the set of all
Kripke models, iffA is a theorem ofK.

As an example of a proof inKL of a K theorem, we show that2 distributes
over�.

[a:2(A � B)]1 [a R b]3
2-E

b:A � B

[a:2A]2 [a R b]3
2-E

b:A
�-E

b:B
2-I 3

a:2B
�-I 2

a:2A � 2B
�-I 1

a:2(A � B) � 2A � 2B

Further, and essential for our purpose, there are no new kinds of side condi-
tions on the rules ofKL, so we have no difficulty in formalizing these in an!-
framework.18 The following is a signature forKL in �p (note that for the sake of

18There is of course the side condition on2-I . But this can be formalized in the same way that
eigenvariable conditions are formalized in logics with quantifiers, by using universal quantification in
the metalogic.
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readability we write ‘:’ andR in infix form):

�KL
� w:�; o:�; ‘ :’ :w ! o! �; R:w ! w ! �;

falsum :o; imp:o! o! o; box:o! o;

FalseE:�Aoxwyw: (x:imp A falsum ! y:falsum)! x:A;

impI :�AoBoxw: (x:A! x:B)! x:imp A B;

impE:�AoBoxw: x:A! x:imp A B ! x:B;

boxI :�Aoxw: (�yw: x R y ! y:A)! x:box A;

boxE:�Aoxwyw: x:box A! x R y ! y:A

The signature reflects that there are two types, a type of worldsw and type of
formulaeo, and two judgments; one about the relationship between worlds and
formulae, asserting that a formula is true at that world, and a second, between
two worlds, asserting that the first accesses the second. Adequacy and faithfulness
follow by the style of analysis given inx3.

KL as a base for other modal logics

We can now takeKL as a base upon which to formalize other modal logics. Since
modal logics are characterized, in terms of Kripke models, purely in terms of their
accessibility relations, to get other modal logics we must simply modify the be-
havior ofR in our encoding. Thus, sinceS4 corresponds to the class of Kripke
models with transitive and reflexive accessibility relations, we can enrich our sig-
nature with:

Ref :�xw : x R x

Trans :�xwyw zw : x R y ! y R z ! x R z

Again, we can show[Basinet al., 1997a] that this really formalizesS4.

The limits ofKL

It might appear from the discussion above that we can implement any modal logic
we want, simply by adding the axioms for the appropriate accessibility relation to
KL. That is, we represent a logic by embedding its semantics in the metalogic,
a formalization technique that is sometimes calledsemantic embedding(see van
Benthem[1984] or Ohlbach[1993] for details on this approach). We must be
careful though; not every embedding based on labelling accurately captures the
semantics and different kinds of embeddings capture more structure than others.

ConsiderKL again: the rules for� and2 reflect the meaning that the Kripke
semantics gives the connectives. On the other hand, the semantics does not ex-
plicitly state how the rules for? should function using labels. Following from the
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rules for�, a plausible formalization is

[x:A � ?]
�
�
�

x:?
?-E �

x:A

which, like the rule for implication, stays in one world and ignores the existence
of different possible worlds. But if we investigate the logic that results from using
this rule (instead of?-E ), we find that it is not complete with respect to the Kripke
semantics.

An examination of the Gentzen-style natural language characterization of?
shows where the problem lies:

If the assumption thatA � ? in world x is inconsistent with the
interpretation, thenA is true in worldx.

This says nothing about where the inconsistency might be and specifically does
not say that it should be in the worldx itself. The role of negation in encoding
the semantics of logics is subtle and we lack space to develop this topic here. We
therefore restrict ourselves to a few comments; much more detail can be found in
[Basinet al., 1997a]. In KL we assumed that it is enough to be able to show that
the inconsistency is in some world. It turns out that this is sufficient for a large
class of logics; but again this does not reflect the complete behavior of?. Some
accessibility relations require a richer metalogic than one based on minimal im-
plication and this may in turn require formalizing all of first or even higher-order
logic. In such formalizations, we must take account of the possibility that the
inconsistency of an assumption about a world might manifest itself as a contradic-
tion in the theory of the accessibility relation, orvice versa. It is possible then to
use classical first (or higher-order) logic as a metatheory to formalize the Kripke
semantics in a complete way, however the result also has drawbacks. In particular,
we lose structure in the proofs available inKL. In KL we reason in two separate
systems. We can reason in just the theory of the accessibility relation and then use
the results of this in the theory of the labelled propositions; however, we cannot
go in the other direction, i.e. we cannot use reasoning in the theory of labelled
propositions as part of an argument about the relations. This enforced separation
provides extra structure that we can exploit, e.g., to bound proof search (see, e.g.,
[Basinet al., 1997b]). And in spite of enforcing this separation,KL is a sufficient
foundation for a very large class of standard logics.19

19In [Basinet al., 1997a] we show that it is sufficient to define almost all the modal logics of the
so-called Geach hierarchy, which includes most of those usually of interest, i.e.K, T, S4, S5, etc.,
though not, e.g., the modal logic of provabilityG [Boolos, 1993].
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5.4 Alternative multiple judgment systems

Using a labelled deductive system, we built a deductive calculus for a modal logic
based on two judgments: a formula is true in a world and one world accesses
another. But this is only one of many possible presentations. We now consider
another possibility, using multiple judgments that distinguish between truth (in
a world) and validity that is due originally to Avronet al. [1992] (and further
developed in[Avron et al., 1998]).

Validity

Starting withK, we can proceed in a Gentzen-like manner, by writing down the
behavior of the logical connectives as given by the Kripke semantics. If we abbre-
viate ‘A is true in all worlds’ toV (A) (A is valid; i.e.A is a theorem), then we
have

V (A � B) V (A)
�-EV

V (B)
and

V (A)
2-I V

V (2A)
; (23)

which can be easily verified against the Kripke semantics (they directly reflect the
two rulesDet andNec). Since the deduction theorem fails, we do not have an
introduction rule for� in terms ofV , neither do we have a rule for?.

Thus the first part of the signature forK simply records the rules (23):

�1 � o:�; V :o! �;

False:o; imp:o! o! o; box:o! o;

impEV :�AoBo: V (A)! V (imp A B)! V (B);

boxIV :�Ao: V (A)! V (box A)

And, as observed above, we have

LEMMA 23. The rules encoded in�1 are sound with respect to the standard
Kripke semantics ofK, if we interpretV (A) as8a: a  A.

The rest of V . The rest of the details aboutV (�) could be summarized simply by
declaring all the axioms ofK to be valid. In this caseV (�) would simply encode a
Hilbert presentation ofK. However there is a more interesting possibility, which
supports proof under assumption.

Truth in a world

As previously observed we do have a kind of semantic version of the deduction
theorem relativized to any given world. We can use this to formalize more about
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the meaning of implication and?. If we abbreviate ‘A is true in some arbitrary
but fixed worldc’ to T (A), then we have:

T (A � B) T (A)
�-ET

T (B)

[T (A)]
�
�
�

T (B)
�-I T

T (A � B)

[T (A � ?)]
�
�
�

T (?)
?-ET

T (A)

When we talked above about validity we did not have a rule for introducing
implication, or reflecting the behavior of?. Similarly, when we are talking about
truth in some world, we do not have a rule reflecting the behavior of2, since that
is not dependent on just the one world. Thus for instance, there is no introduction
(or elimination) rule for this operator. All we can say is that

T (2(A � B)) T (2A)
NormT

T (2B)

And again we can verify these rules against the semantics.
Thus the second part of the signature is

�2 � T :o! �;

impE:�AoBo: T (imp A B)! T (A)! T (B) ;

impI :�AoBo: (T (A)! T (B))! T (imp A B) ;

FalseE:�Ao: (T (imp A falsum)! T (falsum))! T (A) ;

norm:�AoBo: T (box (imp A B))! T (box A)! T (box B)

and we have

LEMMA 24. The rules encoded in�1;�2 are sound with respect to the standard
Kripke semantics ofK, if we interpretV (A) as in Lemma 23 andT (A) asc  A
wherec is a fixed constant.

ConnectingV andT

We have now formalized two separate judgments, defined by the predicatesV and
T , which we have to connect together. To this end, we introduce two rules,C
andR, which intuitively allow us to introduce a validity judgment, given a truth
judgment, and eliminate (or use) a validity judgment.
C states that ifA is true in an arbitrary world, then it is valid.

T (A)
C

V (A)
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For this rule to be sound, we require that the world whereA is true really is arbi-
trary, and this will hold so long as there are no other assumptionsT (A0) current
when we apply it. It is easy to see that this condition is ensured for any proof of
the atomic propositionV (A), so long asC is the only rule connectingT andV
together, since the form of the rules then ensures that there can be no hypotheses
T (A0) at a place whereC is applied.

The addition ofC yields a complete inference system for reasoning about valid
formulae. However, the resulting deductive system is awkward: once we end up
in theV fragment of the system, which by itself is essentially a Hilbert calculus,
we are forced to stay there.

We thus extend our system with an elimination rule forV , to allow us to return
to the natural deduction-likeT fragment. Important to our justification of the rule
C was that the premise followed in anarbitrary world. Any further rule that we
add must not invalidate this assumption. However we observe that givenV (A),
then, sinceA is valid, it is true in an arbitrary world, so addingT (A) as an open
assumption to an application ofC does not harm the semantic justification of that
rule application. We can encode this as the following ruleR.

V (A)

[T (A)]
�
�
�

V (B)
R

V (B)

Taken together, these rules complete our proposed encoding ofK.

�KMJ
� �1; �2;

C:�Ao: T (A)! V (A) ;

R:�AoBo: V (A)! (T (A)! V (B))! V (B)

To establish correctness formally, we begin by proving that:

PROPOSITION 25.If A is a theorem ofK, thenV (A) is a theorem of the proof
calculus encoded as�KMJ

.

Proof. We observe that ifA is one of the listed axioms ofK, then we can show
thatT (A), and thus, byC, thatV (A). Therefore we need not declare these to be
‘valid’. These, and the rules encoded in�1 allow us to reconstruct any proof in
Hilbert K (see also the remarks after Lemma 23 above). �

Next that:

PROPOSITION 26.If V (A) is a theorem of the proof calculus encoded as�KMJ
,

thenA is a theorem ofK.

We prove a slight generalization, for which we need
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LEMMA 27. For an arbitrary set� of theorems ofK, if T (A) is a theorem of
�KMJ

extended with the axiom setf T (x) j x 2 � g, thenA is a theorem ofK.

Proof. First notice that only the rules encoded asimpI , impE, FalseE and
norm can occur in a proof ofT (A). By Lemma 24, readingT (A) asc  A, only
theorems ofK follow from this fragment of the proof calculus extended with�,
where� consists of theorems ofK. �

The generalization of Proposition 26 is then

LEMMA 28. For an arbitrary set� of theorems ofK, if V (A) is a theorem of
the proof calculus encoded as�KMJ

extended withf T (x) j x 2 � g, thenA is a
theorem ofK.

Proof. The proof is by induction on the size of a proof� of V (A). We need
to consider three cases: (i) The last rule in the proof is an application of one of
the rules encoded in�1 from theoremsV (Ai), in which case, by appeal to the
induction hypothesis,Ai are theorems of K and thusA is a theorem ofK. (ii)
The last rule is an application ofC, in which case the sub-proof is a proof of the
theoremT (A) (there are no undischarged assumptions for the theoremV (A) and
henceT (A)) and by Lemma 27,A is a theorem ofK. (iii) The last rule is an
application ofR to proofs�1 of V (B) from T (A) and�2 of the theoremV (A).
Since�2 is smaller than�, by the induction hypothesisA is a theorem ofK.
Then we can transform�1 into a proof of the theoremV (B) in the proof calculus
formalized as�KMJ

extended withf T (x) j x 2 � [ fAg g by replacing any
appeal to a hypothesisT (A) in �1 by an appeal to the axiomT (A). Since the
result is a proof no bigger than�1, which in turn is smaller than�, by appeal to
the induction hypothesis,B is a theorem ofK. �

We can combine Propositions 25 and 26 as

THEOREM 29. A is a theorem ofK iff V (A) follows from�KMJ
.

Encoding other modal logics

We can extend the encoding of K easily to deal withS4; there are in fact several
ways we can do this: one possibility (see Avronet al. [1992] for more discussion)
is to add the rules

[V (2A)]
�
�
�

V (B)
�-I V

V (2A � B)

and
V (2A)

2-EV
V (A)

(given these rules we can show that theNormT rule is redundant). This produces
an encoding that is closely related to the version ofS4 suggested by Prawitz.
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An alternative view ofKMJ

We have motivated and developed theKMJ presentation ofK using a Kripke se-
mantics, as a parallel withKL. Unlike KL, however, the interpretation is implicit,
not explicit (there is no mention of particular worlds in the final proof calculus)
so we are not committed to it. In fact, and importantly, this presentation can be
understood from an entirely different perspective that uses just the Hilbert axiom-
atization itself, as follows.

We observe inx7 that it is possible to prove a deduction theorem for classical
propositional logic, justifying the�-I rule by proof-theoretic means in terms of
the Hilbert presentation. If we examine that proof, then we can see that it is easily
modified for the fragment of (our Hilbert presentation of)K without the ruleNec.
But this is precisely the fragment ofK that is defined by theT fragment ofKMJ .
Equally, the system defined byV , can be seen as the full Hilbert calculus.

Thus we can alternatively view the two judgments ofKMJ not as indicating
whether we are speaking of truth in some world, or truth in all worlds, but rather
whether or not we are allowed to apply the deduction theorem. This perspective
provides the possibility of an entirely different proof of the correctness of our
encoding, based on the standard Hilbert encoding, and without any intervening
semantic argument.

5.5 Some conclusions

We have presented two different encodings of two well-known modal logics in
this section as examples of approaches to representing nonstandard logics in an
!-framework. Which approach is preferable depends, in the end, on how the
resulting encoding will be used.KL andS4L make the semantic foundation of
the presentation more explicit. This is advantageous if we take for granted the
view that modal logics are the logics of Kripke models since the user is able to
exploit the associated intuitions in building proofs. On the other hand this may be
a problem if we want to use our encoding in circumstances where our intuitions are
different. The opposite holds forKMJ andS4MJ : it is more difficult to make direct
use of any intuitions we might have from the Kripke semantics, but, since the proof
systems involve no explicit, or even necessary, commitment to that interpretation,
we have fewer problems in assuming another.20

The solutions we have examined, while tailored for modal logics, do have some
generality. However, each different logic must be considered in turn and the ap-
proaches presented here may not always be applicable, or the amount of effort in
modifying them may be considerable. For instance it is possible to interpret rel-
evance logics in terms of a Kripke semantics that can be adopted as the basis of
20In fact it would be fairly easy to adapt a multiple judgment presentation ofS4 to the different

circumstances of say relevance, or linear, propositional logic, which share many properties with tradi-
tional S4. Such a project would be considerably more difficult, not to mention questionable, starting
from S4L. This issue of commitment to a particular interpretation is discussed at length with regard to
labelled deductive systems in general by Gabbay[1996].
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a labelled deductive system, similar in style to (though considerably more com-
plex than)KL (see Basinet al. [1998b]). But such an implementation is tricky to
use and we reach, eventually, the limits of encodings that are understandable and
usable by humans.

6 CONSEQUENCE RELATIONS

In the previous sections we considered an abstraction of natural deduction calculi
and in the following section we will consider an abstraction of Hilbert calculi.
Here, we consider the third style of proof calculus we mention in the introduction:
the sequent calculus. It turns out that, unlike the other two, little work has been
done on systems that directly abstract away from sequent calculi in a way that we
can use as a logical framework. This certainly does not mean that there has been
no work on the principles of the sequent calculus, just that work has concentrated
not on the concrete implementational aspects so much as on the abstract prop-
erties of the sequent relation,̀, which when investigated in isolation is called a
consequence relation.

Consequence relations provide a powerful tool for systematically analyzing
properties of a wide range of logics, from the traditional logics of mathematics
to modal or substructural logics, in terms that we can then use as the starting point
of an implementation. In fact it is often possible to encode the results of a sequent
calculus analysis directly in an!-framework.

What, then, is a consequence relation? There are several definitions in the liter-
ature (e.g. Avron[1991; 1992], Scott[1974] and Hacking[1979]); we adopt that
of Avron, along with his vocabulary, where possible.

DEFINITION 30. Aconsequence relationis a binary relation between finite mul-
tisets of formulae�;�, usually written� ` �, and satisfying at leastBasic and
Cut in (2) andPL andPR in (3).21

This is, however, a very general definition. In fact most logics that we might
be interested in encoding have natural presentations in terms of more constrained
ordinaryconsequence relations:22

DEFINITION 31. A consequence relation is said to beordinary if it satisfies the
rulesWL, CL, WR andCR of (3).

Examples of ordinary consequence relations areLJ
� andLK

� defined inx2.2,

21In the rules given inx2.2, the antecedent and succedent aresequencesof formulae whereas here
they aremultisets. In practice, the permutation rulesPL andPR are often omitted and multi-sets are
taken as primitive, as here. This is not always possible though, e.g., in�p, where the ordering in the
sequence matters. Note also that this definition does not take account of variables; for an extension to
that case, see Avron[1992].
22We do not have space to consider the best known exception, thesubstructurallogics, e.g. relevance

and linear logic. However what we say in this section generalizes, given a suitably modified!-
framework, to these cases. Readers interested in the (non-trivial) technical details of this modification
are referred to[Cervesato and Pfenning, 1996] and, especially,[Ishtiaq and Pym, 1998].
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as is the encoding in terms of̀ of NJ
� in x3.1 (even thoughCut is not a basic

property of this presentation, we can show that it is admissible; i.e. we do not
change the set of provable sequents if we assume it). Most of the traditional logics
of mathematics can be presented as ordinary (in fact,pure ordinary, see below)
consequence relations.

6.1 The meaning of a consequence relation

While it is possible to treat a consequence relation purely in syntactic terms, often
one can be understood, and may have been motivated, by some idea of the ‘mean-
ing’ of the formulae relative to one another. For instance we can read a sequent
� ` � of LK� as ‘if all the formulae in� are true, then at least one of the for-
mulae in� is true.’ Because they have this reading in terms of truth, we call the
systems defined byLJ

�, LK
� andNJ

� ‘truth’ consequence relations. Notice that
the meaning of ‘truth’ here is not fixed: when we say that something is true we
might mean that it is classically true, intuitionistically true, Kripke-semantically
true, relevance true, or even something else more exotic.

We can derive a different sort of consequence relation from a Hilbert calculus:
if we assume (1)Basic, i.e. thatA ` A, (2) that ifA is an axiom then� ` A, and
(3) that for each rule of proof

A1 : : : An

A

we have that

�1 ` A1 : : :�n ` An

�1; : : : ;�n ` A

then it is easy to show that the resulting system satisfiesCut , and that̀ A iff A is
a theorem. This is not a truth consequence relation: the natural reading of� ` A
is ‘if � aretheorems, thenA is a theorem’. We thus call` a validity consequence
relation.

Of course truth and validity are not the only possibilities. We can define conse-
quence relations any way we want,23 the only restriction we might impose is that
in order to be effectively mechanizable on a computer, the relation` should be
recursively enumerable.

6.2 Ordinary pure consequence relations and!-frameworks

Part of the problem with mechanizing consequence relations, if we formalize them
directly, is their very generality. Many systems are based on ordinary consequence
relations, and if an encoding forces us to deal explicitly with all the rules that
23For some examples of other consequence relations which can arise in the analysis of a modal logic,

see Faginet al. [1992].
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formalize this, then proof construction will often require considerable and tedious
structural reasoning. This may explain, in part, why there has been little practical
work on logical frameworks based directly on consequence relations.24 However
another reason is that an!-framework can very effectively encode many ordinary
consequence relations directly. In the remainder of this section we explore this
reduction, which clarifies the relationship between consequence relations and!-
frameworks as well as illuminating some of the strengths and weaknesses of!-
frameworks.

In order to use an!-framework for representing consequence relations, it helps
if we impose a restriction in addition to ordinaryness.

DEFINITION 32. We say that a consequence relation ispureif, given that

�1 ` �1 : : : �n ` �n

�0 ` �0

holds, then there are�0i, �0
i, which are sub-multisets of�i, �i, such that for

arbitrary�00i , �00
i

�01;�
00
1 ` �0

1;�
00
1 : : : �0n;�

00
n ` �0

n;�
00
n

�00;�
00
0 ` �0

0;�
00
0

:

Notice that the consequence relations discussed at the beginning of this section
all satisfy the definition of purity; this is also the case for most of the logics we
encounter in mathematics. In order to find counterexamples we must look to some
of the systems arising in philosophical logic. For instance in modal logic (seex5,
and the discussion by Avron[1991]) we get a natural truth consequence relation
satisfying the rule

` A

` 2A

but not, for arbitrary�,

� ` A

� ` 2A

We shall not, here, consider frameworks that can handle general impure conse-
quence relations satisfactorily.

Single conclusioned consequence

As we said earlier, most of the standard logics of mathematics have intuitive pre-
sentations as ordinary pure consequence relations. Avron[1991] adds one more
restriction before claiming that
24There are, however, many computer implementations of particular sequent calculi, e.g. the PVS

system for higher-order logic, by Owreet al. [1995], not to mention many tableau calculi, which are,
essentially, sequent calculi.
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Every ordinary, pure, single-conclusioned [consequence relation] sys-
tem can, e.g., quite easily be implemented in the Edinburgh LF.

We begin by considering the single conclusioned case, and then follow it with
multiple conclusioned consequence relations and systems based on multiple con-
sequence relations.

The encoding is uniform and consists of two parts. We first explain how to
encode sequents and then rules. We can encode

A1; : : : ; An ` A

as

T (A1)! � � � ! T (An)! T (A)

and it is easy to show that this satisfies Definition 31 of an ordinary consequence
relation (in this case, single conclusioned). Notice how the structural properties of
the consequence relation are directly reflected by the logical properties of!.

We can then represent basic and derived rules expressed in terms of such a
consequence relation,assuming it is pureas follows. Consider a rule of such a
consequence relatioǹ, where, forarbitrary �i:

�1; A(1;1); : : : ; A(1;n1) ` A1 � � � �m; A(m;1); : : : ; A(m;nm) ` Am

�1; : : : ;�m; A(0;1); : : : ; A(0;n0) ` A0

We can encode this as

(T (A(1;1))! � � � ! T (A(1;n1))! T (A1))! � � �

! (T (A(m;1))! � � � ! T (A(m;nm))! T (Am))

! T (A(0;1))! � � � ! T (A(0;n1))! T (A0)

leaving the�i implicit (the condition of purity is important because it allows us to
do this).

As an example, considerLJ
� from x2.2, for which we have the rules

� ` A �0; B ` C
�-L

�;�0; A � B ` C

�; A ` B
�-R

� ` A � B

We can encode these rules (assuming a suitable formalization of the language) as

T (A)! (T (B)! T (C))! T (A � B)! T (C) (24)

and

(T (A)! T (B))! T (A � B) : (25)
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Then we can simulate the effect of applying�-L, i.e.

F1; : : : ; Fm ` A G1; : : : ; Gn; B ` C

F1; : : : ; Fm; G1; : : : ; Gn; A � B ` C
;

encoded as (24), to the encoded assumptions

T (F1)! � � � ! T (Fm)! T (A) (26)

and

T (G1)! � � � ! T (Gn)! T (B)! T (C) : (27)

By (26) and (24) we have

T (F1)! � � � ! T (Fm)! (T (B)! T (C))! T (A � B)! T (C) (28)

which combines with (27) to yield

T (F1)! � � � ! T (Fm)! T (G1)! � � � ! T (Gn)! T (A � B)! T (C) ;

which encodes the conclusion of�-L.
From this, it is easy to see that our encoding ofLJ

� is adequate. We show
faithfulness by a modification of the techniques discussed above.

An observation about implementations

Note that the last step, ‘combining’ (28) with (27), actually requires a number of
steps in the metalogic; e.g. shuffling around formulae by using the fact that, in
the metalogic of the framework itself,T (A) ! T (B) ! T (C) is equivalent to
T (B) ! T (A) ! T (C). But such reasoning must come out somewhere in any
formalism of a system based on consequence relations. There is no getting around
some equivalent of structural reasoning; the question is simply of how, and where,
it is done, and how visible it is to the user.

In fact in actual implementations of!-frameworks, e.g., Isabelle[Paulson,
1994], the cost of this structural reasoning is no greater than in a custom imple-
mentation since the framework theory itself will be implemented in terms of a
pure, ordinary single conclusioned consequence relation; i.e. as a sequent or natu-
ral deduction calculus. If we write the consequence relation of the implementation
as=), then it is easy to see that an encoded sequent such as (26) can be quickly
transformed into the logically equivalent

T (F1); : : : ; T (Fm) =) T (A)

at which point it is possible to ‘piggy-back’ the rest of the proof off of=), and
thus make use of the direct (and thus presumably efficient) implementation of its
structural properties.
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Multiple conclusioned consequence

Having examined how we might encode ordinary pure single conclusioned conse-
quence relations in an!-framework, we now consider the general case of multi-
ple conclusioned relations, which occur in standard presentations of many logics
(e.g.LK

� described inx2.2).
There is no obvious correspondence between such relations and formulae in the

language of!. However, by refining our encoding a little, we can easily extend
Avron’s observation to the general case and thereby give a direct and effective
encoding of multiple conclusioned consequence relations. We take as our example
the systemLK

�. For larger developments and applications of this style, the reader
is referred to[Pfenning, 2000].

A multiple conclusioned consequence relation is a pair of multisets of formulae,
which we can refer to as ‘left’ and ‘right’; i.e.

leftz }| {
A1; : : : ; An `

rightz }| {
B1; : : : ; Bm : (29)

To encode this we need not one judgmentT , but two judgments which we callTL
andTR; we also define a new propositional constantE. We can encode (29) in an
!-framework as

TL(A1)! � � � ! TL(An)! TR(B1)! � � � ! TR(Bm)! E :

This is not quite enough to give us a consequence relation though; unlike in the
single conclusioned case, we do not automatically get thatBasic is true. However
we can remedy this by declaring that

TL(A)! TR(A)! E

and then we can show that the encoding defines an ordinary consequence relation.
We can then extend the style of encoding described to define, e.g., the right and

left rule for implication inLK�, which are

(TL(A)! TR(B)! E)! TR(A � B)! E

and

(TR(A)! E)! (TL(B)! E)! TL(A � B)! E :

As in the single conclusioned case, a necessary condition for this encoding is that
the consequence relation is pure. It is also easy to show that the encoding is ade-
quate and faithful with respect to the derivability of sequents inLK

�.
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Multiple consequence relation systems

Finally, we come to the problem of how to formalize systems based on more than
one consequence relation. Here we will briefly consider just the single conclu-
sioned case; the same remarks, suitably modified, also apply to the multiple con-
clusioned case.

One approach to analyzing a formal system (and quite useful if we want the
analysis to be in terms of pure consequence relations) is, rather than using a single
relation, to decompose it into a set of relations`1 to `n. We can encode each of
these relations, and their rules, just like in the single relation case, using predicates
T1 to Tn; i.e.

A1; : : : ; An `i A

as

Ti(A1)! � � � ! Ti(An)! Ti(A):

We encounter a new encoding problem with multiple consequence systems.
These typically (always, if they are interesting) contain rules that relate conse-
quence relations to each other, i.e., rules where the premises are built from dif-
ferent consequence relations than the conclusion. Consider the simplest example
of this, which simply declares that one consequence relation is a subrelation of
another (what we might call abridge rule):

� `1 A
bridge

� `2 A

We can encode this as the pair of schemata

T1(A)! T2(A) (30)

and

(T1(A)! T2(B))! T2(A)! T2(B) (31)

and show that the resulting encoding is properly closed. That is, given

T1(A1)! � � � ! T1(An)! T1(B)

by (30) we get

T1(A1)! � � � ! T1(An)! T2(B)

then byn applications of (31) we eventually get

T2(A1)! � � � ! T2(An)! T2(B) :
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As this example shows, working with a multiple consequence relation system
in an!-framework may require many metalevel steps to simulate a proof step
in the object logic (here the number depends on the size of the sequent). More
practical experience using such encodings is required to judge whether they are
really usable in practice as opposed to just being a theoretically interesting way of
encoding multiple consequence relation systems in the logic of!.

In fact we have already encountered an example of this kind of an encoding:
the multiple judgment encoding of modal logic developed in[Avron et al., 1992;
Avron et al., 1998], described inx5.4, can be seen as the encoding of a two conse-
quence relation system for truth and validity whereT1 is T , T2 is V andbridge is
implemented byR andC.

7 DEDUCTIVE SYSTEMS AS INDUCTIVE DEFINITIONS

In the introduction we discussed two separate traditions of metatheory: metatheory
as a unifying language and metatheory as proof theory. We have shown too how
!-frameworks fit into the unifying language tradition, and the way different logics
can be encoded in them and used to carry out proofs. However,!-frameworks are
inadequate for proof theory: in exchange for ease of reasoningwithin a logic,
reasoningaboutthe logic becomes difficult or impossible.

In order better to understand this point, and some of the subtleties it involves,
consider the following statements about the (minimal) logic of�.

1. A � A is a theorem.

2. A � B � C is true on the assumption thatB � A � C is true.

3. The deduction theorem holds forHJ
�.

4. The deduction theorem holds for all extensions ofHJ
� with additional ax-

ioms.

Statement 1 can be formalized in a metalogic as a statement about provability
in any complete presentation of the logic of�; e.g.NJ

�, LJ
� or HJ

�. As a
statement about provability we might regard it as, in some sense, a proof-theoretic
statement. But as such, it is very weak since, by completeness, it must be provable
irrespective of the deductive system used.

Statement 2 expresses a derived rule of the logic of�. Its formalization requires
that we can reason about the truth of one formula relative to others. As explained
in x6, representing this kind of a (truth) consequence relation can easily be reduced
to a provability problem in an!-framework. For example, in the�p encoding of
NJ

� we prove that the type�AoBoCo: pr(B � A � C ) ! pr(A � B � C ) is
inhabited.
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As with statement 1, the metalogic must be able to build proofs in the object
logic (in this case though under assumptions, encoded using! in the metalogic),
but proofs themselves need not be further analyzed.

Statement 3 (which we prove in this section) is an example of a metatheoretic
statement that is more in the proof theory tradition. In order to prove it we must
analyze the structure of arbitrary proofs in the deductive system ofHJ� using
an inductive argument. The difference between this and the previous example is
important: for a proof of statement 2 we need to know which axioms and rules
are available in the formalized deductive system, while for a proof of statement 3
we also need to know that no other rules are present, since this is what justifies an
induction principle over proofs (the rules ofHJ

� can be taken as constituting an
inductive definition). An!-framework like�p contains no provisions for carrying
out induction over the structure of an encoded deductive system.

Statement 4 is an extension of statement 3, which introduces the problem of
theory structuring. Structuring object theories to allow metatheoretic results to be
‘imported’ and used in related theories is not a substantial problem in the kinds of
metamathematical investigations undertaken by proof theorists, who are typically
interested in proving particular results about particular systems. However, for com-
puter scientists working on formal theorem proving, it is enormously important: it
is good practice for a user reasoning about complex theories to formalize a col-
lection of simpler theories (e.g. for numbers and arithmetic, sequences, relations,
orders, etc.) that later are combined together as needed. So some kind of theory
structuring facility is practically important and many systems provide support for
it.25

Unfortunately, hierarchical structure in!-frameworks is the result of an as-
sumption (necessary anyway for other reasons) that the languages and deductive
systems of encoded logics are ‘open to extensions’ (seex7.4 below), something
that automatically rules out any arguments requiring induction on the structure of
the language26 or proofs of a theory, e.g. the deduction theorem. If we ‘close’ the
language or deductive system by explicitly adding induction over the language or
proofs, in order to prove metatheorems, it is unsound later to assume those theo-
rems in extensions of the deductive system or language. Inx7.4, we suggest that
there is a way to avoid this problem if we formulate metatheorems in a metalogic
based on inductive definitions.

These examples illustrate that there are different sorts of metatheoretic state-
ments, which are distinguished by how conscious we have to be of the metathe-
oretic context in order to prove them. The central role of induction in carrying

25 For example HOL[Gordon and Melham, 1993], Isabelle[Paulson, 1994] and their predecessor
LCF [Gordonet al., 1979] support simple theory hierarchies where theorems proven in a theory may
be used in extensions.
26An example of a metatheorem for which we need induction over the language, not the derivations,

is thatIn classical logic, a propositional formula that contains only the, connective is valid if and
only if each propositional variable occurs an even number of times.
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out many kinds of the more general metatheoretic arguments is the reason we now
consider logical frameworks based on inductive definitions.

7.1 Historical background: From Hilbert to Feferman

What kind of a metalogic is suited for carrying out metatheoretic arguments that
require induction on the language or deductive system of the object logic? To
answer this question we draw on experience gained by proof theorists dating back
to Hilbert, in particular Post and G¨odel, and later Feferman, who have asked very
similar questions. We can also draw on practical experience over the last 30 years
in the use of computers in work with formal systems.

The work of Post and G̈odel

In the early part of this century, Post[1943] (see Davis[1989] for a short sur-
vey of Post’s work) investigated the decidability of logics like that ofPrincipia
Mathematica. He showed that such systems could be formalized as (what we now
recognize as) recursively enumerable classes of strings and that this provided a
basis for metatheoretic analysis. Although Post’s work is a large step towards an-
swering our question, one important aspect, from our point of view, is missing
from his formalization. There is no consideration offormal metatheory. Post was
interested in a formal characterization of deductive systems, not of their metathe-
ories; he simply assumed, reasonably for his purposes, that arbitrary mathematical
principles could be adopted as necessary for the metatheory.

We cannot make the same assumption with a logical framework: we must de-
cide first which mathematical principles we need, and then formalize them. The
work of Post is thus complemented, for our purposes, by G¨odel’s [1931] work
on the incompleteness of systems like Principia Mathematica, which shows that
a fragment of arithmetic is sufficient for complex and general metatheory. Logi-
cians have since been able to narrow that fragment down to the theory of primitive
recursive arithmetic, which seems sufficient for general syntactic metatheory.27

The natural numbers, although adequate for G¨odel’s purposes, are too unwieldy
to use as a logical framework. Indeed, a large part of G¨odel’s paper is taken up
with a complicated technical development showing that arithmetic really can rep-
resent syntax. The result is unusable in a practical framework: the relationship
between syntax and its encoding is only indirectly given by (relatively) compli-
cated arithmetic functions and the numbers generated in the encoding can be enor-
mous. This is in contrast to Post’s strings (further investigated in the early sixties
by mathematicians such as Smullyan[1961]), which have a simple and direct cor-
respondence with the structures we want to encode, and a compact representation.

27This is a thesis, of course, not a theorem; and exceptions have to be made for, e.g., proof normal-
ization theorems, for which (as a corollary of Godel’s result itself) we know there can be no single
general metatheory.
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S-expressions andFS0

It is possible to build a formal metatheory based on strings, in the manner of Post.
However, experience in computer science in formalizing and working with large
symbolic systems has shown that there is an even more natural language for mod-
eling formal (and other kinds of symbolic) systems. The consensus of this ex-
perience is found in Lisp[McCarthy, 1981; Steele Jr. and Gabriel, 1996], which
for more than 30 years has remained the most popular language for building sys-
tems for symbolic computation.28 Further, Lisp is not only effective, but its basic
data-structure, which has, in large part, contributed to its effectiveness, is remark-
ably simple: theS-expression. This is the data-type freely generated from a base
type by a binary function ‘Cons’. Experience with Lisp has shown that just about
any syntactic structure can be mapped directly onto S-expressions in such a way
that it is very easy to manipulate. In fact, we can even restrict the base type of
S-expressions to be a single constant (often called ‘nil ’) and still get this expres-
siveness. Further evidence for the effectiveness of Lisp and S-expressions is that
one of the most successful theorem proving systems ever built, NQTHM[Boyer
and Moore, 1981], verifies recursive functions written in a version of Lisp that uses
precisely this class of S-expressions.

An example of a theory that integrates all the above observations isFS0, due to
Feferman. This provides us with a language in which we can define exactly all the
recursively enumerable classes of S-expressions. Moreover, it permits inductive
arguments over these inductively defined classes, and thus naturally subsumes both
the theory of recursively enumerable classes and primitive recursive arithmetic. It
has proved usable too in case-studies of computer supported metatheory, in the
proof-theoretic tradition (see Matthews[1992; 1993; 1994; 1997b]). In the rest of
this chapter we will use a slightly abstracted version ofFS0 for our discussion.

7.2 A theory of inductive definitions:FS0

FS0 is a simple minimal theory of inductive definitions, which we present here in
an abstract form (we elide details in order to emphasize the general, rather than
the particular, features). A full description of the theory is provided by Fefer-
man[1990], while an implementation is described by Matthews[1996].

FS0 is a theory of inductively defined sets, embedded in first-order logic and
based on Lisp-style S-expressions. The class of S-expressions is the least class
containingnil and closed under the pairing (cons) operator, which we write as an
infix comma(�; �), such thatnil 6= (a; b) for all S-expressionsa andb; we also
assume, for convenience, that comma associates to the right, so that(a; (b; c)) can
28This does not mean that there have not been successful programming languages that use strings as

their basic data-structure; the SNOBOL family[Griswold, 1981] of languages, for example, is based
on the theory of Markoff string transformation algorithms. However it is significant that SNOBOL, in
spite of its mathematical elegance in many ways, has never been seen as a general purpose symbolic
programming language like Lisp, or been adopted so enthusiastically by such a large and influential
programming community.
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be abbreviated to(a; b; c). We then have functionscar andcdr , which return the
first and second elements of a pair.

Comprehension over first-order predicates is available. We write

x 2 S , P (x) or S � f x j P (x) g

to indicate a setS so defined. Such definitions can be parameterized and the pa-
rameters are treated in a simple way, thus, for example, we can write

x 2 S(a; b), (x; a) 2 b:

We can also define sets explicitly as inductive definitions using theI (�; �) con-
struction: ifA andB are sets, thenI (A;B) is the least set containingA and closed
under the rule

t1 t2

t

where(t; t1; t2) 2 B. Note that we only have inductive definitions with exactly
two ‘predecessors’, but this is sufficient for our needs here and, with a little more
effort, in general.

Finally, we can reason about inductively defined sets using the induction prin-
ciple

Base � S ! 8a; b; c: (b 2 S ! c 2 S !

(a; b; c) 2 Step ! a 2 S )! I (Base ;Step) � S : (32)

This says that a setS contains all the members of a setI (Base ;Step) if it contains
the members ofBase and whenever it contains two elementsb andc, and(a; b; c)
is an instance of the ruleStep, then it also containsa. This induction principle
applies to sets, not predicates, but it is easy, by comprehension, to generate one
from the other, so this is not a restriction.29

7.3 A Hilbert theory of minimal implication

Having sketched a theory of inductive definitions, we now consider how it might
actually be used, both to encode an object logic, and to prove metatheorems. As
an example, we encode the theoryHJ

� (of x2.1) and prove a deduction theorem.

The definition ofHJ

The language LHJ We define an encodingp�q of the standard language of im-
plicational logicLHJ (as usual we distinguish metalevel (!) from object level (�)
29In FS0 comprehension is restricted to essentially�0

1 predicates with the result that the theory is
recursion-theoretically equivalent to primitive recursive arithmetic.
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implication) as follows. We define two distinct S-expression constants (e.g.nil
and(nil ;nil)) which we callatom andimp, then we have

paq = (atom; ppaqq) (a atomic)

pa � bq = (imp; paq; pbq)

(assumingppaqq for atomica to be already, separately, defined). It is easy to see
that p�q is an injection fromLHJ into the S-expressions, on the assumption that
pp�qq is. For the sake of readability, in the future we will abuse notation, and write
simplya � b when we mean the schema(imp; a; b); i.e.a andb here are variables
in the theory of inductive definitions, not propositional variables in the encoded
languageLHJ.

The theory HJ We now define a minimal theory of implication,HJ, as follows.
We have two classes of axioms

x 2 K , 9a; b: x = (a � b � a)

and

x 2 S , 9a; b; c: x = ((a � b) � (a � b � c) � a � c)

and a rule of detachment

x 2 Det , 9a; b: x = (b; (a � b); a)

from which we define the theoryHJ to be

HJ � I (K [ S;Det) :

UsingHJ

We can now useHJ to prove theorems of the Hilbert calculusHJ
� in the same

way that we would use an encoding to carry out natural deduction proofs in an!-
framework. One difference is that we do not get a direct correspondence between
proof steps in the encoded theory and steps in the derivation. However, in this case
it is enough to prove first the following lemmas:

a � b � a 2 HJ (33)

(a � b) � (a � b � c) � a � c 2 HJ (34)

a 2 HJ! (a � b) 2 HJ! b 2 HJ (35)

Here, and in future, we assume theorems are universally closed. From these, it
follows that ifA is a theorem of minimal implication, thenpAq 2 HJ.
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For example, we show

a � a 2 HJ (36)

with the derivation

1. a � a � a 2 HJ by (33)
2. a � (a � a) � a 2 HJ by (33)
3. (a � a � a) � (a � (a � a) � a) � a � a 2 HJ by (34)
4. (a � (a � a) � a) � a � a 2 HJ by (35),1,3
5. a � a 2 HJ by (35),2,4

The steps of this proof correspond, one to one, with the steps of the proof that we
gave forHJ

� in x2.1. As this example suggests, at least for propositional Hilbert
calculi, inductive definitions support object theory where proofs in the metatheory
closely mirror proofs in the object theory. (For logics with quantifiers the relation-
ship is less direct, since we have to encode and explicitly reason about variable
binding and substitution.)

Proving a deduction theorem forHJ

Let us now consider an example that requires induction over proofs themselves:
the deduction theorem forHJ. We only sketch the proof; the reader is referred
to Basin and Matthews[2000] for details. Informally, the deduction theorem says:

If B is provable inHJ with the additional axiomA thenA � B is
provable inHJ.

Note that this theorem relates different deductive systems:HJ and its extension
with the axiomA. Moreover, asA andB are schematic, ranging over all formulae
of HJ, the theorem actually relates provability inHJ with provability in infinitely
many extensions, one for each propositionA.

To formalize this theorem we define

HJ[�] � I (K [ S [ �;Det) ; (37)

i.e.HJ[�] is the deductive systemHJ where the axioms are extended by all formu-
lae in the class�. Now we can formalize the deduction theorem as

b 2 HJ[fag]! (a � b) 2 HJ ; (38)

which in FS0 can be transformed into

I (K [ S [ fag;Det) � f x j (a � x ) 2 HJ g :

This in turn can be proved by induction on the inductively defined setI (K [ S [
fag;Det) using (32). The proof proceeds as follows:



LOGICAL FRAMEWORKS 153

Base case We have to showK [S[fag � f x j (a � x) 2 HJ g. This reduces,
viax 2 K[S[fag ! (a � x) 2 HJ, to showing that(a � x) 2 HJ given either
(i) x 2 K [ S or (ii) x 2 fag. For (i) we havex 2 HJ and(x � a � x) 2 HJ,
and thus, byDet that (a � x) 2 HJ. For (ii) we havex = a and thus have to
show that(a � a) 2 HJ, which we do following the proof of (36) above.

Step case There is only one rule (Det) and thus one case: givenb 2 f x j
(a � x) 2 HJ g and (b � c) 2 f x j (a � x) 2 HJ g, prove thatc 2
f x j (a � x) 2 HJ g. This reduces to proving, given(a � b) 2 HJ and
(a � b � c) 2 HJ that (a � c) 2 HJ. This in turn follows by observing that
((a � b) � (a � b � c) � a � c) 2 HJ by (34), from which, by (35) twice with
the hypotheses,(a � c) 2 HJ.

Once we have proved the deduction theorem we can use it to build proofs where
we reason under assumption in the style of natural deduction. This is useful, indeed
in practice essential, if we really wish to use Hilbert calculi to prove anything.
However it is also limited since this metatheorem can be appliedonly to HJ. Thus,
we next consider how this limitation can be partially remedied.

7.4 Structured theory and metatheory

At the beginning of this section, we discussed two examples of the deduction theo-
rem (statements 3 and 4) where the second stated that the deduction theorem holds
not just inHJ

� but also in extensions. We return to this example, which illustrates
an important difference between ID-frameworks and!-frameworks.

Structuring in!-frameworks

Let us first examine how theories can be structured in!-frameworks. Consider
the following: we can easily encodeHJ� as (assuming the encoding of the syntax
is given separately) the axiom set�HJ� .

T (A � B � A)

T ((A � B) � (A � B � C) � A � C)

T (A)! T (A � B)! T (B)

ThenA is a theorem ofHJ� iff �HJ� ` T (A), i.e., T (A) is provable in the
metalogic under the assumptions�HJ� . Now consider the deduction theorem in
this setting; we would have to show that

�HJ� ` (T (A)! T (B))! T (A � B) : (39)

This is not possible, however.
In an!-framework, a basic property of̀ is weakening; i.e. if� ` � then

�;� ` �. This is very convenient for structuring theories: a theorem proven



154 DAVID BASIN, SEÁN MATTHEWS

under the assumptions� holds under extension with additional assumptions�. For
example,� might extend our formalization ofHJ

� to a classical theory of� or
perhaps to full first-order logic.30 By weakening, given�HJ� ` � we immediately
have�HJ� ;� ` �. Thus we get a natural hierarchy on the object theories we
define: theoryT0 is a subtheory of theoryT when its axioms are a subset of those
of T. This allows us to reuse proven metatheorems since anything proven for a
subtheory automatically follows in any supertheory.

Consider, on the other hand, the extension�K consisting of the axioms

T (A)! T (2A)

T (2A � 2(A � B) � 2B)

with which we can extend�HJ� to a fragment of the modal logicK. The deduction
theoremdoes notfollow in K; therefore, since by faithfulness we have

�HJ� ;�K 0 (T (A)! T (B))! T (A � B) ;

we must also have, by weakening and contraposition,

�HJ� 0 (T (A)! T (B))! T (A � B) :

This suggests that there is an either/or situation: we can have either hierarchi-
cally structured theories, as in an!-framework, or general inductive metatheo-
rems (like the deduction theorem), as in an ID-framework, but not both. In fact,
as we will see, in an ID-framework things are not quite so clear-cut: there is the
possibility both to prove metatheorems by induction and to use them in certain
classes of extensions.

Structuring in an ID-framework

Part of the explanation of why we can prove (38), but not (39), is that it is not
possible to extend the deduction theorem forHJ to arbitrary supertheories: (38)
is a statement aboutHJ and it tells us nothing about anything else. However a
theorem aboutHJ alone is of limited use: in practice we are likely to be interested
in HJ

� as a fragment of some larger theory. We know, for instance, that the
deduction theorem follows for many extensions ofHJ (e.g. extensions to larger
fragments of intuitionistic or classical logic). The problem is that the induction
principle we use to prove the theorem is equivalent to a closure assumption, and
such an assumption means that we are not able to use the theorem with extensions.

We seem to have confirmed, from the other side, the trade-off we have doc-
umented above for!-frameworks: either we can have induction and no theory
structuring (as theories are ‘closed’), or vice versa. However, if we look harder,
30An extension of the deduction theorem to first-order logic, however, is not trivial—we have to treat

a new rule, which introduces complex side conditions to the statement of the theorem (Kleene[1952]
discusses one way to do this).
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there is sometimes a middle way that is possible in ID-frameworks. The crucial
point is that an inductive argument does not always rely onall the closure assump-
tions of the most general case. Consider the assumptions that are made in the proof
of (38):

� The proof of the base case relies on the fact that the axiomsa � b � a and
a � a are available inHJ.

� The proof of the step case relies on the fact that theonly rule that can be
applied isDet , and that the axiom

(a � b) � (a � b � c) � a � c

is available.

What bears emphasizing is that we do not need to assume that no axioms other
than those explicitly mentioned are available, only that no rules other thanDet are
available.

We can take account of this observation to produce a more general version of
(38)

b 2 HJ[� [ fag]! (a � b) 2 HJ[�]; (40)

which we can still prove in the same way as (38). We call this versionopen-ended
since it can be used with any axiomatic extension� of HJ. In particular (38) is
just (40) where we take� to be;.

Structuring theories with the deduction theorem Unlike (38), we can make
effective use of (40) in a hierarchy of theories in a way similar to what is possible
in an!-framework. The metatheorem can be applied to any extensionHJ[�]
where� is a collection of axioms. The fact that in the!-framework we can add
new rules, not just new axioms, is not as significant as it at first appears, so long as
we have that

T (A)! T (B) iff T (A � B) (41)

since we can use this to find an axiomatic equivalent of any rule schema built from
! andT in terms of�.

The above observation, of course, only holds for theories that can be defined in
terms of a single predicateT and which include a connective� for which (41) is
true.31

31And, of course, some encodings use more than one metalevel predicate; e.g. inx5.4 we introduce a
second predicateV for which there is no equivalent of (41). For these systems we have rules for which
no axiomatic equivalent is available. This does not, however, mean that ID-frameworks are necessarily
less effective for structuring collections of theories; it just means that we have to be more sophisticated
in the way we exploit (41). See, e.g., Matthews[1997b] for discussion of how we can do this by
introducing an ‘extra’ layer between the ID-framework and the theory to be encoded.
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A further generalization of the deduction theorem

We arrived at the open-ended (40) by observing that other axioms could be present.
And as previously observed, no such generalization is possible with arbitrary rules,
e.g., the deduction theorem does not hold inK (which requires extensions by rules,
as opposed to axioms). However, a more refined analysis of the step case of the
proof is possible, and this leads to a further generalization of our metatheorem.

In the step case we need precisely that the theory is closed under

A � B A � C

A � D

for each instance of a basic rule

B C

D
:

In the case ofDet (the only rule inHJ
�) we can show this by a combination of

Det and theS axiom.
Using our ID-framework we can explicitly formalize these statements as part

of the deduction theorem itself, proving a further generalization. If we extend the
notation of (37) with a parameter� for rules, i.e.,

HJ[�;�] � I (K [ S [ �;Det [�) (42)

then for the base case we have

b 2 HJ[� [ fag;�]! (a � b) 2 HJ[�;�] (43)

and

(a � a) 2 HJ[�;�] (44)

while for the step case

(d; b; c) 2 �! (a � b) 2 HJ[�;�]

! (a � c) 2 HJ[�;�]! (a � d) 2 HJ[�;�] : (45)

The formulae (43) and (44) follow immediately for anyHJ[�;�], but (45) isn’t
always true. Thus, our third deduction theorem has the form

(45)! b 2 HJ[� [ fag;�]! (a � b) 2 HJ[�;�] ; (46)

which can be proved in the same way as (40). Note too that this metatheorem
generalizes (40), since (40) is just (38) where� is ; and the antecedent, which is
therefore true, has been removed.
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The deduction theorem can even be further generalized, but doing so would
take us too far afield. In[Basin and Matthews, 2000] we show how a further
generalization of (46) can be specialized to modal logics that extendS4. This
generalization allows us to prove

b 2 S4[� [ fag]! (2a � b) 2 S4[�]:

That is, inS4 we can prove a deduction theorem that allows us to reason under
‘boxed’ assumptions2a.

7.5 Admissible and derived rules

Our examples suggest that inductive definitions offer considerable power and sim-
plicity in organizing metatheories. Each metatheorem states the conditions an ex-
tension has to satisfy for it to apply; so once proved, we need only check these
conditions before making use of it. Most metatheorems require only that certain
axioms and rules are available and therefore hold in all extensions with additional
axioms and rules. Others depend on certain things being absent (e.g. rules that
do not satisfy certain properties, in the case of the deduction theorem); in such
cases, we can prove more restricted theorems that are still usable in appropriate
extensions.

How does this kind of metatheory compare with what is possible in theorem
provers supporting hierarchical theories? We begin by reviewing the two standard
notions of proof-rules. Our definitions are those of Troelstra[1982,x 1.11.1] trans-
lated into our notation, whereT [�;�] is a deductive systemT extended with sets
of axioms� and rules�, e.g. (42).

Fix a language of formulae. Arule is ann + 1-ary relation over formulae
hF1; : : : ; Fn; Fn+1i where theF1; : : : ; Fn are thepremisesandFn+1 theconclu-
sion. A rule isadmissiblefor T iff

`T [;;;] F1 ! � � � ! `T [;;;] Fn ! `T [;;;] Fn+1 ; (adm)

andderivablefor T iff

8�:`T [�;;] F1 ! � � � ! `T [�;;] Fn ! `T [�;;] Fn+1 : (der)

It follows immediately from the definitions that derivability implies admissibil-
ity; however, the converse does not always hold. It is easy to show that Troel-
stra’s definition of derivability is equivalent to that of Hindley and Seldin[1986];
i.e.`T [fF1;::: ;Fng;;] Fn+1, and that if a rule is derivable it holds in all extensions
of T with new axioms and rules.

Whereas in!-frameworks we can only prove derived rules, logical frameworks
based on inductive definitions allow us to prove that rules are admissible, as well
as reason about other kinds of rules not fitting the above categories. For example,
the languages or deductive systems for theFi can be different, like in the various
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versions of the deduction theorem that we have formalized; our deduction the-
orems are neither derived nor admissible since their statements involve different
deductive systems.

7.6 Problems with ID-frameworks

Our examples provide evidence that a framework based on inductive definitions
can serve as an adequate foundation for carrying out metatheory in the proof the-
ory tradition and can be used to structure metatheoretic development. However,
some aspects of formal metatheory are more difficult than with an!-framework.
The most fundamental difficulty, and one that is probably already clear from our
discussion in this section, is the way languages are encoded. This is quite primitive
in comparison to what is possible in an!-framework: for the propositional exam-
ples that we have treated here, the view of a language as a recursively enumerable
class is direct and effective. But this breaks down for logics with quantifiers and
other variable binding operators where the natural equivalence relation for syn-
tax is no longer identity but equivalence under the renaming of bound variables
(�-congruence). We have shown (inx4.2) that language involving binding has a
natural and direct treatment in an!-framework as higher-order syntax. Nothing
directly equivalent is available in an ID-framework; we are forced to build the
necessary facilities ourselves.

Since the user must formalize many basic syntactic operations in an ID-frame-
work, any treatment of languages involving variable binding operators will be
more ‘primitive’ than what we get in an!-framework, but how much more prim-
itive is not clear. So far, most experience has been withad hocimplementations of
binding (e.g.[Matthews, 1992]) but approaches that are both more sophisticated
and more modular are possible, such as the binding structures proposed by Tal-
cott [1993], a generalization of de Bruijn indices as an algebra. As yet, we do not
know how effective such notations are.

The other property of ID-frameworks that might be criticized is that they are
biased towards Hilbert calculi, which are recognized to be difficult to use. But
metatheorems, in particular the deduction theorem, can play an important role in
making Hilbert calculi usable in practice. And, if a Hilbert style presentation is
not suitable, it may be possible to exploit a combination of the deduction theorem
and the intuitions of!-frameworks to provide direct encodings of natural deduc-
tion [Matthews, 1997b]. The same provisos about lack of experience with effective
notations for handling bindings apply here though, since this work only discusses
the propositional case.

8 CONCLUSIONS

This chapter does not try to give a final answer to the question of what a logical
framework might be. Rather it argues that the question is only meaningful in terms
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of some particular set of requirements, and in terms of ‘goodness of fit’; i.e. the
relationship between the properties of a proposed metalogic and logics we want to
encode.

Our central theme has been the relationship between different kinds of deduc-
tive systems and their abstractions as metatheories or metalogics, which we can
use to encode and work with instances of them. We have showed that a logic of
minimal implication and universal quantification can be used to encode both the
language and the proof-rules of a natural deduction or sequent calculus, and then
described in detail a particular logic of this type,�p. As a contrast, we have also
considered how (especially Hilbert) calculi can be abstracted as inductive defini-
tions and we sketched a framework based on this view,FS0. We then used the
metatheoretic facilities that we get with an ID-framework likeFS0 to explore the
relationship between metatheory and object theory, especially in the context of
structured collections of theories.

The simple binary distinction between ID and!-frameworks, which we make
for the sake of space and explication, of course does not describe the whole range
of frameworks that have been proposed and investigated. It does, however, help to
define the space of possibilities and current research into frameworks can mostly
be categorized in its terms.

For instance, research into the problem of the ‘goodness of fit’ relation between
the metalogic and the object logic, especially for!-frameworks, can be separated
into two parts. We have shown that natural deduction calculi for standard math-
ematical (i.e., classical or intuitionistic, first or higher-order) logics fit well into
an!-framework. But the further we diverge from standard, mathematical, logics
into philosophical (i.e. modal, relevance, etc.) logic the more complex and arti-
ficial the encodings become. In order to encode modal logics, for instance, we
might introduce either multiple-judgment encodings or take explicit account of a
semantics via a labelling. The particular encodings that we have described here
are only some among a range of possibilities that could be imagined. A more
radical possibility, not discussed here, can be found in, e.g.,[Matthews, 1997a],
where the possibility of extending a framework directly with a modal ‘validity’
connective is explored. However we do not yet know what the practical limits of
these approaches are.32 A similar problem of goodness of fit is also encountered
in ID-frameworks, where the ‘natural’ deductive systems are Hilbert calculi and
the ‘obvious’ encodings of consequence style systems are impractically unwieldy.
Matthews[1997b] suggests how we might encode pure ordinary consequence re-
lation based systems in such a framework in a way that is more effective than, and
at least as intuitive as, the ‘naive’ approach of using inductively defined classes.

The particular problems of substructural logics (e.g. linear or relevance logics)
have been the subject of substantial research. The consequence relations associ-
ated with these logics are not ordinary and hence cannot be encoded using tech-
32This is essentially a practical, not a theoretical question, since, as we pointed out earlier, an!-

framework can be used as a Turing complete programming language, so with sufficient ingenuity any
deductive system can be encoded.
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niques such as those suggested inx6. While labelled or multiple judgment presen-
tations of these logics in an!-framework are possible, they seem to be unwieldy;
i.e. they ‘fit’ particularly badly. An alternative approach has been explored where
the framework itself is modified: minimal implication is replaced or augmented in
the framework logic with a substructural or linear implication, which does permit
a good fit. In Ishtiaq and Pym[1998] and Cervesato and Pfenning[1996], systems
are presented that are similar to�p except that they are based on linear implication,
which is used to encode variants of linear and other relevance logics. There is also
work that, rather than employing either! or ID-frameworks, attempts to combine
features of both (e.g. McDowell and Miller[1997] and Despeyrouxet al. [1996]).

In short, then, there are many possibilities and, in the end, no absolute solu-
tions: the suitability of a particular logical framework to a particular circumstance
depends on empirical as well as theoretical issues; i.e. before we can choose we
have to decide on the range of object logics we envision formalizing, the nature of
the metatheoretic facilities that we want, and the kinds of compromises that we are
willing to accept.
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G�ORAN SUNDHOLM

PROOF THEORY AND MEANING

Dedicated to Stig Kanger on the occasion of his 60th birthday

The meaning of a sentence determines how the truth of the proposi-
tion expressed by the sentence may be proved and hence one would expect
proof theory to be inuenced by meaning-theoretical considerations. In the
present chapter we consider a proposal that also reverses the above prior-
ities and determines meaning in terms of proof. The proposal originates
in the criticism that Michael Dummett has voiced against a realist, truth-
theoretical, conception of meaning and has been developed largely by him
and Dag Prawitz, whose normalisation procedures in technical proof theory
constitute the main technical basis of the proposal.

In a subject not more than 20{30 years old, and were much work is cur-
rently being done, any survey is bound to be out of date when it appears.
Accordingly I have attempted not to give a large amount of technicalities,
but rather to present the basic underlying themes and guide the reader to the
ever-growing literature. Thus the chapter starts with a general introduction
to meaning-theoretical issues and proceeds with a fairly detailed presenta-
tion of Dummett's argument against a realist, truth-conditional, meaning
theory. The main part of the chapter is devoted to a consideration of the
alternative proposal using `proof-conditions', instead of truth-conditions, as
the key concept. Finally, the chapter concludes with an introduction to the
type theory of Martin-L�of.

I am indebted to Professors Dummett, Martin-L�of and Prawitz, and to
my colleague Mr. Jan Lemmens, for many helpful conversations on the
topics covered herein and to the editors for their in�nite patience. Dag
Prawitz and Albert Visser read parts of the manuscript and suggested many
improvements.

1 THEORIES OF MEANING, MEANING THEORIES AND TRUTH
THEORIES

A theory of meaning gives, one might not unreasonably expect, a general
account of, or view on, the very concept of meaning: what it is and how it
functions. Such theories about meaning, however, do not hold undisputed
rights to the appellation; in current philosophy of language one frequently
encounters discussions of theories of meaning for particular languages. Their
task is to specify the meaning of all the sentences of the language in question.
Following Peacocke [1981] I shall use the term `meaning theory' for the
latter, language-relative, sort of theory and reserve `theory of meaning' for

D. Gabbay and F. Guenthner (eds.),
Handbook of Philosophical Logic, Volume 9, 165{198.
c 2002, Kluwer Academic Publishers. Printed in the Netherlands.
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the former. Terminological confusion is, fortunately, not the only connection
between meaning theories and theories of meaning. On th contrary, the
main reason for the study and attempted construction of meaning theories is
that one hopes to �nd a correct theory of meaning through reection on the
various desiderata and constraints that have to be imposed on a satisfactory
meaning theory. The study of meaning theories, so to speak, provides the
data for the theory of meaning. In the present chapter we shall mainly treat
meaning theories and some of their connection with (technical) proof theory
and, consequently, we shall only touch on the theory of meaning in passing.
(On the other hand the whole chapter can be viewed as a contribution to
the theory of meaning.)

There is, since Frege, a large consensus that the sentence, rather than
the word, is the primary bearer of (linguistic) meaning. The sentence is the
least unit of language that can be used to say anything. Thus the theory of
meaning directs that sentence-meaning is to be central in meaning theories
and that word-meaning is to be introduced derivatively: the meaning of a
word is the way in which the work contributes to the meaning of the sen-
tences in which it occurs. It is natural to classify the sentences of a language
according to the sort of linguistic act a speaker would perform through an
utterance of the sentence in question, be it an assertion, a question or a
command. Thus, in general, the meaning of a sentence seems to comprise
(at least) two elements, because to know the meaning of | in order to
understand an utterance of | the sentence in question one would have to
know, �rst to what category the sentence belongs, i.e. one would have to
know what sort of linguistic act that would be performed through an utter-
ance of the sentence, and secondly one would have to know the content of
the act.

This diversity of sentence-meaning, together with the idea that word-
meaning is to be introduced derivatively (as a way of contributing to sentence-
meaning), poses a certain problem for the putative meaning-theorist. If sen-
tences from di�erent categories have di�erent kinds of meaning, it appears
that the meaning of a word will vary according to the category of the sen-
tences in which it occurs: uniform word-meanings are ruled out. But this is
unacceptable as anyone familiar with a dictionary knows. The word `door',
say, has the same meaning in the three sentences `Is the door open?', `The
door is open.', and `Open the door!'. This prima facie diÆculty is turned
into a tool for investigating what internal structure ought to be imposed on
a satisfactory meaning theory.

A meaning theory will have to comprise at least two parts: the theory of
sense and the theory of force. The task of the latter is to identify the sort
of act performed through an utterance of a sentence and the former has to
specify the content of the acts performed. In order to secure the uniformity
of word meaning the theory of sense has to be formulated in terms of some
on key concept, in terms of which the content of all sentences is to be given,
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and the theory of force has to provide uniform, general, principles relating
speech act to content. The meaning of a word is then taken as the way
in which the word contributes to the content of the sentences in which it
occurs (as given by the key concept in the theory of sense).

The use of such a notion of key concept also allows the meaning theories
to account for certain (iterative) unboundedness-phenomena in language,
e.g. that whenever A and B are understood sentences, then also `A and
B' would appear to be meaningful. This is brought under control in the
meaning theory by expressing the condition for the application of the key
concept P to `A and B' in terms of P applied to A and P applied to B.

The most popular candidate for a key concept has undeniably been truth:
the content of a sentence is given by its `truth-condition'. One can, indeed,
�nd many philosophers who have subscribed to the idea that meaning is
to be given in terms of truth. Examples would be Frege, Wittgenstein,
Carnap, Quine and Montague. It is doubtful, however, if they would accept
that the way in which truth serves to specify meaning is as a key concept
in a meaning theory (that is articulated into sense and force components
respectively). Such a conception of the relation between meaning and truth
has been advocated by Donald Davidson, who, in an important series of
papers, starting with [1967], and now conveniently collected in his [1984],
has proposed and developed the idea that meaning is to be studied via
meaning theories. Davidson is quite explicit on the role of truth. It is going
to take its rightful place within the meaning theory in the shape of a truth
theory in the sense of Tarski [1956, Ch. VIII]. Tarski showed, for a given
formal language L, how to de�ne a predicate `TrueL(x)' such that for every
sentence S of L it is provable from the de�nition that

(1) TrueL( �S) i� f(S):

Here ` �S' is a name of, and f(S) a translation of, the object-language sentence
W in the language of the meta-theory (= the theory in which the truth
de�nition is given and where all instances of (1) must hold). Using the
concept of meaning (in the guise of `translation' from object-language to
meta-language) Tarski gave a precise de�nition of what it is for a sentence
of L to be true. Davidson reverses the theoretical priorities. Starting with a
truth theory for L, that is a theory the language of which contains TrueL(x)
as a primitive, and where for each sentence S of L

(2) TrueL( �S) i� p:

holds for some sentence p of the language of the truth theory, he wanted to
extract meaning from truth. Simply to consider an arbitrary truth theory
will not do not capture meaning, though. It is certainly true that

(3) Snow is white is true-in-English i� snow is white

but, unquestionably and unfortunately, it is equally true that
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(4) Snow is white is true-in-English i� grass is green

and the r.h.s. of (4) could not possibly by any stretch of imagination be
said to provide even a rough approximation of the meaning of the English
sentence

Snow is white:

Furthermore, a theory that had all instances of (2) as axioms would be
unsatisfactory also in that it used in�nitely many unrelated axioms; the
theory would, it is claimed, be `unlearnable'.

Thus one might attempt to improve on the above simple-minded (2)
by considering truth theories that are formulated in a meta-language that
contains the object-language and that give their `T -theories' (the instances
of (2)), not as axioms, but as derivable from homophonic recursion clauses,
e.g.

(5)
for all �A and �B of L;

TrueL(A and B i� TrueL( �A and TrueL( �B)

and

(6)
for all �A of L;

TrueL(not-A i� not-TrueL( �A):

Here one uses the word mentioned in the sentence on the l.h.s. when giving
the condition for its truth on the r.h.s.; cf. the above remarks on the iterative
unboundedness phenomena.

The treatment of quanti�cation originally used Tarski's device of `satis-
faction relative to assignment by sequences', where, in fact, one does not
primarily recur on truth, but on satisfaction, and where truth is de�ned as
satisfaction by all sequences. The problem which Tarski solved by the use
of the sequences and the auxiliary notion of satisfaction was how to cap-
ture the right truth condition for `everything is A' even though the object
language does not contain a name for everything to be considered in the
relevant domain of quanti�cation. Another satisfactory solution which goes
back to Frege, would be to use quanti�cation over �nite extensions L+ of L
by mans of new names. The interested reader is referred to [Evans, 1977,
Section 2] or to [Davies, 1981, Chapter VI] for the (not too diÆcult) tech-
nicalities. A very extensive and careful canvassing of various alternative
approaches to quanti�cational truth-theories is given by Baldwin [1979].
If we bypass the problem solve by Tarski and consider, say, the language
of arithmetic, where the problem does not arise as the language contains
a numeral for each element of the intended domain of quanti�cation the
universal-quanti�er clause would be
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(7)

for all �A of L;

TrueL(for every number x;A(x)) i� for every numeral �k;

TrueL(A(�k=x)):

(here `A(�k=x)' indicates the result of substituting the numeral k for the
variable x.)

Unfortunately it is still not enough to consider these homophonic, �nitely
axiomatised truth theories in order to capture meaning. The basic clauses
of a homophonic truth theory will have the form, say,

(8)
for any name �t of L;

TrueL(t is red) i� whatever t refers to is red:

If we now change this clause to

(9)
for any �t in L;

True0L(t is red) i� whatever t refers to is red and grass is green

and keep homophonic clauses for True0L with respect to `and' `not', etc., the
result will still be a �nitely axiomatised and correct (`true') truth theory
for L. We could equally well have chosen any other true contingent sentence
instead of `grass is green'.) Seen from the perspective of `real meaning' the
truth condition of the primed theory is best explained as

(10) True0L( �S) i� S and grass is green:

The fact that a true, �nitely axiomatised, homophonic truth-theory does not
necessarily provide truth conditions that capture meaning was �rst observed
by Foster and Loar in 1976. Various remedies and re�nements of the original
Davidsonian programme have been explored. We shall briey consider an
inuential proposal due to John McDowell [1976; 1977; 1978].

The above attempts to �nd a meaning theory via truth start with a (true)
truth theory and go on to seek further constraints that have to be imposed
in order to capture meaning. McDowell, on the other hand, reverses this
strategy and starts by considering a satisfactory theory of sense. Such a
theory has to give content-ascriptions to the sentences �S of the language L,
say in the general form

(11) �S is Q i� p;

where p is a sentence of the meta-language that gives the content of �S, and,
furthermore, the theory has to interact with a theory of force in such a
way that the interpreting descriptions, based on the contents as assigned
in (11), do in fact make sense of what speakers say and do when they
utter sentences containing �S. A meaning theory, and thus also its theory
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of sense, is part of an overall theory of understanding, the task of which
is to make sense of human behaviour (and not just these speech-acts). If
the theory of sense can serve as a content-specifying core in such a general
theory, then (11) guarantees that the predicate Q is (co-extensional with)
truth. But not only that is true; the pathological truth-theories that were
manufactured for use in the Foster{Loar counter-examples are ruled out
from service as theories of sense because their use would make the meaning
theory issue incomprehensible, or outright false, descriptions of what people
do. A theory of sense which uses a pathological truth-theory does not make
sense. Thus we see that while an adequate theory of sense will be a truth
theory, the opposite is false: not every truth theory for a language will be
a theory of sense for the language.

In conclusion of the present section let us note the important fact that the
Tarski homophonic truth-theories are completely neutral with respect to the
underlying logic. The T -theorems are derivable from the basic homophonic
recursion clauses using intuitionistic logic only (in fact even minimal logic
will do).

No attempt has been made in the present section to achieve either com-
pleteness or originality. The very substantial literature on the Davidsonian
programme is conveniently surveyed in two texts, [Platts, 1979] and [Davies,
1981], where the latter pays more attention to the (not too diÆcult) tech-
nicalities. Many of the important original papers are included in [Evans
and McDowell, 1976], with an illuminating introduction by the editors, and
[Platts, 1980], while mention has already been made of [Davidson, 1984]'s
collection of essays.

2 INTERMEZZO: CLASSICAL TRUTH AND SEQUENT CALCULI

(Intended for readers of the method `semantic tableaux', cf. Section 6 of
Hodges' chapter or section 3 of Sundholm's chapter, both in Volume 1 of
this Handbook.)

It is by now well-known that perhaps the easiest way to prove the com-
pleteness of classical predicate logic is to search systematically for a counter-
model (or, more precisely, a falsifying `semi-valuation', or `model set') to the
formula, or sequent, in question. This systematic search proceeds according
to certain rules which are directly read o� as necessary conditions from the
relevant semantics. For instance, in order to falsify 8xA(x)! B, one needs
to verify 8xA(x) and falsify B, and in order to verify 8xA(x) one has to
verify A(t) for every t, etc. Thus the rules for falsi�cation, in fact, also con-
cern rules for veri�cation and vice versa (consider veri�cation of, e.g. :B),
and for each logical operator there will be two rules regulating the system-
atic search for a counter-model, one for veri�cation and one for falsi�cation.
These rules turn out to be identical with Gentzen's [1934{1935] left and
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right introduction rules for the same operators. In some cases the search
needs to take alternatives into account, e.g. A ! B is veri�ed by falsifyng
A or verifying B. Thus one has two possibilitieis. The failure of the search
along a possibility is indicated by that the rules would force one to assign
both truth and falsity to one and the same formula. This corresponds, of
course, to the axioms of Gentzen's sequent calculi. This method, where
failure of existence of counter-models is equivalent to existence of a sequent
calculus proof-tree, was discovered independently by Beth, Hintikka, Kanger
and Sch�utte in the 1950s and a brilliant exposition can be found in [Kleene,
1967, Chapter VI], whereas [Smullyan, 1968] is the canonical reference for
the various ways of taking the basic insight into account. Prawitz [1975]

is a streamlined development of the more technical aspects which provides
an illuminating answer to the question as to why the rules that generate
counter-models turn out to be identical with the sequent calculus rules.
There one also �nds a good introduction to the notion of semi-valuation
which has begun to play a role in recent investigations into the semantics of
natural language (cf. [van Benthem and van Eijck, 1982] for an interesting
treatment of the connection between recent work on `partial structures' in
the semantics of natural language and the more proof-theoretical notions
that derive from the `backwards' completeness proofs).

These semantical methods for proving completeness also lend themselves
to immediate proof-theoretical applications. The Cut-free sequent calculus
is complete, but cut is a sound rule. Hence it is derivable. A connection
with the topic of our chapter is forged by reversing these proof-theoretic uses
of semantical methods. Instead of proving the completemess via semantics,
one could start by postulating the completeness of a cut-free formalism, and
read o� a semantic from the left and right introduction rules. (Proof theory
determines meaning.) Such an approach was suggested by Hacking [1979]

in an attempt towards a criterion for logical constanthood. Unfortunately,
his presentation is marred by diverse technical infelicities (cf. [Sundholm,
1981]), and the problem still remains open how to �nd a workable proposal
along these lines.

3 DUMMETT'S ARGUMENT AGAINST A TRUTH-CONDITIONAL
VIEW ON MEANING

In the present section I attempt to set out one version of an argument due
to Michael Dummett to the e�ect that truth cannot adequately serve as a
key concept in a satisfactory meaning theory. Dummett has presented his
argument in many places (cf. the note at the end of the section) and the
presentation I o�er is not to be attributed to him. In particular, the empha-
sis on manifestation that can be found in the present version of Dummett's
argument I have come to appreciate through the writings of Colin McGinn
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[1980] and Crispin Wright [1976]. Dummett's most forceful exposition is
still his [1976], which will be referred to as \WTM2".

Dummett's views on the role and function of meaning theories are only
in partial agreement with those presented in section 1. The essential di�er-
ence consists mainly in the strong emphasis on what it is to know a language
that can be found in Dummett's writings, and as a consequence his mean-
ing theories are �rmly cast in an epistemological mould: \questions about
meaning are best interpreted as qeustions of understanding: a dictum about
what the meaning of a sentence consists is must be construed as a thesis
about what is is to know its meaning" (WTM2, p. 69). The task of the
meaing theoerist is to give a theeoretical (propositional) representation of
the complex practical capacity one has when one knows how to speak a
language. The knowledge that a speaker will have of the propositions that
constitute the theoretical representation in question will, in the end, have to
be imp`licit knowledge. Indeed, one cannot demand that a speaker should
be able to articulate explicitly; those very principles that constitute the
theoretical representation of his practical mastery. Thus a meaning theory
that gives such a theoretical representation must also comprise a part that
would state what it is to know the other parts implicitly.

The inner structure of a meaning theory that could serve the aims of
Dummett will have to be di�erent from the simple bipartite version con-
sidered in section 1. Dummett's meaning theories are to be structured as
follows. There is to be (ia) a core theory of semantic value, which states
the condition for the application of the key concept to the sentences of the
language, and, furthermore, there must be (ii) a theory of force, as before.
In between these two, however, there must be (ib) a theory of sense, whose
task it is to state what it is to know what is stated in the theory of semantic
value, i.e. what it is to know the condition for the application of the key con-
cept to a sentence. Thus the theory of sense in the proposals from section 1
does not correspond to the theory of senseD | `D' for Dummett | but to
the theory of semantic value. (The Fregean origin of Dummett's tripartite
structure should be obvious. For further elaboration cf., his [1981].) The
theory of senseD has no matching part in the theories from section 1. The
corresponding match is as follows:

Dummett (Davidson-)McDowell

(ia) Theory of semantic value
(applies key concept to
sentences)

(i) Theory of sense

(iv) Theory of senseD (states
what it is to know the the-
ory of sematnc value)

(ii) The theory of force (ii) The theory of force
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This di�erence is what lies at the heart of the matter in the discussion
between Dummett and McDowell of whether a theory of meaning ought
to be `modest' or `fullblooded' (cf. [McDowell, 1977, Section X]: should
one demand that the mreaning theory must give a link-up with practical
capacities independently of, and prior to, the theory of force?.

One should also note here that the right home for the theory of senseD
is not quite clear. Here I have made it part of the meaning theory. It
could perhaps be argued that a statement of wherein knowledge of meaning
consists is something that had better be placed within a theory of meaning
rather than in a meaning theory. Dummett himself does not draw the
distinction between meaning theories and theories of meaning and one can,
it seems to me, �nd traces of both notions in what Dummett calls a `theory
of meaning'.

Dummett's argument against the truth-theoretical conception of mean-
ing makes essential use of the assumption that the meaning theories must
contain a theory of senseD, which Dummett explicates in terms of how it
can be manifested: since the knowledge is implicit, possession thereof can be
construed only in terms of how one manifests tht knowledge. Furthermore,
this implicit knowledge of meaning, or more precisely, of the condition for
applying the key concept to individual sentences, must be fully manifested
in use. This is Dummett's transformation of Wittgenstein's dictum that
meaning is use. Two reasons can be o�ered (cf. [McGinn, 1980, p. 20]).
First, knowledge is one of many propositional attitudes and these are, in
general, only attributed to agents on the basis of how they are manifested.
Secondly, and more importantly, we are concerned with (implicit) knowledge
of meaning and meaning is, par excellence, a vehicle of (linguistic) commu-
nication. If there were some componenets of the implicit knowlege that did
not become fully manifest in use, they could not matter for communication
and so they would be superuous.

It was already noted above that the Tarskian truth-theories are com-
pletely neutral with respect to the logical properties of truth. What laws are
obeyed is determined by the logic that is applied in the meta-theory, whereas
the T -clauses themselves o�er no information on this point. Dummett's ar-
gument is brought to bear not so much against Tarskian truth as against the
possibility that the key concept could be `recognition-transcendent'. Classi-
cal, bivalent truth is characterised by the law of bivalence that every sentence
is either true or false independently of our capacity to decide, or �nd out,
whichever is the case. Thus, in general, the truth-conditions will be such
that they can obtain without us recognising that they do. There are a num-
ber of critical cases which produce such undecidable truth-conditions. (It
should be noted that `undecidable' is perhaps not the best choice here with
its connotations from recursive function theory.) Foremost among these is
undoubtedly quanti�cation over in�nite or unbounded domains. Fermat's
last theorem and the Reimann hypothesis are both famous examples from
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mathematics and their form is pruely universal 8xA(x), with decidable ma-
trix A(x). An existential example would be, say, `Somewhere in the universe
there is a little green stone-eater'. Other sorts of examples are given by, re-
spectively, counterfactual conditionals and claims about sentience in others,
e.g. `Ronald Reagan is in pain'. A fourth class is given by statements about
(remote) past and future time, e.g. `A city will be built here in a thousand
years', or `Two seconds before Brutus stabbed Casesare thirty-nine geese
cackled on the Capitol'.

The knowledge one has of how to apply the key concept cannot in its
entirety be statable, explicit knowledge and so the theory of senseD will
have to state, for at least some sentences, how one manifests knowledge
of the condition for applying the key concept to them, in ways other than
stating what one knows eplicitly. Let us call the class of these `the non-
statable fragment'. (Questions of the `division of linguistic labour' may
arise here. Is the fragment necessarily unique? Cf. [McGinn, 1980, p. 22].)

Assume now for a reductio that bivalent, possibly recognition-transcendent,
truth-conditions can serve as key concept in a (Dummettian) meaning the-
ory. Thus the theory of senseD has to state how one fully manifests knowl-
edge of possibly recognition-transcendent truth-conditions. The `possibly'
can be removed: there are sentences in the non-statable fragment with un-
decidable truth-conditions. In order to see this, remember the four classes
of undecidable sentences that were listed above. Demonstrably, undecidable
sentences are present in the language and they must be present already in
the non-statable fragment, because \the existence of such sentences cnnot
be due solely to the occurrence of sentences introduced by purely verbal
explanations: a language all of whose sentences were decidable would con-
tinue to have this property when enriched by expressions so introduced"
(WTM2, p. 81). An objection that may be (and has been) raised here is
that one could start with a decidable fragment, e.g. the atomic sentences
of arithmetic and get the undecidability through addition of new sentence-
operators such as quanti�ers. That is indeed so, but is not relevant here,
where one starts with a larger language that, as a matter of fact contains
undecidable sentences and then isolates a fragment within this language
that also will have this property. Decidable sentences used for de�nitions
could only provide decidable sentences and hence some of the sentences of
the full language would be left out. Also it is not permissible to speak of
adding, say, the quanti�ers as their nature is sub judice: the meaning of a
quanti�er is not something independent of the rest of the language but, like
any other word, its meaning is the way it contributes to the meaning of the
sentences in which it occurs.

Now the argument is nearly at its end. The theory of senseD would
be incomplete in that it could not state what it is to manifest fully implicit
knowledge of the recognition-transcendent truth-condition of an undecidable
sentence. If the theory attempted to do this, an observational void would
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exist without observational warrant. We, as theorists, would be guilty of
theoretical slack in our theory, because we could never see the agents man-
ifest their implicit knowledge in response to the truth-conditions obtaining
(or not), because ex hypothesi, they obtain unrecognisably. The agents, fur-
thermore, could not see them obtain and so, independently of whether or
not the theorist can see them response, they cannot manifest their knowl-
edge in response to the truth-condition. (This is a point where the division
of linguistic labour may play a role.)

Before we proceed, it might be useful to o�er a short schematic summary
of Dummett's argument as set out above. (Page refrences in brackets are
to WTM2.)

1. To understand a language is to have knowledge of meaning. (p. 69)

2. Knowledge of meaning must in the end be implicit knowledge. (. 70)

3. Hence the meaning theory must contain a part, call it theory of senseD,
that speci�es `in what having this knowledge consists, i.e. what counts
as a manifestion of that knowledge. (pp. 70{71 and p. 127)

4. There are sentences in the language such that the speaker manifests
his knowledge of their meaning in ways other than stating the meaning
in other words. (The non-statable fragment is non-empty.) (p. 81)

5. Assume now that bivalent truth can serve as key concept. Bivalent
truth-conditions are sometimes undecidable and hence recognition-
transcendent. (p. 81)

6. Already in the non-statable fragment there must be sentences with
recognition-transcendent truth-conditions. (p. 81)

7. Implicit knowledge of recognition-transcendent truth-conditions can-
not be manifested, and so the theory of senseD is incomplete. (p.
82)

Supplementary notes concerning the argument:

a. Dummett's argument is quite general and does not rest at all on any
speci�c features of the language concerned. When it is applied to a
particular area of discourse, or for a particular class of statements,
it will lead to a metaphysical anti-realism for the area in question.
Many examples of this can be found in Dummett's writings. Thus
[1975] and [1977] both develop the argument within the philosophy of
mathematics. The intuitionistic criticism of classical reasoning, and
the ensuing explanations of the logical constants o�ered by Heyting,
provided the main inspiration for Dummett's work on anti-realism. It
should be stressed, however, and as is emphasised by Dummett himself
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in [1975], that the semantical argument in favour of a constructivist
philosophy of mathematics is very far from Brouwer's own position.

In Dummett [1968{1969] another one of the four critical classes of
sentneces is studied, viz. those concerning time, and in WTM2, Section
3, a discussion of counterfactual conditionals can be found, as well as a
discussion of certain reductionist versions of anti-realism. They arise
when the truth of statement A is reduced to the (simultaneous) truth
of a certain possibly in�nite class of reduction-sentences MA. If it
so happens that the falsity of the conjunction

VV
MA dos not entail

the truth of the conjunction
VV

M:A, then bivalence will fail for the
statement A. Examples of such reductionist versions of anti-realism
can be found in phenomenalistic reductions of material objects or of
sentience in others.

b. It should be noted that Dummett's anti-realism, while veri�cationist
in nature, must not be conated with logico-empiricist veri�cationism.
With a lot of simpli�cation the matter can be crudely summarised by
noting that for the logical empiricists classical logic was sacrosanct and
certain sentences have non-veri�able classical truth-conditions. Hence
they have no meaning. Dummett reverses this reasoning: obviously
meaningful sentences have no good meaning if meaning is construed
truth-conditionally. Hence classical meaning-theories are wrong.

c. As one should expect, Dummett's anti-realist argument has not been
allowed to remain uncontroverted. JohnMcDowell has challenged the
demand that the meaning theories should comprise a theory of senseD.
In his [1977] and [1978] the criticism is mainly by implication as he
is there more concerned with the development of the positive side of
his own `modest' version of a meaning theory, whereas in [1981] he
explicitly questions the cogency of Dummett's full-blooded theories.
McDowell's [1978a] is an answer to Dummett's [1969], and McDowell
in his turn has found a critic in Wright [1980a].

Colin McGinn has been another persistent critic of Dummett's anti-
realism and he has launched counter-arguments against most aspects
of Dummett's position, cf. e.g. his [1980], [1979] and [1982].

Crispin Wright [1982] challenges Dummett by observing that a Strict
Finitist can criticise a Dummettian constructivist in much the same
way as a Platonist and so the uniquely priviliged position that is
claimed for constructivism (as the only viable alternative to classical
semantics) is under pressure.

d. Another sort of criticiam is o�ered by Dag Prawitz [1977, 1978], who,
like Wright, is in general sympathy with large parts of Dummett's
meaning-theoretical position. Prawitz questions the demand for full
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manifestation and suggests that the demand for a theory of senseD be
replaced by an adequacy condition on meaning theories T :

if T is to be adequate, it must be possible
to derive in T the impliction
if P knows the meaning of A, then P shows behaviour BA.
Prawitz [1978, p. 27]

(Here \BA" is a kind of behaviour counted as a sign of grasping the
meaning of A.)

The di�erence between this adequacy criterion and the constraints
that McDowell imposes on his modest theories is not entirely clear to
me. Only if the behaviour is to be shown before, and independently
of, the theory of force (whose task it is to issue just the interpret-
ing descriptions that tell what behaviour was exhibited by P ) could
something like a modi�cation of Dummett's argument be launched
and even then it does not seem certain that the desired conclusion
can be reached.

e. In the presentation of Dummett's argument I have relied solely on
WTM2. The anti-realist argument can be found in many places
though, e.g. [1973, chapter 14], [1969], [1975] and [1975a] as well as the
more recent [1982]. It should be noted that Dummett often cf. e.g.,
[1969], lays equal or more stress on the acquisition of knowledge rather
than its manifestion. Most of the articles mentioned are conveniently
reprinted in TE.

Wright [1981], a review of TE, gives a good survey of Dummett's
work. Similarly, in his book [1980] Wright o�ers extensive discussion
of anti-realist themes.

The already mentioned McGinn [1980] and Prawitz [1977], while not
in entire agreement with Dummett, both give excellent expositions of
the basic issues. It is a virtually impossible task to give a complete
survey of the controversy around Dummett's anti-realist position. In
recent years almost every issue of the Journal of Philosophy, Mind
and Analysis, as well as the Proceedings of the Aristotelean Society,
contains material that directly, or indirectly, concerns itself with the
Dummettian argument.

4 PROOF AS A KEY CONCEPT IN MEANING THEORIES

As was mentioned above the traditioal intuitionistic criticism of clasical
mathematical reasoning, cf. e.g., van Dalen (see Volume 5 of the second
edition of this Handbook) was an important source of inspiration for Dum-
mett's anti-realist argument and it is also to intuitionism that he turns in
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his search for an alternative key-concept ot be used in the meaning theories
in place of the bivalent, recogntion-transcendent truth-conditions.

The simplest technical treatment of the truth-conditions approach to
semantics is undoubtedly provided by the standard truth-tables (which,
of course, are incorprated in the Tarski-treatment for, say, full predicate
logic) and it is the corresponding constructive `proof-tables' of Heyting that
o�er a possibility for Dummett's positive proposal. Heyting's explanations
of the logical constants, cf. his [1956, Chapter 7] and [1960], can be set out
roughly as follows:

A proof of the is given by
proposition

A ^ B a proof of A and a proof of B

A _ B a proof of A or a proof of B

A! B a method for obtaining proofs of B from
proof of A

? nothing

8x 2 DA(x) a method which for every individual d
in D provides a proof of A(d)

9x 2 DA(x) an individual d in D and a proof of
A(d).

There are various versions of the above table of explanations, e.g. the one
o�ered by Kreisel [1962], where `second clauses' have been included in the
explanations for implication and universal quanti�cation to the e�ect that
one has to include also a proof that the methods really have the properties
required in the explanations above. The matter is dealt with at length in
[Sundholm, 1983], where an attempt is made to sort out the various issues
involved and where extensive bibliographical information can be found, cf.
also Section 7 below on the type theory of Martin-L�of.

In the above explanations the meaning of a proposition is given by its
`proof condition' and, as was emphatically stressed by Kreisel [1962], in
some sense, `we recognise a proof when we see one'. Thus it seems that the
anti-realistic worries of Dummett can be alleviated with the use of proof
as a key concept in meaning theories. (I will return to this question in
the next section.) Independently of the desired immunity from anti-realist
strictures, however, there are a number of other points that need to be taken
into account here.

First among these is a logical gem invented by Prior [1960]. In the Heyt-
ing explanations the meaning of a proposition is given by its proof-condition.
Conversely, does every proof-condition give a proposition? A positive an-
swer to this question appears desirable, but the notion `proof-condition'
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needs to be much more elucidated if any headway is to be made here. Prior
noted that if by `proof-conditions' one understands `rules that regulate de-
ductive practice' then a negative answer is called for. Let us introduce a
proposition-forming operator, or connective `tonk' by stipulating that its
deductive practice is to be regulated by the following Natural Deduction
rules (I here alter Prior's rules inessentially):

tonk I
A

A tonk B

B

A tonk B

tonk E
A tonk B

A

A tonk B

B
:

As Prior observes one then readily proves false conclusion from true premises
by means of �rst tonk I and then tonk E. In fact, given these two rule any
two propositions are logically equivalent via the following derivation:

A1

(tonk I)
A tonk B

B

B2

(tonk I)
A tonk B

A
1; 2($)I

A$ B

Thus tonk leads to extreme egalitarianism in the underlying logic: from a
logical point of view there is only one proposition. This is plainly absurd
and something has gone badly wrong. Hence it is clear (and only what could
be expected) that some constraints are needed for how the proof-conditions
are to be understood; `rules regulating deductive practice' is simply too
broad. There is quite a literature dealing with tonk and the problems it
causes: [Stevenson, 1961; Wagner, 1981; Hart, 1982] and, perhaps most
importantly from our point of view, [Belnap, 1962], more about which below.
The relevance of the tonk-problem for our present interests, was as far as I
know, �rst noted by Dummett [1973, Chapter 13].

A second point to consider is the so-called paradox of inference, cf. Cohen
and Nagel [1934, pp. 173{176]. This `paradox' arises because of the tension
between (a) the fact that the truth of the conclusion is already contained
in the truth of the premises, and (b) the fact that logical inference is a way
to gain `new' knowledge. Cohen and Nagel formulate it thus:

If in an inference the conclusion is not contained in the premise,
it cannot be valid; and if the conclusion is not di�erent from the
premise, it is useless; but the conclusion cannot be contained in
the premises and also possess novelty; hence inferences cannot
be both valid and useful [1934, p. 173]
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So there is a tension between the legitimacy (the validity) and the utility
of an inference, and one could perhaps reformulate the question posed by
the `paradox' as: How can logic function as a useful epistemological tool?
For an inference to be legitimate, the process of recognising the premises as
true must already have accomplished what is needed for the recognition of
the truth of the conclusion, but if it is to be useful the recognition of the
truth of the conclusion does not have to be present when the truth of the
premises is ascertained. This is how Dummett poses the question in [1975a].

How does one use reasoning to gain new truths? By starting with known
premises and drawing further conclusions. In most cases the use of valid
inference has very little to do with how one would normally set about to
verify the truth of something. For instance, the claim that I have seven
coins in my pocket is best established by means of counting them. It would
be possible, however, to deduce this fact from a number of diverse premises
and some axioms of arithmetic. (The extra premises would be, say that
I began the day with a $50 note, and I have then made such and such
purchases for such and such sums, receiving such and such notes and coins
in return, etc.) This would be a highly indirect way in comparison with the
straightforward counting process. The utility of logical reasoning lies in that
it provides indirect means of learning the truth of statements. Thus in order
to account for this usefulness it seems that there must be a gap between the
most direct ways of learning the truth and the indirect ways provided by
logic. If we now explain meaning in terms of proof, it seems that we close
this gap. The direct means, given directly by the meaning, would coincide,
so to speak, with the indirect means of reasoning. The indirect means have
then been made a part of the direct means of reasoning. (One should here
compare the di�erence between direct and indirect means of recognising the
truth with the solution to the `paradox' o�ered by Cohen and Nagel [1934]

that is formulated in terms of a concept called `conventional meaning'.)
The constraints we seek on our proof-explanations thus should take into

account, on the one hand, that one must not be too liberal as witnessed by
tonk, and, on the other hand, one must not make the identi�cation between
proof and meaning so tight that logic becomes useless.

Already Belnap [1962] noted what was wrong with tonk from our point
of view. The (new) deductive practice that results from adding tonk with
its stipulative rules, is not conservative over the old one. Using Dummett's
[1975] terminology, there is no harmony between the grounds for asserting,
and the consequences that may be drawn from, a sentence of the form A tonk
B. The introduction and elimination rules must, so to speak, match, not
just in that each connective has introduction and elimination rules but also
in that they must not interfere with the previous practice. Hence it seems
natural to let one of the (two classes of) rules serve as meaning-giving and
let the other one be chosen in such a way that it(s members) can be justi�ed
according to the meaning-explanation. Such a method of proceeding would
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also take care of the `paradox' of inference: one of the two types of rules
would now serve as the direct, meaning-given (because meaning-giving!)
way of learning the truth and the other would serve to provide the indirect
means (in conjunction with other justi�ed rules, of course).

The introduction rules are the natural choice for our purpose, since they
are synthesising rules; they explain how a proof of, say A$B , can be formed
in terms of given proofs of A and of B, and thus some sort of composition-
ality is present (which is required for a key concept). Tentatively then, the
meaning of a sentence is given by what counts as a direct (or canonical)
proof of it. Other ways of formulating the same explanation would be to say
that the meaning is given by the direct grounds for asserting, or by what
counts as a direct veri�cation of, the sentence in question. An (indirect)
proof of a sentence would be a method, or program, for obtaining a direct
proof.

In order to see that a sentence is true one does not in general have to
produce the direct grounds for asserting it and so the desired gap between
truth and truth-as-established-by-the-most-direct-means is open. Note that
one could still say that the meaning of a sentence is given by its truth-
condition, although the latter, of course, has to be understood in a way
di�erent from that of bivalent, and recognition-transcendent, truth: if a
sentence is true it is possible to give a proof of it and this in turn can be
used to produce a direct proof. Thus in order to explain what it is for a
sentence to be true one has to explain what a direct proof of the sentence
would be and, hence, one has to explain the meaning of the sentence n order
to explain its truth-condition.

All of this is highly programmatic and it remains to be seen if, and how,
the notion of direct (canonical) proof (veri�cation, ground for asserting) can
be made sense of also outside the con�ned subject-matter of mathematics.
In the next section I shall attempt to spell out the Heyting explanations once
again, but now in a modi�ed form that closely links up with the discussion in
the present section and with the so-called normalisation theorems in Natural
Deduction style proof theory.

5 THE MEANING OF THE LOGICAL CONSTANTS AND THE
SOUNDNESS OF PREDICATE LOGIC

In the present section, where knowledge of Natural Deduction rules is pre-
supposed, we reconsider Heyting's explanations and show that the intro-
duction and elimination rules are sound for the intended meaning.

Thus we assume that A and B are meaningful sentences, or propositions,
and, hence that we know what proofs (and direct proofs) are for them.
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The conjunction A ^ B is a proposition, such that a canonical proof of
A ^B has the form:

D1 D2

A B
A ^ B

whereD1 andD2 are (not necessarily direct) proofs ofQ andB, respectively.
On the basis of this meaning-explanation of the proposition A^B, the rule
(^I) is seen to be valid. We have to show that whenever the two premises
A and B are true then so is A ^ B. When A and B are true, they are
so on the basis of proof and hence there can be found two proofs D1 and
D2 respectively of A and B. These proofs can then be used to obtain a
canonical proof of A ^B, which therefore is true.

Consider the elimination rule (^E), say, A^B
B

, and assume that A^B is
true. We have to see that B is true. A^B is true on the basis of a proof D,
which by the above meaning-explanation can be used to obtain a canonical
proof D3 of the form speci�ed above. Thus D2 is a proof of B and thus B
is true.

Next we consider the implication A ! B, which is a proposition that is
true if B is true on the assumption that A is true. Alternatively we may
say that a canonical proof of A! B has the form

A1

D
B

A! B1

where D is a proof of B using the assumption A. Again, the introduction
rule (! I) is sound, since what has to be shown is that if B is true on the
hypothesis that A is true, then A! B is true. But this is directly granted
by the meaning explanation above. For the elimination rule we consider

A! B A
B

and suppose that we have proofs D1 and D2 of respectively A ! B an A.
As D1 is a proof it can be used to obtain a canonical proof D3 and thus we
can �nd a hypothetical proof D of B from A. But then

D2

A
D
B
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is a proof of B and thusB is true and (! E) is a valid rule.
The disjunction A_B is a proposition, with canonical proofs of the forms

D1

A
A _ B

and

D2

B
A _B

where D1 and D2 are proofs of respectively A and B. The introduction
rules are immediately seen to be valid, since they produce canonical proofs
of their true premise. For the elimination rule, we assume that A _ B
is true,that C is true on assumption that A is true, and that C is true
on assumption that B is true. Thus there are proofs D1; D2 and D3 of,
respectively A _ B;C and C, where the latter two proofs are hypothetical,
depending on respectively A and B. The proof D1 can be used to obtain a
canonical proof D4 of AveeB in one of the two forms above, say the right,
and so D4 contains a subproof D5, that is a proof of B. Then we readily
�nd a proof of C by combining D5 with the hypothetical D3 to get a proof
of C, which thus is a true proposition.

The absurdity ? is a proposition which has no canonical proof. We have
to see that the rule ?

A
is valid. Thus, we have to see that whenever the

proposition ? is true, then also A is true. But ? is never true, since a proof
of ? could be used to obtain a canonical proof of ? and by the explanation
above there are no direct proofs of ?.

The universal quanti�cation (8x 2M)A(x) is a proposition such that its
canonical proofs have the form

x 2M1

D
A(x)

(8x 2M)A(x)1

that is, the proof of D of the premise is a hypothetical, free-variable, proof
of A(x) from the assumption that x 2 M . Again the introduction rule is
valid, since if A(x) is true on the hypothesis that x 2 M , there can be
found a hypothetical proof of A(x) from assumption x 2 M , and thus we
immediately obtain a canonical proof of (8x 2M)A(x). For the elimination
rule (8E) consider

(8x 2M)A(x) d 2M
A(d)

and suppose that the premises are true. Thus proofs D1 and D2 of, respec-
tively, (8x 2M)A(x) and d 2M , can be found. As D1 is a proof it can be



184 G�ORAN SUNDHOLM

used to obtain a direct proof of its conclusion, and hence we can extract a
hypothetical proof of D3 of A(x) from assumption x 2 M . Combining D2

with the free-variable proof D3 gives a proof

D2 (`D3(d=x)' indicates the
d 2M result of substituting
D3(d=x) d for x in D3:)
A(d)

of A(d), so the rule (8E) is sound.
Finally the existential quanti�cation (9x 2M)A(x) is a proposition such

that its canonical proofs have the (9I) form

D1 D2

A(d) d 2M
(9x 2M)A(x)

Again the introduction rule is immediately seen to be valid as it produces
canonical proofs of its conclusion from proofs of the premises. For the elim-
ination rule (9E) consider the situation that (9x 2MA(x) is true, and that
C is true on the assumptions that x is in M and A(x) is true. Thus there
can be found a proof D3 of (9x 2M)A(x) and a hypothetical free-variable
proof D4 if C from hypotheses x 2M and A(x). The proof D3 can be used
to obtain a canonical proof of the form above, and combining the proofs D1

and D2 with the hypothetical free-variable proof D4 we obtain a proof of D:

D2 D1

d 2M A(d)
D4(d=x)

C

Thus the rules of the intuitionistic predicate logic are all valid; no corre-
sponding validation is known for, say, the classical law of Bivalence A_:A
where :A is de�ned as A! ?.

The above treatment has been less precise and complete than would be
desirable owing to limitations of space. First, questions of syntax have been
left out especially where the quanti�er rules are concerned, and secondly
a whole complex of problems that arises from the fact that we need to
know that A(x) is a proposition for any x in M in order to know that, say,
(8x 2 M)A(x) is a proposition has been ignored. The interested reader is
referred to the type theory of Martin-L�of [1984] for detailed consideration
and careful treatment of (analogues to) these and other lacunae, e.g. how
to treat atomic sentences in our presentation.
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The above explanations of why the rules of predicate logic are valid all
follow the same pattern. The introduction rules are immediately seen to be
valid, since canonical proofs are given introductory form. The elimination
rules are then seen to be valid by noting that the introduction and elimina-
tion rules have the required harmony. The canonical grounds for asserting
a sentence do contain suÆcient grounds also for the consequences that may
be drawn via the elimination rules for the sentence in question. Thus, in
fact, we have here made use of the reduction steps �rst isolated and used by
Prawitz [1965, 1971], in his proofs of the normalisation theorems for Natural
Deduction-style formalisations.

Prawitz has in a long series of papers [1973, 1974, 1975, 1978 and 1980]
been concerned to use this technical insight for meaning-theoretical pur-
poses. His main concern, however, has been to give an explication of the
notion of valid argument rather than to give direct meaning explanations in
terms of proof. In the presentation here, which is inspired by Martin-L�of's
meaning-explanations for his type theory, I have been more concerned with
the task of giving constructivistic meaning-explanations while relying on the
standard explication of validity as preservation of truth for a justi�cation
of the standard rules of inference.

One should, however, stop to consider the extent to which the above
explanations constitute a meaning theory in the sense of section 1 above.
In particular, in section 4 a promise was given to return to the question of
decidability. Is it in fact true that the notion of proof is decidable? On
our presentation at least this much is true: if we already have a proof it
is decidable if it is in canonical form. As to the general question I would
be inclined to think that the notion of proof is semi-decidable, in that we
recognise a proof when we see one, but when we don't see one that does not
necessarily mean that there is no proof there. One can compare the situation
with understanding a meaningful sentence: we understand a meaningful
sentence when we see (or hear!) one but if we don't understand that does
not necessarily mean that there is nothing there to be understood. Failure
to understand a meaningful sentence seems parallel to failure to follow, or
grasp, a proof. Such a position, then, would not make the `proof-condition'
recognition-transcendent; when it obtains it can be seen to obtain, but
when it is not seen to obtain no judgement is given (unless, of course it is
seen not to obtain). Apart from the question of decidability, an important
di�erence is that in explanations such as the above there is no mention of
implicit knowledge and the like. It seems correct to speak of a theoretical
representation of a (constructivistic) deductive practice, but it seems less
natural to say that these explanations are known to everyone who draws
logical inferences.

We used the notion of canonical proof as a key concept in order to provide
the explanations, and in the literature one can �nd a number of alterna-
tives as to how one ought to specify these, cf. the papers by Prawitz listed
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above. In particular, one might wish to insist that all parts of a canoni-
cal proof should also be canonical (as is the case with the so-called normal
derivations obtained by Prawitz in his normalization theorem [1971]). The
choice I opted for here was motivated by, �rst, the success of the meaning-
explanations of Martin-L�of in his type theory and, secondly, the fact that
in Halln�as [1983] a successful normalisation of strong set-theoretic systems
is carried out using an analogous notion of normal derivation (Tennant's
[1982] and his book [1978] are also interesting to the set-theoretically cu-
rious; in the former a treatment of the paradoxes is o�ered along Natural
Deduction lines, and the latter contains a neat formulation of the rules of
set theory.)

Finally, we should note that the explanations o�ered here have turned the
formal system into an interpreted formal system (modulo not inconsiderable
imprecision in the formulation of syntax and explanations). This is the main
reason for the avoidance of Greek letters in the present Chapter.

6 QUESTIONS OF COMPLETENESS

In section 5 the meaning of the logical constants was explained and the
standard deductive practice justi�ed. In the case of classical, bivalent logic
we know that the connectives ^;_ and : are complete in that any truth-
function can be generated from them. Does the corresponding property
hold here? Clearly the answer is dependent on how the canonical proofs
may be formed. It was shown by Prawitz [1978] and, independently of
him, by Zucker and Tragresser [1978] that if we restrict ourselves to purely
schematic means for obtaining canonical proofs (and for logical constants
this does not seem unreasonable), then an aÆrmative answer is possible to
the above question. As a typical example consider e.g. this She�er-stroke
(which of course makes sense constructively as well). This is given the in-
troduction rule (jI)

A1 : : : B2

...
?

AjB1;2

A de�nition using ^;! and ? is found by putting AjB =def A^B ! ?. If
there are more premise-derivations in the introduction rule (= the rule for
how canonical proofs may be obtained) for each of these one will get an im-
plication of the above sort and they are all joined together by conjunctions.
(Here it is presupposed that the rules have only �nitely many premises.
This does not seem unreasonable.) Finally, if there are more introduction
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rules than one, the conjunctions are put together into a disjunction. (Here
it is presupposed that there are only �nitely many introduction rules. Again
this does not seem unreasonable)(.

Only one case remains, namely that there are no introduction rules. Then
there are no canonical proofs to be found and we have got the absurdity.
Thus the fragment based on !;^;_ and ? is complete. For further details
refer to the two original papers above as well as Schroeder-Heister [1982].
It should be noted that by Hendry [1981] we know that A^B is equivalent
also intuitionistically to (A$ B)$ (A _B) and that A! B is equivalent
to B $ A _ B. Thus also $;_ and ? are complete.

The standard elimination-rules (^E) can be replaced by the following
rule:

A1 : : : B2

...
A ^ B C

C 1;2

which rule seems quite well-motivated by the analogy with the introduction
rule A B

A^B : everything which can be derived from the two premises A and
B used as assumptions can also be derived from A ^ B alone. The (_E)
rule has exactly this general pattern and the intuitionistic absurdity rule is
a degenerate case without minor premise C:

?
C

Only implication does not obey the above pattern. Here the premise of the
introduction rule is not just a sentence, but a hypothetical judgement that
B is true whenever A is true. Thus, we have a sort of rule as premise: from
A go to B, in symbols A ) B. If we may use such rules as dischargable
assumptions, one an keep the standard pattern also for implication, viz.

A) B1

...
A! B C

C 1

whereas if we try to do the same using implication for the arrow), we end
up with the triviality
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A! B1

...
A! B C

C 1

which does not allow us to derive even modus ponens.
Using the rule with the higher level assumption A ) B one can derive

(! E) as follows:

A! B

A
(A) B)1

B

B 1

Given the use of the rule A) B as an assumption, from premise Q we can
proceed to conclusion B, and the use of the major premise A ! B allows
to discharge the use of the rule A) B.

This type of higher-level assumptions was introduced by Schroeder-Heister
[1981] and it is a most interesting innovation in Natural Deduction-formulations
of logic, cf. also his [1982] and [1983]. The elimination rule that the Prawitz
method gives to the She�er-stroke would be

A ^ B ! ?1

...
AjB C
C 1

which follows the above pattern, but uses implication and conjunction. With
the Schroeder-Heister conventions the rule can be given as

(A;B ! ?)1

...
AjB C
C 1

In words, if C is true under the assumptions that we may go from the
premise A and B to conclusion ?, then C is a consequence of AjB alone.

In Schroeder-Heister [1984] an extension of the above results is given and
completeness is established also for the predicate calculus language.

The other question of completeness is also considered by Schroeder-
Heister [1983]: is every valid inference derivable from the introduction and
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elimination rules? This question gets a positive answer, but the concept of

validity is extremely restrictive, i.e. the rule (A^B)^C
A

is not a valid rule,
cf. [1983, p. 374], which (given the concept of validity used in the present
paper) it obviously must be. Thus I would consider the problem, �rst posed
by Prawitz [1973], to establish the completeness of the predicate logic, for
the present sort of meaning explanations, still to be open.

7 THE TYPE THEORY OF MARTIN-L �OF

Frege [1893], in the course of carrying out his logicist programme, designed
a full-scale, completely formal language that was intended to suÆce for
mathematical practice. By today's standards, an almost unique feature of
his attempt to secure a foundation of mathematics is that he uses an inter-
preted formal language for which he provides careful meaning explanations.
The language proposed was, as we now know, not wholly successful, owing
to the intervention of Russell's paradox. (The e�ects of the paradox on
Frege's explanations of meaning are explored in Aczel [1980] and, from a
di�erent perspective, in Thiel [1975] and Martin [1982].) As the formal logic
of Frege (and Whitehead{Russell) was transformed gradually into mathe-
matical logic, notably by Tarski and G�odel, interest in the task of giving
meaning explanations for interpreted formal languages faded out and af-
ter World War II the current distinction between syntax and (Tarskian,
model-theoretic) semantics has become �rmly entrenched.

The type theory of Martin-L�of [1975, 1982, 1984] represents a remarkable
break with this tradition in that it returns to the original Fregean paradigm:
interpreted formal language with careful explanations of meaning. Owing to
limitations of space I shall not be able to give a detailed, precise description
of the system here, (a task for which Martin-L�of [1984] uses close to a
hundred ages), but will con�ne myself to trying to convey the basic avour
of the system.

A possible route to Martin-L�of's theory is through further examination
of Heyting's explanations of the meaning of the logical constants. Our ten-
tative semantics in section 5 above made tacit use of a re�nement of the
explanations: the proof-tables do not give just proofs but canonical, or di-
rect proofs. A further re�nement can be culled from Heyting's own writings.
(In Sundholm [1983] a fairly detailed examination of Heyting's writings on
this topic is o�ered.) According to Heyting, in order to prove a theorem one
has to carry out certain constructions, `die gewissen Bedingungen gen�ugen',
namely that it produces a mathematical object with certain speci�ed prop-
erties, cf. e.g. his remarks on the proposition

\Euler's constant is rational"

in [1931, p. 113]. In Martin-L�of's system, the proof-tables are extended to
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contain also the information about the objects that need to be constructed
in order to establish the truth of the propositions in question. Thus, taking
both re�nements into account, the meaning of a proposition is explained by
telling what a canonical object for the proposition would be. (A canonical
object is not needed in order to assert the proposition; an object (method
program) that can be evaluated to canonical form is enough. For more de-
tails here, see Martin-L�of [1984].) In fact, according to Martin-L�of, one also
has to tell when two such objects are equal. On the other hand, when one
de�nes a set constructively, one has to specify what the canonical elements
are and what it is for two elements of the set to be equal elements. Thus, the
explanations of what propositions are and of what sets are, are completely
analogous and Martin-L�of's system does not di�erentiate between the two
notions.

In ordinary formal theories, that are formulated in the predicate calcu-
lus, the derivable objects are propositions (or, rather, they are well-formed
formulae, i.e. the formalistic counterparts of propositions). This leads to
certain diÆculties for the standard formulation where logical inference is a
relation between proposition. As was already observed by Frege, the correct
formulation of modus ponens is

A! B is true A is true
;

B is true

It is simply not correct to say that the proposition B follows from the propo-
sitions A ! B and Q. What is correct is that the truth of the proposition
B follows from the truth of A ! B and the truth of A. Thus the premises
and conclusions of logical inferences are not propositions but judgements as
to the truth of the propositions. Furthermore, as Martin-L�of notes, that in
order to keep the rules formal, one should also include the information that
A and B are propositions in the premises of the rules, e.g.

A is a prop. B is a prop. A is true

A _ B is true

is how _-introduction should be set out. Therefore, as the premises of in-
ferences are judgements, and remembering the identi�cation of propositions
and sets, on �nds two main sorts of judgements in the theory, namely

(a) A set (`A is a set')

and

(b) a 2 A (`a is an element of the set A')

(In fact, there are two further forms of judgement, namely `A s the same
set as B' and `a and b are equal elements of the set A'.)
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In accordance with the above discussion, (a) also does duty for `A is a
proposition' and (b) can also be read as `the (proof-)object a is of the right
sort for the proposition A, meets the condition speci�ed by the proposition
A'. This reading of (b) is, constructively, a longhand for the judgement
`(the proposition) A (is) true', which is used whenever it is convenient to
suppress the extra information contained is the proof-object. A third read-
ing, deriving from Heyting and Kolmogorov, is possible, where (a) is taken
in the sense `A is a task (or problem)' and (b) in the sense `a is a method for
carrying out the task A (solving the problem A)'. When the task-aspect is
emphasises, another reading would be `a is a program that meets the speci�-
cation A' and the type-theoretical language of Martin-L�of [1982] has, owing
to this possibility, had considerable inuence as a programming language.

Some feeling for the interaction between propositions and proof-objects
may be obtained through consideration of the simple example of conjunc-
tion. The proposition A^B (or set A�B) is explained, on the assumption
that A and B are propositions, by laying down that a canonical element of
A�B is a pair (a; b) where a 2 A and b 2 B. Thus the �-introduction rule
is correct:

a 2 A b 2 B
:

(a; b) 2 A�B

Using the shorthand reading, when the proof-objects are left out, we also
see that the rule of ^-introduction is correct:

A true B true
:

A ^ B true

For the ^-eliminations, we need the use of the projection-functions p and q
that are associated with the pairing-function. Consider the rule

A ^ B true
:

A true

Restoring proof-objects, we see that from an element c 2 A ^ B, one
has to �nd an element of A. But c is an element of A ^ B, and so c is
equal to (is a method for �nding, can be evaluated, or executed, to) a
canonical element (a; b) 2 A ^ B. Applying the projection p, we see that
p(c) = p((a; b)) = a 2 A, so the proper formulation will be

c 2 A ^ B
:

p(c) 2 A
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It should be mentioned, however, that the conjunction is not a primitive
set-formation operation in the language of Martin-L�of. On the contrary, a
suitable candidate can be de�ned from other sets and the appropriate rules
derived.

A slightly more complex example is provided by the universal quanti�-
cation (8x 2 A)B[x] and implication A ! B, both of which are treated as
variants of the Cartesian product (�x 2 A)B[x] of a family of sets. This
product may be formed only on the assumption that we have a family of
sets over A, that is, provided that B[x] isa set, whenever x 2 A. Thus the
formation rule will take the form

x 2 A1

...
A set B[x] set

:
(�x 2 A)B[x] set

(This serves to illustrate the important circumstance that the basic judge-
ments may depend on assumptions. Better still, we should say that the right
premise is a hypothetical judgement B[x] set (provided that x 2 A).) In or-
der to understand the �-formation rule one needs to know what a canonical
element of (�x 2 A)B[x] would be; this is told by the �-introduction rule

x 2 A1

...
b[x] 2 B[x]

�x:b[x] 2 (�x 2 A)B[x]

that is, the canonical elements are functions �xb[x], such that b[x] 2 B[x]
provided that x 2 A. Just as in the case of conjunction, where the elim-
ination rule was taken care of by matching the pairing function with a
projection, one will obtain the elimination rule through a similar match
between �-abstraction and function-application, ap. Thus the rule take the
form

f 2 (�x 2 A)B[x] a 2 A
:

ap(F; a) 2 B[a=x]

(In order to understand this rule one makes use of an important connection
between abstraction and application, namely the law

ap(�x:b[x]; a) = b[a=x]:



PROOF THEORY AND MEANING 193

For the details of the explanation, refer to Martin-L�of [1982] or [1984].)
If the set (proposition ) B[x] does not depend on x the product is writ-

ten as the set of functions BA (as the proposition A ! B). The rules are
obvious, with the exception of !-formation:

A true1

...
A prop B prop

:
A! B prop 1

Here the formation rule is stronger than the usual rule (where A and B
both have to be propositions) because the right premise is weaker in that
B has to be a proposition only when A is true. This concept of implication
has been used by Stenlund in an elegant theory of de�nite descriptions, cf.
his [1973] and [1975].

The other quanti�cation is taken care of by means of the disjoint union
of a family of sets. The �-formation rule takes the form

x 2 A1

...
A set B[x] set

:
(�x 2 AB[x] set 1

The canonical elements are given by the �-introduction rule

a 2 A b 2 B[a=x]
:

(a; b) 2 (�x 2 A)B[x]

On the propositional reading, where the disjoint union is written as the
quanti�er (9x 2 A)B[x], we see that in order to establish an existence
claim one has to (i) exhibit a suitable witness a 2 A and (ii) supply a
suitable proof-object b that the witness a 2 A does, in fact, satisfy the
condition imposed by B[x]. The inclusion of the proof-object b allows yet
a third use for the disjoint union, namely that of restricted comprehension-
terms. What would, on a constructive reading, be meant by `an element
of the set of x's in A such that B[x]'? At least one would have to include
a witness a 2 A and information (= a proof-object) establishing that a
satis�es the condition B[x]. Thus the canonical elements of the restricted
comprehension-term fx 2 A : B[x]g coincide with the canonical elements
of the disjoint sum. This representation of `such that' provides the key to
the actual development of, say, the theory of real numbers given the set N
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of natural numbers. A real number will be an element of NN such that it
obeys a Cauchy-condition.

At this point I will refrain from further development of the language
and instead I shall apply the type-theoretic abstractions that have been
introduced so far to the notorious `donkey-sentence'

(*) Every man who owns a donkey beats it.

The problem here is, of course, that formulations within ordinary predicate
logic do not seem to provide any way to capture the back-reference of the
pronoun `it'. A simple-minded formalisation yields

(**) 8x(Man(x) ^ 9y(Donkey(y) ^Own(x; y))! Beats(x; ?)).

There seems to be no way of �lling the place indicated by `?', as the donkey
has been quanti�ed away by `y'.

Using the disjoint-union manner of representation for restricted compre-
hension-terms one �nds that `a man who owns a donkey' is an element of
the set

fx 2 MAN : (9y 2 DONKEY)OWN[x; y]g:

Such an element, when in canonical form, is a pair (m; b), where m 2
MAN and b is a proof-object for (9y 2 DONKEY)OWN[m=x; y]. Thus b,
in its turn, when brought to canonical form, will be a pair (d; c), where
d is a DONKEY and c a proof-object for OWN[m=x; d=y]. Thus for an
element z of the comprehension-term `MAN who OWNs a DONKEY' the
left projection p(z) will be a man and the right projection q(z) will be a
pair whose left projection p(q(z)) will be the witnessing donkey. Putting it
all together we get the formulation

(***) (8z 2 fx 2 MAN : (9y 2 DONKEY)OWN[x; y]g)BEAT[p(z); p(q(z))].

In this manner, then, the type-theoretic abstractions suÆce to solve the
problem of the pronominal back-reference in (*). It should be noted here
that there is nothing ad hoc about the treatment, since all the notions used
have been introduced for mathematical reasons in complete independence
of the problem posed by (*). One the other hand one should stress that
it is not at all clear that one can export the `canonical proof-objects' con-
ception of meaning outside the con�ned area of constructive mathematics.
In particular the treatment of atomic sentences such a `OWN[x; y]' is left
intolerably vague in the sketch above and it is an open problem how to
remove that vagueness.

Martin-L�of's type theory has attracted a measure of metamathematical
attention. Peter Aczel [1977, 1987, 1980, 1982], in particular, has been a
tireless explorer of the possibilities o�ered by the type theory. Other papers
of interest are Diller [1980], Diller and Troelstra [1984] and Beeson [1982].
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NOTE ADDED IN PROOF (OCTOBER 1985)

Per Martin-L�of's `On the meanings of the logical constants and the jus-
ti�cations of the logical laws' in Atti degli incomtri di logica matematica
vol. 2, Scuolo di Specializzazione in Logica Matematica, Dipartimento di
Mattematica, Universit�a di siena, 1985, pp. 203{281, was not available dur-
ing the writing of the present chapter. In these lectures, Martin-L�of deals
with the topics covered in sections 4{6 above in great detail and carries the
philosophical analysis considerably further.

University of Nijmegen, The Netherlands.

EDITOR'S NOTE 2001

[For the most recent coverage of Martin-L�of's type theory, see the chapter by
B. Nordstr�om, K. Peterson and J. M. Smith in S. Abramsky, D. Gabbay and
T. S. E. Maibaum, eds., Handbook of Logic in Computer Science, volume 5,
pp. 1{37, Oxford University Press, 2000.]
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GOAL-ORIENTED DEDUCTIONS

1 INTRODUCTION

The topic of this chapter is to present a general methodology for automated
deduction inspired by the logic programming paradigm. The methodology
can and has been applied to both classical and non-classical logics. It comes
without saying that the landscape of non-classical logics applications in
computer science and arti�cial intelligence is now wide and varied, and this
Handbook itself is a witness this fact. We will survey the application of goal-
directed methods to classical, intuitionistic, modal, and substructural logics.
For background information about these logical systems we refer to other
chapters of this Handbook and to [Fitting, 1983; Anderson and Belnap,
1975; Anderson et al., 1992; Gabbay, 1981; Troelstra, 1969; Dummett, 2001;
Restall, 1999]. Our treatment will be con�ned to the propositional level.1

In the area of automated deduction and proof-theory there are several
objectives which can be pursued. Methods suitable for one task are not
necessarily the best ones for another. Consider propositional classical logic
and the following tasks:

1. check if a randomly generated set of clauses is unsatis�able;

2. given a formula A check whether A is valid;

3. given a set � containing say 5,000 formulas and a formula A check
whether � ` A;

4. (saturation) given a set of formulas � generate all atomic propositions
which are entailed by �;

5. (abduction) given a formula A and a set of formulas � such that � 6` A,
�nd a minimal set of atomic propositions S such that � [ S ` A and
satis�es some other constraints.

It is not diÆcult to see that all these problems can be reduced one to
the other. However, it is quite likely that we need di�erent methods to
address each one of them eÆciently. Consider task 3: � may represent a
`deductive database' and A a query. It might be that the formulas of �
have a simple/uniform structure and only a small subset of the formula
of � are relevant for getting a proof of A (if any): thus a general general

1The reader of the chapter of Basin and Matthews on logical frameworks can regard
our chapter as a goal directed logical framework done in the object level.

D. Gabbay and F. Guenthner (eds.),
Handbook of Philosophical Logic, Volume 9, 199{285.
c 2002, Kluwer Academic Publishers. Printed in the Netherlands.
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SAT-algorithm applied � [ f:Ag might not be the most natural method,
we would prefer a method capable of concentrating on the relevant data
and ignoring the rest of �. Similar considerations applies to the other tasks.
For instance in the case of abduction, we would likely calculate the set of
abductive assumptions S from failed attempts to prove the data A, rather
than guess an S arbitrarely and then check if it works. Moreover, in some
applications we are not only interested to know whether a formula is valid or
not, but also to �nd (and inspect) a proof of it in an understandable format.
The goal-directed approach to deduction is useful to support deduction from
large databases, abduction procedures, and proof search.

In a few words, the goal-directed paradigm is the same as the one un-
derlying logic programming. The deduction process can be described as
follows: we have a structured collection of formulas (called a database) �
and a goal formula A, and we want to know whether A follows from � or
not, in a speci�c logic. Let us denote by

� `? A

the query `does A follows from �?' (in a given logic). The deduction is
goal-directed in the sense that the next step in a proof is determined by the
form of the current goal: the goal is stepwise decomposed, according to its
logical structure, until we reach its atomic constituents. An atomic goal
q is then matched with the `head' of a formula G0 ! q (if any, otherwise
we fail) in the database, and its `body' G0 is asked in turn. This step can
be understood as a resolution step, or as a generalized Modus Tollens. We
will see that we can extend this backward reasoning, goal-directed paradigm
to most non-classical logics. We can have a logic programming-like proof
system presentation for classical, intuitionistic, modal, and substructural
logics.

Here is a plan of the chapter: we start revising Horn classical logic as a
motivating example , we then consider intuitionistic logic and full classical
logic. Then we consider modal logics and substructural logics.

Notation and basic notions

Formulas
By a propositional language L, we denote the set of propositional formulas
built from a denumerable set V ar of propositional variables by applying the
propositional connectives :;^;_;!;?.

Unless stated otherwise, we denote propositional variables (also called
atoms) by lower case letters, and arbitrary formulas by upper case letters.
We assign a complexity cp(A) to each formula A (as usual):

cp(q) = 0 if q is an atom,
cp(:A) = 1 + cp(A),
cp(A �B) = cp(A) + cp(B) + 1, where � 2 f^;_;!g.
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(Formula substitution) We de�ne the notion of substitution of an atom q by
a subformula B within a formula A. This operation is denoted by A[q=B].

p[q=B] =

�
p if p 6= q
B if p = q

(:A)[q=B] = :A[q=B]

(A � C)[q=B] = A[q=B] � C[q=B] where � 2 f^;_;!g:

Implicational formulas
In much of the chapter we will be concerned with implicational formulas.
These formulas are generated from a set of atoms by the only connective!.
We adopt some speci�c notations for them. We sometimes distinguish the
head and the body of an implicational formula.2 The head of a formula A is
its rightmost nested atom, whereas the body is the list of the antecedents of
its head. Given a formula A, we de�ne Head(A) and Body(A) as follows:

Head(q) = q, if q is an atom,
Head(A! B) = Head(B).

Body(q) = ( ), if q is an atom,
Body(A! B) = (A) �Body(B),

where (A)�Body(B) denotes the list beginning with A followed by Body(B).

Dealing with implicational formulas, we assume that implication asso-
ciates on the right, i.e. we write

A1 ! A2 ! : : :! An�1 ! An,

instead of

A1 ! (A2 ! : : :! (An�1 ! An) : : :).

It turns out that every implicational formula A can be written as

A1 ! A2 ! : : :! An ! q;

where we obviously have.

Head(A) = q and Body(A) = (A1; : : : ; An):

2This terminology is reminiscent of logic programming [Lloyd, 1984].
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2 PROPOSITIONAL HORN DEDUCTION

To explain what we mean by goal-directed deduction style, we begin by
recalling standard propositional Horn deductions. This type of deduction
is usually interpreted in terms of classical resolution, but it is not the only
possible interpretation.3 The data are represented by a set of propositional
Horn clauses, which we write as

a1 ^ : : : ^ an ! b.

(or as a1 ! : : : ! an ! b, according to the previous convention). The
ai are just propositional variables and n � 0. In case n = 0, the formula
reduces to b. This formula is equivalent to:

:a1 _ : : : _ :an _ b.

Let � be a set of such formulas, we can give a calculus to derive formulas,
called `goals' of the form b1 ^ : : : ^ bm. The rules are:

� `? b succeeds if b 2 �;
� `? A ^ B is reduced to � `? A and � `? B;
� `? q is reduced to
� `? a1 ^ : : : ^ an, if there is a clause in � of the form

a1 ^ : : : ^ an ! q:

The main di�erence from the traditional logic programming convention is
that in the latter conjunction is eliminated and a goal is kept as a sequence
of atoms b1; : : : ; bm. The computation does not split because of conjunction,
all the subgoals bi are kept in parallel, and when some bi succeeds (that is
bi 2 �) it is deleted from the sequence. To obtain a real algorithm we
should specify in which order we scan the database when we search for a
clause whose head matches the goal. Let us see an example.

EXAMPLE 1. Let � contain the following clauses

(1) a ^ b! g,
(2) t! g,
(3) p ^ q ! t,
(4) h! q,
(5) c! d,
(6) c ^ f ! a,
(7) d ^ a! b,
(8) a! p,
(9) f ^ t! h,
(10) c,
(11) f .

3For a survey on foundations of logic programming, we refer to [Lloyd, 1984] and to
[Gallier, 1987].
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A derivation of g from � can be displayed in the form of a tree and it
is shown in Figure 1. The number in front of every non-leaf node indicates
the clause of � which is used to reduce the atomic goal in that node.

(1) � `? g

(6) � `? a

� `? c
�� @@

� `? f

!!
!! aaaa

(7) � `? b

(5) � `? d

� `? c

�� QQ
(6) � `? a

� `? c
�� @@

� `? f

Figure 1. Derivation of Example 1.

We can make a few observations. First, we do not need to consider
the whole database, it might even be in�nite, and the derivation would be
exactly the same; irrelevant clauses, that is those whose `head' do not match
with the current goal are ignored. The derivation is driven by the goal in
the sense that each step in the proof simply replaces the current goal with
the next one.

Notice also that in this speci�c case there is no other way to prove the
goal, and the sequence of steps is entirely determined.

Two weak points of the method can also be noticed. Suppose that when
asking for g we use the second formula, then we continue asking for t, then
for h, and then we are lead to ask for t again. We are in a loop. An even
simpler situation is the following

p! p `? p.

We can keep on asking for p without realizing that we are in a loop. To deal
with this problem we should add a mechanism which ensures termination.

Another problem which has a bearing on the eÆciency of the procedure
is that a derivation may contain redundant subtrees. This occurs when
the same goal is asked several times. In the previous example it happens
with the subgoal a. In this case, the global derivation contains multiple
subderivations of the same goal. It would be better to be able to remember
whether a goal has already been asked (and succeeded) in order to avoid
the duplication of its derivation. Whereas the problem of termination is
crucial in the evaluation of the method (if we are interested in getting an
answer eventually), the problem of redundancy will not be considered in this
chapter. However, avoiding the type of redundancy we have described has a
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dramatic e�ect on the eÆciency of the procedure, for redundant derivations
may grow exponentially with the size of the data.

Although the goal-directed procedure does not necessarily produce the
shortest proofs, and does not always terminate, still it has the advantage
that proofs, when they exist, are easily found. In the next sections we
will see how to extend these type of proof systems to several families of
non-classical logics.

3 INTUITIONISTIC AND CLASSICAL LOGICS

3.1 Intuitionistic logic

Intuitionistic logic is the most known alternative to classical logic. For
background motivation and information we refer to [Troelstra, 1969; Gab-
bay, 1981]. The reason why we initiate our tour from intuitionistic logic is
simplicity. A proof procedure for the propositional implicational fragment
of intuitionistic logic is just a minor extension of the Horn case. Morever, the
relation with the semantics, the role of cut, the problems, and the possible
re�nments are better understood for intuitionistic logic.

We recall a Hilbert style axiomatisation of the intuitionistic propositional
calculus and the standard Kripke semantics for it. The axiomatization is
obtained by considering the following set of axioms and rules we denote by
I:4

1. (A! B ! C)! (A! B)! A! C
2. A! B ! A
3. A! B ! (A ^ B)
4. A ^ B ! A
5. A ^ B ! B
6. (A! C)! (B ! C)! (A _ B ! C)
7. A! A _ B
8. A! B _ A
9. ? ! A.
In addition, it contains the Modus Ponens rule:

` A ` A! B:

` B

Negation is considered as a derived operator, by :A =def A! ?.
Given a set of formulas �, we can de�ne A is derivable from �, � ` A

by the axiom systems above in the customary way.

4This axiom system is separated, that is to say, any theorem containing ! and a set
of connectives S � f^;_;:;?g can be proved by using the implicational axioms together
with the axiom groups containing just the connectives in S.
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If add to I any of the axioms below we get classical logic C:
Alternative axioms for classical logic

1. (Peirce's axiom) ((A! B)! A)! A

2. (double negation) ::A! A,

3. (excluded middle) :A _A,

4. (_;!-distribution) [(A! (B _ C)]! [(A! B) _ C].

In particular, the addition of Peirce's axiom to the implicational axioms of
intuitionistic logic give us an axiomatisation of classical implication.

We introduce a standard model-theoretic semantics of intuitionistic logic,
called Kripke semantics.

DEFINITION 2. Given a propositional language L, a Kripke model for L
is a structure of the form M = (W;�; V ), where W is a non-empty set, �
is a reexive and transitive relation on W , V is a function of type: W �!
Pow(V arL), that is V maps each element of W to a set of propositional
variables of L. We assume the following conditions:

(1) w � w0 implies V (w) � V (w0);

(2) ? 62 V (w), for all w 2 W .

Given M = (W;�; V ), w 2W , for any formula A of L, we de�ne `A is true
at w in M ', denoted by M;w j= A by the following clauses:

� M;w j= q i� q 2 V (w);

� M;w j= A ^ B i� M;w j= A and M;w j= B;

� M;w j= A _ B i� M;w j= A or M;w j= B;

� M;w j= A! B i� for all w0 � w, if M;w0 j= A then M;w0 j= B;

� M;w j= :A i� for all w0 � w M;w0 6j= A.

We say that A is valid in M if M;w j= A, for all w 2 W and we denote
this by M j= A. We say that A is valid if it is valid in every Kripke model M .
We also de�ne a notion of entailment between sets of formulas and formulas.
Let � = fA1; : : : ; Ang be a set of formulas and B be a formula, we say that
� entails B denoted by � j= B5 i� for every model M = (W;�; V ), for every
w 2 W

if M;w j= Ai for all Ai 2 �, then M;w j= B.

5To be precise, we should write j=I (and `I) to denote validity and entailment (respec-
tively, provability and logical consequence) in intuitionistic logic I. To avoid burdening
the notation, we usually omit the subscript unless there is a risk of confusion.
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THEOREM 3. For any set of formulas � and formula B, � ` B i� � j= B.
In particular `I B i� j=I B.

Classical interpretations can be thought as degenerated Kripke models
M = (W;�; V ), where W = fwg.

3.2 Rules for intuitionistic implication

We start by presenting a goal-directed system for the implicational fragment
of intuitionistic logic. We will then re�ne it and we will expand it with the
other connectives later on. We give rules in this section to prove statements
of the form � ` A, where � is a set of implicational formulas and A is an
implicational formula. We use the usual conventions and we write �; A for
�[ fAg and � [� for � [�. Our rules hence manipulate queries Q of the
form:

� `? A.

We call � the database and A the goal of the query Q. We use the symbol
`? to indicate that we do not know whether the query succeeds or not. On
the other hand the success of Q means that � ` A according to intuitionistic
logic.

DEFINITION 4.

� (success) � `? q succeeds if q 2 �. We say that q is used in this
query.

� (implication) from � `? A! B step to

�; A `? B

� (reduction) from � `? q
if C 2 �, with C = D1 ! D2 ! : : :! Dn ! q
(that is Head(C) = q and Body(C) = (D1; : : : Dn)) then step to

� `? Di, for i = 1; : : : ; n.

We say that C is used in this step.

A derivation D of a query Q is a tree whose nodes are queries. The root
of D is Q, and the successors of every non-leaf query are determined by
exactly one applicable rule (implication or reduction) as described above.

We say that D is successful if the success rule may be applied to every
leaf of D. We �nally say that a query Q succeeds if there is a successful
derivation of Q.

By de�nition, a derivation D might be an in�nite tree. However if D
is successful then it must be �nite. This is easily seen from the fact that,
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in case of success, the height of D is �nite and every non-terminal node
of D has a �nite number of successors, because of the form of the rules.
Moreover, the databases involved in a deduction need not be �nite. In a
successful derivation only a �nite number of formulas from the database will
be used in the above sense.

Notice that the success of a query is de�ned in a non-deterministic way:
a query succeeds if there is a successful derivation. To transform the proof
rules into a deterministic algorithm one should give a method to search a
successful derivation tree. In this respect we agree that when we come to
an atomic goal we �rst try to apply the success rule and if it fails we try the
reduction rule. Then the only choice we have is to indicate which formula,
among those of the database whose head matches the current atomic goal,
we use to perform a reduction step, if there are more than one. Thinking of
the database as a list of formulas, we can choose the �rst one and remember
the point up to which we have scanned the database as a backtracking point.
This is exactly as in conventional logic programming [Lloyd, 1984].

EXAMPLE 5. We check

b! d; a! p; p! b; (a! b)! c! a; (p! d)! c ` b.

Let � = fb! d; a! p; p! b; (a! b)! c! a; (p! d) ! cg, a successful
derivation of � `? b is shown in Figure 2. A quick explanation: (2) is
obtained by reduction wrt. p! b, (3) by reduction wrt. a! p, (4) and (8)
by reduction wrt. (a ! b) ! c ! a, (6) by reduction wrt. p ! b, (7) by
reduction wrt. a! p, (9) by reduction wrt. (p! d)! c, (11) by reduction
wrt. b! d, (12) by reduction wrt. p! b.

We state some simple, but important, properties of the deduction proce-
dure de�ned above. The proof of them is left to the reader as an exercise.

PROPOSITION 6.

1. (Identity) � `? G succeeds if G 2 �;

2. (Monotony) � `? G succeeds implies �;� `? G succeeds;

3. (Deduction Theorem) � `? A! B succeeds i� �; A `? B succeeds.

The soundness of the proof procedure with respect to the semantics can
be proved easily by induction on the height of the computation.

THEOREM 7. If � `? A succeeds then � j= A.

The completeness can be proved in a number of ways. Here we give
a semantic proof with respect to the Kripke semantics. The technique is
standard: we de�ne a canonical model and we show that provability by the
proof procedure coincides with truth in the canonical model.
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(1) � `? b

(2) � `? p

(3) � `? a

(4) � `? a! b

(5) �; a `? b

(6) �; a `? p

(7) �; a `? a

�� QQ
(8) � `? c

(9) � `? p! d

(10) �; p `? d

(11) �; p `? b

(12) �; p `? p

Figure 2. Derivation for Example 5.

The canonical model M is de�ned as follows: M = (W;�; ;; V ), where
W is the set of �nite databases � over L and the evaluation function V is
de�ned by stipulating

V (�) = fp atom : � `? p succeedsg:

By the (Monotony property) it is easy to see that M satis�es the increas-
ingness condition (2) of De�nition 2. The important property is expressed
by the following proposition.

PROPOSITION 8 (Canonical Model Property). For any � 2 W and for-
mula A 2 L, we have:

M;� j= A i� � `? A succeeds.

Let us attempt a proof of the above proposition, we prove the two direc-
tions by a simultaneous induction on the complexity of the formula A. If A
is an atom then the claim holds by de�nition.
Let A � B ! C. Consider �rst the direction ()), suppose M;� j= B ! C,
consider �0 = �; B. Then � � �0. By (Identity), we have �0 `? B suc-
ceeds, by induction hypothesis we get M;�0 j= B. Thus we get M;�0 j= C
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and by induction hypothesis �0 `? C succeeds. Thus �; B `? C succeeds.
By (Deduction Theorem), we �nally get � `? B ! C succeeds.

Conversely ((), suppose that � `? B ! C succeeds, by (Deduction
theorem) we get that �; B `? C succeeds. Let � be such that � � � and
M;� j= B, we have to show that M;� j= C. By induction hypothesis we
have � `? B succeeds. We know that

(1) � `? B and (2) �; B `? C succeed.

We could easily conclude if from (1) and (2), we could infer that (3) �;� `?

C succeeds: namely, since � � �, (3) is equivalent to � `? C succeeds.
Thus by induction hypothesis we would get M;� j= C.

The question is: is it legitimate to conclude (3) from (1) and (2)? The
answer is `yes' and it will be shown hereafter. This property is well-known
and is called Cut. Thus, given the properties of deduction theorem, identity,
the canonical model property can be derived from cut. We may observe that
the opposite also holds, i.e. that cut can be derived by the canonical model
property. To see this suppose that �; B `? C and � `? B succeeds.
We get � `? B ! C succeeds. Thus by the canonical model property we
get M;� j= B ! C and M;� j= B. Since, trivially, � � � [ �, by the
condition (1) of De�nition 2, we have M;� [ � j= B; so that we obtain
M;� [� j= C, being � � � [�. By the canonical model property we can
conclude that �;� `? C succeeds. The equivalence between the canonical
model property and cut has been observed in [Miller, 1992].

The completeness is an immediate consequence of the canonical model
property.

THEOREM 9 (Completeness for I). If � j= A, then � `? A succeeds.

Proof. If � j= A holds, the entailment holds in particular in the canonical
model M . thus for every � 2 W if M;� j= B for every B 2 �, we have
M;� j= A.
By (identity) we have � `? B succeeds for every B 2 �. Thus by the
canonical model property M;� j= B for every B 2 �. We hence obtain
M;� j= A and by the canonical model property again � `? A succeeds.

�

We have still to show that cut is admissible.

THEOREM 10 (Admissibility of Cut). If �; A `? B and � `? A
succeed, then also �;� `? B succeeds.

Proof. Assume (1) �; A `? B and (2) � `? A succeed.
The theorem is proved by induction on lexicographically-ordered pairs

(c; h), where c = cp(A), and h is the height of a successful derivation of (1),
that is of �; A `? B. Suppose �rst c = 0, then A is an atom p, and we
proceed by induction on h. If h = 0, B is an atom q and either q 2 � or
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q = p = A. In the �rst case, the claim trivially follows by Proposition 6. In
the second case it follows by hypothesis (2) and Proposition 6.

Let now h > 0, then (1) succeeds either by the implication rule or by
the reduction rule. In the �rst case, we have that B = C ! D and from
�; A `? C ! D we step to �; A; C `? D, which succeeds by a derivation
h0 shorter than h. Since (0; h0) < (0; h), by the induction hypothesis we get
that �;�; C `? D, succeeds, whence �;� `? C ! D succeeds too. Let
(1) succeed by reduction with respect to a formula C 2 �. Since A is an
atom, C 6= A. Then B = q is an atom. We let C = D1 ! : : : ! Dk ! q.
We have for i = 1; : : : ; k

�; A `? Di succeeds by a derivation of height hi < h.

Since (0; hi) < (0; h), we may apply the induction hypothesis and obtain

(ai) �;� `? Di succeeds, for i = 1; : : : ; k.

Since C 2 � [ �, from �;� `? q we can step to (ai) and succeed. This
concludes the case of (0; h).

If c is arbitrary and h = 0 the claim is trivial. Let c > 0 and h > 0. The
only di�erence with the previous cases is when (1) succeeds by reduction
with respect to A. Let us see that case. Let

A = D1 ! : : :! Dk ! q and B = q.

Then we have for i = 1; : : : ; k �; A `? Di succeeds by a derivation of
height hi < h. Since (c; hi) < (c; h), we may apply the induction hypothesis
and obtain

(bi) �;� `? Di succeeds for i = 1; : : : ; k.

By hypothesis (2) we can conclude that

(3) �; D1; : : : ; Dk `? q succeeds by a derivation of arbitrary
height h0.

Notice that each Di has a smaller complexity than A, that is cp(Di) = ci <
c. Thus (c1; h

0) < (c; h), and we can cut on (3) and (b1), so that we obtain

(4) �;�; D2; : : : ; Dk `? q succeeds with some height h00.

Again (c2; h
00) < (c; h), so that we can cut (b2) and (4). By repeating the

same argument up to k we �nally obtain

�;� `? q succeeds:

This concludes the proof. �
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We have given a semantic proof of the completeness of the proof proce-
dure for the implicational fragment of intuitionistic logic. We have given
all details (although they are rather easy) since this easy case works as a
paradigm for other logics and richer languages. To summarize, the recipe
for the semantic proof is the following: (1) give the right formulation of cut
and show that it is admissible, (2) de�ne a canonical model, (3) prove the
canonical model property as in Proposition8 and derive the completeness as
in Theorem 9.
There are however other ways to prove the completeness depending on the
chosen presentation of the logic. If we have a Hilbert-style axiomatization,
we can show that every atomic instance of any axiom succeeds, and then
show that the set of succeeding formulas is closed under formula substitu-
tion and modus ponens (supposing that these properties hold, which is the
case for all the logics considered in this chapter). To prove the closure under
MP we need again cut. Another possibility, if we have a presentation of the
logic in terms of consequence relation rules, like a sequent calculus, we can
show that every rules is admissible.

3.3 Loop-free and bounded resource deduction

In the previous section, we have introduced a goal-directed proof method
for intuitionistic implicational logic. This method does not give a decision
procedure, as it can easily loop: consider the trivial query

q ! q `? q

this query is reduced to itself by the reduction rule, so that the computa-
tion does not stop. There are two di�erent strategies to deal with looping
computation and termination.

One possibility is to detect the loop and stop the computation as soon as
it is detected. The other possibility is to prevent any loop by constraining
the use of the formulas. To perform loop-checking we need to consider
the sequence of goals and the relative database from which they have been
asked. A moment of reection shows that it is enough to record only the
atomic goals, since the non-atomic ones will always reduce to the same
atomic goals by the implication rule. The other relevant information is
the database from which they are asked. The same atomic goal may be
asked from di�erent databases and such a repetition does not mean that
the computation necessarily loops:

EXAMPLE 11.

`? ((c! a)! c)! (c! a)! a

(c! a)! c `? (c! a)! a

(c! a)! c; c! a `? a
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(c! a)! c; c! a `? c

(c! a)! c; c! a `? c! a

(c! a)! c; c! a; c `? a

(c! a)! c; c! a; c `? c

success

As you can see the goal a repeats twice along the same (and unique)
branch, but the second time is asked from an increased database (c has
been added). This does not represent a case of loop; we have a loop when
we reask the same (atomic) goal from the same database. To detect the loop
we need also to record the involved databases. For each computation branch
we could record every pair (atomic goal-database) in a history list, so that,
before making a reduction step, we check whether the same pair is already
in the history list. This loop checking ensures termination. The reason is
simple, but important. In the case of intuitionistic logic, the database can
be regarded as a set of formulas (as we have done) so that adding one or
more times the same formula does not matter, i.e. the database does not
change. This gives decidability: there cannot be in�nitely many di�erent
databases occurring in one computation branch (supposing that the initial
one is �nite) since at most a database can contain all subformulas of the
initial query. Thus any loop will be detected.

However, the fact that the database is a set of formulas can be used to
devise a more eÆcient loop checking mechanism in which we do not have to
record the database itself. The idea is simple: we have a loop whenever we
repeats the same goal from the same data. Thus we need to record only the
atomic goals which are asked from the same database. Whenever we change
the database we clear the history. The database changes (grows) when we
add a formula not occurring in it by means of the !-rule. This improved
loop-checking procedure has been proposed in [Heudering et al., 1996] to
the purpose of obtaining a terminating sequent calculus for intuitionistic
logic. Let H be the list of past atomic goals. The computation rules are
modi�ed as follows:

Rule 1 for !
� `? A! B;H succeeds
if A 62 � and �; A `? B; ; succeeds.

Rule 2 for !
� `? A! B;H succeeds
if A 2 � and � `? B;H succeeds.

Reduction Rule

� `? q;H succeeds
if q 62 H and for some C1 ! : : :! Cn ! q in � we have that for all i
� `? Ci; H � (q) succeeds.



GOAL-ORIENTED DEDUCTIONS 213

EXAMPLE 12.

`? ((p! q)! q)! (q ! p)! p; ;

(p! q)! q `? (q ! p)! p; ;

(p! q)! q; q ! p `? p; ;

(p! q)! q; q ! p `? q; (p)

(p! q)! q; q ! p `? p! q; (p; q)

(p! q)! q; q ! p; p `? q; ;

(p! q)! q; q ! p `? p! q; (q)

(p! q)! q; q ! p `? q; (q)

fail

In this way one is able to detect a loop (the same atomic goal repeats from
the same database), without having to record each pair (database goal).

As we have remarked at the beginning of this section loop-checking is not
the only way to ensure termination. A loop is created because a formula
used in one reduction step remains available for further reduction steps. It
can be used as many times as we wish.

Let us adopt the point of view that each database formula can be used
at most once. Thus our rule for reduction becomes

from � `? q,
if there is B 2 �, with B = C1 ! : : :! Cn ! q, step to
�� fBg `? Ci for i = 1; : : : ; n.

The item B is thus thrown out as soon as it is used.
Let us call such a computation locally linear computation, as each formula

can be used at most once in each path of the computation. That is why
we are using the word `locally'. One can also have the notion of (globally)
linear computation, in which each formula can be used exactly once in the
entire computation tree.

Since we take care of usage of formulas, it is natural to regard multiple
copies of the same formula as distinct. This means that databases can now
be considered as multisets of formulas. In order to keep the notation simple,
we use the same notation as in the previous section. From now on, �;�, etc.
will range on multisets of formulas, and we will also write �;� to denote the
union multiset of � and �, that is �t�. To denote a multiset [A1; : : : An],
if there is no risk of confusion we will simply write A1; : : : An.

We present three notions of proof: (1) the goal-directed computation
for intuitionistic logic, (2) the locally linear goal-directed computation (LL-
computation), (3) linear goal-directed computation.

DEFINITION 13. We give the computation rules for a query: � `? G,
where � is a multiset of formulas and G is a formula.
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� (success) � `? q immediately succeeds if the following holds:

1. for intuitionistic and LL- computation, q 2 �,

2. for linear computation � = q.

� (implication) From � `? A! B, we step to

�; A `? B.

� (reduction) If there is a formula B 2 � with

B = C1 ! : : :! Cn ! q

then from � `? q, we step, for i = 1; : : : ; n to

�i `? Ci,

where the following holds

1. in the case of intuitionistic computation, �i = �;

2. in the case of locally linear computation, �i = �� [B];

3. in the case of linear computation ti�i = �� [B].

It can be shown that the monotony property holds for the LL-computation
whereas it does not for the linear computation. Let QL, QLL and QI de-
note respectively the set of succeeding queries in the linear, in the locally
linear, and in the intuitionistic computation, then we have

QL � QLL � QI

The examples below shows that these inclusions are proper.

EXAMPLE 14.

1. We reconsider Example 11: c! a; (c! a)! c `? a
The formula c ! a has to be used twice in order for a to succeed.
Thus the query fails in the locally linear computation, but it succeeds
in the intuitionistic one. This example can be generalized as follows,
let:

2. Let A0 = c
An+1 = (An ! a)! c.

Consider the following query:

An; c! a `? a

The formula c! a has to be used n+ 1 times locally.
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a! b! c; a! b; a `? c

a! b; a `? a
�� QQ

a! b; a `? b

a `? a

Figure 3. Derivation for Example 15.

EXAMPLE 15. Let us do the full LL-computation for

a! b! c; a! b; a `? c

The formula a has to be used twice globally, but not locally on each
branch of the computation. Thus the locally linear computation succeeds.
On the other hand, in the linear computation case, this query fail, as a must
be used globally twice.

The example above shows that the locally linear proof system of De�ni-
tion 13 is not the same as the linear proof system. First, we do not require
that all assumptions must be used, the condition on the success rule. A
more serious di�erence is that we do our `counting' of how many times a
formula is used separately on each path of the computation and not globally
for the entire computation. The counting in the linear case is global, as can
be seen by the condition in the reduction rule.

Another example, the query A;A ! A ! B `? B will succeed in our
locally linear computation because A is used once on each of two parallel
paths. It will not be accepted in the linear computation because A is used
globally twice. This is ensured by the condition in the reduction rule.

Linear computation as de�ned in De�nition 13 corresponds to linear logic
implication, [Girard, 1987], in the sense that the procedure of linear compu-
tation is sound and complete for the implicational fragment of linear logic.
This will be shown in Section 5 within the broader context of substructural
logics.

The above examples show that we do not have completeness with respect
to intuitionistic provability for locally linear computations. Still, the locally
linear computation is attractive, because if the database is �nite it is always
terminating. We shall see in the next section how we can compensate for the
use of the locally linear rule (i.e. for throwing out the data) by some other
means. However even if the locally linear computation is not complete for
the full intuitionistic implicational fragment, one may still wonder whether
it works in some particular and signi�cant case. A signi�cant (and well-
known) case is shown in the next proposition.
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We recall that a formula A is Horn if it is an atom, or has the form
p1 ! : : :! pn ! q, where all pi and q are atoms.

PROPOSITION 16. The locally-linear procedure is complete for Horn for-
mulas.

3.4 Bounded restart rule for intuitionistic logic

We have seen that the locally linear restriction does not retain complete-
ness with respect to intuitionistic provability, as there are examples where
formulas need to be used locally several times. We show that we can retain
completeness for intuitionistic logic by adding another computation rule.
The new rule is called the bounded restart rule.

Let us examine more closely why we needed in Example 11 the formula
c ! a several times. The reason was that from other formulas, we got the
goal `? a and we wanted to use c! a to continue to the goal `? c. The
formula c ! a was no longer available because it had already been used.
In other words, `? a had already been asked and c ! a was used. This
means that the next goal after `? a in the history was `? c.

If H is the history of the atomic goals asked, then somewhere in H there
is `? a and immediately afterwards `? c.

We can therefore compensate for the reuse of c! a by allowing ourselves
to go back in the history to where `? a was, and allow ourselves to ask
all atomic goals that come afterwards. We call this type of move bounded
restart.

The previous example suggests the following new computation with
bounded restart rule.

DEFINITION 17. [Locally linear computation with bounded restart] In the
computation with bounded restart, the queries have the form � `? G;H ,
where � is a multiset of formulas and the history H is a sequence of atomic
goals. The rules are as follows:

� (success) � `? q;H succeeds if q 2 �;

� (implication) from � `? A! B;H step to �; A `? B;H ;

� (reduction) from � `? q;H if C = D1 ! D2 ! : : : ! Dn ! q 2 �,
then we step to

�� [C] `? Di; H � (q) for i = 1; : : : ; n;

� (bounded restart) from � `? q;H step to

� `? q1; H � (q),

provided for some H1, H2, H3, it holds H = H1 � (q) �H2 � (q1) �H3,
where each Hi may be empty.
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EXAMPLE 18.

`? ((c! a)! c)! (c! a)! a; ;

(c! a)! c `? (c! a)! a; ;

(c! a)! c; c! a `? a; ;

(c! a)! c `? c; (a)

`? c! a; (a; c)

c `? a; (a; c)

c `? c; (a; c)

success

The last step is by bounded restart, it is legal since c follows a in the history.

The locally linear computation with bounded restart is sound and com-
plete for intuitionistic logic. However, before stating the theorem, we want
to remark about the meaning of the atoms in the history. To make the
things easy, let the query be � `? G; (p) and G be atomic. Suppose
in addition that the query succeeds by a reduction step. Then G will be
added to the history list just after p. Let the next goal be p, so that we
can apply the bounded restart rule to the query � `? p; (p;G). The
bounded restart step could be performed by reduction if we had the for-
mula G ! p in the database. Thus the original query is equivalent to the
query �; G ! p `? G. The general correspondence is expressed in the
next theorem.

THEOREM 19 (Soundness and completeness of locally linear computation
with bounded restart). For the computation of De�nition 17 we have:
� `? G; (p1; : : : ; pn) succeeds i� �; G ! pn; pn ! pn�1; : : : ; p2 ! p1 ` G
in intuitionistic logic.

3.5 Restart rule for classical logic

It is interesting to note that by adopting a variation of the bounded restart
rule we can obtain a proof procedure for implicational classical logic. The
variation is obtained by cancelling any restrictions and simply allowing us
to ask any earlier atomic goal. We need not keep the history as a sequence,
but only as a set of atomic goals. The rule becomes

DEFINITION 20 (Restart rule in the LL-computation). If a 2 H , from
� `? q;H step to � `? a;H [ fqg.

The formal de�nition of locally linear computation with restart is De�nition
17 with the additional restart rule above in place of the bounded restart
rule.
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EXAMPLE 21.

`? (a! b)! a `? a; ;

`? `? a! b; fag

a `? a `? b; fag

a `? a; fa; bg by restart

success:

The above query fails in the intuitionistic computation. Thus, this example
shows that we are getting a logic which is stronger than intuitionistic logic.
Namely, we are getting classical logic. This claim has to be properly proved,
of course.

If we adopt the basic computation procedure for intuitionistic implication
of De�nition 4 rather than the LL-computation, we can restrict the restart
rule to always choose the initial goal as the goal with which we restart.
Thus, we do not need to keep the history, but only the initial goal and the
rule becomes more deterministic. On the other hand, the price we pay is
that we cannot throw out the formulas of database when they are used.

DEFINITION 22 (Simple computation with restart). The queries have the
form

� `? G; (G0);

where G0 is a goal. The computation rules are the same as in the basic
computation procedure for intuitionistic implication of De�nition 4 plus
the following rule

(Restart) from � `? q; (G0) step to � `? G0; (G0).

It is clear that the initial query of any derivation will have the form � `?

A; (A).

Given the underlying computation procedure of De�nition 4, restarting
from an arbitrary atomic goal in the history is equivalent to restart from
the initial goal. This is expressed formally in the next proposition, where
we let `?RI and `?RA be respectively the deduction procedure of De�nition
22 and the deduction procedure of De�nition 4 extended by the restart rule
of De�nition 20.

PROPOSITION 23. For any database � and formula G, we have

(1) � `?RA G; ; succeeds i� (2) � `?RI G; (G) succeeds.

We show that the proof-procedure obtained by adding the rule of restart
from the initial goal to the basic procedure for intuitionistic logic de�ned
in De�nition 4 is sound and complete with respect to classical provability.
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The idea is to replace the e�ect of restart from the initial goal by adding
a suitable set of formulas which depends on the initial goal. This set of
formulas can be seen as representing the negation (or complement) of the
goal.

DEFINITION 24. Let A be any formula. The complement of A, denoted
by Cop(A) is the following set of formulas:

Cop(A) = fA! p j p any atom of the languageg

The set Cop(A) represents the negation of A in our implicational language
which does not contain neither :, nor ?.

The crucial, although easy, fact is that we can replace any application of
the restart rule by a reduction step using a formula in Cop(A).

LEMMA 25. (1) � `? A succeeds by using restart rule i� (2) �[Cop(A) `?

A succeeds without using restart, that is by the intuitionistic procedure of
De�nition 4.

Now we only have to show that � ` A in classical logic i� �[Cop(A) `?

A succeeds by the procedure de�ned in De�nition 4. To this purpose we
need the following lemma, which shows that Cop(A) works as the negation
of A.

LEMMA 26. For any database � and formulas G such that � � Cop(G),
and for any goal A, we have
if � [ fAg `? G and � [ Cop(A) `? G succeed then also � `? G
succeeds.

THEOREM 27. For any � and A, (a) is equivalent to (b) below:

(a ) � ` A in classical logic,

(b) � [ Cop(A) `? A succeeds by the intuitionistic procedure de�ned in
De�nition 4.

Proof. (() Show (b) implies (a).
Assume � [ Cop(A) `? A succeeds Then by the soundness of the com-
putation procedure we get that � [ Cop(A) ` A in intuitionistic logic, and
hence in classical logic. Since the proof is �nite there is a �nite set of the
form fA! pi; : : : ; A! png such that
(a1) �; A! p1; : : : A! pn ` A (in intuitionistic logic).
We must also have that � ` A, in classical logic, because if there were an
assignment h making � true and A false, it would also make A ! pi all
true, contradicting (a1).

The above concludes the proof that (b) implies (a).



220 DOV GABBAY AND NICOLA OLIVETTI

()) Show that (a) implies (b).
We prove that if � [ Cop(A) `? A does not succeed then � 6` A in
classical logic. Let �0 = � [ Cop(A). We de�ne a sequence of databases
�n; n = 1; 2 : : : as follows:
Let B1; B2; B3; : : : be an enumeration of all formulas of the language.
Assume �n�1 has been de�ned and assume that �n�1 `? A does not
succeed. We de�ne �n:
If �n�1 [fBng `? A does not succeed, let �n = �n�1 [ fBng. Otherwise
from Lemma 26 we must have:
�n�1[ Cop (Bn) `? A does not succeed.
and so let �n = �n�1 [ Cop(Bn).
Finally, let �0 =

S
n �n

Clearly �0 `? A does not succeed.
De�ne an assignment of truth values h on the atoms of the language by

h(p) = true i� �0 `? p succeeds . We now prove that

for any B; h(B) = true i� �0 `? B succeeds,

by induction on B. For atoms this is the de�nition.
Let B = C ! D. We prove the two directions by simultaneous induction.
Suppose �0 `? C ! D succeeds. If h(C) = false, then h(C ! D) = true

and we are done. Thus, assume h(C) = true. By the induction hypothesis,
it follows that �0 `? C succeeds. Since, by hypothesis we have that
�0; C `? D succeeds, by cut we obtain that �0 `? D succeeds, and hence
by the induction hypothesis h(D) = true.

Conversely, if �0 `? C ! D does not succeed, we show that h(C !
D) = false. Let Head(D) = q, we get

(1) �0 `? D does not succeed
(2) �0; C `? q does not succeed.

Hence by the induction hypothesis on (1) we have h(D) = false. We show
that �0 `? C must succeed. Suppose on the contrary that �0 `? C
does not succeed. Hence C 62 �0. Let Bn = C in the given enumeration.
Since Bn 62 �n, by construction, it must be Cop(C) � �0. In particular
C ! q 2 �0, and hence �0; C `? q succeeds, against (2).

We have shown that �0 `? C succeeds, whence h(C) = true, by the
induction hypothesis. Since h(C) = false, we obtain h(C ! D) = false.

We can now complete the proof. Since �0 `? A does not succeed, we get
h(A) = false. On the other hand, for any B 2 � [ Cop(A), h(B) = true

(since �[Cop(A) � �0) and h(A) = false. This means that �[Cop(A) 6` A
in classical logic. This complete the proof. �

From the above theorem and Lemma 25 we immediately obtain the com-
pleteness of the proof procedure with restart from the initial goal.
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THEOREM 28. � ` A in classical logic i� � `? A; (A) succeeds using the
restart rule from the initial goal, added to the procedure of De�nition 4.

Also the locally linear computation of De�nition 17 with the restart rule
from any previous goal is sound and complete. A proof is contained in
[Gabbay and Olivetti, 2000].

THEOREM 29. [Soundness and completeness of locally linear computation
with restart]
� `? G;H succeeds i� � ` G _

W
H in classical logic.

Observe that we cannot restrict the application of restart to the �rst
atomic goal occurring in the computation, consider:

(p! q)! p; p! r `? r; ;,

it succeeds by the following computation:

(p! q)! p; p! r `? r; ;;

(p! q)! p `? p; frg;

`? p! q; fr; pg;

p `? q; fr; pg;

p `? p; fr; pg; restart from p:

However restarting from r, the �rst atomic goal would not help.

3.6 Termination and complexity

The proof systems based on locally linear computation are a good starting
point for designing eÆcient automated-deduction procedures; on the one
hand proof search is guided by the goal, on the other hand derivations have
a smaller size since a formula that has to be reused does not create further
branching. We now want to remark upon termination of the procedures.

The basic LL- procedure obviously terminates: since formulas are thrown
out as soon as they are used in a reduction step, every branch of a given
derivation eventually ends with a query which either immediately succeeds,
or no further reduction step is possible from it. This was the motivation
of the LL-procedure as an alternative to a loop-checking mechanism. Does
the (bounded) restart rule preserve this property? As we have stated, it
does not, in the sense that a silly kind of loop may be created by restart.
Let us consider the following example, here we give the computation for
intuitionistic logic, but the example works for the classical case as well:
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a! b; b! a `? a; ;

a! b `? b; (a)

`? a; (a; b)

`? b; (a; b; a)

`? a; (a; b; a; b)

...

This is a loop created by restart. It is clear that continuing the derivation
by restart does not help, as none of the new atomic goals match the head
of any formula in the database.

In the case of classical logic, we can modify the restart rules as follows.

From � `? q;H step to � `? q1; H [ fqg,
provided there exists a formula C 2 �, with q1 = Head(C),

and q 2 H .

It is obvious that this restriction preserves completeness.
In the case of intuitionistic logic, the situation is slightly more complex.

The atom with which we �nally restart must match the head of some formula
of the database in order to make any progress. But this atom might only
be reachable through a sequence of restart steps which goes further and
further back in the history. To handle this situation, we require that the
atom chosen for restart matches some head, but we `collapse' several restart
steps into a single one. In other words, we allow restart from a previous goal
q which is accessible from the current one through a sequence of bounded
restart steps.

Given a history H = (q1; q2; : : : ; qn) we de�ne an auxiliary binary relation
on atomic formulas q �H q0 as follows:

1. either q coincides with q0, or

2. q precedes q0 in the list H ,

3. or for some q00 one has q �H q00 and q00 �H q0.

(In other words, q �H q0 i� q0 is reachable from q by the reexive-transitive
closure of the binary precedence relation generated by the list H . The
modi�ed bounded restart rule for intuitionistic logic becomes: from

� `? q;H ,

step to
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� `? q0; H � (q), provided

1. there exists a formula C 2 �, with q0 = Head(C), q0 6= q and

2. q �H q0 holds.

It is easy to see that the above rule ensures the termination of the pro-
cedure preserving its completeness.

Moreover we can reformulate the rules for success and reduction by build-
ing the bounded restart rule into them, to this purpose we simply restate:

1. (br-success) � `? q;H succeeds if there exists q0 such that q �H q0

and q0 2 �;

2. (br-reduction) From �; C1 ! : : :! Cn ! q0 `? q;H if q �H q0 steps
for i = 1; : : : ; n to � `? Ci; H � (q).

The proof procedure can be further re�ned to match the known complexity
bound for intuitionistic logic, namely O(n logn) space. Observe that the
history list may be kept linear in the length of the database+goal: only
the leftmost and the rightmost occurrence of any atom in H are needed for
determining �H . Thus the history lenght is bounded by 2�k where k is the
number of atoms occurring in the initial query. The length of each derivation
branch is bounded by the length of the initial query and so is the length of
each intermediate query. In serching a proof of a given query, we �rst apply
the implication rule if the goal is an implication; if the goal is atomic we
try �rst (br-success) and if it is not applicable we try (br-reduction).

The proof search space can be then described as a tree that contains
AND branchings, corresponding to the (br-reduction steps) with multiple
subgoals, and OR branchings corresponding to backtracking points, deter-
mined by alternative formulas which can be used in the (br-reduction) steps.
The latter are branchings in the proof search space, not in the derivation
tree. We assume that subgoals are examined and alternatives are scanned
in a �xed manner (for instance from left to right).

To achieve a good space complexity bound, we do not store the whole
derivation, we rather perform the proof search in a depth �rst manner ex-
panding one query at a time. We only store one query at a time, the one
which is going to be expanded by the rules. Moreover we keep a copy of the
initial query. In addition we use a stack to keep track of the AND branchings
and backtracking points, if any. We will not enter into the details of how to
store the relevant information in the stack entries, it is described in [Gabbay
et al., 1999]. We only observe that: (1) since we can index formulas and
subformulas of the initial query, each stack entry will not require more than
O(logn) bits, being n is the length of the initial query. (2) we have a stack
entry for each query occurring along a derivation branch. Thus the depth
of the stack is bounded by n the length of the initial query. In the whole, an
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algorithm to search a derivation will not need more than O(n logn) space,
where n is the length of the initial query. This matches the known optimal
upper-bound for intuitionistic logic.

THEOREM 30. The procedure with bounded restart gives an O(n logn)-
space decision procedure for the implicational fragment of intuitionistic logic.

The proof procedure based on bounded restart is almost deterministic
except for one crucial point: the choice of the database formula to use in a
reduction step. Here a sharp di�erence between classical and intuitionistic
logic arises. In intuitionistic logic, the choice is critical: we could make the
wrong choice and then have to backtrack to try an alternative formula. In
the case of classical logic, backtracking is not necessary, that is, it does not
matter which formula we choose to match an atomic goal in a reduction
step.

LEMMA 31. Let

A = A1 ! : : :! An ! q and B = B1 ! : : :! Bm ! q:

Then (a) is equivalent to (b):

(a) �; A `? Bi; H [ fqg succeeds for i = 1; : : :m;

(b) �; B `? Ai; H [ fqg succeeds for i = 1; : : : ; n.

By the previous lemma we immediately have.

PROPOSITION 32. In any computation of � `? q;H with restart, no
backtracking is necessary. The atom q can match with the head of any
A1 ! : : : ! An ! q 2 � and success or failure does not depend on the
choice of such a formula.

The parallel property to Lemma 31, Proposition 32 clearly does not hold
for the intuitionistic case. This di�erence gives an intuitive account of the
di�erence of complexity between the intuitionistic and the classical case.6

3.7 Extending the language

Conjunction and negation

In this and the next section we extend the language to the full propositional
language. We start by considering conjunction. The addition of conjunc-
tion to the propositional language does not change the proof system much.
Every formula A with conjunctions is equivalent in intuitionistic logic to a
conjunction of formulas

V
i Ai, where Ai contain no conjunctions. If we

6We recall that intuitionistic provability is PSPACE-complete [Statman, 1979],
whereas classical provability is CoNP-complete, although the space requirements are the
same.
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agree to represent a conjunction of formulas as a set, the handling of con-
junction is straightforward, we can transform every database and goal into
sets of formulas without conjunction. Then we extend the proof procedure
to sets of goals S:

From � `? S step to � `? A for every A 2 S.

The computation rule for conjunction can be stated directly:
� `? A ^ B succeeds i� � `? A succeeds and � `? B succeeds.

We now turn to negation. As we have seen, negation can be introduced
in classical and intuitionistic logic by adding a constant symbol ? for falsity
and de�ning the new connective :A for negation as A! ?. We will adopt
this de�nition. However, we have to modify the computation rules, because
we have to allow for the special nature of ?, namely that ? ` A holds for
any A.

DEFINITION 33. [Computations for data and goal containing ? for intu-
itionistic and classical logic] The basic procedure is that one de�ned in 4,
(plus the restart rule for classical logic), with the following modi�cations:

1. Modify (success) rule to read: � `? q immediately succeeds, if q 2 �
or ?2 �.

2. Modify (reduction rule) to read: from � `? q step, for i = 1; : : : ; n
to

� `? Bi

if there is C 2 � such that Head(C) 2 fq;?g and Body(C) =
(B1; : : : ; Bn).

In De�nition 33 we have actually de�ned two procedures. One is the
computation without the restart rule for intuitionistic logic with ?, and
the other is the computation with the restart rule for classical logic. We
have to show that the two procedures indeed correctly capture the intended
fragment of the respective systems. This is easy to see. The e�ect of the
axiom ? ` A is built into the computation via the modi�cations in 1. and
2. of De�nition 33 and hence we know we are getting intuitionistic logic.
To show that the restart rule yields classical logic, it is suÆcient to show
that the computation

(A! ?)! ? `? A

always succeeds with the restart rule. This can also be easily checked.
To complete the picture we show in the next proposition that the com-

putation of � `? A with restart is the same as the computation of
� `? (A ! ?) ! A without restart. This means that the restart rule
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(with original goal A) can be e�ectively implemented by adding A ! ?
to the database and using the formula A ! ? and the ?-rules to replace
uses of the restart rule. The above considerations correspond to the known
translation from classical logic to intuitionistic logic, namely:

� ` A in classical logic i� � ` :A! A in intuitionistic logic.

The proof is similar to that one of Lemma 25, namely Cop(G) is a way of
representing G! ? without using ?.

PROPOSITION 34. For any database � and goal G:

� `? G succeeds with restart i� � [ fG ! ?g `? G
succeeds without restart.

EXAMPLE 35. We check:

(q !?)!? `? q; (q)

(q !?)!? `? q !?; (q)

(q !?)!?; q `? ?; (q).

We cannot use the reduction rule here. So, we fail in intuitionistic logic. In
classical logic we can use restart to obtain:

(q !?)!?; q `? q; (q)

and terminate successfully.

The locally linear computation with bounded restart (respectively restart)
is complete for the (!;?;^)-fragment of intuitionistic (classical) logic. The
termination and complexity analysis of the previous section applies also to
this larger fragment.

Extension to the whole propositional intuitionistic logic

To obtain a goal-directed proof method for full intuitionistic propositional
logic we must �nd a way of handling disjunctive data. The handling of
disjunction is more diÆcult than the handling of conjunction and negation.
Consider the formula a! (b _ (c! d)). We cannot rewrite this formula in
intuitionistic logic to anything of the form B ! q, where q is atomic (or ?).

We therefore have to change our proof procedures to accommodate the
general form of an intuitionistic formula with disjunction.

In classical logic disjunctions can be pulled to the outside of formulas
using the following equivalences:

1. (A _ B ! C) � (A! C) ^ (B ! C)
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2. (C ! A _B) � (C ! A) _ (C ! B),

where � denotes logical equivalence in classical logic. 1. is valid in intu-
itionistic logic but 2. is not valid. We have seen at the beginning of the
section, the axioms governing disjunction. In view of those axioms, it is not
diÆcult to devise rules to handle disjunction:

R1: from � `? A _ B step to � `? A or to � `? B.

R2: from �; A _ B `? C step to �; A `? C and to �; B `? C.

We can try to incorporate the two rules for disjunction within a goal-
directed proof procedure for full intuitionistic logic.

DEFINITION 36. Computation rules for full intuitionistic logic with dis-
junction.

1. The propositional language contains the connectives ^;_;!;?. For-
mulas are de�ned inductively as usual.

2. We de�ne the operation �+A, for any formula A =
V
i Ai, as follows:

� +A = � [ fAig provided Ai are not conjunctions.

3. The computation rules are as follows.

(suc) � `? q succeeds if q 2 � or ?2 �;

(conj) from � `? A ^B step to � `? A and to � `? B;

(g-dis) from � `? A _B step to � `? A or to � `? B;

(imp) from � `? A! B step to � +A `? B;

(red) from � `? G if G is an atom q or G = A _ B, if C 2 �,
with C = A1 ! : : : An ! D (where D is not an implication)
step to

(a) � `? Ai, for i = 1; : : : ; n; and to

(b) � +D `? G.

(c-dis) from �; A_B `? C step to �+A `? C and to �+B `? C.

The above rules give a sound and complete system for full intuitionistic
logic. However the rules are far from satisfactory, in the sense that the goal-
directness is lost. For instance, we must be allowed to perform a reduction
step not only when the goal is atomic, but also when it is a disjunction, as
in the following case

A;A! B _ C `? B _ C.
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Similarly, even if the goal is an atom q in the reduction case (red) we cannot
require that D in the formula A1 ! : : : An ! D is atomic and D = q. If
there are disjunctions in the database, at every step we can choose to work
on the goal or to split the database by (c-dis) rule. Moreover, if there are
n disjunctions a systematic application of (c-dis) rule yields 2n branches.
All of this means that if we handle disjunction in the most obvious way we
loose the goal-directedness of deduction and the computation becomes very
ineÆcient.

The reason is that if positive disjunctions are allowed in a database � it
is not true that

(dp) � ` A _ B implies � ` A or � ` B.

This property, called disjunction property, holds when � does not contain
positive disjunctions, but fails when it does contain them, as the exam-
ple above shows. This means that the goal A _ B cannot be decom-
posed/reduced to A and to B. In other words, we cannot proceed in a
goal-directed fashion. There are three ways to overcome the problem of
disjunction. The simplest solution is to kill the problem at the root: do
not allow positive occurrences of disjunction in the database. To prevent
positive disjunctions means to restrict our consideration to so-called Harrop
formulas. To introduce them, let us de�ne the two types of formulas D and
G by mutual induction as follows:

D := q j ? j G! D j D ^D

G := q j ? j G ^G j G _G j D ! G.

A formula is Harrop if it is de�ned according to the D-clauses above. D-
formulas are allowed as constituents of the database, whereas G formulas are
allowed to be asked as goals. It is easy to extend the goal directed procedure
to Harrop formulas. A database will be a set of D-formulas (which are not
conjunctions themselves). We just add the rule R1 given above to handle
disjunctive goals. This gives us a complete system, which can be optimized
by adopting the diminishing resource approach and bounded restart.

Another solution, that we just mention, is to eliminate disjunction by
adopting Statman's translation [Statman, 1979]: we can translate every pair
database-goal (�; G) in a pair (��; G�), such that ��; G� do not contain
disjunction, but contain additional atoms, and it holds (in intuitionistic
logic)

� ` G i� �� ` G�.

We can then use the proof procedure without disjunction.
However, one can try to cope with the whole propositional intuitionistic

logic without limitations, by using additional machinery. There are two
diÆculties to de�ne a goal-directed procedure. Consider the query � `?
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A _B. We can adopt the rule R1 by continuing for instance with � `? A,
and remember that at a previous step we could have chosen the disjunct B,
thus we must be able to go back to � `? B. The use of history and restart
can accomplish the necessary book-keeping mechanism. However, we must
take into account that the database may have changed in the meantime,
and we must go back to the right database; notice that in general

(A! B) _ C 6� A! B _ C 6� B _ (A! C)

(although these equivalences hold in classical logic). One way to keep track
of the dependency between the goal and database from which it is asked
is to use labels. This solution is developed in [Gabbay and Olivetti, 2000],
where a labelled goal-directed proof procedure for full intuitionistic logic is
given. The labels are partially ordered and can be interpreted as possible
worlds.

The other technical trick is to extend suitably the notion of 'Head'of a
formula to formulas with positive disjunctions; this is necessary to de�ne the
reduction step. For instance, ignoring the labelling and restart mechanism,
the query �;K, where K = A ! (B _ (C ! q)) `? q, and q is an atom,
would be reduced to the queries:

�;K `? A,

�;K;B `? q,

�;K;C ! q `? C.

and q would be recorded in the history.
We shall not give the details of the procedure which can be found in

[Gabbay and Olivetti, 2000]. A similar, although much simpler, procedure
can be given for classical logic. However, in classical logic the treatment
of disjunctive data is not problematic, since on the one hand we can de�ne
disjunction using the other connectives (the ! connective alone suÆces as
A_B � (A! B)! B). On the other hand every formula can be rewritten
as a set of clauses of the form:

p1 ^ : : : ^ pn ! q1 _ : : : _ qm

where n � 0, and m > 0, every pi is an atom, and every qj is an atom
or is ?. For data of this sort, a goal-directed procedure is easily designed,
see [Gabbay and Olivetti, 2000; Nadathur, 1998; Loveland, 1991; Loveland,
1992].

3.8 Some history

A goal-directed proof system for a (�rst-order) fragment of intuitionistic
and classical logic was �rst given by Gabbay [Gabbay and Reyle, 1984;
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Gabbay, 1985] as a foundation of hypothetical logic programming. A similar
system for intuitionistic logic was proposed in [McCarty, 1988a; McCarty,
1988b]. The restart rule was �rst proposed by Gabbay in his lecture notes
in 1984 and the �rst theoretical results published in [Gabbay, 1985] and
then 1985 in [Gabbay and Kriwaczek, 1991].7 A similar idea to restart has
been exploited by Loveland [1991; 1992], in order to extend conventional
logic programming to non-Horn databases; in Loveland's proof procedure
the restart rule is a way of implementing reasoning by case-analysis.

The concept of goal-directed computation can also be seen as a general-
ization of the notion of uniform proof as introduced in [Miller et al., 1991].
A uniform proof system is called `abstract logic programming' [Miller et
al., 1991]. The extension of the uniform proof paradigm to classical logic is
recently discussed in [Harland, 1997] and [Nadathur, 1998]. The essence of
a uniform-proof system is the same underlying the goal-directed paradigm:
the proof-search is driven by the goal and the connectives can be interpreted
directly as search instructions.

The locally linear computation with bounded restart was �rst presented
by Gabbay [1991] and then further investigated in [Gabbay, 1992], where
goal-directed procedures for classical and some intermediate logics are also
presented. This re�nment is strongly connected to the contraction-free se-
quent calculi for intuitionistic logic which have been proposed by many
people: Dyckho� [1992], Hudelmaier [1990], and Lincoln et al., [1991]. To
see the intuitive connection, let us consider the query:

(1) �; (A! p)! q `? q; ;

we can step by reduction to � `? A ! p; (q) and then to �; A `? p; (q),
which, by the soundness corresponds to

(2) �; A; p! q `? q.

In all the mentioned calculi (1) can be reduced to (2) by a sharpened left-
implication rule (here used backwards). This modi�ed rule is the essential
ingredient to obtain a contraction-free sequent calculus for I, at least for
its implicational fragment. A formal connection with these contraction-free
calculi has not been studied yet. It might turn out that LL-computations
correspond to uniform proofs (in the sense of [Miller et al., 1991]) within
these calculi.

In [Gabbay and Olivetti, 2000] the goal-directed methods are extended
to some intermediate logics, i.e. logics which are between intuitionistic and
classical logics. In particular, it is given a proof procedure for the family of
intermediate logics of Kripke models with �nite height, and for Dummett-
G�odel logic LC. These proof systems are obtained by adding suitable restart
rules to the intuitionistic system.

7The lecture notes have evolved also into the book [Gabbay, 1998].
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4 MODAL LOGICS OF STRICT IMPLICATION

In this section we examine how to extend the goal-directed proof methods
to modal logics. We begin considering a minimal language which contains
only strict implication, we will then extend it to the full language of modal
logics. Strict implication, denoted by A ) B is read as `necessarily A
implies B'. The notion of necessity (and the dual notion of possibility) are
the subject of modal logics. Strict implication can be regarded as a derived
notion: A ) B = 2(A ! B), where ! denotes material implication
and 2 denotes modal necessity. However, strict implication can also be
considered as a primitive notion, and has already been considered as such
at the beginning of the century in many discussions about the paradoxes of
material implication [Lewis, 1912; Lewis and Langford, 1932].

The extension of the goal-directed approach to strict implication and
modal logics relies upon the possible worlds semantics of modal logics which
is mainly due to Kripke.

The strict implication language L()) contains all formulas built out from
a denumerable set Var of propositional variables by applying the strict im-
plication connective, that is, if p 2 Var then p is a formula of L()), and if
A and B are formulas of L()), then so is A ) B. Let us �x an atom p0,
we can de�ne the constant > � p0 ) p0 and let 2A � > ) A.

Semantics

We review the standard Kripke semantics for L()).

A Kripke structure M for L()) is a triple (W;R; V ), where W is a non-
empty set (whose elements are called possible worlds), R is a binary relation
on W , and V is a mapping from W to sets of propositional variables of L.
Truth conditions for formulas (of L())) are de�ned as follows:

� M;w j= p i� p 2 V (w);

� M;w j= A) B i� for all w0 such that wRw0 and M;w0 j= A, it holds
M;w0 j= B.

We say that a formula A is valid in a structure M , denoted by M j= A,
if 8w 2 W; M;w j= A. We say that a formula A is valid with respect to
a given class of structures K, i� it is valid in every structure M 2 K. We
sometimes use the notation j=K A. Let us �x a class of structures K. Given
two formulas A and B, we can de�ne the consequence relation A j=K B as

8M = (W;R; V ) 2 K8w 2 W if M;w j=K A then M;w j=K B:

Di�erent modal logics are obtained by considering classes of structures
whose relation R satis�es some speci�c properties. The properties of the
accessibility relations we consider are listed in Table 1.
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Table 1. Standard properties of the accessilbility relation.

Reexivity 8x xRx
Transitivity 8x8y8z xRy ^ yRz ! xRz
Symmetry 8x8y xRy ! yRx
Euclidean 8x8y8z xRy ^ xRz ! yRz

Table 2. Some standard modal logics.

Name Reexivity Transitivity Symmetry Euclidean

K

KT *

K4 *

S4 * *

K5 *

K45 * *

KB *

KTB * *

S5 * * * *

We will take into consideration strict implication) as de�ned in systems
K, KT,8 K4, S4, K5, K45, KB, KBT, and S5.9

Properties of accessibility relation R in Kripke frames, corresponding to
these systems are shown in Table 2.

Letting S be one of the modal systems above, we use the notation j=S A
(and A j=S B) to denote validity in (and the consequence relation deter-
mined by) the class of structures corresponding to S.

4.1 Proof systems

In this section we present proof methods for all modal systems mentioned
above. We regard a database as a set of labelled formulas xi : Ai equipped
by a relation � giving connections between labels. The labels obviously
represent worlds. Thus, xi : Ai means that Ai holds at xi. The goal of a
query is asked with respect to a world. The form of databases and goals
determine the notion of consequence relation

fx1 : A1; : : : ; xn : Ang; � ` x : A

8We use the acronym KT rather than the more common T, as the latter is also the
name of a subrelevance logic we will meet in Section 5.

9We do not consider here systems containing D : 2A ! 3A, which correspond to
the seriality of the accessibility relation, i.e. 8x9y xRy in Kripke frames. The reason is
that seriality cannot be expressed in the language of strict implication alone; moreover,
it cannot be expressed in any modal language, unless : or 3 is allowed.
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whose intended meaning is that if Ai holds at xi (for i = 1; : : : ; n) and the
xi are connected as � prescribes, then A must hold at x.

For di�erent logics � will be required to satisfy di�erent properties such as
reexivity, transitivity, etc., depending on the properties of the accessibility
relation of the system under consideration.

DEFINITION 37. Let us �x a denumerable alphabet A = fx1; : : : ; xi; : : :g
of labels. A database is a �nite graph of formulas labelled by A. We denote
a database as a pair (�; �), where � is a �nite set of labelled formulas
� = fx1 : A1; : : : ; xn : Ang and � = f(x1; x01); : : : ; (xm; x

0
m)g is a set of

links. Let Lab(E) denote the set of labels x 2 A occurring in E, and
assume that (i) Lab(�) = Lab(�), and (ii) if x : A 2 �; x : B 2 �, then
A = B.10

A trivial database has the form (fx0 : Ag; ;).
The expansion of a database (�; �) by y : C at x, with x 2 Lab(�),

y 62 Lab(�) is de�ned as follows:

(�; �)�x (y : C) = (� [ fy : Cg; � [ f(x; y)g).

DEFINITION 38. A query Q is an expression of the form:

Q = (�; �) `? x : G;H

where (�; �) is a database, x 2 Lab(�), G is a formula, and H , the history,
is a set of pairs

H = f(x1; q1); : : : ; (xm; qm)g

where xi are labels and qi are atoms. We will often omit the parentheses
around the two components of a database and write Q = �; � `? x : G;H .
A query from a trivial database fx0 : Ag will be written simply as:

x0 : A `? x0 : B;H ,

and if A = >, we sometimes just write `? x0 : B;H .

DEFINITION 39. Let � be a set of links, we introduce a family of relation
symbols AS�(x; y), where x; y 2 Lab(�). We consider the following condi-
tions:

(K) (x; y) 2 � ) AS�(x; y),

(T) x = y ) AS�(x; y),

(4) 9z(AS�(x; z) ^ AS�(z; y)) ) AS�(x; y),

(5) 9z(AS�(z; x) ^ AS�(z; y)) ) AS�(x; y),

(B) AS�(x; y) ) AS�(y; x).

10We will drop this condition in Section 4.3 when we extend the language by allowing
conjunction.
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For K 2 S � fK;T;4;5;Bg, we let AS be the least relation satisfying all
conditions in S. Thus, for instance, AK45 is the least relation such that:

AK45� (x; y) , (x; y) 2 � _

_ 9z(AK45� (x; z) ^ AK45� (z; y)) _

_ 9z(AK45� (z; x) ^ AK45� (z; y)):

We will use the standard abbreviations (i.e. AS5 = AKT5 = AKT45).

DEFINITION 40 (Modal Deduction Rules). For each modal system S, the
corresponding proof system, denoted by P(S), comprises the following rules
parametrized to predicates AS:

� (success) �; � `? x : q;H immediately succeeds if q is an atom and
x : q 2 �.

� (implication) From �; � `? x : A) B;H , step to

(�; �) �x (y : A) `? y : B;H ,

where y 62 Lab(�) [ Lab(H).

� (reduction) If y : C 2 �, with C = B1 ) B2 ) : : : ) Bk ) q, with
q atomic, then from

�; � `? x : q;H

step to

�; � `? u1 : B1; H [ f(x; q)g;
...;
�; � `? uk : Bk; H [ f(x; q)g;

for some u0; : : : ; uk 2 Lab(�), with u0 = y, uk = x, such that

for i = 0; : : : ; k � 1, AS�(ui; ui+1) holds.

� (restart) If (y; r) 2 H , then, from �; � `? x : q;H , with q atomic,
step to

�; � `? y : r;H [ f(x; q)g.

Restricted restart

Similar to the case of classical logic, in any deduction of a query Q of the
form �; � `? x : G; ;, the restart rule can be restricted to the choice of
the pair (y; r), such that r is the uppermost atomic goal occurred in the
deduction and y is the label associated to r (that is, the query in which r
appears contains : : : `? y : r). Hence, if the initial query is Q = �; � `?
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x : G; ; and G is an atom q, such a pair is (x; q), if G has the form B1 )
: : : ) Bk ) r, then the �rst pair is obtained by repeatedly applying the
implication rule until we reach the query : : : `? xk : r, with xk 62 Lab(�).
With this restriction, we do not need to keep track of the history any more,
but only of the �rst pair. An equivalent formulation is to allow restart from
the initial goal (and its relative label) even if it is implicational, but the
re-evaluation of an implication causes a redundant increase of the database,
that is why we prefer the above formulation.

PROPOSITION 41. If �; � `? x : G; ; succeeds then it succeeds by a
derivation in which every application of restart is restricted restart.

We have omitted the reference to the speci�c proof system P(S), since
of the previous claim does not depend on the speci�c properties of the
predicates AS involved in the de�nition of a proof system P(S). We will
omit the reference to P(S) whenever it is not necessary.

We show some examples of the proof procedure.

EXAMPLE 42. In Figure 4 we show a derivation of

((p) p)) a) b)) (b) c)) a) c.

in P(K). By Proposition 41, we only record the �rst pair for restart, which,
however, is not used in the derivation. As usual in each node we only show
the additional data, if any. Thus the database in each node is given by the
collection of the formulas from the root to that node. Here is an explanation
of the steps: in step (2) � = f(x0; x1)g; in step (3) � = f(x0; x1); (x1; x2)g;
in step (4) � = f(x0; x1); (x1; x2); (x2; x3)g; since AK� (x2; x3), by reduction
w.r.t. x2 : b) c we get (5); since AK� (x1; x2) and AK� (x2; x3), by reduction
w.r.t. x1 : (p ) p) ) a ) b we get (6) and (8). the latter immediately
succeeds as x3 : a 2 �; from (6) we step to (7) which immediately succeeds.

EXAMPLE 43. In Figure 5 we show a derivation of

((((a) a)) p)) q)) p)) p

in P(KBT), we use restricted restart according to Proposition 41. In step
(2), � = f(x0; x1)g. Step (3) is obtained by reduction w.r.t. x1 : (((a )
a) ) p) ) q) ) p, as AKBT� (x1; x1). In step (4) � = f(x0; x1); (x1; x2)g;
step (5) is obtained by restart; step (6) by reduction w.r.t. x2 : (a) a)) p,
as AKBT� (x2; x1); in step (7) � = f(x0; x1); (x1; x2); (x1; x3)g and the query
immediately succeeds.

In order to prove soundness and completeness, we need to give a formal
meaning to queries, i.e. to de�ne when a query is valid. We �rst introduce
a notion of realization of a database in a model to give a semantic meaning
to databases.

DEFINITION 44 (Realization and validity). Let AS be an accessibility
predicate, given a database (�; �) and a Kripke model M = (W;R; V ),
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(1) `? x0 : ((p) p)) a) b)) (b) c)) a) c

(2) x1 : (p) p)) a) b; � `? x1 : (b) c)) a) c

(3) x2 : b) c; � `? x2 : a) c

(4) x3 : a; � `? x3 : c

(5) � `? x3 : b; (x3; c)

(6) � `? x2 : p) p; (x3; c)

(7) x4 : p; � [ f(x2; x4)g `? x4 : p; (x3; c)

��� PPP
(8) � `? x3 : a; (x3; c)

Figure 4. Derivation for Example 42.

(1) `? x0 : ((((a) a)) p)) q)) p)) p

(2) x1 : (((a) a)) p)) q)) p; � `? x1 : p

(3) x1 : (((a) a)) p)) q)) p; � `? x1 : ((a) a)) p)) q; (x1;p)

(4) x1 : (((a) a)) p)) q)) p; x2 : (a) a)) p; � `? x2 : q; (x1;p)

(5) x1 : (((a) a)) p)) q)) p; x2 : (a) a)) p; � `? x1 : p; (x1;p)

(6) x1 : (((a) a)) p)) q)) p; x2 : (a) a)) p; � `? x1 : a) a; (x1;p)

(7) x1 : (((a) a)) p)) q)) p; x2 : (a) a)) p; x3 : a; � `? x3 : a; (x1;p)

Figure 5. Derivation for Example 43.
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a mapping f : Lab(�) ! W is called a realization of (�; �) in M with
respect to AS, if the following hold:

1. AS�(x; y) implies f(x)Rf(y);

2. if x : A 2 �, then M; f(x) j= A.

We say that a query Q = � ; � `? x : G;H is valid in S if for every
S-model M and every realization f of (�; �), we have either M; f(x) j= G,
or for some (y; r) 2 H , M; f(y) j= r.

The soundness of the proof procedure can be proved easily by induction
on the length of the computation.

THEOREM 45 (Soundness). Let Q = �; � `? x : G;H succeed in the
proof system P(S), then it is valid in S.

COROLLARY 46. If x0 : A `? x0 : B; ; succeeds in P(S) , then A j=S B
holds. In particular, if `? x0 : A; ; succeeds in P(S), then A is valid in S.

To prove completeness we proceed in a similar way to what we did for
intuitionistic logic. First we show that cut is admissible. Then we prove
completeness by a sort of canonical model construction. The cut rule states
the following: let x : A 2 �, then if (1) � ` y : B and (2) � ` z : A
succeed, we can `replace' x : A by � in � and get a successful query from
(1). Since there are labels and accessibility predicates, we must be careful.
There are two points to clarify. First, we need to de�ne the involved notion
of substitution. Furthermore the proof systems P(S) depend uniformly on
predicate AS, and we expect that the admissibility of cut depends on the
properties of predicate AS. It turns out that the admissibility of cut (stated
in Theorem 48) holds for every proof system P(S), such that AS satis�es
the following conditions:

� (i) AS is closed under substitution of labels;

� (ii) AS�(x; y) implies AS�[�(x; y);

� (iii) AS�(u; v) implies 8x y (AS�[f(u;v)g(x; y)$ AS�(x; y)).

These conditions ensure the following properties.

PROPOSITION 47.

(a) If �; � `? x : C;H succeeds then also �[u=v]; �[u=v] `? x[u=v] :
C;H [u=v] succeeds.

(b) If AS�(x; y) and �; �[f(x; y)g `? u : G;H succeed, then also �; � `?

u : G;H succeeds.
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We say that two databases (�; �), (�; �) are compatible for substitution,11

if

for every x 2 Lab(�) \ Lab(�), for all formulas C, x : C 2 � ,
x : C 2 �.

If (�; �) and (�; �) are compatible for substitution, x : A 2 �, and y 2
Lab(�), we denote by

(�; �)[x : A=�; �; y] = (�� fx : Ag [�; �[x=y] [ �).

the database which results by replacing x : A in (�; �) by (�; �) at point y.

At this point we can state precisely the result about cut.

THEOREM 48 (Admissibility of cut). Let predicate AS satisfy the condi-
tions (i), (ii), (iii) above. If the following queries succeed in the proof system
P(S) :

1. �[x : A] `? u : B;H1

2. �; � `? y : A;H2.

and (�; �) and (�; �) are compatible for substitution, then also

3. (�; �)[x : A=�; �; y] `? u[x=y] : B;H1[x=y] [H2 succeeds in P(S) .

The proof proceeds similarly to the one of Theorem 10 and is given in
[Gabbay and Olivetti, 2000]. From the theorem we immediately have the
following two corollaries.

COROLLARY 49. Under the same conditions as above, if x : A `? x : B
succeeds and x : B `? x : C succeeds then also x : A `? x : C succeeds.

COROLLARY 50. If K 2 S � fK;4;5;B;Tg, then in the proof system
P(S) cut is admissible.

As we have said, we can prove the completeness by a sort of canonical
model construction, which is less constructive of the one of Theorem 9. The
following properties will be used in the completeness proof.

PROPOSITION 51.

� (Identity) If x : A 2 �, then �; � `? x : A;H succeeds.

� (Monotony) If Q = �; � `? x : C;H succeeds and � � �, � � �,
H � H 0, then also �; � `? x : C;H 0 succeeds.

11This condition is not necessary if we allow the occurrence of several formulas with
the same label in a database, as we will do in Section 4.3 when we add conjunction.
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THEOREM 52 (Completeness). Given a query Q = �; � `? x : A;H, if
Q is S-valid then Q succeeds in the proof system P(S).

Proof. By contraposition, we prove that if Q = �; � `? x : A;H does
not succeed in one proof system P(S), then there is an S-model M and
a realization f of (�; �), such that M; f(x) 6j= A and for any (y; r) 2 H ,
M; f(y) 6j= r.

We construct an S-model by extending the database, through the evalu-
ation of all possible formulas at every world (each represented by one label)
of the database. Since such evaluation may lead, for implication formulas,
to create new worlds, we must carry on the evaluation process on these new
worlds. Therefore, in the construction we consider an enumeration of pairs
(xi; Ai), where xi is a label and Ai is a formula.

Assume �; � `? x : A;H fails in P(S). We let A be a denumerable
alphabet of labels and L be the underlying propositional language. Let
(xi; Ai), for i 2 ! be an enumeration of pairs of A � L, starting with the
pair (x;A) and containing in�nitely many repetitions, that is

(x0; A0) = (x;A);
8y 2 A;8F 2 L;8n 9m > n (y; F ) = (xm; Am):

Given such enumeration we de�ne (i) a sequence of databases (�n; �n), (ii)
a sequence of histories Hn, (iii) a new enumeration of pairs (yn; Bn), as
follows:

� (step 0) Let (�0; �0) = (�; �), H0 = H , (y0; B0) = (x;A).

� (step n+1) Given (yn; Bn), if yn 2 Lab(�n) and �n; �n `? yn :
Bn; Hn fails then proceed according to (a) else to (b).

(a) if Bn if atomic, then we set

Hn+1 = Hn [ f(yn; Bn)g,

(�n+1; �n+1) = (�n; �n),

(yn+1; Bn+1) = (xk+1; Ak+1),

where k = maxt�n 9s�n(ys; Bs) = (xt; At),

else let Bn = C ) D, then we set

Hn+1 = Hn,

(�n+1; �n+1) = (�n; �n)�yn (xm : C),

(yn+1; Bn+1) = (xm; D),

where xm = minfxt 2 A j xt 62 Lab(�n) [ Lab(Hn)g.
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(b) We set

Hn+1 = Hn,

(�n+1; �n+1) = (�n; �n),

(yn+1; Bn+1) = (xk+1; Ak+1),

where k = maxft � n j 9s�n(ys; Bs) = (xt; At)g, �

The proof of completeness is made of several lemmas.

LEMMA 53. 8k 9n � k (xk ; Ak) = (yn; Bn).

Proof. By induction on k. If k = 0, the claim holds by de�nition. Let
(xk; Ak) = (yn; Bn).

(i) if yn 62 Lab(�n), or �n; �n `? yn : Bn; Hn succeeds, or Bn is atomic,
then (xk+1; Ak+1) = (yn+1; Bn+1).

(ii) Otherwise, let Bn = C1 ) : : :) Ct ) r, (t > 0), then (xk+1; Ak+1) =
(yn+t+1; Bn+t+1). �

LEMMA 54. For all n � 0, if �n; �n `? yn : Bn; Hn fails, then:

8m � n �m; �m `
? yn : Bn; Hm fails.

Proof. By induction on cp(Bn) = c. if c = 0, that is Bn is an atom, say q,
then we proceed by induction on m � n+ 1.

� (m = n+ 1) we have �n; �n `? yn : q;Hn fails, then also �n; �n `?

yn : q;Hn [ f(yn; q)g fails, whence, by construction,

�n+1; �n+1 `? yn : q;Hn+1 fails.

� (m > n+ 1) Suppose we have proved the claim up to m � n+ 1, and
suppose by way of contradiction that �m; �m `? yn : q;Hm fails, but

(i) �m+1; �m+1 `? yn : q;Hm+1 succeeds.

At step m, (ym; Bm) is considered; it must be ym 2 Lab(�m) and

(ii) �m; �m `? ym : Bm; Hm fails.

We have two cases, according to the form of Bm. If Bm is an atom r,
as (yn; q) 2 Hm, from query (ii) by restart we can step to

�m; �m `? yn : q;Hm [ f(ym; r)g,
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that is the same as �m+1; �m+1 `? yn : q;Hm+1, which succeeds and
we get a contradiction. If Bm = C1 ) : : :) Ck ) r, with k > 0, then
from query (ii) we step in k steps to �m+k; �m+k `? ym+k : r;Hm+k,
where (�m+k; �m+k) = (�m; �m)�ym (ym+1 : C1) �ym+1

: : : �ym+k�1

(ym+k : Ck) and Hm+k = Hm; then, by restart, since (yn; q) 2 Hm+k,
we step to

(iii) �m+k; �m+k `? yn : q;Hm+k [ f(ym+k; r)g.

Since query (i) succeeds, by monotony we have that also query (iii)
succeeds, whence query (ii) succeeds, contradicting the hypothesis.

Let cp(Bn) = c > 0, that is Bn = C ) D. By hypothesis �n; �n `?

yn : C ) D;Hn, fails. Then by construction and by the computation
rules �n+1; �n+1 `? yn+1 : D;Hn+1, fails, and hence, by the induction
hypothesis, 8m � n+ 1,

�m; �m `? yn+1 : D;Hm, fails.

Suppose by way of contradiction that for some m � n+ 1, �m; �m `? yn :
C ) D;Hm, succeeds. This implies that, for some z 62 Lab(�m)[Lab(Hm),

(1) (�m; �m)�yn (z : C) `? z : D;Hm, succeeds.

Since yn+1 : C 2 �n+1 � �m, �n+1 � �m, Hn+1 � Hm, by monotony, we
get

(2) �m; �m `
? yn+1 : C;Hm, succeeds.

The databases involved in queries (1) and (2) are clearly compatible for sub-
stitution, hence by cut we obtain that �m; �m `? yn+1 : D;Hm succeeds,
and we have a contradiction. �

LEMMA 55.

(i) 8m;�m; �m `? x : A;Hm fails, whence

(ii) 8m, if (y; r) 2 Hm, then �m; �m `? y : r;Hm fails.

Proof. Left to the reader. �

LEMMA 56. If Bn = C ) D and �n; �n `? yn : C ) D;Hn fails, then
there is a y 2 A, such that for k � n, y 62 Lab(�k) and 8m > n: (i)
(yn; y) 2 �m, (ii) �m; �m `? y : C;Hm succeeds, (iii) �m; �m `? y :
D;Hm fails.

Proof. By construction, we can take y = yn+1, the new point created at
step n+ 1, so that (i), (ii), (iii) hold for m = n+ 1. In particular
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(*) �n+1; �n+1 `? yn+1 : D;Hn+1 fails.

Since the (�; �m) are not decreasing (w.r.t. inclusion), we immediately have
that (i) and (ii) also hold for every m > n + 1. By construction, we know
that Bn+1 = D, whence by (*) and Lemma 54, (iii) also holds for every
m > n+ 1. �

Construction of the Canonical model

We de�ne an S-model as follows M = (W;R; V ), such that

� W =
S
n Lab(�n);

� xRy � 9nAS�n(x; y),

� V (x) = fq j 9n x 2 Lab(�n) ^ �n; �n `? x : q;Hn succeedsg.

LEMMA 57. The relation R as de�ned above has the same properties of
AS, e.g. if S=S4, that is AS is transitive and reexive, then so is R and
the same happens in all other cases.

Proof. Left to the reader. �

LEMMA 58. for all x 2 W and formulas B,

M;x j= B , 9n x 2 Lab(�n) ^ �n; �n `? x : B;Hn succeeds.

Proof. We prove both directions by mutual induction on cp(B). If B is an
atom then the claim holds by de�nition. Thus, assume B = C ) D.

(() Suppose for some m �m; �m `? x : C ) D;Hm succeeds. Let
xRy and M; y j= C, for some y. By de�nition of R, we have that for some
n1, A

S
�n1

(x; y) holds. Moreover, by the induction hypothesis, for some n2,

�n2 ; �n2 `
? y : C;Hn2 succeeds. Let k = maxfn1; n2;mg, then we have

1. �k; �k `? x : C ) D;Hk succeeds,

2. �k; �k `? y : C;Hk succeeds,

3. AS�k (x; y).

So that from 1. we also have:

10. (�k; �k) �x (z : C) `? z : D;Hk succeeds, (with z 62 Lab(�k) [
Lab(Hk)).

We can cut 10. and 2., and obtain:

�k; �k [ f(x; y)g `? y : D;Hk succeeds.
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Hence, by 3. and Proposition 47(b) we get �k; �k `? y : D;Hk succeeds,
and by the induction hypothesis, M; y j= D,

()) Suppose by way of contradiction that M;x j= C ) D, but for all
n if x 2 Lab(�n), then �n; �n `? x : C ) D;Hn fails. Let x 2 Lab(�n),
then there are m � k > n, such that (x;C ) D) = (xk ; Ak) = (ym; Bm) is
considered at step m+ 1, so that we have:

�m; �m `
? ym : C ) D;Hm fails.

By Lemma 56, there is a y 2 A, such that (a) for t � m, y 62 Lab(�t) and
(b): 8m0 > m (i) (yn; y) 2 �m0 , (ii) �m0 ; �m0 `? y : C;Hm0 succeeds, (iii)
�m0 ; �m0 `? y : D;Hm0 fails.
By (i) we have xRy holds, by (ii) and the induction hypothesis, we have
M; y j= C. By (a) and (iii), we get: 8n if y 2 Lab(�n), then �n; �n `? y :
D;Hn fails. Hence, by the induction hypothesis, we have M; y 6j= D, and
we get a contradiction. �

Proof of The Completeness Theorem, 52. We are now able to conclude
the proof of the completeness theorem. Let f(z) = z, for every z 2 Lab(�0),
where (�0; �0) = (�; �) is the original database. It is easy to see that f is
a realization of (�; �) in M : if AS�(u; v) then AS�0(u; v), hence f(u)Rf(v).
If u : C 2 � = �0, then by identity and the previous lemma we have
M; f(u) j= C. On the other hand, by Lemma 55, and the previous lemma
we have M; f(x) 6j= A and M; f(y) 6j= r for every (y; r) 2 H . This concludes
the proof. �

By the previous theorem we immediately have the corollary.

COROLLARY 59. If A j=S B holds, then A `? x0 : B; ;, succeeds in
P(S). In particular, if A is valid in the modal system S, then `? x0 : A; ;,
succeeds in P(S) .

4.2 Simpli�cation for speci�c systems

In this section we show that for most of the modal logics we have considered,
the use of labelled databases is not necessary and we can simplify either the
structure of databases, or the deduction rules.

If we want to check the validity of a formula A, we evaluate A from a
trivial database `? x0 : A; ;. Restricting our attention to computations
from trivial databases, we observe that we can only generate databases
which have the form of trees.

DEFINITION 60. A database (�; �) is called a tree-database if the set of
links � forms a tree.

Let (�; �) be a tree database and x 2 Lab(�), we de�ne the subdatabase
Path(�; �; x) as the list of labelled formulas lying on the path from the root
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of �, say x0, up to x, that is: Path(�; �; x) = (�0; �0), where:

�0 = f(x0; x1); (x1; x2); : : : ; (xn�1; xn) j xn = x

and for i = 1; : : : ; n; (xi�1; xi) 2 �g

�0 = fy : A 2 � j y 2 Lab(�0)g:

PROPOSITION 61. If a query Q occurs in any derivation from a trivial
database, then Q = �; � `? z : B;H, where (�; �) is a tree-database.

From now on we restrict our consideration to tree-databases.

Simpli�cation for K, K4, S4, KT: Databases as Lists

For systems K, K4, S4, KT the proof procedure can be simpli�ed in the
sense that: (i) the databases are lists of formulas, (ii) the restart rule is not
needed. The key fact is expressed by the following theorem.

THEOREM 62. If �; � `? x : A; ; succeeds, then Path(�; �; x) `? x :
A; ; succeeds without using restart.

Intuitively, only the formulas laying on the path from the root to x : A
can be used in a proof of �; � `? x : A; ;. The reason why restart is not
needed is related: a restart step, say a restart from x : q, is useful only if we
can take advantage of formulas at worlds created after the �rst call of x : q
by means of the evaluation of an implicational goal. But these new worlds
(being new) do not lay on the path from the root to x : q, thus they can be
ignored and so can the restart step.

By virtue of this theorem we can reformulate the proof system for logics
from K to S4 as follows. A database is simply a list of formulas A1; : : : ; An,
which stands for the labelled database (fx1 : A1; : : : ; xn : Ang; �), where
� = f(x1; x2); : : : (xn�1; xn)g. A query has the form:

A1; : : : ; An `
? B

which represents fx1 : A1; : : : ; xn : Ang; � `? xn : B. The history has
been omitted since restart is not needed. Letting � = A1; : : : ; An, we refor-
mulate the predicates AS as relations between formulas within a database
AS(�; Ai; Aj), in particular we can de�ne:

AK(�; Ai; Aj) � i+ 1 = j

AKT(�; Ai; Aj) � i = j _ i+ 1 = j

AK4(�; Ai; Aj) � i < j

AS4(�; Ai; Aj) � i � j

The rules become:

� (success) � `? q succeeds if � = A1; : : : ; An, and An = q;



GOAL-ORIENTED DEDUCTIONS 245

� (implication) from � `? A) B step to �; A `? B;

� (reduction) from � `? q step to �i `
? Di, for i = 1; : : : ; k,

if there is a formula Aj = D1 ) : : : ) Dk ) q 2 �, and there are
integers j = j0 � j1 � : : : � jk = n, such that

i = 1; : : : ; k, AS(�; Aji�1 ; Aji) holds and �i = A1; : : : ; Aji .

EXAMPLE 63. We show that ((b ) a) ) b) ) c ) (b ) a) ) a is a
theorem of S4.

`? ((b) a)) b)) c) (b) a)) a

(b) a)) b `? c) (b) a)) a

(b) a)) b; c `? (b) a)) a

(b) a)) b; c; b) a `? a reduction w.r.t. b) a (1)

(b) a)) b; c; b) a `? b reduction w.r.t. (b) a)) b (2)

(b) a)) b; c; b) a `? b) a

(b) a)) b; c; b) a; b `? a reduction w.r.t. b) a

(b) a)) b; c; b) a; b `? b:

This formula fails in both KT and K4, and therefore also fails in K:
reduction at step (1) is allowed in KT but not in K4; on the contrary,
reduction at step (2) is allowed in K4 but not in KT.

Simpli�cation for K5, K45, S5: Databases as Clusters

We can also give an unlabelled formulation of logics K5, K45, S5. The
simpli�cation is allowed by the fact that we can de�ne explicitly the acces-
sibility relation.

PROPOSITION 64. Let Q = �; � `? x : G;H be any query which occurs
in a P(K5) deduction from a trivial database x0 : A `? x0 : B;H0. Let
RK5� (x; y) be de�ned as follows:

RK5� (x; y) � (x = x0 ^ (x0; y) 2 �)

_ (fx; yg � Lab(�) ^ x 6= x0 ^ y 6= x0):

Then we have RK5� (x; y) � AK5� (x; y).

COROLLARY 65. Under the same conditions as the last proposition, we
have:

RK5� (x0; x) and RK5� (x0; y) implies x = y.

PROPOSITION 66. Let Q = �; � `? x : G;H be any query which occurs
in a P(K45) deduction from a trivial database x0 : A `? x0 : B;H0. Let
RK45� (x; y) be de�ned as follows:
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RK45� (x; y) � fx; yg � Lab(�) ^ y 6= x0.

Then we have RK45� (x; y) � AK45� (x; y).

PROPOSITION 67. Let Q = �; � `? x : G;H be any query which occurs
in a P(S5) deduction from a trivial database x0 : A `? x0 : B;H0. Let
RS5� (x; y) be de�ned as follows:

RS5� (x; y) � fx; yg � Lab(�).

Then we have RS5� (x; y) � AS5� (x; y).

From the previous propositions we can reformulate the proof systems for
K5, K45 and S5 without making use of labels. For K5 the picture is as
follows: either a database contains just one point x0, or there is an initial
point x0 which is connected to another point x1, and any point excluding x0
is connected to any other. In the case of K45, x0 is connected also to any
point other than itself. Thus, in order to get a concrete structure without
labels we must keep distinct the initial world from all the others, and we
must indicate what is the current world, that is the world in which the goal
formula is evaluated. In case of K5 we must also identify the (only) world
to which the initial world is connected. We are thus led to consider the
following structure.

A non-empty database has the form:

� = B0 j j or � = B0 j B1; : : : ; Bn j Bi, where 1 � i � n,

and B0; B1; : : : ; Bn are formulas. We also de�ne

Actual(�) =

(
B0 if � = B0 j j;

Bi if � = B0 j B1; : : : ; Bn j Bi:

This rather odd structure is forced by the fact that in K5 and K45 we have
reexivity in all worlds, except in the initial one and therefore, in contrast
to all other systems, we have considered so far, the success of

`? x0 : A) B, which means that A) B is valid,

does not imply the success of

x0 : A `? x0 : B, which means that A ! B is valid (material
implication).12

The addition operation is de�ned as follows:

��A =

8><
>:

B0 j B1; : : : ; Bn; A j A if � = B0 j B1; : : : ; Bn j Bi

B0 j A j A if � = B0 j j

> j A j A if � = ;

12In these two systems the validity of 2C does not imply the validity of C, as it holds
for all the other systems considered in this section.
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A query has the form

� `? G;H , where H = f(A1; q1); : : : ; (Ak ; qk)g, with Aj 2 �.

DEFINITION 68 (Deduction Rules for K5 and K45).
Given � = B0 j B1; : : : ; Bn j B, let

AK5(�; X; Y ) � (X = B0 ^ Y = B1)

_ (X = Bi ^ Y = Bj ^ i; j > 0) and

AK45(�; X; Y ) � (X = Bi ^ Y = Bj with j > 0)

� (success) � `? q;H succeeds if Actual(�) = q.

� (implication) From � `? A) B;H step to ��A `? B;H .

� (reduction) if � = B0 j B1; : : : ; Bn j B and C = D1 ) : : : ) Dk )
q 2 �, from � `? G;H step to

B0 j B1; : : : ; Bn j Ci `? Di; H [ f(B; q)g for i = 1; : : : ; k,

for some C0; : : : ; Ck 2 �, such that C0 = C, Ck = Bn, and
AK5(�; Ci�1; Ci) (respectively AK45(�; Ci�1; Ci)) holds.

� (restart) If � = B0 j B1; : : : ; Bn j Bi and (Bj ; r) 2 H , with j > 0,
then from � `? q;H , step to

B0 j B1; : : : ; Bn j Bj `? r;H [ f(Bi; q)g,

According to the above discussion, we observe that the check of the validity
of j= A) B, corresponds to the query

; `? A) B; ;,

which (by the implication rule) is reduced to the query

> j A j A `? B; ;.

This is di�erent from checking the validity of A ! B (! is the material
implication), which corresponds to the query

A j j `? B; ;.

The success of the former query does not imply the success of the latter.
For instance in K5,

6j= (> ) p)! p and indeed > ) p j j `? p; ; fails.
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On the other hand we have

j= (> ) p) ) p and indeed > j > ) p j > ) p `? p; ;
succeeds.

The reformulation of the proof system for S5 is similar, but simpler. In
the case of S5, there is no need to keep the �rst formula/world apart from
the others. Thus, we may simply de�ne a non-empty database as a pair
� = (S;A), where S is a set of formulas and A 2 S. If � = (S;A), we let

Actual(�) = A and ��B = (S [ fBg; B).

For � = ;, we de�ne ;�A = (fAg; A). With these de�nitions the rules are
similar to those of K5 and K45, with the following simpli�cations:

� (reduction) if � = (S;B) and C = D1 ) : : : ) Dk ) q 2 �, then
from � `? G;H step to

(S;Ci) `? Di; H [ f(B; q)g, where for i = 1; : : : ; k Ci 2 �
and Ck = B.

� (restart) If � = (S;B) and (C; r) 2 H , then from (S;B) `? q;H ,
step to

(S;C) `? r;H [ f(B; q)g,

EXAMPLE 69. In Figure 6 we show a derivation of the following formula
in S5

((a) b)) c)) (a) d) c)) (d) c).

In the derivation we make use of restricted restart, according to Proposition
41. A brief explanation of the derivation: step (5) is obtained by reduction
w.r.t. (a) b)) c, step (7) by restart, steps (8) and (9) by reduction w.r.t.
a) d) c, and they both succeed immediately.

4.3 Extending the language

In this section we extend the proof procedures to broader fragments. We
�rst consider a simple extension allowing conjunction. To handle conjunc-
tion in the labelled formulation, we simply drop the condition that a label x
may be attached to only one formula, thus formulas with the same label can
be thought as logically conjuncted. In the unlabelled formulation, for those
systems enjoying such a formulation, the general principle is to deal with
sets of formulas, instead of single formulas. A database will be a structured
collection of sets of formulas, rather than a collection of formulas. The
structure is always the same, but the constituents are now sets. Thus, in
the cases of K, KT, K4 and S4, databases will be lists of sets of formulas,
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(1) `? ((a) b)) c)) (a) d) c)) d) c

(2) f(a) b)) cg; (a) b)) c `? (a) d) c)) d) c

(3) f(a) b)) c; a) d) cg; a) d) c `? d) c

(4) f(a) b)) c; a) d) c; dg; d `? c

(5) f(a) b)) c; a) d) c; dg; d `? a) b; (d; c)

(6) f(a) b)) c; a) d) c; d; ag; a `? b; (d; c)

(7) f(a) b)) c; a) d) c; d; ag; d `? c; (d; c)

(8) f(a) b)) c;

a) d) c; d; ag;
a `? a; (d; c)

(9) f(a) b)) c;

a) d) c; d; ag,
d `? d; (d; c)

Figure 6. Derivation for Example 69.

whereas in the cases of K5, K45 and S5, they will be clusters of sets of
formulas.

A conjunction of formulas is interpreted as a set, so that queries may
contain sets of goal formulas.

A formula A of language L(^;)) is in normal form if it is an atom or
has form:^

i

[Si1 ) : : :) Sini ) qi]

where Sij are conjunctions of formulas in normal form. In all modal logics
considered in this section (formulated L(^;))) it holds that every formula
has an equivalent one in normal form.

We simplify the notation for NF formulas and replace conjunctions with
sets. For example the NF of (b) (c ^ d)) ) (e ^ f)) ^ ((g ^ h)) (k ^ u))
is the set containing the following formulas:

fb) c; b) dg ) e; fb) c; b) dg ) f; fg; hg ) k; fg; hg ) u:
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For the deduction procedures all we have to do is to handle sets of formulas.
We de�ne, for x 2 Lab(�) [ Lab(H), y 62 Lab(�) [ Lab(H) and �nite set of
formulas S = fD1; : : : ; Dtg,

(�; �) �x y : S = (� [ fy : D1; : : : ; y : Dtg; � [ f(x; y)g),

then we change the (implication) rule in the obvious way:

from �; � `? x : S ) B;H ,

step to

(�; �) �x y : S `? y : B;H ,

where S is a set of formulas in NF and y 62 Lab(�), and we add a rule for
proving sets of formulas:

from (�; �) `? x : fB1; : : : Bkg; H

step to

(�; �) `? x : Bi; H for i = 1; : : : ; k.

Regarding the simpli�ed formulations without labels, the structural restric-
tions in the rules (reduction and success) are applied to the sets of formulas,
which are now the constituents of databases, considered as units; the history
H , when needed, becomes a set of pairs (Si; Ai), where Si is a set and Ai is
a formula. The property of restricted restart still holds for this formulation.

We can extend further extend the L();^)-fragment in two directions.
In one direction, we can de�ne a modal analogue of Harrop formulas for
intuitionistic logic that we have introduced in Section 3.7. This extension is
relevant for logic programming applications [Giordano et al., 1992; Giordano
and Martelli, 1994]. In the other direction, we can de�ne a proof system for
the whole propositional modal language via a translation into an implicative
normal form.

Modal Harrop formulas

We can de�ne a modal analogue of Harrop formulas by allowing disjunction
of goals and local clauses of the form

G! q,

where! denotes ordinary (material) implication. We call them `local', since
x : G! q can be used only in world x to reduce the goal x : q and it is not
usable/visible in any other world. It is `private' to x, whereas the `global'
clause G ) q can be used to reduce q in any world y accessible from x. It
is not a case that modalities have been used to implement visibility rules
and structuring mechanisms in logic programming [Giordano et al., 1992;
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Giordano and Martelli, 1994]. In order to de�ne a modal Harrop fragment
we distinguish D-formulas, which are the constituents of databases, and G-
formulas which can occur as goals. The former are further distinct in modal
D-formulas (MD) and local D-formulas (LD).

LD := G! q,

MD := > j q j G)MD,

D := LD jMD,

CD := D j CD ^ CD;

G := > j q j G ^G j G _G j CD ) G.

We also use 2G and 2D as syntactic sugar for > ) G and > ) D. Notice
that atoms are both LD- and MD-formulas (as > ! q � q); moreover, any
non-atomic MD-formula can be written as G1 ) : : : ) Gk ) q. Finally,
CD formulas are just conjunction of D-formulas.

For D- and G-formulas as de�ned above we can easily extend the proof
procedure. We give it in the most general formulation for labelled databases.
It is clear that one can derive an unlabelled formulation for systems which
allow it, as explained in the previous section. In the labelled formulation,
queries have the form

�; � `? x : G;H

where � is a set of D-formulas, G is a G-formula, and H = f(x1; G1); : : : ;
(xk; Gk)g, where Gi are G-formulas. The additional rules are:

� (true) �; � `? x : >; H immediately succeeds.

� (local-reduction) From �; � `? x : q;H step to

�; � `? x : G;H [ f(x : q)g

if x : G! q 2 �.

� (and) From �; � `? x : G1 ^G2; H step to

�; � `? x : G1; H and �; � `? x : G2; H .

� (or) From �; � `? x : G1 _G2; H step to

�; � `? x : G1; H [ f(x;G2)g or to �; � `? x : G2; H [ f(x;G1)g:

EXAMPLE 70. Let � be the following database

x0 : [(2p) s) ^ b]! q,
x0 : ([(p) q) ^ 2a]) r)! q,
x0 : a! b.
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(1) � `? x0 : q; ;

(2) `? x0 : [(p) q) ^2a]) r; (x0; q)

(3) x1 : p) q; x1 : 2a; f(x0; x1)g `? x1 : r; (x0; q)

(4) `? x0 : q; (x0; q)

(5) `? x0 : 2p) s; (x0; q)

(6) x2 : 2p; f(x0; x1); (x0; x2)g `? x2 : s; (x0; q)

(7) `? x0 : q; (x0; q)

(8) `? x0 : p; (x0; q)

(9) `? x0 : >; (x0; q)

��
�� PPPP

(10) `? x0 : b; (x0; q)

(11) `? x0 : a; (x0; q)

(12) `? x0 : >; (x0; q)

Figure 7. Derivation for Example 70.

We show that �; ; `? x0 : q; ; succeeds in the proof system for KB and
this shows that the formulaV

�! q is valid in KB.

A derivation is shown in Figure 7. The property of restricted restart still
holds for this fragment, thus we do not need to record the entire history,
but only the �rst pair (x0; q). At each step we only show the additional
data introduced in that step. A quick explanation of the steps: step (2) is
obtained by local reduction w.r.t. x0 : ([(p) q)^2a]) r) ! q, step (4) by
restart, steps (5) and (10) by local reduction w.r.t. x0 : [(2p) s) ^ b]! q,
step (7) by restart, step (8) by reduction w.r.t. x1 : p ) q since letting
� = f(x0; x1); (x0; x2)g AKB� (x1; x0) holds; step (9) is obtained by reduction
w.r.t. x2 : 2p (= > ) p) since RKB� (x2; x0) holds, step (11) by local
reduction w.r.t. x0 : a! b, step (12) by reduction w.r.t. x1 : 2a (= >) a)
since RKB� (x1; x0) holds.

The soundness and completeness results can be extended to this fragment.

THEOREM 71. � `? G;H succeeds in P(S) if and only if it is valid.



GOAL-ORIENTED DEDUCTIONS 253

Extension to the whole propositional language

We can easily extend the procedure to the whole propositional modal lan-
guage: we just consider the computation procedure for classical logic and
we combine it with the modal procedure for L();^). To minimize the
work, we can introduce a simple normal form on the set of connectives
();!;^;>;?). It is obvious that this set forms a complete base for modal
logic. The normal form is an immediate extension of the normal form for
);^.

PROPOSITION 72. Every modal formula over the language (!;:;3;2)
is equivalent to a set (conjunction) of NF-formulas of the form

S0 ! (S1 ) (S2 ) : : :) (Sn ) q) : : :)

where q is an atom, >, or ?, n � 0, and each Si is a conjunction (set) of
NF-formulas.

As usual we omit parentheses, so that the above will be written as

S0 ! S1 ) S2 ) : : :) Sn ) q.

In practice we will replace the conjunction by the set notation as we wish.
When we need it, we distinguish two types of NF-formulas, (i) those with
non-empty S0, which are written as above, and (ii) those with empty S0,
which are simpli�ed to S1 ) S2 ) : : :) Sn ) q. For a quick case analysis,
we can also say that type (i) formulas have the form S ! D, and type (ii)
have the form S ) D, where D is always of type (ii).

For instance, the NF-form of p! 3r is

(p ^ (r ) ?))! ?, or equivalently fp; r ) ?g ! ?.

This formula has the structure S0 ! q, where S0 = fp; r ) ?g and q = ?.
The NF-form of 2(3a! 3(b^ c)) is given by ((a) ?)! ?)) ((b^ c))
?)) ?. We give below the rules for queries of the form

�; � `? x : G;H ,

where � is a labelled set of NF-formulas, G is a NF-formula, � is a set of
links (as usual), H is a set of pairs f(x1; q1); : : : (xk ; qk)g, where qi is an
atom.

DEFINITION 73 (Deduction rules for whole modal logics). For each modal
system S, the corresponding proof system, denoted by P(S), comprises the
following rules, parametrized to predicates AS.

� (success) �; � `? x : q;H immediately succeeds if q is an atom and
x : q 2 �.

� (strict implication) From �; � `? x : S ) D;H step to
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(�; �) �x (y : S) `? y : D;H ,

where y 62 Lab(�) [ Lab(H).

� (implication) From �; � `? x : S ! D;H step to

� [ fx : A j A 2 Sg; � `? x : D;H .

� (reduction) If y : C 2 �, with C = S0 ! S1 ) S2 ) : : : ) Sk ) q,
with q atomic, then from

�; � `? x : q;H

step to

�; � `? u0 : S0; H
0

�; � `? u1 : S1; H
0

...
�; � `? uk : Sk; H

0

where H 0 = H if q = ?, and H 0 = H [ f(x; q)g otherwise, for some
u0; : : : ; uk 2 Lab(�), such that u0 = y, uk = x, and

AS�(ui; ui+1) holds, for i = 0; : : : ; k � 1.

� (restart) If (y; r) 2 H , then, from �; � `? x : q;H , with q atomic,
step to

�; � `? y : r;H [ f(x; q)g.

� (falsity) From �; � `? x : q;H , if y 2 Lab(�) step to

�; � `? y : ?; H [ f(x : q)g.

� (conjunction) From (�; �) `? x : fB1; : : : Bkg; H step to

(�; �) `? x : Bi; H for i = 1; : : : ; k.

If the number of subgoals is 0, i.e. k = 0, the above reduction rule becomes
the rule for local clauses of the previous section. On the other hand if S0 = ;,
then the query with goal S0 is omitted and we have the rule of Section 4.1.

The proof procedure is sound and complete, as asserted in the next the-
orem, and the completeness proof is just a minor extension of the one of
Theorem 52.

THEOREM 74. �;  `? x : G;H succeeds if and only if it is valid.

EXAMPLE 75. In K5 we have 3p ! 23p. This is translated as
((p) ?) ! ?) ! ((p ) ?) ) ?). Below we show a derivation. Some
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explanation and remarks: at step (1) we can only apply the rule for falsity,
or reduction w.r.t. y : p) ?, since AK5� (x0; y) implies AK5� (y; y). We apply
the rule for falsity. The reduction at step (2) is legitimate as AK5� (x0; y)
and AK5� (x0; z) implies AK5� (y:z).

`? x0 : ((p) ?)! ?)! ((p) ?)) ?
x0 : (p) ?)! ? `? x0 : (p) ?)) ?
y : p) ?; � = f(x0; y)g `? y : ? (1)

`? x0 : ? rule for ?
`? x0 : p) ?

z : p; � = f((x0; y); (x0; z)g `? z : ? (2)
`? z : p

success

This proof procedure is actually a minor extension of the one based on
strict-implication/conjunction. The rule for falsity may be source of non-
determinism, as it can be applied to any label y. Further investigation
should clarify to what extent this rule is needed and if it is possible to
restrict its applications to special cases. Another point which deserve inves-
tigation is termination. The proof procedure we have described may not ter-
minate. The two standard techniques to ensure termination, loop-checking
and diminishing-resources, could be possibly applied in this context. Again
further investigation is needed to clarify this point, taking into account the
kwnon results (see [Vigan�o, 1999; Heudering et al., 1996]).

4.4 Some history

Many authors have developed analytic proof methods for modal logics, (see
the fundamental book by Fitting [1983], and Gor�e [1999] for a recent and
comprehensive survey).

The use of goal-directed methods in modal logic has not been fully
explored. The most relevant work in this area is the one by Giordano,
Martelli and colleagues [Giordano et al., 1992; Giordano and Martelli, 1994;
Baldoni et al., 1998] who have developed goal-directed methods for frag-
ments of �rst-order (multi-)modal logics. Their work is motivated by sev-
eral purposes: introducing scoping constructs (such as blocks and modules)
in logic programming, representing epistemic and inheritance reasoning. In
particular in [Giordano and Martelli, 1994] a family of �rst-order logic pro-
gramming languages is de�ned, based on the modal logic S4 with the aim
of representing a variety of scoping mechanisms. If we restrict our consid-
eration to the propositional level, their languages are strongly related to
the one de�ned in Section 4.3 in the case the underlying logic is S4. The
largest (propositional) fragment of S4 they consider, called L4, is very close
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to the one de�ned in the previous Section for modal-Harrop formulas, al-
though neither one of the two is contained in the other. The proof procedure
they give for L4 (at the propositional level) is essentially the same as the
unlabelled version of P(S4) for modal Harrop formulas.

Abadi and Manna [1989] have de�ned an extension of PROLOG, called
TEMPLOG based on a fragment of �rst-order temporal logic. Their lan-
guage contains the modalities 3, 2, and the temporal operator  (next).
They introduce a notion of temporal Horn clause whose constituents are
atoms B possibly pre�xed by an arbitrary sequence of next, i.e. B � kA
(with k � 0). The modality 2 is allowed in front of clauses (permanent
clauses) and clause-heads, whereas the modality 3 is allowed in front of
goals. The restricted format of the rules allows one to de�ne an eÆcient
and simple goal-directed procedure without the need of any syntactic struc-
turing or labelling. An alternative, although related, extension based on
temporal logic has been studied in [Gabbay, 1987].

Farin~as in [1986] describes MOLOG a (multi)-modal extension of PRO-
LOG. His proposal is more a general framework than a speci�c language,
in the sense that the language can support di�erent modalities governed
by di�erent logics. The underlying idea is to extend classical resolution by
special rules of the following pattern: let B;B0 be modal atoms (i.e. atomic
formulas possibly pre�xed by modal operators), then if G ! B is a clause
and B0 ^ C1 ^ : : : ^ Ck is the current goal, and

(*) j=S B � B0 holds

then the goal can be reduced to G^C1 ^ : : :^Ck. It is clear that the e�ec-
tiveness of the method depends on how diÆcult it is to check (*); in case of
conventional logic programming the (*) test is reduced to uni�cation. The
proposed framework is exempli�ed in [Farin~as, 1986] by de�ning a multi-
modal language based on S5 with necessity operators such as Knows(a).
In this case one can de�ne a simple matching predicate for the test in (*),
and hence an e�ective resolution rule.

In general, we can distinguish two paradigms in proof systems for modal
logics: on the one hand we have implicit calculi in which each proof con-
�guration contains a set of formulas implicitly representing a single pos-
sible world; the modal rules encodes the shifts of world by manipulating
sets of formulas and formulas therein. On the other hand we have ex-
plicit methods in which the possible world structure is explicitly repre-
sented using labels and relations among them; the rules can create new
worlds, or move formulas around them. In between there are `intermediate'
proof methods which add some semantic structure to at sequents, but they
do not explicitly represent a Kripke model [Masini, 1992; Wansing, 1994;
Gor�e, 1999].

The use of labels to represent worlds for modal logics is rather old and
goes back to Kripke himself. In the seminal work [Fitting, 1983] formulas
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are labelled by strings of atomic labels (world pre�xes), which represent
paths of accessible worlds. The rules for modalities are the same for every
system: for instance if a branch contains � : 2A, and �0 is accessible from �,
then one can add �0 : A to the same branch. For each system, there are some
speci�c accessibility conditions on pre�xes which constraint the propagation
of modal formulas. This approach has been recently improved by Massacci
[1994]. Basin, Mattews and Vigan�o have developed a proof-theory for modal
logics making use of labels and an explicit accessibility relation [Basin et al.,
1997a; Basin et al., 1999; Vigan�o, 1999]. A related approach was presented
in [Gabbay, 1996] and [Russo, 1996]. These authors have developed both
sequent and natural deduction systems for several modal logics which are
completely uniform.

If we forget the goal-directed feature the proof methods presented in this
section clearly belongs to the `explicit'-calculi tradition in their labelled
version, and to the `intermediate'-calculi tradition calculi in their unlabelled
version. The sequence of (sets of) formulas represent a sequence of possible
worlds. It is not a case that the unlabelled version of K is strongly related
to the two-dimensional sequent calculus by Masini [1992].

5 SUBSTRUCTURAL LOGICS

5.1 Introduction

In this section we consider substructural logics. The denomination sub-
structural logics comes from sequent calculi terminology. In sequent calculi,
there are rules which introduce logical operators and rules which modify the
structure of sequents. The latter are called the structural rules. In case of
classical and intuitionistic logic these rules are contraction, weakening and
exchange. Substructural logics restrict or allow a �ner control on structural
rules. More generally, substructural logics restricts the use of formulas in
a deduction. The restrictions may require either that every formula of the
database must be used, or that it cannot be used more than once, or that
it must be used according to a given ordering of database formulas.

We present the systems of substructural logics, restricted to their implica-
tional fragment, by means of a Hilbert axiomatization and a possible-world
semantics.

DEFINITION 76 (Axiomatization of implication). We consider the fol-
lowing list of axioms:

(id) A! A;

(h1) (B ! C)! (A! B)! A! C;

(h2) (A! B)! (B ! C)! A! C;
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(h3) (A! A! B)! A! B;

(h4) (A! B)! ((A! B)! C)! C;

(h5) A! (A! B)! B;

(h6) A! B ! B.

Together with the following rules:

A! B A
(MP )

B

A! B
(Su� ):

(B ! C)! A! C

Each system is axiomatized by taking the closure under modus ponens (MP)
and under substitution of the combinations of axioms/rules of Table 3.

Table 3. Axioms for substructural implication.

Logic Axioms
FL (id), (h1), (Su�)
T-W (id), (h1), (h2)
T (id), (h1), (h2), (h3)
E-W (id), (h1), (h2), (h4)
E (id), (h1), (h2), (h3), (h4)
L (id), (h1), (h2), (h5)
R (id), (h1), (h2), (h3), (h5)
BCK (id), (h1), (h2), (h5), (h6)
I (id), (h1), (h2), (h3), (h5), (h6)

In the above axiomatization, we have not worried about the minimality
and independence of the group of axioms for each system. For some systems
the corresponding list of axioms given above is redundant, but it quickly
shows some inclusion relations among the systems. We just remark that
in presence of (h4), (h2) can be obtained by (h1). Moreover, (h4) is a
weakening of (h5). The rule of (Su�) is clearly obtainable from (h2) and
(MP). To have a complete picture we have included also intuitionistic logic
I, although the axiomatization above is highly redundant (see Section 3.1).

We give a brief explanation of the names of the systems and how they
are known in the literature.13 R is the most important system of relevant

13The names R, E, T, BCK, etc. in this section refer mainly to the implicational
fragment of the logical systems known in the literature [Anderson and Belnap, 1975]
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logic and it is axiomatized by dropping the irrelevant axiom (h6) from the
axiomatization of intuitionistic implication.

The system E combines relevance and necessity. The implication of E
can be read at the same time as relevant implication and strict implication.
Moreover, we can de�ne

2A =def (A! A)! A;

and E interprets 2 the same as S4. E is axiomatized by restricting the
exchange axiom (h5) to implicational formulas (the axiom (h4)).

The weaker T stems from a concern about the use of the two hypotheses
in an inference by Modus Ponens: the restriction is that the minor A must
not be derived `before' the ticket A! B. This is clari�ed by the Fitch-style
natural deduction of T, for which we refer to [Anderson and Belnap, 1975].

BCK is the system which result from intuitionistic implicational logic
by dropping contraction. L rejects both weakening and contraction and it
is the implicational fragment of linear logic [Girard, 1987] (also commonly
known as BCI logic).

We will also consider contractionless versions of E and T, , namely E-

Wand T-W respectively.

The weakest system we consider is FL,14 which is related to the right
implicational fragment of Lambek calculus. This system rejects all sub-
structural rules.

We will mainly concentrate on the implicational fragment of the systems
mentioned. In Section 5.3, we will extend the proof systems to a fragment
similar to Harrop-formulas. For the fragment considered, all the logics stud-
ied in this section are subsystems of intuitionistic logic. However, this is no
longer true for the fragment comprising an involutive negation, which can
be added (and has been added) to each system. In this section we do not
consider the treatment of negation. We refer the reader to [Anderson and
Belnap, 1975; Anderson et al., 1992] for an extensive discussion.

In Figure 5.1 we show the inclusion relation of the systems we consider
in this section.

We give a corresponding semantics for this set of systems. The semantics
we refer is a simpli�cation of the one proposed in [Fine, 1974], [Anderson et
al., 1992] and elaborated more recently by Do�sen [1988; 1989].15

with the corresponding names. The implicational fragments are usually denoted with
the subscript !. Thus, what we call R is denoted in the literature by R! and so
forth; since we are mainly concerned with the implicational systems we have preferred to
minimize the notation, stating explicitly when we make exception to this convention.

14The denomination of the system is taken from [Ono, 1998; Ono, 1993].
15Dealing only with the implicational fragment, we have simpli�ed Fine semantics: we

do not have prime or maximal elements.
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Figure 8. Lattice of Substructural Logics.

DEFINITION 77. Let us �x a language L, a Fine S-structure16 M is a
tuple of the form:

M = (W;�; Æ; 0; V );

where W is a non empty set, Æ is a binary operation on W , 0 2 W , � is a
partial order relation on W , V is a function of type W ! Pow(V ar). In all
structures the following properties are assumed to hold:

0 Æ a = a,
a � b implies a Æ c � b Æ c,
a � b implies V (a) � V (b).

For each system S, a S-structure satis�es a subset of the following condi-
tions, as speci�ed in Table 4

(a1) a Æ (b Æ c) � (a Æ b) Æ c;

(a2) a Æ (b Æ c) � (b Æ a) Æ c;

(a3) (a Æ b) Æ b � a Æ b;

(a4) a Æ 0 � a;

(a5) a Æ b � b Æ a;

(a6) 0 � a.

Truth conditions for a 2 W , we de�ne

� M;a j= p if p 2 V (a);

16We just write S-structure if there is no risk of confusion.
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� M;a j= A! B if

8b 2W (M; b j= A ) M;a Æ b j= B).

We say that A is valid in M (denoted by M j= A) if M; 0 j= A. We say that
A is S- valid, denoted by
j=Fine
S A if A is valid in every S-structure.

Table 4. Algebraic conditions of Fine Semantics.

Logic (a1) (a2) (a3) (a4) (a5) (a6)
FL *
T-W * *
T * * *
E-W * * *
E * * * *
L * * * *
R * * * * *
BCK * * * * *
I * * * * * *

We have included again intuitionistic logic I in Table 4 to show its proper
place within this framework. Again this list of semantical conditions is
deliberately redundant in order to show quickly the inclusion relation among
the systems. The axiomatization given above is sound and complete with
respect to this semantics. In particular each axiom (hi) corresponds to the
semantical condition (ai).

THEOREM 78 (Anderson et al., 1992, Fine, 1974, Do�sen, 1989). j=S A if
and only if A is derivable in the corresponding axiom system of De�nition
76.

We assume that Æ associates to the left, so we write

a Æ b Æ c = (a Æ b) Æ c.

5.2 Proof systems

We develop proof methods for the implicational logics: R, BCK, E, T,
E-W, T-W, FL. As we have seen in the section about modal logics, we
can control the use of formulas by labelling data and putting constraints on
the labels. In this speci�c context by labelling data, we are able to record
whether they have been used or not and to express the additional conditions
needed for each speci�c system. Formulas are labelled with atomic labels
x; y; z. Intuitively these labels can be read as representing at the same time
resources and positions within a database.
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DEFINITION 79. Let us �x a denumerable alphabet A = fx1; : : : ; xi; : : :g
of labels. We assume that labels are totally ordered as shown in the enu-
meration, v0 is the �rst label. A database is a �nite set of labelled formulas
� = fx1 : A1; : : : ; xn : Ang. We assume that

if x : A 2 � and x : B 2 �, then A = B.17

We use the notation Lab(E) for the set of labels occurring in an expression
E, and we �nally assume that v0 62 Lab(�). Label v0 will be used for
queries from the empty database.

DEFINITION 80. A query Q is an expression of the form:

�; Æ `? x : G

where � is a database, Æ is a �nite set of labels not containing v0; moreover
if x 6= v0 then x 2 Lab(�), and G is a formula.

A query from the empty database has the form:

`? v0 : G.

Let max(Æ) denote the maximum label in Æ according to the enumeration
of the labels. By convention, we stipulate that if Æ = ;, then max(Æ) = v0.
The set of labels Æ may be thought as denoting the set of resources that are
available to prove the goal. Label x in front of the goal has a double role as
a `position' in the database from which the goal is asked, and as available
resource.

The rules for success and reduction are parametrized to some conditions
SuccS and RedS that will be de�ned below.

� (success) �; Æ `? x : q; succeeds if x : q 2 � and SuccS(Æ; x).

� (implication) from �; Æ `? x : C ! G step to

� [ fy : Cg; Æ [ fyg `? y : G;

where y > max(Lab(�)), (whence y 62 Lab(�));

� (reduction) from

�; Æ `? x : q;

if there is some z : C 2 �, with C = A1 ! : : :! Ak ! q, and there
are Æi, and xi for i = 0; : : : ; k such that:

1. Æ0 = fzg, x0 = z,

17This restriction will be lifted in Section 5.3 where conjunction is introduced in the
language.
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2.
Sk
i=0 Æi = Æ,

3. RedS(Æ0; : : : ; Æk; x0; : : : ; xk;x)

then for i = 1; : : : k, we step to

�; Æi; `
? xi : Ai:

The conditions for success are either (s1) or (s2) according to each system:

(s1) SuccS(Æ; x) � x 2 Æ,

(s2) SuccS(Æ; x) � Æ = fxg.

The conditions RedS are obtained as combination of the following clauses:

(r0) xk = x;

(r1) for i; j = 0; : : : ; k, Æi \ Æj = ;;

(r2) for i = 1; : : : ; k, xi�1 � xi and max(Æi) � xi;

(r3) for i = 1; : : : ; k, xi�1 � xi and max(Æi) = xi;

(r4) for i = 1; : : : ; k, xi�1 < xi, max(Æi�1) = xi�1 < min(Æi) and max(Æk) =
xk .

The conditions RedS are then de�ned according to Table 5.

Table 5. Restrictions on reduction and success.

Condition (r0) (r1) (r2) (r3) (r4) (Success)
FL * * (s2)
T-W * * * (s2)
T * * (s2)
E-W * * * (s2)
E * * (s2)
L * (s2)
R (s2)
BCK * (s1)

Notice that

(r4)) (r3)) (r2), and
(r4)) (r1).
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We give a quick explanation of the conditions SuccS and RedS. We
recall that the component Æ represents the set of available resources which
must/can be used in a derivation.

For the success rule, in all cases but BCK, we have that we can succeed
if x : q is in the database, x is the only resource left, and q is asked from
position x; in the case of BCK x must be among the available resources,
but we do not require that x is the only one left.

The conditions for the reduction rule can be explained intuitively as fol-
lows: resources Æ are split in several Æi, for i = 1; : : : ; k and each part Æi
must be used in a derivation of a subgoal Ai.

In the case of logics without contraction we cannot use a resource twice,
therefore by restriction (r1), the Æis must be disjointed and z, the label of
the formula we are using in the reduction step, is no longer available.

Restriction (r2) imposes that successive subgoals are to be proved from
successive positions in the database: only positions y � x are `accessible'
from x; moreover each xi must be accessible from resources in Æi. Notice
that the last subgoal Ak must be proved from x, the position from which
the atomic goal q is asked.

Restriction (r3) is similar to (r4), but it further requires that the position
xi is among the available resources Æi.

Restriction (r4) forces the goal Ai to be proved by using successive dis-
jointed segments Æi of Æ. Moreover, z which labels the formula used in the
reduction step must be the �rst (or least) resource among the available ones.

It is not diÆcult to see that intuitionistic (implicational) logic is obtained
by considering success condition (s1) and no other constraint. More interest-
ingly, we can see that S4-strict implication is given by considering success
condition (s1) and restrictions (r0) and (r2) on reduction. We leave the
reader to check that the above formulation coincides with the database-as-
list formulation of S4 we have seen in the previous section. We can therefore
consider S4 as a substructural logic obtained by imposing a restriction on
the weakening and the exchange rules. On the other hand, the relation
between S4 and E should be apparent: the only di�erence is the condition
on the success rule which controls the weakening restriction.

We can prove that each system is complete with respect to the its ax-
iomatization by a syntactic proof. To this aim, we need to show that every
axiom/rule is derivable, and the sets of derivable formulas is closed under
substitution and Modus Ponens. The former property is proved by induction
on the length of a derivation. The latter property is as usual a straightfor-
ward consequence of cut admissibility. This property is proved similarly to
Theorem 10, although the details of the proof are more complex, because
of the various restrictions on the reduction rule (see [Gabbay and Olivetti,
2000] pages 181{191, Theorem 5.19).
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PROPOSITION 81 (Substitution). If Q = �;  `? x : A succeeds, then
also Q0 = �[q=B];  `? x : A[q=B] succeeds.

PROPOSITION 82 (Modus Ponens). If `? v0 : A ! B and `? v0 : A
succeed then also `? v0 : B succeeds.

PROPOSITION 83 (Identity). If x : A 2 � and SuccS(; x) then �;  `?

x : A succeeds.

THEOREM 84 (Completeness). For every system S, if A is a theorem of
S, then ` v0 : A succeeds in the corresponding proof system for S.

Proof. By Propositions 81, 82, we only need to show a derivation of an
arbitrary atomic instance of each axiom in the relative proof system. In the
case of reduction, the condition  =

S
i, will not be explicitly shown, as its

truth will be apparent by the choice of i. We assume that the truth of the
condition for the success rule is evident and we do not mention it. At each
step we only show the current goal, the available resources and the new data
introduced in the database, if any. Moreover, we justify the queries obtained
by a reduction step by writing the relation RedS(0; : : : ; n; x0; : : : ; xn;x)
(for suitable i, xi) under them; the database formula used in the reduction
step is identi�ed by 0.

(id) In all systems:

`? v0 : a! a

we step to

u : a; fug `? u : a;

which immediately succeeds in all systems.

(h1) In all systems:

`? v0 : (b! c)! (a! b)! a! c:

three steps of the implication rule leads to:

x1 : b! c; x2 : a! b; x3 : a; fx1; x2; x3g `? x3 : c

fx2; x3g `? x3 : b

RedS(fx1g; fx2; x3g; x1; x3;x3)

fx3g `? x3 : a

RedS(fx2g; fx3g; x2; x3;x3):
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(h2) In all systems, but FL:

`? v0 : (a! b)! (b! c)! a! c:

three steps of the implication rule leads to:

x1 : a! b; x2 : b! c; x3 : a; fx1; x2; x3g `? x3 : c

(�) fx1; x3g `? x3 : b;

RedS(fx2g; fx1; x3g; x2; x3;x3)

fx3g `? x3 : a;

RedS(fx1g; fx3g; x1; x3;x3):

the step (*) is allowed in all systems, but those with (r4), namely FL.

(h3) In all systems, but those with (r1) or (r4):

`? v0 : (a! a! b)! a! b:

Two steps of the implication rule leads to:

x1 : a! a! b; x2 : a; fx1; x2g `
? x2 : b:

By reduction we step to:

fx2g `
? x2 : a and fx2g `

? x2 : a

since RedS(fx1g; fx2g; fx2g; x1; x2; x2;x2) holds in all systems with-
out (r1) and (r4).

(h4) In all systems, but those with (r3) or (r4):

`? v0 : (a! b)! ((a! b)! c)! c:

two steps of the implication rule leads to:

x1 : a! b; x2 : (a! b)! c; fx1; x2g `? x2 : c

(�) fx1g `? x2 : a! b

RedS(fx2g; fx1g; x2; x2;x2)

x3 : a; fx1; x3g `? x3 : b

fx3g `? x3 : a

RedS(fx1g; fx3g; x1; x3;x3)

The step (*) is allowed by (r2), but not by (r3) or (r4) since max(fx1g) =
x1 < x2.



GOAL-ORIENTED DEDUCTIONS 267

(h5) In L,R,BCK:

`? v0 : a! (a! b)! b:

two steps of implication rule leads to:

x1 : a; x2 : a! b; fx1; x2g `? x2 : b

fx1g `? x1 : a

RedS(fx2g; fx1g; x2; x1;x2):

(h6) In BCK we have:

`? v0 : a! b! b:

two steps by implication rule leads to:

x1 : a; x2 : b; fx1; x2g `
? x2 : b

which succeeds by the success condition of BCK. This formula does
not succeed in any other system.

(Su�) We prove the admissibility of (Su�) rule in FL. Let `? v0 : A ! B
succeed. Then for any formula C, we have to show that

`? v0 : (B ! C)! A! C succeeds.

Let C = C1 ! : : :! Cn ! q. Starting from

`? v0 : (B ! C1 ! : : :! Cn ! q)! A! C1 ! : : :! Cn ! q

by the implication rule, we step to �; fx1; : : : ; xn+2g ` xn+2 : q, where

� = fx1 : B ! C1 ! : : :! Cn ! q; x2 : A;

x3 : C1; : : : ; xn+2 : Cng:

From the above query we step by reduction to:

Q0 = �; fx2g `? x2 : B and
Qi = �; fxi+2g `? xi+2 : Ci for i = 1; : : : ; n.

since the conditions for reduction are satis�ed. By hypothesis, `?

v0 : A ! B succeeds, which implies, by the implicational rule, that
x2 : A; fx2g `? x2 : B succeeds, but then Q0 succeeds by monotony.
Queries Qi succeed by Proposition 83. �
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We can prove the soundness semantically. To this purpose we need to
interpret databases and queries in the semantics. As usual, we introduce
the notion of realization of a database and then of validity of a query.

DEFINITION 85 (Realization). Given a database �, and a set of labels ,
an S-realization of (�; ) in an S-structureM = (W; Æ;�; 0; V ), is a mapping
� : A !W such that:

1. �(v0) = 0;

2. if y : B 2 � then M;�(y) j= B.

In order to de�ne the notion of validity of a query, we need to introduce
some further notation. Given an S-realization �,  and x, we de�ne

�() = 0 if  = ;,

�() = �(x1)Æ: : :Æ�(xn) if  = fx1; : : : ; xng, where x1 < : : : < xn

�(< ; x >) = �() if x 2 ,

�(< ; x >) = �() Æ 0 if x 62 .

DEFINITION 86 (Valid query). Let Q = �;  `? x : A, we say that Q
is S-valid if for every S-structure M , for every realization � of � in M , we
have

M;�(< ; x >) j= A.

According to the de�nition above, the S-validity of the query `? v0 : A
means that the formula A is S-valid (i.e. j=Fine

S A).

THEOREM 87. If Q = �;  `? x : A succeeds in the proof system for
S then Q is S-valid. In particular, if v0 : A succeeds in the proof system
for S, then j=Fine

S A.

The proof can be done by induction on the length of derivations, by suit-
ably relating the constraints of the reduction rule to the algebraic semantic
conditions.

5.3 Extending the language

In this section we show how we can extend the language by some other
connectives. We allow extensional conjunction (^), disjunction (_), and
intensional conjunction or tensor (
). The distinction between ^ and 

is typical of substructural logics and it comes from the rejection of some
structural rule: ^ is the usual lattice-inf connective, 
 is close to a residual
operator with respect to !. In relevant logic literature 
 is often called
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fusion or cotenability and denoted by Æ.18 The addition of the above connec-
tives presents some semantic options. The most important one is whether
distribution (dist) of ^ and _ is assumed or not. The list of axioms/rules
below characterizes distributive substructural logics.

DEFINITION 88 (Axioms for ^;
;_).

1. A ^ B ! A,

2. A ^ B ! B,

3. (C ! A) ^ (C ! B)! (C ! A ^ B),

4. A! A _ B,

5. B ! A _ B,

6. (A! C) ^ (B ! C)! (A _ B ! C)

7.
A B

A ^ B

8.
A! B ! C

A
B ! C

9.
A
B ! C

A! B ! C

(e-^) For E and E-W only

2A ^ 2B ! 2(A ^ B)

where 2C =def (C ! C)! C.

(dist) A ^ (B _ C)! (A ^ B) _ C.

As we have said, the addition of distribution (dist) is a semantic choice,
which may be argued. However, for the fragment of the language we consider
in this section it does not really matter whether distribution is assumed or
not. This fragment roughly corresponds to the Harrop fragment of the
section of modal logics (see Section 4.3); since we do not allow positive
occurrences of disjunction, the presence of distribution is immaterial.19 We
have included distribution to have a complete axiomatization with respect
to the semantics we adopt.

18We follow here the terminology and notation of linear logic [Girard, 1987].
19In the fragment we consider we trivially have (for any S) �; � `? x : A ^ (B _ C)

implies �; � `? x : A_(B^C), where � is a set of D-formulas and A;B;C are G-formulas
(see below).
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As in the case of modal logics (see Section 4.3), we distinguish D-formulas,
which are the constituents of databases, and G-formulas which can be asked
as goals.

DEFINITION 89. Let D-formulas and G-formulas be de�ned as follows:

D := q j G! D,

CD := D j CD ^ CD,

G := q j G ^G j G _G j G
G j CD ! G.

A database � is a �nite set of labelled of D-formulas.

A database corresponds to a
-composition of conjunctions of D-formulas.
Formulas with the same label are thought as ^-conjuncted. Every D-formula
has the form

G1 ! : : :! Gk ! q,

In the systems R, L, BCK, we have the theorems

(A! B ! C)! (A
B ! C) and (A
B ! C)! (A! B ! C)

Thus, in these systems we can simplify the syntax of (non atomic) D-
formulas to G ! q rather than G ! D. This simpli�cation is not allowed
in the other systems where we only have the weaker relation

` (A! B ! C) , ` A
B ! C.

The extent of De�nition 89 is shown by the following proposition.

PROPOSITION 90. Every formula on (^;_;!;
) without

� positive20 (negative) occurrences of 
 and _ and

� occurrences of 
 within a negative (positive) occurrence of ^

is equivalent to a ^-conjunction of D-formulas (G-formulas).

The reason we have put the restriction on nested occurrences of 
 within
^ is that, on the one hand, we want to keep the simple labelling mechanism
we have used for the implicational fragment, and on the other we want to
identify a common fragment for all systems to which the computation rules
are easily extended. The labelling mechanism no longer works if we relax

20Positive and negative occurrences are de�ned as follows: A occurs positively in A;
if B#C occurs positively (negatively) in A (where # 2 f^;_;
g), then B and C occur
positively (negatively) in A; if B ! C occurs positively (negatively) in A, then B occurs
negatively (positively) in A and C occurs positively (negatively) in n A. We say that a
connective # has a positive (negative) occurrence in a formula A if there is a formula
B#C which occurs positively (negatively) in A.
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this restriction. For instance, how could we handle A ^ (B 
 C) as a D-
formula? We should add x : A and x : B 
C in the database. The formula
x : B 
C cannot be decomposed, unless we use complex labels: intuitively
we should split x into some y and z, add y : B and z : C, and remember
that x; y; z are connected (in terms of Fine semantics the connection would
be expressed as x = y Æ z).21

The computation rules can be extended to this fragment without great
e�ort.

DEFINITION 91 (Proof system for the extended language). We give the
rules for queries of the form

�; Æ `? x : G,

where � is a set of D-formulas and G is a G-formula.

� (success) �; Æ `? x : q succeeds if x; q 2 � and SuccS(Æ; x).

� (implication) from �; Æ `? x : CD ! G
if CD = D1 ^ : : : ^Dn, we step to

� [ fy : D1; : : : ; y : Dng; Æ [ fyg `? y : G

where y > max(Lab(�)), (hence y 62 Lab(�)).

� (reduction) from �; Æ `? x : q
if there is z : G1 ! : : : ! Gk ! q 2 � and there are Æi, and xi for
i = 0; : : : ; k such that:

1. Æ0 = fzg, x0 = z,

2.
Sk
i=0 Æi = Æ,

3. RedS(Æ0; : : : ; Æk; x0; : : : ; xk;x),

then for i = 1; : : : k, we step to

�; Æi; `
? xi : Gi:

� (conjunction) from �; Æ `? x : G1 ^G2 step to

�; Æ `? x : G1 and �; Æ `? x : G2.

� (disjunction) from �; Æ `? x : G1 _G2 step to

�; Æ `? x : Gi for i = 1 or i = 2.

21In some logics, such as L, we do not need this restriction since we have the following
property: �; A ^ B ` C implies �; A ` C or �; B ` C. Thus, we can avoid introducing
extensional conjunctions into the database, and instead introduce only one of the two
conjuncts (at choice). This approach is followed by Harland and Pym [1991]. However
the above property does not hold for R and other logics.
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� (tensor) from �; Æ `? x : G1 
G2

if there are Æ1, Æ2, x1 and x2 such that

1. Æ = Æ1 [ Æ2,

2. RedS(Æ1; Æ2; x1; x2;x),

step to

�; Æ1 `? x1 : G1 and �; Æ2 `? x2 : G2.

An easy extension of the method is the addition of the truth constants
t, and > which are governed by the following axioms/rules

A! >,
` t! A i� ` A.

Plus the axiom of (t ! A) ! A for E and E-W. We can think of t as
de�ned by propositional quanti�cation

t =def 8p(p! p).

Equivalently, given any formula A, we can assume that t is the conjunction
of all p ! p such that the atom p occurs in A. Basing on this de�nition,
it is not diÆcult to handle t in the goal-directed way and we leave to the
reader to work out the rules. The treatment of > is straightforward.

EXAMPLE 92. Let � be the following database:

x1 : e ^ g ! d,

x2 : (c! d)
 (a _ b)! p,

x3 : c! e,

x3 : c! g,

x4 : (c! g)! b.

In Figure 9, we show a successful derivation of

�; fx1; x2; x3; x4g `? x4 : p

in relevant logic E (and stronger systems). We leave to the reader to justify
the steps according to the rules. The success of this query corresponds to
the validity of the following formula in E:�

(e ^ g ! d)
 ((c! d)
 (a _ b)! p)
 ((c! e)^
^(c! g))
 ((c! g)! b)

�
! p:

We can extend the soundness and completeness result to this larger frag-
ment. We �rst extend De�nition 77 by giving the truth conditions for the
additional connectives.
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�; fx1; x2; x3; x4g `? x4 : p

�; fx1; x3; x4g `? x4 : (c! d)
 (a _ b)

�; fx1; x3g `? x3 : c! d

�; x5 : c; fx1; x3; x5g `? x5 : d

�; x5 : c; fx3; x5g `? x5 : e ^ g

�; x5 : c; fx3; x5g

`? x5 : e

�; x5 : cfx5g
`? x5 : c

�; x5 : c; fx3; x5g

`? x5 : g

�; x5 : c; fx5g
`? x5 : c

�; fx3; x4g `? x4 : a _ b

�; fx3; x4g `? x4 : b

�; fx3g `? x4 : c! g

�; x6 : c; fx3; x6g `? x6 : g

�; x6 : c; fx6g `? x6 : c

Figure 9. Derivation for Example 92.

DEFINITION 93. Let M = (W; Æ; 0; V ) be a S-structure, let a 2 W we
stipulate:

M;a j= A ^B i� M;a j= A and M;a j= B,

M;a j= A _B i� M;a j= A or M;a j= B,

M;a j= A
B i� there are b; c 2 W , s.t. b Æ c � a and M;a j= A
and M;a j= B.

It is straightforward to extend Theorem 87 obtaining the soundness of the
proof procedure with respect to this semantics. The completeness can be
proved by a canonical model construction. The details are given in [Gabbay
and Olivetti, 2000], (see Section 6.1). Putting the two results together we
obtain:

THEOREM 94. Let �;  `? x : G be a query with  = fx1; : : : ; xkg
(ordered as shown), and let Si = fA j xi : A 2 �g, i = 1; : : : ; k. The
following are equivalent:

1. j=Fine
S (

V
S1 
 : : :


V
Sk)! G

2. �;  `? x : G succeeds in the system S.
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5.4 Eliminating the labels

As in the case of modal logics, it turns out that for most of the systems (at
least if we consider the implicational fragment), labels are not needed.

PROPOSITION 95.

� If �;  `? x : B succeeds, u : A 2 � but u 62 , then ��fu : Ag;  `?

x : B succeeds.

� For R, L, BCK, if �;  `? x : B succeeds, then for every y 2 ,
�;  `? y : B succeeds.

� For T,T-W,FL, if �;  `? x : B succeeds then it must be x =
max().

Because of the previous proposition, the formulas which can contribute
to the proof are those that are listed in . Since every copy of a formula gets
a di�erent label, labels and `usable' formulas are into a 1-1 correspondence.
Moreover in all cases, but E and E-W, the label x in front of the goal is
either irrelevant or it is determined by . Putting these facts together, we
can reformulate the proof systems for all logics, but E and E-W without
using labels. The restrictions on reduction can be expressed directly in
terms of the sequence of database formulas. In other words, formulas and
labels become the same things. As an example we give the reformulation
of L and FL. In case of L, it is easily seen that the order of formulas does
not matter (it can be proved that permuting the database does not a�ect
the success of a query), thus the database can be thought as a multiset of
formulas, and the rules become as follows:

1. (success) � `? q succeeds if � = q,

2. (implication) from � `? A! B step to �; A `? B,

3. (reduction) from �; C ! : : : ! Cn ! q `? q step to �i `? Ci,
where � = ti�i, (t denotes multiset union).

In other words we obtain what we have called the linear computation in
Section 3.3, De�nition 13.

In case of FL, the order of the formulas is signi�cant. Thus the rules for
success and implication are the same, but in case of implication the formula
A is added to the end of �. The rule of reduction becomes:

(FL-reduction) from C ! : : :! Cn ! q;� `? q step to
�i `? Ci, where � = �1; : : : ;�n,

in this case \;" denotes concatenation. The reformulation without labels for
R, T, and T-W, BCK is similar and left to the reader.
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5.5 Some history

The use of labels to deal with substructural logics is not a novelty: it has
been used for instance by Prawitz [1965], by Anderson and Belnap [1975],
to develop a natural-deduction formulation of most relevant logics. The
goal-directed proof systems we have presented are similar to their natural
deduction systems in this respect: there are not explicit structural rules.
The structural rules are internalized as restrictions in the logical rules.

Bollen has developed a goal-directed procedure for a fragment of �rst-
order R [Bollen, 1991]). His method avoids splitting derivations in several
branches by maintaining a global proof-state � `? [A1; : : : ; An], where all
A1; : : : An have to be proved (they can be thought as linked by 
). If we
want to keep all subgoals together, we must take care that di�erent subgoals
Ai may happen to be evaluated in di�erent contexts. For instance in

C `? D ! E;F ! G

according to the implication rule, we must evaluate E from fC;Dg, and
G from fC;Fg. Bollen accommodates this kind of context-dependency by
indexing subgoals with a number which refers to the part of the database
that can be used to prove it. Furthermore, a list of numbers is maintained
to remember the usage; in a successful derivation the usage list must contain
the numbers of all formulas of the database.

Many people have developed goal-directed procedures for fragments of
linear logic leading to the de�nition of logic programming languages based
on linear logic . This follows the tradition of the uniform proof paradigm
proposed by Miller [Miller et al., 1991]. We notice, in passing, that implica-
tional R can be encoded in linear logic by de�ning A! B by A(!A( B,
where ! is the exponential operator which enables the contraction of the
formula to which is applied. The various proposals di�er in the choice of
the language fragment. Much emphasis is given to the treatment of the
exponential !, as it is needed for de�ning logic programming languages of
some utility: in most applications, we need permanent resources or data,
(i.e. data that are not `consumed' along a deduction); permanent data can
be represented by using the ! operator.

Some proposals, such as [Harland and Pym, 1991] and [Andreoli and
Pareschi, 1991; Andreoli, 1992] take as basis the multi-consequent (or clas-
sical) version of linear logic. Moreover, mixed systems have been studied
[Hodas and Miller, 1994] and [Hodas, 1993] which combine di�erent log-
ics into a single language: linear implication, intuitionistic implication and
more.22

22In [Hodas, 1993], Hodas has proposed a language called O which combines intuition-
istic, linear, aÆne and relevant implication. The idea is to partition the `context', i.e.
the database in several (multi) sets of data corresponding to the di�erent handling of the
data according to each implicational logic.
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O'Hearn and Pym [1999] have recently proposed an interesting develop-
ment of linear logic called the logic of bunched implications. Their system
has strong semantical and categorical motivations. The logic of bunched
implications combines a multiplicative implication, namely the one of linear
logic and an additive (or intuitionistic) one. The proof contexts, that is the
antecedents of a sequent, are structures built by two operators: `;' corre-
sponds to the multiplicative conjunction 
 and `;' corresponds to the addi-
tive conjunction ^. These structures are called bunches. Similar structures
have been used to obtain calculi for distributive relevant logics [Dunn, 1986].
The authors de�ne also an interesting extension to the �rst-order case by
introducing intensional quanti�ers. Moreover they develop a goal-directed
proof procedure for a Harrop-fragment of this logic and show signi�cant
applications to logic programming.

In [Gabbay and Olivetti, 2000], the goal-directed systems are extended
to RM0 where a suitable restart rule takes care of the mingle rule. More-
over, it is shown how the goal-directed method for R can be turned into
a decision procedure (for the pure implicational part) by adding a suit-
able loop-checking mechanism. We notice that for contractionless logics,
the goal-directed proof-methods of this section can be the base of decision
procedures.

To implement goal-directed proof systems for substructural logics, one
can import solutions and techniques developed in the context of linear logic
programming. For instance, in the reduction and in the 
-rule we have to
guess a partion of the goal label. A similar problem has been discussed in
the linear logic programming community [Hodas and Miller, 1994; Harland
and Pym, 1997] where one has to guess a split of the sequent (only the
antecedent in the intuitionistic version, both the antecedent and consequent
in the `classical' version). A number of solutions have been provided, most
of them based on a lazy computation of the split parts. Perhaps the most
general way to handle this problem has been addressed in [Harland and
Pym, 1997] where it is proposed to represent the sequent split by means of
Boolean constraints expressed by labels attached to the formulas. Di�erent
strategies of searching the partitions correspond to di�erent strategies of
solving the constraints (lazy, eager and mixed).

6 DEVELOPMENTS, APPLICATIONS AND MECHANISMS

The goal-directed proof methods presented in this chapter may be useful
for several purposes, beyond the mere deductive task. The deductive pro-
cedures can be easily extended in order to compute further information, or
to support other logical tasks, such as abduction. We show two examples:
the computation of interpolants in implicational linear logic, and the com-
putation of abductive explanations in intuitionistic logic. Both of them are
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simple extensions of the goal-directed procedures that we have seen in the
previous sections. We conclude by a discussion about the extension of the
goal-directed methods to the �rst order case.

6.1 Interpolation for linear implication

By interpolation we mean the following property. Let Q1 and Q2 be two
sets of atoms; let L1 be the language generated by Q1 and L2 by Q2; �nally
let A;B be formulas with A 2 L1 and B 2 L2. If A ` B, then there is a
formula C 2 L1 \L2, such that A ` C and C ` B. The formula C is called
an interpolant of A and B. Here, we consider the interpolation property for
implicational linear logic, i.e. ` denotes provability in (implicational) linear
logic, and A;B contain only implication. We show how the procedure of
the previous section can be modi�ed to compute an interpolant. Since the
computation is de�ned for sequents of the form � ` A, where � is a database
(a multiset of formulas in this case), we need to generalize the notion of
interpolation to provability statements of this form. As a particular case we
will have the usual interpolation property for pair of formulas. To generalize
interpolation to database we need �rst to generalize the provability relation
to databases. Let � = A1; : : : ; An, we de�ne:

� ` � i� there are �1; : : : ;�n, such that � = �1t : : :t�n and
�i ` Ai for i = 1; : : : ; n.

The formulas Ai can be thought as conjuncted by 
. Moreover, since Ai !
: : : ! An ! B, is equivalent to A1 
 : : : 
 An ! B, and 
 is associative
and commutative, we abbreviate the above formula with � ! B, where �
is the multiset A1; : : : ; An. Let � 2 L1 and A 2 L2, suppose that � ` A
holds; an interpolant for � ` A is a database � 2 L1 \ L2 such that � ` �
and � ` A. Oberve that if j � j= 1, it must be also j � j= 1, and we have
the ordinary notion of interpolant.

We give a recursive procedure to calculate an interpolant for � ` A. We
do this by de�ning a recursive predicate Inter(�; �;A; �) which is true
whenever: � 2 L1, �; A 2 L2, �;� ` A holds, and � is an interpolant for
� ` �! A.

� (Succ 1) Inter(q; ;; q; q).

� (Succ 2) Inter(;; q; q; ;).

� (Imp) Inter(�; �;A! B;�) if Inter(�; �; A;B;�).

� (Red 1) Inter(�; C1 ! : : : Cn ! q; �; q; �), if there are �i, �i, �i for
i = 1; : : : ; n such that

1. � = ti�i; � = ti�i,
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2. Inter(�i; �i;Ci; �i) for i = 1; : : : ; n,

3. � = �1 t : : : t �n ! q.

� (Red 2) Inter(�; �; C1 ! : : : Cn ! q; q; �), if there are �i, �i, �i for
i = 1; : : : ; n such that

1. � = ti�i; � = ti�i; � = ti�i,

2. Inter(�i; �i;Ci; �i) for i = 1; : : : ; n.

If we want to �nd an interpolant for � ` A, the initial call is Inter(�; ;;A; �),
where � is computed along the derivation. One can observe that the pred-
icate Inter is de�ned by following the de�nition of the goal-directed proof
procedure. (Succ 1) and (Succ 2) apply to the case of immediate success,
respectively when the atom is in L1, and when it is in L2. Analogously, (Red
1) deals with the case the atomic goal uni�es with the head of a formula in
L1 and (Red 2) when it uni�es with the head of a formula in L2. It can be
proved that if � ` A the algorithm computes an interpolant. Moreover all
interpolants can be obtained by selecting di�erent formulas in the reduction
steps. Here is a non trivial example.

EXAMPLE 96. Let

A = ((f ! e)! ((a! b)! c)! (a! q)! (q ! b)! f ! b)! g;

and

B = (e! c! d)! (d! a)! (a! b)! g.

One can check that A ` B holds; we compute an interpolant, by calling
Inter(A; ;;B; �). Let us abbreviate the antecedent of A by A0. Here are
the steps, we underline the formula used in a reduction step:

(1) Inter(A; ;; B; �)

(2) Inter(A; e! c! d; d! a; a! b; g; �)

(3) Inter(e! c! d; d! a; a! b; ;; A0;�1) � = �1 ! g

(4) Inter(e ! c ! d; d ! a; a ! b; f ! e; (a ! b) ! c; a ! q; q ! b; f ;
b;�1)

(5) Inter(e! c! d; d! a; a! b; f ! e; (a! b)! c; a! q; f ; q;�1)

(6) Inter(e! c! d; d! a; a! b; f ! e; (a! b)! c; f ; a;�1)

(7) Inter(f ! e; (a! b)! c; f ; e! c! d; a! b; ; d;�2)
�1 = �2 ! a
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Now we have a split with �2 = �3;�4 and

(8) Inter(f ! e; f ; ;; e; �3) and (9) Inter((a! b)! c; a! b; ; c;�4):

(8) gives

(10) Inter(;; f ; f ; �5) �3 = �5 ! e

whence �5 = ;. (9) gives

(11) Inter(a! b; ;; a! b; �6) �4 = �6 ! c

(12) Inter(a! b; a; b; �6)

(13) Inter(a; ;; a; �7) �6 = �7 ! b

Thus �7 = a and we have:

�6 = a! b,

�3 = e,

�4 = (a! b)! c,

�2 = e; (a! b)! c,

�1 = e! ((a! b)! c)! a,

� = (e! ((a! b)! c)! a)! g.

� is evidently in the common language of A and B; we leave to the reader
to check that A ` � and � ` B.

It is likely that similar procedures based on the goal-directed computa-
tion can be devised for other logics admitting a goal directed presentation.
However, further investigation is needed to see to what extent this approach
works for other cases. For instance, the step in (Red 1) is justi�ed by the
structural exchange law which holds for linear logic. For non-commutative
logics the suitable generalization of the interpolation property, which is the
base of the inductive procedure, might be more diÆcult to �nd.

6.2 Abduction for intuitionistic implication

Abduction is an important kind of inference for many applications. It has
been widely and deeply studied in logic programming context (see [Eshghi,
1989] for a seminal work). Abductive inference can be described as follows:
given a set of data � and a formula A such that � 6` A, �nd a set of formulas
� such that �;� ` A. Usually, there are some further requirements on
the possible �'s, such as minimality. The set � is called an abductive
solution for � ` A. We de�ne below a metapredicate Abduce(�; A; �)
whose meaning, is that � is an abductive solution for � ` A. The predicate
is de�ned by induction on the goal-directed derivation. Given a formula C
and a database �, we write C ! � to denote the set fC ! D j D 2 �g.
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1. Abduce(�; q; �) if q 2 � and � = ;.

2. Abduce(�; q; �) if 8C 2 � q 6= Head(C) and � = fqg.

3. Abduce(�; A! B; �) if Abduce(�; A; B; �0) and � = A! �0.

4. Abduce(�; q; �) if there is C1 ! : : : ! Cn ! q 2 � and �1; : : : ;�n

such that

(a) Abduce(�;Ci;�i) for i = 1; : : : ; n.

(b) � =
S
i �i.

It can be shown that if Abduce(�; q; �) holds then �;� ` A.

EXAMPLE 97. Let � = (a! c)! b; (d! b)! s! q; (p! q)! t! r.
We compute Abduce(�; r; �). We have

(1) Abduce(�; r; �) reduces to

(2) Abduce(�; p! q; �1) and (3) Abduce(�; t; �2)
with � = �1 [ �2; (3) gives �2 = ftg. (2) is reduced as follows

(4) Abduce(�; p; q; �3) and �1 = p! �3

(5) Abduce(�; p; d! b; �4) and (6) Abduce(�; p; s; �5)
with �3 = �4 [ �5; (6) gives �5 = fsg. (5) is reduced as follows

(7) Abduce(�; p; d; b; �6) and �4 = b! �6

(8) Abduce(�; p; d; a! c; �6)

(9) Abduce(�; p; d; a; c; �7) and �6 = a! �7

(9) gives �7 = fcg.

Thus

�6 = fa! cg

�4 = fb! a! cg

�3 = fb! a! c; sg

�1 = fp! b! a! c; p! sg

� = fp! b! a! c; p! s; tg.

One can easily check that �;� ` r.

The abductive proof procedure we have exempli�ed is a sort of metapred-
icate de�ned from the goal-directed computation. It can be used to generate
possible abductive solutions, that might be then compared and processed
further. Of course variants and re�nments of the abductive procedures are
possible for speci�c purposes.
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6.3 First-order extension

We conclude this chapter by some remarks on the major extension of these
methods: the one to the �rst-order level. The extension is not straightfor-
ward. In general, in most non-classical logics there are several options in the
interpretation of quanti�ers and terms according to the intended semantics
(typically, constant domain, increasing domains etc.); moreover, one may
adopt either rigid, or non-rigid interpretation of terms. Sometimes the inter-
pretation of quanti�ers is not entirely clear, as it happens in substructural
logics. However, even when quanti�ers are well understood as in intuition-
istic and modal logics, a goal-directed treatment of the full language creates
troubles analogously to the treatment of disjunction. In particular the treat-
ment of positive occurrences of the existential quanti�er is problematic. In
classical logic such a problem does not arise as one can always transform
the pair (Database, Goal) into a set of universal sentences using Skolem
transformation. A similar method cannot be applied to most non-classical
logics, where one cannot skolemize the data before the computation starts.

As a di�erence with the theorem proving view, in the goal-directed ap-
proach (following the line of logic programming) one would like to de�ne
proof procedures which compute answer-substitutions. This means that the
outcome of a successful computation of

� `? G[X ],

where G[X ] stands for 9XG[X ] is not only 'yes', but it is (a most gen-
eral) substitution X=t, such that � ` G[X=t] holds. In [Gabbay and
Olivetti, 2000] it is presented a proof procedure for (!;8) fragment of in-
tuitionistic logic. The procedure is in the style of a logic programming
and uses uni�cation to compute answer-substitutions. The proof-procedure
checks the simultaneous success of a set of pairs (Database, Goals); this
structure is enforced by the presence of shared free variables occurring
in di�erent databases arising during the computation. The approach of
`Run-time skolemization' is used to handle universally quanti�ed goals.23

That is to say the process of eliminating universal quanti�ers on the goal
by Skolem functions is carried on in parallel with goal reduction. The
`Run-time Skolemisation' approach has been presented in [Gabbay, 1992;
Gabbay and Reyle, 1993] and adopted in N-Prolog [Gabbay and Reyle,
1993], a hypothetical extension of Prolog based on intuitionistic logic. A
similar idea for classical logic is embodied in the free-variable tableaux, see
[Fitting, 1990] and [H�ahnle and Schmitt, 1994] for an improved rule. The
use of Skolem functions and normal form for intuitionistic proof-search has
been studied by many authors, we just mention: [Shankar, 1992], [Pym and
Wallen, 1990], and [Sahlin et al., 1992].

23These would be existentially quanti�ed formulas in classical logic as checking � `
8xA is equivalent to check � [ f9x:Ag for inconsistency.
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It is likely that in order to develop the �rst-order extensions for others
non-classical logics one could take advantage of the labelled proof system.
One would like to represent the semantic options on the interpretation of
quanti�ers by tinkering with the uni�cation and the Skolemisation mecha-
nism. The constraints on the uni�cation and Skolemisation might perhaps
be expressed in terms of the labels associated with the formulas and their
dependencies. At present the extension of the goal-directed methods to the
main families of non-classical logics along these lines is not at hand and it
is a major topic of future investigation.

Dov M. Gabbay
King's College London, UK.

Nicola Olivetti
Universit�a di Torino, Italy.
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ARNON AVRON

ON NEGATION, COMPLETENESS AND
CONSISTENCY

1 INTRODUCTION

In this Chapter we try to understand negation from two di�erent points of
view: a syntactical one and a semantic one. Accordingly, we identify two
di�erent types of negation. The same connective of a given logic might be
of both types, but this might not always be the case.

The syntactical point of view is an abstract one. It characterizes connec-
tives according to the internal role they have inside a logic, regardless of
any meaning they are intended to have (if any). With regard to negation
our main thesis is that the availability of what we call below an internal
negation is what makes a logic essentially multiple-conclusion.

The semantic point of view, in contrast, is based on the intuitive meaning
of a given connective. In the case of negation this is simply the intuition
that the negation of a proposition A is true if A is not, and not true if A is
true.1

Like in most modern treatments of logics (see, e.g., [Scott, 1974; Scott,
1974b; Hacking, 1979; Gabbay, 1981; Urquhart, 1984; Wojcicki, 1988; Ep-
stein, 1995; Avron, 1991a; Cleave, 1991; Fagin et al., 1992]), our study of
negation will be in the framework of Consequence Relations (CRs). Fol-
lowing [Avron, 1991a], we use the following rather general meaning of this
term:

DEFINITION.

(1) A Consequence Relation (CR) on a set of formulas is a binary relation
` between (�nite) multisets of formulas s.t.:

(I) Reexivity: A ` A for every formula A.

(II) Transitivity, or \Cut": if �1 ` �1, A and A;�2 ` �2, then �1;�2 `
�1;�2.

(III) Consistency: ; 6` ; (where ; is the empty multiset).

1We have avoided here the term \false", since we do not want to commit ourselves to
the view that A is false precisely when it is not true. Our formulation of the intuition is
therefore obviously circular, but this is unavoidable in intuitive informal characterizations
of basic connectives and quanti�ers.

D. Gabbay and F. Guenthner (eds.),
Handbook of Philosophical Logic, Volume 9, 287{319.
c 2002, Kluwer Academic Publishers. Printed in the Netherlands.



288 ARNON AVRON

(2) A single-conclusion CR is a CR ` such that � ` � only if � consists of
a single formula.

The notion of a (multiple-conclusion) CR was introduced in [Scott, 1974]

and [Scott, 1974b]. It was a generalization of Tarski's notion of a conse-
quence relation, which was single-conclusion. Our notions are, however, not
identical to the original ones of Tarski and Scott. First, they both con-
sidered sets (rather than multisets) of formulas. Second, they impose a
third demand on CRs: monotonicity. We shall call a (single-conclusion or
multiple-conclusion) CR which satis�es these two extra conditions ordinary .
A single-conclusion, ordinary CR will be called Tarskian.2

The notion of a \logic" is in practice broader than that of a CR, since
usually several CRs are associated with a given logic. Given a logic L there
are in most cases two major single-conclusion CRs which are naturally as-
sociated with it: the external CR `eL and the internal CR `iL. For example,
if L is de�ned by some axiomatic system AS then A1; � � � ; An `eL B i� there
exists a proof in AS of B from A1; � � �An (according to the most standard
meaning of this notion as de�ned in undergraduate textbooks on mathemat-
ical logic), while A1; � � � ; An `iL B i� A1 !

�
A2 ! � � � ! (An ! B) � � �

�
is a theorem of AS (where ! is an appropriate \implication" connective
of the logic). Similarly if L is de�ned using a Gentzen-type system G then
A1; � � � ; An `iL B if the sequent A1; � � � ; An ) B is provable in G, while
A1; � � �An `eL B i� there exists a proof in G of ) B from the assumptions
) A1; � � � ;) An (perhaps with cuts). `eL is always a Tarskian relation, `iL
frequently is not. The existence (again, in most cases) of these two CRs
should be kept in mind in what follows. The reason is that semantic char-
acterizations of connectives are almost always done w.r.t. Tarskian CRs
(and so here `eL is usually relevant). This is not the case with syntactical
characterizations, and here frequently `iL is more suitable.

2 THE SYNTACTICAL POINT OF VIEW

2.1 Classi�cation of basic connectives

Our general framework allows us to give a completely abstract de�nition,
independent of any semantic interpretation, of standard connectives. These
characterizations explain why these connectives are so important in almost
every logical system.

In what follows ` is a �xed CR. All de�nitions are taken to be relative
to ` (the de�nitions are taken from [Avron, 1991a]).

2What we call a Tarskian CR is exactly Tarski's original notion. In [Avron, 1994] we
argue at length why the notion of a proof in an axiomatic system naturally leads to our
notion of single-conclusion CR, and why the further generalization to multiple-conclusion
CR is also very reasonable.
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We consider two types of connectives. The internal connectives, which
make it possible to transform a given sequent into an equivalent one that has
a special required form, and the combining connectives, which allow us to
combine (under certain circumstances) two sequents into one which contains
exactly the same information. The most common (and useful) among these
are the following connectives:
Internal Disjunction: + is an internal disjunction if for all �;�; A;B:

� ` �; A;B i� � ` �; A+B :

Internal Conjunction: 
 is an internal conjunction if for all �;�; A;B:

�; A;B ` � i� �; A
B ` � :

Internal Implication: ! is an internal implication if for all �;�; A;B:

�; A ` B;� i� � ` A! B;� :

Internal Negation: : is an internal negation if the following two condi-
tions are satis�ed by all �;� and A:

(1) A;� ` � i� � ` �;:A

(2) � ` �; A i� :A;� ` � :

Combining Conjunction: ^ is a combining conjunction i� for all �;�; A;B:

� ` �; A ^ B i� � ` �; A and � ` �; B :

Combining Disjunction: _ is a combining disjunction i� for all �;�; A;B

A _B;� ` � i� A;� ` � and B;� ` � :

Note: The combining connectives are called \additives" in Linear logic
(see [Girard, 1987]) and \extensional" in Relevance logic. The internal
ones correspond, respectively, to the \multiplicative" and the \intensional"
connectives.

Several well-known logics can be de�ned using the above connectives:
LLm | Multiplicative Linear Logic (without the propositional con-
stants): This is the logic which corresponds to the minimal (multiset) CR
which includes all the internal connectives.
LLma | Propositional Linear Logic (without the \exponentials" and
the propositional constants): This corresponds to the minimal consequence
relation which contains all the connectives introduced above.
Rm | the Intensional Fragment of the Relevance Logic R:3 This
corresponds to the minimal CR which contains all the internal connectives
and is closed under contraction.

3see [Anderson and Belnap, 1975] or [Dunn, 1986].
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R without Distribution: This corresponds to the minimal CR which
contains all the connectives which were described above and is closed under
contraction.
RMIm | the Intensional Fragment of the Relevance Logic RMI :4

This corresponds to the minimal sets-CR which contains all the internal
connectives.
Classical Proposition Logic: This of course corresponds to the minimal
ordinary CR which has all the above connectives. Unlike the previous log-
ics there is no di�erence in it between the combining connectives and the
corresponding internal ones.

In all these examples we refer, of course, to the internal consequence
relations which naturally correspond to these logics (In all of them it can
be de�ned by either of the methods described above).

2.2 Internal Negation and Strong Symmetry

Among the various connectives de�ned above only negation essentially de-
mands the use of multiple-conclusion CRs (even the existence of an internal
disjunction does not force multiple-conclusions, although its existence is
trivial otherwise.). Moreover, its existence creates full symmetry between
the two sides of the turnstyle. Thus in its presence, closure under any of
the structural rules on one side entails closure under the same rule on the
other, the existence of any of the binary internal connectives de�ned above
implies the existence of the rest, and the same is true for the combining
connectives.

To sum up: internal negation is the connective with which \the hidden
symmetries of logic" [Girard, 1987] are explicitly represented. We shall call,
therefore, any multiple-conclusion CR which possesses it strongly symmet-
ric.

Some alternative characterizations of an internal negation are given in
the following easy proposition.

PROPOSITION 1. The following conditions on ` are all equivalent:
(1) : is an internal negation for `.
(2) � ` �; A i� �;:A ` �
(3) A;� ` � i� � ` �;:A
(4) A;:A ` and ` :A;A
(5) ` is closed under the rules:

A;� ` �

� ` �;:A

� ` �; A

:A;� ` �
:

Our characterization of internal negation and of symmetry has been done
within the framework of multiple-conclusion relations. Single-conclusion

4see [Avron, 1990a; Avron, 1990b].
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CRs are, however, more natural. We proceed next to introduce correspond-
ing notions for them.

DEFINITION.

(1) Let `L be a single-conclusion CR (in a language L), and let : be a
unary connective of L. `L is called strongly symmetric w.r.t. to :, and : is
called an internal negation for `L, if there exists a multiple-conclusion CR
`�L with the following properties:

(i) � `�L A i� � `L A

(ii) : is an internal negation for `�L

(2) A single-conclusion CR `L is called essentially multiple-conclusion i� it
has an internal negation.

Obviously, if a CR `�L like in the last de�nition exists then it is unique.
We now formulate suÆcient and necessary conditions for its existence.

THEOREM 2. `L is strongly symmetric w.r.t. : i� the following conditions
are satis�ed:

(i) A `L ::A

(ii) ::A `L A

(iii) If �; A `L B then �;:B `L :A.

Proof. The conditions are obviously necessary. Assume, for the converse,
that `L satis�es the conditions. De�ne: A1; � � � ; An `sL B1; � � � ; Bk i� for
every 1 � i � n and 1 � j � k:

A1; � � � ; Ai�1;:B1; � � � ;:Bk; Ai+1; � � � ; An ` :Ai

A1; � � � ; An;:B1; � � � ;:Bj�1;:Bj+1; � � � ;:Bk ` Bj :

It is easy to check that `sL is a CR whenever `L is a CR (whether single-
conclusion or multiple-conclusion), and that if � `sL A then � `L A. The
�rst two conditions imply (together) that : is an internal negation for `sL
(in particular: the second entails that if A;� `sL � then � `sL �;:A and
the �rst that if � `sL �; A then :A;� `sL �). Finally, the third condition
entails that `sL is conservative over `L. �

Examples of logics with an internal negation.

1. Classical logic.

2. Extensions of classical logic, like the various modal logics.

3. Linear logic and its various fragments.
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4. The various Relevance logics (like R and RM (see [Anderson and Bel-
nap, 1975; Dunn, 1986; Anderson and Belnap, 1992] or RMI [Avron,
1990a; Avron, 1990b]) and their fragments.

5. The various many-valued logics of  Lukasiewicz, as well as Soboci�nski
3-valued logic [Soboci�nski, 1952].

Examples of logics without an internal negation.

1. Intuitionistic logic.

2. Kleene's 3-valued logic and its extension LPF [Jones, 1986].

Note: Again, in all these examples above it is the internal CR which is
essentially multiple-conclusion (or not) and has an internal negation. This
is true even for classical predicate calculus: There, e.g., 8xA(x) follows
from A(x) according to the external CR, but :A(x) does not follow from
:8xA(x).5

All the positive examples above are instances of the following proposition,
the easy proof of which we leave to the reader:

PROPOSITION 3. Let L be any logic in a language containing : and !.
Suppose that the set of valid formulae of L includes the set of formulae in
the language of f:;!g which are theorems of Linear Logic,6 and that it
is closed under MP for !. Then the internal consequence relation of L
(de�ned using ! as in the introduction) is strongly symmetric (with respect
to :).

The next two theorems discuss what properties of `L are preserved by
`sL. The proofs are straightforward.

THEOREM 4. Assume `L is essentially multiple-conclusion.

1. `sL is monotonic i� so is `L.

2. `sL is closed under expansion (the converse of contraction) i� so is
`L.

3. ^ is a combining conjunction for `sL i� it is a combining conjunction
for `L.

4. ! is an internal implication for `sL i� it is an internal implication
for `L.

5The internal CR of classical logic has been called the \truth" CR in [Avron, 1991a]

and was denoted there by `t, while the external one was called the \validity" CR and
was denoted by `v. On the propositional level there is no di�erence between the two.

6Here : should be translated into linear negation, ! { into linear implication.
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Notes:

1) Because `sL is strongly symmetric, Parts (3) and (4) can be formulated
as follows: `sL has the internal connectives i� `L has an internal implication
and it has the combining connectives i� `L has a combining conjunction.
2) In contrast, a combining disjunction for `L is not necessarily a combining
disjunction for `sL. It is easy to see that a necessary and suÆcient condition
for this to happen is that `L :(A_B) whenever `L :A and `L :B. An ex-
ample of an essentially multiple-conclusion system with a combining disjunc-
tion which does not satisfy the above condition is RMI of [Avron, 1990a;
Avron, 1990b]. That system indeed does not have a combining conjunction.
This shows that a single-conclusion logic L with an internal negation and
a combining disjunction does not necessarily have a combining conjunction
(unless L is monotonic). The converse situation is not possible, though: If
: is an internal negation and ^ is a combining conjunction then :(:A^:B)
de�nes a combining disjunction even in the single-conclusion case.
3) An internal conjunction 
 for `L is also not necessarily an internal con-
junction for `sL. We need here the extra condition that if A `L :B then
`L :(A 
 B). An example which shows that this condition does not nec-
essarily obtain even if `L is an ordinary CR, is given by the following CR
`triv:

A1; � � � ; An `triv B i� n � 1 :

It is obvious that `triv is a Tarskian CR and that every unary connective
of its language is an internal negation for it, while every binary connective
is an internal conjunction. The condition above fails, however, for `triv.
4) The last example shows also that `sL may not be closed under contraction
when `L does, even if `L is Tarskian. Obviously, � `striv � i� j� [�j � 2.
Hence `striv A;A but 6`striv A. The exact situation about contraction is given
in the next proposition.

PROPOSITION 5. If `L is essentially multiple-conclusion then `sL is closed
under contraction i� `L is closed under contraction and satis�es the follow-
ing condition:

If A `L B and :A `L B then `L B.

In case `L has a combining disjunction this is equivalent to:

`L :A _ A :

Proof. Suppose �rst that `L is closed under contraction and satis�es the
condition. Assume that � `sL �; A;A. If either � or � is not empty then
this is equivalent to :A;:A;�� `L B for some �� and B. Since `L is closed
under contraction, this implies that :A;�� `L B, and so � `sL �; A. If
both � and � are empty then we have :A `L A. Since also A `L A, the
condition implies that `L A, and so `sL A.
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For the converse, suppose `sL is closed under contraction. This obviously
entails that so is also `L. Assume now that A `L B and :A `L B. Then
A `sL B and `sL B;A. Applying cut we get that `sL B;B, and so `sL B. It
follows that `L B. �

3 THE SEMANTIC POINT OF VIEW

We turn in this section to the semantic aspect of negation.

3.1 The General Framework

A \semantics" for a logic consists of a set of \models". The main property
of a model is that every sentence of a logic is either true in it or not (and
not both). The logic is sound with respect to the semantics if the set of
sentences which are true in each model is closed under the CR of the logic,
and complete if a sentence ' follows (according to the logic) from a set T of
assumptions i� every model of T is a model of '. Such a characterization
is, of course, possible only if the CR we consider is Tarskian. In this section
we assume, therefore, that we deal only with Tarskian CRs. For logics like
Linear Logic and Relevance logics this means that we consider only the
external CRs which are associated with them (see the Introduction).

Obviously, the essence of a \model" is given by the set of sentences which
are true in it. Hence a semantics is, essentially, just a set S of theories.
Intuitively, these are the theories which (according to the semantics) provide
a full description of a possible state of a�airs. Every other theory can be
understood as a partial description of such a state, or as an approximation
of a full description. Completeness means, then, that a sentence ' follows
from a theory T i� ' belongs to every superset of T which is in S (in
other words: i� ' is true in any possible state of a�airs of which T is an
approximation).

Now what constitutes a \model" is frequently de�ned using some kind of
algebraic structures. Which kind (matrices with designated values, possible
worlds semantics and so on) varies from one logic to another. It is diÆcult,
therefore, to base a general, uniform theory on the use of such structures.
Semantics (= a set of theories!) can also be de�ned, however, purely syn-
tactically. Indeed, below we introduce several types of syntactically de�ned
semantics which are very natural for every logic with \negation". Our in-
vestigations will be based on these types.

Our description of the notion of a model reveals that externally it is based
on two classical \laws of thought": the law of contradiction and the law of
excluded middle. When this external point of view is reected inside the
logic with the help of a unary connective : we call this connective a (strong)
semantic negation. Its intended meaning is that :A should be true precisely
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when A is not. The law of contradiction means then that only consistent
theories may have a model, while the law of excluded middle means that
the set of sentences which are true in some given model should be negation-
complete. The sets of consistent theories, of complete theories and of normal
theories (theories that are both) have, therefore a crucial importance when
we want to �nd out to what degree a given unary connective of a logic can be
taken as a semantic negation. Thus complete theories reect a state of a�airs
in which the law of excluded middle holds. It is reasonable, therefore, to say
that this law semantically obtains for a logic L if its consequence relation
`L is determined by its set of complete theories. Similarly, L (strongly)
satis�es the law of contradiction i� `L is determined by its set of consistent
theories, and it semantically satis�es both laws i� `L is determined by its
set of normal theories.

The above characterizations might seem unjusti�ably strong for logics
which are designed to allow non-trivial inconsistent theories. For such logics
the demand that `L should be determined by its set of normal theories is
reasonable only if we start with a consistent set of assumptions (this is called
strong c-normality below). A still weaker demand (c-normality) is that any
consistent set of assumptions should be an approximation of at least one
normal state of a�airs (in other words: it should have at least one normal
extension).

It is important to note that the above characterizations are independent
of the existence of any internal reection of the laws (for example: in the
forms :(:A ^ A) and :A _ A, for suitable ^ and _). There might be
strong connections, of course, in many important cases, but they are neither
necessary nor always simple.

We next de�ne our general notion of semantics in precise terms.

DEFINITION. Let L be a logic in L and let `L be its associated CR.

1. A setup for `L is a set of formulae in L which is closed under `L. A
semantics for `L is a nonempty set of setups which does not include
the trivial setup (i.e., the set of all formulae).

2. Let S be a semantics for `L. An S-model for a formula A is any setup
in S to which A belongs. An S-model of a theory T is any setup in S
which is a superset of T . A formula is called S-valid i� every setup in
S is a model of it. A formula A S-follows from a theory T (T `SL A)
i� every S-model of T is an S-model of A.

PROPOSITION 6. `SL is a (Tarskian) consequence relation and `L�`SL.

Notes:

1. `SL is not necessarily �nitary even if ` is.

2. `L is just `
S(L)
L where S(L) is the set of all setups for `L.
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3. If S1 � S2 then `S2L �`
S1
L .

EXAMPLES.

1. For classical propositional logic the standard semantics consists of the
setups which are induced by some valuation in ft; fg. These setups
can be characterized as theories T such that

(i) :A 2 T i� A =2 T (ii) A ^ B 2 T i� both A 2 T and B 2 T

(and similar conditions for the other connectives).

2. In classical predicate logic we can de�ne a setup in S to be any set of
formulae which consists of the formulae which are true in some given
�rst-order structure relative to some given assignment. Alternatively
we can take a setup to consist of the formulae which are valid in some
given �rst-order structure. In the �rst case `S=`t, in the second
`S=`v, where `t and `v are the \truth" and \validity" consequence
relations of classical logic (see [Avron, 1991a] for more details).

3. In modal logics we can de�ne a \model" as the set of all the formulae
which are true in some world in some Kripke frame according to some
valuation. Alternatively, we can take a model as the set of all formulae
which are valid in some Kripke frame, relative to some valuation.
Again we get the two most usual consequence relations which are
used in modal logics (see [Avron, 1991a] or [Fagin et al., 1992]).

From now on the following two conditions will be assumed in all our
general de�nitions and propositions:

1. The language contains a negation connective :.

2. For no A are both A and :A theorems of the logic.

DEFINITION. Let S be a semantics for a CR `L

1. `L is strongly complete relative to S if `SL=`L.

2. `L is weakly complete relative to S if for all A, `L A i� `SL A.

3. `L is c-complete relative to S if every consistent theory of `L has a
model in S.

4. `L is strongly c-complete relative to S if for every A and every con-
sistent T , T `SL A i� T `L A.
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Notes:

1. Obviously, strong completeness implies strong c-completeness, while
strong c-completeness implies both c-completeness and weak com-
pleteness.

2. Strong completeness means that deducibility in `L is equivalent to
semantic consequence in S. Weak completeness means that theorem-
hood in `L (i.e., derivability from the empty set of assumptions) is
equivalent to semantic validity (= truth in all models). c-completeness
means that consistency implies satis�ability. It becomes identity if
only consistent sets can be satis�able, i.e., if f:A;Ag has a model for
no A. This is obviously too strong a demand for paraconsistent logics.
Finally, strong c-completeness means that if we restrict ourselves to
normal situations (i.e., consistent theories) then `L and `SL are the
same. This might sometimes be weaker than full strong completeness.

The last de�nition uses the concepts of \consistent" theory. The next
de�nition clari�es (among other things) the meaning of this notion as we
are going to use in it this paper.

DEFINITION. Let L and `L be as above. A theory in L consistent if for
no A it is the case that T `L A and T `L :A, complete if for all A, either
T `L A or T `L :A, normal if it is both consistent and complete. CSL,
CPL and NL will denote, respectively, the sets of its consistent, complete
and normal theories.

Given `L, the three classes, CSL, CPL and NL, provide 3 di�erent syn-
tactically de�ned semantics for `L, and 3 corresponding consequence rela-
tions `CSLL , `CPLL and `NLL . We shall henceforth denote these CRs by `CSL ,
`CPL and `NL , respectively. Obviously, `CSL �`

N
L and `CPL �`

N
L . In the rest

of this section we investigate these relations and the completeness properties
they induce.

Let us start with the easier case: that of `CSL . It immediately follows
from the de�nitions (and our assumptions) that relative to it every logic is
strongly c-complete (and so also c-complete and weakly complete). Hence
the only completeness notion it induces is the following:

DEFINITION. A logic L with a consequence relation `L is strongly consis-
tent if `CSL =`L.

`CSL is not a really interesting CR. As the next theorem shows, what
it does is just to trivialize inconsistent `L-theories. Strong consistency,
accordingly, might not be a desirable property, certainly not a property
that any logic with negation should have.
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PROPOSITION 7.

1. T `CSL A i� either T is inconsistent in L or T `L A. In particular, T
is `CSL -consistent i� it is `L-consistent.

2. L is strongly consistent i� :A;A `L B for all A;B (i� T is consistent
whenever T 6` A).

3. Let LCS be obtained from L by adding the rule: from :A and A infer
B. Then `CSL =`LCS . In particular: if `L is �nitary then so is `CSL .

4. `CSL is strongly consistent.

We turn now to `CP and `N . In principle, each provides 4 notions
of completeness. We don't believe, however, that considering the two no-
tions of c-consistency is natural or interesting in the framework of `CP (c-
completeness, e.g., means there that every consistent theory has a complete
extension, but that extension might not be consistent itself). Accordingly
we shall deal with the following 6 notions of syntactical completeness.7

DEFINITION. Let L be a logic and let `L be its consequence relation.

1. L is strongly complete if it is strongly complete relative to CP .

2. L is weakly complete if it is weakly complete relative to CP .

3. L is strongly normal if it is strongly complete relative to N .

4. L is weakly normal if it is weakly complete relative to N .

5. L is c-normal if it is c-complete relative to N .

6. L is strongly c-normal if it is strongly c-complete relative to N (this
is easily seen to be equivalent to `NL =`CSL ).

For the reader's convenience we repeat what these de�nitions actually mean:

1. L is strongly complete i� whenever T 6`L A there exists a complete
extension T � of T such that T � 6`L A.

2. L is weakly complete i� whenever A is not a theorem of L there exists
a complete T � such that T � 6`L A.

3. L is strongly normal i� whenever T 6`L A there exists a complete and
consistent extension T � of T such that T � 6`L A.

4. L is weakly normal i� whenever A is not a theorem of L there exists
a complete and consistent theory T � such that T � 6`L A.

7In [Anderson and Belnap, 1975] the term \syntactically complete" was used for what
we call below \strongly c-normal".
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5. L is c-normal if every consistent theory of L has a complete and con-
sistent extension.

6. L is strongly c-normal i� whenever T is consistent and T 6`L A there
exists a complete and consistent extension T � of T such that T � 6`L A.

Our next proposition provides simpler syntactical characterizations of
some of these notions in case `L is �nitary.

PROPOSITION 8. Assume that `L is �nitary.

1. L is strongly complete i� for all T;A and B:

(�) T;A `L B and T;:A `L B imply T `L B

In case L has a combining disjunction _ then (�) is equivalent to the
theoremhood of :A _ A (excluded middle).

2. L is strongly normal if for all T and A:

(��) T `L A i� T [ f:Ag is inconsistent:

3. L is strongly c-normal i� (��) obtains for every consistent T .

4. L is c-normal i� for every consistent T and every A either T [ fAg
or T [ f:Ag is consistent.

Proof. Obviously, strong completeness implies (�). For the converse, as-
sume that T 6` B. Using (�), we extend T in stages to a complete theory
such that T � 6` B. This proves part 1. The other parts are straightforward.

�

COROLLARIES.

1. If L is strongly normal then it is strongly symmetric w.r.t. :. More-
over: `sL is an ordinary multiple-conclsion CR.

2. If L is strongly symmetric w.r.t. : then it is strongly complete i� `sL
is closed under contraction.

Proof. These results easily follows from the last proposition and Theorems
2, 4 and 5 above. �

In the �gure below we display the obvious relations between the seven
properties of logics which were introduced here (where an arrow means
\contained in"). The next theorem shows that no arrow can be added to it:
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strong normality

strong completeness strong c-normality strong consistency

weak normality c-normality

weak completeness

THEOREM 9. A logic can be:

1. strongly consistent and c-normal without even being weakly complete

2. strongly complete and strongly c-normal without being strongly consis-
tent (and so without being strongly normal)

3. strongly consistent without being c-normal

4. strongly complete, weakly normal and c-normal without being strongly
c-normal

5. strongly complete and c-normal without being weakly normal

6. strongly consistent, c-normal and weakly normal without being strongly
c-normal (=strongly normal in this case, because of strong consis-
tency)

7. strongly complete without being c-normal.8

Proof. Appropriate examples for 1-6 are given below, respectively, in the-
orems 12, 18, 33, 19, 35 and the corollary to theorem 19. As for the last
part, let L be the following system in the language of f:;!g:9

8Hence the two standard formulations of the \strong consistency" of classical logic are
not equivalent in general.

9Classical logic is obtained from it by adding :A! (A! B) as axiom (see [Epstein,
1995, Ch. 2L].
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Ax1: A! (B ! A)
Ax2: A! (B ! C)! (A! B)! (A! C)
Ax3: (:A! B)! ((A! B)! B)

(MP) A A! B
B

.

Obviously, the deduction theorem for! holds for this system, since MP
is the only rule of inference, and we have Ax1 and Ax2. This fact, Ax3 and
proposition 8 guarantee that it is strongly complete. To show that it is not
c-normal, we consider the theory T0 = fp! q; p! :q; :p! r; :p! :rg.
Obviously, T0 has no complete and consistent extension. We show that it
is consistent nevertheless. For this we use the following structure:
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De�ne in this structure a! b as t if a � b, b otherwise, :x as f if x = t,
t if x = f and �x otherwise. It is not diÆcult now to show that if T ` A in
the present logic for some T and A, and v is a valuation in this structure
such that v(B) = t for all B 2 T , then v(A) = t. Take now v(p) = 3,
v(q) = 1, v(r) = 2. Then v(B) = t for all B 2 T0, but obviously there is no
A such that v(A) = v(:A) = t. Hence T0 is consistent. �

We end this introductory subsection with a characterization of `CPL and
`NL . The proofs are left to the reader.

PROPOSITION 10.

1. `CPL is strongly complete, and is contained in any strongly complete
extension of `L.

2. Suppose `L is �nitary. T `CPL A i� for some B1; : : : ; Bn (n � 0) we
have that T [fB�1 ; : : : ; B

�
ng `L A for every set fB�1 ; : : : ; B

�
ng such that

for all i, B�i = Bi or B�i = :Bi.
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3. If `L is �nitary, then so is `CPL .

PROPOSITION 11.

1. `NL is strongly normal, and is contained in every strongly normal ex-
tension of `L.

2. If `L is �nitary then T `NL A i� for some B1; : : : ; Bn we have that
for all fB�1 ; : : : ; B

�
ng where B�i 2 fBi;:Big (i = 1; : : : ; n), either T [

fB�1 ; : : : ; B
�
ng is inconsistent or T [ fB�1 ; : : : ; B

�
ng `L A

3. `NL is �nitary if `L is.

3.2 Classical and Intuitionistic Logics

Obviously, classical propositional logic is strongly normal. In fact, most
of the proofs of the completeness of classical logic relative to its standard
two-valued semantics begin with demonstrating the condition (��) in Propo-
sition 8, and are based on the fact that every complete and consistent theory
determines a unique valuation in ft; fg - and vice versa. In other words: N
here is exactly the usual semantics of classical logic, only it can be charac-
terized also using an especially simple algebraic structure (and valuations in
it). One can argue that this strong normality characterizes classical logic.
To be speci�c, it is not diÆcult to show the following claims:

1. classical logic is the only logic in the language of f:;^gwhich is
strongly normal w.r.t. : and for which ^ is an internal conjunction.
Similar claims hold for the f:;!g language, if we demand ! to be
an internal implication and for the f:;_g language, if we demand _
to be a combining disjunction.

2. Any logic which is strongly normal and has either an internal impli-
cation, or an internal conjunction or a combining disjunction contains
classical propositional logic.

The next proposition summarizes the relevant facts concerning intuition-
istic logic. The obvious conclusion is that although the oÆcial intuitionistic
negation has some features of negation, it still lacks most. Hence, it cannot
be taken as a real negation from our semantic point of view.

PROPOSITION 12. Intuitionistic logic is strongly consistent and c-normal,
but it is not even weakly complete.

Proof. Strong consistency follows from part 3 of Proposition 7. c-normality
follows from part 4 of Proposition 8, since in intuitionistic logic if both
T [fAg and T [f:Ag are inconsistent then T `H :A and T `H ::A, and
so T is inconsistent. Finally, :A _ A belongs to every complete setup, but
is not intuitionistically valid. �
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Note: Intuitionistic logic and classical logic have exactly the same consis-
tent and complete setups, since any complete intuitionistic theory is closed
under the elimination rule of double negation. Hence any consistent intu-
itionistic theory has a classical two-valued model.

What about fragments (with negation) of Intuitionistic Logic? Well, they
are also strongly consistent and c-normal, by the same proof. Moreover,
((A ! B) ! A) ! A is another example of a sentence which belongs to
every complete setup (since A `H ((A! B)! A)! A and :A `H ((A!
B)! A)! A), but is not provable. The set of theorems of the pure f:;^g
fragment, on the other hand, is identical to that of classical logic, as is well
known. This fragment is, therefore, easily seen to be weakly normal. It is
still neither strongly complete nor strongly c-normal, since ::A `CPH A.�

Finally, we note the important fact that classical logic can be viewed as
the completion of intuitionistic logic. More precisely:

PROPOSITION 13.

1. `CSH =`H

2. `CPH =`NH= classical logic.

Proof.

2. `CPL =`NL whenever L is strongly consistent (i.e., all nontrivial theories
are consistent). In the proof of the previous proposition we have seen
also that `CPH :A_A and `CPH ((A! B)! A)! A. It is well known,
however, that by adding either of this schemes to intuitionistic logic
we get classical logic. Hence classical logic is contained in `CPH . Since
classical logic is already strongly complete, `CPH is exactly classical
logic. (Note that this is true for any fragment of the language which
includes negation.) �

3.3 Linear Logic (LL)

In the next 3 subsections we are going to investigate some known substruc-
tural logics [Schroeder-Heister and Do�sen, 1993]. Before doing it we must
emphasize again that in this section it is only the external, Tarskian con-
sequence relation of these logics which can be relevant. This consequence
relation can very naturally be de�ned by using the standard Hilbert-type
formulations of these logics: A1; : : : ; An `eL B (L = LL;R;RM;RMI , etc.)
i� there exists an ordinary deduction of B from A1; : : : ; An in the corre-
sponding Hilbert-type system. This de�nition is insensitive to the exact
choice of axioms (or even rules), provided we take all the rules as rules of
derivation and not just as rules of proof. In the case of Linear Logic one can
use for this the systems given in [Avron, 1988] or in [Troelstra, 1992]. An
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alternative equivalent de�nition of the various external CRs can be given us-
ing the standard Gentzen-types systems for these logics (in case such exist),
as explained in the introduction. Still another characterization in the case
of Linear Logic can be given using the phase semantics of [Girard, 1987]:
A1; : : : ; An `eLL B i� B is true in every phase model of A1; : : : ; An. In what
follows we shall omit the superscript \e" and write just `LL, `LLm , etc.

Unlike in [Girard, 1987] we shall take below negation as one of the con-
nectives of the language of linear logic and write :A for the negation of A
(this corresponds to Girard's A?). As in [Avron, 1988] and in the relevance
logic literature, we use arrow (!) for linear implication.

We show now that linear logic is incomplete with respect to our various
notions.

PROPOSITION 14. LLm (LLma; LL) is not strongly consistent.

PROPOSITION 15. LLm (LLma; LL) is neither strongly complete nor c-
normal.

Proof. Consider the following theory:

T = fp! :p ; :p! pg :

From the characterization of `LLm given in [Avron, 1992] it easily follows
that has T been inconsistent then there would be a provable sequent of
the form: :p ! p; :p ! p; : : : ;:p ! p; p ! :p; : : : ; p ! :p ). But
in any cut-free proof of such a sequent the premises of the last applied
rule should have an odd number of occurrences of p, which is impossible
in a provable sequent of the purely multiplicative linear logic. Hence T is
consistent. Obviously, every complete extension of T proves p and :p and
so is inconsistent. This shows that LLm is not c-normal. It also shows
that p is not provable from T , although it is provable from any complete
extension of it, and so LLm is not strongly complete. �

PROPOSITION 16. LLma (and so also LL) is not weakly complete.

Proof. � A � A is not a theorem of linear logic, but it belongs to any
complete theory. �

It follows that Linear logic (and its multiplicative-additive fragment) has
none of the properties we have de�ned in this section. Its negation is there-
fore not really a negation from our present semantic point of view.

Our results still leave the possibility that LLm might be weakly com-
plete or even weakly normal. We conjecture that it is not, but we have no
counterexample.

We end this section by giving axiomatizations of `CPLL and `NLL.
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PROPOSITION 17.

1. Let LLCP be the full Hilbert-type system for linear logic (as given in
[Avron, 1988]) together with the rule: from !A ! B and !:A ! B
infer B. Then `CPLL=`LLCP .

2. Let LLN be LLCP together with the disjunctive syllogism for � (from
:A and A�B infer B). Then `NLL=`LLN .

Proof.

1. The necessitation rule (from A infer !A) is one of the rules of LL.10 It
follows therefore that B should belong to any complete setup which
contains both !A! B and !:A ! B. Hence the new rule is valid for
`CPLL and `LLCP�`

CP
LL .

For the converse, assume T `CPLL A. Then there exist B1; : : : ; Bn like in
proposition 10(2). We prove by induction on n that T `LLCP A. The
case n = 0 is obvious. Suppose the claim is true for n� 1. We show it
for n. By the deduction theorem for LL, !B�1 ; : : : ; !B

�
n ) A is derivable

from T in LLCP .11 More precisely: !B�1
!B�2 : : :
!B�n ! A is deriv-
able from T for any choice of B�1 ; : : : ; B

�
n. Since !C
!D $!(C&D) is a

theorem of LL, this means that both !Bn ! (!(B�1& : : :&B�n�1)! A)
and !:Bn ! (!(B�1& : : :&B�n�1) ! A). By the new rule of LLCP we
get therefore that T `LLCP !(B�1& : : :&B�n�1) ! A, and so T `LLCP
!B�1
!B�2 
 : : :
!B�n�1 ! A for all choices of B�1 ; : : : ; B

�
n�1. An appli-

cation of the induction hypothesis gives T `LLCP A.

2. The proof is similar, only this time we should have (by proposition
11) that T [ fB�1 ; : : : ; B

�
ng is either inconsistent in LN or proves A

there. In both cases it proves A�? in LLCP . The same argument as
before will show that T `LLCP A�?. Since `LL : ?, one application
of the disjunctive syllogism will give T `LLCP A. It remains to show
that the disjunctive syllogism is valid for `NLL. This is easy, since
f:A; A � B; :Bg is inconsistent in LL, and so any complete and
consistent extension of f:A; A�Bg necessarily contains B. �

3.4 The Standard Relevance Logic R and its Relatives

In this section we investigate the standard relevance logic R of Anderson and
Belnap [Anderson and Belnap, 1975; Dunn, 1986] and its various extensions
and fragments. Before doing this we should again remind the reader what
consequence relation we have in mind: the ordinary one which is associated

10Note again that we are talking here about `e
LL

!
11In fact, at the beginning it is derivable from T in LL, but for the induction to go

through we need to assume derivability in LLCP at each step.
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with the standard Hilbert-type formulations of these logics. As in the case
of linear logic, this means that we take both rules of R (MP and adjunction)
as rules of derivation and de�ne T `R A in the most straightforward way.

Let us begin with the purely intensional (=multiplicative) fragment of R:
Rm. We state the results for this system, but they hold for all its nonclassical
various extensions (by axioms) which are discussed in the literature.

THEOREM 18. Rm is not strongly consistent, but it is strongly complete
and strongly c-normal.

Proof. It is well-known that Rm is not strongly consistent in our sense.
Its main property that we need for the other claims is that T;A `Rm B i�
either T `Rm B or T `Rm A! B. The strong completeness of Rm follows
from this property by the provability of (:A! B)! ((A! B)! B) and
proposition 8(1).

To show strong c-normality, we note �rst that a theory T is inconsistent
in Rm i� T `Rm :(B ! B) for some B (because `Rm :B ! (B !
:(B ! B))). Suppose now that T is consistent and T 6`Rm A. Were
T [f:Ag inconsistent then by the same main property and the consistency
of T we would have that T `Rm :A! :(B ! B) for some B, and so that
T `Rm (B ! B) ! A and T `Rm A. A contradiction. Hence T [ f:Ag is
consistent and we are done by proposition 8(3). �

The last theorem is the optimal theorem concerning negation that one
can expect from a logic which was designed to be paraconsistent. It shows
that with respect to normal \situations" (i.e., consistent theories) the nega-
tion connective of Rm behaves exactly as in classical logic. The di�erence,
therefore, is mainly w.r.t. inconsistent theories. Unlike classical logic they
are not necessarily trivial in Rm. Strong completeness means, though, that
excluded middle, at least, can be assumed even in the abnormal situations.

When we come to R as a whole the situation is not as good as for the
purely intensional fragments. Strong c-normality is lost. What we do have
is the following:

THEOREM 19. R is strongly complete, c-normal and weakly normal, 12

but it is neither strongly consistent nor strongly c-normal.

Proof. Obviously, R is not strongly consistent. It is also well known that
:p; p _ q 6`R q. Still q belongs to any complete and consistent extension of
the (even classically!) consistent theory f:p; p _ qg, since f:p; p _ q;:qg
is not consistent in R. It follows that R is not strongly c-normal. On the
other hand, to any extension L of R by axiom schemes it is true that if
T;A `L C and T;B `L C, then T;A _ B `L C [Anderson and Belnap,
1975]. Since `R A _ :A, this and proposition 8(1) entail that any such
extension is strongly complete. Suppose, next, that T is theory and A a

12Weak normality is proved in [Anderson and Belnap, 1975] under the name \syntac-
tical completeness".



ON NEGATION, COMPLETENESS AND CONSISTENCY 307

formula such that T[fAg and T[f:Ag are inconsistent (L as above). Then
for some B and C it is the case that T;A `L :B^B and T;:A `L :C ^C.
It follows that T;A _ :A `L (:B ^ B) _ (:C ^ C). Since A _ :A and
:[(:B ^B)_ (:C ^C)] are both theorems of R, T is inconsistent in L. By
proposition 8(4) this shows that any such logic is c-normal. Suppose, �nally,
that 6`R A. Had f:Ag been inconsistent, we would have that for some B,
:A `R :B ^ B. This, in turn, entails that A _ :A `R A _ (:B ^ B),
and so that `R A _ (:B ^ B). On the other hand, `R :(:B ^ B). By
the famous theorem of Meyer and Dunn concerning the admissibility of the
disjunctive syllogism in R [Anderson and Belnap, 1975; Dunn, 1986] it would
follow, therefore, that `R A, contradicting our assumption. Hence f:Ag is
consistent, and so, by the c-normality of R which we have just proved, it
has a consistent and complete extension which obviously does not prove A.
This shows that R is weakly normal (the proof for RM is identical). �

COROLLARY. `CSR is strongly consistent, c-normal and weakly normal,
but it is not strongly c-normal.

Note: A close examination of the proof of the last theorem shows that the
properties of R which are described there are shared by many of its relatives
(like RM , for example). We have, in fact, the following generalizations:

1. Every extension of R which is not strongly consistent is also not
strongly c-normal.

2. Every extension of R by axiom-schemes is both strongly complete and
c-normal.

3. Every extension of R by axiom schemes for which the disjunctive syl-
logism is an admissible rule13 is weakly normal.

In fact,(1){(3) are true (with similar proofs) also for many systems weaker
than R in the relevance family, like E.

Our results show that `CPR =`R, but `NR 6=`
CS
R (since R is not strongly

c-normal). Hence `NR is a new consequence relation, and we turn next to
axiomatize it.

DEFINITION. Let L be an extension of R by axiom schemes and let LN

be the system which is obtained from L by adding to it the disjunctive
syllogism () as an extra rule: from :A and A _ B infer B.

THEOREM 20. `NL =`LN .

Proof. To show that `LN�`
N
L it is enough to show that :A, A_B `NL B.

This was already done, in fact, in the proof of the last theorem. For the
converse, assume T `NL A. Since L is c-normal (see last note), T [ f:Ag

13See [Anderson and Belnap, 1975] and [Dunn, 1986] for examples and criteria when
this is the case.
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cannot be L-consistent. Hence T [ f:Ag `L :B ^ B for some B. This
entails that T `L A _ (:B ^ B) and that T `LN A exactly as in the proof
of the weak normality of R. �

3.5 The Purely Relevant Logic RMI

The purely relevant logic RMI was introduced in citeAv90a,Av90b. Proof-
theoretically it di�ers from R in that:

(i) The converse of contraction (or, equivalently, the mingle axiom of
RM) is valid in it. This is equivalent to the idempotency of the inten-
sional disjunction + (=\par" of Girard). In the purely multiplicative
fragment RMIm it means also that assumptions with respect to !
can be taken as coming in sets (rather than multisets, as in LLm or
Rm).

(ii) The adjunction rule (B;C ` B ^C) as well as the distribution axiom
(A ^ (B _ C)! (A ^B) _ (A ^ C)) are accepted only if B and C are
\relevant". This relevance relation can be expressed in the logic by
the sentence R+(A;B) = (A! A)+(B ! B), which should be added
as an extra premise to adjunction and distribution (this sentence is
the counterpart of the \mix" rule of [Girard, 1987]).

We start our investigation with the easier case of RMIm.

THEOREM 21. Exactly like Rm, RMIm is not strongly consistent, but it
is both strongly complete and strongly c-normal.

Proof. Exactly like in the case of Rm. �

Like in classical logic, and unlike the case of Rm, these two main proper-
ties of RMIm are strongly related to simple, intuitive, algebraic semantics.
Originally, in fact, RMIm was designed to correspond to a class of struc-
tures which are called in [Avron, 1990a] \full relevant disjunctive lattices"
(full r.d.l.). A full r.d.l is a structure which results if we take a tree and
attach to each node b its own two basic truth-values ftb; fbg. To a leaf b
of the tree we can attach instead a single truth-value Ib which is the nega-
tion of itself (its meaning is \both true and false" or \degenerate"). b is
called abnormal in this case. Intuitively, the nodes of the tree represent
\domains of discourse". Two domains are relevant to each other if they
have a common branch, while b being nearer than a to the root on a branch
intuitively means that b has a higher \degree of reality" (or higher \degree
of signi�cance") than a (we write a < b in this case). The operation of :
(negation) is de�ned on a full r.d.l. M in the obvious way, while + (rele-
vant disjunction) is de�ned as follows: Let jtaj = jfaj = jIaj = a, and let
val(tb) = t, val(fb) = f and val(Ib) = I . De�ne x�+

y if either x = y or
jxj < jyj or jxj = jyj and val(y) = t. (M;�+) is an upper semilattice. Let
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x + y = sup�+
(x; y). An RMIm-model is a pair (M; v) where M is a full

r.d.l. and v a valuation in it (which respects the operations). A sentence A
is true in a model (M; v) if val(v(A)) 6= f . Obviously, every model (M; v)
determines an RMIm-setup of all the formulae which are true in it. Denote
the collection of all these setups by RDLm.

PROPOSITION 22. CPRMIm = RDLm

Proof. It is shown in [Avron, 1990b] that the Lindenbaum algebra of any
complete RMIm-theory determines a model in which exactly its sentences
are true. This implies that CPRMIm � RDLm. The converse is obvious
from the de�nitions. �

CPROLLARY. [Avron, 1990b]: RMIm is sound and complete for the se-
mantics of full r.d.l.s. In other words: T `RMIm A i� A is true in every
model of T .
Proof. Checking soundness is straightforward, while completeness follows
from the syntactic strong compleness of RMIm (theorem 21) and the last
theorem. �

The strong c-normality of RMIm also has an interpretation in terms
of the semantics of full r.d.l.s. In order to describe it we need �rst some
de�nitions:

DEFINITION.

1. A full r.d.l is consistent i� for every x in it val(x) 2 ft; fg (i.e., the
intermediate truth-value I is not used in its construction). This is
equivalent to: x 6= :x for all x.

2. A model (M; v) is consistent i� M is consistent.

3. CRDLm is the collection of the RMIm-setups which are determined
by some consistent model.

Note: On every tree one can base exactly one consistent full r.d.l. (but in
general many inconsistent ones).

PROPOSITION 23. NRMIm = CRDLm.

Proof. In the construction from [Avron, 1990b] which is mentioned in the
proof of proposition 22, a complete and consistent theory is easily seen to
determine a consistent model. The converse is obvious. �

In view of the last proposition, the strong c-normality of RMIm and its
two obvious corollaries (weak normality and c-normality) can be reformu-
lated in terms of the algebraic models as follows:

PROPOSITION 24.

1. If T is consistent then T `RMIm A i� A is true in any consistent
model of T .
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2. `RMIm A i� A is true in any consistent model.

3. Every consistent RMIm-theory has a consistent model.

It follows that if we restrict our attention to consistent RMIm-theories,
we can also restrict our semantics to consistent full r.d.l.s, needing, therefore,
only the classical two truth-values t and f , but not I .

Exactly as in the case of R, when we pass to RMI things become more
complicated. Moreover, although we are going to show that RMI has ex-
actly the same properties as R, the proofs are harder.

THEOREM 25. RMI is strongly complete.

Proof. The proof is like the one for R given above, since RMI has the
relevant properties of R which were used there (see [Avron, 1990b]). �

Like in the case of RMIm, the strong completeness of RMI is directly
connected to the semantics of full r.d.l.s. This semantics is extended in
[Avron, 1990a; Avron, 1990b] to the full language by de�ning the operator
^ on a full r.d.l. as follows: de�ne � on M by: x � y i� val(:x + y) 6= f .
(M;�) is a lattice. Let x ^ y = inf�(x; y). The notions of an RMI-model,
consistent RMI-model and the truth of a formula A (of the language of
RMI) in such models are de�ned as in the case of RMIm. The classes of
setups RDL and CRDL are also de�ned like their counterparts in the case
of RMIm. Again we have:

PROPOSITION 26.

1. CPRMI = RDL.

2. NRMI = CRDL.

Proof. Similar to the proofs of propositions 22 and 23. �

Again, theorem 25 and 26(1) entail the following result of [Avron, 1990b]:

COROLLARY. RMI is sound and complete for the semantics of full r.d.l.s.

THEOREM 27.

1. `RMI A i� A is valid in all the consistent models.

2. RMI is weakly normal.

Proof.

1. Suppose that 6`RMI A. Then there is a model (M; v) in which A is
not true. Let M 0 be the consistent full r.d.l based on TM (the tree
on which M is based). Let v0 be any valuation in M 0 which satis�es
the following conditions: (i) jv0(P )j = jv(P )j for every atomic P ,
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(ii) v0(P ) = v(P ) whenever jv(P )j is normal in M . It is easy to
see that conditions (i) and (ii) are preserved if we replace P by any
sentence. In particular v0(A) = v(A) and so A is not valid in the
consistent model M 0.

2. Immediate from part (1) and proposition 26(2) �

THEOREM 28.

1. RMI is c-normal.

2. Every consistent RMI-Theory has consistent model.

Proof. (1) By proposition 8(4) it suÆces to prove that if T is consistent
and A a sentence then either T [ fAg or T [ f:Ag is consistent. This is
not so easy, however, since like in R, T [ fAg might be inconsistent even if
T 6` :A, while unlike in R, () for _ is not sound for `NRMI .

Suppose then that T [ fAg and T [ f:Ag are both inconsistent. Since
:B, B `RMI :(B ! B), this means, by RMI deduction theorem for �14

that there exist sentences B and C such that T `RMI A � :(B ! B),
T `RMI :A � :(C ! C). In order to prove that T is inconsistent it is
enough therefore to show that the following theory F0 is inconsistent:

F0 = fA � :(B ! B) ; :A � :(C ! C)g :

For this we show that the following sentence ' and its negation are theorems
of F0 (where a Æ b = :(:a + :b)):

' = (B _ [:A ÆR+ (A+ C;B)]) ^ (C _ [(A+ C) ÆR+ (A+B;C)]) :

By the completeness theorem it suÆces to show that ' gets a neutral
value (I) in every model of F0. Let (M; v) be such a model, and denote by
R the relevance relation between the nodes of the tree on which M is based.
It is easy to see that:

a) jv(A)j 6< jv(B)j jv(A)j 6< jv(C)j

b) If jv(A)j 6R jv(B)j or if v(A) is designated then v(B) is neutral.

c) If jv(A)j 6R jv(C)j or if v(:A) is designated then v(C) is neutral.

Denote, for convenience, v(A) by a, v(B) by b, v(C) by c, and the two
conjuncts of ' by '1 and '2 respectively. Then:

(i) If jbj 6R (jaj_jcj) then v('1) = b. Also we have then that jcj � jaj_jcj <
jaj_jbj = ja+bj (since always (jaj_jbj)R (jaj_jcj)). Hence jcjR ja+bj
and so v ('2) = tjaj_jbj_jcj. It follows that v (') = b and so v (') is
neutral by b) above.

14See [Avron, 1990b]. The connective � is de�ned there by a � b = b _ (a! b).



312 ARNON AVRON

(ii) If jbjR (jaj _ jcj) and either jaj < jaj _ jcj or val(a) = f then, by a),
jbj � jaj _ jcj and either jaj 6R jcj or v(:A) is designated. Hence c is
neutral by c). It follows (since either jaj 6R jcj or val(a) = f), that either
jaj 6R jcj or jcj < jaj. In both cases v(A + C) = fjaj_jbj_jcj, v('2) = c,
and v('1) = tjaj_jbj_jcj. Hence v(') = c, which is neutral.

(iii) If jbjR (jaj _ jcj); jaj = jaj _ jcj and a is designated then, by a), jaj =
jaj _ jbj _ jcj. If val(a) = I then also val(b) = I and val(c) = I , and
so val(v(')) = I . If val(a) = t then by b) b is neutral and so jbj < jaj
(jaj is normal!). Obviously jcj � jaj in this case, and so v('1) = b,
v('2) = tjaj = a and v(') = b, which is neutral.

(2) Immediate from (1) and proposition 26(2). �

PROPOSITION 29. RMI is not strongly c-normal.

Proof. Let  1 and  2 be the two elements of the theory F0 from the last
proof. Let T = f 1g, A = : 2. Then T is consistent (even classically!)
and A is provable in every consistent and complete extension of T (since F0
is inconsistent). Hence T `NRMI A. However, T 6`RMI A since it is easy to
construct a full model of  1 in which : 2 is not true. ( 1 is neutral in this
model.) �

Like in the case of R, our results show that `NRMI is stronger than `RMI

and `CSRMI . We now construct a formal system for this consequence relation.

DEFINITION. The system RMIC is RMI strengthened by M:T: for �:

A � B ; :B ` :A :

THEOREM 30.

1. T `RMIC A i� T `NRMI A

2. `RMIC A i� `RMI A.

Proof.

1. Obviously, if both A � B and :B are true in a consistent model
(M; v) then so is :A. Hence if T `RMIC A then T `NRMI A. For the
converse, suppose T `NRMI A. Then by Theorem 26 T [ f:Ag has
no consistent model. This means, by Theorem 28, that T [ f:Ag is
inconsistent. Hence T `RMI :A � :(B ! B) for some B. Since also
`RMI ::(B ! B), we have that T `RMIC ::A, by applying M.T.
Hence T `RMIC A.

2. Immediate from 1) and theorem 27(2). �
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Notes:

1. From 30(2) it is clear that the system RMI is closed under M.T.
for �. By applying this rule to theories we can make, however, any
inconsistent theory trivial. This resembles the status of () in R and
E. Indeed () may be viewed as M.T. for the usual implication as
de�ned in classical logic. A comparison of theorems 30 and 20 deepens
the analogy (note that RMI is not an extension of R and 20 fails for
it!).

2. Despite 30(2) RMI andRMIC are totally di�erent even for consistent
theories, as we have seen in prop. 29. It is important, however, to
note that theory T is consistent in RMI i� it is consistent in RMIC.
This follows easily from theorem 28.

3.6 Three Valued Logics

Like in section 2, we consider here only the 3-valued logic which we call in
[Avron, 1991b] \natural" (in fact, only those with Tarskian CR). All these
logics have the connectives f:;^;_g as de�ned by Kleene. The weaker ones
have only these connectives as primitive. The stronger ones have also an
implication connective which reect their consequence relation.

Suppose the truth-values are ft; f; Ig. t and f correspond to the classi-
cal truth values. Hence t is designated, f is not. The 3-valued logics are
therefore naturally divided into two main classes: those in which I is not
designated, and those in which it is. The �rst type of logics can be un-
derstood as those in which the law of contradiction is valid, but excluded
middle is not. The second type { the other way around.

Kleene's basic 3-valued logic

This logic, which we denote by K`, has only t as designated and f:;_;^g
as primitives. It has no valid formula, but it does have a non-trivial conse-
quence relation, de�ned by the 3-valued semantics. A setup in this semantics
is any set of the form fA j v(A) = tg where v is a 3-valued valuation, and the
consequence relation `K` is de�ned by this semantics. A sound and strongly
complete Gentzen-type or natural deduction formulations have been given
in several places (see, e.g., [Barringer et al., 1984] or [Avron, 1991b]).

The properties of `K` which are relevant to the present paper are sum-
marized in the following theorem:

THEOREM 31.

1. Like intuitionistic logic, `K` is strongly consistent, c-normal but not
even weakly complete.

2. `CPK` is classical logic.
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Proof.

1. Since :A, A `K` B, `K` is strongly consistent. Since `CPK` A _ :A
but 6`K` A _ :A, `K` is not weakly complete.

We turn now to c-normality. First we need a lemma

LEMMA 32. If T has a 3-valued model then it has also a classical,
two valued model.

Proof of the lemma: It is enough to show that every �nite subset of
T has a two-valued model (by compactness of classical logic). So let �
be a �nite set which has a 3-valued model. Since De-Morgan laws and
the double-negation laws are valid for the three-valued truth tables,
we may assume that all the formulas in � are in negation normal form.
We prove now the claim by induction on the number of ^ and _ in
�. If all the formulas in � are either atomic or negations of atomic
formula, then the claim is obvious. If � = �1 [ fA ^Bg then � has a
model i� �1 [fA;Bg has a model, and so we can apply the induction
hypothesis to �1 [ fA;Bg. If � = �1 [ fA _ Bg then � has a model
i� either �1 [ fAg or �1 [ fBg has, and we can apply the induction
hypothesis to the one which does, getting by this a two-valued model
for �. �

To complete the proof of the theorem, let T be a consistent `K`-theory.
The de�nitions of consistency and of `K` imply in this case that it has
some 3-valued model. By the lemma it has also a two-valued model.
Let T � be the set of all the formulae that are true in that two-valued
model. Then T � is a `K`-setup which is consistent (even classically),
complete, and an extension of T .

2. Since `CPK` :A _ A and :A _ C, A _ B `K` C _ B, it is easy to
show, using (for example) Shoen�eld's axiomatization of classical logic
in [Shoen�eld, 1967] that `C`�`CPK` . The converse is obvious, since
`K`�`C` and `C` is strongly complete (by `C` we mean here classical
logic). �

LPF= L3

LPF was developed in [Barringer et al., 1984] for the VDM Project. As
explained in [Avron, 1991b], it can be obtained from `K` by adding an
internal implication � so that T;A `LPF B i� T `LPF A � B. The
de�nition of � is: a � b = t if a 6= t, b if a = t. Alternatively one can
add to the language  Lukasiewicz's implication, or the operator � used in
[Barringer et al., 1984]. All these connectives are de�nable from one another
with the help of :;^ and _.



ON NEGATION, COMPLETENESS AND CONSISTENCY 315

THEOREM 33.

1. `LPF is strongly consistent but neither weakly complete nor c-normal.

2. `CPLPF is classical logic.

Proof.

1. That `LPF is strongly consistent but not weakly normal follows from
the corresponding fact for `K`, since `LPF is a conservative extension
of `K`. As for c-normality, it is enough to note that f(A _ :A) �
B; :Bg is consistent in LPF (take v(A) = I , v(B) = f) but obviously
has no consistent and complete extension.

2. Again, take any axiomatization of classical logic in the LPF -language
and check that all the axioms and rules are valid in `CPLPF . �

The Basic Paraconsistent 3-valued logic PAC

This logic, which we call PAC in [Avron, 1991b] 15, has the same language
(with the same de�nitions of the connectives) as `K`. The di�erence is that
here both t and I are designated. A setup in the intended semantics is,
therefore, this time a set of the form fA j v(A) = t or v(A) = Ig,where
v is a three-valued valuation. A sound and strongly complete (relative to
the 3-valued semantics) Gentzen-type axiomatization is given in [Avron,
1991b].16

THEOREM 34.

1. `PAC is strongly complete, weakly normal and c-normal. It is neither
strongly consistent nor strongly c-normal.

2. `NPAC is identical to classical logic.

15It is a fragment of several logics which got several names in the literature { see next
subsection.

16Giving a faithful Hilbert-type system is somewhat a problem here, since the set of
valid formulas is identical to that of classical logic, but the consequence relation is not.
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Proof.

1. The strong completeness theorem for the Gentzen-type system entails
that `PAC is �nitary. Hence to show strong syntactical completeness
it is enough to show that the condition in 8(1) obtains. This is easy.
Weak normality is immediate from the fact that `PAC A i� A is
a classical tautology (see [Avron, 1991b]) and that `PAC�`C`. c-
normality is proved exactly as for R (it is easy to check that `PAC
has all the properties which are used in that proof). It is also easy
to check that :p; p 6`PAC q and that f:p; p _ qg is consistent, that
:p; p _ q `NPAC q but :p; p _ q 6`PAC q (take v(p) = I , v(q) = f).
Hence `PAC is not strongly c-normal and not strongly consistent.

2. Since all classical tautologies are valid in `PAC and MP for classical
implication is valid for `NPAC , `C`�`NPAC . The converse is obvious,
since `C` is strongly c-normal and `PAC�`C`. �

RM3=J3

This logic is obtained from PAC by the addition of certain connectives while
keeping the same CR. There are two essential ways that this has been done
(independently) in the literature (they were shown equivalent in [Avron,
1991b]):

(i) Adding an implication !, de�ned as in [Soboci�nski, 1952]. In this
way we get the strongest logic in the relevance family: the three-
valued extension of RM . It is in this way that this logic arose in the
relevance literature. The corresponding matrix is called there M3 and
the logic RM3. It can be axiomatized by adding to R the axioms
A! (A! A) and A _ (A! B).

(ii) Adding an implication �, de�ned by (see [da Costa, 1974]) a � b = t if
a = f , a � b = b otherwise. For this connective the deduction theorem
holds. In this form the logic was called J3 in [D'Ottaviano, 1985] (see
also [Epstein, 1995]) 17. It was independently investigated also in
[Avron, 1986] and in [Rozonoer, 1989]. Strongly complete Hilbert-
type formulations with M.P. for � as the only rule of inference were
given in those papers, and a cut-free Gentzen-type formulation can be
found in [Avron, 1991b].

In what follows we shall use the neutral name Pac� for the CR of PAC
in the extended language. The next theorem shows that the main di�erence
between Pac� and PAC is that Pac� is not weakly normal.

17[D'Ottaviano, 1985] and [Epstein, 1995] consider a language with more connectives,
but we shall not treat them here.
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THEOREM 35.

1. Pac� is strongly complete and c-normal. It is neither strongly consis-
tent nor weakly normal.

2. `NPac� is identical to classical logic.

Proof.

1. Strong completeness and c-normality can easily be proved. Since
`Pac� is a conservative extension of `Pac, it is not strongly consis-
tent. Finally `NPac� A^:A � B, since :(A^:A � B) `Pac� A^:A,
but 6`Pac� A^:A � B (the same argument applies to (A^:A! B)).

2. It is provable in [Dunn, 1970] that classical logic is the only proper
extension of RM3 in the language of f:;_;^;!g (from the point of
view of theoremhood). Since we have just seen that the set of valid
sentences in `NPac� is such a proper extension, and since MP for ! is
valid for it, `NPac� should be identical to `C` (in this language). The
same argument works for the f:;_;^;�g language using the results of
[Avron, 1986]. Alternatively, it is not diÆcult to show that by adding
:A ^A! B to the Hilbert-type formulation of RM3 or :A ^A � B
to that of J3 we get classical logic in the corresponding languages. �

4 CONCLUSION

We have seen two di�erent aspects of negation. From our two points of view
the major conclusions are:

� The negation of classical logic is a perfect negation from both syntac-
tical and semantic points of view.

� Next come the intensional fragments of the standard relevance log-
ics (Rm; RMIm; RMm). Their negation is an internal negation for
their associated internal CR. Relative to the external one, on the
other hand, it has the optimal properties one may expect a seman-
tic negation to have in a paraconsistent logic. In the full systems
(R;RMI;RM) the situation is similar, though less perfect (from the
semantic point of view). It is even less perfect for the 3-valued para-
consistent logic.

� The negation of Linear Logic is a perfect internal negation w.r.t. its
associated internal CR. It is not, however, a negation from the seman-
tic point of view. The same applies to  Lukasiewicz 3-valued logic.

� The negations of intuitionistic logic and of Kleen's 3-valued logic are
not really negations from the two points of view presented here.
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In addition we have seen that within our general semantic framework,
any consequence relation which is not strongly normal naturally induces one
or more derived consequence relations in which its negation better deserves
this name. We gave sound and complete axiomatic systems for these derived
relations for all the substructural logics we have investigated.

Department of Computer Science, Tel Aviv University, Israel.
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TON SALES

LOGIC AS GENERAL RATIONALITY: A
SURVEY

Logic today is urged to confront and solve the problem of reasoning under
non-ideal conditions, such as incomplete information or imprecisely formu-
lated statements , as is the case with uncertainty , approximate descriptions
or linguistic vagueness . At the same time, Probability theory has widened
its traditional �eld of analysis (the expected frequency of physical phenom-
ena) so as to encompass and analyze general rational expectations . Thus,
Probability has placed itself in the position of o�ering Logic a solution for
its own long-awaited generalization. The basis for that turns out to be
precisely the shared base underlying the two disciplines. This theoretical
base predates their common birth, as seen in the early e�orts of Bernoulli
and Laplace, as well as in Boole's 1854 attempt to formalize the \laws of
thought" and then, as he claimed, to \derive Logic and Probability" from
them. Once we recover (following Popper's 1938 advice) the underlying
formalism, we come, by interpreting it in two di�erent directions, back into
either Logic or Probability . The present survey explains the story so far
and does the reconstruction work from the logical point of view. The stated
aim is to generalize Logic so as to cover, as Boole intended, the whole of
rationality .

INTRODUCTION

This survey could as well be entitled: \How Logic was once the same as
Probability, and then they diverged |and how they may again be formally
the same", or \Logic and classical Probability: recovering the lost common
ground". Before we begin, let us say that the implied desideratum of the
title(s) is long overdue. Indeed, that (a) standard Logic can be generalized,
and that (b) the natural generalization of Logic is |or derives from, or is
suggested by| Probability theory seems at present the shared conviction
of a number of logicians and probabilists. Thus, to cite a few of the latter,
Ramsey wrote (in 1926) that the laws of probability are actually laws of
consistency (or rational behavior), an extension of Formal Logic to cover
partial information, and that Probability theory could become the \logic of
consistency" which would control and guarantee, as Mathematics does, that
our beliefs are not self-contradictory. At about the same time de Finetti
concluded that Probability theory is the only possible \logic" to generalize
standard Logic. All the same, Patrick Suppes was considering in 1979 that
Probability theory is the natural extension of classical deductive inference

D. Gabbay and F. Guenthner (eds.),
Handbook of Philosophical Logic, Volume 9, 321{366.
c 2002, Kluwer Academic Publishers. Printed in the Netherlands.
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rules, while, more recently, Glenn Shafer declared that \probability is not
really about numbers; it is about the structure of reasoning".

Why the technicalities of Probability theory should be viewed today as a
powerful generalizer of standard Logic and a suitable formal uni�er of the
two may come as a surprise both to probabilists and logicians. Actually,
the idea |that we pursue in our generalization below| is very simple:
Probability and Logic are but two interpretations of a same underlying
concept . This is how the founders of both theories saw it and what Popper
later explicitly said (and Kolmogorov claimed he had done). But this old
notion, over which notable thinkers like Reichenbach or Carnap agonized
after the 1930s, is shared nowadays by a surprisingly exiguous minority of
specialists (in both disciplines).

Logic and Probability are overwhelmingly seen today as two completely
disparate �elds, with a very few, if any, points of contact. Logic deals
with reasoning and truth, Probability with inference on poor data. They
seem to have nothing in common. Though they both start with a set B of
Boolean-structured objects (respectively sentences and events |or, confus-
ingly, \propositions") and though they assign them values in a simple num-
ber system containing the one and the zero (here logicians prefer `truth' and
`falsity', though), at this point the similarity apparently ends, for the two
valuations are perceived to be very di�erent: the probabilistic P : B ! [0; 1]
obeys a set of axioms set forth by Kolmogorov in the 1930s (that do not
actually follow from any particularly \probabilistic" rules but rather reduce
it to a simple `measure' |in the technical sense| of the \event" objects),
while the logical valuation is felt to be of a quite di�erent nature and regu-
lated by a semantics set forth by Tarski, also in the thirties, and buttressed
by elaborate, specialized logical considerations. Moreover, either �eld not
only has a di�erent type of problem to solve, it also has a di�erent, in-
compatible set of base concepts and interpretations to work on. And the
diverging traditions have bred di�erent strokes of unrelated practitioners
and two methodologies that are seen by the mainstream mathematician
as far distant (even lying at opposite �elds of Mathematics, i.e. real vs.
discrete).

However, this is not how things were seen in the �rst stages of the mod-
ern theories of Probability and Logic. Their founders, notably Bernoulli and
Laplace, or Boole and Peirce, dithered a lot on what might \probability" or
\truth" mean, and often tended to explain one through the other in incip-
ient, half-baked intersecting intuitions, as can be readily seen by browsing
into the original literature. Later developments, as well as the progressively
�rmer foundations and the more specialized and mutually deviating inter-
pretations that either �eld painstakingly acquired, created an increasing gap
between Probability and Logic, in which both contenders apparently never
found a ground or occasion to reconcile into one uni�ed approach (which,
as we suggest below, is not only desirable but feasible and even natural).
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Why striving to recover an encompassing view should be interesting at
all may be not obvious at �rst, but there are strong reasons for it. First, be-
cause, as we said, both theories are two di�ering interpretations of the same
idea. Second, because both probabilists and logicians have recently been
hard pressed against the limits of their own disciplines when confronting
new challenges with consecrated methods. Prominent challenges include:
(1) for probabilists, how to clarify the ultimate meaning, and the practical
import, of the apparently obvious idea of \probability" (doubters here in-
clude names as Keynes [1921], Ramsey [1926] or de Finetti [1931], and the
questions raised prolong well to this day into widely-discussed conundrums
as the status of subjective probability , rational belief or bayesianism); or (2)
for logicians, how to validate reasoning under uncertainty or with incom-
plete or approximate information (a problem that eventually gave rise, also
around the 1930s, to non-standard formalisms such as the many-valued log-
ics of  Lukasiewicz [1920] (and [1930], with Tarski) or Kleene [1938], or the
attempts at de�ning a probability logic by Reichenbach [1935a,b], discussed
by Carnap [1950].

The material below is structured in two parts: the �rst is a short survey
explaining why Logic and classical Probability were once the same thing
|and gave the (common) pioneers (Bernoulli, Hume, Laplace, Boole) lots
of cross-supporting arguments| and why they soon diverged to the point
of being considered unrelated. The second part {considerably longer{ is a
summary of how we locate Logic �rmly in the Logic/Probability common
heritage; it is based on former work by the author (Sales [1982a,b, 92,94,96])
and the starting point is Popper's 1938 suggestion (see Popper [1959]) to
set forth a unique algebraic uninterpreted formalism as the common source
from which, through distinct interpretations, both Logic and Probability
can be formally derived as particular instances. The common formal idea
we advance is, as will be later explained, that we can postulate an additive
valuation (in e.g. [0,1]) of the elements of a given abstract Boolean structure
B|that is later interpreted by Probability as a (set-theoretic) event , and by
Logic as a (non-set) sentence. Our generalization proceeds from this point
on as an exclusively logical reading of the common uninterpreted formalism.
(The development is satisfactory also in a second, non-formal sense, since
it can be seen as a vindication and reconstruction of the pioneers' historical
common source of insights.)
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A. The Probability/Logic Interface

1 THE VIEW FROM PROBABILITY

1.1 Classical Probability

Around the year 1700, Jakob Bernoulli tried to de�ne the probability of
a phenomenon as a non-evident and non-subjective something that fortu-
nately had e�ects: the observable frequency, or relative number of cases in
which the phenomenon manifested itself. This number was supposed �xed
and objective. So, measuring frequencies was the way to estimate \prob-
ability". Conversely, knowing the probability of a phenomenon allowed to
predict its expected frequency. This is, in essence, Bernoulli's theorem. It
is the �rst clear, albeit implicit, de�nition of probability. It is also the �rst
instance of a duality that is present since in Probability theory: probability
P |a supposedly objective property of phenomena| is conceived simulta-
neously as (1) the ratio of positive cases (call it Pc) and (2) the number
we have (call it Pb, b for `belief') to estimate Pc. The �rst is assumedly an
objective reality, the second an inevitably subjective entity that depends
on our past history of observations (a paradox that is the common theme
of many reections, like those of e.g. de Finetti). Obviously, the fewer our
interactions, the more subjective our Pb estimate is. The idea is that Pb
\aproximates" Pc, and the aim is getting Pb = Pc (in some limit situation).

The Rev. Bayes developed Bernoulli's idea of Pb converging to Pc through
observational updates and came up with his celebrated formula (posthu-
mously revealed in 1763) to compute P . Hailed by observational scientists
for more than a century, it is now the heart of a debate about what is this
Bayes-computed probability. Called \a priori" probability, anti-Bayesians
contend it is nothing more than simple, non-objective belief based on a
hypothetical view of our ignorance.

Laplace, in 1774 and later, de�ned probability as Pc, the ratio of favorable
cases , all assumed having \the same probability". The obvious circularity
raised some eyebrows in the 1920s, but Laplace's has been the standard
and successful de�nition since, at least for non-sophisticated applications.
Note that it places probability clearly on the frequency side, and cavalierly
dismisses any subjective-sounding belief content, perhaps the reason for its
long-standing success. Note, too, that cases are a logical notion, since they
can be de�ned |and were by Laplace himself| as the true instances of
a proposition. Thus, Laplace's [1774,1820] probability can be seen as an
early generalization of Logic, particularly of the concept of validity (resp.
consistency), now interpretable as \true in all (resp. some) cases". Some
years before this, Hume had already implied too that probability was a
generalization of logical inference by considering that, given a proposition
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obtained from some conditions or premises, its probability was the pro-
portion of premises (or premise extensions) in which the proposition was
satis�ed.

The classical probabilists thus conceived probability, more than as some-
thing associated with indeterminism or uncertainty, as a measure of our
knowledge of phenomena in the presence of incomplete information (or,
dually, as a measure of our partial ignorance). This concept was consid-
ered objective because, though not directly measurable, (1) it referred to
a supposedly objective situation indirectly parameterizable through its ob-
servable e�ects, and (2) it was manipulable through rules of an objective
calculus. So, after Laplace, Probability theory came to be dominated by the
probability-as-frequency view. This was convenient as it was objective and
\scienti�c" and adequately eschewed the estimation or \belief" problem.

It lasted until the 1920s, when von Mises, dissatis�ed with the classi-
cal solution, formalized (in 1928) the estimation or approximation problem
by postulating a \sample space" 
, de�ning frequency in it and comput-
ing probability as the result of some limit process, in which the number of
observations tended to in�nity. Since this was no ordinary limit and the
process not quite satisfactory, Kolmogorov [1933] came up with the now
universally accepted solution: probability is just the measure of an event
(an event being a set of outcomes); this measure is taken in the mathe-
matical sense, i.e. as a countably additive valuation (though the need for
countable additivity has been challenged by many, notably de Finetti [1970]
or Popper [1959]). An interesting thing to note: Kolmogorov declared that
his formalization was \neutral" in the sense that it was abstract (and thus
previous to any interpretation); in his words, probability had to be formal,
pure mathematics, merely ruled by axioms. Nevertheless he also declared
that his measured entities (in theory merely the members of a �-algebra
over 
) are actually sets. And though he added that this was irrelevant,
Popper protested (in 1955) that it is relevant in some important cases, and
noted that a truly abstract formalization must admit any interpretations,
including those in which the measured entities are not sets. (But, we add,
this is precisely the case of Logic, where we have non-set entities, namely
sentences from a language, not events from a sample space.) Popper [1959]
o�ered an axiomatic alternative �rst suggested in 1938, fully developed in
1955, and now fashionable (under the guise of \probabilistic semantics" or
\Popper functions").

1.2 `Subjective probability", \Probability logic" and \Logical prob-
ability"

Following Keynes's [1921] lead, Ramsey [1926] was the �rst to consider that
the belief side of probability, already present in Bernoulli or the Bayes' for-
mula, was the core of the concept, since the \true" value of probability was
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beyond our reach and the best we could do is approximate it through a care-
ful, consistent, rational procedure; so he de�ned probability as belief and
de�ned this as a number obtained on the basis of consistency considerations
about the belief-holder's rational behavior (as deducible from betting proto-
cols); the rationality-induced consistency insured that the number, though
inevitably \subjective", was nevertheless the most objective measure one
could obtain. In a similar spirit, and in same years, Bruno de Finetti
[1931,37] approached probability as an inherently non-objective concept.
He summarized it in his well-known slogan \probability does not exist"
(i.e. objectively, at least \not more than the cosmic ether"), and noth-
ing beyond consistency assures its imagined objectivity. According to him,
probability is merely what we expect on the basis of past experience and
the assumed consistency of what we do. As a number, probability (which
de Finetti [1937,70] constructed formally on the basis of a vector space of
rational expectations), is \objective" as far as the procedure to obtain it
obeys coherent assumptions.

The \subjective probability" thesis of Ramsey/de Finetti has found con-
tinuation till now in the work of Je�reys [1939], Koopman [1940], Savage
[1954] or Je�rey [1965], to name a few, all of which reject the epithet \sub-
jective"; they prefer to be called simply probabilists and at most admit that
the probability they deal with is a (non-subjective) partial or rational belief,
i.e. the value we assign propositions in absence of complete information.

On the other hand, in a series of studies beginning in 1932 Hans Re-
ichenbach [1935a,b], a physicist with an interest in foundations, interpreted
probability as a logic. The logic (probability logic he called it) was not truth-
functional, but he could subsume all classical tautologies as particular cases
of propositions p that had unit probability (i.e. jpj = 1 ). He obtained
formulas for the value (probability) of the connectives which are basically
like the ones we obtain below; he says that e.g. jp _ qj is a function of
jpj and jqj plus a third parameter k he calls Kopplungsgrad or `degree of
coupling' (de�ned roughly as the relative size of the intersection of overlap-
ping areas or classes to which a measure is applied that coincides with the
conditional probability). This is equivalent to what we obtain in our gener-
alization below, but note that Reichenbach never moves out of probability
and events: he always speaks of probability in its standard meaning and
only in a translation of senses he says he can interpret the probability of
an event sequence |a sequence of binary truth values| as its (non-binary)
\truth". His world is clearly that of Probability, and what he obtains is a
Logic only in the sense that he speaks of truth, albeit probability by an-
other name. Moreover, though his contemporary critics (including Tarski
[1935a]) argued against the construction, they did not because of the sub-
sidiary role of truth in it (as a surrogate for a probability of one) but on
the arguable ground that a proper logic ought to be truth-functional (see
Urquhart's [1986] comment below as to the contrary).
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(Work on `probability logic' by Kemeny et al.(see Leblanc [1960]), Bac-
chus [1990], Halpern [1990] or Fagin et al. [1990] is not mentioned here be-
cause what these authors deal with is not what is understood by that name
in the the classical tradition. Instead, they apply the standard treatment
of any �rst-order theory inside Logic, i.e. augmenting ordinary �rst-order
logic with a number of speci�c axioms that syntactically describe the real
numbers (or an ordered �eld) and the probability operations on them, so
that the Probability laws can be derived formally as theorems.)

Another indirect view of Logic-as-valuation was the one adopted by Rudolf
Carnap [1950,62], starting in the 1940s. The Logic/Probability link began
in his case by trying to justify probability logically. In his view (that he
called logical probability and surmised as theoretical ground on which to
base a \logic of induction" to which Popper came to be �ercely opposed),
the probability of an event was the proportion or, more generally, the mea-
sure (\ratio of ranges of propositions") of the intervening circumstances
(described as logical sentences) concurring in the event. For this measure
he said he was inspired by a de�nition of Wajsberg |which was inspired
in turn by proposition *5.15 of Wittgenstein's [1922] Tractatus (ultimately
Bolzano-inspired, see below). Carnap hesitated and changed his approach
often along the 1950s; for instance, notably, he came to value sentences
instead of events, but came back to events later, shortly before giving up
the whole scheme. Wittgenstein and Wajsberg's extensional rendition and
Carnap's use of them is, like Reichenbach's implicit grounding of proba-
bility on rather obscure \overlapping classes", strongly reminiscent of the
Stone representation we obtain below out of our general, non-probabilistic
truth valuation of logical sentences. It is interesting to note that Carnap's
logically-described components of events correspond rather precisely to what
Laplace had called the (positive i.e. true) \cases" concurring in an event.
They are also almost interchangeable with Boole's cases (his \conceivable
sets of circumstances") underlying a logical proposition (or with equivalent
descriptions by McColl and Peirce and Wittgenstein, see below).

2 THE VIEW FROM LOGIC

2.1 The pioneer logicians

The laplacian idea of having \cases" (a logical concept, we noted) and then
measuring the proportion of the true ones seem to have been oating all over.
Laplace's uninuential contemporary, the Austrian philosopher Bolzano,
had this to say about �rst-order propositions and truth: propositions, he
says, have an associated \degree of validity", a number in [0,1] which equals
\the proportion of true `variants'" (Bolzano's \variants" are our term sub-
stitutions).
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And then Boole [1854], when just after studying classes he sets out to
analyze propositions (in 1847), conceives them by means of an alternative
interpretation of his elective symbol x (already introduced for classes) and
says it now stands for the cases (de�ned informally as \conceivable sets of
circumstances") |out of a given hypothetical \universe" (a De Morgan's
idea)| in which the proposition is true. In the last chapters of his 1854
book (signi�cantly entitled \An investigation of the laws of thought, on
which are founded the mathematical theories of logic and probabilities")
Boole even likens the product x � y of two propositions (i.e. the conjunction
value, actually) to the probability of simultaneously having them both and
the (value of) the sum x + y to the probability of having either (provided
they are mutually exclusive).

An equivalent idea is present in MacColl's [1906] partially published re-
ections (started before 1897), where he says that propositions are generally
\variable", meaning they are sometimes the case, depending on their (ba-
sically probabilistic) modality. Peirce [1902], in an unpublished work that
deliberately follows MacColl's steps, sets out to distinguish \necessary" from
\contingent" propositions, most being the latter sort, characterized by their
(probabilistic) occurrence.

In a similar vein Wittgenstein [1922] considers a little later that proposi-
tions reect |and are basically decomposable into| \states of a�airs" (an
idea borrowed from Leibniz). That those states of a�airs (reminiscent of
Laplace's or Boole's cases) are in some way a measurable universe whose
proportions gave information on the truth of the composite propositions is
obvious from the Tractatus (and is the inspiration of the extensional view
of Wajsberg and Carnap mentioned above).

2.2 `Multi-valued logic"

While some probabilists (from Ramsey to Reichenbach) agonized in the
1930s over their base concepts, there was intense soul searching also in
the logicians' camp. The main new idea came from  Lukasiewicz in 1930
(down from antecedents since 1918) when he postulated a logic in which
\truth" values could take any value from the in�nite real [0,1] interval (see
 Lukasiewicz & Tarski [1930]). To compute the value of composite propo-
sitions in his \many-valued logic" he obtained (truth-functional) formulas
which are exactly the ones we obtain below except for the fact that they
presuppose full compatibility (a concept we explain below) among all propo-
sitions, no matter some are the negation of others. This was not perceived
as a problem at the time but it was , as some fellow logicians pointed out to
him at the 1938 Zurich workshop (see  Lukasiewicz [1938]). They considered
that either we assign p^:p the value min(jpj; 1� jpj) given by the formu-
las (thus blatantly contradicting the basic logical law of non-contradiction)
or else we assign it the {correct{ zero value (meaning falsity , so in accor-
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dance with ordinary Logic) but then we arbitrarily disobey the postulated
truth-functionality. As this predicament found no decisive solution, many-
valued logic has continued to this day |along with unexpected o�shoots
like \fuzzy logic"| consecrating truth-functionality as a rigid principle and
thus putting itself out of mainstream Logic, of which is a weak incompatible
variety (unless we add, as suggested by van Fraassen [1968], some super-
valuation mechanism to it). At the end of a detailed survey of multi-valued
logic, Alasdair Urquhart [1986] comments that it is hardly surprising that
those systems have remained logical toys or curiosities since \there seems
to be a fundamental error [truth functionality] at the root". Some modern
cultivators wonder whether is it possible to combine the two best-known
formalisms, Probability and Logic, in any way (but Lee [1972] admits that
\we do not seem how to do this"); others, like Hamacher [1976], Zimmer-
man [1977] or Trillas et al. [1982], in asking what are the correct truth-value
formulas for the fuzzy calculi, hesitate among a variety of candidates, while
still another, Minker (with Aronson et al. [1980]), would like to know the
\truth bounds" of many-valued conclusions obtained from premises.

3 THE VIEW FROM THE OUTSIDE

3.1 Mathematics

Alfred Tarski straightforwardly supposed (in Tarski & Horn [1948]) he had
simply a Boolean algebra and then set out to analyze thoroughly all possible
measures in it. So did Gaifman [1962] |and Scott (with Krauss,[1965])|
who extended this analysis to �rst-order logical formulas; these were as-
signed (additive) values, that were called `measures' by Gaifman (and `prob-
abilities' by Scott). True to mathematicians' fashion (i.e. approaching
topics in uninterpreted, \abstract" formalisms), they did not understand
`probability' as other people do; they just used the word as a synonym for
normalized measure (a measure being a �-additive valuation on the positive
reals). In this sense, their \probability" is a blanket term for any common
generalization |such as the one we attempt here| for the two (heavily
interpreted) �elds of Logic and Probability.

Also in this line, J.  Lo_s [1962] explored general \probability" valuations
of logical sentences and came up with a (reasonably unsurprising) repre-
sentation theorem of probabilities on a (set-theoretical) space of models (or
interpretations) in the logical sense.  Lo_s's line has been consistently fol-
lowed by Fenstad since 1965. (Fenstad's papers [1967,68,80,81] have been a
source of inspiration for our generalization below.)



330 TON SALES

3.2 Philosophy

Philosophers have also been exploring the common material. A few repre-
sentative examples are Hintikka and Suppes (both presenting �rst results
in 1965), Stalnaker (in 1968{70), Lewis (in 1972) or Popper (e.g. in 1987,
with Miller). The �rst (Jaakko Hintikka [1968]), inspired by Bar-Hillel's
(and Carnap's,[1952]) information-measure ideas, was suggesting in 1965
(with Pietarinen,[1968]) various formulas to parameterize the information
contained in sentences. Also in 1965, the second (Patrick Suppes [1968]) did
a circumscribed analysis of the Modus Ponens logical inference rule from
a generalized perspective (what he called `probabilistic inference') in which
he got formulas fully consistent with the ones we obtain below. Another
philosopher traditionally preoccupied with logic/probability di�erences (es-
pecially those centered on the conditional/conditioning operation), Robert
Stalnaker [1970], revealed some �ne points (among which our \A ! B" 6=
\BjA" conceptual and practical distinction). His work and David Lewis's
[1976] have done much to clarify and distinguish concepts shared by logi-
cians and probabilists.

But, prior to these 1960s e�orts, the single philosopher to do this most
explicitly is surely Popper [1959], in lucid but little known pioneering work.
He did not only see (in 1938) that the two concepts were di�erent interpreta-
tions of a (yet to be written) formalism |Kolmogorov [1933] also saw this|
but he designed one in a very simple and intuitive way by de�ning a valua-
tion in [0,1] on pairs (a; b) of sentences (of a very elementary language) that
was directly constructible by users (i.e. reasoners and probability-estimators
alike) and that gave way naturally to a Boolean structure with the usual
properties (including measurability). Whatever sense the user gave the valu-
ation (\probability", \truth likelihood", \truth content" or simply \truth")
it was the user's concern. Popper later used his own formalism (and the
derived Booleanity assumption) to deduce properties of his `truth content'
measure and so emit (with David Miller,[1987]) a post-mortem indictment
against Carnap's [1950,62] \inductive logic".

3.3 \Fuzzy Logic"

From a logical point of view, Fuzzy Logic (under development since 1965)
can be considered as an \interpreted" variety of  Lukasiewicz & Tarski's
[1930] in�nite-valued logic. (\Interpreted" because it adds to many-valued
logic an extensional interpretation of predicates in terms of non-standard
sets.) Thus, it was already mentioned in a former section, where we con-
sidered it as an (unexpected) o�shoot of the many-valued logic family, and
we dedicated it some short comments. Nevertheless, the overgrown \fuzzy"
tradition, now largely applications-oriented, has its own self-contained rules
and momentum and is not exactly logic nor probability. Nor, it claims, has
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barely anything to do with them, with which it is pretendedly \orthogonal",
only devoted to linguistically-motivated imprecision (i.e. vagueness).

One may doubt the claim by fuzzy theorists that the issues they currently
discuss have no logical bearing. On the contrary, they seem fully relevant
for logical discussion, so we have dedicated an appendix to comment rather
expansively on fuzzy `logic', as well as to mention an early generalization of
Logic that arose inside the fuzzy tradition (by B.R. Gaines [1978]).

3.4 Arti�cial Intelligence

Since the moment the �rst \expert systems" dealt with uncertain informa-
tion (the obvious cases are Mycin and Prospector), AI as a discipline got
involved too in the Probability/Logic dilemma about what is the ultimate
nature of \truth" measures of sentences presented to the expert system user
(see Shortli�e [1976]). Leaving aside Mycin's \uncertainty factors" (later
revealed to be actually measuring belief change, see Heckermann [1986]),
the typical measures are Prospector's \probability assignments" (see Duda
et al. [1976]), that are considered unproblematic and intuitive (to the user,
who can easily estimate them), and are combined according to Bayes' for-
mula as though they were really what their chosen name implied. Whatever
the true status (probabilistic, or logical) of the calculus, the formulas on of-
fer happen to become corollaries of our generalized calculus below (where,
unlike in AI's rather ad hoc formalisms, nothing is assumed about whether
the measures are actually \probabilities" or \truths" or something else).

Nils Nilsson's [1986] stated goal in his `probabilistic logic' paper (orally
anticipated in 1983) was to rationalize past work in the Prospector expert
system project (1976-80) and give it a formal background by propounding a
`probabilistic entailment' that would do for this formalism what the Modus
Ponens rule ( A ; A ! B ` B ) does for ordinary Logic. He obtained the
well-known bounds for the probability of B (see e.g. our formula (8) below)
by Venn diagram techniques, that he extended to the study of convex hulls in
a \probability space" of \possible worlds" (the latter terms are both familiar
terminology to de Finetti and  Lo_s readers). As Nilsson [1993] acknowledged
later, his method is similar to work by Good [1950] and Smith [1961] (not
to mention de Finetti [1937,70]), authors of whom he was unaware at the
time. His goal is, in fact, shared by many since the �rst 1980s |including
the present author and others mentioned in previous and later paragraphs.
(The Nilsson e�ort is briey discussed in the next section.)

The Arti�cial Intelligence context has continued to breed practical moti-
vation for the Logic/Probability demarcation. A series of special conferences
(`Uncertainty in A.I.' ) has been called (beginning in 1986, see Kanal &
Lemmer [1986]) and given useful insights into the di�erences and similarity
of the once-separate �elds, including expert system coeÆcient analysis by
Heckermann [1986], Grosof [1986] and others or the theoretical framework
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called belief networks , developed for the eÆcient computation of \probabil-
ities" (or whatever they are) by Judea Pearl [1988]. These contributions to
general and practical Logic, worthwhile as they are, have the implicit bias
that what is actually manipulated is the probability of distribution-driven
events (rather than the belief , commitment or assertiveness of linguistic
sentences), and thus the interpretations are always loaded with unnecessary
concessions to probabilistic terminology and methods. So, for instance,
Pearl, whose formalism is nominally about \beliefs", is nevertheless over-
whelmed with computing probability distributions of facts and with assum-
ing simplifying conditions (such as independence or conditioning) to obtain
the �nal value; if this asignment is to be a real \belief", as stated, then
presumably the \facts" and their distributional assumptions should be less
real and objective than supposed: probably a consistent calculus (consis-
tent in the Ramsey/de Finetti sense) based on possible or estimated (rather
than actual) \facts" would suÆce |and for this the possible-worlds or the
rational-expectations analyses are already at hand (and ready to be usefully
supplemented by a practical procedure such as Pearl's).

An unsuspected bene�t of Logic-oriented analysis by Arti�cial Intel-
ligence practitioners has been their growing awareness that a system of
premises (what they tend to call \knowledge base") from which predictions
are made (or actions are taken) is essentially a set of beliefs to which the
agent is commited. This is now already clear in classic AI textbooks as
Genesereth & Nilsson's [1987], where the distinction is made between infer-
ence procedures where the user's full commitment must be kept throughout
the inference process and those where the belief premises are \quali�ed"
(e.g. modally, with a belief operator) or \quanti�ed" (with a \probabil-
ity" assignment); in the latter cases, it is assumed, the commitment is less
than absolute and the conclusion strength, therefore, less than guaranteed
|however formally valid the reasoning may be. This approach is welcome,
since it implies that however we treat premises in a logical argument |
either as commitment-inducing beliefs or as admittedly weak probes| they
all take part in the inference process and share with it a common goal:
knowing to what extent can we rely on conclusions.

3.5 Probabilistic logic

As mentioned in the previous section, Nilsson [1986] sets out to investigate
how Logic would generalize if one were to \assign probabilities instead of
truth values to sentences". Though he calls his probabilities probabilistic
truth values he treats them as real probabilities (at least to the extent that
Prospector's numerical assignments are). This shows clearly in his sub-
sequent treatment of (sentence) conditioning, that he considers plainly a
Bayes process and relates to considerations by authors as Pearl, Hecker-
mann, Grosof or Cheeseman (who explicitly deal with probability distribu-
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tions). Based on entropy considerations by the latter author, Nilsson re�nes
his bounding formulas so as to spot an exact value for the B in his `proba-
bilistic entailment' (= generalized Modus Ponens) rule |that happens to be
the midpoint of the bounding interval (compare that with formulas (9-11)
below).

Nilsson's grounding for his `probabilistic logic' is basically semantic: he
exhaustively generates and examines the \possible worlds" inherent in a
formula; but the way he then discards some of the worlds |before assigning
values to them| amounts to introduce consistency considerations. Akin
to this method is what Paass [1988] proposes in a survey: assign basic
\subjective probabilities", construct a universe of \relevant propositions"
|which turns out to be isomorphic to Shafer's \frame of discernment" (or
to our � below)| and then evaluate the resulting probability distributions
on it. The computation may be done in Dempster-Shafer's terms (see Shafer
[1976]) or by other methods: linear programming, stepwise simpli�cation,
Pearl's \belief networks" (with interactions) or statistical simulation (see
Paass [1988]).

Though they may not use the name (invented by Nilsson), many so-
called \probability logics" do not descend from Reichenbach but are really
probabilistic logics and share Nilsson's conception and aim: �nding a logical
foundation for the use of [0,1] probability assignments to sentences taking
part in an inference. Most of them formally derive their technical motivation
and analysis from Gaifman [1962] and Scott & Krauss [1968]. The author
of one of the �rst such `probability logics', Theodore Hailperin [1984] |who
also motivates his analysis historically (and also mentions the classics, from
Bernoulli to Keynes and beyond)| sets out to generalize \truth" values
and Logic in model-theoretical style, through the use of a modi�ed version
of the model and consequence concepts. This is done too by Bolc & Borowik
[1992], who base their analysis on Scott & Krauss [1968] and Adams [1966],
and by Gerla [1994] in an interesting attempt parallel to ours below.

4 BRIDGING THE GAP

4.1 Attempts at a synthesis

That the need for a generalization of Logic is widely felt, and that the time
is now come to try it, is attested by the many surveys |and attempts
at Logic/Probability synthesis (like the present one)| that are appear-
ing of late (see for instance G�ardenfors [1988], Paass [1988], Garbolino et
al. [1991], Bolc & Borowik [1992] or Gerla [1994]). But other such e�orts
deserve mention: Kyburg's [1993] is an exhaustive survey on logics of \un-
certainty" where the author probably respects too much the usual division
that insulates the surveyed authors' self-assigned topics, as he divides his
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survey, too prolixly, in \objectivism", \subjectivism", Nilsson's \probabilis-
tic logic", \belief functions", \measures", \probabilities", \statistical facts",
\updating" and \inference", where the very exhaustivity gets in the way of
a comprehensive attempt at synthesis. Similarly division-respecting are sev-
eral 1995 drafts by Friedman & Halpern on plausibility measures, where the
probabilistic bias dominates |in the terminology, in the chosen operations,
etc.| though apparently the original intention was to widen \the measure"
to a general \plausibility" concept. In the case of the swift and consistent
work done by Dubois & Prade [1987,93], now a respected tradition, here the
drawback to attain wide method-independent generality is the self-imposed
limitation to (fuzzy) possibility measures |though some convergence with
non-fuzzy approaches may occur in the future (see below on subadditivity).
For the sake of completeness, we must add here work in progress by two
researchers with a long tradition in trying to bridge the Probability/Logic
gap: Richard Je�rey [1995] and Glenn Shafer [1996].

4.2 Attempts at �nding a meaning for the value

Confronted with the meaning that a \truth value" may have {or may be
given{ when extended to points in the [0,1] interval, di�erent people have
reacted in a number of ways. Here we mention only those who did not
surrender to the temptation of subsuming truth value into probability (car-
rying with a it a heavily loaded interpretation of theory). Popper [1972]
thought that, in terms of theories rather than sentences, truth value could
be made to mean truth content (of the theory), degree of approximation
to truth or, interchangeably, its (appropriately de�ned) distance to false-
hood . Haack [1974] saw it could also be interpreted as partial truth, roughly
de�ned as the proportion of true components of a sentence or theory, or
{equivalently{ the \truth" of their conjuntion. (An unwilling distant rel-
ative of Haack's is the quantum physicists' interpretation of the \truth"
of a probabilistic quantum event sequence, which is similarly de�ned by
reduction {conjunction, actually{ to its elementary event components; see
e.g. Reichenbach [1935a,b] or Watanabe [1969]). Dana Scott [1973] tried
to answer by de�ning truth value as one minus the error we commit when
ascertaining or deciding it, clearly in analogy with what we do in the ob-
servational sciences. Based on ideas advanced in the 1950s by Bar Hillel
(with Carnap,[1952]), Johnson-Laird [1975,83] gave too a de�nition of truth
value, albeit indirectly, by positing as a new concept the informativeness or
\degree of information" of a sentence (a quantity negatively correlated with
the \truth-table probability") to see how it evolves through the reasoning
process, with an eye more on guiding the process than on controlling the
degree of truth (or assertiveness , or whatever), which is what Logic puts
the proper emphasis on.
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4.3 Popper, and Probabilistic Semantics

As repeatedly mentioned above, Popper [1959] (in 1938 and 1955) had de-
cided that Probability and Logic had to be given at last their long-overdue
common formalism. Disagreeing with Kolmogorov's [1933] solution (a [0,1]-
valuation on sets) because it was already (semi)interpreted |the valued
objects were sets| and had a bias toward Probability, he proposed instead
a totally abstract, uninterpreted system consisting of (1) an elementary
algebra of \sentences" (not necessarily Boolean, merely closed by \conjunc-
tion" and \negation"), and (2) a [0,1]-valuation v(a; b) on pairs of such
sentences satisfying very basic and reasonable conditions (see the appen-
dices in Popper [1959]). Such valuations, called \Popper functions", have
become a vogue now (under the name of \probabilistic semantics"), fol-
lowing e�orts by Harper [1975], Field [1976] or Leblanc [1979,83] to base
ordinary (i.e. \unary") probability on it. Great advantages of the Popper
formalism are:

� the formulas may be interpreted at will either \logically" or \proba-
bilistically": when in the latter mode, the \sentences" are elementary
events , the basic operations are intersection and complementation,
and the valuation is just plain conditional probability (but with an un-
suspected plus: there is no need that the \conditioning" event should
be assigned a non-zero (unary) probability)

� there is no need for �-additivity (as Popper [1959] himself bothers
to show), nor is �-additivity abstract enough for Kolmogorov's [1933]
pretendedly neutral formalism to qualify as really neutral (since it is
satis�ed in an interpretation but discards certain others)

� the resulting quotient algebra modulo equi-valuation is automatically
a Boolean algebra, which is not only simple and extraordinarily con-
venient but, because obtained from very simple assumptions, disarm-
ingly natural

� each quotient algebra class is interpretable, at will, as an ordinary
logical sentence or an ordinary probabilistic event , and its value turns
out to be automatically its truth value or, respectively, its (so-called
\unary", i.e. ordinary) probability

� the formalism being completely abstract (i.e uninterpreted) and the in-
terpretation totally free, the \probability" may be {with equal legitimacy{
subjective, objective or whatever; in particular it may be Popper's
[1962] truth content , or its probability (the latter is, according to him,
the value we give a theory when nothing is known about its content ,
which correlates negatively with it)
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� likewise, the \truth value" may be truth or simple belief ; in the present
author's view, many other interpetations are equally legitimate, such
as \degree of commitment", \assertive value" or any other that gives
us information on the reliability |subsuming truth| of sentences
(including premises and conclusion), and that allows us to have control
over their behavior along a chain of reasoning

� if one does not accept Popper's simple conditions, the same result
can provably be obtained by accepting alternative and equally simple
conditions set forth {independently{ by Cox [1961] (and, lately, also
the ones by Woodru� [1995]).

As stated, \truth values" may be interpreted in various legitimate ways.
Furthermore, any truly abstract formalism requires that they must. In
the following sections |to the end of the article| we consider, in genuine
Popperian fashion, several fully logical interpretations of the \truth value"
concept (belief , assertiveness , etc.), all motivated by what should be in-
cluded in any study of Logic: invariance (of truth |or of what the truth
value stands for, be it approximation to truth, reliability or whatever else)
along the whole reasoning process (assumed formally valid). But, compared
to the standard Popper schema, our method proceeds just in the reverse di-
rection: where Popper �rst de�nes the two-place probability function and
then the unary probability is obtained by taking the quotient, we begin
instead by a unary valuation and then we subsidiarily de�ne conditioning
(that we prefer to call \truth relativity" or \relative truth") to obtain Pop-
per's basic two-placed function. The process inversion is unimportant, as
we could as well have begun by a two-place valuation (of the assertive value
|or whatever else| of a sentence relatively to the others) and then obtain
its absolute assertive value by taking the quotient. And note that when
we proceed in our direction rather than Popper's, evaluating the mutually
relative position of sentences through the � and � parameters (see below)
amounts to just computing the basic two-place Popper function.

B. Steps toward a General Logic of Rationality

5 MOTIVATION

Let us advance what is our aim here by starting with an obvious remark.
When we argue, we do not always fully assert what we say. We often make
half-hearted assertions of sentences we are not sure about, or we even use as
assertions sentences we hardly believe to be the case. And yet we proceed
by reasoning from such weak premises. If we admit we do, and want to treat
this inside Logic, we need to qualify assertions, or, if possible, to quantify
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their strength, and try to follow and control what e�ects weak assertions
may have in the reasoning process, whether and how they a�ect its logical
validity and how we can tell the strength of the conclusion. All this is
indeed a proper logical subject (that, however, classical logic never set out
to confront).

By tradition, Logic is about truth; or, more precisely, it is about truth-
preserving manipulations that allow us to validate arguments. Arguments
are lists of sentences that we note by \ � ` C ", where C is called the
conclusion and � is a {possibly empty, or in�nite{ list of sentences called
premises . It is no obligation for sentences to be true (or even to have
meaning). We merely use them to see whether certain formal manipula-
tions |the inference rules| assure us that the prediction embodied by the
conclusion C is true whenever the premises are. The whole process is de-
pendent on the truth of the premises: if we cannot assure the truth of all of
them, the whole procedure becomes redundant. This is how ordinary Logic
approaches reasoning.

Now, at least two questions arise. First, suppose we are not sure whether
some premise applies, yet we want to know the \truth" of C (or what
is left of it, or, in other words, the reliability we can still attach to C as a
prediction). Second, suppose that we deliberately want to weaken some true
premise to see whether {or up to what point{ the conclusion still holds (this
is : probe the conclusion's dependence on its premises, or, in other words,
the argument's \robustness"). By tradition, none of this is approached by
Logic (so far). To see how we can generalize Logic to cover weak premises
we must get a closer look on how we assign truth to sentences. In Logic the

base material is the sentence, say A. (Note A is not a set, but merely a
member of a given language L .) Once we interpret it we get what we can
call a proposition. Then, by looking at what is the case, we get a value (a
\truth value"). Following Tarski's [1935b] well-known schema

(T) `A' is true if and only if A is true

the reasoner can verify the sentence (i.e examine the proposition A, obtained
by \unquoting" the sentence A) and declare it true whenever the translation
A of the object-language sentence A is found true. A is thus assigned the
one or true value, and we say that A has full credibility and eventually we
assert it with the full con�dence that truth warrants. If we �nd A false, we
assign it the zero or false value and give it null credibility. Note it is the
reasoner who is full command of the sentences and the translation process,
and thus the only one who can validate their truth. As sentences are used to
assert , and assertions are de�ned as \true, believed or merely hypothesized"
sentences, it is left to the reasoner who uses them to count actively on the
quality of assertions as part of the reasoning process itself (so, for instance,
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the reasoner usually quali�es the conclusions, conditioned on the strength
the original assertions carried).

Now suppose we are reasoning in Physics and A (a premise) is the positive
result of an experiment. If we are sure that A is true, then we are done: we
can use it in a reasoning as a true premise and proceed with the assumedly
valid argument to obtain the conclusion. But suppose that, as is usually the
case in Physics, we have some qualms about the truth of A, so we quantify
the error " of the experiment. Now the \truth" of the assertion `result is
positive' is no longer 1 as before but, say, \1 � "". We then perform the
formal |valid| reasoning. The question now is : what con�dence |as a
function '(") of "| may we have in the conclusion?

Most reasonings are like this. We perform as though premises were really
true, often unconvincedly. They are provably true sometimes, but most of
the time they are `assumed true' for the sake of the argument. Now, be-
cause the (T) validation process to declare a sentence true is under control
of the user (who performs the translation and decides whether the unquoted
statement is observed to be the case), so the reasoner is the only one who
can qualify the truth with the appropriate provisos, according to the diÆ-
culties met in the validation (unquoting) process. It seems only natural to
ask this user not only to qualify but to quantify (with a number in e.g.[0,1])
what is the degree of credibility (or belief) (s)he assigns it. The user can
usually do it consistently (this is the \rational" behavior studied by Ram-
sey [1926]), thereby de�ning (by de Finetti's [1937] theorem) an additive
valuation. (S)he can always assign the sentence A the value v(A) |or, as
we will write hereafter, [[A]]|; this value (\truth value" we will call it) may
be computed in an unspeci�ed way (by betting preferences, belief networks,
simulation, statistical survey, or whatever) and based on any preferred in-
terpretation of A, be it standard probability of A as an event, or Popper's
truth likelihood or truth content of A as a proposition or theory (that, as
Popper found in the 1930s, is negatively correlated with its probability),
or its partial truth in Haack's [1974] sense, or Shafer's [1976] belief (and
its dual, plausibility), or its reliability , or the credibility of {or the (user's)
belief in{ A, or whatever (provided the assignment is done consistently).
[[A]] represents a rough index of the con�dence we have in A being the case
and {consequently{ the force with which we feel we can assert A in a par-
ticular argument (or the assertiveness we can commit into it). This measure
is always possible, provided the user is \rational" in Ramsey's sense (but
\non-rational" measures are also possible: they merely give non-additive
values; see the �nal section, on subadditivity). What is measured is the
user's belief in and commitment to A: a zero value means that the premise
is to be taken as false, 1 means that it is a true (and therefore fully as-
sertable) premise or {more often{ that it is to be assumed true (and fully
endorsed), and v(A) = 1� " (" > 0) means that we can assert A but with
some apprehension or risk (that we assume) ".
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Now, approached in a most general way, the problem to solve is as follows.
Suppose we have the reasoning A1; A2; : : : ` B. Suppose we assign degrees
of con�dence or assertiveness to the premises. The question is : what will be
the e�ect of those degrees in the con�dence or reliability of B ? (We would
thus probe the argument's robustness.) And what if we vary our con�dence
levels in some premises? Can it happen that, though the reasoning may
be formally valid , the reliability of B turns out to be zero (thus making
the argument unsound)? Or does B maintain its \truth" (or reliability =
1) though all the premises get null con�dence themselves (thus making B's
truth independent from the premises)? This analysis, like the physicist's
'(") estimation problem above, is a legitimate logician's concern. (It is
what we proceed to develop in our proof theory below.)

We illustrate this with an example. This is the well-known sorites about
bald men: \If a man with i hairs is not bald then a man with i� 1 hairs is
still not bald. Suppose a man has n hairs. Therefore, a man with 0 hairs is
still not bald". Formally:

Ai ! Ai�1 (i : 1; : : : ; n)
An
A0

This is a paradox because the reasoning is formally correct (it consists
of merely n applications of the Modus Ponens rule), the n+ 1 premises are
deemed awless, but the conclusion is outright false (or, more precisely, a
contradictio in terminis). Usually, it is the length of the argument that is
put to blame. There is, however, a more concrete and satisfactory answer
we can o�er. The n premises Ai ! Ai�1 cannot obviously be asserted with
the same assurance whatever the index value. That's why the argument
fails: for low values of i the premises simply cannot be asserted, even if the
rest can, so we can never have all premises asserted, and the reasoning is
formally valid but vacuously so.

Formally, what happens is that the value [[Ai ! Ai�1]] decreases with i,
so that when i is n (or even, say, around n=2 or n=3) it is 1 or very near
1, but when i approaches, say, n=10 |and surely when it becomes zero|
the value of Ai ! Ai�1 (= the predisposition we have to assert it |or the
willingness to assume the risk) comes down to an exceedingly low number.
According to a simple proof theory (that we describe below), the conclusion
A0 has the same truth value, at best, as that lowest of numbers (and, thus,
the reasoner would be willing to assert the conclusion just no more than he
or she would willing to assert A1 ! A0).

Note that, though we use words such as `belief' or `commitment' as surro-
gates for truth, truth itself is not merely reducible to belief (or probability):
compare de Finetti's well-known position (\probability tells us only what
to expect, not what will actually be the case") with the more recent com-
ments of Cohen [1990] (a probabilist), who admits that when we say that
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something is true with probability, say, .26, \this result tells us nothing
about the truth" of the predicted fact or the postulated hypothesis, which
will be {is, actually| true or not regardless of our (expectation-inducing)
probability computations. This is not to say that Logic should continue to
treat truth exclusively, as it now does. On the contrary, we contend that
Logic, as it becomes a general theory of rationality , should center on a new
object of study: the assertive value of sentences (that subsumes truth and
which we will hereafter call {somewhat misleadingly{ truth value), because
this is what is really manipulated in arguments, and because this concept
may let us analyze them in full generality, be it through weak premises,
strong conclusions or argument robustness.

6 \TRUTH" VALUATIONS OVER SENTENCES

We assume we have a set L of sentences that form a Boolean algebra (with
respect to the three connectives and two special sentences ? and >). Now
we have the whole Proof Theory of Sentential Logic by identifying the \ `
" order de�ned by the Boolean algebra with the deductive consequence rela-
tion. Thus the algebra of sentences we started with automatically becomes
the Lindenbaum-Tarski algebra of all sentences modulo the interderivability
relation \ a` " given by the ` order (i.e. A a` B i� A = B). We then
assume that all sentences are valued in [0; 1], which we do in the standard
way of a normalized measure v : L �! [0; 1] : A 7! [[A]] , by just requiring
that > gets a value of 1 (1 is the only `designated value' we consider) and
that the valuation v is additive (i.e. [[A _ B]] = [[A]] + [[B]] � [[A ^ B]] ). So
we now have also the whole Model Theory of Sentential Logic.

This \truth" valuation is merely a (�nitely aditive) probability in all tech-
nical senses, but here A is a sentence (in a language L), not an event (in
a sample space 
). [[A]] = 1, [[A]] = 0 and [[A]] = 1/2 here just mean {
respectively{ truth (or, more precisely, that \A is taken as truth"), falsity
and undecided belief (when expressly asserting the A sentence); this is to be
contrasted with (respectively) probabilistic \certainty", zero-probability or
balanced odds (when evaluating the uncertain outcome of A as an event).
We do not require that the valuations |even when interpreted fully as
\truth" valuations| to be \extensional" or \truth-functional" as done in
many-valued logics. As for the Booleanity of the sentences, either this is
assumed (which is undemanding) or it derives from the \minimal algebra"
of sentences suggested by Popper [1959] |or from provably equivalent sim-
ple assumptions (e.g. by Cox [1961] or Woodru� [1995]). Also, the additive
character of the valuation amounts to having a `rational' (Ramsey [1926])
or `coherent' (De Finetti [1937,70]) belief , a concept so akin to `strength of
assertion' in Logic as to be all but exchangeable.

From the Booleanity of L and the above properties of the v valuation we
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immediately obtain:

[[:A]] = 1� [[A]](1)

[[A ^ B]] � min([[A]]; [[B]])(2)

[[A _ B]] � max([[A]]; [[B]])

[[A! B]] = 1� [[A]] + [[A ^ B]]

[[A$ B]] = 1� [[A _ B]] + [[A ^ B]]

7 SENTENCES AS SET EXTENSIONS, AND TRUTH AS MEASURE

Any Boolean Algebra has a representation on a set structure (a �eld of sets)
as Stone proved long ago in a famous theorem (see, for example, Koppelberg
et al. [1989]). Thus, given the Boolean sentence algebraL, there exist both a
set � (whatever the meaning we give to its elements �) and a `representation'
function that can be characterized as an isomorphism of L into the Boolean
subalgebra B of clopens in P(�), i.e.

� : L  ! B : A 7! A (B � P(�);A � �):

We call the members of � possible worlds , or cases (as Laplace [1774] or
Boole [1854]) or possibilities (Shafer [1976]) or even observers , states , etc. �
is the universe of discourse or reference frame (the set of possible worlds). It
coincides with Fenstad's [1968] model space (where the �s are interpretations
in the standard logic sense).

We can establish a general, one-to-one correspondence between the two
worlds (the language world L and the referential universe �, both made up
of \propositions") and their constituent parts, thus:

L () B

A(A 2 L) () A(A � �)

A ^ B () A \B

A _ B () A [B

:A () Ac

> () �

? () �

A ` B () A � B

If L has a �nite number of generators, then it has 2n atoms a and the two
bijective correspondences L () P(�) and a () f�g also hold.
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The valuation v and the representation isomorphism � induce a [0,1]-
valued measure � in B � P(�), in such a way that � = v Æ ��1, i.e.
�(A) = [[A]].

Intuitively, the measure �(f�g) of each individual � in a �nite � uni-
verse is the relevance or the degree of realizability of the given possible
world. The � measure corresponds to the weighing function � in Fenstad's
[1968] model space. As it is known, � (or �) is not only additive but {by
the compactness property{ countably so; thus � is eligible as a standard
\probability" measure (in the technical sense).

8 CONNECTIVES AND SENTENTIAL STRUCTURE

If we want to compute the truth value of composite sentences, the task is
easy. For the negation connective, the formula is given by (1) above. For the
binary sentences composed of A and B we have the formulas below, where
we observe that, besides [[A]] and [[B]], we now need a third parameter that
we note \ �AB " and that we call \compatibility between A and B"; its
value is de�ned by �AB =df 1� �AB , where:

�AB =
min ([[A]]; [[B]]) � [[A ^B]]

min ( [[A]]; [[B]]; 1� [[A]]; 1� [[B]] )
�

We call �AB the \degree of incompatibility of sentences A and B" and
we rename the denominator by calling it \�AB". Then, the formulas for
the connectives are:

[[A ^ B]] = min([[A]]; [[B]]) � �AB ��AB

[[A _ B]] = max([[A]]; [[B]]) + �AB ��AB

[[A! B]] = min(1; 1� [[A]] + [[B]]) � �AB ��AB

[[A$ B]] = 1 � j [[A]]� [[B]] j � 2 � �AB ��AB

So, by knowing a single value (either of [[A^B]], [[A_B]], [[A! B]], [[A$ B]],
�AB or �AB |or [[AjB]] or [[BjA]], see below) we can compute, via �AB (or
�AB), the other seven. The parameter �AB (which is a modern version of
Reichenbach's [1935b] \Kopplungsgrad") acts as an indicator or measure of
the \relative position" of A and B inside �, while \�AB" is a quadruple
minimum that only depends on the values of [[A]] and [[B]]. Note that if we
suppose that �AB = 0 for all A and B then the above formulas are

[[A ^ B]] = min([[A]]; [[B]])

[[A _ B]] = max([[A]]; [[B]])

[[A! B]] = min(1; 1� [[A]] + [[B]])

[[A$ B]] = 1� j[[A]]� [[B]]j
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and coincide with those given in ordinary many-valued logics . Instead, if
�AB = 1, the connectives are

[[A ^B]] = max(0; [[A]] + [[B]]� 1)

[[A _B]] = min(1; [[A]] + [[B]])

[[A! B]] = max(1� [[A]]; [[B]])

[[A$ B]] = j[[A]] + [[B]]� 1j

and coincide with those given in threshold logics .

9 RELATIVE TRUTH

Now suppose we want to express the conjunction value as a product:

[[A ^ B]] = [[A]] � �:

With the current L=P(�) representation in mind, we obtain:

(3) � =
�(A \B)

�(A)

We de�ne � as the relative truth \ [[BjA]] " (i.e. the \truth of B relative to
A"). Though this de�nition exactly parallels that of conditional probability,
the account we give leaves out any probabilistic interpretation of the concept
and retrieves it for exclusively logical contexts.

In particular, if [[BjA]] = [[B]] then we say that A and B are independent.
In that case, the conjunction can be expressed as the product:

[[A ^ B]] = [[A]] � [[B]]:

In any other case we say that A and B are mutually dependent and speak
of the relative truth of one with respect to the other. Note the dependence
goes both ways and the two situations are symmetric. We have (assuming
[[A]] 6= 0):

[[A]] � [[BjA]] = [[B]] � [[AjB]] = [[A ^B]] (a logical \Bayes formula")

[[BjA]] = 1� 1�[[A!B]]
[[A]] :

From the latter, note that, in general,

[[BjA]] 6= [[A! B]]:

Particularly, we have always

[[BjA]] < [[A! B]]
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except when either [[A]] = 1 or [[A ! B]] = 1, in which cases (and they
are the only ones) [[BjA]] = [[A ! B]] . (These facts have been repeatedly
noticed by many people, notably by Reichenbach [1935b], Popper [1959],
Stalnaker [1970] or Lewis [1976].)

When two sentences A and B are independent then (and this is a neces-
sary and suÆcient condition for that to happen): �AB = max ([[A]]; [[B]])

if [[A]] + [[B]] � 1 = max ([[:A]]; [[:B]]) if [[A]] + [[B]] � 1 and then the

connectives obey the formulas

[[A ^ B]] = [[A]] � [[B]]

[[A _ B]] = [[A]] + [[B]]� [[A]] � [[B]]

[[A! B]] = 1� [[A]] + [[A]] � [[B]]:

The statement `A! B' can have, among other readings, one logical (\A
is suÆcient for B" or \B is necessary for A"), another (loosely) \causal"
(\A occurs and B follows"). But because A! B is valued in [0,1], its value
[[A! B]] (and the values [[BjA]] and [[AjB]]) now mean only degrees , and so
B ! A may be |and usually is| read \evidentially" (\B is evidence for
A"). Within such a frame of mind,

� [[BjA]] (or \�A(B)") could be termed \degree of suÆciency or causal-
ity" of A (or \causal support for B"), to be read as \degree in which
A is suÆcient for B" or \degree in which A is a cause of B". In view
of (3), it is roughly a measure of how much of A is contained in B.

� [[AjB]] (or \�A(B)") could be termed \degree of necessity" or \evi-
dence" of A (or \evidential support for A", to be read as \degree in
which A is necessary for B" or \degree in which B is evidence (=
support of hypothesis) for A (=the hypothesis)". With (3) in mind,
it can be seen as how much of B overlaps with A.

Such measures may be directly estimated by experts, normally by inter-
preting the �s frequentially, in terms of cases , like Boole [1854], possibilities
(Shafer [1976]), elementary events in �, or possible interpretations ; at any
rate, they may be statistically-based or simply imagined, presumably on the
basis of past experience or sheer plausibility. Thus, �A(B) in a causal reading
of \A ! B" would be determined by answering the question: \How many
times (proportionally) |experience shows| A occurs and B follows?" For
�A(B), the question would be: \How many times e�ect B occurs and A has
occurred previously?" (Similarly for the evidential reading of \A ! B".)
Once � and � have been guessed, they may be adjusted (via the

�A(B)

�A(B)
=

[[B]]

[[A]]
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relation) and then lead |by straightforward computation| to [[A ! B]],
[[B ! A]] and �AB , which allows one to compute all other values for con-
nectives and also to get a picture of the structural relations linking A and
B. This process of eliciting the � value for every hA;Bi sentence pair is
closely equivalent to computing Popper's binary probability function.

Note �rst that a similar computing process takes place in \Bayesian rea-
soning", and in the \approximate reasoning" methods as implemented in
marketable expert systems, though none of them satisfactorily explains on
what logical grounds are the procedures justi�ed, nor can they avoid sup-
plying a (nominally) probabilistic account of them. Such an account would
be here clearly misplaced, since there is usually neither (a) a sample space
of events , but a language of sentences (i.e. linguistic descriptions |not
necessarily of any \event"), nor (b) a measure based on uncertainty and
outcomes (the topics Probability is supposed to deal with) but rather simple
beliefs or, at most, mere a priori estimates, nor (c) an adequate updatable
statistical or probabilistic basis to compute the values of the \events" (and
their ongoing, dynamical change).

Note also that any reasoning can proceed here in both directions (from
A to B and from B to A), because both conditionals A ! B and B !
A claim a non-zero value and thus a \causal" top-down reasoning can be
complemented by an \evidential" bottom-up reasoning on the same set of
given sentences (as also happens in Pearl's [1988] belief networks).

10 THE GEOMETRY OF LOGIC: DISTANCE, TRUTH
LIKELIHOOD, INFORMATION CONTENT AND ENTROPY IN L

The fact that we have:

[[A$ B]] = 1� ([[A _ B]]� [[A ^ B]])

strongly suggests using 1� [[A$ B]] = [[A_B]]� [[A^B]] as a measure of
the distance AB (under a given valuation v). So we do. (We remark that
all de�nitions we give here of distance and related concepts are not only
applicable to sentences but to theories as well, because for a general lattice
L the lattice L̂ of theories derived from each sentence in L is isomorphic to
L.)

DEFINITION 1. Distance (or Boolean distance) between two sentences or
theories A and B is:

d(A;B) =df 1� [[A$ B]]

= [[A _ B]]� [[A ^ B]]

= j[[A]] � [[B]]j+ 2 � �AB ��AB
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DEFINITION 2. Compatible distance between two sentences or theories A
and B is:

d+(A;B) =df j[[A]] � [[B]]j = [[A]] + [[B]]� 2 min([[A]]; [[B]])

We now de�ne a truth likelihood value for A |approximating Popper's
[1972] (and Miller's [1978]) truth likelihood or verisimilitude measure| by
making it to equal the distance from A to falsehood, i.e. d(A;?). We
obtain, immediately:

d(A;?) = d(>;?)� d(>; A) = 1� d(A;>)

= 1� d(A4>;?)

= 1� d(:A;?) = 1� [[:A]] = [[A]]

So here we have a further interpretation of our \truth values" [[A]] in terms of
Popper's [1972] truth likelihood or verisimilitude. We might as well consider
[[A]] as a rough measure of partial truth or truth content of A. In a similar
vein, we may recall that Scott [1973] suggested the \truth value" [[A]] of
many-valued logics could be interpreted as one (meaning truth) less the
error of A (or rather of a measure settling the truth of A) or the inexactness
of A (as a theory); in this framework, it comes out that, in our terms,
[[A]] = 1� "A and "A = 1� [[A]] = d(A;>).

We further observe that, for any sentential letters P and Q, any uniform
truth valuation yields [[P ]] = [[:P ]] = :50, [[P ^Q]] = :25 and [[P _Q]] = :75,
which is like saying that, if all letters are equiprobable, the given values are
the probability of the given sentence being true (a number that Johnson-
Laird [1975,83] calls, appropriately, \truth-table probability"). This value's
complement to one is reasonably made to correspond to the amount of
information |in a loose sense| we have when the sentence is true. This is
precisely what Johnson-Laird [1975,83] de�nes as \degree of information",
\semantical information" or informativeness I(A) of a sentence A. (Viewed
in our terms, this information content I(A) equals 1�[[A]], or I(A) = [[:A]] =
d(A;>) = "A.) The concept, based on Bar-Hillel's (and Carnap's,[1952])
ideas, was originally designed to model the reasoning process, assumed to
be driven by an increase both of informativeness and parsimony. What is
interesting is that the informativeness of composite sentences is computed by
combining them according to non-truth-functional rules which yield values
that coincide with those predicted by our formulas.

A new measure we can de�ne, which can also be used as an entropy (in
the sense of De Luca & Termini [1972]), is this one:

DEFINITION 3. Imprecision (or, perhaps, \fuzziness") of a sentence (or
theory) A is the value for A of the function

f : L �! [0; 1] such that f(A) = 1� d+(A;:A)
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It is immediate that:

f(A) = 2 min ([[A]]; 1� [[A]]);

which is equivalent to saying that the imprecision of a sentence A equals
twice the error we make when we evaluate on A the truth of the law of
non-contradiction or of the excluded middle by considering there really is
maximum compatibility between A and :A. (Actually, there is null com-
patibility, as �AB is provably zero when B is :A.) In connection with this
measure, we note in passing that:

� classical (two-valued) logic is the special case of ours in which all
sentences in L have zero imprecision.

� ordinary multi-valued logics |like  Lukasiewicz-Tarski's  L1| are the
ones where at least one sentence in L has non-zero imprecision. This
measure being |as it is| an error function, imprecision is here just
the degree in which these logics fail to distinguish contradictions (their
lack of \resolving power") .

11 ELEMENTARY PROOF THEORY FOR GENERAL ASSERTIONS

Once we have valued sentences in [0; 1] we now need a Proof Theory that
in the most natural way extends standard logic so as to treat imprecise
statements or weak assertions, and measure and control whatever e�ect they
may have on reasoning (as well as to explain some results in approximate
reasoning methods from Arti�cial Intelligence).

To begin with, suppose a valid argument, noted � ` B (where � are the
premises, or a �nite subset of them). Classical logic declares it valid if B is
derivable from � in an appropriate deduction calculus. By the completeness
property, this amounts to assert the truth of B whenever the premises in �
are true. Now, as we said, the ultimate judge of the truth of the premises is
the reasoner. It is the reasoner who decides that each premise used is true
(or to be considered true). To justify such a decision, the reasoner applies
a truth criterion such as Tarski's [1935b] (T) schema. Thus the reasoner
declares A true when assured that what A describes is precisely the case. If
the reasoner is not sure of the result of his/her validation or does not want
to commit him/herself to it, then the reasoner may choose not to make a
full assertion by claiming that A's veri�cation does not yield an obvious
result. In that case, the reasoner may rather easily \qualify" the assertion
by assigning numbers in [0; 1] such as v(A) |that we noted \[[A]]"| or
"(A) [ = 1�v(A) ] meaning that the reasoner believes or is willing to assert
A to the degree v(A) or assume it with a risk or estimated error of "(A).
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The proof theory we now sketch is a slightly extended version of the
standard one. Here we understand by proof theory the usual syntactical de-
duction procedures plus the computation of numerical coeÆcients that we
must perform alongside the standard deductive process. We do that because
a �nal value of zero for the conclusion would invalidate the whole argument
as thoroughly as though the reasoning were formally |syntactically| in-
valid. As always, any formally valid argument will have, by de�nition, the
following sequent form:

� ` B

whereB is the conclusion and � stands for the list |or, rather, the conjunction|
of the premises (or, by the compactness property, of a �nite number of
them). We have, elementarily:

(4) � ` B ) [[�]] � [[B]]:

We henceforth assume that we have a valid argument (so � ` B will
always hold), and that all premises are non-zero (i.e. 8i [[Ai]] > 0). We
distinguish four possible cases:

1. [[�]] = 0 (i.e. the premises are {materially{ inconsistent). Here by
(4) [[B]] can be anywhere between 0 and 1; this value is in principle
undetermined, and uncontrollably so.

2. [[B]] = 0. This entails, by (4), [[�]] = 0 and we are in a special instance
of the previous case. The reasoning is formally valid, the premises are
not asserted, and the conclusion is false.

3. [[�]] 2 (0; 1) (i.e. the premises are consistent). Then, by (4), [[B]] > 0.
We have a formally valid argument, we risk assessing the premises
(though with some apprehension) and get a conclusion which can be
e�ectively asserted though by assuming a {bounded{ risk. This will
be the case we will set to explore below.

4. [[�]] = 1. This condition means that [[A1]] = : : : = [[An]] = 1 and,
by (4), [[B]] = 1. So the premises are all asserted |with no risk
incurred| and the conclusion holds inconditionally (remember � ` B
is formally valid). This is the classical case studied by ordinary two-
valued Logic.

We are interested in examining case 3 above, i.e. formally valid reasoning
plus assertable premises (though not risk-free assertions) plus assertable
conclusion (but at some measurable cost). Cases 3 and 4 characterize in
a most general way all sound reasoning. Case 2 characterizes unsound
arguments (since in this case having a formally valid argument � ` B does
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not preclude getting an irrelevant conclusion ([[B]] = 0). As this case is the
one to avoid, we have:

DEFINITION 4. Unsoundness of a valid argument � ` B is having [[B]] = 0
though the premises are themselves non-zero. So:

DEFINITION 5. Soundness of a valid argument � ` B is having [[B]] > 0
whenever the premises non-zero.

With that in mind, we can now turn to the basic inference rule, the
Modus Ponens (MP). From a strictly logic point of view, this rule is

(5)

A m

A! B n

B p

where m, n and p stand for the strength or force (or \truth value") we are
willing to assign each assertion; so, in our terms, m, n and p are just our
[[A]], [[A ! B]] and [[B]]. They are numbers in [0,1] that take part in a (nu-
merical) computation which parallels and runs along the logical, purely syn-
tactical deduction process. This is well understood and currently exploited
by reasoning systems in Arti�cial Intelligence that must rely on numeri-
cal evaluations |given by users| that amount to credibility assignments
(or \certainty factors"), belief coeÆcients, or even |rather confusingly|
probabilities (often just a priori probability estimates); this is the case of
successful expert systems such as Prospector or Mycin. The trouble with
such systems is that they tend to view Modus Ponens as a probability rule
(this is made explicit in systems of the Prospector type, see Duda et al.
[1976]). They use it to present the MP rule in this way:

(6)

A(m)

A! B(�)

B(p)

where m and p are the `probability' (a rather loose term here) of A and
B, and \A ! B(�)" means that \whenever A happens, B happens with
probability �". Here � turns out to be just v(BjA) or \[[BjA]]", the \relative
truth" of B given A; this concept, modelled on a close analogy |ceteris
paribus| with that of (probabilistic) conditioning, is what we have de�ned
above (in (3)) and called \degree of suÆciency" � of A |or of necessity
of B|, assumed easily elicitable by experts. So it is just natural, and
immediate, to compute the p value thus:

p � � �m

or, in our notation,

[[B]] � [[BjA]] � [[A]]
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which is just another version of formula (2).
The problem is that what we have, from our purely logical, probability-

rid standpoint, is (5), not (6), and in (5) n is not [[BjA]] but [[A! B]]. Recall
that [[BjA]] and [[A! B]] not only do not coincide but mean di�erent things
(as repeatedly noticed by logicians, and as explained above). Indeed, [[A!
B]] is the value (\truth" we may call it, or \truth minus risk") we assign to
the (logical) assertion A! B. Instead, [[BjA]] is a relative measure linking
materially, factually , A and B (or, better still, the A and B sets), with no
concern whether a true logical relation between them exists; we might even
have [[BjA]] < [[B]], thereby indicating there exists an anticorrelation (thus
rather contradicting any |logical or other| reasonable kind of relationship
between A and B). So we turn back to our (5) rule; note that m+ n � 1
(this always holds) and that [[BjA]] can be obtained from [[A! B]], or vice
versa: [[A! B]] from [[BjA]] through

(7) [[A! B]] = 1� [[A]] � (1� [[BjA]])

(which is useful, since [[BjA]] is directly obtainable from experts).

The following theorem states the soundness condition for the MP rule.

The Modus Ponens rule

A m

A! B n

(we assume m and n are both non-zero)

B p

is sound (and thus [[B]] 6= 0) if one of these four equivalent conditions hold:

1. m+ n > 1

2. [[BjA]] > 0

3. [[A ^ B]] > 0

4. Either [[A]] + [[B]] > 1 (and thus [[B]] > 1 �m) or both A and B are
compatible (�AB > 0) and not binary-valued.

In both sound and unsound cases we have the following easily computable
bounds for the value [[B]] of the MP conclusion (Sales [1992,96]):

(8) [[A]] + [[A! B]]� 1 � [[B]] � [[A! B]]

or equivalently, in shorter notation:

m+ n� 1 � p � n :
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(Such bounds have been discovered again and again by quite diverse authors;
see e.g. Genesereth & Nilsson [1987]). The lower bound |which equals
[[A^B]] | is reached when �AB = 1 and [[A]] � [[B]], while the upper bound
is reached when �AB = 0 and [[A]] + [[B]] � 1. Naturally we usually know
neither [[B]] nor �AB beforehand, so we don't know whether the actual value
[[B]] reaches either bound or not, nor which is it; we can merely locate [[B]]
inside the [m+ n� 1; n] interval.

But this interval can be narrowed. Since a very reasonable constraint a
conditionalA! B may be expected to ful�ll is that A and B be (assumedly)
non-independent {and not binary{ and positively correlated (i.e.: [[A^B]] >
[[A]] � [[B]]), so we have:

(9) [[A]] + [[A! B]]� 1 � [[B]] < [[BjA]]:

Here, if A and B are fully or strongly compatible, [[B]] will be nearer the
lower bound. Thus, we can only increase our [[B]] if we are assured that
A and B are independent (in the sense that [[A ^ B]] equals [[A]] � [[B]], see
above): we then obtain the highest value [[B]] = [[BjA]]. On the other hand,
the more we con�de instead in a strong logical relation between A and B,
the more we should lean towards the low value given by

(10) [[B]] = [[A ^ B]] = m+ n� 1:

Under very reasonable elementary hypotheses (like this one: [[A ! B]] >
[[A ! :B]] or, equivalently, �A(B) > 1=2, see Sales [1996]), we easily get
these bounds for [[B]]: [[A]]=2 < [[B]] � [[A]]:

Now, if what we want is not an interval, however narrowed, but a precise
value for [[B]] we should favor the lower value, the one given by (10) above.
There are lots of reasons (some mentioned in Sales [1996]) for this choice of
value in the absence of more relevant information.

But if we want not merely a pair of bounds |or a favored lower bound|
for the conclusionB of an MP but the exact value [[B]], the obvious candidate
formula for this follows easily: suppose we are given not only [[BjA]] but also
[[AjB]] (that we note by � and �) and we assume them estimated by experts.
We then formulate MP as

A(m)

A! B(�; �)

B(p)

which is exactly (6) except that the conditional has prompted evaluation of
relative truths of A and B in both directions. The value is computable at
once from the above de�nition of [[AjB]]:

[[B]] =
[[BjA]] � [[A]]

[[AjB]]
or p =

� �m

�
:
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Note that the above logical formula coincides formally with Bayes's the-
orem |whence the adjective (\Bayesian") for any calculus that uses it|
except that it deals not with hard-to-compute probabilities of events but
with beliefs (or assertion strengths) of sentences. Note also that this value
is the one that some approximate reasoning systems (e.g. Prospector) un-
quali�edly assign to [[B]] supposedly on purely probabilistic grounds |and
falsely assuming that [[BjA]] is the same as [[A ! B]]|; see, for instance,
the Genesereth & Nilsson [1987] text, where the logical equation above is
said to be Bayes's formula.

If we wanted the MP presented in the more traditional logical way (5),
�rst we would directly estimate the truth value [[A! B]] of the conditional,
or compute it from � through (7) |or both, and use each estimate as a
cross-check on the other|, so we would now have, along with the expert
guess of �:

A m

A! B n(�)

B p

(where n = 1�m � (1� �) ), and so

(11) [[B]] =
[[A ^ B]]

[[AjB]]
=

m+ n� 1

�

that naturally �ts the (9) bounds (when � runs along from 1 to [[A]]).

12 THREE COROLLARIES AND ONE EXTENSION

A few remarks can be made on some apparent advantages of the \logic-
as-truth-valuation" approach that, following the advice of Popper et alii ,
we have advocated and described above. First, we mention three well-
known �elds that have been traditionally perceived as separate but that
now automatically become special cases of a single formulation. Then, in
subsection b, we hint at an obvious extension of the approach.

12.1 The special cases

1. Classical (two-valued) logic is the special case of our general logic
in which every sentence is binary (i.e. 8A 2 L [[A]] 2 f0; 1g) or,
equivalently, in which every sentence has zero imprecision (i.e. 8A 2
L f(A) = 0).

2. For three-valued logics �rst note that classical examples, especially
Kleene's system of strong connectives [1938] and  Lukasiewicz's [1920]



LOGIC AS GENERAL RATIONALITY: A SURVEY 353

 L3, give the following tables for the values of connectives (where U
stands for \undetermined"):

^ 0 U 1 _ 0 U 1 ! 0 U 1

0 0 0 0 0 0 U 1 0 1 1 1

U 0 X U U U Y 1 U U Z 1

1 0 U 1 1 1 1 1 1 0 U 1

with X = Y = U in both Kleene's and  Lukasiewicz's tables, and
Z = U in Kleene's (but Z = 1 in  Lukasiewicz's).

Now, if we abbreviate the \[[A]] 2 (0; 1)" of our general logic by \[[A]] =
U" (as in Kleene or  Lukasiewicz) the values given in the above tables
coincide exactly with those that would have been computed by our
formulas, except that X , Y and Z would remain undetermined until
we knew �AB . In general, our values would match Kleene's, but in
certain cases they would yield di�ering results:

(a) If [[A]]+[[B]] � 1 and A and B are incompatible (typically because
A \B =�) then X = 0.

(b) If [[A]]+[[B]] � 1 and A and B are incompatible (typically because
A [B = �) then Y = 1.

(c) If [[A]] � [[B]] and A and B are compatible (typically because
A � B) then Z = 1.

Note that in the particular case in which B is :A we have always
[[A ^ :A]] = 0 and [[A _ :A]] = 1 for any valuation, so that, for
instance, the three classical Aristotelian principles ( ` A ! A
, ` :(A ^ :A) and ` A _ :A ), which do not hold in these
logics (except that the �rst one does in  L3), do now hold in ours.
These three results are perfectly classical and in full agreement
with what is to be expected from a (Boolean) logic.

(d)  Lukasiewicz & Tarski 's [1930]  L1 logic, as ours, generalizes clas-
sical (two-valued) logic in the sense that it allows the members
of the sentential lattice to take values in [0,1] other than 0 or
1. Both systems of logic include classical two-valued logic as a
special case. Nevertheless, while  L1 renounces Booleanity , we
renounce functionality (though not quite, since each connective
is actually truth-functional in three arguments: [[A]], [[B]] and a
third parameter such as, e.g., �AB). In fact, if the f0; 1g truth
set is extended to [0,1] those two properties of classical logic can-
not be both maintained, and one must sacri�ced; we �nd much
easier to justify logically, and more convenient, the sacri�ce of
truth-functionality.
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Our general logic admits  L1 as a special case since, indeed,  L1 be-
haves exactly as ours would do if no sentence in L could be recognized
as a negation of some other and, then, it would be assigned systemat-
ically the maximum compatibility (� = 1) connective formulas. Nat-
urally that would give an error in the values of composite sentences
involving non-fully-compatible subsentences, but it would also restore
the lost truth-functionality of two-valued logic.  L1 amounts |from
our perspective| to viewing all sentences as having always maximum
mutual compatibility. That means that  L1 conceives all sentences as
nested (i.e. for every A and A0, either A � A0 or A0 � A ) (Sales
[1994]). Such a picture is strongly reminiscent of Shafer's [1976] de-
scription of conditions present in what he calls consonant valuations,
and which entails the �ction of a total , linear order ` in L |and �
in P(�)| (that means a coherent, negationless universe) . . . which
is probably the best assumption we can make when information on
sentences is lacking and negations are not involved |or cannot be
identi�ed as such. (Such an option is as legitimate as that of as-
suming, in the absence of information on sentences, that these are
independent.) In  L1 obvious negations may be a problem, but it can
be solved by applying error-correcting supervaluations (van Fraassen
[1968]) |that our logic supplies automatically. And note that, in
particular, the error incurred in by  L1 when failing to distinguish
between a sentence and its negation |thus not being able to recog-
nize a contradiction| is just the quantity we called imprecision (or
curiously, for the historical record, what Black called vagueness and
de�ned formally as we did with imprecision, see Sales [1982b]).

12.2 Ignorance as subadditivity

If we now suppose that L is still in a Boolean algebra but the v valuation
we impose on L is subadditive, i.e.:

f[A ^ B]g+ f[A _ B]g � f[A]g+ f[B]g (Subadditivity)

(where we note explicitly by the f[ ]g brackets that v is subadditive), then v
can be characterized as a lower probability (see Good [1962]) or as a belief
Bel(A) (in Shafer's [1976] sense). If the inequality sign were inverted, the
valuation would become an upper probability or (Shafer's) plausibility P l(A).
The defective value |the part of the value v(A) attributed neither to A nor
to :A| can be expressed as:

@(A) = 1� (f[A]g+ f[:A]g)

= (1� f[:A]g)� f[A]g

= P l(A)�Bel(A)
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In the �nite L case we know (Shafer [1976]) that a subadditive valuation
like v : L �! [0; 1] : A 7! f[A]g |or, better, the measure � : P(�) �!
[0; 1] : A 7! �(A) induced on P(�) by that valuation| de�nes a function
m : P(�) �! [0; 1] (called \basic assignment" by Shafer) that satis�es:

1. m(?) = 0

2.
P

A�� m(A) = 1

so that the �(A) ( = f[A]g) values are computed from this measure through

f[A]g =
X
B�A

m(B)

and, conversely, the m(A) values can be obtained from f[A]g ( = �(A))
through

m(A) =
X
B�A

(�1)jA�Bj �(B) for any A � �:

Bel(A) and P l(A) happen to coincide with the traditional concept (in Mea-
sure Theory) of inner measure (P�) and outer measure (P �), so that the
following chain of equivalences has a transparent meaning (notice Shafer
calls Bel(:A) \degree of doubt of A"):

P l(A) = P �(A) =
P

B\A6=�m(B)

=
P

B��m(B)�
P

B�Ac m(B)

= 1� P�(A
c) = 1�Bel(:A)

We know, also, that an additive valuation � is just a basic assignment m
such that m(A) = 0 for all A � � except for the singletons f�g of �. This
is what Shafer calls `Bayesian belief'.

Subadditive belief derives from \non-rational" valuations of evidence by
a reasoner (in the Ramsey/de Finetti sense). It can model and explain
situations like this classic result: Confronted with the question \Should the
Government allow public speeches against democracy?", one user assented
25% of the time. Substituting the word \prohibit" for \allow" elicited a
54% of assenting responses. Since both words are antonyms (the contrary
of prohibiting is allowing), it is clear that this user had an unattributed gap
left between those two complementary concepts, thus:

f[A]g+ f[:A]g = :25 + :54 � 1

which reveals that sentence A (=speeches allowed) was being valued sub-
additively , and also that \allow" and \fail to prohibit" are here analyzable,
in Shafer's terms, as Bel(A) and P l(A), respectively, with values .25 (for
belief) and .46 (for plausibility).



356 TON SALES

Ignorance (or, rather total ignorance) is the particular instance of sub-
additive valuation in which all non-true sentences get the zero value, i.e.

f[A]g = 1 i� A = > , f[A]g = 0 otherwise

(this is what Shafer calls `vacuous belief function'). It is just the particular
instance of valuation in which all non-true sentences get the zero value:
indeed, we have, for a given A , f[A]g = f[:A]g = 0. In a strict parallel
with total ignorance, subadditive valuations can also adequately formalize
total certainty (meaning that f[A]g = 1 while at the same time f[B]g = 0 for
all B ` A).

Subadditivity enables us to analyze other interesting situations related
to Logic. For instance, suppose we have a subadditive valuation assigning
A the value �(A) = f[A]g = Bel(A), and that a set A0 (not necessarily a
subset of A) can be found in P(�) such that there is an additive valuation
which assigns A0 precisely the same value. We denote A0 by \ A" (where

is a set-operator) and A0 = Æ(A0) by \ A". So we have:

Bel(A) = f[A]g = [[ A]]

The \ " is here a linguistic operator that acts on a sentence A and
transforms it into another whose value is the belief ( = subadditive truth-
value) one can assign non-additively to A, so it seems proper to interpret
\ " syntactically as \it is believed that", and \ �" or \ [�] " as \� ( =
the name of a subject or agent) believes that". Further, we would have

P l(A) = 1�Bel(:A) = 1� f[:A]g

= 1� [[ :A]] = [[: :A]] = [[}A]]

where we have de�ned a new operator \}" as an abbreviation for \: :"
to be interpreted as syntactically as \it is plausible that" or \� admits as
credible" (so that \}�A" |or h�iA| would read \� �nds that A can be
believed"), because � just does not believe the contrary.

Dubois & Prade [1987] speak rather of \necessity" (or \degree of knowl-
edge") and write Nec(A) =df f[A]g (= [[ A]]), and \possibility" (or \de-
gree of admissibility") Poss(A) =df 1 � f[:A]g (= [[}A]]); naturally,
Nec(A)� [[A]]�Poss(A) for any A (and also:

Nec(A) + Poss(:A) = Poss(A) +Nec(:A) = 1 ):

If necessity (or knowledge) of A and :A are totally incompatible (in the
sense that Nec(:A) = 0 whenever Nec(A) > 0 ) then Nec(A _ B) =
max(Nec(A); Nec(B)) and Poss(A ^ B) = min(Poss(A); P oss(B)) .

It is interesting to notice that a subadditive valuation may be superim-
posed on a sentential lattice without breaking its Boolean character, so that
A ^ :A = ? (bivalence) and A _ :A = > (excluded middle) still hold,
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while at the same time f[A]g + f[:A]g � 1. This slightly paradoxical fact
may explain that many often-encountered situations |where mere subad-
ditivity ( f[A]g+ f[:A]g � 1 ) was probably the case| have been analyzed
historically as invalidating the law of the excluded middle, because it was
felt that there was a \third possibility" between A and :A making for the
unattributed value 1 � f[A]g � f[:A]g , covered neither by A nor :A. If
our analysis is correct, such situations are analyzable in terms of incom-
plete valuations, but this does not imply the breaking of bivalence of any
Boolean algebra (except, naturally, for intuitionistic logic, where the algebra
is explicitly non-Boolean).

Subadditivity valuations on a Boolean algebra allow also analysis not
only of the concept of ignorance and certainty (as we sketched above) but
of the paradoxes of Quantum Logic as well. These arise, according to the
`Quantum Logic' proponents (e.g. Reichenbach in 1944), in explaining why
the distributivity fails in this logic, following the standard interpretation of
certain experimental results where:

p(a) � p(bja) + p(�a) � p(bj�a) < p(b)

a relationship we write in this way:

(12) f[A]g � f[BjA]g+ f[:A]g � f[Bj:A]g < f[B]g:

What is odd is that this inequality is normally interpreted by quantum
logicians (e.g. Watanabe) as meaning:

(13) (A ^ B) _ (:A ^ B) 6= B

which obviously signals the breaking of distributivity. However, the even-
handed transcription of the value-version (12) into the algebraic one (13)
is clearly abusive: (13) is much stronger than (12), since it is equivalent
to requiring that (12) hold for all conceivable valuations. Actually, in our
notation, the reading of the experimental results translates immediately into
(12), not (13). From there we conclude that:

f[A ^B]g+ f[:A ^B]g < f[B]g

which is in clear violation of additivity, but not of distributivity. So we
need not consider that quantum phenomena occur in a non-Boolean alge-
bra (orthomodular lattices are the preferred alternatives) because a sub-
additively-valued Boolean lattice surely would do for most quantum-logic
applications.

Finally we mention that subadditive valuations can as well satisfactorily
model how a scienti�c explanation frame (i.e. the appropriate lattice of
theories that cover any observed or predictable true fact) is dynamically
replaced by another once the �rst can no longer account for observed facts:
as the valuation of explanations turns subadditive |reecting that they
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no longer cover all predictable facts| one is naturally forced to replace the
original sentential structure of theories by a new one (still a Boolean lattice)
provided with a new |now again additive| valuation on it that restores
the balance; the augmented lattice generators are the new vocabulary, and
the elementary components of the new structure are the required new ex-
planatory elements (atomic theories) for the presently observed facts. Such
a simple valuation-revision and lattice-replacement mechanism may serve
to illustrate the basic dynamics of theory change in scienti�c explanation
(see Sales [1982b]).

APPENDIX

A ON FUZZY LOGIC

A.1 The \Fuzzy Logic" tradition

In a joint reection with Richard Bellman in 1964 Lot� Zadeh, then a
process control engineer, considered the nonsense of painstakingly comput-
ing numerical predictions in control theory contexts where the situation is
complex enough to render them meaningless. So he proposed instead to
rely con�dently on broad {and inherently vague{ linguistic descriptions like
`high' (for a temperature) or `open' (for a valve) rather than on misleadingly
precise values. He then went to suggest (in Zadeh [1965]) a non-standard
extensional interpretation of Predicate Calculus. Though �rst advanced by
Karl Menger (in a 1951 note to the French Acad�emie entitled Ensembles
ous et fonctions al�eatoires), the idea was nevertheless original and simple:
an atomic predicate sentence like `the temperature is high' is assigned truth
values in [0,1] reecting the applicability of the sentence to circumstances
(the actual temperatures); those values then de�ne a \set", a \fuzzy" set, by
considering them to be the values of a generalized characteristic or set mem-
bership function, in a way that is strictly parallel to the standard procedure
for de�ning predicate extensions (e.g. of `prime number') by equating the
f0; 1g truth values with the characteristic function of the set (i.e `the prime
numbers') so that if for instance [[ Prime (3) ]] = 1 then � Primes (3) = 1,
i.e. 3 2 Primes (and so now, accordingly, if e.g. [[ High (170) ]] = 0:8
then �High temps (170) = 0:8 or 170 20:8 High temps).

Some snags soon arose to question the utter simplicity of the scheme,
doubts such as: should set inclusion (de�ned as A � B i� 8x �A(x) �
�B(x) ) fail if a single point x does not satisfy the relation? or, more funda-
mentally: what are the appropriate formulas for the connectives? Zadeh had
�rst proposed the usual  Lukasiewicz connective formulas (the min and the
max for the ^ and _) but then (in 1970, again with R. Bellman) considered
that these were \non-interactive" and to be preferred only in the absence
of more relevant information, so he o�ered further formulas he called \soft"
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or \interactive" (the product and sum-minus-product). Bellman and Gierz
[1973] showed that under certain pre-established conditions (notably, truth-
functionality) the only possible connectives were the min and the max . For
a (standard) logician this is an unfortunate result, since the min formula
when applied to a (0,1)-valued sentence A and its negation :A yields al-
ways a non-zero value ( [[A ^ :A]] = min([[A]]; 1 � [[A]]) 6= 0 ), so explicitly
negating the classical law of non-contradiction (never questioned before by
any Logic) and thus placing Fuzzy Logic outside the standard logic main-
stream, for which :(A ^ :A) is always guaranteed theoremhood (and so,
necessarily, [[A ^ :A]] = 0 for any valuation |provided 1 is the only des-
ignated value, as we assume). Another unfortunate by-product, this one
algebraic in character, is that the neatness and simplicity of the Boolean
algebra structure |preservable only by sacri�cing truth-functionality| are
irrecoverably lost.

Note that (a) Boolean structure had to be sacri�ced in Fuzzy Logic just
by technical reasons (the min formula), not by a deliberate or methodolog-
ical bias, and that (b) the choice of connectives was historically motivated,
in fuzzy-set theory, by pragmatic reasons (prediction accuracy in applica-
tions) rather than by logical method: thus, many formulas were tried and
discussed (see e.g Rodder [1975] and Zimmerman [1977]). (Interestingly,
while theoreticians stuck to  Lukasiewicz's min, practitioners |e.g. Mam-
dani [1977]| preferred the product, perhaps recognizing that in complex
or poorly-known systems the best policy is to suppose sentences indepen-
dent {in our sense, see above{; whence the product.) Anyway, after a
brief urry of discussion in the 1970s about the right connectives, fuzzy-set
theory proceeded from then onwards non-compatibly by emphasizing that
its basic theme is linguistic vagueness , not logic or uncertainty , and that
the [0,1]-values are grounded on a (possibly non-additive) valuation called
\possibility", for which a complete subtheory has been elaborated since.

The initially intuitive \fuzzy logic" approach has since become an inde-
pendent growth industry. From a logical point of view, some foundational
points are arguable: (1) the apparently undisputable truth-functionality re-
quirement, already present in  Lukasiewicz, imposes a radical departure from
(ordinary) logic: the sentences cannot form any longer a Boolean structure,
and traditional logic principles are gone forever; (2) the theory's justi�ca-
tion for using (0,1)-values (values that reect imprecision, since [[A]] 2 (0; 1)
implies f(A) > 0) is strictly linguistic: the cause of imprecision is attributed
solely to the vagueness of language and explicitly excludes any non-linguistic
component or dimension such as uncertainty (considered non-intersectingly
to be the domain of Probability theory) or simply approximation.

The emphasis fuzzy theorists place on vagueness and its \orthogonality"
with respect to other causes of unattributed truth value is understandable
considering the basic tenets of the theory but questionable from a non-
partisan stand.
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First: in all cases we �nally obtain a number, and this has a transparent
function in reasoning: keeping track of our con�dence in what we say. In
the vagueness case the value we assign is clearly the degree of applicability of
the sentence to the circumstances at hand (and this is seen by executing the
(T) schema); in the uncertainty case it is our \belief" or its \probability"
(in some more or less standard sense) what emerges from the (T) evaluation
procedure. In either case (vagueness or uncertainty), what we try to capture
and measure is the degree of approximation (to truth, or to full reliability)
that we can con�dently assign the sentence, and what we have in both
cases is imprecision (diÆculties in ascertaining the f0; 1g truth value and
also, consequently, doubts about committing ourselves to it along a whole
inference process). Plausibly, it is easier to assign values consistently (in the
[0,1] interval) to the sentence, regardless of where or why imprecision arose
in the �rst place, because what we are mainly interested in is the degree
of con�dence we attach to this piece of information we are manipulating
through the (hopefully truth-preserving) inferences.

Second: the two dimensions of imprecision, linguistic and epistemic (for
vagueness and uncertainty, resp.), are not so separable as claimed, either
conceptually or practically. (We do not consider here occasional claims {
often made by Zadeh{ that vagueness is in things {even in truth{, i.e. it is
not linguistic, but ontological). As seen through application of the Tarski
(T) schema, when the agent is uncapable of making up his/her own mind as
to the truth of the (unquoted) sentence, the cause for the under-attribution
and the origin of the " residual value need not be considered, only the re-
sulting con�dence matters. The non-attribution of \normal" (i.e. f0; 1g)
truth values may originate in language (i.e. the sentence is vague) or in
imperfect veri�cation conditions (i.e. the sentence, even being linguistically
precise, is nevertheless uncertain due to identi�cation or measurement dif-
�culties or other causes), but spotting the source is mostly an academic
exercise: consider, for example, the sentence `this is probable', which is im-
precise in either or both senses, or the historically motivating illustration
by Bellman/Zadeh (the `high temperature' process-control case), where a
discrimination of origins, either linguistic (the expression is vague) or epis-
temic (we don't know what is the precise case, or we have diÆculties in
identifying it) is indi�erent or pointless.

Moreover, not only such boundary examples cast doubts on the claimed
vagueness/uncer-tainty orthogonality; even the linguistic character of fuzzi-
ness (or of \possibility") is arguable. First, because a vague sentence, that
to the utterer may mean just that the expression lacks straightforward ap-
plicability to actual fact, to the hearer {if not involved in the described
situation{ it may be epistemic information about what to expect (for in-
stance, hearing a temperature is \high" may set the unknowing hearer into
a {correspondingly imprecise{ alert state; (s)he then even may usefully turn
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the \membership" or \possibility" number into an a priori-probability or
belief estimate). Second, because the number we assign to approximate
membership in a class, which reects the applicability of the sentence to
the observed situation (a semantic quantity shared by the speakers of the
language), is constructed and continually adjusted by the language speak-
ers on the base of their experience of past cases, in a process which is
the same as that of constructing all other [[A]] assignments, however called
(\truths", \degrees", \applicabilities", \probabilities", \beliefs", \approxi-
mation" or whatever). The process, described above, consists in setting a
universe � (here the application instances of the sentences in the language)
and then considering cases � 2 �(A) (here the �s are application instances {
utterances{ of A) from past experience; the weighed result is [[A]] = �(�(A))
(here the applicability of the {vague{ sentence A, i.e. its \fuzziness"), and
the relationship betweenA and all other sentences can also be user-evaluated
through the compatibilities � or the suÆciency/causality degrees � intro-
duced in the text (in a way that otherwise amounts to Popper's `binary
probability' evaluation process).

This process of constructing values may be considered a further instance
of our general approach to rationality based on the universe � of cases ,
and the resulting number [[A]] may be used in general reasoning as all other
\truth values" are. We thus assure compatibility inside a shared formalism
from which Logic, Probability and (e.g.) fuzzy reasoning or belief theories
can be derived directly without costly or unnatural translations. To do this
we merely need that the di�erent interpretations (including the \fuzzy" one)
obey the same laws and have the same formal components: (1) a common
sentential language equipped with a Boolean structure (easy to justify and
convenient for preserving the commonly accepted laws of logic), (2) coher-
ence in attributing the values (regardless of the meaning we give them) to
assure additivity , and (3) a predisposition to sacri�ce truth-functionality
when required. If the notion of fuzziness, however justi�ed, could be con-
ceived in this way, then the original 1964 Bellman/Zadeh proposal could
be subsumed and solved in a very natural way, and we probably could do
without a separate, costly and incompatible additional formalism. (In other
words, we probably wouldn't need \fuzzy logic".)

A.2 Gaines's `Standard Uncertainty Logic'

In an interesting e�ort, born inside the \fuzzy" tradition, to construct a
common formalization by discriminating between algebraic structures and
truth valuations on them |somewhat paralleling and anticipating the aim
of our present development| Gaines [1978] set out to de�ne what he called
`Standard Uncertainty Logic', that covered and formalized two known sub-
cases. This logic postulates (a) a proposition lattice with an algebraic
structure that is initially assumed Boolean but |by technical reasons|
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�nally admitted to be merely distributive, and (b) a �nitely additive val-
uation of the lattice on the [0,1] interval. Gaines then distinguishes two
special cases of his logic: (1) what he calls `probability logic' and de�nes
to be the particular case of his logic where the law of the excluded middle
holds, and (2) what he terms `fuzzy logic', de�ned (in one among several
alternative characterizations) to be his logic when that law does not hold.
Apparently, Gaines's encompassing logic should correspond to our general
logic above (that covers classical logic as a special case, just as Gaines's
logic becomes his `probability logic' when \all propositions are binary"),
but closer examination reveals that Gaines's confusingly called `probability
logic' turns out to be actually coextensional with classical logic, while his
`fuzzy logic' is, simply,  Lukasiewicz's  L1. This fact is spelled out by the
property he mentions of propositional equivalence (here in our notation):

[[A$ B]] = min(1� [[A]] + [[B]]; 1� [[B]] + [[A]])

in which the right hand is clearly 1 � j[[A]] � [[B]]j. This is an expression
that is deduced from Gaines's postulates only if, necessarily, either A ` B
or B ` A (note this either/or condition |exactly corresponding to our
�AB = 1 full-compatibility situation| is explicitly mentioned by Gaines as
a characteristic property of his `fuzzy logic'). So Gaines makes the implicit
assumption that the base lattice is linearly ordered (perhaps induced to it
by the � symbol used for the {partial{ propositional order in the lattice).
A con�rmation for this comes from the fact that classical logic principles
|that hold, by de�nition, in his `probability logic'| do not hold in this
one. No wonder, then, the base lattice cannot be but merely distributive.

Departament de Llenguatges i Sistemes Inform�atics, Universitat Polit�ecnica
de Catalunya. Spain.
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