

Handbook of Tableau Methods

M. D’Agostino, D. M. Gabbay, R. H¨ahnle and J. Posegga, eds.

CONTENTS

viiPreface

1Introduction
Melvin Fitting

45Tableau Methods for Classical Propositional Logic
Marcello D'Agostino

125First-order Tableau Methods
Reinhold Letz

197Equality and other Theories
Bernhard Beckert

255Tableaux for Intuitionistic Logics
Arild Waaler and Lincoln Wallen

297Tableau Methods for Modal and Temporal Logics
Rajeev Gor�e

397Tableau Methods for Substructural Logics
Marcello D'Agostino, Dov Gabbay

and Krysia Broda

469Tableaux for Nonmonotonic Logics
Nicola Olivetti

529Tableaux for Many-valued Logics
Reiner H�ahnle

581Implemementing Semantic Tableaux
Joachim Posegga and Peter Schmitt

631A Bibliography on Analytic Tableaux Theorem Proving
Graham Wrightson

657Index

2

PREFACE

Recent years have been blessed with an abundance of logical systems, arising
from a multitude of applications. A logic can be characterised in many
di�erent ways. Traditionally, a logic is presented via the following three
components:

1. an intuitive non-formal motivation, perhaps tie it in to some applica-
tion area

2. a semantical interpretation

3. a proof theoretical formulation.

There are several types of proof theoretical methodologies, Hilbert style,
Gentzen style, goal directed style, labelled deductive system style, and so on.
The tableau methodology, invented in the 1950s by Beth and Hintikka and
later perfected by Smullyan and Fitting, is today one of the most popular,
since it appears to bring together the proof-theoretical and the semantical
approaches to the presentation of a logical system and is also very intuitive.
In many universities it is the style �rst taught to students.

Recently interest in tableaux has become more widespread and a commu-
nity crystallised around the subject. An annual tableaux conference is being
held and proceedings are published. The present volume is a Handbook of

Tableaux presenting to the community a wide coverage of tableaux systems
for a variety of logics. It is written by active members of the community
and brings the reader up to frontline research. It will be of interest to any
formal logician from any area.

The �rst chapter by Melvin Fitting contains a general introduction to
the subject which can help the reader in �nding a route through the fol-
lowing chapters, but can also be read on its own as a `crash course' on
tableaux, concentrating on the key ideas and the historical background. In
Chapter 2, focusing on classical propositional logic, Marcello D'Agostino
explores and compares the main types of tableau methods which appear in
the literature, paying special attention to variants and `improvements' of the
original method. Chapter 3, by Reinhold Letz, investigates the impact of
tableaux on the challenging problems of classical quanti�cation theory and
in Chapter 4 Bernhard Beckert looks at various methodologies for equality
reasoning. The treatment of non-classical tableaux is started in Chapter 5,

vii

viii

by Lincoln Wallen and Arild Waaler, which deals with the fundamental topic
of intuitionistic logic. An area in which the tableau methodology is prov-
ing particularly useful is that of modal logics. These, together with their
temporal `neighbours' are studied in Chapter 6 by Rajeev Gor�e. Chap-
ter 7, by Marcello D'Agostino, Dov Gabbay and Krysia Broda, discusses
the new family of `substructural logics' which include the well known rel-
evance logic and linear logic. Another frontier of today's logical research
where a tableau-style approach seems especially well-suited is that of non-
monotonic logics which are treated in Chapter 8 by Nicola Olivetti. Chapter
9, by Reiner H�ahnle, o�ers a treatment of many-valued logics, a traditional
topic which has now re-gained popularity owing to its important computer
science applications. Finally, in Chapter 10, Joachim Posegga and Peter
Schmitt, present an intriguing `minimalist' approach to the implementation
of classical tableaux. The volume concludes with an extensive annotated
bibliography compiled by Graham Wrightson.

Some of the chapters overlap considerably in their contents. This was a
deliberate choice, motivated primarily by the need for making each chapter
self-contained. However, we believe that di�erent expositions of the same
notions and ideas can also contribute to a deeper understanding of the
subject.

ACKNOWLEDGEMENTS

We would like to thank all our friends and colleagues who helped with the
Handbook project. Among them are the various chapter second readers:
Roy Dyckho�; Luis Fari~nas del Cerro; Jaakko Hintikka; Wilfrid Hodges;
Donald Loveland; Daniele Mundici; and Paliath Narendran.

We would also like to thank Mrs Jane Spurr for her usual e�cient and
dedicated production and administration work.

Finally thanks are due to our Kluwer Editor, Mrs A. Kuipers for her
patience and understanding while waiting for the completion of the book.

The Editors
M. D'Agostino, D. M. Gabbay, R. H�ahnle and J. Posegga
Ferrara, London, Karlsruhe and Darmstadt, March 1998

MELVIN FITTING

INTRODUCTION

1 GENERAL INTRODUCTION

1.1 What Is A Tableau?

This chapter is intended to be a prolog setting the stage for the acts that follow—a
bit of background, a bit of history, a bit of general commentary. And the thing to
begin with is the introduction of the main character. What is a tableau?

It will make the introductions easier if we first deal with a minor nuisance.
Suppose we know what a tableau is—what do we call several of them: ‘tableaus’
or ‘tableaux?’ History and the dictionary are on the side of ‘tableaux’. On the
other hand, language evolves and tends to simplify; there is a clear drift toward
‘tableaus’. In this chapter we will use ‘tableaus’, with the non-judgemental under-
standing that either is acceptable. This brings our trivial aside to a cloeaux.

Now, what is a tableau? In its everyday meaning it is simply a picture or a
scene, but of course we have something more technical in mind. A tableau method
is a formal proof procedure, existing in many varieties and for several logics, but
always with certain characteristics. First, it is a refutation procedure: to show a
formulaX is valid we begin with some syntactical expression intended to assert it
is not. How this is done is a detail, and varies from system to system. Next, the
expression asserting the invalidity ofX is broken down syntactically, generally
splitting things into several cases. This part of a tableau procedure—thetableau
expansion stage—can be thought of as a generalization of disjunctive normal form
expansion. Generally, but not always, it involves moves from formulas to subfor-
mulas. Finally there are rules forclosingcases: impossibility conditions based on
syntax. If each case closes, the tableau itself is said to beclosed. A closed tableau
beginning with an expression asserting thatX is not valid is a tableau proof ofX .

There is a second, more semantical, way of thinking about the tableau method,
one that, perhaps unfortunately, has played a lesser role thus far: it is a search
procedure for models meeting certain conditions. Each branch of a tableau can be
considered to be a partial description of a model. Several fundamental theorems
of model theory have proofs that can be extracted from results about the tableau
method. Smullyan developed this approach in[1968], and it was carried further by
Bell and Machover in[Bell and Machover, 1977]. In automated theorem-proving,
tableaus can be used, and sometimes are used, to generate counter-examples. The
connection between the two roles for tableaus—as a proof procedure and as a
model search procedure—is simple. If we use tableaus to search for a model in
whichX is false, and we produce a closed tableau, no such model exists, soX
must be valid.

2 MELVIN FITTING

This is a bare outline of the tableau method. To make it concrete we need
syntactical machinery for asserting invalidity, and syntactical machinery allowing
a case analysis. We also need syntactical machinery for closing cases. All this is
logic dependent. We will give examples of several kinds as the chapter progresses,
but in order to have something specific before us now, we briefly present a tableau
system for classical logic.

1.2 Classical Propositional Tableaus as an Example

In their current incarnation, tableau systems for classical logic are generally based
on the presentation of Raymond Smullyan in[Smullyan, 1968]. We follow this
in our sketch of asigned tableau systemfor classical propositional logic. The
chapter by D’Agostino continues the discussion of propositional logic via tableaus.
(Throughout the rest of this handbook,unsignedtableaus are generally used for
classical logic, but signs play a significant role when other logics are involved, and
classical logic provides the simplest context in which to introduce them.)

First, we need syntactical machinery for asserting the invalidity of a formula,
and for doing a case analysis. For this purpose twosignsare introduced:T and
F , where these are simply two new symbols, not part of the language of formulas.
Signed formulasare expressions of the formF X andT X , whereX is a formula.
The intuitive meaning ofF X is thatX is false(in some model); similarlyT X in-
tuitively asserts thatX is true. ThenF X is the syntactical device for (informally)
asserting the invalidity ofX : a tableau proof ofX begins withF X .

Next we need machinery—rules—for breaking signed formulas down and do-
ing a case division. To keep things simple for the time being, let us assume that:
and� are the only connectives. This will be extended as needed. The treatment of
negation is straightforward: fromT :X we getF X and fromF :X we getT X .
These rules can be conveniently presented as follows.

Negation T :X
F X

F :X
T X

The rules for implication are somewhat more complex. From truth tables we
know that ifX � Y is false, X must betrue andY must befalse. Likewise, if
X � Y is true, eitherX is falseor Y is true; this involves a split into two cases.
Corresponding syntactic rules are as follows.

Implication
T X � Y
F X T Y

F X � Y
T X
F Y

The standard way of displaying tableaus is as downward branching trees with
signed formulas as node labels—indeed, the tableau method is often referred to as

INTRODUCTION 3

thetree method. Think of a tree as representing the disjunction of its branches, and
a branch as representing the conjunction of the signed formulas on it. Since a node
may be common to several branches, a formula labeling it, in effect, occurs as a
constituent of several conjunctions, while being written only once. This amounts
to a kind of structure sharing.

When using a tree display, a tableau expansion is thought of temporally, and one
talks about thestagesof constructing a tableau, meaning the stages of growing a
tree. The rules given above are thought of as branch-lengthening rules. Thus, a
branch containingT :X can be lengthened by adding a new node to its end, with
F X as label. Likewise a branch containingF X � Y can be lengthened with two
new nodes, labelledT X andF Y (take the node withF Y as the child of the one
labelledT X). A branch containingT X � Y can be split—its leaf is given a new
left and a new right child, with one labelledF X , the otherT Y . This is how the
schematic rules above are applied to trees.

An important point to note: the tableau rules are non-deterministic. They say
what can be done, not what must be done. At each stage we choose a signed
formula occurrence on a branch and apply a rule to it. Since the order of choice
is arbitrary, there can be many tableaus for a single signed formula. Sometimes a
prescribed order of rule application is imposed, but this is not generally considered
to be basic to a tableau system.

Here is the final stage of a tableau expansion beginning with (that is,for) the
signed formulaF (X � Y) � ((X � :Y) � :X).

11.F Y
10.T :Y9. F X

@
@

�
�

8. T Y7. F X

@
@

�
�

6. T X
5. F :X
4. T X � :Y
3. F (X � :Y) � :X
2. T X � Y
1. F (X � Y) � ((X � :Y) � :X)

In this we have added numbers for reference purposes. Items 2 and 3 are from
1 byF �; 4 and 5 are from 3 byF �; 6 is from 5 byF:; 7 and 8 are from 2 by
T �; 9 and 10 are from 4 byT �; 11 is from 10 byT:.

Finally, the conditions for closing off a case—declaring a branch closed—are
simple. A branch is closed if it containsT A andF A for some formulaA. If each
branch is closed, the tableau is closed. A closed tableau forF X is a tableau proof
of X . The tableau displayed above is closed, so the formula(X � Y) � ((X �

4 MELVIN FITTING

:Y) � :X) has a tableau proof.
It may happen that no tableau proof is forthcoming, and we can think of the

tableau construction as providing us with counterexamples. Consider the follow-
ing attempt to prove(X � Y) � ((:X � :Y) � Y).

11.F Y
9. T :Y

10.T X
8. F :X

�
��

@
@@

7. T Y6. F X

@
@@

�
��

5. F Y
4. T :X � :Y
3. F (:X � :Y) � Y
2. T X � Y
1. F (X � Y) � ((:X � :Y) � Y)

Items 2 and 3 are from 1 byF �, as are 4 and 5 from 3. Items 6 and 7 are from 2
byT �, as are 8 and 9 from 4. Finally 10 is from 8 byF:, and 11 is from 9 byT:.
The leftmost branch is closed because of 6 and 10. Likewise the rightmost branch
is closed because of 5 and 7. But the middle branch is not closed. Notice that
every non-atomic signed formula has had a rule applied to it on this branch—there
is nothing left to do. (This is a special feature of classical propositional logic: it is
sufficient to apply a rule to a formula on a branch only once. This does not apply
generally to all logics.) In fact the branch yields a counterexample, as follows. Let
v be a propositional valuation that mapsX to falseandY to false in accordance
with 6 and 11. Now, we work our way back up the branch. Sincev(Y) = false,
v(:Y) = true, item 9. Thenv(:X � :Y) = true, item 4. From this and the
fact thatv(Y) = falsewe havev((:X � :Y) � Y) = false, item 3. Also since
v(X) = false, v(X � Y) = true, item 2. Finally,v((X � Y) � ((:X � :Y) �
Y)) = false, item 1. Notice, the valuationv gave to each formula on the unclosed
branch the truth value the branch ‘said’ it had. But then,v is a counterexample to
(X � Y) � ((:X � :Y) � Y), so the formula is not valid.

From a different point of view, we can think of a classical tableau simply as a set
of sets of signed formulas: a tableau is the set of its branches, and a branch is the set
of signed formulas that occur on it. Semantically, we think of the outer set as the
disjunction of its members, and these members, the inner sets, as conjunctions of
the signed formulas they contain. Considered this way, a tableau is a generalization
of disjunctive normal form (a generalization because formulas more complex than
literals can occur). Now, the tableau construction process can be thought of as a
variation on the process for converting a formula into disjunctive normal form.

In set terms, instead of lengthening branches, we expand sets. For exam-

INTRODUCTION 5

ple, supposeC = fZ1; Z2; : : : ; Zng is a set of signed formulas, and one of the
members isT :X . Then the setfZ1; Z2; : : : ; Zn; F Xg is said tofollow from
C. Similarly if the set containsF :X . If C containsF X � Y then the set
fZ1; Z2; : : : ; Zn; T X; F Y g follows from C. Finally, if C containsT X � Y
then the pair of setsfZ1; Z2; : : : ; Zn; F Xg, fZ1; Z2; : : : ; Zn; T Y g follows from
C. Next, ifD1 andD2 are tableaus (each represented as a set of sets of signed for-
mulas)D2 follows fromD1 if it is like D1 but with one of its membersC replaced
with the set or sets that follow from it. Taken this way, atableau expansionfor a
signed formulaS is a sequence of tableaus, beginning withffSgg, each tableau
after the first following from its predecessor.

1.3 Abstract Data Types vs Implementations

Computer Science has made us familiar with the distinction between an abstract
data type and an implementation of it. The notion of alist, with appropriate op-
erations on it, is an abstract data type. It can be concretely implemented using
an array, or using a linked structure, or in other ways as well. Which is better,
which is worse? It depends on the intended application. But this abstract/concrete
distinction is actually an old one. Before there were electronic computers, there
were human computors, generally using mechanical devices like slates, paper, and
slide rules. Before there were algorithms designed for computers, there were algo-
rithms designed for humans, using the devices at hand. What we now call a good
implementation of an abstract data type was once calledgood notation. Think, for
instance, of the distinction between Roman numerals and Arabic notation. They
both implement the same data type—non-negative integers—but one is more effi-
cient for algorithmic purposes than the other.

Tableaus were described abstractly above: sets of sets of signed formulas. One
of the things that helped make them popular was a good concrete implementation,
a good notation: the tree display of a tableau. It is space-saving, since there is
structure sharing, that is, formulas common to several branches are written only
once. It is time-saving, since formulas are not copied over and over as the tree
grows. Instead the state of a tree at any given moment represents a member of
a tableau expansion sequence. Trees present a display that people find relatively
easy to grasp, at least if it is not too big. And most importantly, there are by-hand
algorithms that are wonderfully suited for use with tableaus as trees. In creating
a tree tableau one has the same sense of calculation that one has when adding or
multiplying using place-value notation.

Still, from an abstract point of view the tree display of signed formulas is not
a tableau but an implementation of a tableau. It is not the only one possible;
Manna and Waldinger use quite a different notation for their version of tableaus
[1990; 1993]. The connection method can be thought of as based on tableaus,
with trees replaced by more general graphs; see[Bibel et al., 1987] for details.
Indeed, we will see as this Chapter develops, that the tree display itself underwent
considerable evolution before reaching its current form. Also, for some logics, the

6 MELVIN FITTING

straightforward tree version may not be best possible. For instance, with certain
logics formulas get removed as well as added to branches, and with others they
can come and go several times. For these, something more elaborate than just a
growing tree is appropriate. Finally, what is good for hand calculation may not be
at all useful for machine implementation. This point will be taken up in H¨ahnle’s
Chapter and elsewhere. But perhaps the basic point of this digression is a simple
one: trees implement tableaus. They do so quite well for many purposes—so well
that they are often thought of asbeingtableaus. This is too restrictive, especially
today when computers are being used to explore a wide variety of logics. Be
willing to experiment.

1.4 What Good Is a Tableau System?

There are many kinds of proof procedures for many kinds of logics. What ad-
vantages does a tableau system have? Let us begin with what might be called the
‘practical’ ones.

The classical propositional system presented in Section 1.2 can be used to ‘cal-
culate’ in a way that Hilbert systems, say, can not. Each signed formula that is
added comes directly from other signed formulas that are present. There is a
choice of which signed formula to work with next, but there are always a finite
number of choices—a bounded non-determinism, if you will. By contrast, since
modus ponens is generally a Hilbert system rule, to proveY we must find anX for
which bothX andX � Y are provable. There are infinitely many possibilities for
X—an unbounded non-determinism. Also note that theX we need may be con-
siderably more complicated than theY we are after, unlike with classical tableaus,
where the formulas added are always simpler than the formulas they come from.
Further, it can be shown that if the rules are applied in a classical tableau argument
in a fair way, all proof attempts will succeed if any of them do. Thus any choices
we make affect efficiency, not success. This means tableaus are well-suited for the
discovery of proofs, either by people or by machines.

Once quantifiers are added, as in Section 2.6, complications to this simple pic-
ture arise. There are infinitely many ways of applying some of the quantifier rules
to a signed formula. If we systematically apply all rules in a fair way, it is still
possible to show that a proof will be found, if a proof exists. But now, if a proof
does not exist, the tableau expansion process will never terminate. Thus we get a
semi-decision procedure—but after all, this is best possible. There is a problem for
automation of tableaus that stems from the quantifier rules: systematically trying
closed term after closed term to instantiate a universal quantifier is a terribly inef-
ficient method. Fortunately there is a way around it, using so-calledfree variable
tableausand unification. This will be discussed in later chapters.

Suitability for proof discovery is something that applies equally well to resolu-
tion, and to several other techniques that have been worked out over the years. A
peculiar advantage that tableaus have is that it seems to be easier to develop tableau
systems for new logics than it is to develop other automatable proof procedures.

INTRODUCTION 7

This may be because tableaus tend to relate closely to the semantic ideas under-
lying a logic—or maybe the reasons lie elsewhere. What we are describing is an
empirical observation, not a mathematical truth. Of course, once a tableau proof
procedure has been created for a logic, it may be possible to use it to develop an
automatable proof procedure of a different sort. Something like this is at the heart
of Maslov’s method[Mints, 1991]. But even so, tableaus provide a good starting
point.

On a pedagogical level, tableaus can be used to provide quite appealing proofs
of metatheoretical results about a logic. Take the issue of proving completeness
as an example. One common way of showing a proof procedure is complete is to
make use of maximal consistent sets. Such an approach is quite general, and can be
applied to tableau proof procedures as readily as to Hilbert systems—see the proof
of the Model Existence Theorem in[Fitting, 1996]. But there is another approach
to proving completeness that is much more intuitive. Start constructing a tableau
expansion forF X . Apply rules fairly: systematically apply each applicable rule.
If no closed tableau is produced, it can be shown that the resulting tableau contains
enough information to construct a countermodel toX . We saw a propositional
example of this kind in Section 1.2. This is a nice feature indeed.

Other basic theorems about logic can also be given equally perspicuous tableau
proofs. Smullyan, in[1968], gives proofs of the compactness theorem, various
interpolation theorems, and the Model Existence Theorem, all using tableaus in
an essential way. Bell and Machover carried this even further[1977]. Of course,
we are speaking of classical logic, but similar arguments often carry over to other
logics that have tableau proof procedures.

Finally, tableaus are well-suited for computer implementation. Their history in
this respect is somewhat curious. We will have more to say on this topic as we
discuss the history of tableaus, which we do throughout the rest of this Chapter.
(For another presentation of tableau history, see Anellis[1990; 1991].)

2 CLASSICAL HISTORY

Tableau history essentially begins with Gentzen. For classical logic, ignoring is-
sues of machine implementation, it culminates with Smullyan. Here we discuss
this portion of the development of our subject. In order to keep clutter down,
we confine things to classical propositional logic (and occasionally intuitionistic
propositional logic). This is sufficient to illustrate differences between systems
and to follow their evolution. We will generally re-prove the same formula that we
did in Section 1.2, to allow easy comparison of the various systems.

2.1 Gentzen

In his short career Gentzen made several fundamental contributions to logic, see
[Szabo, 1969]. The one that concerns us here is his 1935 introduction of these-

8 MELVIN FITTING

quent calculusin [Gentzen, 1935]. Before this, Hilbert-style, or axiomatic, proof
procedures were the norm. In a sense, a Hilbert system characterizes a logic as a
whole—it is difficult to separate out the role of individual connectives since several
of them may appear in each axiom. What Gentzen contributed was a formulation
of both classical and intuitionistic logics with a clear separation between structural
rules (essentially characterizing deduction in the abstract) and specific rules for
each connective and quantifier. Further, each connective and quantifier has exactly
two kinds of rules; roughly, for its introduction and for its elimination. We say
roughly because this terminology is more appropriate for the natural deduction
systems that Gentzen also introduced in[1935], but the essential idea is basically
the same.

We’ll sketch Gentzen’s system, and make some comments on it. This should
be familiar ground to most logicians. But we also note that, as with most things,
the true beginnings of our subject are fuzzy. Gentzen’s ideas grew out of earlier
work of Paul Hertz[1929]. Even the famouscut rule is a special case of Hertz’s
syllogismrule. See[Szabo, 1969] for further discussion of this.

The Classical Sequent Calculus

First a new construct is introduced, thesequent. A sequent is an expression of the
form:

X1; : : : ; Xn ! Y1; : : : ; Yk

whereX1; : : : ; Xn; Y1; : : : ; Yk are formulas. The arrow,!, is a new symbol.
It is understood that either (or both) ofn andk may be 0. Informally, think of
the sequent above as asserting: the disjunction ofY1, . . . , Yk follows from the
conjunction ofX1, . . . ,Xn.

The system has axioms, and rules of derivation. Axioms, orinitial sequents
as Gentzen called them, are sequents of the formA ! A, whereA is a formula.
Next, Gentzen has sevenstructural rules. We give six of them here; the seventh,
cut will be discussed in a section of its own. In these and later rules,�, �, �, and
� are sequences of formulas, possibly empty.

Thinning �! �
X;�! �

�! �
�! �; X

Contraction X;X;�! �

X;�! �

�! �; X;X

�! �; X

Interchange �; Y;X;�! �

�; X; Y;�! �

�! �; Y;X;�

�! �; X; Y;�

Next we give Gentzen’s rules for the connectives:, ^, and�. The rules for_
are dual to those for̂ and are omitted.

INTRODUCTION 9

Negation X;�! �

�! �;:X
�! �; X

:X;�! �

Conjunction �! �; X �! �; Y

�! �; X ^ Y
X;�! �

X ^ Y;�! �

Y;�! �

X ^ Y;�! �

Implication
X;�! �; Y

�! �; X � Y
�! �; X Y;�! �

X � Y;�;�! �;�

Proofs are displayed in tree form, root at bottom. Each leaf must be labelled
with an axiom; each non-leaf must be labelled with a sequent that follows from
the labels of its children by one of the rules of derivation. A proof of the sequent
! X is considered to be a proof of the formulaX . Here is an example, a proof of
(X � Y) � ((X � :Y) � :X), with explanations added.

X ! X

X ! X
Y ! Y
:Y; Y !

Negation

X � :Y;X; Y !
Implication

X � :Y; Y;X !
Interchange

Y;X � :Y;X !
Interchange

Y;X;X � :Y !
Interchange

X � Y;X;X;X � :Y !
Implication

X;X � Y;X;X � :Y !
Interchange

X;X;X � Y;X � :Y !
Interchange

X;X � Y;X � :Y !
Contraction

X;X � :Y;X � Y !
Interchange

X � :Y;X � Y ! :X
Negation

X � Y ! (X � :Y) � :X
Implication

! (X � Y) � ((X � :Y) � :X)
Implication

in the sequent calculus are displayed beginning with axioms, ending with the
sequent to be proved. Although it was probably of minor importance to Gentzen,
others soon realized that by turning the rules upside-down, a proof discovery sys-
tem resulted. Given any sequent, there are a limited number of sequents from
which it could be derived. Try deriving them—this reduces the problem to a sim-
pler one, since premises of rules involve subformulas of their conclusions. Thus
the discovery of a Gentzen-style proof is a much more mechanical thing than it is
with Hilbert systems. It is not hard to extract a formal algorithm for decidability
of both classical and intuitionistic propositional logics.

When using the rules backward, it is useful to think ‘negatively’ instead of ‘pos-
itively’.‘ That is, suppose we want to show a sequent, sayX1; X2 ! Y1; Y2; A^B
is provable. Well, suppose it is not. By one of the Conjunction rules, either

10 MELVIN FITTING

X1; X2 ! Y1; Y2; A or X1; X2 ! Y1; Y2; B is not provable. Continue working
backward in this way, until a contradiction (an axiom is not provable) is reached.

This backward way of thinking makes it easy to see in what way the sequent cal-
culus relates to later tableau systems. Recall, we think of a sequent as informally
saying the disjunction of the right side follows from the conjunction of the left.
Then, if we did not haveX1; X2 ! Y1; Y2; A^B, everything on the left ‘holds’ in
some model, and nothing on the right does. That is, denying the sequent informally
amounts to assuming the satisfiability offT X1; T X2; F Y1; F Y2; F A ^ Bg.
From this, using a Conjunction rule backwards, we have the satisfiability of one of
fT X1; T X2; F Y1; F Y2; F Ag or fT X1; T X2; F Y1; F Y2; F Bg. At this point
we can represent things using a set of sets of formulas,

n
fT X1; T X2; F Y1; F Y2; F Ag; fT X1; T X2; F Y1; F Y2; F Bg

o
where the outer set is thought of disjunctively and the inner sets conjunctively.
This leads back to our set version of tableaus, in Section 1.1.

Cut and the Structural Rules

We gave six structural rules above. The combined effect of Contraction and Inter-
change is that we can think of thesequencesof formulas on either side of a sequent
arrow assetsof formulas. This, combined with Thinning, allows us to use an ap-
parently more general axiom schema:� ! �, where� and� have a formula in
common. These days, it is not uncommon to find sequent calculi formulated with
sets instead of sequences, or with Gentzen’s axiom scheme modified, or some
combination of these. Kleene, in[Kleene, 1950], gives three different versions,
G1, G2, and G3, differing primarily on structural details.

The rules for conjunction and for implication are not like each other. There
are three conjunction rules but only two implication rules. This can be remedied,
if desired. It can be shown that an equivalent system results if the two rules for
introducing a conjunction on the left of an arrow are replaced by the following
single rule:

X;Y;�! �

X ^ Y;�! �

Proof of the equivalence of the two formulations uses the structural rules in an
essential way.

Girard realized that the structural rules are not minor, but central. They are es-
sential for proving the equivalence of the two versions of the conjunction rules, as
we just saw. By dropping Thinning and Contraction (and making other changes as
well) Girard devisedLinear Logic[Girard, 1986; Troelstra, 1992]. Other so-called
substructural logics, such asRelevance Logic[Dunn, 1986], arise in similar ways.
Note that, without the structural rules, there are two different ways of introducing

INTRODUCTION 11

conjunction (and disjunction). Since these are no longer equivalent, substructural
logics, in fact, have two notions of conjunction and disjunction.

We have left the Cut rule for last, since its role is both important and unique.
The Cut rule is a kind of transitivity condition; in the following, the formulaX is
cut away.

Cut
�! �; X X;�! �

�;�! �;�

All the other Gentzen rules have a special, remarkable property: the subfor-
mula property. Each formula appearing above the line of a rule is a subformula of
some formula appearing below the line. It is this on which decidability results in
the propositional case rest. It is this that makes the construction of proofs seem
mechanical. The Cut rule violates the subformula property:X appears above the
line, and disappears below. If Cut is allowed, the system is in many ways less
appealing.

Why, then, have a Cut rule at all? In showing Gentzen’s formulation is at least
as strong as a Hilbert axiom system, we must do two things: we must show each
Hilbert axiom is Gentzen provable, and we must show each Hilbert rule of infer-
ence preserves Gentzen provability. All this is straightforward, except for modus
ponens. However, if the Cut rule is available, it is easy to show that modus ponens
preserves Gentzen provability. Consequently, it is enough to show Gentzen’s sys-
tems with and without the Cut rule are equivalent—a result usually referred to as
‘Cut eliminability’.

One can show Cut is eliminable by showing that Gentzen systems with and
without cut are both sound and complete. Gentzen did not proceed this way, es-
sentially because completeness proofs for first-order logic are non-constructive,
and constructivity was a key part of Gentzen’s motivation. Instead, Gentzen gave
what today we would describe as an algorithm for removing Cuts from a proof,
together with a termination argument. Cut elimination has become the centerpoint
of proof theory.

Allowing Cuts in an automated proof system is, in a sense, allowing the use
of Lemmas. Cut elimination says they are not necessary. On the other hand, an
analysis of Gentzen’s proof of Cut elimination shows that, when removing the
use of Lemmas, proof length can grow exponentially. Clearly this is an important
issue.

Intuitionistic Logic

In [Gentzen, 1935] Gentzen showed something of the versatility inherent in the
sequent calculus by giving an intuitively plausible system for intuitionistic logic,
as well as one for classical logic. (Wallen’s chapter contains a full treatment
of theorem-proving in intuitionistic systems.) Intuitionistic logic is meant to be
constructive—in particular, a proof ofX _ Y should be either a proof ofX or a

12 MELVIN FITTING

proof ofY . This is different than in classical logic where one can have a proof of
X _ :X without having either a proof or a disproof ofX . Now, recall that the
right-hand side of a sequent is interpreted as a disjunction. Then, intuitionistically,
we should be able to saywhich member of the disjunction is a consequence of
the left-hand side. This, of course, is all quite informal, but it led to Gentzen’s
dramatic modification of the sequent calculus rules: allow at most one formula
to appear on the right of an arrow. Gentzen showed this gave a system that was
equivalent to an axiomatic formulation of intuitionistic logic, by making use of his
Cut elimination theorem. Nothing else was possible, since there was no known
semantics for intuitionistic logic at that time.

Gentzen’s Immediate Heirs

Gentzen’s introduction of the sequent calculus was enormously influential, and
similar formulations were soon introduced (after the void of World War II) for
other kinds of logics. We briefly sketch some of the early developments.

Beginning in 1957, Ohnishi and Matsumoto gave calculi for several modal log-
ics [1957; 1959; 1964] and[Ohnishi, 1961; Matsumoto, 1960]. We describe their
system forS4 as a representative example. (See Gor´e’s Chapter for an extended
discussion of the role of tableaus in modal theorem-proving.) We take2 as primi-
tive, and for a sequence� of formulas, we write2� for the result of prefixing each
formula in� with 2. Now we add to Gentzen’s rules the following.

S4 X;�! �

2X;�! �
�! X
2�! 2X

Note that the second of the rules for introducing2 allows only a single formula
X on the right, analogous to Gentzen’s rules for intuitionistic logic. This should
come as no surprise, since there are close connections betweenS4 and intuitionis-
tic logic.

Since semantical methods were not much used in modal logic at the time, the
equivalence of these systems with Hilbert style ones was via a translation proce-
dure, making essential use of Cut elimination. The sequent formulations were, in
turn, used to obtain decision procedures for the logics.

At about the same time, Kanger also gave sequent style formulations for some
modal logics[1957]. His system forS5 is of special interest because it introduced
a new piece of machinery: propositional formulas were indexed with positive in-
tegers. These integers can be thought of as corresponding to the possible worlds
of Kripke models, though this is not how Kanger thought of them. IfX is indexed
with n, it is written asXn. The Gentzen rules are modified so that in a con-
junction rule, for instance, a conjunction receives the same index as its conjuncts
(which must be the same). Then the following two rules are added.

INTRODUCTION 13

S5
Xm;2Xn;�! �

2Xn;�! �

Wherem 6= n.

�! �; Xn

�! �;2Xm

Where no formula with in-
dex n occurs within the
scope of2 in � or �.

This is an early forerunner of the now widespread practice of adding extra ma-
chinery to sequent and tableau systems. We will see more examples later on. The
Ohnishi and Matsumoto systems, and the Kanger systems, can be found in some
detail in[Feys, 1965].

In 1967 Rousseau[1967] treated many-valued logics using Gentzen methods.
(The chapter by H¨ahnle discusses current tableau theorem-provers for many-valued
logics.) The basic ideas are relatively simple. A classical sequent,X1; : : : ; Xn !
Y1; : : : ; Yk is considered satisfiable if, under some valuation, either someXi is
falseor someYi is true. Consider the left-hand side as the falses’s and the right-
hand side as the true’s. Then a sequent is satisfiable if one of the false’s isfalse
or one of the true’s istrue. Rousseau extended this to anm-valued logic—say the
truth values are0; 1; : : : ;m� 1. Now a sequent is an expression:

�0 j �1 j : : : j �m�1
where each�i is a sequence of formulas. The sequent is considered satisfiable if
some member of�i has truth valuei. This reading of a sequent suggests appropri-
ate rules. For instance, Gentzen’s axiom schema,A ! A, turns into the schema
A j A j : : : j A. Rousseau gave a method of producing connective rules, and
showed soundness and completeness. For many-valued logics, the more interest-
ing issue is that of quantification, which we do not touch on here, though it was
discussed by Rousseau.

2.2 Beth

Gentzen’s motivation was proof-theoretic. He was more-or-less explicitly ana-
lyzing proofs, and his work has become the foundation of modern proof theory.
There is no attempt at a completeness or soundness argument in his paper—only
constructive proofs of equivalence with other formalisms. Beth, on the other hand,
was motivated by semantic concerns[Beth, 1955; Beth, 1956]. In 1955 he in-
troduced the terminology, ‘semantic tableau’, and thought of one as a systematic
attempt to find a counter-example. To quote from[Beth, 1955]:

“If such a counter-example is found, then we have a negative answer
to our problem. And if it turns out that no suitable counter-example
can be found, then we have an affirmative answer. In this case, how-
ever, we must be sure that no suitable counter-example whatsoever is
available; therefore, we ought not to look for a counter-example in a

14 MELVIN FITTING

haphazard manner, but we must rather try to construct one in a system-
atic way. Now there is indeed a systematic method for constructing
a counter-example, if available; it consists in drawing up asemantic
tableau.”

Beth arranged his counter-example search in the form of a table with two columns,
one labelled ‘Valid,’ the other, ‘Invalid.’ Perhaps ‘True’ and ‘False’ (in some
model) would be more accurate. To determine whetherY is a consequence of
X1, . . . , Xn, begin by placingX1, . . . , Xn in the Valid column, andY in the
Invalid one. This corresponds to beginning with the conjecture thatY is nota con-
sequence ofX1, . . . ,Xn, rather like using the sequent calculus backward. Next,
systematically break down the formulas in each column. For example, ifA ^ B
appears in theValid column, add bothA andB to it. Similarly if A_B appears in
theInvalid column, add bothA andB to it. If :A occurs in a column, addA to the
other one. Things get a little awkward with disjunctive cases however. IfA _ B
occurs in theValid column we should be able to add one ofA orB—the problem
is which. Beth’s solution was to split theValid column in two, thus displaying both
possibilities. Of course a corresponding split has to be made in theInvalid column.
Since further splitting might occur, it is necessary to label the various columns, to
keep theValid and theInvalid columns that belong together properly associated.
In practice this can be hard to follow if there are many cases, but the principle is
certainly clear.

If a semantic tableau is constructed as outlined above, there are basically only
two possible outcomes. It may happen that a formula appears in both theValid
and theInvalid columns, which indicates an impossibility. If the tableau system
really does embody a thorough, systematic analysis, such an impossibility tells
us there are no models in whichX1, . . . ,Xn are true butY is not; that is, there
are no counter-examples, and soY must be a consequence ofX1, . . . ,Xn. The
other possibility is that no such contradiction ever appears. In this case, Beth
observed, the tableau itself supplies all the necessary information to produce a
counter-example, and soY is not a consequence ofX1, . . . ,Xn.

The description above is correct in the propositional case, and Beth’s method
supplies a decision procedure. In the first-order case things are more complex
since if there are no counterexamples, a tableau construction may never terminate.
If this happens we still generate the information to construct a model, but only in
the limit. A rigorous treatment of this point requires some care, and we gloss over
it.

Here is an example of a Beth semantic tableau—a proof once again of the fa-
miliar tautology(X � Y) � ((X � :Y) � :X).

INTRODUCTION 15

Valid Invalid

(1) (X � Y) � ((X � :Y) � :X)
(2) X � Y (3) (X � :Y) � :X
(4) X � :Y (5) :X
(6) X (i) (ii)

(i) (ii) (iii) (iv) (7) X
(8) Y (11) Y (9) X

(iii) (iv)
(10) :Y

In the tableau above, we begin with 1 in theInvalid column, which gives 2 in
theValid, and 3 in theInvalid ones. From 3 we conclude 4 isValid and 5 isInvalid.
Likewise 5 produces 6. Now things become more complicated. IfX � Y is true
in a model, eitherX is not true there, orY is. Then formula 2 causes a split into
two cases, labelledi andii, one placingX in the Invalid column, formula 7, the
other placingY in theValid column, formula 8. Likewise formula 4 causes another
split, creating subcasesiii andiv, with formula 9 on theInvalid side and formula
10 on theValid one. Formula 10 in turn yields formula 11. Now we see we have
arrived at a contradictory tableau. Caseii is impossible because of formulas 6 and
7. Caseiii is impossible because of 8 and 11, and caseiv is impossible because
of 6 and 9; this means casei is impossible. Since each subcase is impossible, or
closedas Beth called it, the tableau itself is closed; there are no counter-examples;
(X � :Y) � :X is a consequence ofX � Y .

Tableaus and Consequences

Beth recognized that tableaus make it possible to give proofs of results about clas-
sical logic that are intuitively satisfying. In his book[Beth, 1959] Beth used
tableaus to show asubformula principlesaying that if a formula has a proof, it
has one in which only subformulas of it occur. He derived a version of Herbrand’s
Theorem, and Gentzen’s Extended Hauptsatz. He explicitly discussed the rela-
tionship between tableaus and the sequent calculus. He even gave a tableau-based
proof of Gentzen’s Cut Elimination Theorem (a proof with a fundamental flaw,
as it happens). And he considered the relationship between tableaus and natural
deduction.

Among Beth’s fundamental consequences is his famous Definability Theorem
of 1953 [1953; 1953a], relating implicit and explicit definability in first-order
logic. Statements of it can be found in many places, in particular in[Chang and
Keisler, 1990; Smullyan, 1968; Fitting, 1996]; details are beside the point here. It
is usual to derive Beth’s Theorem from the Craig Interpolation Theorem and Beth
takes this route in his book (this was not his original proof however). In turn, Beth
uses tableaus to prove the Craig Lemma (not Craig’s original proof either). The

16 MELVIN FITTING

reason this is mentioned here is to illustrate Beth’s almost physical sense of the
tableau mechanism. The following is a quote from the beginning of his proof of
Craig’s Lemma.

“Let us suppose that the semantic tableau for a certain sequent (f)
is closed. We consider the tableau as a system of communicating
vessels. The left and right columns are considered as tubes which
are connected at the bottom of the apparatus. The formulasU create
a downward pressure in the left tubes and likewise the formulasV
create a downward pressure in the right tubes; these various pressures
result in a state of equilibrium.

This picture suggests the construction, for each of the formulasU and
V , of a formulaU0 or V 0 which sums up the total contribution ofU
or V to the balance of pressures.”

The proof continues somewhat more technically. These days tableaus are often
used to prove versions of Craig’s Lemma, but never in quite as picturesque a fash-
ion.

Intuitionistic Logic Again

Gentzen’s approach to intuitionistic logic could not be based on semantics, since
none was available at that time. An algebraic/topological semantics was developed
soon after[Tarski, 1938; Rasiowa, 1951; Rasiowa, 1954], but this was not particu-
larly satisfactory as an explication of intuitionistic ideas to a classical mathemati-
cian. In 1956 Beth provided a much more intuitively appealing semantics[Beth,
1956; Beth, 1959], known today asBeth models. (These have been largely super-
seded by an alternative semantics due to Kripke.) What concerns us here is that,
at the same time, Beth introduced a tableau system for intuitionistic logic. He
presented this in the form of a sequent calculus and, unlike in Gentzen’s system,
several formulas could appear on the right of an arrow, at least sometimes. He
explicitly noted it could be used as written, as a sequent calculus, or upsidedown,
as a tableau system.

Beth’s intuitionistic tableau calculus introduced a new element: there were two
kinds of branching, conjunctive and disjunctive. When a branch splits disjunc-
tively, closure of one of the new branches is enough to close the original one. With
conjunctive branching, on the other hand, both branches must close for the orig-
inal branch to be closed. Conjunctive branching is the only kind that occurs in
classical tableaus. Intuitionistic propositional logic has a higher degree of compu-
tational complexity than classical propositional logic, and this can be traced to the
possibility of disjunctive branching.

Beth gave a constructive proof of the equivalence of his system with that of
Gentzen. More interestingly, he proved the soundness and completeness of his
intuitionistic tableau system with respect to his semantics. Since he was concerned

INTRODUCTION 17

with intuitionism as a philosophy of mathematics, he explicitly considered which
points of his completeness proof would be problematic for an intuitionist. He
found this centered on theTree Theorem, essentially K¨onig’s Lemma, though he
does not call it that.

We do not give Beth’s intuitionistic tableau system here. It is easier to present
the basic ideas using signed formulas, and we do so later.

2.3 Hintikka

It has been noted that scientific advances come when the times are ready, and often
occur to several people simultaneously. The work of Beth and Hintikka is such an
event, with Hintikka’s primary paper,[Hintikka, 1955], appearing in 1955, the
same year as Beth’s. (See also[Hintikka, 1953].) Like Beth, and unlike Gentzen,
Hintikka was motivated by semantic concerns: the idea behind a proof ofX is that
it is a systematic attempt to construct a model in which:X is true; if the attempt
fails,X has been established as valid. Or, as Hintikka puts it:

“. . . we interpreted all proofs of logical truth in a seemingly negative
way,viz., as proofs of impossibility of counter-examples.”

As expected, a proof attempt proceeds by breaking formulas down into con-
stituent parts.

“. . . the typical situation is one in which we are confronted by a com-
plex formula (or sentence) the truth or falsity of which we are trying
to establish by inquiring into its components. Here the rules of truth
operate from the complex to the simple: they serve to tell us what, un-
der the supposition that a given complex formula or sentence is true,
can be said about the truth-values of its components.”

Model Sets

The essentially new element in Hintikka’s treatment was themodel set. It makes
possible a considerable simplification in the proof of completeness for tableaus by
abstracting properties of satisfiability of formula sets out of details of the tableau
construction process. And it suggests the possibility of extensions to modal log-
ics, which Hintikka himself later developed. As usual, we illustrate the ideas via
classical propositional logic. First, though, we mention a pecularity of Hintikka’s
treatment: he assumed all negations occur at the atomic level. Any non-atomic oc-
currence of a negation symbol was taken to be eliminable, via the usual negation
normal form rules. Likewise, implication was not taken as primitive.

Now, suppose we have a classical propositional model,M. Associate with it
the set� of propositional formulas that are true in it. We can say things like:
X ^ Y 2 � if and only if X 2 � andY 2 �. This if-and-only-if assertion can
be divided into two implications; Hintikka’s insight was to see that one of these

18 MELVIN FITTING

implications determines the other. To be more precise, consider the following two
sets of conditions.

(C.0)(a) IfA 2 �, then not:A 2 �, whereA is atomic.

(C.1)(a) IfX ^ Y 2 �, thenX 2 � andY 2 �.

(C.2)(a) IfX _ Y 2 �, thenX 2 � or Y 2 �.

(C.0)(b) If not:A 2 �, thenA 2 �, whereA is atomic.

(C.1)(b) IfX 2 � andY 2 �, thenX ^ Y 2 �.

(C.2)(b) IfX 2 � or Y 2 �, thenX _ Y 2 �.

If � is a set meeting all the conditions above, both (a) and (b), there is clearly a
modelM whose true formulas are exactly those of�. Now, Hintikka proved that
if � is known to meet only the (a) conditions, this is still enough—any such set can
be extended to one meeting the (b) conditions as well, and hence corresponds to
some model. This led Hintikka to call sets meeting the (a) conditionsmodel sets.
Today they are sometimes calleddownward saturated setsor evenHintikka sets.
Using this terminology, we have the following.

Hintikka’s Lemma Every downward saturated set is satisfiable.

In Section 1.2 we saw that an unclosed tableau branch can be used to generate
a model provided that on it all possible rules have been applied. In a natural sense,
the set of signed formulas on such a branch is a version of Hintikka’s notion of
model set, and our creation of a model amounts to a special case of Hintikka’s
proof of his Lemma. Of course as we stated it, Hintikka’s Lemma is for proposi-
tional logic. He actually proved a version for first-order logic; it extends to admit
equality, and to various non-classical logics as well.

The Hintikka Approach

Suppose we wish to establish the validity of some formula, say that of our old
friend (X � Y) � ((X � :Y) � :X). Hintikka’s idea is simple: show:[(X �
Y) � ((X � :Y) � :X)] is not satisfiable, and do this by showing it belongs to
no model (downward saturated) set. Do this by supposing otherwise, and deriving
a contradiction. Recall, Hintikka assumed formulas are in negation normal form,
so if we begin with a downward saturated set�with :[(X � Y) � ((X � :Y) �
:X)] 2 �, we are really assuming the following.

1. (:X _ Y) ^ ((:X _ :Y) ^X) 2 �
From 1, by (C.1)(a) we have:

2. :X _ Y 2 �

INTRODUCTION 19

3. (:X _ :Y) ^X 2 �
Then from 3 we get:

4. :X _ :Y 2 �
5. X 2 �
Now, by 2, either:X 2 � or Y 2 �. If the first of these held, we would have
X 62 �, by (C.0)(a), contradicting 5. Consequently we have

6. Y 2 �
By 4, either:X 2 � or :Y 2 �. But, using (C.0)(a), the first of these pos-
sibilities contradicts 5, and the second contradicts 6. Thus we have arrived at a
contradiction—no such� can exist.

2.4 Lis

Beth and Hintikka each had all the pertinent parts of tableaus as we know them,
but their systems were not ‘user-friendly’. Beth proposed a graphical represen-
tation for tableaus, see Section 2.2, but his two-column tables, with two-column
subtables (and subsubtables, and so on) are not handy in practice. Hintikka, in
effect, used a tree structure but with sets of formulas at nodes, requiring much re-
copying. Notational simplification was the essential next step in the development
of tableaus and, just as with the preceding stage, it was taken independently by two
people: Zbigniew Lis and Raymond Smullyan. Lis published his paper[Lis, 1960]
in 1960, but in Polish (with Russian and English summaries), inStudia Logica. At
that time there was a great gulf fixed between the East and the West in Europe, and
Lis’s ideas did not become generally known. They were subsequently rediscov-
ered and extended by Smullyan, culminating in his 1968 book[Smullyan, 1968].
The work of Lis himself only came to general attention in the last few years.

Lis, following Beth, divided formulas into two categories, Beth’s ‘valid’ and
‘invalid’. But Lis did so not by separating them into columns, but keeping them
together and distinguishing them by ‘signs’. Lis used arithmetical notation,+ or
�, for Beth’s two categories. (He also used a formal numeration system to record
which formulas followed from which—we ignore this aspect of his system.) He
then stated the following rules (we only give the propositional ones).

(i) If �:X , then�X .

(ii) Conjunctive Rules

a) If +(X ^ Y), then+X , +Y .

b) If �(X _ Y), then�X ,�Y .

c) If �(X � Y), then+X ,�Y .

20 MELVIN FITTING

(iii) Disjunctive Rules

a) If �(X ^ Y)
then �X �Y

b) If +(X _ Y)
then +X +Y

c) If +(X � Y)
then �X +Y

These rules are intended to be used in the same way the ‘T’ and ‘F’ signed rules
were in Section 1.2, though his display of trees was rather like Beth’s tables. Lis
also gave rules for quantifiers, for equality, and even for definite descriptions.

In addition to the system of semantic tableaus using signs, Lis also presented
what he called anatural deductionsystem—what we would call anunsigned
tableau system. For this, drop all occurrences of the+ sign, and replace occur-
rences of the� sign with occurrences of negation,:. (This makes half of rule (i)
redundant.)

2.5 Smullyan

It is through Smullyan’s 1968 bookFirst-Order Logic [1968] that tableaus be-
came widely known. They also appeared in the 1967 textbook[Jeffrey, 1967],
which was directed at beginning logic students. Smullyan’s book was preceded
by [Smullyan, 1963; Smullyan, 1965; Smullyan, 1966] in which the still unknown
contributions of Lis were rediscovered, deepened, and extended. Smullyan called
his version ‘analytic tableau,’ meaning by this that the subformula principle is a
central feature. Smullyan used tableaus as the basis of a general treatment of clas-
sical logic, including an analysis of the variety of completeness proofs. Drawing
together ideas from several sources, and adding new ones of his own, quite an
elegant treatment resulted.

Unifying Notation

Like Lis, Smullyan introduced both signed and unsigned tableau systems. Where
Lis used+ and� as signs, Smullyan usedT andF , but the essential idea is the
same. But Smullyan, instead of treating these as parallel, similar systems, ab-
stracted their common features. He noted that signed formulas act eitherconjunc-
tively or disjunctively(in the propositional case—quantification adds two more
categories). He grouped the conjunctive cases together astype Aformulas, and the
disjunctive ones astype B, using� for a generic type A formula and� as generic
type B. For each of these, twocomponentswere defined:�1 and�2 for type A;�1
and�2 for type B. Smullyan’s tables for both the signed and the unsigned versions
are as follows.

INTRODUCTION 21

� �1 �2

T (X ^ Y) T X T Y
F (X _ Y) F X F Y
F (X � Y) T X F Y
T :X F X F X
F :X T X T X

(X ^ Y) X Y
:(X _ Y) :X :Y
:(X � Y) X :Y
::X X X

� �1 �2

F (X ^ Y) F X F Y
T (X _ Y) T X T Y
T (X � Y) F X T Y

:(X ^ Y) :X :Y
(X _ Y) X Y
(X � Y) :X Y

The idea is, in any interpretation an� is true if and only if both�1 and�2 are true;
and a� is true if and only if at least one of�1 or �2 is true. (A signed formula
T X is true in an interpretation ifX has the valuetrue; likewiseF X is true ifX
has the valuefalse.)

Today negation is often left out of the conjunctive/disjunctive classification,
not because it is mathematically inappropriate, but because it introduces redun-
dancy if one is attempting to automate semantic tableaus. This was not a concern
of Smullyan’s. In[Fitting, 1996] these tables are extended to include all other bi-
nary connectives except for equivalence and exclusive-or (the dual to equivalence),
which follow a different pattern. But if one is willing to weaken the subformula
principle somewhat, even these can be included, using the following definitions (in
which we use6� for exclusive-or).

� �1 �2

T (X � Y) T (X � Y) T (Y � X)
F (X 6� Y) T (X � Y) T (Y � X)

(X � Y) (X � Y) (Y � X)
:(X 6� Y) (X � Y) (Y � X)

� �1 �2

F (X � Y) F (X � Y) F (Y � X)
T (X 6� Y) F (X � Y) F (Y � X)

:(X � Y) :(X � Y) :(Y � X)
(X 6� Y) :(X � Y) :(Y � X)

The effects of uniform notation are quite lovely: all the classical propositional
tableau rules for extending branches reduce to the following pair.

22 MELVIN FITTING

�
�1
�2

�
�1 �2

Smullyan took this abstract approach considerably further, eventually doing
away with formulas altogether. In[Smullyan, 1970] the essence of the tableau ap-
proach to classical logic was distilled, and in[Smullyan, 1973] this was extended,
to intuitionistic and modal logic.

The Role of Signs

From the beginning of the subject the connection between tableaus and the sequent
calculus was clear. Loosely, a tableau proof is a sequent proof backwards. In the
sequent calculus we show a sequent is valid; in a tableau system we show a formula
(or a set of formulas) is unsatisfiable. So, in order to make the sequent/tableau
relationship clear, we need a suitable translation between sequents and (finite) sets
of formulas. In one direction things are simple: map the sequentX1; : : : ; Xn !
Y1; : : : ; Yk to the setfX1; : : : ; Xn;:Yn; : : : ;:Ykg. Then the sequent is valid if
and only if the corresponding set is unsatisfiable. But a problem arises in going
the other way, from a set to a sequent. Given the setfX;:Y g, say, it could have
come from the sequentX ! Y or fromX;:Y !, and for more complex sets the
number of possibilities can be much greater. Thus we have a many-one mapping.
While one can work with this, it makes things unnecessarily complicated. Signed
formulas deal with this problem nicely.

Following Smullyan[1968], if S = fT X1; : : : ; T Xn; F Y1; : : : ; F Ykg is a set
of signed formulas, letjSj be the sequentX1; : : : ; Xn ! Y1; : : : ; Yk. If we think
of the strings of formulas on the left and the right of the sequent arrow assets
rather than assequences, thus ignoring the structural rules, this defines a one-one
translation between sequents and sets of signed formulas. What is more, using uni-
form notation, the sequent calculus rules can be presented in the following abstract
form (again, omitting the structural rules).

Axioms jS; T X; F X j

Inference Rules jS; �1; �2j
jS; �j

jS; �1j jS; �2j
jS; �j

This more abstract approach makes it possible, for instance, to give a uniform
proof of cut elimination, one that applies to both tableaus and the sequent calculus,
rather than proving it for one and deriving it for the other as a consequence. From
this point of view, tableau and sequent proofsare the same thing, which is what
everyone suspected all along.

INTRODUCTION 23

Cut and Analytic Cut

Just as with the sequent calculus, one can introduce a Cut rule for tableaus, and
show it can be eliminated from proofs. The sequent calculus formulation of Cut
was given in Section 2.1; for tableaus it has a much simpler appearance. Here are
signed and unsigned versions.

Cut
T X F X X :X

That is, at any time during a signed tableau construction, a branch may be split,
with T X added to one fork, andF X added to the other, forany formulaX , and
similarly for the unsigned version. Clearly this violates the subformula principle.
But Smullyan also considered what he calledAnalytic Cut, which is simply the
Cut rule as given above, but with the restriction thatX must be a subformula of
some formula already appearing on the branch. Like unrestricted Cut, Analytic
Cut also shortens proofs, and it clearly does not violate the subformula principle.
It lends itself well to automation, and has played some role in this area.

2.6 The Complications Quantifiers Add

In our survey of various proof systems above, we ignored quantifiers. The reason is
simple: all the systems treat quantifiers more-or-less the same way, so differences
between systems can be illustrated sufficiently well at the propositional level. Now
it is time to say a little about them. (A full treatment of first-order tableaus can be
found in the chapter by Letz, Chapter 3.)

Quantifier rules for classical logic are deceptively simple. If(8x)'(x) is true
in some model, then'(c) is also true for any closed termc. On the other hand, if
(8x)'(x) is false in a model, there is some member of the domain of the model for
which'(x) does not hold. Then, ifd is a new constant symbol, we can interpret
it to designate some member of the domain for which'(x) fails, and so'(d) will
be false in the model. Note that the model in which'(d) is false is not the original
model, since we had to re-interpretd, but sinced was chosen to be a constant
symbol that was new to the proof, this has no effect on how formulas already
appearing are interpreted.

Now we give quantifier tableau rules, using Smullyan’s uniform notation. In
stating things we use the informal convention that, if'(x) is a formula andc is
a constant symbol,'(c) is like '(x) but with occurrences ofc substituted for all
free occurrences of the variablex. Quantified formulas are classified into type C,
universal, and type D, existential, with as generic type C, and� as generic type
D.

24 MELVIN FITTING

 (c)

T (8x)'(x) T '(c)
F (9x)'(x) F '(c)

(8x)'(x) '(c)
:(9x)'(x) :'(c)

� �(c)

T (9x)'(x) T '(c)
F (8x)'(x) F '(c)

(9x)'(x) '(c)
:(8x)'(x) :'(c)

Now, the quantifier rules are these.

(c)

Where c is any constant
symbol whatever.

�
�(c)

Wherec is a constant sym-
bol that is new to the
branch.

Here is an example of a classical first-order proof, of(8x)(8y)R(x; y) �
(8z)R(z; z). In it, 2 and 3 are from 1 byF �; 4 is from 3 byF8; 5 is from
2 by T8; and 6 is from 5 byT8. Notice that when theF8 rule was applied, the
constant symbolc had not yet been used.

6. T R(c; c)
5. T (8y)R(c; y)
4. F R(c; c)
3. F (8z)R(z; z)
2. T (8x)(8y)R(x; y)
1. F (8x)(8y)R(x; y) � (8z)R(z; z)

For a sequent calculus formulation things are reversed from the tableau ver-
sion. Existential quantifiers, instead of introducing new constant symbols, remove
constant symbols. Using the notation of Section 2.5, here are sequent rules for
classical quantifiers.

jS; (c)j
jS; j

Where c is any constant
symbol.

jS; �(c)j
jS; �j

Wherec is a constant sym-
bol that does not occur in
fS; �g.

As we said, the quantifier rules are deceptively simple. Since there are (we
assume) infinitely many constant symbols available, if the-rule can be applied at
all, it can be applied in infinitely many different ways. This means a tableau can
never be completed in a finite number of steps. Essentially, this is the source of the
undecidability of classical first-order logic.

INTRODUCTION 25

3 MODERN HISTORY

After reaching a stable form in the classical case, the next stage in the develop-
ment of tableaus was the extension to various non-classical logics. In this section
we sketch a few such systems, say how they came about, and present the intuitions
behind them. The particular systems chosen illustrate the variety of extra machin-
ery that has been developed for and added to tableau systems: reinterpreting signs,
generalizing signs, modifying closure rules, allowing trees to change in ways other
than simple growth, adjoining ‘side’ information, and using pairs of coupled trees.

3.1 Intuitionistic Logic

Sequent calculi for intuitionistic logic were around from the beginning—Gentzen
and Beth both developed them—so it is not surprising that a tableau version would
be forthcoming (see Wallen’s chapter). The first explicitly presented as such seems
to be in the 1969 book of Fitting[1969]. In this the signed tableau system of
Smullyan was adapted, with the signs given a new informal interpretation. In the
resulting tableau system, proof trees were allowed to shrink as well as grow.

For both Lis and Smullyan, signs primarily were a device to keep track of left
and right sides of sequents, without explicitly using sequent notation. Signs also
had an intuitive interpretation that was satisfying:T X andF X can be thought of
as asserting thatX is true or false in a model. But now, think ofT X as informally
meaning thatX is intuitionistically true, that is,X has been given a proof that an
intuitionist would accept. Likewise think ofF X as asserting the opposite:X has
not been given an intuitionistically acceptable proof. (This is quite different from
assumingX is intuitionistically refutable, by the way.) Some tableau rules are
immediately suggested. For instance, intuitionists read disjunction constructively:
to proveX _Y one should either proveX or proveY (see[Heyting, 1956]). Then
if we haveT X _ Y in a tableau, informallyX _ Y has been intuitionistically
proved, hence this is the case for one ofX or Y , so the tableau branch splits to
T X andT Y . Likewise if we haveF X _ Y , we do not have an intuitionistically
acceptable proof ofX _ Y , so we can have neither a proof ofX nor of Y , and
so we can add bothF X andF Y to the branch. That is, intuitionistic rules for
disjunction look like classical ones! The same is the case for conjunction. But
things begin to get interesting with implication. We quote Heyting[1956].

“The implicationp ! q can be asserted, if and only if we possess a
constructionr, which, joined to any construction provingp (supposing
that the latter be effected), would automatically effect a construction
provingq. In other words, a proof ofp, together withr, would form a
proof ofq.”

If T X � Y occurs in a tableau, informally we have a proof ofX � Y , and so
we have a way of converting proofs ofX into proofs ofY . Then, in our present

26 MELVIN FITTING

state of knowledge, either we are not able to proveX , or we are, in which case
we can provide a proof ofY as well. That is, the tableau branch splits toF X and
T Y , just as it does classically.

Now supposeF X � Y occurs in a tableau. Then intuitively, we do not have
a mechanism for converting proofs ofX into proofs ofY . This does not say
anything at all about whether we are able to proveX . What it says is that someday,
not necessarily now, we may discover a proof ofX without being able to convert
it to a proof ofY . That is,somedaywe could have bothT X andF Y . We are
talking about a possible future state of our mathematical lives. Now, as we move
into the future, what do we carry with us? If wehave notproved some formulaZ,
this is not necessarily a permanent state of things—tomorrow we may discover a
proof. But if wehaveprovedZ, tomorrow this will still be so—a proof remains a
proof. Thus, when passing from a state to a possible future state, signed formulas
of the formT Z should remain with us; signed formulas of the formF Z need not.
This suggests the following tableau rule: if a branch containsF X � Y , add both
T X andF Y , but first delete all signed formulas on the branch that have anF
sign. (Negation has a similar analysis.)

We must be a little careful with this notion of formula deletion, though. The
tree representation for tableaus that we have been using marks the presence of a
node by using a formula as a label. If we simply delete formulas, information
about node existence and tableau structure could be lost. What we do instead,
when using this representation of tableaus, is leave deleted formulas in place, but
check them off, placing a

p
in front of them. (Of course, when using the set of

sets representation for tableaus from Section 1.2, things are simpler: just replace
one set by another, since there is no structure sharing.) There is still one more
problem, though. It may happen that a formula should be deleted on one branch,
but not on another, and using the tree representation for tableaus, its presence on
both branches might be embodied in a single formula occurrence. In this case,
check it off where it occurs, and add a fresh, unchecked occurrence to the end of
the branch on which it should not be deleted.

To state the intuitionistic rules formally we use notation from[Fitting, 1969],
if S is a set of signed formulas, letST be the set ofT -signed members ofS.
We writeS; F Z to indicate a tableau branch containing the signed formulaF Z,
with S being the set of remaining formulas on the branch. Now, the propositional
intuitionistic rules are these.

Conjunction S; T X ^ Y
S; T X; T Y

S; F X ^ Y
S; F X S; F Y

Disjunction S; T X _ Y
S; T X S; T Y

S; F X _ Y
S; F X; F Y

Implication S; T X � Y
S; F X S; T Y

S; F X � Y
ST ; T X; F Y

INTRODUCTION 27

Negation S; T :X
S;F X

S; F :X
ST ; T X

Then unlike with classical tableaus, as far as usable formulas are concerned,
intuitionistic tableaus can shrink as well as grow. If a branch contains, say, both
F X � Y andF A � B, using an implication rule on one will destroy the other.
It is possible to make a bad choice at this point and miss an available proof. For
completeness sake, both possibilities must be explored. This is the analog of Beth’s
disjunctivebranching, see Section 2.2. As a matter of fact, the tableau rules above
correspond to Beth’s rules in the same way that the classical tableau rules of Lis
and Smullyan correspond to Beth’s classical rules.

A tableau branch is closed if it containsT X andF X , for some formulaX ,
where neither is a deleted signed formula. Of course the intuitive idea is somewhat
different than in the classical case now: the contradiction is that an intuitionist
has both verified and failed to verifyX . Nonetheless, a contradiction is still a
contradiction.

We conclude with two examples, a non-theorem and a theorem. The non-
theorem is(:X � X) � X . A tableau proof attempt begins withF (:X �
X) � X . An application of theF � rule causes this veryF -signed formula to be
deleted, and produces 2 and 3 below. Use ofT � on 2 gives 4 and 5. The right
branch is closed, but closure of the left branch is impossible since an application
of F: to 4 causes deletion of 3.

5. T X4. F :X
@
@

�
�

3. F X
2. T :X � X

p
1. F (:X � X) � X

The formula(:X � X) � ::X , on the other hand, is a theorem. A proof of
it begins withF (:X � X) � ::X , then continues as follows.

5. F :X 6. T X
7. F X

@
@
@@

�
�

��

p
1. F (:X � X) � ::X
2. T :X � Xp
3. F ::X
4. T :X

28 MELVIN FITTING

An application of theF � rule deletes 1 and adds 2 and 3. ThenF: applied
to 3 deletes it and adds 4. TheT � rule applied to 2 adds 5 and 6, and finally, the
T: rule applied to 4 adds 7. The tableau is closed because of 4 and 5, and 6 and
7, none of which are checked off.

At the cost of a small increase in the number of signs, Miglioli, Moscato, and
Ornaghi have created a tableau system for intuitionistic logic that is more efficient
than the one presented above[Miglioli et al., 1988; Miglioli et al., 1993; Miglioli
et al., 1994]. In addition to the signsT andF , one more sign,Fc, is introduced.
In terms of Kripke models, we can think ofT X as true at a possible world if
X is true there, in the sense customary with intuitionistic semantics. Likewise
we can think ofF X as true at a possible world ifX is not true there. But now,
think ofFcX as true at a world if:X is true there. This requires additional tableau
rules, but reduces duplications inherent in the tableau system without the additional
sign. Without going into details, this should suggest some of the flexibility made
possible by the use of signed formulas, a topic to be continued in the next section.

3.2 Many-Valued Logic

The signs of a signed tableau system can be reinterpreted, as in intuitionistic logic,
and they can be extended, as happened in many-valued logic (see Olivetti’s chap-
ter). Finitely-valued Łukasiewicz logics were given a tableau treatment by Suchon
[1974]. Surma considered a more general situation,[1984], and this was further
developed by Carnielli in[1987; 1991]. (The paper[Carnielli, 1987] contains an
error in the quantifier rules which is corrected in[Carnielli, 1991].) In these pa-
pers, the two signs of Lis and Smullyan were extended to a larger number, with
one sign for each truth value of the logic. Essentially, this is the tableau version
of the many-valued sequent calculus of[Rosseau, 1967], discussed in Section 2.1.
To show a formulaX is a theorem, one must construct a closed tableau forV X ,
whereV is a sign corresponding to the truth valuev, for each non-designated value
v.

While this is a natural idea, in practice it means several tableaus may need to be
constructed for a single validity proof. Also, the rules themselves tend to be com-
plicated. Suppose, for instance, we consider Kleene’s strong three-valued logic,
a well known logic. We can take as the three truth valuesffalse;?; trueg, where
? is intended to represent ‘unknown.’ Disjunction is easily characterized: order
the truth values by:false< ? < true; then disjunction-of is simply maximum-
of. Suppose we introduceF , U , andT as signs corresponding to the three truth
values. Then one of the Carnielli rules for disjunction is the following.

U X _ Y
F X U X U X
U Y U Y F Y

More recently, H¨ahnle showed that many-valued logics could often be treated

INTRODUCTION 29

more efficiently by tableaus ifsetsof truth values were used as signs, rather than
single truth values,[Hähnle, 1990; H¨ahnle, 1991; H¨ahnle, 1992]. Think of SX ,
whereS is a set, as asserting that the truth value ofX (in some model) is a member
of S. Then to showX is valid one needs a single closed tableau, beginning with
DX , whereD is the set of non-designated truth values. The following is a typical
example of a H¨ahnle-style rule, again for the strong Kleene logic.

fF;UgX _ Y
fF;UgX fF;UgY

As this example suggests, once sets are used as signs, a generalized uniform no-
tation becomes possible. In many cases, this works quite well,[Hähnle, 1991]. We
have not discussed quantification, which is a central issue in many-valued logics.

3.3 Modal Logic

What is now calledrelational semanticsfor modal logic was fully developed by
the mid-sixties, drawing on work of Kanger[1957], Hintikka [1961; 1962], and
Kripke [1959; 1963a; 1963b; 1965]. This led to a renewed interest in modal logic
itself, and to the development of tableau systems for various such logics (covered
by Goré in his chapter). See[Fitting, 1993] for a general overview of the sub-
ject. Kripke himself gave Beth-style tableaus for the modal logics he treated. In
fact, his completeness proofs for axiom systems proceeded by showing equiva-
lence to Beth tableau systems (using cut elimination) then proving completeness
for these by a systematic tableau style construction. This was complex and hard
to follow, and soon Henkin-style completeness arguments became standard. A
tree-style system for S4 appeared in[Fitting, 1969], similar to the intuitionistic
system of that book. Systems for several modal logics, based on somewhat dif-
ferent principles, appeared in[Fitting, 1972], and for temporal logics in[Rescher
and Urquhart, 1971]. But the most extensive development was in Fitting’s 1983
book[Fitting, 1983] which, among other things, gave tableau systems for dozens
of normal and non-normal modal systems. We sketch a few to give an idea of the
style of treatment, and the intuition behind the tableaus.

Destructive Tableau Systems

Fitting extended Smullyan’s uniform notation to the modal case. Here is a signed-
formula version. The idea is: a� formula is true at a possible world if and only
if the corresponding�0 is true at every accessible world; a� formula is true at a
possible world if the corresponding�0 is true at some accessible world.

� �0

T 2X T X
F �X F X

� �0

F �X F X
T 2X T X

Next, if S is a set of signed formulas, a setS# is defined. The idea is, if the

30 MELVIN FITTING

members ofS are true at a possible world, and we move to a ‘generic’ accessible
world, the members ofS# should be true there. The definition ofS# differs from
modal logic to modal logic. We give the version forK, the smallest normal modal
logic.

S# = f�0 j � 2 Sg
The rules forK are exactly as in the classical Smullyan system, together with

the following ‘destructive’ rule.

S; �
S#; �0

Unlike the other rules (but exactly like the intuitionistic rules in Section 3.1),
this one modifies a whole branch. IfS; � is the set of signed formulas on a branch,
the whole branch can be replaced withS#; �0. Since this removes formulas, and
modifies others, it is an information-loosing rule, hence the description ‘destruc-
tive’. We continue to use the device of checking off deleted formulas in trees.

Here is a simple example of a proof in this system, of2(X � Y) � (2X �
2Y). It begins as follows.

p
1: F 2(X � Y) � (2X � 2Y)p
2: T 2(X � Y)p
3: F 2X � 2Yp
4: T 2Xp
5: F 2Y
6: T X � Y
7: T X
8: F Y

Here 2 and 3 are from 1, and 4 and 5 are from 3 byF �. Now take 5 as�, and
1 through 4 asS, and apply the modal rule. Formula 1 is simply deleted; 2 is
deleted but 6 is added; 3 is deleted; 4 is deleted but 7 is added (at this point,S has
been replaced byS#); and finally 5 is deleted but 8 is added (this is�0). Now an
application ofT � to 6 produces a closed tableau.

The underlying intuition is direct. All rules, except the modal one, are seen as
exploring truth at a single world. The modal rule corresponds to a move from a
world to an alternative one. A soundness argument can easily be based on this.
Completeness can be proved using either a systematic tableau construction or a
maximal consistent set approach. As is the case with both classical and intuition-
istic tableaus, interpolation theorems and related results can be derived from the
tableau formulation.

Several other normal modal logics can be treated by modifying the definition of
S#, or by adding rules, or both. For instance, the logicK4 (adding transitivity to
the model conditions) just requires a change in a definition, to the following.

INTRODUCTION 31

S# = f�; �0 j � 2 Sg
Generally speaking, modal logics that have tableau systems of this kind can

not have a semantics whose models involvesymmetryof the accessibility relation.
Interestingly enough, though, such logics can often be given tableau systems in
this style if a cut rule is allowed, and in fact asemi-analyticversion is enough.
Semi-analyticity extends and weakens the notion of analytic cut, but is still not as
broad as the unrestricted version. See Fitting,[1983], for more details.

Various regular but non-normal logics can be dealt with by restricting rule ap-
plicability (see[Fitting, 1983; Fitting, 1993] for a definition of regularity). For
instance, if we use the system forK above, but restrict the modal rule to those
cases in whichS# is non-empty, we get a tableau system for the smallest regular
logic C. It is even possible to treat such quasi-regular logics asS2 andS3 by
similar techniques.

Making Accessibility Explicit

In the various tableau systems described in the previous section, possible worlds
were implicit, not explicit. Other approaches have brought possible worlds visi-
bly into the picture. Hughes and Cresswell[1968], for instance, have a system of
diagramswhich are tableau-like, and involve boxes representing possible worlds,
with arrows representing accessibility. In 1972 Fitting[1972] gave tableau sys-
tems usingprefixesin which the idea was to designate possible worlds in such a
way that syntactical rules determined accessibility. In a straightforward way, pre-
fixes correspond to the Hughes and Cresswell boxes. The notion of prefixes is at
its simplest forS5, where we can take as prefixes just natural numbers. The re-
sulting system can be seen as a direct descendant of the sequent system of Kanger,
discussed in Section 2.1.

A prefixed signed formulafor S5 is justnZ, wheren is a non-negative integer,
andZ is a signed formula. The�- and�- rules from Sction 2.5 are modified in a
direct way: concluden�1 andn�2 from n�, and similarly for�. The following
modal rules are used (similarity to quantifier rules is intentional). This time there
is no notion of formula deletion.

n �
k �0

Wherek is any non-
negative integer.

n�
k �0

Where k is any non-
negative integer that is
new to the branch.

Prefixes should be thought of as names for possible worlds. The system forS5
is particularly simple because the logic is characterized by models in which every
world is accessible from every other. For other modal logicssequencesof integers

32 MELVIN FITTING

are used, where the intuition is:extension-ofcorresponds toaccessible-from. This
builds on an abstract of Fitch concerning modal natural deduction systems. See
[Fitting, 1972; Fitting, 1983] for details.

There are many ways explicit reference to possible worlds can be incorporated
into tableaus. The most obvious is to simply record accessibility information di-
rectly, in a side table. Other techniques have also been used, motivated by automa-
tion concerns. By such methods very general theorem proving mechanisms can
be created. There is a drawback however. One of the nice features of tableaus is
the extra information they can provide about the logic, most notably, proofs of in-
terpolation theorems. Such proofs are not available once explicit possible worlds
appear. On the other hand, decision procedures can often be easier to describe and
program, using the additional machinery.

3.4 Relevance Logic

Fault has been found with tautologies like(P ^ :P) � Q, since the antecedent
and the consequent are not related to each other. A sense of dissatisfaction with
such things led to the creation of the family ofrelevance logics; see[Dunn, 1986]
for a survey of the subject. While the semantics for relevance logic is generally
quite complicated, that for so-calledfirst-degree entailmentis rather simple—this
is the fragment in which one considers only formulas of the formA � B where
A andB do not contain implications. The reason this is of interest here is that the
method of ‘coupled trees’ developed for it shows yet another way of working with
tableaus.

Smullyan presented a system of ‘linear reasoning’ for first-order classical logic
in [Smullyan, 1968]. The system was tableau based, and was motivated by Craig’s
original proof of his Interpolation Theorem. Something very much like this, but for
propositional classical logic only, appeared in a pedagogically nice form in Jeffrey
[Jeffrey, 1967], under the name ofcoupled trees. It is Jeffrey’s version with which
we begin.

Suppose we want to give a classical propositional logic proof ofX � Y , but
instead of constructing a closed tableau forF X � Y , we do the following. Com-
pletely constructtwo tableaus,T1 for T X , andT2 for T Y . The open branches of
T1 represent all the ways in whichX could be true, and similarly forT2. Let us say
a branch�1 coversa branch�2 if every signed atomic formula on�2 also occurs on
�1. Suppose every open branch ofT1 covers some open branch ofT2—intuitively,
each of the waysX could be true must also be a way in whichY is true. Then
we have argued for the validity ofX � Y . In effect, we are thinking of the proof
of X � Y as beginning withX , breaking it down by constructingT1 for T X ,
making the transition fromT1 to T2 using the covering condition, then building up
to Y using the tableauT2 for T Y backwards. Such a proof technique is complete
for implications.

To illustrate the technique, here is a coupled tableau proof of(P � Q) �
(:Q � :P).

INTRODUCTION 33

6. T :P
8. F P7. T Q

5. F :Q3. T Q2. F P

�
�

@
@

@
@

�
�

4. T :Q � :P1. T P � Q

We do not describe the construction of the two tableaus, which is elementary.
But note that the left branch of tableau one covers the right branch of tableau two,
via formulas 2 and 8, and the right branch of tableau one covers the left branch of
tableau two, via formulas 3 and 7. Thus we have a correctly constructed coupled
tableau argument.

There are some problems with this intuitively simple idea, however. The for-
mulaP � (Q _ :Q) is classically valid, though not provable by the technique
described above. To get around this Jeffrey added a device that amounts to al-
lowing applications of the cut rule in the tableau for the antecedant of an implica-
tion. Also, closed branches are ignored and, while this may seem natural at first
encounter, even closed branches contain information. It is the restriction of the
covering condition to only open branches that allows a coupled tree argument for
(P ^ :P) � Q, which is the standard example of a tautology not acceptable to
relevance logicians.

Dunn’s proposal in[1976] is to simplify Jeffrey’s system to the extreme. To
showX � Y , completely construct tableausT1 for T X (not using the Cut rule)
andT2 for T Y , and see ifeverybranch ofT1, closed or not, covers a branch of
T2. Dunn showed this gave a sound and complete proof procedure for first-degree
entailment.

What sense can be made semantically of using tableau branches even if closed?
Suppose, instead of working in the ideal setting of classical logic, we work in
something more like the real world. We may have information that tells us a propo-
sitionP is true, or false. But equally well, we may have no information aboutP at
all, neithertruenor false, or we may have contradictory information, bothtrueand
false. In effect we are using a four-valued logic whose truth values are all subsets
of ffalse; trueg. This is a logic that was urged as natural for computer science in
Belnap[1977]. Dunn showed that a simple semantics for first-degree entailment
could be given using this four-valued logic:X � Y is a valid first-degree entail-
ment if and only if, under every valuationv in the four-valued logic, ifv(X) is at
least true (hastrueas a member) thenv(Y) is also at least true.

The relationship between the four-valued logic and tableaus is simple: if a
branch� of a tableau has had all applicable tableau rules applied to it we can think
of � as determining a four-valued valuation as follows. MapP to ftrueg if T P is
on� butF P is not; mapP to ffalseg if F P is on� butT P is not; mapP to ; if
neitherT P norF P is on�; and mapP to ffalse; trueg if both T P andF P are
on�. Indeed, a similar ‘ambiguation’ can be developed starting with many-valued
logics other than the classical, two-valued one. The technique is fairly general.

34 MELVIN FITTING

There are other approaches to relevance logic that make use of tableaus, each
with additional features of interest. H¨ahnle[1992] gives a formulation of first-
degree entailment using many-valued tableaus with sets of truth values as signs;
see Section 3.2. Also, Schr¨oder[1992] gives a tableau system in which additional
bookkeeping machinery is introduced to check that each occurrence of a proposi-
tional variable was actually used to close a branch. Relevance logic itself is part of
the more general subject ofsubstructural logic, covered by D’Agostinoet al..

4 POST-MODERN HISTORY

In our subject, as in every other, post-modernism begins before modernism ends,
in fact, before it starts. By thepost-modern periodfor tableaus we mean the period
of their automation (involving issues discussed by H¨ahnle in his Chapter). Indeed,
Beth had machine theorem-proving very much in mind[Beth, 1958], though this
did not have a lasting influence. It is curious that resolution and tableaus in their
current form appeared within a few years of each other[Lis, 1960; Robinson, 1965;
Smullyan, 1968]. Robinson, who invented resolution, was primarily interested in
automation, Smullyan and Lis were not interested in automation at all. Perhaps
this accounts for much of the emphasis on resolution in the automated theorem-
proving community. But another determinant was more technical—nobody seems
to have connected tableau methods and unification for a long time, without which
only toy examples are possible. Still, all along there has been a subcurrent of in-
terest in the uses of tableaus for automated theorem-proving—today it has become
a major stream. We will sketch the swelling of this interest—it is complex, with
basic ideas occurring independently several times. We will not bring our history
up to today because present developments are many and are continuing to appear
at a rapid rate. We lay the historical foundations for today’s activity. We also con-
fine the discussion to ‘pure’ tableau issues—we do not consider the increasingly
fruitful relationships between tableaus and other theorem-provingmechanisms like
connection graphs or resolution.

4.1 The Beginnings

Even though resolution has historically dominated automated deduction, among
the first implemented theorem provers are some based on tableau ideas. In 1957–
58, Dag Prawitz, H˚akan Prawitz, and Neri Voghera developed a tableau-based
system that was implemented on a Facit EDB[Prawitzet al., 1960]. At approxi-
mately the same time, the summer of 1958, Hao Wang proposed a family of theo-
rem provers based on the sequent calculus, which he then implemented on an IBM
704[Wang, 1960]. The first of Wang’s programs, for classical propositional logic,
proved all the approximately 220 propositional theorems of Russell and White-
head’sPrincipia Mathematicain 3 minutes! This was quite a remarkable achieve-
ment for 1958.

INTRODUCTION 35

The, or universal quantifier, rule is a major source of difficulties for first-order
tableau implementations. It allows us to pass from to (t) for anyt, but how do
we know whicht will be a useful choice? Eventually, unification solved this prob-
lem, as we will see in the next section, but unification was not available in the
1950’s. Prawitz and his colleagues worked with a formalization having constant
symbols but no function symbols, which simplified the structure of terms (repre-
sentation of strings, terms, and formulas was non-trivial on these early machines.)
Then the rule was implemented to simply instantiate to(c) for every constant
symbolc that had been introduced by� rule applications. In general, the set of such
constant symbols grows without bound, which is the source of the undecidability
of first-order logic. But also, as the authors note, this method creates many useless
instantiations, and introduces an exponential growth factor into tableau construc-
tion, thus limiting the theorems provable by their implementation to rather simple
examples. Wang discussed essentially the same idea, but did not actually carry out
an implementation.

Instead of a full first-order system, Wang implemented a calculus for a decid-
able fragment—theAE formulas (with equality). A formulaX is anAE formula
if X is in prenex form, and all universal quantifiers precede any existential quan-
tifiers. Since the rules for putting a formula into prenex form are not hard to
mechanize, we can extend the definition to include those formulas that convert to
AE form. TheAE class is a decidable logic, and a complete tableau procedure for
it is remarkably simple. Suppose, for instance, that we have a typicalAE formula,
(8x1)(8x2)(9y1)(9y2)'(x1; x2; y1; y2), and we attempt a tableau proof. We have
two �-rule applications to begin with, each introducing a new constant symbol, say
c1 andc2. Thus the tableau begins as follows.

1: F (8x1)(8x2)(9y1)(9y2)'(x1; x2; y1; y2)
2: F (8x2)(9y1)(9y2)'(c1; x2; y1; y2)
3: F (9y1)(9y2)'(c1; c2; y1; y2)

Except for the case, classical tableau rules need only be applied to formulas
once. Making use of this fact, we now have only-rules to apply. Suppose we
apply them in all possible ways,using only the constant symbolsc1 andc2 (four
applications in all). After this, we only use propositional rules. It is rather easy to
show that if this does not produce a proof, no proof is possible. More generally,
without compromising completeness,-rule applications in proofs ofAE formu-
las can be limited to constant symbols that were previously introduced by�-rule
applications, all of which must come first. It follows that a boundable number of
-rule applications is always enough. (If there are no initial universal quantifiers,
add a dummy one, then apply the procedure just outlined.)

Wang implemented theAE system just described. Of the 158 first-order propo-
sitions with equality inPrincipia Mathematicahis program proved 139 of them.
Subsequent modifications made possible proofs of all the theorems of *9 to *13
of Principia in about four minutes. Although Wang only worked with a decidable

36 MELVIN FITTING

portion of first-order logic,

“A rather surprising discovery, which tends to indicate our general
ignorance of the extensive range of decidable subdomains, is the ab-
sence of any theorem of the predicate calculus inPrincipiawhich does
not fall within the simple decidable subdomain of theAE predicate
calculus.”

It is not clear what this says about the work of Russell and Whitehead, but it is a
curious discovery.

One interesting experiment that Wang undertook was to have the computer gen-
erate propositional formulas at random, test them for theoremhood, and print out
those that passed anad hoctest for being ‘nontrivial’. In a way, the experiment
was a failure, because 14,000 propositions were formed and tested in one hour,
and 1000 were retained as nontrivial. The mass of data was simply too great. It is
interesting just how hard it is to say what is interesting, and why.

This work seems to have had few direct successors. Possibly the introduction
of the Davis-Putnam method, and then resolution, drew research attention else-
where. Popplestone, in[1967], implemented a Beth tableau style theorem prover
and specifically noted its relationship with Wang’s version. The universal quanti-
fier rule was still seen as a central problem, and heuristics were introduced to deal
with it. In 1978 Mogilevskii and Ostroukhov[Mogilevskii and Ostroukhov, 1978]
implemented (in ALGOL) a Smullyan-style theorem prover, but only for proposi-
tional classical logic, though they mention variations forS4 and for intuitionistic
logic.

4.2 Dummy Variables and Unification

It is universally recognized that the or universal quantifier rule is the most prob-
lematic for a first-order tableau implementation. The rule allows passage from to
(t) for anytermt. Without guidance on what term or terms to choose, automation
is essentially hopeless. Systematically trying everything would, of course, yield a
complete theorem-prover, but one that is hopelessly inefficient. Wang avoided the
problem by confining his theorem-prover to a subsystem of full first-order logic. In
the meantime Robinson, anticipated by Herbrand, introducedunificationinto auto-
mated theorem-proving[Robinson, 1965] and this, or its weaker cousinmatching,
serves very nicely as an appropriate tool for dealing with the universal quantifier
problem. The idea, simply expressed, is to modify the-rule so that it reads: from
 pass to(x), wherex is a new free variable (a dummy, to use terminology from
[Prawitz, 1960]). Then we use unification to discover what is a good choice for
x—a good choice being something that will aid in tableau closure. For instance,
if a branch containsT P (t) andF P (u), a substitution that unifiest andu will
close the branch. What is wanted is a substitution that will simultaneously close
all branches.

INTRODUCTION 37

Unification was introduced independently into tableau theorem proving by sev-
eral people, beginning with the 1974 paper of Cohen, Trilling, and Wegner[Cohen
et al., 1974]. While their paper was primarily devoted to presenting the virtues of
ALGOL-68, it in fact gave a first-order theorem-prover based on Beth tableaus. It
was written using a systematically-try-everything approach to the-rule, but then
the introduction of Skolem functions and unification were specifically considered.
This paper was followed by Bowen in[1980; 1982] and Broda[1980] (neither of
which seems to be aware of[Cohenet al., 1974]), both motivated by logic pro-
gramming issues. Bowen used a sequent calculus, though he noted relationships
with work of Beth and Smullyan; Broda used semantic tableaus directly. Wright-
son in[1984b], Reeves in[1985], and Fitting in[1986] also explicitly brought uni-
fication into the picture, while Oppacher and Suen in their HARP theorem-prover
of 1988 [Oppacher and Suen, 1988] use matching, only moving to unification
when ‘necessitated by the presence of complex terms’.

The technique of using dummy variables to deal with universal quantifiers was
described in too simple a way above. If we restrict things so that the rule, pass-
ing from to (x), can be applied to a given formula only once, an incomplete
theorem-prover results. No general upper limit on the number of applications can
be set (or else first-order logic would be decidable). On the other hand, if we place
no restrictions on which unifiers we can accept, an unsound system can result. The
problem is this. Applications of the�-rule require introduction of new constants.
If we use free variables in-rules and delay determination of their ultimate val-
ues, we don’t know what is new and what is not when�-rule applications come
up. Wrightson[1984b] and Reeves[1985] deal with this difficulty essentially by
imposing constraints on the unification process. Neither Bowen nor Broda discuss
the issue explicitly, though they may have had a similar device in mind.

Matching with constraints gets quite complicated when function symbols are
present. Of course the problem of what to do with the�-rule can be easily avoided
by Skolemizing away quantifier occurrences that would lead to�-rule applications
before the proof actually starts. If this is done, a rather simple sound and complete
proof procedure combining tableaus and unification results. Such an approach was
discussed by Reeves in[1985]. An implementation of tableaus involving initial
Skolemization, written in LISP, was presented by Fitting in[1986].

4.3 Run-Time Skolemization

We noted that the combination of unification and tableaus leads to problems with
the�-rule, and that Skolemization provides one possible way out. Unfortunately,
classical logic (more generally, many-valued logic with a finite number of truth
values) is virtually the only first-order logic in which one can Skolemize a formula
ahead of time. Tableau systems have been developed for a wide variety of logics,
and this problem with the�-rule could limit their usefulness. Fortunately there is
a modification that works for many non-classical logics. It is commonly known as
run-time Skolemization, a name whose significance will soon become apparent.

38 MELVIN FITTING

Suppose we are using the version of the-rule described in the previous section,
passing from to(x), wherex is a new free variable. This kind of tableau system
is sometimes referred to as afree-variable tableau system. In applying the�-rule,
passing from� to �(t), we need to be able to guarantee that the termtwill be new to
the branch, no matter how free variables are instantiated. A simple way of ensuring
this is to take fort the expressionf(x1; : : : ; xn), wheref is a new function symbol
andx1, . . . ,xn are all the free variables that occur on the branch. Clearly, we can
think of the introduction of this term as part of a Skolemization process that goes
on simultaneously with the tableau construction. In effect, Skolem functions come
with an implicit ‘time stamp’ and this makes the technique suitable for many modal
and similar logics.

Run-time Skolemization for tableaus seems to have first appeared in 1987 in
Schmitt’s THOT system[Schmitt, 1987], though it probably occurred to others
around the same time. It is not necessary for classical logic, but its use does elim-
inate a preprocessing step, so it was included in the Prolog implementation of
[Fitting, 1996]. For non-classical logics, however, Skolemization ahead of time is
generally impossible, so the run-time version used by Fitting in 1988 for modal
logics[Fitting, 1988] was essential.

Soon after Fitting’s book[1996] appeared, H¨ahnle and Schmitt noted that the
version of run-time Skolemization used was unnecessarily inefficient. In[Hähnle
and Schmitt, 1993] they showed it is enough to take as a rule: from� pass to
�(f(x1; : : : ; xn)) wherex1, . . . ,xn are all the free variablesthat occur in�. This
work was extended in[Beckert, Hähnle and Schmitt, 1993]. Subsequently Shankar
[Shankar, 1992] used a proof-theoretic analysis to show that a more complicated
restriction on free variables—but still simpler than using all those that occur on a
branch—suffices for first-order intuitionistic logic. Shankar also observed that his
way of analyzing a tableau system will yield similar results for modal and other
logics as well.

4.4 Where Now

If a logic has a tableau system at all, it probably will be the basis for the first
theorem-prover to be implemented for it, though other kinds of theorem-provers
may follow in time. For a given logic, tableaus may or may not turn out to be
the best possible, most efficient approach to automated theorem-proving. Never-
theless, tableaus will continue to have a central role because they are relatively
easy to develop, and in turn can be used to help create theorem-provers based
on other methodologies. Many people have noted connections with resolution;
in fact Maslov’s method readily converts tableau systems to resolution-style sys-
tems[Mints, 1991]. There is a clear relationship with the connection method ex-
plored, among other places, in[Wrightson, 1984b; Wrightson, 1984a]. Wallen’s
1990 book on non-classical theorem-proving[Wallen, 1990] exploits a relation-
ship between tableaus and the matrix method. Examples continue to appear in the
literature.

INTRODUCTION 39

The development of theorem-provers that are not tableau-based, but are derived
from them, is a topic of current research. The field is developing rapidly, so any-
thing more specific we say about it will be out of date by the time this appears in
print. I don’t know what comes after post-modernism generally, but for tableau
theorem-proving, maybe we have reached it.

5 CONCLUSIONS

We have given a general overview of how tableaus began and developed. Their his-
tory is much like their appearance—branching and re-branching. Ideas occurred
independently more than once; researchers influenced each other directly and in-
directly. Details are less important than the general picture of tableau history,
beginning with Gentzen, growing to encompass semantical ideas with Beth and
Hintikka, becoming an elegant tool with Lis and especially Smullyan, extending
to many logics, developing relationships with other proof techniques, and suggest-
ing exciting automation possibilities. Some of these topics will be explored further
in subsequent chapters.

With all this, there is much we have not discussed. Relationships with logic pro-
gramming were not mentioned though connections are many ([Fitting, 1994] will
serve as a representative example). Equality is a central topic in logic, but we said
little about it (see Beckert’s chapter). The system of Lis[1960] includes a complete
set of rules for equality, but it was little known at the time. Jeffrey’s book[1967]
presents essentially the same rules. Reeves discusses the topic in[1987] and there
is a theoretical treatment in Fitting’s book[1996]. Much has occurred since then—
we cannot discuss it adequately here. Higher order logic has not been mentioned,
though tableau systems for it exist. Toledo,[Toledo, 1975], investigates tableau
systems for arithmetic that use the!-rule, allowing infinite branching. Andrews,
[1986], develops tableaus for type theory. Smith,[1993], presents two tableau
systems for monadic higher-order logic. Van Heijenoort did research on tableau
systems for higher order logic, but this has not yet been published.

The invention of tableau systems will continue, simply because they are easier
to think of than other formulations. There is something inherently natural about
them, whether they grow out of proof theory as with Gentzen, or out of seman-
tics as with Beth and Hintikka. The increasing interest in non-classical theorem-
proving has brought tableaus to a position of prominence, because they exist for
many, many logics. The creation of logics, the development of tableau systems
for them, all are very active areas of research. May the history of tableaus need
rewriting in another generation.

40 MELVIN FITTING

ACKNOWLEDGEMENTS

I want to thank Perry Smith and Reiner H¨ahnle for their suggestions, which con-
siderably improved this chapter.

CUNY, New York

REFERENCES

[Andrews, 1986] P. B. Andrews.An Introduction to Mathematical Logic and Type Theory: To Truth
Through Proof. Academic Press, Orlando, Florida, 1986.

[Anellis, 1990] I. Anellis. From semantic tableaux to Smullyan trees: the history of the falsifiability
tree method.Modern Logic 1, 1, 36–69, 1990.

[Anellis, 1991] I. Anellis. Erratum, from semantic tableaux to Smullyan trees: the history of the
falsifiability tree method.Modern Logic 2, 2 (Dec. 1991), 219, 1991.

[Beckert, Hähnle and Schmitt, 1993] B. Beckert, R. H¨ahnle and P. H. and Schmitt. Theeven more
liberalized�-rule in free variable semantic tableaux. InProceedings of the third Kurt G¨odel Collo-
quium KGC’93, Brno, Czech Republic(aug 1993), G. Gottlob, A. Leitsch, and D. Mundici, Eds.,
Springer LNCS 713, pp. 108–119, 1993.

[Bell and Machover, 1977] J. L. Bell and M. Machover.A Course in Mathematical Logic. North-
Holland, Amsterdam, 1977.

[Belnap, 1977] N. D. Belnap Jr. A useful four-valued logic. InModern Uses of Multiple-Valued Logic,
J. M. Dunn and G. Epstein, Eds. D. Reidel, Dordrecht and Boston, pp. 8–37, 1977.

[Beth, 1953a] E. W. Beth. On Padoa’s method in the theory of definition.Indag. Math. 15, 330–339,
1953.

[Beth, 1953] E. W. Beth. Some consequences of the theorem of L¨owenheim-Skolem-G¨odel-Malcev.
Indag. Math. 15, 1953.

[Beth, 1955] E. W. Beth. Semantic entailment and formal derivability.Mededelingen der Kon. Ned.
Akad. v. Wet. 18, 13, 1955. new series.

[Beth, 1956] E. W. Beth. Semantic construction of intuitionistic logic.Mededelingen der Kon. Ned.
Akad. v. Wet. 19, 11, 1956. new series.

[Beth, 1958] E. W. Beth. On machines which prove theorems.Simon Stevin Wissen-Natur-Kundig
Tijdschrift 32, 49–60, 1958. Reprinted in[Siekmann and Wrighson, 1983] vol. 1, pp 79 – 90.

[Beth, 1959] E. W. Beth. The Foundations of Mathematics. North-Holland, Amsterdam, 1959. Re-
vised Edition 1964.

[Bibel et al., 1987] W. Bibel, F. Kurfess, K. Aspetsberger, P. Hintenaus and J. Schumann. Parallel
inference machines. InFuture Parallel Computers, P. Treleaven and M. Vanneschi, Eds. Springer,
Berlin, pp. 185–226, 1987.

[Bowen, 1982] K. A. Bowen. Programming with full first-order logic. InMachine Intelligence, Hayes,
Michie, and Pao, Eds., vol. 10, pp. 421–440, 1982.

[Bowen, 1980] K. A. Bowen. Programming with full first order logic. Tech. Rep. 6-80, Syracuse
University, Syracuse, NY, Nov. 1980.

[Broda, 1980] K. Broda. The relation between semantic tableaux and resolution theorem provers.
Tech. Rep. DOC 80/20, Imperial College of Science and Technology, London, Oct. 1980.

[Carnielli, 1987] W. A. Carnielli. Systematization of finite many-valued logics through the method of
tableaux.Journal of Symbolic Logic 52, 2, 473–493, 1987.

[Carnielli, 1991] W. A. Carnielli. On sequents and tableaux for many-valued logics.Journal of Non-
Classical Logic 8, 1, 59–76, 1991.

[Chang and Keisler, 1990] C. C. Chang and H. J. Keisler.Model Theory, third ed. North-Holland
Publishing Company, 1990.

[Cohenet al., 1974] J. Cohen, L. Trilling and P. Wegner. A nucleus of a theorem-prover described in
ALGOL-68. International Journal of Computer and Information Sciences 3, 1, 1–31, 1974.

[Dunn, 1976] J. M. Dunn. Intuitive semantics for first-degree entailments and ‘coupled trees’.Philo-
sophical Studies 29, 149–168, 1976.

INTRODUCTION 41

[Dunn, 1986] J. M. Dunn. Relevance logic and entailment. InHandbook of Philosophical Logic,
D. Gabbay and F. Guenthner, Eds., vol. 3. Kluwer, Dordrecht, 1986, ch. III.3, pp. 117–224.

[Feys, 1965] R. Feys. Modal Logics. No. IV in Collection de Logique Math´ematique, S`erie B. E.
Nauwelaerts (Louvain), Gauthier-Villars (Paris), Joseph Dopp, editor. 1965.

[Fitting, 1969] M. C. Fitting. Intuitionistic Logic Model Theory and Forcing. North-Holland Publish-
ing Co., Amsterdam, 1969.

[Fitting, 1972] M. C. Fitting. Tableau methods of proof for modal logics.Notre Dame Journal of
Formal Logic 13, 237–247, 1972.

[Fitting, 1983] M. C. Fitting Proof Methods for Modal and Intuitionistic Logics. D. Reidel Publishing
Co., Dordrecht, 1983.

[Fitting, 1986] M. C. Fitting A tableau based automated theorem prover for classical logic. Tech.
rep., Herbert H. Lehman College, Bronx, NY 10468, 1986.

[Fitting, 1988] M. C. Fitting First-order modal tableaux.Journal of Automated Reasoning 4, 191–213,
1988.

[Fitting, 1996] M. C. Fitting First-Order Logic and Automated Theorem Proving. Springer-Verlag,
1996. (First edition, 1990.)

[Fitting, 1993] M. C. Fitting Basic modal logic. InHandbook of Logic in Artificial Intelligence
and Logic Programming, D. M. Gabbay, C. J. Hogger, and J. A. Robinson, Eds., vol. 1. Oxford
University Press, Oxford, pp. 368–448, 1993.

[Fitting, 1994] M. C. Fitting Tableaux for logic programming.Journal of Automated Reasoning 13,
175–188, 1994.

[Gentzen, 1935] G. Gentzen. Untersuchungen ¨uber das logische Schliessen.Mathematische
Zeitschrift 39, 176–210, 405–431, 1935. English translation, ‘Investigations into logical deduc-
tion’, in [Szabo, 1969].

[Girard, 1986] J. Y. Girard. Linear logic.Theoretical Computer Science 45, 159–192, 1986.
[Hähnle, 1990] R. Hähnle. Towards an efficient tableau proof procedure for multiple-valued logics. In

Proceedings Workshop on Computer Science Logic, Heidelberg, vol. 533 ofLNCS, Springer-Verlag,
pp. 248–260, 1990.

[Hähnle, 1991] R. Hähnle. Uniform notation of tableaux rules for multiple-valued logics. InPro-
ceedings International Symposium on Multiple-Valued Logic, Victoria, IEEE Press, pp. 238–245,
1991.

[Hähnle, 1992] R. Hähnle. Automated Theorem Proving in Multiple-Valued Logics, vol. 10 of Inter-
national Series of Monographs on Computer Science. Oxford University Press, 1993.

[Hähnle and Schmitt, 1993] R. Hähnle and P. H. Schmitt. The liberalized�-rule in free variable se-
mantic tableaux.Journal of Automated Reasoning, to appear, 1993.

[Herz, 1929] P. Hertz. Über Axiomensysteme f¨ur beliebige Satzsysteme.Mathematische Annalen
101, 457–514, 1929.

[Heyting, 1956] A. Heyting. Intuitionism, an Introduction. North-Holland, Amsterdam, 1956. Re-
vised Edition 1966.

[Hintikka, 1953] J. Hintikka. A new approach to sentential logics.Soc. Scient. Fennica, Comm.
Phys.-Math. 17, 2, 1953.

[Hintikka, 1955] J. Hintikka. Form and content in quantification theory.Acta Philosophica Fennica
– Two Papers on Symbolic Logic 8, 8–55, 1955.

[Hintikka, 1961] J. Hintikka. Modality and quantification.Theoria 27, 110–128, 1961.
[Hintikka, 1962] J. Hintikka.Knowledge and Belief. Cornell University Press, 1962.
[Hughes and Cresswell, 1968] G. E. Hughes and Cresswell.An Introduction to Modal Logic. Methuen

and Co., London, 1968.
[Jeffrey, 1967] R. C. Jeffrey.Formal Logic: Its Scope and Limits. McGraw-Hill, New York, 1967.
[Kanger, 1957] S. G. Kanger. Provability in logic (Acta Universitatis Stockholmiensis, Stockholm

Studies in Philosophy, 1). Almqvist and Wiksell, Stockholm, 1957.
[Kleene, 1950] S. C. Kleene.Introduction to Metamathematics. D. Van Nostrand, North-Holland, P.

Noordhoff, 1950.
[Kripke, 1959] S. Kripke. A completeness theorem in modal logic.Journal of Symbolic Logic 24,

1–14, 1959.
[Kripke, 1963a] S. Kripke. Semantical analysis of modal logic I, normal propositional calculi.

Zeitschrift für mathematische Logik und Grundlagen der Mathematik 9, 67–96, 1963.
[Kripke, 1963b] S. Kripke. Semantical considerations on modal logics.Acta Philosophica Fennica,

Modal and Many-valued Logics, 83–94, 1963.

42 MELVIN FITTING

[Kripke, 1965] S. Kripke. Semantical analysis of modal logic II, non-normal modal propositional
calculus. InThe Theory of Models, J. W. Addison, L. Henkin, and A. Tarski, Eds. North-Holland,
Amsterdam, pp. 206–220, 1965.

[Lis, 1960] Z. Lis. Wynikanie semantyczne a wynikanie formalne (logical consequence, semantic and
formal). Studia Logica 10, 39–60, 1960. Polish, with Russian and English summaries.

[Manna and Waldinger, 1990] Z. Manna and R. Waldinger.The Logical Basis for Computer Program-
ming. Addison-Wesley, 1990. 2 vols.

[Manna and Waldinger, 1993] Z. Manna and R. Waldinger.The Deductive Foundations of Computer
Programming. Addison-Wesley, 1993.

[Matsumoto, 1960] K. Matsumoto. Decision procedure for modal sentential calculus S3.Osaka
Mathematical Journal 12, 167–175, 1960.

[Miglioli et al., 1988] P. Miglioli, U. Moscato and M. Ornaghi. An improved refutation system for
intuitionistic predicate logic. Rapporto interno 37/88, Dipartimento di Scienze dell’Informazione,
Universitá degli Studi di Milano, 1988.

[Miglioli et al., 1993] P. Miglioli, U. Moscato and M. Ornaghi. How to avoid duplications in refu-
tation systems for intuitionistic logic and Kuroda logic. Rapporto interno 99/93, Dipartimento di
Scienze dell’Informazione, Universit´a degli Studi di Milano, 1993.

[Miglioli et al., 1994] P. Miglioli, U. Moscato and M. Ornaghi. An improved refutation system for
intuitionistic predicate logic.Journal of Automated Reasoning 13, 3, 361–373, 1994.

[Mints, 1991] G. Mints. Proof theory in the USSR 1925 – 1969.Journal of Symbolic Logic 56, 2 ,
385–424, 1991.

[Mogilevskii and Ostroukhov, 1978] G. L. Mogilevskii and D. A. Ostroukhov. A mechanical proposi-
tional calculus using Smullyan’s analytic tables.Cybernetics 14, 526–529, 1978. Translation from
Kibernetika, 4, 43–46, 1978.

[Ohnishi, 1961] M. Ohnishi. Gentzen decision procedures for Lewis’s systems S2 and S3.Osaka
Mathematical Journal 13, 125–137, 1961.

[Ohnishi and Matsumoto, 1957] M. Ohnishi and K. Matsumoto. Gentzen method in modal calculi I.
Osaka Mathematical Journal 9, 113–130, 1957.

[Ohnishi and Matsumoto, 1959] M. Ohnishi and K. Matsumoto. Gentzen method in modal calculi II.
Osaka Mathematical Journal 11, 115–120, 1959.

[Ohnishi and Matsumoto, 1964] M. Ohnishi and K. Matsumoto. A system for strict implication.
Annals of the Japan Assoc. for Philosophy of Science 2, 183–188, 1964.

[Oppacher and Suen, 1988] F. Oppacher and E. Suen. HARP: A tableau-based theorem prover.Jour-
nal of Automated Reasoning 4, 69–100, 1988.

[Popplestone, 1967] R. J. Popplestone. Beth-tree methods in automatic theorem-proving. InMachine
Intelligence, N. L. Collins and D. Michie, Eds., vol. 1. American Elsevier, New York, pp. 31–46,
1967.

[Prawitz, 1960] D. Prawitz. An improved proof procedure.Theoria 26(1960). Reprinted in[Siek-
mann and Wrighson, 1983] vol. 1, pp 162 – 199.

[Prawitzet al., 1960] D. Prawitz, H. Prawitz and N. Voghera. A mechanical proof procedure and its
realization in an electronic computer.Journal of the ACM 7, 102–128, 1960.

[Rasiowa, 1951] H. Rasiowa. Algebraic treatment of the functional calculi of Heyting and Lewis.
Fundamenta Mathematica 38, 1951.

[Rasiowa, 1954] H. Rasiowa. Algebraic models of axiomatic theories.Fundamenta Mathematica 41,
1954.

[Reeves, 1985] S. V. Reeves. Theorem-proving by Semantic Tableaux. PhD thesis, University of
Birmingham, 1985.

[Reeves, 1987] S. V. Reeves. Adding equality to semantic tableaux.Journal of Automated Reasoning
3, 225–246, 1987.

[Rescher and Urquhart, 1971] N. Rescher and A. Urquhart.Temporal Logic. Springer-Verlag, 1971.
[Robinson, 1965] J. A. Robinson. A machine-oriented logic based on the resolution principle.Journal

of the ACM 12, 23–41, 1965.
[Rosseau, 1967] G. Rousseau. Sequents in many valued logic I.Fundamenta Mathematica 60, 23–33,

1967.
[Schmitt, 1987] P. H. Schmitt. The THOT theorem prover. Tech. Rep. TR–87.09.007, IBM Heidelbert

Scientific Center, 1987.
[Schröder, 1992] Schröder, J. Körner’s criterion of relevance and analytic tableaux.Journal of Philo-

sophical Logic 21, 2, 183–192, 1992.

INTRODUCTION 43

[Shankar, 1992] N. Shankar. Proof search in the intuitionistic sequent calculus. InAutomated De-
duction — CADE-11, D. Kapur, Ed., no. 607 in Lecture Notes in Artificial Intelligence. Springer-
Verlag, Berlin, pp. 522–536, 1992.

[Siekmann and Wrighson, 1983] J. Siekmann and G. Wrightson, Eds.Automation of Reasoning.
Springer-Verlag, Berlin, 1983. 2 vols.

[Smith, 1993] P. Smith. Higher-Order Logic, Model Theory, Recursion Theory, and Proof Theory.
Unpublished Manuscript, 1993.

[Smullyan, 1963] R. M. Smullyan. A unifying principle in quantification theory.Proceedings of the
National Academy of Sciences 49, 6, 828–832, 1963.

[Smullyan, 1965] R. M. Smullyan. Analytic natural deduction.Journal of Symbolic Logic 30, 123–
139, 1965.

[Smullyan, 1966] R. M. Smullyan. Trees and nest structures.Journal of Symbolic Logic 31, 303–321,
1966.

[Smullyan, 1968] R. M. Smullyan.First-Order Logic. Springer-Verlag, 1968. Revised edition, Dover
Press, NY, 1994.

[Smullyan, 1970] R. M. Smullyan. Abstract quantification theory. InIntuitionism and Proof Theory,
Proceedings of the Summer Conference at Buffalo N. Y. 1968, A. Kino, J. Myhill, and R. E. Vesley,
Eds. North-Holland, Amsterdam, pp. 79–91, 1970.

[Smullyan, 1973] R. M. Smullyan. A generalization of intuitionistic and modal logics. InTruth,
Syntax and Modality, Proceedings of the Temple University Conference on Alternative Semantics,
H. Leblanc, Ed. North-Holland, Amsterdam, pp. 274–293, 1973.

[Suchoón, 1974] W. Sucho´n. La méthode de Smullyan de construire le calcul n-valent des proposi-
tions de Łukasiewicz avec implication et n´egation.Reports on Mathematical Logic, Universities of
Cracow and Katowice 2, 37–42, 1974.

[Surma, 1984] S. J. Surma. An algorithm for axiomatizing every finite logic. InComputer Science and
Multiple-Valued Logics, D. C. Rine, Ed. North-Holland, Amsterdam, 1977, pp. 143–149. Revised
edition, 1984.

[Szabo, 1969] M. E. Szabo., Ed.The Collected Papers of Gerhard Gentzen. North-Holland, Amster-
dam, 1969.

[Tarski, 1938] A. Tarski. Der Aussagenkalk¨ul und die Topologie. Fundamenta Mathematica 31,
103–34, 1938. Reprinted as ‘Sentential calculus and topology’ in[Tarski, 1956].

[Tarski, 1956] A. Tarski. Logic, Semantics, Metamathematics. Oxford, 1956. J. H. Woodger transla-
tor.

[Toledo, 1975] S. Toledo.Tableau Systems for First Order Number Theory and Certain Higher Order
Theories, vol. 447 ofLecture Notes in Mathematics. Springer-Verlag, Berlin, 1975.

[Troelstra, 1992] A. S. Troelstra.Lectures on Linear Logic. No. 29 in CSLI Lecture Notes. CSLI,
1992.

[Wallen, 1990] L. A. Wallen. Automated Deduction in Nonclassical Logics. The MIT Press, 1990.
[Wang, 1960] H. Wang. Toward mechanical mathematics.IBM Journal for Research and Develop-

ment 4(1960), 2–22. Reprinted inA Survey of Mathematical Logic, Hao Wang, North-Holland, pp
224 – 268, 1960; and in[Siekmann and Wrighson, 1983], vol 1, pp 244 – 264.

[Wrightson, 1984a] G. Wrightson. Non-classical theorem proving using links and unification in se-
mantic tableaux. Tech. Rep. CSD-ANZARP-84-003, Victoria University, Wellington, NZ, 1984.

[Wrightson, 1984b] G. Wrightson. Semantic tableaux, unification and links. Tech. Rep. CSD-
ANZARP-84-001, Victoria University, Wellington, New Zealand, 1984.

44 MELVIN FITTING

MARCELLO D’AGOSTINO

TABLEAU METHODS FOR CLASSICAL
PROPOSITIONAL LOGIC

1 INTRODUCTION

Traditionally, a mathematical problem was considered ‘closed’ when an algorithm
was found to solve it ‘in principle’. In this sense the deducibility problem of classi-
cal propositional logic was already ‘closed’ in the early 1920’s, when Wittgenstein
and Post independently devised the well-known decision procedure based on the
truth-tables. As usually happens thispositiveresult ended up killing any theoret-
ical interest in the subject. In contrast, first order logic was spared by anegative
result. Its undecidability, established by Church and Turing in the 1930’s, made it
an ‘intrinsically’ interesting subject forever. If no decision procedure can be found,
that is all decision procedures have to be partial, the problem area is in no danger
of saturation: it is always possible to find ‘better’ methods (at least for certain
purposes).

This point of view reflected a situation in which logical investigations were
largely motivated by philosophical and mathematical (as opposed to computa-
tional) problems. Algorithms were mainly regarded as ideal objects churning out
their solutions in a ‘platonic’ world unaffected by realistic limitations of time and
space. The emergence and rapid growth of computing science over the last few
decades has brought about a dramatic change of attitude. Algorithms are devised
not to be ‘contemplated’ but to beimplemented, and an algorithm which solves
a problem ‘in principle’ might require unrealistic resources in terms of space and
time. For instance, the truth-table method requires checking2n rows for a formula
containingn distinct propositional variables. Therefore it quickly becomes infea-
sible even for relatively small values ofn. So, in some sense, it isnot a decision
procedure for full propositional logic, but only for formulas containing a ‘small’
number of variables.

This quest for feasibility has deeply affected the subject of computability theory
and, as a result, has led to a refinement of many traditional logical problems. Not
only is the question ofdecidabilityrefined by considering the efficiency of deci-
sion procedures, but also the question ofcompletenessis refined by considering
the length of proofsin a given system. Suppose we have proved that a systemS is
complete for classical propositional logic. It may well be, however, that for cer-
tain classes of tautologies the length of theirshortestS-proof grows beyond any
feasible limit, even for relatively ‘short’ tautologies. Hence, in some sense, the
proof-systemS is notcomplete.

Such refinements of old ‘closed’ problems have revitalised a subject which
seemed to be saturated and deserve only a brief mention as a stepping stone to the

46 MARCELLO D’AGOSTINO

‘real thing’. Open questions of theoretical computer science such asP =?NP and
NP =?co-NP (see [Garey and Johnson, 1979] and [Stockmeyer, 1987]), have
been shown to be equivalent to quantitative problems about decidability and proof-
length in propositional logic. Moreover, the widespread conjecture thatP 6= NP ,
although unproven, is presently providing the surrogate of a negative result. If
true, it would imply that there is nofeasible(i.e. polynomial time, see Section 2.3
below) decision procedure for classical propositional logic. Since it is believed to
be true by most researchers, as a matter of fact it is playing the same stimulating
role as the undecidability result has played with regard to first order logic.

Such quantitative questions about propositional logic are related to a plethora
of problems which are of the utmost practical and theoretical importance. One
example is the simplification of Boolean formulae. As Alasdair Urquhart put it
[Urquhart, 1992] ‘Here the general problem takes the form: how many logical
gates do we need to represent a given Boolean function? This is surely as simple
and central a logical problem that one could hope to find; yet, in spite of Quine’s
early contributions, the whole area has been simply abandoned by most logicians,
and is apparently thought to be fit only for engineers[. . .] our lack of understand-
ing of the simplification problem retards our progress in the area of the complexity
of proofs.’ In fact, the development of the NP-completeness theory has brought
to light a web of connections between propositional logic and a variety of hard
computational problems from different important areas of theoretical and techno-
logical research. From this point of view, the design of improved proof systems
and proof procedures for propositional logic isobjectivelya central theme in dis-
crete mathematics, quite independent of its impact on automated theorem proving
and before any first-order issue is raised.

This central role played by logic (and by propositional logic in particular) over
the last few decades has resulted in a greater awareness of the computational as-
pects of logical systems and a closer (or at least a fresh) attention to their proof-
theoretical presentations. Traditionally two proof systems were considered equiv-
alent if they proved exactly the same theorems. The other extreme of this view has
been vividly put forward by Gabbay:

“[. . .] a logical systemL is not just the traditional consequence rela-
tion `, but a pair(`;S`), where` is a mathematically defined con-
sequence relation (i.e. a set of pairs(�; Q) such that� ` Q) andS`
is an algorithmic system for generating all those pairs. Thus, accord-
ing to this definition, classical logic̀ perceived as a set of tautolo-
gies together with a Gentzen systemS` is not the same as classical
logic together with the two-valued truth-table decision procedureT`
for it. In our conceptual framework,(`;S`) is not the same logicas
(`;T`).1”

1[Gabbay, 1996, Section 1.1].

TABLEAU METHODS FOR CLASSICAL PROPOSITIONAL LOGIC 47

Gabbay’s proposal seems even more suggestive when considerations of compu-
tational complexity enter the picture. Different proof-theoretical algorithms for
generating the same consequence relation may have different complexities. Even
more interesting: algorithmic characterizations which appear to be ‘close’ to each
other from the proof-theoretical point of view may show dramatic differences as
far as their complexity is concerned.

In this chapter we shall adopt this point of view as a conceptual grid to explore
the landscape of propositional tableau methods.

2 PRELIMINARIES

2.1 Partial Valuations and Semi-valuations

Let us call apartial valuationany partial functionV : F 7! f1; 0g where 1 and 0
stand as usual for the truth-values (trueandfalserespectively) andF stands for the
sets of all formulae. It is convenient for our purposes to represent partial functions
as total functions with values inf1; 0; �gwhere� stands for the ‘undefined’ value.
By a total valuation we shall mean a partial valuation which for no formulaA
yields the value�. For every formulaAwe say thatA is true underV if V (A) = 1,
false underV if V (A) = 0 andundefined underV if V (A) = �. We say that a
sequent� ` � is true underV if V (A) = 0 for someA 2 � or V (A) = 1 for
someA 2 �. We say that it isfalse underV if V (A) = 1 for all A 2 � and
V (A) = 0 for all A 2 �.

A Boolean valuation, is regarded from this point of view as a special case of
a partial valuation ofF, namely one which is total and is faithful to the usual
truth-table rules, i.e. for all formulaeA andB:

1. V (:A) = 1 iff V (A) = 0

2. V (A _ B) = 1 iff V (A) = 1 or V (B) = 1

3. V (A ^ B) = 1 iff V (A) = 1 andV (B) = 1

4. V (A! B) = 1 iff V (A) = 0 or V (B) = 1

The consequence relation associated with classical propositional logic can be ex-
pressed in terms ofsequents, i.e. expressions of the form

(1) A1; : : : ; An ` B1; : : : ; Bm

(where theAi’s and theBi’s are formulae) with the same informal meaning as the
formula

A1 ^ : : : ^ An ! B1 _ : : : _ Bm:

The sequence to the left of the turnstyle is called ‘the antecedent’ and the sequence
to the right is called ‘the succedent’. Let us say that a valuationV falsifiesa se-
quent� ` � if V makes true all the formulae in� and false all the formulae in

48 MARCELLO D’AGOSTINO

�. In the ‘no-countermodel’ approach to validity we start from a sequent� ` �
intended as a valuation problem and try to find a countermodel to it — at the
propositional level a Boolean valuation which falsifies it. In fact, there is no need
for total valuations, but it is sufficient to construct some partial valuation satisfy-
ing certain closure conditions. Such partial valuations are known in the literature
under different names and shapes. Following Prawitz[1974] we shall call them
‘semivaluations’:

DEFINITION 1. A (Boolean)semivaluationis a partial valuationV satisfying the
following conditions:

1. if V (:A) = 1, thenV (A) = 0;

2. if V (:A) = 0, thenV (A) = 1.

3. if V (A _ B) = 1, thenV (A) = 1 or V (B) = 1;

4. if V (A _ B) = 0, thenV (A) = 0 andV (B) = 0;

5. if V (A ^ B) = 1, thenV (A) = 1 andV (B) = 1;

6. if V (A ^ B) = 0, thenV (A) = 0 or V (B) = 0;

7. if V (A! B) = 1, thenV (A) = 0 or V (B) = 1;

8. if V (A! B) = 0, thenV (A) = 1 andV (B) = 0;

The crucial property of semivaluations is that they can be readily extended to
Boolean valuations as stated by the following lemma whose proof is left to the
reader.

LEMMA 2. Every semivaluation can be extended to a Boolean valuation.

Each stage of our attempt to construct a semivaluation which falsifies a given
sequent� ` � can, therefore, be described as a partial valuation. We start from the
partial valuation which assigns1 to all the formulae in� and0 to all the formulae
in �, and try to refine it step by step, taking care that the classical rules of truth are
not infringed. If we eventually reach a partial valuation which is a semivaluation,
by virtue of Lemma 2 we have successfully described acountermodelto the orig-
inal sequent. Otherwise we have to ensure thatno refinement of the initial partial
valuation will ever lead to a semivaluation.

The search space, in this process, is a set of partial valuations which are natu-
rally ordered by the approximation relationship (in Scott’s sense[1970]):

V v V 0 if and only if V (A) � V 0(A) for all formulaeA

where� is the usual partial ordering over the truth-valuesf1; 0; �g, namely

TABLEAU METHODS FOR CLASSICAL PROPOSITIONAL LOGIC 49

1 0

�
The set of all these partial valuations, together with the approximation relation-

ship defined above, forms a lattice with a bottom element consisting of the ‘empty’
valuation (V (A) = � for all formulaeA). It is convenient to ‘top’ this lattice by
adding an ‘overdefined’ element>. This ‘fictitious’ element of the lattice does not
correspond to any real partial valuation and is used to provide a least upper bound
for pairs of partial valuations which have no common refinement2. Hence we can
regard the equation

V t V 0 = >
as meaning intuitively thatV andV 0 areinconsistent.

2.2 Expansion Systems

We assume a 0-order language defined as usual. We shall denote byX;Y; Z (pos-
sibly with subscripts) arbitrarysigned formulae(s-formulae for short), i.e. expres-
sions of the formTA orFA whereA is a formula. Theconjugateof an s-formula
is the result of changing its sign (soTA is the conjugate ofFA and viceversa).
Sets ofsignedformulae will be denoted byS;U; V (possibly with subscripts). We
shall use the upper case greek letters�;�; : : : for sets ofunsignedformulae. We
shall often writeS;X for S [fXg andS;U for S [U . Given a formulaA, the
set of itssubformulaeis defined in the usual way. We shall callsubformulae of
an s-formulasA (s = T; F) all the formulae of the formTB or FB whereB
is a subformula ofA. For instanceTA; TB; FA; FB will all be subformulae of
TA _ B.

DEFINITION 3. We say that an s-formulaX is satisfiedby a Boolean valuation
V if X = TA andV (A) = 1 orX = FA andV (A) = 0. A setS of s-formulae
is satisfiableif there is a Boolean valuationV which satisfies all its elements.

A set of s-formulaeS is explicitly inconsistentif S contains bothTA andFA
for some formulaA.

Sets of s-formulae correspond to the partial valuations of the previous section
in the obvious way (we shall omit the adjective ‘partial’ from now on): given a set

2Namely partial valuationsV andV 0 such that for someA in their common domain of definition
V (A) = 1 andV 0(A) = 0.

50 MARCELLO D’AGOSTINO

S of s-formulae its associated valuation is the valuationVS defined as follows:

VS(A) =

8<
:

1 if TA 2 S
0 if FA 2 S
� otherwise

(An explicitly inconsistent set of s-formulae is associated with the inconsistent
valuation denoted by>.) Conversely, given a partial valuationV its associated
set of s-formulae will be the setSV containingTA for every formulaA such that
V (A) = 1, andFA for every formulaA such thatV (A) = 0 (and nothing else).

The sets of s-formulae corresponding to semivaluations are known in the liter-
ature asHintikka setsor downward saturated sets. The sets of s-formulae corre-
sponding to Boolean valuations are often calledtruth setsor saturated sets.

The translation of Lemma 2 in terms of s-formulae is known as the (proposi-
tional) Hintikka lemma.

LEMMA 4 (Propositional Hintikka lemma).Every propositional Hintikka set is
satisfiable.

In other words, every Hintikka set can be extended to a truth set.
We shall now define the notion ofexpansion systemwhich generalizes the

tableau method.

DEFINITION 5.

1. An expansion ruleR of typehni, with n � 1, is a computable relation
between sets of s-formulae andn-tuples of sets of s-formulae satisfying the
following condition:

R(S0; (S1; : : : ; Sn)) =) for every truth-setS, if S0 � S,
thenSi � S for someSi.

If n = 1 we say that the rule is oflinear type, otherwise we say that the rule
is of branching type.

2. An expansion systemS is a finite set of expansion rules.

3. We say that a set of s-formulaeS0 is anexpansionof S under a ruleR if S0

belongs to the image ofS underR.

4. Let R be an expansion rule of typehni. A set of s-formulaeS is sat-
urated underR or R-saturatedif for every n-tuple S1; : : : ; Sn such that
R(S; (S1; : : : ; Sn), we have thatSi � S for at least oneSi.

5. Let S be an expansion system. A set of s-formulaeS is S-saturatedif it is
R-saturated for every ruleR of S.

The rules of an expansion system are intended as rules which help us in our
search for a countermodel to a given sequent� ` A. When we apply these rules

TABLEAU METHODS FOR CLASSICAL PROPOSITIONAL LOGIC 51

systematically, we construct atreewhose nodes are sets of s-formulae. The notion
of S-tree fora given set of s-formulaeS is defined inductively as follows:

DEFINITION 6.

1. S is anS-tree forS;

2. if T is anS-tree forS, andR is a rule ofS such thatR(S; (S1; : : : ; Sn)),
then the following tree is also anS-tree forS:

S

S1 � � � Sn

3. nothing else is anS-tree forS.

A branch� of an S-treeT is closedif the set
Sn
i=1 Si, whereS1; : : : ; Sn are

the sets of s-formulae associated with its nodes, is an explicitly inconsistent set.
Otherwise, we say that� is open. An S-treeT is closedif every branch ofT is
closed andopenotherwise.

The rules of the expansion systems we shall consider in the sequel will have the
following general form:

If a valuationV satisfies�(X1); : : : ; �(Xn), whereX1; : : : ; Xn are
s-formulae and� is a uniform substitution, thenV satisfies also all the
formulae of one of the sets�(S1); : : : ; �(Sn), whereS1; : : : ; Sn are
finite sets of s-formulae depending onX1; : : : ; Xn and�(Si) denotes
the result of applying the substitution� to every formula ofSi

This formulation suggests that, wheneverS is finite we can makeS-trees ‘slim-
mer’ by representing anS-tree forS as a tree whose nodes are labelled with s-
formulae rather than sets of s-formulae. First we generate the one-branch tree
whose nodes are labelled with the s-formulae inS (taken in an arbitrary sequence).
Then, at each application of anS-rule of typen to a branch� we split� into n
distinct branches each of which extends� by means of a sequence of s-formulae
as prescribed by the rule.

So if we deal with such ‘slim’S-trees, a typicalS-rule can be represented as
follows:

�0

�1 � � � �n

52 MARCELLO D’AGOSTINO

where�0;�1; : : : ;�n are vertical arrays ofschematics-formulae (i.e. schemas of
s-formulae which can be instantiated by s-formulae). The array�0 characterizes
the branches� to which the rule can be applied, namely those branches such that
S� contains at least one instance of every schematic s-formula in�0. The arrays
�1; : : : ;�n characterize, in a similar way, the extensions of� resulting from an
application of the rule.

Given a ruleR of an expansion systemS, we shall say that an application ofR
to a branch� is analyticwhen it has thesubformula property, i.e. if all the new
s-formulae appended to the end of� are subformulae of s-formulae occurring in
�. A ruleR is analyticif every application of it is analytic.

In fact, all the notions defined in this section, as well as in the previous one,
are by no means restricted to the context of s-formulae. If we interpretTA as
meaning the same thing as the unsigned formulaA andFA as meaning the same
thing as the unsigned formula:A, all these notions can be reformulated in terms
of unsigned formulae with minor modifications (which we leave to the reader).
The only change which might have some significance from the technical view-
point concerns the notion ofanalyticapplication of a rule. We shall say that an
unsigned formulaA is aweak subformulaof an unsigned formulaB if A is either
a subformula ofB or the negation of a subformula ofB. If R is an expansion rule
for unsignedformulae, we shall say that an application ofR to a branch� is ana-
lytic when it has theweak subformula property, that is when all the new unsigned
formulae appended to the end of� are weak subformulae of formulae occurring
in �. However, we shall often neglect this distinction and speak of subformulae
and subformula property also when we mean weak subformulae and weak subfor-
mula property, provided this creates no confusion. Accordingly, we shall speak
of ‘formulae’ to mean either s-formulae or unsigned formulae depending on the
context.

DEFINITION 7. An expansion systemS is said to beconfluentif it has the fol-
lowing property:

Conf If � is an unsatisfiable set of formulae, everyS-tree for� can be expanded
into a closed one.

Confluence is a crucial property for an expansion system. It ensures that we
never take ‘the wrong path’ in our attempt to construct a closed tableau. Whatever
move we may make, it will not prevent us from succeeding if there is a closed
tableau for the input set of formulae. In other words, theorder in which the expan-
sion rules are applied does not affect the final result.

Let us say that a set of formulae� is S-inconsistent if there exists a closedS-tree
for �.

DEFINITION 8. An expansion systemS is said to becompleteif every unsatisfi-
able set of formulae� is S-inconsistent.

We now say that abranch� of anS-tree issaturatedif the set of all formulae

TABLEAU METHODS FOR CLASSICAL PROPOSITIONAL LOGIC 53

occurring in� is S-saturated. AnS-treeT is said to becompletedif every branch
of T is either closed or saturated.

The following proposition establishes a sufficient condition for both confluence
and completeness of an expansion system:

PROPOSITION 9.An expansion systemS is completeandconfluent if it satisfies
the following conditions:

1. for every set of formulae� there exists a completedS-tree for�;

2. if � is an openS-saturated branch of anS-tree, the set�� of the formulae
occurring in� is a Hintikka set.

Proof. AssumeS satisfies conditions 1 and 2 above. Suppose a set� of formulae
is S-consistent, that is everyS-tree for� is open. By hypothesis there exists a
completedS-tree, sayT , for � which must also be open. Hence this completed
S-tree has an openS-saturated branch�. Again by hypothesis, the set�� of the
formulae occurring in� is a Hintikka set, and therefore�� is satisfiable. Since
� � ��, it follows that� is also satisfiable. SoS is complete. Now, letT be a
tableau for an unsatisfiable set� of formulae and let� be an open branch ofT .
Let us denote by�� the set of all formulae occurring in�. Since� � ��, �� is
also unsatisfiable. By 1 above, there is a completedS-tree for�� which must be
closed. �

2.3 Background on Computational Complexity

The subject of computational complexity can be seen as a refinement of the tra-
ditional theory of computability. The refinement, which is motivated by practical
considerations and above all by the rapid development of computer science, con-
sists of replacing the fundamental question, ‘Is the problemP computationally
solvable?’ with the question, ‘IsP solvable within bounded resources (time and
space)?’. Workers in computational complexity agree in identifying the class of
‘practically solvable’ or ‘feasible’ problems with the classP of the problems that
can be solved by a Turing machine within polynomial time, i.e. time bounded
above by a polynomial in the length of the input.

Most computational problems can be viewed as language-recognition problems
i.e. problems which ask whether or not a word over a given alphabet is a member
of some distinguished set of words. For instance, the problem of deciding whether
a formula of the propositional calculus is a tautology can be identified with the set
TAUT of all the words over the alphabet of propositional calculus which express
tautologies, and an algorithm which solves the problem is one which decides, given
a word over the alphabet, whether or not it belongs to TAUT. So the classP can
be described as the class of the languages which can be recognized in polynomial
time by a Turing machine.

54 MARCELLO D’AGOSTINO

The rationale of this identification of feasible problems with sets inP is that,
as the length of the input grows, exponential time algorithms require resources
which quickly precipitate beyond any practical constraint. Needless to say, an
exponential time algorithm may be preferable in practice to a polynomial time
algorithm with running time, say,n1000. However, the notion of polynomial time
computability is theoretically useful because it is particularly robust: it is invariant
under any reasonable choice of models of computation. In fact, there is an analog
of the Church-Turing thesis in the field of computational complexity, namely the
thesis that a Turing machine can simulate any ‘reasonable’ model of computation
with at most a polynomial increase in time and space. Moreover polynomial time
computability is invariant under any reasonable choice of ‘encoding scheme’ for
the problem under consideration. Finally, ‘natural problems’, i.e. problems which
arise in practice and are not specifically constructed in order to defy the power
of our computational devices, seem to show a tendency to be either intractable or
solvable in time bounded by a polynomial of reasonably low degree.

The analog of the classP , when non-deterministic models of computation are
considered, for example non-deterministic Turing machines,3 is the classNP of
the problems which are ‘solved’ in polynomial time by some non-deterministic
algorithm. The classNP can be viewed as the class of all languagesL such that,
for every wordw 2 L, there is a ‘short’ proof of its membership inL, where
‘short’ means that the length of the proof is bounded above by some polynomial
function of the length ofw. (See [Garey and Johnson, 1979] and [Stockmeyer,
1987] for definitions in terms of non-deterministic Turing machines.) The central
role played by propositional logic in theoretical computer science is related to the
following well-known results[Cook, 1971; Cook and Reckhow, 1974]:

1. There is a deterministic polynomial time algorithm for the tautology prob-
lem if and only ifP = NP .

2. There is a non-deterministic polynomial time algorithm for the tautology
problem if and only ifNP is closed under complementation.

As far as the first result is concerned, the theory ofNP-completeness4 is providing
growing evidence for the conjecture thatP 6= NP , which would imply that no
proof procedurecan be uniformly feasible for the whole class of tautologies (it
can of course be feasible for a number of infinite subclasses of this class).

The second result involves the notion of aproof systemrather than the notion
of a proof procedure. The following definitions are due to Cook and Reckhow
[Cook and Reckhow, 1974] (�� denotes the set of all finite strings or ‘words’ over
the alphabet�):

DEFINITION 10. If L � ��, aproof systemfor L is a functionf : ��
1 7! L for

3See [Garey and Johnson, 1979] and [Stockmeyer, 1987].
4We refer the reader to[Garey and Johnson, 1979].

TABLEAU METHODS FOR CLASSICAL PROPOSITIONAL LOGIC 55

some alphabet�1, wheref 2 L (the class of functions computable in polynomial
time).

The condition thatf 2 L is intended to ensure that there is a feasible way, when
given a string over�1, of checking whether it represents a proof and what it is a
proof of. So, for example, a proof systemS is associated with a functionf such
thatf(x) = A if x is a string of symbols which represents a legitimate proof ofA
in S. If x does not represent a proof inS, thenf(x) is taken to denote some fixed
tautology inL.

DEFINITION 11. A proof systemf is polynomially boundedif there is a poly-
nomialp(n) such that for ally 2 L, there is anx 2 ��

1 such thaty = f(x) and
jxj � p(jyj), wherejzj is the length of the stringz.

This definition captures the idea of a proof system in which, for every ele-
ment ofL, thereexistsa ‘short’ proof of its membership inL. If a proof system
is polynomially bounded, this does not imply (unlessP = NP) that there is a
proof procedure based on it (namely a deterministic version) which is polynomi-
ally bounded. On the other hand if a proof system isnotpolynomially bounded,a
fortiori there is no polynomially bounded proof procedure based on it.

The question of whether a proof system is polynomially bounded or not is one
concerning itsabsolutecomplexity. Most conventional proof systems for propo-
sitional logic have been shownnot to be polynomially bounded by exhibiting for
each system some infinite class of ‘hard examples’ which have no polynomial size
proofs. One consequence of these results (for an overview see[Urquhart, 1995]),
is that we should not expect a complete proof system to be feasible and should be
prepared either to give up completeness and restrict our language in order to attain
feasibility (this is the line chosen for some of the resolution-based applications),
or to appeal to suitableheuristics, namelyfallible ‘strategies’ to guide our proofs.
In fact the results mentioned above imply that heuristics alone is not sufficient if
we want to be able to obtain proofs expressible in some conventional system. So
we should be prepared to use heuristicsandgive up completeness. However the
importance of the complexity analysis of proof systems is by no means restricted
to theP versusNP question. Nor should we conclude that all conventional sys-
tems are to be regarded as equivalent and that the only difference is caused by the
heuristics that we use. On the contrary, besides the questions concerning the abso-
lute complexity of proof systems, there are many interesting ones concerning their
relativecomplexity which are computationally significant even when the systems
have been proved intractable. As far as automated deduction is concerned, such
questions of relative complexity may be relevant, before any heuristic considera-
tions, to the choice of an appropriate formal system to start with.

In the study of the relative complexity of proof systems, we have to provide a
quantitativeversion of some basic qualitative notions. LetSbe a proof system for
propositional logic. We write

�
n

`S A

56 MARCELLO D’AGOSTINO

to mean that there is a proof� of A from � in the systemS such thatj�j � n
(wherej�j denotes as usual thelengthof � intended as a string of symbols over
the alphabet ofS).

Suppose that, given two systemsSandS0, there is a functiong such that for all
�; A:

(2) �
n

`S0 A =) �
g(n)

`S A

we are interested in the rate of growth ofg for particular systemsS andS0. Pos-
itive results about the above relation are usually obtained by means ofsimulation
procedures:

DEFINITION 12. If f1 : ��
1 7! L andf2 : ��

2 7! L are proof systems for
L, a simulationof f1 in f2 is a computable functionh : ��

1 7! ��
2 such that

f2(h(x)) = f1(x) for all x 2 ��
1.

Negative results consist oflower boundsfor the functiong.
An important special case of the relation in (2) occurs wheng(n) is a polyno-

mial in n. This can be shown by exhibiting a simulation function (as in defini-
tion 12)h such that for some polynomialp(n), jh(x)j � p(jxj) for all x. In this
caseS is said topolynomially simulate,5 or shortlyp-simulate, S0. The simulation
function h is then a mapping from proofs inS0 to proofs inS which preserves
feasibility: if S0 is a polynomially bounded system forL, so isS (whereL can
be any infinite subset of TAUT). Thep-simulation relation is a quasi-ordering and
its symmetric closure is an equivalence relation. We can therefore order proof
systems and put them into equivalence classes with respect to their relative com-
plexity. Systems belonging to the same equivalence class can be considered as
having ‘essentially’ (i.e. up to a polynomial) the same complexity. On the other
hand if S p-simulatesS0, but there is nop-simulation in the reverse direction, we
can say that, as far as the length of proofs is concerned,S is essentially more ef-
ficient thanS0 — S is polynomially bounded for everyL � TAUT for which
S0 is polynomially bounded but the opposite is not true; thereforeS has a larger
‘practical’ scope thanS0.

The study of the relative complexity of proof systems was started by Cook and
Reckhow[1974; 1979]. Later on, some open questions were settled and new ones
have been raised (see[Urquhart, 1995] for a survey and a map of thep-simulation
relation between a number of conventional proof systems). Results expressed in
terms of polynomial simulation, in the Cook and Reckhow tradition, refer to the
relative length ofminimalproofs in different systems and do not say much about
the relative difficulty ofproof-search. In other words, ‘easy’ proofs may be rather
hard to find! A crucial consideration is therefore the size of the search space in

5Our definition ofp-simulation is the same as the one used in[Buss, 1987] and is slightly different
from the original one given, for instance, in[Cook and Reckhow, 1979]. However it is easy to see
that the two definitions serve exactly the same purposes as far as the study of the relative complexity of
proof systems is concerned.

TABLEAU METHODS FOR CLASSICAL PROPOSITIONAL LOGIC 57

which such‘ easy’ proofs are to be found. In some cases we can define systematic
procedures to explore the search space efficiently, so that a ‘speed-up’ in proof-
length can be translated into a similar speed-up in proof-search. In other cases, we
may not know of any such systematic procedure and theexistenceof shorter proofs
may not help us developing more efficient proof procedures. So the significance
of these results for automated deduction must be considered case by case.

3 SMULLYAN’S TABLEAUX

3.1 Tableau Expansion Rules

The tableau rules have been introduced in Fitting’s chapter. For the reader’s con-
venience we list them all in Table 1 both in their signed and unsigned versions.
Let us consider the signed rules first. We can distinguish betweenlinear rules,

Signed rules

TA ^ B
TA
TB

FA ^ B
FA FB

TA _ B
TA TB

FA _B
FA
FB

TA! B
FA TB

FA! B
TA
FB

T:A
FA

F:A
TA

Unsigned rules

A ^ B
A
B

:(A ^B)
:A :B

A _ B
A B

:(A _ B)
:A
:B

A! B
:A B

:(A! B)
A
:B

::A
A

Table 1. Tableau rules for signed and unsigned formulae

which apply to formulae of type� (in Smullyan’s unifying notation, see Fitting’s
introduction), andbranchingrules which apply to formulae of type�. Some of
the linear rules have two conclusions, which are asserted ‘conjunctively’, i.e. they
are both true at the same time if the premise is true. We could, of course, describe
these rules as pairs of single-conclusion rules. For instance the rules for elimi-
nating true conjunctions is equivalent to the following pair of single-conclusion
rules:

58 MARCELLO D’AGOSTINO

TA ^ B
TA

TA ^ B
TB

In Smullyan’s unifying notation, this amounts to decomposing the two-conclusion
rule

�
�1
�2

into the two single-conclusion rules:

�
�1

�
�2

So, we can describe the tableau method as an example of expansion system,
with eight rules of typeh1i— those for eliminating the�-formulae — and three
rules of typeh2i— those for eliminating the�-formulae. All the rules areanalytic
in the sense explained above: every (signed) formula which occurs as a conclusion
is a (signed) subformula of the (signed) formula which occurs as premiss of the
rule.

3.2 Confluence and Completeness

THEOREM 13. A set� of formulae is unsatisfiable if and only if there is a closed
tableau for�.

Proof. The if-direction of this theorem (soundnessof tableaux) depends on the
fact that the tableau expansion rules preserve the following property: any valuation
satisfying all the formulae in a setS must also satisfy all the formulae contained
in at least one branch of any tableau forS. Hence if a tableau forS is closed, no
valuation can satisfy all the formulae inS.

The only-if direction (completenessof tableaux) follows from Proposition 9
above. To see why, observe that a branch� of a tableau is saturated only if it
satisfies the following two conditions:

1. For every�-formula in�, both�1 and�2 also belong to�.

2. For every�-formula in�, either�1 or �2 also belongs to�.

So, the set of formulae in an open saturated branch is a Hintikka set (see Chapter 1).
We now show that foreveryset� of formulae we can construct a completed tableau
for it. This will imply, by Proposition 9 that the tableau method is both confluent
and complete.

TABLEAU METHODS FOR CLASSICAL PROPOSITIONAL LOGIC 59

Let us then say that a noden is fulfilled if (1) it is an atomic s-formula or (2) it is
of type� and both�1 and�2 occur in all the branches passing throughn or (3) it
is of type� and for every branch� passing through the node either�1 or�2 occurs
in �. Clearly a tableau is completed if and only if every node in it is fulfilled.

A simple procedure for constructing a completed tableau is the following one
(from [Smullyan, 1968, [pp. 33–34]). Let � be a set of s-formulae arranged in a
denumerable sequenceX1; X2; : : :. Start the tree withX1. This node constitutes
thelevel 1. Then fulfil6 the origin and appendX2 to every open branch. Call all the
nodes so obtainednodes of level 2. At thei-th step fulfil all the nodes of leveli�1
and appendXi to the end of each open branch. So every node gets fulfilled after
a finite number of steps. The procedure either terminates with a closed tableau or
runs forever. (Notice that if� is finite, the procedure always terminates). In the
latter case we ‘obtain’ aninfinite tree which is a completed tableau for�. �

3.3 Tableaux as a Decision Procedure

TheDecision Problem for Propositional Logicis the set of all questions ‘isB a
consequence of�?’ (whereB is a formula and� a finite set of formulae) or, more
in general, ‘is the sequent� ` � true?’ A decision procedureis a systematic
method, oralgorithm, to answer all these questions. We have seen that in classi-
cal logic this problem is reduced to thesatisfiabilityproblem, i.e. to the set of
questions ‘is� satisfiable?’ for any finite set of formulae�

Notice that when the original set� is finite, the procedure described in the
previous section is indeed a decision procedure. It always terminates in a finite
number of steps either with a closed tableau, if� is unsatisfiable, or with an open
completed tableau, if� is satisfiable. If� is allowed to be infinite, it is asemi-
decisionprocedure, i.e. it is guaranteed to terminate only ifS is unsatisfiable,
while if S is satisfiable, it runs forever.

3.4 Tableaux and the Sequent Calculus

Tableaux have been introduced in Chapter 1 which also mentions their close rela-
tion to Gentzen’s sequent calculus. Here we elaborate on this topic and show how
the tableau rules correspond to a semantic interpretation of (a suitable variant of)
Gentzen’s sequent rules.

Invertible Sequent Calculi

Gentzen introduced the sequent calculiLK andLJ as well as the natural deduction
calculiNK andNJ in his famous 1935 paper[Gentzen, 1935]. Apparently he con-
sidered the sequent calculi as technically more convenient for metalogical investi-

6By ‘fulfilling a node’ we mean applying the appropriate tableau rule so that the node becomes
fulfilled.

60 MARCELLO D’AGOSTINO

gation.7 In particular he thought that they were ‘especially suited to the purpose’
of proving theHauptsatz[his ‘Fundamental Theorem’] and that their form was
‘largely determined by considerations connected with [this purpose]’.8 He called
these calculi ‘logistic’ because, unlike the natural deduction calculi, they do not
involve the introduction and subsequent discharge of assumptions, but deal with
formulae which are ‘truein themselves, i.e. whose truth is no longerconditional
on the truth of certain assumption formulae’.9 Such ‘unconditional’ formulae are
sequents(see p. 47 above), i.e. expressions of the form

(3) A1; : : : ; An ` B1; : : : ; Bm

In the case of intuitionistic logic the succedent (the expression to the right of the
turnstile) may contain at most one formula. In this chapter we shall consider the
classical system and focus on thepropositionalrules.

Although Gentzen considered the antecedent and the succedent assequences,
it is often more convenient to usesets, which eliminates the need for ‘structural’
rules to deal with permutations and repetitions of formulae.10 Table 2 shows the
rules of Gentzen’sLK once sequences have been replaced by sets (we use�;�,
etc. for sets of formulae and write�; A as an abbreviation of�[fAg). A proof of
a sequent� ` � consists of a tree of sequents built up in accordance with the rules
and on which all the leaves are axioms. Gentzen’s celebratedHauptsatzsays that
the cut rule can be eliminated from proofs. This obviously implies that the cut-free
fragment is complete. Furthermore, one can discard the last structural rule left —
the thinning rule — and do without structural rules altogether without affecting
completeness, provided that the axioms are allowed to have the more general form

�; A ` �; A:

This well-known variant corresponds to Kleene’s systemG4 [Kleene, 1967, chap-
ter VI].

Gentzen’s rules have become a paradigm both in proof-theory and in its appli-
cations. This is not without reason. First, like the natural deduction calculi, they
provide a precise analysis of the logical operators by specifying how each operator
can be introduced in the antecedent or in the succedent of a sequent.11‘Second,
their form ensures the validity of theHauptsatz: each proof can be transformed

7[Gentzen, 1935], p. 69.
8[Gentzen, 1935, p. 89].
9[Gentzen, 1935], p. 82.

10This reformulation is adequate for classical and intuitionistic logic, but not if one wants to use
sequents for some other logic, like relevance or linear logic, in which the number of occurrences of
formulae counts. For such logics the antecedent and the succedent are usually represented asmultisets;
see [Thistlewaiteet al., 1988] and [Avron, 1988].

11Whereas in the natural deduction calculi there are, for each operator, an introduction and an elim-
ination rule, in the sequent calculi there are only introduction rules and the eliminations take the form
of introductions in the antecedent. Gentzen seemed to consider the difference between the two formu-
lations as a purely technical aspect (see[Sundholm, 1983]). He also suggested that the rules of the

TABLEAU METHODS FOR CLASSICAL PROPOSITIONAL LOGIC 61

Axioms

A ` A

Structural rules

� ` �
[Thinning]

�;� ` �;�

�; A ` � � ` �; A
[Cut]

� ` �

Operational rules

�; A ` � �; B ` �
[I-_left]

�; A _ B ` �

� ` �; A � ` �; B
[I-^right]

� ` �; A ^ B
�; A;B ` �

[I-^left]
�; A ^ B ` �

� ` �; A;B
[I-_right]

� ` �; A _B
� ` �; A �; B ` �

[I-!left]
�; A! B ` �

�; A ` �; B
[I-!right]

� ` �; A! B

� ` �; A
[I-:left]

�;:A ` �

�; A ` �
[I-:right]

� ` �;:A

Table 2. Sequent rules for classical propositional logic

into one which is cut-free, and cut-free proofs enjoy thesubformula property: ev-
ery sequent in the proof tree contains only subformulae of the formulae in the
sequent to be proved.

From a conceptual viewpoint this property represents the notion of a purely
analyticor ‘direct’ argument12: ‘no concepts enter into the proof other than those
contained in its final result, and their use was therefore essential to the achievement
of that result’[Gentzen, 1935, p. 69], so that ‘the final result is, as it were, gradually
built up from its constituent elements’[Gentzen, 1935, p.88]. Third, a cut-free
system, like Kleene’sG4, seems to be particularly suited to a ‘backward’ search

natural deduction calculus could be seen asdefinitionsof the operators themselves. In fact he argued
that the introduction rules alone are sufficient for this purpose and that the elimination rules are ‘no
more, in the final analysis, than consequences of these definitions’[Gentzen, 1935, p. 80]. He also
observed that this ‘harmony’ is exhibited by the intuitionistic calculus but breaks down in the classical
case. For a thorough discussion of this subtle meaning-theoretical issue the reader is referred to the
writings of Michael Dummett and Dag Prawitz, in particular[Dummett, 1978] and [Prawitz, 1978].

12On this point see[Statman, 1977].

62 MARCELLO D’AGOSTINO

for proofs: instead of going from the axioms to the endsequent, one can start from
the endsequent and use the rules in the reverse direction, going from the conclusion
to suitable premises from which it can be derived.

This method, which is clearly reminiscent of Pappus’ ‘theoretical analysis’,13

works only in virtue of an important property of the rules ofG4 which is described
in Lemma 6 of [Kleene, 1967], namely theirinvertibility.

DEFINITION 14. A rule isinvertible if the provability of the sequent below the
line in each application of the rule implies the provability of all the sequents above
the line.

As was early recognized by the pioneers of Automated Deduction14, if a logical
calculus has to be employed for this kind of ‘backward’ proof-search it is important
that its rules be invertible: this allows us to stop as soon as we reach a sequent that
we can recognize as unprovable (for instance one containing only atomic formulae
and in which the antecedent and the succedent are disjoint) and conclude that the
initial sequent is also unprovable. We should notice that the absence of the thinning
rule is crucial in this context. In fact, it is easy to see thatthe thinning rule is
not invertible: the provability of its conclusion does not imply, in general, the
provability of the premise.

As far as classical logic is concerned, a system likeG4 admits of an interesting
semantic interpretation. Let us say that a sequent� ` � is valid if every situation
(i.e. a Boolean valuation) which makes all the formulae in� true, also makes true
at least one formula in�. Otherwise if some situation makes all the formulae in�
true and all the formulae in� false, we say that the sequent isfalsifiableand that
the situation provides acountermodelto the sequent.

According to this semantic viewpoint we prove that a sequent is valid by ruling
out all possible falsifying situations. So a sequent� ` � represents avaluation
problem: find a Boolean valuation which falsifies it. Thesoundnessof the rules
ensures that a valuation which falsifies the conclusion must also falsify at least one
of the premises. Thus, if applying the rules backwards we reach an axiom in every
branch, we are allowed to conclude that no falsifying valuation is possible (since
no valuation can falsify an axiom) and that the endsequent is therefore valid. On

13The so-called ‘method of analysis’ was largely used in the mathematical practice of the ancient
Greeks, its fullest description can be found in Pappus (3rd century A.D.), who writes:

Now analysis is a method of taking that which is sought as though it were admitted
and passing from it through its consequences in order, to something which is admitted
as a result of synthesis; for in analysis we suppose that which is sought be already
done, and we inquire what it is from which this comes about, and again what is the
antecedent cause of the latter, and so on until, by retracing our steps, we light upon
something already known or ranking as a first principle; and such a method we call
analysis, as being a solution backwards ([Thomas, 1941] pp. 596–599.).

This is the so-calleddirectionalsense of analysis. The idea of an ‘analytic method’, however, is often
associated with another sense of ‘analysis’ which is related to the ‘purity’ of the concepts employed to
obtain a result and, in the framework of proof-theory, to thesubformula principleof proofs.

14See for instance[Matulis, 1962].

TABLEAU METHODS FOR CLASSICAL PROPOSITIONAL LOGIC 63

the other hand, theinvertibility of the rules allows us to stop as soon as we reach a
falsifiable sequent and claim that any falsifying valuation provides a countermodel
to the endsequent. Again, if the thinning rule were allowed, we would not be be
able, in general, to retransmit falsifiability back to the endsequent. So, if employed
in bockward search procedures, the thinning rule may result in the loss of crucial
semantic information.

The construction of an analytic tableau for a sequent� ` � closely corre-
sponds to the systematic search for a countermodel outlined above except that
Smullyan’s presentation uses trees of formulae instead of trees of sequents. Their
correspondence with the rules of invertible sequent calculi is straightforward and
is illustrated in [Smullyan, 1968] and [Smullyan, 1968b] and [Sundholm, 1983].

3.5 Tableaux and Natural Deduction

Is Natural Deduction Really ‘Natural’?

Gentzen’s natural deduction was intended by his author as a deductive system
which ‘comes as close as possible to actual reasoning’15, and so it is still regarded
by most of the logic community, as shown by the prominent role it plays in most
undergraduate courses (see the Appendix for a listing of the natural deduction
rules). On the other hand, there is considerable accordance in regarding natural
deduction as unsuitable for automated deduction, because it does not appear to
share the ‘mechanical’ character of other proof systems such as tableaux and reso-
lution. As has been convincingly argued by Wilfried Sieg, this widespread opinion
is to a large extent the result of a prejudice and (normal) natural deductiondoes
admit, at least in principle, of proof-search strategies comparable to those adopted
in more popular approaches to automated deduction (see[Sieg, 1993]).

Our main argument in favour of tableau methods versus natural deduction meth-
ods is of a different nature and puts in question the received view that the latter are
more ‘natural’ than the former. In fact, natural deduction rules donot capture the
classical meaningof the logical operators. This was already remarked in[Prawitz,
1965], where the author pointed out that natural deduction rules are nothing but a
reading of Heyting’s explanations of theconstructive meaningof the logical op-
erators [Heyting, 1956].16 In particular the rules for the conditional are based

15[Gentzen, 1935], p. 68.
16In the classical system of natural deduction, as argued in[Prawitz, 1971], ‘classicaldeductive

operations are then analysed as consisting of the constructive ones plus a principle of indirect proof for
atomic sentences’(p. 244), and ‘one may doubt whether this is the proper way of analysing classical
inferences’(p. 244–245). Prawitz suggested that a good candidate for this role could be the classical
sequent calculus, since its rules are ‘closer to the classical meaning of the logical constants’(p. 245).
More recently this criticism of natural deduction has been taken up and extended in[Girard et al.,
1989] and [Cellucci, 1992].

64 MARCELLO D’AGOSTINO

on an interpretation of this operator which has nothing to do with the classical
interpretation based on the truth-tables.17

This mismatch between the natural deduction rules and the classical meaning
of the logical operators is responsible for the fact that rather simple classical tau-
tologies become quite hard to prove within the natural deduction framework, in
the sense that their simplest proofs must involve ‘tricks’ which are far from being
natural.

Let us consider, for instance, one ofde Morgan’s laws

:(P ^Q)! (:P _ :Q)

and try to prove it in the classical natural deduction system with theclassical
reductio ad absurdumrule. It is not difficult to check that the simplest proof one
can obtain is the following:

:(P ^Q)1

:(:P _ :Q)2

:P 3

3
:P _ :Q

2; 3
F

2
P

:(:P _ :Q)2

:Q4

4
:P _ :Q

2; 4
F

2
Q

2
P ^Q

2; 1
F

1
:P _ :Q

;
:(P ^Q)! (:P _ :Q)

where the numerals on the right of the inference lines mean that the conclusion
depends on the assumptions marked with the same numerals.

Notice that we obtain a rather unnatural deduction whatever variant of ‘natural’
deduction we may decide to use, although probably the least bad of all is obtained
by means of the variant whichexplicitly incorporates the principle of bivalence in
the form of the ‘classical dilemma’ rule:

17This does not apply, however, to the multi-conclusion system proposed by[Cellucci, 1992] which
is, in fact, a mixture of natural deduction and sequent calculus.

TABLEAU METHODS FOR CLASSICAL PROPOSITIONAL LOGIC 65

:(P ^Q)1

P 2 Q3

2; 3
P ^Q

1; 2; 3
F

1; 3
:P

1; 3
:P _ :Q

:Q3

3
:P _ :Q

1
:P _ :Q

;
:(P ^Q)! (:P _ :Q)

Another example of a tautology whose natural deduction proofs are extremely
contrived is Peirce’s law:((P ! Q) ! P) ! P . The reader can verify that any
attempt to prove this classical tautology within the natural deduction framework
leads to logical atrocities. Here is a typical proof:

(P ! Q)! P 1

:P 2 P 3

2; 3
F

2; 3
Q

2
P ! Q

1; 2
P :P 2

1; 2
F

1
P

;
((P ! Q)! P)! P

It should be emphasized that the main problem here does not lie in the com-
plexity of proofs (i.e. their length with respect to the length of the tautology to
be proved): in fact, if we look at the class of tautologies which generalizes the de
Morgan law proved above, namelyTi = :(P1 ^ : : : ^ Pi) ! :P1 _ : : : _ :Pi,
it is easy to verify that the length of their shortest proofs is linear in the length of
the tautology under consideration, both in the system with the classical dilemma
and in the system with classical reductio. It is rather theircontrived character
which is disturbing, and this depends on the fact that the natural deduction rules
do not capture theclassicalmeaning of the logical operators. Since these rules
are closely related to theconstructivemeaning of the operators, we would not ex-
pect such logical atrocities when we use them to proveintuitionistic tautologies.
(Notice that both the de Morgan law we have considered above and Peirce’s law
arenot intuitionistically valid.) Consider, for instance, the other (intuitionistically
valid) de Morgan law:

:P _ :Q! :(P ^Q):

66 MARCELLO D’AGOSTINO

One can easily obtain a ‘really natural’ intuitionistic proof of this tautology as
follows:

:P _ :Q1

:P 3

P ^Q2

2
P

2; 3
F

3
:(P ^Q)

:Q5

P ^Q4

4
Q

4; 5
F

5
:(P ^Q)

1
:(P ^Q)

;
:P _ :Q! :(P ^Q)

These examples illustrate our claim that‘natural’ deduction is really natural only
for intuitionistic tautologies(and not necessarily for all of them).18 The difficulties
of natural deduction with classical tautologies depend on the fact that a sentence
and its negation are not treated symmetrically, whereas this is exactly what one
would expect from the classical meaning of the logical operators.

The tableau rules, on the contrary, treat a sentence and its negation symmet-
rically. For instance, they allow for a very simple and natural proof of the non-
intuitionistic de Morgan law:

:(:(P ^Q)! (:P _ :Q))

:(P ^Q)

:(:P _ :Q)

::P

::Q

P

Q

:P

�

�� TT
:Q

�

We stress once again that it is not the length of proofs which is at issue here.
Although the tableau proofs for the class of tautologies which generalizes this de
Morgan law are, strictly speaking, shorter than the corresponding natural deduction
proofs, the difference in length is negligible, since in both cases one obtains proofs
whose length is linear in the length of the given tautology. What is at issue is that
the tableau proofs are more natural than those based on the ‘natural’ deduction
rules, as a result of the symmetrical treatment of sentences with respect to their

18On this point see[Girardet al., 1989] and [Cellucci, 1992].

TABLEAU METHODS FOR CLASSICAL PROPOSITIONAL LOGIC 67

negations. As we shall see, however, the symmetry of the tableau rules is by no
means sufficient to guarantee, in general, that such rulesalways lead to proofs
which are natural from the classical point of view.

As for the relationship between natural deduction proofs and tableau refuta-
tions, the previous discussion strongly suggests that no straightforward step-by-
step simulation procedure should be available, owing mainly to the very different
treatment of negation in these two systems. However, one can indicate a route
which leads from a natural deduction proof to a corresponding tableau refutation
via the equivalence of both to a suitable proof in the sequent calculus. A detailed
discussion of this correspondence can be found in[Scott, 1981] and [Sundholm,
1983], which makes a crucial use of the cut rule and of its admissibility in the
sequent calculus without cut. Indeed one would expect tableau refutations and
normalnatural deduction proofs to correspond to each other in a more direct way,
without having to appeal to the power of the cut rule (and of its admissibility).
Despite some optmistic remarks contained in Beth’s seminal paper on tableaux (
[Beth, 1955]), the problem is one of the trickiest in the area of proof transforma-
tion. The weak link is the correspondence between the cut-free sequent calculus
and normal natural deduction which is far from being straightforward. A signifi-
cant step towards bridging the gap has been made by Sieg’sintercalation calculus,
a variant of the sequent calculus obtained by reversing the natural deduction rules,
which can be used to search for a natural deduction proof in a mechanical way by
means of a procedure very similar to the tableau saturation procedure (see[Sieg,
1993] for the details).

3.6 Tableaux and Resolution

By a literal l we mean, as usual, a formula which is either a propositional variable
(positiveliteral) or the negation of a propositional variable (negativeliteral). A
clause is a disjunction of literals, e.g.l1 _ � � � _ lk. Given the commutativity and
idempotence of disjunction, a clause can be regarded as asetof literals and denoted
simply by listing its elements; for example, the clausel1 _ l2 _ l3 can be written
asl1l2l3. We shall also writeAB to denote the concatenation of clausesA andB.
Thecomplementof a literal l, denoted byl0 is equal to:P if l = P and toP if
l = :P .

At the propositional level, theresolution ruleamounts to the following basic
inference:

Al
Bl0

AB

which is nothing but a simple form of the familiar cut rule. (To see this, simply
think of a clauseA as a sequent in which the antecedent is the list of the negative
literals ofA and the succedent is the list of its positive literals; then the resolution
rule is exactly the cut rule.) Its first formulations date back to the origin of modern

68 MARCELLO D’AGOSTINO

�

l1 � � � lk

Figure 1. Tableau rule for a clausel1 _ � � � _ lk

logic19. However, the resolution rule has been widely known under this name
since the publication of Robinson’s epoch-making paper ([Robinson, 1965]). A
resolution refutationof a set of clauses� consists in a derivation of theempty
clause, denoted by�, starting from the clauses in� and using the resolution rule
as the only rule of inference. Such derivations can take different formats, namely
that of sequencesor treesof clauses. The more basic version is the one which
yields refutations in tree format. This way of representing resolution refutations is
clearly the least concise, but perhaps the more perspicuous. In the sequel we shall
follow the exposition in[Urquhart, 1995].

A tree resolutionrefutation for a set of clauses� is a binary tree where each
leaf is labelled with a clause of�, each interior node with immediate successors
labelledAl andBl0 (wherel is any literal,A andB are clauses)is labelled with
AB, and the root is labelled with� (the emtpy clause). We shall define the size
of a tree resolution refutation as the number of leaves in the tree. This is clearly
a good measure since the total number of nodes in the tree is given by2N � 1,
whereN is the number of leaves.

Smullyan’s tableaux can also be used very perspicuously to generate refutations
of sets of clauses. However, we shall see that, without appropriate enhancements,
they cannotp-simulate resolution refutations even in tree format. In order to re-
fute sets of clauses we can use a version of Smullyan’s tableaux with only one
decomposition rule which is an adaptation of the standard�-decomposition (see
Figure 1). Given a set� of clauses, a tableau for� is a tree in which the interior
nodes are associated with clauses in� as follows: if a noden is associated with a
given clauseA, then its children are labelled with the literals inA. Notice that the
node associated with a clauseA is not labelled withA. Indeed, the clause associ-
ated with a noden is the disjunction of the literals labelling the children ofn. The
origin of the tree is labelled with the whole set� of input clauses. In Figure 2 we
show a tableau for the set of clausesfP _Q;:P _R;:P _:R;:Q_S;:Q_:Sg

19See for instance[Schroeder-Heister, 1997], which finds its anticipation in some posthumous pa-
pers by Gottlob Frege.

TABLEAU METHODS FOR CLASSICAL PROPOSITIONAL LOGIC 69

PQ

:PR

:P:R

:QS

:Q:S

P

:P

�

 JJ
R

:P

�

�� SS
:R

�

"
"" b

bb
Q

:Q

�

�� TT
S

:Q

�

�� SS
:S

�

Figure 2. A tableau for the set of clausesfP _ Q;:P _ R;:P _ :R;:Q _ S;
:Q _ :Sg

3.7 Proof-search with Smullyan’s Tableaux

Regularity

Suppose that in the construction of a tableauT we come across a branch� con-
taining both a nodek labelled with a formula� and and a nodem labelled with�i
(with i = 1 or i = 2). Among the many useless moves that one can make when
applying the tableau rules mechanically, one of the worst consists in applying the
�-decomposition rule to the formula� in �, because one of the two branches gen-
erated by the rule application will contain another copy of�i. So, eventually, the
sub-tableau generated by the formulae in� will have the following form:

...
�
...
�1
...

�1 �2
T1 T2

Now, if this sub-tableau is a completed tableau for�� (i.e. the set of formulae in
the original�), so is the following more concise one:

70 MARCELLO D’AGOSTINO

...
�
...
�1
...
T1

Let us say that a nodek subsumesa nodem if m is labelled with a formula� and
k is labelled with one of its components�i. We can often spare a large number of
branchings if we agree that a node which is subsumed by another node in a given
branch� is not used in� as premiss of an application of the�-decomposition
rule. This is, somehow, implicit in the procedure to construct a completed tableau
described in Section 3.2, if we simply agree that the�-decomposition rule should
not be applied, in a given branch�, to a �-formula labelling a node which is
already ‘fulfilled’ in �. It is not difficult to construct examples showing that this
obvious ‘economy principle’ in the application of the tableau rules may, on some
occasions, shorten proofs (or in general completed tableaux) by an exponential
factor.

The restriction on the structure of a tableau that we have just described is usu-
ally incorporated into a more general restriction calledregularity. A tableau is said
to beregular if no formula occurs more than once in each branch. Indeed, it seems
that not only would regularity stop us from applying the�-decomposition rule to
a node which is ‘subsumed’ by another node, but it would also stop us from ap-
plying the�-decomposition rule, interpreted as a two-conclusion rule, whenever
just one of the�i is already in the branch. This would clearly affect complete-
ness, for instance it would make it impossibile to generate a closed tableau for the
inconsistent formula(P ^ Q) ^ (P ^ :Q). However, there are several obvious
ways of imposing the regularity condition without affecting completeness. One
way consists in interpreting the�-decomposition rule as apair of one-conclusion
rules, as suggested in Section 3.1. Another way consists in wording the tableau
rules so that regularity is satisfied by definition. For instance, the� rule can be
reformulated as follows:

if a branch� contains a formula�, then� can be expanded by ap-
pending to it every�i which does not already occur in it.

And the� rule as follows:

if a branch� contains a formula� and neither�1 nor�2 already occur
in it, then� can be split into the new expanded branches�; �1 and
�; �2.

Again, the systematic procedure of Section 3.2 can be construed as implicitly in-
corporating the regularity restriction, if by ‘fulfilling a node’ we mean applying to

TABLEAU METHODS FOR CLASSICAL PROPOSITIONAL LOGIC 71

it the relevant rule in the way just described. It is not difficult to turn the informal
argument given above into a proof showing that closed tableaux of minimal size
are regular, i.e.

FACT 15. If � is an unsatisfiable set of formulae, every minimal size closed
tableau for� is regular.

As far as the propositional rules are concerned, the regularity restriction implies
the basic condition calledstrictness, namely that no formula is used more than
once as a premiss of a rule application. Things are different in the first order case
for which we refer the reader to Letz’s chapter in thisHandbook.

Priority Strategies

The simplest priority strategy was presented by Smullyan in his well-known book
on tableaux [Smullyan, 1968]. It consists in giving priority to�-formulae over
�-formulae in the expansion of a tableau. The reason is simple:�-decompositions
do not create new branches, so if we execute them, whenever possible, before the
�-decompositions, the resulting trees will be much ‘slimmer’ and avoid a great
deal of duplication. To see this it is sufficient to observe the examples in Figures 3
and 4.

Another priority strategy inspired by the same principle, namely that of avoiding
branching whenever possible, consists in giving priority to�-decompositions and
to �-decompositions applied to�’s such that either�01 or �02 (the complements of
�1 and�2) also occurs in the same branch. Obviously one of the two branches
generated by such�-decompositions will close immediately.

Notice that this simple strategy— that we might call, following[Vellino, 1989],
clash priority strategy— is equivalent to allowing the following ‘derived’ rules
with two premisses:

�
�01
�2

�
�02
�1

:

Again, it is easy to observe that the clash priority strategy may enable us to shorten
considerably the resulting tableaux.

Restriction Strategies

Let us focus on clausal tableaux. A plausible strategy to reduce the size of refuta-
tions seems that of imposing that each clause decomposition (except the first one)
closes a branch in the tableau. This amounts to requiring that each clause decom-
posed by an application of the tableau rule at a given nodek labelled with a literal
contains a literal which ‘clashes’, i.e. is the complement of, the literal labelling an
ancestor ofk. A tableau constructed in accordance with this restriction is called
path connected(it is also calledancestor clash restrictedin [Vellino, 1989]).

72 MARCELLO D’AGOSTINO

:((P ! (Q! R))! ((P ! Q)! (P ! R)))

P ! (Q! R)

:((P ! Q)! (P ! R))

:P

P ! Q

:(P ! R)

:P

P

�

�� TT
Q

P

�

��
� HHH

Q! R

P ! Q

:(P ! R)

:Q

:P

P

�

�� TT
Q

�

,, ll
R

:P

P

�

�� TT
Q

P

:R

�

Figure 3. This tableau is constructed by decomposing the formulae in the order in
which they appear in the tree, without giving priority to the�-decompositions

The example in Figure 5 shows that the path connection strategy may lead on
some occasions to more concise refutations. This is clearly the case when the input
set of clausesS is not minimally inconsistent. The path connection strategy does
not affect completeness, but it does affect confluence. To see why, suppose we tried
to construct the path connected tableau of Figure 5 starting with the decomposition
of R;S. If the path connection restriction were applied, the construction of the
tableau would terminate without generating a closed tableau. So theorder in which
the rules are applied is crucial.

One might be tempted to think that, in order to restore confluence, it is suffi-
cient to remove ‘redundant’ clauses (such as the clauseRS in our previous ex-
ample) from the input set by observing that, if a clauseC in the input setS
contains a ‘pure literal’, i.e. a literall which is not complemented in any other

TABLEAU METHODS FOR CLASSICAL PROPOSITIONAL LOGIC 73

:((P ! (Q! R))! ((P ! Q)! (P ! R)))

P ! (Q! R)

:((P ! Q)! (P ! R))

P ! Q

:(P ! R)

P

:R

:P

�

�� SS
Q! R

:P

�

�� TT
Q

:Q

�

�� TT
R

�

Figure 4. This tableau is constructed giving priority to the�-decompositions over
the�-decompositions

74 MARCELLO D’AGOSTINO

PQ

:PV

:PQ

:Q

RS

P

R

:P

�

�� SS
Q

�

�
� Q

Q
S

:P

�

�� SS
Q

�

�� TT
Q

�

PQ

:PV

:PQ

:Q

RS

P

:P

�

�� SS
Q

�

�� TT
Q

�

Figure 5. The tableau on the left has been constructed by applying the clause
decomposition rule in a ‘random’ fashion, while the one on the right is a path
connected tableau

clause ofS, thenC can be safely removed fromS. For, if the set of clauses
S n fCg is satisfiable, so isS, since we can extend any assignment satisfying
all the clauses inS n fCg to an assignment satisfying alsoC. Thus, if we re-
move, before starting the tableau construction, all the clauses which are obvi-
ously ‘unconnected’ in the sense just explained, we shall be left with a setS0

of clauses, namely such that every literal occurring in a clause ofS0 is comple-
mented by a literal occurring in some other clause ofS0. This seems to suggest
that it might be always possible to apply the clause decomposition rule in ac-
cordance with the path connection restriction without affecting confluence. Un-
fortunately this is not the case, as is shown by the counterexample illustrated in
Figure 6 which shows a typical ‘dead end’ in the construction of a tableau for the
set� = f:PQ;P:Q;RS;R:S;:RS;:R:Sg. Note that the input set does not
contain ‘pure literals’ and yet the two open branches ending with:Q and:P can-
not be further expanded without violating the path connection restriction. In this
example we simply hit a satisfible subset of the input set which is not connected
with the unsatisfiable subset and, yet, contains no pure literal.

The failure of confluence in path connected tableaux implies that their com-
pleteness cannot be proved by means of a systematic proof procedure leading to
branch saturation and, therefore, alternative procedures, based on some other way
of exploring the search space, are needed. A detailed discussion of such alter-
native proof procedures can be found in Letz’s chapter on First Order Tableaux.

TABLEAU METHODS FOR CLASSICAL PROPOSITIONAL LOGIC 75

�

P

:P

�

�� SS
:Q

�
� Q

Q
Q

:P
�� SS

:Q

�

Figure 6. A ‘dead end’ for the path connection strategy

The path connection restriction is closely related on the one hand to Bibel’scon-
nection method[Bibel, 1982] and on the other to Loveland’smodel elimination
[Loveland, 1978]. This relation is also discussed in Letz’s chapter.

A stronger restriction requires that every application of the clause decompo-
sition rule (except the first one) generates at least a literal that clashes with its
immediatepredecessor. In other words, if the rule is applied to a clauseC in a
branch� whose last node is labelled with a literal, sayl, thenC must contain the
literal l0. A tableau constructed in accordance with this restriction is calledtightly
connected(or parent clash restrictedin [Vellino, 1989]). The tight connection
strategy is also complete, although it obviously inherits non-confluence from the
path connection strategy.

It must be observed that neither strategy is optimal: on some occasions both
generate tableau which are not of minimal size. A class of examples is presented
in [Vellino, 1989, pp.24–25]. Another class of examples showing that minimal
connected tableaux can be exponentially larger than unrestricted tableaux is pre-
sented in[Letzet al., 1994].

3.8 Anomalies and Limitations

The Redundancy of Cut-free Proofs

Gentzen said that the essential property of a cut-free proof is that ‘it is not round-
about’ [Gentzen, 1935, p.69]. By this he meant that: ‘the final result is, as it
were, gradually built up from its constituent elements. The proof represented by
the derivation is not roundabout in that it contains only concepts which recur in the
final result’ [Gentzen, 1935, p.88]. The importance of Gentzen’s achievement can
hardly be overestimated: by obeying the subformula principle, his sequent calculus
provided a partial realization of a time-honoured ideal, that of a purely analytical
method of deduction, which had played such an important role in the history of
logic and philosophy. However, it must also be remarked that, in designing the
sequent rules, Gentzen was admittedly more concerned with simplifying the proof
of his main metalogical result (theHauptsatz) than with optimizing the formal

76 MARCELLO D’AGOSTINO

representation of proofs. For this purpose he believed that the natural deduction
calculus would provide a better answer, but he was led to discard the latter in
favour of a ‘technically more convenient’ (cf.[Gentzen, 1935]) solution, namely
the sequent calculus, by his failure to prove theHauptsatzdirectly for the natu-
ral deduction system (a problem solved only thirty years later by Dag Prawitz).
As discussed in Section 3.5, Gentzen’s claims on the ‘naturalness’ of the natural
deduction calculus can be endorsed, at best, only in the domain of intuitionistic
logic. For classical logic, the symmetry of the sequent calculus and its ‘mechani-
cal’ flavour seemed to provide a suitable approach to the automation of deduction.
Today we take Gentzen’sHauptsatzfor granted and are much more sensitive to the
choice of carefully designed rules of inference, allowing for a terse presentation of
classical deductions which aims to be at the same time perspicuous and (reason-
ably) efficient. From this point of view, as we shall argue in the sequel, Gentzen’s
rules are far from being ideal.

Let us consider, as a simple example, a cut-free proof of the sequent:

A _B;A _ :B;:A _ C;:A _ :C ` ;

expressing the fact that the antecedent is inconsistent. A minimal proof is illus-
trated in Figure 7 (we write the proof upside-down according to the interpreta-
tion of the sequent rules as reduction rules in the search for a counterexample;
by � `, we mean� ` ; and consider as axioms all the sequents of the form
�; A;:A `). Such a proof is, in some sense, redundant when it is interpreted as
a (failed) systematic search for a countermodel to the endsequent (i.e. a model of
the antecedent): the subtreeT1 encodes the information thatthere are no counter-
models which makeA true, but this information cannot be used in other parts of
the tree and, in fact,T2 still tries (in its left subtree) to construct a countermodel
which makesA true, only to show again that such a countermodel is impossible.

Notice that (i) the proof in the example is minimal; (ii) the redundancy does not
depend on our representation of the proof asa tree: the reader can easily check
that all the sequents which label the nodes are different from each other and, as
a result, the proof would have the same size if represented as a sequence or as
a directed acyclic graph. The only way to obtain a non-redundant proof in the
form of a sequence or a directed acyclic graph of sequents would be by using the
thinning rule as in Figure 8.

In this case the proof obtained by employing thinning is not much shorter be-
cause of the simplicity of the example considered. Yet, it illustrates the use of
thinning indirect proofs in order to eliminate redundancies. However, for the rea-
sons discussed in Section 3.4, the thinning rule isnot suitable for backward proof
search.

The situation is perhaps clearer if we represent the proof in the form of a closed
tableaùa la Smullyan (see Figure 9). It is easy to see that such a tableau shows the
same redundancy as the sequent proof given before.

This intrinsic redundancy of the cut-free analysis is responsible in many cases

TABLEAU METHODS FOR CLASSICAL PROPOSITIONAL LOGIC 77

A _ B;A _ :B;:A _ C;:A _ :C `

A;A _ :B;:A _ C;:A _ :C `

T1

!!
!! aaaa

B;A _ :B;:A _C;:A _ :C `

T2

Where T1 =

A;A _ :B;:A _ C;:A _ :C `

A;A _ :B;:A;:A _ :C `

�
�� H

HH
A;A _ :B;C;:A _ :C `

A;A _ :B;C;:A `

"
"" b

bb

A;A _ :B;C;:C `

and T2 =

B;A _ :B;:A _ C;:A _ :C `

B;A;:A _ C;:A _ :C `

B;A;:A;:A _ :C `

"
"" b

bb

B;A;C;:A _ :C `

B;A;C;:A `

,, ll

B;A;C;:C `

�
�� H

HH

B;:B;:A _C;:A _ :C `

Figure 7. A minimal cut-free proof of the sequent which occurs at the root of the
top tree

78 MARCELLO D’AGOSTINO

(1) A;C;:A ` Axiom
(2) A;C;:C ` Axiom
(3) A;C;:A _ :C ` From (1) and (2)
(4) A;:A;:A _ :C ` Axiom
(5) A;:A _ C;:A _ :C ` From (4) and (3)
(6) B;A;:A _ C;:A _ :C ` From (5) by thinning
(7) B;:B;:A _ C;:A _ :C ` Axiom
(8) B;A _ :B;:A _ C;:A _ :C ` From (6) and (7)
(9) A;A _ :B;:A _ C;:A _ :C ` From (5) by thinning
(10) A _B;A _ :B;:A _ C;:A _ :C ` From (8) and (9)

Figure 8. A proof in linear format making use of the thinning rule

for explosive growth in the size of the search tree. Moreover, it isessential: it does
not depend on any particular proof-search procedure (it affectsminimal proofs)
but only on the use of the cut-free rules. In the rest of this chapter this point will
be examined in detail.

The Culprit

Can we think of a more economical way of organizing our search for a counter-
model? of avoiding the basic redundancy of the cut-free analysis? We must first
identify the culprit. Our example contains a typical pattern of cut-free refutations
which can be described as follows: the subtreeT1 searches for possible counter-
models which makeA true. If the search is successful, the original sequent is
not valid and the problem is solved. Otherwise there isno countermodel which
makesA true (i.e. if we restrict ourselves to classical bivalent models, every coun-
termodel, if any, must makeA false). In both cases it is pointless, while building
up T2, to try to construct (as we do if our search is governed by Gentzen’s rules)
countermodels which makeA true, because this kind of countermodel is already
sought inT1.

In general, we may have to reiterate this redundant pattern an arbitrary number
of times, depending on the composition of our input set of formulae. For instance,
if a branch containsn disjunctionsA_B1; : : : ; A_Bn which are all to be analysed
in order to obtain a closed subtableau, it is often the case that theshortesttableau
has to contain higly redundant configurations like the one shown in figure 10:
where the subtreeT � has to be repeatedn times. Each copy ofT � may, in turn,
contain a similar pattern. It is not difficult to see how this may rapidly lead to a
combinatorial explosion which is by no means related to any ‘intrinsic difficulty’
of the problem considered but only to the redundant behaviour of the tableau rules.
Let us discuss in some more detail the relation between the inefficiency of these
rules and their failure to simulate ‘analytic cut’ inferences.

TABLEAU METHODS FOR CLASSICAL PROPOSITIONAL LOGIC 79

A _B

A _ :B

:A _ C

:A _ :C

A

:A

�� TT
C

:A

�� TT
:C

��
� HHH

B

A

:A

�� TT
C

:A

�� TT
:C

�� TT
:B

Figure 9. A closed tableau forfA _B;A _ :B;:A _ C;:A _ :Cg

.

.

.

A

T
�

�
�� L

LL
B1

A

T
�

�
�� L

LL
B2

A

T
�

�
�� L

LL
B3

.

.

.

Figure 10. Redundancy of tableau refutations

80 MARCELLO D’AGOSTINO

Suppose there is a tableau proof ofA from �, i.e. a closed tableauT1 for �;:A
and a tableau proof ofB from �; A, i.e. a closed tableauT2 for �; A;:B; then it
follows from the elimination theorem (see[Smullyan, 1968]) that there is also a
closed tableau for�;�;:B. This fact can be seen as a typical ‘cut’ inference:

� ` A
�; A ` B
�;� ` B

where ‘̀ ’ stands for the tableau derivability relation. If the formulaA is a sub-
formula of some formula in�;�, the cut is ‘analytic’: no external formulae are
involved. Let us assume, for instance, that:A is used more than once, sayn
times, inT1 to close a branch, so thatT1 containsn occurrences ofA in distinct
branches which will be left open if:A is removed from the assumptions. Simi-
larly, letA be used more than once, saym times, inT2 to close a branch, so that
T2 containsm occurrences of:A in distinctbranches which will be left open if
A is removed from the assumptions. Then, in some cases, the shortest tableau
refutation of�;�;:B will have one of the following two forms:

�

�

:B

T1

A � � �

T2

�� @@
� � � A

T2

�

�

:B

T2

:A � � �

T1

,, ll
� � � :A

T1

where the subrefutationT2 is repeatedn times in the lefthand tree and the sub-
refutationT1 is repeatedm times in the righthand tree. WhenA is a subformula
of some formula in�;�, the ‘elimination of cuts’ from the tableau proof does
not remove ‘impure’ inferences, involving external formulae, but ‘pure’ analytic
inferences, involving only elements contained in the data.

Searching for a Countermodel

In a sense, the tableau method is the most natural expansion system, since its
rules correspond exactly to the clauses in the definition of a semivaluation. The
examples discussed in Section 3.8, however, suggests that, in another, analytic
tableaux constructed according to the cut-free tradition are not well-suited to the
nature of the problem they are intended to solve. In this section we shall render
this claim more precise.

As we have seen in Section 2.2, an expansion system can be seen as a (non-
deterministic) algorithm to search through the space of all possible semivaluations
for one which satisfies a given set of formulae. We have observed, however, that

TABLEAU METHODS FOR CLASSICAL PROPOSITIONAL LOGIC 81

the search space has a natural structure of its own. It is therefore reasonable to
require that the rules we adopt in our systematic search reflect this structure. This
can be made precise as follows: given anS-treeT we can associate with each
noden of T , the set�n of the s-formulae occurring in the path from the root to
n or, equivalently, the partial valuationvn which assigns 1 to all the formulaeA
such thatT (A) occurs in the path ton, and 0 to all the formulaeA such thatF (A)
occurs in the path ton (and leaves all the other formulae undefined). Let�T
the partial ordering defined byT on the set of its nodes (i.e. for all nodesn1; n2,
n1 �T n2 if an only if n1 is a predecessor ofn2), andv the partial ordering or
partial valuations defined above. Clearly

(4) n1 �T n2 =) vn1 v vn1 :
It would be desirable to require that the converse also holds, namely

(5) n1 6�T n2 =) vn1 6v vn1 :
So that for every pair of nodesn1; n2 belonging todifferentbranches, the associ-
ated partial valuations are incomparable, and therefore

n1 �T n2 () vn1 v vn2 :

In other words the relations between the nodes in anS-tree correspond to the re-
lations between the associated partial valuations. If a tree does not satisfy (5), i.e.
vn1 v vn2 for some pair of nodesn1; n2 belonging todifferentbranches, then it
is obviously redundant for the reasons discussed in section 3.8: ifvn1 can be ex-
tended to a semivaluation, we have found a countermodel to the original sequent
and the problem is solved. Otherwise, if no extension ofvn1 is a semivaluation,
the same applies tovn2 .

The importance of avoiding this kind of redundancy is both conceptual and
practical. A redundant tree doesnot reflect the structure of the semantic space of
partial valuations which it is supposed to explore and this very fact has disastrous
computationalconsequences: redundant systems are ill-designed, from an algo-
rithmic point of view, in that, in some cases, they force us to repeat over and over
again what is essentially the same computational process.

It is easy to see that the non-redundancy conditionis not satisfied by the tableau
method(and in general by cut-free Gentzen systems). We can therefore say that,
in some sense,such systems are not natural for classical logic.20

Are Tableaux an Improvement on Truth-tables?

The intrisic redundancy of tableau refutations has some embarassing consequences
from the computational viewpoint. These emerge in the most striking fashion

20This suggestion may be contrasted with Prawitz’s suggestion, advanced in[Prawitz, 1974], that
‘Gentzen’s calculus of sequents may be understood asthenatural system for generating logical truths’.

82 MARCELLO D’AGOSTINO

when we compare the complexity of tableau proofs with that of truth-tables. The
truth-table method, introduced by Wittgenstein in his celebratedTractatus Logico-
Philosophicus, provides a decision procedure for propositional logic which is im-
mediately implementable on a machine. However this time-honoured method is
usually mentioned only to be immediately dismissed because of its incurable inef-
ficiency. Beth himself, who was (in the 1950’s) one of the inventors of tableaux,
also stressed that they ‘may be considered in the first place as a more convenient
presentation of the familiar truth-table analysis’.21 Beth’s opinion is echoed in
the widespread yet unsubstantiated claim that the truth-table method is clearly and
generally less efficient than the tableau method and relates to it as an exhaustive
search relates to ‘smarter’ procedures which makes use of shortcuts. Here are
some typical quotations on this topic:

Is there a better way of testing whether a propositionA is a tautology
than computing its truth table (which requires computing at least2n

entries wheren is the number of proposition symbols occurring inA)?
One possibility is to work backwards, trying to find a truth assignment
which makes the proposition false. In this way, one may detect failure
much earlier. This is the essence of Gentzen [cut-free] systems22 . . .

The truth-table test is straightforward but needlessly laborious when
statement letters are numerous, for the number of cases to be searched
doubles with each additional letter (so that, e.g., with 10 letters there
are over 1,000 cases). The truth-tree [i.e tableau] test [. . .] is equally
straightforward but saves labor by searching whole blocks of cases at
once.23

This appraisal, however, may turn out to be rather unfair. In fact, the situation is
not nearly as clear-cut as it appears. In the next section we shall show that, contrary
to expectations (and Beth’s opinion), there are examples for which thecomplete
truth-tables perform incomparably better than thestandardtableau method. For
these examples it is, of course, true — to pursue the above quotation — that with
10 propositional letters there are over 1,000 cases (exactly 1,024) to check. How-
ever it turns out that aminimalclosed tableau must contain more than 3,000,000
branches. With 20 letters there are slightly more than one million cases in the
truth-table analysis (which is still feasible on today’s computers) but over2�1018

branches in a minimal closed tableau.
Technically speaking, these examples serve the purpose of filling a gap in the

classification of conventional proof systems in terms of thep-simulation relation

21[Beth, 1958, page 82].
22[Gallier, 1986, pages 44–45].
23[Jeffrey, 1967, page 18].

TABLEAU METHODS FOR CLASSICAL PROPOSITIONAL LOGIC 83

ship: truth-tables and Smullyan’s analytic tableaux are incomparable proof sys-
tems.24

The key observation is that the complexity of tableau proofs depends essentially
on thelength(i.e. total number of symbols) of the formula to be decided, whereas
the complexity of truth-tables depends only on the number ofdistinct propositional
variableswhich occur in it. If an expression is ‘fat’,25 i.e.
its length is large compared to the number of distinct variables in it, the number of
branches generated by its tableau analysis may be large compared to the number
of rows in its truth-table.

An extreme example is represented by the sequence of ‘truly fat’ expressions
in conjunctive normal form, defined as follows: given a sequence ofk atomic
variablesP1; : : : ; Pk, consider all the possible clauses containing as members, for
eachi = 1; 2; : : : ; k, eitherPi or :Pi and no other member. There are2k of such
clauses. LetHP1;:::;Pk denote the set containing these2k clauses. The expressionV
HP1;:::;Pk is unsatisfiable. For instance,

V
HP1;P2 is the following expression

in CNF:

(P1 _ P2) ^ (P1 _ :P2) ^ (:P1 _ P2) ^ (:P1 _ :P2)

Notice that in this case the truth-table procedure contains as many rows as clauses
in the expressions, namely2k. In other words, this class of expressions is not
‘hard’ for the truth-table method. However we shall prove that it is hard for the
tableau method.

Recall that, in order to deal with clauses, we redefine the tableau_-elimination
rule as follows:

l1 _ : : : _ lk

l1 � � � lk

Since the formula
V
HP1;:::;Pk is in CNF, we can assume that the first part of the

tableau consists of a sequence of applications of the^-elimination rule until the
conjunction is decomposed into a sequence of clauses. For our purposes we can
consider these clauses as ‘assumption’ formulas and forget about the^-elimination
steps.

PROPOSITION 16.Every closed tableau for the setHP1;:::;Pk contains more than
k! distinct branches.

Proof. Let T be a minimal closed tableau forHP1;:::;Pk . We assume that all the
nodes labelled with assumption clauses precede the other nodes. So the tableau

24As Alasdair Urquhart has pointed out, this appears to be the only known example of such an
incomparability among conventional proof-systems.

25This rather fancy terminology is used in[Dunham and Wang, 1976].

84 MARCELLO D’AGOSTINO

starts with a sequence of2k nodes, each labelled with an assumption. Letn0 be
the last node of this sequence. Everyn � n0 has exactlyk childrenm1; : : : ;mk

(resulting from the decomposition of an assumption clause) such thatmi (i =
1; : : : ; k) is labelled either withPi or with :Pi. So for every noden and every
j = 1; : : : ; k, eitherPj or :Pj is among the children ofn. Let Q1; : : : ; Qk be
an arbitrary permutation ofP1; : : : ; Pk. There must be a pathn1; : : : ; nk such that
the labelling formulas form a sequence�Q1; : : : ;�Qk, where�Qi is eitherQi or
:Qi. Such a path is obviously open, sinceQi 6= Qj for i 6= j. Moreover, distinct
permutations are associated with distinct paths.

HenceT contains at least as many distinct paths as there are permutations of
P1; : : : ; Pk, namely at leastk! distinct paths. �

Notice thatk! grows faster than any polynomial function of2k, and there are only
2k rows in the truth-table analysis26 of HP1;:::;Pk . This means, in practice, that for
this class of examples even the most naive program implementing the old truth-
table method will run incomparably faster thananyprogram implementing some
proof-search procedure (no matter how smart) based on the tableau rules.

This implies that analytic tableaux cannotp-simulate the truth-table method.
Notice also that forHP1;:::;Pk there are resolution refutations in which the number
of steps is linear in the number of clauses.

The previous argument can be easily adapted to give an exact lower bound on
the size of a tableau. LetC(k) be the number ofinterior (i.e. non-leaf) nodes in a
minimalclosed tableau forHP1;:::;Pk . Then, a simple analysis shows thatC(k) is
determined exactly by the following equation:

C(k) = k + k � (k � 1) + k � (k � 1)(k � 2) + : : :+

+k � (k � 1) � : : : � (k � (k � 1))

= k! � (1 +
1

2!
+

1

3!
+ � � �+ 1

k!
)

One immediate consequence of this fact is that analytic tableaux do not provide,
at least in their standard form given them by Smullyan, a uniform improvement on
the truth-table method as far as computational complexity is concerned. Indeed,
there is no “feasible” simulation in either direction (since truth-tables cannotp-
simulate tableaux). Even worse, there are natural and well-defined subproblems
of the tautology problem which are tractable for the truth-tables and intractable
for any procedure based on analytic tableaux. Namely: the class of ‘truly fat’
tautologies, in which the number of variables is of orderlogn, wheren is the
length of the tautology, are decidable in polynomial time by the truth-tables, but
cannnot be decided in polynomial time—as shown by our examples—if we use

26To be precise, the truth-table analysis involvesO(k � n � 2k) steps, wheren is the total number
of occurrences of atomic letters and operators in the CNF expression, which isO(k � 2k), so that the
overall complexity isO(k2 � 22k).

TABLEAU METHODS FOR CLASSICAL PROPOSITIONAL LOGIC 85

Smullyan’s analytic tableau rules (no matter how ‘smart’ we are in applying these
rules).

In general, given a decidable logicLwhich admits of characterization by means
of m-valued truth-tables, the complexity of the semantic decision procedure forL
is essentiallyO(k � n �mk) wheren is the length of the input formula andk is the
number of distinct variables in it. This is a natural upper bound on the decision
problem forLwhich should be at least equalized by any proof procedure. Analytic
tableaux, and their equivalent cut-free sequent calculus in tree form, do not meet
this requirement. As we shall see, this is not just an oddity due to a careful choice
of artificial examples but the result of afundamentalinadequacy of the tableau
rules which affects, at different degrees, every tableau refutation: the ‘fatter’ the
formulas (namely the smaller the number of variables relative to the overall length
of the formulas), the more likely for the truth-tables to beat their more quoted
rivals.

The cause of this behaviour is not difficult to detect if we look at the way in
which the two methods enumerate the possible cases to be checked in order to test
a formula for validity. While all the cases enumerated in the truth-table analysis
aremutually exclusive, this is not, in general, true of the tableau analysis. When
applying the typical tableau branching rules:

A _B

A � � � B

A! B

:A � � � B

:(A ^ B)

:A � � � :B

or
A1 _ : : : _An

A1 � � � An

for expressions in clausal form, it is obvious that the branches do not represent
mutually inconsistent ‘possible models’.27 As a result, when expanding the tree,
we may well (and often do) end up considering more cases than is necessary. For
instance, after we apply the rule for analysingA_B, when we expand the tableau
belowB we may have to consider possible models in whichA is true. But all these
possibile models are already enumerated belowA, so that the enumeration process
is redundant.

More Hard Examples for Smullyan’s Tableaux

Another class of examples which are hard both for tableaux and for the truth-
tables is described in[Cook and Reckhow, 1974]. These examples consist of sets

27By a ‘possible model’ we simply mean a set of formulas whichmaybe embedded into a Hintikka
set, namely the set of formulas which occur in an open path.

86 MARCELLO D’AGOSTINO

g

P g

Q g�
�� A
AA

:Qg

�
�
�
� Q

Q
Q
Q

:Pg

R g�
�� A
AA

:Rg

Figure 11.�(T) = fPQ;P:Q;:PR;:P:Rg

of clauses associated with binary trees as follows. Consider a binary treeT where
each node, except the root, is labelled with a distinct literal, and sibling nodes are
labelled with complementary literals. We stipulate that, for each pair of sibling
nodes, the one on the left is labelled with a positive literal and the one on the right
is labelled with the corresponding negative literal. Now, we can associate with
each branch� the clause containing exactly the literals in�. In this way, the whole
treeT can be taken as representing the set�(T) of the clauses associated with its
branches. A simple example is shown in Figure 11. Let�n be the set of clauses
associated with a complete binary tree of depthn. Thus�n contains2n clauses
and2n � 1 distinct atomic letters. For instance, the set�2 is the one illustrated
in Figure 11. In [Cook and Reckhow, 1974] Cook and Reckhow report (without
proof) a lower bound on the number of nodes of a closed tableau�n which is
exponential in the size of�n. A more accurate version of this lower bound, with
a proof, is the result of a joint effort of Cook and Urquhart and can be found in
[Urquhart, 1995]. A slightly earlier and different proof of an exponential lower
bound for Cook and Reckhow’s examples is contained in[Murray and Rosen-
thal, 1994]. Urquhart comments that this lower bound ‘has some significance for
automated theorem proving based on simple tableau methods. The set�6 con-
tains only 64 clauses of length 6, but the minimal tableau refutation for�6 has
10,650,056,950,806 interior nodes. This shows that any pratical implementation
of the tableau method must incorporate routines to eliminate repetition in tableau
construction’.28

On the other hand the above examples have very small resolution refutations,
even in tree format. To see this, just observe that we can label the nodes of a
complete binary tree of depthn with suitable clauses to obtain a tree resolution
refutation of�n. For this purpose it is sufficient to label each nodea with the
clause consisting of the literals occurring in the path from the root toa (and there-
fore the root with the empty clause). It is easy to check that the resulting tree
provides the required refutation and its size is linearly related to the size of�n.
This is sufficient to prove the following:

28[Urquhart, 1995], p. 435.

TABLEAU METHODS FOR CLASSICAL PROPOSITIONAL LOGIC 87

THEOREM 17. Smullyan’s tableaux cannotp-simulate tree resolution.

On the contrary, it is not difficult to show that tree resolutioncan p-simulate
Smullyan’s tableaux for clauses (for a simple argument see[Urquhart, 1995]).

Are the Tableau Rules Really ‘Classical’?

Beth’s aim, in his 1955 paper, where he introduced his version of semantic tableaux
[Beth, 1955], was to point out the “close connections between semantics and
derivability theory” so as to avoid the difficulties which were usually encoun-
tered in the proof of the completeness theorem [pp. 318,313]. He stressed the
close correspondence between the formal rules in a Gentzen-type system and the
semantic-oriented rules of the tableau method [pp. 318,322-23] so that, adopt-
ing his approach, proofs of completeness become trivial and ‘such celebrated and
profound results as Herbrand’s Theorem, the Theorem of L¨owenheim-Skolem-
Gödel, Gentzen’s Subformula Theorem and Extended Hauptsatz, and Bernay’s
Consistency Theorem are [...] within (relatively) easy reach” [p. 318]. Morever,
he claimed that the Gentzen-type formal proofs obtained in a ‘purely mechanical
manner’, by transformation of semantic tableaux, turned out to be, contrary to ex-
pectations, not clumsy or cumbersome but “remarkably concise’, and could “even
be proved to be, in a sense, the shortest ones which are possible” [p. 323]. In this
way he thought he had reached a formal method which was ‘in complete harmony
with the standpoint of [classical] semantics’ [p. 317].

We have already shown that Beth was wrong in claiming that tableaux constitute
a uniform improvement on the truth-table method. How about this other claim on
the close correspondence between the tableau rules and classical semantics?

The classical notion of truth is governed by two basic principles: the principle
of Non-contradiction(no proposition can be true and false at the same time) and
the principle ofBivalence(every proposition is either true or false, and there are no
other possibilities). While the former principle is clearly embodied in the rule for
closing a branch, there is no rule in the tableau method (and in cut-free Gentzen
systems) which corresponds to the Principle of Bivalence. While enumerating all
the possible cases, the tableau rules allow for the possibility of a proposition’s
being something else other than true or false. Suppose our semantics is 3-valued,
with the truth-value ‘undefined’ (�) along with ‘true’ (1) and ‘false’ (0). Suppose
also that the truth-tables are extended in a way which preserves the classical rules
of truth, namely:

88 MARCELLO D’AGOSTINO

A B A _ B A ^ B A! B :A
1 1 1 1 1 0
� 1 1 � 1 �
0 1 1 0 1 1
1 � 1 � �
� � � � �
0 � � 0 1
1 0 1 0 0
� 0 � 0 �
0 0 0 0 1

Then the tableau rules are stillsoundfor this semantics, and in fact foranymany-
valued semantics which preserves the classical equivalences. A closed tableau for
:A shows thatA cannot be false. A closed tableau for�;:A shows thatA cannot
be false if all the formulas in� are true. So, if we define logical consequence as
follows

� ` A iff A is non-false when all the formulas in� are true

the logic defined by this many-valued semantics collapses into classical logic.29

This last move amounts to restricting the possible models to the classical bivalent
ones. So bivalence is re-introducedat the endof the analysis in order to exclude
non-classical models, but nowhere is it used in the search for these models.

There are historical reasons for this ‘elimination of bivalence’ from the seman-
tics of classical proof-theory. Gentzen introduced the sequent calculiLK andLJ,
as well as the natural deduction calculiNK andNJ, in his famous 1935 paper
[Gentzen, 1935]. Apparently he considered the sequent calculi as technically more
convenient for metalogical investigation[Gentzen, 1935, p. 69]. In particular he
thought that they were ‘especially suited to the purpose’ of proving theHauptsatz,
and that their form was ‘largely determined by considerations connected with [this
purpose]’[p. 89].

Gentzen’s rules have become a paradigm both in proof-theory and in its appli-
cations. This is not without reason. First, like the natural deduction calculi, they
provide a precise analysis of the logical operators by specifying how each operator
can be introduced in the antecedent or in the succedent of a sequent. Second, their
form ensures the validity of theHauptsatz: each proof can be transformed into
one which is cut-free, and cut-free proofs enjoy thesubformula property: every
sequent in the proof tree contains only subformulae of the formulae in the sequent
to be proved.

However, Gentzen’s rules are not the only possible way of analysing the clas-
sical operators and not necessarily the best. Their form was influenced by con-

29This kind of semantics validates all the rules of the sequent calculus except the cut rule, and has
been used by Sch¨utte, and more recently by Girard, for proof-theoretical investigations into the sequent
calculus. See the interesting discussion in[Girard, 1987].

TABLEAU METHODS FOR CLASSICAL PROPOSITIONAL LOGIC 89

siderations which were partly philosophical, partly technical. In the first place
Gentzen wanted to set up a formal system which ‘comes as close as possible to
actual reasoning’[Gentzen, 1935, p. 68]. In this context he introduced the natural
deduction calculi in which the inferences are analysed essentially in a construc-
tive way and classical logic is obtained by adding the law of excluded middle in
a purely external manner. Then he recognized that the special position occupied
by this law would have prevented him from proving theHauptsatzin the case of
classical logic. So he introduced the sequent calculi as a technical device in order
to enunciate and prove theHauptsatzin a convenient form [p. 69] both for intu-
itionistic and classical logic. These calculi still have a strong deduction-theoretic
flavour and Gentzen did not show any sign of considering the relationship between
the classical calculusLK and the semantic notion of entailment.

What is, then, the semantic counterpart of the cut-elimination theorem? If we
think of Gentzen’s sequent rules in semantic terms, and adopt the usual intepre-
tation, namely define� ` � as valid if and only if, for every modelM , at least
one formula in� is true inM whenever all formulas in� are true inM , it is easy
to see that the sequent rules can be read upside-down as rules for constructing a
countermodel to the endsequent, exactly as the tableau rules. However, the rule
which theHauptsatzshows to be eliminable is the cut rule:

�; A ` � � ` �; A

� ` �

If we read this rule upside-down, following the same semantic interpretation that
we adopt for the operational rules, then what the cut rule says is:

In all models and for all propositionsA, eitherA is true orA is false.

But this is the Principle of Bivalence, one of the twofundamentalprinciples which
characterize the classical notion of truth. In contrast, none of the rules of the cut-
free fragment implies bivalence (as is shown by the three-valued semantics for this
fragment). The elimination of cuts from proofs is, so to speak, the elimination of
bivalence from the underlying semantics. But, as Smullyan once remarked: ‘The
real importance of cut-free proofs is not the elimination of cuts per se, but rather
that such proofs obey the subformula principle’[Smullyan, 1968a, p. 560]. As we
shall see the subformula principle, as well as any other desirable property of the
cut-fre proofs, do not require such a drastic move.

4 EXTENSIONS OF SMULLYAN’S TABLEAUX

The refinements described in this section have in common that theyextendthe
method of analytic tableaux (in Smullyan’s formulation) by means of additional
rules which areredundant, i.e. are not required for completeness, but may solve
some of the anomalies of the original rules.

90 MARCELLO D’AGOSTINO

4.1 Tableaux with Merging

The computational redundancy discussed in Section 3.8 is well-known to anybody
who has worked with Smullyan’s tableaux in the area of automated deduction. It
is usually avoided by augmenting the standard tableau rules with extra ‘control’
features which stop the expansion of redundant paths in the tree or license the gen-
eration of ‘lemmas’ to be used in closing redundant branches. One consequence
of the separation result in Proposition 16 is that some correction of the tableau
rules is not just a discretional ‘optimization’ step, but anecessary conditionfor a
respectable tableau-like system.

One of the ‘enhancements’ of Smullyan’s tableaux which is taken into consid-
eration in the area of automated deduction is calledmerging(see [Vellino, 1989]
for a discussion of this method in connection with clausal tableaux, and[Broda,
1992] for an extension to first order logic). This technique can be easily described
in terms of our discussion of the redundancy of analytic tableaux. If for any two
nodesn;m which lie on different branches we have

�n � �m

then one can stop pursuing the branch throughm without loss of soundness.
More precisely, we can mark a branch of a tableauT ascheckedif the set of

formulae occurring in it is a superset of the set of formulae occurring in another
(unchecked) branch ofT . We say that a branch ofT is M-saturatedif it is either
saturated or checked and thatT is M-completedif every branch isM-saturated.
Morever, we say thatT is M-closedif every branch ofT is closed or checked.

The soundness of Tableaux with Merging (TM for short) is a corollary of the
following lemma:

LEMMA 18. EveryM-closedtableau can be expanded into a closed tableau.

Proof. This lemma can be proved as follows. LetT be an M-closed tableau and
let k be the ending node of a checked branch�. Then there must be a nodem
such that the set of formulae occurring in the path tom is a subset of the set of
formulae occurring in�. We say that the checked branch� is justifiedbym. Let
Tm be the sub-tableau generated bym. Now, eitherTm is closed or it is M-closed
and at least one of its branches is checked. None of the checked branches ofTm
can be justified byk or by a predecessor ofk (by construction ofT). This implies
that there must be a checked branch which is justified by a noden such that the
sub-tableauTn generated byn is closed. By appendingTn to n we obtain an M-
completed tableauT 0 with a number of checked branches which is strictly less
than the number of checked branches inT . By repeating this operation a sufficient
number of times, we eventually obtain a closed tableau. �

Merging is clearly anad hocmethod especially devised to remedy the problems
highlighted in Section 3.8. It is easy to see that if merging is employed, the hard

TABLEAU METHODS FOR CLASSICAL PROPOSITIONAL LOGIC 91

examples of Section 3.8 can be solved by tableaux of polynomial size. This is
sufficient to establish the following fact:

COROLLARY 19. The standard tableau method cannot p-simulate the tableau
method with merging.

4.2 Tableaux and Lemmas

Another way of solving the anomalies of Smullyan’s tableaux consists in using
lemmasin construction of a tableau. Suppose a nodek of a tableauT is the origin
of a closed subtableau. Then, ifk is labelled with a formulaA, and� is the set of
the formulae occurring in the path that leads toA, we can say that� ` :A. Hence,
we can use:A as a ‘lemma’ and append this formula to the end of all the branches
which share the set of formulae�, namely all the branches passing through any
sibling ofk. This operation is called ‘lemma generation’. Let us callL-tableaua
tableau constructed by making use of ‘lemmas’. Then, it is easy to see that:

PROPOSITION 20.There exists a closed tableau for� if and only if there exists
a closed L-tableau for�.

Now, it is not difficult to realize that the operation that we have called ‘lemma
generation’ can be soundly performed even if the sub-tableau generated byk has
not yet been constructed. For, either it is possible to construct a closed sub-tableau
belowk, or every sub-tableau belowk must be open. In the first case, the sub-
tableau justfies the use of the lemma:A as explained above. In the second case,
the tableau will anyway remain open and the addition of the ‘lemmas’ in the other
branches will not change this situation.

So, what is usually called ‘lemma generation’ is equivalent to replacing the
branching rules of the standard tableau method with corresponding asymmetric
ones. For instance, the rules for eliminating disjunction might have the following
form:

A _B

A

�� AA
B

:A

or A _B

B

�� AA
A

:B

We shall call this extended method ‘tableaux with lemma generation’ (TLM for
short).

Again, it is not difficult to see that all the hard examples of section 3.8 have
polynomial size refutations if these asymmetric rules are employed.

COROLLARY 21. The standard tableau method cannotp-simulate TLM.

92 MARCELLO D’AGOSTINO

4.3 Tableaux with Analytic Cut

Since the computational anomaly of the tableau rules is related to their failure
to simulate ‘analytic cut’ inferences, the most direct way of solving it seems to
consist in adding an analytic cut rule to Smullyan’s rules. This analytic cut rule
has the following forms depending on whether we deal with signed or unsigned
formulae:

TA FA A :A
whereA is a subformula of some formula occurring above in the branch to which
this rule is applied. The relation between this rule and the cut rule of the classical
sequent calculus (with the cut formulae restricted to subformulae) should be clear
from our discussion in Section 3.8: Suppose� ` A;�, i.e. there is a closed tableau
for � [f:Ag [f:B j B 2 �g, and�; A ` �, i.e. there is a closed tableau for
� [fAg [f:B j B 2 �g. Then it is easy to see that the above branching rule
allows us to construct a closed tableau for� ` f:B j B 2 �g, so showing that
� ` �.

Richard Jeffrey [Jeffrey, 1967] noticed the importance of this rule, that he
called ‘punt’, in combination with the other rules of the tableau method. Smullyan
[Smullyan, 1968a] once presented a sequent system with an analytic cut rule as
the only proof rule, the others being replaced by suitable axioms, and stressed that
such a system preserves the subformula property (which, in Gentzen’s approach,
provided the main motivation for the cut-free sequent calculus). Neither, however,
noticed that the use of analytic cut can considerably shorten proofs. To show this,
it is sufficient to observe that tableaux with the addition of the analytic cut rule
(TAC for short) can linearly simulate both TM and TLM. It then follows from
either Corollary 19 or Corollary 21 that:

COROLLARY 22. Smullyan’s tableaux cannotp-simulate TAC.

More recently, Cellucci[Cellucci, to appear] has presented a tableau-like ver-
sion of Smullyan’s analytic cut system and, building on results by the present
author and Mondadori ([D’Agostino, 1990; D’Agostino, 1992; D’Agostino and
Mondadori, 1994], see also Section 5.3 below), has analysed this system from the
complexity viewpoint.

5 ALTERNATIVES TO SMULLYAN’S TABLEAUX

In this section we shall discuss two tableau systems which are not classified as
extensions of Smullyan’s Tableaux (in the sense of the previous section), but as
alternativesystems, because their rules are different from Smullyan’s rules and
no rule is redundant. They still fall, however, within the category of expansion
systems and, therefore, belong to the same family of proof systems as Smullyan’s
Tableaux.

TABLEAU METHODS FOR CLASSICAL PROPOSITIONAL LOGIC 93

5.1 The Davis–Putnam Procedure

The Davis-Putnam procedure was introduced in 1960[Davis and Putnam, 1960]
and later refined in[Davis et al., 1992]. It was meant as an efficient theorem
proving method30 for (prenex normal form) first-order logic, but it was soon rec-
ognized that it combined an efficient test for truth-functional validity with a waste-
ful search through the Herbrand universe.31 This situation was later remedied by
the emergence of unification. However, at the propositional level, the procedure is
still considered among the most efficient, and is clearly connected with the reso-
lution method, so that Robinson’s resolution[Robinson, 1965] can be viewed as
a (non-deterministic) combination of the Davis-Putnam propositional module and
unification, in a single inference rule.

The proof-system underlying the DPP consists of the following two expansion
rules:

l l0
Al
l0

A

whereA is a (possibly empty) clause,l is a literal andl0 denotes the complement
of l. We call the first rulesplitting rule and the second ruleunit resolution rule.
Clearly the splitting rule is nothing but a cut rule restricted to literals. We shall
denote the empty clause by�. Then any application of the unit-resolution rule
with an emptyC, that is withl andl0 as premisses, will yield� as conclusion.

The DPP is carried out in two stages. The first is a ‘pre-processing’ stage whose
purpose is to arrange the input clauses and eliminate obvious redundancies. It
consists in:

1. removing any repetitions from the input clauses;

2. removing any clause containing a ‘pure’ literal, i.e. a literal which is not
complemented in any other clause;

3. deleting any clause that contains both a literal and its complement.

It is obvious that ifS is a set of clauses andS0 is the set that results from it after
performing the three steps we have just described,S is satisfiable if and only ifS0

is satisfiable.
This pre-processing stage is not strictly necessary but can be useful to simplify

the input. Let us now turn to describe the essential steps of the procedure. We shall
refer to these steps as Step 1, Step 2, etc., but the order in which we list them is
immaterial. The steps of the procedure are meant to give us instructions about how

30The version given in[Davis and Putnam, 1960] was not in fact a completely deterministic proce-
dure: it involved the choice of which literal to eliminate at each step. Such choices may crucially affect
the complexity of the resulting refutation.

31See [Davis, 1983].

94 MARCELLO D’AGOSTINO

the two expansion rules given above are to be applied. Some of these steps will
involvemarkingsome clauses asfulfilled in a given branch�. Clauses fulfilled in
� cannot be used any more in an application of the unit-resolution rule in the same
branch� (but can be used in other branches). The actual mechanism of marking
clauses as fulfilled does not concern us here, the only essential point is that it keeps
track of the branch in which a given clause is marked as fulfilled. Clauses which
are not so marked we shall callunfulfilled. A DPP-tree forS, whereS is a set
of clauses, is either a one-branch tree whose nodes are the clauses inS, or a tree
which results from a given DPP-tree by performing one of the following steps:

Step 1. Let � be a branch of the given tree; if an unfulfilled literall belongs to�,
then

a. mark as fulfilled in� all the clauses in� of the formCl (includingl itself);

b. mark as fulfilled in� all the clauses in� of the formCl0 and apply the
unit-resolution rule to each of them withl0 as auxiliary premiss.

Step 2. Let� be a branch such that some unfulfilled clauses in� contain the literal
l, but no clause in� contains the complementary literall0. Then mark as fulfilled
in � all the clauses in� containingl.

Step 3. Let � be a branch containing two clausesC1 andC2 such thatC1 sub-
sumesC2, that is every literal inC1 is contained also inC2, andC2 is unfulfilled.
Then markC2 as fulfilled in�.

Step 4. Let � be a branch such that some unfulfilled clauses in� contain the
literalL and some other unfulfilled clauses in� contain the complementary literal
l0. Then apply the splitting rule tol, that is append to� bothl andl0 as immediate
successors. We calll thecut literal of this application of the splitting rule.

Notice that parta of Step 1, if we except the marking of the literall, is not
strictly necessary since it is subsumed by Step 3. However, it is convenient to
execute it in the context of Step 1, since it involves the same kind of pattern-
matching which is required anyway to carry out partb. This allows us to reduce
as much as possible the set of unfulfilled clauses in the given branch with no extra
cost in terms of efficiency.

The DPP can be described as a procedure which generates a DPP-tree as fol-
lows:

PROCEDURE 23. INPUT: A setS of clauses and a linear orderingR of the
literals occurring inS.

1. Start with the one-branch tree consisting of all the clauses inS (taken in
any order);

2. Consider the treeT generated by the preceding step;if T is closed,then
stop: S is unsatisfiable;

TABLEAU METHODS FOR CLASSICAL PROPOSITIONAL LOGIC 95

3. elsepick up the leftmost branch� of the DPP-tree generated by the preced-
ing step;

4. if Stepi (with i = 1; 2; 3) is applicable to�, then apply Stepi to � and
return to 2 above;

5. if none of the Steps 1–3 is applicable to�, then

(5.1) if Step 4 is applicable to�, then apply Step 4 to�, choosing as cut
literal (among those satisfying the condition for applying Step 4) the
one which comes first in the orderingR, and return to 2 above;

(5.2) else stop: S is satisfiable.

The soundness and completeness of this procedure is discussed in detail in[Fit-
ting, 1996]. We conclude by remarking that the DPP is still regarded as one of
the most efficient decision procedures for classical propositional logic. Indeed,
the ordering which determines which literals should be used as cut literals when
applying the splitting rule is crucial for the performance of the DPP. A ‘wrong’
choice of this order may lead to combinatorial explosion even when a short proof
is available and the procedure can find it given the ‘right’ order of literals. Of
course deciding which order is ‘right’ or optimal is a non-trivial combinatorial
problem which may turn out to be intractable.

5.2 The KE System

The discussion in Section 3.8 leaves us with the following problem:

PROBLEM 24. Is there a refutation system which, though being ‘close’ to the
tableau method, is not affected by the anomalies of cut-free systems?

Observe that the non-redundancy condition (5) on p. 81 is obviously fulfilled
by any tree-method satisfying the stronger condition that distinct branches define
mutually exclusivesituations, i.e. contain inconsistent sets of formulae. The sim-
plest rule of the branching type which generates mutually inconsistent branches is
a0-premise rule, that we call PB, corresponding to the principle of bivalence:

PB

TA

�
�� A

AA
FA

A version for unsigned formulae can be obtained in the obvious way, as a 0-
premise branching rule withA and:A as alternative conclusions.

We could, of course, simply ‘throw in’ this rule, leaving the tableau rules un-
changed. The rule PB is nothing but a semantic reading of the cut rule as a principle
of bivalence. Moreover, it is not difficult, by using the above rule in conjunction
with the usual tableau rules, to construct short refutations of the ‘hard examples’

96 MARCELLO D’AGOSTINO

described in the previous section. Indeed, any proof system including a cut rule
can polynomially simulate the truth-tables (see below, Section 6). Thus all the
anomalies of Smullyan’s tableaux would be solved simply by (re)-introducing cut
as a primitive rule. However, such a ‘solution’ is not satisfactory. In the first place,
it is clearly ad hoc. The tableau method is complete without the cut rule and it
is not clearwhensuch a rule should be used in a systematic refutation procedure.
The ‘mechanics’ of the tableau method does not seem to accommodate the cut
rule in any natural way. Secondly, the standard branching rules still do not sat-
isfy our non-redundancy condition (5), which we identified as adesideratumfor a
well-designed refutation system.

The above considerations suggest that in a well-designed tableau method: (a)
the cut rule (PB) should not be redundant and (b) it should be theonly branching
rule. Thus, a good solution to Problem 24 may consist in overturning the cut-free
tradition: instead of eliminating cuts from proofs we assign the cut rule a central
role and reformulate the elimination rules accordingly.

Given (a) and (b) above, Problem 24 reduces to the following:

PROBLEM 25. Are there simple elimination rules of linear type which combined
with PB yield a refutation system for classical logic?

However, since a0-premise rule like PB can introduce arbitrary formulae, we
need also to solve:

PROBLEM 26. Can we restrict ourselves toanalyticapplications of PB, i.e. ap-
plications which do not violate the subformula property, without affecting com-
pleteness?

Furthermore, if Problem 26 has a positive solution, we shall be anyway left with
a large choice of formulae as potential conclusions of an application of PB (let us
call themPB-formulae). This may be a problem for the development of systematic
refutation procedures. Thus we have to address also the following:

PROBLEM 27. Can we further restrict the set of potential PB-formulae so as to
allow for simple systematic refutation procedures, like the standard procedure for
the tableau method?

To solve Problem 25 we need only to notice that the following eleven facts hold
true under any boolean valuation:

1. If A _ B is true andA is false, thenB is true.

2. If A _ B is true andB is false, thenA is true.

3. If A _ B is false then bothA andB are false.

4. If A ^ B is false andA is true, thenB is false.

5. If A ^ B is false andB is true, thenA is false.

6. If A ^ B is true then bothA andB are true.

TABLEAU METHODS FOR CLASSICAL PROPOSITIONAL LOGIC 97

7. If A! B is true andA is true, thenB is true.

8. If A! B is true andB is false, thenA is false.

9. If A! B is false, thenA is true andB is false.

10. If :A is true, thenA is false.

11. If :A is false, thenA is true.

These facts can immediately be used to provide a set of expansion rules of the
linear type which, with the addition of PB, constitute a complete set of rules for
classical propositional logic.

These rules characterize the propositional fragment of the systemKE (first pro-
posed in[Mondadori, 1988; Mondadori, 1988a]) and are shown in Table 3. Notice
that those with two signed formulae below the line representa pair of expansion
rules of the linear type, one for each signed formula. The rules involving the logi-
cal operators will be calledelimination rulesor E-rules.32

In contrast with the tableau rules for the same logical operators, the E-rules are
all of the linear type and arenot a complete set of rules for classical propositional
logic. The reason is easy to see. The E-rules, intended as ‘operational rules’ which
govern our use of the logical operators do not say anything about the bivalent
structure of the intended models. If we add the rule PB as the only rule of the
branching type, completeness is achieved. So PB isnot eliminablein the system
KE .33 As pointed out above (p. 89), there is a close correspondence between the
semantic rule PB and the cut rule of the sequent calculus.

We call an application of PB aPB-inferenceand the formulae which are the
conclusions of the PB-inferencePB-formulae. Finally, if TA andFA are the
conclusions of a given PB-inference, we shall say that PB has been applied to the
formulaA.

REMARK 28. Notice that all the linear rules can be easily simulated by the
tableau rules. This, of course, does not apply to PB.

DEFINITION 29. LetS = fX1; : : : ; Xmg be a set of signed formulae. ThenT
is aKE-tree forS if there exists a finite sequence(T1; T2; : : : ; Tn) such that (i)T1

32Quite independently, and with a different motivation, Cellucci[Cellucci, 1987] formulates the
same set of rules (although he does not use signed formulae). Surprisingly, the two-premise rules
in the above list were already discovered by Chrysippus who claimed them to be the fundamental
rules of reasoning (‘anapodeiktoi’), except that disjunction was interpreted by him in an exclusive
sense. Chrysippus also maintained that his ‘anapodeiktoi’ formed a complete set of inference rules
(‘the indemonstrables are those of which the Stoics say that they need no proof to be maintained.
[. . .] They envisage many indemonstrables but especially five, from which it seems all others can be
deduced’. See[Blanché, 1970], pp.115–119 and[Bochensky, 1961], p.126).

33This does not mean, however, that theKE-rules are unsuitable for non-classical logics. In fact,
the classical signs can be used in a non-standard interpretation in order to yield appropriate rules for a
variety of non-classical logics. For many-valued logics see[Hähnle, 1992]. For substructural logics
see [D’Agostino and Gabbay, 1994] and Chapter 7 of thisHandbook.

98 MARCELLO D’AGOSTINO

Disjunction Rules

TA _ B
FA
TB

ET_1

TA _ B
FB
TA

ET_2

FA _ B
FA
FB

EF_

Conjunction Rules

FA ^ B
TA
FB

EF^1

FA ^ B
TB
FA

EF^2

TA ^ B
TA
TB

ET^

Implication Rules

TA! B
TA
TB

ET !1

TA! B
FB
FA

ET !2

FA! B
TA
FB

EF !

Negation Rules

T:A
FA

ET: F:A
TA

EF:

Principle of Bivalence

TA FA
PB

Table 3. TheKE-rules for signed formulae

TABLEAU METHODS FOR CLASSICAL PROPOSITIONAL LOGIC 99

is a one-branch tree consisting of the sequence ofX1; : : : ; Xm; (ii) Tn = T , and
(iii) for eachi < n, Ti+1 results fromTi by an application of a rule ofKE.

DEFINITION 30.

1. Given aKE-treeT of signed formulae, a branch� of T is closedif for some
atomic formulaP , bothTP andFP are in�. Otherwise it isopen.

2. A KE-tree T of signed formulae isclosedif each branch ofT is closed.
Otherwise it isopen.

3. A treeT is aKE-refutation ofS if T is a closedKE-tree forS.

4. A treeT is aKE-proof ofA from a set� of formulaeif T is aKE-refutation
of fTBjB 2 �g [fFAg.

REMARK 31. It is easy to prove that if a branch� of T contains bothTA andFA
for some non-atomic formulaA, � can be extendedby means of the E-rules only
to a branch�0 which is atomically closed in the sense of the previous definition.
Hence, in what follows we shall consider a branch closed as soon as bothTA and
FA appear in it, for an arbitrary formulaA.

We can, of course, give a version ofKE which works with unsigned formulae.
The rules are shown in Table 4. It is intended that all definitions be modified
in the obvious way. We can see from the unsigned version that the two-premise
rules correspond to familiar principles of inference:modus ponens, modus tollens,
disjunctive syllogismand the dual of disjunctive syllogism. ThusKE can be seen
as a system of classical natural deduction using elimination rules only. However,
the classical operators are analysed as such and not as ‘stretched’ versions of the
constructive ones (like in[Gentzen, 1935] and [Prawitz, 1965]).

In Figure 12 we give aKE-refutation (using unsigned formulae) and compare
it with a minimal tableau for the same set of formulae; the reader can compare
the different structure of the two refutations and the crucial use of (the unsigned
version of) PB to eliminate the redundancy exhibited by the tableau refutation.
Notice that the thicker subtree in the tableau refutation is clearly redundant.

It is convenient to use Smullyan’s unifying notation in order to reduce the num-
ber of cases to be considered (for which see Fitting’s Introduction). So the E-rules
of KE can be ‘packed’ into the following three rules (where�ci , i = 1; 2 denotes
theconjugateof �i):

Rule A
�
�1
�2

Rule B1 �
�c1
�2

Rule B2 �
�c2
�1

100 MARCELLO D’AGOSTINO

Disjunction Rules

A _B
:A

B
E_1

A _B
:B

A
E_2

:(A _B)

:A
:B

E:_

Conjunction Rules

:(A ^B)
A

:B
E:^1

:(A ^B)
B

:A
E:^2

A ^B

A
B

E^

Implication Rules

A! B
A

B
E!1

A! B
:B

:A
E!2

:(A! B)

A
:B

E: !

Negation Rule

::A

A
E::

Principle of Bivalence

A j :A
PB

Table 4.KE rules for unsigned formulae

TABLEAU METHODS FOR CLASSICAL PROPOSITIONAL LOGIC 101

A _ B

A _ :B

:A _ C

:A _ :C

A

:A

�� AA
C

:A

�� TT
:C

"
"" b

bb
B

A

:A

�� AA
C

:A

�� TT
:C

�� AA
:B

A _B

A _ :B

:A _ C

:A _ :C

:A

B

:B

�� TT
::A

C

:C

Figure 12. A minimal tableau (on the left) and aKE-refutation (on the right) of
fA _ B;A _ :B;:A _ C;:A _ :Cg . The thick subtree in the tableau refutation
is redundant.

The Rule A can be seen as a pair of branch-expansion rules, one with conclusion
�1 and the other with conclusion�2. In each application of the rules, the signed
formulae� and� are calledmajor premisses. In each application of rules B1 and
B2 the signed formulae�ci , i = 1; 2, are calledminor premisses(rule A has no
minor premiss).

REMARK 32. The unifying notation can be easily adapted to unsigned formulae:
simply delete all the signs ‘T ’ and replace all the signs ‘F ’ by ‘:’. The ‘packed’
version of the rules then suggests a more economical version ofKE for unsigned
formulae when�ci is taken to denote thecomplementof �i defined as follows:
thecomplementof anunsigned formulaA, is equal to:B if A = B and toB if
A = :B. In this version the rules E_1, E_2 and E!2 become:

A _ B
Ac

B

A _ B
Bc

A

A! B
Bc

Ac

This version is to be preferred for practical applications.

We now outline a simple refutation procedure forKE that we callthe canonical
procedure. First we define some related notions.

102 MARCELLO D’AGOSTINO

DEFINITION 33.

1. We say that a formula isE-analysedin a branch� if either (i) it is of type�
and both�1 and�2 occur in�; or (ii) it is of type � and the following are
satisfied: (iia) if�c1 occurs in�, then�2 occurs in�; (iib) if �c2 occurs in�,
then�1 occurs in�.

2. We say that a branch isE-completedif all the formulae occurring in it are
E-analysed.

A branch which is E-completed is a branch in which the linear elimination rules of
KE have been applied in all possible ways. It may not be completed in the stronger
sense of the following definition.

DEFINITION 34.

1. We say that a formula of type� is fulfilled in a branch� if either�1 or �2
occurs in�.

2. We say that a branch� is completedif it is E-completed and, moreover,
every formula of type� occurring in� is fulfilled.

3. We say that aKE-tree is completedif all its branches are completed.

PROCEDURE 35. Thecanonical procedure forKE starts from the one-branch
tree consisting of the initial formulae and applies theKE-rules until the resulting
tree is either closed or completed. At each stage of the construction the following
steps are performed:

1. select an open branch� which is not yet completed (in the sense of Defini-
tion 34);

2. if � is not E-completed, expand� by means of the E-rules until it becomes
E-completed;

3. if the resulting branch�0 is neither closed nor completed then

(3.1) select a formula of type� which is not yet fulfilled (in the sense of
Definition 34) in the branch;

(3.2) apply PB with�1 and�c1 (or, equivalently,�2 and�c2) as PB-formulae
and go to step 1.

otherwise, go to step 1.

PROPOSITION 36.The canonical procedure is complete.

TABLEAU METHODS FOR CLASSICAL PROPOSITIONAL LOGIC 103

Proof. It is easy to see that the canonical procedure eventually yields aKE-tree
which is either closed or completed. The only crucial observation is that when one
applies the rule PB as prescribed, with�i and�ci as PB-formulae (withi equals
1 or 2 and� a non-fulfilled formula occurring in the branch), then once the two
resulting branches are E-completed as a result of performing step 2, each of them
will contain either�1 or �2. Therefore, eventually, each branch will be either
closed or completed. Since the formulae in a completed branch form a Hintikka
set, the completeness ofKE follows immediately via Hintikka’s lemma. �

Of course, what we have called ‘the canonical procedure’ is not, strictly speak-
ing, a completely deterministic algorithm. Some steps involve a choice and differ-
ent strategies for making these choices will lead to different algorithms. However
it describes a ‘mechanical version’ ofKE which is sufficient for our purpose of
comparing it with the tableau method. We can look at it as to arestricted proof
system, where the power of the cut rule is severely limited to allow for easy proof-
search.34 The next three corollaries unfold the content of Proposition 36.

COROLLARY 37 (Analytic cut property). If S is unsatisfiable, then there is a
closedKE-tree T 0 for S such that all the applications of PB preserve the subfor-
mula property.

Proof. All the PB-formulae involved in the canonical procedure are subformulae
of formulae previously occurring in the branch. �

Let us callanalyticthe applications of PB which preserve the subformula prop-
erty, andanalytic restriction ofKE the system obtained by restricting PB to ana-
lytic applications. The above corollary says that the analytic restriction ofKE is
complete. Since the elimination rules preserve the subformula property, the sub-
formula principle follows immediately. A constructive proof of the subformula
principle, which yields a procedure for transforming anyKE-proof into an equiv-
alentKE-proof which enjoys the subformula property, is given in[Mondadori,
1988a].

In fact the use of PB in the canonical procedure is even more restricted than
it appears from the above corollary. Consider the following definition ofstrongly
analyticapplication of PB.

DEFINITION 38. An application of PB in a branch� of a KE-tree is strongly
analytic if the PB-formulae of this application are�i and�ci for somei = 1; 2
and some non-fulfilled formula of type� occurring in�. A KE-tree is strongly
analyticif it contains only strongly analytic applications of PB.

All the applications of PB in the canonical procedure are strongly analytic.
Thus, it follows from the completeness of the canonical procedure that:

34The reader should be aware that this is not theonly mechanical procedure and not necessarilythe
best.

104 MARCELLO D’AGOSTINO

COROLLARY 39. If S is unsatisfiable, then there is a closed strongly analytic
KE-tree for S.

In other words, our argument establishes the completeness of the restricted sys-
tem obtained by replacing the ‘liberal’ version of PB with one which allows only
strongly analytic applications. In general, analytic applications of PB do not need
to be strongly analytic. The PB-formulae may well be subformulae of some for-
mula occurring above in the branch, and yet not satisfy the strongly analytic restric-
tion. Therefore, Corollary 39 is stronger than Corollary 37. One can ask whether
the strongly analytic restriction is as powerful, from the complexity viewpoint, as
the analytic restriction. This problem is still open.

In fact, the canonical procedure imposes even more control on the applica-
tions of the cut rule PB by requiring that it is applied on a branch only when
the linear elimination rules are no further applicable, i.e. when the branch is E-
completed. This strategy avoids unnecessary branchings which may increase the
size of proofs, much as, in the standard tableau method, the basic strategy con-
sisting in applying the�-elimination rule before the�-elimination rule, allows for
slimmer tableaux.35 Such a stricter notion of an analyticKE-tree is captured by
the following definition:

DEFINITION 40. We say that an application ofPB in a branch� is canonicalif
(i) it is strongly analytic, and (ii)� is E-completed. We also say that aKE-tree is
canonicalif all the applications of PB in it are canonical.

CanonicalKE-trees are exactly those which are generated by our canonical
procedure described above. Hence:

COROLLARY 41. If S is unsatisfiable, then there is a closed canonicalKE-tree
for S.

The canonical procedure forKE is closely related to the Davis–Putnam proce-
dure. It is not difficult to see that, if we extend our language to deal with ‘gen-
eralized’ (n-ary) disjunctions and conjunctions, the Davis–Putnam procedure (in
the version of [Daviset al., 1992] which is also the one exposed in[Chang and
Lee, 1973, Section 4.6] and in Fitting’s textbook[Fitting, 1996, Section 4.4]),
can be represented as a special case of the canonical procedure forKE. So, from
this point of view, the canonical procedure forKE provides a generalization of the
Davis–Putnam procedure which does not require reduction in clausal form. To see
that the DPP is a special case of the canonical procedure forKE observe that, if we
restrict ourselves to formulae in clausal form, every branch in a canonicalKE-tree
performs what essentially is aunit-resolutionrefutation [Chang, 1970]. On the

35Since in our approachall the elimination rules are linear, it does not make any difference whether,
in applying them, we give priority to formulae of type� or �. Of course, one may describe a similar
strategy for the standard tableau method, by giving priority to�-expansions or�-expansions applied
to formulae� such that either�c1 or �c2 occurs above in the branch. In this way one of the branches of
the�-expansion closes immediately.

TABLEAU METHODS FOR CLASSICAL PROPOSITIONAL LOGIC 105

other hand, in this special case, PB corresponds to the splitting rule of the Davis–
Putnam procedure (when represented in tree form, as in[Chang and Lee, 1973,
Section 4.6] and in [Fitting, 1996, Section 4.4]). All we need is to generalize our
language so as to includen-ary disjunctions, with arbitraryn, and modify the rule
for _-elimination in the obvious way.

Notice that the system resulting from this generalized version ofKE by disal-
lowing the branching rule PB (so that all the rules are linear) includes unit res-
olution as aspecial case. This restricted version ofKE can then be seen as an
extension of unit resolution (it is therefore a complete system for Horn clauses,
although it is not confined to formulae in clausal form). Although its scope largely
exceeds that of unit resolution, the procedure is stillfeasibleas shown by Proposi-
tion 45 below.

5.3 The Relative Complexity ofKE

In this section we discuss the complexity ofanalyticKE-refutations. We first show
that, unlike the tableau method, the analyticKE
indexanalytic restriction ofKE system canp-simulate the truth-tables . Next we
briefly discuss the complexity of proof-search in a hierarchy of subsystems aris-
ing by allowing only a fixed number of applications of the cut-rule (PB). Then
we compare the analytic, strongly analytic and canonical restrictions ofKE with
other analytic proof systems (i.e. systems obeying the subformula principle).
Some systems of deduction—such as tableau method and Gentzen’s sequent calcu-
lus without cut—yield only analytic proofs. Others—such as Natural Deduction,
Gentzen’s sequent calculus with cut andKE— allow for a more general notion of
proof which includes non-analytic proofs, although in all these cases the systems
obtained by restricting the potentially non-analytic rules to analytic applications
are still complete. Since we are interested, for theoretical and practical reasons,
in analytic proofs, we shall pay special attention to simulation procedures which
preserve the subformula property.

DEFINITION 42. Thelengthof a proof�, denoted byj�j is the total number of
symbols occurring in� (intended as a string).

The�-complexity, of �, denoted by�(�), is thenumber of linesin the proof
� (each ‘line’ being a sequent, a formula, or any other expression associated with
an inference step, depending on the system under consideration). Finally the�-
complexityof �, denoted by�(�) is the length (total number of symbols) of a line
of maximal length occurring in�.

Our complexity measures are obviously connected by the relation

j�j � �(�) � �(�):

Now, observe that the�-measure is sufficient to establish negative results about
the p-simulation relation, but is not sufficient in general for positive results. It

106 MARCELLO D’AGOSTINO

may, however, be adequate also for positive results whenever one can show that
the �-measure (the length of lines) is not significantly increased by the simula-
tion procedure under consideration. All the procedures that we shall consider in
the sequel will be of this kind. So we shall forget about the�-measure and iden-
tify the complexity of a proof system with the�-measure (this property is called
‘polynomial transparency’ in the general framework developed in[Letz, 1993].

As said before, we are interested in the complexity not of proofs in general but
of analytic proofs. We shall then speak of theanalytic restrictionof a system, i.e.
the rules are restricted to applications which preserve the subformula property.

Notice that the analytic restrictions of Gentzen’s sequent calculus and natural
deduction are strictly more powerful than the cut-free sequent calculus and normal
natural deduction respectively. For instance, the analytic restriction of the sequent
calculus allows cuts provided they are restricted to subformulae.

In what follows we shall consider the version ofKE which usesunsignedfor-
mulae.

KE and the Truth-tables

The complexity of the truth-table procedure for a given formulaA is sometimes
measured by the number of rows in the complete truth-table for that formula, i.e.
2k, wherek is the number of distinct atomic formulae inA. In fact, a better way of
measuring the complexity of the truth-tables takes into account also thelengthof
the formula to be tested. In any case, it is important to notice that the complexity of
the truth-table procedure isnot alwaysexponential in the length of the formula. It
is so only when the number of distinct atoms approaches the length of the formula.
On the contrary, the complexity of tableau proofs depends more crucially on the
length of the formula. Therefore, there might be (and in fact there are, as pointed
out in Section 3.8 above) examples which are ‘easy’ for the truth-tables and ‘hard’
for the tableau method. We described this situation as unnatural. We can turn
these considerations into a positive criterion and require that a well-designed proof
system should be able, at least, top-simulate the truth-tables, i.e. the most basic
semantical and computational characterization of classical propositional logic.

DEFINITION 43. Let us say that a proof system isstandard if its complexity (i.e.
minimal proof-length) isO(nc � 2k), wheren is the length of the input formula,c
is a fixed constant andk the number of distinct variables occurring in it.

The above definition requires that the complexity of the truth-tables be an upper
bound on the complexity of an acceptable proof system.

PROPOSITION 44.The analytic restriction ofKE is a standard proof system. In
fact, for every tautologyA of lengthn and containingk distinct variables, there is
a KE-refutationT of:A with �(T) = O(�(T)) = O(n � 2k)

Proof. [Sketch] There is an easyKE-simulation of the truth-table procedure.
First apply PB to all atomic letters on each branch. This generates a tree with

TABLEAU METHODS FOR CLASSICAL PROPOSITIONAL LOGIC 107

2k branches. Then each branch can be closed by means of aKE-tree of linear size.
(Hint: each truth-table rule can be simulated in a fixed number of steps.) Notice
that the applications of PB required for the proof, though analytic, are not strongly
analytic. �

It is easy to show that the task of saturating a branch under the E-rules is com-
putationally easy:

PROPOSITION 45.Let � be a branch containingm nodes, each of which is an
occurence of a formula of degreedm. The task of E-completing a branch� (i.e.
saturating it under theKE elimination rules) can be performed in polynomial time,
more precisely in timeO(n2) wheren =

P
m2� dm.

Proof. The proposition trivially follows from the fact that the E-rules have the
subformula property and there are no more thatn distinct subformulae of the for-
mulae in�. It is not difficult to see that at mostO(n2) pattern matchings need to
be performed. �

Therefore, the complexity of a tautology depends entirely on the number of PB-
branchings which are required in order to complete the tree. Let us callKE(k) the
system obtained fromKE by allowing at mostk nestedanalytic applications of the
cut-rule (i.e. the maximum number of cut-formulae on each branch isk). We have
just shown thatKE(0) has a decision procedure which runs in timeO(n2). The set
for which KE(0) is complete includes the horn-clause fragment of propositional
logic (howeverKE(0) is not restricted to clausal form logic). Moreover, we can
show that:

PROPOSITION 46.For every fixedk, KE (k) has a polynomial time decision pro-
cedure.

It is obvious that the set of tautologies for whichKE(k) is complete tends to
TAUT, the set of all the tautologies, ask tends to infinity. The crucial point is
that low-degree cut-bounded systems are powerful enough for a wide range of
applications. Notice that in this approach, the source of the complexity of proving
a tautology in the system is clearly identified, and quite large fragments of classical
logic can be covered with a very limited number of applications of the branching
rule PB (even with no applications of PB, most of the ‘textbook examples’ can be
proved).

KE Versus the Tableau Method

First we notice that, given a tableau refutationT of � we can effectively construct
astrongly analyticKE-refutationT 0 of � which is not essentially longer.

PROPOSITION 47.If there is a tableau proofT of A from �, then there is a
strongly analyticKE-proof T 0 ofA from � such that�(T 0) � 2�(T).

108 MARCELLO D’AGOSTINO

Proof. Observe that the elimination rules ofKE, combined with PB, can easily
simulate the branching rules of the tableau method. For instance in the case of the
branching rule for eliminating disjunctions either of the following two simulations
can be used (all the other cases are similar):

A _ B

A

�� TT
:A

B

or A _ B

B

�� TT
:B

A

Notice that the applications of PB are strongly analytic. Such a simulation length-
ens the original tableau by one node for each application of a branching rule. Since
the linear rules of the tableau method are also rules ofKE, it follows that there
is a KE-refutation T 0 of � such that�(T 0) � �(T) + k, wherek is the num-
ber of applications of branching rules inT . Sincek is obviously� �(T), then
�(T 0) � 2�(T). �

It also follows from Proposition 47 and Proposition 45 that:

PROPOSITION 48.The canonical restriction ofKE can p-simulate the tableau
method.

Notice that theKE-simulation contains more information than the simulated
tableau. In theKE-simulation of the branching rules, one of the branches contains
a formula which does not occur in the corresponding branch of the tableau. These
additional formulae may allow for the closure of branches that, in the simulated
tableau, remain open and are closed only after a redundant computational process.
So, while all the tableau rules can be easily simulated by means ofKE-rules,KE
includes a rule, namely PB, which cannot be easily simulated by means of the
tableau rules. Although it is well-known that the addition of this rule to the tableau
rules does not increase the stock of inferences that can be shown valid (since PB
is classically valid and the tableau method is classically complete), its absence, in
some cases, is responsible for an explosive growth in the size of tableau proofs. In
Section 3.8 we have already identified the source of this combinatorial explosion
in the fact that the tableau rules fail to simulate evenanalyticcut inferences. When
a rule like PB is available, simulating any ‘cut’ inference is relatively inexpensive
in terms of proof size as is shown by the diagram below:

�

�

:B

A

T2

�� TT
:A

T1

TABLEAU METHODS FOR CLASSICAL PROPOSITIONAL LOGIC 109

On the other hand if PB is not in the stock of rules, reproducing a cut inference
(even an analytic one) may be much harder, as we have shown in Section 3.8, and
require a great deal of duplication in the construction of a closed tableau. We have
already discussed a class of hard examples in Section 3.8 which are easy not only
for (the canonical restriction of)KE but also for the truth-table method. By Propo-
sition 16 above, the tableau method cannotp-simulate the truth-tables. Therefore,
in spite of their similarity, the tableau method cannot polinomially simultateKE .
This fact already follows from Proposition 16, Propositions 44 and 47. Moreover,
it is not difficult to see that the class of hard examples for the tableau method used
in the proof of Proposition 16 is ‘easy’ also for thecanonical restrictionof KE .
Figure 13 shows a canonicalKE-refutation of the set of clausesHP1;P2;P3 . It is
apparent that, in general, the number of branches in theKE-tree forHP1;:::;Pk ,
constructed according to the same pattern, is exactly2k�1 (which is the number
of clauses in the expression divided by 2) and that the refutation trees have size
O(k � 2k).

HP1;P2;P3

P1

P2 _ P3

P2 _ :P3

:P2 _ P3

:P2 _ :P3

P2

P3

:P3

�

 JJ
:P2

P3

:P3

�

�� ZZ
:P1

P2 _ P3

P2 _ :P3

:P2 _ P3

:P2 _ :P3

P2

P3

:P3

�

 JJ
:P2

P3

:P3

�

Figure 13. A canonicalKE-refutation ofHP1;P2;P3

This is sufficient to establish:

110 MARCELLO D’AGOSTINO

PROPOSITION 49.The tableau method cannotp-simulate the canonical restric-
tion ofKE.

A simple analysis shows that also the hard examples for Smullyan’s tableaux
used in the Section 3.8 to prove Theorem 17 are easy for the canonical restriction
of KE. Indeed, there are short canonicalKE-refutations of�n which contain2n+
2nn � 2 nodes. Such refutations have the following form: start with�n. This
will be a set containingm(= 2n) clauses of whichm=2 start with, say,P 1 and the
remainingm=2 with its negation. Apply PB to:P 1. This creates a branching with
:P 1 in one branch and::P 1 in the other. Now, on the first branch, by means of
m=2 applications of the rule E_1 we obtain a set of formulae which is of the same
form as�n�1. Similarly on the second branch we obtain another set of the same
form as�n�1. By reiterating the same procedure we eventually produce a closed
tree for the original set�n. It is easy to see that the number of nodes generated by
the refutation can be calculated as follows (wherem is the number of formulae in
�n, namely2n):

�(T) = m+

logm�1X
i=1

2i +m = m+ 2 � 1� 2logm�1

1� 2
+m � (logm� 1)

= m+m logm� 2:

This result also shows that the truth-tables cannotp-simulateKE in non-trivial
cases.36 Figure 14 shows theKE-refutation of�3 with P1; : : : ; P7 as atomic vari-
ables.

REMARK 50. This class of examples also illustrates an interesting phenomenon:
while the complexity ofKE-refutations is not sensitive to the order in which the
elimination rules are applied, it may be highly sensitive to the choice of the PB
formulae. If we make the ‘wrong’ choices, a combinatorial explosion may result
when ‘short’ refutations are possible by making different choices. If, in Cook and
Reckhow’s examples, the rule PB is applied always to the ‘wrong’ atomic variable,
namely to the last one in each clause, it is not difficult to see that the size of the
tree becomes exponential. To avoid this phenomenon an obvious criterion sug-
gests itself from the study of this example, at least for the case in which the input
formulae are in clausal form. We express it in the form of aheuristic principle:

HP Let � be a branch to which none of the linearKE-rules is applicable. LetS�
be the set of clauses occurring in the branch�, and letP1; : : : ; Pk be the
list of all the atomic formulae occurring inS�. LetNPI be the number of

36We mean that the exponential behaviour of the truth-tables in this case does not dependonly on
the large number of variables but also on the logical structure of the expressions. So these examples
are essentially different from the examples which are usually employed in textbooks to show that the
truth-tables are intractable (a favourite one is the sequence of expressionsA _ :A whereA contains
an increasing number of variables).

TABLEAU METHODS FOR CLASSICAL PROPOSITIONAL LOGIC 111

�3

P1

P3 _ P6

P3 _ :P6

:P3 _ P7

:P3 _ :P7

P3

P7

:P7

�

 JJ
:P3

P6

:P6

�

�� ZZ
:P1

P2 _ P4

P2 _ :P4

:P2 _ P5

:P2 _ :P5

P2

P5

:P5

�

 JJ
:P2

P4

:P4

�

Figure 14. AKE-refutation of�3

clausesC such thatPI or :Pi occurs inC. Then apply PB to an atomPi
such thatNPi is maximal.

A detailed study of proof-search in theKE-system will have to involve more
sophisticated criteria for the choice of the PB-formulae. Here we just stress that
the simulation of the tableau rules by means of theKE-rules is independent of the
choice of the PB-formulae. On the other hand a good choice may sometimes be
crucial for generating essentially shorter proofs than those generated by the tableau
method (sometimes it does not matter at all: the examples of Proposition 16 which
are ‘hard’ for the tableau method, are ‘easy’ for the canonical restriction ofKE
no matter how the PB-formulae are chosen). In any case, our discussion shows
that analytic cuts are often essential for the existence of short refutationswith the
subformula property.37

37This can be taken as further evidence in support of Boolos’ plea for not eliminating cut[Boolos,
1984]. In that paper he gives a natural example of a class of first order inference schemata which are

112 MARCELLO D’AGOSTINO

KE Versus Natural Deduction

It can also be shown thatKE can linearly simulate natural deduction (in tree form).
Moreover the simulation procedure preserves the subformula property. We shall
sketch this procedure for the natural deduction system given in[Prawitz, 1965],
the procedure being similar for other formulations.

We want to give an effective proof of the following Proposition (whereND
stands for Natural Deduction):

PROPOSITION 51.If there is anND-proof T of A from �, then there is aKE-
proofT 0 ofA from � such that�(T 0) � 3�(T) andT 0 contains only formulaeA
such thatA occurs inT .

Proof. By induction on�(T).
If �(T) = 1, then theND-tree consists of only one node which is an assumption,
sayC. The correspondingKE-tree is the closed sequenceC;:C.
If �(T) = k, with k > 1, then there are several cases depending on which rule
has been applied in the last inference ofT . We shall consider only the cases in
which the rule is elimination of conjunction (Ê) and elimination of disjunction
(E_), and leave the others to the reader. If the last rule applied inT is Ê , thenT
has the form:

T =

�

T1
A ^ B
A

By inductive hypothesis there is aKE-refutation T 01 of �;:(A ^ B) such that
�(T 01) � 3�(T1). Then the followingKE-tree:

T 0 =

�
:A

A ^B

A

�

�� @@
:(A ^ B)

T 0

1

‘hard’ for the tableau method while admitting ‘easy’ (non-analytic) natural deduction proofs. Boolos’
examples are a particularly clear illustration of the well-known fact that the elimination of cuts from
proofs in a system in which cuts are eliminable can greatly increase the complexity of proofs. (For a
related technical result see[Statman, 1978].) KE provides an elegant solution to Boolos’ problem by
making cut non-eliminable while preserving the subformula property of proofs. Our discussion also
shows that eliminatinganalyticcuts can result in a combinatorial explosion.

TABLEAU METHODS FOR CLASSICAL PROPOSITIONAL LOGIC 113

is the requiredKE-proof and it is easy to verify that�(T 0) � 3�(T).

If the last rule applied inT is the rule of elimination of disjunction, thenT has the
form:

T =

�1

T1
A _ B

�2; [A]

T2
C

�3; [B]

T3
C

C

By inductive hypothesis there areKE-refutationsT 01 of �1;:(A _ B), T 02 of
�2; A;:C, andT 03 of �3; B;:C, such that�(T 0i) � 3�(Ti), i = 1; 2; 3. Then the
following KE-tree:

T 0 =

�1

�2

�3

:C

A _ B

A

T 0

2

�� TT
:A

B

T 0

3

�� @@
:(A _ B)

T 0

1

is the required proof and it is easy to verify that�(T 0) � 3�(T). �

KE and Other Refinements of Analytic Tableaux

We have seen that the technique called ‘merging’ is anad hocmethod for solving
some of the anomalies of Smullyan’s tableaux, in particular what we have identi-
fied as the ‘redundancy’ of Smullyan’s rules (see Section 3.8 above). InKE, the
use of PB as the sole branching rule, instead of the standard branching rules of
tableaux,removesthis redundancy by making all the branches in the treemutually
inconsistent. As a result, the redundant branches which are stopped via merging
are simplynot generated in aKE-tree (see the example in Figure 15). The exam-
ple shows that the applications of PB required to simulate merging arestrongly
analytic. These considerations establish the following fact:

PROPOSITION 52.The strongly analytic restriction ofKE linearly simulates the
tableau method with merging.

114 MARCELLO D’AGOSTINO

A _B

A _C

A

�1

�� AA
B

A

�2

�� AA
C

A _B

A _C

A
�� TT

:A

B

C

Figure 15. In the tableau in the left-hand side the branch�2 is not further expanded
(it is ‘merged’ with branch�1). In the correspondingKE-tree shown in the right-
hand side, the redundant branch is not generated.

Let us now turn our attention to the other enhancement of Smullyan’s tableaux,
discussed in Section 4.2, namely the use of lemmas in a tableau refutation. We
have that this method is equivalent to replacing the standard tableau branching
rules with corresponding asymmetric ones. For instance, the rules for eliminating
disjunction are replaced by the following:

A _ B

A

�� AA
B

:A

or A _ B

B

�� AA
A

:B

It is obvious that such asymmetric rules are equivalent to a combination of strongly
analytic applications of PB and of theKE-elimination rules, as shown in the dia-
gram used to show Proposition 47 above. Hence:

PROPOSITION 53.The strongly analytic restriction ofKE linearly simulates the
tableau method with lemma generation.

We remark that it appears misleading, however, to refer to tableaux with the
asymmetric rules as to ‘tableaux with lemma generation’. The use of this termi-
nology conveys the idea that the additional formula appendend to one side of the
branching rules is a ‘lemma’, namely that the sub-tableau below the other side is
closed or may be closed. In contrast, tableau rules can be used also for enumerating
all the models of a satisfiable set of formulae, and not only for refuting unsatisfi-
able sets. In the former case the sub-tableau in question may well be open, so that
the appended formula is not a ‘lemma’. The fact that we can append it without loss
of soundness, does not depend on its being a lemma, but merely on the principle
of bivalence. In any case, the appended formula provides additional information

TABLEAU METHODS FOR CLASSICAL PROPOSITIONAL LOGIC 115

which can be used below to close every branch containing its complement. As a
result, the enumeration of models is non-redundant, in the sense that it does not
generate models which are subsumed one by the other, since all the models result-
ing from the enumeration are mutually exclusive.

Thus the strongly analytic restriction ofKE is sufficient to simulate efficiently
the best known enhancements of the tableau method, simply by making an ap-
propriate use of the (analytic) cut rule. We stress once again that theKE-system
cannot be identified with its strongly analytic restriction. In fact, less restricted
notions of proof may be more powerful from the complexity viewpoint and still
obey the subformula principle.

6 A MORE GENERAL VIEW

As seen in the previous section, the speed-up ofKE over the tableau method can
be traced to the fact thatKE, unlike the tableau method, can easily simulate infer-
ence steps based on ‘cuts’, as shown on p. 80 and p. 109. The cut rule expresses
the transitivity property of deduction and it is natural to require that a ‘simple’
procedure for implementing this property befeasible. Concatenation of proofs is
feasible in the ordinary deductive practice and should be feasible in any realistic
formal model of this practice. We are, therefore, led to formulate the following
condition which has to be satisfied by any acceptable formal model of the notion
of a classical proof:

Strong Transitivity Principle (STP): Proof-concatenation should be
feasible and uniform. More precisely, letjT j denote the size of the
proof T (ie the number of steps in it). There must be a uniform,
structural procedure, which, given a proofT1 of A from �1; B and
a proofT2 ofB from�2, yields a proofT3 ofA from �1;�2 such that
jT3j = jT1j + jT2j + c, for some fixed constantc depending on the
system.

In other word we require that the transitivity property be a valid derived rule in a
particularly strict sense.

Cleraly KE satisfies our strong transitivity principle, the required procedure
being the one described in the previous section. Some formal systems (like the
tableau method and the cut-free sequent calculus) do not satisfy the STP, some
others satisfy it in a non-obvious way. Notice that the existence of a uniform
procedure for grafting proofs of subsidiary conclusions, orlemmata, in the proof
of a theorem is just one condition of the STP. The other condition requires that
such a procedure be computationally easy. In Natural Deduction, for instance,
replacingevery occurrenceof an assumptionA with its proof provides an obvious
grafting method which, though very perspicuous, is highly inefficient, leading to
much unwanted duplication in the resulting proof-tree. We also require the method
to be also computationallyfeasible. So, the standard way of grafting proofs of

116 MARCELLO D’AGOSTINO

subsidiary conclusions in natural deduction proofs, though providing a uniform
method, does not satisfy the feasibility condition. The rules of natural deduction,
however, permit us to bypass this difficulty and produce a method satisfying the
whole of STP. Consider the rule ofNon-Constructive Dilemma(NCD):

�; [A]���
B

�; [:A]���
B

B

This is a derived rule in Prawitz’s style Natural Deduction which yields classical
logic if added to the intuitionistically valid rules (see[Tennant, 1978, section 4.5]).
By ‘derived rule’ here we mean that every application of NCD can be eliminated in
a fixed number of steps (the expression ‘derived rule’ is often used in the literature
in a much more liberal sense), as shown by the following construction:

A _ :A

�; [A]���
B

�; [:A]���
B

B

(Notice thatA _ :A can always be proved in a fixed number of steps.)
NCD is a classical version of the cut rule. We can show Natural Deduction to

satisfy the STP by means of the following construction:

�; [A]���
B

����
A [:A]

F

B

B

Notice that the construction does not depend on the number of occurrences of the
assumptionA in the subproof ofB from �; A.

In analogy with the STP we can formulate a condition requiring a proof system
to simulate efficiently another form of cut which holds for classical systems and is
closely related to the rule PB:

(C) Let �1 be a proof ofB from �; A and�2 be a proof ofB from �;:A. Then
there is a uniform method for constructing from�1 and�2 a proof�3 of B
from �;� such that�(�3) � �(�1) + �(�2) + c for some constantc.

Similarly, the next condition requires that proof systems can efficiently simulate
theex falsoinference scheme:

TABLEAU METHODS FOR CLASSICAL PROPOSITIONAL LOGIC 117

(XF) Let �1 be a proof ofA from � and�2 be a proof of:A from �. Then there
is a uniform method for constructing from�1 and�2 a proof�3 of B from
�;�, for anyB, such that�(�3) � �(�1) + �(�2) + c for some constantc.

So, let us say that a proof system is aclassical cut systemif (i) it is sound and
complete for classical logic, and (ii) it satisfies conditions (C) and (XF). It is easy to
show that every classical cut system satisfies also the STP and, therefore, allows for
an efficient implementation of the transitivity property of ordinary proofs. Notice
that the definition of a classical cut system is very general and does not assume
anything about the form of the inference rules. For instance, as shown above,
classical natural deduction intree form is a classical cut system.

The next Proposition shows thateveryclassical cut system can simulateKE
without a significant increase in proof complexity. The simulation procedure
shows that the cut inferences are restricted to formulae which occur in the sim-
ulated proof.

PROPOSITION 54.If S is a classical cut system, thenS can linearly simulate
KE .

To prove the proposition it is convenient to assume that our language includes
a 0-ary operatorF (Falsum) and that the proof systems include suitable rules to
deal with it.38 For KE this involves only adding the obvious rule which allows
us to appendF to any branch containing bothA and:A for some formulaA,
so that every closed branch in aKE-tree ends with a node labelled withF . The
assumption is made only for convenience’s sake and can be dropped without con-
sequence. Moreover we shall make the obvious assumption that, for every system
S, the complexity of a proof ofA fromA in S is equal to 1.

Let �(�) denote the number of nodesgeneratedby aKE-refutation� of � (i.e.
the assumptions are not counted).39 Let S be a classical cut system. IfS is com-
plete, then for every ruler of KE there is anS-proof�r of the conclusion ofr
from its premises. Letb1 = Maxr(�(�r)) and letb2 andb3 be the constants rep-
resenting, respectively, the�-cost of simulating classical cut inS–associated with
condition (C) above—and the�-cost of simulating theex falsoinference scheme
in S–associated with condition (XF) above. As mentioned before, every classical
cut system satisfies also condition STP and it is easy to verify that the constant
associated with this condition, representing the�-cost of simulating ‘absolute’ cut
in S, is� b2 + b3 + 1. We setc = b1 + b2 + b3 + 1.

The proposition is an immediate consequence of the following lemma:

LEMMA 55. For every classical cut systemS, if there is aKE-refutation� of �,
then there is anS-proof�0 ofF from� with �(�0) � c � �(�).

38Systems which are not already defined over a language containingF can usually be redefined over
such an extended language without difficulty.

39The reader should be aware that our� -measure applies toKE-refutations andnot to trees: the
same tree can represent different refutations yielding different values of the� -measure.

118 MARCELLO D’AGOSTINO

Proof. The proof is by induction on�(�), where� is a KE-refutation of �.
�(�) = 1. Then� is explicitly inconsistent, i.e. contains a pair of complemen-
tary formulae, sayB and:B, and the only node generated by the refutation is
F , which is obtained by means of an application of theKE-rule for F to B and
:B. Since there is anS-proof of theKE-rule for F , we can obtain anS-proof
�0 of the particular application contained in� simply by performing the suitable
substitutions and�(�0) � b1 < c.
�(�) > 1. Case 1. TheKE-refutation� has the form:

�

C

T1

whereC follows from premises in� by means of an E-rule. So there is aKE-
refutation�1 of �; C such that�(�) = �(�1) + 1. By inductive hypothesis, there
is anS-proof�01 of F from �; C such that�(�01) � c � �(�1). Moreover, there
is anS-proof�2 of C from the premises from which it is inferred in� such that
�(�2) � b1. So, from the hypothesis thatS is a classical cut system, it follows that
there is anS-proof�0 of F from � such that

�(�0) � c � �(�1) + b1 + b2 + b3 + 1

� c � �(�1) + c

� c � (�(�1) + 1)

� c � �(�)

Case 2.� has the following form:

�

C

T1

�� TT
:C

T2

So there areKE-refutations�1 and�2 of �; C and�;:C such that�(�) = �(�1)+
�(�2) + 2. Now, by inductive hypothesis there is anS-proof�01 of F from �; C
and anS-proof�02 of F from �;:C with �(�0i) � c � �(�i); i = 1; 2. SinceS is a
classical cut system, it follows that there is anS-proof�0 of F from � such that

�(�0) � c � �(�1) + c � �(�2) + b2

< c � �(�1) + c � �(�2) + c

< c � (�(�1) + �(�2) + 2)

TABLEAU METHODS FOR CLASSICAL PROPOSITIONAL LOGIC 119

< c � �(�)

�

Notice that in the simulation used in the proof of the previous proposition the
cut formula is always a formula which occurs in theKE-refutation. So, if the latter
enjoys the subformula property, its simulation in the cut system will be such that
the cut formulae are all subformulae of the conclusion or of the assumptions. This
holds true even if the proof as a whole does not enjoy the subformula property (for
instance when the cut system in question is a Hilbert-style system). In fact, the
simulation given above provides a means for transforming every proof-procedure
based on theKE-rules into a proof-procedure of comparable complexity based on
the rules of the given cut system.

DEFINITION 56. We say that a proof systemS is ananalytic cut systemif (i) S is
the analytic restriction of a classical cut system, and (ii)S is complete for classical
logic.

Then, the proof of Proposition 54 also shows that:

COROLLARY 57. Every analytic cut system can linearly simulate the analytic
restriction ofKE.

This implies that it is only the possibility of representing (analytic)cutsand not
the form of theoperational ruleswhich is crucial from a complexity viewpoint.

It follows from the above corollary and Proposition 44 that:

COROLLARY 58. Every analytic cut system is a standard proof system. In fact,
for every tautologyA of lengthn and containingk distinct variables there is a
proof�, with�(�) = O(n � 2k).

Moreover, Corollary 57, Proposition 47 and Proposition 49 imply that:

COROLLARY 59. Every analytic cut system can linearly simulate the tableau
method, but the tableau method cannotp-simulate any analytic cut system.

Since (the classical version of) Prawitz’s style natural deduction is a classical cut
system, it follows that it can linearly simulateKE. Moreover, for all these systems,
the simulation preserves the subformula property (i.e. it maps analytic proofs to
analytic proofs). Therefore Proposition 54, together with Proposition 51, imply
that Prawitz’s style natural deduction andKE can linearly simulate each other
with a procedure which preserves the subformula property. Corollary 59 implies
that both these systems cannot bep-simulated by the tableau method, even if we
restrict our attention to analytic proofs (the tableau method cannotp-simulate any
analytic cut system). Finally Corollary 58 implies that, unlike the tableau method,
the analytic restriction of both these systems have the sameupper boundas the
truth-table method.

120 MARCELLO D’AGOSTINO

ACKNOWLEDGEMENTS

I wish to thank Reinhold Letz for reading several versions of the present chap-
ter and offering valuable comments. Thanks are also due to Krysia Broda, Dov
Gabbay and Marco Mondadori for many helpful suggestions. Special thanks to
Alasdair Urquhart and Andr´e Vellino for making available interesting papers and
lecture notes.

Dipartimento di Scienze Umane, Università di Ferrara, Italy.

APPENDIX

NATURAL DEDUCTION AND VARIANTS

P ^Q
P

P ^Q
Q

P Q

P ^Q

P

P _Q
Q

P _Q P _Q

	1; [P]���
R

	2; [Q]���
R

R
	; [P]���
Q

P ! Q

P ! Q P

Q

	; [P]���
F

:P

P :P
F

F

Q

The notation[P] means that the conclusion of the rule does not depend on the assumption
P . The rules listed above are the intuitionistic rules. Classical logic is obtained by adding
one of the following three rules:

P _ :P
::P
P

[:P]���
F

P

TABLEAU METHODS FOR CLASSICAL PROPOSITIONAL LOGIC 121

The last of these rules is theclassical reductio ad absurdum. Another variant of the classical
calculus is described in[Tennant, 1978] where the author uses the following classicalrule
of dilemma:

[P]���
Q

[:P]���
Q

Q

REFERENCES

[Avron, 1988] A. Avron. The semantics and proof theory of linear logic.Theoretical Computer
Science, 57:161–184, 1988.

[Beth, 1955] E. W. Beth. Semantic entailment and formal derivability.Mededelingen der Koninklijke
Nederlandse Akademie van Wetenschappen, 18:309–342, 1955.

[Beth, 1958] E. W. Beth. On machines which prove theorems.Simon Stevin Wissen Natur-kundig
Tijdschrift, 32:49–60, 1958. Reprinted in[Siekmann and Wrightson, 1983], vol. 1, pages 79–90.

[Bibel, 1982] W. Bibel. Automated Theorem Proving. Vieweg, Braunschweig, 1982.
[Blanché, 1970] R. Blanché. La logique et son histoire. Armand Colin, Paris, 1970.
[Bochensky, 1961] I. M. Bochensky. A History of Formal Logic. University of Notre Dame, Notre

Dame (Indiana), 1961.
[Boolos, 1984] G. Boolos. Don’t eliminate cut.Journal of Philosophical Logic, 7:373–378, 1984.
[Broda, 1992] K. Broda. The application of semantic tableaux with unification to automated deduc-

tion. Ph.D thesis. Technical report, Department of Computing, Imperial College, 1992.
[Brodaet al., 1998] K. Broda, M. Finger and A. Russo. LDS-Natural deduction for substructural log-

ics. Technical report DOC97-11. Imperial College, Department of Computing, 1997. Short version
presented at WOLLIC 96,Journal of the IGPL, 4:486–489.

[Buss, 1987] S. R. Buss. Polynomial size proofs of the pigeon-hole principle.The Journal of Symbolic
Logic, 52:916–927, 1987.

[Cellucci, to appear] C. Cellucci. Analytic cut trees. To appear in theJournal of the IGPL.
[Cellucci, 1987] C. Cellucci. Using full first order logic as a programming language. InRendiconti

del Seminario Matematico Universit`a e Politecnico di Torino. Fascicolo Speciale 1987, pages 115–
152, 1987. Proceedings of the conference on ‘Logic and Computer Science: New Trends and
Applications’.

[Cellucci, 1992] C. Cellucci. Existential instantiation and normalization in sequent natural deduction.
Annals of Pure and Applied Logic, 58:111–148, 1992.

[Chang, 1970] C. L. Chang. The unit proof and the input proof in theorem proving.Journal of the
Association for Computing Machinery, 17:698–707, 1970.

[Chang and Lee, 1973] C. .L Chang and R. C. T. Lee.Symbolic Logic and Mechanical Theorem
Proving. Academic Press, Boston, 1973.

[Cook, 1971] S. A. Cook. The complexity of theorem proving procedures. InProceedings of the 3rd
Annual Symposium on the Theory of Computing, 1971.

[Cook and Reckhow, 1974] S. A. Cook and R. Reckhow. On the length of proofs in the propositional
calculus. InProceedings of the 6th Annual Symposium on the Theory of Computing, pages 135–148,
1974.

[Cook and Reckhow, 1979] S. A. Cook and R. Reckhow. The relative efficiency of propositional proof
systems.The Journal of Symbolic Logic, 44:36–50, 1979.

[D’Agostino, 1990] M. D’Agostino. Investigations into the complexity of some propositional calculi.
PRG Technical Monographs 88, Oxford University Computing Laboratory, 1990.

[D’Agostino, 1992] M. D’Agostino. Are tableaux an improvement on truth-tables?Journal of Logic,
Language and Information, 1:235–252, 1992.

[D’Agostino and Gabbay, 1994] M. D’Agostino and D. Gabbay. A generalisation of analytic deduc-
tion via labelled deductive systems. Part 1: basic substructural logics.Journal of Automated Rea-
soning, 13:243–281, 1994.

122 MARCELLO D’AGOSTINO

[D’Agostino and Mondadori, 1994] M. D’Agostino and M. Mondadori. The taming of the cut.Jour-
nal of Logic and Computation, 4:285–319, 1994.

[Davis, 1983] M. Davis. The prehistory and early history of automated deduction. In[Siekmann and
Wrightson, 1983] , pages 1–28. 1983.

[Daviset al., 1992] M. Davis, G. Logemann, and D. Loveland. A machine program for theorem prov-
ing. Communications of the Association for Computing Machinery, 5:394–397, 1962. Reprinted in
[Siekmann and Wrightson, 1983], pp. 267–270.

[Davis and Putnam, 1960] M. Davis and H. Putnam. A computing procedure for quantification theory.
Journal of the Association for Computing Machinery, 7:201–215, 1960. Reprinted in[Siekmann
and Wrightson, 1983], pp. 125–139.

[Dummett, 1978] M. Dummett.Truth and other Enigmas. Duckworth, London, 1978.
[Dunham and Wang, 1976] B. Dunham and H. Wang. Towards feasible solutions of the tautology

problem.Annals of Mathematical Logic, 10:117–154, 1976.
[Fitting, 1996] M. Fitting. First-Order Logic and Automated Theorem Proving. Springer-Verlag,

Berlin, 1996. First edition, 1990.
[Gabbay, 1996] D. M. Gabbay. Labelled Deductive Systems, Volume 1 - Foundations. Oxford Uni-

versity Press, 1996.
[Gallier, 1986] J. H. Gallier.Logic for Computer Science. Harper & Row, New York, 1986.
[Garey and Johnson, 1979] M. R. Garey and D. S. Johnson.Computers and Intractability. A Guide to

the theory of NP-Completeness. W. H. Freeman & Co., San Francisco, 1979.
[Gentzen, 1935] G. Gentzen. Unstersuchungen ¨uber das logische Schliessen.Math. Zeitschrift,

39:176–210, 1935. English translation in[Szabo, 1969].
[Girard, 1987] J. Y. Girard.Proof Theory and Logical Complexity. Bibliopolis, Napoli, 1987.
[Girardet al., 1989] J.-Y. Girard, Y. Lafont and P. Taylor.Proofs and Types. Cambridge Tracts in

Theoretical Computer Science, Cambridge University Press, 1989.
[Hähnle, 1992] R. Hähnle. Tableau-Based Theorem-Proving in Multiple-Valued Logics. PhD thesis,

Department of Computer Science, University of Karlsruhe, 1992.
[Heyting, 1956] A. Heyting. Intuitionism. North-Holland, Amsterdam, 1956.
[Jeffrey, 1967] R. C. Jeffrey.Formal Logic: its Scope and Limits. McGraw-Hill Book Company, New

York, second edition, 1981. first edition 1967.
[Kleene, 1967] S. C. Kleene.Mathematical Logic. John Wiley & Sons, Inc., New York, 1967.
[Letz, 1993] R Letz.On the Polynomial Transparency of Resolution. InProceedings of the 13th Inter-

national Joint Conference on Artificial Intelligence(IJCAI), Chambery, pp. 123–129, 1993.
[Letzet al., 1994] R Letz, K. Mayr and C. Goller. Controlled integration of the cut rule into connec-

tion tableaux calculi.Journal of Automated Reasoning, 13:297–337, 1994.
[Loveland, 1978] D. W. Loveland. Automated Theorem Proving: A Logical Basis. North Holland,

1978.
[Matulis, 1962] V. A. Matulis. Two versions of classical computation of predicates without structural

rules.Soviet Mathematics, 3:1770–1773, 1962.
[Mondadori, 1988] M. Mondadori. Classical analytical deduction. Annali dell’Universit`a di Ferrara;

Sez. III; Discussion paper 1, Universit`a di Ferrara, 1988.
[Mondadori, 1988a] M. Mondadori. Classical analytical deduction, part II. Annali dell’Universit`a di

Ferrara; Sez. III; Discussion paper 5, Universit`a di Ferrara, 1988.
[Murray and Rosenthal, 1994] N. V. Murray and E. Rosenthal. On the computational intractability of

analytic tableau methods.Bulletin of the IGPL, 1994.
[Prawitz, 1965] D. Prawitz. Natural Deduction. A Proof-Theoretical Study. Almqvist & Wilksell,

Uppsala, 1965.
[Prawitz, 1971] D. Prawitz. Ideas and results in proof theory. InProceedings of the II Scandinavian

Logic Symposium, pages 235–308, Amsterdam, 1971. North-Holland.
[Prawitz, 1974] D. Prawitz. Comments on Gentzen-type procedures and the classical notion of truth.

In A. Dold and B. Eckman, editors,ISILC Proof Theory Symposium. Lecture Notes in Mathematics,
500, pages 290–319, Springer. Berlin, 1974.

[Prawitz, 1978] D. Prawitz. Proofs and the meaning and completeness of the logical constants. In
J. Hintikka, I. Niinduoto, and E. Saarinen, editors,Essays on Mathematical and Philosphical Logic,
pages 25–40. Reidel, Dordrecht, 1978.

[Robinson, 1965] J. A. Robinson. A machine-oriented logic based on the resolution principle.Journal
of the Association for Computing Machinery, 12:23–41, 1965.

TABLEAU METHODS FOR CLASSICAL PROPOSITIONAL LOGIC 123

[Schroeder-Heister, 1997] P. Schroeder-Heister. Frege and the resolution calculus.History and Phi-
losophy of Logic, 18:95–108, 1997.

[Scott, 1970] D. Scott. Outline of a mathematical theory of computation. PRG Technical Mono-
graph 2, Oxford University Computing Laboratory, Programming Research Group, 1970. Revised
and expanded version of a paper under the same title in the Proceedings of the Fourth Annual
Princeton Conference on Information Sciences and System, 1970.

[Scott, 1981] D. Scott. Notes on the formalization of logic. Study aids monographs, n. 3, University
of Oxford, Subfaculty of Philosophy, 1981. Compiled by Dana Scott with the aid of David Bostock,
Graeme Forbes, Daniel Isaacson and G¨oren Sundholm.

[Sieg, 1993] W. Sieg. Mechanism and search. aspects of proof theory. Technical report, AILA
preprint, 1993.

[Siekmann and Wrightson, 1983] J. Siekmann and G. Wrightson, editors.Automation of Reasoning.
Springer-Verlag, New York, 1983.

[Smullyan, 1968] R. Smullyan.First-Order Logic. Springer, Berlin, 1968.
[Smullyan, 1968a] R. M. Smullyan. Analytic cut.The Journal of Symbolic Logic, 33:560–564, 1968.
[Smullyan, 1968b] R. M. Smullyan. Uniform Gentzen systems.The Journal of Symbolic Logic,

33:549–559, 1968.
[Statman, 1978] R. Statman. Bounds for proof-search and speed-up in the predicate calculus.Annals

of Mathematical Logic, 15:225–287, 1978.
[Statman, 1977] R. Statman. Herbrand’s theorem and Gentzen’s notion of a direct proof. In J. Barwise,

editor,Handbook of Mathematical Logic, pages 897–912. North-Holland, Amsterdam, 1977.
[Stockmeyer, 1987] L. Stockmeyer. Classifying the computational complexity of problems.The Jour-

nal of Symbolic Logic, 52:1–43, 1987.
[Sundholm, 1983] G. Sundholm. Systems of deduction. In D. Gabbay and F. Guenthner, editors,

Handbook of Philosophical Logic, volume I, chapter I.2, pages 133–188. Reidel, Dordrecht, 1983.
[Szabo, 1969] M. Szabo, editor.The Collected Papers of Gerhard Gentzen. North-Holland, Amster-

dam, 1969.
[Tennant, 1978] N. Tennant.Natural Logic. Edimburgh University Press, Edinburgh, 1978.
[Thistlewaiteet al., 1988] P. B. Thistlewaite, M. A. McRobbie and B. K. Meyer.Automated Theorem

Proving in Non Classical Logics. Pitman, 1988.
[Thomas, 1941] I. Thomas, editor.Greek Mathematics, volume 2. William Heinemann and Harvard

University Press, London and Cambridge, Mass., 1941.
[Urquhart, 1992] A. Urquhart. Complexity of proofs in classical propositional logic. In

Y. Moschovakis, editor,Logic from Computer Science, pages 596–608. Springer-Verlag, 1992.
[Urquhart, 1995] A. Urquhart. The complexity of propositional proofs.The Bulletin of Symbolic

Logic, 1:425–467, 1995.
[Vellino, 1989] A. Vellino. The Complexity of Automated Reasoning. PhD thesis, University of

Toronto, 1989.

124

REINHOLD LETZ

FIRST-ORDER TABLEAU METHODS

INTRODUCTION

In this chapter tableau systems for classical first-order logic are presented. We in-
troduce the tableau calculi due to Smullyan as well as tableaux with free variables
and unification due to Fitting. Special emphasis is laid on the presentation of re-
fined tableau systems for clause logic which consist of more condensed inference
rules and hence are particularly suited for automated deduction.

The material is organized in six sections. The first section provides the general
background on first-order logic with function symbols; the syntax and the classical
model-theoretic semantics of first-order logic are introduced and the fundamental
properties of variable substitutions are described. In Section 2 we study the most
important normal forms and normal-form transformations of first-order logic, in-
cluding Skolemization. Furthermore, the central rˆole of Herbrand interpretations
is emphasized. In the third section, we turn to the traditional tableau systems for
first-order logic due to Smullyan. Using uniform notation, tableau calculi for first-
order sentences are introduced. We prove Hintikka’s Lemma and the completeness
of first-order tableaux, by applying a systematic tableau procedure. We also con-
sider some basic refinements of tableaux: strictness, regularity and the Herbrand
restriction. The fourth section concentrates on the crucial weakness of traditional
tableau systems with respect to proof search. It lies in the nature of the standard
-rule, which enforces that instantiations have to be chosen too early. An approach
to remedy this weakness is to permit free variables in a tableau which are treated
as placeholders for terms, as so-called ‘rigid’ variables. The instantiation of rigid
variables then is guided by unification. Free-variable tableaux require a generaliza-
tion of the quantifier rules. Unfortunately, systematic procedures for free-variable
tableaux cannot be deviced as easily as for sentence tableaux. Therefore, typically,
tableau enumeration procedures are used instead. In Section 5, we concentrate on
formulae in clausal form. Clause logic permits a more condensed representation
of tableaux and hence a redefinition of the tableau rules. Following the tableau
enumeration approach of free-variable tableaux, the crucial demand is to reduce
the number of tableaux to be considered by the search procedure. The central such
concept in clause logic is the notion of a connection, which can be employed to
guide the tableau construction. Since connection tableaux are not confluent, sys-
tematic tableau procedures cannot be applied. Moreover, a simulation of general
clausal tableaux is not possible. Therefore a fundamentally different complete-
ness proof has to be given. We also compare the connection tableau framework
with other calculi from the area of automated deduction. In Section 6 methods are
mentioned which can produce significantly shorter tableau proofs. The techniques
can be subdivided into three different classes. The mechanisms of the first type

126 REINHOLD LETZ

are centered around the (backward) cut rule. Second, so-called liberalizations of
the� rule are discussed, which may lead to even nonelementarily smaller tableau
proofs. Finally, we consider a special condition under which free variables in a
tableau can be treated as universally quantified on a branch.

1 CLASSICAL FIRST-ORDER LOGIC

The theory of first-order logic is a convenient and powerful formal abstraction from
expressions and concepts occurring in natural language, and, most significantly,
in mathematical discourse. In this section we present the syntax and semantics
of first-order logic with function symbols. Furthermore, the central modification
operation on first-order expressions is introduced, the replacement of variables,
and some of its invariances are studied.

1.1 Syntax of First-order Logic

Propositional logic deals with sentences and their composition, hence the alphabet
of a propositional language consists of only three types of symbols, propositional
variables, logical symbols, and punctuation symbols. First-order logic does not
stop at the sentence level, it can express theinternal structure of sentences. In
first-order logic, the logical structure and content of assertions of the following
form can be studied that have no natural formalization in propositional logic.

EXAMPLE 1. If every person that is not rich has a rich father, then some rich
person must have a rich grandfather.

In order to express such formulations, a first-order alphabet has to provide sym-
bols for denoting objects, functions, and relations. Furthermore, it must be pos-
sible to make universal or existential assertions, hence we need quantifiers. Alto-
gether, the alphabet orsignatureof a first-order language will be defined as con-
sisting of six disjoint sets of symbols.

DEFINITION 2 (First-order signature). Afirst-order signatureis a pair� =
hA; ai consisting of a denumerably infinite alphabetA and a partial mappinga:
A �! N0 , associating natural numbers with certain symbols inA, called their
arities, such thatA can be partitioned into the following six pairwise disjoint sets
of symbols.

1. An infinite setV of variables, without arities.

2. An infinite set offunction symbols, all with arities such that there are in-
finitely many function symbols of every arity. Nullary function symbols are
calledconstants.

3. An infinite set ofpredicate symbols, all with arities such that there are in-
finitely many predicate symbols of every arity.

FIRST-ORDER TABLEAU METHODS 127

4. A set ofconnectivesconsisting of five distinct symbols:, ^, _, !, and
$, the first one with arity1 and all others binary. We call: the negation
symbol, ^ is theconjunction symbol, _ is thedisjunction symbol,! is the
material implication symbol, and$ is thematerial equivalence symbol,

5. A set ofquantifiersconsisting of two distinct symbols8, called theuniversal
quantifier, and9, called theexistential quantifier, both with arity 2.

6. A set ofpunctuation symbolsconsisting of three distinct symbols without
arities, which we denote with the symbols ‘(’, ‘)’, and ‘;’.

NOTATION 3. Normally, variables and function symbols will be denoted with
lower-case letters and predicate symbols with upper-case letters. Preferably, we
use for variables letters from ‘u’ onwards; for constants the letters ‘a’, ‘ b’, ‘ c’,
‘d’, and ‘e’; for function symbols with arity� 1 the letters ‘f ’, ‘ g’ and ‘h’; and
for predicate symbols the letters ‘P ’, ‘Q’ and ‘R’; nullary predicate symbols shall
occasionally be denoted with lower-case letters. Optionally, subscripts will be
used. We do not distinguish between symbols and unary strings consisting of
symbols, the context will clear up possible ambiguities. We will always talkabout
symbols of first-order languages and never give examples of concrete expressions
within a specific object language.

Given a first-order signature�, the correspondingfirst-order languageis de-
fined inductively1 as a set of specific strings over the alphabet of the signature. In
our presentation of first-order languages we use prefix notation for the representa-
tion of terms and atomic formulae, and infix notation for the binary connectives.
Let in the following� = hA; ai be a fixed first-order signature.

DEFINITION 4 (Term (inductive)).

1. Every variable inA is said to be aterm over�.

2. If f is ann-ary function symbol inA with n � 0 andt1; : : : ; tn are terms
over�, then the concatenationf(t1; : : : ; tn) is a term over�.

DEFINITION 5 (Atomic formula). IfP is (the unary string consisting of) ann-
ary predicate symbol inA with n � 0 andt1; : : : ; tn are terms over�, then the
concatenationP (t1; : : : ; tn) is anatomic formula, or atom,over�.

NOTATION 6. Terms of the forma() and atoms of the formP () are abbreviated
by writing justa andP , respectively.

DEFINITION 7 (Formula (inductive)).

1. Every atom over� is a formula over�.

1In inductive definitions we shall, conveniently, omit the explicit formulation of the necessity
condition.

128 REINHOLD LETZ

2. If � and	 are formulae over� andx is (the symbol string consisting of) a
variable inA, then the following concatenations are alsoformulae over�:
:�, called thenegationof �,
(� ^), called theconjunctionof � and	,
(� _), called thedisjunctionof � and	,
(�!), called thematerial implicationof 	 by�,
(�$), called thematerial equivalenceof � and	,
8x�, called theuniversal quantificationof � in x, and
9x�, called theexistential quantificationof � in x.

DEFINITION 8 ((Well-formed) expression). All terms and formulae over� are
called (well-formed) expressions over�.

DEFINITION 9 (First-order language). The set of all (well-formed) expressions
over� is called thefirst-order language over�.

DEFINITION 10 (Complement). Thecomplementof any negated formula:� is
� and thecomplementof any unnegated formula� is its negation:�; we denote
the complement of a formula� with ��.

DEFINITION 11 (Literal). Every atomic formula and every negation of an atomic
formula is called aliteral.

Recalling the assertion given in Example 1: ‘if every person that is not rich
has a rich father, then some rich person must have a rich grandfather’, a possible
(abstracted) first-order formalization would be the following formula.

EXAMPLE 12. 8x(:R(x)! R(f(x))) ! 9x(R(x) ^R(f(f(x)))).

DEFINITION 13 (Subexpression). If an expression� is the concatenation of
stringsW1; : : : ;Wn, in concordance with the Definitions 4 to 7, then any ex-
pression among these strings is called animmediate subexpressionof �. The
sequence obtained by deleting all elements fromW1; : : : ;Wn that are not expres-
sions is called theimmediate subexpression sequenceof �. Among the strings
W1; : : : ;Wn there is a unique stringW whose symbol is a connective, a quanti-
fier, a function symbol, or a predicate symbol;W is called thedominating symbol
of �. An expression	 is said to be asubexpressionof an expression� if the
pair h	;�i is in the transitive closure of the immediate subexpression relation.
Analogously, the notions of (immediate) subterms and (immediate) subformulae
are defined.

EXAMPLE 14. According to our conventions of denoting symbols and strings, a
formula of the formP (x; f(a; y); x) has the immediate subexpression sequence
x; f(a; y); x; the immediate subexpressionsx andf(a; y); the subexpressionsx,
f(a; y), a, andy; and, lastly,P as dominating symbol.

We have to provide a means for addressing different occurrences of symbols
and subexpressions in an expressionE. One could simply address occurrences
by giving the first and last word positions inE. Although this way occurrences

FIRST-ORDER TABLEAU METHODS 129

of symbols and subexpressions in an expression could be uniquely determined,
this notation has the disadvantage that whenever expressions are modified, e.g.,
by concatenating them or by replacing an occurrence of a subexpression, then the
addresses of the occurrences may change completely. We will use a notation which
is more robust concerning concatenations of and replacements in expressions. This
notation is motivated by asymbol treerepresentation of logical expressions, as
displayed in Figure 1.

�
��

Q
QQ

�
��

Q
QQ

�
��

Q
QQ

@@�� �� @@

�� @@

8

x 9

y

P

x y x :

P

y x

1

1

1

1

1

1

1

2

2

2

2 2

2

_

8

Figure 1. Symbol tree of the formula8x9y(P (x; y) _ 8x:P (y; x))

Each occurrence of a symbol or a subexpression in an expression can be uniquely
determined by asequence of natural numbersthat encodes the edges to be followed
in the symbol tree. Formally, tree positions can be defined as follows.

DEFINITION 15 (Position (inductive)). For any expressionE,

1. if s is the dominating symbol of an expressionE, then thepositionboth of
E and of the dominating occurrence ofs in E is the empty sequence;.

2. if E1; : : : ; En is the immediate subexpression sequence ofE and ifp1; : : : ;
pn is the position of an occurrence of an expression or a symbolW in Ei,
1 � i � n, then thepositionof that occurrence ofW in E is the sequence
i; p1; : : : ; pn.

An occurrence of a symbol or an expressionW with positionp1; : : : ; pn in an
expressionE is denoted withp1;:::;pnW .

For example, the occurrences of the variablex in the formula 8x9y(P
(x; y) _ 8x:P (y; x)) are1x, 2;2;1;1x, 2;2;2;1x, and2;2;2;2;1;2x. It is essential to
associate variable occurrences in an expression with occurrences of quantifiers.

130 REINHOLD LETZ

DEFINITION 16 (Scope of a quantifier occurrence). Ifp1;:::;pmQ is the occur-
rence of a quantifier in a formula�, then the occurrence of the respective quantifi-
cationp1;:::;pmQx	 is called thescopeof p1;:::;pmQ in �; all occurrencesp1;:::;pm;

pm+1;:::;pnW , m � n, of symbols or expressions in� are said to bein the scope
of p1;:::;pmQ in �.

Referring to the formula in Figure 1, the occurrence2;2;1P (x; y) is in the scope
of only one quantifier occurrence, namely,;8, whereas2;2;2;2;1P (y; x) is in the
scope of both occurrences of the universal quantifier.

DEFINITION 17 (Bound and free variable occurrence). If an occurrence of a vari-
ablep1;:::;pm;pm+1;:::;pnx,m < n, in an expression� is in the scope of a quantifier
occurrencep1;:::;pmQ, then that variable occurrence is called abound occurrence
of x in �; the variable occurrence is said to bebound bythe rightmost such quan-
tifier occurrence in the string notation of�, i.e., by the one with the greatest index
m < n. A variable occurrence is calledfree in an expression if is not bound by
some quantifier occurrence in the expression.

Accordingly, the rightmost occurrence2;2;2;2;1;2x of x in the formula in Fig-
ure 1 is bound by the universal quantifier at position2; 2; 2. Note that every occur-
rence of a variable in a well-formed expression is bound by at most one quantifier
occurrence in the expression.

DEFINITION 18 (Closed and ground expression, sentence). If an expression does
not contain variables, it is calledground, and if it does not contain free variables,
it is termedclosed. Closed formulae are calledsentences.

DEFINITION 19 (Closures of a formula). Let� be a formula andfx1; : : : ; xng
the set of free variables of�, then the sentence8x1 � � � 8xn� is called auniversal
closureof �, and the sentence9x1 � � � 9xn� is called anexistential closureof �.

NOTATION 20. In order to gain readability, we shall normally spare brackets.
As usual, we permit to omit outermost brackets. Furthermore, for arbitrary binary
connectives�1; �2, any formula of the shape� �1 (�2 �) may be abbreviated by
writing just � �1 	 �2 � (right bracketing). Accordingly, if brackets are missing,
the dominating infix connective is always the leftmost one.

1.2 Semantics of Classical First-order Logic

Now we are going to present the classical model-theoretic semantics of first-order
logic due to[Tarski, 1936]. In contrast to propositional logic, where it is sufficient
to work with Boolean valuations and where the atomic formulae can be treated
as the basic meaningful units, the richer structure of the first-order language re-
quires a finer analysis. In first-order logic the basic semantic components are the
denotations of the terms, a collection of objects termeduniverse.

FIRST-ORDER TABLEAU METHODS 131

DEFINITION 21 (Universe). Any non-empty collection2 of objects is called a
universe.

The function symbols and the predicate symbols of the signature of a first-order
language are then interpreted as functions and relations over such a universe.

NOTATION 22. For every universeU , we denote withUF the collection of map-
pings

S
n2N0

Un �! U , and withUP the collection of relations
S
n2N0

P(Un)
with P(Un) being the power set ofU . Note that any nullary mapping inUF is
from the singleton setf;g to U , and hence, subsequently, will be identified with
the single element in its image. Any nullary relation inUP is just an element of the
two-element setf;; f;gg (= f0; 1g, according to the Zermelo-Fraenkel definition
of natural numbers). We call the sets; andf;g truth values, and abbreviate them
with? and>, respectively.

This way the mapping of atomic formulae to truth values as performed for the
case of propositional logic is captured as a special case by the more general frame-
work developed now. In the following, we denote withL a first-order language,
with V ,F , andP the sets of variables, function symbols, and predicate symbols in
the signature ofL, respectively, and withT andW the sets of terms and formulae
in L, respectively.

DEFINITION 23 (First-order structure, interpretation). A(first-order) structure
is a pairhL;Ui consisting of a first-order languageL and a universeU . An inter-
pretation fora first-order structurehL;Ui is a mappingI: F [P �! UF [UP
such that

1. I maps everyn-ary function symbol inF to ann-ary function inUF .

2. I maps everyn-ary predicate symbol inP to ann-ary relation inUP .

Since formulae may contain free variables, the notion of variable assignments
will be needed.

DEFINITION 24 (Variable assignment). Avariable assignment froma first-order
languageL to a universeU is a mappingA: V �! U .

Once an interpretation and a variable assignment have been fixed, the meaning
of any term and any formula in the language is uniquely determined.

DEFINITION 25 (Term assignment (inductive)). LetI be an interpretation for
a structurehL;Ui, and letA be a variable assignment fromL to U . The term
assignmentof I andA is the mappingIA: T �! U defined as follows.

1. For every variablex in V : IA(x) = A(x).

2. For every constantc in F : IA(c) = I(c).

2Whenever the term ‘collection’ will be used, no restriction is made with respect to the cardinality
of an aggregation, whereas the term ‘set’ indicates that only denumerably many elements are contained.

132 REINHOLD LETZ

3. If f is a function symbol of arityn > 0 andt1; : : : ; tn are terms, then

IA(f(t1; : : : ; tn)) = I(f)(IA(t1); : : : ; IA(tn)):

Finally, we come to the assignment of truth values to formulae.

DEFINITION 26 (Formula assignment). (by simultaneous induction) LetI be
an interpretation for a structurehL;Ui, and letA be a variable assignment fromL
to U . The formula assignmentof I andA is the mappingIA: W �! f>;?g
defined as follows. Let� and	 denote arbitrary formulae ofL.

1. For any nullary predicate symbolP in the signature ofL: IA(P) = I(P).

2. If P is a predicate symbol of arityn > 0 andt1; : : : ; tn are terms, then

IA(P (t1; : : : ; tn)) =

�
> if hIA(t1); : : : ; IA(tn)i 2 I(P)
? otherwise.

3. IA((� _)) =

�
> if IA(�) => or IA() =>
? otherwise.

4. IA(:�) =

�
> if IA(�) = ?

? otherwise.

5. IA((� ^)) = IA(:(:� _ :)):

6. IA((�!)) = IA((:� _)):

7. IA((�$)) = IA(((�!) ^ (! �))):

8. A variable assignment is called anx-variantof a variable assignment if both
assignments differ at most in the value of the variablex.

IA(8x�) =

�
> if IA0 (�) = > for all x-variantsA0 of A
? otherwise.

9. IA(9x�) = IA(:8x:�):

If S is a set of first-order formulae, withIA(S) = > we express the fact that
IA(�) = >, for all formulae� 2 S.

Particularly interesting is the case of interpretations for sentences. From the
definition of formula assignments (items 8 and 9) it follows that, for any sentence
and any interpretationI, the respective formula assignments are all identical, and
hence do not depend on the variable assignments. Consequently, for sentences,
we shall speak ofthe formula assignment of an interpretationI, and write itI,

FIRST-ORDER TABLEAU METHODS 133

too. Possible ambiguities between an interpretation and the corresponding formula
assignment will be clarified by the context.

To comprehend the manner in which formula assignments give meaning to ex-
pressions, see Example 27. The example illustrates how formulae are interpreted
in which an occurrence of a variable is in the scopes of different quantifier occur-
rences. Loosely speaking, Definition 26 guarantees that variable assignments obey
‘dynamic binding’ rules (in terms of programming languages), in the sense that a
variable assignment to a variablex for an expression� is overwrittenby a variable
assignment to the same variablex in a subexpression of�.

EXAMPLE 27. Consider two sentences� = 8x(9xP (x) ^ Q(x)) and 	 =
8x9x(P (x) ^ Q(x)). Given a universeU = fu1; u2g, and an interpretation
I(P) = I(Q) = fu1g, thenI(�) = ? andI() = >.

The central semantic notion is that of a model.

DEFINITION 28 (Model). LetI be an interpretation for a structurehL;Ui, A a
collection of variable assignments fromL toU , and� a first-order formula. We say
thatI is anA-model for� if IA(�) = >, for every variable assignmentA 2 A; if
I is anA-model for� andA is the collection of all variable assignments, thenI is
called amodel for�. If I is an (A-)model for every formula in a set of first-order
formulaeS, then we also callI an(A-)modelfor S.

The notions of satisfiability and validity abstract from the consideration of spe-
cific models.

DEFINITION 29 (Satisfiability, validity). Let� be a (set of) formula(e) of a first-
order languageL (andA a collection of variable assignments). The set� is called
(A-)satisfiableif there exists an (A-)model for�. We call� valid if every inter-
pretation is a model for�.

DEFINITION 30 (Implication, equivalence). Let� and� be two (sets of) first-
order formulae.

1. We say that� implies �, written� j= �, if every model for� is a model
for �; obviously, if� = ;, then� is valid, and we simply writej= �.

2. � strongly implies� if, for every universeU and every variable assignment
A fromL to U : everyfAg-model for� is anfAg-model for�.

If � and � (strongly) imply each other, they are called(strongly) equivalent.

Note that according to this definition any first-order formula is equivalent to
any-one of its universal closures. Obviously, for (sets of)sentences, implication
and strong implication coincide. Furthermore, the notion of material (object-level)
implication and the strong (meta-level) implication concept of first-order formulae
are related as follows.

THEOREM 31 (Implication Theorem).Given two first-order formulae� and 	,
� strongly implies	 if and only if the formula�! 	 is valid.

134 REINHOLD LETZ

Proof. For the ‘if’-part, assume� ! 	 be valid. LetA be any variable as-
signment andI an arbitraryfAg-model for�. By Definition 26,IA(�) = ?

or IA() = >. By assumption,IA(�) = >; henceIA() = >, andI is
anfAg-model for	. For the ‘only-if ’-part, suppose that� strongly implies	.
Let A be any variable assignment andI an arbitrary interpretation. Now, either
IA(�) = ?; then, by Definition 26,IA(� !) = >. Or, IA(�) = >; in
this case, by assumption,I() = >; henceIA(� !) = >. Consequently, in
either caseI is anfAg-model for�! 	. �

It is obvious that strongly equivalent formulae can be substituted for each other
in any context without changing the meaning of the context.

LEMMA 32 (Replacement Lemma).Given two strongly equivalent formulaeF
andG and any formula� withF as subformula, if the formula	 can be obtained
from � by replacing an occurrence ofF in � withG, then� and	 are strongly
equivalent.

Another more subtle useful replacement property is the following.

LEMMA 33. If j= F ! G, thenj= 8xF ! 8xG.

Proof. Assumej= F ! G. Let I be any interpretation andA any variable
assignment withIA(8xF) = >. Then, for allx-variantsA0 of A: IA0(F) = >
and, by assumption,IA0(G) = >. Consequently,IA(8xG) = > . �

The subsequently listed basic strong equivalences between first-order formulae
can also be demonstrated easily.

PROPOSITION 34. LetF , G, andH be arbitrary first-order formulae. All for-
mulae of the following structures are valid.

(1) ::F $ F

(2) :(F ^G)$ (:F _ :G) (De Morgan law for̂)

(3) :(F _G)$ (:F ^ :G) (De Morgan law for_)

(4) (F _ (G ^H))$ ((F _G) ^ (F _H)) (_-distributivity)

(5) (F ^ (G _H))$ ((F ^G) _ (F ^H)) (^-distributivity)

(6) :9xF $ 8x:F (98-conversion)

(7) :8xF $ 9x:F (89-conversion)

(8) 8x(F ^G)$ (8xF ^ 8xG) (8^-distributivity)

(9) 9x(F _G)$ (9xF _ 9xG) (9_-distributivity)

FIRST-ORDER TABLEAU METHODS 135

We conclude this part with proving a technically useful property of variable
assignments.

DEFINITION 35. Two variable assignmentsA andB are said tooverlap ona set
of variablesV if for all x 2 V : A(x) = B(x).

NOTATION 36. For any mappingf , its modification by changing the value ofx
to u, i.e.(f n hx; f(x)i) [hx; ui, will be denoted withfxu .

PROPOSITION 37. Let � be a formula of a first-order languageL withV being
the set of free variables in�, and U a universe. Then, for any two variable
assignmentsA andB fromL to U that overlap onV :

(1) IA(�) = IB(�), and

(2) if � = 9x	, thenfu 2 U j IAx
u() = >g = fu 2 U j IBxu() =>g.

Proof. (1) is obvious from Definition 26 of formula assignments. For (2), consider
an arbitrary elementu 2 U with IAx

u () = >. SinceAxu andBxu overlap on
V [fxg, by (1),IBxu() = >, which proves the set inclusion in one direction.
The reverse direction holds by symmetry. �

1.3 Variable Substitutions

The concept of variable substitutions, which we shall introduce next, is the basic
modification operation performed on logical expressions. Let in the following
denoteT the set of terms andV the set of variables of a first-order language.

DEFINITION 38 ((Variable) substitution). A(variable) substitutionis any map-
ping� : V �! T whereV is a finite subset ofV andx 6= �(x), for everyx in the
domain of�. A substitution is calledground if no variables occur in the terms of
its range.

DEFINITION 39 (Binding). Any elementhx; ti of a substitution, abbreviatedx=t,
is called abinding. We say that a bindingx=t is proper if the variablex does not
occur in the termt.

Now, we consider the application of substitutions to logical expressions.

DEFINITION 40 (Instance). If� is any expression and� is a substitution, then
the�-instance of�, written��, is the expression obtained from� by simultane-
ously replacing every occurrence of each variablex 2 domain(�) that is free in
� by the term�(x). If � and	 are expressions and there is a substitution� with
	 = ��, then	 is called aninstance of�. Similarly, if S is a (collection of)
set(s) of formulae, thenS� denotes the (collection of the) set(s) of�-instances of
its elements.

As a matter of fact, bound variable occurrences are not replaced. Furthermore,
we are interested in substitutions which preserve the models of a formula. In order

136 REINHOLD LETZ

to preserve modelhood for arbitrary logical expressions, the following property is
sufficient.

DEFINITION 41 (Free substitution). A substitution� is said to befree for an
expression� provided, for every free occurrencesx of a variable in�, all variable
occurrences insx� are free in��.

While no bound variable occurrence can vanish when a substitution is applied,
for free substitutions, no additional bound variable occurrences are imported. This
means that the following proposition holds.

PROPOSITION 42.A substitution� is free for an expression� if and only if any
variable occurs bound at the same positions in� and in��.

Bringing in additional bound variables can lead to unsoundness, as shown with
the following example.

EXAMPLE 43. Consider a formula� of the form9x(P (x; y; z) ^ :P (y; y; z))
and the substitutions�1 = fy=zg and�2 = fy=xg. While �1 is free for� and
� j= ��1 = 9x(P (x; z; z) ^ :P (z; z; z)), �2 is not, and indeed� 6j= ��2 =
9x(P (x; x; z) ^ :P (x; x; z)).

The following fundamental result relates substitutions and interpretations.

NOTATION 44. If I is an interpretation,A a variable assignment, and� =
fx1=t1; : : : ; xn=tng a substitution, then we denote withA�I the variable assign-
mentAx1IA(t1) � � �

xn
IA(tn)

using Notation 36. If the underlying interpretation is
clear from the context, we will sometimes omit the subscript and simply writeA�.

LEMMA 45. If � is a substitution that is free for a first-order expressionE, then,
for any interpretationI and any variable assignmentA: IA(E�) = IA�(E).

Proof. The proof is by induction on the structural complexity of the expression
E. First, for any term, the result is immediate from the Definition 25 of term
assignments. The cases of quantifier-free formula are also straightforward from
items (1) – (7) of the Definition 26 of formula assignments. We consider the case
of a universal formula8xF in more detail.IA(8xF�) = > if and only if (by
item (8) of formula assignment) for allx-variantsA0 of A: > = IA0(F�) = (by
the induction hypothesis)IA0�(F) iff (since � is assumed to be free forF) for
all x-variantsA�0 of A�: IA�0 (F) = > iff (by item (8) of formula assignment)
IA�(8xF) = >. The existential case is similar. �

Now we can state a very general soundness result for the application of substi-
tutions to logical expressions. LetV denote the set of variables of the underlying
first-order language.

PROPOSITION 46 (Substitution soundness).Given a first-order formula� and
a substitution� = fx1=t1; : : : ; xn=tng that is free for�, let V � V be any set of
variables containingx1; : : : ; xn andA any collection of all variable assignments

FIRST-ORDER TABLEAU METHODS 137

that overlap onV n V . If an interpretationI is anA-model for �, thenI is an
A-model for ��.

Proof. Consider an arbitrary variable assignmentA 2 A. Now, by assumption,A
contains all variable assignments that overlap onV nV whereV is any superset of
fx1; : : : ; xng, therefore,A� 2 A and henceIA(��) = >. Since� is free for�,
Lemma 45 can be applied which yields thatIA�(�) = IA(��) = >. �

As a special instance of this proposition we obtain the following corollary (sim-
ply setV = V andA will be the collection of all variable assignments).

COROLLARY 47. For any formula� and any substitution� which is free for
� : � j= ��.

DEFINITION 48 (Composition of substitutions). Assume� and� to be substi-
tutions. Let� 0 be the substitution obtained from the setfhx; t�i j x=t 2 �g by
removing all pairs for whichx = t� , and let� 0 be that subset of� which contains
no bindingx=t with x 2 domain(�). The substitution� 0 [� 0, written �� , is
called thecompositionof � and� .

PROPOSITION 49. Let�, � and� be arbitrary substitutions and� any logical
expression such that� is free for�.

1. �; = ;� = �, for the empty substitution;.
2. (��)� = �(��).

3. (��)� = �(��).

Proof. (1) is immediate. For (2) consider any free occurrencesx of a variablex
in �. We distinguish three cases. First,x =2 domain(�) andx =2 domain(�); then
s(x�)� = sx = sx(��). If, secondly,x =2 domain(�) butx 2 domain(�), then
s(x�)� = sx� = sx(��). Lastly, assumex 2 domain(�); as� was assumed free
for �, no variable occurrence insx� is bound in��, therefores(x�)� = sx(��).
Sincesx was chosen arbitrary and only free variable occurrences were modified,
we have the result for�. For (3) letx be any variable. The repeated application of
(2) yields thatx((��)�) = (x(��))� = ((x�)�)� = (x�)(��) = x(�(��)). This
means that the substitutions(��)� and�(��) map every variable to the same term,
hence they are identical. �

Summarizing these results, we have that; acts as a left and right identity for
composition; (2) expresses that under the given assumption substitution applica-
tion and composition permute; and (3), the associativity of substitution composi-
tion, permits to omit parentheses when writing a composition of substitutions. As a
consequence of (1) and (3), the set of substitutions with the composition operation
forms a semi-group.

138 REINHOLD LETZ

2 NORMAL FORMS AND NORMAL FORM TRANSFORMATIONS

A logical problemfor a first-order language consists in the task of determining
whether a relation holds between certain first-order expressions. For anefficient
solutionof a logical problem, it is very important to know whether it is possi-
ble to restrict attention to a proper sublanguage of the first-order language. This
is because certain sublanguages permit the application of more efficient solution
techniques than available for the full first-order format. For classical logic, this
can be strongly exploited by using prenex and Skolem forms.

2.1 Prenex and Skolem Formulae

DEFINITION 50 (Prenex form). A first-order formulae� is said to be aprenex
formulaor in prenex formif it has the structureQ1x1 � � �QnxnF , n � 0, where
theQi, 1 � i � n, are quantifiers andF is quantifier-free. We callF thematrix
of �.

PROPOSITION 51. For every first-order formula� there is a formula in prenex
form which is strongly equivalent to�.

Proof. We give a constructive method to transform any formula� over the connec-
tives:, ^, and_ into prenex form—by the definition of formula assignment, the
connectives$ and! can be eliminated before, without affecting strong equiva-
lence. IfQ is any quantifier,8 or 9, with �Qwe denote the quantifier9 respectively
8. Now, for any formula which is not in prenex form, one of the following two
cases holds.

1. � has a subformula of the structure:QxF ; then, by Proposition 34(6) and
(7), and the Replacement Lemma (Lemma 32), the formula	 obtained from
� by substituting all occurrences of:QxF in � by �Qx:F is strongly equiv-
alent to�.

2. � has a subformula	 of the structure(QxF � G) or (G � QxF) where
� is ^ or _; let y be a variable not occurring in�, then, clearly	 and
	0 = Qy(Ffx=yg � G) or Qy(G � Ffx=yg), respectively, are strongly
equivalent; therefore, by the Replacement Lemma, the formula obtained by
replacing all occurrences of	 in � by 	0 is strongly equivalent to�.

Consequently, in either case one can move quantifiers in front without affecting
strong equivalence, and after finitely many iterations prenex form is achieved.�

It is obvious that, except for the case of formulae containing$, the time needed
for carrying out this procedure is bounded by a polynomial in the size of the input,
and the resulting prenex formula has less than double the size of the initial formula.
The removal of$, however, can lead to an exponential increase of the formula size
(see[Reckhow, 1976]).

FIRST-ORDER TABLEAU METHODS 139

DEFINITION 52 (Skolem form). A first-order formula� is said to be aSkolem
formulaor in Skolem formif it has the form8x1 � � � 8xnF andF is quantifier-free.

The possibility of transforming any first-order formula into Skolem form is fun-
damental for the field of automated deduction. This is because the removal of ex-
istential quantifiers facilitates a particularly efficient computational treatment of
first-order formulae. Furthermore, the single step in which an existential quantifier
is removed, occurs as a basic component ofanycalculus for full first-order logic.

DEFINITION 53 (Skolemization). LetS be a set of formulae containing a
formula � with the structure8y1 � � � 8ym9yF , m � 0, and x1; : : : ; xn the
variables that are free in9yF . If f is ann-ary function symbol not occurring in
any formula ofS (we say thatf is new toS), then the formula8y1 � � � 8ym(Ffy=
f(x1; : : : ; xn)g) is named aSkolemizationof � w.r.t. S.

We have introduced a general form of Skolemization which is applicable to ar-
bitrary, not necessarily closed, sets of first-order formulae in prenex form. This
is necessary for the free-variable tableau systems developed in Section 4. When
moving to a Skolemization of a formula, for any variable assignmentA, the col-
lection offAg-models does not increase.

PROPOSITION 54. Given a formula� of a first-order languageL, if 	 is a
Skolemization of� w.r.t. a set of formulaeS, then	 strongly implies�.

Proof. Let � = 8y1 � � � 8ym9yF . First, we show that, forany term t, the sub-
formula9yF of � is strongly implied byF 0 = Ffy=tg. LetA be any variable
assignment andI any fAg-model forF 0. By Lemma 45,IAfy=tg(F) = >.
SinceAfy=tg is an y-variant ofA, by the definition of formula assignments,
IA(9yF) = >. Then, a repeated application of Lemma 33 yields that	 =
8y1 � � � 8ymF 0 strongly implies�. �

When moving to a Skolemization of a formula, the collection of models may
decrease, however. Consequently, for the transformation of formulae into Skolem
form, equivalence must be sacrificed, but the preservation ofA-satisfiability can
be guaranteed, for any collectionA of variable assignments.

PROPOSITION 55. Let 	 be a Skolemization of a formula� w.r.t. a set of
formulaeS and A any collection of variable assignments. IfS is A-satisfiable,
thenS [f	g isA-satisfiable.

Proof. By assumption,� 2 S has the structure8y1 � � � 8ym9yF (m � 0); 	
has the form8y1 � � � 8ymF 0 whereF 0 = Ffy=f(x1; : : : ; xn)g; f is ann-ary
function symbol new toS; andx1; : : : ; xn are the free variables in9yF . Now
let A be any collection of variable assignments that has anA-modelI for S. I
need not be anA-model for	, but we show that with a modification of merely
the meaning of the function symbolf anA-model forS [f	g can be specified.
First, we define a total and disjoint partitionP on the collection of variable as-
signmentsA by grouping together all elements inA that overlap on the variables

140 REINHOLD LETZ

x1; : : : ; xn. By Proposition 37, for any two variable assignmentsB andC in any
element ofP : fu 2 U j IByu(F) = >g = fu 2 U j ICyu(F) = >g, i.e., for
any element of the partitionP , the collection of objects “with the property”F is
unique; we abbreviate withUu1;:::;un(F) the collection of objects determined by
the variable assignments that mapx1; : : : ; xn to the objectsu1; : : : ; un, respec-
tively. By the assumption ofI being anA-model for�, none of these collec-
tions of objects is empty. In order to be able to identify elements in those pos-
sibly nondenumerable collections, which is necessary to define a mapping, we
have to assume the existence of a well-ordering3 � on U . For any collection
M � U , let �M denote the smallest element modulo�. Now we can define
a totaln-ary mappingf: Un �! U by settingf(u1; : : : ; un) = �Uu1;:::;un(F)

and an interpretationI	 = If
f

(using Notation 36). Since the symbolf does
not occur in any formula ofS, I	 is anA-model for S. To realize thatI	
is anA-model for 	, too, consider an arbitrary variable assignmentA 2 A.
Clearly, IA	 (9yF) = >. Let PA be the element of the partitionP that con-
tainsA. Define the variable assignmentA0 = Ay

f(A(x1);:::;A(xn))
. IA0	 (F) = >

and henceIA0	 (Ffy=f(x1; : : : ; xn)g) = >. NowA andA0 are identical except
for the value ofy, but y does not occur free inFfy=f(x1; : : : ; xn)g, therefore,
IA	 (Ffy=f(x1; : : : ; xn)g) = >. �

THEOREM 56 (Skolemization Theorem).Given a formula� of a first-order lan-
guageL, let 	 be a Skolemization of� w.r.t. a set of formulaeS andA any
collection of variable assignments.S is A-satisfiable if and only ifS [f	g is
A-satisfiable.

Proof. Immediate from the Propositions 54 and 55. �

Concerning the space and time complexity involved in a transformation into
Skolem form, the following estimate can be formulated.

PROPOSITION 57. Given a prenex formula� of a first-order languageL, if
	 is a Skolem formula obtained from� via a sequence of Skolemizations, then
size(), i.e., the length of the string	, is smaller thansize(�)2, and the run time
of the Skolemization procedure is polynomially bounded by the size of�.

Proof. Every variable occurrence in� is bound by exactly one quantifier occur-
rence in�, and every variable occurrence in an inserted Skolem term is bound
by a universal quantifier. This entails that, throughout the sequence of Skolem-
ization steps, whenever a variable occurrence is replaced by a Skolem term, then
no variable occurrencewithin an inserted Skolem term is substituted afterwards.

3A total ordering� on a collection of objectsS is awell-ordering onS if every non-empty sub-
collectionM of objects fromS has a smallest element modulo�. Note that supposing the existence
of a well-ordering amounts to assuming theaxiom of choice(for further equivalent formulations of the
axiom of choice, consult, for example,[Krivine, 1971]).

FIRST-ORDER TABLEAU METHODS 141

Moreover, the arity of each inserted Skolem function is bounded by the number
of free variables in� plus the number of variables in the quantifier prefix of�.
Therefore, the output size is quadratically bounded by the input size. Since in
the Skolemization operation merely variable replacements are performed, any de-
terministic execution of the Skolemization procedure can be done in polynomial
time. �

Prenexing and Skolemization only work for classical logic, but not for intu-
itionistic or other logics. In those cases, more sophisticated methods are needed
to encode the nesting of the connectives and quantifiers. Some of those are con-
sidered in[Wallen, 1989; Ohlbach, 1991], and in Chapter 5 of this book (see also
[Prawitz, 1960] and[Bibel, 1987]).

2.2 Herbrand Interpretations

The standard theorem proving procedures are based on the following obvious
proposition.

PROPOSITION 58.Given a set of sentences� and a sentenceF . � j= F if and
only if � [f:Fg is unsatisfiable.

Accordingly, the problem of determining whether a sentence is logically im-
plied by a set of sentences can be reformulated as an unsatisfiability problem.
Demonstrating the unsatisfiability of a set of formulae of a first-order language
L, however, means to prove, for any universeU , that no interpretation forhL;Ui
is a model for the set of formulae. A further fundamental result for the efficient
computational treatment of first-order logic is that, for formulae in Skolem form,
it is sufficient to examine only the interpretations for one particular domain, the
Herbrand universeof the set of formulae. Subsequently, letL denote a first-order
language andaL a fixed constant in the signature ofL.

DEFINITION 59 (Herbrand universe (inductive)). LetS be (a set of) formula(e)
of L. With SC we denote the set of constants occurring in (formulae of)S. The
constant baseof S isSC if SC is non-empty, and the singleton setfaLg if SC = ;.
The function baseSF of S is the set of function symbols occurring in (formulae
of) S with arities> 0. Then theHerbrand universeof S is the set of terms defined
inductively as follows.

1. Every element of the constant base ofS is in theHerbrand universeof S.

2. If t1; : : : ; tn are in the Herbrand universe ofS andf is ann-ary function
symbol in the function base ofS, then the termf(t1; : : : ; tn) is in theHer-
brand universeof S.

DEFINITION 60 (Herbrand interpretation). Given a (set of) formula(e)S of a
first-order languageL with Herbrand universeU . A Herbrand interpretation for
S is an interpretationI for the pairhL;Ui meeting the following properties.

1. I maps every constant inSC to itself.

142 REINHOLD LETZ

2. I maps every function symbolf in SF with arity n > 0 to the n-ary
function that maps everyn-tuple of termsht1; : : : ; tni 2 Un to the term
f(t1; : : : ; tn).

PROPOSITION 61. For any (set of) first-order formulaeS in Skolem form, ifS
has a model, then it has a Herbrand model.

Proof. Let I 0 be an interpretation with arbitrary universeU 0 which is a model for
S, and letU denote the Herbrand universe ofS. First, we define a mappingh:
U �! U 0, as follows.

1. For every constantc 2 U : h(c) = I 0(c).
2. For every termf(t1; : : : ; tn) 2 U :
h(f(t1; : : : ; tn)) = I 0(f)(h(t1); : : : ; h(tn)).

Next, we define a Herbrand interpretationI for S.

3. For everyn-ary predicate symbolP , n � 0, and anyn-tuple of objects
ht1; : : : ; tni 2 Un: ht1; : : : ; tni 2 I(P) if and only if hh(t1); : : : ; h(tn)i 2
I 0(P).

Now letA be an arbitrary variable assignmentA fromL toU . WithA 0 we denote
the functional composition ofA andh. It can be verified easily by induction
on the construction of formulae thatI 0A

0

(S) = > entailsIA(S) = >. The
induction base is evident from the definition ofI, and the induction step follows
from Definition 26. Consequently,I is a model forS. �

For formulae in Skolem form, the Herbrand universe is always rich enough to be
used as arepresentativefor any other universe, and the question whether a model
exists can always be solved by restricting attention to Herbrand interpretations.
For formulae that are not in Skolem form, this does not work, as illustrated with
the following simple example.

EXAMPLE 62. The formula9x(P (x) ^ :P (a)) is satisfiable, but it has no Her-
brand model.

The fact that Herbrand interpretations are sufficient for characterizing model-
hood in the case of Skolem formulae can be used for proving theLöwenheim-
Skolem theorem.

THEOREM 63 (Löwenheim-Skolem theorem).Every satisfiable (set of) first-
order formula(e)S has a model with a countable universe.

Proof. Given any satisfiable (set of) first-order formula(e)S, let S 0 be a (set
of) first-order formula(e) obtained fromS by prenexing and Skolemization.4 By

4If S is an infinite set of formulae and the Herbrand universe ofS already contains almost all
function symbols of a certain arity, then it may be necessary to move to an extended first-order language
L 0 that contains enough function symbols of every arity.

FIRST-ORDER TABLEAU METHODS 143

Propositions 51 and 55,S 0 must be satisfiable, too. Then, by Proposition 61,
there exists a Herbrand modelI for S 0 with a countable Herbrand universe, since
obviously every Herbrand universe is countable. By Propositions 51 and 54,I
must be a model forS. �

Working with Herbrand interpretations has the advantage that interpretations
can be represented in a very elegant manner.

DEFINITION 64 (Herbrand base). Given a (set of) formula(e)S of a first-order
languageL with Herbrand universeU . Thepredicate baseSP of S is the set of
predicate symbols occurring in (formulae of)S. TheHerbrand baseof S, written
BS, is the set of all atomic formulaeP (t1; : : : ; tn), n � 0, with P 2 SP and
ti 2 U , for every1 � i � n.

NOTATION 65. Every Herbrand interpretationH of a (set of) formula(e)S can
be uniquely represented by a subsetH of the Herbrand baseBS of S by defining

H(L) =

�
> if L 2 H
? otherwise

for any ground atomL 2 BS. We shall exploit this fact and occasionally use
subsets of the Herbrand base for denoting Herbrand interpretations.

2.3 Formulae in Clausal Form

After prenexing and Skolemizing a formula, it is a standard technique in automated
deduction to transform the resulting formula intoclausal form.

DEFINITION 66 (Clause). Any formulac of the form8x1 � � � 8xn(L1 _ � � � _
Lm), with m � 1 and theLi being literals, is aclause. Each literalsLi is said to
becontained inc.

DEFINITION 67 (Clausal form (inductive)).

1. Any clause isin clausal form.

2. If F is in clausal form andc is a clause, thenc ^ F is in clausal form.

PROPOSITION 68. For any first-order formula� in Skolem form there exists a
strongly equivalent formula	 in clausal form.

Proof. Let F be the matrix of a first-order formula� in Skolem form. We per-
form the following four equivalence preserving operations. First, by items 7 and
6 of Definition 26 of formula assignment, successively, the connectives$ and!
are removed. Secondly, the negation signs are pushed immediately before atomic
formulae, using recursively Proposition 34(1) and de Morgan’s laws (2) and (3).
Finally, apply_-distributivity from left to right until no conjunction is dominated
by a disjunction. The resulting formula is in clausal form. �

144 REINHOLD LETZ

It can easily be verified that, even for matrices not containing$, the given
transformation may lead to an exponential increase of the formula size. There ex-
ists no equivalence preserving polynomial transformation of a matrix into clausal
form, even if$ does not occur in the matrix (see[Reckhow, 1976]). But there are
polynomial transformations if logical equivalence is sacrificed. Those transforma-
tions (see[Eder, 1985; Boy de la Tour, 1990]) are satisfiability and unsatisfiability
preserving, and the transformed formula logically implies the source formula, so
that the typical logical problems—unsatisfiability detection or model finding if
possible—can be solved by considering the transformed formula.

3 FIRST-ORDER SENTENCE TABLEAUX

The tableau methodwas introduced by Beth in[1955; 1959] and elaborated by
Hintikka in [1955] and others, but the most influential standard format was given
by Smullyan in[1968] (cf. Section 2 in the first chapter of this book). Therefore,
the tableau calculus for closed first-order formulae, which is developed in this
section, will be essentially Smullyan’s.

3.1 Quantifier Elimination in Unifying Notation

The tableau method for propositional logic exploits the fact that all propositional
formulae that are not literals can be partitioned into two syntactic types, aconjunc-
tive type, called the�-type, or adisjunctive type, named the�-type. Accordingly,
only two inference rules are needed, the�- and the�-rule. This uniformity ex-
tends to the first-order language, in that just two more syntactic types are needed
to capture all first-order formulae, theuniversal type, called the-type, and the
existential type, named the�-type. Likewise, just two further inference rules will
be needed, called the- and the�-rule.

Altogether, this results in the following classification and decomposition schema
for first-ordersentences—arbitrary first-order formulae containing free variables
will be treated in the next section. To any first-order sentenceF of anyconnective
type (� or �) a sequenceof sentences different fromF will be assigned, called
the�- or �-subformulae sequenceof F , respectively, as defined in Table 1, for all
formulae over the connectives:, _, ^ and!. Note that, by exploitation of the as-
sociativity of the connectives_ and^, we permit subformulae sequences of more
than two formulae. This straightforward generalization speeds up the decomposi-
tion of formulae.

While the subformula sequence and hence the decomposition of any formula of
a connective type is always finite, this cannot be achieved in general. A first-order
sentenceF of anyquantificationtype (or �) has possibly infinitely many- or
�-subformulae, respectively, as defined in Table 2 wheret ranges over the set of
ground terms andc over the set of constants of a first-order language.

FIRST-ORDER TABLEAU METHODS 145

Conjunctive Disjunctive
� �-subformulae � �-subformulae

sequence sequence
::F F

F1 ^ � � � ^ Fn F1; : : : ; Fn F1 _ � � � _ Fn F1; : : : ; Fn
:(F1 _ � � � _ Fn) :F1; : : : ;:Fn :(F1 ^ � � � ^ Fn) :F1; : : : ;:Fn
:(F ! G) F;:G F ! G :F;G

Table 1. Connective types and�-, �-subformulae sequences

Universal Existential
 -subformulae � �-subformulae
8xF Ffx=tg 9xF Ffx=cg
:9xF :Ffx=tg :8xF :Ffx=cg

Table 2. Quantification types and-, �-subformulae

DEFINITION 69. Any�-, �-, -, or �-subformulaF 0 of a formulaF is named
an immediate tableau subformulaof F . A formulaF 0 is called atableau subfor-
mulaof F if the pairhF 0; F i is in the transitive closure of the immediate tableau
subformula relation.

Obviously, the decomposition schema guarantees that all tableau subformulae
of a sentence are sentences. Moreover, the decomposition rules have the following
fundamental proof-theoretic property.

DEFINITION 70 (Formula complexity). Theformula complexityof a formulaF
is the number of occurrences of formulae inF .

PROPOSITION 71. Every tableau subformula of a formulaF has a smaller for-
mula complexity thanF .

This assures that there can be no infinite decomposition sequences.

NOTATION 72. We shall often use suggestive meta-symbols for naming formu-
lae of a certain type. Thus, a formula of the�- or �-type will be denoted with
‘�’ or ‘�’, and the formulae in its subformula sequence with ‘�1’,. . . ,‘�n’ or
‘�1’,. . . ,‘�n’, respectively; for a formula of the- or �-type and its subformula
w.r.t. a termt, we will write ‘’ or ‘ �’ and ‘(t)’ or ‘ �(t)’, respectively.

As in the propositional case, first-order tableaux are particularformula trees, i.e,
ordered trees with the nodes labelled with formulae. We do not formally introduce
trees, and we permit trees to be infinite. Trees will be viewed asdownwardly
growing from the root. Furthermore, the following abbreviations will be used.

DEFINITION 73. If a formula is the label of a node on a branchB of a formula
treeT , we say thatF appearsor is onB andin T . WithB�F1 j � � � j Fn we mean
the result of attachingn > 0 new successor nodesN1; : : : ; Nn, in this order, fan-

146 REINHOLD LETZ

ning out of the end ofB and labelled with the formulaeF1; : : : ; Fn, respectively.
Any such sequenceN1; : : : ; Nn is termed afamily in T . We shall often treat the
branchB of a formula tree as the set of formulae appearing onB. All nodes above
a nodeN on a branch are called itsancestors, the ancestor immediately aboveN is
termed itspredecessor. If two nodes in a tableau are labelled with complementary
formulae, we shall also call the nodescomplementary.

Based on the developed formula decomposition schema, first-order tableaux for
sentencesare defined inductively.

DEFINITION 74 (Sentence tableau (inductive)). LetS be any set of sentences of
a first-order languageL.

� Every one-node formula tree labelled with a formula fromS is a sentence
tableau forS.

� If B is a branch of a sentence tableauT forS, then the formula trees obtained
from the following five expansion rules are allsentence tableaux forS:

(�) B � �i, if �i is an�-subformula of a formula� onB,5

(�) B � �1 j � � � j �n, if �1; : : : ; �n is the�-subformula sequence of a
formula� onB,

() B � (t), if t is a ground term and a formula occurs onB,

(�) B � �(c), if c is a constant new toS and to the formulae inT , and a
formula� appears onB,

(F) B � F , for any formulaF 2 S.

If T is a sentence tableau for a singleton setf�g, we also say thatT is a sentence
tableau for theformula�. When a decomposition rule is performed on a formula
F at a nodeN , we say thatF orN is used.

�

�i

�

�1 j � � � j �n

(t)
(for any ground

termt)

�

�(c)
(for any new
constantc)

Figure 2. Inference rules of sentence tableaux for formulae

Obviously, if the input set contains just one formula, theformula ruledenoted
with (F) can be omitted. The inference rules of sentence tableaux for formulae are
summarized in Figure 2.

5Note that this rule is slightly more flexible than the standard�-rule as presented in[Smullyan,
1968] according to whichB has to be modified toB � �1 � � � � � �n in a single inference step. The
need for this will become clear at the end of the section when we introduce the regularity refinement.

FIRST-ORDER TABLEAU METHODS 147

DEFINITION 75 (Closed tableau). A branchB of a tableau is called(atomically)
closedif an (atomic) formulaF and its negation appear onB, otherwise the branch
is termed(atomically) open. Similarly, a nodeN is called(atomically) closedif
all branches throughN are (atomically) closed, and(atomically) openotherwise.
Finally, a tableau is termed(atomically) closedif its root node is (atomically)
closed, otherwise the tableau is called(atomically) open.

�������
XXXXXXX

(1) :9x(8y8zP (y; f(x; y; z))! (8yP (y; f(x; y; x)) ^ 8y9zP (g(y); z)))

(3) 8y8zP (y; f(a; y; z))

(4) :(8yP (y; f(a; y; a)) ^ 8y9zP (g(y); z))

(5) :8yP (y; f(a; y; a))

(7) :P (b; f(a; b; a))

(8) 8zP (b; f(a; b; z))

(9) P (b; f(a; b; a))

(8)

(10)

(12)

�(6)�(5)

�(2)

�(2)

�(4)

(3)

(3)

(2) :(8y8zP (y; f(a; y; z))! (8yP (y; f(a; y; a)) ^ 8y9zP (g(y); z)))

(1)

(11) :P (g(b); f(a; g(b); a))

(12) 8zP (g(b); f(a; g(b); z))

(13) P (g(b); f(a; g(b); a))

(6) :8y9zP (g(y); z)

(10) :9zP (g(b); z)

Figure 3. An atomically closed sentence tableau

In Figure 3, a larger sentence tableau for a first-order sentence is displayed
that illustrates the application of each tableau rule. For every tableau expansion
step, the respective type of tableau expansion rule and the used ancestor node are
annotated at the connecting vertices. Note that all branches of the tableau are
atomically closed. A closed sentence tableau for a set of sentencesS represents a
correct proof of the unsatisfiability ofS. The correctness of the tableau approach as
a proof method for first-order sentences is based on the fact that the decomposition
rules are satisfiability preserving.

PROPOSITION 76. LetS be any satisfiable set of first-order sentences.

(1) If � 2 S, thenS [f�ig is satisfiable, for every�-subformula�i of�.

148 REINHOLD LETZ

(2) If � 2 S, thenS [f�ig is satisfiable, for some�-subformula�i of �.

(3) If 2 S, thenS [f(t)g is satisfiable, for any ground termt.

(4) If � 2 S, thenS [f�(c)g is satisfiable, for any constantc that is new toS.

Proof. Items (1) and (2) are immediate from the definition of formula assignment;
(3) is a consequence of the soundness of substitution application (Proposition 46);
lastly, since� is assumed as closed andc is new toS, �(c) is a Skolemization of�
w.r.t. S, hence (4) follows from Proposition 55. �

PROPOSITION 77 (Soundness of sentence tableaux).If a set of sentencesS is
satisfiable, then every sentence tableau forS has an open branch.

Proof. We use the following notation. A branch of a tableau for a set of formulae
S is calledsatisfiableif S [B is satisfiable whereB is the set of formulae on the
branch. Clearly, every satisfiable branch must be open. We prove, by induction on
the number of tableau expansion steps, that every sentence tableau for a satisfiable
set of sentencesS has a satisfiable branch. The induction base is evident. For the
induction step, consider any tableauT for S generated withn+1 expansion steps.
Let T 0 be a tableau forS from whichT can be obtained by a single expansion
step. By the induction assumption,T 0 has a satisfiable branchB. Now, eitherT
containsB, in which caseT 0 has a satisfiable branch. OrB is expanded; in this
case, Proposition 76 guarantees that one of the new branches inT 0 is satisfiable.

�

A fundamental proof-theoretic advantage of the tableau method oversynthetic
proof systems like axiomatic calculi[Hilbert and Ackermann, 1928] is theanalyt-
icity of the decomposition rules. The formulae in a tableaux are in the reflexive-
transitive closure of the tableau subformula relation on the input set. For cer-
tain formula classes, this permits the generation of decision procedures based on
tableaux, which will be discussed below.

3.2 Completeness of Sentence Tableaux

First-order logic differs from propositional logic in that there are no decision pro-
cedures for the logical status of a set of formulae, but merelysemi-decisionpro-
cedures. More precisely, there exist effective mechanical methods for verifying
the unsatisfiability of sets of first-order formulae (or the logical validity of first-
order formulae6), whereas, when subscribing toChurch’s Thesis, the satisfiability
of sets of first-order formulae (or the non-validity of first-order formulae) cannot
be effectively recognized.7

6This result was first demonstrated by G¨odel in[1930].
7Thus settling theundecidabilityof first-order logic, which was proved by Church in[1936] and

Turing in [1936].

FIRST-ORDER TABLEAU METHODS 149

The tableau calculus represents such an effective mechanical proof method. In
this part, we will provide a completeness proof of sentence tableaux. An essential
concept used in this proof is that of adownward saturatedset of sentences.

DEFINITION 78 (Downward saturated set). LetS be a set of first-order sentences
andU the Herbrand universe ofS. The setS is calleddownward saturatedpro-
vided:

1. if S contains an�, then it contains all its�-subformulae,

2. if S contains a�, then it contains at least one of its�-subformulae,

3. if S contains a, then it contains all(t) with t 2 U ,

4. if S contains a�, then it contains a�(c) with c being a constant inU .

DEFINITION 79 (Hintikka set). By an (atomic) Hintikka setwe mean a down-
ward saturated set which does not contain an (atomic) formula and its negation.

LEMMA 80 (Hintikka’s Lemma). Every atomic Hintikka set (and hence every
Hintikka set) is satisfiable.

Proof. Let S be an atomic Hintikka set. We show that some Herbrand interpreta-
tion ofS is a model forS. LetH denote the set of ground literals inS. First, since
H does not contain an atomic formula and its negation, it defines a Herbrand inter-
pretationH, using Notation 65. We show, by induction on the formula complexity,
that the formula assignment ofHmaps all formulae inS to>. The induction base
is evident. For the induction step, assume thatH(F) = >, for all formulaeF in
S with formula complexity< n. Consider any non-literal formulaF 2 S with
formula complexityn. The formula complexity of every tableau subformula ofF
is< n.

1. If F is an�, then, by the definition of downward saturation, every�i is in
S. Since, by the induction assumption,H(�i) =>,H(F) =>.

2. If F is a�, then, again by the definition of downward saturation, some�i is
in S. By the induction assumption,H(�i) =>, therefore,H(F) =>.

3. If F is a = 8xF 0, by the downward saturatedness ofS and the induction
assumption,H((t)) = >, for any termt in the Herbrand universeU of S.
SinceU is the universe ofH and sinceH (being a Herbrand interpretation)
maps every termt to itself, for all variable assignmentsA to U ,HA(F 0) =
H(F 0fx=A(x)g) =>. Therefore,H(F) = >.

4. Finally, if F is a �, by downward saturation and the induction assumption
H(�(c)) = >, for some constantc 2 T , thereforeH(F) =>. �

150 REINHOLD LETZ

After these preliminaries, we can come back to tableaux. The tableau calculus
is indeterministic, i.e., many possible expansion steps are possible in a certain
situation. We are now going to demonstrate that the tableau construction can be
made completely deterministic and yet it can be guaranteed that the tableau will
eventually close if the set of input formulae is unsatisfiable. Such tableaux are
calledsystematic tableaux. In order to make the expansion deterministic, we have
to determine,

1. from where the next formula has to be taken, and

2. for the case of the quantifier rules, to which closed term the respective vari-
able has to be instantiated.

Furthermore, since systematic tableaux shall be introduced for the most general
case in which the set of input formulae may be infinite, we have to provide means
for making sure that any formula in the set will be taken into account in the tableau
construction, if necessary.

For the node selection, we equip the nodes of tableaux with an additional num-
ber label, expressing whether the formula at the node can be used for a tableau
expansion step or not. If a node carries a number label, then the formula at the
node will be a possible candidate for a tableau expansion step, otherwise not.

DEFINITION 81 (Usable node). If a tableauT contains nodes with number la-
bels, then from all the nodes labelled with the smallest number the leftmost one
with minimal tableau depth is calledthe usable nodeof T ; otherwiseT hasno
usable node.

For the term selection needed in the quantifier rules, we employ a total or-
dering on the set of closed terms. Both selection functions together can be used
to uniquely determine the next tableau expansion steps. Concerning the fairness
problem in case the set of input formulae be infinite, we use an additional total
ordering on the formulae.

DEFINITION 82 (Systematic tableau (sequence) (inductive)). Let� be a map-
ping fromN0 onto the set of ground terms and� a total ordering on the set of for-
mulae of a first-order languageL, respectively, andS any set of closed first-order
formulae. Thesystematic tableau sequenceof S w.r.t. � and� is the following
sequenceT of tableaux forS. Let � be the smallest formula inS modulo�.

� The one-node tableauT0 with root formula� and number label0 is the first
element ofT .

� If Tn is then-th element inT and has nodes with number labels, letN be
the usable node ofTn with formulaF and numberk. Furthermore, if some
formula inS is not on some branch passing throughN , let G denote the
smallest such formula modulo�. Now expand each open branchB passing
throughN to:

FIRST-ORDER TABLEAU METHODS 151

1. B [�G] ��1�� � ���n, if F is of type�with�-subformula sequence
�1; : : : ; �n,

2. B [�G] ��1 j � � � j �n, if F is of type� with �-subformula sequence
�1; : : : ; �n,

3. B [�G] �(�(k)), if F is of type,

4. B [�G] ��(c) if F is of type� andc is the smallest constant modulo
� not occurring inT .

Then give every newly attached node the number label0 if its formula label
is not a literal. Next, remove the number labels from all nodes that have
become atomically closed through the expansion steps. Finally, ifF is not
of type, remove the number label fromN ; otherwise change the numberk
atN to k+1. The tableau resulting from the entire operation is then+1-st
element of the sequenceT .

� If Tn has no usable node, it is the last element ofT .

In Figure 4, a closed systematic tableau is shown with�(0) = a and�(1) = b.
The following structural property of sentence tableaux plays an important role. We
formulate it generically, for any system of tableau inference rules.

DEFINITION 83 (Nondestructiveness). A tableau calculusC is callednonde-
structiveif, whenever a tableauT can be deduced from a tableauT 0 according
to the inference rules ofC, thenT 0 is an initial segment ofT ; otherwiseC is
called destructive.

Since obviously the calculus of sentence tableaux is nondestructive, one can
form the (tree) union of all the tableaux in a systematic tableau sequence.

DEFINITION 84 (Saturated systematic tableau). LetT be a systematic tableau
sequence for a set of first-order formulaeS. With T � we denote the smallest for-
mula tree containing all tableaux inT as initial segments;T � is called asaturated
systematic tableauof S.

PROPOSITION 85.For any (atomically) open branchB of a saturated systematic
tableau, the set of formulae onB is a(n atomic) Hintikka set.

Proof. Let B be any (atomically) open branch of a saturated systematic tableau.
According to the definition of systematic tableau, it is guaranteed that the branch
B satisfies the following condition: for any formulaF onB,

1. if F is of type�, then all�-subformulae ofF must be onB;

2. if F is of type�, then some�-subformula ofF must be onB;

3. if F is of type, then all-subformulae ofF must be onB;

4. if F is of type�, then some�-subformulae ofF must be onB.

152 REINHOLD LETZ

�������

XXXXXXX

�(1)

�(2)

(3)

�(4)

�(4)

�(6)

(3)

�(9)

(1) 9y9z8x(P (x;y) ^ (P (z; x)! :P (y; y)))

(2) 9z8x(P (x;a) ^ (P (z; x)! :P (a; a)))

(3) 8x(P (x;a) ^ (P (b; x)! :P (a; a)))

(4) (P (a; a) ^ (P (b; a)! :P (a; a)))

(5) P (a; a)

(6) (P (b; a)! :P (a; a))

(7) :P (b; a) (8) :P (a; a)

(10) P (b; a)

(9) (P (b; a) ^ (P (b; b)! :P (a; a)))

�(9)

(11) (P (b; b)! :P (a; a))

Figure 4. An atomically closed systematic tableau

So the setS of formulae onB is downward saturated. SinceB is (atomically)
open, no (atomic) formula and its negation are inS, henceS is a(n atomic) Hin-
tikka set. �

Now the refutational completeness of tableaux is straightforward.

THEOREM 86 (Sentence tableau completeness).If S is an unsatisfiable set of
first-order sentences, then there exists a finite atomically closed sentence tableau
for S.

Proof. Let T be a saturated systematic tableau forS. First, we show thatT must
be atomically closed. Assume, indirectly, thatT contained an atomically open
branchB. Then, by Proposition 85, there would exist an atomic Hintikka set for
the setS 0 of formulae onB and, by Hintikka’s Lemma, a modelI for S 0. Now,
by the definition of saturated systematic tableau,S � S 0, henceI would be a
model forS, contradicting the unsatisfiability assumption. This proves that every
branch ofT must be atomically closed. In order to recognize the finiteness ofT ,

FIRST-ORDER TABLEAU METHODS 153

note that the closedness of any branch of a systematic tableau entails that it cannot
have a branch of infinite length. Since the branching rate of any tableau is finite,
(by König’s Lemma)T must be finite. �

The generality of our systematic tableau procedure permits an easy proof of a
further fundamental property of first-order logic.

THEOREM 87 (Compactness Theorem).Any unsatisfiable set of first-order sen-
tences has a finite unsatisfiable subset.

Proof. LetS be any unsatisfiable set of first-order sentences. By Theorem 86, there
exists a finite closed tableauT for S. LetS 0 be the set of formulae inS appearing
in T . S 0 is finite and, by the soundness of tableaux,S 0 must be unsatisfiable.�

Sentence tableaux can also be used to illustrate the basic Herbrand-type prop-
erty of first-order logic that with any unsatisfiable set of prenex formulae one can
associate unsatisfiable sets of ground formulae as follows.

DEFINITION 88. A tableau is calledquantifier preferringif on any branch all
applications of quantifier rules precede applications of the connective rules. Such
a tableau begins with a single branch containing only quantifier rule applications
up to a nodeN below which only connective rules are applied; the set of formulae
on this branch up to the nodeN is calledthe initial setof the tableau, and the set
of ground formulae in the initial set is termedthe initial ground setof T .

It is evident that we can reorganize any tableau for a set of prenex formulae in
such a way that it is quantifier preferring, without increasing its size or affecting
its closedness. None of those properties is guaranteed to hold for sets containing
formulae which are not in prenex form.

PROPOSITION 89.If T is a closed quantifier preferring tableau for a setS of
first-order formulae, then the initial ground set ofT is unsatisfiable.

Since, for any unsatisfiable setS of prenex formulae, a closed quantifier pre-
ferring tableau exists, we can associate withS the collection of the initial ground
sets of all closed quantifier preferring sentence tableaux forS. The sets in this
collection, in particular the ones with minimal complexity, play an important rˆole
as a complexity measure.

DEFINITION 90. TheHerbrand complexityof an unsatisfiable setS of prenex
formulae is the minimum of the complexities8 of the initial ground sets of all closed
quantifier preferring sentence tableaux forS.

Since the quantifier rules of tableaux are not specific to the tableau calculus, the
Herbrand complexity can be used as a calculus-independent refutation complexity
measure for unsatisfiable sets of formulae. This measure may also be extended to

8As the complexity of a set of formulae one may take the sum of the occurrences of symbols in the
elements of the set.

154 REINHOLD LETZ

formulae which are not in prenex form, by working with transformations of the
formulae in prenex form (see also[Baaz and Leitsc, 1992]).

Next, we come to an important proof-theoretic virtue of sentence tableaux,
which we introduce generically for any system of tableau rules.

DEFINITION 91 (Confluence). A tableau calculusC is calledproof confluentor
just confluent(for a class of formulae) if, for any unsatisfiable setS of formulae
(from the class), from any tableauT for S constructed with the rules ofC a closed
tableau forS can be constructed with the rules ofC.

Loosely speaking, a confluent (tableau) calculus does never run into dead ends.9

PROPOSITION 92. Sentence tableaux are confluent for first-order sentences.

Proof. LetT be any sentence tableau generated for an unsatisfiable set of sentences
S. By the completeness of sentence tableaux, for any branchB in T , there exists
a closed sentence tableauTB for S [B. At the leaf of any branchB of T , simply
repeat the construction ofTB. �

In the subsequent sections, we shall introduce tableau calculi and procedures
that are not confluent and for which no systematic procedures of the type pre-
sented in this section exist. Nonconfluence may have strong consequences on the
termination behaviour and the functionality of a calculus, particularly, when one
is interested in decision procedures or in model generation for (sublanguages of)
first-order logic. As we shall see, the lack of confluence may also require com-
pletely different approaches towards proving completeness.

3.3 Refinements of Tableaux

The calculus of sentence tableaux permits the performance of certain inference
steps that are redundant in the sense that they do not contribute to the closing of
the tableau. In order to avoid such redundancies, one can restrict the tableau rules
and/or impose conditions on the tableau structure. First, we discuss the notion of
strictness which is a refinement of the tableau rules. Adapted to our framework, it
reads as follows.

DEFINITION 93 (Strict tableau). A tableau construction isstrict if

� every�- and�-node is used only once on a branch and

� for any�-node, any occurrence of an�i in � is used only once a branch.

The strictness condition is motivated by the definition of systematic tableaux,
since obviously any systematic tableau construction is strict. Consequently, the

9Note that the notion of confluence used here slightly differs from its definition in the area of term
rewriting (see, e.g.,[Huet, 1980].

FIRST-ORDER TABLEAU METHODS 155

strictness condition is completeness-preserving. Strictness can also be imple-
mented very efficiently by simply labelling nodes (or occurrences of tableau sub-
formulae at nodes) as already used on a branch. But strictness does not perform
optimal redundancy elimination, since it does not prevent that one and the same
formula may appear twice on a branch. This is particularly detrimental if it hap-
pens in a�-rule application where new branches with new proof obligations are
produced, which obviously is completely useless. A stronger tableau restriction
concerning the connective rules is achieved with the followingstructural condi-
tion.

DEFINITION 94 (Regular tableau). A formula tree is calledregular if, on no
branch, a formula appears more than once.

The main reason why regularity has not been used in the traditional presenta-
tion of tableaux lies in the different definition of the�-rule here and there. We
permit that onlyone�-subformula can be attached, whereas the traditional format
requires to appendall �-subformulae at once, one below the other. It is straight-
forward to realize that regularity is not compatible with the traditional definition
of the�-rule. An obvious example is the unsatisfiable formula(p^ q)^ (p^ :q),
for which no closed regular tableau exists if the traditional�-rule is used. Since
(w.r.t. the connective rules) the regularity condition is a more powerful mechanism
of avoiding suboptimal proofs than the strictness condition, we have generalized
the�-rule in order to achieve compatibility with regularity.10 The following fact
demonstrates that tableaux which are irregular can be safely ignored.

DEFINITION 95. Thesize of a formula treeis the sum of the symbol occurrences
in the formulae at the nodes of the tree.

PROPOSITION 96. Every closed sentence tableau of minimal size is regular.

Proof. We show the contraposition, i.e., that every closed irregular sentence tableau
T is not minimal in size. LetT be any closed irregular sentence tableau for a set
S andN any node dominated by a node labelled with the same formula. Prune
the branch by taking out the nodeN and its brothers (if existing) and attach the
successors ofN (if existing) to the predecessor ofN . The branch remains closed,
the resulting formula treeT 0 is smaller in size and (according to Definition 74)T 0

is a sentence tableau forS. �

In order to integrate the�-rule restriction of strictness, we call a tableaustrictly
regular if it is strict and regular. The regularity restriction can easily be integrated
into systematic tableaux, by simply omitting the attachment of nodesB � F1 j
� � � j Fn if one of theFi already is on the branchB.

A further fundamental refinement of sentence tableau concerns the-rule.

10This is an interesting illustration of the fact that an unfortunate presentation of inference rules can
block certain obvious pruning mechanisms.

156 REINHOLD LETZ

DEFINITION 97 (Herbrand tableau).Herbrand tableauxare defined like sen-
tence tableaux, but with the-rule replaced by theHerbrand-rule:

(H)

(t)
wheret is from the Herbrand universe of the branch.

The Herbrand restriction on the-rule may significantly improve the termina-
tion behaviour of sentence tableaux, as illustrated with the formulaF given in
Example 98. The formula is satisfiable. But unfortunately, infinitely large sen-
tence tableau can be constructed forF , as shown in Figure 98, since the-rule
can be applied again and again using the formula (4). Any strict Herbrand tableau
construction terminates, since the number of ground terms that can be selected for
(4) is finite.

EXAMPLE 98. F = :8x(9yP (x; y)! 9yP (y; x))

(4)

(1) :8x(9yP (x;y)! 9yP (y; x))

(8) :P (c; a)
...

�(1)

�(2)

�(2)

�(3)

(4)

(4)

(2) :(9yP (a; y)! 9yP (y; a))

(4) :9yP (y; a)

(3) 9yP (a; y)

(5) P (a; b)

(6) :P (a; a)

(7) :P (b; a)

(1) :8x(9yP (x; y)! 9yP (y; x))

�(1)

�(2)

�(2)

�(3)

(2) :(9yP (a; y)! 9yP (y; a))

(4) :9yP (y; a)

(3) 9yP (a; y)

(5) P (a; b)

(6) :P (a; a)

(7) :P (b; a)

H(4)

H(4)

all Herbrand terms

selected for (4)

Figure 5. Sentence and Herband tableau for Example 98

The Herbrand restriction on tableaux is as reasonable as regularity, since it pre-
serves minimal proof size.

PROPOSITION 99. For every (atomically) closed sentence tableauT for a setS,
there exists a(n atomically) closed Herbrand tableauT 0 for S with less or equal
size thanT .

Proof. Without increasing the size, we can rearrangeT in such a way that all
formula rule applications are performed first. Now consider any-step in the

FIRST-ORDER TABLEAU METHODS 157

tableau that is not Herbrand, attaching a formula(t) to the leafN of a branchB.
Replace any occurrence oft belowN with a constant from the Herbrand universe
of B. Obviously, the modified formula tree is (atomically) closed and does not
increase in size. It is straightforward to prove, e.g., by induction on the tableau
inference steps, that the formula tree is a sentence tableau forS. Finitely many
applications of this operation produce a(n atomically) closed Herbrand tableauT 0

for S equal or smaller in size thanT . �

PROPOSITION 100. Strictly regular Herbrand tableaux are confluent for first-
order sentences.

Proof. Let T be any strictly regular Herbrand tableau for an unsatisfiable set of
sentencesS. By the completeness of sentence tableaux, there exists a closed sen-
tence tableauT 0 for S. Simply repeat the construction ofT 0, at any leaf ofT . Now
modify the resulting sentence tableau, as described in the proofs of Propositions 96
and 99. The procedure results in a closed strictly regular Herbrand tableauxT 00

for S. Since the modification operation is performed from the leaves towards the
root, it does not affect the inital treeT , henceT 00 is as desired. �

The Herbrand tableau rule also has an effect on thesystematictableau con-
struction. Since the Herbrand universe may increase during branch expansion, the
enumeration of ground terms must be organized differently.

DEFINITION 101 (Systematic Herbrand tableau).Systematic Herbrand tableaux
are defined like systematic tableaux except that the-rule application is controlled
differently. Whenever a at a nodeN is selected, for any atomically open branch
B throughN , select the smallest termt (modulo the ordering�) from the Her-
brand universe ofB that has not been selected atN onB; if all terms from the
Herbrand universe ofB have already been selected atN onB, cannot be used
for expanding the current leaf ofB.

In particular, this entails that, for different branches, different Herbrand terms
may be selected in the systematic tableau construction. Imposing the Herbrand
restriction on systematic tableaux preserves completeness, since Proposition 85
also holds for Herbrand tableaux.

PROPOSITION 102.Every (atomically) open branchB of a saturated regular
systematic Herbrand tableau is a(n atomic) Hintikka set, moreover, the set of atoms
onB defines a Herbrand model forB.

Proof. See the proof of Proposition 85. �

Herbrand tableaux provide a higher functionality than sentence tableaux, since
a larger class of first-order formulae can be decided.

DEFINITION 103 (Weak Skolem, datalogic form). A sentence� is said to be
in weak Skolem formif � has no tableau subformula of type that has a tableau

158 REINHOLD LETZ

subformula of type�. A sentence� is said to be in(weak) datalogic formif � is
in (weak) Skolem form, respectively, and� has no function symbol of arity> 0.

The set of weak datalogic formulae is a generalization of the Bernays–
Schönfinkel class[1928].

PROPOSITION 104.Every strictly regular Herbrand tableau for any finite setS
of weak datalogic formulae is finite.

Proof. The formula structure and the tableau rules guarantee that only�-formulae
can appear on a branch which occur as subformulae in the elements ofS. SinceS
is assumed as finite, this entails that the number of�-formulae on any branch must
be finite. Because of the strictness condition on the�-rule, only finitely many new
constants can occur on a branch. Since no functions symbols of arity> 0 occur in
the elements ofS, the Herbrand universe of any branch must be finite, and hence
the set of formulae occurring on a branch. Regularity then assures that also the
length of any branch must be finite. �

Both properties demonstrate that Herband tableaux are decision procedures for
the class.

PROPOSITION 105.Given any finite setS of weak datalogic formulae, any reg-
ular systematic Herbrand tableau construction terminates,

� either with a closed tableau ifS is unsatisfiable,

� or with an open branch which defines a Herbrand model forS.

4 FREE-VARIABLE TABLEAUX

The tableau approach is traditionally useful as an elegant format forpresenting
proofs. With the increasing importance of automatic deduction, however, the ques-
tion arises whether the tableau paradigm is also suited for proof‘search. In princi-
ple, systematic tableau procedures could be used for this purpose. But systematic
procedures, even regular Herbrand ones, are still too inefficient for a broad ap-
plication. As an illustration, see the tableau displayed in Figure 3, which is not
systematic. A systematic tableau would be much larger. The essential difference
concerns the applications of the-rule. Consider, e.g., the-step from node (10)
:9zP (g(b); z) to node (11):P (g(b); f(a; g(b); a)) in which the ‘right’ substi-
tution fz=f(a; g(b); a))g has been selected. Since a systematic procedure has to
enumerateall (Herbrand) instances in a systematic and therefore ‘blind’ manner,
it would normally perform the substitutionfz=f(a; g(b); a))gmuch later. The ob-
vious weakness of the-rule is that it enforces to perform ground instantiations
too early, at a time when it is not clear whether the substitution will contribute to
the closing of a branch. The natural approach for overcoming this problem is to
postpone the term selection completely by permitting free variables in a tableau

FIRST-ORDER TABLEAU METHODS 159

and to determine the instances later when they can be used to immediately close
a branch. The free variables are then treated in arigid manner, i.e., they are not
being considered universally quantified but as placeholders for arbitrary (ground)
terms. This view of free variables dates back to work of Prawitz[1960], was ap-
plied by Bibel [1981] and Andrews[1981], and incorporated into tableaux, for
example, by Fitting[1996] (see also[Reeves, 1987]). In this section, we will in-
vestigate this approach. Closure of a branch means producing twocomplementary
formulae, i.e., a formula and its negation, on the branch. Since we can confine
ourselves to atomic closures, the problem can be reduced to finding a substitution
� such that for two literalsK andL on the branch:K� = �L�. So one has to
integrateunificationinto the tableau calculus.

4.1 Unification

Unification is one of the most successful advances in automated deduction, be-
cause it permits to make instantiation optimal with respect to generality. Unifica-
tion will be introduced here for arbitrary finite sets of quantifier-free expressions.

DEFINITION 106 (Unifier). For any finite setS of quantifier-free expressions
and any substitution�, if jS�j = 1,11 then� is called aunifier forS. If a unifier
exists for a setS, thenS is calledunifiable.

Subsequently, we will always assume thatS denotes finite sets of quantifier-free
expressions. The general notion of a unifier can be subclassified in certain useful
ways.

DEFINITION 107 (Most general unifier). If� and� are substitutions and there
is a substitution� such that� = ��, then we say that� is more generalthan� .
A unifier for a setS is called amost general unifier, MGU for short, if� is more
general than any unifier forS.

Most general unifiers have the nice property that any unifier for two atoms can
be generated from a most general unifier by further composition. This qualifies
MGUs as a useful instantiation vehicle in many inference systems. The central
unifier concept in automated deduction, however, is the following.

DEFINITION 108 (Minimal unifier). If a unifier� for a setS has the property
that for every unifier� for S: j�j � j� j, then we say that� is aminimal unifier for
S.

For a minimal unifier the number of substituted variables is minimal.

EXAMPLE 109. Given the set of termsS = fx; f(y)g, the two substitutions
� = fy=x; x=f(x)g and � = fx=f(y)g are bothMGUs for S, but only � is a
minimal unifier.

11With jM j we denote the cardinality of a setM .

160 REINHOLD LETZ

In fact, every minimal unifier is a most general unifier, as will be shown in the
Unification Theorem (Theorem 118) below. How can we a find a minimal unifier
for a given set? For this purpose, the procedurally oriented concept of acomputed
unifier will be developed.

DEFINITION 110 (Disagreement set). LetS be a finite set of quantifier-free ex-
pressions. Adisagreement setof S is any two-element setfE1; E2g of expressions
such that the dominating symbols ofE1 andE2 are distinct andE1 andE2 occur
at the same position as subexpressions in two of the expressions inS.

EXAMPLE 111. The set of termsS = fx; g(a; y; u); g(z; b; v)g has the follow-
ing disagreement sets:fa; zg, fy; bg, fu; vg, fx; g(a; y; u)g, fx; g(z; b; v)g.

Obviously, a set of expressionsS has a disagreement set if and only ifjSj > 1.
The following facts immediately follow from the above definitions.

PROPOSITION 112. If � is a unifier for a setS andD is a disagreement set of
S, then� unifiesD, each member ofD is a term, andD contains a variable which
does not occur in the other term ofD.

The last item of the proposition expresses that any binding formed from any
disagreement set of a unifiable set must be a proper binding. Operationally, the
examination whether a binding is proper is called theoccurs-check. A particularly
useful technical tool for proving the Unification Theorem below is the Decompo-
sition Lemma.

LEMMA 113 (Decomposition lemma).Let� be a unifier for a setS with jSj > 1
and letfx; tg be any disagreement set ofS with x 6= x�. If � = � n fx=x�g, then
� = fx=tg� .

Proof. First, since� unifies any disagreement set ofS, x� = t�. By Proposi-
tion 112,x does not occur int, which gives ust� = t� . Consequently,x� = t�
andx 6= t� . Furthermore,x =2 domain(�), and by the composition of substitu-
tions,fx=tg� = fx=t�g [� . Putting all this together yields the chainfx=tg� =
fx=t�g [� = fx=x�g [� = �. �

Now we shall introduce a concept which captures the elementary operation per-
formed when making a set of expressions equal by instantiation. It works by elim-
inating exactly one variablex from all expressions of the set and by replacing this
variable with another termt from a disagreement setfx; tg of S provided thatx
does not occur int.

DEFINITION 114 (Variable elimination and introduction). IfS is a finite set of
expressions such that from the elements of one of its disagreement sets a proper
binding x=t can be formed, thenSfx=tg is said to beobtainable fromS by a
variable elimination w.r.t.x=t.

PROPOSITION 115. LetS be any finite set of quantifier-free expressions and let
VS be the set of variables occurring inS.

FIRST-ORDER TABLEAU METHODS 161

1. If S is unifiable, so are all sets obtainable fromS by a variable elimination.

2. Only finitely many sets can be obtained fromS by a variable elimination.

3. If S 0 has been obtained fromS by a variable elimination w.r.t. a binding
fx=tg andVS0 is the set of variables occurring inS 0, then jS 0j � jSj and
VS0 = VS n fxg.

4. The transitive closure of the relation

fhS 0; Si j S 0 can be obtained fromS by a variable elimination stepg

is well-founded whereS andS 0 are arbitrary finite sets of quantifier-free
expressions, i.e., there are no infinite sequences of successive variable elim-
ination steps.

Proof. For the proof of (1), letS 0 = Sfx=tg be obtained fromS by a variable
elimination w.r.t. to the bindingx=t composed from a disagreement set ofS, and
suppose� unifiesS. Since� unifies every disagreement set ofS, it follows thatx�
= t�. Let � = � nfx=x�g. By the Decomposition Lemma (Lemma 113), we have
fx=tg� = �. Therefore,S(fx=tg�) = (Sfx=tg)� = S 0� . Hence� unifiesS 0. For
(2) note that since there are only finitely many disagreement sets ofS and each
of them is finite, only finitely many proper bindings are induced, and hence only
finitely many sets can be obtained by a variable elimination. To recognize (3), let
S 0 = Sfx=tg be any set obtained fromS by a variable elimination. ThenS 0 is the
result of replacing any occurrence ofx in S by the termt. Therefore,jS 0j � jSj,
and, sincex=t is proper andt already occurs inS, we getVS 0 = VS n fxg. Lastly,
(4) is an immediate consequence of (3). �

Now we are able to introduce the important notion of a computed unifier, which
is defined by induction on the cardinality of the unifier.

DEFINITION 116 (Computed unifier (inductive)).

1. ; is a (the only)computed unifier forany singleton set of quantifier-free
expressions.

2. If a substitution� of cardinalityn is a computed unifier for a finite setS 0

andS 0 can be obtained fromS by a variable elimination w.r.t. a binding
x=t, then the substitution� [fx=t�g = fx=tg� of cardinalityn+1 is a
computed unifier forS.

The definition of a computed unifier can be seen as a declarative specification
of an algorithm forreally computinga unifier for a given set of expressions, which
we will present now using a procedural notation. The procedure is a generalization
of the algorithm given by Robinson in[1965].12

12Historically, the first unification procedure was given by Herbrand in[1930].

162 REINHOLD LETZ

DEFINITION 117 (Unification algorithm). LetS be any finite set of quantifier-
free expressions.�0 = ;, S0 = S, andk = 0. Then go to 1.

1. If jSkj = 1, output�k as a computed unifier forS. Otherwise select a
disagreement setDk of Sk and go to 2.

2. If Dk contains a proper binding, choose one, sayx=t; then set�k+1 =
�kfx=tg, setSk+1 = Skfx=tg, incrementk by 1 and go to 1. Otherwise
output ‘not unifiable’.

Note that the unification algorithm is a nondeterministic procedure. This is
because there may be several different choices for a disagreement set and for a
binding. Evidently, the unification procedure can be directly read off from the
definition of a computed unifier: it just successively performs variable elimination
operations, until either there are no variable elimination steps possible, or the re-
sulting set is a singleton set. Conversely, the notion of a computed unifier is an
adequate declarative specification of the unification algorithm. It follows immedi-
ately from Proposition 115 (1) and (4) that each unifier output of the unification
algorithm is indeed a computed unifier and that the procedure terminates, respec-
tively.

We shall demonstrate now that the notions of a minimal and a computed unifier
coincide, and that both of them are most general unifiers.

THEOREM 118 (Unification Theorem).Let S be any unifiable finite set of
quantifier-free expressions.

1. If � is a minimal unifier forS, then� is a computed unifier forS.

2. If � is a computed unifier forS, then� is a minimal unifier forS.

3. If � is a computed unifier forS, then� is anMGU for S.

Proof. We will prove (1) to (3) by induction on the cardinalities of the respective
unifiers. First, note that; is the only minimal and computed unifier for any sin-
gleton set of quantifier-free expressionsS and that; is an MGU for S. Assume
the result to hold for any set of expressions with minimal and computed unifiers
of cardinalities� n. For the induction step, supposeS has only minimal or com-
puted unifiers of cardinality> n � 0. Let � be an arbitrary unifier forS andx=t
any proper binding from a disagreement set ofS with x 6= x� (which exists by
Proposition 112). LetS 0 = Sfx=tg and set� = � nfx=x�g, which is a unifier for
S 0, by the Decomposition Lemma (Lemma 113). For the proof of (1), let� be a
minimal unifier forS. We first show that� is minimal forS 0. If � 0 is any minimal
unifier forS 0, then� = fx=tg� 0 is a unifier forS and all variables indomain(� 0)
occur inS 0. Therefore, the Decomposition Lemma can be applied yielding that
� 0 = � n fx=x�g. And from the chainj� 0j = j�j � 1� j�j � 1 = j� j it follows that
� is a minimal unifier forS 0. Sincej� j � n, by the induction assumption,� is a

FIRST-ORDER TABLEAU METHODS 163

computed unifier forS 0. Hence, by definition,� = fx=tg� is a computed unifier
for S. For (2) and (3), let� be a computed unifier forS. Then, by definition,� is
a computed unifier forS 0. Let � be an arbitrary unifier forS. Sincex is in some
disagreement set ofS, eitherx 2 domain(�) or there is a variabley andy=x 2 �.
Define

� =

�
� if x 2 domain(�)
�fx=yg otherwise.

Sincex 2 domain(�), the Decomposition Lemma yields that if� 0 = � n fx=x�g,
thenfx=tg� 0 = �, and� 0 is a unifier forS 0. The minimality of� can be recog-
nized as follows. By the induction assumption,� is minimal forS 0. Then consider
the chain

j�j = j�j = j� 0j+ 1 � j� j + 1 = j�j:
For (3), note that� is anMGU for S 0, by the induction assumption, i.e., there is a
substitution: � 0 = �. On the other hand,� = �fx=ygfy=xg, hence there is a
substitution�: � = ��. This gives us the chain

S� = S�� = Sfx=tg� 0� = Sfx=tg�� = S��

demonstrating that� is anMGU for S. This completes the proof of the Unification
Theorem. �

Concerning terminology, notions are treated differently in the literature (see
[Lassezet al., 1988] for a comparison). We have chosen a highly indeterministic
presentation of the unification algorithm, it is even permitted to select between
alternative disagreement sets. Furthermore, we have stressed the importance of
minimal unifiers. Therefore our Unification Theorem is stronger than normally
presented, it also states thateachminimal unifier indeed can be computed by the
unification algorithm.

Polynomial Unification

Unification is the central ingredient applied in all advanced proof systems for first-
order logic. As a consequence, the complexity of unification is a lower bound for
the complexity of each advanced calculus. While the cardinality of a most general
unifier� for a set of expressionsS is always bounded by the number of variables in
S, the range of the unifier may contain terms with a size exponential with respect
to the size of the initial expressions. Of course, this would also entail thatS�
contains expressions with an exponential size. The following class of examples
demonstrates this fact.

EXAMPLE 119. IfP is an(n+ 1)-ary predicate symbol andf a binary function
symbol, then, for everyn > 1, defineSn as the set containing the atomic formulae

P (x1; x2; : : : ; xn; xn); and
P (f(x0; x0); f(x1; x1); : : : ; f(xn�1; xn�1); xn).

164 REINHOLD LETZ

Obviously, any unifier for anSn must contain a bindingxn=t such that the
number of symbol occurrences int is greater than2n. As a consequence, we
have the problem of exponential space and, therefore, also of exponential time,
when working with such structures. Different solutions have been proposed for
doing unification polynomially. In[Paterson and Wegman, 1978], a linear uni-
fication algorithm is presented. Furthermore, a number of ‘almost’ linear al-
gorithms have been developed, for example, in[Huet, 1976] and [Martelli and
Montanari, 1976; Martelli and Montanari, 1982]. Similar to the early approach
in [Herbrand, 1930], all of the mentioned efficient algorithms reduce the unifi-
cation problem to the problem of solving a set of equations. However, all of
those procedures—particularly the one in[Paterson and Wegman, 1978]—need
sophisticated and expensive additional data structures, which render them not op-
timal for small or average sized expressions. Therefore, Corbin and Bidoit reha-
bilitated Robinson’s exponential algorithm by improving it with little additional
data structure up to a quadratic worst-case complexity[Corbin and Bidoit, 1983;
Letz, 1993]. This algorithm turns out to be very efficient in practice.

We cannot treat polynomial unification in detail here, but we give the essential
two ideas contained in any of the mentioned polynomial unification algorithms.

1. The representation of expressions has to be generalized from strings or trees
to (directed acyclic) graphs. This way, the space complexity can be reduced
from exponential to linear, as shown with the directed acyclic graph repre-
senting the termxn� in the example above:

f �!�! f �!�! : : :f �!�!| {z }
n�times

x0

2. In order to reduce the time complexity, which may still be exponential even
if graphs are used, since, in the worst case, there are exponentially many
paths through such a graph, the following will work. One must remember

� which pairs of expressions had already been unified in the graph (e.g.
during the unification ofxn� with itself at the last argument positions
of the atoms),

� and in occurs-checks: for which expressions the occurrence of the re-
spective variable was already checked (e.g. during the check whether
xn occurs inf(xn�1; xn�1)� at then-th argument positions of the
atoms),

and one must not repeat those operations. How sophisticated this is or-
ganized determines whether the worst-case complexity can be reduced to
linear or just to quadratic time.

FIRST-ORDER TABLEAU METHODS 165

4.2 Generalized Quantifier Rules

Using the unification concept, the-rule of sentence tableaux can be modified in
such a way that instantiations of-formulae are delayed until a branch can be
immediately closed. Two further modification have to be performed. On the one
hand, since now free variables occur in the tableau, one has to generalize the�-rule
to full Skolemization in order to preserve soundness.

EXAMPLE 120. Consider the satisfiable formula9y(:P (x; y) ^ P (x; x)). An
application of the�-rule of sentence tableaux would result in an unsatisfiable for-
mula:P (x; a) ^ P (x; x).

One the other hand, substitutions have to be applied to the formulae in a tableau.
With T� we denote the result of applying a substitution� to the formulae in a
tableauT . Before defining tableau with unification, we introduce a tableau system
in which arbitrary substitutions can be applied. This system will serve as a very
general reference system, which also subsumes sentence tableaux,

DEFINITION 121 (General free-variable tableau).General free-variable tableaux
are defined as sentence tableaux are, but with the- and the�-rule replaced by the
following three rules. LetB be (the set of formulae on) the actual tableau branch
andS the set of input sentences of the current tableauT .

(�)

(t)
wheret is any term of the languageL
andfx=tg is free for(x)

(�+)
�

�(f(x1; : : : ; xn))
wheref is new toS andT , and
x1; : : : ; xn are the free variables in�,

(S) ModifyT to T� where� is free for all formulae inT .

The�+-rule [Hähnle, 1994; Fitting, 1996] we use here is already an improve-
ment of the original�-rule used in[Fitting, 1996]. The difference between both
rules will be discussed in Section 6. The additionalsubstitution ruledenoted with
(S), which is now needed to achieve closure of certain branches, differs strongly
from the tableau rules presented up to now. While all those rules were conservative
in the sense that the initial tableau was not modified but just expanded, the substi-
tution rule isdestructive. This has severe consequences on free-variable tableaux,
both proof-theoretically and concerning the functionality of the calculus, which
will be discussed below.

But how do we know that the calculus of general free-variable tableau produces
correct proofs? It is clear that the method of proving the correctness of sentence
tableaux (using Proposition 76) will not work. In free-variable tableaux, branches
cannot be treated separately, because they may share free variables. As an exam-
ple, consider a tableauT with the two branchesP (x)�:P (a) andQ(x)�:Q(b)

166 REINHOLD LETZ

which cannot be closed using the rules of general free-variable tableaux, although
both branches are unsatisfiable. The notion of satisfiability is too coarse for free-
variable tableaux. What will work here is the following finer notion which was
developed in[Hähnle, 1994] and also used in[Fitting, 1996].

DEFINITION 122 (8-satisfiability). A collectionC of sets of first-order formulae
is called8-satisfiableif there is an interpretationI such that, for every variable
assignmentA, I is anfAg-model for some element ofC.

It is evident that, for closed first-order formulae,8-satisfiability of a collection
coincides with ordinary satisfiability of some element of the collection. In order to
illustrate the difference of this concept for formulae with free variables, consider
the tableauT mentionend above. The collection consisting of the two sets of
formulaefP (x);:P (a)g andfQ(x);:Q(b)g is8-satisfiable (set, e.g.U = f0; 1g,
I(P) = f0g, I(Q) = f1g, I(a) = 1, andI(b) = 0).

We now give a generalized version of Proposition 76 which can be used to prove
correctness both of sentence tableaux and of general free-variable tableaux.

PROPOSITION 123. LetC 0 = C [fSg be a8-satisfiable collection of sets of
first-order formulae.

1. If � 2 S, thenC [fS [f�igg is 8-satisfiable, for every�-subformula�i
of �.

2. If� 2 S, thenC[fS[f�1g; : : : ; S[f�ngg is8-satisfiable where�1; : : : ; �n
is the�-subformula sequence of�.

3. If 8xF = 2 S, thenC [fS [f(t)gg is 8-satisfiable, for any termt of
the languageL providedfx=tg is free forF .

4. If � 2 S, thenC [fS [f�(t)gg is 8-satisfiable for any Skolemization�(t)
of � w.r.t.

S
C 0.

5. C 0� is 8-satisfiable, for any substitution� which is free for all formulae inS
C 0.

Proof. By the definition of8-satisfiability, there is an interpretationI such that,
for every variable assignmentA, I is anfAg-model for some member ofC 0. The
non-trivial case for proving items (1) to (4) is the one in whichS is fAg-satisfied
byI and no element ofC is. LetA be the collection of all variable assignments, for
which this holds. Items (1) and (2) are immediate from the definition of formula
assignment. For (3), letA be an arbitrary element fromA. Then, be item (8) of
formula assignments,IA0 (F) = >, for all x-variants ofA. SinceA� is anx-
variant ofA, IA�(F) = >. Now � is free forF , therefore, Lemma 45 can be
applied yielding thatIA(F�) = IA�(F). Item (4): since�(t) is a Skolemization
of � w.r.t.

S
C 0, by Proposition 55, there exists anA-modelI 0 for S[f�(t)gwhich

is identical toI except for the interpretation of the new function symbolf in �(t).

FIRST-ORDER TABLEAU METHODS 167

Sincef does not occur inC, for all variable assignmentA =2 A, some element of
C is fAg-satisfied byI 0. Consequently,I 0 is a8-model forC [fS[f�(t)gg. For
(5), letA be any variable assignment. Consider its modificationA�. SinceC 0 is
assumed as8-satisfiable,IA�(S0) = >, for someS0 2 C 0. Now � is free forF ,
therefore, again by Lemma 45,IA(S�) = IA�(S). �

PROPOSITION 124 (Soundness of general free-variable tableaux).If a set of
formulaeS is satisfiable, then every general free-variable tableau forS has an
open branch.

Proof. First, note that the satisfiability of a set of formulaeS entails the8-satis-
fiability of the collectionfSg. Then the proof is by induction on the number of
inference steps, using Proposition 123 on the collection of the sets of formulae on
the branches of a general free-variable tableau. �

The completeness of general free-variable tableaux is trivial, because the calcu-
lus is obviously a generalization of the calculus of sentence tableaux, So general
free-variable tableaux are only relevant as a common framework but not as a cal-
culus supporting thefinding of proofs. What we are interested in is to apply a
substitution only if this immediately leads to the closure of a branch, and we will
even restrict this to an atomic closure.

DEFINITION 125 (Free-variable tableau).Free-variable tableaux with atomic
closure, or justfree-variable tableaux, are defined as general free-variable tableaux,
but with the following two modifications. The�-rule is replaced with the weaker
0-rule and the substitution rule (S) is replaced with the weakerclosure rule(C)

(0)

(x)
wherex is a variable new toS andT ,

(C) Modify T to T� if two literalsK andL are on a branch
such that� is a minimal unifier forfK;�Lg.

Note that the applied substitution will be automatically free for the formulae in
the tableau. This is because the 0-rule guarantees that no variable occurs bound
and free in formulae of the tableau and, sinceK andL are quantifier-free, the
minimal unifier� has only free variables in the terms of its range.

Let us now consider an example. It is apparent that the destructive modifications
render it more difficult to represent a free-variable tableau deduction. We solve this
problem by not applying the substitutions�1; : : : ; �n explicitly to the tableauT ,
but by annotating them below the nodes at the respective leaves. The represented
tableau then isT�1 � � ��n. In Figure 6, a free-variable tableau for the same first-
order sentence is displayed for which in Figure 3 a sentence tableau is displayed.
Comparing both tableaux, we can observe that it is much easier to find the closed
free-variable tableau than the closed sentence tableau. The substitutions that close
the branches need not be blindly guessed, they can be automatically computed

168 REINHOLD LETZ

�������
XXXXXXX

(1) :9x(8y8zP (y; f(x; y; z))! (8yP (y; f(x; y; x)) ^ 8y9zP (g(y); z)))

�(2)

�(2)

�(4)

 0(1)

� 0(5)

 0(3)

 0(8)

(10) :9zP (g(b); z)

� 0(6)

 0(10)

 0(3)

 0(12)

(6) :8y9zP (g(y); z)

(11) :P (g(b); z2)

(3) 8y8zP (y; f(x1; y; z))

(4) :(8yP (y; f(x1; y; x1)) ^ 8y9zP (g(y); z))

�1 = fy1=h(x1); z1=x1g

(13) P (y2; f(x1; y2; z3))

�2 = fy2=g(b); z2=f(x1; g(b); z3)g

(12) 8zP (y2; f(x1; y2; z))

(7) :P (h(x1); f(x1; h(x1); x1))

(5) :8yP (y; f(x1; y; x1))

(2) :(8y8zP (y; f(x1; y; z))! (8yP (y; f(x1; y; x1)) ^ 8y9zP (g(y); z)))

(8) 8zP (y1; f(x1; y1; z))

(9) P (y1; f(x1; y1; z1))

Figure 6. Closed free-variable tableau

from the respective pairs of literals to be unified, viz. (7) and (9) on the left and
(11) and (13) on the right branch.

4.3 Completeness of Free-variable Tableaux

The completeness of free-variable tableaux is not difficult to prove. For formu-
lae in Skolem or weak Skolem form,13the construction of any atomically closed
sentence tableau can be simulated step by step by the calculus of free-variable
tableaux. This is evident, because only the-rule has a different effect for this
class of formulae. The simulation then proceeds by simply delaying the instantia-
tions of-formulae and performing the substitutions later by using the closure rule.
Unfortunately, for general formulae, no identical simulation of sentence tableaux is
possible, as becomes clear when comparing Figure 6 with Figure 3. The problem is
that more complex Skolem functions may be necessary in free-variable tableaux.

13I.e. in which no tableau subformula of type has a tableau subformula of type�.

FIRST-ORDER TABLEAU METHODS 169

But modulo such a modification, a so-calledSkolem variant, a tree-isomorphic
simulation exists.

DEFINITION 126 (Skolem variant of a sentence tableau). (inductive)

1. Any sentence tableauT is aSkolem variantof itself.

2. If c is a constant introduced by a�-rule application on a branchB of a
Skolem variantT 0 of a sentence tableauT andt is any ground term whose
dominating function symbol is new toB, then the formula tree obtained
from replacing any occurrence ofc in T 0 by t is a Skolem variant ofT .

It is clear that Skolem variants preserve the closedness of a formula tree.

LEMMA 127. Any Skolem variant of a(n atomically) closed sentence tableau is
(atomically) closed.

Another problem is that the order in which a free-variable tableau is constructed
can influence the arity of the Skolem functions in�+-rules. Consider, for example,
a tableau consisting of a left branchP (x)�:P (a) and a right branch9y(Q(x; y)^
:Q(a; y)). If we decide to close the left branch first using the unifierfx=ag, then
the performance of the�+-rule on the instantiated right branch will produce a
Skolem constant. If the right branch is selected first, then we have to introduce a
complex Skolem termf(x), sincex is still free. So, in the presence of�-formulae,
different orders of constructing a free-variable tableau can make a difference in the
final tableau, as opposed to sentence tableaux which are completely independent
of the construction order. As a matter of fact, we want completeness of free-
variable tableaux independent of the construction order. The order of construction
is formalized with the notion of abranch selection function.

DEFINITION 128 (Branch selection function). A(branch) selection function�
is a mapping assigning an open branch to every tableauT which is not atomically
closed. Let� be a branch selection function and letT1; : : : ; Tn be a sequence of
successivetableaux, i.e., eachTi+1, can be obtained fromTi by a tableau inference
step. The tableauTn is said to be(constructed) according to� if eachTi+1 can be
obtained fromTi by performing an inference on the branch�(Ti).

LEMMA 129. Let T 0 be any atomically closed sentence tableau. Then, for any
branch selection function�, there exists an atomically closed free-variable tableau
T for S constructed according to� such thatT is more general than a Skolem
variant of T 0; and if every formulaF 2 S is in weak Skolem form, thenT is even
more general thanT 0.

Proof. Let T 0 be any atomically closed sentence tableau and� any branch selec-
tion function. We define sequencesT1; : : : ; Tm of free-variable tableaux which
correspond to initial segments ofT 0 as follows.T1 is the one-node initial tableau
of T 0. LetTi be thei-th element of such a sequenceT1; : : : ; Tm, 1 � i < m, and
B the inital segment of the branch inT 0 which corresponds to the selected branch
�(Ti) in Ti, i.e.,B and�(Ti) are paths from the root to the same tree position.

170 REINHOLD LETZ

1. If B is atomically open, then some expansion step has been performed in
the construction ofT 0 to expandB. Ti+1 is the result of performing a cor-
responding free-variable tableau expansion step on�(Ti).

2. If B is atomically closed (and�(Ti) is atomically open), then two comple-
mentary literals must be onB. LetK andL be the corresponding literals on
�(Ti). Ti+1 is the result of applying a minimal unifier offK;�Lg to Ti.

We show by induction on the sequence length that any of the tableaux in such
a sequence is more general than an initial segment of some Skolem variant of
T 0. The induction base is evident. For the induction step, letTi be more general
than an initial segmentTSki of a Skolem variant ofT 0. For case (1), we consider
first the subcase in whichB is not expanded by a�-step. Then an expansion
of �(Ti) corresponding to the sentence tableau expansion ofB is possible and
produces a tableauTi+1 that is more general than the respective expansion ofTSki ,
which is an initial segment of some Skolem variant ofT 0. The subcase of�-
expansion is the problematic one, since one (possibly) has to move to another
Skolem variant ofT 0. Let �(f(x1; : : : ; xn)), n � 0, be the formula by whichTi
was expanded. Each variablexj , 1 � j � n, has been introduced inTi by a
 0-step using a nodeNj . If t1; : : : ; tn are the respective ground terms at the same
term positions inTSki , then letTSki+1 be the formula tree obtained by expanding
the branch corresponding toB with �(f(t1; : : : ; tn)). By construction,Ti+1 is
more general thanTSki+1, which is an initial segment of a Skolem variant ofT 0. In
case (2),�(Ti) is atomically open, butB is atomically closed. By the induction
assumption,Ti is more general thanTSki , which has the branch atomically closed.
Therefore, there exists a minimal unifier for the literalsK and the complement of
L on�(Ti), andTi+1 = Ti� is more general thanTSki . Now any such sequence
T1; : : : ; Tm must be of finite length, since in each simulation step either a different
node position ofT is expanded or closed, i.em is less or equal to the number
of nodes ofT 0. Consequently,T = Tm is an atomically closed free-variable
tableau forS that is more general than a Skolem variant ofT 0. Finally, if S is in
weak Skolem form, no free variable can occur in a�-formula in a free-variable
tableau forS. In this case, one can always use the same Skolem constants in the
construction ofT andT 0 and never has to move to a proper Skolem variant ofT 0.
ThenT is more general thanT 0. �

From this lemma immediately follows the refutational completeness of free-
variable tableaux.

THEOREM 130 (Free-variable tableau completeness).If S is an unsatisfiable set
of first-order sentences, then there exists a finite atomically closed free-variable
tableau forS.

FIRST-ORDER TABLEAU METHODS 171

4.4 Proof Procedures for Free-variable Tableaux

We have proven the completeness of free-variable tableaux via a simulation of
sentence tableaux instead of providing an independent completeness proof. The
advantage of this approach is that we are assured that, for any atomic sentence
tableau proof, there is a free-variable tableau proof of the same tree size. The
disadvantage of this completeness proof, however, is that it is proof-theoretically
weaker than the one given for sentence tableaux, since we do not specifyhow to
systematically constructa closed free-variable tableau, as it is done with the sys-
tematic sentence tableau procedure. The simple reason for this is the following.
Since the calculus of free-variable tableaux is destructive, in general, the (tree)
union of the tableaux in a successive tableau sequence cannot be performed. The
fundamental proof-theoretic difference from sentence tableaux is that with the ap-
plication of substitutions to tableaux the paradigm of saturating a branch (possibly
up to a Hintikka set) is lost. A notion ofsaturated systematic free-variable tableau
can only be defined for the fragment of the calculus without the closure rule. Com-
pleteness could then be shown in the standard way by using any one-to-one asso-
ciation between the set of variables and the set of all ground terms which is then
applied to the saturated tableaux at the end (cf. p. 195 in[Fitting, 1996]). This
is proof-theoretically possible, but useless for efficient proof search, because the
employment of a fixed association between variables and ground terms degrades
free-variable tableaux to sentence tableaux. The question is whether there exists
a systematic procedure for free-variable tableaux of the same type and functional-
ity as for sentence tableaux but with variable instantiations guided by unification?
The problem can at best be recognized with an example.

�������

XXXXXXX

(8) P (x1; y1; v1) _ P (y1; x1; w1)

(9) P (x1; y1; v1) (10) P (y1; x1; w1)

�(8)

�(1)

�(1)

�(1)

(1) :P (a; b; c) ^ :P (c; a; b) ^ 8x8y8v8w(P (x;y; v) _ P (y; x; w))

(2) :P (a; b; c)

(3) :P (c; a; b)

(4) 8x8y8v8w(P (x;y; v) _ P (y; x; w))
... 4� 0

Figure 7. Free-variable tableau for a datalogic formula (see Definition 103)

172 REINHOLD LETZ

Consider the formula on top of Figure 7. Since the formula is a satisfiable dat-
alogic formula, any regular Herbrand tableau construction will terminate with an
open branch which is a Hintikka set. Let us contrast this with the behaviour of free-
variable tableaux. Referring to the figure, after eight steps we have produced the
displayed two-branch tableau. What shall we do next? If we close the left branch
by unifyingP (x1; y1; v1) and the complement of:P (a; b; c) or :P (c; a; b), the
applied unifier blocks the immediate closure of the right branch. We could pro-
ceed and try another four 0-steps, producing a similar situation than before. Since
always new free variables are imported by the 0-rule, the procedure never termi-
nates, even if we only permit regular tableaux. How do we know when to stop and
how can we produce a model? In fact, no systematic procedure for free-variable
tableaux has been devised up to now that both is guided by unification and has the
same functionality as sentence tableaux. It was only very recently that such a pro-
cedure has been proposed for the restricted class of formulae in clausal form. This
procedure, which is based on a nondestructive variant of free-variable tableaux, is
described in[Billon, 1996].

But we will further pursue the destructive line and discuss a radically different
paradigm of searching for tableau proofs. Instead of saturation of a single tableau,
one considersall tableaux that can be constructed. If all existing tableaux are enu-
merated in a fair manner, for any unsatisfiable input sentence, one will eventually
find a closed free-variable tableau. The fair enumeration is facilitated by the fact
that the set of all existing tableaux can be organized in the form of a tree.

DEFINITION 131 (Search tree). LetS be a set of sentences,C a tableau calculus,
and� a branch selection function. Thesearch tree ofC and� for S is a treeT
with its non-root nodes labelled with tableaux defined as follows.

1. The root ofT consists of a single unlabelled node.

2. The successors of the root are labelled with all single-node tableaux forS.

3. Every non-leaf nodeN in T labelled with a tableauT has as many successor
nodes as there are successful applications of a single inference step inC
applied to the branch inT selected by�, and the successor nodes ofN in T
are labelled with the respective resulting tableaux.

If the input set is finite, the search tree branches finitely, and a fair enumera-
tion can be achieved by simply inspecting the search tree levelwise from the top to
the leaves. Any closed tableau will eventually be found after finitely many steps.
In practice, this could be implemented as a procedure which explicitly constructs
competitive tableaux and thus investigates the search tree in abreadth-firstmanner.
Theexplicit enumeration of tableaux, however, suffers from two severe disadvan-
tages. The first one is that, due to the branching rate of the search tree, an enormous
amount of space is needed to store all tableaux. The second disadvantage is that the
cost for adding new tableaux increases during the proof process as the sizes of the

FIRST-ORDER TABLEAU METHODS 173

proof objects increase. These weaknesses give sufficient reason why in practice
no-one has succeeded with an explicit tableau enumeration approach up to now.

The customary and successful paradigm therefore is to perform tableau enu-
meration in an implicit manner, usingiterative deepening searchprocedures. With
this approach, iteratively increasing finite initial segments of a search tree are
explored. Although, according to this methodology, initial parts of the search
tree are explored several times, no significant efficiency is lost if the initial seg-
ments increase exponentially[Korf, 1985]. Due to the construction process of
tableaux from the root to the leaves, many tableaux have identical or structurally
identical subparts. This motivates one to explore finite initial segments of the
search tree in adepth-firstmanner by strongly exploitingstructure sharingtech-
niques andbacktracking. Using this approach, at each time only one tableau is
kept in memory, which is extended following the branches of the search tree,
and truncated when a leaf node of the respective inital segment of the search
tree is reached. The advantage is that, due to the application of Prolog tech-
niques, very high inference rates can be achieved this way (see[Stickel, 1988;
Letz et al., 1992], or [Beckert and Posegga, 1994]). The respective initial seg-
ments are determined by so-calledcompleteness bounds.

DEFINITION 132 (Completeness bound). Asize boundis a total mapping as-
signing to any tableauT a nonnegative integern, thesizeof T . A size bound is
called acompleteness boundfor a tableau calculusC if, for any finite setS of
formulae and anyn � 0, there are only finitely manyC-tableaux with size less or
equal ton.

A common methodology of developing completeness bounds for the strict (or
strictly regular) free-variable tableau calculusC is to limit the application of0-
steps in certain ways (see also[Fitting, 1996]). We give three concrete examples.
First, one may simply limit the application of0-steps permitted in the tableau (1)
or on each branch of the tableau (2). Another variant (3) is the so-calledmulti-
plicity bound which has also been used in other frameworks[Prawitz, 1960] and
[Bibel, 1987]. The natural definition of this bound is for finite setsS of formulae
in Skolem form and for tableaux in which everyF 2 S is used in the tableau only
once at the beginning. Then, with multiplicityn, to each-node in the tableau, at
mostn 0-steps are permitted.

It is obvious that all mentioned size bounds are completeness bounds for the
tableau calculusC, that is, for any finite input set of formulaeS: for everyn, there
are only finitely manyC-tableaux of sizen for S, and ifS is unsatisfiable, then,
for somen, there is a closedC-tableau with sizen.

Interestingly, one can make complexity assessments about the problem of deter-
mining whether a tableau with a certain limit exists. For example, for the bounds
(1) and (3), one can demonstrate[Letz, 1998; Voronkov, 1997] that, for some finite
input setS, the recognition problem of the existence of a closed tableau forS with
a certain limit is complete for the complexity class�p

2 in thepolynomial hierarchy
[Garey and Johnson, 1978].

174 REINHOLD LETZ

A general disadvantage of completeness bounds of the-type is that they are
too uniform to be useful in practice. Normally, the first initial segment of the
search tree containing a closed tableau with sizen may have an astronomic size,
with the obvious consequence that a proof will not be found. In the next section,
we shall mention completeness bounds in which normally the first proof is in a
much smaller initial segment.

We conclude this section with mentioning an obvious method for reducing the
effort for finding closed free-variable tableaux. In fact, it is not necessary to con-
siderall free-variable tableaux in an initial segment of a search tree. Since only
the closure rule is destructive, we can work with the following refined calculus
which, at least concerning the tableau expansion rules, is deterministic, similar to
the systematic tableau procedure.

DEFINITION 133 (Expansion-deterministic free-variable tableau). The calculus
of expansion-deterministic free-variable tableauxis defined as systematic sentence
tableaux are but with the respective free-variable rules, plus the closure rule.

So the only way indeterminism can occur in this calculus is by the application
of closure steps. In order to minimize the search effort, one should even prefer
the closure rule (if applicable) to all expansion rules. The completeness of this
refinement of free-variable tableaux immediately follows from Lemma 129, since
the calculus can simulate the construction of any systematic sentence tableau.

As a final remark of this section, it should be emphasized that, from a search-
theoretic perspective, tableau enumeration procedures are not optimally suited for
confluent calculi (like the ones mentioned so far). This is because, for confluent
tableau calculi, onanybranch of the search tree there must be a closed tableau if
the input set is unsatisfiable. A tableau enumeration procedure, however, does not
take advantage of this proof-theoretic virtue of the calculus.

5 CLAUSAL TABLEAUX

The efforts in automated deduction for classical logic have been mainly devoted
to the development of proof procedures for formulae in clausal form. This has
two reasons. First, as discussed in Section 2, in classical logic, any first-order for-
mula can be transformed into clausal form without affecting the satisfiability status
and with only a polynomial increase of the formula size. Since, for formulae in
clausal form, the tableau rules can be reduced and presented in a more condensed
form, simpler and more efficient proof procedures can be achieved this way. Sec-
ond and even more important, due to the uniform structure of formulae in clausal
form, it is much easier to detect additional refinements and redundancy elimination
techniques than for the full first-order format. This section will provide plenty of
evidence for this fact.

Since in clause logic negations are only in front of atomic formulae, only atomic
branch closures can occur. Accordingly, when a closed free-variable tableau for a

FIRST-ORDER TABLEAU METHODS 175

set of clausesS is to be constructed and a clause inS has been selected for branch
expansion, one can deterministically decompose it to the literal level. Such a macro
step consists of an formula rule application, a sequence of 0-steps and possibly a
�-step. It is convenient to ignore the intermediate formulae and reformulate such
a sequence of inference steps as a single condensed tableau expansion rule.

DEFINITION 134 (Variable renaming). LetF be a formulae,S a set of formula,
and� = fx1=y1; : : : ; xn=yng a substitution such that ally1; : : : ; yn are distinct
variables new toS. F� is called arenaming ofx1; : : : ; xn in F w.r.t. S.

Clausal tableaux are trees labelled with literals (and other control information)
inductively defined as follows.

DEFINITION 135 (Clausal tableau). (inductive) LetS be any set of clauses. A
tree consisting of just one unlabelled node is aclausal tableau forS. If B is
a branch of a clausal tableauT for S, then the formula trees obtained from the
following two inference rules areclausal tableaux forS:

(E) B�L1 j � � � j Ln wherec is the matrix14 of a clause inS andL1 _ � � � _Ln
is a renaming of the free variables inc w.r.t. the formulae inT ; the rule (E)
is calledclausal expansion ruleor justexpansion rule,

(C) the closure rule of free-variable tableaux, also calledreduction rule.

DEFINITION 136 (Tableau clause). For any non-leaf nodeN in a clausal tableau,
the set of nodesN1; : : : ; Nm immediately belowN is called the nodefamily below
N ; if the nodesN1; : : : ; Nm are labelled with the literalsL1; : : : ; Lm, respectively,
then the clauseL1 _ � � � _ Lm is named thetableau clausebelowN ; The tableau
clause below the root node is called thestart or top clauseof T .

������

������

XXXXXX

XXXXXX

������

������
XXXXXX

XXXXXX

R(f(x))

:R(x) :R(f(f(x)))

R(f(f(x)))

:R(f(x))

R(f(x))

:R(f(f(f(x))))

:R(f(f(f(f(x)))))

R(f(f(f(f(x)))))

R(x)

:R(f(f(x)))

R(f(f(x)))

R(f(f(f(x))))

R(f(f(f(x))))

Figure 8. Closed clausal tableau

14Recall that thematrix of a prenex formula is the formula with the quantifier prefix removed.

176 REINHOLD LETZ

In Figure 8, a closed clausal tableau is displayed, here the unifiers of closure
steps were already applied. The input is the set of clauses8x(R(x) _ R(f(x)))
and8x(:R(x) _ :R(f(f(x)))) corresponding to the negation of the formulaF
presented in Example 12. So we have demonstrated thatF is valid. Clausal tableau
provide a relatively concise representation of proofs containing all relevant infor-
mation. Note that a full free-variable tableau proof including all intermediate in-
ference steps would have more than twice the size.

The completeness and confluence of clausal tableaux for clause formulae follow
immediately from the fact that clausal tableaux can simulate free-variable tableaux,
by simply omitting formula steps,�-steps, and 0-steps and performing clausal
expansion steps in place.

Clausal tableaux provide a large potential for refinements, i.e., for imposing ad-
ditional restrictions on the tableau construction. For instance, one can integrate
ordering restrictions(see[Klingenbeck and H¨ahnle, 1994]) as they are success-
fully used in resolution-based systems. The most influential structural refinement
paradigm of clausal tableau, however, is the following.

5.1 Connection Tableaux

A closer look at the clausal tableau displayed in Figure 8 reveals an interesting
structural property, which we call connectedness.

DEFINITION 137 (Path connectedness, connectedness).

1. A clausal tableau is said to bepath connectedor called apath connection
tableauif, in every family of nodes except the start clause, there is one node
with a complementary ancestor.

2. A clausal tableau is said to be(tightly) connectedor called a(tight) connec-
tion tableauif, in every family of nodes except the start clause, there is one
node with a complementary predecessor.

With the connection conditions, a form ofgoal-orientednessis achieved: every
tableau clause is somehow connectively related with the top clause of the tableau.
This property is very effective as a method for guiding the proof search.

In Figure 9 the difference between the two notions is illustrated with a closed
path connection tableau and a closed connection tableau for the set of propositional
clausesp, :p_ q, r_:p, and:p_:q. It is obvious that the tight connection con-
dition is properly more restrictive, since there exists no closed connection tableau
which uses the redundant clauser _ :p.

In a (path) connection tableau, any tableau clause except the top clause must
have a literal complementary to some path literal. Therefore, we can require that
immediately after attaching a new clause, one of the new branches must be closed
using its leaf literal. This motivates to glue together two steps (an expansion and a
closure step) into a single inference step.

FIRST-ORDER TABLEAU METHODS 177

�
��

Q
QQ

�
��

Q
QQ

�
��

Q
QQ

�
��

Q
QQ

�
��

Q
QQ

p p

:p :p

:p

:p :q

:q

q q

:pr

Figure 9. A path connection and a connection tableau

DEFINITION 138 ((Path) connection extension rule). Thepath extension rule
(EP) and the(tight) extension rule(EC) are defined as follows: perform a clausal
expansion step, immediately followed by a reduction step unifying one of the
newly attached literals with the complement of the literal (EP) at one of its an-
cestor nodes or (EC) at its predecessor node, respectively.

Accordingly, the clausal inference rules can be reformulated in the following
more procedurally oriented fashion.

DEFINITION 139 (Connection tableau calculi). Thepath connection tableau
calculusand theconnection tableau calculusconsist of three inference rules:

(EI) thestart rule, which is simply a clausal expansion step performed only once
at the root node,

(C) the closure or reduction rule, and

either (EP) the path extension rule, or

(EC) the extension rule, respectively.

Proof-theoretically, (path) connection tableaux strongly differ from all the tableau
calculi presented so far.

PROPOSITION 140. (Path) connection tableaux are not confluent.

Proof. Consider the unsatisfiable set of clausesS = fp; q;:qg and the (path)
connection tableauT for S obtained by starting with the clausep. T is open and
no (path) connection tableau rule can be applied toT , since no clause contains a
literal that is complementary top. �

With (path) connection tableaux, we have encountered the first tableau calculi
that lack confluence. The important consequence to be drawn from this property
is that, for those tableau calculi, systematic branch saturation procedurescannot
exist. Consequently, in order to find proofs, we must use tableau enumeration
procedures.

178 REINHOLD LETZ

Let us turn now to the completeness proof of the new calculi. Since the path
connectedness condition is properly less restrictive, it suffices to consider the tight
connectedness condition.15 Unfortunately, we cannot proceed as in the case of
free-variable tableaux where a direct simulation of sentence tableaux was possible,
just because of the lacking confluence. Instead, an entirely different approach for
proving completeness will be necessary. The proof we give here consists of two
parts. In the first part, we demonstrate the completeness for the case of ground
formulae—this is the original part of the proof. In the second part, this result is
lifted to the first-order case by a simulation technique similar to the one used in
the last section. Beforehand, we need some additional terminology.

DEFINITION 141 (Essentiality, relevance, minimal unsatisfiability). A formula
F in a set of formulaeS is calledessential inS if S is unsatisfiable andS n fFg is
satisfiable. A formulaF in a set of formulaeS is namedrelevant inS if there exists
an unsatisfiable subsetS 0 � S such thatF is essential inS 0. An unsatisfiable set
of formulaeS is said to beminimally unsatisfiableif each formula inS is essential
in S.

DEFINITION 142 (Strengthening). Thestrengtheningof a set of clausesS by a
set of literalsP = fL1; : : : ; Lng, writtenP � S, is the set of clauses obtained by
first removing all clauses fromS containing literals fromP and afterwards adding
then unit clausesL1; : : : ; Ln.

Clearly, every strengthening of an unsatisfiable set of clauses is unsatisfiable.
In the ground completeness proofs, we will make use of the following lemma.

LEMMA 143 (Mate Lemma). Let S be an unsatisfiable set of ground clauses.
For any literalL contained in any relevant clausec in S, there exists a clausec 0

in S such that

1. c 0 contains�L and

2. c 0 is relevant in the strengtheningfLg� S.

Proof. From the relevance ofc follows thatS has a minimally unsatisfiable subset
S0 containingc. Every formula inS0 is essential inS0, hence there is an inter-
pretationI for S0 with I(S0 n fcg) = > andI(c) = ?; SinceI assigns? to
every literal contained inc, I(L) = ?. Consider the interpretationI 0 which is
identical toI except thatI 0(L) =>. Clearly,I(c) = >. Now the unsatisfiability
of S0 guarantees the existence of another clausec0 in S0 with I 0(c0) = ?. We
prove thatc0 meets the conditions (i) and (ii). On the one hand, the clausec0 must
contain the literal�L, otherwiseI(c0) = ?, which contradicts the selection ofI,
hence (i). On the other hand, the essentiality ofc0 in S0 entails that there exists
an interpretationI 00 with I 00(S0 n fc0g) = > andI 00(c0) = ?. Since�L is in c0,

15The tight connectedness condition is also the favourable one, because it achieves a more effective
pruning of the proof search.

FIRST-ORDER TABLEAU METHODS 179

I 00(L) = >. Therefore,c0 is essential inS0[fLg and also in its subsetfLg�S0.
From this and the fact thatfLg � S0 is a subset offLg � S it follows thatc0 is
relevant infLg� S. �

We even will show completeness forregularconnection tableaux. Interestingly,
this refinement will help in the proof, since it guarantees termination.

PROPOSITION 144 (Ground completeness of regular connection tableaux).For
any finite unsatisfiable set of ground clausesS and any clausec that is relevant in
S, there exists a closed regular connection tableau forS with start clausec, for
any branch selection function�.

Proof. A closed regular connection tableauT for S with start clausec can be
constructed as follows. Expand the initial one-node tableau with the start clausec.
Then iterate the following non-deterministic procedure as long as the intermediate
tableau is not yet closed.

SupposeN be the leaf node of the open branch selected by� in the current
tableau andL the literal atN . Let furthermorec be the tableau clause ofN
andP = fL1; : : : ; Lm; Lg,m � 0, the set of literals on the branch from the
root up to the nodeN . Select any clausec 0 which is relevant inP � S and
contains�L; perform an extension step (EC) at the nodeN usingc 0.

First, evidently, the procedure admits solely the construction of regular connection
tableaux, since in any expansion step the attached clausec0 must contain the literal
�L (connectedness) and no literals from the path to its predecessor node (regu-
larity). Because of the regularity restriction, there can be only branches of finite
length. Consequently, the procedure must terminate either because every leaf is
closed or because no clausec 0 exists for an extension step which meets the condi-
tions stated in the procedure. We prove that the second alternative can never occur,
since, for any open leaf nodeN with literal L, there exists such a clausec 0. This
will be shown by induction on the node depth. The induction base,n = 1, is evi-
dent from the Mate Lemma. For the induction step from depthn to n+ 1, n � 1,
letN be an open leaf node of tableau depthn+1 with literal L, tableau clausec,
and with the setP of path literals up to the predecessor ofN . By the induction
assumption,c is relevant inP �S. LetS0 be any minimally unsatisfiable subset of
P�S containingc. By the Mate Lemma,S0 contains a clausec 0 that contains�L.
Since no literal inP 0 = P [fLg is contained in a non-unit clause ofP 0 � S and
becauseN was assumed to be open, no literal inP 0 is contained inc 0 (regularity).
Finally, sinceS0 is minimally unsatisfiable,c 0 is essential inS0; therefore,c 0 is
relevant inP 0

� S. �

The second half of the completeness proof is a standard lifting argument.

DEFINITION 145 (Ground instance set). LetS be a set of clauses andS0 a set
of ground clauses. If, for any clausec0 2 S0, there exists a clausec 2 S such that

180 REINHOLD LETZ

c0 is a substitution instance of the matrix ofc, thenS0 is called aground instance
setof S.

PROPOSITION 146. Every unsatisfiable set of clauses has a finite unsatisfiable
ground instance set.

Proof. Let S be an unsatisfiable set of clauses. Since the elements ofS are in
prenex form, there exists a finite closed quantifier preferring sentence tableauT
for S. By Proposition 89, the initial ground setG of T is unsatisfiable.G must
be finite and can consist only of clauses that are all instances of the matrices of
clauses inS. Consequently,G is a ground instance set ofS. �

LEMMA 147. Let T 0 be a closed (regular) connection tableau for a ground
instance setS0 of a set of clausesS. Then, for any branch selection function�,
there exists a closed (regular) connection tableauT for S constructed according
to � such thatT is more general thanT 0.

Proof. The proof is exactly as the proof of Lemma 129 except that here it is
much simpler, since no�-rule applications can occur. Whenever an expansion
or extension step is performed in the construction ofT 0 with a clausec0, then a
clausec 2 S is selected withc0 being a ground instance of the matrix ofc and a
respective expansion or extension step withc is performed in the construction of
T . Furthermore, as in the proof of Lemma 129, it may be necessary to perform
additional closure steps, which obviously are not needed in the ground proof.�

THEOREM 148 (Completeness of regular connection tableaux).For any unsat-
isfiable set of clauses, any clausec that is relevant inS, and any branch selection
function�, there exists a closed regular connection tableau constructed according
to � and with a top clause that is a substitution instance ofc.

Proof. Immediate from Proposition 144 and Lemma 147. �

5.2 Tableaux and Related Calculi

Due to the fact that tableau calculi work by building up tree structures whereas
other calculi derive new formulae from old ones, the close relation of tableaux
with other proof systems is not immediately evident. However, there are strong
similarities between tableau proofs and deductions in other calculi. There is the
well-known correspondence of tableau deductions with Gentzen’ssequent system
deductions, which was shown, e.g. in[Smullyan, 1968]. Here, we elaborate a
correspondence that is motivated by achieving similarity to calculi from the area
of automated deduction. In order to clarify the relation, it is helpful to reformulate
the process of tableau construction in terms of formula generation procedures.
There are two natural formula interpretations of tableaux which we shall mention
and which have both its merits.

FIRST-ORDER TABLEAU METHODS 181

DEFINITION 149. Thebranch formulaof a finite formula treeT is the disjunc-
tion of the conjunctions of the formulae on the branches ofT .

Another finer view is preserving the underlying tree structure of the formula
tree.

DEFINITION 150 (Formula of a formula tree). (inductive)

1. The formulaof a one-node formula tree labelled with the formulaF is sim-
ply F .

2. The formulaof a complex formula tree with rootN and labelF , and im-
mediate formula subtreesT1; : : : ; Tn, in this order, isF ^ (F1 _ � � � _ Fn)
whereFi is the formula ofTi, for every1 � i � n.

If the root is unlabelled like in clausal tableaux, the prefix ‘F^’ is omitted.

By the ^-distributivity (Proposition 34, item 5), the branch formula and the
formula of a formula treeT are strongly equivalent. Furthermore, we have the
following evident correspondence.

PROPOSITION 151. The collection of the sets of formulae on the branches of
a finite formula treeT is 8-satisfiable if and only if the (branch) formula ofT is
satisfiable.

For certain purposes, it is helpful to only consider the open branches of tableaux,
which we callgoal trees.

DEFINITION 152 (Goal tree). Thegoal tree ofa tableauT is the formula tree
obtained fromT by deleting all closed nodes.

For proving the unsatisfiability of a set of formulae using the tableau framework,
it is not necessary toexplicitly constructa closed tableau, it is sufficient toknow
that the deductioncorrespondsto a closed tableau. The goal tree of a tableau
contains only the open nodes of a tableau. For the continuation of the refutation
process, all other parts of the tableau may be disregarded without any harm.

DEFINITION 153 (Goal formula).

1. Thegoal formulaof any closed tableau is the logical falsum?, which is
false under every interpretation.

2. Thegoal formulaof any open tableau is the formula of the goal tree ofT .

Using the goal formula interpretation, one can view the tableau construction as
a linear deduction process in which always a new goal formula is deduced from the
previous one until eventually the falsum is derived. In Example 154, we give a goal
formula deduction that corresponds to a construction of the tableau in Figure 8,
under a branch selection function� that always selects the right-most branch.

EXAMPLE 154 (Goal formula deduction). The setS = f8x(R(x) _ R(f(x))),
8x(:R(x) _ :R(f(f(x))))g has the following goal formula refutation.

182 REINHOLD LETZ

:R(x) _ :R(f(f(x)))
:R(x) _ (:R(f(f(x))) ^ R(f(f(f(x)))))
:R(x) _ (:R(f(f(x))) ^ R(f(f(f(x)))) ^ :R(f(x)))
:R(x) _ (:R(f(f(x))) ^ R(f(f(f(x)))) ^ :R(f(x)) ^ R(f(f(x))))
:R(x)
:R(f(x)) ^ R(f(f(x)))
:R(f(x)) ^ R(f(f(x))) ^ :R(x)
:R(f(x)) ^ R(f(f(x))) ^ :R(x) ^R(f(x))
?

DEFINITION 155. Theopen branch formulaof a formula treeT is either the
falsum? in caseT is closed or otherwise the branch formula of the goal tree ofT .

PROPOSITION 156. The open branch formula and the goal formula of any for-
mula treeT are strongly equivalent to the (branch) formula ofT .

Proof. Immediate from the fact that any formula of the form� _ (F ^ � � � ^ :F)
is strongly equivalent to�. �

Using the goal tree or goal formula notation, one can immediately identify a
close similarity of clausal tableaux with two well-known calculi from automated
deduction which were developed in a different conceptual framework. The first
one is the connection calculus presented in[Bibel, 1987] Chapter III.6. It can be
viewed as a version of path connection tableaux, restricted to depth-first branch
selection functions, i.e., always an open branch with maximal length ordepthhas
to be selected. See[Letzet al., 1994] for a more detailed comparison.

Another framework is themodel elimination calculuswhich was introduced in
[Loveland, 1968] and improved in[Loveland, 1978]. Although model elimina-
tion became popular in the resolution-like style of Loveland[1978], the calculus
is better viewed as a variant of the connection tableau calculus. The initial pre-
sentation in[Loveland, 1968] is indeed in a tableau-like fashion. This view has
various advantages concerning generality, elegance, and the possibility of defining
extensions and refinements.16 Here, we treat a subsystem of the original model
elimination calculus without factoring and lemmata, calledweak model elimina-
tion in [Loveland, 1978], which is still refutation-complete. The fact that weak
model elimination is indeed a specialized subsystem of the connection tableau
calculus becomes apparent when considering the goal formula deductions of con-
nection tableaux. The weak model elimination calculus consists of three inference
rules which exactly correspond to the start, extension, and closure rule of connec-
tion tableaux. In model elimination, the selection of open branches is performed

16The soundness and completeness results for model elimination, for example, are immediate conse-
quences of the soundness and completeness proofs of connection tableaux, which are short and simple
if compared with the rather involved proofs in[Loveland, 1978]. Furthermore, only the tableau view
can identify model elimination as a cut-free calculus.

FIRST-ORDER TABLEAU METHODS 183

in a depth-first right-mostmanner, i.e. always the right-most open branch has to
be selected (there is also a variant with depth-first left-most selection). Due to the
depth-first right-most (or left-most) restriction of the branch selection function, a
one-dimensional ‘chain’ representation of goal formulae is possible (as used in
Loveland,[1968; 1978]), in which no logical operators are used but only the two
brackets ‘[’ and ‘]’. The model elimination proof corresponding to the goal for-
mula deduction given in Example 154 is depicted in Example 157.

EXAMPLE 157 (Model elimination deduction).S = f8x(R(x) _ R(f(x))),
8x(:R(x) _ :R(f(f(x))))g has the following model elimination refutation.

:R(x) :R(f(f(x)))
:R(x) [:R(f(f(x)))] R(f(f(f(x)))))
:R(x) [:R(f(f(x))) R(f(f(f(x))))] :R(f(x)))
:R(x) [:R(f(f(x))) R(f(f(f(x)))) :R(f(x)))] R(f(f(x)))
:R(x)
[:R(f(x))] R(f(f(x)))
[:R(f(x)) R(f(f(x)))] :R(x)
[:R(f(x)) R(f(f(x))) :R(x)] R(f(x))
?

The transformation from goal formulae with depth-first right-most selection
function to model elimination chains works as follows. To any goal formula gen-
erated with a depth-first right-most branch selection function, apply the following
operation: as long as logical operators are contained in the string, replace every
conjunctionL^ F with [L]F and every disjunctionL1 _ � � � _Ln with L1 � � �Ln.

Accordingly, in a model elimination chain, any occurrencesL of an unbrack-
eted literal corresponds to a leaf nodeN of the goal tree of the corresponding
connection tableauT , and the occurrences of bracketed literals to the left ofsL
correspond to the ancestor nodes ofN in T . From this it is evident that weak
model elimination is just a variant of the connection tableau calculus.

5.3 Proof Procedures for Connection Tableaux

How can we find closed connection tableaux? The nonconfluence of the calculus
entails that no systematic branch saturation procedures exist. Consequently, only
tableau enumeration procedures can be used. Furthermore, in contrast to the case
of free-variable tableaux, in which expansions steps can be performed in a deter-
ministic manner and only the closure steps need to be backtracked, for connection
tableaux,any inference step has to be backtracked. This is because certain expan-
sion steps may move us into a satisfiable part of the formula, which we may not
be able to leave because of the connectedness condition. The nonconfluence proof
uses such an example.

On the other hand, connection tableau procedures have the advantage that, due
to the connection condition, the detected proofs are often free of redundancies, in

184 REINHOLD LETZ

contrast to proofs generated with general tableau calculi, which are typically full
of redundant parts. Since therefore connection tableau proofs are normally rather
short, one can also employ finer and more restrictive completeness bounds than just
limiting the 0-rule. The most widely used completeness bounds for connection
tableaux are the following two. On each iterative-deepening leveln, consider only
tableaux

1. that have a tree depth smaller thann,

2. that have less thann branches.

The first completeness bound, calleddepthbound is coarser than the second one.
The second bound is also calledinference bound, since in any connection tableau
T , the number of closed tableau branches is about the number of inference steps
to constructT . Concerning complexity, in the worst case, the number of connec-
tion tableaux withn branches/depthn is exponential/doubly exponential w.r.t. the
number of literals in the input set. An experimental comparison of the two bounds
is contained, for example, in[Letz et al., 1992]. A combination of both bounds,
the so-calledweighted-depth bound, turned out to be particularly successful in
practice[Ibens and Letz, 1997]. In this paper also advanced methods of branch
selection are described.

Methods of Search Pruning

In general, there are two different methodologies for reducing the search effort of
tableau enumeration procedures. On the one hand, one can attempt torefine the
tableau calculus, that is, disallow certain inference steps if they produce tableaux
of a certainstructure—the regularity and the connectedness conditions are of this
type. The effect on the tableau search tree is that the respective nodes together with
the dominated subtrees vanish so that the branching rate of the tableau search tree
decreases. Thesetableau structuralmethods of redundancy elimination arelocal
pruning techniques in the sense that they can be performed by looking at single
tableaux only.

The other approach is to improve theproof search procedureso that information
coming from the proof search itself can be used to even eliminate proof attempts
not excluded by the calculus. More specifically, theseglobal methods compare
competitivetableaux in the search tree, i.e., tableaux on different branches, and
attempt to show that one tableau (together with its successors) is redundant in the
presence of the other. A natural approach here is to exploitsubsumptionbetween
tableaux, in a similar manner subsumption between clauses is used in formula
saturation procedures like resolution[Robinson, 1965].

To this end, the notion of subsumption has to be generalized from clauses to
formula trees. For a powerful definition of subsumption between formula trees,
the following notion of formula treecontractionsproves helpful.

FIRST-ORDER TABLEAU METHODS 185

DEFINITION 158 ((Formula) tree contraction). A (formula) treeT is called a
contractionof a (formula) treeT 0 if T 0 can be obtained fromT by attachingn
(formula) trees ton non-leaf nodes ofT , for somen � 0.

�
��
A
AA

�
��
A
AA

�
��
A
AA
�
��
A
AA

�
��
A
AA

�
��
A
AA

Figure 10. Illustration of the notion of tree contractions

In Figure 10, the tree on the left is a contraction of itself, of the second and the
fourth tree but not a contraction of the third one. Furthermore, the third tree is a
contraction of the fourth one. No-one of the other trees is a contraction of another
one.

Now subsumption can be defined easily by building on the‘more general’-
relation between formula trees.

DEFINITION 159 (Formula tree subsumption). A formula treeT subsumesa
formula treeT 0 if T is more general than a formula tree contraction ofT 0.

Since the exploitation of subsumption between entire tableaux has not enough
reductive potential, we favour the following form of subsumption deletion.

PROCEDURE 160 (Subsumption deletion). For any pair ofcompetitivenodesN
andN 0 in a tableau search treeT , if the goal tree of the tableau atN subsumes
the goal tree of the tableau atN 0, then the whole subtree of the search tree with
rootN 0 is deleted fromT .

���
HHH

���
HHH

���
HHH

P (a; b; z)

:P (b; a; c):P (a; b; c):P (a; b; z) :P (b; a; z)

:P (a; b; c)

P (a; b; c)

P (a; b; c)

Figure 11. Subsumption of the goal formulae of two tableaux

This search pruning method preserves completeness of the proof search. Let us
illustrate this with Figure 11 which displays two connection tableaux for the set of
clausesS given in Example 161. Sincez is a free variable, the goal tree of the left
tableau (�:P (b; a; z)) subsumes the goal tree of the right tableau (�:P (b; a; c)).
This entails that whenever the right tableau can be completed to a closed tableau,

186 REINHOLD LETZ

then the left one can also be closed. Consequently, the right tableau and all its
possible expansions can be completely ignored.

EXAMPLE 161. The set of clausesS = f8x8y8z(:P (x; y; z) _ :P (y; x; z)),
8x8y8z8v(P (x; y; z)_ P (x; y; v)), P (a; b; c)g.

With subsumption deletion, a form ofglobalredundancy elimination is achieved
which is complementary to the purely tableaustructural pruning methods dis-
cussed so far. In order to illustrate that cases of goal tree subsumption inevitably
must occur in the search for proofs—and not only for artificial examples—, we
will now present a phenomenon of logic which sheds light on the following prob-
lematic property of proof search. Even for minimally unsatisfiable sets of input
formulae (which are therefore free of redundancies), the strengthening process
(which is implicitly performed in tableau calculi) may introduce redundancies.
Let us formulate this more precisely, for the clausal case.

PROPOSITION 162. If a set of clausesS is minimally unsatisfiable andL is a
literal occurring in clauses ofS, then the strengtheningfLg�Smay contain more
than one minimally unsatisfiable subset or, equivalently, not every relevant clause
in fLg� S may be essential.

Proof. We use a setS consisting of the following propositional clauses

p _ q, :q _ r, :p _ :q _ :s, :p _ q _ r,
p _ :r _ :s, :q _ s, :p _ :r _ s, :p _ q _ :r _ :s.

The setS is minimally unsatisfiable, but in the strengtheningfpg� S the clauses
:q _ r and:q _ s both are relevant but no more essential, since the new unit
clausep is also falsified by the two interpretations17 fq; sg andfq; rg which have
rendered the two mentioned clauses essential inS, respectively. �

In more concrete terms, if we use the clausep _ q as a start clause, then there
are at least two different subrefutations of thep-branch. Consequently, there are
at least two tableaux in the search tree of a respective tableau calculus whose goal
trees subsume each other (in this case, the goal trees are even identical). Since this
type of redundancy can never be identified with tableau structure refinements like
connectedness, regularity, or allies, we have uncovered a natural limitation of all
purely local pruning methods.

The observation that cases of subsumption inevitably will occur in practice
would motivate one to organize the enumeration of tableaux in such a way that
cases of subsumption can really be detected. This could be achieved with a proof
procedure which explicitly constructs competitive tableaux and thus investigates
the search tree in a breadth-first manner. As already mentioned, the explicit enu-
meration of tableaux or goal trees, however, is practically impossible. The implicit

17We are using Notation 65 for representing interpretations.

FIRST-ORDER TABLEAU METHODS 187

enumeration of tableaux, which is performed with iterative-deepening search pro-
cedures, has the disadvantage that it is not easily possible to implement subsump-
tion techniques in an adequate way, since at each time only one tableau is in mem-
ory. A restricted concept of subsumption deletion, however, can be achieved with
the mechanism of memorization of so-calledfailure substitutions.18 We present
the method for depth-first branch selection functions only.

DEFINITION 163 (Solution substitution, failure substitution). Given an initial
segmentT of a tableau search tree for a tableau calculus and a depth-first branch
selection function, letN be a node inT andT the tableau atN . Let furthermore
S denote the set of open branches ofT andB the selected branch.

1. If N 0 with tableauT 0 is a node belowN in the search treeT such that the
set of open branches ofT 0 is (S n fBg)�, for some substitution� (i.e., a
subrefutation of the branchB has been achieved), then� is called asolution
(substitution) ofB atN viaN 0.

2. If the subtree of the search treeT with rootN 0 does not contain a closed
tableau, then� is called afailure substitution forN .

We describe how failure substitutions are applied in a search procedure which
explores tableau search trees in a depth-first manner using backtracking.

PROCEDURE 164 (Local failure caching). LetT be an initial segment of a tableau
search tree.

1. Whenever a branchB in a tableau at a nodeN in T has been closedvia
N 0, then the solution substitution� is stored at the leaf node ofB. If no
closed tableau is found belowN 0 and the proof procedure backtracks over
N 0, then� is turned into a failure substitution.

2. In any alternative solution attempt of the branchB belowN , if a substitution
� is computed such that one of the failure substitutions stored at the nodeN
is more general than� , then the proof procedure immediately backtracks.

3. When the search nodeN at whichB was selected for solution is back-
tracked, then all failure substitutions atB are deleted.

The working of this method can be comprehended by considering the set of
clausesS given in Example 161 and the corresponding Figure 11. Assume we
are performing an iterative-deepening procedure and are exploring a certain finite
initial segmentT of the search tree. Suppose further that the tableau on the left
is found first by the search procedure. Then, after the unsolvability of the branch
�P (b; a; z) in the segmentT has been detected (note thatS is satisfiable), back-
tracking occurs. But the failure substitution� = fx=a; y=bg is annotated at the top

18In [Letzet al., 1994] the term ‘anti-lemmata’ was used for this technique.

188 REINHOLD LETZ

left node. In the alternative solution attempt of the branch displayed on the right,
the substitution� = fx=a; y=b; z=cg is computed which is subsumed by�. This
means that the right tableau is ignored, together with its possible expansions.

Whenever a failure substitution� for a tableau branchB in a tableauT is more
general than a substitution� computed during an alternative solution attempt of
B, then the goal tree ofT subsumes the goal tree of the alternative tableau. This
shows that local failure caching achieves a restricted form of subsumption deletion.
The term ‘local’ has been used in order to distinguish this method from aglobal
method of failure caching described in[Astrachan and Stickel, 1992]. In the global
method, a permanent failure (and solution) cache is installed, which is used on
every future branchB0 in which the literals are instances of the literals on the
branchB. This method is more powerful, but it is very expensive and needs an
enormous amount of memory. Using the local method, failure substitutions do
not survive the existence of a branchB. This significantly reduces the amount of
memory.

The theorem prover SETHEO [Letz et al., 1992] is an efficient implementation
of the regular connection tableau calculus. In the version of the calculus described
in [Letz et al., 1994], also the local failure caching mechanism is integrated in an
efficient way, by employing constraint technology. Experimental results confirm
the theoretical conjecture that a significant search pruning effect can be achieved
with the method. It should be noted that this mechanism is not limited to the clausal
case, it works for any type of tableau enumeration procedure which is implemented
using backtracking.

6 EXTENSIONS OF TABLEAU SYSTEMS

The analytic tableau approach has proven successful, both proof-theoretically and
in the practice of automated deduction. It is well-known, however, since the work
of Gentzen[1935] that the purely analytic paradigm suffers from a fundamental
weakness, namely, the poordeductive power. That is, for very simple examples,
the smallest tableau proof may be extremely large if compared with proofs in other
calculi. In this section, we shall review methods which can remedy this weakness
and lead to significantly shorter proofs.

The methods we mention are of three completely different sorts. First, we
present mechanisms that amount to adding additional inference rules to tableau
systems. The mechanisms are all centered around the (backward) cut rule, which,
in its full form, may lead to nonelementarily smaller tableau proofs. Those mech-
anisms have the widest application, since they already improve the behaviour of
tableaux for propositional logic. The propositional aspects of those extensions
have already been elaborated in the previous chapter. Second, we consider so-
called liberalizations of the�-rule which may also lead to nonelementarily smaller
tableau proofs. Their application, however, is restricted to formulae that are not
in Skolem form. Since in automated deduction normally a transformation into

FIRST-ORDER TABLEAU METHODS 189

Skolem form is performed, the techniques seem mainly interesting as an improve-
ment of this transformation. Finally, we consider in some more detail a line of
improvement which is first-order by its very nature, since it can only be effective
for free-variable tableaux. It is motivated by the fact that free variables in tableaux
need not necessarily be treated as rigid by the closure rule. The generalization of
the rule results in a calculus in which the complexity of proofs can be significantly
smaller than the Herbrand complexity of the input formula, which normally is a
lower bound to the length of any analytic tableau proof.

6.1 Controlled Integration of the Cut Rule

Gentzen’s sequent calculus[Gentzen, 1935] contains thecut rule which in the
tableau format can be formulated as follows.

DEFINITION 165 ((Tableau) cut rule). The(tableau) cut ruleis the following
tableau expansion rule

(Cut)
F j :F whereF is any first-order formula.

The formulaF is called thecut formulaof the cut step.

The cut rule is logically redundant, i.e., whenever there exists a closed tableau
with cuts for an input setS, then there exists a closed cut-free tableau forS. Even
the following stronger redundancy property holds. For this, note that the effect of
the cut rule can be simulated by adding, for every applied cut with cut formulaF ,
the special tautological formulaF _:F to the input set, since then the cuts can be
performed by using the�-rule on those tautologies. So in a sense the power of the
cut can already be contained in an input set if the right tautologies are contained.
That tautologies need not be used as expansion formulae in a tableau is evident
from the fact that, for every interpretation and variable assignment, one of the
tableau subformulae of a tautology will become true.

Although tautologies and therefore the cut rule are redundant, they can lead
to nonelementary reductions of the proof length[Orevkov, 1979; Statman, 1979].
While this qualifies the cut rule as one of the fundamental methods for represent-
ing proofs in a condensed format, obviously, the rule has the disadvantage that
it violates the tableau subformula property. Consequently, from the perspective
of proof search, an unrestricted use of the cut rule is highly detrimental, since it
blows up the search space.

The problem therefore is to perform cuts in a controlled manner. A controlled
application of the cut rule can be achieved, for instance, by performing a cut in
combination with the�-rule only.

DEFINITION 166 (�-cut rule). Whenever a�-step is to be applied, first, perform
a cut step with one of the formulae�1 or �2, afterwards perform the�-step on the
new right branch. The entire operation is displayed in Figure 12.

Since one of the new branch is closed, only two open branches have been added,

190 REINHOLD LETZ

�
��
Q
QQ

�
��

Q
QQ

�
��

Q
QQ

�
��

Q
QQ

�2�1

�1 :�1

�

�2�1

�

�2 :�2

Figure 12.�-rule with cut

like in the standard�-rule, but one of the branches has one more formula on
it which can additionally be used for closure. The�-cut rule fulfils the weaker
tableau subformula property that any formula in a tableau is either a tableau sub-
formula or the negation of a tableau subformula in the input set. This property
suffices for guaranteeing that there exist no infinite decomposition sequences. In
the previous chapter, the proof shortening effect of the�-cut rule is studied exten-
sively, for the case of propositional logic (see also[d’Agostino and Mondadori,
1994] and[Letzet al., 1994]). It is shown there that, for certain propositional for-
mulae with only exponential cut-free tableau proofs, a shortening to a linear proof
length can be obtained with the�-cut rule. In first-order logic, even a nonelemen-
tary proof length reduction can be achieved, as demonstrated in[Egly, 1997]. In
[Letz et al., 1994]) also the effect of the�-cut rule on connection tableaux is an-
alyzed and some weaknesses of the rule for the free-variable case are identified.
This leads to a generalization of the rule to the so-calledfolding uprule.

6.2 Liberalizations of the�-Rule

Our completeness proof of free-variable tableaux has revealed that, for any atomic
sentence tableau proof, there is a free-variable tableau proof of the same tree size.
Interestingly, the converse, does not hold. The reason lies in the use of the�+-rule
in free-variable tableaux taken from[Hähnle, 1994; Fitting, 1996], which can lead
to significantly shorter tableau proofs[Baaz and Ferm¨ulle, 1995].

EXAMPLE 167. Any closed sentence tableau for the formula8x(P (x) ^
9y:P (y)) requires two applications of the-rule whereas there is a closed free-
variable tableau with only one application of the0-rule.19

Interestingly, in the first edition of Fitting’s book[1996], a more restrictive
variant of the�+-rule was given, in which the new Skolem term had to contain
all variables on the branch and not only the ones contained in the respective�-
formula. Liberalization of the�-rule means reducing the number of variables to
be considered in the respective Skolem term. So, the�+-rule introduced in Sec-

19On should mention, that this weakness has already been recognized in[Smullyan, 1968], who
identified a condition under which a Skolem term in a�-rule application need not be new. With this
liberalization, shorter sentence tableau proofs can be constructed.

FIRST-ORDER TABLEAU METHODS 191

tion 4 is already a liberalization of the original�-rule in free-variable tableaux.
In a sense, however, this older version of free-variable tableaux is conceptually
cleaner with respect to the ‘rigid’ treatment of free-variables. The original idea
of a rigid interpretation of the free variables in a tableau is that they may stand
for arbitrary ground terms. Accordingly, the notion of ground satisfiability was
introduced[Fitting, 1996].

DEFINITION 168 (Ground satisfiability). A collectionC of sets of formulae is
ground satisfiableif every ground instance ofC has a satisfiable element.

Evidently,8-satisfiability of a collectionC entails ground satisfiability, but the
converse does not hold. As an example consider the ground satisfiable collection
ffP (x); 9y:P (y)gg which is not8-satisfiable. The difference between the old
and the new�+-rule is that the old one preserves ground satisfiability, but the new
one does not. The closure rule (C), however, preserves ground satisfiability and
hence subscribes to a rigid interpretation of the free variables. So, the system
of free-variable tableaux (Definition 125) introduced in Section 4 is somewhat
undecided in its treatment of free variables. One may argue, however, that with
the new system, smaller tableau proofs can be formulated, and this is what counts.
In the last part of this section, we will therefore draw the radical consequence
and also liberalize the closure rule in such a manner that ground satisfiability is
no more preserved. The gain is that with the new rule again a size-reduction of
tableau proofs can be achieved.

The�+-rule is by far not the “best” Skolemization rule, in the sense that it in-
cludes a minimal number of variables in the Skolem term. Consider, for example,
the�-formula9x(P (y) ^ P (x)). With the�+-rule a unary Skolem termf(y) has
to be used. But it is evident thaty is irrelevant and a Skolem constanta could
be used instead. There are a number of improvements of the�+-rule which shall
briefly be mentioned here. In[Beckertet al., 1993], it is shown that for each�-
formula stemming from the same occurrence in the input set and each numbern
of free variables in�, always the same Skolem function symbolfn� may be used
without affecting the soundness of the rule. The thus improved�-rule is named
�+

+

. In [Baaz and Ferm¨ulle, 1995], this method is further liberalized by identi-
fying a relevantsubset of the free variables in� and excluding the other variables
from the Skolem term. This method can identify the irrelevancy of the variabley
in the aforementioned example. Furthermore, the notion of relevancy defined there
can be decided in linear time. The corresponding rule is called��. In the paper, a
pairwise comparison between the four mentioned Skolemization methods (the one
in [Fitting, 1996], �+, �+

+

, and��) is made w.r.t. the proof shortening effect that
may be obtained. Interestingly, for each of the improvements, there are example
formulae, for which a nonelementary proof length reduction can be achieved w.r.t.
the previous rule in the sequence.

Note that, in general, there is no notion of relevant free variables in a�-formula
which is bothminimaland can be computed efficiently. This can be illustrated with
the following simple consideration. Consider a�-formula of the form9y(F ^ G)

192 REINHOLD LETZ

containing a free variablex in G but not inF . Suppose further that9y(F ^
G) be strongly equivalent toF ^ 9yG. Then, obviously, the variablex is not
relevant, but this might only be identifiable by proving the strong equivalence of
two formulae, which is undecidable in general. So the constraint for any notion of
relevant variables is that it be efficiently computable.

6.3 Liberalization of the Closure Rule

The final improvement of the tableau rules that we investigate is again of a quan-
tificational nature. It deals with the problem that the rigid interpretation of free
variables often leads to an unnecessary lengthening of tableau proofs.

DEFINITION 169 (Local variable). A variablex occurring free on an open
tableau branch is calledlocal (to the branch)if x does not occur free on other
open branches of the tableau.

If a variable is local to a branch, then any formula containingx can be treated
as universally quantified20 in x. i.e., the universal closure of the formula w.r.t. the
variable could be added to the branch. Let us formulate this as a tableau rule.

DEFINITION 170 (Generalization rule). Thegeneralization ruleis the following
expansion rule which can be applied to any open branch of a tableau

(G)
F

8xF wherex is a local variable.

PROPOSITION 171. The generalization rule preserves8-satisfiability.

Proof. Given a tableauT with a local variablex, assumeF is any formula on an
open branchB of T andT 0 is the tableau obtained by adding the formula8xF
toB. We work with the coincidence between8-satisfiability and the satisfiability
of the open branch formula of a tableau. LetB = B1 _ � � � _ B _ � � � _ Bn

be the open branch formula ofT with B = F1 ^ � � � ^ F ^ � � � ^ Fm. Then
B1 _ � � � _ (B ^ 8xF) _ � � � _Bn is the open branch formulaB 0 of T 0. NowB is
equivalent to8xB. Sincex does occur free inB only, 8xB is strongly equivalent
toB0. Consequently, the satisfiability ofB entails the satisfiability ofB0. �

However, it is apparent that the generalization rule does not preserve ground
satisfiability. As a matter of fact, the generalization rule is just of a theoretical
interest, since it violates the tableau subformula property. Since we are mainly
interested in calculi performing atomic branch closure, it is clear that the new
universal formula will be decomposed by the 0-rule, thus producing a renaming
of x in F . And, as instantiations are only performed in closure steps, we would
perform the generalization implicitly, exactly at that moment. This naturally leads
to a local version of the closure rule.

20In [Beckert and H¨ahnle, 1992], the termuniversalvariable was used for a similar notion.

FIRST-ORDER TABLEAU METHODS 193

DEFINITION 172 (Local reduction rule). LetT be a tableau andS the set of
formulae inT . SupposeK andL are two literals on a branch ofT . LetK� be a
variable renaming of all local variables inK w.r.t. S, andL� a variable renaming
of all local variables inL w.r.t. S [fK�g. Then, thelocal closure ruleis the
following rule.

(CL) Modify T to T� if � is a minimal unifier forfK�;�L�g
and consider the branch as closed.

The soundness of the local closure rule follows from the fact that its effect can
be simulated by a number of applications of the generalization rule, the 0-rule,
and the ordinary closure rule.

������
XXXXXX

������

������
XXXXXX

XXXXXX

8x(R(x)_R(f(x))) ^ 8x(:R(x)_ :R(f(f(x))))

:R(f(f(x)))

R(f(f(x))) R(f(f(f(x))))

:R(f(x)) :R(f(f(f(x))))

R(f(x)) R(f(f(x)))

:R(x)

R(y) R(f(y))

Figure 13. Closed clausal tableau with local reduction rule

Using the local closure rule instead of the standard closure rule, one can achieve
a significant shortening of proofs, as illustrated with the following tableau which
is smaller than the one given in Figure 8. Assume the tableau construction is
performed using a right-most branch selection function. The crucial difference
then occurs when the right part of the tableau is closed and a tableau clause of the
form R(y) _ R(f(y)) is attached on the left. Since the variablex is now local,
it can be renamed and the two remanining branches can be closed using the local
closure rule.

Although the displayed tableau has no unsatisfiable ground instance, the sound-
ness of the local reduction rule assures that we have indeed refuted the input set.
Note also, that tableau calculi containing the generalization rule or the local reduc-
tion rule are not independent of the branch selection function. As long as the right
part of the tableau is not closed, the variablex is not local on the left branch and
a renaming ofx is not permitted. Consequently, the order in which branches are
selected can strongly influence the size of the final tableau. The gain, however, is
that the local reduction rule permits to build refutations that are smaller than the
Herbrand complexity of the input.

194 REINHOLD LETZ

ACKNOWLEDGEMENTS

I would like to thank Reiner H¨ahnle for his corrections and comments on a previous
version of the text.

Technische Universität München, Germany.

REFERENCES

[Andrews, 1981] P. Andrews. Theorem Proving via General Matings.Journal of the Association for
Computing Machinery, 28(2):193–214, 1981.

[Astrachan and Stickel, 1992] O. W. Astrachan and M. E. Stickel. Caching and Lemmaizing in
Model Elimination Theorem Provers.Proceedings of the 11th Conference on Automated Deduction
(CADE-11), LNAI 607, Saratoga Springs, pages 224–238, Springer, 1992.

[Baaz and Leitsc, 1992] M. Baaz and A. Leitsch. Complexity of Resolution Proofs and Function
Introduction.Annals of Pure and Applied Logic, 57:181–215, 1992.

[Baaz and Ferm¨ulle, 1995] M. Baaz and C. G. Ferm¨uller. Non-elementary Speedups between Differ-
ent Versions of Tableaux. InProceedings of Tableaux95, 4th Workshop on Theorem Proving with
Analytic Tableaux and Related Methods, pages 217–230, 1995.

[Beckert and H¨ahnle, 1992]
[Beckertet al., 1993] B. Beckert, R. H¨ahnle, and P. Schmitt. The even more liberalized�-rule in free

variable semantic tableaux. InComputational Logic and Proof Theory, Proceedings of the 3rd Kurt
Gödel Colloquium, Springer, pages 108–119, 1993.

[Beckert and Posegga, 1994] B. Beckert and J. Posegga.leanTAP: lean, tableau-based theorem prov-
ing. Proceedings of the 12th International Conference on Automated Deduction, pages 108–119,
1994.

[Bernays and Sch¨onfinkel, 1928] P. Bernays and M. Sch¨onfinkel. Zum Entscheidungsproblem der
Mathematischen Logik.Mathematische Annalen, 99:342–372, 1928.

[Beth, 1955] E. W. Beth. Semantic Entailment and Formal Derivability.Mededlingen der Koninklijke
Nederlandse Akademie van Wetenschappen, 18(13):309–342, 1955.

[Beth, 1959] E. W. Beth.The Foundations of Mathematics. North-Holland, Amsterdam, 1959.
[Bibel, 1981] W. Bibel. On Matrices with Connections.Journal of the ACM, 28:633–645, 1981.
[Bibel, 1987] W. Bibel. Automated Theorem Proving. Vieweg Verlag, Braunschweig. Second edition,

1987.
[Billon, 1996] J.-P. Billon. The Disconnection Method. InProceedings of Tableaux96, 5th Workshop

on Theorem Proving with Analytic Tableaux and Related Methods, 1996.
[Boy de la Tour, 1990] T. Boy de la Tour. Minimizing the Number of Clauses by Renaming.Proceed-

ings of the 10th International Conference on Automated Deduction, pages 558–572, 1990.
[Church, 1936] A. Church. An Unsolvable Problem of Elementary Number Theory.American Jour-

nal of Mathematics, 58:345–363, 1936.
[Corbin and Bidoit, 1983] J. Corbin and M. Bidoit. A Rehabilitation of Robinson’s Unification Algo-

rithm. In Information Processing, pages 909–914. North-Holland, 1983.
[d’Agostino and Mondadori, 1994] M. d’Agostino and M. Mondadori. The taming of the cut.Journal

of Logic and Computation, 4(3):285–319, 1994.
[Eder, 1985] E. Eder. An Implementation of a Theorem Prover based on the Connection Method. In

W. Bibel and B. Petkoff, editors,AIMSA: Artificial Intelligence Methodology Systems Applications,
pages 121–128. North–Holland, 1985.

[Egly, 1997] U. Egly. Non-elementary Speed-ups in Proof Length by Different Variants of Classical
Analytic Calculi. InProceeding of TABLEAUX’97, pages 158–172, Springer, 1997.

[Fitting, 1996] M. Fitting. First-Order Logic and Automated Theorem Proving, Springer, 1996. First
edition, 1990.

[Fitting, 1996] M. Fitting. First-Order Logic and Automated Theorem Proving, Springer, 1996. Sec-
ond revised edition of[Fitting, 1996].

FIRST-ORDER TABLEAU METHODS 195

[Gentzen, 1935] G. Gentzen. Untersuchungen ¨uber das logische Schließen.Mathematische Zeit-
schrift, 39:176–210 and 405–431, 1935. Engl. translation in [Szabo, 1969].

[Garey and Johnson, 1978] M.R. Garey und D.S. Johnson,Computers and Intractability: A Guide to
the Theory of NP-Completeness, Freeman, New York, 1978.

[Gödel, 1930] K. Gödel. Die Vollständigkeit der Axiome des logischen Funktionenkalk¨uls. Monat-
shefte f¨ur Mathematik und Physik, 37:349–360, 1930.

[Hähnle, 1994] R. Hähnle and P. Schmitt. The liberalized�-rule in free variable semantic tableaux.
Journal of Automated Reasoning13(2):211–221, 1994.

[Herbrand, 1930] J. J. Herbrand. Recherches sur la th´eorie de la d´emonstration.Travaux de la Soci´eté
des Sciences et des Lettres de Varsovie, Cl. III, math.-phys., 33:33–160, 1930.

[Hilbert and Ackermann, 1928] D. Hilbert and W. Ackermann.Grundzüge der theoretischen Logik.
Springer, 1928. Engl. translation: Mathematical Logic, Chelsea, 1950.

[Hilbert and Bernays, 1934] D. Hilbert and P. Bernays.Grundlagen der Mathematik. Vol. 1, Springer,
1934.

[Hintikka, 1955] K. J. J. Hintikka. Form and Content in Quantification Theory.Acta Philosophica
Fennica, 8:7–55, 1955.

[Huet, 1976] G. Huet. Resolution d’equations dans les languages d’ordre1; 2; : : : ; !. PhD thesis,
Université de Paris VII, 1976.

[Huet, 1980] G. Huet. Confluent Reductions: Abstract Properties and Applications to Term Rewriting
Systems.Journal of the Association for Computing Machinery, 27(4):797–821, 1980.

[Ibens and Letz, 1997] O. Ibens and R. Letz. Subgoal Alternation in Model Elimination. InProceed-
ing of TABLEAUX’97, pages 201–215, Springer, 1997.

[Klingenbeck and H¨ahnle, 1994] S. Klingenbeck and R. H¨ahnle. Semantic tableaux with ordering re-
strictions. In Proceedings of the 12th International Conference on Automated Deduction, pages
708–722, 1994.

[Korf, 1985] R. E. Korf. Depth-First Iterative Deepening: an Optimal Admissible Tree Search.Arti-
ficial Intelligence, 27:97–109, 1985.

[Krivine, 1971] J.-L. Krivine. Introduction to Axiomatic Set Theory, Reidel, Dordrecht, 1971.
[Lassezet al., 1988] J.-L. Lassez, M. J. Maher, and K. Marriott. Unification Revisited.Foundations of

Deductive Databases and Logic Programming(ed. J. Minker), pages 587–625, Morgan Kaufmann
Publishers, Los Altos, 1988.

[Letzet al., 1992] R. Letz, J. Schumann, S. Bayerl, and W. Bibel. SETHEO: A High-Performance
Theorem Prover.Journal of Automated Reasoning, 8(2):183–212, 1992.

[Letz, 1993] R. Letz.First-Order Calculi and Proof Procedures for Automated Deduction. PhD thesis,
Technische Hochschule Darmstadt, 1993.

[Letzet al., 1994] R. Letz, K. Mayr, and C. Goller. Controlled Integration of the Cut Rule into Con-
nection Tableaux Calculi.Journal of Automated Reasoning, 13:297–337, 1994.

[Letz, 1998] R. Letz.Structures and Complexities of First-order Calculi. Forthcoming.
[Loveland, 1968] D. W. Loveland. Mechanical Theorem Proving by Model Elimination.Journal of

the Association for Computing Machinery, 15(2):236–251, 1968.
[Loveland, 1978] D. W. Loveland. Automated Theorem Proving: a Logical Basis. North-Holland,

1978.
[Martelli and Montanari, 1976] A. Martelli and U. Montanari. Unification in Linear Time and Space:

a Structured Presentation. Technical report. Internal Rep. No. B76-16, 1976.
[Martelli and Montanari, 1982] A. Martelli and U. Montanari. An Efficient Unification Algorithm.

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 2, pages 258–282, 1982.
[Ohlbach, 1991] H.-J. Ohlbach. Semantics Based Translation Methods for Modal Logics.Journal of

Logic and Computation, 1(5):691–746, 1991.
[Orevkov, 1979] V.-P. Orevkov. Lower Bounds for Increasing Complexity of derivations after Cut

Elimination. Zapiski Nauchnykh Seminarov Leningradskogo Otdeleniya Matematicheskogo Insti-
tuta im V. A. Steklova AN USSR, 88:137–161, 1979. English translation inJ. Soviet Mathematics,
2337-2350, 1982.

[Paterson and Wegman, 1978] M. S. Paterson and M. N. Wegman. Linear Unification.Journal of
Computer and Systems Sciences, 16:158–167, 1978.

[Prawitz, 1960] D. Prawitz. An Improved Proof Procedure.Theoria, 26:102–139, 1960.
[Prawitz, 1969] D. Prawitz. Advances and Problems in Mechanical Proof Procedures. In J. Siekmann

and G. Wrightson (editors).Automation of Reasoning. Classical Papers on Computational Logic,
Vol. 2, pages 285–297, Springer, 1983.

196 REINHOLD LETZ

[Reckhow, 1976] R. A. Reckhow.On the Lenghts of Proofs in the Propositional Calculus. PhD thesis,
University of Toronto, 1976.

[Reeves, 1987] S. Reeves. Semantic tableaux as a framework for automated theorem-proving. In
C. S. Mellish and J. Hallam, editors,Advances in Artificial Intelligence (Proceedings of AISB-87),
pages 125–139, Wiley, 1987.

[Robinson, 1965] J. A. Robinson. A Machine-oriented Logic Based on the Resolution Principle.
Journal of the Association for Computing Machinery, 12:23–41, 1965.

[Shostak, 1976] R. E. Shostak. Refutation Graphs.Artificial Intelligence, 7:51–64, 1976.
[Smullyan, 1968] R. M. Smullyan.First Order Logic. Springer, 1968.
[Statman, 1979] R. Statman. Lower Bounds on Herbrand’s Theorem. InProceedings American Math.

Soc., 75:104–107, 1979.
[Stickel, 1988] M. A. Stickel. A Prolog Technology Theorem Prover: Implementation by an Extended

Prolog Compiler.Journal of Automated Reasoning, 4:353–380, 1988.
[Szabo, 1969] M. E. Szabo. The Collected Papers of Gerhard Gentzen. Studies in Logic and the

Foundations of Mathematics. North-Holland, Amsterdam, 1969.
[Tarski, 1936] A. Tarski. Der Wahrheitsbegriff in den formalisierten Sprachen.Studia Philosophica,

1, 1936.
[Turing, 1936] A. M. Turing. On Computable Numbers, with an Application to the Entschei-

dungsproblem.Proceedings of the London Mathematical Society, 42:230–265, 1936.
[Voronkov, 1997] A. Voronkov. Personal communication, 1997.
[Wallen, 1989] L. Wallen. Automated Deduction for Non-Classical Logic. MIT Press, Cambridge,

Mass., 1989.

BERNHARD BECKERT

EQUALITY AND OTHER THEORIES

1 INTRODUCTION

Theory reasoning is an important technique for increasing the efficiency of au-
tomated deduction systems. The knowledge from a given domain (or theory) is
made use of by applying efficient methods for reasoning in that domain. The gen-
eral purposeforeground reasonercalls a special purposebackground reasonerto
handle problems from a certain theory.

Theory reasoning is indispensable for automated deduction in real world do-
mains. Efficient equality reasoning is essential, but most specifications of real
world problems use other theories as well: algebraic theories in mathematical
problems and specifications of abstract data types in software verification to name
a few.

Following the pioneering work of M. Stickel, theory reasoning methods have
been described for various calculi; e.g., resolution[Stickel, 1985; Policriti and
Schwartz, 1995], path resolution [Murray and Rosenthal, 1987], the connec-
tion method[Petermann, 1992; Baumgartner and Petermann, 1998], model elim-
ination [Baumgartner, 1992], connection tableaux[Baumgartneret al., 1992;
Furbach, 1994; Baumgartner, 1998], and the matrix method[Murray and Rosen-
thal, 1987a].

In this chapter, we describe how to combine background reasoners with the
ground, the free variable, and the universal formula versions of semantic tableaux.
All results and methods can be adapted to other tableau versions for first-order
logic: calculi with signed formulae, with different�-rules, with methods for re-
stricting the search space such as connectedness or ordering restrictions, with
lemma generation, etc. Difficulties can arise with adaptations to tableau calculi
for other logics, in particular if the consequence relation is affected (e.g., non-
monotonic logics and linear logic); and care has to be taken if theory links or
theory connections have to be considered[Petermann, 1993; Baumgartner, 1998;
Baumgartner and Petermann, 1998].

Background reasoners have been designed for various theories, in particular
for equality reasoning; an overview can be found in[Baumgartneret al., 1992;
Furbach, 1994; Baumgartner, 1998], for set theory in[Cantoneet al., 1989]. Rea-
soning in single models, e.g. natural numbers, is discussed in[Bürckert, 1990].

One main focus of this chapter is efficient equality reasoning in semantic ta-
bleaux. Equality, however, is the only theory that is discussed in detail. There is
no uniform way for handling theories, which is, after all, the reason for using a
background reasoner but which makes it impossible to present good background

198 BERNHARD BECKERT

reasoners for all possible theories. The second main focus of this chapter is there-
fore on the interaction between foreground and background reasoners, which plays
a critical rôle for the efficiency of the combined system.

The chapter is organized as follows: in Section 2, the basic concepts of theory
reasoning are introduced, and the main classifications of theory reasoning methods
are discussed. The ground, the free variable, and the universal formula version of
semantic tableaux, which are the versions that have to be distinguished for the-
ory reasoning, are defined in Section 3, and methods are presented to add theory
reasoning to these versions of tableaux. Soundness of these methods is proven in
Section 4. In Section 5, completeness criteria for background reasoners are de-
fined. Total and partial background reasoners for the equality theory are presented
in Sections 6 and 7. Incremental theory reasoning, which is a method for improv-
ing the interaction between foreground and background reasoners, is introduced in
Section 8. Finally, in Section 9, methods for handling equality are described that
are based on modifying the input formulae.

2 THEORY REASONING

2.1 First-Order Logic: Syntax and Semantics

We use the logical connectiveŝ(conjunction),_ (disjunction),� (implication),
$ (equivalence),: (negation), and the quantifier symbols8 and9.
NOTATION 1. A first-order signature� = hP�; F�; ��i consists of a setP� of
predicate symbols, a setF� of function symbols, and a function�� assigning
an arity n � 0 to the predicate and function symbols; for each arity, there are
infinitely many function and predicate symbols. Function symbols of arity 0 are
calledconstants. In addition, there is an infinite setV of object variables.

Term� is the set of all terms andTerm0
� � Term� is the set of all ground

terms built from� in the usual manner.Form� is the set of all first-order formulae
over�; a formula� 2 Form� must not contain a variable that is both bound and
free in� (see Section 1.1 in the chapter by Letz for formal definitions ofTerm�

andForm�). Lit� � Form� is the set of all literals.

DEFINITION 2. A variablex 2 V is free in a first-order formula�, if there is an
occurrence ofx in � that is not inside the scope of a quantification(8x) or (9x);
x is boundin � if it occurs in� inside the scope of a quantification(8x) or (9x).

A sentenceis a formula� 2 Form� not containing any free variables.

NOTATION 3. Subst� is the set of all substitutions, andSubst�� � Subst� is the
set of all idempotent substitutions with finite domain.

A substitution� 2 Subst� with a finite domainfx1; : : : ; xng can be denoted
by fx1 7! t1; : : : ; xn 7! tng, i.e.�(xi) = ti (1 � i � n).

The restriction of� to a setW � V of variables is denoted by�jW .

A substitution� may be applied to a quantified formula�; however, to avoid

EQUALITY AND OTHER THEORIES 199

undesired results, the bound variables in� must neither occur in the domain nor
the scope of�. This is not a real restriction as the bound variables in� can be
renamed.

DEFINITION 4. A formula�0 is aninstanceof a formula� if there is a substitu-
tion � = fx1 7! t1; : : : ; xn 7! tng 2 Subst�� such that

1. �0 = ��,

2. none of the variablesx1; : : : ; xn is bound in�, and none of the variables
that are bound in� occurs in the termst1; : : : ; tn.

If an instance does not contain any variables, it is aground instance.

DEFINITION 5. A formula� 2 Form� is universally quantifiedif it is of the
form (8x1) � � � (8xn) , n � 0, where does not contain any quantifications.

In this case, if a formula 0 is an instance of (Definition 4), it is as well called
an instance of�.

DEFINITION 6. A structureM = hD; Ii for a signature� consists of a non-
empty domainD and an interpretationI which gives meaning to the function and
predicate symbols of�.

A variable assignmentis a mapping� : V ! D from the set of variables to the
domainD.

The combination of an interpretationI and an assignment� associates (by struc-
tural recursion) with each termt 2 Term� an elementtI;� of D.

The evaluation functionvalI;� maps the formulae inForm� to the truth val-
uestrue andfalse(in the usual way, see Section 1.2 in the chapter by Letz). If
valI;�(�) = true, which is denoted by(M; �) j= �, holds for all assignments�,
thenM satisfiesthe formula� (is amodelof �); M satisfies a set� of formulae if
it satisfies all elements of�.

A formula� is atautologyif it is satisfied by all structures.

DEFINITION 7. A formula 2 Form� is a (weak) consequenceof a set� �
Form� of formulae, denoted by� j= , if all structures that are models of� are
models of as well.

In addition to the normal (weak) consequence relationj=, we use the notion of
strong consequence:

DEFINITION 8. A formula 2 Form� is a strong consequenceof a set� �
Form� of formulae, denoted by� j=� , if for all structuresM = hD; Ii and all
variable assignments�:

If (M; �) j= � for all � 2 �, then (M; �) j= :

A difference between the strong consequence relationj=� and the weak conse-
quence relationj= is that the following holds forj=� (but not forj=):

200 BERNHARD BECKERT

LEMMA 9. Given a set� � Form� of formulae and a formula 2 Form�, if
� j=� , then�� j=� � for all substitutions� 2 Subst��.

2.2 Theories

We define any satisfiable set of sentences to be a theory.

DEFINITION 10. A theoryT � Form� is a satisfiable set of sentences.

In the literature, often the additional condition (besides satisfiability) is imposed
on theories that they are closed under the logical consequence relation. Without
that restriction, we do not have to distinguish between a theory and its defining set
of axioms.

EXAMPLE 11. The most important theory in practice is the equality theoryE .1

It consists of the following axioms:

(1) (8x)(x � x) (reflexivity),

(2) for all function symbolsf 2 F�:

(8x1) � � � (8xn)(8y1) � � � (8yn)((x1 � y1 ^ : : : ^ xn � yn) �
f(x1; : : : ; xn) � f(y1; : : : ; yn))

wheren = ��(f) (monotonicity for function symbols),

(3) for all predicate symbolsp 2 P�:

(8x1) � � � (8xn)(8y1) � � � (8yn)((x1 � y1 ^ : : : ^ xn � yn) �
(p(x1; : : : ; xn) � p(y1; : : : ; yn)))

wheren = ��(p) (monotonicity for predicate symbols),

Symmetry and transitivity of� are implied by reflexivity (1) and monotonicity for
predicate symbols (3) (observe that� 2 P�).

EXAMPLE 12. The theoryOP of partial orderings consists of the axioms

(1) (8x):(x < x) (anti-reflexivity),

(2) (8x)(8y)(8z)((x < y) ^ (y < z) � (x < z)) (transitivity).

OP is a finite theory; contrary to the equality theory, it does not contain mono-
tonicity axioms.

An important class of theories, calledequational theories, are extensions of the
equality theoryE by additional axioms that are universally quantified equalities.

1The equality predicate is denoted by� 2 P� such that no confusion with the meta-level equal-
ity = can arise.

EQUALITY AND OTHER THEORIES 201

An overview of important equational theories and their properties can be found in
[Siekmann, 1989].

EXAMPLE 13. The AC-theory for the function symbolf contains (besidesE) the
additional axioms

(8x)(8y)(8z)(f(f(x; y); z) � f(x; f(y; z)))

and
(8x)(8y)(f(x; y) � f(y; x)) ;

which state associativity resp. commutativity off ; it is an equational theory.

Other typical examples for equational theories are specifications of algebraic
structures:

EXAMPLE 14. Group theory can be defined using, in addition toE , the equalities

(8x)(8y)(8z)((x � y) � z � x � (y � z))
(8x)(x � e � x)
(8x)(x � x�1 � e)

The definitions of structure, satisfiability, tautology, and logical consequence
are adapted to theory reasoning in a straightforward way:

DEFINITION 15. LetT be a theory. AT -structureis a structure that satisfies
all formulae inT . A formula� (a set� of formulae) isT -satisfiableif there is
a T -structure satisfying� (resp.�), else it isT -unsatisfiable. A sentence� is a
T -tautologyif it is satisfied by allT -structures.

A formula � is a (weak)T -consequenceof a set	 of formulae, denoted by
	 j=T �, if � is satisfied by allT -structures that satisfy	. A formula � is a
strongT -consequenceof a set	 of formulae, denoted by	 j=�

T
�, if for all T -

structuresM and all variable assignments�:

If (M; �) j= for all 2 	, then(M; �) j= � :

LEMMA 16. Given a theoryT , a set� of sentences, and a sentence , the fol-
lowing propositions are equivalent:

1. � j=T .

2. � [T j= .

3. � [T [f: g is unsatisfiable.

4. � [f: g is T -unsatisfiable.

202 BERNHARD BECKERT

2.3 Properties of Theories

The following definitions clarify which properties theories should have to be useful
in practice:

DEFINITION 17. A theoryT is (finitely) axiomatizableif there is a (finite) de-
cidable set	 � Form� of sentences (the axioms) such that:� 2 Form� is a
T -tautology if and only if	 j= �.

A theoryT is completeif, for all sentences� 2 Form�, either� or :� is a
T -tautology.

All theories that we are concerned with, including equality, are axiomatizable.
An example for a theory that is not axiomatizable is the setT of all satisfiable
sentences.

If a theoryT is axiomatizable, then the set ofT -tautologies is enumerable; it
may, however, be undecidable (a simple example for this is the empty theory). If
T is both axiomatizable and complete, then the set ofT -tautologies is decidable.

Another important method for characterizing a theoryT—besides axiomatiza-
tion—is the model theoretic approach, whereT is defined as the set of all formulae
that are true in a given structureM . Theories defined this way are always complete,
becauseM j= � orM j= :� for all sentences�.

DEFINITION 18. A theoryT is universalif it is axiomatizable using an axiom
set consisting of universally quantified formulae (Definition 4).

THEOREM 19. Let T be a universal theory. A set� of universally quantified
formulae isT -unsatisfiable if and only if there is a finite set of ground instances of
formulae from� that isT -unsatisfiable.

In the literature on theory reasoning, all considerations are usually restricted to
universal theories, because the Herbrand-type Theorem 19 holds exactly for uni-
versal theories[Petermann, 1992]. This theorem is essential for theory reasoning
if the background reasoner can only provide formulae without variable quantifica-
tions (e.g., only literals or clauses); this is, for example, the case if theory reasoning
is added to clausal tableaux or resolution.

EXAMPLE 20. The theoryT = f(9x)p(x)g is not universal. Consequently, there
are sets� of universally quantified formulae that areT -unsatisfiable whereas all
finite sets of ground instances of formulae from� areT -satisfiable. An example
is � = f(8x)(:p(x))g; even the setf:p(t) j t 2 Term0

�g of all ground instances
of � is T -satisfiable (using aT -structure where not all elements of the domain are
represented by ground terms).

The restriction to universal theories is not a problem in practice, because it is
easy to get around using Skolemization.

EXAMPLE 21. An extension ofOP that contains the density axiom

(8x)(8y)((x < y) � (9z)((x < z) ^ (z < y)))

EQUALITY AND OTHER THEORIES 203

Key E-Refuter

f:(a � a)g id
f:(x � a)g fx 7! ag
f(8x)(:(x � a))g id
fp(a);:p(b)g hid , f:(a � b)gi
fp(f(a); f(b)); f(x) � xg hfx 7! ag, fp(a; f(b))gi

hfx 7! bg , fp(f(a); b)gi
fp(f(a); f(b)); (8x)(f(x) � x)g hid , fp(a; b)gi

Table 1. Examples forE-refuters

is not a universal theory. It can be made universal by replacing the above axiom
with

(8x)(8y)((x < y) � ((x < between(x; y)) ^ (between(x; y) < y))) :

2.4 Basic Definitions for Theory Reasoning

The following are the basic definitions for theory reasoning:

DEFINITION 22. Let� � Form� be a finite set of formulae, calledkey. A finite
setR = f�1; : : : ; �kg � Form� of formulae (k � 0) is aT -residueof � if there
is a substitution� 2 Subst�� such that

1. �� j=�T �1 _ : : : _ �k (in caseR is empty:�� j=�T false);

2. R = R�.

Then the pairh�;Ri is called aT -refuter for �. If the residueR is empty, the
substitution� is called aT -refuter for� (it is identified withh�; ;i).
EXAMPLE 23. Table 1 shows some examples forE-refuters.

DEFINITION 24. A set� � Form� of formulae isT -complementaryif, for all
T -structureshD; Ii and all variable assignments�, valI;�(�) = false.

EXAMPLE 25. The setf:(x � y)g is E-unsatisfiable; it is, however, notE-com-
plementary because a variable assignment may assign different elements of the
domain tox andy. The setf:(x � x)g is bothE-unsatisfiable andE-complemen-
tary.

In general, it is undecidable whether a formula set isT -complementary; and,
consequently, it is undecidable whether a pairh�;Ri is a refuter for a key�.
T -complementarity generalizes the usual notion that formulae� and:� are

complementary. The following lemmata are immediate consequences of the defi-
nitions:

204 BERNHARD BECKERT

LEMMA 26. Given a theoryT , a substitution� 2 Subst�� is a T -refuter for a
set� of formulae if and only if the set�� is T -complementary.

LEMMA 27. Given a theoryT , a substitution� and a setR = f�1; : : : ; �kg,
k � 0, of formulae form a refuterh�;Ri for a set� of formulae if and only if

1. �� [f:�1; : : : ;:�kg is T -complementary;

2. R = R�.

There is an alternative characterization ofT -complementary sets that do not
contain bound variables (e.g., sets of literals or clauses):

THEOREM 28. Given a theoryT , a set� of formulae that does not contain any
quantifiers isT -complementary if and only if the existential closure9� of � is
T -unsatisfiable.

Provided that the signature� contains enough function symbols not occurring
in a universal theoryT , a quantifier-free formula set isT -complementary if all its
instances areT -complementary:

THEOREM 29. Given a universal theoryT such that there are infinitely many
function symbols of each arityn � 0 in F� that do not occur inT , then a set�
of formulae that does not contain any bound variables isT -complementary if and
only if all ground instances of� areT -unsatisfiable.

EXAMPLE 30. LetT be the theoryfp(t) j t 2 Term0
�g that violates the pre-

condition of Theorem 29, as all function symbols occur inT . The formula:p(x)
is not T -complementary because there may be elements in the domain of aT -
structure that are not represented by any ground term. Nevertheless, all instances
of :p(x) areT -unsatisfiable, which shows that the pre-condition of Theorem 29
is indispensable.

By definition there is no restriction on what formulae may occur in keys or
refuters. In practice, however, to restrict the search space, background reasoners
do not compute refuters for all kinds of keys, and they do not compute all possible
refuters (typically, keys are restricted to be sets of literals or universally quantified
literals). To model this, we define background reasoners to be partial functions on
the set of all possible keys:

DEFINITION 31. LetT be a theory; abackground reasonerfor T is a partial
function

R : 2Form� �! Subst�� � 2Form�

such that, for all keys� � Form� for whichR is defined,R(�) is a set ofT -
refuters for�.

A background reasonerR is total if, for all keys� for whichR is defined, the
residues of all refuters inR(�) are empty, i.e.R(�) � Subst��.

A background reasonerR is monotonicif, for all keys � and 	 such that
� � 	: if R(�) is defined, thenR() is defined andR(�) � R().

EQUALITY AND OTHER THEORIES 205

EXAMPLE 32. A background reasoner for the theoryPO of partial orderings
can be defined as follows: For all keys�, letR(�) be the smallest set such that:

1. for all termst; t0; t00 2 Term�:
if t < t0; t0 < t00 2 �, thenhid ; t < t00i 2 R(�);

2. for all termst 2 Term�: if t < t 2 �, thenid 2 R(�);

3. for all literals� 2 Lit�: if �;:� 2 �, thenid 2 R(�).

The combination ofR and the ground version of tableaux leads to a complete
calculus forPO (see Section 3.2).

A background reasoner has to compute refuters that are strong consequences of
(an instance of) the key. In contrary to that, for tableau rules it is sufficient to pre-
serve satisfiability. A tableau rule may deducep(c) from (9x)p(x) wherec is new,
but hid ; fp(c)gi is not a refuter for the keyf(9x)p(x)g. A background reasoner
may, however, do the opposite:hid ; f(9x)p(x)gi is a refuter for the keyfp(c)g
(this deduction usually does not help in finding a proof; see, however, Example 20).

2.5 Total and Partial Theory Reasoning

The central idea behind theory reasoning is the same for all calculi based in some
way on Herbrand’s theorem (tableau-like calculi, resolution, etc.): A key� � 	
is chosen from the set	 of formulae already derived by the foreground reasoner
and is passed to the background reasoner, which computes refutersh�;Ri for �.

There are two main approaches: if the background reasoner is total, i.e. only
computes refuters with an empty residueR, we speak oftotal theory reasoning
else ofpartial theory reasoning.

In the case of partial reasoning, where the residueR = f�1; : : : ; �kg is not
empty (k � 1), the formula�1 _ : : : _ �k is added to the set	 of derived formulae
and the substitution� is applied. If the foreground reasoner is then able to show
that for some substitution� the set(� [f�1 _ : : : _ �kg)� is T -unsatisfiable,
this proves that	�� is T -unsatisfiable.

Although total theory reasoning can be seen as a special case of partial theory
reasoning, the way the foreground reasoner makes use of the refuter is quite dif-
ferent: no further derivations have to be made by the foreground reasoner;�� and
thus	� have been proven to beT -complementary by the background reasoner. In
the tableau framework, where (usually) the key� is taken from a tableau branchB,
this means thatB is closed if the substitution� is applied.

On the one hand, for total theory reasoning, more complex methods have to
be employed to find refuters; the background reasoner has to make more complex
deductions that, using partial reasoning, could be divided into several expansion
steps followed by a simple closure step. On the other hand, the restriction to total
theory reasoning leads to a much smaller search space for the foreground reasoner,
because there are less refuters for each key and the search is more goal-directed.

206 BERNHARD BECKERT

2.6 Other Classifications of Theory Reasoning

Besides total and partial theory reasoning, there are several other ways to distin-
guish different types of background reasoners.

One possibility is to classify according to the information given to the back-
ground reasoner: (complex) formulae, literals, or terms[Baumgartneret al.,
1992]. Stickel distinguishesnarrow theory reasoning, where all keys consist of
literals, andwidetheory reasoning, where keys consist of clauses[Stickel, 1985].
This type of classification is not used here, since all these types are subsumed by
formula level theory reasoning. We will, however, restrict (nearly) all considera-
tions to keys consisting of literals.

Another possibility is to classify background reasoners according to the type of
calculus they use for deductions, the main divisions beingbottom upandtop down
reasoning.

Local and non-local theory reasoning can be distinguished according to the
effect that calling the background reasoner has on the tableau[Degtyarev and
Voronkov, 1996]. In particular, the effect of calling the background reasoner is
local if only local variables are instantiated by applying the theory expansion or
closure rule to a tableau branchB, i.e. no variables occurring on other branches
thanB are instantiated.

3 THEORY REASONING FOR SEMANTIC TABLEAUX

3.1 Unifying Notation

Following Smullyan [Smullyan, 1995], the set of formulae that are not literals is
divided into four classes:� for formulae of conjunctive type,� for formulae of
disjunctive type, for quantified formulae of universal type, and� for quantified
formulae of existential type (unifying notation). This classification is motivated by
thetableau expansion ruleswhich are associated with each (non-literal) formula.

DEFINITION 33. The non-literal formulae inForm� are assigned atypeaccord-
ing to Table 2. A formula of type� 2 f�; �; ; �g is called a�-formula.

NOTATION 34. The letters�, �, , and� are used to denote formulae of (and only
of) the appropriate type. In the case of- and�-formulae the variablex bound by
the (top-most) quantifier is made explicit by writing(x) and1(x) (resp.�(x)
and�1(x)); accordingly1(t) denotes the result of replacing all occurrences ofx
in 1 by t.

3.2 The Ground Version of Semantic Tableaux

We first present the classicalgroundversion of tableaux for first-order logic. This
version of tableaux is called ‘ground’, because universally quantified variables are
replaced bygroundterms when the-rule is applied.

EQUALITY AND OTHER THEORIES 207

� �1 �2

� ^ �
:(� _) :� :
:(� �) � :
::� � �

� �1 �2

� _ �
:(� ^) :� :
� � :�
�$ � ^ :� ^ :
:(� $) � ^ : :� ^

 1(x)

(8x)�(x) �(x)
:(9x)�(x) :�(x)

� �1(x)

:(8x)�(x) :�(x)
(9x)�(x) �(x)

Table 2. Correspondence between formulae and rule types

�
�1
�2

�
�1 �2

1(t)

wheret is any
ground term.

�
�1(t)

wheret is a ground term
new to the tableau.

Table 3. Rule schemata for the ground version of tableaux

The calculus is defined using a slightly non-standard representation of tableaux:
a tableau is a multi-set of branches, which are multi-sets of first-order formulae;
as usual, the branches of a tableau are implicitly disjunctively connected and the
formulae on a branch are implicitly conjunctively connected. In graphical repre-
sentations, tableaux are shown in their classical tree form.

DEFINITION 35. A tableauis a (finite) multi-set of tableau branches, where a
tableaubranchis a (finite) multi-set of first-order formulae.

In Table 3 the ground expansion rule schemata for the various formula types are
given schematically. Premisses and conclusions are separated by a horizontal bar,
while vertical bars in the conclusion denote differentextensions. The formulae in
an extension are implicitly conjunctively connected, and different extensions are
implicitly disjunctively connected.

To prove a sentence� to be a tautology, we apply the expansion rules starting
from the initial tableauff:�gg. A tableauT is expanded by choosing a branchB
of T and a formula� 2 B and replacingB by as many updated branches as the
rule corresponding to� has extensions. Closed branches are removed from the
tableau instead of just marking them as being closed; thus, a proof is found when
the empty tableau has been derived.

There is a theory expansion and a theory closure rule. For both rules, a key
� � B is chosen from a branchB, and a refuterh�;Ri for � is computed. Since
formulae in ground tableaux do not contain free variables, the formulae in the
residue, too, have to be sentences. The application of substitutions to formulae

208 BERNHARD BECKERT

�1
...

�p
�1 � � � �k

wherehid ; f�1; : : : ; �kgi (k � 1) is a
refuter for the keyf�1; : : : ; �pg, and
�1; : : : ; �k do not contain free variables.

�1
...

�p
�

whereid is a
refuter for the
keyf�1; : : : ; �pg.

Table 4. Theory expansion and closure rules (ground version)

without free variables does not have any effect. Thus, ifh�;Ri is a refuter for a
key� taken from a ground tableau, thenhid ; Ri is a refuter for� as well; thus, it
is possible to use only refuters of this form for ground tableaux.

DEFINITION 36. A background reasonerR for a theoryT is a ground back-
ground reasonerfor T if, for all keys � � Form� for whichR is defined, all
formulae inR(�) are sentences, i.e. do not contain free variables.

Whether an expansion or a closure rule is to be applied depends on whether the
residueR = f�1; : : : ; �kg is empty or not. Ifk � 1, then the tableau is expanded.
The old branch is replaced byk new branches, one for each�i (since the�i are
implicitly disjunctively connected). The closure rule is applied if the residue is
empty (k = 0); it can be seen as a special case of the expansion rule: the old
branch is replaced by0 new branches, i.e. it is removed. The rule schemata are
shown in Table 4; in this and all following schematic representations of rules, the
symbol� is used to denote that a branch is closed if the rule is applied.

If the residueR is empty, the key isT -complementary and the branch it has
been taken from isT -closed. This is a straightforward extension of the closure
rule for tableaux without theory reasoning, where a branch is closed if it contains
complementary formulae� and:�, i.e. the;-complementary keyf�;:�g (there-
fore, the rule that a branch containing complementary formulae� and:� is closed
does not have to be considered separately).

DEFINITION 37 (Ground tableau proof.). Given a theoryT and a ground back-
ground reasonerR for T (Definition 36), aground tableau prooffor a first-order
sentence� 2 Form� consists of a sequence

ff:�gg = T0; T1; : : : ; Tn�1; Tn = ; (n � 0)

of tableaux such that, for1 � i � n, the tableauTi is constructed fromTi�1

1. by applying one of the expansion rules for ground tableaux from Table 3,
i.e. there is a branchB 2 Ti�1 and a formula� 2 B (that is not a literal)

EQUALITY AND OTHER THEORIES 209

t < t0

t0 < t00

t < t00

t < t
�

�

:�
�

Table 5. Expansion and closure rules for the theoryPO of partial orderings

such that

Ti = (Ti�1 n fBg)

[

8>><
>>:
f(B n f�g) [f�1; �2gg if � = �
f(B n f�g) [f�1g; (B n f�g) [f�2gg if � = �
fB [f1(s)gg if � = (x)
f(B n f�(x)g) [f�1(t)gg if � = �(x)

wheres 2 Term0
� is any ground term, andt 2 Term0

� is a ground term not
occurring inTi�1 nor inT ;

2. by applying the ground theory expansion rule, i.e. there is a branchB 2
Ti�1 and, for a key� � B, there is aT -refuterhid ; f�1; : : : ; �kgi (k � 1)
inR(�) such that

Ti = (Ti�1 n fBg) [fB [f�1g; : : : ; B [f�kgg ;

3. or by closing a branchB 2 Ti�1, i.e.Ti = Ti�1 n fBgwhereB isT -closed
(i.e. id 2 R(�) for a key� � B).

It is possible to describe a background reasoner using tableau rule schemata.
The reasoner from Example 32 then takes the form that is shown in Table 5.

Even without theory reasoning, the construction of a closed tableau is a highly
non-deterministic process, because at each step one is free to choose a branchB
of the tableau and a formula� 2 B for expansion. If� is a-formula, in addition,
a term has to be chosen that is substituted for the bound variable.

There are two ways for resolving the non-determinism (actual implementations
usually employ a combination of both): (1) fair strategies can be used such that,
for example, each formula will finally be used to expand each branch on which it
occurs. (2) Backtracking can be used; if a branch cannot be closed (observing a
limit on its length), other possibilities are tried; for example, other terms are used
in -rule applications. If no proof is found, the limit has to be increased (iterative
deepening).

The theory expansion rule makes things even worse, because it is highly non-
deterministic. In which way it has to be applied to be of any use, in particular
when and how often the rule is applied, and which types of keys and refuters are
used depends on the particular theory and is part of the domain knowledge (see
Section 5.3).

210 BERNHARD BECKERT

�
�1
�2

�
�1 �2

1(y)

wherey is a
free variable.

�
�1(f(x1; : : : ; xn))

wheref is a new Skolem func-
tion symbol, andx1; : : : ; xn
are the free variables in�.

Table 6. Tableau expansion rule schemata for free variable tableau

�1
...

�p
�1 � � � �k

whereh�; f�1; : : : ; �kgi (k � 1) is a
refuter for the keyf�1; : : : ; �pg, and
� is applied to the whole tableau.

�1
...

�p
�

where� is a refuter for the key
f�1; : : : ; �pg, and� is applied
to the whole tableau.

Table 7. Theory expansion and closure rules (free variable version)

3.3 Free Variable Semantic Tableaux

Using free variable quantifier rules is crucial for efficient implementation—even
more so if a theory has to be handled. They reduce the number of possibilities
to proceed at each step in the construction of a tableau proof and thus the size of
the search space. When-rules are applied, a new free variable is substituted for
the quantified variable instead of replacing it by a ground term, which has to be
‘guessed’. Free variables can later be instantiated ‘on demand’ when a tableau
branch is closed or the theory expansion rule is applied to expand a branch.

To preserve correctness, the schema for�-rules has to be changed as well: the
Skolem terms introduced now contain the free variables occurring in the�-formula
(the free variable rule schemata are shown in Table 6).

Again, there is both a theory expansion and a theory closure rule. The difference
to the ground version is that now there are free variables both in the tableau and
in the refuter (the formulae that are added). When theory reasoning is used for
expansion or for closing, the substitution� of a refuterh�;Ri has to be applied to
the whole tableau; the theory rule schemata are shown in Table 7.

In case there is a refuter� with an empty residue for a key taken from a branch,
that branch isT -closed under the substitution�, i.e. it is closed when� is applied
to the whole tableau.

It is often difficult to find a substitution� that instantiates the variables in a
tableauT such thatall branches ofT areT -closed. The problem is simplified (as
is usually done in practice) by closing the branches ofT one after the other: if
a substitution is found that closes a single branchB, it is applied (to the whole

EQUALITY AND OTHER THEORIES 211

tableau) to closeB before other branches are handled. This is not a restriction
because, if a substitution is known toT -close several branches, it can be applied
to close one of them; after that the other branches are closed under the empty
substitution.

DEFINITION 38 (Free variable tableau proof.). LetT be a theory and letR be
a background reasoner forT , a free variable tableau prooffor a first-order sen-
tence� consists of a sequence

ff:�gg = T0; T1; : : : ; Tn�1; Tn = ; (n � 0)

of tableaux such that, for1 � i � n, the tableauTi is constructed fromTi�1

1. by applying one of the free variable expansion rules from Table 6, that is,
there is a branchB 2 Ti�1 and a formula� 2 B (that is not a literal) such
that

Ti = (Ti�1 n fBg)

[

8>><
>>:
f(B n f�g) [f�1; �2gg if � = �
f(B n f�g) [f�1g; (B n f�g) [f�2gg if � = �
fB [f1(y)gg if � = (x)
f(B n f�(x)g) [f�1(f(x1; : : : ; xn))gg if � = �(x)

wherey 2 V is a new variable not occurring inTi�1 nor inT , f 2 F� is a
Skolem function symbol not occurring inTi�1, andx1; : : : ; xn are the free
variables in�;

2. by applying the free variable theory expansion rule, that is, there is a branch
B 2 Ti�1, a key� � B, and aT -refuterh�; f�1; : : : ; �kgi (k � 1) inR(�)
such that

Ti = (Ti�1 n fBg)� [fB� [f�1g; : : : ; B� [f�kgg ;

3. or by closing a branchB 2 Ti�1, that is,Ti = (Ti�1 n fBg)� where the
branchB is T -closed under�, i.e.� 2 R(�) for a key� � B.

3.4 Semantic Tableaux with Universal Formulae

Free variable semantic tableaux can be further improved by using the concept of
universal formulae[Beckert and H¨ahnle, 1992]: -formulae (in particular axioms
that extend the theory) have often to be used multiply in a tableau proof, with
different instantiations for the free variables they contain. An example is the axiom
(8x)(8y)((x < y) � (p(x) � p(y))), that extends the theory of partial orderings
by defining the predicate symbolp to be monotonous. The associativity axiom
(8x)(8y)(8z)((x � y) � z � x � (y � z)) is another typical example. Usually, it has

212 BERNHARD BECKERT

(8x)p(x)

:p(a) _ :p(b)

p(y)

:p(a) :p(b)

Figure 1. The advantage of using universal formulae

to be applied several times with different substitutions forx, y and z to prove
even very simple theorems from, for example, group theory. In semantic tableaux,
the-rule has to be applied repeatedly to generate several instances of the axiom
each with different free variables substituted forx, y and z. Free variables in
tableaux arenot implicitly universally quantified (as it is, for instance, the case
with variables in clauses when using a resolution calculus) but arerigid, which is
the reason why a substitution must be applied to all occurrences of a free variable
in the whole tableau.

Supposed a tableau branchB contains a formulap(x), and the expansion of
the tableau proceeds with creating new branches. Some of these branches con-
tain occurrences ofx; for closing the generated branches, the same substitution
for x has to be used on all of them. Figure 1 gives an example for the situation:
this tableau cannot be closed immediately as no single substitution closes both
branches. To find a proof, the-rule has to be applied again to create another
instance of(8x)p(x).

In particular situations, a logical consequence of the formulae already on the
tableau (in a sense made precise in Definition 39) may be that(8y)p(y) can be
added toB. This is trivially true in Figure 1. In such cases, different substitutions
for y can be used without destroying soundness of the calculus. The tableau in
Figure 1 then closes immediately. Recognizing such situations and exploiting them
allows to use more general closing substitutions, yields shorter tableau proofs, and
in most cases reduces the search space.

DEFINITION 39. Let T be a theory, and let� be a formula on a branchB
of a tableauT . Let T 0 be the tableau that results from adding(8x)� to B for
somex 2 V . The formula� is T -universalonB with respect tox if T j=T T 0,
whereT andT 0 are identified with the formulae that are the disjunctions of their
branches, respectively, and a branch is the conjunction of the formulae it contains.
LetUVar(�) � V denote the universal variables of�.2

2When the context is clear, a formula� which is universal on a branchB w.r.t. a variablex is just
referred to by ‘the universal formula�’, and the variablex by ‘the universal variablex’.

EQUALITY AND OTHER THEORIES 213

The above definition is an adaptation of the definition given in[Beckert and
Hähnle, 1998] to theory reasoning.

The problem of recognizing universal formulae is of course undecidable in gen-
eral. However, a wide and important class can be recognized quite easily (using
this class can already shorten tableau proofs exponentially): If tableaux are seen
as trees, a formula� on a branchB of a tableauT is (T -)universal w.r.t.x if all
branchesB0 of T are closed which contain an occurrence ofx that is not onB as
well; this holds in particular if the branchB contains all occurrences ofx in T .

Assume there is a sequence of tableau rule applications that introduces a vari-
ablex by a-rule application and does not contain a rule application distributing
x over different subbranches; then the above criterion is obviously satisfied and all
formulae that are generated by this sequence are universal w.r.t.x.

THEOREM 40. Given a theoryT , a formula� on a branchB of a tableauT is
T -universal w.r.t.x onB if in the construction ofT the formula� was added toB
by either

1. applying a-rule andx is the free variable that was introduced by that
application;

2. applying an�-, �- or -rule to a formula that isT -universal w.r.t.x onB;

3. applying a�-rule to a formula that is T -universal w.r.t.x on B, and
x does not occur in any formula except� that has been added to the tableau
by that�-rule application;

4. applying the theory expansion rule to a refuterf�1; : : : ; �kg for a key� � B
(i.e.� = �i for somei 2 f1; : : : ; kg), and all formulae in� areT -universal
w.r.t.x onB, andx does not occur in any of the�j for j 6= i.

The knowledge that formulae areT -universal w.r.t. variables they contain can
be taken advantage of by universally quantifying the formulae in a key w.r.t. (some
of) their universal variables. Similar to the ground and free variable cases, the
closure rule can be seen as a special case of the expansion rule. The new theory
rule schemata are shown in Table 8.

DEFINITION 41 (Universal formula version.). LetT be a theory, and letR be
a background reasoner forT . A universal formula tableau prooffor a first-order
sentence� consists of a sequence

ff:�gg = T0; T1; : : : ; Tn�1; Tn = ; (n � 0)

of tableaux such that, for1 � i � n, the tableauTi is constructed fromTi�1

1. by applying one of the free variable expansion rules from Table 6 (see
Definition 38 for a formal definition);

214 BERNHARD BECKERT

�1
...

�p
�1 � � � �k

whereh�; f�1; : : : ; �kgi (k � 1)
is a refuter for the key
f(8xi1) � � � (8ximi

)�i j 1 � i � pg,
the formula�i is T -universal
w.r.t. the variablesxi1; : : : ; x

i
mi

;
and� is applied to the whole
tableau.

�1
...

�p
�

where� is a refuter for the key
f(8xi1) � � � (8ximi

)�i j 1 � i � pg,
the formula�i is T -universal
w.r.t. the variablesxi1; : : : ; x

i
mi

;
and� is applied to the whole
tableau.

Table 8. Theory expansion and closure rules (universal formula version)

2. by applying the universal formula theory expansion rule to a branch
B 2 Ti�1, that is,

Ti = (Ti�1 n fBg)� [fB� [f�1g; : : : ; B� [f�kgg

whereh�; f�1; : : : ; �kgi is aT -refuter inR(�) for a key

� = f(8xi1) � � � (8ximi
)�i j 1 � i � pg

such that

(a) �1; : : : ; �p 2 B,

(b) fxi1; : : : ; ximi
g � UVar(�i) for 1 � i � p,

3. or by closing a branchB 2 Ti�1, that is,

Ti = (Ti�1 n fBg)�

where the branchB is T -closed under�, i.e.� 2 R(�) for a key

� = f(8xi1) � � � (8ximi
)�i j 1 � i � pg

such that

(a) �1; : : : ; �p 2 B,

(b) fxi1; : : : ; ximi
g � UVar(�i) for 1 � i � p.

Although it is easier to add theory reasoning to the ground version of tableau,
to prove even simple theorems, free variable tableaux have to be used. These
are sufficient for simple theories. If, however, finding a refuter requires complex

EQUALITY AND OTHER THEORIES 215

deductions where the formulae both in the key and in the theory have to be used
multiply with different instantiations, then universal formula tableaux have to be
used (free variable tableaux are a special case of universal formula tableaux),

The following example illustrates the advantage of using the universal formula
expansion rule as compared to the free variable rule:

EXAMPLE 42. Consider again the tableauT shown in Figure 1. The substitution
� = fy 7! ag is a refute for the keyfp(y);:p(a)g, which is taken from the left
branch ofT . If � is used to close the left branch, then the variabley is instantiated
with a in the whole tableauT . However, if the formulap(y) is recognized to be
universal w.r.t.y, then the keyf(8y)p(y);:p(a)g can be used instead, for which
the empty substitutionid is a refuter; thus using the universal formula closure rule,
the left branch can be closed without instantiatingy. Then the right branch can be
closed, too, without generating a second free variable instancep(y0) of (8x)p(x).

Using the universal formula technique is even more important in situations like
the following:

EXAMPLE 43. Supposed the equalityf(x) � x and the literalsp(f(a); f(b))
and:p(a; b) areE-universal w.r.t.x on a tableau branch. In that case, the key
f(8x)(f(x) � x); p(f(a); f(b)); p(a; b)g can be used, for whichid is a refuter.

In free variable tableaux, the keyf(f(x) � x); p(f(a); f(b)); p(a; b)g has to
be used, which allows to derive the refutershfx 7! ag; ff(b) � bgi andhfx 7! bg;
ff(a) � agi only; a refuter with an empty residue, which closes the branch im-
mediately, cannot be deduced anymore.

4 SOUNDNESS

In this section, soundness of semantic tableaux with theory reasoning is proven for
the universal formula version. Soundness of the free variable version follows as a
corollary because free variable tableaux are a special case of universal formula ta-
bleaux. For the ground version, soundness can be proven completely analogously.

First, satisfiability of tableaux is defined (Definition 44), then it is proven that
satisfiability is preserved in a sequence of tableaux forming a tableau proof.

DEFINITION 44. Given a theoryT , a tableauT is T -satisfiableif there is aT -
structureM such that, for every variable assignment�, there is a branchB 2 T
with

(M; �) j= B :

LEMMA 45. If a tableauT is T -satisfiable, thenT� is T -satisfiable for all sub-
stitutions� 2 Subst��.

Proof. By hypothesis there is aT -structureM = hD; Ii such that, for all variable
assignments�, there is a branchB� 2 T with (M; �) j= B� . We claim that, for

216 BERNHARD BECKERT

the same structureM , we have also for all variable assignments� that there is a
branchB with (M; �) j= B�.

To prove the above claim, we consider a given variable assignment�. Let the
variable assignment� be defined by

�(x) = (x�)I;� for all x 2 V :

That implies for all termst 2 Term�, and in particular for all termst occurring
in B� ,

(t�)I;� = tI;�

and therefore
valI;�(B��) = valI;�(B�) = true :

�

LEMMA 46. Given a universal formula tableau proof(Tj)0�j�n, if the tableauTi
(0 � i < n) is T -satisfiable, then the tableauTi+1 is T -satisfiable as well.

Proof. We use the notation from Definition 41. LetB be the branch inTi to
which one of the classical expansion rules or the theory expansion rule has been
applied or that has been removed by applying the theory closure rule to derive the
tableauTi+1. LetM = hD; Ii be aT -structure satisfyingTi.
�-rule: Let � be an arbitrary variable assignment. There has to be a branchB0

in Ti such that(M; �) j= B0. If B0 is different fromB thenB0 2 Ti+1 and we are
through.

If, on the other hand,B0 = B, then(M; �) j= B. Let � be the formula inB
to which the�-rule has been applied. By the property of�-formulae,(M; �) j= �
entails(M; �) j= �1 or (M; �) j= �2; and, therefore,(M; �) j= (B n f�g) [f�1g
or (M; �) j= (B n f�g) [f�2g. This concludes the proof for the case of a�-
rule application, because(B n f�g) [f�1g and (B n f�g) [f�2g are branches
in Ti+1.
�- and-rule: Similar to the�-rule.
�-rule: Let � be the�-formula to which the�-rule is applied to deriveTi+1

fromTi; �1(f(x1; : : : ; xm)) is the formula added to the branch (f is a new Skolem
function symbol andx1; : : : ; xm are the free variables in�). We define a structure
M 0 = hD; I 0i that is identical toM , except that the new function symbolf is
interpreted byI 0 in the following way: For every setd1; : : : ; dm of elements from
the domainD, if there is an elementd such that(M; �) j= �1(x) where�(xj) = dj
(1 � j � m) and�(x) = d, thenf I

0

(d1; : : : ; dm) = d. If there are several such el-
ementsd, one of them may be chosen; and if there is no such element, an arbitrary
element from the domain is chosen. It follows from this construction that for all
variable assignments�: if (M; �) j= �, then(M 0; �) j= �1(f(x1; : : : ; xm)). Since
f does not occur inT ,M 0 is aT -structure.

We proceed to show thatM 0 satisfiesTi+1. Let � be an arbitrary variable as-
signment. There has to be a branchB0 in Ti with (M; �) j= B0. If B0 is different

EQUALITY AND OTHER THEORIES 217

fromB, then we are done because(M 0; �) j= B0 (asf does not occur inB0) and
B0 2 Ti+1.

In the interesting case where� 2 B0 = B, we have(M; �) j= � which entails
(M 0; �) j= �1(f(x1; : : : ; xm)). Thus,(B n f�g) [f�1(f(x1; : : : ; xm))g, which is
a branch inTi+1, is satisfied byM 0.

Theory Expansion Rule:Let h�; f�1; : : : ; �kgi be the refuter used to expand
the tableau. SinceTi is T -satisfiable, the tableauTi� is T -satisfiable as well
(Lemma 45). LetM be aT -structure satisfyingTi�, and let� be an arbitrary
variable assignment. There has to be a branchB0 2 Ti� with (M; �) j= B0. Again,
the only interesting case is whereB0 = B�, andB� is the only branch inTi�
satisfied by(M; �).

By definition of universal formulae, that impliesB j=�T (8xj1) � � � (8xjmj
)�j

(1 � j � p) and, thus,B� j=�
T

(8xj1) � � � (8xjmj
)�j� (Lemma 9), which implies

(M; �) j= �� where� = f(8xj1) � � � (8xjmj
)�j j 1 � j � pg, as (M; �) j= B�.

Becauseh�; f�1; : : : ; �kgi is a refuter for� and, thus,�� j=�T �1 _ : : : _ �k, we
have(M; �) j= �j for somej 2 f1; : : : ; kg. This, finally, implies thatM satisfies
the branchB� [f�jg in Ti+1.

Theory Closure Rule:In the same way as in the case of the theory expansion
rule, we conclude that(M; �) j= ��. But now this leads to a contradiction: be-
cause the residue is empty,valI;�(��) = falseby definition. Thus the assumption
thatB0 = B� has to be wrong, and the branchB� can be removed from the ta-
bleau. �

Based on this lemma, soundness of semantic tableaux with theory reasoning
can easily be proven:

THEOREM 47. If there is a universal formula tableau proof

ff:�gg = T0; T1; : : : ; Tn�1; Tn = ;

for a sentence� 2 Form� (Definition 41), then� is aT -tautology.

Proof. None of the tableaux in the sequence which the tableau proof consists of
can beT -satisfiable, otherwise the empty tableauTn = ; had to beT -satisfiable
as well (according to Lemma 46); this, however, is impossible because the empty
tableau has no branches.

Thus, the first tableauff:�gg in the sequence isT -unsatisfiable, i.e.:� is
T -unsatisfiable, which is equivalent to� being aT -tautology. �

5 COMPLETENESS

5.1 Complete Background Reasoners

The most important feature of a background reasoner is completeness—besides
soundness which is part of the definition of background reasoners. We define a

218 BERNHARD BECKERT

background reasoner to be complete if its combination with the foreground rea-
soner leads to a complete calculus.

DEFINITION 48. A (ground) background reasoner for a theoryT is

� acomplete groundbackground reasoner forT if, for everyT -tautology�, a
ground tableau proof (Definition 37) can be built usingR.

� a complete free variablebackground reasoner forT if, for everyT -tautolo-
gy �, a free variable tableau proof (Definition 38) can be built usingR.

� a complete universal formulabackground reasoner forT if, for every T -
tautology�, a universal formula tableau proof (Definition 41) can be built
usingR.

Because free variable tableaux are a special case of universal formula tableaux,
a complete universal variable background reasoner has to be a complete free vari-
able background reasoner as well.

The existence of complete background reasoners is trivial, because an oracle-
like background reasoner that detects all kinds of inconsistencies (and thus does
all the work) is complete for all versions of tableau:

THEOREM 49. LetT be a theory. If a background reasonerR satisfies the con-
dition:

id 2 R(f�g)
for all T -unsatisfiable sentences� 2 Form�, thenR is a complete ground, free
variable, and universal variable background reasoner.

Proof. If � is a T -tautology, then its negation:� is T -unsatisfiable and thus
id 2 R(f:�g). By applying the theory closure rule using this refuter, the empty
tableauT1 = ; can be derived from the initial tableauT0 = ff:�gg. �

This completeness result is only of theoretical value. In practice, theory reason-
ers are needed that, on the one hand, lead to short tableau proofs and, on the other
hand, can be computed easily (i.e. fast and at low cost). Of course, there is a trade
off between these two goals.

There is a complete background reasoner for a theoryT such thatR(�) is enu-
merable for all keys� if and only if the theoryT is axioamatizable. Thus, it is not
possible to implement a complete background reasoner for a non-axiomatizable
theory.

5.2 Completeness Criteria

General completeness criteria that work for all theories such as ‘a background rea-
soner that computes all existing refuters is complete’ are not useful in practice. For

EQUALITY AND OTHER THEORIES 219

many theories, and in particular for equality, highly specialized background rea-
soners have to be used to build an efficient prover. These exploit domain knowl-
edge to restrict the number of refuters (and thus the search space); domain knowl-
edge has to be used to prove such background reasoners to be complete.

Therefore, the completeness criteria presented in the following refer to the se-
mantics of the particular theory, and there is no uniform way to prove that a back-
ground reasoner satisfies such a criterion. Nevertheless, the criteria give some
insight in what has to be proven to show completeness of a background reasoner.

Fairness of the Foreground Reasoner

First, a characterization of fair tableau construction rules (i.e. fairness of the fore-
ground reasoner) is given for the ground version. This notion is used in the proof
that a background reasoner that satisfies a completeness criterion can be combined
with a fair foreground reasoner to form a complete calculus.

For the multi-set representation of tableaux, the notion of fair tableau construc-
tion is somewhat more difficult to formalize than for the tree representation, but
this has no effect on which construction rules are fair.

The condition for�-, �-, and�-formulae is that the respective tableau rule is
applied sooner or later. The-rule has to be applied to each-formula infinitely
often, and—this is specific for the ground version—each ground term has to be
used for one of these applications. The background reasoner has to be called with
all keys for which it is defined and all refuters have to be used sooner or later.

DEFINITION 50. Given a ground background reasonerR, aground tableau con-
struction rulefor R is a rule that, when supplied with a formula�, deterministi-
cally specifies in which way a sequence(Ti)i�0 of ground tableaux starting from
T0 = ff:�gg is to be constructed. The rule isfair if for all �:

1. If there is a branchB that occurs in all tableauxTi, i > n for somen � 0,
thenB is exhausted, i.e. no expansion rule or closure rule can be applied
toB.

2. For all infinite sequences(Bi)i�0 of branches such thatBi 2 Ti and either
Bi+1 = Bi or the tableauTi+1 has been constructed fromTi by applying an
expansion rule toBi andBi+1 is one of the resulting new branches inTi+1
(i � 0):

(a) for all�-, �-, and�-formulae� 2 Bi (i � 0), there is aj � i such that
the tableauTj+1 has been constructed fromTj by applying the�-, �-,
or �-rule to� 2 Bj .

(b) for all -formulae� 2 Bi (i � 0) and all termst 2 Term0
�, there is

a j � 0 such that the tableauTj+1 has been constructed fromTj by
applying the-rule to� 2 Bj andt is the ground term that has been
substituted for the universally quantified variable in�.

220 BERNHARD BECKERT

(c) for all keys� � Bi (i � 0) such thatR(�) is defined and all refuters
hid ; Ri 2 R(�), there is aj � 0 such that the tableauTj+1 has been
constructed fromTj by applying the theory expansion or the theory
closure rule toBj using the key� � Bj and the refuterhid ; Ri (if
the background reasoner is monotonic, a key�0 � � may be used as
well).

A Completeness Criterion for Ground Background Reasoners

The criterion we are going to prove is that a background reasoner is complete if, for
all T -unsatisfiable downward saturated sets�, it can either derive a residue con-
sisting of new formulae that are not yet in�, or it can detect theT -unsatisfiability
of �.

DEFINITION 51. A set� � Form� is downward saturated if the following con-
ditions hold for all formulae� 2 � that are not a literal:

1. if � = �, then�1; �2 2 �;

2. if � = �, then�1 2 � or �2 2 �;

3. if � = �(x), then�1(t) 2 � for some termt 2 Term0
�;

4. if � = (x), then1(t) 2 � for all termst 2 Term0
�.

THEOREM 52. A ground background reasonerR for a theoryT is complete
if, for all (finite or infinite)T -unsatisfiable downward saturated sets� � Form�

that do not contain free variables:

1. there is a key� � � such thatid 2 R(�); or

2. there is a key� � � such that there is a refuterhid ; f�1; : : : ; �kgi in R(�)
with f�1; : : : ; �kg \ � = ; (k � 1).

Proof. LetR be a background reasoner satisfying the criterion of the theorem, and
let� be aT -tautology. We prove that, usingR and an arbitrary fair ground tableau
construction rule (Definition 50), a tableau proof for� is constructed. Let(Ti)i�0
be the sequence of ground tableaux that is constructed according to the fair rule
starting fromT0 = ff:�gg.

Supposed(Ti)i�0 is not a tableau proof. If the sequence is finite, then there
has to be at least one finite exhausted branchB� in the final tableauTn. If the
sequence is infinite, then there is a sequence(Bi)i�0, Bi 2 Ti, of branches as
described in Condition 2 in the definition of fairness (Definition 50). In that
case,B� =

S
i�0 Bi is the union of these branches. We proceed to prove that

the setB� is T -satisfiable. Because of the fairness conditions,B� is downward
saturated. If it wereT -unsatisfiable, then there had to be a key� � B� such that

EQUALITY AND OTHER THEORIES 221

id 2 R(�) or such that there is a refuterhid ; f�1; : : : ; �kgi 2 R(�) (k � 1) where
f�1; : : : ; �kg \ B� = ;. Because keys are finite, there then had to be ani � 0 such
thatBi � �; thus, for somej � 0, the tableauTj+1 had to be constructed fromTj
applying the theory closure rule toBj—which is according to the construction of
the sequence(Bi)i�0 not the case—, orTj+1 had to be constructed fromTj apply-
ing the theory rule toBj such that�m 2 Bj+1 for somem 2 f1; : : : ; kg—which
is impossible becausef�1; : : : ; �kg \B� = ;.

We have shownB� to beT -satisfiable. Because:� 2 B�, :� is T -satisfi-
able as well. This, however, is a contradiction to� being aT -tautology, and the
assumption that(Ti)i�0 is not a tableau proof has to be wrong. �

The criterion can be simplified if the residues a background reasoner computes
for keys consisting of literals consist of literals as well. This is a reasonable as-
sumption, which is usually satisfied in practice (and is true for all total background
reasoners).

COROLLARY 53. A ground background reasonerR for a theoryT is complete
if, for all keys� � Lit� for whichR is defined,R � Lit� for all h�;Ri 2 R(�),
and for all (finite or infinite)T -unsatisfiable sets� � Form� of literals that do
not contain free variables:

1. there is a key� � � such thatid 2 R(�); or

2. there is a key� � � such that there is a refuterhid ; f�; : : : ; �kgi in R(�)
with f�1; : : : ; �kg \ � = ; (k � 1).

Proof. Let � be a downward saturatedT -unsatisfiable set of formulae and define
�0 = � \ Lit� to be the set of literals in�. Then�0 is T -unsatisfiable, because a
T -structure satisfying�0 would satisfy� as well.

Thus, there is a key� � �0 � � such thatid 2 R(�)—in which case we are
done—, or there is a key� � �0 and a refuterhid ; f�1; : : : ; �kgi 2 R(�) with
f�1; : : : ; �kg \ �0 = ;. In the latter case, the refuter satisfies the condition
f�1; : : : ; �kg \ � = ;, because by assumptionf�1; : : : ; �kg � Lit�. �

There is a strong relation between the criterion from Theorem 52 and the defini-
tion of Hintikka sets for theory reasoning: similar to classical first-order Hintikka
sets (see Section 2.3 in the chapter by Fitting), any set is satisfiable that does
not contain ‘obvious’ inconsistencies (inconsistencies that can be detected by the
background reasoner) and is downward saturated (the background reasoner cannot
add new formulae).

EXAMPLE 54. The complete background reasoner for the theoryOP of partial
orderings from Example 32 can be turned into a definition of Hintikka sets forOP :
A set� that is downward saturated and, in addition, satisfies the following condi-
tions isOP-satisfiable:

222 BERNHARD BECKERT

1. For all termst; t0; t00 2 Term�:
if (t < t0); (t0 < t00) 2 �, then(t < t00) 2 �.

2. There is no literal of the form(t < t) in �.

3. There are no literals�;:� in �.

A Completeness Criterion for Free Variable Background Reasoners

The criterion for free variable background reasoners is based on lifting complete-
ness of a ground background reasoner. If the ground background reasoner com-
putes a refuterhid ; Ri for a ground instance�� of a key�, then, to be complete,
the free variable background reasoner has to compute a refuter for� that is more
general thanh�; Ri.
THEOREM 55. LetR be a free variable background reasoner for a theoryT ;
R is complete if there is a complete ground background reasonerRg for T such
that, for all keys� � Form�, all ground substitutions� , and all refutershid ; Rgi
inRg(��), there is a refuterh�;Ri 2 R(�) and a substitution� 0 with

1. � = � 0 � �,

2. R� 0 = Rg.

Proof. Let the sentence� be aT -tautology. SinceRg is a complete ground
background reasoner, usingRg a ground tableau proof

ff:�gg = T g0 ; : : : ; T
g
n = ;

can be constructed, where the new terms introduced by�-rule applications have
been chosen in an arbitrary way (see below).

By induction we prove that there is a free variable tableau proof

ff:�gg = T0; : : : ; Tn = ;

such thatTi�i = T gi for substitutions�i 2 Subst�� (0 � i � n).
i = 0: Since� is a sentence,T0�0 = T g0 for �0 = id.
i! i+ 1: Depending on howT gi+1 has been derived fromT gi , there are the

following subcases:
If T gi+1 has been derived fromT gi by applying an expansion rule to a formula�g

on a branchBg
i 2 T gi , then there has to be a formula�i on a branchBi 2 Ti such

that�i�i = �gi andBi�i = Bg
i . If an �- or �-rule has been applied, then apply

the same rule to�i to deriveTi+1 from Ti and set�i+1 = �i. If a -rule has been
applied and the termt has been substituted for the quantified variable in the ground
tableau, then deriveTi+1 fromTi by applying a-rule to�i and substituting a new
free variablex for the quantified variable; set�i+1 = �i [fx 7! tg. If a �-rule has

EQUALITY AND OTHER THEORIES 223

been applied, then apply the free variable�-rule to �i to deriveTi+1 from Ti
and set�i+1 = �i. In addition, the new ground term introduced in the ground
tableau—that we are free to choose as long as it does not occur inTi—shall be
f(x1; : : : ; xn)�i wheref(x1; : : : ; xn) is the Skolem term that has been substituted
for the existentially quantified variable in the free variable tableau.

If T gi+1 has been derived fromT gi by applying the theory closure or the theory
expansion rule using a key�g taken from a branchBg

i 2 T gi and a refuterid or
hid ; Rgi in Rg(�g), then there has to be a key�i on a branchBi 2 Ti such that
�i�i = �g

i andBi�i = Bg
i . Thus. there is a refuterh�;Ri 2 R(�) and a substi-

tution � 0 such that�i = � 0 � � andR� 0 = Rg . In that case, deriveTi+1 from Ti
by applying the theory expansion or closure rule using the key�i and the refuter
h�;Ri, and set�i+1 = � 0. �

EXAMPLE 56. The criterion from Theorem 55 can be used to prove complete-
ness of the free variable background reasonerR for the theoryOP of partial or-
derings that satisfies the following conditions. The proof is based on the complete-
ness of the ground background reasoner forOP from Example 32. The conditions
forR are:

1. For all termss1; t; t0; s2 2 Term� wheret andt0 are unifiable:
if (s1 < t); (t0 < s2) 2 �, then h�; f(s1 < s2)�gi 2 R(�) where� is a
most general unifier (MGU) oft andt0.

2. For all termst; t0 2 Term� that are unifiable:
if (t < t0) 2 �, then� 2 R(�) where� is an MGU oft andt0.

3. For all atoms�; �0 2 Form� that are unifiable:
If �;:�0 2 �, then� 2 R(�) where� is an MGU of� and�0.

In the ground case, a tableau proof can be constructed deterministically us-
ing a fair tableau construction rule. In the free variable case, however, there are
additional choice points because there may be refuters with incompatible substi-
tutions. Thus lifting the notion of fairness to the free variable case such that no
backtracking at all is needed to construct a tableau proof is very difficult (though
not impossible).

A Completeness Criterion for Universal Formula Background Reasoners

A criterion for the completeness of universal formula background reasoners can be
defined based on completeness of free variable background reasoners (the proof of
the theorem is similar to that of Thereom 55).

DEFINITION 57. Let� � Form� be a key, and let(8x1) � � � (8xk)� be a univer-
sally quantified literal in�. If �0 is constructed from� by replacing the variables
x1; : : : ; xk by free variablesy1; : : : ; yk that do not occur in�, then�0 is a free
variable instanceof (8x1) � � � (8xk)� (w.r.t. �).

224 BERNHARD BECKERT

THEOREM 58. Let R be a universal formula background reasoner for a the-
oryT ; R is complete if there is a complete free variable background reasonerRfv

for T such that, for all keys� � Form�, the following holds:
Let the key�fv be constructed from� by replacing all formulae� 2 � of the

form (8x1) � � � (8xn) by a free variable instance of�, and letF be the set
of all the free variables occurring in�fv but not in �. Then, for all refuters
h�fv ; Rfv i 2 Rfv (�fv), there is a refuterh�;Ri 2 R(�) where

1. �fv j(V nF) = �,

2. Rfv = R(�fv jF).

5.3 Completeness Preserving Refinements

Restrictions on Keys

In this section, additional refinements are discussed that are indispensable for an
efficient implementation of theory reasoning.

An important simplification usually used in implementations is to impose the
restriction on keys that they must consist of literals (universally quantified liter-
als in the case of universal formula tableau). The proof for Theorem 52 shows
that completeness is preserved if this restriction is combined with any complete
background reasoner.

COROLLARY 59. LetR be a complete ground, free variable, or universal for-
mula background reasoner. Then the restrictionR0 ofR to keys� that consist of
(universally quantified) literals is complete (R0 is undefined for other keys).

The set of keys that have to be considered can be further restricted. The back-
ground reasoner has only to be defined for keys that contain a pair of complemen-
tary literals or at least one formula in which a symbol occurs that is defined by the
theory:

DEFINITION 60. A set of function or predicate symbols isdefinedby a theoryT
if for all sets� of formulae that do not contain these symbols:� is satisfiable if
and only if� is T -satisfiable.

For example, the equality theoryE defines the equality predicate�; the theory
of partial orderings defines the predicate symbol<.

Similarly, only keys have to be considered that contain a pair of complementary
literals or consist of formulae thatall have a predicate symbol in common with
the theory (which may or may not be defined by the theory). Thus, for the theory
OP , all formulae in keys have to contain the predicate symbol< as it is the only
predicate symbol inOP . For the equality theoryE , however, this restriction is
useless becauseE contains all predicate symbols.

EQUALITY AND OTHER THEORIES 225

COROLLARY 61. LetR be a complete ground, free variable, or universal for-
mula background reasoner for a theoryT . Then the restrictionR0 ofR to keys�
that

1. (a) contain at least one occurrence of a function or predicate symbol de-
fined byT , and

(b) consist of formulae that all have at least one predicate symbol in com-
mon withT ,

2. or contain a pair� and: (resp.(8x)�) and(8y):), where� and are
unifiable,

is complete (R0 is undefined for other keys).

Most General Refuters

There is another important refinement that can be combined with all complete
background reasoners: completeness is preserved if only most general refuters are
computed (this is a corollary to Theorem 55). The subsumption relation on refuters
may or may not take the theoryT into account:

DEFINITION 62. LetT be a theory; and letW � V be a set of variables. The
subsumption relations�W and�W

T
on refuters are defined by:

� h�;Ri �W h�0; R0i if there is a substitution� 2 Subst�� such that

1. �0(x) = �(x)� for all x 2W , and

2. R0� � R.

� h�;Ri �W

T
h�0; R0i if there is a refuterh�00; R00i such that

1. h�;Ri �W h�00; R00i, and

2. ��00 [fWR00g j=�T ��0 [fWR0g for all formula sets� � Form� (in-
cluding, in particular, the empty set).

In addition, we use the abbreviations� = �V and�T = �V

T whereV is the set
of all variables.

The setW contains the ‘relevant’ variables, includingat leastthose occurring
in the two refuters that are compared. If, for example, the theory expansion rule
is used to extend a tableau branch, thenW contains all free variables occurring in
the tableau. It is of advantage to keep the setW as small as possible; but, if the
context is not known, the setW = V of all variables has to be used.

The intuitive meaning ofh�;Ri �W

T
h�0; R0i is that the effects of using the re-

futerh�0; R0i can be simulated by first applying a substitution� and then using the
resulting refuterh�00; R00i of which the refuterh�0; R0i is a logical consequence.

226 BERNHARD BECKERT

EXAMPLE 63. The refuterhid ; fp(x)gi subsumeshfx 7! ag; fp(a)gi w.r.t. the
subsumption relation�W (and thus w.r.t.�W

T) for all variable setsW ; however, it
subsumes the refuterhid ; fp(a)gi only if x 62W .

The refuterh�; f�gi is more general thanh�; f�; gi w.r.t. all subsumption re-
lations, i.e. only refuters with a minimal residue are most general.

Let T be the equational theoryE [fa � bg. Thenhid ; p(a)i and hid ; p(b)i
resp.fx 7! ag andfx 7! bg subsume each other w.r.t.�T .

COROLLARY 64. LetR be a complete free variable or universal formula back-
ground reasoner for a theoryT . Then a background reasonerR0 is complete as
well if, for all keys� and refutersh�;Ri 2 R(�), there is a refuterh�0; R0i in
R0(�) that subsumesh�;Ri w.r.t.� or �T (Definition 62).

If the subsumption relations�W and�W

T
are used, the context in which a back-

ground reasoner is used has to be taken into consideration:

THEOREM 65. Let R be a complete free variable or universal formula back-
ground reasoner for a theoryT . Then, for everyT -tautology�, a free variable
tableau proof resp. a universal formula tableau proof can be built usingR ob-
serving the restriction that eachT -refuter that is used in a theory expansion or
closure rule application is minimal inR(�) w.r.t.�W or �W

T
, where� is the key

that has been chosen for that rule application andW is the set of free variables in
the tableau to which the rule is applied.

The number of refuters that have to be considered is closely related to the num-
ber of choice points when the theory expansion or closure rule is applied to a
tableau. Therefore, it is desirable to compute aminimalset of refuters. Neverthe-
less, it is often not useful to ensure minimality since there is a trade-off between
the gain of computing a minimal set and the extra cost for checking minimality
and removing subsumed refuters. While it is relatively easy to decide whether
h�;Ri �W h�0; R0i, it can (depending on the theoryT) be difficult to decide and
is in general undecidable whetherh�;Ri �W

T h�0; R0i.

Other Search Space Restrictions

There are other useful restrictions that, however, cannot be imposed on an arbitrary
background reasoner without destroying completeness. Nevertheless, for every
theory, there are background reasoners that have at least some of the following
features:

� To avoid branching when the theory expansion rule is applied, only refuters
h�;Ri are computed where the residue is either empty or a singleton.

� Only total refuters are computed, i.e. the residues are empty.

� The sets of refuters computed for a key are restricted to be

– finite (in which case their computation terminates);

EQUALITY AND OTHER THEORIES 227

t � s
�[t]
�[s]

s � t
�[t]
�[s]

:(t � t)
�

�

:�
�

Table 9. Jeffrey’s equality theory expansion and closure rules

– empty or a singleton (then theory expansion or closure rules are—at
least for a single key—deterministic);

There is, of course, a trade-off between these desirable features, in particular
between total and partial theory reasoning (see Section 2.5).

6 PARTIAL EQUALITY REASONING

6.1 Partial Equality Reasoning for Ground Tableaux

Virtually all approaches to handling equality can be regarded as a special case of
the general methods for theory reasoning in semantic tableaux. Exception are, for
example, the method ofequality elimination[Degtyarev and Voronkov, 1996] and
applying transformations from first-order logic with equality into first-order logic
without equality to the input formulae[Brand, 1975; Bachmairet al., 1997] (see
Section 9).

The first methods for adding equality to the ground version of semantic tableaux
have been developed in the 1960s[Jeffrey, 1967; Popplestone, 1967], following
work by S. Kanger on how to add equality to sequent calculi[Kanger, 1963].
R. Jeffrey introduced the additional tableau expansion and closure rules shown in
Table 9 (i.e. a partial reasoning method); a similar set of rules has been described
by Z. Lis in [1960]. If a branchB contains a formula�[t] and an equalityt � s or
s � t that can be ‘applied’ to�[t] to derive a formula�[s] (which is constructed
by substituting one occurrence oft in �[t] by s), then�[s] may be added toB.

There are two closure rules. The first one is the usual closure rule for ground
tableaux with and without theory reasoning: a branchB is closed if there are
formulae� and:� in B. The second one is an additional equality theory closure
rule: a branch is closed if it contains a formula of the form:(t � t).
THEOREM 66 (Jeffrey, 1967).A ground background reasonerR for the theoryE
of equality is complete if it satisfies the following conditions:

1. For all termst; s 2 Term0
� and sentences� 2 Form�:

if �[t]; (t � s) 2 � or �[t]; (s � t) 2 �, thenhid ; f�[s]gi 2 R(�).

2. For all termst 2 Term0
�: if :(t � t) 2 �, thenid 2 R(�).

3. For all sentences� 2 Form�: if �;:� 2 �, thenid 2 R(�).

228 BERNHARD BECKERT

(1) a � b (1) a � b (1) a � b
(2) p(a; a) (2) p(a; a) (2) p(a; a)
(3) :p(b; b) (3) :p(b; b) (3) :p(b; b)

(4) p(a; b) (4) p(a; b)
(5) p(b; b)

�

Figure 2. The application of Jeffrey’s additional rules to expand and close a tableau
branch (Example 67)

EXAMPLE 67. Figure 2 shows an example for the application of Jeffrey’s equal-
ity expansion and closure rules: The equality (1) is applied to the formula (2) to
derive formula (4) and to (4) to derive (5). The branch is closed by the comple-
mentary formulae (3) and (5). Note that it is not possible to derivep(b; b) in a
single step.

The background reasoner is still complete if the formula� to which an equality
is applied is restricted to be (a) an inequality:(s � t), or (b) a literalp(t1; : : : ; tn)
or:p(t1; : : : ; tn) wherep 6= �; i.e. equalities do not have to be applied to complex
formulae or to equalities.

Jeffrey’s rules resemble paramodulation[Robinson and Wos, 1969] (see[Sny-
der, 1991] for an overview on various techniques for improving paramodulation).

Besides being based on the ground version of tableaux, the new expansion rules
have a major disadvantage: they are symmetrical and their application is com-
pletely unrestricted. This leads to much non-determinism and a huge search space;
an enormous number of irrelevant formulae (residues) can be derived. If, for ex-
ample, a branchB contains the formulaef(a) � a andp(a), then all the formulae
p(f(a)); p(f(f(a))); : : : can be added toB.

The rules presented by S. Reeves[1987] (see Table 10) generate a smaller
search space. They are the tableau counterpart of RUE-resolution[Digricoli and
Harrison, 1986] and are more goal-directed than Jeffrey’s expansion rules: only
literals that are potentially complementary are used for expansion. Like RUE-
resolution, the rules are based upon the following fact: If anE-structureM sat-
isfies the inequality:(f(a1; : : : ; ak) � f(b1; : : : ; bk)) or it satisfies the formulae
p(a1; : : : ; ak) and:p(b1; : : : ; bk), then at least one of the inequalities

:(a1 � b1); : : : ;:(ak � bk)

is satisfied byM . In addition, a rule is needed that implements the symmetry of
equality, i.e. that allows to deduces � t from t � s. With these equality theory
expansion rules, it is sufficient to use the same closure rules as in Theorem 66:

THEOREM 68 (Reeves, 1987).If a ground background reasonerR for the the-

EQUALITY AND OTHER THEORIES 229

p(t1; : : : ; tk)

:p(s1; : : : ; sk)
:(t1 � s1) � � � :(tk � sk)

:(f(t1; : : : ; tk) � f(s1; : : : ; sk))
:(t1 � s1) � � � :(tk � sk)

t � s
s � t

:(t � t)
�

�

:�
�

Table 10. Reeves’ equality expansion and closure rules

(1) a � b

(2) p(a; a)

(3) :p(b; b)

(4) :(a � b) (5) :(a � b)
� �

Figure 3. Applying Reeves’s equality expansion rule (Example 69)

ory E of equality satisfies the following conditions, it is complete:

1. For all termst = f(t1; : : : ; tk) ands = f(s1; : : : ; sk) (k � 1):
if :(t � s) 2 �, thenhid ; f:(s1 � t1); : : : ;:(sk � tk)gi 2 R(�).

2. For all literals = p(t1; : : : ; tk) and 0 = :p(s1; : : : ; sk) (k � 1):
if ; 0 2 �, thenhid ; f:(s1 � t1); : : : ;:(sk � tk)gi 2 R(�).

3. For all termss; t 2 Term0
�: if (s � t) 2 �, thenhid; ft � sgi 2 R(�).

4. For all termst 2 Term0
�: if :(t � t) 2 �, thenid 2 R(�).

5. For all literals� 2 Lit�: if �;:� 2 �, thenid 2 R(�).

EXAMPLE 69. Figure 3 shows the application of Reeves’ rule to expand and
close the same tableau branch as in Figure 2: It is applied to the atomic formulae
(2) and (3) to generate the inequalities (4) and (5). The branches are closed by the
formulae (1) and (4) and (1) and (5), respectively.

Reeves’ approach, however, can lead to heavy branching, because the new ex-
pansion rules can as well be applied to pairs of equalities and inequalities. In
the worst case, the number of branches generated is exponential in the number of
equalities on the branch.

230 BERNHARD BECKERT

t � s
�[t0]

(�[s])�

s � t
�[t0]

(�[s])�

:(t � t0)
�

�

�0

�
where� is an MGU oft andt0 resp.� and�0

and� is applied to the whole tableau.

Table 11. Fitting’s equality reasoning rules for free variable tableaux

6.2 Partial Equality Reasoning for Free Variable Tableaux

M. Fitting extended Jeffrey’s approach and adapted it to free variable tableaux
[Fitting, 1996]. The main difference is that equality rule applications may require
instantiating free variables, i.e. the substitution that is part of a refuter may not be
the identity. These substitutions can be obtained using unification: If an equality
t � s is to be applied to a formula�[t0], the application of a most general unifier�
of t andt0 is sufficient to derive(�[s])� (see Table 11).

Unification can become necessary as well if a branch is to be closed using equal-
ity; for example, a branch that contains the inequality:(f(x) � f(a)) is closed if
the substitutionfx 7! ag is applied (to the whole tableau):

THEOREM 70 (Fitting, 1990).R is a complete free variable background rea-
soner for the equality theoryE if it satisfies the following conditions:

1. For all termst; t0 2 Term� that are unifiable and all� 2 Form�:
if (t � s); �[t0] 2 �, thenh�; f(�[s])�gi 2 R(�) where� is an MGU oft
andt0.

2. For all termst; t0 2 Term� that are unifiable:
if :(t � t0) 2 �, then� 2 R(�) where� is an MGU oft andt0.

3. For all literals�; �0 2 Lit� that are unifiable:
If �;:�0 2 �, then� 2 R(�) where� is an MGU of� and�0.

EXAMPLE 71. Figure 4 shows a free variable tableau that proves the following
set of formulae to be inconsistent:

(1) (8x)(g(x) � f(x) _ :(x � a))
(2) (8x)(g(f(x)) � x)
(3) b � c
(4) p(g(g(a)); b)
(5) :p(a; c)

By applying the standard free variable tableau rules, formula (6) is derived from
formula (2), (7) from (1), and (8) and (9) from (7). The framed formulae are added
to the left branch by applying Fitting’s equality expansion rules. Formula (10)

EQUALITY AND OTHER THEORIES 231

is derived by applying equality (8) to (4) (the substitutionfx2 7! ag has to be
applied), formula (11) is derived by applying (6) to (10) (the substitutionfx1 7! ag
has to be applied), and formula (12) is derived by applying (3) to (11). Formulae
(12) and (5) close the left branch. The right branch is closed by the inequality (9)
(the substitutionfx2 7! ag has already been applied).

The example demonstrates a difficulty involved in using free variable equality
expansion rules: If equality (8) is applied to (4) in the wrong way, i.e. if the formula
(100) p(f(g(a)); b) is derived instead of (10)p(g(f(a)); b), then the termg(a) is
substituted forx2 and the tableau cannot be closed. Either a new instance of (7),
(8) and (9) has to be generated by applying the-rule to (1), or backtracking has
to be initiated.

Completeness is preserved if the restriction is made that the formulae� und�0

in Theorem 70 which the equality expansion rule is applied to have to be literals
(similar to the ground case). However, the restriction that equalities must not be
applied to equalities (that can be employed in the ground case) would destroy
completeness, as the following example demonstrates.

EXAMPLE 72. Let the tableau branchB contain the formulae

a � b; f(h(a); h(b)) � g(h(a); h(b)); :(f(x; x) � g(x; x)) :

A refuter with the residueff(h(a); h(a)) � g(h(a); h(a))g can be derived, pro-
vided it is allowed to apply equalities to equalities. After this formula has been
added to the branch, the closing refuterfx 7! h(a)g can be found.

If the application of equalities to equalities is prohibited, completeness is lost:
then the only possibility is to applya � b to the inequality inB. All refuters that
can be derived that way instantiate the variablex either witha or with b, which
in the sequel makes it impossible to close the branch. Note that the criterion from
Theorem 55, which would guarantee completeness, is not satisfied.

6.3 Partial Equality Reasoning for Tableaux with Universal
Formulae

Fitting’s method can easily be extended to free variable tableauxwith universal
formulae [Beckert, 1997]. When equalities are used to derive new formulae, uni-
versality of both the equalityt � s (resp.s � t) and the formula�[t0] it is applied
to has to be taken into consideration. The difference to the equality expansion rules
from Section 6.2 is that, instead of the MGU� of t andt0, only its restriction�0

to variables is applied w.r.t. whichnot all formulae in the precondition of the rule
areE-universal (apart from that, the rule schemata are the same as the free variable
schemata in Table 11). If an equality is universal with respect to a variablex, the
variablex does not have to be instantiated to apply the equality. When branches
are closed, the universality of formulae has to be taken into consideration as well.

232 BERNHARD BECKERT

(1) (8x)(g(x) � f(x) _ :(x � a))

(2) (8x)(g(f(x)) � x)

(3) b � c

(4) p(g(g(a)); b)

(5) :p(a; c)

(6) g(f(x1)) � x1

(7) g(x2) � f(x2) _ :(x2 � a)

(8) g(x2) � f(x2)

(10) p(g(f(a)); b)

(11) p(a; b)

(12) p(a; c)

(9) :(x2 � a)

Figure 4. Using Fitting’s expansion rules (Example 71)

EXAMPLE 73. If the method from Theorem 40 for recognizing universal formu-
lae is used, the tableau in Figure 4 (without the framed formulae) can be closed
using the substitutionfx2 7! ag. The variablex1 does not have to be instantiated,
because equality (6) is recognized to be universal w.r.t. tox1.

The background reasoner does not have to cope with the problem of recog-
nizing universal formulae, because in keys the universal formulae are explicitly
universally quantified (Definition 41).

THEOREM 74. A background reasonerR that satisfies the following conditions
is a complete universal formula background reasoner for the equality theoryE :

1. For all s; t; t0 2 Term� such thatt; t0 are unifiable, and all� 2 Form�:
if (8x)(t � s); (8y)�[t0] 2 �, thenh�jF ; f(�[s])�gi 2 R(�) where� is an
MGU of t andt0 andF is the set of variables that are free in(8x)(t � s) or
(8y)�[t0].3

2. For all t; t0 2 Term� that are unifiable:
if (8x):(t � t0) 2 �, then�jF 2 R(�) where� is an MGU oft andt0 and
F is the set of variables that are free in(8x):(t � t0).

3. For all atoms�; �0 2 Form� that are unifiable:
if (8x)�; (8y):�0 2 �, then�jF 2 R(�) where� is an MGU of� and�0

andF is the set of variables that are free in(8x)� or (8y)�0.

3(8x) is an abbreviation for(8x1) � � � (8xm) (m � 0). Without making a real restriction, we
assume the sets of free and bound variables occurring in� to be disjoint.

EQUALITY AND OTHER THEORIES 233

7 TOTAL EQUALITY REASONING

7.1 Total Equality Reasoning andE-unification

The common problem of all the partial reasoning methods described in Section 6.1,
which are based on additional tableau expansion rules, is that there are virtually
no restrictions on the application of equalities. Because of their symmetry, this
leads to a very large search space; even very simple problems cannot be solved in
reasonable time.

It is difficult to transform more elaborate and efficient methods for handling
equality, such as completion-based approaches, into (sufficiently) simple tableau
expansion rules (i.e. partial background reasoners). A set of rules that implement
a completion procedure for the ground version of tableaux has been described in
[Browne, 1988]; however, these equality expansion rules are quite complicated,
and the method cannot be extended to free variable tableaux.

If total equality reasoning is used, i.e. if no equality expansion rules are added,
then the problem of finding refuters that close a tableau branch is equivalent to
solvingE-unification problems.

Depending on the version of semantic tableaux to which equality handling is
added, different types ofE-unification problems have to be solved. These are
introduced in the following section.

7.2 Universal, Rigid and MixedE-unification

The different versions ofE-unification that are important for handling equality in
semantic tableaux are: the classical ‘universal’E-unification, ‘rigid’ E-unifica-
tion, and ‘mixed’E-unification, which is a combination of both. The different
versions allow equalities to be used differently in an equational deduction: in the
universal case, the equalities can be applied several times with different instantia-
tions for the variables they contain; in the rigid case, they can be applied more than
once but with only one instantiation for each variable; in the mixed case, there are
both types of variables.

Which type ofE-unification problems has to be solved to compute refuters,
depends on the version of semantic tableaux that equality reasoning is to be added
to. UniversalE-unification can only be used in the ground case. For handling
equality in free variable tableaux, rigidE-unification problems have to be solved.
For tableaux with universal formulae, both versions have to be combined[Beckert,
1994]; then equalities contain two types of variables, namely universal (bound) and
rigid (free) ones.

DEFINITION 75. A mixedE-unification problemhE; s; ti consists of a finite
setE of universally quantified equalities(8x1) � � � (8xm)(l � r) and termss andt.

234 BERNHARD BECKERT

E s t MGUs Type

ff(x) � xg f(x) a fx 7! ag rigid
ff(a) � ag f(a) a id ground
f(8x)(f(x) � x)g g(f(a); f(b)) g(a; b) id universal
ff(x) � xg g(f(a); f(b)) g(a; b) — rigid
f(8x)(f(x; y) � f(y; x))g f(a; b) f(b; a) fy 7! bg mixed

Table 12. Examples for the different versions ofE-unification

A substitution� 2 Subst�� is asolutionto the problemhE; s; ti if

E� j=�
E

(s� � t�) :4

The major differences between this definition and that generally given in the
literature on (universal)E-unification are:

� The equalities inE areexplicitly quantified (instead of considering all the
variables inE to beimplicitly universally quantified).

� The strong consequence relationj=�E is used instead ofj=E .

� The substitution� is applied not only to the termss und t but also to the
setE.

A mixedE-unification problemhE; s; ti is universalif there are no free vari-
ables inE, and it isrigid if there are no bound variables inE (if E is ground, the
problem is both rigid and universal).

EXAMPLE 76. Table 12 shows some simple examples for the different versions
of E-unification. The fourth problem has no solution, since the free variablex
would have to be instantiated with botha andb. Contrary to that, the empty sub-
stitution id is a solution to the third problem where the variablex is universally
quantified.

Syntactical unification is a special case ofE-unification, namely the case where
the setE of equalities is empty.

For handling equality in free variable tableaux, the problem of finding a simul-
taneous solution to several mixedE-unification problems plays an important rˆole,
as it corresponds to the problem of finding a substitution that allows to simultane-
ously close several tableau branches.

DEFINITION 77. A finite setfhE1; s1; t1i; : : : ; hEn; sn; tnig (n � 1) of E-uni-
fication problems is calledsimultaneousE-unification problem. A substitution�

4This is equivalent toE� j=E (s� � t�) where the free variables inE� are ‘held rigid’, i.e.
treated as constants.

EQUALITY AND OTHER THEORIES 235

is a solution to the simultaneous problem if it is a solution to every component
hEk; sk; tki (1 � k � n).

7.3 ExtractingE-unification Problems from Keys

The important formulae in a key from whichE-unification problems are extracted
are: equalities, inequalities, and pairs of potentially complementary literals:

DEFINITION 78. Literals

(8x1) � � � (8xk)p(s1; : : : ; sn) and(8y1) � � � (8yl):p(t1; : : : ; tn) ;

wherep 6= �, are called a pair ofpotentially complementary literals(n � 0 and
k; l � 0, i.e. the literals may or may not be universally quantified).

We now proceed to define the set of equalities and the set ofE-unification
problems of a key. All considerations here are restricted to keys consisting of
universally quantified literals.

DEFINITION 79. Let� � Form� be a key. ThesetE(�) of equalitiesconsists
of the universally quantified equalities in�, i.e. all formulae in� of the form
(8x1) � � � (8xk)(s � t) (k � 0).

EXAMPLE 80. As an example, we use the tableau from Figure 4. Its left branch is
denoted byB1 and its right branch byB2. If the method for recognizing universal
formulae from Theorem 40 is used and keys�1 and�2 are built from the literals on
the branchesB1 andB2, respectively (according to Theorem 41), then bothE(�1)
andE(�2) contain the equalitiesb � c and(8x)(g(f(x)) � x); E(�1) contains,
in addition, the equalityg(x2) � f(x2).

DEFINITION 81. Let� � Form� be a key. ThesetP (�) ofE-unification prob-
lemsconsists exactly of:

1. for each pair�; 2 � of potentially complementary literals, the problem

hE(�); ht1; : : : ; tni; hs1; : : : ; snii

wherep(t1; : : : ; tn) and :p(s1; : : : ; sn) are free variable instances of�
resp. (Definition 57);

2. for each inequality� = (8x1) � � � (8xk)(:(t0 � s0)) in � (k � 0), the prob-
lem

hE(�); t; si
where:(t � s) is a free variable instance of� (Definition 57).

The problems inP (�) of the formhE(�); hs1; : : : ; ski; ht1; : : : ; tkii are ac-
tually simultaneousE-unification problems (sharing the same set of equalities),

236 BERNHARD BECKERT

since the non-simultaneous problemshE(�); si; tii (1 � i � k) have to be solved
simultaneously.

LEMMA 82. A substitution is a solution to a simultaneous mixedE-unification
problem of the formfhE; s1; t1i; : : : ; hE; sn; tnig (n � 1) iff

� it is a solution to the non-simultaneous mixedE-unification problem
hE; f(s1; : : : ; sn); f(t1; : : : ; tn)i (the function symbolf must not occur in
the original problem), and

� it does not instantiate variables with terms containingf .

All substitutions that areE-refuters, i.e. that close a tableau branchB, can be
computed by extracting the setP (�) of mixedE-unification problems from a key
� � B according to the above definition and solving the problems inP (�). If
one of the problems inP (�) has a solution�, all instances of�� areE-unsatisfi-
able; therefore,� is a refuter for�. The pair of potentially complementary literals
corresponding to the solved unification problem has been proven to actually be
E-complementary; or the corresponding inequality has been proven to beE-com-
plementary (provided the refuter is applied).

EXAMPLE 83. We continue Example 80. Again,B1 denotes the left andB2 the
right branch of the tableau in Figure 4 (without the framed formulae), and�1

and �2 are keys extracted from these branches. Then bothP (�1) andP (�2)
contain the problemhE(�i); hg(g(a)); bi; ha; cii. P (�2) contains, in addition,
the problemhE(�2); x2; ai.

Apart from the version ofE-unification problems that have to be solved, the
way equality is handled is nearly the same for the different versions of semantic
tableaux. Therefore, it is sufficient to only formulate one general soundness and
completeness theorem:

THEOREM 84. A total (universal formula, free variable, or ground) background
reasonerR is complete for the equality theoryE if it satisfies the following condi-
tion for all keys� � Lit�: If a substitution� is a most general solution w.r.t. the
subsumption relation�W (or �W

E) of one of the problems inP (�), thenR(�)
contains the restriction of� to the variables occurring in�.

EXAMPLE 85. We continue from Examples 80 and 83:� = fx2 7! ag is a solu-
tion to the two mixedE-unification problems

hE(�1); hg(g(a)); bi; ha; cii 2 P (�1) ;

hE(�2); x2; ai 2 P (�2) :

When the theory closure rule is used to close one of the branches (and thus� is
applied to the tableau), the other branch can then be closed using the empty sub-
stitution.

EQUALITY AND OTHER THEORIES 237

7.4 Solving GroundE-unification Problems

In [Shostak, 1978], it is proven thatgroundE-unification is decidable; conse-
quently, by considering all variables to be constants, it is decidable whether the
empty substitutionid is a solution to a givenrigid E-unification problemhE; s; ti,
i.e. whetherE j=�

E
s � t. This can be decided by computing a congruence closure,

namely the equivalence classes of the terms (and subterms) occurring inhE; s; ti
w.r.t. the equalities inE.

DEFINITION 86. LethE; s; ti be a ground (or rigid)E-unification problem; and
let ThE;s;ti � Term� be the set of all (sub-)terms occurring inhE; s; ti. The
equivalence class[t]hE;s;ti of a termt 2 ThE;s;ti is defined by:

[t]hE;s;ti = fs 2 ThE;s;ti j E j=�E s � tg :

Since a groundE-unification problemhE; s; ti is solvable (andid a solution)
if and only if [s]hE;s;ti = [t]hE;s;ti, one can decide whetherhE; s; ti is solvable
by computing these equivalence classes. Shostak proved that for computing the
equivalence classes of all terms inThE;s;ti, no terms that are not inThE;s;ti have
to be considered: Ifs can be derived fromt using the equalities inE, then this
can be done without using an intermediate term that does not occur in the original
problem, i.e. there is a sequence of termss = r0; r1; : : : ; rk = t, k � 0, all occur-
ring in hE; s; ti such thatri is derivable in one step fromri�1 using the equalities
in E.

Since the number of subterms in a given problem is polynomial in its size, and
the congruence closure can be computed in time polynomial in the number of
subterms and the number of equalities, the solvability of a groundE-unification
problem can be decided in polynomial time.

There are very efficient and sophisticated methods for computing the congru-
ence closure, for example the algorithm described in[Nelson and Oppen, 1980],
which is based on techniques from graph theory.

7.5 Solving UniversalE-unification Problems

To solve a universalE-unification problem, one has to decide whether the equality
of two given terms (or of instances of these terms) follows fromE or, equivalently,
whether the terms are equal in the free algebra ofE. Overviews of methods for
universalE-unification can be found in[Siekmann, 1989; Gallier and Snyder,
1990; Jouannaud and Kirchner, 1991; Snyder, 1991].

7.6 Solving RigidE-unification Problems

Rigid E-unification and its significance for automated theorem proving was first
described in[Gallieret al., 1987]. It can be used for equality handling in semantic

238 BERNHARD BECKERT

tableaux and otherrigid variable calculi for first-order logic, including the mat-
ing method [Andrews, 1981], the connection method[Bibel, 1987], and model
elimination [Loveland, 1969]; an overview of rigidE-unification can be found
in [Beckert, 1998].

The solution to a rigidE-unification problemhE; s; ti is a substitution repre-
senting the instantiations of free variables that have been necessary to show that
the two given terms are equal; it is anE-refuter for the keyE [f:(s � t)g. A
single variable can only be instantiated once by a substitution and, accordingly, to
solve a rigidE-unification problem, the equalities of the problem can only be used
with (at most) one instantiation for each variable they contain; a variable is either
instantiated or not, that is, uninstantiated variables have to be treated as constants.

Rigid E-unification does not provide an answer to the question of how many
different instantiations of an equality are needed to solve a problem. If a single
instance is not sufficient, then the answer is ‘not unifiable’. If several different
instances of an equality are needed, a sufficient number of copies of that equal-
ity (with different rigid variables) has to be provided for the rigidE-unification
problem to be solvable.

The following theorem clarifies the basic properties of rigidE-unification by
listing different characterizations of the set of solutions of a given problem:

THEOREM 87. Given a rigidE-unification problemhE; s; ti and a substitution
� = fx1 7! t1; : : : ; xn 7! tng 2 Subst��, the following are equivalent conditions
for � being a solution tohE; s; ti:

1. E� j=�
E
s� � t�, i.e.� is by definition a solution tohE; s; ti;

2. E� j=E s� � t� over a setV 0 of variables and a signature�0 such that
the variables occurring inhE; s; ti are constants, i.e.V 0 = V nW and
�0 = hP�; F� [W;�� [fx 7! 0 j x 2Wgi whereW is the set of vari-
ables occurring inhE; s; ti.

3. (E�)� j=E (s�)� � (t�)� for all substitutions� 2 Subst��;

4. E [fx1 � t1; : : : ; xn � tng j=�E s � t; provided that none of the vari-
ablesxi occurs in any of the termstj (1 � i; j � n);

5. � is the restriction to the variables occurring inhE; s; ti of a substitution
which is a solution to the rigidE-unification problemhE0; yes ;noi where
E0 = E [feq(x; x) � yes ; eq(s; t) � nog, and (a) the constantsyes ;no,
the predicateeq , and the variablex do not occur inhE; s; ti, and (b) the
constantsyes ;no do not occur in the termst1; : : : ; tn.

The last characterization of solutions in the above theorem shows that it is al-
ways possible to solve a rigidE-unification problem by transforming it into a
problem in which the terms to be unified are constants.

EQUALITY AND OTHER THEORIES 239

If a rigid E-unification problem is solvable, then it has infinitely many solu-
tions. But there are, for each problem,finitesets of solutions w.r.t. the subsumption
relation�W

E;E
that is defined as follows:

DEFINITION 88. LetE � Form� be a set of rigid (i.e. quantifier-free) equal-
ities; and letW � V be a set of variables. Then the subsumption relationsvW

E;E

and�W

E;E
are onSubst�� defined by:

� � vW

E;E
� iff E� j=�

E
�(x) � �(x) for all x 2W ;

� � �W

E;E
� iff there is a substitution�0 2 Subst�� such that

� �W �0 and �0 vW

E;E
� :

The intuitive meaning of� �W

E;E
� is that the effects of applying� to the setE

of equalities can be simulated by first applying�, then some other substitution�,
and then equalities form(E�)�.

LEMMA 89. LetE � Form� be a set of rigid equalities, and let�; � be substi-
tutions such that� �W

E;E � where the setW contains all variables occurring inE.
Then there is a substitution� such that(E�)� j=�

E
E� .

It is possible to effectively compute afinite setU of solutions for a rigidE-
unification problemhE; s; ti that is complete w.r.t. the subsumption relation�W

E;E,
i.e. for every solution� of hE; s; ti there is a solution� in U such that� �W

E;E
�.

This immediately implies the decidability of the question whether a given rigid
E-unification problemhE; s; ti is solvable or not. On first sight this might be
somewhat surprising since universalE-unification is undecidable; however, the
additional restriction of rigidE-unification, that variables inE may only be in-
stantiated once, is strong enough to turn an undecidable problem into a decidable
one.

The problem of deciding whether a rigidE-unification problem has a solution
is, in fact, NP-complete. This was first proven in[Gallier et al., 1988] and then,
more detailed, in[Gallier et al., 1990; Gallieret al., 1992]. The NP-hardness of
the problem was already shown in[Kozen, 1981]. An alternative proof for the
decidability of rigidE-unification was presented in[de Kogel, 1995], it is easy
to understand but uses an inefficient decision procedure. More efficient methods
using term rewriting techniques are described in[Gallier et al., 1992; Becher
and Petermann, 1994; Plaisted, 1995]. The procedure described in[Becher and
Petermann, 1994] has been implemented and integrated into a prover for first-order
logic with equality [Grieser, 1996].

7.7 Rigid Basic Superposition

In [Degtyarev and Voronkov, 1998], a method calledrigid basic superposition
has been presented for computing afinite (incomplete) set of solutions for rigid

240 BERNHARD BECKERT

E-unification problems that is ‘sufficient’ for handling equality in rigid variable
calculi, i.e. can be used to build a complete free variable background reasoner for
the equality theoryE . The procedure is an adaptation of basic superposition (in
the formulation presented in[Nieuwenhuis and Rubio, 1995]) to rigid variables.
It uses the concept of ordering constraints:

DEFINITION 90. An (ordering) constraintis a (finite) set of expressions of the
form s ' t or s � t wheres and t are terms. A substitution� is a solution to
a constraintC iff (a) s� = t� for all s ' t 2 C , i.e. � is a unifier ofs and t,
(b) s� > t� for all s � t 2 C , where> is an arbitrary but fixed term reduction
ordering, and (c)� instantiates all variables occurring inC with ground terms.

There are efficient methods for deciding the satisfiability of an ordering con-
straintC and for computing most general substitutions satisfyingC in case the
reduction ordering> is a lexicographic path ordering (LPO)[Nieuwenhuis and
Rubio, 1995].

The rigid basic superposition calculus consists of the two transformation rules
shown below. They are applied to a rigidE-unification problemhE; s; ti � C that
has an ordering constraintC attached to it. The computation starts initially with the
unification problem that is to be solved and the empty constraint. A transformation
rule may be applied tohE; s; ti � C only if the constraint is satisfiable before and
after the application.

Left rigid basic superposition.If there are an equalityl � r or r � l and an equal-
ity u � v or v � u in E and l0 is a subterm ofu, then replace the latter
equality byu[r] � v (whereu[r] is the result of replacing one occurrence of
l0 in u by r) and addl � r, u � v, andl ' l0 toC.

Right rigid basic superposition.If there is an equalityl � r or r � l in E andl0

is a subterm ofs or of t, then replaces (resp.t) with s[r] (resp.t[r]) and add
l � r, s � t (resp.t � s) andl ' l0 toC.

As the constraint expressions that are added by a rule application have to be satis-
fiable, they can be seen as a pre-condition for that application; for example, since
l ' l0 is added toC, the termsl andl0 have to be unifiable.

The two transformation rules are repeatedly applied, forming a non-determinis-
tic procedure for transforming rigidE-unification problems. The process termi-
nates when (a) the termss andt become identical or (b) no further rule application
is possible without makingC inconsistent. Provided that no transformation is al-
lowed that merely replaces an equality by itself, all transformation sequences are
finite.

It is possible to only allow transformations where the terml0 is not a variable,
thus improving the efficiency of the procedure and reducing the number of solu-
tions that are computed.

Let hE; s; ti � C be any of the unification problems that are reachable by apply-
ing rigid basic superposition transformations to the original problem. Then, any

EQUALITY AND OTHER THEORIES 241

solution toC [fs ' tg is a solution to the original problem. LetU be the set of
all such solutions that are most general w.r.t.�W . The setU is finite because the
application of rigid basic superposition rules always terminates.

EXAMPLE 91. Consider the rigidE-unification problem5

hE; s; ti = hffa � a; g2x � fag; g3x; xi ;

and let> be the LPO induced by the orderingg > f > a on the function symbols.
The computation starts with

hE; s; ti � C = hffa � a; g2x � fag; g3x; xi � ; :

The only possible transformation is to use the right rigid basic superposition rule,
applying the equality(l � r) = (g2x � fa) to reduce the termg3x (all other
transformations would lead to an inconsistent constraint). The result is the unifica-
tion problemhE; gfa; xi � fg2x � fa; g3x � x; g2x ' g2xg; its constraint can
be reduced toC1 = fg2x � fag. A most general substitution satisfyingC1 [
fgfa ' xg is �1 = fx 7! gfag.

A second application of the right rigid basic superposition rule leads to the uni-
fication problemhE; ga; xi � fg2x � fa; fa � a; gfa � x; fa ' fag; its con-
straint can be reduced toC2 = fg2x � fa; gfa � xg. A most general substitu-
tion satisfyingC2 [fga ' xg is �2 = fx 7! gag.

At that point the process terminates because no further rule application is pos-
sible. Thus,�1 and�2 are the only solutions that are computed by rigid basic
superposition for this example.

7.8 Solving MixedE-unification Problems

Since universalE-unification is already undecidable,mixedE-unification is—in
general—undecidable as well. It is, however, possible to enumerate a complete set
of MGUs.

EXAMPLE 92. The following example requires only very little non-equality rea-
soning. A powerful equality handling technique is needed to find a closed tableau,
and the universal formula version of tableaux has to be used to restrict the search
space: If� consists of the axioms6

(8x)(i(tr; x) � x)
(8x)(8y)(8z)(i(i(x; y); i(i(y; z); i(x; z))) � tr)
(8x)(8y)(i(i(x; y); y) � i(i(y; x); x))

5In this example, we useg2x as an abbreviation forg(g(x)), etc.
6This is an axiomatization of propositional logic,i(x; y) stands for ‘x impliesy’ and tr for ‘true’.

242 BERNHARD BECKERT

�

(1) :(8x)(8y)(8z)(9w)(i(x;w) � tr ^ w � i(y; i(z; y)))

(2) :(i(c1; w1) � tr ^ w1 � i(c2; i(c3; c2)))

(3) :(i(c1; w1) � tr) (4) :(w1 � i(c2; i(c3; c2)))

Figure 5. The tableau that has to be closed to prove the theorem from Example 92

then
� j=E (8x)(8y)(8z)(9w)(i(x;w) � tr ^ w � i(y; i(z; y))) :

To prove this, the tableau shown in Figure 5 has to be closed. Formula (2) is
derived from the negated theorem (1) by three�- and one-rule application;
(3) and (4) are derived from (2).

To close the left branch, theE-unification problem

Pl = h�; i(c1; w1); tri

has to be solved, and the problem

Pr = h�; w1; i(c2; i(c3; c2))i

has to be solved to close the right branch.
The search for solutions performed by the tableau-based theorem prover3TAP

[Beckertet al., 1996], that uses a completion-based method for finding solutions of
mixedE-unification problems, proceeds as follows. One of the first rules that are
deduced from� is the reduction rule(8x)(i(x; x) ! tr). Using this rule, the so-
lution� = fw1 7! c1g to the problemPl is found and applied to the tableau. Then
the ProblemPr� has to be solved to close the right branch; unfortunately, no so-
lution exists. Thus, after a futile try to close the right branch, backtracking is initi-
ated. More reduction rules are computed until finally the rule(8x)(i(x; tr)! tr)
is applied to the problemPl and the solution�0 = fw1 7! trg is found. Now the
problemPr�0 has to be solved to close the right branch. It takes the computation
of 48 critical pairs to deduce the rule(8x)(8y)(i(y; i(x; y))! tr) which can be
applied to show that the empty substitution is a solution toPr�

0 and that therefore
the right branch is closed.

EQUALITY AND OTHER THEORIES 243

7.9 SimultaneousE-unification

Instead of closing one branch after the other, one can search for a simultaneous re-
futer for all branches of a tableau. However, this is much more difficult than clos-
ing a single branch. Although (non-simultaneous)rigid E-unification is decidable,
it is undecidable whether a simultaneous solution to severalE-unification prob-
lems exists[Degtyarev and Voronkov, 1996a]. It is as well undecidable whether
there is a substitution closing all branches of a given free variable tableau simulta-
neously after it has been expanded by afixednumber of copies of the universally
quantified formulae it contains[Voda and Komara, 1995; Gurevich and Veanes,
1997].

In the same way as it may be surprising on first sight that simple rigidE-unifi-
cation is decidable, it may be surprising that moving from simple to simultaneous
problems destroys decidability—even more so considering that the simultaneous
versions of other decidable types of unification (including syntactical unification
and groundE-unification) are decidable. However, simultaneous rigidE-unifi-
cation turns out to have a much higher expressiveness than simple rigidE-uni-
fication; it is even possible to encode Turing Machines into simultaneous rigid
E-unification problems[Veanes, 1997]. For an overview of simultaneous rigid
E-unification see[Degtyarev and Voronkov, 1998; Beckert, 1998].

Since simultaneous rigidE-unification is undecidable, sets of unifiers can only
be enumerated; in general they are not finite. Solutions to a simultaneous problem
can be computed combining solutions to its constituentshEi; si; tii; however, it
is not possible to compute a finite complete set of unifiers of the simultaneous
problem by combining solutions from finite sets of unifiers of the constituents that
are complete w.r.t. the subsumption relation�W

E;E, because they are complete w.r.t.
different relations�W

E;Ei
. Thus, the subsumption relation�W

E has to be used, which
is the same for alli (but does not allow to constructfinitecomplete sets of unifiers).

The undecidability of simultaneous rigidE-unification implies that, if a back-
ground reasoner produces only afinite number of solutions to any (non-simultan-
eous) rigidE-unification problem, then closing a tableauT may require to ex-
tendT by additional instances of equalities and terms even if there is a substitution
that closes all branches ofT simultaneously and there is, thus, a solution to a si-
multaneous rigidE-unification problem extracted fromT . That notwithstanding,
the background reasonermaybe complete; and in that case the advantages of finite
sets of solutions prevail. A complete background reasoner of this type can be built
using rigid basic superposition (Section 7.7). It is not known whether the same can
be achieved using (finite) sets of unifiers that are complete w.r.t. the subsumption
relation�W

E;E
.

8 INCREMENTAL THEORY REASONING

Besides the efficiency of the foreground and the background reasoner, the interac-
tion between them plays a critical rˆole for the efficiency of the combined system:

244 BERNHARD BECKERT

It is a difficult problem to decide whether it is useful to call the background rea-
soner at a certain point or not, and how much time and other resources to spend
for its computations. In general, giving a perfect answer to these questions is as
difficult as the theory reasoning problem itself. Even with good heuristics at hand,
one cannot avoid calling the background reasoner at the wrong point: either too
early or too late.

This problem can (at least partially) be avoided by using incremental methods
for background reasoning[Beckert and Pape, 1996], i.e. algorithms that—after
a futile try to solve a theory reasoning problem—allow to save the results of the
background reasoner’s computations and to reuse this data for a later call.7 Then,
in case of doubt, the background reasoner can be called early without running
the risk of doing useless computations. In addition, an incremental background
reasoner can reuse data multiply if different extensions of a problem have to be
handled. An important example are completion-based methods for equality rea-
soning, which are inherently incremental.

As already mentioned in Section 2.5, one of the main problems in using the-
orem reasoning techniques in practice is the efficient combination of foreground
and background reasoner and their interaction—in particular if (a) the computa-
tion steps of the background reasoner are comparatively complex, and (b) in case
calling the background reasoner may be useless because no refuter exists or can be
found.

On the one hand, a late call to the background reasoner can lead to bigger ta-
bleaux and redundancy. Although several branches may share the same subbranch
and thus contain the same key for which a refuter exists, the background reasoner is
called separately for these branches and the refuter has to be computed repeatedly.
On the other hand, an early call to the background reasoner may not be success-
ful and time consuming; this is of particular disadvantage if the existence of a
refuter is undecidable and, as a result, the background reasoner does not terminate
although no refuter exists.

Both these phenomena may considerably decrease the performance of a prover,
and it is very difficult to decide (resp. to develop good heuristics which decide)

1. when to call the background reasoner;

2. when to stop the background reasoner if it does not find a refuter.

EXAMPLE 93. The following example shows that earlier calls to the background
reasoner can reduce the size of a tableau proof exponentially. Let� � Form� be
a set of formulae and let�n 2 Form�, n � 0, be formulae such that, for some
theoryT , � j=T :�n (n � 0) . Figure 6 shows a proof for

� j=T �0 $ �1 $ � � � $ �n ;

7This should not be confused with deriving a refuter and handing it back to the foreground reasoner.
The information derived by an incremental background reasoner cannot be used by the foreground
reasoner, but only by the background reasoner during later calls.

EQUALITY AND OTHER THEORIES 245

�

:(�0 $ �1 $ � � � $ �n)

�0 ^ :(�1 $ � � � $ �n)

�0

:(�1 $ � � � $ �n)

:�0 ^ (�1 $ � � � $ �n)

:�0

�1 $ � � � $ �n

:�n�1

�n�1 $ �n

�n�1 ^:�n

�n�1

:�n

:�n�1 ^ �n

:�n�1

�n

Figure 6. Short tableau proof for� j=T �0 $ � � � $ �n (Example 93)

where the background reasoner is called when a literal of the form�n appears on
a branch (with the key� = � [f�ng). As a result, all the left-hand branches are
closed immediately and the tableau is of linear size inn.

If the background reasoner were only called when a branch is exhausted, i.e.
when no further expansion is possible, then the tableau would have2n branches
and the background reasoner would have to be called2n times (instead ofn times).

An incrementalbackground reasoner can be of additional advantage if the com-
putations that are necessary to show that� j=T :�n are similar for alln. In
that case, a single call to the background reasoner in the beginning may provide
information that later can be reused to close all the branches with less effort.

Even the best heuristics cannot avoid calls to the background reasoner at the
wrong time. However, under certain conditions, it is possible to avoid the adverse
consequences of early calls: If the algorithm that the background reasoner uses is
incremental, i.e. if the data produced by the background reasoner during a futile
try to compute refuters can be reused for a later call.

If early calls have no negative effects, the disadvantages of late calls can easily
be avoided by using heuristics that, in case of doubt, call the background reasoner
at an early time. The problem of not knowing when to stop the background rea-
soner is solved by calling it more often with less resources (time, etc.) for each
call.

An additional advantage of using incremental background reasoners in the ta-
bleau framework is that computations can be reused repeatedly for different ex-
tensions of a branch—even if the computation of refuters proceeds differently for
these extensions.

246 BERNHARD BECKERT

8.1 Incremental Keys and Algorithms

Obviously, there has to be some strong relationship between the keys transferred
to the background reasoner, to make it possible to reuse the information computed.
Since, between calls to the background reasoner, (1) the tableau may be extended
by new formulae and (2) substitutions (refuters) may be applied (to the tableau),
these are the two operations we allow for changing the key:

DEFINITION 94. A sequence(�i)i�0 of keys isincrementalif, for i � 0, there is
a set	i � Form� of formulae and a substitution�i such that�i+1 = �i�i [i,
where	i = 	i�i.

In general, not all refuters of�i are refuters of�i+1 (because a substitution
is applied); nor are all refuters of�i+1 refuters of�i (because new formulae are
added).

To be able to formally denote the state the computation of a background rea-
soner has reached and the data generated, we use the following notion of incre-
mental background reasoner:

DEFINITION 95. An incremental background reasonerRA;I;S is a background
reasoner (Definition 31) that can be described using

1. analgorithm(a function)A : D ! D operating on a data structureD,

2. an initialization functionI : 2Form� ! D that transforms a given key into
the data structure format, and

3. an output functionS that extracts computed refuters from the data structure,

such that for every key� � Form� for whichRA;I;S is defined

RA;I;S(�) =
[
i�0

S(Ai(I(�))) :

The above definition does not restrict the type of algorithms that may be used;
every background reasoner whose computations proceed in steps can be described
this way. If a background reasoner applies different transformations to the data
at each step of its computation, this can be modeled by adding the state of the
reasoner to the data structure such that the right operation or sub-algorithm can be
applied each time the background reasoner is invoked.

Of course, the input and output functions have to be reasonably easy to compute;
in particular, the cost of their computation has to be much smaller than that of
applying the algorithmA, which is supposed to do the actual work.

The goal is to be able to stop the background reasoner when it has reached a
certain state in its computations for a key�, and to proceed from that state with a
new key�0 = �� [. For that purpose, an update function is needed that adapts
the data structure representing the state of the computation to the new formulae	
and the substitution�.

EQUALITY AND OTHER THEORIES 247

DEFINITION 96. LetT be a theory andRA;I;S a complete incremental back-
ground reasoner forT . An update function

U : D � 2Form� � Subst�� �! D

is correct (for RA;I;S) if a complete background reasonerR0A;I;S is defined by:
for every key�

1. choose�0 � Form� and� 2 Subst�� such that� = �0� [arbitrarily;

2. computeDn = U(An(I(�0)); 	; �) for an arbitraryn � 0;

3. setR0A;I;S(�) =
S
i�0 S(Ai(Dn)).

According to the above definition, a correct update function behaves as expected
when used for a single incremental step. Theorem 97 shows that this behavior ex-
tends to sequences of incremental steps. In addition, the algorithm can be applied
arbitrarily often between incremental steps:

THEOREM 97. Let T be a theory,RA;I;S a complete incremental background
reasoner forT , andU a correct update function forRA;I;S .

ThenR�A;I;S is a complete background reasoner forT that is defined by: for
every key�

1. choose an arbitrary incremental sequence(�i)i�0 of keys where

�i+1 = �i�i [i (i � 0) ;

and� = �k for somek � 0;

2. let(Di)i�0 � D be defined by

(a) D0 = I(�0),

(b) Di+1 = U(Ani(Di); �i+1; 	i+1) for someni � 0;

3. setR�A;I;S(�) =
S
j�0 S(Aj(Dk)).

EXAMPLE 98. Let(�i)i�0 be an incremental sequence of keys such that�i+1 =
�i�i [i (i � 0). Then, for every sound and complete incremental background
reasonerRA;I;S , the trivial update function defined by

U(D;	i; �i) = I(�i�i [i)

is correct.

The above example shows that it is not sufficient to use any correct update
function to achieve a better performance of the calculus, because using the trivial
update function means that no information is reused. A useful update function has
to preserve the information contained in the computed data.

248 BERNHARD BECKERT

Whether there actually is a useful and reasonably easy to compute update func-
tion depends on the theoryT , the background reasoner, and its data structure.

Such a useful update function exists for a background reasoner for completion-
based equality handling[Beckert and Pape, 1996]. Another important example
are background reasoners based on resolution: if a resolvent can be derived from
a key�, then it is valid for all extensions� [of �; resolvents may be invalid
for an instance�� of the key, but to check this is much easier than to re-compute
all resolvents. In[Baumgartner, 1996], a uniform translation from Horn theories
to partial background reasoners based on unit-resulting positive hyper-resolution
with input restriction is described. This procedure can be used to generate incre-
mental background reasoners for a large class of theories.

8.2 Semantic Tableaux and Incremental Theory Reasoning

The incremental theory reasoning method presented in the previous section is easy
to use for tableau-like calculi, because the definition of incremental sequences of
keys matches the construction of tableau branches. The keys of a sequence are
taken from an expanding branch, and the substitutions are those applied to the
whole tableau.

The keys used in calls to the background reasoner as well as the information
computed so far by the background reasoner have to be attached to the tableau
branches:

DEFINITION 99. A tableau for incremental theory reasoningis a (finite) multi-
set of tableau branches where a tableaubranchis a tripleh�; D;�i; � is a (finite)
multi-set of first-order formulae,D 2 D (whereD is the data structure used by the
background reasoner), and� � Form� is a key.

Now, the tableau calculus with theory reasoning introduced in Section 3.4 can
be adapted toincrementaltheory reasoning: calling the background reasoner is
added as a further possibility of changing the tableau (besides expanding and clos-
ing branches).

DEFINITION 100 (Incremental reasoning version). Given a theoryT , an incre-
mental background reasonerRA;I;S for T (Definition 95), and a correct update
functionU for RA;I;S (Definition 96), anincremental theory reasoning tableau
proof for a first-order sentence� consists of a sequence

ff:�gg = T0; T1; : : : ; Tn�1; Tn = ; (n � 0)

of tableaux such that, for1 � i � n, the tableauTi is constructed fromTi�1

1. by applying one of the expansion rules from Table 6, i.e. there is a branch
B = h�; D;�i 2 Ti�1 and a formula� 2 � (that is not a literal) such that

Ti = (Ti�1 n fBg)

EQUALITY AND OTHER THEORIES 249

[

8>>>><
>>>>:

fh(� n f�g) [f�1; �2g; D;�ig if � = �
fh(� n f�g) [f�1g; D;�i;
h(� n f�g) [f�2g; D;�ig if � = �
fh� [f1(y)g; D;�ig if � = (x)
fh(� n f�g) [f�1(f(x1; : : : ; xn))g; D;�ig if � = �(x)

wherey 2 V is a new variable not occurring inTi�1, f 2 F� is a Skolem
function symbol not occurring inTi�1 nor in T , andx1; : : : ; xn are the free
variables in�;

2. by applying the incremental theory expansion rule, i.e. there is a branch
B = h�; D;�i in Ti�1 and aT -refuter h�; f�1; : : : ; �kgi (k � 1) in the
setS(D), and

Ti = fh�0�;D0;�0i j h�0; D0;�0i 2 (Ti�1 n fBg)g [
fh� [f�jg; D;�i j 1 � j � kg

3. by applying the incremental theory closure rule, i.e. there is a branchB =
h�; D;�i in Ti�1 that isT -closed under�, i.e.� 2 S(D), and

Ti = fh�0�;D0;�0i j h�0; D0;�0i 2 (Ti�1 n fBg)g

4. or by calling the background reasoner, i.e. there is a branchB = h�; D;�i
in Ti�1, a numberc > 0 of applications, and a key

�0 = �� [� � = f(8xi1) � � � (8ximi
)�i j 1 � i � pg

where

(a) �1; : : : ; �p 2 �,

(b) fxi1; : : : ; ximi
g � UVar(�i) for 1 � i � p.

and
Ti = (Ti�1 n fBg) [fh�;Ac(U(D;	; �));�0ig :

Soundness and completeness of the resulting calculus are a corollary of Theo-
rems 47, 58, and 97:

THEOREM 101. Let� 2 Form� be a sentence. If there is an incremental tableau
proof for� (Definition 100), then� is aT -tautology.

If RA;I;S is a complete incremental background reasoner for a theoryT and
the formula� is a T -tautology, then an incremental tableau proof for� can be
constructed usingRA;I;S .

The maximal cost reduction that can be achieved by using an incremental rea-
soner is reached if the costs are those of the non-incremental background reasoner

250 BERNHARD BECKERT

called neither too early nor too late, i.e. if always the right key in the incremental
sequence is chosen and the background reasoner is only called for that key (which
is not possible in practice).

In practice, the costs of an incremental method are between the ideal value
and the costs of calling a non-incremental reasoner for each of the keys in an
incremental sequence (without reusing).

But even if the costs for one sequence, i.e. for closing one tableau branch, are
higher than those of using a non-incremental method, the overall costs for closing
the whole tableau can be small, because information is reused for more than one
branch.

9 EQUALITY REASONING BY TRANSFORMING THE INPUT

Methods based on transforming the input are inherently not specific for semantic
tableaux (although they might be more suitable for tableaux than for other calculi).
They do not require the tableau calculus to be adopted to theory reasoning.

The simplest—however useless—method is to just add the theory axioms to
the input formulae. A better way to ‘incorporate’ the equality axioms into the
formulae to be proven is D. Brand’sSTE-modification [Brand, 1975], which
is described below. An improved transformation using term orderings has been
presented in[Bachmairet al., 1997].

Usually,STE-modification is only defined for formulae in clausal form; but
since a transformation to clausal form may be of disadvantage for non-normal
form calculi like semantic tableaux, we present an adaptation of Brand’s method
for formulae in Skolemized negation normal form.

DEFINITION 102. Let� be a formula in Skolemized negation normal form. The
E-modificationof � is the result of applying the following transformations itera-
tively as often as possible:

1. If a literal of the formp(: : : ; s; : : :) or :p(: : : ; s; : : :) occurs in the formula
wheres 62 V , then replace it by

(8x)(:(s � x) _ p(: : : ; x; : : :)) resp.
(8x)(:(s � x) _ :p(: : : ; x; : : :))

wherex is a new variable.

2. If an equality of the formf(: : : ; s; : : :) � t or t � f(: : : ; s; : : :) occurs in
the formula wheres 62 V , then replace it by

(8x)(:(s � x) _ f(: : : ; x; : : :) � t)

wherex is a new variable.

EQUALITY AND OTHER THEORIES 251

The STE-modificationof � is the result of (non-iteratively) replacing in the
E-modification�0 of � all equalitiess � t by

(8x)(:(t � x) _ s � x) ^ (8x)(:(s � x) _ t � x)

wherex is a new variable.

EXAMPLE 103. TheSTE-modification of(8x)(p(f(a; g(x)))) is

(8x)(8u)(8v)(8w)(:(a � u) _ :(g(x) � v) _ :(f(u; v) � w) _ p(w)) :

TheSTE-modification of(8x)(8y)(f(x; y) � g(a)) is

(8x)(8y)(8z)(:(a � z) _ ((8u)(:(f(x; y) � u) _ g(z) � u)^
(8u)(:(g(z) � u) _ f(x; y) � u))) :

To prove theE-unsatisfiability of theSTE-modification of a formula, it is suffi-
cient to use the reflexivity axiom; symmetry, transitivity and monotonicity axioms
are not needed any more.

THEOREM 104 (Brand, 1975).Let� be a sentence in Skolemized negation nor-
mal form, and let�0 be theSTE-modification of�. Then� is E-unsatisfiable if
and only if

�0 ^ (8x)(x � x)

is unsatisfiable.

10 CONCLUSION

We have given an overview of how to design the interface between semantic ta-
bleaux (the foreground reasoner) and a theory background reasoner. The problem
of handling a certain theory has been reduced to finding an efficient background
reasoner for that theory. The search for efficient methods has not come to an end,
however, because there is no universal recipe for designing background reasoners.
Nevertheless, some criteria have been presented that a background reasoner should
satisfy and useful features it should have.

Specialized methods have been presented for handling equality; the most ef-
ficient of these are based onE-unification techniques. Similar to the design of
background reasoners in general, the problem of developingE-unification proce-
dures is difficult to solve in a uniform way. The research in the field of designing
such procedures for certain equality theories has produced a huge amount of re-
sults, that is still rapidly growing, in particular for rigid and mixedE-unification.

252 BERNHARD BECKERT

ACKNOWLEDGEMENTS

I would like to thank Peter Baumgartner, Marcello D’Agostino, Paliath Narendran,
and Christian Pape for fruitful comments on earlier versions of this chapter.

Universiẗat Karlsruhe, Germany.

REFERENCES

[Andrews, 1981] P. B. Andrews. Theorem proving through general matings.Journal of the ACM,
28:193–214, 1981.

[Bachmairet al., 1997] L. Bachmair, H. Ganzinger and A. Voronkov. Elimination of equality via
transformation with ordering constraints. Technical Report MPI-I-97-2-012, MPI f¨ur Informatik,
Saarbr¨ucken, 1997.

[Baumgartner, 1992] P. Baumgartner. A model elimination calculus with built-in theories. In H.-
J. Ohlbach, editor,Proceedings, German Workshop on Artificial Intelligence (GWAI), LNCS 671,
pages 30–42. Springer, 1992.

[Baumgartner, 1996] P. Baumgartner. Linear and unit-resulting refutations for Horn theories.Journal
of Automated Reasoning, 16(3):241–319, 1996.

[Baumgartner, 1998] P. Baumgartner.Theory Reasoning in Connection Calculi. LNCS. Springer,
1998. To appear.

[Baumgartneret al., 1992] P. Baumgartner, U. Furbach, and U. Petermann. A unified approach to
theory reasoning. Forschungsbericht 15/92, University of Koblenz, 1992.

[Baumgartner and Petermann, 1998] P. Baumgartner and U. Petermann. Theory reasoning. In
W. Bibel and P. H. Schmitt, editors,Automated Deduction – A Basis for Applications, volume I.
Kluwer, 1998.

[Becher and Petermann, 1994] G. Becher and U. Petermann. Rigid unification by completion and
rigid paramodulation. In B. Nebel and L. Dreschler-Fischer, editors,Proceedings, 18th German
Annual Conference on Artificial Intelligence (KI-94), Saarbr¨ucken, Germany, LNCS 861, pages
319–330. Springer, 1994.

[Beckert, 1994] B. Beckert. A completion-based method for mixed universal and rigidE-unification.
In A. Bundy, editor,Proceedings, 12th International Conference on Automated Deduction (CADE),
Nancy, France, LNCS 814, pages 678–692. Springer, 1994.

[Beckert, 1997] B. Beckert. Semantic tableaux with equality.Journal of Logic and Computation,
7(1):39–58, 1997.

[Beckert, 1998] B Beckert. RigidE-unification. In W. Bibel and P. H. Schmitt, editors,Automated
Deduction – A Basis for Applications, volume I. Kluwer, 1998.

[Beckert and H¨ahnle, 1992] B. Beckert and R. H¨ahnle. An improved method for adding equality to
free variable semantic tableaux. In D. Kapur, editor,Proceedings, 11th International Conference on
Automated Deduction (CADE), Saratoga Springs, NY, USA, LNCS 607, pages 507–521. Springer,
1992.

[Beckert and H¨ahnle, 1998] B. Beckert and R. H¨ahnle. Analytic tableaux. In W. Bibel and P. H.
Schmitt, editors,Automated Deduction – A Basis for Applications, volume I. Kluwer, 1998.

[Beckertet al., 1996] B. Beckert, R. H¨ahnle, P. Oel and M. Sulzmann. The tableau-based theorem
prover3TAP , version 4.0. InProceedings, 13th International Conference on Automated Deduction
(CADE), New Brunswick, NJ, USA, LNCS 1104, pages 303–307. Springer, 1996.

[Beckert and Pape, 1996] B. Beckert and C. Pape. Incremental theory reasoning methods for semantic
tableaux. In P. Miglioli, U. Moscato, D. Mundici, and M. Ornaghi, editors,Proceedings, 5th Work-
shop on Theorem Proving with Analytic Tableaux and Related Methods, Palermo, Italy, LNCS
1071, pages 93–109. Springer, 1996.

[Bibel, 1987] W. Bibel. Automated Theorem Proving. Vieweg, Braunschweig, second edition, 1987.
First edition published in 1982.

[Brand, 1975] D. Brand. Proving theorems with the modification method.SIAM Journal on Comput-
ing, 4(4):412–430, 1975.

EQUALITY AND OTHER THEORIES 253

[Browne, 1988] R. J. Browne. Ground term rewriting in semantic tableaux systems for first-order
logic with equality. Technical Report UMIACS-TR-88-44, College Park, MD, 1988.

[Bürckert, 1990] H. Bürckert. A resolution principle for clauses with constraints. InProceedings, 10th
International Conference on Automated Deduction (CADE), LNCS 449, pages 178–192. Springer,
1990.

[Cantoneet al., 1989] D. Cantone, A. Ferro and E. Omodeo.Computable Set Theory, volume 6 of
International Series of Monographs on Computer Science. Oxford University Press, 1989.

[de Kogel, 1995] E. de Kogel. RigidE-unification simplified. InProceedings, 4th Workshop on
Theorem Proving with Analytic Tableaux and Related Methods, St. Goar, LNCS 918, pages 17–30.
Springer, 1995.

[Degtyarev and Voronkov, 1996] A. Degtyarev and A. Voronkov. Equality elimination for the tableau
method. In J. Calmet and C. Limongelli, editors,Proceedings, International Symposium on Design
and Implementation of Symbolic Computation Systems (DISCO), Karlsruhe, Germany, LNCS 1128,
pages 46–60, 1996.

[Degtyarev and Voronkov, 1996a] A. Degtyarev and A. Voronkov. Simultaneous rigidE-unification
is undecidable. In H. Kleine B¨uning, editor,Proceedings, Annual Conference of the European
Association for Computer Science Logic (CSL’95), LNCS 1092, pages 178–190. Springer, 1996.

[Degtyarev and Voronkov, 1998] A. Degtyarev and A. Voronkov. What you always wanted to know
about rigidE-unification.Journal of Automated Reasoning, 20(1):47–80, 1998.

[Digricoli and Harrison, 1986] V. J. Digricoli and M. C. Harrison. Equality-based binary resolution.
Journal of the ACM, 33(2):253–289, April 1986.

[Fitting, 1996] M. C. Fitting. First-Order Logic and Automated Theorem Proving. Springer, 1996.
First edition, 1990.

[Furbach, 1994] U. Furbach. Theory reasoning in first order calculi. In K. v. Luck and H. Marburger,
editors,Proceedings, Third Workshop on Information Systems and Artificial Intelligence, Hamburg,
Germany, LNCS 777, pages 139–156. Springer, 1994.

[Gallieret al., 1988] J. H. Gallier, P. Narendran, D. Plaisted and W Snyder. RigidE-unification is
NP-complete. InProcceedings, Symposium on Logic in Computer Science (LICS). IEEE Press,
1988.

[Gallieret al., 1990] J. H. Gallier, P. Narendran, D. Plaisted, and W. Snyder. RigidE-unification: NP-
completeness and application to equational matings.Information and Computation, pages 129–195,
1990.

[Gallieret al., 1992] J. H. Gallier, P. Narendran, S. Raatz, and W. Snyder. Theorem proving using
equational matings and rigidE-unification.Journal of the ACM, 39(2):377–429, April 1992.

[Gallieret al., 1987] J. H. Gallier, S. Raatz, and W. Snyder. Theorem proving using rigidE-
unification, equational matings. InProceedings, Symposium on Logic in Computer Science (LICS),
Ithaka, NY, USA. IEEE Press, 1987.

[Gallier and Snyder, 1990] J. H. Gallier and W. Snyder. Designing unification procedures using trans-
formations: A survey.Bulletin of the EATCS, 40:273–326, 1990.

[Grieser, 1996] G. Grieser. An implementation of rigidE-unification using completion and rigid
paramodulation. Forschungsbericht FITL-96-4, FIT Leipzig e.V., 1996.

[Gurevich and Veanes, 1997] Y. Gurevich and M. Veanes. Some undecidable problems related to the
Herbrand theorem. UPMAIL Technical Report 138, Uppsala University, 1997.

[Jeffrey, 1967] R. C. Jeffrey.Formal Logic. Its Scope and Limits. McGraw-Hill, New York, 1967.
[Jouannaud and Kirchner, 1991] J.-P. Jouannaud and C. Kirchner. Solving equations in abstract alge-

bras: A rule-based survey of unification. In J. Lassez and G. Plotkin, editors,Computational Logic
– Essays in Honor of Alan Robinson, pages 257–321. MIT Press, 1991.

[Kanger, 1963] S. Kanger. A simplified proof method for elementary logic. In P. Braffort and
D. Hirschberg, editors,Computer Programming and Formal Systems, pages 87–94. North Hol-
land, 1963.Reprint as pages 364–371 of:Siekmann, J., and Wrightson, G. (eds.),Automation of
Reasoning. Classical Papers on Computational Logic, vol. 1. Springer, 1983.

[Kozen, 1981] D. Kozen. Positive first-order logic is NP-complete.IBM Journal of Research and
Development, 25(4):327–332, 1981.

[Lis, 1960] Z. Lis. Wynikanie semantyczne a wynikanie formalne.Studia Logica, 10:39–60, 1960.
In Polish with English summary.

[Loveland, 1969] D. W. Loveland. A simplified format for the model elimination procedure.Journal
of the ACM, 16(3):233–248, 1969.

254 BERNHARD BECKERT

[Murray and Rosenthal, 1987] N. V. Murray and E. Rosenthal. Inference with path resolution and
semantic graphs.Journal of the ACM, 34(2):225–254, April 1987.

[Murray and Rosenthal, 1987a] N. V. Murray and E. Rosenthal. Theory links: Applications to auto-
mated theorem proving.Journal of Symbolic Computation, 4:173–190, 1987.

[Nelson and Oppen, 1980] G. Nelson and D. C. Oppen. Fast decision procedures based on congruence
closure.Journal of the ACM, 27(2):356–364, April 1980.

[Nieuwenhuis and Rubio, 1995] R. Nieuwenhuis and A. Rubio. Theorem proving with ordering and
equality constrained clauses.Journal of Symbolic Computation, 19:321–351, 1995.

[Petermann, 1992] U. Petermann. How to build-in an open theory into connection calculi.Journal on
Computer and Artificial Intelligence, 11(2):105–142, 1992.

[Petermann, 1993] U. Petermann. Completeness of the pool calculus with an open built-in theory. In
G. Gottlob, A. Leitsch, and D. Mundici, editors,Proceedings, 3rd Kurt G¨odel Colloquium (KGC),
Brno, Czech Republic, LNCS 713, pages 264–277. Springer, 1993.

[Plaisted, 1995] D. A. Plaisted. Special cases and substitutes for rigidE-unification. Technical Report
MPI-I-95-2-010, Max-Planck-Institut f¨ur Informatik, Saarbr¨ucken, November 1995.

[Policriti and Schwartz, 1995] A. Policriti and J. T. Schwartz.T -theorem proving I.Journal of Sym-
bolic Computation, 20:315–342, 1995.

[Popplestone, 1967] R. J. Popplestone. Beth-tree methods in automatic theorem proving. In N. Collins
and D. Michie, editors,Machine Intelligence, volume 1, pages 31–46. Oliver and Boyd, 1967.

[Reeves, 1987] S. V. Reeves. Adding equality to semantic tableau.Journal of Automated Reasoning,
3:225–246, 1987.

[Robinson and Wos, 1969] J. A. Robinson and L. Wos. Paramodulation and theorem proving in first
order theories with equality. In B. Meltzer and D. Michie, editors,Machine Intelligence. Edinburgh
University Press, 1969.

[Shostak, 1978] R. E. Shostak. An algorithm for reasoning about equality.Communications of the
ACM, 21(7):583–585, 1978.

[Siekmann, 1989] J. H. Siekmann. Universal unification.Journal of Symbolic Computation,
7(3/4):207–274, 1989. Earlier version inProceedings, 7th International Conference on Automated
Deduction (CADE), Napa, FL. USA, LNCS 170, Springer, 1984.

[Smullyan, 1995] R. M. Smullyan. First-Order Logic. Dover Publications, New York, second cor-
rected edition, 1995. First published in 1968 by Springer.

[Snyder, 1991] W. Snyder.A Proof Theory for General Unification. Birkhäuser, Boston, 1991.
[Stickel, 1985] M. E. Stickel. Automated deduction by theory resolution.Journal of Automated

Reasoning, 1:333–355, 1985.
[Veanes, 1997] M. Veanes.On Simultaneous RigidE-Unification. PhD Thesis, Uppsala University,

Sweden, 1997.
[Voda and Komara, 1995] P. Voda and J. Komara. On Herbrand skeletons. Technical Report mff-ii-

02-1995, Institute of Informatics, Comenius University, Bratislava, Slovakia, 1995.

A. WAALER AND L. WALLEN

TABLEAUX FOR INTUITIONISTIC LOGICS

1 INTRODUCTION

Despite the fact that for many years intuitionistic logic has served its function pri-
marily in relation to foundational questions in mathematics, there has been a sig-
nificant revival of interest over the last couple of decades stimulated by the applica-
tion of intuitionistic formalisms in computer science[1982]. It is beyond the scope
of this chapter to comment on these applications in detail which, broadly speak-
ing, either exploit formalisations of the intuitionistic meaning of general mathe-
matical abstractions as programming logics[Martin-Löf, 1984; Martin-Löf, 1996;
Constableet al., 1986], or exploit the similarity of systems of formal intuitionis-
tic proofs under cut-elimination to systems of typed lambda terms under various
forms of reduction (e.g.[Howard, 1980; Girard, 1989; Coquand, 1990]).1 Both
types of application rely on the rich proof theory possessed by intuitionistic for-
malisms in comparison with their classical counterparts.2

The basic proof theory of intuitionistic logic was explicitly formulated in the
early part of the thirties. The first complete formalisation of intuitionistic pred-
icate logic was due to Heyting[1930]. Four years after Heyting’s publication
Gentzen[1935] published the system of natural deduction (NJ) and the calculus
of sequents (LJ) thereby providing elegant formulations of the logic. At the same
time, relying on ideas of Brouwer and Kolmogorov, Heyting presented the con-
structive semantics of intuitionistic logic, published again in his seminal book on
intuitionism[1956]. We will refer to Heyting’s rendition of intuitionistic semantics
as the ‘proof interpretation’.3

The purpose of this chapter is to view intuitionistic logic from the perspective
of systems of tableaux. The rules of a tableau system are usually viewed as steps
towards the construction of a countermodel. Indeed, the main distinction between
tableau systems and other types of calculi might be said to be the former’sanalytic
emphasis on systematic completeness arguments, where partial derivations play
a role as finitary evidence of non-provability, as opposed to the latter’ssynthetic
emphasis on sound inference and complete proofs. The emphasis on analysis and

1It is noteworthy that both types of application focus on higher-order rather than first-order for-
malisms. An interesting compendium of papers illustrating many of these ideas in detail is Odifreddi’s
book on Logic and Computer Science[1990]. Intuitionistic type theories also play a role as the internal
languages of universes of sets (see for example[1990]).

2There are, however, ways of giving classical logic a more ‘intuitionistic’ or ‘constructive’ proof
theory; see e.g.[1989; 1992; 1990; 1991]).

3For extensive information about the history of the subject the reader should consult the article
by van Dalen[1986] and the volumes by Troelstra and van Dalen[1988]; these together contain a
comprehensive list of references.

256 A. WAALER AND L. WALLEN

refutation makes the tableau framework particularly suitable for the analysis of
theorem-proving algorithms, an observation which gives this volume its special
character.

Apart from being of current interest in computer science, intuitionistic logic is
worthy of attention within computational logic itself precisely because of its rich
proof theory and non-classical structure. Analysis of techniques for proof-search
in intuitionistic logic sheds light on the basic techniques of the field. It is our aim
to bring a number of these techniques into focus by giving a treatment of them in
intuitionistic logic from the analysis/refutational perspective of tableaux.

In the remainder of this introduction we give Heyting’s definition of the mean-
ing of the intuitionistic connectives via his proof interpretation (Section 1.1) and
present the proof system LJ as a formalisation of this interpretation (Section 1.2) in
a form easily related to tableaux. The , a corollary to Gentzen’s theorem (Section
1.3), restricts the formulae that need to be considered in a LJ-proof and supports
a view of cut-free LJ as a (refutational) tableau system. In preparation for the de-
velopment of this view we end the introduction by defining Kripke’s alternative
semantic scheme for intuitionistic logic (Section 1.4).

The theorems of intuitionistic predicate logic form a proper subset of the theo-
rems of classical predicate logic, and LJ can be obtained from LK, the for classical
logic, by a restriction of the latter to sequents whose succedents contain at most
one formula[Gentzen, 1935]. This calculus bears a satisfactory relationship with
Heyting’s proof interpretation. From the refutational perspective of proof-search
the specialisation of LK to LJ is far from unique, and intuitionistic systems can be
obtained in a number of interesting ways, each inducing a different search space.
The key concern is the extent to which the resultant inference rules inter-permute.
Roughly speaking: the more the permutation properties, the smoother the search,
and the more compact/uniform the search space.

The rules of LJ can indeed be inverted to form a standard[Smullyan, 1968], but
unlike the classical sequent calculus whose inversion reflects the semantics of clas-
sical logic more or less directly, recasting the proof interpretation in a refutational
framework is problematic. We can, however, maintain the idea of proof-search as
a systematic attempt to construct evidence for non-provability by working purely
formally with the notion of arefutation tree(Section 2.2). Refutation trees give
rise most naturally to an alternative, more classical, semantics for the logic. There
are in fact two kinds of semantics in this vein for intuitionistic logic, one due to
Beth[1959], and one due to Kripke[1963]. A Beth countermodel to a classically
valid sequent is infinite, a property not always shared by Kripke models. For this
reason we shall work with the latter.

The above describes the technical heart of this Chapter (Section 2). We formu-
late a modified version of LJ called LB (after Beth), which is a notational variant
of Fitting’s tableau system for intuitionistic logic[1969]. The utility of LB for
proof-search stems from the fact that it has fewer restrictions on rule permutation
compared to LJ. A Sch¨utte-type is proved by means of a refutation tree construc-
tion which allows discussion of search strategies.

TABLEAUX FOR INTUITIONISTIC LOGICS 257

Syntactically, refutation trees are a description of the search space induced by
a particular calculus, in this case LB. Refutation trees have the property that, by
definition, a ‘successful’ construction codes a proof in that calculus, and an ‘un-
successful’ construction yields (in the limit) evidence for a counter-proof, or refu-
tation. The observation that a Kripke model can be obtaineddirectly from a refu-
tation tree in the latter case establishes the completeness of Kripke models w.r.t.
LB, and simultaneously justifies their form.

With the construction of Section 2 completed we turn our attention to various
types of optimisation which have been suggested in the literature with the aim of
obtaining less redundant, or more uniform, search spaces. Given the above, we
should expect to see optimisations arise from restrictions on the refutation tree
construction which take advantage of the structure of the logic. This is how such
optimisations are presented.

We focus on two issues in particular: (i) restrictions on in propositional and
predicate logic (Sections 3.2 and 3.3 respectively); and (ii) the treatment of first-
order quantifiers using ideas from Herbrand, Skolem and Robinson. We present
simple expositions of each of these techniques in turn, relating them to the con-
struction in Section 2, and to classical logic.

A final methodological comment is in order before we begin the exposition. It
is commonplace to express an optimisation in proof-search by modifying the rules
of a calculus. As a specification for a revisedimplementationsuch an exposition
is to be highly recommended. Our purpose here is different. We seek to explain
optimisations in terms of their effect on the search space. This is related directly
to the character of a calculus as arefutation system: i.e. how search using the
calculus approximates evidence for non-provability. The close correspondence
between these two notions in the case of classical logic has been a major obstacle
to the development of computationally improved methods of proof-search for non-
classical logics.

1.1 The proof interpretation

We use a formal language with the following logical symbols:?;^;_; � ; 9;8.
Formulae are defined in the usual way from a set of predicate symbols, a set of
variables, and a set of terms called parameters; the sets are assumed to be non-
empty and disjoint. Observe that there are no function symbols in the language.4

An atomicformula is a formula without any occurrences of logical symbols and
no free variables. Predicate symbols with arity 0 (i.e. propositional letters) are
denotedp; q; r. P;Q denote predicate symbols with arity one;A;B;C denote
arbitrary closed formulae.A[t=x] denotes the result of replacing every occurrence
of the variablex in A with the termt.

4Extension of many of the ideas that follow to a language with function symbols and constants is
non-trivial and seems to require more global techniques equivalent to those involved in, say,[Wallen,
1990], or [Ohlbach, 1990].

258 A. WAALER AND L. WALLEN

We now turn to an informal presentation of the of intuitionistic logic. This
proceeds in two stages; we present the (canonical) proofs of formulae first, then
extend this notion to hypothetical proofs of formulae. The presentation is inspired
by Martin-Löf’s exposition of the intuitionistic system of natural deduction[1996].

First, there cannot be a clause for atomic formulae, since a (canonical) proof of a
proposition represented by an atomic formula must be given relative to a particular
theory. The clauses for the logical constants are as follows.

There are no (canonical) proofs of?.

A (canonical) proof ofA^B is a pair(�1; �2), where�1 is a proof ofA and
�2 is a proof ofB.

A (canonical) proof ofA _ B is a pair(n; �), wheren = 0 and� is a proof
of A or n = 1 and� is a proof ofB.

A (canonical) proof ofA � B is a constructionf which maps any proof�
of A into a prooff(�) of B.

A (canonical) proof of8zA is a constructionf which maps any termt into
a prooff(t) of A[t=z].

A (canonical) proof of9zA is a pair(t; �), wheret is a term, and� is a
proof ofA[t=z].

A hypothetical proofofC from a collection of formulae� is a construction which,
if provided with proofs of the formulae in� will become a proof ofC. Here we
take ‘provided’ and ‘will become’ as primitive, unexplained notions (though in a
formal framework one might think in terms of textual juxtaposition or substitu-
tion).

1.2 Gentzen’s system LJ

The standard formal presentation of the proof interpretation of intuitionistic logic
is the system of natural deduction (or the typed�-calculus). We will now introduce
Gentzen’s sequent calculus LJ and explain how it may be seen as a formalisation of
the proof interpretation. Conceptually the main difference between Gentzen’s and
his system of natural deduction is that while the rules of the latter define relations
between formulae (assertions), the rules of the former operate on objects that can
naturally be taken to represent judgements of logical consequence.

The basic syntactic objects in the calculus aresequents: expressions of the form
�! �, where�, theantecedent, and�, thesuccedent, are (possibly empty) finite
multisets of closed formulae. We writeA for the singleton multisetfAg, and let
‘,’ denote multiset union.

In a formulation of intuitionistic logic, the succedent is restricted to contain at
most one formula. Such sequents are usually referred to assingle-conclusioned.

TABLEAUX FOR INTUITIONISTIC LOGICS 259

The intended interpretation of�! C is the judgement that there is a hypothetical
proof of the succedent thesisC from the antecedent hypotheses�. That there is
a hypothetical proof ofC from � means that there is a construction which, given
proofs of the hypotheses will produce a proof ofC, as discussed above. In partic-
ular, a sequent may be used to represent judgements about atomic formulae, like
the propositional sequentp; q ! r. If such sequents when added to the calculus
are callednon-logical axioms.

The rules of LJ come in three groups. Theidentityrules reflect basic properties
of (hypothetical) proofs.

A! A
ID

�! A �; A! C
�! C

CUT

The identity axiomID states that there is a hypothetical proof ofA fromA. Such
an ‘identity’ construction clearly exists since if we provide a proof ofA we need
do nothing to it to obtain a proof ofA. An axiom is a zero-premiss rule. We will
occasionally define axioms by introducing the sequent in the conclusion. In ID
both occurrences ofA are calledprincipal formulae.

The ruleCUT captures our ability to compose hypothetical proofs to form new
ones. Given a hypothetical proof ofC from�; A, say�, and a hypothetical proof of
A from �, say�0, the two hypothetical proofs can be combined into a hypothetical
proof of C from �. The construction is easy to describe: if given proofs of the
formulae in� we would provide these to�0 and get a proof ofA; we would then
take this proof together with proofs of the formulae of� and provide them to the
construction� yielding a proof ofC. CUT therefore formalises composition of the
constructions� and�0 that justify the judgements represented by the premisses of
the rule.

It will occasionally be convenient to use theCUT rule in the form

�1 ! A �2; A! C
�1;�2 ! C

which can easily be derived fromCUT by . Thestructuralrules are and on the left.

�! �
�; A! �

LT
�; A;A! �
�; A! �

LC

The formulaA in the conclusion of the thinning rule is said to beintroduced by
thinning. Thinning reflects the fact that a hypothetical proof may ignore proofs of
a hypothesis in the construction of a proof of its conclusion; contraction reflects
the fact that a hypothetical proof may make multiple use of the proof of one of its
hypotheses in constructing the proof of its conclusion.

Except for the falsity rule thelogical rules come in pairs. The rule for falsity
states that there is a construction which can provide a proof of any formula if
provided with a proof of?.

?! C
L?

260 A. WAALER AND L. WALLEN

�; A;B ! C
�; A ^ B ! C L^

�! A �! B
�! A ^ B R^

�; A! C �; B ! C
�; A _ B ! C L_

�! A
�! A _ B R_1

�! B
�! A _ B R_2

�! A �; B ! C
�; A � B ! C L�

�; A! B
�! A� B R�

�; A[t=x]! C
�;8xA! C L8

�! A[a=x]
�! 8xA R8

�; A[a=x]! C
�;9xA! C L9

�! A[t=x]
�! 9xA R9

Restrictions: In R8 and L9 the parametera cannot appear in the conclusion.C may

be absent.

Figure 1. The logical rules of LJ

C may be absent in L?. This axiom is in accordance with the proof interpretation:
as no proof can be given of?, every such proof can be mapped into a proof of
any formulaC. The logical rules of LJ are given in Figure 1. Alogical rule
is a specification of a relation between at most two sequents, calledpremisses,
and one sequent, called theconclusion. If there are two premisses in a rule they
are called theleft and theright premiss respectively. Theprincipal formula of a
logical rule is the formula displayed in the conclusion with the logical symbol of
the rule as the outermost one. Thesideformulae of a logical rule are the immediate
subformulae of the principal formula, which occur in the premisses of an inference.
The parametera occurring in the side formula of L9 and R8 in Figure 1 is called
theeigenparameterof the inferences.

Trees regulated by the rules are calledderivations. An LJ-proof is a derivation
whose leaves are all axioms. Theendsequentof a proof� is the sequent at its root.
� is said to prove its endsequent. When referring to a proof we will say that the
premiss of an inference occursaboveits conclusion, and that one inference occurs
above another if the conclusion of the former either is a premiss of the latter, or
occurs above one of the latter’s premisses.

As usual in proof systems for intuitionistic logic we take negation as a defined
symbol::A is shorthand forA � ?. This gives rise to the following two derived
rules:

�! A
�;:A! C

L: �; A!
�! :A

R:

TABLEAUX FOR INTUITIONISTIC LOGICS 261

The derivation of the left negation rule is trivial. To justify the right negation rule
we first apply R�

�; A!?
�! A� ?

Observe now that any proof of a sequent�! ? can be transformed into a proof of
�! simply by omitting the succedent occurrences of? throughout the proof.

REMARK 1. We can obtain classical logic by adding a rule forreductio ad ab-
surdum:

�;:A!
�! A

RAA

This is not the standard sequent calculus formulation; the standard sequent calculus
for classical logic, LK, is given in Figure 5 in Section 2.1.

The right rules can be seen as reflecting the meaning of the logical symbols.
A left rule captures the function of the given logical symbol when it occurs as
the outermost symbol in a hypothesis; i.e. the left rules formalise how the logical
constants are used. We illustrate the relationship between the logical rules and the
proof interpretation by considering the implication and universal quantifier; the
reader is invited to check the other cases. We have to show that the rules in LJ can
be naturally interpreted as properties of the constructions and proofs referred to in
the proof interpretation.

Right implication rule.Assume that�; A! B holds; i.e. there is a hypothetical
proof of B from � andA. We must argue that there is a hypothetical proof of
A � B from �. For this to be the case there must be a construction which, when
provided with proofs of the formulae in� becomes a proof ofA � B. A proof of
A � B is itself a construction which maps proofs ofA into proofs ofB. Suppose
we provide proofs of the formulae in� to the hypothetical proof of our assumption.
Then we are left with a hypothetical proof ofB dependent only onA. That is to
say, we have a construction which will yield a proof ofB if provided with a proof
of A. This is sufficient evidence to conclude that the construction given in our
assumption can yield a construction which is a proof ofA � B, when given proofs
of �.5

Left implication rule. Assume that� ! A and�; B ! C both hold. Now
assume we have a proof ofA � B. This assumption is formally represented by
the judgement! A � B. By definition this proof is a construction which maps
a proof ofA into a proof ofB; we are therefore justified in asserting the sequent
A! B. Two applications of cut give:

�! A A! B
�! B �; B ! C

�! C

5Notice that in this argument we are in effect using an informal version of theSmn theorem
[Kleene, 1952] for constructions.

262 A. WAALER AND L. WALLEN

which shows that given a hypothetical proof ofB from A, the sequent� ! C
holds. This is sufficient to conclude that there is a hypothetical proof ofC from �
andA � B, i.e. that�; A � B ! C holds.

Right rule for the universal quantifier.Assume that there is a hypothetical proof
� ofA[a=x] from�. Due to the eigenparameter condition we know that no premiss
in � is dependent ona, which means thata can be taken to denote any object. We
can therefore obtain a hypothetical proof ofA[t=x] from �, for any termt, simply
by substitutingt for a in �. We are therefore justified in concluding that there must
be a hypothetical proof of8xA from �.

Left rule for the universal quantifier.Assume that�; A[t=x] ! C holds. As-
sume further that we have a proof of8xA. By definition of the proof interpretation,
! A[t=x] must hold, and we can assert�! C:

! A[t=x] �; A[t=x]! C
�! C

Thus, if we have a proof of8xA, then�! C holds. This establishes the grounds
on which we may assert the conclusion of the rule:�;8xA! C.

1.3 Cut-elimination and the subformula property

The most important property of the sequent calculus is the eliminability of the
CUT rule, Gentzen’s so-called ‘Hauptsatz’[1935]: any LJ-provable sequent has
an LJ-proof withoutCUT. An immediate consequence of this result for LJ is that
an LJ-provable sequent has an LJ-proof comprised only of subformulae of the
sequent. This is an immediate consequence of the form of the rules. This result is
central to tableau methods as it limits the formulae that need to be considered in
the search.

We will now illustrate the two sources of complexity in proof-search for intu-
itionistic logic that go beyond that encountered in proof-search for classical logic:
the non-eliminability ofcontractionon left implications, and the non-invertibility
of certain inference rules. Both sources are present within intuitionistic proposi-
tional logic and ultimately explain the fact that the decision problem for the propo-
sitional fragment is PSPACE complete[Statman, 1979], while that for classical
logic is NP-complete.

In the search for an LJ-proof we assume that derivations grow upwards. When-
ever we apply a rule with principal formulaC we say that weexpandC to generate
a new sequent, an instance of the premiss of the rule. If the rule has more than one
premiss this expansion will generate two branches instead of one. When inference
r1 occurs abover2 in a derivation we say thatr2 has been appliedbeforer1. We
shall use this terminology throughout the chapter.

EXAMPLE 2. One of the first results in intuitionistic logic, due to Kolmogorov,
was that the double negation of any theorem in classical propositional logic is
intuitionistically valid. The result cannot be lifted to first-order logic. We prove
::(p _ :p). For the first step we are left no choices:

TABLEAUX FOR INTUITIONISTIC LOGICS 263

:(p _ :p)!
! ::(p _ :p)

If we now apply L:, we will generate the sequent! p _ :p, which is not intu-
itionistically valid. However, if we first apply contraction we get

:(p _ :p)! p _ :p
:(p _ :p);:(p _ :p)!

:(p _ :p)!

which the reader can easily expand into a proof (apply R_2, R:, L:, and R_1). If
C is a theorem of classical propositional logic, but not intuitionistically valid, any
proof in LJ of! ::C must use contraction on:C.

EXAMPLE 3. Backtracking will occur in LJ whenever a right disjunction is ex-
panded, in that we must choose one right rule over another. If one choice does
not lead to a proof, one must check whether this is the case for the other option as
well. Since this particular instance of does not occur in the tableau proof system of
Section 2.1, we consider the slightly more general case of choosing between L�
and R_.

Consider the sequent�; p � (q _ r) ! (p � q) _ r. This sequent is classically
provable for any�. In general it is not intuitionistically provable. The reader is
invited to check that if�; p; r ! q is provable in LJ, and� ! p is not, then we
must expand the right disjunction first (followed by an instance of R�), while if
�! p is provable and�; p; r ! q is not, we must first expand the left implication.

A permutationis obtained from a derivation by interchanging two inferences.
The significance of for proof-search is as follows. Assume that in the search for a
proof of a sequent rulesr1 andr2 both apply, and assume thatr1 does not permute
over r2. Then, other things being equal, we should applyr2 beforer1. Kleene
[1952b] enumerates the seven cases where permutation fails in general in LJ. The
cases are:

L8
R8

L8 or R9
L9

L�
R�

R_1 or R_2 or R9
L_

Permutation will also fail in LJ in the following cases:

L� or R8 or R� or R^
L_

unless the two inferences immediately above the L_-inference have the same prin-
cipal formula. In general this will not be the case.

EXAMPLE 4. Consider the task of showing that the set of identity axioms in LJ
can be restricted toatomic sequents: sequents whose antecedents and succedents
contain atomic formulae only. This is established by a simple inductive argument.
The individual cases provide good illustrations of the permutability properties.

Conjunction.The task is to proveA ^ B ! A ^ B using simpler axioms. We

264 A. WAALER AND L. WALLEN

have a choice whether to start with a left or a right rule. Expanding the antecedent
first gives the proof:

A! A
A;B ! A

B ! B
A;B ! B

A;B ! A ^ B
A ^ B ! A ^B

The reader can easily check that the inferences interchange; i.e. we may just as
well expand the succedent first.

Disjunction. In this case we are left with no choices since we cannot commit
ourselves to one disjunct before we apply the left disjunction rule. We therefore
get the proof:

A! A
A! A _B

B ! B
B ! A _B

A _ B ! A _B

Implication. This case also shows a dependency among the rules: since the
succedent side formula in the left premiss of the left implication inference must
be matched by the antecedent side formula of the right implication inference, the
right implication rule must be applied before the left one.

A! A
B ! B
A;B ! B

A � B;A! B
A� B ! A � B

Quantifiers.These cases are also subject to dependencies, but this time due to
the eigenparameter conditions (as in classical logic).

1.4 Kripke semantics

We end this introduction by introducing and proving the soundness of LJ with re-
spect to this semantics. Since proofs and models are dual, the relationship between
the proof systems and the Kripke semantics is most clearly seen in the construc-
tion of countermodels to non-provable sequents. We shall show in Section 2 how
Kripke models arise naturally from searches by establishing a model existence
theorem based on a systematic search procedure.

A Kripke modelis a quadruple(U;D;�; 0); theuniverseU is non-empty set
partially ordered by�; the domain functionD maps each point inU to a non-
empty set of terms in the language such thatD(x) � D(y) wheneverx � y;6 0

is a binary relation betweenU and the set of atomic formulae such that ifx 0 p
andx � y, theny 0 p, and8x 2 U , xjj6 �?. Theforcing relation is the weakest

6Note that we have opted for an interpretation of the quantifiers by substitution.

TABLEAUX FOR INTUITIONISTIC LOGICS 265

relation that contains0 and is closed under the following rules.

x A ^ B if x A and x B;
x A _ B if x A;
z A _ B if x B;
x A � B if y B whenevery jj6 �A and y � x;
x 8zA if y A[t=z] for eachy � x and eacht 2 D(y),
x 9zA if x A[t=z] for somet 2 D(x).

In the sequel, we do shall not indicate in the notation which model is being used
as this should always be clear from the context. A sequent� ! C is valid in a
model if, for each pointx which forces every formula in�, x forcesC. A model
is acountermodelto � ! C if it contains a point at which every formula in� is
forced, butC is not forced.

LEMMA 5. If x A andx � y, theny A.

Proof. Induction onA. For atomic formulae the statement is immediate. We prove
the statement for the case thatA isB � C. Assumex B � C andx � y. By
transitivity of�, for eachz such thaty � z, eitherz jj6 �B or z C. By definition,
y B � C. �

We now establish the soundness of LJ with respect to Kripke semantics. Since
LJ is a formalisation of the , the soundness result can be viewed as a formal variant
of the correspondence between LJ and the proof interpretation sketched above.

PROPOSITION 6.Let � ! C be provable in LJ. Then� ! C is valid in all
Kripke models.

Proof. Let � prove� ! C. By induction on the length of� we prove that for
each pointx in every model, ifx forces every formula in�, x forcesC. If the last
rule of� is an axiom, this holds trivially. We consider only three cases as the other
cases are similar.

Case 1. The last rule of� is a right implication:

�1
...

�; A! B
�! A � B

Let x � and lety be any point such thatx � y. Theny � by Lemma 5. If
y A, theny B by the induction hypothesis; otherwisey jj6 �A. In any casey
meets the forcing condition forA � B.

Case 2. The last rule of� is a left implication:

�1
...

�! A
�2

...
�; B ! C

�; A � B ! C

266 A. WAALER AND L. WALLEN

Model 1

p

Model 3

Pa0 , Pa1

Pa0

a0

a0 , a1

a0 , a1

, a2

p

Model 2

q

Figure 2. Example Kripke models

Let x be any point in a model that forces�; A � B. By the induction hypothesis
applied to�1, x A. By the forcing condition forA � B, x B. By the
induction hypothesis applied to�2, x C.

Case 3. The last rule of� is R8:

�
...

�! A[a=x]
�! 8xA

Letx � andx � y. The eigenparameter condition ensures that we can substitute
t for a in � for any termt 2 D(y) and get a proof of� ! A[t=x]. By induction
hypothesis and Lemma 5,y A[t=x]. �

REMARK 7. A simple corollary to Proposition 6 is obtained via the contrapos-
itive proposition: the existence of a countermodel to a sequent implies that the
sequent is not intuitionistically provable.

EXAMPLE 8. Models in propositional intuitionistic logic are restrictions of mod-
els for the first-order language in that the domain functionD is redundant. A coun-
termodel top _ :p is shown in Figure 2 as model 1. The figure depicts a model
in which U = fx; yg, 0 is fhy; pig, and� is the reflexive, transitive closure
of fhx; yig. Model 2 of the same figure is a countermodel to(p � q) _ (q � p),
another formula which is classically valid.

EXAMPLE 9. Predicate symbols are restricted to unary predicates and prop osi-
tional letters. Classical monadic predicate logic is decidable, but its intuitionistic
version is undecidable. A countermodel to the classically valid formula8x::Px
� ::8xPx is shown as model 3 in Figure 2 (domains are listed beside the circles
marking the points). There exists no finite countermodel to this formula.

TABLEAUX FOR INTUITIONISTIC LOGICS 267

2 A SYSTEMATIC SEARCH PROCEDURE

The search space of a cut-free sequent calculus is in part determined by the permu-
tation properties of the calculus. The existence of Kripke models for intuitionistic
logic is also closely linked to the properties of permutation. This is as one should
expect, given that a common way of viewing proof search is as a systematic attempt
to construct a countermodel. One might say that the property of intuitionistic logic
which gives rise to Kripke models is reflected syntactically in the properties of
permutation.

As shown in Section 1.3 Gentzen’s system LJ is quite asymmetrical w.r.t. per-
mutation. To facilitate the formulation of search procedures for intuitionistic logic
we will study a slightly modified formulation of LJ. The system appears under
many labels in the literature. It seems to have been formulated independently by
several authors; Takeuti[1975, p. 52] credits the invention of the system to Mae-
hara[1954]. Since the system is a sequential formulation of the branch expansion
rules of a system of Beth tableaux, we will refer to the system as LB.

2.1 LB: a multi-succedent variant of LJ

The syntax of LB differs from LJ syntax in that the LB system operates on se-
quents with (possibly) multiple succedent formulae; the latter are interpreted dis-
junctively. In semantic terms,� ! � is forced atx iff every pointy � x which
forces every formula in�, forces at least one formula in�. Since there can be
more than one formulae in the succedent the system contains thinning and con-
traction on both the left and the right.

The rules and axioms of LB are given in Figure 3. Observe that R�, R8 and the
axiom involving? are defined on sequents with at most one formula in the succe-
dent; the other rules define relations between sequents with (possibly) multiple
succedent formulae. The system admits negation rules as derived rules:

�! A
�;:A! �

L:
�; A!
�! :A

R:

CUT is admissible in LB.

EXAMPLE 10. Consider once again the task of showing that the set of identity
axioms can be restricted to atomic sequents, cf. Example 4. We repeat two cases
for LB.

Disjunction. In LB we can expand the succedent disjunction without commit-
ting ourselves to one disjunct, and hence expand the succedent before we apply
the left disjunction rule.

A! A
A! A;B

B ! B
B ! A;B

A _ B ! A;B
A _B ! A _ B

268 A. WAALER AND L. WALLEN

STRUCTURAL RULES

�! �
�; A! � LT

�! �
�! A;� RT

�; A;A! �
�; A! � LC

�! A;A;�
�! A;� RC

AXIOMS

?! C �; A! A;�

LOGICAL RULES

�; A;B ! �
�; A ^ B ! � L^

�! A;� �! B;�
�! A ^ B;� R^

�; A! � �; B ! �
�; A _ B ! � L_

�! A;B;�
�! A _ B;� R_

�! A;� �; B ! �
�; A � B ! � L�

�; A! B
�! A� B R�

�; A[t=x]! �
�;8xA! � L8

�! A[a=x]
�! 8xA R8

�; A[a=x]! �
�; 9xA! � L9

�! A[t=x];�
�! 9xA;� R9

Restrictions: In R8 and L9 the parametera cannot appear in the conclusion.

Figure 3. The logical rules of LB

Implication.A superficial look at the syntax gives the impression that since the
L� -rule sanctions classical sequents, L� may permute with R�. Let us try this
for the implication case.

! A;A � B

B ! B
B;A! B
B ! A� B

A� B ! A � B

Observe that the succedent occurrence ofA in the left leaf must be removed by
thinning before the implication can be expanded. The resulting sequent is not, in
general, provable. Therefore, in LB, as in LJ, we must expand the right implication
below the left one.

LB has more symmetrical permutation properties than LJ. As well as the usual
restrictions on permutation caused by the eigenparameter conditions, permutation
will fail in the case of an inference with a succedent side formula occurring over

TABLEAUX FOR INTUITIONISTIC LOGICS 269

a R� or a R8. Since the premiss of the latter inferences must be intuitionistic,
this situation can arise only when the inference just above is a L�. Therefore, in
general, permutation will fail in the following five cases:

L8
R8

L8 or R9
L9

L�
R� or R8

Consider now a sequent at a point in the search for an LB-proof. The task of
a search procedure is to generate new sequents from a given one that better ap-
proximate axioms, so the problem is which formula to choose for expansion. The
permutation properties impose certain constraints in that applications of L9, R8,
and R� should have priority. More precisely, eigenparameters should be intro-
duced as early as possible in the search, and R� should be applied to strengthen
the antecedent prior to an application of L�. This latter constraint arises from the
fact that a proof of the left premiss of the L� inference may require a stronger an-
tecedent, as is illustrated in Example 10. There is, however, a consideration which
runs contrary to this. Observe that prior to applications of R8 and R� we must
in general apply thinning to the succedent. This suggests that we shouldpostpone
application of these two rules as long as possible.

The two conflicting considerations about R� make the expansion of left impli-
cations particularly tricky. The non-permutabilities suggest that R� should have
priority over L�. However we will then run the danger of deleting succedent in-
formation by thinnings that is needed at a later stage in the search. Consider the
following figure:

�! A;D � B;C �; B _ C ! D � B;C
�; A � (B _ C)! D � B;C

Here we have applied L� and delayed the R�; the right premiss is provable.
However, in the expansion of the right premiss the choice is between L_ and R�,
which means we must opt for the L_. If � ! A is provable, the figure above
will lead to a proof. However, if we apply R� before L� we will not, in general,
obtain a proof.

The discussion indicates that in a sequent�; A � B ! � one should expand
the left implication (after first duplicating it by a contraction) if�; A � B ! A is
provable, otherwise not. This indeterminacy forces branching in the search space
and this, together with the need for on certain subformulae of the endsequent,
underlies the PSPACE-hardness of the propositional decision problem[Statman,
1979].7 The strategy we adopt in this section is to apply L� to every antecedent
implication and test the left premiss for provability prior to expansion of a R�.
Kripke models arise as natural objects from the syntax in a particularly direct way
using this strategy, as we will see below.

The search will proceed in stages. At each stage we try to expand with all rules

7In formulations of intuitionistic logic without explicit contraction, contraction is eliminated in
favour of additional branching in the search space[1992; 1993].

270 A. WAALER AND L. WALLEN

�; A � B ! A �; B ! �
�; A� B ! � LC�

�;8xA;A[t=x]! �
�;8xA! � LC8

�! A[t=x];9xA;�
�! 9xA;� RC9

Figure 4. Derived rules in LB

except R� and R8. An application of R� or R8 indicates that new antecedent
information is available in the resulting sequent, either directly by the left side
formula of a R�, or indirectly in that R8 introduces a new parameter with which
we can instantiate a left universal quantifier. However, sometimes the left side
formula of a R� can be removed immediately by thinning, and even if a new term
is available, the antecedent is not strengthened before a left universal quantifier has
actually been instantiated with this term. What we want to say is that a new stage
in the search is initiated when the antecedent has been strengthened.

We introduce the binary relation� to make this idea precise. Let the sequent
S be above the sequentT in a derivation. ThenT � S iff there is an intervening
instance of R� whose left side formula is not introduced by thinning, or an in-
tervening instance of R8 whose eigenparameter has been used as parameter in an
intervening L8 -inference.

We now introduce the search strategy in detail. The axioms are generalised
to include sequents of the form:�; A ! A;� and�;? ! A;�. Contraction
is needed for left implications and universal quantifiers. For simplicity we use the
derived rules of Figure 4. The ‘C’ in the names of the rules stands for ‘contraction’.
Observe that the implication need only be copied into the left branch of the left
implication rule.

We order the logical rules into three distinct groups:

GROUP1: R^, L^, R_, L_, LC�, L9.
GROUP2: LC8, RC9.
GROUP3: R8, R�.

The search proceeds by always opting for a rule in the group with the lowest num-
ber, should there be one that is applicable. To avoid vicious circles in the search
we introduce some additional constraints. Let us say that a term isavailableat a
sequent if there is an occurrence of this term below the sequent in the derivation.
There are five constraints on application of the rules.

(S1) the left side formula of a R� is immediately removed by thinning if there
is an antecedent occurrence of the same formula in a sequent below in the
derivation,

TABLEAUX FOR INTUITIONISTIC LOGICS 271

(S2) if LC� has been used to expand a formulaA in sequentT andA also occurs
in the sequentS to be expanded, thenA can be expanded only ifT � S,

(S3) an antecedent universal quantifier8xA can be instantiated with a termt if
t is available and there is no antecedent occurrence ofA[t=x] in a sequent
lower down in the derivation,

(S4) a succedent existential quantifier9xA can be instantiated with a termt if t
is available andA[t=x] does not already occur in the succedent,

(S5) right thinning is only applied prior to R� and R8.
The last condition defines the points of . If the removal of a succedent occurrence
of A does not lead to a proof, andA is an implication or universal quantifier, we
must return to this point in the search and expandA instead. We must then use
thinnings on the other formulae in the succedent.

EXAMPLE 11. The identity axioms are restricted to atomic formulae for this
example. We illustrate the procedure on the following identity judgement:

(A � B) � C ! (A � B) � C :

Assume that the letters denote distinct atomic formulae. According to Example 10
we should expand the succedent first in order to find a proof. The search procedure
will, however, opt for the antecedent implication. There is one applicable rule in
GROUP1: LC�. This yields

(A � B) � C ! A � B; (A � B) � C C ! (A � B) � C
(A� B) � C ! (A � B) � C

The right premiss is obviously provable. Consider the left premiss. Condition (S2)
blocks a new application of LC� since the antecedent is the same as that in the
sequent we started with. So we must expand the succedent. Let us first expand the
leftmost succedent implication,A � B. This requires the elimination of the other
succedent formula by thinning (*).

(A � B) � C;A! A� B;B C;A! B
(A � B) � C;A! B
(A � B) � C ! A� B

(A � B) � C ! A � B; (A � B) � C
(*)

Observe that the rightmost leaf (C;A ! B) is not provable and no rule applies,
thus terminating the search in this branch. Observe also that if we nevertheless try
to expand the leftmost branch, condition (S2) blocks application of LC�. Hence
we must apply right thinning toB and R� to A � B. But then condition (S1)
applies to the resulting sequent, and condition (S2) once again blocks further ex-
pansion of the tree:

(A � B) � C;A! B
(A � B) � C;A;A! B
(A � B) � C;A! A� B

(A � B) � C;A! A� B;B

272 A. WAALER AND L. WALLEN

This illustrates how termination is secured for the propositional fragment. The next
step in the search is to backtrack to the point(�) and expand the other succedent
implication. This yields:

(A � B) � C ! (A � B) � C
(A � B) � C ! A� B; (A � B) � C

(**)

Note that we have generated the endsequent once again. However, contrary to
what was the case when the search started, condition (S2) applies and blocks yet
another instance of LC�. Hence we must apply R�. The reader is encouraged to
continue the example until a proof is constructed.

Some optimisations of this strategy may be easily developed by taking only
local information into consideration. For example, we can always postpone the
left implication in the sequent�; A � B ! C �D;� whenever either� or � is
empty. More substantial optimisations are possible once we take global considera-
tions into account, i.e. information obtained from the entire proof search state (par-
tial derivation). The definition of such strategies is quite complex and is beyond the
scope of this chapter. Proof search on the basis of such global considerations is the
fundamental idea behind connection driven proof methods for intuitionistic logic
and certain based search strategies such as the intuitionistic resolution calculus of
Mints [1990; 1993].

The search procedure is defined for a language without function symbols. The
inclusion of function symbols complicates the definition of the search. For exam-
ple, if a formulaPfa occurs in a sequent, wheref is a unary function symbol, this
formula must be given the same treatment as the formula9x(Px ^ Fxa) in a lan-
guage without function symbols. For this reason we omit function symbols from
the language, leaving the extension of the search procedure to function symbols as
an exercise for the reader.

The right contraction rule, implicit in the rule RC9, is in fact redundant. Note
that a succedent occurrence of an existentially quantified formula is always re-
moved by thinning prior to applications of R� and R8. The formulation in terms
of right contraction has the advantage that backtracking in the search can be iso-
lated to a single point: prior to instances of right thinning.

A search procedure for LJ can be designed along the same lines as the proce-
dure for LB [Waaler, 1997a]. However, due to the non-permutabilities involving
disjunction, a search procedure based on the LJ rules has to be more complex in
its definition. From a search perspective the main difference between LB and LJ is
that in LB succedent information is preserved longer in the development of a proof.
However, commitments must be made before right implications or universal quan-
tifications are expanded, and, as expected, there is thus no difference between LJ
and LB as far as the complexity of the search space is concerned.

By shifting from LJ to LB we do, however, lose the tight connection between
the formal system and the constructive semantics of intuitionistic logic. LB does
enjoy , but the argument that LJ is a formalisation of the does not carry over to LB
in a straightforward way. The connection between LB and the proof interpretation

TABLEAUX FOR INTUITIONISTIC LOGICS 273

�; A;B ! �
�; A ^ B ! � L^

�! A;� �! B;�
�! A ^B;� R^

�; A! � �; B ! �
�; A _ B ! � L_

�! A;B;�
�! A _B;� R_

�! A;� �; B ! �
�; A � B ! � L�

�; A! B;�
�! A � B;� R�

�; A[t=x]! �
�;8xA! � L8

�! A[a=x];�
�! 8xA;� R8

�; A[a=x]! �
�; 9xA! � L9

�! A[t=x];�
�! 9xA;� R9

Restrictions: In R8 and L9 the parametera cannot appear in the conclusion.

Figure 5. The logical rules of LK

can be made more explicit by a translation of LB-proofs into proofs in LJ. Such
translations are defined by Fitting[1969] and Schmitt and Kreitz[1996] by means
of the introduction of cuts, and by Waaler at the level of cut-free proofs[Waaler,
1997b].

REMARK 12. We close this section by a remark about classical logic. If we
replace the R� and R8 rules of LB with the rules

�; A! B;�
�! A � B;�

�! A[a=x];�
�! 8xA;�

the resulting system is Gentzen’s system LK for classical logic. The logical rules
of LK are shown in figure 5 for reference.

The search for LB-proofs mimics the search in classical logic to a certain extent,
in that the search is performed classically for all rules except the two rules for
implication and the right rule for universal quantifier. This is reflected in the truth
conditions for Kripke models, which are the same as for classical logic except for
the clauses for implication and the universal quantifier.

2.2 Refutation trees

A Schütte-type proof of the forclassical logic[1960] proceeds by induction on an
open branch in a complete tree. The construction for intuitionistic logic introduced
in Section 2.3 generalises this procedure. In this section we give a formal presen-
tation of the intuitionistic counterpart to an ‘open branch’. Due to the definition
will have to be more complex than that for classical logic. The method introduced

274 A. WAALER AND L. WALLEN

�; A;B ! �
�; A ^ B ! � L^

�! A;�
�! A ^ B;� R^1

�! B;�
�! A ^ B;� R^2

�; A! �
�; A _ B ! � L_1

�; B ! �
�; A _B ! � L_2

�! A;B;�
�! A _ B;� R_

�; A� B ! A;�
�; A� B ! � LC�1

�; B ! �
�; A� B ! � L�2

�; A! B
�! A � B R�

�;8xA;A[t=x]! �
�;8xA! � LC8

�! A[a=x]
�! 8xA R8

�; A[a=x]! �
�;9xA! � L9

�! A[t=x];9xA
�! 9xA RC9

�; A! �
�! � LT

�! C1 � � � �! Cn
�! C1; : : : ; Cn;� Split

L9 and R8 are subjected to the usual conditions on eigenparameters. In Split,

C1; : : : ; Cn are all the implications and universally quantified formulae in the succe-

dent of the conclusion, andn > 0.

Figure 6. Refutation rules for LB

below is an adaptation of one developed for LJ in[Waaler, 1997a].
The rules of this formal system are given in Figure 6. Observe that only Split,

a structural rule which replaces right thinning, is branching: the function of this
inference is to record the backtracking in a search. Once again we divide the
logical rules into three distinct groups:

GROUP1: R^1, R^2, L^, R_, L_1, L_2, LC�1, L�2, L9.
GROUP2: LC8, RC9.
GROUP3: R8, R�.

The relation� is defined on in an analogous manner to the definition on derivations
trees.

We will be interested in trees generated from the rules in Figure 6 that satisfy
the following conditions (compare these with conditions (S1)–(S5) in the previous
section):

(R1) thinning only occurs on the left side formula of a R�, and it occurs whenever
there is an antecedent occurrence of the same formula below this inference
in the tree;

TABLEAUX FOR INTUITIONISTIC LOGICS 275

(R2) if there is an instance of LC�1 with conclusionT , and there is an instance
of LC�1 above with identical principal formula and with conclusionS, then
T � S;

(R3) the side formula of a LC8 does not have an antecedent occurrence below
this inference in the tree, and the term used to instantiate the quantifier is
available at the conclusion;

(R4) the term used to instantiate the quantifier in an instance of RC9with premiss
S is available at the conclusion of the inference, and if another instance
of the side formula occurs in the succedent of a sequentT belowS, then
T � S;

(R5) every instance of Split has a R� or R8 immediately above it in every branch.

A refutation tree for a sequentS is a tree withS as root, regulated by the rules (R1-
R5), and satisfying the condition that for each rule occurence in the tree no rule
from a lower group is applicable to its conclusion. A refutation tree may be thought
of as being constructed by successive applications of the rules from conclusion to
premisses, making sure to use any applicable rule from a lower group before an
applicable rule from a higher group.
R is said to be acomplete refutation tree for a sequentS if it is a refutation tree

for S, R is not a proper subtree of any larger refutation tree forS, and, for every
sequent�! � in R,? 62 � and� \� = ;.
EXAMPLE 13. The following is a refutation tree for the sequent! (p � q) _
(q � p).

p! q
! p� q

q! p
! q � p

! p� q; q � p
! (p � q) _ (q � p)

The reader should check that the relevant conditions are met. The sequent is clas-
sically valid but intuitionistically unprovable.

EXAMPLE 14. This example illustrates termination. Consider the following tree.

(p � q) � r; p! q
(p � q) � r; p; p! q
(p� q) � r; p! p� q
(p � q) � r; p! p� q; q

(p � q) � r; p! q
(p � q) � r! p� q

(p� q) � r !

The first step is to apply LC�1. (R2) now blocks a repeated application of LC�1

and we must hence apply R�. LC�1 and R� are then re-applied; observe that
condition (R2) is met for the LC�1 and that we must use Split before this appli-
cation of R�. Finally, according to condition (R1), we must apply left thinning on
p. Condition (R2) now blocks further expansion of the tree.

276 A. WAALER AND L. WALLEN

EXAMPLE 15. We construct a refutation tree for:8x(Px _ :Px) !. The first
step in the construction is to apply LC�1 and then expand the succedent, which
yields the following block:

Pa0;:8x(Px_ :Px)!
:8x(Px_ :Px)! :Pa0

:8x(Px_ :Px)! Pa0;:Pa0
:8x(Px_ :Px)! Pa0 _ :Pa0
:8x(Px_ :Px)! 8x(Px_ :Px)

:8x(Px_ :Px)!

Note that the leaf is similar to the endsequent except for the addition ofPa0 in the
antecedent, wherea0 is the eigenparameter of the R8-inference. This means that
LC�1 applies again, yielding a similar block above the leaf, only differing in the
choice of a new eigenparametera1 and the addition ofPa0 in the antecedent of
its (i.e. the blocks) endsequent. The complete refutation tree hence consists of a
countably infinite sequence of such blocks.

LEMMA 16. If a sequentS is not provable in LB, then there exists a complete
refutation tree withS as endsequent. Moreover, ifS is restricted to propositional
intuitionistic logic, then the complete refutation tree is finite.

Proof. The existence of a complete refutation tree follows in the usual way via
non-constructive reasoning. In the propositional case, the only rule that has the
potential to give rise to an infinite refutation tree is LC�1, owing to the contrac-
tion on the principal formula that is built into the rule. However, condition (R2)
constrains the application of this rule as follows: in between every two instances
of LC�1 with identical principal formulae, must be a R� whose left side formula
is not removed by thinning. This obtains only when the left side formula strength-
ens the antecedent of the premiss compared to the antecedent of the conclusion.
A sequent can only be strengthened by formulae that occur as subformulae of the
endsequentS; and there are only a finite number of those. �

Note that contraction has been built into one rule for left implication and the
left rule for universal quantification, which in combination with condition (R1)
restricts the copying process to the branches where a new copy of a formula can
potentially contribute to the search. A search procedure for LJ based on the same
idea is described and implemented by Sahlin, Franz´en and Haridi[1992]. This
procedure also contains various optimisations. For further results about in LB we
refer to Sections 3.2 and 3.3, and (for LJ) to the study by Waaler[1997a].

2.3 The model existence theorem

In this section we show how a complete refutation tree with endsequentS defines
a countermodel toS in a natural way.

We first define the basic construction which maps a complete refutation treeu
into a Kripke model. The universeU of the Kripke model containsu and every
subtreex of u whose endsequent is either

TABLEAUX FOR INTUITIONISTIC LOGICS 277

(a) a premiss of a R� -inference whose left side formula is not introduced by
thinning, or

(b) a premiss of a R8 -inference whose eigenparameter occurs in a side formula
of a LC8 -inference inx.

When the left side formula of a R� -inferencer is introduced by thinning, we will
say that thepremissof r is the sequent immediately above the thinning (so that
the premiss and conclusion ofr have equal antecedents). A sequent occurring in a
treex 2 U is called anx-sequentif it does not occur in anyy 2 U such thaty is a
proper subtree ofx. r is anx-inferenceif the conclusion ofr is anx-sequent. Let
x� andx+ be sets of formulae defined as follows.

A 2 x� iff A occurs as an antecedent formula of anx-sequent;

A 2 x+ iff A occurs as a succedent formula of anx-sequent.

Let x � y iff y is a subtree ofx, t 2 D(x) iff there is anx-sequent at whicht
is available, with the proviso that (the dummy term)0 2 D(x) only if D(x) is
otherwise empty. For any closed atomic formulap, x 0 p iff p 2 x�. It is easy to
check that(U;D;�; 0) is a Kripke model.

EXAMPLE 17. Let us apply the above construction to the complete refutation tree
in Example 13. The model will consist of 3 points: letx denote the refutation tree
given in Example 13,y denote its subtreep ! q andz denote the subtreeq ! p
of x. Thenx � y, x � z, and0= fhy; pi; hz; qig. The model is shown as model
2 in Figure 2. It is immediate that this is a countermodel to! (p � q) _ (q � p).
EXAMPLE 18. The complete refutation tree in Example 15 gives rise to an infi-
nite model depicted as model 3 in Figure 2. This is a countermodel to:8x(Px _
:Px)!.

In Section 1.4 we motivated Kripke models; to shed some light on the con-
struction of the countermodel and provide a link to the syntax of refutation trees,
observe first thatx � y if eitherx = y or there is anx-sequentT and ay-sequent
S such thatT � S. T � S implies that the antecedent ofS is stronger than the
antecedent ofT . In terms of the this can be taken to mean that we are in possession
of proofs of more formulae at the pointy than at the pointx.

THEOREM 19 (Model Existence).LetS be an intuitionistic sequent not provable
in LB. ThenS has a counter-model.

Proof. It is immediate from Lemma 16 that a complete refutation tree forS exists.
Let the corresponding Kripke model(U;D;�; 0) be as defined above. We prove
by induction onA that for each pointx in the model, ifA 2 x�, thenx A, and
if A 2 x+, thenxjj6 �A. The model existence theorem follows from this. There are
six cases to consider.

278 A. WAALER AND L. WALLEN

Case 1:A is atomic or?. If A 2 x�,A must be distinct from?. By definition
of 0, x A. Let A 2 x+. Observe that thex-sequents form a block of non-
branching inferences possibly with Split and right inferences immediately above.
Let S be the uppermostx-sequent that is the premiss of a left inference; if there
are no leftx-inferences, takeS to be the endsequent ofx. SinceA 2 x+, A must
occur in the succedent of anx-sequentT such that the antecedent ofS is equal to
the antecedent ofT . Since an atomic antecedent occurrence in a sequent will occur
in every other sequent above,A will occur in the antecedent ofT , i.e. if A 2 x�,
A will occur in both the antecedent and the succedent ofT . HenceA 62 x�, and
xjj6 �A.

Case 2:A isB ^ C. AssumeA 2 x�. ThenA must be the principal formula
of a L^ -inference whose premiss is anx-sequent, givingB 2 x� andC 2 x�.
The induction hypothesis and the forcing condition yieldx A. AssumeA 2 x+.
By construction,A must be the principal formula of an inference of type R^1 or
R^2 whose premiss is anx-sequent; thus eitherB 2 x+ or C 2 x+. Apply the
induction hypothesis and the forcing condition for conjunction.

Case 3:A isB _ C. This case is the dual of case 2.
Case 4:A is B � C. LetA 2 x� andy � x. By constructionA must be the

principal formula of either ay-inference of type LC�1, in which caseB 2 y+, or a
z-inference L�2, x � z � y, in which caseC 2 z�. By induction hypothesis and
Lemma 5, eithery jj6 �B or y C. Since this holds for everyy � x, x B � C.
LetA 2 x+. ThenA must be the principal formula of a R� -inferencer. Assume
first that the left premiss ofr is introduced by thinning, i.e. thatr is anx-inference.
ThenC 2 x+ and there must be a pointu � x such thatB 2 u�. By induction
hypothesis and Lemma 5,x B andx jj6 �C. Assume that the left premiss ofr is
not introduced by thinning. Then the subtree of which the premiss ofr is the root
gives rise to a pointy such thatx � y. By induction hypothesisy B andy jj6 �C.
In either casexjj6 �B � C.

Case 5:A is 8zB. Let A 2 x�, x � y, andt 2 D(y). There must then
be a pointv � y such thatt 2 D(v) and for every pointw � v, t 2 D(w)
iff v = w. By construction of the refutation tree there must be av-inference of
type LC8 with side formulaB[t=z], i.e.B[t=z] 2 v�. By induction hypothesis,
v B[t=z], hence, by Lemma 5,y A[t=z]. Since this holds for anyy andt,
x 8zB. LetA 2 x+. A must be the principal formula of an inferencer with
eigenparametera. If r is anx-inference, i.e. ifa is not used in the instantiation of
a LC8-inference above, thena 2 D(x) andB[a=x] 2 x+, andxjj6 �B[a=x] by the
induction hypothesis. Ifr is not anx-inference, there is ay-sequent,y � x, such
thatB[a=x] 2 y+. By induction hypothesisy jj6 �B[a=x]. In either casexjj6 �8zB.

Case 6:A is 9zB. LetA 2 x� andt be the eigenparameter of the inference in
x introducing9zB. Thent 2 D(x) andB[t=z] 2 x�. LetA 2 x+. A must be
introduced by an inference of type RC9; let the conclusion of this inference beS.
By construction, every termt 2 D(x) must be available atS. HenceB[t=z] 2 x�
for eacht 2 D(x). In both cases we conclude by induction hypothesis and the
forcing condition forA. �

TABLEAUX FOR INTUITIONISTIC LOGICS 279

Observe that the proof of the existence of a countermodel is carried out con-
structively from the refutation tree, but the theorem itself is non-constructive. If
we want to conclude that LB is complete with respect to Kripke models, i.e. that
every sequent valid in all Kripke models is provable in LB, we must argue contra-
positively (and non-constructively).

THEOREM 20 (Completeness).LB is complete.

Proof. If a sequent is not provable in LB, the construction of the Model Existence
theorem gives us a countermodel. Hence the sequent is not valid. �

REMARK 21. Refutation trees for propositional endsequents are finite (Lemma
16). Hence the search procedure will always terminate for propositional sequents.
By completeness we can conclude that the search strategy defines a decision pro-
cedure for propositional intuitionistic logic.

3 REFINEMENTS

3.1 Tableaux

The Beth tableau system for intuitionistic logic is basically a notational variant of
the system LB given above. Fitting presents an elegant formulation using ideas
from both Beth and Hintikka in[Fitting, 1969]. We follow his presentation below.

We work with two signsT andF which can be informally understood as denot-
ing ‘proven’ and ‘not proven’ respectively. Asignedformula is a pair consisting
of a sign and a formula, writtenTA or FA. Writing S for a multiset of signed
formulae, thereduction rulesof the tableau system can be written as in Figure 7.
S;H is shorthand forS [fHg (multiset union),ST meansfTA j TA 2 Sg (as a
multiset), andS;H j S;H 0 means that the reduction produces two branches with
these endpoints.

The presentation differs from Fitting’s in two ways. First, since the rules are
defined on multisets, the duplication of formulae is made explicit in the rulesT�,
T8 andT9. Second, we still treat negation as a defined symbol. A multiset is said
to beclosedif it contains occurrences of bothTA andFA, or if it containsT?. A
branch is closed if it contains a closed multiset.

Rather than repeating the technical definition of tableaux based on these multi-
sets of signed formulae let us simply observe the following. Consider a mapping
I from multisets of signed formulae to sequents defined by:

I(S) = fA j TA 2 Sg ! fA j FA 2 Sg:

It is easy to see thatI maps the reduction rules of Figure 7 into slightly modified
and inverted versions of the logical rules of LB (see Figure 3);T�, T8, andF9
map into inverted versions of the derived rules in figure 4;F� andF8 when
inverted map into the rules:

280 A. WAALER AND L. WALLEN

S; T (A ^ B)
S; TA; TB T^

S;F (A ^B)
S;FA j S;FB F^

S; T (A _ B)
S; TA j S; TB T_

S;F (A _B)
S;FA;FB F_

S; T (A � B)
S; T (A � B); FA j S; TB T�

S;F (A � B)
ST ; TA;FB F�

S; T8xA
S;T8xA;TA[t=x] T8

S;F8xA
ST ; FA[a=x] F8

S; T9xA
S;TA[a=x] T9

S;F9xA
S;F9xA;FA[t=x] F9

Restrictions: The parametera must be new.

Figure 7. Fitting/Beth Tableau rules[Fitting, 1969]

�; A! B
�! A� B;�

�! A[a=x]
�! 8xA;�

These two rules are admissible in LB. A multiset which closes a branch in a tableau
corresponds to an axiom�; A ! A;� or �;? ! �. This makes left and right
thinning redundant. Observe, however, that left thinning plays an important role
in the systematic search procedure for LB in deleting a side formula of a R�
whenever there is an occurrence of this formula below in the LB-derivation. To
compensate for this we may introduce the tableau rule

S;F (A � B)
ST ; FB

F�0

and use this rule in the search when there is already an occurrence ofTA in the
branch. The formulation of the systematic search procedure within the context of
tableau rules is now straightforward.

Simple though this relationship is, the reader should not forget that the perspec-
tive of the tableau system is that of reduction and refutation, not (directly) proof.
What is significant is that, whereas in (propositional) classical logic this perspec-
tive gives rise to a set of reduction rules which can be seen as working locally on
single formulae, for intuitionistic logic the operationmustbe applied to a sequent.
Hence the nodes of the reduction trees consist of multisets of formulae rather than
single formulae. Our decision to base the earlier sections on sequent calculi is
therefore justified.

TABLEAUX FOR INTUITIONISTIC LOGICS 281

3.2 Contraction-free systems of propositional logic

The idea behind contraction-free systems for the propositional fragment of intu-
itionisti logic can be traced back to a paper by Vorob’ev from 1952[1952]. The
idea has since been independently rediscovered by several logicians and computer
scientists. The exposition below is inspired by Dyckhoff’s treatment in[1992]
and, for the semantical completeness proof, by the paper of Pinto and Dyckhoff
[1995]. Variations of the same system are introduced by Hudelmaier[1992; 1993]
and Lincolnet al. [1991]. We will present the idea in relation to LB, and leave the
formulation of the associated tableau system to the reader.

As shown in Section 2 the only rule that needs contraction in the propositional
fragment of LB is the left implication rule, a fact captured by the derived rule LC�
of Figure 4. The basic idea behind limiting contraction is to design rules that are
sensitive to the structure ofA in an antecedent occurrence ofA � B. The rules
are as follows.

�; p;B ! �
�; p; p � B ! �

L��

1

�; C � (D � B) ! �
�; (C ^D) � B ! �

L�^

�; C � B;D � B ! �
�; (C _D) � B ! �

L�_
�;D � B ! C �D �; B ! �

�; (C �D) � B ! �
L��

Thep in L��1 can be restricted to being atomic.

PROPOSITION 22.The four rules above,CUT and contraction are all derived
rules in LB.

Proof. The derivation of L��1 is obtained by a simple application of L�. The
three other cases are given by the following derivations.

L�_:

...
(C _D) � B ! D � B

...
(C _D) � B ! C � B �; C � B;D � B ! �

�; (C _D) � B;D � B ! �
�; (C _D) � B ! �

L�^:
...

(C ^D) � B ! C � (D � B) �; C � (D � B)! �
�; (C ^D) � B ! �

L��:

...
(C �D) � B ! D � B �;D � B ! C �D

�; (C �D) � B ! C �D;� �; B ! �
�; (C �D) � B ! �

LC�

�

EXAMPLE 23. By instantiatingB by? in L�^, L�_, and L�� we can obtain
the following instances of the rules above:

282 A. WAALER AND L. WALLEN

�; C � :D ! �
�;:(C ^D)! �

�;:C;:D ! �
�;:(C _D)! �

�;:D ! C �D
�;:(C �D)! �

In the same way we can obtain a double negation rule from L��:

�! :A
�;::A! �

Let us now prove the sequent:(p_:p)!. In Example 2 we showed that a proof
of this sequent in LB requires contraction. The new rules do, however, permit a
much simpler proof:

:p! :p
:p;::p!
:(p _ :p)!

The reader is encouraged to redo Example 11 to see how the systematic search
procedure will work using the new rules in place of L�.

Proposition 22 shows that every sequent derivable by the rules of LB and any
of the rules L��1, L�_, L�^, L�� is derivable in LB. Since LB also satisfies
a cut-elimination theorem, we can conclude that the sequent is provable in LB
without CUT. The interest in these rules lies not in their soundness, but in the
fact that together the four rules can replace L�, thus making explicit contraction
redundant.

THEOREM 24. The system obtained from propositional LB by deletingLC and
L� , and adding the rulesL��1, L�_, L�^, andL�� is complete.

Proof. We prove a model existence theorem on the basis of the new set of rules.
The proof follows the same line of argument as the proof of the model existence
theorem for LB (theorem 19), restricted to a propositional language. Given that
we replace L� we must also modify the refutation rules of LB accordingly (figure
6). First, since L�� is the only left implication rule with a right premiss, L�2

must be modified to account for this, giving L��2:

�; B ! �
�; (C �D) � B ! �

L��

2

Second, the refutation rule LC�1 is replaced by the four rules L��1, L�_, L�^,
and Split�. Split� is the more complex rule:

�1;D1 � B1 ! C1 �D1 � � � �n; Dn � Bn ! Cn �Dn �! �
�0 ! �

Split�

in which the sets�, �i and�0 are given by:

� is �0; (C1 �D1) � B1; : : : ; (Cn �Dn) � Bn,

�i is � n f(Ci �Di) � Big,
�0 contains no formulae of the form(C �D) � B.

TABLEAUX FOR INTUITIONISTIC LOGICS 283

Once again the set of logical refutation rules is ordered into distinct groups:

GROUP1: R^1, R^2, L^, R_, L_1, L_2, L��1, L�_, L�^, L��2.

GROUP2: Split�.

GROUP3: R�.

Since we work in the propositional fragment, the definition of the constraints is
somewhat simpler than those required for LB in Section 2.2. First,T � S iff there
is an instance of R� in betweenT andS whose left side formula is not introduced
by thinning. Second, the refutation trees for the system under consideration must
meet three conditions:

(RC1) thinning only occurs on the left side formula of a R�, and it occurs whenever
there is an antecedent occurrence of the same formula below this inference
in the tree;

(RC2) if there is an instance of Split� with conclusionT , and there is an instance
of Split� above with conclusionS, thenT � S;

(RC3) every instance of Split has a R� immediately above it in every branch.

The definition of the model(U;�; 0) is exactly as in Section 2.3 (neglecting the
domain function). Observe that(U;�) is a finite tree. Let us say that thedegree
of a pointx in U is the number of distinct pointsy in U such thaty � x. y is
immediately abovex if x � y and for everyz such thatx � z � y, eitherz = x
or z = y. Note that the ‘’immediately above’ relation is reflexive.

The proof of the model existence theorem for LB proceeded by induction on the
structure of a formulaA. This was made possible by the fact that any side formula
of a refutation rule of LB is simpler than the principal formula of the rule (and is
in fact a subformula of it). Observe that this is not the case for L�^, for example.
Following Dyckhoff[1992] we therefore introduce theweightof a formula, ‘wt’
as follows:

wt(p)=wt(?)=1,

wt(A _B)=wt(A � B)=wt(A)+wt(B)+1,

wt(A ^B)=wt(A)+wt(B)+2.

The function ‘wt’ induces a well-founded relation over formulae. Observe that
wt((C ^D) � B) > wt(C � (D � B)), which is what we need for the induction
to go through. As in Theorem 19 we prove that for allx 2 U and every formula
A, if A 2 x�, thenx A, and ifA 2 x+, thenx jj6 �A. The proof is by induction
on the lexicographical ordering of all pairs(m;n), wherem is wt(A) andn is the
degree ofx.

Cases 1–3 in the induction are identical to the proof of Theorem 19.

284 A. WAALER AND L. WALLEN

Case 4 needs modification. LetA be an implication. The case thatA 2 x+ is
exactly as in theorem 19. However, ifA 2 x�, there are four subcases to consider.

Sub-case 1:A is p � B. Consider a pointy � x. If p 2 y�, there must be a
point z such thatx � z � y, p 2 z�, and such that for everyu � z, if p 2 u�,
thenu = z. There must then be az-inference of type L��1 which applies, giving
B 2 z�. By induction hypothesis,z B, and by Lemma 5,y B. Since this
holds for everyy � x, x p � B.

Sub-case 2:A is (C ^D) � B. By construction there has to be anx-inference
of type L�^ whose principal formula isA. HenceC � (D � B) 2 x�. Since
the weight of this formula is less than the weight ofA, the induction hypothesis
applies and givesx C � (D � B). By the forcing condition,x (C^D) � B.

Sub-case 3:A is (C_D) � B. Same as previous case, referring to L�_ instead
of L�^.

Sub-case 4:A is (C � D) � B. In this case either Split� applies or there is
anx-inference of type L��2 with principal formulaA. In the latter caseB 2 x�,
and we can conclude by the induction hypothesis. Assume that Split� applies.
Consider first the premiss�; D � B ! C � D. By induction hypothesis,x forces
D � B. Furthermore, by condition (2) this premiss must be the conclusion of a
R� with principal formulaC �D. Hence there must be a pointy immediately
abovex such that bothC 2 y� andD � B 2 y�. Consider now any pointz � y.
By induction hypothesis and Lemma 5,z C andz D � B, which entails
that if z C �D, thenz B. Consider now any other pointv immediately
abovex. The endsequent ofv must be the premiss of a R� immediately above the
Split� under consideration, possibly with a Split in between. By inspection of the
rules we see thatA 2 v�. Since the degree ofv is less than the degree ofx, the
induction hypothesis can be used to concludev A. Hence, for anyz � x, if
z C � D, thenz B, and we are done. �

EXAMPLE 25. To illustrate the construction in the proof given above we repeat
Example 14 for the new set of rules. Consider the following tree.

p; q � r! q
q � r ! p� q (p � q) � r!

(p� q) � r !

Observe that the conditions pertaining to a complete refutation tree are met. The
countermodel defined by the tree is given as model 1 in Figure 2.

REMARK 26. The proof of Theorem 24 cannot be lifted to first-order intuitionis-
tic logic. The reason is that in the first-order case the models defined by refutation
trees may contain infinite branches, a situation which makes the degree of the
points in the branch undefined. This situation is shown in Example 18.

TABLEAUX FOR INTUITIONISTIC LOGICS 285

�; A;:A! � ID�

�;:A! �;:B !
�;:(A ^ B)! L:^

�;:A;:B ! �
�;:(A _ B) ! � L:_

�; A;:B !
�;:(A � B)! L:�

�; A!
�;::A! L::

�;:8xA! A[a=x]
�;:8xA! L:8

�;:9xA;:A[t=x]! �
�;:9xA! � L:9

Restrictions: In L:8 the parametera cannot appear in the conclusion.

Figure 8. Sequential formulation of rules in Miglioliet al. [Miglioli et al., 1994]

3.3 Limiting contraction in intuitionistic predicate logic

Owing to the interaction between right universal and left implication, i.e. the
non-permutability of L� over R8, contraction on left implications cannot be re-
moved in the first-order case. In Example 18 we presented a countermodel to
:8x(Px _ :Px) ! ?. It is easy to see that this formula has no finite counter-
model, and the refutation tree given in Example 15 provides insight into why no
finite countermodel can exist. This is sufficient to conclude that the method of the
previous section cannot be lifted to the first-order case.

However, if we restrict attention to left negations, the method does transfer to
first-order intuitionistic logic. This observation is due to Miglioliet al. [1994],
who presented the idea within the framework of a tableau system. The idea can be
formulated in terms of the sequent rules in Figure 8.

PROPOSITION 27.The rules in Figure 8 are all derived rules in LB.

Proof. L:^ is derived by two instances ofCUT:

...
:(A ^ B); B ! :A �;:A!

�;:(A ^ B); B !
�;:(A ^ B) ! :B �;:B !

�;:(A ^B) !

The derivations of the other rules are left for the reader. Observe that either R:
(i.e. R�) or R8 is used in the arguments for the rules that operate on intuitionistic
(single-conclusioned) sequents, and that they are not used in the arguments for the
other rules. �

THEOREM 28. The system obtained from LB by adding the rules in Figure 8, and

286 A. WAALER AND L. WALLEN

�;:A! �;:(A ^ B) ! �
�;:(A ^B) ! � L:^�1

�;:B ! �;:(A ^ B)! �
�;:(A ^ B) ! � L:^�2

�;:A;:B ! �
�;:(A _ B)! � L:_

�; A;:B ! �;:(A � B)! �
�;:(A � B) ! � L:��

�; A! �;::A! �
�;::A! � L::�

�;:8xA! A[a=x] �;:8xA! �
�;:8xA! � L:8�

�;:9xA;:A[t=x]! �
�;:9xA! � L:9

L:8� is subject to eigenparameter condition on the parametera.

Figure 9. Refutation rules for the system in Miglioliet al. [Miglioli et al., 1994]

forbiddingL� on formulae of the form:A, is complete.

Proof. As in the proof of Theorem 24, we prove a model existence theorem on
the basis of the new set of rules by referring to the corresponding proof for LB,
emphasising only the modifications of that construction.

Since we have added new inference rules, the set of refutation rules must also
be modified. We add to the set of rules in figure 6 the rules in Figure 9; observe
that in the latter figure, the rules that are branching are precisely those that define
points of backtracking in the search. The points of backtracking can no longer be
isolated to applications of Split, in contrast to the situation in LB.

The rules are ordered into four groups:

GROUP1: R^1, R^2, L^, R_, L_1, L_2, LC�1, L�2, L9, L:_.

GROUP2: LC8, RC9, L:9.
GROUP3: L:^�1, L:^�2, L:��, L::�, L:8�.
GROUP4: R8, R�.

The� relation needs to be modified slightly. Let the sequentS be above the se-
quentT in a derivation. ThenT � S iff there is an intervening instance of R�
whose left side formula is not introduced by thinning, an intervening instance of
one of the four propositional rules in GROUP 3 such thatS occurs over the left
premiss of the rule, or an intervening instance of R8 or L:8� whose eigenparam-
eter has been used as parameter in an intervening inference of type L8. Using this
relation we can formulate two conditions that a refutation tree must satisfy in ad-
dition to the five conditions introduced for LB in Section 2.2. First condition (1’)
replaces condition (1):

TABLEAUX FOR INTUITIONISTIC LOGICS 287

(R1’) thinning only occurs on the left side formula of a R� or the side formula
of a propositional inference in GROUP3, and it occurs whenever there is an
antecedent occurrence of the same formula below this inference in the tree,

The new clauses are:

(R6) if there is an instance of a rule in GROUP 3 with conclusionT and there
is an instance of the same rule above with identical principal formula, the
conclusion of which isS, thenT � S,

(R7) the side formula of a L:9 does not have an antecedent occurrence below
this inference in the tree, and the term used to instantiate the quantifier is
available at the conclusion.

Finally, we must modify slightly the definition of the Kripke model(U;D;�; 0)
associated with a refutation treeu to account for the fact that, in addition to the
rules in Group 4, the rules in GROUP 3 will give rise to new points in the model.
We leave the details to the reader.

The new construction allows us to prove smoothly that for allx 2 U and every
formulaA, if A 2 x�, thenx A, and ifA 2 x+, thenx jj6 �A. The proof, which
is by induction onA, adds new sub-cases to the proof of Theorem 19 for cases
where the rules in Figure 9 apply. We consider one sub-case to Case 4 in the proof
of theorem 19:A is :(B ^ C). Let A 2 x� andy � x. By construction there
must bez-inferencer of type L:^�1 or L:^�2 whose principal formula isA, and
which satisfies either of the two conditions:

(i) y � z, or

(ii) x � z � y and everyy-sequent occurs above the left premiss ofr.

Assume thatr is L:^�1; the case thatr is L:^�2 is symmetrical. By inspecting
this rule we see that the left premiss ofr gives rise to a pointu immediately above
z such that:B 2 u�. By induction hypothesis we conclude thatu :B. In
case (i)y � u; hence, by Lemma 5,y jj6 �B. In case (ii) induction hypothesis and
Lemma 5 allow us to conclude thaty :B. Since one of these two cases must
hold for everyy � x we conclude thatx :(B ^ C).

The other cases are similar (or simpler) and are left for the reader. �

In their tableau presentation Miglioliet al. [1994] introduce the signFc (‘cer-
tain falsehood’) in addition to the two signs used by Fitting. The symbol can
informally be taken to stand for ‘negation proven’. In order to present the set of
tableau rules we will no longer treat negation as a defined symbol, i.e. we include
explicit negation rules.ST now meansfTA j TA 2 Sg [fFcA j FcA 2 Sg.
Keeping this in mind the tableau system consists of the rules in Figure 7 together
with the rules in Figure 10.

288 A. WAALER AND L. WALLEN

S; T:A
S;FcA T:

S;F:A
ST ; TA F:

S;Fc:A
ST ; TA Fc:

S;FcA ^ B
ST ; FcA j ST ; FcB Fc^

S;FcA _ B
S;FcA;FcB Fc_

S;FcA � B
ST ; TA;FB Fc�

S;Fc8xA
ST ; FA[a=x]; Fc8xA Fc8

S;Fc9xA
S;FA[t=x]; Fc9xA Fc9

Restrictions: The parametera in Fc8 must be new.

Figure 10. Tableau rules of Miglioliet al. [Miglioli et al., 1994]

3.4 The treatment of quantifiers

One of the most important problems encountered in the formulation of methods of
systematic proof-search is how to constrain the non-determinism that arises when
choosing terms for use with quantifier rules. This problem was solved for the
classical predicate calculus by Robinson[1965], drawing indirectly on ideas from
Herbrand[1967]. There are in fact two separate problems to be addressed, one
algebraicand the otherlogical. The algebraic problem is how to limit the class
of terms considered in the search; the subformula property (section 1.3) does not
serve to constrain term structure to the same degree as it constrains propositional
structure. The logical problem is how to ensure that solutions to the algebraic
problem are logically adequate given the meaning attributed to the quantifiers by
a logic.

The adaptation of Robinson’s solution to classical tableaux is discussed in other
chapters in this volume (see Chapter 3). Here we shall be content to provide a brief
description of the main elements of that solution as it relates to intuitionistic logic.8

Let us first address the algebraic problem of limiting the class of terms consid-
ered in a search. Terms normally used in expansion with the rules L8 and R9 are
instead replaced byindeterminates, sometimes called ‘free variables’ or ‘Skolem
variables’ (cf. Chapter 3). The L8 and L9 rules in LB are modified accordingly:

�; C[�=x]! �
�;8xC ! �

L8i
�! C[�=x];�
�! 9xC;�

R9i

Here� is a fresh symbol selected from an alphabet of indeterminates assumed
to be disjoint from the terms of the language. Without loss of generality we can
assume that the identity axioms are atomic; they are further modified to require

8A comprehensive solution for intuitionistic predicate calculus was presented in[Wallen, 1990];
a formulation of that solution would take us beyond the scope of a volume on tableau methods. A
Herbrand-Robinson treatment of quantification in an intuitionistic type theory can be found in[Pym
and Wallen, 1990].

TABLEAUX FOR INTUITIONISTIC LOGICS 289

P� ! Pa
P� ! 8xPx q; P� ! q

8xPx� q; P� ! q

8xPx� q! P� � q

8xPx� q! 9y(Py � q)

Pa! Pa
Pa! 8xPx q; Pa! q

8xPx� q; Pa! q

8xPx� q ! Pa � q

8xPx� q! 9y(Py � q)

Figure 11. An LB-skeleton of8xPx � q ! 9y(Py � q) (to the left) and an
instantiation of the skeleton with� = a (to the right)

only that the predicate symbols of the principal formulae are identical. All other
logical and structural rules are as in LB (see Figure 3).

In what follows we shall call trees constructed with the modified axioms and
the L8i and R9i rulesLB-skeletons. This is to reflect the fact that they do not
necessarily carry logical force. The axioms of an LB-skeleton induce a system of
simultaneous equations as follows. If the skeleton contains no axioms the induced
system of equations is empty; otherwise, let(Pisi1 : : : sim ; Piti1 : : : tim), for i =
1; : : : ; n, be the pairs of principal formulae of then axioms of the skeleton. The
system of simultaneous equations induced is:

sij = tij ; i = 1; : : : ; n ; j = 1; : : : ;m :

The solubility of such systems over the universe of terms augmented with the
indeterminates as additional generating elements can be determined by , a method
which also suffices to calculate ‘most general’ solutions. An example will help to
illustrate these ideas.

EXAMPLE 29. Consider the classically valid, but intuitionistically unprovable
sequent:8xPx � q ! 9y(Py � q). An LB-skeleton of the sequent is given in
figure 11. The system of equations induced by the skeleton is the singleton

� = a

which is in solved form already.

The equation-solving perspective, in which the structure of the axioms of a
skeleton is used to decide which equations require solution, provides a completely
adequate algebraic solution to the problem of constraining the terms considered in
a search. Only those terms that materially effect the axioms are ever considered.
The fact that most general solutions exist, and can be feasibly computed, makes
this one of the central results of automated deduction.

Notice, however, that the eigenparameter condition on R8 is not satisfied in
the tree to the right in figure 11. This brings us to the second problem: how to
distinguish the logically adequate solutions from the larger class of algebraically

290 A. WAALER AND L. WALLEN

adequate ones. We should expect a solution to this problem to reflect the logical
properties of the quantifiers, and therefore to differ systematically from one logic
to the next.

Let us first briefly address classical logic. In the classical predicate calculus
the quantificational structure is ‘separable’ from the propositional structure of the
logic. This is expressed, variously, by the prenex normal form theorem, the of
Smullyan[1968], or the of Gentzen[1935]. Herbrand’s theorem9 [1967] also re-
flects this property by expressing first-order provability in terms of the provability
of quantifier free forms. A formulation of Herbrand’s theorem for non-prenex for-
mulae is given in[Bibel, 1982].

Proof-theoretically, this separability can be seen via the permutation properties
of the calculus LK (see Figure 5). Recall that the only impermutable rule pairs are
the following:

L8 or R9
R8 or L9

which stem from the eigenparameter conditions.
Following Herbrand, the identification (in classical logic) of those algebraic so-

lutions which nevertheless will fail to satisfy eigenparameter conditions can be
achieved quite simply. The eigenparameters in L9 and R8 are associated with
information which eliminates those solutions which would result in an eigenpa-
rameter appearing in the derivationbelowthe L9 or R8 rule with which it is as-
sociated. How this is done in practice is somewhat immaterial. It has become
customary to introduce so-called ‘Skolem’ terms in place of the eigenparameters,
and to give as arguments to the terms exactly those indeterminates which appear
in the conclusion of the rule (cf. Chapter 3).

We shall first consider this solution as it applies to LB and then show that the
classically sound generalisation of this method known as10 fails intuitionistically.
The central modification is to the rules L9 and R8 as follows:

�; A[f ~�=x]! �
�;9xA! �

L9i
�! A[f ~�=x]
�! 8xA

R8i

where in each case~� is the list of indeterminates in the conclusion, andf is a
‘function’ symbol uniquely associated with the inference that introduces it. We
shall call the LB system with modified quantifier rules and axioms as described
above LBi. The ‘logical’ rules of LBi are summarised in Figure 12. The modified
LB-skeleton of Figure 11 is shown in Figure 13. The equation induced by this
LBi-skeleton is

� = f�

9Theorem 5, page 554 in van Heijenoort’s collection[1967], though modern versions are much
clearer; see for example Theorem 2.6.4 page 120 of[Girard, 1987].

10Skolemisation is discussed extensively in Chapter 3.

TABLEAUX FOR INTUITIONISTIC LOGICS 291

�; A;B ! �
�; A ^ B ! � L^

�! A;� �! B;�
�! A ^B;� R^

�; A! � �; B ! �
�; A _ B ! � L_

�! A;B;�
�! A _B;� R_

�! A;� �; B ! �
�; A � B ! � L�

�; A! B
�! A� B R�

�; A[�=x]! �
�;8xA! � L8i

�! A[f ~�=x]
�! 8xA R8i

�; A[f ~�=x]! �
�;9xA! � L9i

�! A[�=x];�
�! 9xA;� R9i

Restrictions: In L8i and R9i , the indeterminate� must not have been introduced by

any other rule in the skeleton. In L9i and R8i , the Herbrand functionf must not

have been introduced by any other rule in the skeleton;~� is the list of indeterminates

appearing in the conclusion of the rule.

Figure 12. The ‘logical’ rules of LBi

which has no finite solution. This adequately reflects the fact that any solution
for � which contains the parameter associated with the R8 rule will fail to pro-
duce a sound LB-derivation from the LBi-skeleton; the parameter will occur in the
conclusion of the R8 rule and the skeleton will thereby fail to satisfy the eigenpa-
rameter condition.

The search procedure of Section 2.1 can be easily modified for LBi. The quanti-
fier rules of LBi replace those of LB in GROUPS1,2 and 3, and an LBi-skeleton is
produced following the constraints of the procedure. The ordering on expansions
imposed by the procedure ensures that if the system of equations induced by the
LBi-skeleton is solvable, the resulting instantiation will produce an LB-proof.

Here is an example of an intuitionistically valid sequent proved by means of
this search procedure.

EXAMPLE 30. The sequent we shall consider is9y(Py � q) ! 8xPx � q. An
LBi-skeleton for this sequent is shown in Figure 13. The induced equation,� = a,
is already in solved form; the reader can easily check that the instantiated skeleton
is an LB-proof.

REMARK 31. The method of refutation trees can be extended to LBi. This is left
as an exercise for the reader.

The similarity of this essentially proof-theoretical technique to certain (seman-

292 A. WAALER AND L. WALLEN

P� ! Pf�
P� ! 8xPx q; P� ! q

8xPx� q; P� ! q

8xPx� q ! P� � q

8xPx� q! 9y(Py � q)

P� ! Pa
8xPx! Pa 8xPx;q ! q

Pa� q;8xPx! q

9y(Py � q);8xPx! q

9y(Py � q)! 8xPx� q

Figure 13. To the left an LBi-skeleton for8xPx � q ! 9y(Py � q). To the right
an LBi-skeleton for9y(Py � q)! 8xPx � q

tic) methods of quantifier elimination in classical logic due to Skolem11 has had
both a positive and a negative influence on the adaptation of this technique to non-
classical logics. On the positive side, skolemisation points to a generalisation of
the above technique in the context of classical logic. The of our example endse-
quent is the sequentPa � q ! P� � q. This formula isclassicallyunsatisfiable
if and only if the original formula is. The important point to note is that the pa-
rametera does not depend in any way on the indeterminate. Semantically, this is
justified by the fact that the8 is not in the scope of the9. Thus we can conclude
that, for classical logic at least, the interaction we discovered when seeking to in-
stantiate the skeleton of Figure 11 was a property of of that particular LB-skeleton
and not an intrinsic dependency within the endsequent itself.

On the negative side, the generality of the technique as a way to express non-
permutabilities in a sequent calculus or tableau system has not been widely appre-
ciated, as it is assumed that the technique relies on properties of classical logic.
(See[1990] for an alternative view.)

Proof-theoretically, again at least in classical logic, the independence of the
parametera from the indeterminate� can be justified by the fact that there is a
skeleton in which the order of the quantifier inferences is reversed from that in the
skeleton of Figure 11. The end-piece of such a derivation is shown below:

8xPx� q ! 8xPx;9y(Py � q)

q; Pa! q
q! Pa � q

q ! 9y(Py � q)
8xPx� q ! 9y(Py � q)

Within LB we must thin away the formula9y(Py � q) in the right branch of this
figure before we can apply R8. It is not hard to see that the resulting sequent
8xPx � q ! 8xPx is unprovable in LB. The classical R8 rule of LK does, how-
ever, permit auxiliary formulae on the right. Recall that it has the form

�! C[a=x];�
�! 8xC;�

R8

11A comprehensive exposition of the relevant techniques arising from Skolem’s work can be found
in [Shoenfield, 1967].

TABLEAUX FOR INTUITIONISTIC LOGICS 293

q; Pa! q
q ! Pa� q

q! 9y(Py � q)

8xPx� q; Pa! Pa; q
8xPx� q! Pa;Pa � q

8xPx� q ! Pa;9y(Py � q)

8xPx� q! 8xPx;9y(Py � q)

8xPx� q ! 9y(Py � q)

Figure 14. An LK derivation of8xPx � q ! 9y(Py � q)

which allows successful completion of the end-piece in LK. The completion of
this derivation in LK is given in Figure 14.

The soundness of the skolemisation technique within classical logic can be seen
to rest on the fact that the permutation constraints on the quantifier rules ariseonly
from their axioms and mutual relationships in the endsequent.12 Our example
does not show directly that a similar generalisation is unavailable for intuitionistic
logic, since neither the endsequent nor its Skolem normal form is intuitionistically
provable. However, the example below shows that skolemisation is unsound intu-
itionistically.

EXAMPLE 32. The skolemised form of the intuitionistically unprovable sequent
8x(Px _ q) ! 8xPx _ q is the intuitionistically provable sequentP� _ q !
Pa _ q.

This suggests that it might be difficult to extend skolemisation technique to in-
tuitionistic logic. This difficulty is, however, simply a reflection of the (negative)
influence of the semantic view of skolemisation. According to this view, a Her-
brand function should be considered an extension to the first-order language.

The reader should immediately see that the problem lies not in the skolemi-
sation technique itself, but in the assumption that the technique should be inde-
pendent of the logical properties of the quantifiers. Once again we look to the
permutation properties for our solution. Recall that for LB we have the following
impermutabilities

L8
R8

L8 or R9
L9

L�
R� or R8

We have simply to encode these impermutabilities in the Herbrand terms to extend
skolemisation to intuitionistic logic. The first three cases are incorporated into the
Herbrand function as currently constituted. The last two involving L� are not.
Note that the essential permutation required to reverse the order of the R8 and
L9 in leftmost skeleton of Figure 13 is L� over R� and R8; these are the two

12Note that there are no quantifiers in a Skolem normal form, a reflection of the existence of a prenex
normal form.

294 A. WAALER AND L. WALLEN

cases above which the classical formulation of the skolemisation technique fails to
account for.

In fact, to extend the technique to intuitionistic logic requires a simple modifica-
tion of the notion of ‘Skolem normal form’ to reflect the (permutation) properties
of the intuitionistic connectives. Of course we should not necessarily expect to be
able to internalise these functions in any way, though in fact they gain a suitable
interpretation using . The technical details of such an approach are described in
various formats in[Wallen, 1990; Pym and Wallen, 1990]. Shankar[1992] refor-
mulated the technique for use with LJ. The examples above are inspired by his
paper. Similar techniques have been introduced for by Fitting[1988] and, in the
context of resolution, by Ohlbach[1990].

Arild Waaler
Department of Informatics, University of Oslo and Department of IT and Mathe-
matics, Finnmark College, Norway.

Lincoln Wallen
Oxford University Computing Laboratory, Oxford.

REFERENCES

[Bell, 1990] J. L. Bell. Toposes and Local Set Theories: an introduction, volume 14 ofOxford Logic
Guides. OUP, Oxford, 1990.

[Beth, 1959] E. W. Beth.The Foundations of Mathematics. North-Holland, Amsterdam, 1959.
[Bibel, 1982] W. Bibel. Computationally improved versions of Herbrand’s Theorem. In J. Stern,

editor,Proceedings of the Herbrand Symposium, Logic Colloquium ’81, pages 11–28, Amsterdam,
1982. North-Holland Publishing Co.

[Constableet al., 1986] R. L. Constable, S. F. Allen, H. M. Bromley, W. R. Cleaveland, F. F. Cremer,
R. W. Harper, D. J. Howe, T. B. Knoblock, N. P. Mendler, P. Panandagen, J. T. Sasaki, and S.
F. Smith. Implementing Mathematics with the Nuprl Proof Development System. Prentice-Hall,
Englewood Cliffs, New Jersey, 1986.

[Coquand, 1990] T. Coquand. Metamathematical investigations of a calculus of constructions. In
P. Odifreddi, editor,Logic and Computer Science, volume 31 ofAPIC, pages 91–122. Academic
Press, London, 1990.

[Dyckhoff, 1992] R. Dyckhoff. Contraction-free sequent calculi for intuitionistic logic.Journal of
Symbolic Logic, 57(3):795–807, 1992.

[Fitting, 1969] M. Fitting. Intuitionistic Logic, Model Theory, and Forcing. North-Holland, 1969.
[Fitting, 1988] M. Fitting. First-order modal tableaux.Journal of Automated Reasoning, 4:191–213,

1988.
[Gentzen, 1935] G. Gentzen. Untersuchungen ¨uber das logische Schließen.Mathematische

Zeitschrift, 39:176–210, 405–431, 1934–1935, 1934–35. English translation in M.E. SzaboThe
Collected Papers of Gerhard Gentzen, North-Holland, Amsterdam, 1969.

[Girard, 1987] J.-Y. Girard. Proof Theory and Logical Complexity, volume 1 ofStudies in Proof
Theory. Bibliopolis, 1987.

[Girard, 1989] J.-Y. Girard.Proofs and Types. Cambridge University Press, Cambridge, 1989.
[Griffin, 1990] T. Griffin. A formulas-as-types notion of control. InProc. of the Seventeenth Annual

Symp. on Principles of Programming Languages, pages 47–58, 1990.
[Herbrand, 1967] J. Herbrand. Investigations in proof theory. In J. van Heijenoort, editor,From

Frege to Gödel: A Source Book of Mathematical Logic, pages 525–581. Harvard University Press,
Cambridge, MA, 1967.

TABLEAUX FOR INTUITIONISTIC LOGICS 295

[Heyting, 1930] A. Heyting. Die formalen Regeln der intuitionistischen Logik. Sitzungsberichte der
Preussischen Akademie von Wissenschaften, 1930.

[Heyting, 1956] A. Heyting. Intuitionism, An Introduction. North-Holland, Amsterdam, rev. 2nd
edition, 1956.

[Howard, 1980] W. A. Howard. The formulae-as-types notion of construction. In J. P. Hindley and
J. R. Seldin, editors,To H. B. Curry: Essays on Combinatory Logic, Lambda-calculus and Formal-
ism, pages 479–490. Academic Press, London, 1980.

[Hudelmaier, 1992] J. Hudelmaier. Bounds for cut-elimination in intuitionistic propositional logic.
Archive for Mathematical Logic, 31:331–354, 1992.

[Hudelmaier, 1993] J. Hudelmaier. AnO(nlogn)-space decision procedure for intuitionistic propo-
sitional logic.Journal of Logic and Computation, 3(1):63–76, 1993.

[Kleene, 1952] S. C. Kleene.Introduction to Metamathematics. North-Holland, Amsterdam, 1952.
[Kleene, 1952b] S. C. Kleene. Permutability of inferences in Gentzen’s calculi LK and LJ.Memoirs

of the American Mathematical Society, 10:1–26, 1952.
[Kripke, 1963] S. Kripke. Semantical analysis of intuitionistic logic I. In J. Crossley and M. Dum-

mett, editors,Formal Systems and Recursive Functions, pages 92–129. North-Holland, Amsterdam,
1963.

[Lincoln, 1991] P. Lincoln, A. Scedrov, and N. Shankar. Linearizing intuitionistic implication. InSixth
annual IEEE symposium on Logic in Computer Science: Proceedings, Amsterdam 1991, pages 51–
62. IEEE Computer Society Press, Los Alamitos, California, 1991.

[Maehara, 1954] S. Maehara. Eine Darstellung der intuitionistische Logik in der klassischen.Nagoya
Mathematical Journal, 7:45–64, 1954.

[Mints, 1990] G. Mints. Gentzen-type systems and resolution rule, part i: Propositional logic. In
Proceedings International Conference on Computer Logic, COLOG’88, Tallinn, USSR, volume
417 ofLecture Notes in Computer Science, pages 198–231, Berlin, 1990. Springer-Verlag.

[Mints, 1993] G. Mints. Gentzen-type systems and resolution rule, part ii: Predicate logic. InPro-
ceedings ASL Summer Meeting, Logic Colloquium ’90 Helsinki, Finland, volume 2 ofLecture Notes
in Logic, pages 163–190, berlin, 1993. Springer-Verlag.

[Martin-Löf, 1982] P. Martin-Löf. Constructive mathematics and computer programming. In L.J.
Cohen, editor,Proceedings of the 6th International Congress for Logic, Methodology and the Phi-
losophy of Science, 1979, pages 153–175, Amsterdam, 1982. North-Holland.

[Martin-Löf, 1984] P. Martin-Löf. Intuitionistic Type Theory.Bibliopolis, Napoli, 1984. Notes by
Giovanni Sambin of a Series of Lectures given in Padua, June 1980.

[Martin-Löf, 1996] P. Martin-Löf. On the meaning of the logical constants and the justification of the
logical laws.Nordic Journal of Philosophical Logic, 1(1):11–60, 1996.

[Miglioli et al., 1994] P. Miglioli, U. Moscato, and M. Ornaghi. An Improved Refutation System for
Intuitionistic Predicate Logic.Journal Automated Reasoning, 13:361–373, 1994.

[Murthy, 1991] C. Murthy. An evaluation semantics for classical proofs. InProc. of Sixth Symp. on
Logic in Comp. Sci., pages 96–109. IEEE, Amsterdam, The Netherlands, 1991.

[Odifreddi, 1990] P. Odifreddi, editor.Logic and Computer Science, volume 31 ofThe Apic Studies
in Data Processing. Academic Press, London, 1990.

[Ohlbach, 1990] H.-J. Ohlbach. Semantics-based translation methods for modal logics.Journal of
Logic and Computation, 1(5):691–746, 1990.

[Parigot, 1992] M. Parigot.��-calculus: an algorithmic interpretation of classical natural deduction.
In Proc. LPAR ’92, volume 624 ofLNCS, pages 190–201, Berlin, 1992. Springer Verlag.

[Pinto and Dyckhoff, 1995] L. Pinto and R. Dyckhoff. Loop-free construction of counter-models for
intuitionistic propositional logic. In Behara, Fritsch, and Lintz, editors,Symposia Gaussiana, Conf.
A, pages 225–232. Walter de Gruyter & Co, 1995.

[Pym and Wallen, 1990] D. J. Pym and L. A. Wallen. Investigations into proof-search in a system
of first-order dependent function types. In M.E. Stickel, editor,Tenth Conference on Automated
Deduction, Lecture Notes in Computer Science 449, pages 236–250. Springer-Verlag, 1990.

[Robinson, 1965] J. A. Robinson. A machine oriented logic based on the resolution principle.J.
Assoc. Comput. Mach., 12:23–41, 1965.

[Schütte, 1960] K. Schütte. Beweistheorie. Springer Verlag, Berlin, 1960.
[Sahlinet al., 1992] D. Sahlin, T. Franz´en, and S. Haridi. An Intuitionistic Predicate Logic Theorem

Prover.Journal of Logic and Computation, 2(5):619–656, 1992.

296 A. WAALER AND L. WALLEN

[Shankar, 1992] N. Shankar. Proof search in the intuitionistic sequent calculus. In D. Kapur, editor,
Proceedings of 11th International Conference on Automated Deduction, volume 607 ofLecture
Notes in AI, pages 522–536, Berlin, 1992. Springer Verlag.

[Shoenfield, 1967] J.R. Shoenfield.Mathematical Logic. Addison-Wesley, Reading, MA, 1967.
[Schmiktt and Kreitz, 1996] S. Schmitt and C. Kreitz. Converting non-classical matrix proofs into

sequent-style systems. In M.A. McRobbie and J.K. Slaney, editors,Proceedings of 13th Interna-
tional Conference on Automated Deduction, volume 1104 ofLecture Notes in AI, pages 418–432,
Berlin, 1996. Springer Verlag.

[Smullyan, 1968] R. M. Smullyan.First-Order Logic. Springer-Verlag, New York, 1968.
[Statman, 1979] R. Statman. Intuitionistic logic is polynomial-space complete.Theor. Comp. Science,

9:73–81, 1979.
[Takeuti, 1975] G. Takeuti.Proof Theory. North-Holland, Amsterdam, 1975.
[Troelstra and van Dalen, 1988] A. S. Troelstra and D. van Dalen.Constructivism in Mathematics,

volume 121 ofStudies in Logic and the Foundations of Mathematics. North-Holland, Amsterdam,
1988. Volumes I and II.

[van Dalen, 1986] D. van Dalen.Intuitionistic Logic, volume Handbook of Philosophical Logic III,
chapter 4, pages 225–339. Reidel, Dordrecht, 1986.

[van Heijenoort, 1967] J. van Heijenoort. From Frege to G¨odel: A Source Book of Mathematical
Logic. Harvard University Press, Cambridge, MA, 1967.

[Vorob’ev, 1952] N. N. Vorob’ev. The derivability problem in the constructive propositional calculus
with strong negation. Doklady Akademii Nauk SSSR, 85:689–692, 1952. (In Russian).

[Waaler, 1997a] A. Waaler. Essential contractions in intuitionistic logic. Technical Report PRG-TR-
37-97, Oxford University Computing Laboratory, UK, 1997. Submitted for publication.

[Waaler, 1997b] A. Waaler. A sequent calculus for intuitionistic logic with classical permutability
properties. Technical Report PRG-TR-38-97, Oxford University Computing Laboratory, UK, 1997.
Submitted for publication.

[Wallen, 1990] L. A. Wallen. Automated deduction in nonclassical logics. MIT Press, 1990.

RAJEEV GOŔE

TABLEAU METHODS FOR MODAL AND
TEMPORAL LOGICS

1 INTRODUCTION

Modal and temporal logics are finding new and varied applications in Computer
Science in fields as diverse as Artificial Intelligence[Marek et al., 1991], Mod-
els for Concurrency[Stirling, 1992] and Hardware Verification[Nakamuraet al.,
1987]. Often the eventual use of these logics boils down to the task of deducing
whether a certain formula of a logic is a logical consequence of a set of other for-
mula of the same logic. The method of semantic tableaux is now well established
in the field of Automated Deduction[Oppacher and Suen, 1988; Baumgartneret
al., 1995; Beckert and Possega, 1995] as a viable alternative to the more tradi-
tional methods based on resolution[Chang and Lee, 1973]. In this chapter we give
a systematic and unified introduction to tableau methods for automating deduc-
tion in modal and temporal logics. We concentrate on the propositional fragments
restricted to a two-valued (classical) basis and assume some prior knowledge of
modal and temporal logic, but give a brief overview of the associated Kripke se-
mantics to keep the chapter self-contained.

One of the best accounts of proof methods for modal logics is the book by
Melvin Fitting [1983]. To obtain generality, Fitting uses Smullyan’s idea of ab-
stract consistency properties and the associated maximal consistent set approach
for proving completeness. As Fitting notes, maximal consistent sets can also be
used to determine decidability, but in general, they do not give information about
the efficacy of the associated tableau method. Effectiveness however is of primary
importance for automated deduction, and a more constructive approach using fi-
nite sets, due to Hintikka, is more appropriate. We therefore base our work on a
method due to Hintikka[1955] and Rautenberg[1983].

In Section 2 we give the syntax and (Kripke) semantics for propositional modal
logics, the traditional axiomatic methods for defining modal logics and the corre-
spondences between axioms and certain conditions on frames.

In Section 3 we give a brief overview of the history of modal tableau systems.
Section 4 is the main part of the chapter and it can be split into two parts.
In Section 4.1 we motivate our study of modal tableau systems. In Section 4.2

we cover the syntax of modal tableau systems, explain tableau constructions and
tableau closure. Section 4.3 covers the (Kripke) semantics of modal tableau sys-
tems and the notions of soundness and completeness with respect to these seman-
tics. Sections 4.4–4.6 relate our tableau systems to the well-known systems of
Fitting and Smullyan, and then cover proof theoretic issues like structural rules,
admissible rules and derivable rules. Section 4.8 covers decidability issues like the

298 RAJEEV GOŔE

subformula property, the analytic superformula property, and finiteness of proof
search. Sections 4.9–4.12 explain the technical machinery we need to prove the
soundness and completeness results, and their connections with decidability. The
first half of Section 4 concludes with a summary of the techniques covered so far
and sets up the specific examples of tableau systems covered in the second half.

The second half of Section 4 covers tableau systems for: the basic systems;
modal logics with epistemic interpretations; modal logics with ‘provability’ inter-
pretations and mono-modal logics with temporal interpretations. Sections 4.18–
4.19 cover proof-theoretic issues again by highlighting some deficiencies of the
tableau methods of Section 4. Section 4.20 closes the loop on the Kripke se-
mantics by highlighting the finer characterisation results that are immediate from
our constructive proofs of tableau completeness. Finally, Section 4.21 covers the
connection between modal tableau systems and modal sequent systems, and the
admissibility of the cut rule.

Section 5 is a very brief guide to tableau methods for multimodal logics, par-
ticularly linear and branching time logics over discrete frames with operators like
‘next’, ‘until’ and ‘since’.

Section 6 gives a brief overview of labelled modal tableau systems where labels
attached to formulae are used to explicitly keep track of the possible worlds in the
tableau constructions.

2 PRELIMINARIES

2.1 Syntax and Notational Conventions

The sentences of modal logics are built from a denumerable non-empty set of
primitive propositionsP = fp1; p2; � � �g, the parentheses) and (, together with the
classical connectiveŝ (‘and’), _ (‘inclusive or’), : (‘not’), ! (‘implies’), and
the non-classical unary modal connectives2 (‘box’) and3 (‘diamond’).

A well-formed formula, hereafter simply called aformula, is any sequence of
these symbols obtained from the following rules: anypi 2 P is a formula and is
usually called anatomic formula; and ifA andB are formulae then so are(:A),
(A ^ B), (A _ B), (A ! B), (2A) and(3A). For convenience we use? to
denote a constant false formula(p1 ^:p1) (say) and then use> = (:?) to define
a constant true formula.

Lower case letters likep andq denote members ofP . Upper case letters from
the beginning of the alphabet likeA andB together withP andQ (all possibly
annotated) denote formulae. Upper case letters from the end of the alphabet like
X;Y; Z (possibly annotated) denotefinite (possibly empty) sets of formulae.

The symbols:;^;_ and! respectively stand for logical negation, logical con-
junction, logical disjunction and logical (material) implication. To enable us to
omit parentheses, we adopt the convention that the connectives:;2;3 are of
equal binding strength but bind tighter than^ which binds tighter than_ which

TABLEAU METHODS FOR MODAL AND TEMPORAL LOGICS 299

Axiom Defining Formula

K 2(A! B)! (2A! 2B)
T 2A! A
D 2A! 3A
4 2A! 22A
5 3A! 23A
B A! 23A
2 32A! 23A
M 23A! 32A
L 2((A ^2A)! B) _ 2((B ^ 2B)! A)
3 2(2A! B) _ 2(2B ! A)
X 22A! 2A
F 2(2A! B) _ (32B ! A)
R 32A! (A! 2A)
G 2(2A! A)! 2A
Grz 2(2(A! 2A)! A)! A
Go 2(2(A! 2A)! A)! 2A
Z 2(2A! A)! (32A! 2A)
Zbr 2(2A! A)! (232A! 2A)
Zem 232A! (A! 2A)
Dum 2(2(A! 2A)! A)! (32A! 2A)
Dbr 2(2(A! 2A)! A)! (232A! 2A)

Figure 1. Axiom names and defining formulae

binds tighter than! : So:A_B^C ! D should be read as(((:A)_(B^C)) !
D). The symbols2 and3 can take various meanings but traditionally stand for
‘necessity’ and ‘possibility’. In the context of temporal logic, they stand for ‘al-
ways’ and ‘eventually’ so that2A is read as ‘A is always true’ and3A is read as
‘A is eventually true’.

2.2 Axiomatics of Modal Logics

The logics we shall study are all normal extensions of the basic modal logicK

and are traditionally axiomatised by taking the rule of necessitationRN (if A is a
theorem then so is2A) and modus ponensMP (if A andA! B are theorems then
so isB) as inference rules, and by taking the appropriate formulae from Figure 1
as axiomschemas. Thus the rule of uniform substitutionUS is built in so that any
substitutional instance of an axiom schema or theorem, is also a theorem.

If a logic is axiomatised by adding axiomsA1; A2; � � � ; An toK then its name
is written asKA1A2 � � �An. Sometimes however, the logic is so well known in
the literature by another name that we revert to the traditional name. The logic

300 RAJEEV GOŔE

KT4, for example, is usually known asS4.
For an introduction to these notions see the introductory texts by Hughes and

Cresswell[1968; 1984] or Chellas[1980], or the article by Fitting[1993].
We write `LA to denote thatA is a theorem of an axiomatically formulated

logic L. As with classical logic, the notion of theoremhood can be extended to
the notion of ‘deducibility’ where we writeX `LA to mean ‘there is a deduction
of A from the set of formulaeX ’. However, some care is needed when extend-
ing this notion to modal logics if we want to preserve the ‘deduction theorem’:
X `L (A ! B) iff X [fAg `L B, since it is well known that the deduction
theorem fails if we use the notion of deducibility from classical Hilbert system for-
mulations (due to the rule of necessitation). Fitting[1993] shows how to set up the
notions of ‘deducibility’ so that the deduction theorem holds, but since axiomatics
are of a secondary nature here, we omit details. The important point is that the no-
tion of theoremhood̀ LA remains the same since it corresponds to ‘deducibility’
of A from the empty set viz:fg `LA. We return to this point in Section 4.3.

2.3 Kripke Semantics for Modal Logics

A Kripke frame is a pairhW;Ri whereW is a non-empty set (of possible worlds)
andR is a binary relation onW: We writewRw0 iff (w;w0) 2 R and we say that
world w0 is accessible fromworld w, or thatw0 is reachable fromw, orw0 is a
successorof w, or even thatw seesw0. We also writew 6Rw0 to mean(w;w0) 62 R.

A Kripke model is a triple hW;R; V i whereV is a mapping from primitive
propositions to sets of worlds; that is,V : P 7! 2W . ThusV (p) is the set of
worlds at whichp is ‘true’ under the valuationV .

Given some modelhW;R; V i, and somew 2W , we writew j= p iff w 2 V (p),
and say thatw satisfiesp or p is true atw. We also writew 6j= p to meanw 62 V (p).
This satisfaction relationj= is then extended to more complex formulae according
to the primary connective as below:

w j= p iff w 2 V (p);
w j= :A iff w 6j= A;
w j= A ^ B iff w j= A andw j= B;
w j= A _ B iff w j= A orw j= B;
w j= A! B iff w 6j= A orw j= B;
w j= 2A iff for all v 2W , w 6Rv or v j= A;
w j= 3A iff there exists somev 2W , withwRv andv j= A.

We say thatw satisfiesA iff w j= A where the valuation is left as understood.
If w j= A we sometimes also say thatA is true at w, or thatw makesA true.

A formulaA is satisfiable in a modelhW;R; V i iff there exists somew 2 W
such thatw j= A. A formulaA is satisfiable on a framehW;Ri; iff there exists
some valuationV and some worldw 2W such thatw j= A. A formulaA is valid
in a model hW;R; V i, written ashW;R; V i j= A, iff it is true at every world in

TABLEAU METHODS FOR MODAL AND TEMPORAL LOGICS 301

Axiom Condition First-Order Formula

T Reflexive 8w : R(w;w)

D Serial 8w 9w0 : R(w;w0)

4 Transitive 8s; t; u : (R(s; t) ^ R(t; u))! R(s; u)

5 Euclidean 8s; t; u : (R(s; t) ^ R(s; u))! R(t; u)

B Symmetric 8w;w0 : R(w;w0)! R(w0; w)

2
Weakly-
directed

8s; t; u 9v :
(R(s; t) ^ R(s; u))! (R(t; v) ^R(u; v))

L
Weakly-
connected

8s; t; u :
(R(s; t) ^R(s; u))! (R(t; u)_ t = u_R(u; t))

X Dense 8u; v 9w : R(u; v)! (R(u;w) ^R(w; v))

Figure 2. Axioms and corresponding first-order conditions onR

W . A formulaA is valid in a frame hW;Ri; written ashW;Ri j= A; iff it is valid
in all modelshW;R; V i (based on that frame). An axiom (schema) is valid in a
frame iff all instances of that axiom (schema) are valid in all models based on that
frame.

Given a class of framesC, an axiomatically formulated logicL is soundwith
respect toC if for all formulaeA:

if `LA then,F j= A for all framesF 2 C:

LogicL is completewith respect toC if for all formulaeA:

if F j= A for all framesF 2 C; then `LA:

A logic L is characterisedby a class of framesC iff L is sound and complete with
respect toC.

2.4 Known Correspondence and Completeness Results

The logics we study are known to be characterised by certain classes of frames be-
cause it is known that particular axioms correspond to particular restrictions on the
reachability relationR. That is, supposehW;Ri is a frame, then a certain axiom
A1 will be valid onhW;Ri if and only ifthe reachability relationRmeets a certain
condition. Many of the restrictions are definable as formulae of first-order logic
where the binary predicateR(x; y) represents the reachability relation, as shown
in Figure 2, where the correspondences between certain axioms and certain con-
ditions are also summarised. Some interesting properties of frames which cannot
be captured by any one axiom are given in Figure 3; see[Goldblatt, 1987]. But

302 RAJEEV GOŔE

some quite bizarre axioms, whose corresponding conditions cannot be expressed
in first-order logic[van Benthem, 1984; van Benthem, 1983] are of particular in-
terest precisely because of this ‘higher order’ nature. Some of these ‘higher order’
conditions are explained next.

Given a framehW;Ri, anR-chain is a sequence of (not necessarily distinct)
points fromW with w1Rw2Rw3R � � �Rwn. An1-R-chain is anR-chain where
n can be chosen arbitrarily large. Aproper R-chain is anR-chain where the
points are distinct. For example, a single reflexive point gives an (improper)1-
R-chain:wRwRwRw � � �.

Transitive frames are of particular interest whenR is viewed as a flow of time.
Informally, if hW;Ri is a frame whereR is transitive, then aclusterC is a max-
imal subset ofW such that for alldistinctworldsw andw0 in C we havewRw0

andw0Rw: A cluster isdegenerateif it is a single irreflexive world, otherwise it
is nondegenerate. A nondegenerate cluster isproper if it consists of two or more
worlds. A nondegenerate cluster issimple if it consists of a single reflexive world.
Note that in a nondegenerate cluster,R is reflexive, transitiveand symmetric.

Because clusters are maximal we can order them with respect toR and speak
of a cluster preceding another one. Similarly, a clusterC is final if no other cluster
succeeds it and a cluster islast if everyother cluster precedes it. For an intro-
duction to Kripke frames, Kripke models and the notion of clusters see Goldblatt
[1987] or Hughes and Cresswell[1984].

Figure 4 encapsulates the known characterisation results for each of our logics
by listing the conditions on some class of frames that characterises each logic.
The breaks in Figure 4 correspond to the grouping of the tableau systems for these
logics under Sections 4.14–4.17. Thus we define a frame to be anL-frame iff
it meets the restrictions of Figure 4. Then, a modelhW;R; V i is anL-model iff
hW;Ri is anL-frame. A formulaA isL-valid iff it is true in every world of every
L-model. AnL-modelhW;R; V i is an L-model for a finite setX of formulae
iff there exists somew0 2 W such that for allA 2 X , w0 j= A. A setX is
L-satisfiableiff there is anL-model forX:

An axiomatically formulated logicL has thefinite model property if every
nontheoremA of L can be falsified at some world in somefiniteL-model. That is,
if 6`LA implies thatf:Ag has afiniteL-model.

Property Property of
Name R

Irreflexive 8w : :R(w;w)
Intransitive 8s; r; t : (R(s; t) ^R(t; r)) ! :R(s; r)
Antisymmetric 8s; t : (R(s; t) ^R(t; s))! (s = t)
Asymmetric 8w1; w2 : R(w1; w2)! :R(w2; w1)
Strict-order 8w1; w2 : (w1 6= w2)! (R(w1; w2) exorR(w2; w1))

Figure 3. Names of some non-axiomatisable conditions onR

TABLEAU METHODS FOR MODAL AND TEMPORAL LOGICS 303

L
Axiomatic

Basis L-frame restriction

K K no restriction
KT KT reflexive
KD KD serial
K4 K4 transitive
K5 K5 Euclidean
KB KB symmetric
KDB KDB symmetric and serial
B KTB reflexive and symmetric

KD4 KD4 serial and transitive
K45 K45 transitive and Euclidean
KD5 KD5 serial and Euclidean
KD45 KD45 serial, transitive and Euclidean
S4 KT4 reflexive and transitive
KB4 KB4 symmetric and transitive
S5 KT5 reflexive, transitive and symmetric

S4R KT4R
reflexive, transitive and8x; y; z :
(x 6= z ^ R(x; z))! (R(x; y)! R(y; z))

S4F KT4F
reflexive, transitive and8x; y; z :
(R(x; z) ^ :R(z; x))! (R(x; y)! R(y; z))

S4:2 KT4:2 reflexive, transitive and weakly-directed

S4:3 KT4:3 reflexive, transitive and weakly-connected

S4:3:1
KT4:3Dum reflexive, transitive, weakly-connected and no

nonfinal proper clusters

S4Dbr KT4Dbr
reflexive, transitive and no nonfinal proper
clusters

K4DL KD4L serial, transitive and weakly-connected
K4DLX KD4LX serial, transitive, weakly-connected and dense

K4DLZ KD4LZ
serial, transitive, weakly-connected and no
nonfinal non-degenerate clusters

K4DZbr K4DZbr
serial, transitive and no nonfinal
nondegenerate clusters

G KG transitive and no1-R-chains (irreflexive)

Grz KGrz
reflexive, transitive, no proper clusters and no
proper1-R-chains

K4Go K4Go
transitive, no proper clusters and no proper
1-R-chains

GL KGL
transitive, weakly-connected, no proper
clusters and no1-R-chains (irreflexive)

Figure 4. Axiomatic Bases andL-frames

304 RAJEEV GOŔE

2.5 Logical Consequence

Suppose we are given some finite set of formulaeY , some formulaA, and assume
that the logic of interest isL. We say that the formulaA is a local logical conse-
quenceof the setY iff: for every L-modelhW;R; V i and for everyw 2 W , if
w j= Y thenw j= A. We writeY j=L AwheneverA is a local logical consequence
of Y in logicL; thus the subscript is for the logic, not for the word ‘local’.

Since bothY andA are evaluated at the same worldw in this definition, it is
straightforward to show thatY j=L A iff fg j=L

bY ! A wherefg is the empty
set, andbY is just the conjunction of the members ofY . Furthermore, a semantic
version of the usual deduction theorem holds for local logical consequence viz:
Y;A j=L B iff Y j=L A! B where we writeY;A to meanY [fAg.

As we saw in Section 2.2, the traditional axiomatically formulated logics obey
the deduction theorem only if deducibility is defined in a special way. Fitting
[1983] shows that a stronger version of logical consequence called global logical
consequence corresponds to this notion of deducibility. Fitting also gives tableau
systems that cater to both notions of logical consequence. We concentrate only
on the local notion since Fitting’s techniques can be used to extend our systems to
cater for the global notion.

2.6 Summary

The semantic notion of validityj= A and the axiomatic notion of theoremhood
` A are tied to each other via the notions of soundness and completeness of the
axiomatic deducibility relatioǹ with respect to some class of Kripke frames.
These notions can be generalised respectively to logical consequenceY j= A and
Y ` A. By careful definition we can maintain the soundness and completeness
results intact for these generalisations. Unfortunately, axiomatic systems are no-
toriously bad for proofsearchbecause they give no guidance on how to look for
a proof. Tableau systems also give rise to a syntactic notion of theoremhood but
have the added benefit that they facilitate proof search in a straightforward way.
Such systems are the subject of the rest of this chapter.

3 HISTORY OF MODAL TABLEAU SYSTEMS

The history of modal tableau systems can be traced back through two routes, one
semantic and one syntactic.

The syntactic route began with the work of Gerhard Gentzen[1935] and the
numerous attempts to extend Gentzen’s results to modal logics. Curry[1952] ap-
pears to be the first to seek Gentzen systems for modal logics, soon followed by
Ohnishi and Matsumoto[1957a; 1959; 1957]. Kanger[1957] is the first to use
extra-logical devices to obtain Gentzen systems and is the precursor of what are
now known as prefixed or labelled tableau systems. Once the basic method was

TABLEAU METHODS FOR MODAL AND TEMPORAL LOGICS 305

worked out other authors tried to find similar systems for other logics, turning
modal Gentzen systems into an industry for almost twenty years.

Not surprisingly, modal Gentzen systems involve a cut-elimination theorem.
In many respects this early work on modal Gentzen systems was very difficult
because these authors had no semantic intuitions to guide them and had to work
quite hard to obtain a syntactic cut-elimination theorem. As we shall see, the task
is much easier when we use the associated Kripke semantics.

The semantic route began with the work of Beth for classical propositional logic
[Beth, 1955; Beth, 1953] but lay dormant for modal logics for almost twenty years
until the advent of Kripke semantics[Kripke, 1959]. From then on, modal tableau
systems, and in general modal logic, witnessed a resurgence.

The two routes began to meet in the late sixties when it was realised that clas-
sical semantic tableau systems and classical Gentzen systems were essentially the
same thing. Zeman[1973] appears to be the first to give an account of both tradi-
tions simultaneously, although he is sometimes unable to relate his tableau systems
to his Gentzen systems (c.f. his tableau system forS4:3 is cut-free, yet his sequent
system forS4:3 is not). Rautenberg[1979] gives a rigorous account and covers
many logics but has not received much attention as his book is written in Ger-
man. Fitting’s book[1983] is the most widely known and covers most of the basic
logics.

During the eighties the two traditions were seen as two sides of the same coin,
but more recently, the semantic tradition has assumed prominence in the field of
automated deduction, while the syntactic tradition has gained prominence in the
field of type theory[Masini, 1993; Borghuis, 1993]. In automated deduction, the
primary emphasis is on finding a proof, whereas in type theory, the primary em-
phasis is on the ability to distinguish different proofs so as to put a computational
interpretation on proofs.

Regardless of this historical basis, there are essentially two types of tableau
systems which we shall callexplicit systemsand implicit systems. Recall that
tableau systems are essentially semantic in nature, hence the reachability relation
R plays a crucial part. In explicit systems, the reachability relation is represented
explicitly by some device, and we are allowed to reason directly about the known
properties ofR, such as transitivity or reflexivity. In implicit systems, there is no
explicit representation of the reachability relation, and these properties must be
built into the rulesin some way since we are not allowed to reason explicitly about
R. We shall see that in some sense the two types of systems are dual in nature
since implicit systems can be turned into explicit systems by giving a systematic
method or strategy for the application of the implicit tableau rules.

Here is an outline of what follows. In the first few sections we introduce the
syntax of implicit modal tableau systems by defining the form of the rules and
tableau systems. These are all purely syntactic aspects of modal tableau systems
allowing us to associate a syntactic deducibility relation with modal tableau sys-
tems. In the second part we introduce the semantics of modal tableau rules, and
systems, and define the notions of soundness and completeness of modal tableau

306 RAJEEV GOŔE

systems with respect to these semantics. In the last part we introduce the mathe-
matical structures that we shall need to prove the soundness and completeness of
the given tableau systems.

We then give tableau systems in decreasing detail for: the basic modal logics;
the monotonic modal logics used to define nonmonotonic modal logics of knowl-
edge and belief; modal logics with ‘provability interpretations’; monomodal logics
of linear and branching time; and multimodal logics of linear and branching time.

In the later sections of this chapter we introduce explicit tableau systems since
they are an extension of implicit tableau systems. The extra power of explicit
tableau systems comes from the labels which carry very specific semantic infor-
mation about the (counter-)model under construction. Consequently we see that
explicit tableau systems are better for the symmetric logics.

For the sake of brevity we do not consider quantified modal logics, but see
Fitting [1983] for a treatment of quantified modal tableau systems.

4 MODAL TABLEAU SYSTEMS WITH IMPLICIT ACCESSIBILITY

4.1 Purpose of Modal Tableau Systems

As stated in the introduction, we concentrate on the use of modal tableau systems
for performing deduction. In this context, modal tableau systems can be seen as
refutation procedures that decompose a given set of formulae into a network of
sets with each set representing a possible world in the associated Kripke model.
Thus, our modal tableau systems are anchored to the semantics of the modal
logic although they can be used in sequent form to obtain metamathetical results
like interpolation theorems as well; see[Fitting, 1983] and [Rautenberg, 1983;
Rautenberg, 1985].

The main features of semantic tableau systems carry over from classical propo-
sitional logic in that a set of formulaeX is deemed consistent if and only if no
tableau forX closes. Furthermore, from these open tableaux, we can construct a
model to demonstrate thatX is indeed satisfiable, thus tying the syntactic notion
of consistency to the semantic notion of satisfiability.

Now, assume we are given some finite set of formulaeY = fA1; � � � ; Akg, and
some formulaA. Let bY = (A1 ^ A2 ^ � � � ^ Ak) with bY = ? whenk = 0. By
definition, if the setY [f:Ag is notL-satisfiable, then, in everyL-model, each
world that makes each member ofY true, must also makeA true. That is, if the
setY [f:Ag is not L-satisfiable, then, the formulabY ! A must beL-valid.
Modal tableau systems give us a purely syntactic method of determining whether
or not some given formula isL-valid. Thus, they give us a method of determining
whetherA is a local logical consequenceof a set of formulaeY .

TABLEAU METHODS FOR MODAL AND TEMPORAL LOGICS 307

4.2 Syntax of Modal Tableau Systems

The most popular tableau formulation is due to Smullyan as expounded by Fitting
[1983]. Following Hintikka[1955] and Rautenberg[1983; 1985], we use a slightly
different formulation where formulae are carried from one tableau node to its child
because the direct correspondence between sequent systems and tableau systems
is easier to see using this formulation. To minimise the number of rules, we work
with primitive notation, taking2;: and^ as primitives and defining all other
connectives from these. Thus, for example, there are no explicit rules for_ and
! but these can be obtained by rewritingA _ B as:(:A ^ :B) andA ! B as
:(A ^ :B). All our tableau systems work withfinitesets of formulae.

We use the following notational conventions:

- ? denotes a constant false proposition and; denotes the empty set;

- p; q denote primitive (atomic) propositions fromP ;

- P;Q; Qi andPi denote (well formed) formulae;

- X;Y; Z denotefinite (possibly empty) sets of (well formed) formulae;

- (X ;Y) stands forX [Y and(X ;P) stands forX [fPg;
- 2X stands forf2P j P 2 Xg;
- :2X stands forf:2P j P 2 Xg:

We useP andQ as formulae in the tableau rules and useA andB in the axioms
to try to separate the two notions. Note that(X ;P ;P) = (X ;P) and also that
(X ;P ;Q) = (X ;Q;P) so that the number of copies of the formulae and their
order are immaterial as far as the notation is concerned.

A tableau rule � consists of anumerator N above the line and a (finite) list of
denominatorsD1,D2,. . . ,Dk (below the line) separated by vertical bars:

(�)
N

D1 j D2 j � � � j Dk
The numerator is a finite set of formulae and so is each denominator. We use

the terms numerator and denominator rather than premiss and conclusion to avoid
confusion with the sequent terminology. As we shall see later, each tableau rule is
read downwards as ‘if the numerator isL-satisfiable, then so is one of the denom-
inators’.

The numerator of each tableau rule contains one or more distinguished formulae
called theprincipal formulae. Each denominator usually contains one or more
distinguished formulae called theside formulae. Each tableau rule is labelled with
a name which usually consists of the main connective of the principal formula, in
parentheses, but may consist of a more complex name. The rule name appears

308 RAJEEV GOŔE

(?)
X ;P ;:P
?(^)

X ;P ^Q
X ;P ;Q

(_)
X ;:(P ^Q)

X ;:P j X ;:Q

(:)
X ;::P
X ;P

(K)
2X ;:2P
X ;:P(�)

X ;Y

X

Figure 5. Tableau rules forCK whereX , Y are sets andP ,Q are formulae

at the left when the rule is being defined, and appears at the right when we use a
particular instance of the rule.

For example, below at right is a tableau rule with:

1. a rule name(_);

2. a numeratorX ;:(P ^ Q) with a
principal formula:(P ^Q); and

3. two denominatorsX ;:P and
X ;:Qwith respective side formu-
lae:P and:Q.

(_)
X ;:(P ^Q)

X ;:P j X ;:Q

A tableau system(or calculus)CL is a finite collection of tableau rules�1, �2,
� � �, �m identified with the set of its rule names; thusCL = f�1; �2; � � � ; �mg. Fig-
ure 5 contains some tableau rules which we shall later prove are those that capture
the basic normal modal logicK; thusCK = f(?); (^); (_); (:); (K); (�)g.

A CL-tableau forX is a finite tree with rootX whose nodes carryfinite formula
sets. A tableau rule with numeratorN is applicable to a node carrying setY if Y
is an instance ofN . The steps for extending the tableau are:

- choose a leaf noden carryingY wheren is not an end node, and choose a
rule� which is applicable ton;

- if � hask denominators then createk successor nodes forn, with successor
i carrying an appropriate instantiation of denominatorDi;

- all with the proviso that if a successors carries a setZ andZ has already
appeared on the branch from the root tos thens is an end node.

A branch in a tableau isclosedif its end node isf?g; otherwise it isopen. A
tableau isclosedif all its branches are closed; otherwise it isopen.

The rule(?) is really a check for inconsistency, therefore, we say that a set
X is CL-consistent if no CL-tableau forX is closed. Conversely we say that

TABLEAU METHODS FOR MODAL AND TEMPORAL LOGICS 309

a formulaA is a theorem of CL iff there is a closed tableau for the setf:Ag.
We write `CLA if A is a theorem ofCL and writeY `CLA if Y [f:Ag is
CL-inconsistent.

EXAMPLE 1. The formula2(p! q)! (2p! 2q) is an instance of the axiom
K. Its negation can be written in primitive notation and simplified to2(:(p ^
:q)) ^ 2p ^ :2q. Below at left is a closedCK-tableau for the (singleton) set
X = f2(:(p^ :q)) ^2p^:2qg where each node is labelled at the right by the
rule that produces its successor(s). Below at right is a more succinct version of the
sameCK-tableau. Hence2(p! q)! (2p! 2q) is a theorem ofCK.

f2:(p^ :q) ^2p ^ :2qg (^)

f2:(p ^ :q) ^2p;:2qg (^)

f2:(p ^ :q);2p;:2qg (K)

f:(p^ :q); p;:qg (_)

f:p; p;:qg (?)

?

�
� Q

Q

f::q; p;:qg (?)

?

2:(p ^ :q) ^2p ^ :2q
(^)

2:(p ^ :q) ^2p;:2q
(^)

2:(p ^:q);2p;:2q
(K)

:(p ^ :q); p;:q
(_)

:p; p;:q (?) j ::q; p;:q (?)

4.3 Soundness and Completeness

Tableau systems give us a syntactic way to define consistency, and hence theorem-
hood. As with the axiomatic versions of these notions, the notions of soundness
and completeness relate these syntactic notions to the semantic notions of satisfia-
bility and validity as follows.

Soundness: We say thatCL is sound with respect toL-frames (the Kripke
semantics ofL) if: Y `CLA impliesY j=L A. In words, if there is a closed
CL-tableau forY [f:Ag then anyL-model that makesY true at worldw must
makeA true at worldw.

Completeness: We say thatCL is complete with respect toL-frames (the
Kripke semantics ofL) if: Y j=L A implies Y `CLA. In words, if everyL-
model that makesY true at worldw also makesA true at worldw, then some
CL-tableau forY [f:Ag must close.

We already know that axiomatically formulatedL is also sound and complete
with respect toL-frames. If we can show thatCL is also sound and complete
with respect toL-frames then we can complete the link betweenCL andL via:
Y `CLA iff Y j=L A iff j=L

bY ! A iff `L bY ! A. Thus our tableau systems, as
given, capture axiomatically formulated theoremhood only. As stated previously,

310 RAJEEV GOŔE

they can be easily extended to handle the stronger notion of ‘deducibility’ using
techniques for handling global logical consequence from Fitting[1983].

4.4 Relationship to Smullyan Tableau Systems

Tableau systems are often presented using trees where each node is labelled by a
single (possibly signed) formula[Fitting, 1983]. The associated tableau rules then
allow us to choose some formula on the current branch as the principal formula
of the rule, and then to extend all branches below this formula by adding other
formulae onto the end of these branches. For modal logics, some of the tableau
rules demand the deletion of formulae from the current branch, as well as the
addition of new formulae. In fact, the tableau rules are often summarised using
set notation by collecting into a numerator all the formulae on the branch prior to
a tableau rule application, and collecting into one or more denominators all the
formulae that remain after the tableau rule application. Such summarised rules
correspond exactly to the tableau rules we use. In particular, the thinning rule(�)
allows us to capture the desired deletion rules.

4.5 Structural Rules

Tableau systems are closely related to Gentzen systems and both often contain
three rules known as structural rules; so called because they do not affect a partic-
ular formula in the numerator but the whole of the numerator itself.

Exchange

Since we use sets of formulae, the order of the formulae in the set is immaterial.
Thus a commonly used rule called the ‘exchange’ rule that simply swaps the order
of formulae is implicit in our formulation.

Contraction

The (^) rule is shown below left. Consider the two applications of the(^) rule
shown at right:

(^)
X ;P ^Q
X ;P ;Q

p ^ q
p ; q

(^)
p ^ q

p ^ q ; p ; q
(^)

The left hand application is intuitive, corresponding to puttingX = ;, P = p,
andQ = q giving a numerator

N = (X ;P ^Q) = (;; p ^ q) = fp ^ qg

TABLEAU METHODS FOR MODAL AND TEMPORAL LOGICS 311

and hence obtaining the denominator

D = (X ;P ;Q) = (;; p; q) = fp; qg:

However, the right-hand derivation is also legal since we can putX = fp ^ qg,
P = p, andQ = q to give the numerator

N = (X ;P ^Q) = (p ^ q; p ^ q) = fp ^ qg

and hence obtain the denominator

D = (X ;P ;Q) = (p ^ q; p; q) = fp ^ q; p; qg:

Thus, although our tableau rules seem to delete the principal formulae in a rule
application, they also allow us to carry that formula into the denominator if we so
choose.

Now, in classical propositional logic, it can be shown that the deletion of the
principal formula does no harm. However, in certain modal logics, the deletion of
the principal formula leads to incompleteness. That is, a tableau forX may not
close if we always delete the principal formula, and yet, a similar tableau forX
may close if we carry a copy of the principal formula into the denominator. For an
example, see Example 8 on page 324.

Completeness is essential if our tableau systems are to be used as decision pro-
cedures, thus we need a way to duplicate formulae. It is tempting to add a rule
called the contraction rule (ctn) as shown below left. And below at right is an
application of it where we duplicate the formula2p inN = fp ^ q;2pg:

(ctn)
X ;P

X ;P ;P

p ^ q;2p
p ^ q;2p;2p (ctn)

But now we have a problem, for the definition of a tableau is in terms of nodes
carryingsetsand the two nodes of the right-hand tableau carry identical sets since
(p ^ q;2p) = (p ^ q;2p;2p) = fp ^ q;2pg. Thus, any explicit application of
the contraction rule immediately gives a cycle and stops the tableau construction.
An explicit contraction rule is not what we want.

In order to avoid these complexities we shall omit an explicit contraction rule
from our tableau systems and make no assumptions about the deletion or copy-
ing of formulae when moving from the numerator to the denominator. However,
when we wish to copy the principal formula into the denominator we shall explic-
itly show it in the denominator. So for example, the rule below at left explicitly
stipulates that a copy of the principal formulaP ^ Q must be carried into the
denominator, whereas the rule below at right allows us to choose for ourselves:

(^0) X ;P ^Q
X ;P ^Q;P ;Q

(^)
X ;P ^Q
X ;P ;Q

312 RAJEEV GOŔE

Thinning

The thinning rule(�) allows us to convert any tableau for a given setY into a
tableau for a bigger set(X ;Y) simply by adding(X ;Y) as a new root node. It
encodes the monotonicity of a logic since it encodes the principle that ifY `CLA
thenX [Y `CLA. In tableau systems for classical logic it can be built into the
basic consistency check by using a base rule like our(?) (shown below right)
since all formulae that are not necessary to obtain closure can be stashed in the set
X . Alternatively it becomes necessary if we use a base rule like the one shown at
below left:

P ;:P
?

X ;P ;:P
? (?)

Consequently, our tableau systemCK is complete for classical propositional
logic without(�) and the thinning rule is required only for the modal aspects. The
thinning rule can also be built into the modal rules as we shall show, but we choose
to make it explicit because it helps to keep the modal rules simpler.

Cut

The cut rule shown below encodes the law of the excluded middle but suffers the
disadvantage that the new formulaeP and:P are totally arbitrary, bearing no
relationship to the numeratorX . To use the(cut) rule we have to guess the correct
P (although note that modal tableau systems based on Mondadori’s systemKE
[D’Agostino and Mondadori, 1994] can use cut sensibly):

(cut)
X

X ;P j X ;:P
The redundancy of the cut rule is therefore very desirable and can be proved

in two ways. The first is to allow the cut rule and show syntactically that when-
ever there is a closedCL-tableau forX containing uses of the cut rule, there is
another closedCL-tableau forX containing no uses of the cut rule. This is the
cut-elimination theorem of Gentzen. The alternative is to omit the cut rule from
the beginning and show that the cut-free tableau systemCL is nevertheless sound
and complete with respect to the semantics of the logicL. For most of our systems,
we follow this latter route.

A more practical version of the cut rule, known asanalytical cut, is one where
P is a subformula of some formula inX . Thus the formulae that appear in the
denominator are not totally arbitrary. Some of our systems require such an analytic
cut rule for completeness. The use of analytic cut is not as bad as it may seem since
it can lead to exponentially shorter proofs.

TABLEAU METHODS FOR MODAL AND TEMPORAL LOGICS 313

4.6 Derived Rules and Admissible Rules

Our rules are couched in terms of (set) variables likeX , which denote sets of for-
mulae, and formulae variables like:2P which denote formulae with a particular
structure. Thus our rules are really rule schemata which we instantiate by instan-
tiatingX to a set of formulae, and instantiating:2P to a particular formula like
:2q say. And up till now, we have always applied the rules to sets of formulae.
But if a sequence of rule applications is used often then it is worth defining a new
rule as a macro or derived rule. And in defining a macro, we apply rules to set
variables and to formula variables, not to actual sets of formulae.

More formally, a rule(�) with numeratorN and denominatorsD1,D2, � � � ,Dk
is derivable in CL iff there is a finiteCL-tableau that begins with the schemaN
itself, and has leaves labelled with the schemataD1, D2, � � � ,Dk, but where the
rules are applied to schema rather than to actual sets of formulae. The addition
of derived rules does not affect soundness and completeness ofCL since their
applications can be replaced by the macro-expansion.

For example, in order to apply the(K) rule, the numerator (schema)2X ;:2P
is not allowed to contain nonmodal formulae likep ^ q. Before applying the(K)
rule, these undesirable elements have to be ‘thinned out’ via the setY as shown be-
low left. But notice that here we have applied the(�) rule, not to a set of formulae,
but to a schema which represents a set of formulae. And similarly, the subsequent
application of the(K) rule is also applied to a schema rather than an actual set of
formulae. Since such an application of(�) may be necessary before every appli-
cation of(K) it may be worth defining a ‘derived rule’(K�) which builds in this
thinning step as shown below right. In fact, if we replace(K) by (K�) in CK then
(�) becomes superfluous since these are the only necessary applications of(�).

Y ;2X;:2P
(�)

2X;:2P
(K)

X;:P

(K�)
Y ;2X ;:2P
X ;:P

On the other hand, it is often possible (and useful) to add extra rules even though
these rules are not derivable. For example, the cut rule is not derivable inCK since
the denominators of each rule ofCK are always related to the numerator of that
rule, whereas(cut) breaks this property since theP in the denominator is arbitrary.

We can ensure that the new rules do not add to the deductive power of the
system as follows. Let(�) be an arbitrary tableau rule with a numeratorN and
n denominatorsD1;D2; � � � ;Dn and letCL� be the tableau systemCL [f(�)g.
Then the rule(�) is said to beadmissible in CL if: X is CL-consistent iffX is
CL�-consistent. That is, if: aCL-tableau forX is closed iff aCL�-tableau forX
is closed.

LEMMA 2. If CL is sound and complete with respect toL-frames and(�) is
sound with respect toL-frames then(�) is admissible inCL.

314 RAJEEV GOŔE

Proof. SinceCL � CL� we know that ifX is CL�-consistent thenX is CL-
consistent. To prove the other direction suppose thatCL is sound and complete
with respect toL-frames, that(�) is sound with respect toL-frames, and thatX
is CL-consistent. By the completeness ofCL, the setX must beL-satisfiable.
Since(�) is sound with respect toL-frames, so isCL�. SupposeX is notCL�-
consistent. Then there is a closedCL�-tableau forX which must utilise the rule
(�) since this is the only difference betweenCL andCL�. But, by the soundness
of CL� this implies thatX must beL-unsatisfiable; contradiction. HenceX must
beCL�-consistent. �

For example, there is no rule forA! B in our tableau system since we always
use primitive notation and rewriteA! B as:(A ^ :B). But the following rules
are clearly sound with respect to the semantics of classical logic, and hence are
admissible forCPC (the calculusCK minus the(K) rule) sinceCPC is sound
and complete with respect to the same semantics:

(!)
X ;P ! Q

X ;:P j X ;Q
(: !)

X ;:(P ! Q)

X ;P ;:Q

4.7 Invertible Rules

A tableau rule(�) is invertible in CL iff: if there is a closedCL-tableau for (an
instance of) the numeratorN then there are closedCL-tableaux for (appropriate
instances of) the denominatorsDi.
LEMMA 3. The rules(^), (_) and(:) are invertible inCPC.

Proof. The assumption is that we are given a closedCPC-tableau for some set
X that matches the numeratorN of rule (�), where(�) is one of(^), (_) and
(:). We have to prove that there is a closedCPC-tableau for the corresponding
instantiations of the denominators of(�).

We prove this simultaneously for all three rules by induction on the length of the
given closedCPC-tableau forX . The induction argument requires slight modifi-
cations to ourCPC-tableaux: we assume that all applications of the rule(?) are
restricted to atomic formulae since every closedCPC-tableau can be extended to
meet this condition, and we also ignore the rule(�) since any closedCPC-tableau
that uses(�) can be converted into one that does not use(�).

The base case for the induction proof is when the length of the given closed
CPC-tableau forX is1; that is, there is someatomic formulap such thatfp;:pg �
X . The corresponding denominators of(�) must also containfp;:pg since nei-
therp nor:p can be the principal formulae of(�). So these denominator instances
are also closed.

The induction hypothesis is that the lemma holds for all closedCPC-tableaux
of lengths less thann. Suppose now that the given closedCPC-tableau forX is
of lengthn. We argue by cases, but only give the case for the(^) rule in detail.

TABLEAU METHODS FOR MODAL AND TEMPORAL LOGICS 315

(^) The numerator is of the formN = (Z;P^Q) and we have to provide a closed
CPC-tableau for the corresponding denominator(Z;P ;Q). Consider the
actual first rule application(�) in the given closedCPC-tableau for(Z;P ^
Q).

If P ^Q is not the principal formulaA of (�) then the denominators of(�)
are of the form(Z 0i;P ^Q), 1 � i � 2, sinceAmust be some formula from
Z. The givenCPC-tableau for(Z;P ^ Q) is closed, so each(Z 0i;P ^ Q),
1 � i � 2, must have a closedCPC-tableau of length less thann. Then, by
the induction hypothesis, there are closedCPC-tableaux of length less than
n for each(Z 0i;P ;Q), 1 � i � 2.

If we now start a separateCPC-tableau for(Z;P ;Q) and use(�) with the
sameA 2 Z as the principal formula, we obtain the sets(Z 0i;P ;Q) as the
denominators of(�). Since we already have closedCPC-tableaux for these
sets, we have a closedCPC-tableau for(Z;P ;Q), as desired. It is crucial
that the length of the newCPC-tableau is alson.

If P ^ Q is the principal formulaA of (�) then(�) = (^) has only one
denominator(Z;P ;Q), and theCPC-tableau for it closes. But this is the
closedCPC-tableau we had to provide. In this case, the length of the ‘new’
CPC-tableau is actuallyn� 1.

(_) Similar to above.

(:) Similar to above. �

4.8 Subformula Property and Analytic Superformula Property

For a formulaA, thedegreedeg(A) counts the maximum depth of nesting while
themodal degreemdeg(A) counts the maximum depth of modal nesting. Their
definitions are:

deg(A) = 0 whenA is atomic
deg(:A) = 1 + deg(A)
deg(A ^ B) = 1 +max(deg(A); deg(B))
deg(2A) = 1 + deg(A)

mdeg(A) = 0 whenA is atomic
mdeg(:A) = mdeg(A)
mdeg(A ^ B) = max(mdeg(A);mdeg(B))
mdeg(2A) = 1 +mdeg(A)

For a finite setX :

deg(X) = maxfdeg(A) j A 2 Xg
mdeg(X) = maxfmdeg(A) j A 2 Xg

316 RAJEEV GOŔE

The set of allsubformulaeof a formula, or of a set of formulae, is used exten-
sively. For a formulaA, thefinite set of all subformulaeSf(A) is defined induc-
tively as[Goldblatt, 1987]:

Sf(p) = fpg wherep is an atomic formula Sf(:A) = f:Ag [Sf(A)
Sf(A ^ B) = fA ^ Bg [Sf(A) [Sf(B) Sf(2A) = f2Ag [Sf(A)

Note that under this definition, a formula must be in primitive notation to obtain
its subformulae; for example:

Sf(p _ q) = Sf(:(:p ^ :q)) = f:(:p ^ :q);:p ^ :q;:p;:q; p; qg
Sf(3p) = Sf(:2:p) = f:2:p;2:p;:p; pg

For a finite set of formulaeX; the set of all subformulaeSf(X) consists of all
subformulae of all members ofX ; that is,Sf(X) =

S
A2X Sf(A): The set ofstrict

subformulaeof A is Sf(A) n fAg.
A tableau rule has thesubformula property iff every formula in the denomi-

nators is a subformula of some formula in the numerator. A tableau systemCL has
the subformula property iff every rule inCL has it.

If CL has the subformula property then each rule can be seen to ‘break down’
its principal formula(e) into its subformulae. Furthermore, if the principal formula
is not copied into the numerator, then termination is guaranteed without cycles
since every rule application is guaranteed to give a denominator of lower degree,
eventually leading to a node with degree zero.

Notice that the rules ofCK do not have the subformula property, for both the
(_) and(K) rule denominators contain formulae which arenegationsof a subfor-
mula of the principal formula. But clearly this is not a disaster since the degree is
not actuallyincreased, but may remain the same.

The modal tableau rules for more complex logics, however, introduce quite
complex ‘superformulae’ into their denominators, therebyincreasingboth the de-
gree and the modal degree. Nevertheless, all is not lost, for every tableau will be
guaranteed to terminate, possibly with a cycle.

In order to prove this claim we need to introduce the idea of ananalytic super-
formula. The intuition is simple: rules will be allowed to ‘build up’ formulae so
long as the rules cannot conspire to give an infinite chain of ‘building up’ opera-
tions.

A tableau systemCL has theanalytical superformula property iff to every
finite setX we can assign,a priori, a finite setX�

CL such thatX�
CL contains all

formulae that may appear inanytableau forX .

LEMMA 4. If CL has the analytic superformula property then there are (only) a
finite number ofCL-tableaux for the finite setX .

Proof. SinceCL has the analytical superformula property the onlyCL-tableaux
we need consider are those whose nodes carry subsets of the setX�

CL. SinceX�
CL

TABLEAU METHODS FOR MODAL AND TEMPORAL LOGICS 317

is finite, the number of subsets ofX�
CL is also finite. �

For example, the calculusCK has the analytic superformula property because
for any given finiteX we can putX�

CK = Sf(X) [:Sf(X) [f?g.

4.9 Proving Soundness

By definition, a tableau systemCL is sound with respect toL-frames ifY `CLA
impliesY j=L A.

Proof Outline. To prove this claim we assume thatY `CLA; that is, that we have
a closedCL-tableau forX = (Y ;:A). Then we use induction on the structure of
this tableau to show thatX isL-unsatisfiable; that is, thatY j=L A.

The base case is when the tableau consists of just one application of the(?)
rule. In this case, the setX must contain someP and also:P and is clearly
L-unsatisfiable (since our valuations are always classical two-valued ones).

Now suppose that the (closed)CL-tableau is some finite but arbitrary tree. We
know that all leaves of this (closed) tableau end inf?g: So all we have to show
is that for eachCL-tableau rule: if all the denominators areL-unsatisfiable then
the numerator isL-unsatisfiable. This would allow us to lift theL-unsatisfiability
of the leaves up the tree to conclude that the rootX is L-unsatisfiable. Instead,
we show the contrapositive; that is, for eachCL-tableau rule we show that if the
numerator isL-satisfiable then at least one of the denominators isL-satisfiable.�

Thus proving the soundness of a tableau system is possible on a rule by rule
basis. For example, the(^) rule is sound with respect toK-models because if we
are given someK-modelhW;R; V i with somew 2 W such thatw j= X ; p ^ q,
then we can always find aK-modelhW 0; R0; V 0i with somew0 2 W 0 such that
w0 j= X ; p; q by simply puttinghW;R; V i = hW 0; R0; V 0i and puttingw = w0.

As another example the(K) rule is sound with respect toK-models because
if we are given someK-model hW;R; V i with somew 2 W such thatw j=
2X ;:2P then we know thatw has some successorw0 2W such thatwRw0 and
w0 j= :P (by the definition ofw j= :2P). Furthermore, sincew j= 2X and
wRw0 we know thatw0 j= X (by the definition ofw j= 2P). Thus we can find a
w0 2 W such thatw0 j= X ;:P . In this case, although the underlying model has
remained the same, the worldw0 may be different fromw.

4.10 Static Rules, Dynamic Rules and Invertibility

The previous two examples show that, in general, the numerator and denominators
of a tableau rule either represent the same world in the same model as in the(^)
example, or they represent different worlds in the same model as in the(K) exam-
ple. We therefore categorise each rule as either astatic rule or as atransitional
rule.

318 RAJEEV GOŔE

The intuition behind this sorting is that in the static rules, the numerator and
denominator represent the same world (in the same model), whereas in the tran-
sitional rules, the numerator and denominator represent different worlds (in the
same model).

For example, the tableau rules forCK are categorised as follows:

CL Static Rules Transitional Rules

CK (�), (?); (:); (^); (_) (K)

The division of rules into static or transitional ones is based purely on the se-
mantic arguments outlined above. But there is a proof-theoretic reason behind this
sorting as captured by the following lemma.

LEMMA 5. The static rules ofCL, except(�), are precisely the rules that are
invertible inCL.

Proof. We shall have to prove this lemma for eachCL by extending Lemma 3.
And it is precisely the requirement of invertibility that sometimes requires us to
copy the principal formula into the numerator; see Section 4.14. �

4.11 Proving Completeness via Model-Graphs

By definition, CL is complete with respect toL-frames iff: Y j=L A implies
Y `CLA.

Proof Outline. We prove the contrapositive. That is, we assumeY 6`CLA by
assuming thatnoCL-tableau forX = (Y ;:A) is closed. Then we pick and choose
sets with certain special properties frompossibly differentopen tableaux forX ,
and use them as possible worlds to construct anL-modelM for X , safe in the
knowledge that each of these sets isCL-consistent. The modelM is deliberately
constructed so as to contain a worldw0 such thatw0 j= Y andw0 j= :A. Hence
we demonstrate by construction thatY 6j= A. The basic idea is due to Hintikka
[Hintikka, 1955]. �

In order to do so we first need some technical machinery.

Downward Saturated Sets

A setX is closed with respect to a tableau ruleif, whenever (an instantiation of)
the numerator of the rule is inX; so is (a corresponding instantiation of) at least
one of the denominators of the rule. A setX is CL-saturated if it is CL-consistent
and closed with respect to the static rules ofCL excluding(�).

LEMMA 6. For eachCL with the analytic superformula property and each fi-
nite CL-consistentX there is an effective procedure to construct some finiteCL-
saturated (andCL-consistent)Xs withX � Xs � X�

CL.

TABLEAU METHODS FOR MODAL AND TEMPORAL LOGICS 319

Proof. SinceX is CL-consistent, we know that noCL-tableau forX closes and
hence that the(?) rule is not applicable.

LetX0 = X , let i = 0 and let(�) 6= (�) be a static rule ofCL with respect to
whichX0 is not closed. If there are none, then we are done.

Given aCL-consistent setXi which is not closed with respect to the static rule
(�) 6= (�), apply(�) to (the numerator)Xi to obtain the corresponding denom-
inators. At least one of these denominators must have only openCL-tableaux.
So choose a denominator for which noCL-tableau closes and letYi be theCL-
consistent set carried by it.

Suppose that this application of(�) has a principal formulaA 2 Xi and side
formulaefB1; � � � ; Bkg � Yi. PutXi+1 = (Yi;A) by addingA to Yi, thereby
makingXi+1 closed with respect to this particular application of(�).

For a contradiction, assume thatXi+1 is CL-inconsistent; that is, assume that
there is a closedCL-tableau for(Yi;A). Since(�) was applicable toA, putting
N = (Yi;A) andD = (Yi;B1; � � � ;Bk) gives a part of an instance of(�); ‘part of’
because(�) may have more than one denominator andD is an instance of only one
of them. But(�) is invertible inCL, so if there is a closedCL-tableau for(Yi;A),
then there is a closedCL-tableau for(Yi;B1; � � � ;Bk). SincefB1; � � � ; Bkg � Yi,
this means that there is a closedCL-tableau forYi. Contradiction, henceXi+1 is
CL-consistent; that is, noCL-tableau forXi+1 closes.

Now repeat this procedure onXi+1. SinceXi+1 is closed with respect to at least
one more rule application, the number of choices for(�) is one less. Furthermore,
the resulting setXi+2 is guaranteed to beCL-consistent.

By always iterating on the new set we obtain a sequence of finiteCL-consistent
setsX0 � Xi+1 � � � �, terminating with some finalXn becauseXn is closed with
respect to every static rule ofCL, except(�), and isCL-consistent, as desired. Let
Xs = Xn.

Since each rule carries subsets ofX�
CL to subsets ofX�

CL and we start with
X � X�

CL, we haveX � Xs � X�
CL. �

In classic logic, such sets are called downward saturated sets and form the ba-
sis of Hintikka’s[1955] method for proving completeness of classical tableau sys-
tems. In the next section we introduce the technical machinery necessary to extend
this method to modal logics.

Model Graphs and Satisfiability Lemma

The following definition from Rautenberg[1983] is central for the model construc-
tions. Amodel graph for some finite fixed set of formulaeX is a finiteL-frame
hW;Ri such that allw 2 W areCL-saturated sets withw � X�

CL and

(i) X � w0 for somew0 2W ;

(ii) if :2P 2 w then there exists somew0 2W with wRw0 and:P 2 w0;
(iii) if wRw0 and2P 2 w thenP 2 w0:

320 RAJEEV GOŔE

LEMMA 7. If hW;Ri is a model graph forX then there exists anL-model forX
[Rautenberg, 1983].

Proof. For everyp 2 P, let #(p) = fw 2 W : p 2 wg. Using simultaneous
induction on the degree of an arbitrary formulaA 2 w, it is easy to show that (a)
A 2 w impliesw j= A; and (b):A 2 w impliesw 6j= A. By (a),w0 j= X hence
the modelM = hW;R; #i is anL-model forX [Rautenberg, 1983]. �

This model graph construction is similar to the subordinate frames construction
of Hughes and Cresswell[1984] except that Hughes and Cresswell use maximal
consistent sets and do not consider cycles, giving infinite models rather than finite
models.

4.12 Finite Model Property and Decidability

In the above procedure, ifM can be chosen finite (for finiteX) then the logic
L has the finite model property (fmp). It is known that a finitely axiomatisable
normal modal logic with the finite model property must be decidable; see Hughes
and Cresswell[1984, page 154]. HenceCL provides a decision procedure for
determining whetherY j=L A.

4.13 Summary

In the rest of this section we present tableau systems for many propositional normal
modal logics based on the work of Rautenberg[1983], Fitting [1983], Shvarts
[1989], Hanson[1966], Goré [1992; 1991; 1994] and Amerbauer[1993]. Most of
the systems are cut-free but even those that are not use only an analytical cut rule.
Each tableau system immediately gives an analogous (cut-free) sequent system.
The presentation is based on the basis laid down in the previous subsections and is
therefore rather repetitive. The procedure for each tableau systemCL is:

1. define the tableau rules forCL ;

2. defineX�
CL for a given fixedX ;

3. prove that theCL rules are sound with respect toL-frames;

4. prove that eachCL-consistentX can be extended (effectively) to aCL-
saturatedXs with X � Xs � X�

CL ;

5. prove that theCL rules are complete with respect toL-frames by giving a
procedure to construct afiniteL-model for any finiteCL-consistentX and
hence prove thatL has the finite model property, thatL is decidable and that
CL is a decision procedure for deciding local logical consequence (Y j=L A)
in L.

TABLEAU METHODS FOR MODAL AND TEMPORAL LOGICS 321

4.14 The Basic Normal Systems

In this section we study the tableau systems which capture the basic normal modal
logics obtained from various combinations of the five basic axioms of reflexiv-
ity, transitivity, seriality, Euclideaness, and symmetry. We shall see that implicit
tableau systems can handle certain combinations of the first four properties with
ease, but require an analytic cut rule to handle symmetry. In each case, we give the
tableau calculi and prove them sound and complete with respect to the appropriate
semantics. We shall also see that some of the basic logics have no known implicit
tableau systems, leaving an avenue for further work.

The following notational conventions are useful for definingX�
CL for eachX

and eachCL. For any finite setX :

- let Sf(X) denote the set of all subformulae of all formulae inX ;

- let:Sf(X) denotef:P j P 2 Sf(X)g;
- let eX denote the setSf(X) [:Sf(X) [f?g;
- let2(eX ! 2 eX) denote the setf2(P ! 2P) j P 2 eXg.

We sometimes writeSfX instead ofSf(X) whenceeX = (Sf:SfX) [f?g.

Tableau Calculi

All the tableau calculi contain the rules ofCPC and one or more logical rules from
Figure 6 on page 322. The tableau systems are shown in Figure 7 on page 323 and
the only structural rule is(�). The calculi marked with a superscripty require
analytic cut whilst the others are cut-free. The entries marked by question-marks
are open questions.

The rules are categorised into two sorts, static rules and transitional rules as
explained on page 318. This sorting should become even clearer once we prove
soundness.

The semantic and sometimes axiomatic intuitions behind these rules are as fol-
lows.

Intuitions for (K) : if the numerator represents a worldw where2X and:2P
are true, then since:2P = 3:P , there must be a worldw0 reachable fromw such
thatw0 makesP false and makes all the formulae inX true. The denominator of
the(K) rule representsw0.

Intuitions for (T) : if the numerator represents a worldw whereX and2P are
true, then every successor ofw must makeP true. By reflexivity ofR the world
w itself must be one of these successors.

Intuitions for (D) : if the numerator represents a worldw whereX and2P
are true, then by seriality ofR there must exist somew0 such thatwRw0. Then
the definition of2P forcesP to be true atw0. Hence:2:P , that is3P , must be

322 RAJEEV GOŔE

(K)
2X ;:2P
X ;:P (T)

X ;2P

X ;2P ;P
(D)

X ;2P

X ;2P ;:2:P

(KD)
2X ;:2P
X ;:P wheref:2P;:Pg may be empty

(K4)
2X ;:2P
X ;2X ;:P (S4)

2X ;:2P
2X ;:P

(45)
2X ;:2Y ;:2P

X ;2X ;:2Y ;:2P ;:P

(45D)
2X ;:2Y ;:2P

X ;2X ;:2Y ;:2P ;:P whereY [fPg [f:Pgmay be empty

(B)
X ;:2P

X ;:2P ;P j X ;:2P ;:P ;2:2P (T3)
X ;2P ;:2Q
X ;2P ;P ;:2Q

(5)
X ;:2P

X ;:2P ;2:2P (S5)
2X ;:2Y ;:2P

2X ;:2Y ;:2P ;:P

(sfc2)
X ;2P

X ;2P ;P j X ;2P ;:P

(sfc3)
X ;:2P

X ;:2P ;P j X ;:2P ;:P

(sfc_)
X ;:(P ^Q)

X ;:P ;:Q j X ;:P ;Q j X ;P ;:Q

(sfc) = f(sfc2); (sfc3); (sfc_)g (sfcT) = f(sfc_); (sfc3)g

Figure 6. Tableau Rules for Basic Systems

TABLEAU METHODS FOR MODAL AND TEMPORAL LOGICS 323

CL Static Rules Transitional Rules X�
CL

CPC (�), (?); (:); (^); (_) — eX
CK CPC (K) eX
CT CPC, (T) (K) eX
CD CPC, (D) (K) Sf:Sf2 eX
CD0 CPC (KD) eX
CKB ? ? ?
CK4 CPC (K4) eX
CK5 ? ? ?
CKDB ? ? ?
CKD5 ? ? ?
CK4D CPC, (D) (K4) Sf:Sf2 eX
CK45 CPC (45) eX
CK45D CPC (45D) eX
CS4 CPC, (T) (S4) eX
CS5�� CPC, (T) (S5) eX
CyK45 CPC, (sfc) (45) eX
CyK45D CPC, (sfc) (45D) eX
CyK4B CPC, (sfc), (T3), (5) (K4) Sf:Sf2 eX
CyS4 CPC, (T), (sfcT) (S4) eX
CyB CPC, (T); (B); (sfcT) (K) Sf:Sf2 eX
CyS5 CPC, (T); (5); (sfcT) (S4) Sf:Sf2 eX
CyS50 CPC, (T); (sfcT) (S5) eX

Figure 7. Tableau Calculi for Basic Systems

324 RAJEEV GOŔE

true atw itself. Note that(D) is a static rule since its numerator and denominator
represent the same world, and also that(D) creates a superformula:2:P .

Intuitions for (KD) : if the numerator represents a worldw where2X is true,
then the seriality ofR guarantees a successorw0 for this world, and the definition
of 2X forcesX to be true atw0. So we can apply the(KD) rule even when the
numerator contains no formulae of the form:2P . Of course, if such a formula is
present then the intuitions for the(K) rule suffice. Note that(KD) is a transitional
rule since the numerator and denominator represent different worlds, and also that
it has the subformula property.

Intuitions for (K4) : if the numerator represents a worldw where2X and
:2P are true, there must be a worldw0 representing the denominator, withwRw0,
such thatw0 makesX true and makesP false. Then by transitivity ofR, any and
all successors ofw0 must also makeX true, hencew0 makes2X true. Ifw0 does
not have successors then it makes2X true vacuously.

Intuitions for (S4) : if the numerator represents a worldw where2X and
:2P are true, then by transitivity ofR there must be a worldw0 representing the
denominator, withwRw0, such thatw0 makes2X true and makesP false.

Intuitions for (B) : if R is symmetric and reflexive and the numerator repre-
sents a worldw whereX and:2P are true, we know that this world either makes
P true or makesP false. Ifw makesP true then we have the left denominator. If
w makesP false, then we have the right denominator which also contains2:2P
sinceA! 23A is a theorem ofB.

Intuitions for (5) : SupposeR is Euclidean and the numerator represents a
world w whereX and:2P are true. Then we immediately have thatw also
makes2:2P true since:2A! 2:2A is just another way of writing the axiom
5 which we know must be valid in all Euclidean Kripke frames.

Intuitions for (sfc) : if the numerator represents a worldw where:(P ^ Q)
is true, then we know thatw either makes bothP andQ false; or makesP false
andQ true; or makesP true andQ false. The other cases use similar intuitions.

Intuitions for (sfcT) : as for the(sfc) rule except that by reflexivity we cannot
have both2P and:P true atw so one of the cases cannot occur.

EXAMPLE 8. The following example shows that copying the principal formula
into the denominator is crucial since the leftCKT-tableau, using a non-copying
application of a rule(T 0), does not close but the right one, using(T), does close.

TABLEAU METHODS FOR MODAL AND TEMPORAL LOGICS 325

2(q ^ :2q) (T 0)

q ^ :2q (^)

q;:2q (�)

:2q (K)

:q ?

?

2(q ^ :2q) (T)

2(q ^ :2q); q ^:2q (^)

2(q ^ :2q); q;:2q (�)

2(q ^ :2q);:2q (K)

q ^ :2q;:q (^)

q;:2q;:q (?)

?

EXAMPLE 9. The following example shows that the order of the modal rule ap-
plications is important, since theCKT-tableau below does not close precisely be-
cause(K) (and hence(�)) is applied at the start. If we apply the(_) rule first then
the tableau can be closed:

2p;:(p ^ :2q);:2(p ^ q) (�)

2p;:2(p ^ q) (K)

p;:(p ^ q) (_)

(?) p;:p

?

�
�
�
�� L
L
L
LL
p;:q

open

326 RAJEEV GOŔE

Soundness

THEOREM 10 (Soundness).Each calculusCL and CyL listed in Figure 7 on
page 323 (without question marks!) is sound with respect toL-frames.

Proof Outline. For each rule inCL we have to show that if the numerator of the
rule isL-satisfiable then so is at least one of the denominators. TheCPC rules are
obviously sound since each world behaves classically. The rules(sfc) and(sfcT)
are also sound for Kripke frames because any particular world in any model either
satisfiesP or satisfies:P for any formulaP: For each modal rule we prove that it
is sound with respect to some known property ofR as enforced by theL-frames
restrictions. The proofs are fairly straightforward and intuitive so we give a sketch
only.

We often use annotated names likew1 andw0 to denote possible worlds. Unless
stated explicitly, there is no reason whyw1 andw0 cannot name the same world.

Proof for (K): We show that(K) is sound with respect to all Kripke frames.
SupposeM = hW;R; V i is any Kripke model,w0 2 W and thatw0 satisfies
the numerator of(K). That is, supposew0 j= 2X ;:2P . We have to show that
there exists some world that satisfies the denominator of(K). By definition of the
satisfaction relation,w0 j= :2P implies that there exists aw1 2 W with w0Rw1

andw1 j= :P . Sincew0 j= 2X andw0Rw1; the definition ofj= implies that
w1 j= X , hencew1 j= (X ;:P), which is what we had to show.

Proof for (T): We show that(T) is sound with respect to all reflexive Kripke
frames. SupposeM = hW;R; V i is any Kripke model whereR is reflexive,
w0 2 W andw0 j= 2X ;2P . Then the reflexivity ofR and the definition ofj=
implies thatw0 j= 2X ;2P ;P .

Proof for (D): We show that(D) is sound with respect to all serial Kripke
frames. So supposeM = hW;R; V i is any Kripke model whereR is serial. That
is,8w 2 W; 9w0 2 W : wRw0. Supposew0 2 W andw0 j= X ;2P . By seriality
there exists somew1 2 W with w0Rw1. And sincew0 j= 2P we must have
w1 j= P . But then there is a world (namelyw1) accessible fromw0 that satisfies
P , and hencew0 j= 3P . By definition,3P = :2:P , hencew0 j= :2:P , thus
satisfying the denominator of(D).

Proof for (KD): We show that(KD) is sound with respect to all serial Kripke
frames. So supposeM = hW;R; V i is any Kripke model whereR is serial. Sup-
posew0 2 W andw0 j= 2X . By seriality there exists somew1 2 W with
w0Rw1, and sincew0 j= 2X we must havew1 j= X thus satisfying the denom-
inator of(KD) when the:2P part is missing from the numerator. On the other
hand, ifw0 j= 2X ;:2P for someP then, by definition, there is a worldw2

accessible fromw0 with w2 j= X ;:P .
Proof for (K4): We show that(K4) is sound with respect to all transitive

Kripke frames. So supposeM = hW;R; V i is any Kripke model whereR is
transitive. Supposew0 2 W andw0 j= 2X ;:2P . Thus there existsw1 2 W
with w0Rw1 andw1 j= X ;:P . SinceR is transitive, all successors ofw1 are

TABLEAU METHODS FOR MODAL AND TEMPORAL LOGICS 327

reachable fromw0, hencew0 j= 2X implies that every successor ofw1, if there
are any, must also satisfyX . By the definition ofj= this givesw1 j= X ;2X ;:P .
If w1 has no successors then it vacuously satisfies2A for any formulaA, hence it
vacuously satisfies2X , and we are done.

Proof for (S4): The proof for(K4) also shows that(S4) is sound with respect
to all transitive Kripke models.

Proof for (45): LetM = hW;R; V i be any Kripke model whereR is transitive
and Euclidean. Suppose thatw0 2 W andw0 j= 2X ;:2Y ;:2P . We have to
show that there exists aw0 2W such thatw0 j= X ;2X ;:2Y ; :2P ;:P .

We need only prove that there exists aw0 2 W such thatw0 j= :2Y ;:2P ;:P
since theX ;2X part will follow from the transitivity ofR. Sincew0 j= :2P we
know that there exists somew0 with w0Rw

0 andw0 j= :P . By the definition of
Euclideanessw0Rw

0 andw0Rw
0 (sic) impliesw0Rw0. Hencew0 is reflexive and

we havew0 j= :2P . Now, if Y is empty then we are done; otherwise ifY =
fQ1; Q2; � � � ; Qng, n � 1, there will be worldsw1, w2, . . . ,wn (not necessarily
distinct) wherew0Rwi for each1 � i � n and such thatwi j= :Qi. SinceR is
Euclidean,w0Rw

0 andw0Rwi implies thatw0Rwi for each1 � i � n. But then
w0 j= :2Y and we are done.

Proof for (45D): LetM = hW;R; V i be any Kripke model whereR is serial,
transitive and Euclidean, and suppose thatw0 2 W andw0 j= 2X ;:2Y ;:2P .
We have to show that there exists aw0 2 W such thatw0 j= X ;2X ;:2Y ;:2P ;
:P allowing for the case where the:2Y ;:2P part is missing. SinceR is tran-
sitive and Euclidean the proof forCK45 applies when the:2Y ;:2P part is
present. If there are no formulae of the form:2P in w0 then seriality guarantees
that there is some worldw0 with wRw0, and then transitivity ofR ensures that
w0 j= X ;2X .

Proof for (B): We show that(B) is sound with respect to all symmetric Kripke
frames. SupposeM = hW;R; V i is any Kripke model whereR is symmetric,
w0 2 W andw0 j= X ;:2P: We show thatw0 j= P or w0 j= :P ;2:2P: If
w0 j= P thenw0 j= X ;:2P ;P and we are done. Otherwisew0 j= :P: In this
latter case, supposew0 6j= 2:2P: Thenw0 j= :2:2P; that isw0 j= 32P; so
there exists somew1 2 W with w0Rw1 andw1 j= 2P: SinceR is symmetric,
w0Rw1 impliesw1Rw0 which together withw1 j= 2P givesw0 j= P: But this
contradicts the supposition thatw0 j= :P: Hencew0 j= X ;:2P ;P or w0 j=
X ;:2P ;:P ;2:2P and we are done.

Proof for (T3): We show that(T3) is sound with respect to all Kripke frames
that are symmetric and transitive. SupposeM = hW;R; V i is any Kripke model
whereR is symmetric and transitive,w0 2 W andw0 j= X ;2P ;:2Q. Then
there exists somew1 2 W with w0Rw1 andw1 j= :Q. By symmetry,w0Rw1

impliesw1Rw0. By transitivity,w0Rw1 andw1Rw0 impliesw0Rw0. Therefore
w0 j= P and we are done.

Proof for (5): We show that(5) is sound with respect to all Euclidean Kripke
frames. SupposeM = hW;R; V i is any Kripke model whereR is Euclidean, and
supposew0 2 W with w0 j= X ;:2P . We have to show thatw0 j= 2:2P .

328 RAJEEV GOŔE

Assume for a contradiction thatw0 6j= 2:2P ; that is,w0 j= :2:2P , which
is the same asw0 j= 32P . Thus there exists somew1 2 W with w0Rw1 and
w1 j= 2P . Sincew0 j= :2P there is also somew2 with w0Rw2 andw2 j= :P .
SinceR is Euclidean,w0Rw1 andw0Rw2 impliesw1Rw2. And sincew1 j= 2P
we must havew2 j= P . Contradiction; hencew0 j= 2:2P as desired.

Proof for (S5): We show that(S5) is sound with respect to all Kripke frames
that are transitive and Euclidean. SupposeM = hW;R; V i is any Kripke model
whereR is transitive and Euclidean. Supposew0 2W andw0 j= 2X ;:2Y ;:2P .
Thus there exists some worldw0 2 W with w0Rw

0 andw0 j= :P . Suppose
Y = fQ1; Q2; � � � ; Qng, n � 1. Thus there exist (not necessarily distinct) worlds
w1; w2; � � � ; wn such thatw0Rwi andwi j= :Qi, for 1 � i � n. SinceR is
Euclidean,w0Rw0 andw0Rwi for eachi. The first givesw0 j= :2P , and the
second givesw0 j= :2Qi, 1 � i � n. Hencew0 j= :P ;:2P ;:2Y . If Y is
empty then we just getw0 j= :P ;:2P . Now choose any arbitrary worldw0 such
thatw0Rw0 (there is at least one sincew0 is a reflexive world). By transitivity ofR,
w0Rw

0, hencew0 j= X . Sincew0 was an arbitrary successor forw0 this holds for
all successors ofw0. Hencew0 j= 2X as well givingw0 j= 2X ;:P ;:2P ;:2Y .

�

Invertibility Again

Before moving on to completeness, we return to the relationship between static
rules and invertible rules.

LEMMA 11. For everyCL, the static rules ofCL, except(�), are invertible in
CL.

Proof. We have to extend the proof of Lemma 3 to eachCL. We consider only the
case ofCKT since the proofs for other calculi are similar. The main point is to
highlight the need for copying the principal formula2P of the (T) rule into the
denominator.

Proof for CKT: As stated already, the induction argument requires slight mod-
ifications to ourCL-tableaux: we assume that all applications of the rule(?) are
restricted to atomic formulae since every closedCL-tableau can be extended to
meet this condition. The rule(�) interferes with the induction argument so we
proceed in two steps. We prove the lemma for the calculusCK�T in which the
(K) and(�) rules are replaced by the rule(K�). We then leave it to the reader
to prove that a finite setX has a closedCKT-tableau iff it has a closedCK�T-
tableau but give some hints at the end of the proof.

The assumption is that we are given a closedCK�T-tableau for some setX
that matches the numeratorN of a static rule(�) of CK�T; that is,(�) is one
of (^), (_), (:) and(T). Our task is to provide a closedCK�T-tableau for the
appropriate instance of the denominators of(�).

We again proceed by induction on the length of the given closedCK�T-tableau
forX . The base case for the induction proof is when the length of the given closed

TABLEAU METHODS FOR MODAL AND TEMPORAL LOGICS 329

CK�T-tableau forX is 1; and the argument of Lemma 3 suffices. The induction
hypothesis is that the lemma holds for all closedCK�T-tableaux of lengths less
thann. Suppose now that the given closedCK�T-tableau forX is of lengthn.
We argue by cases, but only give the case(�) = (T) in detail since the cases for
the staticCPC rules are similar.

(�) = (T) The setX of the given closedCK�T-tableau of lengthn is of the
form N = (Z;2P) and we have to provide a closedCK�T-tableau for
(Z;2P ;P), the denominator corresponding to(�) = (T).

Consider the first rule application(�) in the given closedCK�T-tableau for
(Z;2P). If 2P is not the principal formulaA of (�) then there are two
subcases:

(i) If (�) is a static (logical) rule ofCK�T then the denominators of(�)
are of the form(Z 0i;2P), 1 � i � 2, sinceA must be some for-
mula fromZ. The givenCK�T-tableau for(Z;2P) is closed, so each
(Z 0i;2P), 1 � i � 2, must have a closedCK�T-tableau of length less
thann. Then, by the induction hypothesis, there are closedCK�T-
tableaux of length less thann for each(Z 0i;2P ;P), 1 � i � 2.
If we now start a separateCK�T-tableau for(Z;2P ;P) and use(�)
with the sameA 2 Z as the principal formula, we obtain the set
(Z 0i;2P ;P). Since we already have closedCK�T-tableaux for these
sets, we have a closedCK�T-tableau for(Z;2P ;P), as desired. It is
crucial that the length of the newCK�T-tableau is alson.

(ii) If (�) is (K�) then(Z;2P) is of the form(Y ;2W ;:2Q;2P) and
the denominator of(�) is (W ;:Q;P). Furthermore, theCK�T-
tableau for(W ;:Q;P) is closed.

In this subcase,(Z;2P ;P) is of the form(Y ;2W ;:2Q;2P ;P).
If we start a newCK�T-tableau for the set(Y ;2W ;:2Q;2P ;P),
then we can obtain the same set(W ;:Q;P) using(K�). Since we
already have a closedCK�T-tableau for(W ;:Q;P) this is a closed
CK�T-tableau for(Z;2P ;P), also of lengthn. This is the closed
CK�T-tableau (of lengthn) we had to provide.

If 2P is the principal formula of(�) then(�) = (T) and(�) has a denom-
inator(Z;2P ;P). Furthermore, theCK�T-tableau for(Z;2P ;P) closes.
But this is exactly the closedCK�T-tableau we had to provide.

(�) = (^), (�) = (_), (�) = (:): Similar to above.

In order to lift this proof toCKT we have to show thatX has a closedCKT-
tableau iff it has a closedCK�T-tableau. A closedCK�T-tableau can be con-
verted to a closedCKT-tableau simply by replacing the rule(K�) with the appro-
priate application of(�) immediately followed by an application of(K), see Sec-

330 RAJEEV GOŔE

tion 4.6. Conversely, a closedCKT-tableau can be converted to a closedCK�T-
tableau by first moving every application of(�) so that it immediately precedes an
application of(K), and then replacing these pairs by an application of(K�). �

In Example 8 we saw the importance of copying the principal formula of the
(T) rule into its denominator. We can now explain this in more proof-theoretic
terms: the rule(T) is invertible inCKT, but the rule(T 0) is not invertible in
CKT0. To see that(T 0) is not invertible inCKT0 consider the set(:2p;2p):

- this set as the numerator of(T 0) has a corresponding denominator(:2p; p),
- (:2p;2p) has a closedCKT0-tableau, just apply the (K) rule once,

- but (:2p; p) has no closedCKT0-tableau (try it).

The curious reader may be wondering why the proof of Lemma 11 fails for
CKT0. In the above example,N = (:2p;2p) and(�) is the transitional rule
(K). If we had usedCK�T0 it would be(K�), so we enter case (ii) of the proof
with a known closedCK�T0-tableau for(:p; p). Our task is to provide a closed
CK�T0-tableau forD = (:2p; p), the denominator of the(T 0) rule corresponding
toN . But if we start a newCK�T0-tableau for(:2p; p), we cannot use the(K�)
rule to obtain the set(:p; p). In fact, there is no rule which allows us to do this in
CK�T0.

Completeness

As we saw in Subsection 4.11 (page 318) , proving completeness boils down to
proving the following: ifX is a finite set of formulae and noCL-tableau forX is
closed then there is anL-model forX on anL-framehW;Ri.

We call a formula:2P aneventuality since it entails that eventually:P must
hold. A worldw is said tofulfill an eventuality:2P whenw j= :P: A sequence
of worldsw1Rw2R � � �Rwm is said to fulfill an eventuality:2P whenwi j= :P
for somewi in the sequence.

As expected we shall associate sets of formulae with possible worlds and use
an explicit immediate successor relation� from which we will obtainR. We
abuse notation slightly by usingw, w0 andw1 to sometimes denote worlds in a
model, and sometimes to denote sets of formulae (in a model under construction).
Thus, asetw is said to fulfill an eventuality:2P when:P 2 w: A sequence
w1 � w2 � � � � � wm of sets is said to fulfill an eventuality:2P when:P 2 wi
for somewi in the sequence.

Recall that a setX is CL-saturated iff it is CL-consistent and closed with
respect to the static rules ofCL (excluding(�)). We now have to check that the
X�
CL defined in Figure 7 on page 323 allow (the Saturation) Lemma 6 (page 318)

to go through.

LEMMA 12. If there is a closedCL-tableau forX then there is a closedCL-
tableau forX with all nodes in the finite setX�

CL:

TABLEAU METHODS FOR MODAL AND TEMPORAL LOGICS 331

Proof. Obvious from the fact that all rules forCL operate with subsets ofX�
CL

only. �

LEMMA 13. For eachCL-consistentX there is an effective procedure to con-
struct some finiteCL-saturatedXs withX � Xs � X�

CL.

Proof. Same as on page 318. �

A setX is subformula-complete if P 2 Sf(X) implies eitherP 2 X or
:P 2 X . Some of the completeness proofs make extensive use of the following
lemma.

LEMMA 14 (subformula-complete).If X is closed with respect to (the static
rules) f (?), (:), (^), (_), (sfc) g, or f (?), (:), (^), (_), (sfc), (T3) g or
f (?), (:), (^), (_), (T), (sfcT) g thenX is subformula-complete.

Proof. The first case is obvious. The(sfcT) rule is just a special case of(sfc)
and always appears with(T). Thus, the lemma also holds if we have both(sfcT)
and(T) instead of(sfc). �

THEOREM 15 (Completeness).If X is a finite set of formulae andX is CL-
consistent then there is anL-model forX on a finiteL-frame.

Proof Outline: For eachCL we give a way to construct a finite model graph
hW0; Ri for X . Recall that a model graph for some finite fixed set of formulae
X is a finiteL-framehW0; Ri such that allw 2 W0 areCL-saturated sets with
w � X�

CL and

(i) X � w0 for somew0 2W0;

(ii) if :2P 2 w then there exists somew0 2W0 with wRw0 and:P 2 w0;
(iii) if wRw0 and2P 2 w thenP 2 w0:

The first step is to create aCL-saturatedw0 fromX withX � w0 � X�
CL. This

is possible via Lemma 6 (page 318). Sow0, and in generalw (possibly annotated)
stands for a finiteCL-saturated set of formulae (that corresponds to a world of
W0). Sincew0 is CL-consistent, we know thatno CL-tableau forw0 closes. We
use this fact to construct a graph ofCL-saturated worlds, always bearing in mind
that the resulting model graph must be based on anL-frame. The construction is a
meta-level one since we are free to inspect allCL-tableaux forw0, choosing nodes
at will, since all suchCL-tableaux are open. We use a successor relation� while
building this graph and then formR from�. Also, if w is a set of formulae in this
construction thenw2 = fP : 2P 2 wg.

By Lemma 7 (page 320),w0 j= X under the truth valuation# : p 7! fw 2
W0 : p 2 wg, giving anL-model forX atw0 as desired.

Proof for CK: If no :2P occurs inw0 thenhW;Ri = hfw0g; ;i is the desired
model graph since this is aK-frame and (i)-(iii) are satisfied.

332 RAJEEV GOŔE

Otherwise, letQ1; Q2; � � � ; Qm be all the formulae such that:2Qi 2 w0. Since
w0 is CK-consistent, no application of(�) can lead to a closedCK-tableau; in
particular, the setf2A : 2A 2 w0g [f:2Qig must beCK-consistent for each
1 � i � m. Each of these sets matches the numerator of(K) so(K) is applicable
to each of them. But we know that an application of(K) to any of these sets could
not have led to a closedCK-tableau either, so each of their respective denominators
(w20 ;:Qi) for i = 1; � � � ;m must beCK-consistent (by(�) and(K)). Note that
these nodes come from differentCK-tableaux.

Create aCK-saturatedvi � X�
CK from each(w20 ;:Qi) for i = 1; � � � ;m, by

using the static rules, and (the Saturation) Lemma 6. Putw0 � vi for i = 1; � � � ;m,
giving the nodes of level 1. Continue to create the nodes of further levels using(�)
and(K) as above.

Note that the denominator of the(K) rule has a maximum modal degree which
is strictly less than that of its numerator, and that theCK-saturation process does
not increase the maximum modal degree. Hence a pathw0 � w1 � w2 � � � must
terminate (without cycles) because each successor created by(K) has a maximum
modal degree strictly lower than that of the parent node.

Let R be� and letW0 consist of all the nodes created in this process, then
hW0; Ri is a finite, irreflexive and intransitive tree and a model graph forX . Hence
by Lemma 7, there is aK-model forX with rootw0.

Proof for CT: If no :2P occurs inw0 then hW;Ri = hfw0g; f(w0; w0)gi
is the desired model graph since (i)-(iii) are satisfied. Otherwise, letQ1, Q2, � � �,
Qm be all the formulae such that:2Qi 2 w0 and:Qi 62 w0. Proceed as forCK,
noting thatCT-saturation now involves(T) as well, but ignoring the successor for
:2Q 2 w if :Q 2 w. LetR be the reflexive closure of�; that is, putwRw for
all worlds in the tree and also putwRw0 if w � w0. Termination is as forCK.

Proof for CD: If no :2P occurs inw0 thenhfw0g; f(w0; w0)gi is the desired
model graph since (i)-(iii) are satisfied. Otherwise, proceed as forCK, except
thatCD-saturation now involves(D) as well, and letWend be the nodes of (the
resulting tree)W0 that have no successors. For eachw;w0 2 W0; putwRw0 if
w � w0 and putwRw if w 2 Wend. We have to show that (i)-(iii) are satisfied
by thisR. The only interesting case is to show that2P 2 w impliesP 2 w
for w 2 Wend. This is true sincew 2 Wend implies thatw contains no2P ,
as otherwise,w would contain:2:P by (D) and hence would have a successor
node by(K), contradicting thatw 2 Wend. Termination is as forCK.

Proof for CD0: If no :2Q occurs inw0 and no2P occurs inw0 thenhfw0g,
f(w0; w0)gi is the desired model graph. Otherwise, letZ = fQ1; � � �,Qmg be all
the formulae such that:2Qi 2 w0, 1 � i � m, and letY = fP1; P2; � � � ; Png be
all the formulae such that2Pj 2 w0, 1 � j � n. We knowm + n � 1. Since
w0 is CD0-consistent each:Qi;Y is CD0-consistent, fori = 1; 2; � � � ;m by (�)
and(KD). Also,Y itself isCD0-consistent by(�) and(KD). If Z is non-empty
then create aQi-successorvi using(KD) containing(:Qi;Y) for eachQi. But
if Z is empty then create a singleP -successory using(KD) containingY . Put
w0 � vi for eachi = 1 � � �m, orw0 � y, as the case may be, giving the node(s)

TABLEAU METHODS FOR MODAL AND TEMPORAL LOGICS 333

of level one. Continuing in this way obtain the node(s) of level two etc. Again, a
sequencew0 � w1 � w2 � � � must terminate since(KD) reduces the maximum
modal degree andCD0-saturation does not increase it. As in the first proof for
CD put wRw if w 2 Wend and putwRw0 if w � w0. Property (iii) holds for
w 2 Wend as end nodes do not contain any2P , as otherwise,w would have a
successor by(KD), contradicting thatw 2Wend.

Proof for CK4: If no :2P occurs inw0 thenhfw0g; ;i is the desired model
graph since it is anK4-frame and (i)-(iii) are satisfied. Otherwise, letQ1,Q2, � � �,
Qm be all the formulae such that:2Qi 2 w0.

We can form the setsf2A : 2A 2 w0g [:2Qi for 1 � i � m, by (�), each
of which is a numerator for(K4). Hence by(K4) each denominatorXi = fA :
2A 2 w0g [f2A : 2A 2 w0g [:Qi for 1 � i � m, is alsoCK4-consistent.

Clearly for eachXi we can find someCK4-saturated�i � Xi, with �i �
X�
CK4: Putw0 � �i, i = 1; � � � ;m and call�i theQi-successor ofw0. These are

the immediate successors ofw0. Now repeat the construction with each�i thus
obtaining the nodes of level 2 and so on.

In general, the above construction ofhW0;�i runs ad infinitum. However, since
w 2 W0 impliesw � X�

CK4; (a finite set), a sequencew0 � w1 � � � � in hW0;�i
either terminates, or a node repeats. If in the latter casen > m are minimal with
wn = wm we stop the construction and identifywn andwm in hW0;�i thus
obtaining a circle instead of an infinite path. One readily confirms thathW0; Ri
is a model graph forX whereR is the transitive closure of� : It is obvious that
clusters inhW0; Ri form a tree.

Proof for CK4D: If no :2P occurs inw0 thenhfw0g; f(w0; w0)gi is the de-
sired model graph. Otherwise, proceed as forCK4, except thatCK4D-saturation
also involves(D). A sequence either terminates or cycles sinceX�

CK4D is finite.
Putw � w for all w 2 Wend and letR be the transitive closure of�. Property
(iii) is satisfied byw 2 Wend just as in the proof forCD.

Proof for CK45: SupposeX isCK45-consistent and create aCK45-saturated
supersetw0 � X�

CK45 of X as usual. If no:2P occurs inw0 thenhfw0g; ;i is
the desired model graph since (i)-(iii) are satisfied.

Otherwise letQi; Q2; � � � ; Qk be all the formulae such that:2Qi 2 w0 and
create aQi-successor for eachQi using(�) and the(45) rule. Continue construc-
tion of one such sequenceS = w0 � w1 � � � � always choosing a successor that
is new to the current sequence. Note that a successor may be new either because
it fulfills an eventuality that is not fulfilled by the current sequence, or because it
contains formulae that do not appear in previous nodes that fulfill the same even-
tuality. SinceX�

CK45 is finite, we must sooner or later come to a nodewm such
that the sequenceS = w0 � w1 � � � � � wm already containsall the successors
of wm. That is, it is not possible to choose a new successor.

Now, the(K45) rule guarantees that if:2P 2 w0 then:2P 2 wi, i > 0,
so one of the successors ofwm must fulfill :2P , and furthermore, this successor
must already appear in the sequence. However, there is no guarantee that this
successor isw1. So, choose the successorwx of wm that fulfills some eventuality

334 RAJEEV GOŔE

in wm, but that appears earliest inS and putwm � wx giving S = w0 � w1 �
� � � � wx � � � � � wm � wx: There are two cases to consider depending on
whetherx = 0 or x 6= 0:

Case 1: Ifx = 0, putR as the reflexive, transitive and symmetric closure of�
overW0 = fw0; w1; � � � ; wmg. This gives a framehW0; Ri which is a nondegen-
erate cluster.

Case 2: Ifx 6= 0, putW0 = fw0; wx; wx+1; � � � ; wmg, discardingw1, w2,
� � �, wx�1, and letR0 be the reflexive, transitive andsymmetricclosure of� over
W0 n fw0g. That is,R0 = f(wi; wj)jwi 2 W0; wj 2 W0; i � x; j � xg. Now
putR0 = R0 [f(w0; wx)g and letR be the transitive closure ofR0. The frame
hW0; Ri now consists of a degenerate clusterw0 followed by a nondegenerate
clusterwxRwx+1R � � �RwmRwx whereR is transitive and Euclidean.

Property (i) is satisfied byhW0; Ri by construction. We show that (ii) and (iii)
are satisfied as follows.

Proof of (ii): The(45) rule also carriesall eventualities from the numerator to
the denominator, including the one it fulfills. Therefore, for allwi 2 W0 we have:
:2P 2 wi implies:2P 2 wm. But we stopped the construction atwm because
no newQi-successors forwm could be found. Hence there is aQi-successor for
each eventuality ofwm. Since we have a cycle, and eventualities cannot disappear,
these are all the eventualities that appear in the cycle. Furthermore, we chose
wx to be the successor ofwm that was earliest in the sequenceS. Hence all
of the eventualities ofwm are fulfilled by the sequencewxR � � �Rwm. All the
eventualities ofw0 are also inwm, hence (ii) holds.

Proof of (iii): The (45) rule carries all formulae of the form2P from its nu-
merator to its denominator. Hence2P 2 w andw � v implies thatP 2 v and
2P 2 v. But we know thatwx � � � � � wm � wx forms a cycle, hence (iii) holds
as well.

Proof for CK45D: Based on the previous proof. If the(45D) rule is ever
used with no eventualities present then this can only happen whenw0 contains no
eventualities. For ifw0 contained an eventuality then so would all successors.

So ifw0 contains no eventualities and no formulae of the form2P thenhfw0g,
f(w0; w0)gi is the desired model graph. This gives a frame which is a simple
(nondegenerate) cluster.

Otherwise, letQ1; � � � ; Qk be all the formulae such that:2Qi 2 w0 and
let P1; � � � ; Pm be all the formulae such that2Pj 2 w0. Create a successor
w1 for w0 using(45D) for someQi or Pj and continue creating successors us-
ing (45D), always choosing a successor new to the sequence until no new suc-
cessors are possible. Choosewx as the successor nearest tow0 giving a cycle
w0 � � � � � wx � � � � � wm � wx and discardw1; w2; � � �wx�1 as in the
previous proof.

FormR as in the proof forCK45 wherex = 0 gives a frame which is a sim-
ple cluster andx 6= 0 gives a frame which is a degenerate cluster followed by a
nondegenerate cluster.

Properties (i)–(iii) can be proved in a similar manner.

TABLEAU METHODS FOR MODAL AND TEMPORAL LOGICS 335

Note that the requirement to continually choose a new successor is tantamount
to following an infinite path in Shvarts’ formulation[Shvarts, 1989]. That is, the
inevitable cycle that we encounter constitutes an infinite branch if it is unfolded.

Proof for CS4: If no :2P occurs inw0 thenhfw0g; f(w0; w0)gi is the desired
model graph. Otherwise proceed as forCK4 except create a successor for even-
tuality :2P 2 w only if :P 62 w, and use(S4) to create successors instead of
(K4). Then, a successor forw will be based onf2A : 2A 2 wg [:P . LetR
be the reflexive and transitive closure of� (instead of the transitive closure of�).
We can add reflexivity because of closure with respect to(T).

Proof for CS5��: see page 341.
Proof for CyK45: SupposeX is CyK45-consistent and create aCyK45-

saturated supersetw0 with X � w0 � X�
CyK45 as usual. If no:2P occurs in

w0 thenhfw0g; ;i is the desired model graph since (i)–(iii) are satisfied.
Otherwise, letQi; Q2; � � � ; Qm be all the formulae such that:2Qi 2 w0 and

create aQi-successorvi for eachQi using the(45) rule. This gives all the nodes
of level 1, so putw0 � vi; for eachi = 1 � � �m; and stop!

Consider any two nodesvi andvj with i 6= j. Using the facts that each node is
subformula-complete and there are no building up rules, we show that

(a) 2P 2 vi implies2P 2 w0 impliesP 2 vj , P 2 vi and2P 2 vj ;
(b) :2P 2 vi implies:2P 2 w0 implies there exists avk such that:P 2 vk:
Proof of (a):Suppose2P 2 vi: Then2P 2 Sf(w0) since there are no building

up rules, and so2P 2 w0 or :2P 2 w0 sincew0 is subformula-complete. If
:2P 2 w0 then:2P 2 vi by (45), contradicting theCyK45-consistency ofvi:
Hence2P 2 w0. Note that this holds only because the(45) rule carries:2P into
its denominator along with:2Y .

Proof of (b): As for (a) except uniformly replace:2P by2P and vice-versa.
The crux of the proof is that(45) preserves all formulae of the form2P and:2P .

Hence we can putviRvjRvi for all vi andvj giving a reflexive, transitive and
symmetric nondegenerate cluster. If we also putw0Rvi for all i = 1 � � �m, and
take the transitive closure, then we obtain a degenerate cluster followed by a non-
degenerate cluster. If somevk = w0 then we obtain a lone nondegenerate cluster.
In each case the frame is aK45-frame.

In either case, (i)–(iii) are satisfied giving a model graph and hence aK45-
model forX .

Proof for CyK45D: Similar to the proofs forCyK45 andCKD.
Proof for CyKB4: Suppose noCyKB4-tableau forX is closed. Construct a

CyKB4-saturatedw0 fromX as usual. If no:2P occurs inw0 thenhfw0g; ;i is
the desired model graph as (i)–(iii) are satisfied. Otherwise, create a successorvi
for each eventuality inw0 using(�) and(K4) giving the nodes of level one, put
w0 � vi and stop. Sincew0 contains at least one eventuality,w0 must be closed
with respect to(T3), hence2Q 2 w0 impliesQ 2 w0. We show that

(a) :2P 2 vi implies:2P 2 w0; and

336 RAJEEV GOŔE

(b) 2P 2 vi implies2P 2 w0

from which properties (i)–(iii) follow.

(a) Suppose:2P 2 vi and:2P 62 w0. The only super-formulae are of the
form2A hence:2P 2 Sf(w0) or:2P 2 :Sf(w0) whence2P 2 Sf(w0).
Sincew0 is subformula-complete we must have2P 2 w0 and hence2P 2
vi by (K4); contradiction.

(b) Suppose2P 2 vi.
(i) If 2P 2 Sf(w0) then2P 2 w0 or :2P 2 w0. The latter implies
2:2P 2 w0 by (5) which implies:2P 2 vi; contradiction. Hence
if 2P 2 vi and2P 2 Sf(w0) then2P 2 w0 whenceP 2 vi by (K4)
andP 2 w0 by (T3).

(ii) If 2P 62 Sf(w0) then2P = 2:2Q for some eventuality:2Q of vi.
Hence:2Q 2 vi. By (a) we then have:2Q 2 w0, which by (5) gives
2:2Q 2 w0. But2:2Q is2P , hence2P 2 Sf(w0); contradiction.
Hence case2P 62 Sf(w0) is impossible.

Now letR be the reflexive, transitive and symmetric closure of�. Note that
reflexivity forw0 comes from saturation with respect to(T3) and reflexivity forvi
comes from property (b) via(K4). Thus whenw0 contains at least one eventuality,
we get anS5-frame (showing thatK4B is ‘almost’S5).

Proof for CyS4: If no:2P occurs inw0 thenhfw0g; f(w0; w0)gi is the desired
model graph. Otherwise, letQ1; Q2; � � � ; Qk be all the formulae such that:2Qi 2
w0 and:Qi 62 w0. Create aQi-successorvi of level 1 for eachQi using the(�)
and(S4) rules, and continue in this way to obtain the nodes of level 2 and so on
with the following termination condition:

(*) if w0 � w1 � � � � � wi�1 � wi is a path in this construction andi � 1 is
the least index such that2A 2 wi implies2A 2 wi�1; then putwi � wi�1
giving a cycle on this path and stop!

First of all, this termination condition is satisfactory since(S4) ensures that
2A 2 wj implies2A 2 wj+1 so that2-formulae accumulate and we eventually
run out of new2-formulae sinceX�

CyS4 is finite.
Second, note thatCyS4 contains(sfcT) and hence eachwi is subformula-

complete. Since there are no building up rules, the only new formulae that may
appear by saturating with the(sfcT) rules are the negations of subformulae from
the predecessor. Therefore, eachwn+1 � Sf(fwn) whereew = Sf(w) [:Sf(w).

LetR be the reflexive and transitive closure of�. It is obvious that clusters of
R form a tree. To prove thathW0; Ri is a model graph forX we have to prove
(i)–(iii).

(i) Clearly (i) holds by construction;

TABLEAU METHODS FOR MODAL AND TEMPORAL LOGICS 337

(ii) Suppose:2P 2 wj wherewj is some arbitrary world of some arbitrary
path of our construction. If the termination condition was not applied towj ,
then either:P 2 wj or wj has aP -successor fulfilling:2P by (S4) and
so (ii) is satisfied. That is (ii) holds for any world to which the termination
condition was not applied.

If the termination condition was applied towj , then it could not have been
applied towj�1. Hence (ii) holds forwj�1. So all we have to show is that
:2P 2 wj�1 because, in this case, (ii) would then hold forwj from the fact
thatwjRwj�1 and the transitivity ofR.

Suppose to the contrary that:2P 62 wj�1. Since:2P 2 wj by sup-
position, we must have2P 2 Sf(wj�1) by the second point we noted
above. Then2P 2 wj�1 by (the subformula-completeness) Lemma 14,
and2P 2 wj by (S4) contradicting theCyS4-consistency ofwj since
:2P 2 wj . Hence (ii) also holds.

(iii) Suppose2P 2 wj : If (*) was not applied towj then (iii) holds as forCS4
by (T) since(S4) preserves2-formulae. If (*) was applied towj then (iii)
would follow from2P 2 wj�1 by (S4) and(T). But this is exactly what
(*) guarantees. Hence (iii) holds as well.

Proof for CyB: If no :2P occurs inw0 thenhfw0g; f(w0; w0)gi is the desired
model graph as (i)–(iii) are satisfied. Otherwise, letQ1; Q2; � � � ; Qm be all the
formulae such that:2Qi 2 w0 and:Qi 62 w0: Sincew0 is CyB-saturated,w0 is
subformula-complete, henceQi 2 w0 for eachQi. Create aQi-successor for each
Qi using(�) and(K) giving the nodes of level one. Repeat this procedure to give
the nodes of level two and so on. For any nodew in this construction lets(w) be the
number of formulae withP 2 w and:2P 2 w: Let t(w) = s(w) + mdeg(w):
To quote Rautenberg‘It is easily seen thatw � v ! t(v) < t(w); so thatW0

is finite.’, but as shown in[Goré, 1992] Rautenberg’s definition ofmdeg is not
sufficient. We accept Rautenberg’s claim for the moment and return to this issue
after completing the model construction.

LetR be the reflexive and symmetric closure of� so thathW0; Ri is aB-frame.
We have to show that (i)–(iii) hold. The only difficulty is to show symmetry: that
is,2P 2 wi+1 andwi � wi+1 impliesP 2 wi: So suppose thatwi � wi+1 and
2P 2 wi+1: We have to show thatP 2 wi: There are two cases:2P 2 Sf(wi) or
2P 62 Sf(wi):

Case 1: If2P 2 Sf(wi); then2P 2 wi or :2P 2 wi sincewi is subformula-
complete. If2P 2 wi thenP 2 wi by (T) and we are done. Otherwise, if:2P 2
wi andP 62 wi then:P 2 wi and2:2P 2 wi by (B) and so:2P 2 wi+1
contradicting the consistency ofwi+1 since2P 2 wi+1 by supposition. Hence
:2P 2 wi also implies thatP 2 wi:

Case 2: If2P 62 Sf(wi) then2P = 2:2Q for some:2Q 2 wi+1 and
:Q 2 wi+1: Hence:2Q 2 Sf(wi) or :2Q 2 :Sf(wi) whence2Q 2 Sf(wi).
By subformula-completeness we then have2Q 2 wi or:2Q 2 wi: If 2Q 2 wi;

338 RAJEEV GOŔE

thenQ 2 wi+1 contradicting theCyB-consistency ofwi+1 since:Q 2 wi+1:
Hence:2Q 2 wi. But thenP 2 wi sinceP is:2Q and we are done.

Now, we still have to show that this construction terminates. The crux of the
matter is to use a definition of a metricmdg say, which is like ourmdeg but
wheremdg(A^B) = mdg(A) +mdg(B) rather thanmaxfmdg(A);mdg(B)g
[Massacci, 1995]. Similarly, for a setX , we usemdg(X) = �A2Xmdg(A) rather
thanmaxfmdg(A) j A 2 Xg. Then, a rather tedious counting exercise, which
we omit for brevity, suffices to show that ifw � v thent(v) < t(w), which is
enough to show termination. We have retained our version ofmdeg because it is
useful for other purposes.

Proof for CyS5: If no:2P occurs inw0 thenhfw0g; f(w0; w0)gi is the desired
model graph as (i)–(iii) are satisfied. Otherwise, letQ1; Q2; � � � ; Qm be all the
formulae such that:2Qi 2 w0: Sincew0 is CyS5-saturated,2:2Qi 2 w0 for
eachQi by (5): Create aQi-successor for eachQi using(�) and(S4) giving the
nodesvi of level one, putw0 � vi; for eachi = 1; 2; � � � ;m and stop! LetR be
the reflexive, transitive and symmetric closure of� : By construction,hW0; Ri is
anS5-frame. We have to show that (i)–(iii) hold.

For anyk; with 1 � k � m; andw0 � vk; we show that:

(a) :2P 2 vk implies:2P 2 w0; and

(b) 2P 2 vk implies2P 2 w0

from which (i)–(iii) follow.
(a) Supposew0 � vk; :2P 2 vk and:2P 62 w0: Since:2P 2 Sf(w0);

andw0 is subformula-complete, we have2P 2 w0: But then, by(S4); 2P 2 vk;
contradicting theCyS5-consistency ofvk: Hence:2P 2 w0.

(b) Supposew0 � vk and2P 2 vk; then2P 2 Sf(w0) or2P 62 Sf(w0).
(b1) If 2P 2 Sf(w0) and2P 62 w0; then:2P 2 w0 sincew0 is subformula-

complete. Then2:2P 2 w0 by (5) and:2P 2 vk by (S4); contradicting the
CyS5-consistency ofvk: Hence, if2P 2 vk and2P 2 Sf(w0) then2P 2 w0:

(b2) If 2P 62 Sf(w0) then2P = 2:2Q for some:2Q 2 vk since this is the
only way that formulae from outsideSf(w0) can appear invk: By (a),:2Q 2 vk
implies:2Q 2 w0 which by(5) implies2:2Q 2 w0: Since2:2Q is2P; we
have2P 2 w0: But this is absurd since it implies that2P 2 Sf(w0) and our
supposition was that2P 62 Sf(w0): Hence the subcase (b2) cannot occur.

Proof for CyS50: For completeness supposeX is CS50-consistent and create a
CyS50-saturated supersetw0 with X � w0 � X�

CS50
as usual.

If no :2P occurs inw0 thenhfw0g; f(w0; w0)gi is the desired model graph.
Otherwise, letQ1; Q2; � � � ; Qm be all the formulae such that:2Qi 2 w0 and
:Qi 62 w0: Create aQi-successorvi of level 1 for eachQi using the(S5) rule and
stop!

Let W0 = fw0; v1; v2; � � � ; vmg: Consider any two nodesvi andvj of level 1
so thatw0 � vi andw0 � vj with i 6= j: We claim that:

(a) 2P 2 vi implies2P 2 w0 implies2P 2 vj ; and

TABLEAU METHODS FOR MODAL AND TEMPORAL LOGICS 339

(b) :2P 2 vi implies:2P 2 w0 implies there exists aw 2 W0 with :P 2 w:
Proof of (a): Suppose2P 2 vi; thenP 2 vi by (T): Also, 2P 2 Sf(w0)

as there are no building up rules, hence2P 2 w0 or :2P 2 w0 by (sfcT): If
:2P 2 w0 then either:P 2 vi or :2P 2 vi by (S5): The first contradicts the
CyS50-consistency ofvi sinceP 2 vi and so does the second since2P 2 vi:
Hence2P 2 w0: And then2P 2 vj by (S5) andP 2 vj by (T).

Proof of (b): Suppose:2P 2 vi. Then as there are no building up rules,
:2P 2 Sf(w0):Hence2P 2 w0 or:2P 2 w0 sincew0 is subformula-complete.
If 2P 2 w0 then2P 2 vi by (S5); contradicting theCyS50-consistency ofvi
since:2P 2 vi by supposition. Hence:2P 2 w0: And then either:P 2 w0, or
there is somevk such that:P 2 vk by (S5): That is, thew we seek is eitherw0

itself, or one of the nodes of level 1.
PuttingR equal to the reflexive, symmetric and transitive closure of� gives an

S5-model graph since (i)–(iii) follow from (a) and (b). �

Bibliographic Remarks and Discussion

The cut-free calculiCK, CT, CD, CD0, CK4, CK4D andCS4 can all be traced
back to Fitting[1973] via Fitting [1983] although our presentation is based on the
work of Hintikka [1955] and Rautenberg[1983]. The systemCK4D is an obvi-
ous extension of Rautenberg’s systemCD, andCD0 is lifted straight from Fitting
[1983]. The advantage ofCD0 is that it has the subformula property whereasCD
does not. Clearly, the(K4) rule can be extended to handle seriality as done in the
(KD) rule to give a(K4D) rule, but we omit details. The tableau systemsCK45
andCK45D are based on the work of Shvarts[1989] (also known as Schwarz),
while CK4B and the(T3) rule come from the work of Amerbauer[1993].

Some of the desired properties ofR can be obtained in two different ways.
For example, Rautenberg encodes the seriality ofD-frames by thestatic(D) rule
which adds an eventuality3P for every formula of the form2P . The transitional
(K) rule then fulfills that eventuality. On the other hand Shvarts[1989] and Fitting
[1983] use thetransitional rule (KD). Similarly, the(S5) transitional rule due
to Fitting builds in the effect of Rautenberg’sstaticrule (5) by carrying:2P and
:2Y from the numerator into the denominator.

Rautenberg[1983] does not explicitly distinguish transitional and static modal
rules. Hence his rules for(T); (D); (B); (sfc) and(sfcT) do not carry all the
numerator formulae into their denominators. For example, Rautenberg’s(T) rule
is shown below left whereas ours is shown below right:

X ;2P

X ;P
(T)

X ;2P

X ;2P ;P

Thus contraction is implicit in his systems and as we saw in Example 8 (page 324),
contraction is necessary for some modal systems.

340 RAJEEV GOŔE

TheCyS4 system is based on ideas of Hanson[1966] where he gives Kripke-
like tableau systems forS4 andS5 using a form of(sfcT) as early as 1966. The
tableau systemCyS4 is not exactly Hanson’s system but the ideas are his. The
advantage of adding(sfcT) is that the termination condition in the completeness
proof is much easier to check than the one forCS4 where we have to look at
all predecessors in order to detect a cycle. However, the overheads associated
with any sort of cut rule are significant, and a more detailed analysis shows that
CyS4 performs much useless work. Hanson also suggests a tableau system forS5

along these lines, but in it he uses a rule which explicitly adds a formula to the
parent node to obtain symmetry. This is forbidden for our tableau systems since
we cannot return to previous nodes.

The tableau systems of Heuerdinget al. [1996] are further refinements of our
tableau systems which allow for a more efficient check for cyclic branches. How-
ever, they are nonstandard in that the denominators and numerators carry extra sets
to store the necessary information.

Notice that the effects of(sfcT) onw0 whenR is to be transitive and there are
no building up rules like(5) is to flush out all the eventualities that could possibly
appear in any successor. That is, if:2P is going to appear in a successor, it must
be in Sf(w0): But then it must be inw0 since otherwise by(sfcT); we would
have2P 2 w0 contradicting the appearance of:2P in any consistent successor.
Hence the number of eventualities never increases as all the eventualities that will
ever appear are already inw0. Indeed this fact may actually make things worse
since we will have to fulfill:2P at the first level of the model construction as
well as at deeper levels where:2P reappears. The refinements of Heuerdinget
al. [1996] may be useful in such cases since one of their ideas addresses exactly
this point.

The idea behind(sfc) and(sfcT) is to put extra information into a node before
leaving it for good. That is, once we leave a node in our tableau procedure, we
can never return to it. Also, the transitional rules usually lose information in the
transition from the numerator to the denominator. The(sfc) and(sfcT) rules are
used to make up for this ‘destructive’ aspect of our transitional rules.

The completeness proofs in this section go through unchanged[Massacci, 1995]
if we replace the(sfc) and (sfcT) rules by the ‘modal cut’ rule(mc) shown
below:

(mc)
X

2P ;X j :2P ;X
where2P 2 Sf(X)

Also, many of the rule combinations can be further refined. For example, the(B)
rule subsumes the modal aspects of the(sfcT) rule so that only the non-modal
part is necessary inCyB; see also[Amerbauer, 1993] for further refinements.

The tableau systemsCyB andCyS5 are due to Rautenberg whileCyS50, CyK45
andCyK45D are an amalgamation of ideas of Fitting, Hanson and Rautenberg.
Note that in the latter, we add(sfc), not (sfcT) sinceK45-frames andK45-
frames are not reflexive. The advantage over the cut-free counterpartsCK45 and

TABLEAU METHODS FOR MODAL AND TEMPORAL LOGICS 341

CK45D is that the completeness proofs, and hence the satisfiability tests based
upon them, are much simpler. Note thatCyS5 does not have the subformula prop-
erty, butCyS50 does.

Fitting [1983, page 201] gives tableau calculi for the symmetric logicsKB,
KDB,KTB, andS5 using asemi-analytic cutrule(sac), which he attributes to
Osamu Sonabe. The(sac) rule is allowed to cut on subformulae of formulae that
are in the numerator, and also on superformulae obtained by repeatedly prefixing
modalities2, :2, 3 and:3, to these subformulae. Since the superformulae are
not bounded, as they are in Rautenberg’s systems, the semi-analytic cut rule cannot
give a decision procedure.

Fitting’s semi-analytic system forS5 is essentiallyCT+ (S5) + (sac). Fitting
[1983, page 226] replaces the semi-analytic cut rule with a (static) building up rule
of the form

(�)
X ;P

X ;3P ;P

and proves that his systemCS5� = CT + (S5) + (�) is sound and (weakly)
complete with respect toS5-frames. But note that the(�) rule is not ‘once off’
since it can lead to an infinite chainA 2 w;3A 2 w;33A 2 w; � � � so this
system cannot give a decision procedure forS5 either. That is, we have merely
traded one non-analytic rule for another.

Fitting then proves the curious fact that a single formulaA is anS5-theorem
if and only if aCS5�-tableau forf:Ag closes, and furthermore, that the(�) rule
needs to be used onlyonceat the beginning of theCS5�-tableau to lift:A to
:2A [Fitting, 1983, page 229]. That is, the systemCS5�� without the (�) rule
is (weakly) complete forS5 in the sense thatA is anS5-theorem if and only if
a CS5��-tableau forf:2Ag closes. Fitting gives a completeness proof in terms
of maximal consistent sets, but a constructive completeness for this system is also
easy as given below.

Completeness Proof forCS5��: Suppose noCS5��-tableau for the single-
ton setf:2Ag closes. Construct someCS5��-saturated setw0 from :2A by
applying all the non-structural static rules; obtainingw0 = f:2Ag! Now con-
struct a tree of�-successors as in theCS4 completeness proof except that we use
the transitional rule(S5) instead of(S4) to create�-successors. LetR be the
reflexive and transitive closure of� to obtain a finite tree of finite clusters as in
theCS4 case. Consider some final clusterC of this tree. SinceC is final, any
eventuality in any of its sets must be fulfilled by some set ofC itself, as otherwise,
C could not be final. But note that the(S5) rule carriesall its eventualities from
its numerator into its denominator. Thus, in this case,:2A is in every member
of C, and hence some setw1 2 C hasf:2A;:Ag � w1. But afinal cluster is
also symmetric, henceC is anS5-frame and hence anS5-model forf:A;:2Ag
atw1 under the usual valuation#(p) = fw : p 2 wg. This completes the unusual
proof for CS5�� that: if there is no closedCS5��-tableau forf:2Ag then:A
isS5-satisfiable. That is, ifj=S5 A then `CS5��2A.

342 RAJEEV GOŔE

(R)
X ;:2P

X ;:2P ;:P j X ;:2P ;2:2P ;P

(S4F)
U ;2X ;:2P ;:2Y

U ;2X ;:2P ;:2Y ;2:2P j 2X ;:2P ;:2Y ;:P

(S4:2)
X ;:2P

X ;:2P ;2:2P j X ;:2P ;2(:2:2P)�
:2P not starred

Figure 8. Tableau rules forS4R, S4F andS4:2

For the logics with a symmetricR we seem to need analytic cut, either as(sfc)
or as(sfcT). The subformula property can be regained for some logics by chang-
ing the transitional rules to carry more information from the numerator to the de-
nominator. But note that a building up rule seems essential forCB, so not all the
systems are amenable to this trick.

4.15 Modal Logics of Knowledge and Belief

In this section we give a brief overview of tableau systems for the modal logics
S4R, S4F andS4:2. These logics, together with the logicsK45 andK45D,
have proved useful as nonmonotonic modal logics where the formula2A is read
as ‘A is believed’ or as ‘A is known’[Moore, 1985; Schwarz, 1992; Faginet al.,
1995; Schwarz and Truszczynski, 1992; Mareket al., 1991]. In these logics, the
reflexivity axiom,2A ! A; is deliberately omitted on the grounds that believing
A should not imply thatA is true. The logicK45D is another candidate for
such logics of belief because its extra axiom,2A ! 3A; which can be written
as2A ! :2:A; encodes the intuition that ‘ifA is believed then:A is not
believed’.

Figure 8 shows the tableau rules we require. The tableau calculi we consider
are shown below:

CL Static
Rules

Transitional
Rules

X�
CL

CS4R CPC, (T), (R) (S4) Sf:Sf2 eX
CyS4:2 CPC, (sfcT), (T), (S4:2) (S4) Sf:Sf2X�

CS4R

CyS4F CPC, (sfcT), (T), (S4:2) (S4F); (S4) Sf:Sf2X�
CS4R

TABLEAU METHODS FOR MODAL AND TEMPORAL LOGICS 343

The (S4F) rule is odd in that its left denominator is static whilst its right de-
nominator is transitional. The(S4:2) rule is the only potentially dangerous rule
since its denominator contains a formula to which the rule can be applied in an end-
less fashion. To forbid this the new formula is marked with a star and the(S4:2)
rule is restricted to apply only to non-starred formulae. All other rules must treat
starred formula as if they were non-starred.

The soundness and completeness of these calculi is proved in detail by Gor´e
[Goré, 1991]. Goré actually proves soundness and completeness with respect to a
class of finite frames, each of which is anL-frame as defined here. Consequently,
these logics are also characterised by the classes of finite-L-frames shown in Fig-
ure 13. Note that the values ofX�

CL are different from those in[Goré, 1991] but it
is easy to see that the new ones are the correct ones due to the effect of(sfcT).

Tableau systems for the logicsK4:2 andK4:2G can be found in Amerbauer’s
dissertation[Amerbauer, 1993].

EXAMPLE 16. The formula32p ! 23p is an instance of the axiom2, and
hence is a theorem ofS4:2. The following closedCyS4:2-tableau for its negation
(32p^:23p) which in primitive notation is(:2:2p)^ (:2:2:p) illustrates
the use of starred formulae.

(:2:2p) ^ (:2:2:p) (^)

:2:2p;:2:2:p (S4:2)

(S4) :2:2p;:2:2:p;2:2:2p

(::) ::2:p;2:2:2p

(T) 2:p;2:2:2p

(S4) 2:p;:2:2p;2:2:2p

(::) 2:p;::2p;2:2:2p

(T) 2:p;2p;2:2:2p

(T) :p;2:p;2p;2:2:2p

(?) :p;2:p; p;2p;2:2:2p

?

!
!
!! a

a
aa

:2:2p;:2:2:p;2(:2:2:2p)� (S4)

::2p;2(:2:2:2p)� (::)

2p;2(:2:2:2p)� (T)

2p; (:2:2:2p)�;2(:2:2:2p)� (S4)

2p;::2:2p;2(:2:2:2p)� (::)

2p;2:2p;2(:2:2:2p)� (T)

2p;:2p;2:2p;2(:2:2:2p)� (S4)

2p;:p;2:2p;2(:2:2:2p)� (T)

p;2p;:p;2:2p;2(:2:2:2p)� (?)

?

344 RAJEEV GOŔE

(G)
2X ;:2P

X ;2X ;:P ;2P
(Grz)

2X ;:2P
X ;2X ;:P ;2(P ! 2P)

Figure 9. Tableau Rules for logics of provability

4.16 Modal Logics with Provability Interpretations

In this section we give tableau calculi for the modal logics that have important
readings as logics of ‘provability’ where2A is read as ‘it is provable in Peano
Arithmetic thatA holds’; see Fitting[1983, page 241] and Boolos[1979]. These
systems are obtained either by adding the axiomG:2(2A ! A) ! 2A, named
after Gödel-Löb and sometimes calledGL, or adding the axiomGrz:2(2(A !
2A)! A)! A, named after Grzegorczyk, or adding the axiom4 and the axiom
Go:2(2(A! 2A)! A)! 2A, toK.

It is known that bothG andGrz imply the transitivity axiom4 when they are
respectively added toK [van Benthem and Blok, 1978]. But the logicK4Go

whose frames share some of the properties ofG-frames andGrz-frames, explic-
itly contains4 as an axiom. It is also known thatGrz implies reflexivity.

Once again, all the tableau calculi contain the rules ofCPC and one or more
logical rules from Figure 9 on page 344 as shown below:

CL Static Rules Transitional Rules X�
CL

CG CPC (G) eX
CK4Go CPC (Grz) Sf2(eX ! 2 eX)

CGrz CPC, (T) (Grz) Sf2(eX ! 2 eX)

The semantic and axiomatic intuitions behind these rules are more enlightening
than any technical proof (of soundness) so we present these as well.

Intuitions for (G) : We know that axiomatically formulated logicG is charac-
terised byG-frames. Therefore, axiomG must be valid on anyG-frame; hence
true in any world of anyG-model. The axiomG is

2(2A! A)! 2A:

Its contrapositive is
:2A! :(2(2A ! A))

which is the same as
:2A! 3(2A ^ :A):

Thus, if the numerator represents a worldw where:2P is true, then there exists
another worldw0 where2P is true andP is false, andw0 is reachable fromw.

TABLEAU METHODS FOR MODAL AND TEMPORAL LOGICS 345

The denominator represents this world.
Intuitions for (Grz) : The axiomGrz is

2(2(A! 2A)! A)! A:

It is known that4 andT are theorems ofGrz [Hughes and Cresswell, 1984, page
111], henceS4 � Grz. Segerberg[1971, page 107], and more recently Gor´e et al
[1995], show thatGrz = S4Grz = S4Go whereGo is

2(2(A! 2A)! A)! 2A

which gives the following (contraposed formulae) as theorems ofGrz:

:2A ! :2(2(A ! 2A)! A)

:2A ! 3(2(A! 2A) ^ :A):

Thus, if :2P is true at the numerator, then there exists some world where
2(P ! 2P)^:P eventually becomes true. The denominator of(Grz) represents
this world.

THEOREM 17 (Soundness).The calculiCG, CGrz andCK4Go are sound with
respect toG-frames,Grz-frames andK4Go-frames respectively.

Proof Outline: For each rule inCL we have to show that if the numerator of
the rule isL-satisfiable then so is at least one of the denominators.

Proof of CG: SupposeM = hW;R; V i is aG-model,w0 2 W andw0 j=
2X ;:2P: Thus there exists somew1 2 W with w0Rw1 andw1 j= X ;2X ;:P
by the transitivity ofR: SinceR is irreflexive,w0 6= w1: Supposew1 6j= 2P: Then
w1 j= :2P and there exists somew2 2 W with w1Rw2 andw2 j= X ;2X ;:P
by transitivity ofR: SinceR is irreflexive,w1 6= w2: SinceR is transitive,w2 =
w0 would givew1Rw0Rw1 implying w1Rw1 and contradicting the irreflexivity
of R; hencew0 6= w2: Supposew2 6j= 2P then: : : Continuing in this way, it is
possible to obtain an infinite path of distinct worlds inM contradicting theG-
frame condition onM. Thus there must exist somewi 2 W with w0Rwi and
wi j= X ;2X ;:P ;2P and we are done.

Proof of (T) for CGrz: The (T) rule is sound forGrz-frames since every
Grz-frame is reflexive.

Proof of (Grz) for CK4Go: SupposeM = hW;R; V i is aK4Go-model,
thenR is transitive, there are no proper clusters, and there are no proper1-R-
chains. Supposew0 2 W is such thatw0 j= 2X ;:2P . We have to show that
there exists somewn 2 W with w0Rwn andwn j= X ;2X ;:P ;2(P ! 2P).
SinceR is transitive,w0 j= 2X means that8w 2W;w0Rw impliesw j= X ;2X .
Thus our task is reduced to showing that there exists somewn 2 W such that
w0Rwn andwn j= :P ;2(P ! 2P): Suppose for a contradiction that no such

346 RAJEEV GOŔE

world exists inW . That is,

(a) 8w 2 W;w0Rw impliesw 6j= :P ;2(P ! 2P).

Sincew0 j= :2P , there exists somew1 2 W with w0Rw1 andw1 j= :P . By
(a),w1 6j= 2(P ! 2P) and hencew1 j= :2(P ! 2P): Thus there exists some
w2 2 W with w1Rw2 andw2 j= :(P ! 2P); that is,w2 j= P ^ :2P . Since
w1 j= :P , w1 6= w2 and sinceK4Go-models cannot contain proper clusters,
w0 6= w2. Sincew2 j= :2P there exists somew3 2 W with w3 j= :P . Since
w2 j= P , w3 6= w2. Andw3 6= w0 andw3 6= w1 as either would give a proper
cluster. By (a),w3 6j= 2(P ! 2P) and hencew3 j= :2(P ! 2P). Continuing
in this way, we either obtain an infinite path of distinct points, giving a proper
1-R-chain, or we obtain a cycle, giving a proper cluster. Both are forbidden in
K4Go-frames. Hence (a) cannot hold and9w 2W;w0Rw andw j= :P ;2(P !
2P): That is, the desiredwn exists.

Proof of (Grz) for CGrz : EveryGrz-frame is aK4Go-frame, hence the
proof above suffices. �

As we saw in Subsection 4.11, proving completeness boils down to proving the
following: if X is a finite set of formulae and noCL-tableau forX is closed then
there is anL-model forX on anL-framehW;Ri.
LEMMA 18. If there is a closedCL-tableau forX then there is a closedCL-
tableau forX with all nodes in the finite setX�

CL.

Proof. Obvious from the fact that all rules forCL operate with subsets ofX�
CL

only. �

LEMMA 19. For eachCL-consistentX there is an effective procedure to con-
struct some finiteCL-saturatedXs withX � Xs � X�

CL.

THEOREM 20 (Completeness).If X is a finite set of formulae andX is CL-
consistent then there is anL-model forX on a finiteL-frame.

As usual we construct someCL-saturatedw0 fromX with X � w0 � X�
CL.

Proof for CG: If no :2P occurs inw0 thenhfw0g; ;i is the desired model
graph as (i)–(iii) are satisfied. Otherwise, letQ1; Q2; � � � ; Qm be all the formulae
such that:2Qi 2 w0. Create aCG-saturatedQi-successor for eachQi using(�)
and(G) giving the nodesvi of level one. Repeating this construction on the nodes
of level one gives the nodes of level two, and so on for other levels. Consider
any sequencewi � wi+1 � wi+2 � � �. Sincewi has a successor, there is some
:2Q 2 wi and2Q 2 wi+j for all j � 1 by (G). Thuswi 6= wi+j for anyj � 1
and each such sequence must terminate sinceX�

CG is finite. LetR be the transitive
closure of�; that is putwRw0 if w � w0 and putwRv if w � w0 � v. The
resulting tree is a model graphhW0; Ri for X which is also aG-frame.

Proof for CGrz: If no :2P occurs inw0 thenhfw0g; f(w0; w0)gi is the de-
sired model graph as (i)–(iii) are satisfied. Otherwise, letQ1; Q2; � � � ; Qm be all

TABLEAU METHODS FOR MODAL AND TEMPORAL LOGICS 347

the formulae such that:2Qi 2 w0 and:Qi 62 w0. Create aCGrz-saturatedQi-
successor for eachQi using(�) and(Grz) giving the nodesvi of level one, and
so on for other levels. Consider any sequencewi � wi+1 � wi+2 � � �. Sincewi
has a successor, there is someQ such that:2Q 2 wi, :Q 62 wi, and by(Grz),
2(Q! 2Q) 2 wi+j for all j � 1. Supposewi+j = wi, then2(Q! 2Q) 2 wi
and henceQ ! 2Q 2 wi by (T). SinceQ ! 2Q is just abbreviation for
:(Q ^ :2Q), we know that:Q 2 wi or ::2Q 2 wi. We created a successor
wi+1 for wi precisely because:Q 62 wi and so the first case is impossible. And
if ::2Q 2 wi then2Q 2 wi by (:), contradicting theGrz-consistency ofwi
since:2Q 2 wi by supposition. Thus each such sequence must terminate (with-
out cycles). LetR be the reflexive and transitive closure of� to obtain a model
graphhW0; Ri for X which is also aGrz-frame.

Proof for CK4Go: If no :2P occurs inw0 thenhfw0g; f;gi is the desired
model graph as (i)–(iii) are satisfied. Otherwise, letQ1; Q2; � � � ; Qm be all the
formulae such that:2Qi 2 w0. A CK4Go-saturated setv is reflexive iff2A 2 v
impliesA 2 v. If v is non-reflexive then there exists some2B 2 v butB 62 v.

If w0 is reflexive then create aCK4Go-saturatedQi-successor for each:2Qi

with :Qi 62 w0, otherwise ifw0 is non-reflexive then create aCK4Go-saturated
Qi-successor for each:2Qi, 1 � i � m. This gives the nodes of level one.
Continue creating successors in this fashion for these nodes using(�) and(Grz).

Consider any sequencewi � wi+1 � wi+2 � � �. Sincewi has a successor, there
is some:2Q 2 wi that gives rise towi+1. Also,2(Q ! 2Q) 2 wi+j for all
j � 1.

If wi is reflexive then:Q 62 wi, and yet:Q 2 wi+1 by (Grz); hencewi 6=
wi+1. Supposewi+j = wi, j � 2. Thatj � 2 is crucial! Then2(Q ! 2Q) 2
wi andQ ! 2Q 2 wi by (Grz). SinceQ ! 2Q is just abbreviation for
:(Q ^ :2Q), we know that:Q 2 wi or ::2Q 2 wi. Sincewi is reflexive,
we created a successorwi+1 for wi precisely because:Q 62 wi and so the first
case is impossible. And if::2Q 2 wi then2Q 2 wi by (:), contradicting the
K4Go-consistency ofwi since:2Q 2 wi by supposition.

If wi is non-reflexive then there is some2B 2 wi, with B 62 wi, and yet both
2B andB are inwi+j by (Grz), for all j � 1; hencewi 6= wi+j , j � 1.

Thus each such sequence must terminate (without cycles). LetR be the tran-
sitive closure of� and also putwRw if w is reflexive to obtain a model graph
hW0; Ri for X which is also aK4Go-frame.

As Amerbauer[1993] points out, this means thatK4Go is characterised by
finite transitive trees of non-proper clusters refuting the conjecture of Gor´e [1992]
thatK4Go is characterised by finite transitive trees of degenerate non-final clus-
ters and simple final clusters.

Bibliographic Remarks and Related Systems

The tableau systemCG is from Fitting[1983] who attributes it to[Boolos, 1979],
while CGrz is from Rautenberg[1983]. Rautenberg gives a hint on how to ex-

348 RAJEEV GOŔE

tend these to handleCK4Go but Goré [1992] is unable to give an adequate sys-
tem forCK4Go, leaving it as further work. The givenCK4Go is due to Martin
Amerbauer[1993] who following suggestions of Rautenberg and Gor´e also gives
systems forKG:2 andKGL (which Amerbauer callsK4:3G).

Provability logics have also been studied using Gentzen systems, and appropri-
ate cut-elimination proofs have been given by Avron[1984], Bellin [1985], Borga
[1983], Borga and Gentilini[1986], Sambin and Valentini[1980; 1983; 1982], and
Valentini [1983; 1986].

4.17 Monomodal Temporal Logics

In this section, which is based heavily on[Goré, 1994], we give tableau systems
for normal modal logics with natural temporal interpretations where2A is read
as ‘A is true always in the future’ and3A is read as ‘A is true some time in the
future’. All logics are ‘monomodal’ in that the reverse analogues of these oper-
ators, namely ‘always in the past’ and ‘some time in the past’, are not available.
That is, the reachability relationR is taken to model the flow of time in a forward
direction, and each possible world represents a point in this flow with some point
deemed to be ‘now’. We are allowed to look forwards but not backwards. In all
cases time is taken to be transitive and the variations between the logics comes
about depending on whether we view time as linear or branching; as dense or dis-
crete; and as reflexive or non-reflexive (which is not the same as irreflexive). We
explain these notions below.

Reflexive Monomodal Temporal Logics

The logicsS4:3, S4:3:1 andS4Dbr are all normal extensions ofS4 and are ax-
iomatised by taking the appropriate formulae from Figure 1 as axiom schemas.
Their respective axiomatisations are:S4 is KT4; S4:3 is KT43; S4:3:1 is
KT43Dum; andS4Dbr isKT4Dbr.

The Diodorean modal logicsS4:3 andS4:3:1 have received much attention in
the literature because of their interpretation as logics of dense and discretelinear
time [Bull, 1965]. That is, it can be shown thathI;�i j= A iff `S4:3A where
I is either the set of real numbers or the set of rational numbers and� is the
usual (reflexive and transitive) ordering on numbers[Goldblatt, 1987, page57].
Consequently, between any two points there is always a third andS4:3 is said to
model linear densetime. It can be shown thath!;�i j= A iff `S4:3:1A where
! is the set of natural numbers[Goldblatt, 1987]. Hence, between any two points
there is always a finite number (possibly none) of other points andS4:3:1 is said
to modellinear discrete time. The formal correspondence betweenhI;�i and
S4:3-frames, and betweenh!;�i andS4:3:1-frames can be obtained by using
a technique known as bulldozing and defining an appropriate mapping called a
p-morphism[Goldblatt, 1987; Hughes and Cresswell, 1984].

TABLEAU METHODS FOR MODAL AND TEMPORAL LOGICS 349

The logicsS4 andS4Dbr can be given interpretations as logics of dense and
discretebranchingtime. That is, it can be shown thatS4 is also characterised
by the class of all reflexive transitive (and possibly infinite) trees[Hughes and
Cresswell, 1984, page 120]. That is, by bulldozing each proper cluster of anS4-
frame we can obtain an infinite dense sequence so thatS4 is the logic that models
branching dense time. The axiomatic systemS4Dbr is proposed by Zeman[1973,
page 249] as the temporal logic for branching discrete time, but Zeman and Gor´e
[1994] call this logicS4:14.

Therefore, the logicsS4, S4:3, S4:3:1 andS4Dbr cover the four possible
combinations of discreteness and density paired with linearity and branching.

Figure 10 on page 350 shows the rules we need to add toCS4 in order to ob-
tain tableau systems forS4:3, S4:3:1 andS4Dbr. The tableau calculiCS4:3,
CS4:3:1 andCS4Dbr are respectively the calculi for the logicsS4:3, S4:3:1
andS4Dbr as shown below:

CL Static Rules Transitional Rules X�
CL

CS4:3 CPC, (T) (S4:3) eX
CS4:3:1 CPC, (T) (S4); (S4:3:1) Sf(2(eX ! 2 eX);2 eX)

CS4Dbr CPC, (T) (S4); (S4Dbr) Sf(2(eX ! 2 eX);2 eX)

Note thatCS4:3 does not contain the rule(S4) and thatCS4:3:1 does not
contain the rule(S4:3) but does contain the rule(S4): Also note that the(S4:3:1)
rule contains some static denominators and some transitional denominators.

LEMMA 21. If there is a closedCL tableau for the finite setX then there is a
closedCL tableau forX with all nodes in the finite setX�

CL.

Proof. Obvious from the fact that all rules forCL operate with subsets ofX�
CL

only. �

LEMMA 22. For eachCL-consistentX there is an effective procedure to con-
struct some finiteCL-saturatedXs withX � Xs � X�

CL:

Proof. As on page 318. �

THEOREM 23. TheCL rules are sound with respect toL-frames.

Proof. We omit details since the proofs can be found in[Goré, 1994], although
note that there, the definition ofL-frames is slightly different.

The intuition behind the(S4:3) rule is based on a consequence of the charac-
teristicS4:3 axiom3. Adding 3 to S4 gives a weakly-connectedR for S4:3 so
that eventualities can be weakly-ordered. If there arek eventualities, one of them
must be fulfilled first. The(S4:3) rule can be seen as a disjunctive choice between
which one of thek eventualities is fulfilled first and an appropriate ‘jump’ to the
corresponding world.

350 RAJEEV GOŔE

(S4Dbr)
2X ;:2P

2X ;2:2P j 2X ;:P ;2(P ! 2P)

(S4:3)
2X ;:2fP1; � � � ; Pkg

2X ;:2Y1;:P1 j � � � j 2X ;:2Yk;:Pk

whereY = fP1; � � � ; Pkg andYi = Y n fPig

(S4:3:1)
U ;2X ;:2fQ1; � � � ; Qkg

S1 j S2 j � � � j Sk j Sk+1 j Sk+2 j � � � j S2k

where

Y = fQ1; � � � ; Qkg;

Yj = Y n fQjg;

Sj = U ;2X ;:2Yj ;2:2Qj

Sk+j = 2X ;:Qj ;2(Qj ! 2Qj);:2Yj

for 1 � j � k

Figure 10. Tableau rules(S4Dbr), (S4:3) and(S4:3:1)

TABLEAU METHODS FOR MODAL AND TEMPORAL LOGICS 351

The intuition behind the(S4:3:1) rule is that each eventuality is either ‘eternal’,
because it is fulfilled an infinite number of times in the sequence of worlds that
constitute anS4:3:1-model, or ‘non-eternal’. If the eventuality:2P is ‘eternal’
then it can be stashed away (statically) as2:2P and ignored until ‘later’. Other-
wise it must be dealt with immediately by fulfilling it via a transition. But there
may be many such eventualities and sinceR is weakly-connected, they must be
ordered.

THEOREM 24. If X is a finite set of formulae andX is CL-consistent then there
is anL-model forX on a finiteL-framehW;Ri.

Again we omit details since they can be found in[Goré, 1994] but note that
there we usedS4:14 for S4Dbr. However, the proof forCS4:3 is reproduced
below to give an idea of how to handle linearity.

Proof sketch for CS4:3: The completeness proof ofCS4:3 is similar to the
completeness proof forCS4. The differences are that onlyonesequence is con-
structed, and that in doing so, the(S4:3) rule is used instead of the(S4) rule. Note
that the(S4:3) rule guarantees only thatat least oneeventuality gives aCS4:3-
consistent successor whereas(S4) guarantees thateveryeventuality gives aCS4-
consistent successor. And this crucial difference is why thinning seems essential.
The basic idea is to follow one sequence, always attempting to choose a successor
new to the sequence. Sooner or later, no such successor will be possible giving a
sequenceS = w0 � w1 � w2 � � � � � wm � wm+1 � � � � � wn�1 � wm
containing a cycleC = wm � wm+1 � � � � � wn�1 � wm which we write
pictorially as

S = w0 � w1 � w2 � � � � � wm � wm+1 � � � � wn�1:

The cycleC fulfills at least one of the eventualities inwn�1; namely the:2Q
that gave the duplicatedQ-successorwm of wn�1: But C may not fulfill all the
eventualities inwn�1:

Let Y = fP j:2P 2 wn�1 and:P 62 wj ; m � j � n � 1g; so that:2Y is
the set of eventualities inwn�1 that remain unfulfilled byC: Letw0 = fP j2P 2
wn�1g: Since(2w0;:2Y) � wn�1 is CS4:3-consistent by(�); so is at leastone
of

Xj = 2w0 [f:Pjg [:2Yj ; for j = 1; � � � ; k
by (S4:3): As before, choose theCS4:3-consistentXi that gives aS4:3-saturated
Pi-successor forwn�1 which is new toS to sprout a continuation of the sequence,
thus escaping out of the cycle. If no such new successor is possible then choose
the successorwm0 that appears earliest inS: This successormustprecedewm; as
otherwise,C would already fulfill the eventuality that gives this successor. That
is, we can extendC by puttingwn�1 � wm0 : RecomputingY usingm0 instead
of m must decrease the size ofY sincewn�1 has remained fixed. Repeating this
procedure will eventually lead either to an emptyY or to a new successor. In the
latter case we carry on the construction ofS: In the former case we form a final

352 RAJEEV GOŔE

cycle that fulfills all the eventualities ofwn�1 and stop.
Sooner or later we must run out of new successors sinceX�

CS4:3 is finite and so
only the former case is available to us. LetR be the reflexive and transitive closure
of � so that the overlapping clusters of� become maximal disjoint clusters ofR:
It should be clear thathW;Ri is a linear order of maximal, disjoint clusters that
satisfies properties (i)–(iii), and hence thathW;Ri is a model-graph forX:

Note that thinning seems essential. That is, in computingY , wehaveto exclude
the eventualities that are already fulfilled by the current cycleC in order to escape
out of the cycle that they cause. We return to this point later. �

Non-reflexive Monomodal Temporal Logics

The logicsS4:3 andS4:3:1 respectively have counterparts calledK4DLX and
K4DLZ [Goldblatt, 1987] that omit reflexivity where the new axiom schemata
areD, L,X, Z, andZbr; see Figure 1 on page 299.

It is known thathI; <i j= A iff `K4DLXA andh!;<i j= A iff `K4DLZA
whereI is either the set of real numbers or the set of rational numbers and! is the
set of natural numbers[Goldblatt, 1987]. Hence these logics model transitive non-
reflexive linear dense, and transitive non-reflexive linear discrete time respectively.
I am not aware of a proof of completeness for the non-reflexive counterpart of
S4Dbr but it seems reasonable to conjecture thatK4DZbr is this counterpart.

The simplest way to handle the seriality axiomD is to use the static(D) rule of
Rautenberg even though it breaks the subformula property. But(D) and(K4Zbr)
can conspire to give an infinite sequence of building up operations,1 so we use the
transitional(KD4) and(KD4L) rules instead; see Figure 11.

Another minor complication is the need for an explicit tableau rule to capture
density (no consecutive degenerate clusters, see[Goldblatt, 1987]) for K4DLX
but this is handled by the transitional rule(K4DX), which is sound forK4DLX-
frames.

The non-reflexive analogue of the(S4:3) rule becomes very clumsy since it is
based on theK4LX-theorem:

3P ^3Q! 3(P ^3Q) _3(Q ^3P) _3(P _Q)

and it is easier to use the rule(K4L) which makes explicit use of subsets. The
(K4L) rule is similar to a rule given by Valentini[1986]. By using rules from
Figure 11 it is possible to obtain cut-free tableau calculi possessing the analytic
superformula property for these logics as:

1I missed this aspect in[Goré, 1994]

TABLEAU METHODS FOR MODAL AND TEMPORAL LOGICS 353

(K4D)
2X ;:2P
X ;2X ;:P wheref:2P;:Pg may be empty

(K4DX)
2X ;:2Y

X ;2X ;:2Y where:2Y may be empty

(K4Zbr)
2X ;:2P

X ;2X ;2:2P j X ;2X ;:P ;2P

(K4L)
2X ;:2fP1; � � � ; Pkg
S1 j S2 j � � � j Sm

wherem = 2k � 1; 1 � i � m;

Y 1; � � � ; Y m is an enumeration of the non-empty subsets ofY ;

Y i = Y n Y i

Si = (X ;2X ;:2Y i;:Y i)

(K4LZ)
U ;2X ;:2fQ1; � � � ; Qkg

S1 j S2 j � � � j Sk j Sk+1 j Sk+2 j � � � j Sk+m

where :

Y = fQ1; � � � ; Qkg;m = 2k � 1;

Y 1; � � � ; Y m is an enumeration of the non-empty subsets ofY ;

Yj = Y n fQjg for 1 � j � k;

Y i = Y n Y i for 1 � i � m;

Sj = U ;2X ;:2Yj ;2:2Qj for 1 � j � k;

Sk+i = X ;2X ;:Y i;2Y i;:2Y i for 1 � i � m

Figure 11. Tableau rules for non-reflexive Diodorean logics

354 RAJEEV GOŔE

CL Static Rules Transitional Rules X�
CL

CK4DLX CPC (K4DX), (K4L) eX
CK4DLZ CPC (K4D), (K4LZ) Sf:Sf2 eX
CK4DZbr CPC (K4D), (K4Zbr) Sf:Sf2 eX

First of all note that(K4DX) is a transitional rule, not a static rule.
Now, it may appear as if the explicit subset notation would allow us to dispense

with (�) but this is not so. For(�) allows us toignorecertain eventualities, whereas
(K4L) and(K4LZ) only allow us todelaythem. Thus using the reflexive ana-
logues of these rules forS4:3 andS4:3:1 does not help to eliminate(�).

The Saturation Lemma (Lemma 6 on page 318) will go through as for the other
logics since the tableau systems have the analytic superformula property.

THEOREM 25. TheCL rules are sound with respect toL-frames.

Proof. We omit details since the proofs are similar to the ones for the reflexive
temporal logics and are not difficult.

THEOREM 26. If X is a finite set of formulae andX is CL-consistent then there
is anL-model forX on a finiteL-framehW;Ri.

Again we omit details since they are similar to the proofs given in[Goré, 1994]
but note thattherewe used the nameZ14 for the axiom we here dubZbr. However,
the proof forCK4DLX is reproduced below to give an idea of how to handle the
density requirement.

Proof sketch for CK4DLX: The construction of the model graph is similar
to the construction forCS4:3 except that we now know that every eventuality
gives rise to twoCK4DLX-consistent successors; one from(K4DX) and at least
one from(K4L) (and (�)). We again construct just one sequence but with the
following twist.

A CK4DLX-saturated setv is reflexive iff 2A 2 v impliesA 2 v. If v is
non-reflexive then there exists some2Q 2 v but Q 62 v. If v is non-reflexive
then create a successorv1 for v using(K4DX). If v1 is non-reflexive then create
a successorv2 for v1 using(K4DX). Repeating this procedure must eventually
give a(K4DX)-successorvn thatis reflexive. Note thatv � v1 � v2 � � � � � vn
hence the sole purpose ofvn is to carryv andbe reflexive; thus it need not fulfill
any eventualities. Now discardv1; v2; � � � ; vn�1 and putv � vn.

So in the generalCK4DLX construction, if we are constructing a successor
for w andw is reflexive then create a possibly non-reflexive(K4L)-successor,
else create a reflexive(K4DX)-successor (likevn) as shown above. In either
case the sequence produced using� satisfies the following criterion: there are no
consecutive non-reflexive sets in the sequence.

Once again, this procedure may produce a cycle, and we may need thinning
to escape from the cycle if it does not fulfill all its own eventualities as in the
case forCS4:3. Nevertheless, eventually we will produce a sequence, possibly

TABLEAU METHODS FOR MODAL AND TEMPORAL LOGICS 355

containing cycles, that fulfills all its eventualities, and furthermore that has no
consecutive non-reflexive worlds in the sequence. LetR be the transitive closure
of� but also putwRw if w is reflexive. The resulting model is a finite reflexive and
transitive linear sequence ofR-clusters with no consecutive degenerateR-clusters.
The density condition is met because if we havew1Rw2 then one of them must
be reflexive, as otherwise they would form two consecutive degenerateR-clusters.
Hence between anyw1 andw2 we can always put a third worldw which is a copy
of the one that is reflexive.

The observation that we can detect reflexive worlds is due to Martin Amerbauer
[1993].

A Note onS4Dbr

In a chapter on modal logic by Segerberg and Bull[1984, page 51], it is claimed
that the logicS4Dum ‘is characterised by the finite reflexive-and-transitive frames
in which all but the final clusters are simple’. We show that this second claim is not
correct by giving a finite reflexive-and-transitive model in which all but the final
clusters are simple, but in whichDum is false. The model is pictured in Figure 12.

The explanation rests on the fact that2(2(P ! 2P) ! P) can be written
as2(:P ! 3(P ^ 3:P)): ThusDum can be written as:2(:P ! 3(:P ^
3P)) ^32P ! P:

This is just as well because we have just shown thatS4Dbr characterises this
class andDum andDbr are different. But note that the extra2modality inDbr is
exactly what is needed since, in the counter-example of Figure 12,w0 6j= 232p:
That is, the counter-example does not falsifyDbr because the extra modality han-
dles the branching inherent inS4Dbr-models which is absent inS4:3:1-models.

Related Work and Extensions

Zeman[1973] appears to have been the first to give a tableau system forS4:3 but
he is unable to extract the corresponding cut-free sequent system[Zeman, 1973,
page 232]. Shimura[1991] has given a syntactic proof of cut-elimination for the
corresponding sequent system forS4:3, whereas we give a semantic proof. Appar-
ently, Serebriannikov has also obtained this system forS4:3 but I have been unable
to trace this paper. Rautenberg[1983] refers to ‘a simple tableau’ system forS4:3
but does not give details since his main interest is in proving interpolation, and
S4:3 lacks interpolation. In subsequent personal communications I have been un-
able to ascertain theS4:3 system to which Rautenberg refers[Rautenberg, 1990].
Bull [1985] states that‘Zeman’sModal Logic (XLII 581), gives tableau systems
for S4:3 andD in its Chapter 15, . . . ’. TheD mentioned by Bull isS4:3:1 but
Zeman[1973, page 245] merely shows that his tableau procedure forS4:3 goes
into unavoidable cycles when attempting to proveDum. Zeman does not inves-
tigate remedies and consequently doesnot give a tableau system forS4:3:1. In
fact, Bull [1965] mentions that Kripke used semantic tableau forS4:3:1, in 1963,

356 RAJEEV GOŔE

�
w0

R-f:pg

�
w1fpg

&%
'$
6

R R
?

�
�

�
�

�
�

�
��=

R

Z
Z
Z
Z
Z
Z
Z
Z
Z
Z~

R

�
w2

f:pg

�
w3

R-

fpg

Dum can be written as:2(:p! 3(p ^3:p)) ^32p! p;

w0 j= 32p becausew3 j= 2p;

w0 j= :p! 3(p ^3:p) because ofw1 andw2;

w0 j= 2(:p! 3(p ^3:p))
butw0 6j= p:

Figure 12. A finite reflexive-and-transitive model in which all but the final clusters
are simple in whichDum is false atw0

but he gives no reference and subsequent texts that use semantic tableau do not
mention this work[Zeman, 1973]. Presumably Kripke would have used tableaux
where an explicit auxiliary relation is used to mimic the desired properties (like lin-
earity) ofR as is done in the semantic diagrams of Hughes and Cresswell[1968,
page 290]. Note that no such explicit representation ofR is required in our sys-
tems where the desired properties ofR are obtained by appropriate tableau rules.
Until very recently, I had thought that there were no other cut-free Gentzen sys-
tems for the logics S4.14 and S4.3.1 in the literature. Guram Bezhanishvili has
recently informed me that Shimura[Shimura, 1992] has (independently) given al-
most identical systems for these logics. Shimura also gives interpolation theorems
for these, and many other logics containingS4. At first sight, there seems to be
some mismatch between the rules in[Shimura, 1992] and those given in[Goré,
1994], since the former are non-branching, while the latter are branching. How-
ever, the rules in[Shimura, 1992] contain an extra side-condition corresponding to
an oracle, and also take a logic as a parameter. These side conditions correspond
exactly to the missing second branches of the rules from[Goré, 1994] when we

TABLEAU METHODS FOR MODAL AND TEMPORAL LOGICS 357

take into account that Shimura actually uses the logicS5 as a parameter to his
rules forS4:14 andS4:3:1; see[Shimura, 1992, Lemma 2.6]. Thus, Shimura’s
oracles contain the nondeterminism inherent in these rules, and implicitly use an
embedding ofS4 intoS5.

Finally, these techniques extend easily to give a cut-free tableau system for
S4:3Grz = KGrz:3 [van Benthem and Blok, 1978] which is axiomatised as
KGrz:3 whereGrz is the Grzegorczyk axiom schemaGrz:2(2(A ! 2A) !
A) ! A: This logic is characterised by finite linear sequences of simple clusters
but note that Shimura[1991] has already given a sequent system for this logic, and
it is easy to turn his system into a tableau system.

The non-reflexive counterpart ofS4:3Grz isKLG (sometimes calledG:3 or
GLlin orK4:3W) whereL is as above andG is the Gödel-Löb axiom2(2A!
A) ! 2A: Rautenberg[1983] shows thatKG is characterised by the class of
finite transitive trees of irreflexive worlds. ThusKLG is characterised by finite
linear sequences of irreflexive worlds, but note that Valentini[1986] has already
given a cut-free sequent system for this logic.

4.18 Eliminating Thinning

The structural rule(�) corresponds to the sequent rule of weakening which explic-
itly enforces monotonicity; see page 312. From a theorem proving perspective,(�)
introduces a form of nondeterminism into eachCL since we have to guess which
formulae are really necessary for a proof. It is therefore desirable to eliminate(�).
There are two places where we resort to applications of(�) in our completeness
proofs. We consider each in turn.

The main applications of(�) in our completeness proofs are the ones used to
eliminate the formulae that do not match elements of the numerator, prior to an
application of a transitional rule; see page 313. These applications of(�) can be
eliminated by building thinning in a deterministic way into the transitional rules.
For example, we can change the(S5) rule shown below left to the(S5�) rule
shown below right:

(S5)
2X ;:2Y ;:2P

2X ;:2Y ;:2P ;:P (S5�)
X ;:2P
X 0;:P

whereX 0 = f2A : 2A 2 Xg [f:2B : :2B 2 Xg [f:2Pg; see Fitting
[Fitting, 1983]. The new transitional rule(S5�) does the work of(�) and(S5).
The crucial point is that we can specifyX 0 exactly because we know exactly which
formulae to throw away: namely, the ones that do not match the numerator of(S5).

In some completeness proofs we also avoid creating a successor for:2Q 2 w
if :Q 2 w; thus pre-empting the reflexivity ofR. This isnot an application of
(�) when the transitional rule in question is non-branching like(S4), because a
consistent successor also exists for these eventualities, it is just that we are not
interested in these successors.

358 RAJEEV GOŔE

However,(�) appears essential for some of the branching transitional rules like
(S4:3), (K4L) and(S4:3:1) etc. even though we can also build thinning into these
rules as well. For in the counter-model construction forCS4:3, we may reach a
stage where allCS4:3-consistent successors already appear inS but no such cycle
fulfills all the eventualities of the last node. At this stage it is essential to invoke
applications of(�) on subsets of the eventualities. That is, we must be able to
ignoresome of the eventualities inwn�1 using(�) and this means that(�) is now
an essential rule ofCS4:3.

The crucial difference between the branching transitional rules like(S4:3) and
the non-branching transitional rules like(S4) is that the former guarantee only that
at least onedenominator is consistent, whereas the non-branching rules guarantee
that every denominator is consistent (since they only have one denominator). But
note that not all branching transitional rules are bad, for the(S4Dbr) rule also
branches, but the completeness proof (see[Goré, 1994]) goes through without
recourse to(�) because we can make a second pass of the initial model graph to
obtain the desired frame.

It may be possible to eliminate thinning by using cleverer completeness proofs.
For example, an alternate proof forCS4:3 may be possible by considering all
(S4:3)-successors for every node, giving a tree of nondegenerate clusters, and
then showing that any two worlds in this tree can be ordered as is done by Hughes
and Cresswell[1984, page 30–31]. Note however that this seems to require a cut
rule since Hughes and Cresswell use maximal consistent sets rather than saturated
sets as we do.

Clearly the intuitions inherent in our semantic methods are no longer sufficient
to prove that weakening is eliminable. We have obtained a syntactic proof of
elimination of weakening in the sequent system containing the sequent analogues
of the modified tableau rule(S4:3�), but this is beyond the scope of this chapter.

4.19 Eliminating Contraction

As we have seen, contraction is built into our tableau rules by the ability to carry a
copy of the principal formula into the denominator. But we believe it can be lim-
ited to the explicit contractions we have shown in our modal rules. Unfortunately,
our set-based rules and completeness proofs are not sophisticated enough toprove
this since (the saturation) Lemma 6 on page 318 requires that we copy the prin-
cipal formula into the denominator. It is possible to rework all of our work using
multisets instead of sets, but the proofs become very messy. For a more detailed
study of contraction in modal tableau systems see the work of Hudelmaier[1994]
and Miglioli et al. [1995].

4.20 FiniteL-frames

In all our completeness proofs we constructfinite model graphs, hence our log-
ics are also characterised by thefinite frames shown in Figure 13. The frames in

TABLEAU METHODS FOR MODAL AND TEMPORAL LOGICS 359

Figure 13 are all based on trees of clusters or trees of worlds where we assume
that clusters immediately imply transitivity. Consequently, each logic has the fi-
nite model property, and is decidable. These finer-grained results are not always
obtainable when using other tableau methods.

4.21 Admissibility of Cut and Gentzen Systems

The cut rule is sound with respect to all ourL-frames and eachCL is sound and
complete with respect to the appropriateL-frames. Thus, putting(�) equal to
(cut) in Lemma 2 (page 313) gives:

THEOREM 27. The rule(cut) is admissible in eachCL.

Tableau systems are (upside down) cousins of proof systems called Gentzen
systems or sequent systems; see Fitting[1983]. For example, the Gentzen system
GK shown in Figure 14 is a proof system for modal logicK. That is, a formula
A is valid in allK-frames (and hence a theorem ofK) iff the sequent�! A is
provable inGK. Each of our tableau rules has a sequent analogue so it is possible
to convert each tableau systemCL into a sequent systemGL. Then,GL is cut-free
as long asCL does not use(sfc) or (sfcT). By induction it is straightforward to
show that the sequentX �! Y is provable inGL iff there is a closedCL-tableau
for X ;:Y .

Our sequent systems do not possess all the elegant properties usually demanded
of (Gentzen) sequent systems. For example, not only do some of our systems break
the subformula property, but most do not possess separate rules for introducing
modalities into the right and left sides of sequents.

Elegant modal sequent systems respecting these ideals of Gentzen have proved
elusive although the very recent work of Avron[1994], Cerrato[1993], Masini
[1992; 1991] and Wansing[1994] are attempts to redress this dearth. However,
some of these methods have their own disadvantages. The systems of Cerrato
enjoy the subformula property and separate introduction rules but do not enjoy
cut-elimination in general (although the systems forK do so). The systems of
Masini enjoy cut-elimination and give direct proofs of decidability but (currently)
apply only to the logicsK andKD. The systems of Wansing enjoy cut-elimination
and clear introduction rules but do not immediately give decision procedures, and
cannot handle logics likeS4:3:1 andS4Dbr [Kracht, 1996]. The hypersequents
of Pottinger[1983] and Avron[1994] seem to retain most of the desired properties
since they give cut-free systems with the subformula property for most of the basic
modal logics includingS5. It would be interesting to see if they can be extended
to handle the Diodorean or provability logics.

5 TABLEAU SYSTEMS FOR MULTIMODAL TEMPORAL LOGICS

In this section we briefly survey tableau systems for multimodal temporal logics
with future and past time connectives which have proved useful in Computer Sci-

360 RAJEEV GOŔE

L finite-L-frames

K finite intransitive tree of irreflexive worlds
T finite intransitive tree of reflexive worlds
D finite intransitive tree of worlds with reflexive final worlds
K4 finite tree of finite clusters

KDB
a single reflexive world; or a finite intransitive and
symmetric tree of at least two worlds

K4D
finite tree of finite clusters with finite
nondegenerate final clusters

K45
a single finite cluster; or a degenerate cluster followed by a
finite nondegenerate cluster

K45D
a single finite nondegenerate cluster; or a degenerate cluster
followed by a finite nondegenerate cluster

S4 finite tree of finite nondegenerate clusters
KB4 single finite cluster
S5 single finite nondegenerate cluster
B finite symmetric tree of reflexive worlds

S4R
S4:3Zem

a single finite nondegenerate cluster; or a simple cluster
followed by a finite nondegenerate cluster

S4F a sequence of at most two finite nondegenerate clusters

S4:2
a finite tree of finite nondegenerate clusters with one last
cluster

S4:3 finite sequence of finite nondegenerate clusters

S4:3:1
finite sequence of finite nondegenerate clusters with no
proper non-final clusters

S4Dbr
finite tree of finite nondegenerate clusters with no proper
non-final clusters

K4L finite sequence of finite clusters

K4DL
finite sequence of finite clusters with a nondegenerate final
cluster

K4DLX
finite sequence of finite clusters with a nondegenerate final
cluster, and no consecutive degenerate clusters

K4DLZ
finite sequence of degenerate clusters with a final simple
cluster

K4DLZbr finite tree of degenerate clusters with final simple clusters

G finite transitive tree of irreflexive worlds
Grz
S4Grz

S4MDum
finite transitive tree of reflexive worlds

K4Go finite transitive tree of worlds
GL finite transitive sequence of irreflexive worlds

Figure 13. Definition of finite-L-frames

TABLEAU METHODS FOR MODAL AND TEMPORAL LOGICS 361

X;P �! P; Y (Ax)

X;P;Q �! Y

X;P ^Q �! Y
(^ !)

X �! P; Y X �! Q; Y

X �! P ^Q; Y (! ^)

X �! P; Y

X;:P �! Y
(: !)

X;P �! Y

X �! :P; Y (! :)

X �! P

2X �! 2P
(! 2P : K)

X �! Y

X;U �! V; Y
(�)

Figure 14. Sequent rules forGK

ence. The brevity is justified since the survey by Emerson[Emerson, 1990] covers
tableau methods for these logics. Here we just try to show how these logics and
their tableau methods relate to the methods we have seen so far.

In Computer Science the term ‘temporal logic’ is used to describe logics where
the frames are discrete in the sense ofS4:3:1-frames andS4Dbr-frames. The
term ‘linear temporal logic’ is used when the frames are linear (discrete) sequences
and the term ‘branching temporal logic’ is used when the frames are (discrete and)
branching. If we wish to refer to the past then we can use a multimodal tense logic
where�A is read as ‘A is true at all points in the past’ and�A is read as ‘A is
true at some point in the past’[Burgess, 1984]. However, certainbinary modal
connectives have proved more useful.

The impetus for studying linear binary modal operators started with the seminal
results of Kamp[Kamp, 1968]. Kamp showed that linear tense logic equipped with
monomodal tense connectives like�, �, 3 and2 are ‘expressively incomplete’
because there are simple properties of linear orders that cannot be expressed using
only these connectives together with the usual boolean connectives. One example
is the property ‘A is true now and remains true untilB becomes true’. Kamp
then showed that certainbinary modal connectives are ‘expressively complete’ in
that they captureanyproperty expressible in the first-order theory of linear orders;
that is, expressible using time point variables liket1, t2, the quantifiers8, 9, the
boolean connectives and the predicate� familiar from number theory. Wolper
then showed that even these connectives could not express all desirable properties
of sequences[Wolper, 1983]; for example, properties that correspond to regular
expressions from automata theory like ‘A is true in every second state’. Wolper
introduced extra connectives corresponding to regular expressions but these are

362 RAJEEV GOŔE

beyond the scope of this article; see[Wolper, 1983].

5.1 Linear Temporal Logics

Syntax of Linear Temporal Logics

We add the unary modal connectivesu, e, � and�, and the binary modal con-
nectivesU , W , S and Z . Any primitive propositionp is a formula, and ifA and
B are formulae, then so are:(:A), (A^B), (A_B), (2A), (3A), (�A), (�A),
(eA), (uA), (A UB), (AWB), (A SB) and(A ZB).

Intuitively, eA means ‘A is true in the next state’,uA means ‘A is true in the
previous state’,A UB means ‘A is true untilB becomes true’, andA SB means
‘A has been true sinceB became true’. The others are explained shortly.

Semantics of Linear Temporal Logics

For brevity we concentrate on the linear temporal logic with future connectives
only and dub itPLTL for propositional linear temporal logic, and follow Gold-
blatt [1987].

A state sequenceis a pairhS; �iwhere� is a function from the natural numbers
! ontoS enumerating the members ofS as an infinite sequence�0; �1; � � � ; �n � � �
(with repetitions whenS is finite). A modelM = hS; �; V i is a state sequence
together with a valuationV that maps every primitive proposition onto a subset of
S as usual. A modelsatisfiesa formula at state�i according to:

(M; �i) j= p iff �i 2 V (p);

(M; �i) j= :A iff (M; �i) 6j= A;

(M; �i) j= A ^ B iff (M; �i) j= A and(M; �i) j= B;

(M; �i) j= A _ B iff (M; �i) j= A or (M; �i) j= B;

(M; �i) j= eA iff (M; �i+1) j= A;

(M; �i) j= 2A iff 8j; j � i; (M; �j) j= A;

(M; �i) j= 3A iff 9j; j � i; (M; �j) j= A;

(M; �i) j= A UB iff 9k; k � i; (M; �k) j= B and
8j; i � j < k; (M; �j) j= A;

(M; �i) j= AWB iff (M; �i) j= A UB or (M; �i) j= 2A:

Intuitively imagine the states�0; �1; � � � to form an infinite sequence where

TABLEAU METHODS FOR MODAL AND TEMPORAL LOGICS 363

�iR�j iff j = i + 1 andR is functional. Now if we let� be the reflexive and
transitive closure ofR, then2 is interpreted using� while e is interpreted using
R. For example, the formulaeA is true at some state�i if A is true atthesucces-
sor state�i+1. Note that the clause forA UB demands that there is some future
state�k whereB becomes true but does not specify a value forA at this state. A
weaker version ofU calledW (for weak until) drops the first demand by allowing
for the possibility that there is no future state whereB is true as long as2A is true
at�i.

Note that we could also obtain2 and3 by defining2A asAW? and3A as
> UA, and still maintain that2A is:3:A.

If we wish to allow reasoning about the past we can also allow backward look-
ing operators. The function� must now map the set of integers ontoS. Some care
is needed to ensure the correct behaviour of the definitions below if time does not
extend ad infinitum in the past[Fisher, 1991]:

(M; �i) j= uA iff (M; �i�1) j= A;

(M; �i) j= �A iff 8j; j � i; (M; �j) j= A;

(M; �i) j= �A iff 9j; j � i; (M; �j) j= A;

(M; �i) j= A SB iff 9k; k � i; (M; �k) j= B and
8j; k � j < i; (M; �j) j= A;

(M; �i) j= A ZB iff (M; �i) j= A SB or (M; �i) j= �A:

Axiomatisations

A Hilbert system forPLTL taken from Goldblatt[1987] is given below:

K : 2(A! B)! (2A! 2B)
Ko : e(A! B)! (eA! eB)
Fun : e:A$: eA
Mix : 2A! (A ^ e2A)
Ind : 2(A! eA)! (A! 2A)
U1 : A UB ! 3B
U2 : A UB $ B _ (A ^ e(A UB))

We also need the inference rules of universal substitutionUS, modus ponens
MP and an extended rule of necessitationRN viz: if A 2 L then both2A 2 L
and eA 2 L; see page 299.

The recursive nature of theMix andU2 axioms gives rise to a fix-point char-
acterisation of these operators which is the key to the tableau procedures for these
logics; see[Wolper, 1983; Banieqbal and Barringer, 1987]. Notice also that the

364 RAJEEV GOŔE

axiom Ind encodes an induction principle: if it is always the case thatA being
true now impliesA is true in the next state, thenA being true now impliesA is
true always in the future. It is this property that makes Gentzen systems for these
logics difficult to obtain; see Section 5.1.

Finite Model Property, Decidability and Complexity

Wolper [1983] shows that although our models are infinite state sequences, lin-
ear temporal logic is also characterised by a class of finite frames. In fact, it
is characterised by our finite-S4:3:1-frames; see[Goldblatt, 1987]. A tableau
procedure is given by Wolper where he also shows that the problem of decid-
ing satisfiability inPLTL is PSPACE-complete. Further complexity results for
linear and branching time logics can be found in[Emerson and Sistla, 1984;
Sistla and Clarke, 1985]. Decidability and incompleteness results for first-order
linear temporal logics have been studied by Merz[1992].

Tableau Systems

Tableau systems for the fragment of linear temporal logic containing only fu-
ture connectives have been studied by Wolper. He gives a tableau-based decision
procedure for this logic, and extensions involving regular operators; see Wolper
[1983; 1985].

The linear temporal logic including both future and past modalities has been
extensively studied by Gough[1984]. Gough uses (the appropriately defined ana-
logues of downward saturated) Hintikka sets to build a model graph for a given
formula of this logic. A second phase then prunes nodes from this model graph
to check that all eventualities can be fulfilled on a linear sequence. If this is not
possible then the graph is pruned by removing the nodes that contain unfulfillable
eventualities. If the initial node is removed by this pruning procedure then the
initial formula is unsatisfiable on a linear model hence its negation is a theorem
of this logic. The procedure has been automated and the resulting prover called
dp is available by anonymous ftp from Graham Gough (gdg@cs.man.ac.uk) at the
University of Manchester, England.

A system for temporal logic has also been implemented in the MGTP theorem
prover by Koshimura and Hasegawa[1994].

The (informal) gist of any tableau procedure for linear temporal logics involv-
ing next-time modalities is to use the fix-point nature of the modalities to create
a cyclic graph of (state) nodes. This graph is then pruned by deleting nodes that
contain unfulfillable eventualities. For example, the following logical equivalences
hold in linear temporal logic:

(A UB) � (B _ e(A UB)) 3B � (> UB)
(AWB) � (A UB) _ 2A 2A � (AW?)

TABLEAU METHODS FOR MODAL AND TEMPORAL LOGICS 365

Suppose we are given an initial noden node containing a set of formulaeX . For
every formula inn that is an instance of the left hand of the above equivalences, we
can add the appropriate instance of the right-hand side formula and mark the left
hand instance as ‘processed’. We can use the usual boolean rules for:: and^ to
saturate this node by adding the appropriate subformulae to noden, again marking
all parent formulae as ‘processed’. For_ we put one disjunct inn and create
a copy of the oldn containing the other disjunct giving a branch in the tableau.
Repeating this process on the new formulae means thatn contains ‘processed’
formulae and unprocessed formulae. But all unprocessed formulae begin withe
since these are the only formulae not touched by the above procedure. That is, all
unprocessed formulae are in outermost-e-form. For each nodex we then create
a successor nodey and fill it with fA : eA 2 xg. Repeating this procedure on
such successors produces a graph because the number of different formulae that
can be generated from this process is finite, hence some nodes reappear. Note that
we now allow arbitrary cycles whereas in the completeness proofs of Section 4
we confined cycles to nodes on the same branch. Some of these nodes contain
eventualities like3B orA UB since each of these demands the existence of some
node that fulfillsB. Now we make a second pass and delete nodes that contain both
P and:P for some formula; delete any nodes whose eventualities cannotall be
jointly fulfilled by some linear path through the graph beginning ats; and delete
any nodes without successors. If the initial node ever gets deleted by this procedure
then it can be shown that the initial set of formulae cannot be satisfied on a linear
discrete model Wolper[1983; 1985]. Otherwise there will be a linear sequence of
nodes that satisfies all the formulae in the initial node, thus demonstrating a linear
discrete model forX .

Gentzen Systems

Gentzen systems for temporal logics have been given by various authors but al-
most all require either a cut rule or an infinitary rule for completeness Kawai
[1987; 1988]. The exceptions appear to be the work of Gudzhinskas[1982] and
Pliuskevicius[1991] but these articles are extremely difficult to read.

5.2 Branching Temporal Logics

Just asS4Dbr andS4:3:1 are branching and linear respectively, there are branch-
ing analogues of the linear temporal logics we have seen usinge, U and even
S . We briefly cover the syntax and semantics of one of the most powerful of
these branching time logics calledCTL�, and point to the abundant literature for
tableau methods for these logics.

366 RAJEEV GOŔE

Syntax of Branching Temporal Logics

We again concentrate on the future fragment only and follow Emerson and Srini-
vasan[1988] using new modal connectivesE andX in addition toU . The syntax
of branching time logics is given in terms of ‘state’ formulae and ‘path’ formulae
where ‘state’ formulae are true or false at some state (world) and where ‘path’
formulae are true or false of (rather than on) a linear sequence of states (worlds).
More formally:

any atomic formulap is astateformula;

if P andQ arestateformulae then so areP ^Q and:P ;

if P is apathformula thenEP is astateformula;

anystateformulaP is also apathformula ;

if P andQ arepathformulae then so areP ^Q and:P ;

if P andQ arepathformulae then so areXP and(P UQ);

The other boolean connectives are introduced in the usual way whileAP ab-
breviates:E:P , andFP abbreviates> UP , andGP abbreviates:F:P . Note
the absence ofe, u, 2,3,�, and�.

Semantics of Branching Temporal Logics

The semantics ofCTL� are again in terms of a Kripke structureM = hS;R;Li
whereS is a non-empty set of states or worlds;R is a binary relation onS such
that each state has at least one successor; andL is a function which assigns to
each state a set of atomic propositions (those that are intended to be true at that
state). Note thatL is a slight variation on our usualV since the latter assigns
atomic propositions to sets of worlds, but the two are equivalent in our classical
two-valued setting.

A fullpath x = s0; s1; s2; : : : inM is an infinite sequence of states such that
siRsi+1 for eachi, i � 0. By (M; s) j= P and(M; x) j= P we mean that the
state formulaP is true at states in modelM, and the path formulaP is true of the
pathx in modelM, respectively. IfM is understood then we just writes j= P
or x j= P . The formal definition ofj= is as below wheres is an arbitrary state of
someM, wherex = s0; s1; s2; : : : is a fullpath inM, and wherexi denotes the
suffix fullpathsi; si+1; si+2 : : : of x:

s j= p iff p 2 L(s);

s j= P ^Q iff s j= P ands j= Q ;

s j= :P iff s 6j= P ;

s j= EP iff for some fullpathy starting ats, y j= P ;

TABLEAU METHODS FOR MODAL AND TEMPORAL LOGICS 367

x j= P iff s0 j= P for any state formulaP ;

x j= P ^Q iff x j= P andx j= Q ;

x j= :P iff x 6j= P ;

x j= XP iff x1 j= P ;

x j= P UQ iff 9i � 0, xi j= Q and8j; 0 � j < i, xi j= P .

These definitions are enough to give a semantics for the modalities obtained via
definitions:AP is true at states if P is true of all paths beginning ats; FP is true
of a pathx if P is true of some suffix fullpathxi (i � 0) of x; andGP is true of a
pathx if P is true of all suffix fullpathsxi, (i � 0).

The notions of satisfiability and validity are the same as before for state formu-
lae. A path formulaP is satisfiable if there is some modelM containing some
pathx such thatx j= P , and isvalid if for every modelM and every fullpath path
x inM we havex j= P .

As Emerson and Srinivasan note, a menagerie of branching time temporal logics
can be obtained by restricting or extending these definitions[Emerson and Srini-
vasan, 1988].

Note that path formulae cannot be evaluated at states since there are no clauses
in the definition ofj= for evaluatingXP orP UQ at a state. But a state formulaP
can be evaluated on a fullpath simply by checking if the first state of the fullpath
satisfiesP . Hence, ifP is a state formula, then formulaXP cannot be evaluated at
some states, it must be evaluated with respect to a pathx. Once a path is chosen
however, it is just the same as the linear time formulaeP sinceXP is true on
pathx if the second state of the path satisfies (state formula)P . Similarly, if P
is a state formula, thenFP andGP are just3P and2P , except that they are
evaluated over alinear sequence. But note thatCTL� is strictly more expressive
thanPLTL.

Tableau Systems

The logicCTL� is known to have the finite model property, in fact, it is char-
acterised by finite-S4Dbr-frames, but once again, note the presence of the extra
modalities. Emerson and Srinivasan[1988] compare the expressiveness of various
such branching time logics. Tableau methods for branching time logics can be
found in Emerson[1985]. Once again, these tableau methods are based on the ap-
propriate analogues of Hintikka-structures (see[Emerson and Halpern, 1985]) and
use the following logical equivalences to expand formulae that match the left hand
sides into an ‘outermost-EX-normal’ or ‘outermost-AX-normal’ form[Emerson
and Srinivasan, 1988]:

368 RAJEEV GOŔE

E(P _Q) � EP _ EQ A(P ^Q) � AP ^ AQ
EGP � P ^ EXEGP AGP � P ^ AXAGP
EFP � P _EXEFP AFP � P _ AXAFP

E(P UQ) � Q _ (P ^EXE(P UQ))
A(P UQ) � Q _ (P ^ AXA(P UQ))

There are no clauses to ‘expand’ formulae beginning withEX orAX in some
given setw. Each formula of the formEXPi gives us reason to create a successor
statewi containingPi just as:2P 2 w gave rise to a successorv containing:P
in the modal tableau completeness proofs of Section 4. Now any formula of the
formAXQ 2 w allows us to putQ into each next state sinceXQ must be true of
all paths that begin atw.

Again the procedure gives a cyclic graph since only a finite number of different
sets can be built in this manner and some set reappears. Again, we form arbitrary
graphs, not cyclic trees. And once again, a second phase prunes nodes that are
inconsistent, that contain unfulfillable eventualities, or have no successor.

Note that all these tableau methods break the subformula property in a weak
way since they introduce superformulae of the formeP orAXP orEXP where
P is built from subformulae of the initial set. But we never apply an expansion
rule to these superformulae, thus,EX andAXP act like ‘wrappers’ to keep this
building up procedure in check, just aseacted as a wrapper for thePLTL proce-
dure. These ‘wrappers’ are removed by creating successor state(s) and filling these
with the ‘unwrapped’ (sub)formulae.

Gentzen Systems

Once we start to use graphs rather than trees, the connection with Gentzen systems
becomes very tenuous. Gentzen systems for some branching time logics (without
A andE) have been studied by Paech[1988]. Unfortunately, these systems re-
quire a (partly hidden) cut rule which means that they are not the proof-theoretic
analogues of the tableau procedures mentioned above.

5.3 Bibliographic Remarks and Related Systems

The complexity of the decision problem for branching time logics has been studied
by Emerson and Sistla[1983]. Temporal logics are known to be related to B¨uchi
automata[Vardi and Wolper, 1986] and so their decision problems can be studied
from an automata-theoretic perspective as well[Muller et al., 1988].

All these branching time logics exclude past-time operators, but they can be
added. The work of Gabbay[1987] and Gabbayet al. [1994] is particularly inter-
esting because many temporal logics have the ‘separation property’: that is, any
complicated formulaA has alogically equivalentformA0 whereA0 is a conjunc-
tion B ^ C ^ D such thatB involves only past-time modalities,C involves no

TABLEAU METHODS FOR MODAL AND TEMPORAL LOGICS 369

modalities, andD involves only future-time modalities. Thus the decision prob-
lems for these logics can often be handled by separate routines for just past-time
modalities, just future-time modalities and just pure propositional reasoning.

6 MODAL TABLEAU SYSTEMS WITH EXPLICIT ACCESSIBILITY

We now turn to tableau systems where the reachability relationR is represented
explicitly. There are essentially two ways to representR. One is to maintain a
network of named nodes, where each node contains a set of formulae, and also
maintain a separate relationR(x; y) to represent that the node namedy is reach-
able from the node namedx. The namesx andy are merely indices to allow
cross-reference between these two ‘data-structures’. The second is to incorporate
complex or structuredworld names into the syntax, attaching the labell1 to every
formula that belongs to the world namedl1 and attachingl2 to every formula that
belong to the world namedl2. No separate reachability relation is kept since the
reachability relation is built into thestructureof the labels.

6.1 History of Explicit Tableau Systems

The most celebrated work is of course that of Kripke[1959] where possible worlds
related by an accessibility relation are first proposed as a semantics for modal
logics. Bull and Segerberg[1984] give an account of the genesis of the possible
worlds approach and suggest that credit is also due to Hintikka and Kanger. Zeman
[1973] even credits C. S. Pierce with the idea of ‘a book of possible worlds’ as far
back as 1911!

Kripke follows Beth[1955] and divides each tableau into a left hand side and
a right-hand side where the left side is for formulae that must be assigned ‘true’
and the right side is for formula that must be assigned ‘false’; see[Fitting, 1993]
for examples using this style of tableau. Thus it is clear that this is a refutation
procedure and we are attempting to obtain a falsifying model of possible worlds
for the given formula. To handle the added complexities of modal formulae like
2A and:2A, Kripke uses auxiliary tableaux, where a new tableau is used for
each possible world and these auxiliary tableaux are interrelated by an auxiliary
reachability relationR. Auxiliary tableaux may have tableaux auxiliary to them
and so on, obtaining a complex web of tableaux.

Kripke uses two basic rules to handle modal formulae: one to handle2A on the
left of a tableau and one to handle2A on the right of a tableau. They are,

Yl: If 2A appears on the left of a tableaut; then for every tableaut0 such that
tRt0; putA on the left oft0;

Yr: If 2A appears on the right of a tableaut; then start out a new tableaut0; with
A on the right, and such thattRt0:

370 RAJEEV GOŔE

Different constraints on this auxiliary relation give different tableau systems. That
is, the definition of the auxiliary relationR changes with each logic, so that the
auxiliary relation directly mimics the required accessibility relation. For example,
the auxiliary relationR for S4 is defined to be reflexive and transitive, so for any
tableaut we havetRt by definition.These constraints form an extra theory about
R that must be taken into account at each rule application.

Note also that the application of the Yl rule can have delayed consequences.
For example, if a new auxiliary tableaut0 is created and it happens to be auxiliary
to the tableaut in which the Yl rule has already been applied, then we have to
keep track of this previous application of Yl and addA to the left of t0: Thus,
the meaning of ‘every tableaut0 such thattRt0’ includes tableaux that may come
into existence via the Yr rule at any later point of the construction. The rules are
therefore like constraints that may be activated at a later time.

This is essentially a way to keep track of all worlds in the counter model being
sought. When a new world comes into existence, it is immediately linked into
this counter-model according to the constraints onR: That is, Kripke’s method
is a refutation procedure where extra modal information is kept in the auxiliary
relation between tableaux. The construction is on a global level in that we can
return to previous nodes of the tableau construction at will. In our tableau systems
CL we cannot return to nodes higher up in the tree.

The semantic diagrams of Hughes and Cresswell[1968] and the tableau systems
of Zeman[1973] use essentially the same ideas except that Hughes and Cresswell
use annotations of ones and zeros instead of using a left and right side. Slaght
[1977] goes one step further than usual and adds rules for quantifiers and also
incorporates a form of negated normal form by translating:2P into3:P; :3P
into2:P; :9x(� � �) into 8x:(� � �) and:2x(� � �) into 9x:(� � �):

These ideas have been implemented by Catach in his TABLEAUX theorem
prover[Catach, 1991; Catach, 1988]. Although labels are used in the TABLEAUX
prover, they are used only as indices into anexplicit and separaterepresentation
of the reachability relation. Indeed, Catach even laments the lack of modularity in
this method[Catach, 1991, page 503].

Kanger’s spotted formulae[Kanger, 1957], which precede Kripke’s work, are
the precursors of the second explicit approach which we call the labelled tableau
method. In this method, each formula is prefixed with a label to retain its modal
context and the reachability relation is encoded in the structure of the labels. Given
two labels we can tell whether they are related by the reachability relation simply
by inspecting their structure. Fitting’s prefixed tableaux are direct applications
of Kanger’s idea to handle many different modal logics[Fitting, 1983, chapter
8]. And as we shall soon see, Massacci[1994; 1995a] has refined these ideas
even further to give modular prefixed tableau systems for many modal logics. If
we permit labels to contain variables then specialised ‘string unification’ methods
can be used to detect closed tableau branches as is done by Wallen[1989], and
Artosi and Governatori[1994]. The principle of using labels to ‘bring some of
the semantics into the syntax’ is also the basis of Gabbay’s Labelled Deductive

TABLEAU METHODS FOR MODAL AND TEMPORAL LOGICS 371

Systems[Gabbay, 1997].
Prefixes are one way to separate the modal component from the classical com-

ponent. Another is to explicitly translate the modalities into a restricted subset of
first-order logic. Specialised routines for first-order deduction, like resolution,
can then be applied to this restricted subset. Such ‘translation methods’ have
been investigated by Morgan[1976], Ohlbach[1990; 1993], Auffray and Enjal-
bert[1989], Frisch and Scherl[1991], and Gent[1991a; 1993; 1991].

In all these translational methods, the modal logicsK, T, K4, S4 andS5 are
easily handled and Gent has also obtained systems forB andS4:3. The most
striking feature of Gent’s work is that he is unable to give a system forS4:3:1 and
this is essentially due to the fact that the reachability relationR for S4:3:1-frames
is not first-order definable. It is known that a formula of second order logic is
required to express the reachability relation forS4:3:1 [van Benthem, 1983]. This
deficiency of translational methods is also mentioned by Auffray and Enjalbert
[1989] while the method of Frisch and Scherl[1991] is limited to serial logics.

The biggest disadvantage of the translational methods is that first-order logic is
known to be only semi-decidable, thus the translated system may not be decidable
even though the original modal logic is decidable. Clearly it must be possible to
identify decidable classes of first-order logic into which these translations will fall,
but I am not aware of any such detailed investigations.

In all fairness, it must be mentioned that the translational methods seem to be
much better for automated deduction infirst-order modal logicswhere various do-
main restrictions can complicate matters for the first-order versions of our implicit
tableau systemsCL; see[Ohlbach, 1990]. At the first-order level, all modal log-
ics are only semi-decidable since they all include classical first-order logic. Then,
decidability is no longer an important issue.

There is a subtle but deep significance to the use of labels which explains their
increased power over implicit tableau methods. Our implicit tableaux werelocal in
that, at all times, we worked with a set of formulae (denoting one particular world),
with no explicit reference to the particular properties of the reachability relation
since these properties were built into the rules. Labelled tableaux areglobal in that
the labels allow us to ‘see’ the reachability relation and hence allows us to keep a
picture of the whole model under construction.

6.2 Labelled Tableau Systems Without Unification

As stated previously the idea of labelled tableau systems goes back to at least
Kripke and Kanger. The most attractive feature of labels for modal tableau systems
is the ability to handle the symmetric logics likeS5 which require some form of
analytic cut rule in the implicit systems we have studied so far, and also logics like
KB for which I know no implicit tableau system formulation. We now review in
some detail recent work of Massacci[1994] which gives simple labelled tableau
systems for all the 15 distinct basic normal modal logics obtainable fromK by the
addition of any combination of the axiomsT , D, 4, 5, andB in a modular way.

372 RAJEEV GOŔE

The prefixed tableaux of Fitting can be obtained as derived rules in this method.
Hence our labelled tableau systems are a mixture of the methods of Fitting and
Massacci.

The irony is that this method is essentially Kripke’s ‘reformulated method’
based on his observation[1963, page 80] that:

‘These considerations suggest that the rules, which we have stated in
terms ofR, could instead be stated in terms of the basic tree relation
S defined in the preceding paragraph (lettingR drop out of the picture
altogether).’

Using trees it is possible to isolate the individual atomic aspects of reflexivity, tran-
sitivity, symmetry etc. To model combinations of these properties both Kripke and
Fitting merge the respective atomic aspects into new rules. Fitting goes one step
further by building in theclosureof these properties as side-conditions, thereby
requiring explicit reference to the underlying reachability relation. Massacci, on
the other hand, merely adds the individual atomic rules as they are, and thereby
obtains modularity. The closure is obtained by repeated applications of the atomic
rules.

As an aside, note that[Massacci, 1994] contains some minor errors; for exam-
ple, the system given there forK5 is incomplete. Massacci has reworked, cor-
rected, and extended his work into a journal version[1995a], but most of this
section was written independently of[Massacci, 1995a]. Thus there is a lot of
overlap between this section and[Massacci, 1995a], but there are also some sub-
tle differences. In particular, we do not use an empty label at any stage, whereas
Massacci sometimes uses an empty label to capture theL-accessibility conditions
between labels.

We now switch to the tableau formulation of Fitting and Smullyan[1983] rather
than sticking to the formulation of Rautenberg because the labels allow us to distin-
guish formulae that belong to one world (label) from those that belong to another
(label), so there is no need to delete formulae when ‘traversing’ from one world to
another. Consequently, we can work with asingleset oflabelledformulae.

A label is a nonempty sequence of positive integers separated by dots. We use
lowercase Greek letters like�, � for labels and often omit the dots using�n instead
of �:n if no confusion can arise. We use� to denote a set of labels. Thelength
of a label� is the number of integers it contains (or the number of dots plus one),
and is denoted byj�j. For example, 1, 1.21, and 1.2.1 are three labels respectively
of lengths 1, 2 and 3. A label� is asimple extensionof a label� if � = �:n for
somen � 1. A label � is anextensionof a label� if � = �:n1:n2: � � � :nk for
somek � 1 with eachni � 1.

A set of labels� is strongly generated(with root�) if:

1. there is some (root) label� 2 � such that every other label in� is an exten-
sion of�; and

2. �:n 2 � implies� 2 �.

TABLEAU METHODS FOR MODAL AND TEMPORAL LOGICS 373

In what follows, we always assume that� = 1 as it simplifies some technical
details.

As we shall soon see, the labels capture a basic reachability relation between
the worlds they name where the world named by�:n is accessible from the world
named by�. A set of strongly generated labels can be viewed as a tree with root�
where�:n is an immediate child of� (whence the name ‘strongly generated’).

A labelled formula is a structure of the form� :: A where� is a label andA is
a formula. Alabelled tableau rulehas a numerator and one or more denominators
as before, except that each numerator is comprised of asinglelabelled formula, and
each denominator is comprised of at most two labelled formulae. There may be
side conditions on the labels that appear in the rule. Alabelled tableau calculus
is simply a collection of labelled tableau rules.

A labelled tableaufor a finite set of formulaeX = fA1; A2; � � � ; Ang is a tree,
where each node contains a single labelled formula, constructed by the systematic
construction described in Figure 15. Atableau branch is any path from the root
downwards in such a tree. Abranch is closedif it contains some labelled formula
� :: P and also contains� :: :P . Otherwise it isopen. A tableau is closedif
every branch is closed, otherwise it is open.

A label � is usedon a branch if there is some labelled formula� :: P on that
branch. A label� is new to a branch if there is no labelled formula� :: P on that
branch.

If X is a set of labelled formulae then we letlab(X) = f�j� :: P 2 Xg be
the set of all labels that appear inX . Although a branchB of a tableau is defined
as a set of nodes, each of which contains a formula, we often drop this pedantic
distinction and useB to mean the set of labelled formulae on the branch. Then
lab(B) is just the set of labels that are used on branchB.

In Figure 16 we list the rules we need, and in Figure 17 we show how they can
be used to give labelled tableau systems for many basic modal logics including
some symmetric logics that proved elusive using implicit tableau systems. All are
based on those of Massacci[1994].

The rules are categorised into three types: thePC-rules are just the usual ones
needed for classical propositional logic; the�-rules are all the rules applicable
to formulae of the form� :: 2P (such formulae are called�-formulae in many
tableau formulations); and the single�-rule is the only rule applicable to formu-
lae of the form� :: :2P (such formulae are called�-formulae in many tableau
formulations).

As expected, there is no modal aspect to thePC-rules since the labels in the
numerator and denominator(s) are identical. The�-rule is a ‘successor creator’
since it is the only rule allowed to create new labels. Each�-rule is a licence to
add the formula in the denominator to the already existing world named by the
label of the denominator. It is the power to lookbackwardsalong the reachability
relation (in rules like(lB) and(l4r) that allows us to handle the symmetric and
Euclidean logics with such ease.

Notice that none of the rules explicitly mention the reachability relation between

374 RAJEEV GOŔE

Stage 1: Put the labelled formulae1 :: Ai, 1 � i � n, in a vertical
linear sequence of nodes, one beneath the other, in some order
and mark them all as awake.

While the tableau is open and some formula is awake do:

Begin Stage n+1:Choose an awake labelled formula� :: A as close
to the root as possible. If there are several awake formulae at the
same level then choose the one on the leftmost branch. If� :: A
is atomic then mark this formula as finished and stop stagen+ 1.
Otherwise update the tableau as follows where ‘updating a branch
with a labelled formula’ means adding the formula to the end of
the branch and marking it as awake if it does not already appear
on the branch (with any mark), but doing nothing if the formula
already appears on the branch (with any mark). For everyopen
branchB which passes through� :: A, do:

(^) if � :: A is of the form� :: P ^Q then updateB with � :: P
and then update the newB with � :: Q;

(_) if � :: A is of the form� :: :(P ^ Q) then split the end
of B and update the left fork with� :: :P and update the
right fork with � :: :Q. If any of these updates fails to add
the corresponding formula then delete that fork, possibly
leavingB unaltered or with no fork;

(:) if � :: A is of the form� :: ::P then updateB with � :: P ;

(�) if � :: A is of the form� :: 2P then, for every�-rule rule in
the calculus which is applicable to� :: 2P , updateB with
the corresponding denominator;

(�) if � :: A is of the form� :: :2P then letk be the smallest
integer such that the label�k is new on branchB, update
B with �k :: :P , and mark all formula onB of the form
� :: 2Q as awake;

End Stage n+1: Once this has been done for every open branch that
passes through� :: A, if � :: A is of the form� :: 2P then mark
it as asleep, otherwise mark� :: A as finished, and terminate
Stage n+1.

Figure 15. Systematic tableau construction forX = fA1; A2; � � � ; Ang

TABLEAU METHODS FOR MODAL AND TEMPORAL LOGICS 375

(l:)
� :: ::P
� :: P

(l^)
� :: P ^Q
� :: P

� :: Q

(l_)
� :: :(P ^Q)

� :: :P j � :: :Q

(l�)
� :: :2P
�:n :: :P where�:n is new to the current branch

(lK)
� :: 2P

�:n :: P
(lD)

� :: 2P

� :: :2:P (lT)
� :: 2P

� :: P

(lB)
�:n :: 2P

� :: P
(l4)

� :: 2P

�:n :: 2P
(l5)

1:n :: 2P

1 :: 22P

(l4r)
�:n :: 2P

� :: 2P
(l4d)

�:n :: 2P

�:n:m :: 2P

Note: except for�n in the rule(l�), each label in the numerator and
denominator must already exist on the branch.

Figure 16. Single Step Rules for the Basic Modal Logics

LCL PC-Rules �-Rules �-Rule

LCPC (l:), (l^), (l_) — —
LCK LCPC (lK) (l�)
LCT LCPC (lK), (lT) (l�)
LCD LCPC (lK), (lD) (l�)
LCKB LCPC (lK), (lB) (l�)
LCK4 LCPC (lK), (l4) (l�)
LCK5 LCPC (lK), (l4d), (l4r), (l5) (l�)
LCKDB LCPC (lK), (lB), (lD) (l�)
LCKD5 LCPC (lK), (lD), (l4d), (l4r), (l5) (l�)
LCK4D LCPC (lK), (lD), (l4) (l�)
LCK45 LCPC (lK), (l4), (l4r), (l5) (l�)
LCK45D LCPC (lK), (l4), (l4r), (l5), (lD) (l�)
LCK4B LCPC (lK), (lB), (l4), (l4r) (l�)
LCB LCPC (lK), (lT),(lB) (l�)
LCS4 LCPC (lK), (lT), (l4) (l�)
LCS5 LCPC (lK), (lT), (l4), (l4r) (l�)

Figure 17. Labelled Tableau Systems for the Basic Logics

376 RAJEEV GOŔE

labels in their side-conditions. Furthermore, in all rules, the world named by the
label in the denominator is at mostone step awayfrom the world named by the
label in the numerator. For example, the(lT) rule adds the formulaP to the same
world, whereas the(lK) and (lB) rules addP to a successor and predecessor
respectively.

At first sight, the ‘single step’ nature of the�-rules seems a drawback since we
know that a�-formula can affectall successors, regardless of how many primitive
steps it takes to reach them. One is immediately tempted to add side conditions
that explicitly mention the reachability relation to capture this notion as is done by
Fitting [1983]. But it is precisely this ‘single step’ nature that allows the rules to
ignore the reachability relation and which gives us the modularity apparent in the
calculi of Figure 17.

A particular rule may not capture a property of accessibility completely, but
some combination of the rules will do so. For example, for transitivity we require
� :: 2P to be able to give�:� :: P , for any j�j � 1, assuming that both these
labels (worlds)� and�:� exist. As Massacci[1994] points out, instead of building
this transitive closure property into a side condition for(l4), it is obtained by the
combination of(l4) and (lK), one step at a time, as shown below extreme left
where we assume that� = n:m. That is, we cannot derive Fitting’s actual rule
for transitivity since that rule captures theclosureof the transitivity property by
referring toL-accessibility in the side condition. But we can deriveevery instance
of transitivity, thereby computing the closure by repeated applications of the single
step rules. We can also derive other useful rules. For example, the rule of ‘delayed
reflexivity’ (lT d) below centre says something like ‘all worlds (�:n) that have a
predecessor (�) are reflexive’. It can be derived inLCK5 andLCK4B as shown
below extreme right:

� :: 2P (l4)
�:n :: 2P (lK)
�:n:m :: P

derivation of transitivity

(lT d)
�:n :: 2P

�:n :: P

�:n :: 2P (l4r)
� :: 2P (lK)
�:n :: P

derivation of (lT d)

As an aside, note that in a symmetric frame, like those forK4B, any world that
has a predecessor also has a successor, hence(lT d) captures the essence of the
(T3) rule ofCyK4B on page 322.

The systematic construction is based on the one given by Fitting[1983, page 402]
for his prefixed tableau, and the one given by Massacci[1994], except that we have
amalgamated two of Fitting’s procedures in one here. Fitting first works withoc-
currencesof labelled formulae in order to mark them as finished, adding fresh
unfinishedoccurrencesto handle necessary repetitions. Later he refines the proce-
dure to stop explicit repetitions since this is just a form of contraction where such
formulae may have to be used more than once for completeness.

We work with labelled formulaeper se, avoiding repetitions right from the be-
ginning, and mark most formulae as finished once we have dealt with them. But

TABLEAU METHODS FOR MODAL AND TEMPORAL LOGICS 377

we do not mark�-formulae as finished since they may need to be used again and
again. Because we always start a stage at the highest awake formulae, these for-
mulae get considered over and over again as desired.

Notice that the systematic procedure constructs onlyone tableau and that it
traverses this tableau in abreadth-firstmanner (except that some formulae may
change from asleep to awake and temporarily interrupt this traversal). Massacci
[1994] gives an alternative systematic procedure where the formulae on a branch
are processed using a different strategy; all formulae of the form� :: :2P on a
branch are processed before all formulae of the form� :: 2Q for example. Space
forbids us from comparing these strategies in more detail.

EXAMPLE 28. Below we show a closed systematicLCK-tableau forX =
f2(p ! q);:(2p ! 2q)g. We assume thatA ! B is written as:(A ^ :B)
and that:(A ! B) is rewritten and simplified toA ^ :B. We use ‘a’, ‘s’ and
‘f’ for awake, asleep andfinished respectively. The notation s/a indicates that the
formula was asleep but was woken up during the stage.

SystematicLCK-tableau forX = f2(p! q);:(2p! 2q)g

Extant Tableau at Marks at
Stage End Stage End

1 2 3 4 5 6 7 8 9

1 :: 2(p! q) a s s s s/a s s s s
1 :: :(2p! 2q) a a f f f f f f f
1 :: 2p a s s/a a s s s
1 :: :2q a a f f f f f

1:1 :: :q a a a f f
1:1 :: p! q a a a f
1:1 :: p a a a

1:1 :: :p a
1:1 :: ::q a

(closed) (closed)

EXAMPLE 29. The formula(23p) ^ (3p) can be written in primitive notation
as(2:2:p) ^ (:2:p). As the reader can verify, the systematicS4-tableau for
X = f(2:2:p) ^ (:2:p)g neither terminates nor closes.

6.3 Soundness of Single Step Tableau Rules

The soundness of the tableau rules is proved using a method from Fitting[1983],
but modified to cater for the strongly generated property. We first extend the prim-
itive notion of reachability between labels� and�:n into a general notion ofL-
accessibilitybetween labels� and� , and show that it captures the conditions on
L-frames.

378 RAJEEV GOŔE

Recall that label� is the root of a strongly generated set of labels if every other
label in the set is an extension of�.

A setX of labelled formulae isstrongly generatedif lab(X) is strongly gen-
erated. For any two labels� and� from some strongly generated set� of labels
with root � = 1 we define anL-accessibility relation� according to Figure 18.
These conditions are calculated by taking the appropriate closure of the underlying
basic reachability relation between� and�:n. (Thanks to Nicolette Bonnette for
many simplifications.) For example, the condition onK45-frames is calculated
by computing the transitive and Euclidean closure of the basic reachability rela-
tion. It is here that our assumption that the root� = 1 simplifies the conditions for
L-accessibility, but there is still a slight complication for the serial logics.

For any nonserial logicL1 we say that� is anL1-deadend if there is no�
that isL1-accessible from�. Now we can express the seriality condition for the
serial counterpartL = L1D by demanding that allL1-deadends be reflexive. In
particular, we say that� 2 � is aK-deadend if no label in� is a simple extension
of �. In Figure 18 we have computed the forms of theL1-deadends and added
an extra condition to make them reflexive for each logicL1D. The notationj�j
means the number of labels in�.

We leave it to the reader to generalise these conditions to account for the case
where� is an arbitrary label. Note that the conditions onL-accessibility in Fig-
ure 18 and the conditions on accessibility in the finite-L-frames of Figure 13 on
page 360 are closely related. We return to this point later.

But first we relateL-accessibility to theL-frames of Figure 4 on page 303.

THEOREM 30. If � is a strongly generated set of labels with root� = 1 then
F = h�;�i is anL-frame.

Proof. It is obvious thatKT-accessibility,K4-accessibility andKB-accessibility
forcesF to be respectively reflexive, transitive and symmetric. We consider only
the case forK45 in detail.

We have to show thatK45-accessibility forcesF to be Euclidean and transitive.
K45-accessibility� is Euclidean if�0 � �1 and�0 � �2 implies�1 � �2, where
K45-accessibility� is defined as:

� � � iff (� = �:� andj�j � 1) or (j�j � 2 andj� j � 2)

By substitution we get:

TABLEAU METHODS FOR MODAL AND TEMPORAL LOGICS 379

Definition of� � � where� and� are nonempty and drawn
from a strongly generated set of labels� with root� = 1

Logics for all �; � 2 �, � isL-accessible from� iff
K � = �:n for somen � 1
KT � = �:n or � = �
KB � = �:n or � = �:m
K4 � = �:� andj�j � 1
K5 � = �:n or (j�j � 2 andj� j � 2)
K45 (� = �:� andj�j � 1) or (j�j � 2 andj� j � 2)
KD K-condition or (� is aK-deadend and� = �)
KDB KB-condition or (j�j = 1 and� = � = 1)
KD4 K4-condition or (� is aK-deadend and� = �)
KD5 K5-condition or (j�j = 1 and� = � = 1)
KD45 K45-condition or (j�j = 1 and� = � = 1)
KB4 j�j � 2
B � = � or � = �:n or � = �:m
S4 (� = �:� andj�j � 1) or (� = �)
S5 j�j � 1

Figure 18. Definition ofL-accessibility�

380 RAJEEV GOŔE

Hypotheses Expanded Hypothesis

�0 � �1 (�1 = �0:�1 andj�1j � 1) or (j�0j � 2 and j�1j � 2)
and and

�0 � �2 (�2 = �0:�2 andj�2j � 1) or (j�0j � 2 and j�2j � 2)

Goal Expanded Goal

�1 � �2 (�2 = �1:�3 andj�3j � 1) or (j�1j � 2 andj�2j � 2)

Now, we know that�0 is nonempty, hencej�0j � 1. But this together with
(�1 = �0:�1 andj�1j � 1) in the left disjunct of the first hypothesis immediately
givesj�1j � 2. Thus both disjuncts of the first line of the hypothesis implyj�1j �
2.

Similarly, j�0j � 1 together with(�2 = �0:�2 andj�2j � 1) in the left dis-
junct of the second hypothesis givesj�2j � 2. Thus both disjuncts of the second
hypothesis implyj�2j � 2).

And the conjunction of these two gives the second disjunct of the goal showing
thatK45-accessibility relation� is indeed Euclidean.

To show thatK45-accessibility is also transitive, we must show that�0 � �1
and�1 � �2 implies�0 � �2. The same expansions can be used but the roles of
hypotheses and goal are slightly altered. The argument is almost identical, except
for one subcase which relies on the fact thatj�0j = 1 implies�0 = 1. �

Let X be a strongly generated set of labelled formulae, letlab(X) be the set
of labels that appear inX and letM = hW;R; V i be someL-model whereL
is any one of the 15 distinct basic normal modal logics obtainable by adding any
combination of the axiomsT , D, B, 4 and 5 to logic K. Call a world inM
idealisableiff it has anR-successor inM.

An L-interpretation of (a strongly generated set of labelled formulae)X inM
is a mappingI : lab(X) 7! W that satisfies: if� � � andI(�) is idealisable then
I(�)RI(�), where� is the appropriateL-accessibility relation from Figure 18
[Fitting, 1983].

A strongly generated setX of labelled formulae isL-satisfiable under theL-
interpretation I if I(�) j= A for each� :: A in X ; and isL-satisfiable if it is
L-satisfiable under someL-interpretation. A branch of a labelled tableau isL-
satisfiable if the set of labelled formulae on it isL-satisfiable, and a tableau is
L-satisfiable if some branch of the tableau isL-satisfiable.

PROPOSITION 31.The set of labelled formulaelab(B) from any branchB of a
labelled tableau is a strongly generated set.

Proof. By the fact that the initial label is always� = 1, and the fact that the only
new labels that may be created are labels of the form�:n, n � 1, which are all

TABLEAU METHODS FOR MODAL AND TEMPORAL LOGICS 381

simple extensions of some� 2 lab(B). �

We now prove soundness of some of the rules leaving the others to the reader.
Since the systematic procedure updates all branches that pass through the chosen
formula, the soundness theorem states the following: if a tableauT isL-satisfiable
and we apply rule(l�) to get tableauT 0, thenT 0 is alsoL-satisfiable. Since every
rule has at most two denominators, a rule can cause a given branch to split into at
most branches. Consequently we have to prove that if a branchB isL-satisfiable,
and applying rule(l�) causes it to be updated into branchesC andD, then at least
one of the new branches is alsoL-satisfiable.

Soundness of(l�) for L-frames: SupposeB is anL-satisfiable branch and
that we apply the(l�) rule to some awake� :: :2P on B to obtain branchC
containing�n :: :P where�n is a simple extension of� that is new toB. We
have to show thatC isL-satisfiable.

SinceB is L-satisfiable, there is someL-modelM = hW;R; V i and some
L-interpretationI inM such thatI(�) 2 W andI(�) j= :2P . HenceI(�) is
idealisable as there is somew 2 W with I(�)Rw andw j= :P . Since�n is
new, it does not appear inB and hence has no image underI . ExtendI by putting
I(�n) = w. We then have� � �n, I(�)RI(�n), andI(�n) j= :P meaning that
C is indeedL-satisfiable under the extendedI inM. �

Soundness of(l4d) for K5-frames: SupposeB is aK5-satisfiable branch
and that we apply the(l4d) rule to some�n :: 2P to get a branchC containing
�nm :: 2P . We have to show thatC is alsoK5-satisfiable.

SinceB is K5-satisfiable and the labels�n and�nm must already exist on
B, there is someK5-modelM = hW;R; V i and someK5-interpretationI in
M such thatI(�n) 2 W , I(�nm) 2 W and I(�n) j= 2P . The label�n
can exist onB only if � also exists onB sinceB is strongly generated. Hence
there is someI(�) 2 W . The configuration� � �n � �nm immediately im-
plies I(�)RI(�n)RI(�nm) by the definition ofI . BecauseR is Euclidean we
know thatI(�n)RI(�n); that isI(�n) is reflexive. ThenI(�n)RI(�nm) and
I(�n)RI(�n) givesI(�nm)RI(�n). HenceI(�nm) j= 32P . Euclidean frames
must validate axiom5 (32A! 2A) henceI(�nm) j= 2P . We have not altered
I in any way, so by definition,C isK5-satisfiable underI inM. �

Soundness of(l5) for K5-frames: SupposeB is aK5-satisfiable branch and
that we apply the(l5) rule to some1:n :: 2P to get a branchC containing1 ::
22P . We have to show thatC is alsoK5-satisfiable.

As before there is someK5-modelM = hW;R; V i and someK5-interpretation
I inM such thatI(1:n) 2 W andI(1:n) j= 2P . Since1 is used onB and1�1:n,
there must be someI(1) 2W with I(1)RI(1:n).

Now suppose for a contradiction thatI(1) j= :22P ; then there is somew 2
W such thatI(1)Rw andw j= :2P , which in turn implies that there is some
w0 2 W such thatwRw0 andw0 j= :P . SinceR is Euclidean,I(1)RI(1:n) and
I(1)Rw giveswRI(1:n), and thenwRw0 givesI(1:n)Rw0. But thenI(1:n) j=

382 RAJEEV GOŔE

2P impliesw0 j= P ; contradiction. HenceI(1) j= 22P andC isK5-satisfiable
underI inM. �

THEOREM 32. If the systematic tableau forX closes thenX isL-unsatisfiable.

Proof. For a contradiction, suppose the tableau forX is closed and thatX is
L-satisfiable. The latter means that there is someL-modelM = hW;R; V i and
some worldw 2 W such thatw j= X . Our tableau begins with nodes1 :: Ai,
for eachAi 2 X so define anL-interpretationI inM such thatI(1) = w. Then
the initial tableau comprising the linear sequence of these nodes1 :: Ai is L-
satisfiable (underI inM). Since each of our tableau rules is sound, any tableau
obtained from this initial tableau by these rules is alsoL-satisfiable. Hence our
tableau isL-satisfiable.

SupposeB is some branch of this closed tableau. ThenB itself is closed and
hence contains some labelled formula� :: P and also contains� :: :P . Now any
L-interpretationI 0 for B in anyL-modelM0 would entail thatI 0(�) j= P and
also thatI 0(�) j= :P , which is clearly impossible. HenceB is notL-satisfiable.
SinceB was an arbitrary branch this must be true for all branches of this closed
tableau. Then, by definition, our tableau is notL-satisfiable. Contradiction, hence
if the tableau forX closes thenX isL-unsatisfiable. �

COROLLARY 33 (Soundness).If the systematic tableau forf:Ag is closed then
A isL-valid.

6.4 Fairness, Infinite Tableaux, Chains and Periodicity

The systematic tableau construction may go on ad infinitum in some cases. We
now prove some useful properties of our systematic labelled tableau procedure
giving some insight into its behaviour.

We have already noted that the systematic procedure is essentially a breadth-
first traversal of the tableau under construction except that certain formulae may
awaken to interrupt this traversal. In what follows we refer to theuninterrupted
sequence of node traversal as thevisit sequence. That is, the visit sequence is the
sequence in which the systematic procedure would visit the nodes if no�-formula
is reawakened. It has little to do with the sequence of nodes on aparticularbranch.

The systematic tableau is a finitely generated tree in that each node has at
most two immediate children (since branches are caused only by the(_) rule).
By Königs lemma, an infinite but finitely generated tree must contain an infinite
branch (see Fitting[1983, pages 404–407]). Hence there are four ways in which
the systematic procedure can go on ad infinitum:

1. by constructing aninfinite branchcontaining a sequence of distinct labelled
formulae� :: P1; � :: P2; � :: P3; � � � ; � :: Pn; � � � all with the same label�;

2. by constructing aninfinite branchcontaining a sequence of labelled formu-
lae�:1 :: P1; �:2 :: P2; �:3 :: P3; � � � ; �:n :: Pn; � � � all simple extensions of
some common�;

TABLEAU METHODS FOR MODAL AND TEMPORAL LOGICS 383

3. by constructing aninfinite branchcontaining a sequence of labelled formu-
lae�1 :: P1; �2 :: P2; �3 :: P3; � � � ; �n :: Pn; � � � all with different labels ;
and

4. by traversing a set of formulae that repeatedly switch from asleep to awake
and vice-versa on thevisit sequence.

We show that items (1), (2) and (4) cannot occur.

LEMMA 34. In any branch of a systematic tableau for the finite set of formulae
X , the maximum number of formulae with some given label� is finite.

Proof. By induction on the length of�. If j�j = 1 then� = 1 and the only possible
formulae with this label are either subformulae ofX , negations of a subformula of
X , or are obtained from some subformulae ofX by the building up rules(l5) and
(lD). But no infinite sequence of building up rules is possible. Ifj�j � 1 then�
must have been created by(l�) which adds only the negation of asubformulaof
its numerator. For details see Fitting[1983, page 411]. �

Item 1 above is then impossible since any branch has but a finite number of
formulae with label� and we do not permit the branch to contain repetitions. We
leave it to the reader to compute actual bounds noting the presence of the ‘building
up rules’(lD) and(l5); see Massacci[1994]

LEMMA 35. In any branch of a systematic tableau for the finite set of formulae
X , the numberNk of different labels of lengthk is finite.

Proof. Proof by induction onk and the fact that the systematic tableau construction
avoids repetitions. See Fitting[1983, pages 410–412] and Massacci[1994] for
more exact bounds but once again beware that these need to be adjusted for the
‘building up rules’. �

Thus no branch can contain an infinite number of labels all of the same length
k for anyk, and item 2 above is also impossible.

We now turn to item 4 in some detail since these details cannot be found else-
where. First note that although a branch does not contain repetitions, the visit
sequence may do so.

LEMMA 36. A particular labelled formula occurrence� :: 2Q on the visit se-
quence can be awakened only a finite number of times.

Proof. The only way to awaken a�-formula occurrence� :: 2Q is to visit some�-
formula occurrence� :: :2P that appears on thesame branchas� :: 2Q. Since
the systematic tableau is finitely branching, the number of such branches is finite.
A branch can contain� :: :2P at most once, hence the number ofoccurrencesof
� :: :2P on the visit sequence is (also) finite. Since� must be of finite length,
Lemma 34 guarantees that there are only a finite number of formulae with label

384 RAJEEV GOŔE

� on any branch of the tableau. Hence there are a finite number of�-formulae
occurrences that can awaken� :: 2Q.

If none of these�-formulae occurrences is visited then� :: 2Q is never awak-
ened. On the other hand, whenever one of these�-formulae occurrences is visited,
it is marked as finished, and�-formulae are never reawakened, hence� :: 2Q can
be awakened only a finite number of times. Since this formula occurrence was an
arbitrary�-formula occurrence we know thatevery�-formula occurrence can be
awakened only a finite number of times. �

LEMMA 37 (Fairness). If a labelled formula occurrence� :: A on the visit se-
quence is awake at the end of Stagen, the systematic procedure is guaranteed to
visit it at some later stage.

Proof: By induction on the number of�-formulae occurrences that precede
� :: A in the visit sequence. Clearly, if� :: A is the root then it is immediately
visited at Stagen+ 1. Similarly, if there are no�-formulae occurrences between
the root and� :: A on the visit sequence then every subsequent stage will visit the
next intervening formulae occurrence in the visit sequence and mark it as asleep
or finished. The absence of intervening�-formulae occurrences means that no
formulae occurrences can awaken until after� :: A is visited. Hence there must
come a stage that visits� :: A.

Suppose the lemma holds for any labelled formula occurrence withj �-formulae
occurrences preceding it in the visit sequence.

Consider some� :: A occurrence that is awake at the end of stagen but that has
j + 1 �-formulae occurrences preceding it in the visit sequence. Let� :: :2B be
the last�-formula occurrence in the visit sequence that precedes� :: A.

If � :: :2B is not awake at the end of stagen then it must be finished, mean-
ing that all�-formula occurrences preceding� :: A in the visit sequence must be
finished. Each subsequent stage must visit one of the awake�-formulae occur-
rences preceding� :: A and mark each one as asleep. No�-formulae occurrences
can awaken during this process since there are no awake�-formula occurrences
preceding� :: A. Hence there must come a stage that visits� :: A.

If � :: :2B is awake at the end of stagen then it satisfies the induction hypoth-
esis, so it will eventually be visited at some later stage, and marked as finished,
meaning that no�-formula occurrences preceding� :: A in the visit sequence
are awake. Some�-formulae occurrences preceding� :: A may be awakened by
the visit to� :: :2B but each of these will be visited in turn and put to sleep in
the stages that follow. Again, no formulae occurrences will be awakened in this
process. Hence there must come a stage when we visit the formula occurrence
immediately after� :: :2B in the visit sequence. If this is� :: A then we are
done. Otherwise this stage and subsequent stages must bring us closer and closer
to � :: A since none of these intervening formulae occurrences is a�-formula. �

LEMMA 38. No labelled formula occurrence on the visit sequence can remain
awake for ever.

TABLEAU METHODS FOR MODAL AND TEMPORAL LOGICS 385

Proof. Suppose the occurrence� :: A is awake at stagen. Lemma 37 guarantees
that� :: A will be visited at some later stagem with m > n. If � :: A is not
a �-formula then it will be marked as finished and will remain so hereafter. Else
� :: A is a �-formula and it will be marked as asleep at the end of stagem. If
� :: A ever awakens at some later stagek then Lemma 37 again guarantees that it
will be visited and put back to sleep. But this can happen only a finite number of
times since Lemma 36 guarantees that� :: A can awaken only a finite number of
times. Hence there must come a stage when� :: A is put to sleep, never to awaken
again. �

Thus the systematic procedure is ‘fair’ in that item 4 is also impossible. The
only way the systematic procedure can go ad infinitum is for some branch to have
at least one infinite sequence of longer and longer labels of the form�, �:n1,
�:n1:n2 � � � where each label is a simple extension of its predecessor. In fact, since
every label starts with a 1 we can be more precise as below (again following Fitting
[Fitting, 1983]).

A chain is a sequence of labels1, �1 , �2 � � � where each label in the sequence
is a simple extension of its predecessor[Fitting, 1983]. A chain of labels1, �1 , �2
� � � from branchB is periodic if there exist distinct labels�i and�j in the chain
(i < j) such that�i :: A is onB iff �j :: A is onB; that is iffAj�i :: A onB g =
fBj�j :: B onB g. A branch isperiodic if every infinite chain (of labels) onB is
periodic.

LEMMA 39. If any branch of a systematic tableau for the finite set of formulae
X is infinite, then it must be periodic[Fitting, 1983].

Proof. Basically, given a finiteX , there is a limit to the number of different (un-
labelled) formulae we can play with, even with the building up rules. Thus any
infinite chain of prefixed formulae from any one branch must repeat formulae at
some stage. Since this is true for every chain on an infinite branch, the branch must
become periodic. �

We thus have a handle on the systematic construction since an infinite branch is
not as bad as it first seemed. If we could keep track of cycles then we could obtain
a decision procedure. We briefly return to this point later.

6.5 Completeness

Again we follow Fitting [1983, pages 408–410] but make adjustments for the
strongly generated property. A strongly generated setX of labelled formulae is
L-downward-saturated if it satisfies the following conditions, where� is the
appropriateL-accessibility relation between labels from Figure 18 (page 379):

0) there is no formulaA such that both� :: A and� :: :A are inX ;

1) if � :: ::A 2 X then� :: A 2 X

386 RAJEEV GOŔE

2) if � :: A ^ B 2 X then� :: A 2 X and� :: B 2 X ;

3) if � :: :(A ^ B) 2 X then� :: :A 2 X or � :: :B 2 X ;

4) if � :: 2A 2 X then� :: A 2 X for every� 2 lab(X) such that� � � ;

5) if � :: :2A 2 X then� :: :A 2 X for some� 2 lab(X) such that� � � .

LEMMA 40. If X is a strongly generated set of labelled formulae that isL-
downward-saturated andlab(X) has root� = 1, thenX is L-satisfiable in a
model whose possible worlds are the labels that appear inX .

Proof. SupposeX is L-downward-saturated and letlab(X) be the set of labels
that appear inX . SinceX is strongly generated, so islab(X). Now define a model
hW;R; V i as follows:

1. letW = lab(X);

2. let�R� iff � � � (that is, iff � isL-accessible from�);

3. for each primitive propositionp let V (p) = f�j� :: p 2 Xg.
It is then easy to show by induction on the degree of a formulaA and theL-

downward-saturated property that: if� :: A 2 X then� j= A in the model
hW;R; V i. The identity mappingI(�) = � is then anL-interpretation forX in
the modelhW;R; V i.

Once again, the condition that� = 1 is forced upon us by our reliance on this
condition in the definitions ofL-accessibility. �

We have already noted that the systematic procedure is essentially a breadth-
first traversal of the tableau under construction. We have also identified the mode
in which this procedure can go ad infinitum. Keeping these in mind, we say that
an open tableau iscompletedif it is infinite or if no formulae in it is awake. But
before we can prove the completeness theorem we need to show that our systematic
procedure ‘does everything that is necessary’ in the following sense.

LEMMA 41. If B is an open branch of a completed systematic tableau thenB is
closed with respect to every tableau rule in the calculus in that: every rule that
could have been applied to a formula inB must have been applied at some stage.

Proof. By fairness, every formula is visited at least once. Thus thePC-rules
and the�-rules must have been applied whenever it was possible. For the�-rules,
suppose� :: 2P is some�-formula onB and suppose some instance of a�-rule
(l�) is applicable to it because some label� of the required form is used onB.

Now, when� :: 2P was first visited, if� was used on the extant part ofB then
we are done for the given instance of rule(l�) must have been applied then.

Else,� must be�:n and must have been created at some later stage by some
awake�-formula� :: :2Q onB. The creation of�:n must have awakened� ::

TABLEAU METHODS FOR MODAL AND TEMPORAL LOGICS 387

2P . SinceB is completed, and our systematic procedure is fair, the procedure
must have visited� :: 2P at some later stage still. The given instance of rule(l�)
must have been applied at that later stage since� was used on the extant part ofB.

�

LEMMA 42. If B is an open branch of a completed systematic tableau thenB is
L-downward-saturated.

Proof. By Lemma 41, B is closed with respect to every rule of the calculus (in
the appropriate sense). We now have to go through the necessary clauses (see
page 385) to show thatB isL-downward-saturated.

Clause0) is satisfied sinceB is open. Clauses1), 2) and3) are satisfied since
B must be closed with respect to the classical propositional rules. Clause5) must
be satisfied becauseB is closed with respect to(l�). For clause4) assume that
� :: 2A 2 B and that��� for some� in lab(B). We have to show that� :: A 2 B
for each definition ofL-accessibility� from Figure 18.

We give the proof forK5 only. By the definition ofK5-accessibility,� � �
means that

� = �:n or (j�j � 2 andj� j � 2)

Case 1: If � = �:n then� :: 2A 2 B implies�n :: A 2 B by the fact thatB is
closed with respect to the rule(lK).
Case 2: Otherwise, if(j�j � 2 andj� j � 2) then� = 1:n1:n2 � � �nk for some
k � 1 and� = 1:m1:m2 � � �ml for somel � 1. Then starting from(� :: 2A) =
(1:n1:n2 � � �nk :: 2A) we can obtain1:n1 :: 2A 2 B and1 :: 2A 2 B by
closure ofB with respect to(l4r). From the first we can obtain1 :: 22A 2 B
by closure ofB with respect to(l5), and from this we obtain1:m1 :: 2A 2 B
by (lK). Now, if l = 1 then� = 1:m1 and1 :: 2A 2 B immediately implies
� :: A 2 B by (lK). Otherwise, ifl � 2 then1:m1 :: 2A 2 B and closure with
respect to(l4d) guarantee that1:m1:m2 � � �ml�1 :: 2A 2 B from which we get
(1:m1:m2 � � �ml :: A) = (� :: A) 2 B by (lK) as desired. �

THEOREM 43. If the systematic tableau forX does not close thenX is L-
satisfiable.

Proof. Suppose the systematic tableau forX does not close. Then the tableau must
be completed, and must contain some open branchB by definition. Lemma 42
guarantees thatB is anL-downward-saturated set. Sincelab(B) must have root
� = 1, Lemma 40 then guarantees thatB is L-satisfiable (under the identityL-
interpretationI(�) = �) in anL-modelM = hlab(B);�; V i. Furthermore, if
� :: A 2 B then� j= A inM. The tableau started with a linear sequence of nodes
1 :: Ai for everyAi 2 X , hence1 :: Ai 2 B for everyAi 2 X . But then1 j= X
inM. �

COROLLARY 44 (Completeness).If A isL-valid then the systematic tableau for
f:Agmust close.

388 RAJEEV GOŔE

These methods extend easily to cater for ‘strong completeness’ where we are
allowed both ‘global’ and ‘local’ assumptions; see Fitting[1983] and Massacci
[1994].

6.6 Cycles, Termination and Decidability

In the previous sections we have seen how an infinite tableau must give rise to
a counter-model. But it is also possible to modify the systematic procedure to
identify potential periodic chains and keep tabs on them during the systematic
procedure. That is, once a chain of labels becomes periodic because�i and�j label
identical sets of formulae, all formulae with the longer label are put to sleep. They
are awakened only when periodicity for this chain is broken by the appearance
of some new formula with a label�i or �j ; see Massacci[1994]. Lemma 39
guarantees that every infinite branch will eventually become periodic, hence the
modified systematic procedure will terminate for finiteX . If the tableau has not
closed then we are still guaranteed the same model as if we had allowed it to run
ad infinitum. Thus these labelled tableaux can be used as decision procedures
for the 15 basic logics. By keeping tabs on cycles we can also prove the finite
model property for these logics since the resultingL-frames are exactly the finite-
L-frames of Figure 13 (page 360).

The details are considerably more intricate than the preceding paragraph sug-
gests since we have to preserve ‘fairness’ and completeness. But there simply is no
space. Massacci[1994; 1995a] gives alternative proofs of decidability for his sys-
tematic procedure based on an interpretation of the tableau rules as term rewriting
rules. But a check for periodicity cannot be avoided for the transitive logics.

6.7 Extensions and Further Work

The most obvious extensions of this approach are to multi-modal logics where
different sorts of labels are used to model the different reachability relations.

An alternative extension is to change the�-rule, thereby obtaining systems for
the provability logics, as shown in Figure 19. Note that first-order definability is
not a hurdle for these labelled tableau systems since the class ofG-frames and
Grz-frames arenot first-order definable. It may also be possible to extend these
systems to handle some of the Diodorean modal logics.

We noted on page 378 that theL-accessibility relation� and the finite-L-frames
of Figure 13 (page 360) are closely related. We also mentioned on page 305 that
there is a duality between the explicit tableau methods and the implicit tableau
methods. We now briefly explain these comments by way of an alternative labelled
tableau systemLC�K45 for logicK45.

Consider the systemLC�K45 = LCPC [f (l�1) ; (l4r�) ; (l4r1) ; (lK) g
where the new rules are as given below:

TABLEAU METHODS FOR MODAL AND TEMPORAL LOGICS 389

(l�G)
� :: :2P
�:n :: :P
�:n :: 2P

where�:n is new to the current branch

(l�Grz)
� :: :2P
�:n :: :P

�:n :: 2(P ! 2P)

where�:n is new to the current branch

LCL PC-Rules �-Rules �-Rule L-accessibility�

LCG LCPC (lK), (l4) (l�G) K

LCK4Go LCPC (lK), (l4) (l�Grz) K4

LCGrz LCPC (lK), (l4), (lT) (l�Grz) S4

Figure 19. Labelled Tableau Systems for Provability Logics

(l4r�)
1:n :: :2P
1 :: :2P (l4r1)

1:n :: 2P

1 :: 2P
(lK)

� :: 2P

�:n :: P

(l�1)
1 :: :2P
1:n :: :P where1:n is new to the current branch

Note: except for1:n in the rule (l�1) , each label in the numerator and
denominator must already exist on the branch.

The systemLC�K45 does not fit into the mould of our other labelled systems
since: it hastwo �-rules, neither of which is the usual(�) rule; the (l4r�) rule
doesnot create a successor but merely moves a�-formula from world1:n to the
root world1; and the(l�1) rule is a special case of the usual(�) rule, and creates
a successor for a� formula only if its label is the root label1. We therefore need
to modify the systematic procedure slightly so that one of the mutually exclusive
rules (l4r�) or (l�1) is applied to the chosen (awake)�-formula as is appropriate.
Then a�-formula with a label� 6= 1 cannot cause the creation of a successor and
a systematicLC�K45-tableau for a finiteX will contain labels of length at most
2. Furthermore, even though the logic is transitive, we do not need any check for
periodicity since every systematic tableau is guaranteed to terminate for finiteX .

THEOREM 45. The rules ofLC�K45 are sound forK45-frames.

Proof. We have to show that if the numerator isK45-satisfiable then so is each
denominator. So as in Section 6.3 (page 377), suppose there is someK45-model
M and anL-interpretationI under which each numerator isK45-satisfiable in
M.

Proof for (l4r�) : If I(1:n) j= :2P then1 � 1:n givesI(1)RI(1:n) which

390 RAJEEV GOŔE

givesI(1) j= 3:2P which isI(1) j= 33:P . Then, by the variant33A! 3A
of the transitivity axiom4 we haveI(1) j= 3:P , that is,I(1) j= :2P as required.

Proof for (l4r1) : If I(1:n) j= 2P then1 � 1:n givesI(1)RI(1:n), giving
I(1) j= 32P , which by the Euclidean axiom32A! 2A givesI(1) j= 2P , as
required.

Proof for (l�1) : The rule (l�1) is just an instance of(l�) and we know the
latter is sound for all Kripke frames. �

THEOREM 46. The calculusLC�K45 is complete with respect toK45-frames.

Proof. We have to show that if the systematic tableau forX is open then some
open branchB gives anK45-downward-saturated set of labelled formulae (see
page 385).

Very well, suppose the systematic tableau forX is open. Choose an open branch
B. The branch must be closed with respect to all the rules ofLC�K45 in the ap-
propriate sense (page 386) since this is a consequence of the systematic procedure
itself rather than the form of the rules. The clauses0) to 3) of the definition of
K45-downward-saturated go through as before. For clause4) note that1�1:n and
1:n�1:m for all n andm, wheren andm are integers, capturesK45-accessibility
overlab(B) completely sinceB contains labels of length at most2. The derivation
below left shows that clause4) must be satisfied while the derivation below right
shows that clause5) must also be satisfied

1:n :: 2P (l4r
1
)

1 :: 2P (lK)
1:m :: P

1:n :: :2P (l4r�)
1 :: :2P (l�1)
1:m :: :P

ThusX isK45-satisfiable under the identityL-interpretationI(�) = � in the
K45-modelhlab(B);�; V i as defined in Lemma 40 on page 386. �

The new rules ofLC�K45 are essentially the operations that we required in
the completeness proofs forCyK45 on page 335. ThusLC�K45 implementsthe
completeness proof forCyK45, butLC�K45 is cut-free! Furthermore, theK45-
model created by the completeness proof forLC�K45 (above) is also a finite-
K45-frame as defined on page 360. The extra power of rules that look backward
againstR, like (l4r1) and (l4r�) , have allowed us to eliminate even analytic cut.

For most cases,LC�K45 will be more efficient thanLCK45 due to the restric-
tion that labels be at most length2. Given a finiteX , the number of prefixes of
length2 on any branch of a systematic tableau forX can be bounded by extending
Lemma 35; see Massacci[1994] or Fitting [1983]. Hence, as pointed out to me by
Massacci, we may even be able to determine the complexity of the decision and
satisfiability problems forK45 using this system, although such results are al-
ready known for most of the basic logics; see[Ladner, 1977; Halpern and Moses,
1985].

TABLEAU METHODS FOR MODAL AND TEMPORAL LOGICS 391

The systemKE of Mondadori[D’Agostino and Mondadori, 1994] has already
been described in another Chapter in thisHandbook. Clearly, it should be possible
to extend all our modal tableau systems by modifying our tableau rules to incorpo-
rate the rule(PB). The only work along these lines that I know of is the work of
Artosi, Governatori and coworkers[Artosi and Governatori, 1994] who use both
(PB) and labelled tableaux, but where the labels are allowed to containvariables
as well as constants. A branch is now closed if it contains some� :: A and some
� :: :A as long as the labels� and� are unifiable as strings with different string
unification algorithms for different modal logics. The rule (PB) is also driven by
string unification of labels. That is, the restrictions on the reachability relation are
not built into a notion likeL-accessibility, but into the unification algorithms. The
main advantage is that we can now ‘detect’ closure subject to a constraint that two
given labels unify.

Ohlbach[1993] has also studied such systems but in a different guise, for
Ohlbach literally translates modal logics into classical first-order logic.

Any method that uses labels is really translating the modal logic into classical
first-order logic since all these methods use a label of ‘universal force’ for2-
formulae and use a label of ‘existential force’ for3-formulae. The recent work of
Russo[1995] makes these intuitions explicit.

ACKNOWLEDGEMENTS

I would like to thank Melvin Fitting, Jean Goubault, Alain Heuerding, Bob Meyer
and Minh Ha Quang for their comments on earlier drafts. Particular thanks to
Fabio Massacci for many useful comments and fruitful discussions, and Nicolette
Bonnette for numerous corrections.

Australian National University, Canberra.

REFERENCES

[Auffray and Enjalbert, 1989] Y. Auffray and P. Enjalbert. Modal theorem proving: An equational
viewpoint. In11th International Joint Conference on Artificial Intelligence, pages 441–445, 1989.

[Artosi and Governatori, 1994] A. Artosi and G. Governatori. Labelled model modal logic. InPro-
ceedings of the CADE-12 Workshop on Automated Model Building, pages 11–17, 1994.

[Amerbauer, 1993] M. Amerbauer.Schnittfreie Tableau- und Sequenzenkalk¨ule für Normale Modale
Aussagenlogiken. PhD thesis, Naturwissenschaftliche Fakult¨at der Universit¨at Salzburg, 1993.

[Avron, 1984] A. Avron. On modal systems having arithmetical interpretations.Journal of Symbolic
Logic, 49:935–942, 1984.

[Avron, 1994] A. Avron. The method of hypersequents in proof theory of propositional non-classical
logics. Technical Report 294-94, Institute of Computer Science, Tel Aviv University, Israel, 1994.

[Banieqbal and Barringer, 1987] B. Banieqbal and H. Barringer. Temporal logic with fixed points. In
Proc. Workshop on Temporal Logic in Specification, LNCS 398, 1987.

[Bellin, 1985] G. Bellin. A system of natural deduction for GL.Theoria, 51:89–114, 1985.
[Beth, 1953] E. W. Beth. On Padoa’s method in the theory of definition.Indag. Math., 15:330–339,

1953.

392 RAJEEV GOŔE

[Beth, 1955] E. W. Beth. Semantic entailment and formal derivability.Mededelingen der Koninklijke
Nederlandse Akademie van Wetenschappen, Afd. Letterkunde, 18:309–342, 1955.

[Borga and Gentilini, 1986] M. Borga and P. Gentilini. On the proof theory of the modal logic Grz.
ZML (now called Mathematical Logic Quarterly), 32:145–148, 1986.

[Baumgartneret al., 1995] P. Baumgartner, R. H¨ahnle, and J. Posegga (Ed.). Proceedings of the fourth
workshop on theorem proving with analytic tableaux and related methods. LNAI 918, 1995.

[Boolos, 1979] G. Boolos.The Unprovability of Consistency. Cambridge University Press, 1979.
[Borga, 1983] M. Borga. On some proof theoretical properties of the modal logic GL.Studia Logica,

42:453–459, 1983.
[Borghuis, 1993] T. Borghuis. Interpreting modal natural deduction in type theory. In Maarten de Ri-

jke, editor,Diamonds and Defaults, pages 67–102. Kluwer Academic Publishers, 1993.
[Beckert and Possega, 1995] B. Beckert and J. Posegga.leanTAP : Lean tableau-based deduction.

Journal of Automated Reasoning, 15(3):339–358, 1995.
[Bull and Segerberg, 1984] R. A. Bull and K. Segerberg. Basic modal logic. In D. Gabbay and

F. Guenthner, editors,Handbook of Philosophical Logic, Volume II: Extensions of Classical Logic,
pages 1–88. D. Reidel, 1984.

[Bull, 1965] R. A. Bull. An algebraic study of Diodorean modal systems.Journal of Symbolic Logic,
30(1):58–64, 1965.

[Bull, 1985] R. A. Bull. Review of ‘Melvin Fitting, Proof Methods for Modal and Intuitionistic Log-
ics, Synthese Library, Vol. 169, Reidel, 1983’.Journal of Symbolic Logic, 50:855–856, 1985.

[Burgess, 1984] J. Burgess. Basic tense logic. In D. Gabbay and F. Guenthner, editors,Extensions
of Classical Logic, volume II ofHandbook of Philosophical Logic, pages 1–88. Reidel, Dordrecht,
1984.

[Catach, 1988] L Catach. TABLEAUX: A general theorem prover for modal logics. InProc. In-
ternational Computer Science Conference: Artificial Intelligence: Theory and Applications, pages
249–256, 1988.

[Catach, 1991] L. Catach. TABLEAUX: A general theorem prover for modal logics.Journal of
Automated Reasoning, 7:489–510, 1991.

[Cerrato, 1993] C. Cerrato. Modal sequents for normal modal logics.Mathematical Logic Quarterly
(previously ZML), 39:231–240, 1993.

[Chellas, 1980] B. F. Chellas.Modal Logic: An Introduction. Cambridge University Press, 1980.
[Chang and Lee, 1973] G. L. Chang and R. G. T. Lee.Symbolic logic and mechanical theorem prov-

ing. Academic Press, New York, 1973.
[Curry, 1952] H. B. Curry. The elimination theorem when modality is present.Journal of Symbolic

Logic, 17:249–265, 1952.
[D’Agostino and Mondadori, 1994] M. D’Agostino and M. Mondadori. The taming of the cut: clas-

sical refutations with analytic cut.Journal of Logic and Computation, 4:285–319, 1994.
[Gudzhinskas, 1982] É. Gudzhinskas. Syntactical proof of the elimination theorem for von Wright’s

temporal logic.Mat. Logika Primenen, 2:113–130, 1982.
[Emerson and Halpern, 1985] E. A. Emerson and J. Y. Halpern. Decision procedures and expressive-

ness in the temporal logic of branching time.Journal of Computer and System Sciences, 30:1–24,
1985.

[Emerson, 1985] E. A. Emerson. Automata, tableaux, and temporal logics. InProc. Logics of Pro-
grams 1985, LNCS 193, pages 79–87, 1985.

[Emerson, 1990] E. A. Emerson. Temporal and modal logic. In J. van Leeuwen, editor,Handbook of
Theoretical Computer Science, volume Volume B: Formal Models and Semantics, chapter 16. MIT
Press, 1990.

[Emerson and Sistla, 1983] E. A. Emerson and A. P. Sistla. Deciding branching time logic: A triple
exponential decision procedure forCTL�. Proc. Logics of Programs, LNCS 164, pages 176–192,
1983.

[Emerson and Sistla, 1984] E. A. Emerson and A. P. Sistla. Deciding branching time logic. InProc.
16th ACM Symposium Theory of Computing, pages 14–24, 1984.

[Emerson and Srinivasan, 1988] E. A. Emerson and J. Srinivasan. Branching time temporal logic. In
Proc. School/Workshop on Linear Time, Branching Time and Partial Order In Logics and Models
of Concurrency, The Netherlands, 1988, LNCS 354, pages 123–172, 1988.

[Faginet al., 1995] R. Fagin, J. Halpern, Y. Moses and M. Vardi.Reasoning about Knowledge. The
MIT Press, Cambridge, MA, 1995.

TABLEAU METHODS FOR MODAL AND TEMPORAL LOGICS 393

[Fisher, 1991] M. Fisher. A resolution method for temporal logic. InProc. 12th International Joint
Conference on Artificial Intelligence 1991, pages 99–104. Morgan-Kaufmann, 1991.

[Fitting, 1973] M. Fitting. Model existence theorems for modal and intuitionistic logics.Journal of
Symbolic Logic, 38:613–627, 1973.

[Fitting, 1983] M. Fitting. Proof Methods for Modal and Intuitionistic Logics, volume 169 ofSynthese
Library. D. Reidel, Dordrecht, Holland, 1983.

[Fitting, 1993] M. Fitting. Basic modal logic. In D. Gabbay et al, editor,Handbook of Logic in
Artificial Intelligence and Logic Programming: Logical Foundations, volume 1, pages 365–448.
Oxford University Press, 1993.

[Frisch and Scherl, 1991] A. M. Frisch and R. B. Scherl. A general framework for modal deduction.
In J. Allen, R. Fikes, and E. Sandewall, editors,Proc. 2nd Conference on Principles of Knowledge
Representation and Reasoning. Morgan-Kaufmann, 1991.

[Gabbay, 1987] D. Gabbay. The declarative past and imperative future: Executable temporal logic
for interactive systems. InProc. Workshop on Temporal Logic in Specification, LNCS 398, pages
409–448. Springer-Verlag, 1987.

[Gabbay, 1997] D. Gabbay.Labelled Deductive Systems. Oxford University Press, 1997.
[Gentzen, 1935] G. Gentzen. Untersuchungen ¨uber das logische Schliessen.Mathematische

Zeitschrift, 39:176–210 and 405–431, 1935. English translation: Investigations into logical de-
duction, in The Collected Papers of Gerhard Gentzen, edited by M. E. Szabo, pp 68-131, North-
Holland, 1969.

[Gent, 1991] I. Gent. Analytic Proof Systems for Classical and Modal Logics of Restricted Quantifi-
cation. PhD thesis, Dept. of Computer Science, University of Warwick, Coventry, England, 1991.

[Gent, 1991a] I. Gent. Theory tableaux. Technical Report 91-62, Mathematical Sciences Institute,
Cornell University, 1991.

[Gent, 1993] I. Gent. Theory matrices (for modal logics) using alphabetical monotonicity.Studia
Logica, 52(2):233–257, 1993.

[Goré et al., 1995] R. Goré, W. Heinle, and A. Heuerding. Relations between propositional normal
modal logics: an overview. Technical Report TR-16-95, Automated Reasoning Project, Australian
National University, 1995. Available viahttp://arp.anu.edu.au/ on WWW.

[Gabbayet al., 1994] D M Gabbay, I. M. Hodkinson, and M A Reynolds.Temporal logic - mathe-
matical foundations and computational aspects, Volume 1. Oxford University Press, 1994.

[Goldblatt, 1987] R. I. Goldblatt.Logics of Time and Computation. CSLI Lecture Notes Number 7,
Center for the Study of Language and Information, Stanford, 1987.

[Goré, 1991] R. Goré. Semi-analytic tableaux for modal logics with applications to nonmonotonicity.
Logique et Analyse, 133-134:73–104, 1991. (printed in 1994).

[Goré, 1992] R. Goré. Cut-free sequent and tableau systems for propositional normal modal logics.
Technical Report 257, University of Cambridge, England, June, 1992.

[Goré, 1994] R. Goré. Cut-free sequent and tableau systems for propositional Diodorean modal log-
ics. Studia Logica, 53:433–457, 1994.

[Gough, 1984] G. Gough. Decision procedures for temporal logics. Master’s thesis, Dept. of Com-
puter Science, University of Manchester, England, 1984.

[Hanson, 1966] W. Hanson. Termination conditions for modal decision procedures (abstract only).
Journal of Symbolic Logic, 31:687–688, 1966.

[Hughes and Cresswell, 1968] G. E. Hughes and M. J. Cresswell.Introduction to Modal Logic.
Methuen, London, 1968.

[Hughes and Cresswell, 1984] G. E. Hughes and M. J. Cresswell.A Companion to Modal Logic.
Methuen, London, 1984.

[Hintikka, 1955] K. J. J. Hintikka. Form and content in quantification theory.Acta Philosophica
Fennica, 8:3–55, 1955.

[Halpern and Moses, 1985] J. Y. Halpern and Y. Moses. A guide to the modal logics of knowledge
and belief: Preliminary draft. InProc. International Joint Conference on Artificial Intelligence,
pages 480–490, 1985.

[Heuerdinget al., 1996] Alain Heuerding, Michael Seyfried, and Heinrich Zimmermann. Efficient
loop-check for backward proof search in some non-classical logics. Submitted to Tableaux 96.

[Hudelmaier, 1994] J. Hudelmaier. On a contraction free sequent calculus for the modal logic S4. In
Proceedings of the 3rd Workshop on Theorem Proving with Analytic Tableaux and Related Methods.
Technical Report TR-94/5, Department of Computing, Imperial College, London, 1994.

394 RAJEEV GOŔE

[Kamp, 1968] J. A. W. Kamp. Tense Logic and the Theory of Linear Order. PhD thesis, Dept. of
Philosophy, University of California, USA, 1968.

[Kanger, 1957] S. Kanger. Provability in Logic. Stockholm Studies in Philosophy, University of
Stockholm, Almqvist and Wiksell, Sweden, 1957.

[Kawai, 1987] H. Kawai. Sequential calculus for a first-order infinitary temporal logic.ZML (now
Mathematical Logic Quarterly), 33:423–432, 1987.

[Kawai, 1988] H. Kawai. Completeness theorems for temporal logics T
 and2T
. ZML (now
Mathematical Logic Quarterly), 34:393–398, 1988.

[Koshimura and Hasegawa, 1994] M. Koshimura and R. Hasegawa. Modal propositional tableaux in
a model generation theorem prover. InProceedings of the 3rd Workshop on Theorem Proving with
Analytic Tableaux and Related Methods. Technical Report TR-94/5, Department of Computing,
Imperial College, London, 1994.

[Kracht, 1996] M. Kracht. Power and weakness of the modal display calculus. In H. Wansing, editor,
Proof Theory of Modal Logics. Kluwer, 1996. to appear.

[Kripke, 1959] S. Kripke. A completeness theorem in modal logic.Journal of Symbolic Logic,
24(1):1–14, March 1959.

[Kripke, 1963] S. Kripke. Semantical analysis of modal logic I: Normal modal propositional calculi.
Zeitschrift für Mathematik Logik und Grundlagen der Mathematik, 9:67–96, 1963.

[Ladner, 1977] R. Ladner. The computational complexity of provability in systems of modal proposi-
tional logic. SIAM Journal of Computing, 6(3):467–480, 1977.

[Masini, 1991] A. Masini. 2-sequent calculus: Classical modal logic. Technical Report TR-13/91,
Universita Degli Studi Di Pisa, 1991.

[Masini, 1992] A. Masini. 2-sequent calculus: A proof theory of modalities.Annals of Pure and
Applied Logic, 58:229–246, 1992.

[Masini, 1993] A. Masini. 2-sequent calculus: Intuitionism and natural deduction.Journal of Logic
and Computation, 3(5):533–562, 1993.

[Massacci, 1994] F. Massacci. Strongly analytic tableaux for normal modal logics. In Alan Bundy,
editor,Proc. CADE-12, LNAI 814, pages 723–737. Springer, 1994.

[Massacci, 1995] F. Massacci. Personal communication, December 1995.
[Massacci, 1995a] F. Massacci. Simple steps tableaux for modal logics. Submitted for publication,

1995.
[Merz, 1992] S. Merz. Decidability and incompleteness results for first-order temporal logics of linear

time. Journal of Applied Non-Classical Logic, 2(2), 1992.
[Miglioli et al., 1995] P. Miglioli, U. Moscato, and M. Ornaghi. Refutation systems for propositional

modal logics. In P. Baumgartner, R. H¨ahnle, and J. Posegga, editors,Proceedings of the 4th Work-
shop on Theorem Proving with Analytic Tableaux and Related Methods, volume LNAI 918, pages
95–105. Springer-Verlag, 1995.

[Moore, 1985] R. C. Moore. Semantical considerations on nonmonotonic logic.Artificial Intelligence,
25:272–279, 1985.

[Morgan, 1976] C. G. Morgan. Methods for automated theorem proving in nonclassical logics.IEEE
Transactions on Computers, C-25(8):852–862, 1976.

[Muller et al., 1988] D. E Muller, A. Saoudi, and P. E Schupp. Weak alternating automata give a
simple explanation of why most temporal and dynamic logics are decidable in exponential time. In
Proc. Logics in Computer Science, pages 422–427, 1988.

[Mareket al., 1991] W. Marek, G. Schwarz, and M. Truszczynski. Modal nonmonotonic logics:
ranges, characterisation, computation. Technical Report 187-91, Dept. of Computer Science, Uni-
versity of Kentucky, USA, 1991.

[Nakamuraet al., 1987] H. Nakamura, M. Fujita, S. Kono, and H. Tanaka. Temporal logic based fast
verification system using cover expressions. In C H S´equin, editor,VLSI ‘87, Proceedings of the
IFIP TC 10/WG 10.5 International Conference on VLSI, Vancouver, pages 101–111, 1987.

[Ohlbach, 1990] H. J. Ohlbach. Semantics based translation methods for modal logics. Technical
Report SEKI Report SR-90-11, Universit¨at Kaiserslautern, Postfach, 3049, D-6750, Kaiserslautern,
Germany, 1990.

[Ohlbach, 1993] H. J. Ohlbach. Translation methods for non-classical logics: An overview.Bulletin
of the Interest Group in Pure and Applied Logics, 1(1):69–89, 1993.

[Ohnishi and Matsumoto, 1957] M. Ohnishi and K. Matsumoto. Corrections to our paper ‘Gentzen
method in modal calculi I’.Osaka Mathematical Journal, 10:147, 1957.

TABLEAU METHODS FOR MODAL AND TEMPORAL LOGICS 395

[Ohnishi and Matsumoto, 1957a] M. Ohnishi and K. Matsumoto. Gentzen method in modal calculi I.
Osaka Mathematical Journal, 9:113–130, 1957.

[Ohnishi and Matsumoto, 1959] M. Ohnishi and K. Matsumoto. Gentzen method in modal calculi II.
Osaka Mathematical Journal, 11:115–120, 1959.

[Oppacher and Suen, 1988] F. Oppacher and E. Suen. HARP: A tableau-based theorem prover.Jour-
nal of Automated Reasoning, 4:69–100, 1988.

[Paech, 1988] B. Paech. Gentzen-systems for propositional temporal logics. InProc. 2nd Workshop
on Computer Science Logics, LNCS 385, pages 240–253, 1988.

[Pliuskevicius, 1991] R. Pliuskevicius. Investigations of finitary calculus for a discrete linear time
logic by means of finitary calculus. InLNCS vol 502, pages 504–528. Springer-Verlag, 1991.

[Pottinger, 1983] G. Pottinger. Uniform, cut-free formulations of T, S4 and S5.Abstract in JSL,
48:900–901, 1983.

[Rautenberg, 1979] W. Rautenberg.Klassische und Nichtklassische Aussagenlogik. Vieweg, Wies-
baden, 1979.

[Rautenberg, 1983] W. Rautenberg. Modal tableau calculi and interpolation.Journal of Philosophical
Logic, 12:403–423, 1983.

[Rautenberg, 1985] W. Rautenberg. Corrections for modal tableau calculi and interpolation by W.
Rautenberg, JPL 12 (1983).Journal of Philosophical Logic, 14:229, 1985.

[Rautenberg, 1990] W. Rautenberg. Personal communication, December 5th, 1990.
[Russo, 1995] A. Russo. Modal labelled deductive systems. Technical Report TR-95/7, Dept. of

Computing, Imperial College, London, 1995.
[Sistla and Clarke, 1985] A. P. Sistla and E. M. Clarke. The complexity of propositional linear tem-

poral logics.Journal of the Association for Computing Machinery, 32(3):733–749, 1985.
[Schwarz, 1992] G. Schwarz. Minimal model semantics for nonmonotonic modal logics. InProc.

Logics in Computer Science, 1992.
[Segerberg, 1971] K. Segerberg. An essay in classical modal logic (3 vols.). Technical Report

Filosofiska Studier, nr 13, Uppsala Universitet, Uppsala, 1971.
[Shimura, 1991] T. Shimura. Cut-free systems for the modal logic S4.3 and S4.3GRZ.Reports on

Mathematical Logic, 25:57–73, 1991.
[Shvarts, 1989] G. F. Shvarts. Gentzen style systems for K45 and K45D. In A. R. Meyer and M. A.

Taitslin, editors,Logic at Botik ’89, Symposium on Logical Foundations of Computer Science, LNCS
363, pages 245–256. Springer-Verlag, 1989.

[Slaght, 1977] R. L. Slaght. Modal tree constructions.Notre Dame Journal of Formal Logic,
18(4):517–526, 1977.

[Schwarz and Truszczynski, 1992] G. E. Schwarz and M. Truszczynski. Modal logic S4F and the
minimal knowledge paradigm. InProc. of Theoretical Aspects of Reasoning About Knowledge,
1992.

[Stirling, 1992] C. Stirling. Modal and temporal logics for processes. Technical report, Dept of
Computer Science, Edinburgh University, 1992. ECS-LFCS-92-221.

[Sambin and Valentini, 1980] G. Sambin and S. Valentini. A modal sequent calculus for a fragment
of arithmetic.Studia Logica, 34:245–256, 1980.

[Sambin and Valentini, 1982] G. Sambin and S. Valentini. The modal logic of provability: the se-
quential approach.Journal of Philosophical Logic, 11:311–342, 1982.

[Shimura, 1992] T. Shimura. Cut-free systems for some modal logics containing S4.Reports on Math-
ematical Logic, 26:39–65, 1992.

[Valentini, 1983] S. Valentini. The modal logic of provability: Cut-elimination.Journal of Philosoph-
ical Logic, 12:471–476, 1983.

[Valentini, 1986] S. Valentini. A syntactic proof of cut elimination for GLlin. Zeitschrift für Mathe-
matische Logik und Grundlagen der Mathematik, 32:137–144, 1986.

[van Benthem and Blok, 1978] J. F. A. K. van Benthem and W. Blok. Transitivity follows from Dum-
mett’s axiom.Theoria, 44:117–118, 1978.

[van Benthem, 1983] J. F. A. K. van Benthem.The Logic of Time: a model-theoretic investigation into
the varieties of temporal ontology and temporal discourse. Synthese library; vol. 156, Dordrecht:
Reidel, 1983.

[van Benthem, 1984] J. F. A. K. van Benthem. Correspondence theory. In D. Gabbay and F. Guenth-
ner, editors,Handbook of Philosophical Logic, volume II, pages 167–247. D. Reidel, 1984.

[Valentini and Solitro, 1983] S. Valentini and U. Solitro. The modal logic of consistency assertions of
Peano arithmetic.ZML (now Mathematical Logic Quarterly), 29:25–32, 1983.

396 RAJEEV GOŔE

[Vardi and Wolper, 1986] M. Vardi and P. Wolper. Automata-theoretic techniques for modal logics of
programs.Journal of Computer and System Sciences, 32, 1986.

[Wallen, 1989] L. A. Wallen. Automated Deduction in Nonclassical Logics: Efficient Matrix Proof
Methods for Modal and Intuitionistic Logics. MIT Press, 1989.

[Wansing, 1994] Heinrich Wansing. Sequent calculi for normal modal propositional logics.Journal
of Logic and Computation, 4, 1994.

[Wolper, 1983] P. Wolper. Temporal logic can be more expressive.Information and Control, 56:72–
99, 1983.

[Wolper, 1985] P. Wolper. The tableau method for temporal logic: an overview.Logique et Analyse,
110-111:119–136, 1985.

[Zeman, 1973] J. J. Zeman.Modal Logic: The Lewis-Modal Systems. Oxford University Press, 1973.

MARCELLO D’AGOSTINO, DOV GABBAY, KRYSIA BRODA

TABLEAU METHODS
FOR SUBSTRUCTURAL LOGICS

1 INTRODUCTION

Over the last few decades a good deal of research in logic has been prompted
by the realization that logical systems can be successfully employed to formal-
ize and solve a variety of computational problems. Traditionally, the theoretical
framework for most applications was assumed to beclassical logic. However,
this assumption often turned out to clash with researchers’ intuitions even in well-
established areas of application. Let us consider, for example, what is probably the
most representative of these application areas: logic programming. The idea that
the execution of a Prolog program is to be understood as a derivation in classical
logic has played a key role in the development of the area. This interpretation is the
leitmotiv of Kowalski’s well-known[1979], whose aim is described as an attempt
‘to apply the traditional methods of [classical] logic to contemporary theories of
problem solving and computer programming’. However, here are some quotations
which are clearly in conflict with the received view (and with each other) as to the
correct interpretation of logic programs:

Relevance Logic not only shows promise as a standard for modular reasoning
systems, but it has, in a sense, been already adopted by artificial intelligence
researchers. The resolution method for Horn clausesappearsto be based on
classical logic, butprocedural derivation(see[Kowalski, 1979]), the method
actually used for logic programming, is not complete for classical logic, and is
in fact equivalent to Relevance Logic.[. . .] the systems of modules which are
actually used in computer science have the feature that relevance, not classical
logic, provides a theory of their behaviour.[Garson, 1989, p.214]

According to the standard view, a logic program is a definite set of Horn
clauses. Thus logic programs are regarded as syntactically restricted first-
order theories within the framework of classical logic. Correspondingly, the
proof-theory of logic programs is considered as a specialized version of clas-
sical resolution, known as SLD-resolution. This view, however, neglects the
fact that a program clausea0 a1; a2; : : : ; an is an expression of a frag-
ment of positive logic [a subsystem of Intuitionistic Logic] rather than an
implication formula of classical logic. The logical behaviour of such clauses
is in no way related to any negation or complement operation. So (positive)
logic programs are ‘sub-classical’. The classical interpretation seems to be a
semantical overkill’ [Wagner, 1991, p.835].

This is just an example of ageneralphenomenon which arises in the application of
logic: we start from a logicL (e.g. classical logic) and develop a deduction system

398 MARCELLO D’AGOSTINO, DOV GABBAY, KRYSIA BRODA

for L. Then, in order to adapt this system to a given application problem, we often
introducead hoc procedural‘perturbations’ which restrict the original logicL and
turn it into another logicL�. Now we have two alternatives. We may regardL� as
the result of application-dependent constraints which belong to the ‘pragmatics’ of
L. If we adopt this conservative option, the behaviour ofL� belongs to the domain
of applied logic, the effects of the perturbations and the overall behaviour of the
perturbed system can be regarded as typical engineering problems. Alternatively,
instead of imposing some theoretical system borrowed from the literature on pure
logic, we may decide to recognizeL� as a first-class citizen, i.e. a logical system
in its own sake, which can become an independent object of investigation. In this
way the behaviour ofL� becomes a new theoretical problem and belongs to the
domain ofpure logic. We can then try to provide a theoretical characterization of
the new system by exploiting its analogy with more familiar ones (for instance, we
can axiomatizeL�, produce Gentzen-style proof systems, develop algebraic and
relational semantics for it).

In this chapter we shall focus on an important family of logical systems, which
arise from ‘perturbations’ of classical and intuitionistic logic and are known as
substructuralor resourcelogics. Historically, the subject of substructural logics
arises from the combination of four main components:

� the tradition of Relevance Logic (Anderson, Belnap, Meyer);

� the work on BCK Logic (Fitch, Nelson, Meredith, Prior);

� the work on Categorial Logic, (Curry, Howard, Lambek, Van Benthem);

� the recent developments in Linear Logic, (Girard, Lafont).

We shall not attempt here to provide an introduction to the subject and shall as-
sume the reader to be familiar at least with the basic ideas involved. The reader is
referred to[Dôsen, 1993] for the necessary historical and conceptual background.
We shall, however, try and give a flavour of the subject by briefly discussing its
impact on the traditional notion of logical deduction.

1.1 Background on substructural logics

Substructural logics ultimately stem from Gentzen’sInvestigations into Logical
Deduction [Gentzen, 1935], and in particular from his characterization of deduc-
tive inference in terms of calculi of sequents. Such calculi can be seen as axioma-
tizations of the notion of logical consequence, expressed by the turnstile`, which
characterize classical and intuitionistic inferences. Gentzen’s analysis brought to
light that the properties of̀ fall in two categories:

� Properties characterizing the behaviour of the logical operators!;^;_;:,
fixed by theoperationalrules.

TABLEAU METHODS FOR SUBSTRUCTURAL LOGICS 399

� Properties pertaining to the interpretation of`, fixed by thestructural rules
(including the cut rule).

Gentzen’s approach already contained the possibility ofheuristic variations. The
operational rules of his sequent calculus can be seen as expressing the meaning
of the logical operators, while the structural properties of the turnstile as express-
ing the properties of the underlyinginformation system, i.e. the rules that govern
the information-processing mechanism. From the viewpoint of the present chap-
ter, this heuristic is central. Many perturbations of classical and intuitionistic logic,
prompted by their interaction with computational, philosophical or linguistic prob-
lems, are captured by re-interpreting the relation`, via variations of its structural
properties.

Such ‘perturbed’ systems may have a decent proof-theory and even an intuitive
semantics, but can we call them ‘logics’? An answer to this question depends, of
course, on our definition of ‘logic’. Very seldom definitions are completely stable,
and this is no exception. A ‘logic’ is usually identified with aconsequence rela-
tion, i.e. a binary relation formalizing the intuitive notion of logical consequence.
According to the traditional definition, which was first formulated explicitly by
Tarski[1930a; 1930b], a consequence relation is a relation` between sets of for-
mulae and formulae satisfying the following conditions:

(Identity) A ` A

(Monotonicity) � ` B =) �; A ` B

(Transitivity) �; A ` B and� ` A =) �;� ` B

where� and� aresetsof formulae (we write, as usual, ‘A’ instead of ‘fAg’ and
‘�; A’ instead of� [fAg’).

For instance, the system of intuitionistic implication can be shown to corre-
spond to the smallest consequence relation closed under the following additional
condition concerning the! operator:

(Cond) �; A ` B () � ` A! B

The closure conditions in the definition of consequence relation are allstructural
conditions, i.e. they do not involve any specific logical operator, but express ba-
sic properties of the notion of logical consequence1. The emergence of Relevance
Logic (see the monumental[Anderson and Belnap, 1975] and [Andersonet al.,
1992]; for an overview see[Dunn, 1986]) showed the inadequacy of this tradi-
tional definition. If the systemR proposed by Anderson and Belnap had to be
called ‘logic’, the definition had to be amended. Let’s see why.

1This terminology goes back to Gentzen[1935] and his distinction between structural and opera-
tional rules in the sequent calculi.

400 MARCELLO D’AGOSTINO, DOV GABBAY, KRYSIA BRODA

The whole idea of Relevance Logic is that in a ‘proper’ deduction all the pre-
misseshave to be used at least onceto establish the conclusion, so as to stop
the validity of the notorious ‘fallacies of relevance’ such as the so-called ‘posi-
tive paradox’A ! (B ! A). This criterion of use is ultimately sufficient to
prevent the fallacies from being provable. For instance, in the typical natural de-
duction proof of the positive paradox the assumptionB is discharged ‘vacuously’
by the application of the!-introduction rule, i.e. it is not used in obtaining the
conclusion of the subproof constituting the premiss of the rule application. If we
restrict our notion of proof in such a way that all the assumptions have to beused
in order to obtain the conclusion of the proof, such ‘vacuous’ applications of the
!-introduction rule are not allowed, since the subproof which occurs as premiss
would not be a ‘proper proof’. So, the standard proof is no longer an acceptable
proof of the positive paradox, and it can be shown that no alternative proofs can be
found.

The criterion of use is clearly of a ‘metalevel’ nature. It takes the form of a
side-condition on the application of the natural deduction rules. Let us consider
the restricted deducibility relatioǹ0ND which incorporates this side-condition. Is
it a consequence relation in the traditional sense? The answer is obviously ‘no’,
because it does not satisfy (Monotonicity), in that this condition would allow the
addition of ‘irrelevant’ assumptions which are not used in deducing the conclusion.
So, if we want to consider the system of relevant implication as a logic, we have
to drop (Monotonicity) from our definition of a consequence relation.

But this is not the whole story. In the systemR, the definition of a ‘relevant’
deduction requires that every singleoccurrenceof an assumption is used to ob-
tain the conclusion. Now, let us write� `R A, where� is a finite sequence of
formulae, to mean that there is anR-deduction ofA using all the elements of�
(which areoccurrencesof formulae). Consider the statementA;A `R A. This
is not provable because there is no way of using both occurrences ofA in the an-
tecedent in order to obtain the conclusion, i.e. one of these two occurrences is
‘irrelevant’. Therefore, whileA `R A is trivially provable,A;A `R A is not. It
becomes provable if we ‘dilute’ the criterion of use to the effect thatat least one
occurrence of each assumption needs to be used, as in the ‘mingle’ system (see
[Dunn, 1986]). The trouble is that the distinction between these two different ap-
proaches to the notion of relevance cannot be expressed by the traditional notion of
consequence relation. Indeed, according to this notion, a consequence relation is
taken to be a relation betweensetsof formulae and formulae. But there is no way
to distinguish the setfA;Ag from the setfAg and, therefore, betweenA;A `R A
andA `R A. To make this sort of distinction we need a finer-grained notion of
consequence relation.

In fact, such a finer-grained notion was already contained in Gentzen’s calculus
of sequents[Gentzen, 1935]. In this approach, a (single-conclusion2) consequence

2Gentzen also consideredmultiple-conclusionconsequence relations and showed that this more
general notion was more convenient for the formalization of classical logic. See[Gentzen, 1935].

TABLEAU METHODS FOR SUBSTRUCTURAL LOGICS 401

relation is axiomatized as a relation between a finitesequenceof formulae and a
formula. That such a relation holds between a sequence� and a formulaA is ex-
pressed by thesequent� ` A (Gentzen used the notation� =) A, but we prefer
the ‘turnstile’ notation for reasons of uniformity). The axioms of Gentzen’s system
are given by all the sequents of the formA ` A. Gentzen specified also two sets of
rules to derive new sequents from given ones, that he calledoperational rulesand
structural rules. While the first type of rules embodied, in his view, the meaning of
the logical operators, the second type embodied the meaning of`. These structural
rules are the following:

Weakening
�;� ` B

�; A;� ` B

Exchange
�; A;B;� ` C
�; B;A;� ` C

Contraction
�; A;A;� ` B

�; A;� ` B

Cut
� ` A �; A;� ` B

�;�;� ` B
Here the Weakening rule corresponds to the Monotonicity condition of a conse-
quence relation, and Cut corresponds to Transitivity, except that, in the sequent
formulation, the structure on the left of̀is asequence, rather than aset, of for-
mulae. Moreover, in Gentzen’s system the role of the Identity condition is played
by the assumption that every axiomA ` A can be used at any step of a sequent
proof. The remaining rules of Contraction and Exchange have the effect of mak-
ing Gentzen’s relations̀deductively equivalent to the corresponding consequence
relations withsetsas first argument.

Gentzen’s richer axiomatization provides the means of characterizing systems
like R as ‘substructural’ consequence relations, i.e. logics for which the standard
structural rules of Gentzen’s axiomatization may not hold. In the case ofR, the rule
which is dropped is the Weakening rule, responsible for the arbitrary introduction
of ‘irrelevant’ items in the antecedent of a sequent. After removing Weakening,
one can consider a rule symmetric to the Contraction rule:

Expansion
�; A;� ` B

�; A;A;� ` B
The more ‘liberal’ mingle system is then distinguished fromR by the fact that it
allows for this weaker version of the Weakening rule.

402 MARCELLO D’AGOSTINO, DOV GABBAY, KRYSIA BRODA

The discussion of Relevance Logic clearly brings out the general idea that vari-
ations in the notion of logical consequence correspond to variations in the allowed
structural rulesof a suitable sequent-based system, leaving the basicoperational
rules unchanged. With Girard’s Linear Logic[Girard, 1987; Avron, 1988a] the
‘substructural movement’ reached its climax. Linear Logic completely rejects the
‘vagueness’ of traditional proof-theory concerning the use and manipulation of as-
sumptions in a deductive process. A ‘proper’ proof is one in which every assump-
tion is usedexactly once. If a particular assumptionA can be usedad libitum, this
has to be madeexplicit by prefixing it with the ‘storage’ operator!. This means
that the Contraction rule is not sound in Linear Logic, since it says, informally,
that a proof ofB from two occurrences ofA can be turned into a proof ofB from
one occurrence only ofA. But this is impossible, unlessA is one of those as-
sumptions which can be usedad libitum, in which case we should prefix it with
the storage operator. In the ‘non-commutative’ variant of Linear Logic — which
was anticipated in 1958 by Lambek[1958] as a system intended for applications
to mathematical linguistics (see Abrusci[1990; 1991] and [van Benthem, 1991]
for further developments — also theorder in which assumptions are used becomes
crucial, and therefore the Exchange rule is also disallowed.

In this chapter we shall focus on tableau methods for substructural logics and
shall discuss two main lines of research: the approach based on ‘proof-theoretic’
tableaux developed by McRobbie, Belnap and Meyer, which is motivated by the
work done in the tradition of Relevance Logic; and the approach based on ‘labelled
tableaux’, an outgrowth of Gabbay’s research program onLabelled Deductive Sys-
tems.

1.2 Substructural Consequence Relations

In this chapter we take aconsequence relationas a relatioǹ betweensequences
of formulae and formulae, satisfying:

Identity A ` A

Surgical Cut
� ` A �; A;� ` B

�;�;� ` B
Since the�, � and� range over sequences, an application of the cut rule replaces
anoccurrenceof the formulaA with the sequence� exactly in the position ofA.
This is why we call the cut ‘surgical’.

Structural rules. Apart from the cut rule, which is part of their definition, con-
sequence relations may or may not obey any of the following conditions describing
their structural properties:

TABLEAU METHODS FOR SUBSTRUCTURAL LOGICS 403

Exchange
�; A;B;� ` C
�; B;A;� ` C

Contraction
�; A;A;� ` C

�; A;� ` C

Expansion
�; A;� ` C

�; A;A;� ` C
Weakening

�;� ` C
�; A;� ` C

We can think of a sequent� ` A as stating that the piece of information expressed
by A is ‘contained’ in the data structure expressed by�. Then different combi-
nations of the above structural rules can be seen as different ways of defining the
properties of the ‘information flow’ expressed by the turnstile, depending on the
structure of the data and on the allowed ways of manipulating it. For instance, if
we disallow the Weakening rule, the consequence relation becomes sensitive to the
relevanceof the data to the conclusion:all the data has to be used in the deriva-
tion process. If also Expansion is disallowed, this notion of relevance extends to
the single occurrences of the formulae in the data (as in Anderson and Belnap’s
system of Relevance Logic, eachoccurrenceof a formula in the data has to be
used). If Contraction is disallowed, each item of data can be used onlyonceand
has to be replicated if it is used more than once (as in Girard’s Linear Logic and its
satellites). In this way the process of deriving a formula becomes more similar to a
physical process and the consequence relation becomes sensitive to the resources
employed. Finally, if Exchange is disallowed, the ‘chronology’ of this process —
i.e. the order in which formulae occur in the data — becomes significant (as in the
Lambek calculus).

Notice that if Exchange is allowed, the antecedent of a sequent can be regarded
as amultiset.3 If Contraction and Expansion are also allowed (notice that the
Weakening rule implies the Expansion rule) the antecedent of a sequent can be re-
garded as asetof formulae, as with the standard Gentzen systems, i.e. the number
of occurrences of formulae does not count, nor does the order in which they occur.

The operator!. The conditional operator, or ‘implication’ as is often improp-
erly called, is usually characterized by the following equivalence:

C! � ` A! B () �; A ` B

which, under the assumption of Identity and Surgical cut is equivalent to the pair
of sequent rules:

(1)
�; A ` B

� ` A! B

� ` A �; B ` C
�; A! B;� ` C

3For multiset-based consequence relations, the reader is referred to[Avron, 1991].

404 MARCELLO D’AGOSTINO, DOV GABBAY, KRYSIA BRODA

For instance, we can derive the only-if part of C! from the Gentzen rules (the
if-part is a primitive rule) as follows:

� ` A! B

A ` A B ` B
A! B;A ` B

[CUT]
�; A ` B

Notice that ifnostructural rule, except the cut rule, is to be used in the derivation,
the shape of the latter depends crucially on the format of the operational rules
and of the cut rule. Notice also that in systems which do not allowExchangethe
conditional operator splits into two operators defined as follows:

C!1
�; A ` B () � ` A!1 B

C!2
A;� ` B () � ` A!2 B.

Of course, ifExchangeis allowed!1 and!2 collapse into each other. In this
context we shall use the symbol! without subscripts.

The operators
 and ^. In the classical and intuitionistic sequent calculus the
comma occurring in the left-hand side of a sequent is associated with classical
conjunction. This operator represents a particular way of combining pieces of in-
formation. Its inferential role depends on two components: the operational rules
defining its meaning, and the structural rules defining the meaning of the turnstile.
In the new setting, in which the only conditions which are required to hold are
Identity and Surgical cut, the comma is no longer equivalent to classical conjunc-
tion. However, the new consequence relations may still be closed under the stan-
dard condition defining classical conjunction. Such condition characterizes a new
type of ‘substructural’ conjunction, denoted by
 and sometimes called ‘tensor’
which is no longer classical (because of the failure of some or all of the structural
rules), and yet is defined in the same way as its classical version. Therefore, in a
sense, it has the same ‘meaning’, namely4:

C
 �; A
B;� ` C () �; A;B;� ` C

Clearly, a sequent� ` A becomes equivalent to
� ` A where
� denotes the

-concatenation of the formulae in�.

Given Identity and Surgical cut, C
 can be easily shown to be equivalent to the
pair of sequent rules:

(2)
� ` A � ` B
�;� ` A
B

�; A;B;� ` C
�; A
B;� ` C

4For the time being we are considering only single-conclusion sequents. Later on we shall consider
also multi-conclusion sequents in the context of logical systems with classical (involutive) negation.

TABLEAU METHODS FOR SUBSTRUCTURAL LOGICS 405

It is not difficult to see that C
 together with Identity and Surgical Cut, implies:

(3) A ` B C ` D
A
 C ` B
D

Moreover, let us consider the following restricted form of cut:

Transitivity
A ` B B ` C

A ` C
Then, it is easy to see that Transitivity, together with Identity, C
 and (3), imply
Surgical Cut.

The rules for
, as well as its definition C
, describe a type of conjunction
which is sometimes called ‘context-free’ since its characterization does not impose
any special condition on the ‘context’, i.e. on the structures of side formulae (the�
and�). A ‘context-dependent’ type of conjunction is expressed by the following
equivalence:

C^ � ` A ^ B () � ` A and� ` B

which corresponds to the the following sequent rules:

(4)
� ` A � ` B

� ` A ^ B
�; A;� ` C

�; A ^ B;� ` C
�; B;� ` C

�; A ^ B;� ` C
Here, in the two-premiss rule, the premisses must share thesamestructure of side
formulae, that is the two proofs ofA andB must depend exactly on the same
structure of assumptions, namely�. The sequent� ` A ^ B expresses the fact
that from this� we can deriveeitherA orB at our choice. Of course, if we allowed
Contraction, we could derivebothA andB and then ‘shrink’ the two copies of�
used in this derivation into one. If we allowed Weakening, on the other hand, we
could deriveA andB from different data-structures, say� and� and then expand
both to�;� so as to satisfy the condition of the rule. Thus, under the assumption
of Weakening and Contraction, C^ and the corresponding sequent rules would not
define any new operator different from
. If either of these rules is disallowed,
they do define a new operator which is called, in Girard’s terminology,additive
conjunction.

The operator:. Negation can be defined́a la Johansson, in terms of implication
and the ‘falsum’ constant?. In this approach:A is defined asA ! ?. Then the
condition C! above immediately yields:

C: �; A ` ? () � ` :A.

Again, it is easy to see that, given Identity and Surgical cut, the condition C: is
equivalent to the following pair of sequent rules:

406 MARCELLO D’AGOSTINO, DOV GABBAY, KRYSIA BRODA

(5)
�; A ` ?
� ` :A

� ` A
:A;� ` ?

The operator_ The disjunction operator can be defined by the following equiv-
alence:

C_ �; A _ B ` C () �; A ` C and�; B ` C

which corresponds to the the following sequent rules:

(6)
�; A ` C �; B ` C

�; A _ B ` C
� ` A

� ` A _ B
� ` B

� ` A _ B
Notice that the disjunction operator defined by these rules is ‘context-dependent’
in a sense similar to the sense in which^ is: a crucial condition in the two-premiss
rule is that thecontextof the inference step, namely the structure of side formulae
�, is the same in both premisses. This type of disjunction is called ‘additive’ to
distinguish it from a context-free type of disjunction that arises when we consider
logics with an involutive negation operator (see below).

Involutive negation and the operator

&

. Involutive negation is characterized
by the additional condition expressed by the ‘double negation law’:

(7) ::A ` A
which, given C: — or equivalently the sequent rules in (5) —, Identity and Surgi-
cal Cut, is equivalent to the rule:

(8)
�;:A ` ?

� ` A
Let us now define a binary operator

&

as follows:

(9) A

&

B =def :A! B

If (7) holdsandExchange is allowed,

&

is commutative and associative. Moreover
the following equivalences also hold:

(10) �; A ` B () � ` :A &

B �;:A ` B () � ` A &

B

Thus, in the logics satisfying the Exchange property and the double negation law
(7) we can naturally introducemulti-conclusionsequents of the form

� ` �

where� is (like �) a list of formulae, with the intended meaning
� ` &

� (by

� and

&

� we denote, respectively, the
-concatenation of the formulae in� and

TABLEAU METHODS FOR SUBSTRUCTURAL LOGICS 407

the

&

-concatenation of the formulae in�). The properties of the (classical) nega-
tion operator allow us to translate back and forth from the single-conclusion for-
mulation to the multi-conclusion one. The operator

&

corresponds to the comma
in the right-hand side of a multi-conclusion sequent, just as the operator
 corre-
sponds to the comma in the left-hand side. Under these circumstances the follow-
ing equivalences can also be easily shown:

(11) A
B a` :(A! :B)

(12) A
B a` :(:A &:B)

When all the usual structural rules are allowed,

&

is clearly equivalent to classical
disjunction, just as
 is equivalent to classical conjunction.

Notice that in the logics satisfying (7) and Exchange both
 and

&

are commu-
tative, so the antecedent and the succedent of a sequent can be regarded asmultisets
rather than just sequences, and Surgical Cut can be replaced by the more familiar
(though not necessarily more natural):

� ` A;� �; A ` �

�;� ` �;�

The reader can easily derive multi-conclusion versions of C
, C! and C:, and the
corresponding sequent rules. Clearly

&

can be defined directly by the following
condition:

C & � ` �; A;B;�() � ` �; A

&

B;�

This condition is equivalent to the following pair of rules:

(13)
�; A ` � B;� ` �

�; A

&

B;� ` �;�

� ` �; A;B;�

� ` �; A

&

B;�

which bring up the ‘context-free’ character of this type of disjunction as opposed
to the the context-dependent character of_.

We conclude this section with a terminological remark. Following Girard[1987]
the logical operators we have been considering so far can be classified into two cat-
egories, themultiplicativesand theadditives. The multiplicative operators are the
‘context-free’ ones, i.e. those which can be defined via rules of inference with
no conditions on the context of the inference step (see[Avron, 1988b] for this
characterization), and include!;:;
 and

&

. The ‘additive’ operators, are the
context-dependent conjunction and disjunction^ and_.

2 PROOF-THEORETIC TABLEAUX

An early example of tableau methods for substructural logics is Dunn’s method
of ‘coupled trees’ for first degree entailment, described in Fiutting’s introduction.

408 MARCELLO D’AGOSTINO, DOV GABBAY, KRYSIA BRODA

After that, the first work dealingexplicitly with tableau methods for substructural
logics was done by Michael McRobbie and Nuel Belnap Jr.[1979; 1984] and
was concerned with systems belonging to the family ofRelevance Logic. This ap-
proach has been recently extended by the same authors with the collaboration of
Robert Meyer to the system ofLinear Logic[1995]. As the authors remark, their
method is ‘purely proof-theoretic in character, as opposed to that of Smullyan
which issemantical’ [McRobbie and Belnap, 1979, p. 187], meaning by this that
the justification of their approach relies entirely on the corresponding substruc-
tural sequent calculi. Indeed, their tableau rules can be seen as a rewriting of
(suitable variants) of the sequent rules. As remarked in Chapter 2, this kind of
‘proof-theoretic’ interpretation of the tableau rules can be given also in the case of
classical tableaux (and was in fact given by Smullyan himself). However, in this
case a ‘semantic’ interpretation, regarding a closed tableau as a failed attempt to
construct a countermodel, is not immediately available.

The link between the ‘official’ sequent-based formulation of the logics under
consideration and the proof-theoretic tableau methods for them, is given by so-
calledleft-handed sequent system. By exploiting the properties of classical nega-
tion, Gentzen’s systemLK can be reformulated in terms of sequents in which the
succedent is alwaysempty. This is an immediate consequence of the equivalence

� ` A;�() �;:A ` �

which allows us to move any formula from the succedent to the antecedent. Each
left-handed sequent means that the sequence of formulae on the left of the turnstile
is inconsistent. So, to prove that� ` A we prove, as in classical tableaux, that
�;:A `, i.e. that�;:A is inconsistent. This implies that� ` ::A and, given the
double negation law, that� ` A. The rules of a left-handed sequent system for
classical logic are given in Table 1.

In the case of classical logic, where all the three structural rules are allowed,
we can replace the two-premiss rules (for conditional, disjunction and negated
conjunction) with the following equivalent version where the sequences of ‘side-
formulae’� and� are identical in both premiss:

(14)
�; A ` �; B `

�; A _B `
�;:A ` �;:B `

�;:(A ^ B) `
�;:A ` �; B `

�; A! B `
It is not difficult to see that, given this ‘context-dependent’ version of the two-
premiss rules, the rules of Smullyan’s tableaux are obtained simply by reading the
sequent rules upside-down and omitting the side-formulae. We have already ob-
served that when some of the structural rules are disallowed, the context-dependent
and the context-free version of the rules are by no means identical and, indeed, give
rise to different logical operators, the so-called ‘multiplicatives’ being associated
with the context-free rules and the ‘additives’ with the context-dependent versions.

TABLEAU METHODS FOR SUBSTRUCTURAL LOGICS 409

AXIOM

A;:A `
STRUCTURAL RULES

Exchange Contraction Weakening
�; A;B;� `
�; B;A;� `

�; A;A `
�; A `

� `
�; A `

OPERATIONAL RULES

Double negation Conditional Negated conditional
�; A `

�;::A `
�;:A ` �; B `

�;�; A! B `
�; A;:B `

�;:(A! B) `
Conjunction1 Conjunction2 Negated conjunction

�; A `
�; A ^ B `

�; B `
�; A ^ B `

�;:A ` �;:B `
�;�;:(A ^ B) `

Disjunction Negated disjunction1 Negated disjunction2
�; A ` �; B `

�;�; A _ B `
�;:A `

�:(A _ B) `
�;:B `

�:(A _ B) `
Table 1. A left-handed version of Gentzen’sLK

2.1 Proof-theoretic Tableaux for Relevance Logics

The first paper on tableaux for Relevance Logic[McRobbie and Belnap, 1979]
dealt with the multiplicative operators. As remarked above, given the involutive
property of negation which holds in the most popular systems of relevance logics,
these operators can all be defined in terms of! and:. A suitable left-handed
Gentzen’s system for thef!;:g fragment of Anderson and Belnap’s main sys-
tem of relevance logic, calledR, is obtained by restricting the operational rules
of Table 1 to the rules for! and: and by dropping the Weakening rule, which
is responsible for the introduction of irrelevancies in classical (and intuitionistic)
reasoning, i.e. formulae which are notusedin the derivation of the conclusion. It
is therefore quite natural to think of relevant tableaux as special cases of classi-
cal tableaux with the global requirement that all formula-occurences areused at
least onceas premisses of some rule-application (including the closure rule). This
basic observation leads straight to McRobbie and Belnap’s ‘relevant tableaux’.
Consider, for instance, the classical tableau for the implicational formula corre-
sponding to the Weakening rule (displayed in Figure 1). In the figure the

p
sign

indicates that the corresponding node has beenused, namely a tableau rule has
been applied to the formula-occurrence with which it is labelled. The tableau is

410 MARCELLO D’AGOSTINO, DOV GABBAY, KRYSIA BRODA

1 :(P ! (Q! P))
p

2 P
p

3 :(Q! P)
p

4 Q

5 :P p

�

Figure 1. A tableau for the Weakening axiom. This tableau is closed classically
but not relevantly

classically closed, but it is not closed relevantly, since it does not satisfy the global
requirement of use (the formula-occurence in node 4 is not used).

To stick to pure implicational formulae, let us instead consider the formula cor-
responding to the structural rule of Contraction. In Figure 2 we show a tableau
for this formula which is closed both classically and relevantly, since it satisfies
the use requirement, i.e. each node is used at least once (notice that node 4 is used
twice as premiss of the closure rule on different branches). In Figure 3 we show an-
other example of a relevantly closed tableau involving the negation operator. So,
a relevant tableau for thef!;:g fragment ofR is nothing but a classical tableau
satisfying the use requirement. The equivalence between such a tableau method
and the left-handed Gentzen system for the same fragment is rather straightorward
(a rigorous proof can be found in[McRobbie and Belnap, 1979]): the sequence
of formulae on each branch correspond to the antecedent of a sequent and each
tableau-expansion rule applied to a nodem corresponds to an application of the
corresponding sequent rule for the formula labellingm. Notice that in this tableau
method the allowed structural rules of the sequent calculus, namely Exchange and
Contraction, are ‘built in’ . The Exchange rule corresponds to the freedom of using
nodes occurring anywhere in the branch, and the Contraction rule to the freedom
of using a node more than once (as we do in Figure 2). It must be stressed that
each node is required to be used at least oncein the whole tree, and not on every
branch. This corresponds to the context-free format of the conditional rule where
the sequence of side formulae in the conclusion of the sequent rule is split into
the two sequences (� and�) which occur in the premisses. Observe that in the
relevant tableaux of McRobbie and Belnap, there is no guarantee that each tableau-
construction is good, i.e. that every tableau for the initial sequence of formulae can

TABLEAU METHODS FOR SUBSTRUCTURAL LOGICS 411

1 :((P ! (P ! Q))! (P ! Q))
p

2 P ! (P ! Q)
p

3 :(P ! Q)
p

4 P
p p

5 :Q p

6 :P p

�

�
� Z

Z

7 P ! Q
p

8 :P p

�

,, ll

9 Q
p

�

Figure 2. A tableau for the Contraction axiom. This tableau is closed both classi-
cally and relevantly

412 MARCELLO D’AGOSTINO, DOV GABBAY, KRYSIA BRODA

1 :((P ! Q)! :(Q! :P))
p

2 P ! Q
p

3 :(:Q! :P)
p

4 :Qp

5 ::P p

6 P
p

7 :Pp

�

�� @@
8 Q

p

�

Figure 3. A relevantly closed tableau for the contraposition law

be expanded into a (relevantly) closed tableau whenever there is one. For instance,
consider the proof illustrated in Figure 2. If the application of the branching rule
to node 2 (occuringat node 5) is carried out at node 3, there is no way to expand
the tableau into a relevantly closed one. In other words, relevant tableaux lack the
confluenceproperty of classical tableaux which plays such an important role in the
automation of the method.

A last important remark concerns the formulation of the tableau rules. Let us
first consider the rule for negated conditionals. In the context of classical tableaux
(see Chapters 2 and 3) this is an instance of the general� rule. We considered
two alternative formats of this rule: we may haveone rulewith two conclusions
which are appended, one after the other, to the branch being expanded; or, we may
havetwo rules, each witha single conclusion, allowing us to append only one
conclusion or both, depending on our needs. We noticed that the second format
may be preferable for certain refinements of tableaux (such asregular tableaux),
in order to avoid repetition of identical formulae in the same branch. In the same
connection we observed that both the� and the� rules may be interpreted as
allowing the addition of certain formulae to a given branch, provided that they do
not already occur in the branch itself. It is important to notice that in the context
of relevant tableaux we have to stick to thetwo-conclusionversion of the�-rule
and that repetition of formulaemust notbe avoided. The reason is easy to see. For
instance, if we applied the one-conclusion version of the�-rule to node 3 in the

TABLEAU METHODS FOR SUBSTRUCTURAL LOGICS 413

tableau contained in Figure 1, so as to obtain only:P as conclusion and omitting
the conclusionQ in node 4, we would be able to generate a ‘relevantly’ closed
tableau for the positive paradox.

As mentioned in the previous section, the other ‘multiplicative’ operators, and
so their rules, can be defined in terms of: and!. The ‘fusion’, ofA andB, that
the relevantists write asA � B, (� is just the same as the operator
 discussed in
Section 1.2 where we followed the notation introduced by Girard) is defined as
:(A! :B), while the ‘fission’ ofA andB, written asA+B (that in Section 1.2
we wrote asA

&

B again following Girard’s fancier notation) is defined as:A !
B. Thus, the rules for fusion and fission are the following:

Fusion Negated fusion
�; A;B `
�; A �B `

�;:A ` �;:B `
�;�;:(A �B) `

Fission Negated fission
�; A ` �; B `

�;�; A+B `
�;:A;:B `
�:(A+B) `

The reader should notice that the two-premiss rules have the same form as the
context-free rules for disjunction and conjunction given in Table 1, while the one-
premiss rules are different. For instance the rule for fusion requiresbothA and
B to occur in the premiss. The justification for this choice emerges immediately
if one translatesA � B into :(A ! :B). Similarly, for the negated fission rule
both:A and:B must occur in the premiss. Again, this difference would not be
sufficient to distinguish fusion from conjunction and fission from disjunction if all
the structural rules were allowed, but in the absence of Weakening, we are faced
with two pairs of operators: on the one side we have the ‘additive’ disjunction
and conjunction defined by the one-premiss rules in Table 1 and by the context-
dependent two-premiss rules in (14); on the other, we have the ‘multiplicative’
versions of these operators, called ‘fusion’ and ‘fission’, which are defined by the
rules listed above, where the two-premiss rules are the same as the ones in Table 1,
once^ is replaced with� and_ with +. Tableau rules for fusion and fission are
obtained immediately by reversing the sequent rules:

(15) A �B
A
B

:(A �B)
:A :B

:(A +B)
:A
:B

A+B
A B

Let us now turn our attention to the rules for the ‘additives’, i.e. the operators de-
fined by the context-dependent two-premiss rules for conjunction and disjunction
given in (14) and by the one-premiss rules given in Table 1. Tableau methods
for relevance logics including these operators were formulated for the first time in
[McRobbie and Belnap, 1984]. The one-premiss sequent rules given above yield
the following tableau rules:

414 MARCELLO D’AGOSTINO, DOV GABBAY, KRYSIA BRODA

(16) A ^ B
A

A ^ B
B

:(A _B)
:A

:(A _ B)
:B

These rules correspond to the one-conclusion version of the�-rule and clearly
bring out the difference between multiplicative and additive operators with respect
to the use requirement. While using a formula such asA � B generates two con-
clusions in one go which havebothto be used to close the tableau, using a formula
such asA ^ B generates one conclusion at a time, so that a formula of this form
can be marked as used even if only one of the two conclusions has been generated
(and used later on to close the tableau).

The tableau rules corresponding to the two-premiss sequent rules for the addi-
tives are more complicated. The sequence of side-formulae that appear in the con-
clusion must be the same as the one which appears in both premisses. So, when
we try to prove a sequent, say,�; A _ B ` we must prove both sequents�; A `
and�; B `, and thereforeuseall the formula-occurrences in� on both branches.
What does this mean for the tableau reading of the rules? We observed that when
a branch is split by an application of one of the branching rules for the multiplica-
tives, each formula-occurrence which appears in the branch above this application
must be used inat least oneof the two branches generated by it. In the case of the
additives, each formula-occurrence must be used inboth the branches generated.
So, while in the additive-free fragment a tableau is relevantly closed if every node
is used at least once in the whole tree, in the multiplicative-free fragment it is nec-
essary that each formula-occurrence is used at least once in each branch. A way
of combining these two contrasting requirements for the mixed system containing
both the multiplicatives and the additives is described in[McRobbie and Belnap,
1984] and consists in the following modifications of the classical rules:

(17) A _ B
A
C1

...
Cm

B
C1

...
Cm

:(A ^ B)
:A
C1

...
Cm

:B
C1

...
Cm

whereC1; : : : ; Cm are all theunusedformula occurrences appearing in the path
up to the nodeat which the rule is applied (i.e. the last node in the branch be-
fore the rule application) as opposed to the nodeto whichthe rule is applied (i.e.
the node labelled with the formula that instantiates the premiss of the rule). In
fact, these rules are meant asm + 1-premiss rules with the ‘old’ occurrences of
C1; : : : ; Cm as additional premisses which can therefore be marked as ‘used’ as
well as the occurrence of the main premiss. In other words, applying either of
these rules amounts to (i) applying the standard�-rule of Smullyan’s tableaux to
a given formula-occurrence, (ii) appending to both the new branches thereby gen-
erated fresh copies of all the unused formula-occurrences appearing in the branch
before the splitting, and (iii) marking all the ‘old’ copies (as well as the formula-
occurrence to which the rule is applied) as used. In Figure 4 we show a simple

TABLEAU METHODS FOR SUBSTRUCTURAL LOGICS 415

example of a closed tableau for a formula containing both additive and multiplica-
tive operators (notice that the order of application of the rules is crucial), while
Figure 5 shows an example of an open tableau for a formula which is a classical
theorem but not a theorem ofR. The reader will notice that the tableau is open
as a result of the negated conjunction rule which requires to copy all the unused
formula-occurrences in both branches generated by its application. While the

1 :((P ! R) ^ (Q! R)! (P _Q! R))
p

2 (P ! R) ^ (Q! R)
p

3 :(P _Q! R)
p

4 P _Qp

5 :Rp

6 P
p

8 (P ! R) ^ (Q! R)
p

9 :Rp

12 P ! R
p

13 :P

�

�� @@
14 R

p

�

!!
!! aaaa

7 Q
p

10 (P ! R) ^ (Q! R)
p

11 :Rp

15 Q! R
p

16 :Qp

�

�� @@
17 R

p

�

Figure 4. A closed tableau for a mixed formula

left-handed Getzen system for the multiplicative operators yield the multiplicative
fragment of Anderson and Belnap’s main system of relevance logicR, if we aug-
ment this system with the left-handed sequent rules for additive conjunction and
disjunction wedo notobtain a system equivalent to the fullR. Indeed, the resulting
system lacks a basic axiom ofR, namely the followingdistributivity principle:

A ^ (B _ C)! (A ^ B) _ (A ^ C)

416 MARCELLO D’AGOSTINO, DOV GABBAY, KRYSIA BRODA

1 :(:(P ! :Q)! P ^Q)
p

2 :(P ! :Q)
p

3 :(P ^Q)
p

4 P
p

5 ::Q p

6 Q
p

7 :P p

9 P
p

10 Q

,, ll

8 :Q p

11 P

12 Q
p

Figure 5. An open tableau for a mixed formula

The integration of this axiom into the proof-theory ofR has always been a source
of considerable difficulty and appears to be related to the undecidability ofR
(even at the quantifier-free level) later discovered by Urquhart ([Urquhart, 1984]).
Prompted also by these problems, workers in Relevance Logic have been increas-
ingly turning their attention to the distribution-free fragment ofR, called LR,
which is characterized by the sequent rules for the the multiplicatives!;:; �;+
and for the additiveŝ , _ as characterized by the one-premiss rules in Table 1 and
by the context-dependent rules in (14). The systemLR, and automated theorem-
proving techniques based on it, are studied extensively in[Thistlewaiteet al.,
1988].

We conclude this section by mentioning McRobbie and Belnap’s treatment of
(the distribution-free fragment of)RM, i.e. the system of relevance logic which
is obtained from any axiom system forR by adding the ‘mingle’ axiomA !
(A ! A) or, equivalently, from the left-handed sequent system forR, by adding
the following structural rule:

�; A `
Expansion

�; A;A `

TABLEAU METHODS FOR SUBSTRUCTURAL LOGICS 417

This rule amounts to diluting the use requirement as follows: we do not insist that
all formula-occurrencesare used, but we are happy if at least one occurrence of
each formula is used. The reader can easily check that this weaker criterion allows
us to construct a ‘mingle-closed’ tableau for the Mingle axiomA! (A! A).

The Expansion rule is subtly related to the following derived rule of mingle
systems, that we express in the left-handed notation:

(18)
� ` � `

�;� `
The derivation of this rule is easier in a language with the? operator. In such a
language? ` ? is clearly an axiom, and we can write� ` as� ` ?. Then the
rule is easily derived as follows:

? ` ?
Expansion

?;? ` ? � ` ?
Cut

�;? ` ? � ` ?
Cut

�;� ` ?
Notice that in this derivation we have made use of the left-handed version of the
Cut rule, namely:

�; A ` �;:A `
�;� `

On the other hand, given this rule as primitive, Expansion can be derived as fol-
lows:

�; A ` ? �; A ` ?
�; A;�; A ` ?
=========== Exchange
�;�; A;A ` ?
=========== Contraction
�; A;A;` ?

Where the double lines mean that several steps of the indicated rule have been
applied to reach the conclusion. (Notice that this derivation does not make any use
of the cut rule.)

The above derivation suggests that if we incorporate the rule in question as
primitive in our tableau method, we can simulate the role played by Expansion
without any need to relax our use requirement, and so stick to the relevant policy
that everynode(formula-occurrence) has to be used. One way of incorporating
this rule into the method consists in observing that its effect can be obtained by
replacing the standard axioms of the formA;:A ` with more general ones, of
the form�;�0 ` where� and�0 are complementary sequences of formulae, in
the sense that their elements are pairwise complementary. To be more precise we

418 MARCELLO D’AGOSTINO, DOV GABBAY, KRYSIA BRODA

can say that two sequences� and�0 aremingle-complementaryif they satisfy the
condition that every element of� is complemented in�0 and viceversa. So, the
new more general axioms are all the sequents of the form�;�0 ` where� and
�0 are mingle-complementary sequences of formulae. This observation, yields the
following more general closure rules:

Mingle closure: a branch� is mingle-closed if it contains two se-
quences of formulae� and�0 which are mingle-complementary. The
closure rule is appliedto all the formula-occurrences in� and �0

(which are therefore all marked as used).

As an exercise, the reader can try to use this more general rule to prove the formula
(P ! Q)! ((Q! R)! (P ! (Q! R))).

2.2 Proof-theoretic Tableaux for Linear Logic

A quite natural approach to understanding Linear Logic, although not the one pre-
ferred by the ‘linear orthodoxy’, consists in regarding it as a special case of Rel-
evance Logic. This was the route taken in[Avron, 1988b], which showed how
the funny connectives introduced in Girard’s paper[1987] could be understood by
analogy with well-known connectives which had been studied thouroughly by rel-
evance logicians. Indeed, according to this interpretation, the difference between
Relevance and Linear Logic does not lie in the definition of the logical operators
but in their different approach to the manipulation of assumptions in a proof. Rel-
evance logics, likeR, are already much stricter than classical and intuitionistic
logic, in that they do not allow for the introduction of unused assumptions in a
proof, so banning irrelevance from our logical world. Linear Logic can be seen as
combining this horror for irrelevance with a resource-concerned deductive policy.
The Contraction rule embodies the traditional (classical, intuitionistic and relevan-
tist) careless approach which does not distinguish between using a formula once
and using it any number of times. By disallowing Contraction, Linear Logic elim-
inates this residual degree of vagueness from traditional proof-theory: if a formula
is to be usedn times it must be assumedn times. In terms of left-handed Gentzen
systems, and according to this ‘reductionist’ point of view, the exponential-free
fragment of Linear Logic can be seen as arising from the sequent system forLR,
the distribution-free fragment ofR, by removing Contraction, all the definitions
of the logical operators — as well as the distinction between multiplicatives and
additives — remaining the same.

It is straightforward to translate the Linear Logic deductive policy into a stricter
criterion of use: a Linear proof is a Relevant proof in which each formula is used
exactly once. This suggests that a tableau method for Linear Logic can be eas-
ily obtained from the relevant tableau method of the previous section by simply
imposing such a stricter use requirement. This conjecture has been shown to be
correct in [Meyer et al., 1995]. The reader can check that the tableau for the
Contraction axiom given in Figure 2, though being relevantly closed, is not closed

TABLEAU METHODS FOR SUBSTRUCTURAL LOGICS 419

according to this stricter use requirement, since the formula-occurrence at node 4
is used twice. On the other hand, the tableau in Figure 3 is closed linearly, as well
as relevantly, since each formula-occurrence is used exactly once.

One of the main features of Linear Logic, which is not present in the relevance
tradition, consists in bringing back the whole power of the lost structural rules
by means of newunary operators, namely Girard’sexponentials: the ‘of course’
operator, written as ‘!’, and its dual ‘why not’, written as ‘?’. As mentioned in
Section 1,!A means that the formulaA can be used as many times as needed (in-
cluding no times at all). So the! operator provides the means for simulating the
effect of both the Weakening and the Contraction rule. In the cited[Meyeret al.,
1995] Meyer, McRobbie and Belnap present a treatment of Girard’s exponentials
in the context of their approach to Linear tableaux outlined above. The main dif-
ference between their exposition and ours is that they assume that all formulae are
reduced toDe Morgan Normal Form(DMNF), i.e. to equivalent ones which do
not contain! and such that the negation operator is applied only to atomic for-
mulae. Assuming such a reduction to DMNF, the left-handed sequent rules for the
exponentials are the following ones:

(19)
�; !A; !A `

�; !A `
� `

�; !A `
�; A `
�; !A `

!�; A `
!�; ?A `

where!� means that all the elements of� must be of the form!A. In the context
of Linear tableaux, the first two rules are implemented by relaxing the use require-
ment so as to exclude the formulae of the form!A, i.e. each formula of this form
can be used any numbern, with n � 0, of times. The third rule can be directly
translated into the following tableau rule:

!A
A

As for the last rule in (19), Meyer, McRobbie and Belnap, drawing on its anal-
ogy with theS4 rule for the necessitation operator which can be found in several
Gentzen formulations of this logic and on their own the treatment of strict impli-
cation in [McRobbie and Belnap, 1979], offer the following translation into their
tableau setting:

?A

A

where the double line means that abarrier has been introduced between the node
at which the rule is applied and the new node added by the rule. The meaning of
such a barrier is that only formulae of the form!A can cross it, i.e. if there is a
barrier between two nodesm andn, wherem precedesn, then the only rule that
can be appliedtom at n, is the ‘necessitation’ rule for!. The reader is referred to
[Meyeret al., 1995] for the details.

420 MARCELLO D’AGOSTINO, DOV GABBAY, KRYSIA BRODA

3 LABELLED TABLEAUX

In this section we shall describe a different approach, developed by the present
authors, which may be regarded as being closer to the ‘semantic’ interpretation of
classical tableaux. The following exposition is loosely based on[D’Agostino and
Gabbay, 1994] to which we refer the reader for further details.

LDS

The methodology ofLabelled Deductive Systems— or simply LDS — is a unifying
framework for the study of logics and their interactions. It was proposed by Dov
Gabbay[1996] in response to conceptual pressure arising from application areas,
and has now become a research programme which aims to provide logicians, both
pure and applied, with a common language and a common set of basic principles
in which to express and to solve their problems.

For the theoretician LDS provides the foundations for ataxonomyof logics and
brings out the common structure underlying different logical systems proposed
for a variety of different purposes — whether philosophical, or mathematical, or
practical. For the applied logician (e.g. the computer scientist or the engineer) it
provides a powerful technique to develop logical systems tailored to the needs of
a specific application (see[Gabbay, 1992]), so as to maximize the role of logic in
applied research.

In the LDS approach the basic declarative units of a deductive process are not
just formulae butlabelled formulae, i.e. expressions of the formA : x whereA
is a formula of a standard logical language andx is a term of a given labelling
language. The labels refer to elements of a suitable algebraic structure that we
call the algebra of the labels(or labelling algebra). In general, a labelled formula
A : x expresses a relation between a formulaA and an elementx of the labelling
algebra. It is not necessary to commit to any particular assumption on the nature
of this relation. On some occasions we can readA : x ‘semantically’ as ‘A holds
relative tox’, wherex is an element of an appropriate space to which it makes
sense to relativize the truth of the propositionA5. On others, the labelx may
identify a region of astructured database— whose structure is modelled by the
labelling algebra —, and the labelled formula may record metalevel information
about the dependence ofA on x. According to some interpretations (originating
in [William, 1980]) A may also represent atypeand the labelx a term of type
A. What counts here is that in a labelled deductive system the deduction rules
act on the labels as well as on the formulae, according to certain fixed rules of
propagation which depend on the intepretation of the labelled formulae.

For example, given a language whose only connective is!, themodus ponens
(or!-elimination) rule of natural deduction may be given a general formulation

5For instance a Kripke frame for modal logics; for an LDS approach to normal modal logics see
[Russo, 1996].

TABLEAU METHODS FOR SUBSTRUCTURAL LOGICS 421

as

A! B : x
A : y
B : f(x; y)

wherex andy are terms of a given labelling algebra andf is a function (associated
with modus ponens) giving the new label after the rule has been applied.

We can obtain an appropriate!-introduction rule by inverting the elimination
rule, as follows:

A : t
B : f(x; t)
A! B : x

with t atomic:

To showA ! B : x we assumeA : t (with a new atomic labelt) and we must
proveB : z, for az such thatz = f(x; t).

Different f ’s or different labelling algebras yield different variants of modus
ponens and, possibly, different logics. For example, if we take an arbitrary semi-
group as the algebra of the labels, with� as multiplication andf(x; y) = x � y, we
have the rules:

A! B : x
A : y
B : x � y

A : t
B : x � t
A! B : x

The concrete interpretation of these rules depends on the interpretation of the la-
belling algebra.

In the sequel we shall first describe a uniform Kripke-style semantic frame-
work for the family of substructural logics under consideration and then we shall
turn it into alabelled refutation systemwhere the ‘semantics’ is brought into the
‘syntax’ via a suitable labelling discipline. The resulting method is a generaliza-
tion of the classical tableau-like systemKE described in Chapter 2 that covers the
whole family of substructural logics in a unified framework where different log-
ics are associated with different ‘labelling algebras’. Variants of the Kripke-sytle
semantics outlined in this section can be found in a large number of papers. We
mention, in particular,[Dôsen, 1988; Dˆosen, 1989; Ono and Komori, 1985; Ono,
1993] and [D’Agostino and Gabbay, 1994]. All these semantics ultimately stem
from Urquhart’s semantics of relevant implication described in[Urquhart, 1972].
For related semantical investigations into substructural logics see also[Avron,
1988a; Wansing, 1993; Sambin, 1993; Allwein and Dunn, 1993; Abrusci, 1991;
MacCaull, 1996].

The LDS approach works both for the substructural logics arising from the se-
quent calculusLJ, and for those arising fromLK. We shall call the former, ‘intu-
itionistic substructural logics’ and the latter, ‘classical substructural logics’. Ob-
serve that, according to the exposition given above (see Section 1.2), each proper
substructural logic of the classical type can be characterized as arising from an

422 MARCELLO D’AGOSTINO, DOV GABBAY, KRYSIA BRODA

intuitionistic substructural logic simply by assuming the involution property of
negation::A! A.

3.1 Substructural Implication Logics

In this section we deal with the pure implication fragments of substructural logics.
Here the distinction between classical and intuitionistic systems is immaterial, in
that allpropersubstructural systems of the classical type are also of the intuition-
istic type, i.e. the strongest substructural implication logic of the classical type is
intuitionistic implication. Since the labelled system described below is nothing
but a labelled version of the classical tableau-like systemKE (see Chapter 2), the
logic of classical implication will be trivially obtained by ignoring the labels.

Uniform Semantics for Substructural Implication

As is well-known, intuitionistic implication can be characterized by means of
Kripke models. The other substructural implication operators can also be given
Kripke-style semantics of some sort. So, a crucial preliminary step towards a uni-
form treatment of all these implication systems consists in reducing their semantics
to the same format. In the next definition we shall define a class of models which
allows us to provide a uniform characterization of all the substructural implication
logics.

DEFINITION 1. A s.o.m. model(s.o.m. stands for ‘semilattice ordered monoid’)
is a 5-tuplem = hW; �; 1;�; V i, where

� hW; �; 1i is a monoid with identity1

� � is a (lower) semilattice ordering onW , i.e. if a andb are inW , a u b also
belongs toW , wherea u b is the greatest lower bound ofa andb.

� � distributes overu, i.e.

(x u y) � z = (x � z) u (y � z)

z � (x u y) = (z � x) u (z � y)

Notice that this property implies that� is order-preserving on both argu-
ments, i.e.

a1 � b1 and a2 � b2 =) a1 � a2 � b1 � b2

� V is a monotonic valuation, i.e. a function of typeP 7! 2W , whereP is
the set of propositional letters, satisfying the followingpersistencecondition
(we write ‘a 2m’ to mean thata belongs to thedomainof m:

(8a; b 2m)(8p 2 P)(a � b anda 2 V (p) =) b 2 V (p))

TABLEAU METHODS FOR SUBSTRUCTURAL LOGICS 423

and the following (downward)continuitycondition :

(8a; b 2m)(8p 2 P)(a 2 V (p) andb 2 V (p) =) a u b 2 V (p)):

The ‘forcing’ relationa m A (read ‘a forcesA inm’, ‘A is true ata inm’ or ‘m
verifiesA ata’), wherem is as.o.m.model, is defined as follows:

1. (8p 2 P)(8a 2m)(a m p() a 2 V (p))

2. (8a 2m)(a m A! B () (8b 2m)(b m A =) (a � b m B)))

We say that a formulaA is true in a s.o.m.modelm, and writem j= A, if and
only if 1 m A.

Observe that the Kripke-style semantics described above is a generalization of
Urquhart’s semantics for relevant implication introduced in[Urquhart, 1972]. It is
easy to show, from the above definition, that both the persistence and the continuity
condition must hold also for arbitrary formulae, that is for alla; b 2 m and all
formulaeA:

a � b anda m A =) b m A

and

a m A andb m A =) a u b m A:

We can now construe all the substructural implication systems as characterized
by similar structures, that is different classes ofs.o.m.models, each class being
identified by a different subset of the following additional constraints:

C1 (8a; b 2m)(a � b � b � a)

C2 (8a; b 2m)(a � a � b)
C3 (8a 2m)(a � a � a)

C4 (8a 2m)(a � a � a).

For instance, Linear implication is characterized by the class of alls.o.m.models
m such that� and� satisfy Condition C1 above, while for intuitionistic impli-
cation we take the class of alls.o.m.models satisfying C1, C2 and C3. Relevant
implication corresponds to the constraints C1 and C3, mingle Implication to C1,
C3 and C4, etc.

There is a close correspondence between Conditions C1–C4 above and the
structural rules of p. 402. Condition C1 corresponds to the Exchange rule, Condi-
tion C2 to the Weakening rule, Condition C3 to the Contraction rule, and Condition
C4 to the Expansion rule. To stress this correspondence we shall call the conditions
C1–C4structural constraints. Just as the sequent calculs for a substructural impli-
cation system is obtained from the sequent calculus for intuitionistic implication
by disallowing some of the structural rules, the associated class of models is ob-
tained from the class of alls.o.m.models by waiving the corresponding structural
constraints.

424 MARCELLO D’AGOSTINO, DOV GABBAY, KRYSIA BRODA

Soundness and Completeness

Let us use the following abbreviations for the structural rules:E for the Exchange
rule,C for Contraction,X for eXpansion andK for weaKening. Let us denote
byE�, C�,X� andK� the corresponding structural constraints ons.o.m.models.
By saying that a model isof type� , where� is a subset offE�; C�; X�;K�g, we
mean that it satisfies the constraints in� .

Now, letS be an arbitrary subset offE;C;X;Kg. We say that an implication
formulaA is anS-theorem, and write `S A, if the sequent̀ A can be derived
by using only the operational rules and the structural rules inS. Let us denote by
� [S] the set of structural constraints corresponding to the structural rules inS (the
correspondence is summarized in Table 2).

x � y � y � x
�; A;B;� ` C
�; B;A;� ` C

x � x � x
�; A;A;� ` C

�; A;� ` C

x � x � y
�;� ` C

�; A;� ` C

x � x � x
�; A;� ` C

�; A;A;� ` C

Table 2. Correspondence between structural constraints and structural rules

Then, we can prove the following proposition:

PROPOSITION 2.A formulaA is anS-theorem if and only ifA is true in all
models of type� [S].

Proof. Let us say that a sequentA1; : : : ; An ` B is � [S]-valid if the formula
A1 ! (A2 ! � � � ! (An ! B) � � �) is true in all models of type� [S]. Then it
can be easily checked that (i) all the sequents of the formA ` A are� [S]-valid,
and (ii) the sequent rules for! and the structural rules inS preserve� [S]-validity.
It follows that ifA is anS-theorem, it must be� [S]-valid. This proves the only-if
direction.

For the if-direction, let us say that a set of formulaeU is S-decreasing if it
satisfies the following condition:A 2 U andA ! B is anS-theorem imply that
B 2 U. Now, consider the ‘canonical model’m = hW; �; 1;�; V i where

TABLEAU METHODS FOR SUBSTRUCTURAL LOGICS 425

� W is the set of allS-decreasing sets of formulae;

� � is a binary operation defined as follows:

a � b =def fC j 9A 2 a; 9B 2 b; `S A! (B ! C)g

� 1 is the setfA j `S Ag;
� the relation� is set-inclusion;

� V is defined as follows:

a 2 V (p)() p 2 a

for all atomic formulaep and alla in W .

The reader can verify that the canonical modelm is indeed as.o.m.model of type
� [S]. For instance, the definition of� immediately implies its associativity. To see
that1 is an identity element, reason as follows. First,1 � a is equal, by definition,
to fC j 9A 2 1; 9B 2 a; `S A ! (B ! C)g. Now, by the operational rules
of the sequent calclus,A ! (B ! C) is anS-theorem if and only if the sequent
A;B ` C isS-provable. So1�a is equal to the set of allC ’s such thatA;B ` C is
S-provable, for someA 2 1 and someB 2 a. Since1 is the set of allS-theorems
and the cut rule is admissible,1 � a is equal to the set of allC ’s such thatB ` C
is S-provable, i.e.B ! C is anS-theorem, for someB 2 a. But, sincea is
decreasing, such a set is equal toa itself. Hence,1 � a = a. A similar argument
shows thata � 1 = a. All the other properties of models are easily seen to be
satisfied by our canonical model. Moreover, it can be shown, by induction on the
structure ofA, that:

a m A() A 2 a
holds true for every formulaA. For the atomic case, this follows by the definition
of V above and the standard definition ofm. Suppose thatA = B ! C. Then,
by definition ofm:

a m B ! C () (8b)(b m B =) a � b m C):

Let us denote by[B] the setfD j `S B ! Dg. Clearly [B] 2 W andB 2 [B].
So, by inductive hypothesis,[B] m B and, therefore,a � [B] m C. Again by
inductive hypothesis,C 2 a � [B] which implies, by definition of�, thatA !
(E ! C) is anS-theorem, i.e. the sequentA;E ` C is S-provable, for some
A 2 a and someE 2 [B]. SinceB ` E is S-provable for allE in [B], it
follows by cut thatA;B ` C is S-provable, and thereforeA ! (B ! C) is an
S-theorem, for someA 2 a, which means thatB ! C 2 a. Thus we have shown
thata m B ! C implies thatB ! C 2 a. The converse is easily shown by a
similar argument.

426 MARCELLO D’AGOSTINO, DOV GABBAY, KRYSIA BRODA

Now, suppose thatA is not anS-theorem. ThenA 62 1 and therefore1 6m A
in the canonical modelm. So the canonical model is a countermodel toA of type
� [S]. This concludes our proof. �

The above argument shows that every substructural sequent system for implication
is sound and complete with respect to the corresponding class of models. So, our
task of formulating a uniform semantics for substructural implication systems is
completed.

All the possible types of models, which can be defined by imposing different
combinations of our four structural constraintsE�; C�; X�, andK� — and corre-
spond to all the possible substructural implication systems contained in Getnzen’s
intuitionistic sequent calculusLJ — are summarized in Table 3, where each row
corresponds to a type of models, while the first column indicates the logic charac-
terized by each type.

x � y � y � x x � x � x x � x � x x � x � y

Lambek’s implications
Linear implication �

Relevant implication � �

Mingle implication � � �

Intuitionistic implication � � � �

BCK implication � � �

Table 3. Correspondence between implication systems and sets of structural con-
straints

LKE for Substructural Implication

An inferential characterization of substructural implication logics can be obtained
by turning the ‘semantics’ described in the previous section into the rules of a
labelled deductive system (in the sense of[Gabbay, 1996])6 . This takes the form
of a labelled generalization of the classical systemKE discussed in Chapter 2.
We call this generalizationLKE. The rules ofLKE are tree-expansion rules
which are immediately justified by — and are indeed equivalent to — our previous
definitions (see[D’Agostino and Gabbay, 1994] for a systematic introduction to
theLKE system; see also[Brodaet al., 1998] for a detailed discussion of the
route which leads from sequent-based presentation of substructural consequence
relations toLKE via algebraic and Kripke-style semantics).

In this section we introduceKE-type eliminationrules for substructural impli-
cations. In these rules the declarative units are not just signed formulae as in the

6A similar approach is used by Fitting in his ‘prefixed’ tableaux for classical modal logics[Fitting,
1983]. For an extension to Intuitionistic Logic, see Lincoln Wallen’s chapter in thisHandbook.

TABLEAU METHODS FOR SUBSTRUCTURAL LOGICS 427

classicalKE system (or in the system of analytic tableaux) butlabelled signed for-
mulae, or LS-formulaefor short. The points of ours.o.m.models are turned into
‘labels’, while signs play the usual role, so thatT A : x is interpreted as ‘A is
true at pointx’ andF A : x is interpreted as ‘A is not trueat pointx’. Different
types ofs.o.m.models — defined in terms of the structural constraints which are
imposed — correspond to differentlabelling algebras, i.e. sets of rules that can be
used in manipulating the labelling terms to verify whether or not the condition for
the application of the closure rule is satisfied.

The rules for the implication fragment are listed in Table 4 and are discussed in
more detail below. Notice that the use ofsignedformulae is crucial in this type of
system.

T A! B : x
T A : y
T B : x � y

T A! B : x
F B : x � y
F A : y

F A! B : x
T A : a
F B : x � a

where a is a new
atomic label

T A : x F A : x

T A : x1
...

T A : xn
F A : y
� if u(x1; : : : ; xn) � y

Table 4. TheLKE rules for substructural implication

Generalized Bivalence and Non-contradiction The classical notions of truth
and falsity are governed by two basic principles: the Principle of Bivalence (ev-
ery proposition is either true or false) and the Principle of Non-Contradiction (no
proposition is both true and false). In theKE system (see Chapter 2) these prin-
ciples are expressed directly asrules. The Principle of Bivalence is expressed by
the only branching rule of the system,7 the rule PB, and the Principle of Non-
Contradiction by the rule for closing a branch (as in the standard tableau method).

These principles still apply to our generalized framework except that they are
expressed in terms of labelled propositions. Given an arbitrary propositionA and
an arbitrary pointx of as.o.m.model, either it is true thatx verifiesA or it is false

7This fundamental principle of classical semantics is not directly expressed by the rules of the
standard tableau method. On this point see Chapter 2.

428 MARCELLO D’AGOSTINO, DOV GABBAY, KRYSIA BRODA

thatx verifiesA (i.e. xk�A or x6k�A). So the classical rule of bivalence can be
generalized as follows:

(20)
T A : x F A : x

for every labelx.
Notice that the rule PB can be seen as a ‘lemma introduction’ rule: ifA can be

derived with labelx (i.e. if the right-hand subtree is closed), this fact can be used
as a ‘lemma’ (in the left-hand subtree).

A similar generalization applies to the Principle of Non-Contradiction: it is im-
possible that the same formula is verified and not verified by the same information
token. Moreover, if a formula is verified by a tokenx it is also verified by every
tokeny such thatx � y. Hence, the following generalized closure rule is justified:

(21) T A : x
F A : y
�

provided thatx � y.
In fact, to cover all the logics in the family we are investigating, we need an

even more general closure rule. Let us consider models which are expansive but
not monotonic. Suppose a formulaA is verified by each of the pointsx1; : : : ; xn.
By definition of valuationA is true ata = x1 u � � � uxn. If the model is expansive
we have

a �
n timesz }| {
a � � � � � a :

Therefore, sincea � xi for i = 1; : : : ; n,A is verified also by the tokenx1 � � � � �
xn. Hence, a branch containing all theT A : xi andF A : x1 � � � �xn should
be considered closed. This agrees with the fact that in any logic which allows the
Expansion rule, the following rule can be derived:

� ` A � ` A
�;� ` A

:

This problem can be overcome by introducing a more general closure rule of which
the previous one is a special case:

(22)

T A : x1
...

T A : xn
F A : y

�

TABLEAU METHODS FOR SUBSTRUCTURAL LOGICS 429

provided that
dfx1; : : : ; xng � y. So, in the previous example, a branch contain-

ing all T A : xi for i = 1; : : : ; n andF A : x1 � � � �xn, is closed by the above
rule because, denoting witha the token

dfx1; : : : ; xng, we have thata � xi for
i = 1; : : : ; n. Moreover,a � a � � � � � a, and thusa � x1 � � � � � xn. However this
more general closure rule is needed only for the logics characterized by models
which are expansive, but not monotonic. For all the other logics the simple special
case (21) will suffice.

Elimination rules for !. It is natural to assume that if a ‘piece of information’x
verifies a complex sentence of the formA! B, and another ‘piece of information’
y verifiesA, then the composition of the two will verifyB, i.e. :

(23) (8x 2m)(x m A! B =) (8y 2m)(y m A =) (x � y m B))):

This is half of the semantic clause given in Definition 1 and justifies immediately
the following generalizations of theKE elimination rules forT A! B:

(24)
T A! B : x
T A : y
T B : x � y

T A! B : x
F B : x � y
F A : y

:

If we assume that the converse of (23) also holds, as we do in Definition 1 we can
justify also the following generalization of theKE elimination rule forFA! B:

(25) FA! B : x
TA : a
FB : x � a

wherea is anew atomiclabel :

The new atomic labela stands for a ‘piece of information’ which instantiates the
y in the existentially quantified expression which is obtained by contraposing the
converse of (23).

The reader can check that the implication rules (together with our PB rule) are
equivalent to the if-and-only-if valuation clause in Definition 1. This condition
is formally identical to Urquhart’s semantics of relevant implication[Urquhart,
1972]. However, here� is not a semilattice join, but a monoid operation. Thus,
the above condition can be used to characterize the whole family of substructural
implication systems and not just the implication fragment ofR.

The labelling algebra. For each implication system, thelabelling languagecon-
sists of a denumerable set of atomic labels denoted by ‘a; b; c’, etc. (possibly with
subscripts), a distinguished atomic label ‘1’, calledthe unit label, the identity sym-
bol ‘=’, and two binary operation symbols ‘�’ and ‘u’. Complex labels are built
up from the atomic ones by means of the binary operation symbols. Thebasic
labelling algebra, which applies to alls.o.m.models, consists of the following
ingredients:

430 MARCELLO D’AGOSTINO, DOV GABBAY, KRYSIA BRODA

1. the axioms expressing the fact that� is a monoid operation with1 as identity,
i.e.

x � (y � z) = (x � y) � z (26)

1 � x = x � 1 = x (27)

2. The axioms expressing the fact thatu is a semilattice meet:

x u (y u z) = (x u y) u z (28)

x u y = y u x (29)

x u x = x (30)

3. The axioms expressing the distributivity ofu over�:

(x u y) � z = (x � z) u (y � z) (31)

z � (x u y) = (z � x) u (z � y) (32)

Clearly all the variablesx; y; z are intended as being universally quantified. The
partial ordering� can be defined, as usual, by puttingx � y if and only ifxuy =
x. Observe that the above axioms imply that� is order-preserving, i.e.

(33) x � y =) x � z � y � z x � y =) z � x � z � y
This basic labelling algebra augmented with a set� of structural constraints, pro-
vides a specific labelling algebra sufficient to charaterize the notion of validity in
the classMh�i, i.e. the class of all models satisfying the constraints in� . We shall
denote byLKEh�i, theLKE system equipped with the labelling algebra obtained
by adding the constraints in� to the basic labelling algebra.

LKE-proofs. A proof of the validity of a formulaA for the classMh�i consists
in a refutation of the assumption thatA is false at the identity element 1 of some
model inMh�i. Such a refutation is represented by a closedLKEh�i-tree starting
with the LS-formulaF A : 1, where the constraints in� may be used together with
the basic labelling algebra in order to close a branch. This means that the closure
conditionux1; : : : ; xn � y may be shown to hold on the basis of the labelling
algebra. Whenever such a closed tree can be constructed, we say thatA is an
LKEh�i-theorem.

We shall also denote bỳLKEh�i the (finitary) deducibility relation ofLKEh�i
defined as follows (where[] represents the empty list of formulae):

1. [] `LKEh�i A iff A is anLKEh�i-theorem;

2. A1; : : : ; An `LKEh�i B iff [] `LKEh�i A1!(A2!� � �!(An!B)� � �).

TABLEAU METHODS FOR SUBSTRUCTURAL LOGICS 431

We shall also write simplỳ LKEh�i instead of[] `LKEh�i A. This definition
implies thatA1; : : : ; An `LKEh�i B if and only if there is a closedLKEh�i-tree
starting with the sequence of LS-formulae

T A1 : a1; : : : ; T An : an; F B : a1 � � � � � an
wherea1; : : : ; an are alldistinct atomiclabels.

In this approach the whole family of substructural implication logics is, there-
fore, characterised bythe sametree-expansion rules, and different members of the
family are identified by the different labelling algebras that can be employed to
check branch-closure. This is what we call theseparation-by-closureproperty of
theLKE system. Another property ofLKE is theatomic closure property: if
there is a closed tree starting from a given set of initial LS-formulae, then there
is also one starting from the same set of LS-formulae such that the closure rule is
applied only withatomicLS-formulae, i.e. LS-formulae of the formsp : x (where
s = T or F) with p atomic.

Two examples ofLKE-proofs are given in Figures 6 and 7. The first example
shows a proof of the Contraction axiom, while the second shows a proof of the
Weakening axiom:

F (P ! (P ! Q))! (P ! Q) : 1
T P ! (P ! Q) : a
F P ! Q : 1 � a(= a)
T P : b
F Q : a � b
T P ! B : a � b
T Q : a � b � b

Figure 6. The Contraction axiom is valid for the class of contractive models (i.e. those
satisfying the conditionx�x � x, for all x). For,b� b � b and, since� is order-preserving,
a � b � b � a � b. Therefore, this one-branch tree is closed. The axiom is not valid in Linear
Logic which is characterised by a class of models which are not contractive

Liberalized rules. As we have seen, the F!-rule introduces anewatomic label.
In fact, we can formulate a ‘liberalized’ version of this rule to the effect that the
atomic label introduced by it does not have to benew.

One of the crucial properties of our models ensures that whenever there are
several ‘pieces of information’ which verify the same propositionA, their lattice
meet still verifiesA. Therefore, we can always assume, without loss of soundness,
that the new labela introduced by the F!-rule refers to the meet of all pointsb
such that the labelled signed formulaTA : b occurs in the branch as a result of an
application of the F! rule to conditionals sharing the same antecedent. Consider,

432 MARCELLO D’AGOSTINO, DOV GABBAY, KRYSIA BRODA

F (P ! (Q! P) : 1
T P : a
F Q! P : 1 � a(= a)
T Q : b
F P : a � b

Figure 7. The Weakening axiom is valid for the class of monotonic models (i.e. those
satisfying the conditionx � x � y, for all x andy). The axiom is not valid in Linear
Logic and in Relevance Logic which are characterised by classes of models which are not
monotonic

for example, the rule (25). The forcing clause for! (see Definition 1) implies that
if x does not forceA! B, then there exists ay such thaty forcesA andx�y does
not forceB. Let a be such ay. Now, suppose that after analysingFA ! B : x
we come across, in the same branch, a signed formula of the formFA ! C : z.
If we apply the rule toFA ! C : z, we obtainTA : b with a newatomic label
b, andFC : z � b. Observe that both inferences remain sound, with respect to our
semantics, if we replacea andbwith their meet. For,au b � a andau b � b, so if
B is not forced byx � a, a fortiori it will not be forced bya � (au b). Similarly, if
C is not forced byz � b, it will not be forcedz � (au b). Therefore, we can assume,
without loss of soundness, that the two new atomic labels introduced by the two
applications of F! denote the same ‘piece of information’. We can generalize
this argument to any finite number of formulae of the formTA : a which are
introduced in a branch by the F! rule. Therefore:

FACT 3. If T A : a1; : : : ; T A : an, with a1; : : : ; an atomic, occur in the same
branch as a result of applications of the F! rule, then we can assume thata1 =
� � � = an.

The above fact ensures that the domain of atomic labels introduced in a branch
is not extended unnecessarily.

We can formulate the F! rule in a more convenient way so as to incorporate
the content of Fact 3.

DEFINITION 4. We say that anatomic labela isA-characteristic in a branch�
if TA : a occurs in� as a result of an application of the F! rule.

Exploiting this terminology, we can formulate a ‘liberalized’ version of the rule
as follows:

(34) FA! B : x
TA : a
FB : x � a

for someA-characteristicatomic
labela

In this formulation the atomic label does not have to benew. For instance, this

TABLEAU METHODS FOR SUBSTRUCTURAL LOGICS 433

version of the rule would allow for the following expansion step:

(35) FA! B : x
FB : x � a

whenevera is an atomic label such thatTA : a occurs above in the branch as
a result of an application of the F!-rule (not of the PB rule). Only if noA-
characteristic atomic label occurs in the branch does the rule force us to introduce
a newatomic labela. The justification of this reformulation of the F!-rule is
somewhat similar to the justification of the ‘liberalized’� rule in first-order an-
alytic tableaux (on this point see[Beckertet al., 1993] and Chapter 3 of this
Handbook). In Figure 8 we show how the liberalized F!-rule simplifies the proof
of the ‘mingle’ axiomA ! (A ! A). The axiom is valid for the class of ex-
pansive models (i.e. those satisfying the conditionx � x � x, for all x), so it is
not valid in Linear Logic and in the relevance logicR which are characterised by
classes of models which are not expansive. Contrast the proof on the left-hand side
which makes use of the liberalized F! rule with the proof on the right-hand side
which does not and requires some further reasoning on the algebra of the labels
While the first tree is immediately seen to be closed because of the two comple-
mentary formulaeTA : a andFA : a � a, for the second tree we have to apply the
general closure rule to the formulaeTA : a; TA : b andFA : a � b. To see that
this is a sound application of the closure rule, we need the following sequence of
inequations which are justified by the algebra of the labels:

a u b � (a u b) � (a u b)
a u b � a
a u b � b

a u b � a � b:

F (P ! (P ! P) : 1
T P : a
F P ! P : 1 � a(= a)
F P : a � a

F (P ! (P ! P) : 1
T P : a
F P ! P : 1 � a(= a)
T P : b
F P : a � b

Figure 8.Two proofs of the mingle axiom

Free variables in the labels. So far, our examples have not made any use of
the branching rule of ‘generalized bivalence’. Indeed, this rule introduces a good
deal of non-determinism into the system, in that it allows for the use of (a) ar-
bitrary formulae and (b) arbitrary labels in each rule application. However, this
non-determinism can be tamed to some extent. As for (a), it can be shown that the

434 MARCELLO D’AGOSTINO, DOV GABBAY, KRYSIA BRODA

applications of PB can be restricted toanalyticones, i.e. involving only subformu-
lae of formulae previously occurring in the branch. Let us say that anLKE-tree
enjoys thesubformula propertyif for every LS-formulasA : x occuring in it,
wheres is one of the two signsT orF , the formulaA is a subformula of some for-
mulaB such thatsB : y, for somes and somey, occurs above in the same branch.
Let us now say that two closedLKE-trees areequivalentif they are constructed
starting from the same set of initial LS-formulae. Then it can be shown that:

PROPOSITION 5.There is a procedure to turn every closedLKE-tree into an
equivalent one which enjoys the subformula property.

The proof of this proposition (that we omit here) involves showing that all the
applications of the labelled PB rule which violate the subformula property can be
eliminated without loss. Indeed, it can also be shown that the applications of the
PB rule can be restricted even further tocanonicalapplications as in the canonical
procedure for the classicalKE system outlined in Chapter 2.

As for (b), it must be remarked that in order to obtain a fully mechanical refu-
tation procedure we need also to ‘tame’ the non-determinism related to the use of
labels in the generalized PB rule, i.e. we have to develop a procedure which either
terminates with a closed tree or gives us enough information to construct a coun-
termodel. To solve this problem, the best strategy is to apply the PB rule with a
variableas label. This means that branches may be closed under appropriate sub-
stitutions of the variables with terms of the labelling algebra. An example of this
use of variable labels is given in Figure 9. So, the closure of a branch ultimately
depends on the solution of an inequation in the given algebra of the labels and the
closure of the whole tree on the simultaneous solution of a system of inequations.
This is a well defined algebraic problem which can be addressed via unification-
like techniques. The solution to this problem crucially depends on what structural
constraints are allowed in the algebra of the labels and on the development of suit-
able algorithms for solving the systems of inequations associated withLKE-trees
with variables in the labels. It seems plausible that efficient decision algorithms
based on our method will have to be logic-specific, exploiting the computational
properties of each given labelling algebra (see[Brodaet al., 1997]).

3.2 Full Substructural Logics of the Intuitionistic Type

We shall now consider the other operators defined in Section 1.2 and show how
they can be characterized by suitable elimination rules in our labelledKE system.
For the time being, we shall restrict ourselves to intuitionistic substructural logics,
namely those with a non-involutive negation. Again, these rules can be seen as
importing the ‘semantics’ of the given operators into the syntax.

TABLEAU METHODS FOR SUBSTRUCTURAL LOGICS 435

F ((P ! P)! Q)! ((Q! R)! R) : 1

T (P ! P)! Q : a

F (Q! R)! R : a

T Q! R : b

FR : a � b

T P ! P : x

T Q : a � x

T R : b � a � x

�
� Z

Z

F P ! P : x

T P : c

F P : x � c

Figure 9. This tree is closed for all commutative models under the substitution
x = 1

Semantics andLKE-rules for
 and^
The forcing relation overs.o.m.models defined in Section 3.1 can be extended to
deal with the operator
 as follows:

(36) (8a 2 m)(a m A
 B () (9b 2 m)(9c 2 m)(b � c � a and b m
A andc m B:

Adding this clause to the definition of the forcing relation is sufficient to charac-
terize thef!;
g fragments of substructural logics. (It is not difficult to adapt
the argument based on the canonical model given in the proof of Proposition 2
to show the equivalence between this extended semantics and the corresponding
substructural sequent calculi.)

From (36) we can immediately derive the followingLKE-rules:

(37) T A
B : x
T A : a
T B : b

(�): F A
B : x
T A : y
F B : z

(��) F A
B : x
T B : z
F A : y

(��)

with the following side-conditions:

436 MARCELLO D’AGOSTINO, DOV GABBAY, KRYSIA BRODA

(*) a andb arenew atomiclabels satisfying thelocal constrainta � b � x;
(**) for all y andz such thaty � z � x

We call the constraint in (*)local because it holds for the particular tentative coun-
termodel under construction, as opposed to theglobal constraints, such as Mono-
tonicity or Contraction, wich hold forall the models characterizing a given logic.
Local constraints provide inequations that, together with the global constraints,
may allow us to close a branch. The reader can check that our elimination rules
(together with PB) are equivalent to the forcing clause given above.

We can formulate a liberalized version of the T
 rule as we did for the F!
rule as follows. First we extend the definition ofA-characteristic label (see Defi-
nition 4):

DEFINITION 6. We say that anatomic labela isA-characteristic in a branch�
if TA : a occurs in� as a result of an application of the F! rule or of the T
 rule.

Then, we can formulate our liberalized rule for
:

(38) T A
B : x
T A : a
T B : b

(� � �):

(***) where a and b are, respectively,A-characteristic andB-charac-
teristic atomic labels satisfying thelocal constrainta � b � x

.

Notice that if the local constrainta � b � x is satisfied by two elementsa and
b, such thata forcesA and b forcesB, then it is also satisfied ifa and b are,
respectively,A-characteristic andB-characteristic. This means that, working with
the liberalized T
 rule we can always assume that the characteristic labels satisfy
the local constraint (see[Brodaet al., 1997]).

A characterization of the additive conjunction^ is obtained by adding a suitable
semantic clause for̂:

(39) (8a 2m)(a m A ^B () a m A anda m B

which can be immediately turned into the followingLKE-rules:

(40) T A ^B : x
T A : x
T B : x

F A ^B : x
T A : x
F B : x

F A ^ B : x
T B : x
F B : x

Semantics andLKE-rules for_
We want now to extend the forcing relation to formulae of the formA _ B where
_ denotes the additive disjunction. This extension is not nearly as smooth as it was
for the additive conjunction. Let us therefore attempt an intuitive analysis of the
situation in terms of our intended model.

TABLEAU METHODS FOR SUBSTRUCTURAL LOGICS 437

What does it mean that a piece of informationx verifies a disjunctionA_B? It
doesnot necessarily mean thatx verifiesA or x verifiesB, since the information
carried by each of the propositionsA andB is clearly greater than the information
carried by their disjunctionA _ B. As we have seen above, in the sequent-based
presentation of substructural logics additive disjunction is characterized by the
following triple of rules:

� ` A
� ` A _ B

� ` B
� ` A _ B

�; A;� ` C �; B;� ` C
�; A _ B;� ` C

Let [A] = fB j A ` Bg. A concise explanation of the meaning ofA_B can then
be given as follows:

(41) xk�A _ B () ((8C)C 2 [A] \ [B] =) xk�C)

In other words,x verifies a disjunctionA _ B if and only if x verifies all the
propositions that can be inferred by bothA andB (separately). Consider two
pieces of informationa andb such thata verifiesA, b verifiesB, anda andb are
incomparable (neithera � b nor b � a). Let us take their meeta u b. According
to (41),a u b verifiesA _ B, but it may well be that it does not verify eitherA or
B.

It is not difficult to show that this explanation of the meaning of_ is equivalent
to the combination of the sequent rules given above, as well as to the following
semantic presentation (given in[Dôsen, 1989] and [Wansing, 1993]):

(42) xk�A _ B () xk�A or
xk�B or (9z1)(9z2)(z1 u z2 � x and
z1k�A andz2k�B)

Let us now see an alternative, but equivalent, definition ofxk�A _ B (see [Ono
and Komori, 1985] and [Ono, 1993]).

(43) xk�A _ B () (9z1)(9z2)z1 u z2 � x and
(z1k�A or z1k�B) and(z2k�A or z2k�B):

PROPOSITION 7.The definitions in (42) and (43) are equivalent.

Proof. We show that (42) implies (43) and leave it to the reader to show the
converse. The if-direction is trivial. For the only-if direction, supposexk�A _ B.
Now, suppose thatxk�A or xk�B. Then, trivially, there arez1 andz2 (both equal
to x), satisfying the required condition, since obviouslyx u x � x. If neither
xk�A, norxk�B, (42) implies that there arez1 andz2 such thatz1 u z2 � x and
z1k�A andz2k�B and the required condition is again satisfied. �

We have now to translate the semantics in (43) into suitableLKE-rules for dis-
junction. Unfortunately this extension turns out to be a source of inelegancies and

438 MARCELLO D’AGOSTINO, DOV GABBAY, KRYSIA BRODA

complications. This is however no surprise, since similar difficulties are shared by
other proof-theoretical approaches and seem inevitable when one tries to deal with
the multiplicative and additive operators in the same proof system.

Let us associate with each branch� of anLKE-tree and each LS-formula of
the formT A _ B : x in � a pair of new atomic labelsc1 and c2 satisfying
the condition in the right-hand side of (43). The equivalence in (43) justifies the
following elimination rules:

TA _ B : x
FA : ci
TB : ci

(*) TA _ B : x
FB : ci
TA : ci

(*)

FA _B : x
FA : x1
FB : x1

FA : x2
FB : x2

(**)

(*) where (i) i = 1; 2 and (ii) c1 and c2 are the atomic labels associated with
T A _ B : x in the branch, satisfying the constraintc1 u c2 � x.

(**) where x1 andx2 areany labels satisfying the constraintx1 ux2 � x. (Notice
that in the application of this branching rule we can make use of variables as we
did with the other branching rule PB.)

Observe that, for everyx, x u x � x and thus, the following is an instance of the
rule scheme EF_:

FA _ B : x
FA : x
FB : x

We now turn our attention to the distribitivity of̂ and_. Let us consider the
following derived rules for conjunction:

(44) F A ^ B : x
T A : y
F B : x

F A ^ B : x
T B : y
F A : x

with the side-condition thaty � x. These can be easily derived as follows:

TABLEAU METHODS FOR SUBSTRUCTURAL LOGICS 439

F A ^ B : x

T A : y

T A : x

F B : x

�� @@
F A : x

�

F A ^ B : x

T B : y

T B : x

F A : x

�� @@
F B : x

�

Consider also the following derived rules for disjunction:

(45) T A _ B : x
F A : y
T B : ci

T A _ B : x
F B : y
T A : ci

whereci is one of the two atomic labels associated withT A_B : x, and satisfies
the side-condition thatci � y. Again, it is easy to derive these rules by means
of the official rules. These rules are ‘logic-dependent’ in that they depend on the
specific algebra of the labels used to close one of the two branches.

So, we can replace each application of any of these derived rules with a suitable
sequence of applications of the official rules. The tree in Figure 10 shows a proof
of the non-critical distributivity law, namely the one which is sound in all sub-
structural logics. The tree in Figure 11 shows a proof of the critical distributivity
law which is sound for every system allowing for Monotonicity and Contraction.
In the latter we make use of the logic-dependent derived rules described above.
However, the application of these derived rules can be eliminated in favour of the
official logic-independent rules.

LKE rules for:
Since we define:A asA ! ?, the elimination rules for: can be immediately
derived from the elimination rules for!. So, the rule for eliminatingT :A : x
will be:

(46) T :A : x
T A : y
T ? : x � y

.

If we are dealing with the intuitionistic-like, non-involutive, negation, complete-
ness is achieved by adding the following rule:

(47) F :A : x
T A : a
F ? : x � a

wherea is anew atomiclabel

440 MARCELLO D’AGOSTINO, DOV GABBAY, KRYSIA BRODA

T (P ^Q) _ R : a

F (P _ R) ^ (Q _ R) : a

T P _ R : a

F Q _R : a

F Q : x

F R : x

T P ^Q : c1

T Q : c1

�

cc

F Q : y

F R : y

T P ^Q : c2

F Q : c2

�

!!
!! aaaa

F P _R : a

F P : z

F R : z

T P ^Q : c1

T P : c1

�

cc

F P : v

F R : v

T P ^Q : c2

T P : c2

�

Figure 10. A proof of the non-critical distributivity law, making use of the local
constraintc1 u c2 � a. The tree is sound and closed under the substitution(x :=
c1; y := c2; z := c1; v := c2).

In order to characterize logics with theex-falso rule

� ` ?
� ` A

we need the following additional closure rule:

(48) T ? : x
F A : x
�

In the next subsection, we shall show how to provide a more elegant and uniform
treatment of the negation operator within theLKE system.

Constrained Variables

Some of our elimination rules are associated withlocal constraints, namely addi-
tional inequalities which are assumed to hold for the tentative countermodel under

TABLEAU METHODS FOR SUBSTRUCTURAL LOGICS 441

T (P ^Q) _ R : a

F (P _ R) ^ (Q _ R) : a

T P _ R : a

F Q _R : a

F Q : x

F R : x

T P ^Q : c1

T Q : c1

�

cc

F Q : y

F R : y

T P ^Q : c2

F Q : c2

�

!!
!! aaaa

F P _R : a

F P : z

F R : z

T P ^Q : c1

T P : c1

�

cc

F P : v

F R : v

T P ^Q : c2

T P : c2

�

Figure 11. This is a closed tree under the substitution(x := a � c1; y := a � c2)
for all systems satisfying Monotonicity and Contraction. Monotonicity is needed
to close the branches and for the correct application of the derived rules for
conjunction and disjunction; Contraction is needed to show that the constraint
x u y � a, required for a sound application of theF_ rule, is also satisfied. For,
(a� c1)u (a� c2) = a� (c1u c2), by definition, andc1u c2 � a sincec1 andc2 are
the atomic labels associated withT (P ^Q) _ R : a. Thus,a � (c1 u c2) � a � a
and, by Contraction,a � (c1 u c2) � a.

442 MARCELLO D’AGOSTINO, DOV GABBAY, KRYSIA BRODA

construction in a branch� and may be used to close� together with the global
properties and constraints of the given algebra of the labels. Let us consider, for
instance, the rules for
. The T
 rule, when applied to a formulaT A
 B : x
introduces two atomic labelsa andb which are assumed to satisfy the constraint
a � b � x. The F
 rule can be applied to a formulaF A
 B : x with the minor
premissT A : y, to yieldF A : z with the constraint thaty � z � x.

Such rules can be conveniently reformulated by appealing toconstrained vari-
ables. For example, in an application of the F
 rule the conclusion holds forevery
labelz satisfying the constrainty � z � x, wherey is the label of the minor pre-
miss andx the label of the major premiss. We can therefore apply this rule using
a variable to label the conclusion as we do for the PB rule. However, in this case
the variable is not afreebut aconstrainedvariable, since it is assumed to satisfy a
given (local) constraint. So, in the case of the F
 rule a specific application could
be as follows:

F A
B : a
T A : b
F B : �

where� is a variable satisfyingb � � � a.
We can even make this constraint visible in our notation by writing� as a func-

tion of a andb. For instance, we can usea=b to stand for a variable ranging over
the setfz j b � z � ag. So, each of the allowed values of this variable satisfies the
given constraint:b � (a=b) � a for all values ofa=b. For non-commutative logics,
we need another sort of constrained variable to range over the setfz j z � b � ag,
which we can indicate with the notationanb. To indicate a specific value of a vari-
ablea=b or anb , we can use function symbols taken from a denumerable stock,
f1; f2; : : :, and write, for instance,f1(a=b) to denote a specific element in the range
of a=b. Such function symbols will be calledinstantiation symbols. (Technically
speaking we could describe them as denoting constant functions mapping every
element of the range of the constrained variable to a fixed element in it.) Whether
or not we want to consider constrained variables and instantiation symbols as part
of our labelling language or as metalanguage abbreviations is, to a large extent, a
matter of taste. If we allow them into the labelling language, then we must extend
our notion ofatomic labelto include expressions of the formf(x=y) wheref is
an instantiation operator.

Exploiting this notation the rules for
 can be rewritten as follows:

(49) T A
B : x
T A : a
T B : f(x=a)

(�): F A
B : x
T A : y
F B : x=y

F A
B : x
T B : y
F A : xny

wherex=y ranges over the setfz j y � z � xg. The side-condition (*) on the T

rule is the usual one, namely thata andf(x=a) are, respectively,A-characteristic
andB-characteristic atomic labels (in the new extended meaning of ‘atomic’).

TABLEAU METHODS FOR SUBSTRUCTURAL LOGICS 443

This means that either (i)f(x=a) is equal to aB-characteristic atomic label already
occurring in the branch, or (ii) the instantiation symbolf is new.

Similar constrained variables can be helpful also to reformulate the negation
and the disjunction rules. Let us start with negation. For every modelm and every
elementx of its domain, let us define:

Cons(x) = fy j x � y 6m ?g:
In other words,Cons(x) is the set of all pieces of information which are consistent
with x. Observe thatCons(1) is the set of all consistent points of the domain, since
1 �x = x for all x. We shall use the notationx� for a constrained variable ranging
overCons(x). Then, we can reformulate the F: rule as follows:

(50) F :A : x
T A : f(x�)

wheref(x�) is anA-characteristic atomic label.
The rule (50) is equivalent to the original one provided that the following0-

premiss rule is also available:

(51)
F? : x � f(x�)

for everyfunction symbolf . This rule is clearly sound and it is easy to check
that the pair of rules (50) and (51) are equivalent to the rule (47). Notice that the
0-premiss rule for? given above is equivalent to the following additional closure
rule:

(52)

T ? : y1
...

T ? : yn
�

provided that
dfyig � x � f(x�) for somex and somef . The special case:

(53) T ? : y
�

provided thaty � x � f(x�) for somex and somef , is sufficient for completeness
except for the class of logics characterized by models which are expansive but
non-monotonic.

When using constrained variables we must make sure that we do not ‘create’
elements whose existence is not guaranteed by the information available in the
branch. For instance, suppose we are working with a monotonic labelling algebra,
i.e. the constraintx � x � y is satisfied for allx andy in the domain of the model.
Suppose also that we have obtained a formula of the formT ? : x. Now, we may
be tempted to conclude that the branch is closed, becausex � x � f(x�). Since

444 MARCELLO D’AGOSTINO, DOV GABBAY, KRYSIA BRODA

x � f(x�) is consistent by definition, so should bex. Thus monotonicity would
be sufficient to guarantee that all the elements in the domain are consistent and,
therefore, that theex-falsorule is sound in every monotonic logic. But Minimal
Logic, which can be characterized by removing theex-falsorule from intuitionistic
logic, is clearly a counterexample. However, the mistake is easily found: ifx is an
inconsistent element of the domain (it verifies?) and the logic is monotonic, the
setfz j x � z 6m ?g is emptyand thereforef(x�) simply cannot exist. So, before
introducing elements of the formf(x�), we must make sure that they exist in the
model under consideration. Similar considerations hold for the labels of the form
f(x=y).

Luckily there are simple sufficient conditions to guarantee that the range of the
constrained variables is not empty and, therefore, the expressions constructed by
means of the instantiation symbols do have a denotation. First of all, the rules
which introduce instantiation symbols take care of themselves, since the existence
of a denotation is guaranteed by their premiss. Second, existence conditions de-
pend on the logic under consideration. For instance, let us consider a logic with
theex-falsorule. In such a logic, an inconsistent point forces every formula. So,
the occurrence of a formula of the formF A : x in a branch is sufficient to ensure
thatCons(x) is non-empty, becausex is certainly consistent (otherwiseA would
be true atx) and1 belongs toCons(x) (sincex�1 = x). Hence, ifF A : x occurs
in the branch under consideration, the range ofx� is non-empty and the expression
f(x�) is denoting. This means that whenever we have two formulae of the form
T ? : x andF A : x in the same branch andx � x � f(x�), we can declare the
branch closed. The logics with theex-falsorule can then be characterized in terms
of models satisfying theglobal constraint thatx � x � f(x�), for all x, whenever
f(x�) is defined, i.e. wheneverCons(x) is non-empty (an LS-formula of the form
FA : x occurs in the branch. (This can be seen as a sort of restricted monotonic-
ity which mirrors the fact that the logics in this class are chacterized by sequent
systems with Weakening on theright.) Using this characterization the rule (48)
can be easily derived. The advantage of this approach is that it allows us to cover
logics with theex-falsorule withouth any need for a special closure rule, but by
imposing additional conditions on the labelling algebra.

Constrained variables can be used also to simplify the formulation of the dis-
junction rules. Here we havetwoconstrained variables, that we denote by�1x and
�2x respectively, satisfying the constraint:

�1x u �2x � x:
The values that these variables can take depend on each other. To express this
dependency we can use the same instantiation symbol and stipulate thatf(�1x)
depends onf(�2x) as required by the constraint and, therefore,

f(�1x) u f(�2x) � x:
The disjunction rules can then be reformulated as follows:

TABLEAU METHODS FOR SUBSTRUCTURAL LOGICS 445

TA _ B : x
FA : f(�ix)
TB : f(�ix)

(*) TA _ B : x
FB : f(�ix)
TA : f(�ix)

(*)

FA _B : x
FA : �1x
FB : �1x

FA : �2x
FB : �2x

(*) where (i) i = 1; 2 and (ii)f(�1x) andf(�2x) are the atomic labels associated
with T A _ B : x in the branch.

Soundness and Completeness ofLKE

Our claim is that theLKE systems which arise from augmenting the basic la-
belling algebra with sets of global constraints are equivalent to the corresponding
subsystems ofLJ, according to the correspondence between global constraints and
structural rules.

Using the terminology of Section 3.1, let us say thatA is aS-theorem, and write
`S A, if the sequent̀ A can be derived by using only the operational rules and
the structural rules inS. Let us denote by� [S] the set of structural constraints
corresponding to the structural rules inS (the correspondence is summarized in
Table 2). Finally, we say thatA is anLKEh� [S]i-theorem if there is a closed
LKE-tree starting withFA : 1, in which the the global constraints in� [S] may be
used together with the basic labelling algebra in order to close a branch. Then we
can prove the following result:

PROPOSITION 8.A formulaA is anS-theorem if and only ifA is anLKEh� [S]i-
theorem.

Proof. (Outline)To show the if-direction we can use the semantics as an interme-
diary. First extend Proposition 2 above to cover the new operators. The discussion
of theLKE-rules and of the labelling algebra shows thatLKEh� [S]i is sound
with respect to the corresponding semantics (based ons.o.m. models of the� [S]-
type and on the forcing relations for all the operators) and therefore, also with
respect to the sequent calculi of typeS. The converse can be shown directly by
simulating the sequent rules. Given a provable sequentA1; : : : ; An ` B, we say
that it isLKEh� [S]i-provable if there is a closedLKEh� [S]i-tree starting with
the sequenceT A1 : a1; : : : ; T An : an ` F B : a1�� � ��an, wherea1; : : : ; an are
all atomic labels such that distinct labels are assigned to distinct formulae. Then
the sequent rules can be simulated by showing that if their premisses are provable
so are their conclusions. (The argument is not entirely trivial and involves renam-
ing of the labels.) This implies the completeness ofLKEh� [S]i with respect to
the sequent calculi of typeS. Since the sequent calculi are, in view of the ex-
tension of Proposition 2, complete with respect to the semantics, it follows that

446 MARCELLO D’AGOSTINO, DOV GABBAY, KRYSIA BRODA

LKEh� [S]i is also complete with respect to the corresponding semantics based
ons.o.m.models of the� [S]-type. �

3.3 Substructural Logics of the Classical Type

We now turn our attention to the substructural logics with involutive negation, that
we have called ‘classical substructural logics’. A trivial way of characterizing
them within our framework would consist in adding a double negation rule of the
form

T ::A : x
T A : x

or some other equivalent rule to our stock ofLKE-rules. But thisad hocsolution
is not particularly interesting, and we shall instead explore a different approach
which aims to incorporate the involutive property of classical negation into the
Kripke-style semantics of substructural logics that we have developed so far. This
approach stems quite naturally from our discussion of constrained variables in
Section 3.2.

Information Frames

In Section 3.1 we defined as.o.m.model as a 5-tuplem = hW; �; 1;�; V i. We
can distinguish between two components of such a model: the underlyingframe,
namely the 4-tuplehW; �; 1;�i and thevaluationV . In this way the same frame
can support a variety of models depending on the valuationV . By as.o.m. frame
we shall therefore mean the underlying frame of as.o.m.model.

The semantics based ons.o.m.models is adequate to deal with intuitionistic
substructural logics. In order to add involutive negation and other nice properties
to this semantics it is convenient to enrich it by moving froms.o.m.frames to
what we shall call ‘information frames’ to stress the fact that they appear to have
enough structure to model a large variety of information processes (including those
involving modalities).

DEFINITION 9. An information frameis a structureF = (W; �; 1;�) such that:

1. W is a non-empty set of elements calledpieces of informationor informa-
tion tokens;

2. � is a partial ordering which makesW into a complete lattice;

3. � is a binary associative operation onW which is

(a) distributive over
F

: for every non-empty familyfcig �W ,G
fci � ag =

G
fcig � a and

G
fa � cig = a �

G
fcig

TABLEAU METHODS FOR SUBSTRUCTURAL LOGICS 447

(b) distributive over
d

: for every non-empty familyfcig �W ,
l
fci � ag =

l
fcig � a and

l
fa � cig = a �

l
fcig:

4. 1 2W and for everya 2W , a � 1 = 1 � a = a.

In other words, an information frame is as.o.m.frame such that (i) the partial
ordering� is a complete lattice, and (ii) the monoid operation� is fully distributive
over

F
and
d

. Recall that the properties of� imply that this operation is order-
preserving, i.e.

a1 � a2 =) a1 � b � a2 � b andb � a1 � b � a2:
In analogy with what we did fors.o.m.models, we can define classes of informa-
tion frames which satisfy additional structural constraints on the ordering�:

DEFINITION 10. We say that an information frame is:

commutative if a � b � b � a
contractive if a � a � a
expansive if a � a � a
monotonic if a � a � b
In this new context, amodelwill be defined as follows:

DEFINITION 11. A modelm is a pairhF ; V i whereF is an information frame
andV is a valuation of atomic formulae satisfying the persistence condition of
Definition 1 and the following continuity conditions:

1. (downward continuity)For every atomic formulap and every non-empty set
S of information tokens:

(8a 2 S)a 2 V (p) =)
l
S 2 V (p)

2. (upward continuity)For every atomic formulap and every non-empty setS
of information tokens:

(8a 2 S)a 62 V (p) =)
G
S 62 V (p):

The ‘meaning’ of the conditional operator (as expressed by the forcing relation) is
the same as before. The reader can check that the continuity properties, as well as
the persistence condition, hold also for arbitrary formulae, i.e.

(54) a � b anda m A =) b m A

and, for every non-empty setS of information tokens:

(55) (8a 2 S)a m A =)
l
S m A

448 MARCELLO D’AGOSTINO, DOV GABBAY, KRYSIA BRODA

(56) (8a 2 S)a 6m A =)
G
S 6m A:

It can also be shown that the move froms.o.m.models to information frames
does not increase the stock of valid formulae formulae and, therefore, allows us
to preserve completeness without strengthening our labelling algebras. However,
information frames will prove convenient for an elegant treatment of involutive
negation.

Involutive Negation

The rules for negation given above in Section 3.2 areintuitionistically valid also
in the new setting where models are based on information frames. The good news,
is that now we can get rid of the cumbersome instantiation symbols, because we
can takex� to denote the join ofCons(x). So we can treatx� not as a constrained
variable, but as a real point of the model. It is easy to check that the rules remain
valid, under this interpretation, even if we remove the instantiation symbols to
obtain the following simpler rules:

(57) T :A : x
T A : y
T? : x � y

F :A : x
T A : x�

T ? : y
� y � x � x�

In fact, if A is true atf(x�), i.e. at some point inCons(x), then it is true also atF
Cons(x). On the other hand, since? is false atx � y for everyy 2 Cons(x),

then, the distributivity of� over
F

, together with the (upward) continuity property
of valuations, imply that? is false at

F
Cons(x). So, if we treat� as a unary

operation of the labelling algebra, the above rules are justified under the inter-
pretationx� =

F
Cons(x), and still characterize the non-involutive negation of

intuitionistic substructural logics.
Now, the involutive negation typical of classical substructural logics can be

characterized simply by assuming that, in the labelling algebra, the operation�

is an involution, i.e.x�� = x.

PROPOSITION 12.For every frameL and every modelm overL, the following
two statements are equivalent:

1. For all information tokensx 2m and all sentencesA:

x m A() x�� m A;

2. For all information tokensx 2m and all sentencesA:

x m ::A() x m A:

TABLEAU METHODS FOR SUBSTRUCTURAL LOGICS 449

Proof. The proposition follows immediately from observing that, according to our
definitions:

x m :A() x� 6m A

and therefore

x m ::A() x�� m A:

�

Let us consider two information tokensequivalentif they verify exactly the same
propositions. Then, given a frameL, we can restrict our attention to a subframe
containing only a representative for each equivalence class of tokens. So we can
assume without loss of generality that information frames do not contain distinct
equivalent tokens that force exactly the same formulae. In this case, if any of
the two properties in Proposition 12 holds, the operation� is an involution, i.e.
x�� = x. We call a modelinvolutive if the operation� is an involution. An
example of a proof exploiting this property of the� operation is given in Figure 12,
where we prove the formula(:P ! :Q) ! (Q ! P). This is a theorem
of Linear and Relevance Logic (as well as, of course, Classical Logic) but not
a theorem of Intuitionistic Logic. Accordingly, the tree in the figure is closed
under the assumption that the frame is commutative and involutive (therefore is
not intuitionistically closed).

The reader familiar with the literature on Relevance Logic will be reminded
of the�-operation used by Routley and Routley in their semantics of first-degree
entailment [Routley and Routley, 1972] (see also[Routley and Meyer, 1973]).
(Similar operations pervade a good deal of work on the semantics of negation in
non-classical logics.) Here the�-operation is defined and explained in terms of our
basic structures.

LKE for Classical Substructural Logics

In classical substructural logics, the multiplicative operators can all be defined in
terms of! and:. It is therefore routine to work out suitable rules for them from
the given rules for! and:. As for
, we can exploit the following equivalence:

(58) A
B a` :(A! :B)

and turn the constrained variablex=y of Section 3.2 into a real point of the infor-
mation frame, by taking= as denoting a new binary operator defined as follows:

(59) x=y = (x� � y)�

It can be easily shown that, given this definition, we obtain the following rules:

(60) T A
B : x
T A : a
T B : x=a

(�): F A
B : x
T A : y
F B : x=y

F A
B : x
T B : y
F A : x=y

450 MARCELLO D’AGOSTINO, DOV GABBAY, KRYSIA BRODA

F (:P ! :Q)! (Q! P) : 1

T:P ! :Q : a

FQ! P : 1 � a (= a)

TQ : b

FP : a � b

T:P : x

T:Q : a � x

T? : a � x � b

,, ll

F:P : x

TP : x�

Figure 12. In this tree, the left-hand branch is closed for all commutative labelling
algebras under the substitutionx = (a� b)�. Under this substitution the rigth-hand
branch is closed only forclassicalmodels, since(a � b)�� = a � b.

TABLEAU METHODS FOR SUBSTRUCTURAL LOGICS 451

(In the case of non-commutative logics we need, of course, to distinguish= fromn.
It is left to the reader to work out how.) As mentioned in Section 1.2, the operator&

arises naturally in logical systems with an involutive negation and closed under
Exchange. It can be defined in terms of: and! as follows:

A

&

B =def :A! B:

So, its elimination rules can be derived from the rules for! and: together with
the assumption that models are restricted to the involutive ones (i.e. those in which
the operation� is an involution):

(61) T A

&

B : x
F A : y�

T B : x � y

T A

&

B : x
F B : x � y
T A : y�

and

(62) F A

&

B : x
F A : a�

F B : x � a

wherea is anew atomiclabel

The validity of these rules can be seen by deriving them from the rules for! and
:. As for the additives, the good news is that we can get rid of the instantiation
symbols in the_ rules, as we did for the other rules, by defining new unary op-
erators�1 and�2 in a similar way. The bad news is that the simple rules for^
become unsound under the new interpretation. This is due to the fact that now
labels can stand for points which arejoins. Now, if a forcesA andb forcesB,
clearlya t b forcesbothA andB, but does not necessarily forceA ^ B (which
is stronger than eitherA or B). This is easily seen if one thinks in terms of the
canonical model, wherea t b is simply the set-theoretic union ofa andb seens as
decreasing sets of formulae. So the rule F^ becomes unsound and new rules for
conjunction have to be derived from the rules for_ and:, by exploiting the usual
De Morgan laws (which hold in all classical substructural logics). Space prevents
us from discussing the subtleties involved in the treatment of the classical additives
for which we refer the reader to[D’Agostino and Gabbay, 1999].

3.4 Modal Substructural Logics

When logical systems are used to formalise some application area, they may re-
quire the addition of modality to the language for a variety of reasons: to cater for
changes of the system in time, or perhaps for the dependency of the system on the
context, or even to bring metalevel notions into the object level. Be the reasons and
motivations what they may, we must develop the logical capability of incorporat-
ing modalities into these systems, so adding a new dimension which can explicitly
and naturally account for ‘accessibility’ relations involved in the processes that
are being modelled. This leads us to an important area of research: the hybrid

452 MARCELLO D’AGOSTINO, DOV GABBAY, KRYSIA BRODA

systems which result from grafting the modal operators2 and3 onto the variety
of substructural logics. The case-study of modal implication logics is discussed
in [D’Agostino et al., 1997] on which we shall base the following exposition.
Previous work on the specific topic of this section has been concentrating on in-
tuitionistic modal logics. The implication fragments of these logics belong to the
wide family of substructural modal systems presented here (i.e. those satisfyingall
the structural rules of Table 2). We mention in particular the works of Boˇzić and
Došen[1984], and Plotkin and Stirling[1986] (see also[Sympson, 1993] for an
overview).

Formally, we have a system with the conditional operator! and we want to add
unary operators2 and3which behave like modalities. As we have seen, substruc-
tural logics can be characterized by structures of ‘objects’ which can be understood
as ‘pieces of information’ or, sometimes, as ‘resources’. A natural way of defining
modalities within such semantics consists therefore in adding an accessibility rela-
tion between pieces of information. This is the approach adopted in[D’Agostino
et al., 1997] that we shall briefly review in this section. By analogy with classical
modal logics the intuitive idea is that the verification of a proposition of the form
‘2A’ or ‘3A’ by means of a given piece of information (or resource)a, depends
on what is verified by other pieces of information (or resources) ‘accessible’ from
a. Unlike classical modal logics, however, the verification of non-modal formu-
lae, such as a conditional formula, by a given piece of informationa also depends
on what is or is not verified elsewhere in the structure (as with the intuitionistic
conditional). We shall not pursue any particular intuitive interpretation, because it
may change from one logic to the other, and shall leave it to the reader to envisage
his or her favourite application contexts.

In the next section we investigate the semantics of the logical systems obtained
by introducing the modalities2 and3 into the family of substructural implication
logics. This can be seen as extending the semantic analysis of modal intuitionistic
logics carried out in[Fischer-Servi, 1977; Boˇzić and Došen, 1984; Plotkin and
Stirling, 1986; Amati and Pirri, 1993; Sympson, 1993]. In Section 3.4, we show
how to extend theLKEmethod presented in the previous sections to deal with the
modal operators.

The Modal Operators

We start from the information frames defined in Section 3.3 and augment them
with a binary relationR between points, called theaccessibility relation. We as-
sume that this relation is ‘closed’ under arbitrary

F
and
d

, namely:

(63) (8b 2 S)aRb =) aR
G
S and(8b 2 S)aRb =) aR

l
S:

We then introduce into our language the two unary operators2 and3 intended as
the usual modalities. The forcing relation extends to these modal operators in the
expected way. For2 we have the following clause:

TABLEAU METHODS FOR SUBSTRUCTURAL LOGICS 453

(64) a m 2A iff b m A for all b, such thataRb

and for3:

(65) a m 3A iff b m A for someb, such thataRb

In order to preserve the persistence property expressed in (54) in the new setting,
R must also satisfy the following conditions (see[Božić and Došen, 1984] and
[Plotkin and Stirling, 1986]):

(66) a � b andaRc =) (9c0)(bRc0 andc � c0)
and

(67) a � b andbRc =) (9c0)(aRc0 andc0 � c):
DEFINITION 13. A modal information frameis a pair(F ; R) whereF is an
information frame andR is a binary accessibility relation defined on the domain
of F and satisfying conditions (63), (66) and (67).

If R is defined as above, any atomic valuationV over an information frame can
be extended to a forcing relation over a modal information frame by means of the
forcing clauses for2 and3 preserving the persistence property.

DEFINITION 14. Amodal implication modelis a triple(F ; R; V), where(F ; R)
is a modal information frame andV is a valuation. Theforcing relation over a
modal implication modelm is a relation between elements ofm and formulae,
satisfying the following conditions:

1. (8p 2 P)(8a 2m)(a m p() a 2 V (p))

2. (8a 2m)(a m A! B () (8b 2m)(b m A =) (a � b m B)))

3. a m 2A iff b m A for all b, such thataRb

4. a m 3A iff b m A for someb, such thataRb

We can restrict our attention, without loss of generality, to modal implication mod-
els with the additional property that any two points verifying exactly the same
formulae are identical.

DEFINITION 15. We say that a formulaA is verified in a modal implication
modelM if it is verified at the identity point1 ofM . We also say thatA is verified
in a frameF if is verified in all modal implication models based onF .

Let us denote byS(a) the sphereof a, i.e. the set of all pieces of information
accessible froma. We now define the two unary operators! and? as follows:

(68) !a =def

l
S(a)

and

454 MARCELLO D’AGOSTINO, DOV GABBAY, KRYSIA BRODA

(69) ?a =def

G
S(a)

Now observe that (63) implies that the following property ofR is satisfied in every
frame:

(70) (8a)(9b)aRb:
In other words, for alla, S(a) 6= ;. In fact, for every pointa, both!a and?a are
accessible froma, that is

(71) (8a)aR!a andaR?a

In the theory of classical modal logics a property like (70) is known asseriality. So,
in our approachall frames are serial. Using the! and? operators, this assumption
is expressed by the following inequation which holds for all modal information
frames:

(72) !a �?a

It is not difficult to show that (66) and (67) above are respectively equivalent to the
following conditions on? and ! expressing the fact that the operators? and ! are
bothorder-preserving:

(73) a � b =) ?a �?b

(74) a � b =) !a �!b

PROPOSITION 16.In every modal information frame, (67) holds if and only if
(74) holds, and (66) holds if and only if (73) holds.

Given our definitions of the operators! and?, (which are reminiscent of the ones
used in the algebraic semantics of classical modal logics, for which see[Bull
and Segerberg, 1984]) the forcing clauses for2 and3 can be reformulated more
concisely as below:

(75) a m 2A iff !a m A

and

(76) a m 3A iff ?a m A

We can now exploit the new operators to express complex statements about the
accessibility relationR concisely, in the form of simple inequalities of the form
� � �, where� and� are expressions built up from atomic terms by means of the
operators�, ! and?.

Let us consider some of the most familiar properties of the accessibility relation
R (for a more detailed discussion see[D’Agostinoet al., 1997]).

TABLEAU METHODS FOR SUBSTRUCTURAL LOGICS 455

Seriality A frame isserial if for every pointa, S(a) 6= ;, that is, for every point
a there exists ab such thataRb. Observe that a frame is serial if and only if it
verifies the formula2A ! 3A: As mentioned above, in our approach all frames
are serial, as a consequence of (63), and seriality corresponds to the assumption
that!a �?a for all a.

Reflexivity A frame is said to bereflexiveif aRa for all a. Observe that a frame
is reflexive if and only if it verifies the formula2A! A. In our notation reflexiv-
ity can be expressed by the following condition:

(Reflexivity) (8a)(!a � a)

Transitivity A frame is said to betransitiveif the following condition holds:

(8a)(8b)(8c)(aRb andbRc =) aRc):

A frame is transitive if and only if it verifies the following formula2A ! 22A.
In our notation, transitivity is expressed by the following condition:

(Transitivity) (8a)(!a �!!a)

Symmetry A frame is said to besymmetricif the following condition holds:

(8a)(8b)(aRb =) bRa):

A frame is symmetric if and only if it verifies the formulaA ! 23A. In our
notation, symmetry is expressed by the following condition:

(Symmetry) (8a)(a �?!a)

Euclideanism A frame is said to beEuclideanif the following condition holds
true:

(8a)(8b)(8c)(aRb andaRc =) bRc):

A frame is Euclidean if and only if it verifies the formula3A! 23A. The con-
dition corresponding to this property is the one stated below:

(Euclideanism) (8a)(?a �?!a).

456 MARCELLO D’AGOSTINO, DOV GABBAY, KRYSIA BRODA

Modal formulae Conditions onR Modal constraints
2A! A (8a)aRa !a � a
2A! 22A (8a)(8b)(8c)(aRb andbRc =) aRc) !a �!!a
A! 23A (8a)(8b)(aRb =) bRa) a �?!a
3A! 23A (8a)(8b)(8c)(aRb andaRc =) bRc) ?a �?!a
32A! 23A (8a)(8b)(8c)(aRb andaRc =) (9d)(bRd andcRd)) !?a �?!a

Table 5. Correspondence between modal formulae, conditions onR and con-
straints on the modal information frames

Directedness A frame isdirectedif the following condition holds true:

(8a)(8b)(8c)(aRb andaRc =) (9d)(bRd andcRd))

which corresponds to:

(Directedness) (8a)(!?a �?!a).

Observe that a frame is directed if and only if it verifies the following formula
32A ! 23A. Our discussion so far amounts to a reformulation of the well-
known correspondence theory in our new setting. This correspondence is summa-
rized in Table 5.

We shall now state a crucial lemma. Let�1 and�2 be (possibly empty) strings
of ! and?. Thedual of �i, denoted by�0i is the string obtained by interchanging
! and? in �i. Moreover, letM� � M, whereM is the set of modal conditions
listed above. We have the followingduality principle:

THEOREM 17 (Duality Lemma).Assume that�1a � �2a holds for alla in all
M�-frames, i.e. there is a chain of inequalities�0 � � � � � �n such that (i)�0 =
�1a, (ii) �n = �2a, and (iii) each inequality�i � �i+1, with i = 0; : : : ; n� 1, is
one of of the primitive inequalities inM�. Then�02a � �01a also holds for alla in
all M�-frames.

Proof. The proof is an easy induction on the length of the chain�0 � � � � � �n.
�

Let now L
0 be a propositional language containing the two binary operators

!1 and!2 plus the the two modal operators2 and3. (Recall that the two
conditionals collapse in all the systems allowing the structural rule of Exchange,
in which case we use the symbol! without subscripts.) By amodal implication
logic — or MIL for short — we mean a (substructural) implication logic (see
Section 1.2) overL0 satisfying the following conditions on the operators2 and3:

(77)
A ` B
2A ` 2B

and

TABLEAU METHODS FOR SUBSTRUCTURAL LOGICS 457

(78)
A ` B

3A ` 3B
In addition to (77) and (78) above, differentMIL’s may also satisfy different sub-
sets of the followingmodal axioms:

1. 2A! 3A

2. 2A! A

3. 2A! 22A

4. A! 23A

5. 3A! 23A

6. 32A! 23A

In the sequel we restrict our attention toserial MIL’s, i.e. those satisfying the
modal axiom2A! 3A.

Adding Modalities to the LKE System

In this section we show how theLKE method of Section 3.1 can be extended to
deal with the modal operators in a very natural way.

ModalLKE Rules

We enrich the labelling algebra of Section 3.1 with the two unary operators! and
? satisfying Conditions (72), (73), (74), and the duality principle (see the Duality
Lemma above). Notice that this labelling algebra is sufficient for completeness,
that is, as already stressed, we do not need all the complexity brought in by the
potentially infinitary lattice operations which appear in the definition of informa-
tion frames. The latter enter the picture only as intermediary for an explanation
of the unary operator! and?. The completeness of the system (see[D’Agostino
et al., 1997]) guarantees that they do not play any additional role with respect to
characterizing the set of valid formulas.

The valuation clauses (75) and (76) immediately imply simpleLKE-style rules
for the modal operators.

Elimination rules for 2

T 2A : a
T A :!a

ET 2 F 2A : a
F A :!a

EF 2

458 MARCELLO D’AGOSTINO, DOV GABBAY, KRYSIA BRODA

Elimination rules for 3

T 3A : a
T A :?a

ET 3 F 3A : a
F A :?a

EF 3

The rules have a clear intuitive interpretation: if2A is true at a pointa, then it
is true at all points accessible from it and, therefore, it is true at the special point
!a which verifies all and only the formulae which are true at all points inS(a).
Conversely, if2A is false ata, then it must be false at!a.

Similarly, if 3A is true at a pointa, then it is true at some point accessible from
it and, therefore, at the special point?a which verifies all and only the formulae
which are true at at least one point inS(a). Conversely, if3A is false ata, then it
must be false at?a.

By adding these rules to the implication rules we obtain anLKE-system for
modal substructural implication. Different systems will be characterized by adding
to the labelling algebra different sets of structural and modal constraints to be
used in checking for branch-closure. So, this extended method preserves the
‘separation-by-closure’ property of the original method. Moreover, it also pre-
serves the atomic closure property (see Section 3.1 above). Notice that, by virtue
of the duality principle, whenever the constraint�1a � �2b is derivable in the
algebra of the labels, so is its dual�02b � �01a.

In the next subsection we shall see some examples of proofs in this modal ex-
tension of theLKE system.

Examples

EXAMPLE 18. The axiom T,2P ! P is valid in all reflexive frames.

F 2P ! P : 1

T 2P : a

F P : 1 � a(= a)

T P :!a

This one-branch tree is closed in all reflexive frames since!a � a. Observe that,
by the duality principle, the constrainta �?a also holds in all reflexive frames and,
by means of this, the dual of T,P ! 3P can be proved.

TABLEAU METHODS FOR SUBSTRUCTURAL LOGICS 459

EXAMPLE 19. The axiom D,2P ! 3P is valid in all serial frames:

F 2P ! 3P : 1

T 2P : a

F 3P : a

T P :!a

F P :?a

This tree is closed in all serial frames because!a �?a.

EXAMPLE 20. The axiom 5,3P ! 23P is valid in all Euclidean frames.

F 3P ! 23P : 1

T 3P : a

F 23P : 1 � a(= a)

T P :?a

F 3P :!a

F P :?!a

A similar tree, making use of the dual constraint!?a �!a, shows the validity of the
dual axiom32A! 2A.

EXAMPLE 21. The formula

(P ! (P ! Q))! (2P ! Q)

is valid in all contractive and reflexive frames.

460 MARCELLO D’AGOSTINO, DOV GABBAY, KRYSIA BRODA

F (P ! (P ! Q))! (2P ! Q) : 1

T P ! (P ! Q) : a

F 2P ! Q : a

T 2P : b

F Q : a � b

T P :!b

T P ! Q : a�!b

T Q : a�!b�!b

In all contractive frames!b�!b �!b, soa�!b�!b � a�!b. Moreover, in all reflexive
frames!b � b. So, in all contractive and reflexive framesa�!b�!b � a � b.
EXAMPLE 22. The formula

2P ! (Q! 22P)

is valid in all frames which are both monotonic and transitive.
F 2P ! (Q! 22P) : 1

T 2P : a

F Q! 22P : a

T Q : b

F 22P : a � b

T P :!a

F 2P :!(a � b)

F P :!!(a � b)

TABLEAU METHODS FOR SUBSTRUCTURAL LOGICS 461

This one-branch tree is closed for all monotonic-transitive. frames. For,a �
a � b by monotonicity; therefore,!a �!(a � b) by (74); moreover, by transitivity,
!(a � b) �!!(a � b); so,!a �!!(a � b) and the branch is closed.

EXAMPLE 23. The formula

P ! (P ! 23P)

is valid in all frames which are expansive and symmetric.

F P ! (P ! 23P) : 1

T P : a

F P ! 23P : a

F 23P : a � a

F 3P :!(a � a)

F P :?!(a � a)

This one-branch tree is closed in all expansive-symmetric frames. For,a � a � a
by expansion;(a � a) �?!(a � a) by symmetry. These two inequalities imply that
a �?!(a � a).

EXAMPLE 24. The formula3(P ! P) is valid in all monotonic frames.

F 3(P ! P) : 1

F P ! P :?1

T P : a

F P :?1 � a

In all monotonic frames,a �?1 � a and the branch is closed.

EXAMPLE 25. The proof rule

` A! B

` 2A! 2B

462 MARCELLO D’AGOSTINO, DOV GABBAY, KRYSIA BRODA

is valid in all modal information frames.

This is shown by the following closedLKE-tree:

F 2A! 2B : 1

T 2A : a

F 2B : a

T A :!a

F B :!a

T A! B : 1

T B :!a

cc

F A! B : 1

T

whereT is a closedLKE-tree forF A! B : 1 which exists by hypothesis.

EXAMPLE 26. The proof rule

` A
` 2A

is valid in all monotonic frames.

This is shown by the following closedLKE-tree:

F 2A : 1

F A :!1

T A : 1

�� @@
F A : 1

T

whereT is a closedLKE-tree forFA : 1 which exists by hypothesis. Here the
left-hand brach is closed because1 � 1�!1 by the monotonicity of�.
EXAMPLE 27 (Regular modal implication systems). We define the class ofreg-
ular MIL’s, as the class of allMIL’s closed under the additional axiom

2(A! B)! (2A! 2B):

TABLEAU METHODS FOR SUBSTRUCTURAL LOGICS 463

(Recall that allMIL’s considered in this chapter satisfy the other condition that
— in the context of classical modal logic — is used to characterized regular modal
logics, namely Condition 77.) The class ofregular frames, corresponding to regu-
larMIL’s, is characterized by the following constraint:

!a�!b �!(a � b)
The reader can easily check that the above axiom becomes provable if this con-
straint is added to the algebra of the labels. The tree in Figure 13 shows that the
following formula

` 2(3P ! 3Q)! (23P ! 32Q)! R)! R

is verified in all frames which are bothregularanddirected(we usex; y; z as label-
variables and skip the first few nodes in the construction of the tree). Since this
example involves an application of the branching rule of generalized bivalence, it
can serve also the purpose of illustrating the use ofvariables in the labelshinted
at the end of Section 3.1.

Since the left-hand branch of this tree contains the pair of LS-formulaeT R :
x � b andF R : a � b, it is closed ifx � b � a � b. On the other hand, the right-
hand branch is closed if?(!a�!c) �!?(x � c), because of the pair of LS-formulae
T Q :?(!a�!c) andF Q :!?(x � c). Hence, this tree is closed for a given class of
frames if the system consisting of the two inequations:

x � b � a � b ?(!a�!c) �!?(x � c)
has a solution in the corresponding algebra of the labels. In this simple case it is
easy to work out the solutionx = a for the algebra of the labels corresponding to
directed regular frames. To verify this is a solution of the inequation generated by
the right-hand branch, it is sufficient to go through the following steps:

!a�!c �!(a � c) by regularity
?(!a�!c) �?!(a � c) by the monotonicity of ?
?!(a � c) �!?(a � c) by directedness and duality
?(!a�!c) �!?(a � c) by transitivity of�

A general technique for solving systems of inequations generated byLKE-trees
(with variables) within a given algebra of the labels is crucial for developing de-
cision algorithms based on our method. This problem will be discussed in a sub-
sequent work. Here we only observe that our approach separates each proof in
two components: (i) a logical component, which depends only on the “univer-
sal” meaning of the logical operators as defined by the inference rules which are
a straightforward generalization of the classical ones, and (ii) an algebraic com-
ponent, which consists in solving a system of inequations within a given labelling
algebra that mirrors the specific properties of the information system in which
the inferential process takes place. While algorithms for the first component can

464 MARCELLO D’AGOSTINO, DOV GABBAY, KRYSIA BRODA

T 2(3P ! 3Q) : a

T (23P ! 32Q)! R : b

F R : a � b

T 3P ! 3Q :!a

T 23P ! 32Q : x

T R : x � b

�
�� H

HH

F 23P ! 32Q : x

T 23P : c

F 32Q : x � c

T 3P :!c

F 2Q :?(x � c)

F Q :!?(x � c)

T 3Q :!a�!c

T Q :?(!a�!c)

Figure 13. This tree is closed for all regular and directed frames, under the substi-
tutionx = a

TABLEAU METHODS FOR SUBSTRUCTURAL LOGICS 465

be devised as straightforward extensions of known algorithms for classical logic
(simply by shifting from formulae to labelled formulae), algorithms for the second
component can be devised by generalizing existing algebraic methods for solv-
ing similar problems in related areas (e.g., unification, term-rewriting, constraint
programming, etc. see[Brodaet al., 1997] for one approach).

Marcello D’Agostino
Universit̀a di Ferrara, Italy.

Dov Gabbay
King’s College, London.

Krysia Broda
Imperial College, London.

REFERENCES

[Abrusci, 1990] V. M. Abrusci. Noncommutative intuitionistic linear propositional logic.Zeitschr. f.
Math. Logik u. Grundlagen d. Math., 36:297–318, 1990.

[Abrusci, 1991] V. M. Abrusci. Phase semantics and sequent calculus for pure noncommutative clas-
sical linear propositional logic.Journal of Symbolic Logic, 56:1403–1451, 1991.

[Allwein and Dunn, 1993] G. Allwein and J. M. Dunn. Kripke models for linear logic.the Journal of
Symbolic Logic, 58:514–545, 1993.

[Amati and Pirri, 1993] G. Amati and F. Pirri. A uniform tableau method for intuitionistic modal
logics I. Manuscript, 1993.

[Anderson and Belnap, 1975] A. R. Anderson and N. D. Belnap Jr.Entailment: the Logic of Rele-
vance and Necessity, Princeton University Press, Princeton, 1975.

[Andersonet al., 1992] A. R. Anderson, N. D. Belnap Jr and J. M. Dunn.Entailment: The Logic of
Relevance and Necessity. Princeton University Press, Princeton, 1992.

[Avron, 1988a] A. Avron. The semantics and proof theory of linear logic.Theoretical Computer
Science, 57:161–184, 1988.

[Avron, 1988b] A. Avron. The semantics and proof theory of linear logic.Theoretical Computer
Science, 57:161–184, 1988.

[Avron, 1991] A. Avron. Simple consequence relations.Journal of Information and Computation,
92:105–139, 1991.

[Beckertet al., 1993] B. Beckert, R. H¨ahnle, and P. Schmitt. The even more liberalized�-rule in free-
variable semantic tableaux. In G. Gottlob, A. Leitsch, and Daniele Mundici, editors,Proceedings of
the 3rd Kurt Gödel Colloquium, Brno, Czech Republic, number 713 in Lecture Notes in Computer
Science, pages 108–119. Springer-Verlag, 1993.

[Božić and Došen, 1984] M. Božić and K. Došen. Models for normal intuitionistic modal logics.
Studia Logica, 43:217–245, 1984.

[Brodaet al., 1997] K. Broda, M. Finger and A. Russo. LDS-Natural Deduction for Substructural
Logics. Technical Report DOC 97-11. Department of Computing, Imperial College, 1987. Short
version presented at WOLLIC 96,Journal of the IGPL, 4:486–491.

[Brodaet al., 1998] K. Broda, M. D’Agostino, and A. Russo. Transformation methods in LDS. In
Hans J¨urgen Ohlbach and Uwe Reyle, editors,Logic, Language and Reasoning. Essays in Honor
of Dov Gabbay. pp. 347–390. Kluwer Academic Publishers, 1997. To appear.

[Bull and Segerberg, 1984] R. Bull and K. Segerberg. Basic modal logic. In Dov Gabbay and Franz
Guenthner, editors,Handbook of Philosophical Logic, volume II, chapter II.I, pages 1–88. Kluwer
Academic Publishers, 1984.

[D’Agostino and Gabbay, 1994] M. D’Agostino and D. M. Gabbay. A generalization of analytic
deduction via labelled deductive systems.Part I: Basic substructural logics.Journal of Automated
Reasoning, 13:243–281, 1994.

466 MARCELLO D’AGOSTINO, DOV GABBAY, KRYSIA BRODA

[D’Agostino and Gabbay, 1999] M. D’Agostino and D. M. Gabbay. A generalization of analytic
deduction via labelled deductive systems. Part II: full substructural logics. Forthcoming, 1999.

[D’Agostinoet al., 1997] M. D’Agostino, D. M. Gabbay, and A. Russo. Grafting modalities onto
substructural implication systems.Studia Logica, 59:65–102, 1997.

[Dôsen, 1988] Kosta Dôsen. Sequent systems and groupoid models I.Studia Logica, 47:353–385,
1988.

[Dôsen, 1989] K. Dôsen. Sequent systems and groupoid models II.Studia Logica, 48:41–65, 1989.
[Dôsen, 1993] K. Dôsen. A historical introduction to substructural logics. In P. Schroeder Heister and

Kosta Dôsen, editors,Substructural Logics, pages 1–31. Oxford University Press, 1993.
[Dunn, 1986] M. Dunn. Relevance logic and entailment. In D. M. Gabbay and F. Guenthner, edi-

tors,Handbook of Philosophical Logic, volume III, chapter 3, pages 117–224. Kluwer Academic
Publishers, 1986.

[Fischer-Servi, 1977] G. Fischer-Servi. On modal logic with an intuitionistic base.Studia Logica,
36:141–149, 1977.

[Fitting, 1983] M. Fitting. Proof Methods for Modal and Intuitionistic Logics. Reidel, Dordrecht,
1983.

[Gabbay, 1992] D. M. Gabbay. How to construct a logic for your application. In Hans Juergen
Ohlbach, editor,GWAI-92: Advances in Artificial Intelligence (LNAI 671), pages 1–30. Springer,
1992.

[Gabbay, 1996] D. M. Gabbay.Labelled Deductive Systems, Volume 1 - Foundations.Oxford Uni-
versity Press, 1996.

[Garson, 1989] J. Garson. Modularity and relevant logic.Notre Dame Journal of Formal Logic,
30:207–223, 1989.

[Gentzen, 1935] G. Gentzen. Unstersuchungen ¨uber das logische Schliessen.Math. Zeitschrift,
39:176–210, 1935. English translation in [Szabo, 1969].

[Girard, 1987] J.-Y. Girard. Linear logic.Theoretical Computer Science, 50:1–102, 1987.
[Kowalski, 1979] R. Kowalski.Logic For Problem Solving. North-Holland, Amsterdam, 1979.
[Lambek, 1958] J. Lambek. The mathematics of sentence structure.Amer. Math. Monthly, 65:154–

169, 1958.
[MacCaull, 1996] W. MacCaull. Relational semantics and a relational proof system for full Lam-

bek calculus. Technical report, Dept. Mathematics and Computing Sciences, St. Francis Xavier
University, 1996.

[McRobbie and Belnap, 1979] M. A. McRobbie and N. D. Belnap. Relevant analytic tableaux.Studia
Logica, XXXVIII:187–200, 1979.

[McRobbie and Belnap, 1984] M. A. McRobbie and N. D. Belnap. Proof tableau formulations of
some first-order relevant orthologics.Bulletin of the Section of Logic, Polish Academy of the Sci-
ences, 13:233–240, 1984.

[Meyeret al., 1995] R. K. Meyer, M. A. McRobbie, and N. D. Belnap. Linear analytic tableaux. In
Peter Baumgartner, Reiner H¨ahnle, and Joachim Posegga, editors,Proceedings of Tableaux ’95, 4th
conference on Theorem Proving with Analytic Tableaux and Related Methods, St. Goar, volume 918
of Lecture Notes in Artificial Intelligence, pages 278–293. Springer, 1995.

[Ono and Komori, 1985] H. Ono and Y. Komori. Logics without the contraction rule.The Journal of
Symbolic Logic, 50:169–201, 1985.

[Ono, 1993] H. Ono. Semantics for substructural logics. In Peter Schroeder-Heister, editor,Substruc-
tural Logics, pages 259–291. Oxford University Press, 1993.

[Plotkin and Stirling, 1986] G. D. Plotkin and C. P. Stirling. A framework for intuitionistic modal
logic. In J. Y. Halpern, editor,Theoretical Aspects of Reasoning About Knowledge, pages 399–406,
1986.

[Routley and Routley, 1972] R. and V. Routley. The semantics of first degree entailment.Noûs,
VI:335–359, 1972.

[Routley and Meyer, 1973] R. Routley and R. K. Meyer. The semantics of entailment, I. In
H. Leblanc, editor,Truth, Syntax and Semantics. North Holland, 1973.

[Russo, 1996] A. Russo. Generalising propositional modal logics using labelled deductive systems.
In Proceedings of FroCoS’96, 1996.

[Sambin, 1993] G. Sambin. The semantics of pretopologies. In Peter Schroeder-Heister, editor,Sub-
structural Logics, pages 293–307. Oxford University Press, 1993.

[Sympson, 1993] A. K. Sympson. The Proof Theory and Semantics of Intuitionistic Modal Logic.
PhD thesis, University of Edinburgh, 1993.

TABLEAU METHODS FOR SUBSTRUCTURAL LOGICS 467

[Tarski, 1930a] A. Tarski. Fundamentale begriffe der methodologie der deduktiven wissenschaften, I.
Monatshefte f¨ur Mathematik und Physik, 37:361–404, 1930.

[Tarski, 1930b] A. Tarski. Über einige fundamentale begriffe der metmathematik.Comptes Rendus
des S´eances de la Soci´eté des Sciences et des Lettres de Varsovie, 23:22–29, 1930.

[Thistlewaiteet al., 1988] P. B. Thistlewaite, M. A. McRobbie, and B. K. Meyer.Automated Theorem
Proving in Non Classical Logics. Pitman, 1988.

[Urquhart, 1972] A. Urquhart. Semantics for relevant logic.The Journal of Symbolic Logic, 37:159–
170, 1972.

[Urquhart, 1984] A. Urquhart. The undecidability of entailment and relevant implication.Journal of
Symbolic Logic, 49:1059–1073, 1984.

[van Benthem, 1991] J. van Benthem,Language in Action: Categories, Lambdas and Dynamic Logic,
North-Holland, Amsterdam, 1991.

[Wagner, 1991] G. Wagner. Logic programming with strong negation and inexact predicates.Journal
of Logic and Computation, 1:835–859, 1991.

[Wansing, 1993] H. Wansing.The Logic of Information Structures. Number 681 in Lecture Notes in
Artificial Intelligence. Springer-Verlag, Berlin, 1993.

[William, 1980] A. H. William. The formuale-as-types notion of construction. In J.P. Seldin and J.R.
Hindley, editors,To H.B. Curry: Essays on Combinatory Logics, Lambda Calculus and Formalism.
Academic Press, London, 1980.

468

NICOLA OLIVETTI

TABLEAUX FOR NONMONOTONIC LOGICS

1 INTRODUCTION

In the last 15 years there has been a huge amount of research on logical formal-
ization of commonsense reasoning. One of the major difficulties against the use of
standard logics for this purpose is that commonsense reasoning requires the capa-
bility of dealing with information which is not complete and is subject to change.
In many situations, one cannot simply be stuck by the incompleteness of the avail-
able information and has ‘to jump’ to plausible conclusions, despite they are not
logically valid. New incoming data might defeat plausible conclusions of the rea-
soning agent. In such a case, the reasoning agent must be prepared to withdraw
its conclusions and to block its inferences. Traditional logics, even non classical
ones, are not suitable to express and formalize revisable inferences. This is not
surprising, as in almost application of logics, from mathematical reasoning to pro-
gram verification, one never has to jump to some conclusion from insufficient data.
In mathematics, for instance, all the hypotheses of a theorem must be explicit in
order to prove it; if the data are not sufficient to prove the theorem, one just gives
up the proof, or proves another theorem.

As it is largely acknowledged, the property of traditional logics which makes
them unsuitable to formalize the process of ‘jumping to conclusions’ is theirmono-
tonicity. Any deductive system (identified with a consequence relation`), is called
monotonicif adding more hypotheses, one cannot get less theorems, that is:

� ` � and� � � implies� ` �:

Some non classical logics, such as relevance logics do not satisfy this property,
still we will not classify them as nonmonotonic logics. The characteristic feature
of so-called nonmonotonic systems is that they allow one to draw conclusions
which are stronger than logical consequences. Nonmonotonic consequences are
not logically valid. One may doubt whether representing nonmonotonic reasoning
requires specific logics, or it just matters how logic is used. At an intuitive level,
all attempts of formalizing nonmonotonic reasoning start from the idea of enabling
some inferences because of lacking of contrary evidence.

Many AI tasks and applications require nonmonotonic reasoning capabilities.
We list a few well-known examples.

� Frame problem: when reasoning about successive states of an object subject
to change, we must be able to conclude that the object preserves its proper-
ties, unless their change can be inferred from the available information.

470 NICOLA OLIVETTI

� Qualification problem: all the relevant preconditions for bringing about an
action, or for solving a problem, are those which can be inferred from the
data.

� Closed world reasoning: facts which are not explicitly asserted, nor de-
ducible are false.

� Reasoning about typicality and prototypes: an individual has some typical
property, unless its exceptional behaviour can be inferred from the available
data.

Frame and qualification problems arise in the context of planning and reasoning
about actions. Closed world reasoning is a convention usually adopted in database
query-answering; a database can store only positive information, and yet there
must be a way of inferring negative information. The need of reasoning about
typicality arises when we represent properties of objects in a knowledge base; the
information is usually organized in the form hierarchies of (classes of) objects and
their properties; we expect properties be inherited by a subclass of objects, unless
we know that it makes an exception.

In all cases discussed above, subsequent information may lead to withdraw con-
clusions. That is why a deductive system capable of performing such kinds of rea-
soning has to be nonmonotonic. All approaches to formalization of nonmonotonic
reasoning address the above kinds of reasoning, although substantially differing in
the type of formalization.

In this context we cannot even attempt to give an account of more than 15
years of research in the area. The seminal papers in the area, representative of the
main approaches to formalization of nonmonotonic reasoning, were collected in a
special issue ofArtificial Intelligence(Vol. 13, 1980); for an introduction to the
area we refer to Reiter’s paper[1987], and to some books, such as[Brewka, 1985;
Etherington, 1988], and [Besnard, 1989].

We may distinguish the approaches to nonmonotonic reasoning in two types
which we respectively call thefixpointapproach and thesemantic preferenceap-
proach. We give below an intuitive description of the two approaches, further
details are contained in the next section. We present both of them, by discussing a
simple example.

Suppose that we have the following information: ‘(*) Greeks are usually dark-
haired’, ‘Kostas is Greek’, ‘albinos and balds are not dark-haired’. Let first try to
express the knowledge by first order axioms:

8x(greek(x)! dark haired(x)),
greek(kostas),
8x(albino(x) _ bald(x)! :dark haired(x)).

Since we have no evidence that Kostas is albino or bald we want to infer that he
is dark-haired. From the axioms, we can infer in first-order logic that Kostas is

TABLEAUX FOR NONMONOTONIC LOGICS 471

dark-haired, and there are neither albinos nor bald Greeks. Thus, if we later learn
that Kostas is either albino or bald, the information becomes inconsistent and we
waste everything.

However, once we have learned that Kostas is bald, we just want to withdraw
the conclusion that he is dark-haired, without retreating the general knowledge.
How can it be done?

One way of reading a statement as (*) is ‘if x is greek and we do not have
evidence that x is not dark-haired, we can conclude that x actually is’. That is,
we conclude that x is dark-haired by the unability to conclude that x is not. Since
unable to prove:�, means that� is consistent, one possibility is to introduce a
modality,M , whose meaning is consistency: we can represent the (*) by

8x(greek(x) ^M(dark haired(x)) ! dark haired(x)):

To use this rule, we must be able to make inferences such as

(NM-rule): from 6` :� infer `M�.

It is easily seen that we cannot constructively define a deduction relation, (on the
top of classical logic) incorporating such a deductive rule: any attempt to define
provability by means of non provability leads to an inconsistent circularity1. To
define what is derivable by means of a such NM-rule from a set of formulas�, the
only thing we can do is to say what condition must satisfy a setS to be regarded
as the set consequence of� under NM-rule. The condition is the following:

S = f� : � [fM : S 6` : g ` �g:

A setS satisfying the condition above can be seen as a fixpoint of a transforma-
tion on sets of formulas. Such setsS may not exist, but if they do, nonmonotonic
inferences from� can be defined as monotonic (ordinary) inferences from any
such setS (we can chose of considering just one, or all of them). This was the
first proposal of a nonmonotonic logic by McDermott and Doyle[1980]. It was
later elaborated in a modal context[McDermott, 1982]. But certain anomalies of
Doyle and McDermott’s logic, led Moore to propose a better behaved variant of it.
According to Moore, his logic is capable of capturing another form of nonmono-
tonic reasoning, he calledautoepistemic. Autoepistemic reasoning is the kind of
reasoning we use (quoting Moore) to conclude that ‘I don’t have an older brother
since otherwise I would know it’. Moore’s proposal consists, as explained in the
next section, in introducing a belief operatorL (‘it is believed that’), dual of the
consistency operatorM of Doyle and McDermott, i.e.L� = :M:�. To express
the inference about the brother, we would use the axiom:

:L brother ! :brother:

1Unless we put some bound on deduction resources.

472 NICOLA OLIVETTI

But, to conclude that I don’t have a brother, I still need a way of inferring:L ,
from the unability of inferring . As in Doyle’s and McDermott’s logic, autoepis-
temic consequences are defined by means of non-constructive extensionsS of the
initial data, satisfying a fixpoint condition. We postpone a more detailed exposition
of Moore’s proposal to the next section.

A similar, although technically different, proposal was put forward by Reiter
in [1980]. Reiter’s purpose is to deal directly with inference rules, whose con-
clusions can be inferred by ‘lack of contrary evidence’. Instead of expanding the
language by introducing belief or consistency operators, he has proposed to extend
classical provability by means of inference rules which may contain consistency
assumptions. These rules are calleddefault rules(defaults), and have the form

� : �

whose meaning is: if� can be inferred and:� cannot be inferred, then conclude
. For instance the rule concerning Greeks would be expressed by the default:

greek(x) : dark haired(x)

dark haired(x) :

Once more, the set of derivable formulas by means of default rules cannot be
described constructively, but only by means of fixpoint extensions induced by the
initial data together with the set of defaults.

To conclude, we have gathered under thefixpoint approachall proposals, in
which nonmonotonic inferences are sanctioned by non-provability. A common
feature of these approaches is that the only way of characterizing the set of non-
monotonic consequences is by means of non-constructive fixpoint extensions.

To explain the semantic preference approach, we go back to the initial example.
One way to formalize the fact that ‘normally, Greeks are dark haired’ is

8x(greek(x) ^ :exceptional(x)! dark haired(x)):

That is, Greeks are dark-haired, unless they are unnormal under a certain respect.
From the set of axioms given above we can infer:

greek(x) ^ (albino(x) _ bald(x))! exceptional(x):

Even if we knew that Kostas is neither bald nor albinos, we would still be unable
to infer that he is dark-haired. We would need to know that theonly exceptions
to having dark hair are to be bald or albino. Semantically, this would correspond
to consider only models in which there are no more exceptional individuals than
it is required by the axioms. In other words, we would like restrict the models of
our axioms, to those in which the extension of the predicateexceptional(x) is as

TABLEAUX FOR NONMONOTONIC LOGICS 473

small as possible. In this case, they are the models which make true:

exceptional(x)$ greek(x) ^ (bald(x) _ albino(x)):

If we restrict our concern to suchminimal models and if we have the additional
information

:bald(kostas), :albino(kostas),
we can concludedark haired(kostas). That is, this conclusion holds in all min-
imal models of the axioms.

Another use of minimal entailment is closed-world reasoning in databases. Sup-
pose we have a database as shown in Figure 1.

student advisor
ann paul
kate linda
tom paul

Figure 1.

It is clear that we cannot answer to a query such as ‘does every student have an
advisor?’ represented by the formula:

8x(student(x)! 9y advisor(x; y));

unless we assume that the are no other student than those listed in the database.
Minimal entailment, in its variations, can be used to automatically generate the
necessary closure conditions involved in such database reasoning.

What we have just sketched is what we call the minimal entailment approach
to nonmonotonic reasoning and is based on the idea of restricting the notion of
logical consequence to a subset of minimal or preferred models of the axioms.
These models represent the intended meaning of the axioms. Minimal entailment
is nonmonotonic since a minimal model of a set of formulas� might be no longer
minimal with respect to subsets of�. This semantical approach to nonmonotonic
reasoning find its origin in the notion of Circumscription introduced by McCarthy
[1980].

The two approaches we have described do not exhaust all possible attempts to
formalize various kind of nonmonotonic reasoning which have been proposed so
far; for instance, conditional logics have received some interest to formalize rea-
soning by default[Delgrande, 1988]; but, the fixpoint approach and the semantic
preference approach are the most developed and well-known, so our attention will
concentrate on them. This chapter is intended to be a survey of tableau method-
ologies applied to nonmonotonic reasoning. We will mainly treat the propositional
case, and postpone the discussion of the first-order case to the last section.

474 NICOLA OLIVETTI

2 THE FIXPOINT APPROACH

2.1 The Modal Approach

In this section we expose Moore’sautoepistemic logicsas the most significant ex-
ample of modal nonmonotonic logics. Moore proposes a logics which aims to
model the beliefs of an ideal agent, capable of reflecting upon its own beliefs. Let
us denote byL the belief operator, so thatL� means ‘� is believed’. The lan-
guage of autoepistemic logic is a conventional propositional language augmented
by the operatorL. The primary object of interest in autoepistemic logics are sets
of formulas which are intended to represent the belief of a self-reflecting agent.

In order to formalize the beliefs of an ideal agent, Moore makes two funda-
mental assumptions: (1) the agent is capable of both positive and negative intro-
spection, (2) the agent is logically omniscient. The two assumptions determine the
following conditions on the belief setS of an agent:

� deductive closureif S ` B, thenB 2 S (` denotes classical provability);

� positive introspectionif � 2 S, thenL� 2 S;

� negative introspectionif � 62 S, then:L� 2 S.

An infinite set of formulaeS satisfying the conditions above is calledstable.2

Notice that ifS is a stable set, for all formulas eitherL 2 S or:L 2 S.
Usually we are interested in belief sets which extend or complete, so to say, a

given set of premises�. We come to the main definition.

DEFINITION 1. Given a set of formulas�, we say that a set of formulasS is a
stable expansionof � iff

S = Th(� [fL� : � 2 Sg [f:L� : � 62 Sg):

It is immediate to see that a stable expansionS of � is stable. Moore gives an
equivalent semantical definition of stable expansions, but for the present purpose
we do not need it.

Let us callordinary sentencesformulas which do not involve the belief operator.
It can be proved that any stable expansion is completely determined by the set of
ordinary formulas it contains in the sense that ifT andT 0 are stable sets which
contain the same set of ordinary formulas, thenT = T 0. Let us denote byOrd(S)
the subset of ordinary formulas contained in a set of formulasS and byTh(S) the
deductive closure ofS.

As the next examples show a set� can have zero, one, or more stable expan-
sions.

2The notion of stable set was previously introduced by Stalnaker.

TABLEAUX FOR NONMONOTONIC LOGICS 475

EXAMPLE 2.

1. Let� = f:Lq ! :qg. Then� has exactly one stable expansionS and

S = Th(� [f:qg):

2. Let� = f:Lp! q;:Lq ! pg. Then� has two extensions, namely

S1 = Th(� [fpg); S2 = Th(� [fqg):

3. Let � = :Lp ! p. Suppose thatS is an extension of�. If p 2 S, then
Lp 2 S, but�; Lp 6` p. Thus, it must bep 62 S, and hence:Lp 2 S. But
�;:Lp ` p, so that it must bep 2 S. We have a contradiction. We can
conclude that� has no extensions.

Regarding to logical consequence, in autoepistemic logics there are two dif-
ferent notions which naturally arise, respectively calledskepticalandcredulous.
Given a set of premises� we define:

� (skeptical derivability) � `s � iff � belongs to all autoepistemic expansions
of �;

� (credulous derivability) � `c � iff there exists an autoepistemic expansion
T of � which contains�.

The difference clearly arises when (1)� has no stable expansions3, or (2) � has
more than one stable expansion. The first notion corresponds to the point of view
of an external observer who, not being able to determine which is the belief set
of the agent, considers any possible belief set. The second notion corresponds the
point of view of the agent who has its own belief set. The two definitions were ex-
plicitly introduced by Niemel¨a, who proposed a decision method for autoepistemic
logic based on analytic tableaux. His method will be exposed in section 5.

More recent work has pointed out that the notion of stable expansion is some-
what too weak to adequately represent a belief set. For instance, let� = fLp !
pg, then� has two stable expansionsS0 containing bothp andLp, andS1 con-
taining:Lp and not containingp. ButS0 is hardly justified as a belief set: inS0 p
can be inferred only because the agent has chosen to believep, that is to putLp in
S0. To overcome this problem Konolige has proposed two tighter notions of exten-
sion respectively calledmoderatelygrounded andstronglygrounded. Moderately
grounded extensions are minimal extensions of a set of premises, i.e. extensions
whose ordinary part is not included in the ordinary part of any other extension. It
is easily seen that onlyS1 is moderately grounded but notS0. Strongly grounded
extensions eliminate some further anomalies of moderately grounded extensions,

3In this case, for any�;� `s �

476 NICOLA OLIVETTI

which cannot be ruled out by the simple minimality requirement. We will not give
the definition and we will refer to[Moore, 1982] for a complete development.
Strongly grounded extensions find their interest in the fact that they are the exact
counterpart of default extensions[Konolige, 1988], introduced in the next section.

To conclude this review of the modal approach, we go back to the previous
proposal by McDermott and Doyle. If we turn the consistency operatorM into its
dualL, (M� = :L:�), it is easy to see that extensions in McDermott and Doyle’s
logic can be defined as fixed points of the following equation:

(�) E = Th(� [f:L : E 6` g)

Thus, the difference with a stable expansion is that an extension is not required to
be closed with respect to positive introspection:

if E ` , thenL 2 E
For this reason McDermott and Doyle’s logic has a quite odd behaviour; for in-
stance the set

fp;:Lpg
admits an extension, against all intuitions. This and other anomalies, lead Mc-
Dermott to the attempt of re-formulating his and Doyle’s logic in a modal setting.
This amounts to changè in equation(�), from provability in classical logic to
provability in some modal system. The move to a modal setting has opened a new
realm of investigation with somewhat unexpected results. For instance the closure
condition of equation (*) turns out to be very strong: it makes collapse the notion
of extension as based on every modal logic between K and S5. System S5 by itself
is not a good choice: McDermott has shown that skeptical nonmonotonic provabil-
ity based on S5 coincide with ordinary, monotonic S5-provability. Autoepistemic
logic finds its place in this modal setting[Schwarz, 1990]: consistentstable ex-
pansions happen to be exactly extensions in the sense of equation (*), once that we
consider modal logic K45 as the underlying system.

In Section 5, for the sake of completeness, we will give a tableau procedure for
McDermott and Doyle nonmonotonic modal logic.

2.2 The Inferential Approach

As we have seen in the previous section, the primary object of interest in the modal
approach are certain infinite sets of formulas representing the beliefs of an agent.
These sets are defined by a sort of fixpoint equation. The conditions involved in the
fixpoint equation completely constrain extensions, irrespectively to the exact inter-
pretation of modality.4 All the work is already done in the metalanguage by impos-
ing conditions on extensions. Thus, one can formalize the notion of extension, or

4The inessentiality of modal operators can be seen also from the fact that two extensions, agreeing
on ordinary formulas, coincide.

TABLEAUX FOR NONMONOTONIC LOGICS 477

belief set without using modality. The first proposal in this sense was Reiter’s De-
fault logics. Variants of Reiter’s logic have been explored in[Łukasiewicz, 1990;
Brewka, 1992; Giordano and Martelli, 1994; Schaub, 1992].

Reiter’s Default Logic

The idea of Reiter is to extend propositional provability byinferencerules called
defaultsof the form

� : �

where�, � and are formulas,5 whose meaning is as follows: if� is derivable
and� can be consistently assumed (that is:� is not derivable), then is derivable.
Knowledge is represented bydefault theoriesT = (�; D), where� is a set of
formulas andD is a set of defaults of the above form.

As in autoepistemic logic, the main object of interest in default logic are sets
of formulas closed both under propositional derivability and under defaults. These
sets are calledextensionsand can be defined in a number of equivalent ways as
fixpoints satisfying certain conditions. Given any set of formulasS, let�(S) the
smallest set of formulas which satisfies the following conditions:

1. � � �(S);

2. if �(S) ` � then� 2 �(S);

3. for all defaultsd =
� : �
 2 D if � 2 �(S) and:� 62 S, then 2 �(S).

GivenS, such smallest set�(S) always exists. A set of formulasE is an extension
of a default theory� = (�; D) if it is a fixpoint of �, i.e.E = �(E).

Let us introduce some notions and abbreviations. Given a defaultd =
� : �
 ,

we call� theprerequisiteof d, (denoted bypre(d)), � the justificationof d, (de-
noted byjust(d)) and the consequent ofd (denoted bycons(d)). Given a set of
defaultsD, we also define:

PRE(D) = fpre(d) : d 2 Dg
JUST (D) = fjust(d) : d 2 Dg
CONS(D) = fcons(d) : d 2 Dg.

5In this chapter, we only consider default rules with a single consistency assumption (�), rather than
more general ones of the form

� : �1; : : : ; �n

However, the extension of the techniques and results we present to default rules of this form is
straightforward.

478 NICOLA OLIVETTI

Given a setD of defaults and a set of formulasS, we define the subsetGD(D;S)
of defaults ofD which can be used to infer their consequents byS:

GD(D;S) =
n
d =

� : �

2 D : � 2 S and:� 62 S

o
:

Using this notation, it can be shown thatE is an extension of� = (�; D) if and
only if

E = Th(� [CONS(GD(D;E))):

This characterization of extensions points out that every extension is the deductive
closure of the base theory� together with the consequents of a subset of defaults
in D. We can give an alternative characterization of extensions, which is closer
to an inductive definition:E is an extension of a default theory� = (�; D) if
E =

S1
i Ei, where

E0 = �;

Ei+1 = Th(Ei) [
n
 :

� : �

2 D;� 2 Ei and:� 62 E

o
:

We will see in Section 6 that the tableau methods for default logic, developed so
far, have been inspired by either one or the other characterization of extensions as
given above.

Similarly to autoepistemic logic, a default theory can have zero, one, or more
extensions. Here are some examples.

EXAMPLE 3. Let � = (�; D) be a default theory with� = ;, andD =
fd1; d2g, where

d1 =
: a

a
; d2 =

: :a
:a :

Then,� has two extensions,

E1 = Th(fag); E2 = Th(f:ag):

EXAMPLE 4. Let� = (�; D), where,� = ;, andD = f : :a
a g. Suppose that

E is an extension, then we have

a 2 E $::a 62 E; whence
a 2 E $ a 62 E;

sinceE is deductively closed. We have a contradiction, thus� has no extensions.

EXAMPLE 5. Let� = (�; D), with � = ;, andD = fd1; d2g, where

d1 =
a : b

b
; d2 =

b : a

a
:

TABLEAUX FOR NONMONOTONIC LOGICS 479

It is easily seen thatTh(;) satisfies the conditions for being an extension, and
hence� has a unique extensionE = Th(;).

Two properties, already proved by Reiter are worth mentioning: an inconsistent
default theory(�; D), (i.e. where� is inconsistent) has exactly one extension,
namely the set of all formulas. Moreover, extensions are minimal: ifE1 andE2

are two extensions of(�; D) andE1 � E2, thenE1 = E2.
In the literature, particular classes of defaults have received a special attention.

Two important ones are:normal defaultswhich have the form:

� : �

�
;

andsemi-normal defaultswhich have the form:

� : �

;

wherej= � ! . Normal default theories have at least one extension. This does
not hold for seminormal default theories.

As in autoepistemic logic, two notions of inference naturally arise. Given a
default theory� = (�; D) we can define:

� � `s � iff � holds in every extension of�6, and

� � `c � iff there is an extensionE of � in which� holds.

Variants of Default Logics

Although Reiter’s notion of default inference rule is natural and reasonable, his de-
fault logic has some arguable features, which have lead to alternative formulations.
We will briefly review some of them, starting from their motivating issues.

A first problem—as we have seen— is that a default theory may fail to have any
extension; this is the case, for instance, of(�; D), where� = fp! :qg andD =
true : q

p . What happens here is that the justificationq is consistent withTh(�),
hence the default can and must be applied; we are forced to add its consequent
p; but now we can prove:q, that is the justification becomes inconsistent and the
default is no longer applicable. This is why the theory has no extensions.

Łukaszewicz[1990] proposes to strengthen and correct Reiter’s criterium of
applicability of a default to prevent the case we have just seen: in addition to the
conditions on the justification and the prerequisite, a default rule is applicable only
if its conclusion does not contradict the justification of an already applied default
(including its own one).

6In particular,� `s �, for any�, if � has no extensions.

480 NICOLA OLIVETTI

In order to capture this restriction, Łukaszewicz introduces an alternative notion
of extension, (calledm-extensions), by means of a two operator fixpoint definition.
For our purposes, we will rather present m-extensions by means of their equivalent
semi-inductive characterization (due to Łukaszewicz himself).

We define when a set of formulasE is an m-extension of a default theory
� = (�; D), with respect to a set of formulasF . Intuitively, F is the set of
the justifications of the defaults fromD, used in the construction ofE; we have
seen that the modified applicability criterium requires we keep track of them in the
construction ofE. We can then define:E is a m-extension of� if there is a setF ,
such thatE is a m-extension of� w.r.t. F .

DEFINITION 6 (cfr. Theorem 4.4,[Łukasiewicz, 1990]). Given� = (�; D),
E is a m-extension with respect to a set of formulasF , iff E =

S1
i Ei, and

F =
S1
i Fi, where

E0 = �; F0 = ;;
Ei+1 = Th(Ei) [

n
 :

� : �

2 D;� 2 Ei and for each

� 2 F [f�g; E [fg 6` :�
o

Fi+1 = Fi [
n
� :

� : �

2 D;� 2 Ei and for each

� 2 F [f�g; E [fg 6` :�
o
:

For instance the theory above(fp ! :qg; f true : q
p g), has exactly one m-

extension, namelyE = Th(;), (with respect toF = ;).
EXAMPLE 7. A more concrete example, (due to Łukaszewicz[1990]): is the
following: ‘On Sunday (su) I usually go fishing (fi), except if I am tired (ti).
Usually, if I worked hard yesterday (wh) I am tired, except if I wake up late today
(wkl). On holidays (ho) I usually wake up late, except if I go fishing’. We can
represent this information by the setD of semi-normal defaults:

d1 :
su : fi ^ :ti

fi
d2 :

wh : ti ^ :wkl
ti

d3 :
ho : wkl ^ :fi

wkl
:

Suppose now that it’s Sunday, holidays and that I worked hard yesterday, that is
� = fsu; ho; whg. This theory has no Reiter extensions. To see this suppose we
apply firstd1, so that we addfi; this blocksd3, whereasd2 is not blocked, for
its justification is consistent; then we add its consequentti, which contradicts the
justification of the already appliedd1. Thus, we don’t get an extension. If we
consider the defaults in different orders, we obtain a similar situation.

On the opposite, according to Łukaszewicz notion of applicability, once we
have appliedd1, bothd2 as much asd3 cannot be applied anymore. The appli-

TABLEAUX FOR NONMONOTONIC LOGICS 481

cation of one default blocks the other two. Consequently, the theory has three
m-extensions corresponding to the conclusions of each default rule.

Remarkable properties of Łukaszewicz default logics are that (1) every de-
fault theory has at least one m-extension; (2) every Reiter extension is also an
m-extension; (3) m-extensions monotonically depend on the set of defaults of a
default theory (semimonotonicity).

Although Łukaszewicz reformulation ensures the existence of extensions, it
leaves unsolved other problems of Reiter default logic. In Łukaszewicz’s vari-
ant there is no concern about the consistency of justifications of applied defaults
among themselves. This may lead to very unintuitive results, as the following
example[Brewka, 1992] shows. Let� = (�; D), where

� = fbroken(rightarm) _ broken(leftarm)g;

andD = fd1; d2g, with

d1 =
: usable(rightarm) ^ :broken(rightarm)

usable(rightarm)

d2 =
: usable(leftarm) ^ :broken(leftarm)

usable(leftarm)
.

The above theory has exactly one Reiter extension (which is also its only m-
extension)E that contains bothusable(leftarm) andusable(rightarm). The
reason is that we check separately the consistency of the justifications of the in-
volved defaults. If we interpret justifications as assumptions, we should not make
two contradictory assumptions at the same time, such as:broken(leftarm) and
:broken(rightarm). This problem is known in the literature as that one ofcom-
mitment to assumptions, for in Reiter logic (as well as in Łukaszewicz’s variant)
given two justification/assumptionsa,:a, we may accept both, refusing to commit
to one of the two.

Another problem of Reiter’s logic (as well as Łukaszewicz’s variant) is thefail-
ure of cumulativity. By cumulativity, we intend the following property: if we add
a formula which holds in one or more extensions of a given theory to the theory,
we do not get more extensions than from the original theory.7 Let us consider for

instance� = (�; D), where� = ;, andD = f : a
a ;

a _ b : :a:a g). Then� has a
unique extension (m-extension)E which containsa, and hence alsoa _ b. Let �0

7This notion of cumulativity is somewhat different, but related to the usual definition of cumulativity
[Makinson, 1989], which is a property of a consequence relation`, and states that

if � ` �, then� ` if and only if� [f�g ` .

In case of default logic, it is not so clear where to add a derived formula�. If we consider the addition
of � to �, the base knowledge, and the consequence relation`s, we have that no variant of default
logic is cumulative. Brewka and Schaub’s variant are cumulative at the price of considering a more
complex notion of ‘addition’. See below.

482 NICOLA OLIVETTI

be the theory(�0; D), where�0 = fa_ bg. �0 hastwoextensions, one containing
a and other containing:a. The trouble is that when we adda_ b to � (i.e. we step
to �0), we forget thata_bwas derived froma, so that we can make a contradictory
assumption:a which enables the second default.

Brewka[1992] has proposed a cumulative variant of Reiter logic. His refor-
mulation takes into account as basic data,assertions, that are pairsh�; Ji, where
� is a formula, andJ is a set of formulas, called thesupportof �, the idea is
that J represents the set of formulas used to prove�. By keeping track of the
support of a formula, Brewka’s reformulation of default logic enjoys cumulativ-
ity. With regard to the previous example, the theory� and�0 = (�0; D), where
now�0 = fha_ b; fagig have exactly the same extensions as�, namely only one
extension which containsa.

Brewka’s variant is not only cumulative, but it also has the properties of com-
mitment to assumptions and that one of the existence of extensions, moreover it is
semimonotonic.

For our purposes, we will not present it, for it requires to introduce all the tech-
nicalities involved in the assertional formalism. We will briefly describe an almost
equivalent formulation by Schaub, calledconstrained default logic, which does
not need the machinery of assertions.8 A constrained extension of a default theory,
(c-extensionin Schaub’s terminology), is a pair of sets of formulas(E;C) satis-
fying a fixpoint equation; intuitivelyE contains the consequent of each applicable
default, whereasC contains both the justification and the consequent of each ap-
plicable default. As in the case of Łukaszewic’s variant we give a semi-inductive
equivalent characterization of extensions, rather than their fixpoint definition.

DEFINITION 8 (cfr. Theorem 2.1,[Schaub, 1992]). Given� = (�; D), (E;C)
is a c-extension of�, iff E =

S1
i Ei, andC =

S1
i Ci, where

E0 = �; F0 = �;

Ei+1 = Th(Ei) [
n
 :

� : �

2 D;� 2 Ei andC 6` :(� ^)

o

Ci+1 = Th(Ci) [
n
� ^ :

� : �

 2 D;� 2 Ei andC 6` :(� ^)
o
:

Looking at thebroken armexample, it is easily seen that we get two symmetric
c-extensions,(E1; C1) and(E2; C2), such thatE1 containsusable(leftarm), and
C1 additionally contains:broken(leftarm), broken(rightarm); E2 contains
usable(rightarm), andC2 additionally contains:broken(rightarm), broken
(leftarm).

Schaub and Brewka’s variant solves the problem of cumulativity, provided one

8Brewka and Schaub variants are equivalent in the sense that there is a bijective correspondence
between Schaub extensions and Brewka extensions, modulo the identification of logically equivalent
supports.

TABLEAUX FOR NONMONOTONIC LOGICS 483

opportunely defines what it means to add a formula�which holds in one extension
E to a theory.9

For a broader discussion on the properties of default logic, we refer to
[Delgrandeet al., 1994].

3 THE MINIMAL ENTAILMENT APPROACH

The preferential approach is based on the idea of restricting the notion of logical
consequence to a subset of privileged or preferred models. Instead of considering
what holds in every model of a given theory, we only consider what holds in the
subset of preferred models. This approach to nonmonotonic reasoning finds its
root in McCarthy’s notion ofcircumscription [McCarthy, 1980]. The starting
point is to define a preference ordering among interpretations. Conforming to the
standard terminology, we will consider as preferred models of a theory the set of
its minimalmodels according to the given preference relation. Then we define,

� j=m � iff � holds in all minimal models of�.

The above entailment relation is calledminimal entailment. This abstract setting
has been put forward by Shoham[1987], in order to give a unifying account of
nonmonotonic systems. In this respect, several proposals such as McCarthy’s cir-
cumscription, Reiter’sclosed world assumption10 and Bossu–Siegel subimplica-
tion [1985], can be seen as different attempts to formalize the notion of minimal
entailment, arising from a specific preference relation among models.

The first notion introduced by McCarthy was that ofdomain circumscription,
or domain minimization as a formalization of a form of Okham’s razor: the only
objects which are assumed to exist are those which are forced to exist by our
knowledge. Semantically, this notion corresponds to regard as preferred, mod-
els which have a minimal (w.r.t. set-inclusion) domain. This notion was later
developed by McCarthy’s and others in the notion of circumscription. The ba-
sic idea of circumscription (and its semantical counterpart, minimal entailment)

9In the case of Brewka, it means to add� to its support (forming an assertion). In case of Schaub,
it means to add a default rule of the form:

d� =
:
V
i �i ^

V
i

�
;

where the�i andi are the justifications and the consequents of those defaults involved in the con-
struction ofE, used to prove� (remember that theE-part of a c-extension is always the deductive
closure of� together with some default consequents). Schaub shows that given a c-extension(E;C)
of a theory� = (�; D) and a formula� 2 E, if d� is the default rule built as above, then� and
�0 = (�;D [fd�g) have the same c-extensions. In this sense ‘adding�’, which is derived fromE,
to the theory, does not change the set of extensions of the original theory.

10The relationship between circumscription and closed world assumption are investigated in[Lifs-
chitz, 1985; Olivetti, 1989].

484 NICOLA OLIVETTI

is to minimize the extension of some predicates, that is to assume that the infor-
mation we have on the instances of some predicate is complete. Circumscription
by itself is a syntactic approximation to the semantic notion of minimal entail-
ment, and can be formulated either as a first-order schema of formulas, or as
a second-order axiom. It can be added to complete a set of formulas, in the
same way as induction (schema or axiom) completes the other Peano’s axioms.
Indeed it can be seen as a sort of generalization of induction to arbitrary the-
ories. This observation explains why, in general, circumscription is sound but
not complete with respect to minimal entailment. For the present purpose, we
will take as primitive the semantic notion of minimal entailment, and we will
not give circumscription definition (the reader is referred to[McCarthy, 1980;
McCarthy, 1986] for details).

We first define minimal entailment in a first-order setting and then in the propo-
sitional case as a special case. LetL be a first-order language, letR be the set of
all predicate symbols inL, and letP andQ be two disjointed subsets ofR. Given
two L-structuresM andN , we define the following ordering relationsM � N ,
M �P N andM �P;Q N . Consider the following conditions:

(a)M andN have the same functional structure, that is the same domain and the
same interpretation of constant and function symbols.

(b) the following holds:

� (i) for all p 2 P,M(p) � N(p),

� (ii) for all r 2 R� (P [Q),M(r) = N(r).

Then we define (1)M �P;Q N iff (a) and (b) holds, (2)M �P N iff (a) and (b)
holds, andP [Q = R, (3) M � N iff (a) and (b) holds andP = R. Predi-
cates inP are assumed to be minimized, predicates inQ are assumed to change
arbitrarily to make the extension of predicates inP as smaller as possible. Finally,
predicates inR � (P [Q) are assumed to be fixed. To each semantic ordering
corresponds a notion of minimal entailment, which we will denote respectively as,
j=P;Q corresponding to (1),j=P corresponding to (2), andj=m corresponding to
(3).

We will mainly deal with the more restricted case ofj=m, that is when all pred-
icates are minimized. The reason is that the problems and the techniques are better
illustrated in this basic case; furthermore minimal entailment under the latter more
general preferential relations (that isj=P;Q andj=P) can be reduced to the basic
case of minimal entailmentj=m, where all predicates are minimized.

A consistent theory may have zero, one, or more minimal models. For certain
classes of consistent theories, minimal models always exist. Theories enjoining
this property are, for instance, those which have finite models. Another class is
that one of theories for which the preference relation is well-founded on the class
of their models [Lifschitz, 1986]. Such theories are calledwell-founded; a suffi-
cient condition for well-foundness of a theory� is that� only contains universal
axioms.

TABLEAUX FOR NONMONOTONIC LOGICS 485

In the propositional case, the role played by sets of predicates is played by sets
of atoms. For instance, we have thatV � V 0 iff for all atoms p, V (p) = 1,
impliesV 0(p) = 1. Since the partial order on evaluations of propositional theories
is well-founded, consistent propositional theories always have minimal models.

To conclude this section, we go back todomain minimal entailment. The se-
mantic relation is the following: given two interpretationsM andN we say that
M is d-smaller thanN if M is asubstructureof N . We denote byj=d the corre-
sponding notion of minimal entailment.

For instance,9x p(x) j=d 8x p(x).
As for the case of predicate minimization, a consistent theory may have zero,

one or more domain minimal models. The condition of well-foundness ensures
the existence of minimal models (for consistent theories). Notice that a universal
theory is obviously well-founded and its class of minimal models is, up to isomor-
phism, the class of its Herbrand models. We recall that existential formulas (and
hence ground formulas) are preserved moving upward on the substructure rela-
tionship. It turns out that for well-founded theories, domain minimization is a very
weak nonmonotonic entailment, for we easily obtain that if� is well-founded and
 is an existential formula, then

� j=d , � j= :

By this result, we cannot infer any new existential (and hence ground) information
by domain-minimization from a well-founded theory. In particular, we cannot
infer new equalities between ground terms.

This weakness has lead Lorenz[1994] to introduce a stronger notion of domain
minimization which he callsvariable domain minimal entailment. We can intro-
duce this notion of minimal entailment by changing the preference relation. Given
two structuresN andM for a languageL, we defineN �v�d M if

1. j N j � jM j,11

2. for each termt 2 L, tN = tM .

The difference with the substructure relation, which underlies domain minimiza-
tion, is that we do not require that for any predicatep, pN = pM\ j N j, that is to
say, we allow the extension of any predicate to vary to make the domain as smaller
as possible. For instance, given the formula:

� : 9xp(x) ^ 9xq(x);

we have that9x(p(x)^ q(x)) is avariabledomain minimal consequence of�, but
it is not a domain minimal consequence of�.

11jM j denotes the domain ofM .

486 NICOLA OLIVETTI

Other versions of minimal entailment, together with their syntactical counter-
part of circumscription schema/axiom, have been introduced in the literature: we
just recallprioritized andpointwisecircumscription [Lifschitz, 1985a]. In [Lin,
1990] the idea of circumscription is extended to modal logics. We will not be
concerned with these further developments.

4 TABLEAUX AS A GENERAL METHODOLOGY

Although the use of tableau techniques in nonmonotonic reasoning has not been
fully explored yet, tableaux are probably the most flexible and promising proof
method in this area. There are at least two good reasons in favour of tableau meth-
ods. First, tableaux can be used to check bothprovabilityandconsistency. Check-
ing the latter by other proof methods is not as easy as checking it by tableaux.
As we have seen in the previous section, consistency (unprovability) has the same
importance as provability for fixpoint based nonmonotonic logics.

Furthermore, tableaux can be profitably used also for preference based non-
monotonic logics. Open branches of a completed tableau (partially) describes the
set of models of the input formulas. One can often define a preference criterion
among open branches which mirrors the intended semantic preference. The pref-
erence criteria on open branches can then be used to eliminate unwanted models.

Tableaux, as any other standard proof-method is monotonic in the following
sense: ifT is a tableau which contains an initial set of formulas� andT results
to be closed by the rules of tableau expansion, then whatever we add toT , (i.e. in
any branch ofT) T remains closed. How can a tableau methodology be used to
represent nonmonotonic mechanisms? If we look to the work in the area we can
see that some general principles have been employed to adapt tableau technology
to nonmonotonic logics:

� Operation on branches: addition and removal of formulas from completed
branches, according to some conditions.

� Relative closure: the closure of a tableau may depend on another related
tableau beingopen.

� Negative closure conditions: some branches in a completed tableau are
forced to be ‘closed’ because they do not contain some formulas.

� Selection: open branches of a tableau are ruled out because of an external
selection criterion. This is what happens, for instance, in nonmonotonic
logic based on preferential semantic.

We assume familiarity with the terminology and the basic construction of ana-
lytic (signed) tableaux.12 We identify a tableau with a set of sets of signed formu-

12We refer the reader to the first chapter of this volume for the background knowledge on tableau
systems.

TABLEAUX FOR NONMONOTONIC LOGICS 487

las, each one of these sets is called abranch. Initially a tableau contains just one
set with the input formulas. Signed formulas are divided in two types:�- type and
�-type. The rules of tableau expansion allows one to replace a branch containing a
formula� by one or more branches obtained by dropping�, and then adding some
signed subformulas of�, according to the type of�.

Given a set of formulas� and a formula�, we say that a tableauT is for (�; �)
if T contains as initial dataT for every 2 � andF�.13 We also say that� is
the goal formula ofT .

Given a set of formulas�, we also writeT�, F� to denote respectively the set
of T-signed andF � signed formulas from�. Moreover, given a set of signed
formulasQ we denote byTab(Q) anycompletedtableau with input formulasQ.

To simplify notation, we writeTab(T�), (and Tab(F�)), rather than
Tab(fT�g), (andTab(fF�g)). Moreover, ifT = Tab(Q) andT just contains
one branchB, we usually writeT = B, instead ofT = fBg.

We finally introduce (see[Schwind, 1990]) a useful composition operation on
tableaux. Given two tableauxT1 andT2 we let

T1
 T2 = fX [Y : X 2 T1 ^ Y 2 T2g:

5 TABLEAUX FOR AUTOEPISTEMIC LOGIC

In this section we expose the method by Niemel¨a[1988]. The method is similar to
the previous McDermott and Doyle’s method for theirnonmonotonic modal logic.
To check if is in some (all) stable expansions of a given set of premises�, we
start building a tableau to show� ! . In the tableau construction formulas of
the kindL�may occur. The basic idea is thatL�must be put in a stable expansion
of the initial set of premises, if� is provable from that expansion, and:L� is to
be put in the stable expansion if� is not provable from that expansion. To check
L� we start a new tableau for� ! �. This tableau may involve other formulas
of the formL�, and thus the process must be iterated. Since the provability of
a formula depends on the provability of other formulas, this process requires an
arbitrary decision about provability of all formulas� such thatL� (or:L�) occur
in a given tableau. What is important is that decisions are made in a consistent way.
This amount to say that having declared� provable (‘non-provable’), the addition
of L� (respectively:L�) to the tableau does not change the provability status
of the goal formula of any tableau involved in the construction. Each consistent
decision about provability exactly corresponds to a stable expansion.

We describe below the tableau method in greater details. To know whether

13A tableau for(�; �) is what is obtained by a two-step expansion of a tableau initialized by
F(
V
�! �).

488 NICOLA OLIVETTI

� `s � and� `c �, we build up the following tableau-structure

(�; �; T0; X);

whereT0 is a tableau for(�; �), andX is the least set satisfying the following
conditions:

� T0 2 X ;

� if TL or FL occurs in an open branch of some tableau inX , thenX
contains a tableau for(�;).

A labelling l for (�; �; T0; X) is a function which assigns a labelOPEN or
CLOSED to each tableau inX . The procedure for deciding both whether� `s �
and� `c �, can be described as follows.

1. Build up the structure(�; �; T0; X), first completingT0, and then complet-
ing every tableau inX .

2. For each labellingl and tableauT 2 X , we let the tableauupd(l; T;X)
be obtained fromT by adding (1)TL to every branch ofT if there is a
tableauT 0 2 X for (�;) such thatl(T 0) = CLOSED, and (2)FL
to every branch ofT if there is a tableauT 0 2 X for (�;) such that
l(T 0) = OPEN .

3. for each labellingl we check whetherl is admissible. We say thatl is ad-
missible for(�; �; T0; X) whenever, for everyT 2 X , it holds that:

� if l(T) = OPEN thenupd(l; T;X) contains an open branch;

� if l(T) = CLOSED then all branches ofupd(l; T;X) are closed.

4. As a last step we set that

� � `s � iff T0 is labelledCLOSED in all admissible labellings for
(�; �; T0; X)14;

� � `c � if there is an admissible labelling for(�; �; T0; X) in which
T0 is labelledCLOSED. 15

14In particular,� `s �, for any�, if there are no admissible labellings for(�; �; T0;X).
15This definition is not correct if� has no extensions. The following counterexample is by C.

Schwind. Let� = fTLqg and let� be any propositional tautology. Suppose we build a tableau
structure(�; �; T0; X), whereT0 is for (�; �). SinceT0 is closed, we haveX = fT0g. Let l be a
labelling withl(T0) = CLOSED; obviously,l is admissible. But� has no extensions. To get the
correct answer, we must check whether� has an extension by itself, independently from�. To this
purpose, we can build a tableau structure(�; T0;X), in whichT0 only contains the formulas of�
and no goal formula; then we check if there is an admissible labelling for this tableau structure.

TABLEAUX FOR NONMONOTONIC LOGICS 489

EXAMPLE 9. Let� = f:Lp ! :pg. We show that� `s :p. We first build a
tableauT0 for (�;:p). T0 has two completed branches:

T0 = ffTLp;Tpg; fFp;Tpgg:

SinceLp occurs in some open branch ofT0, we build a tableauT1 for (�; p). No
other tableau is needed, that is to sayX = fT0; T1g. T1 has the following two
branches:

T1 = ffTLp;Fpg; fFpgg:
Let l1(T1) = OPEN , we must addFLp, in every branch of every tableau. Then
T1 remains open, (more precisely,upd(l1; T1; X) is open), whereasT0 becomes
closed (upd(l1; T0; X) is closed). Hence, ifl1(T0) = CLOSED, thenl1 is ad-
missible, otherwise it is not. Letl2(T1) = CLOSED, we have to addTLp
everywhere. But doing so,T1 is still open, thusl2 is not admissible. We can con-
clude that there is only one admissible labellingl1, with l1(T1) = OPEN and
l1(T0) = CLOSED. SinceT0 is closed inl1 we can conclude� `s :p.
EXAMPLE 10. Let� = f:Lp ! q;:Lq ! pg. We show that� `s p _ q. We
start building a tableauT0 for (�; p _ q). T0 has the following four branches:

B0;1 = fFp;Fq;TLp;TLqg; B0;2 = fFp;Fq;TLp;Tpg;

B0;3 = fFp;Fq;Tq;TLqg; B0;4 = fFp;Fq;Tq;Tpg:
Notice thatB0;2,B0;3, andB0;4 are closed.T0 is open. To complete the construc-
tion, we have to build a tableauT1 for (�; p), and a tableauT2 for (�; q). T1 has
the following branches:

B1;1 = fFp;TLp;TLqg; B1;2 = fFp;TLp;Tpg;

B1;3 = fFp;Tq;TLqg; B1;4 = fFp;Tq;Tpg;
whereB1;2 andB1;4 are closed.T1 is open.T2 has the following branches:

B2;1 = fFq;TLp;TLqg; B2;2 = fFq;TLp;Tpg;

B2;3 = fFq;Tq;TLqg; B2;4 = fFq;Tq;Tpg;
whereB2;3 andB2;4 are closed.T2 is open. If a labell assignsCLOSED to
both T1 andT2, then we have to addTLp andTLq, but tableauxT1 andT2
remain open; hencel is not admissible. Ifl assignsOPEN to bothT1 andT2,
then we addFLp andFLq, so that both of them become closed; thusl is not
admissible. It easily seen that the only admissible labellings arel1 and l2 with
li(T0) = CLOSED, for i = 1; 2, andl1(T1) = CLOSED; l1(T2) = OPEN ,
andL2(T1) = OPEN; l2(T2) = CLOSED. SinceT0 isCLOSED under both
of them, we can conclude that� `s p _ q.

490 NICOLA OLIVETTI

EXAMPLE 11.
Let � = f:Lp! pg. We buildT0 for �:

T0 = ffTLpg; fTpgg;

andT1 for (�; p):
T1 = ffTLp;Fpg; fTp;Fpgg:

Suppose thatl(T1) = CLOSED, then we addTLp andT1 remains open; thus
T1 cannot be admissible. Suppose thatl(T1) = OPEN , then we addFLp andT1
becomes closed. Thus, there are not admissible labellings.

Niemelä proves the following facts:

PROPOSITION 12.If S is a stable expansion of�, then there is an admissible
labelling l of the tableau structure(�; �; T0; X), such that

� 2 S iff l(T0) = CLOSED:

PROPOSITION 13.Let l be an admissible labelling of a tableau structure(�; �;
T0; X), then there is a stable expansionS of � such that for every tableauT 2 X
for (�;),

 2 S iff l(T) = CLOSED:

Since the tableau structure construction always terminates (for a finite set of
premises�), and there are a only finitely many labellings to check for admissi-
bility, by Proposition 1 and 2 we obtain correctness and completeness of Niemel¨a
method, and decidability of provability in autoepistemic logic.

The method is also important for theoretical reasons. Autoepistemic expansions
are infinite theories. Thus, it is important to find a finite representation of these
sets. Intuitively, the method described above shows that each expansion is uniquely
determined by a finite set of subformulas of the initial set of premises. Such sets are
calledfull sets(see Section 9) in[Niemelä, 1991], where a finite characterization
of expansions is studied.

From the point of view of efficiency, we notice that the numberk of tableaux
that have to be constructed is linear in the size of(�; �), and there are obviously
2k labellings to be checked for admissibility. However, it is unlikely that a more
efficient, yet general method exists. Niemel¨a [1991] and then Gottlob[Gottlob,
1992] have provided a complete analysis of complexity problems concerning au-
toepistemic logic, their results situate autoepistemic logic in the second level of the
polynomial hierarchy. In particular̀s is �2�complete, and`c is �2�complete.
The tableau method we have presented intuitively accounts for such a complexity,
for we operate on two levels: first we build the various tableaux, and then we check
the admissible labellings.

TABLEAUX FOR NONMONOTONIC LOGICS 491

Tableaux for McDermott and Doyle’s Logic

We can easily modify the procedure given above for McDermott and Doyle non-
monotonic logic. We work with tableau structures of the form

(�; �; T0; X);

whereT0 is a tableau for(�; �), andX is the least set satisfying the following
conditions:

� T0 2 X ;

� if TL occurs in an open branch of some tableau inX , thenX contains a
tableau for(�;).

The procedure for checking both skeptical and credulous derivability is similar
to that one for autoepistemic logic, the only difference is in the definition of the
tableauupd(l; T;X), given a labellingl:
upd(l; T;X) is obtained fromT by addingFL to every branch ofT , if there

is a tableauT 0 2 X for (�;) such thatl(T 0) = OPEN .
As a difference with respect to the procedure for the case of autoepistemic

modal logics, notice the asymmetry between provability and non-provability that
we have pointed out in Section 2.1: (1) weonly have to build another tableau to
evaluateTL if it occurs in an open branch of some tableau inX ; This means
that wecannotassume:L only if we derive ; (2) if � is not derivable, in the
update step, we addFL , but we do not care about the dual case, (i.e., even if we
derive we donot addTL).

For instance, let us see that there is an extension containing bothp and:Lp.
Let

T0 = fTp;FLpg
T0 is open, we do not need to generate another tableau, that isX = fT0g. Let
l(T0) = OPEN . Then,upd(l; T0; X) = T0, which is open and hencel is admis-
sible.

The procedure we have sketched has been extended by McDermott to his modal
nonmonotonic logics (in the case of S4). We refer to[McDermott, 1982] for
details.

6 TABLEAUX FOR DEFAULT LOGIC

The first attempt of using a tableau based methodology to address default logic
has been developed by Schwind and Risch. An alternative proposal has been put
forward by Amatiet al. in [1996]. Both the Schwind and Risch methodology,
on the one hand, and Amatiet al.’s methodology, on the other, are well suited to
accommodate several variants of default logics.

492 NICOLA OLIVETTI

The two approaches differs substantially. Any extension is the deductive clo-
sure of the initial theory� together with a set of consequents of defaults. The
idea pursued by Schwind and Risch is then to add all together the consequents of
defaults to the initial theory. This may result in an inconsistent theory, but we can
split the set of consequents of all defaults in maximal consistent subsets. Each
such subset is a candidate to represent an extension. Further processing is required
to find the actual subsets of consequents which represent extensions.

On the contrary, the construction provided by Amatiet al. is incremental: start-
ing from the initial theory we add one consequent of a default at a time (when pos-
sible), until we reach a set which contains all consequents of applicable defaults.
This set, provided it satisfies some additional condition, represents an extension.
Different extensions may be generated by considering defaults in a different order,
and all extensions can be obtained in this way.

6.1 Tableaux for Reiter’s Default Logics

We start the exposition from Schwind’s and Risch’s method. In[Schwind, 1990]
it is proposed a method for normal defaults, which is extended in[Schwind and
Risch, 1994] to arbitrary defaults theories. The authors have given for the first time
a necessary and sufficient condition for the existence of extensions. We recall that
E is an extension of� = (�; D) if and only if

E = Th(� [CONS(GD(D;E))):

This means that every extensionE corresponds to a subset of defaultsD. However,
not all subsets correspond to any extension. As a first approximation, we consider
only those sets of defaults such that their prerequisites can be established using
�, or using the consequents of other defaults, but avoiding circular dependencies.
More formally we introduce the following definition.

DEFINITION 14. Given a theory�, a set of defaultsD is groundedin �, if for
eachd 2 D there is a sequenced1; : : : ; dn = d of elements ofD of the form

�i : �i
i ;

such that

� ` �1,
for i = 1; : : : ; n� 1, � [f1; : : : ; ig ` �i+1.

It easy to see that the set of generating defaultsGD(D;E) of any extension is
grounded. The opposite partially holds: to each grounded subset of defaults, satis-
fying an additional property, it corresponds an extension.

TABLEAUX FOR NONMONOTONIC LOGICS 493

THEOREM 15. Let (�; D) be a default theory, thenE is an extension of(�; D)
if and only if there is a subsetD0 � D, such that

� D0 is grounded in�;

� E = Th(� [CONS(D0));

� for eachd 2 D of the form� : �
 , we have

1. if d 2 D0 then� 2 E and:� 62 E;

2. if d 62 D0 then either� 62 E or :� 2 E.

We can see condition (1) as a correctness condition onD0: D0 cannot contain
defaults which are unapplicable toE; we can see condition (2) as a maximality
condition onD0: each default belongs toD0, unless it is unapplicable toE. Notice
that conditions (1) and (2) are equivalent to

� (10) if d 2 D0 then� [CONS(D0) ` � and� [CONS(D0) 6` :�;

� (20) if d 62 D0 then either� [CONS(D0) 6` � or � [CONS(D0) ` :�.

In this way, the task of checking whether a default theory� = (�; D) admits
extensions is reduced to checking conditions (10) and (20) on all possible subsets
of D. In particular, if for every subsetD0 of D there is a defaultd such that
d satisfies neither (10) nor (20), then� does not have any extension. Obviously
conditions (10) and (20) can be checked by any proof method, including tableaux.
But tableaux can be used to generate possible candidates, that is to say subsets of
D, to be checked against conditions (10) and (20).

In principle, the algorithm to check and generate extensions of a default theory
(�; D) may be logically structured in three (high level) steps:

(a) Find all maximal subsetsDj of D such that� [CONS(Dj) is consistent.

(b) For eachDj , find all subsetsDl
j of Dj which satisfy conditions (1) and (2).

(c) For eachDl
j check whether it is grounded.

By Theorem 15, there is one-to-one mapping between grounded subsetsDl
j and

extensions.
We now discuss how to implement steps (a) and (b) by using tableaux.
For (a), we build a tableauT for � [CONS(D). If the tableau is closed, then

it is possible to open it by removing from one closed branch any signed atom from
CONS(D) which is responsible of the closure.

More precisely, letT = Tab(T�)
Tab(TCONS(D)). Delete closed branches
whose closure does not depend onCONS(D). SetDef(T) = D. For any

494 NICOLA OLIVETTI

d 2 Def(T), if some signed atom coming fromcons(d)16 is responsible of the
closure of some branch ofT , then (i) remove any formula, coming fromcons(d),
from T , and (ii) removed from Def(T). Repeat this step until the resulting
tableauT 0 is open (that isonebranch ofT 0 is open). Since there may be more
than one way to openT by removing some signed atom, there will be many ‘re-
opened’ sub-tableauxTj of T . We generate all of them. We letDj = Def(Tj)=
defaults whose consequents are inTj . This concludes step (a).

With regard to step (b), we start checking whetherDj satisfies conditions (10)

and (20). We have to check that: for eachd 2 Dj with d =
� : �

� the tableauTj
 Tab(fF�g) is closed and

� the tableauTj
 Tab(fT�g) is open.

If it is not the case, we check whether the second condition holds. That is, letT 0j
be obtained by removingcons(d) from Tj , we check whether

� the tableauT 0j
 Tab(fF�g) is open, or

� the tableauT 0j
 Tab(fT�g) is closed.

If the latter test succeeds, then we dropd from Dj (andcons(d) from Tj), if it
fails, we rule outDj . Notice that ifDj is the only candidate, in the case of failure,
we have determined that there are no extensions. We repeat the process onDj

until eitherDj is ruled out, or a maximal subset ofDj for which the conditions
(10) and (20) hold is found. Notice that there may be more than one maximal subset
Dl
j satisfying conditions (10) and (20), according to the order in which defaults are

checked. For instance, if� = ; andD = fd1; d2g, where

d1 =
: :a
b
; d2 =

: :b
a
;

thenT = Tab(T�)
 Tab(TCONS(D)) = ffa; bgg, which is consistent, thus
the only candidateDj isD. D does not satisfy condition (10). However, there are
two maximal subsets ofD which satisfy condition (10) and (20), namelyfd1g and
fd2g.

In [Schwind and Risch, 1994] it is described an algorithm which implements
the method we have described. The algorithm reorganizes the above steps in order
to avoid the repetition of justification and prerequisite tests. Such optimization is
based on the following observations.

� Let Dj be a candidate for being an extension, ifd 2 Dj and just(d) is
consistent withTj , then it remains consistent with every subsetD0

j of Dj ,

16To this purpose, as suggested in[Schwind, 1990] we can label each atom occurring inCONS(D)
with the name of the default it comes from.

TABLEAUX FOR NONMONOTONIC LOGICS 495

(more exactly, withTab(T�)
 Tab(TCONS(D0
j)). This means that we

do not need to check more than once the justification condition involved in
(10).

� The groundness test subsumes the prerequisite test involved in (10). Thus,
there is no point in checking first the prerequisite condition, and then ground-
ness.

By exploiting these observations, we can re-organize the procedure as follows:

Algorithm for computing Reiter’s extensions

(i) Find all maximal subsetsDj of D such that� [CONS(Dj) is consistent.

(ii) GivenDj , find all its maximal subsetsDm
j such that

Th(� [CONS(Dm
j)) \ f:just(d) : d 2 Dm

j g = ;;

that is all maximalDm
j such that, letting

Tmj = Tab(T�)
 Tab(TCONS(Dm
j));

for all d 2 Dm
j ,

Tmj
 Tab(Tjust(d))

is open.

(iii) For all Dm
j , find its maximal grounded subsetDl

j (See below).

(iv) For all Dl
j , check whether it satisfies condition (2), that is, lettingT lj =

Tab(T�)
 Tab(TCONS(Dl
j)), check whether, for alld 62 Dl

j , either

T lj
 Tab(Fpre(d)) is open, or
T lj
 Tab(Tjust(d)) is closed.

If there exists oned 62 Dl
j for which the above condition does not hold,

deleteDl
j .

(v) Output allDl
j , if any, otherwise, print ‘NO- EXTENSIONS’.

Extensions, if any, correspond exactly to subsetsDl
j of the originalD which

are left after step (iv). To find maximal subsets in steps (i) and (ii), we use the
re-opening technique as discussed above. To find a grounded subsetD with re-
spect to�, (step (iii)), we pick up a defaultd 2 D, and we check (i) whether
� [CONS(D � fdg) ` prereq(d), and then (ii) whetherD � fdg is grounded;
we must find a sequence of all elements ofD, such that the prerequisite of the last

496 NICOLA OLIVETTI

default is proved by� alone. In the search of a maximal grounded subset ofD, el-
ements not belonging to any such sequence are deleted fromD. In [Schwind and
Risch, 1994] it is described a recursive algorithm to find maximal grounded sub-
sets, we refer to that paper for details. The authors observe that checking ground-
ness for a set of defaultsD is not more difficult than checking the prerequisite
condition.

Once that we have determined each grounded subsetDl
j , then we can use them

for inference, this amounts to check whether a formula holds in

Tab(T�)
 Tab(TCONS(Dl
j));

for eachDl
j if any, (respectively, for someDl

j , in case of credulous inference).

EXAMPLE 16.
Let � = (�; D) be a default theory with� = ;, andD = fd1; d2g, where

d1 =
: a

a
; d2 =

: :a
:a :

We start building a tableauT for � [fa;:ag:

T = fTa;Fag

we can re-openT , by deletingTa, that corresponds to delete the first default or by
deletingFa, that corresponds to delete the second default: Thus, we obtain

T1 = fTag; T2 = fFag:

We must check conditions (10) and (20) on both tableaux, that is to say

T1
 Tab(Ta) is open, for condition (10) w.r.t. T1;
T1
 Tab(T:a) is closed, for condition (20) w.r.t. T1;
T2
 Tab(T:a) is open, for condition (10) w.r.t. T2;
T2
 Tab(Ta) is closed, for condition (20) w.r.t. T2.

All of them are true, thus� has two extensions corresponding to the two subsets
D1 = fd1g andD2 = fd2g, namely

E1 = Th(fag); E2 = Th(f:ag):

EXAMPLE 17. Let� = (�; D), where,� = ;, andD = fdg

d =
: :a
a
:

The tableau for� [CONS(D) is simply

T = fTag;

TABLEAUX FOR NONMONOTONIC LOGICS 497

which is open. SinceT
 Tab(T:a) is closed,d satisfies condition (20), and then
we must eliminate it, and considerT 0 = T � fTag = ;. Now we have that
T 0
 fT:ag is open, so thatd does no longer satisfy condition (20). Thus the
theory has no extensions.

EXAMPLE 18. Let� = (�; D), with � = ;, andD = fd1; d2g, where

d1 =
a : b

b
; d1 =

b : a

a
:

Let us build a tableauT for � [CONS(D), we have:

T = fTa;Tbg;

which is consistent. Since, bothT
 Tab(Ta) andT
 Tab(Tb) are open, both
satisfy condition (10). But D is not grounded. The only grounded subset is the
empty subset. LettingT 0 = T � fTa;Tbg = ;, then bothd1 andd2 satisfy
condition (20) with respect toT 0. Thus the only extension isTh(;).

A last remark concerning efficiency, if the initial tableau for� [CONS(D)
is closed, we have to open it by removing some atoms (corresponding to some
defaults). There may be many ways to re-open a tableau, and we must consider
all of them. In general, as the next example shows if� containsn defaults, there
may be2n different ways to re-open the initial tableau. Let� = (�; D), where
� = fbg andD contains

: a1
a1

;
: :a1
:a1 ; : : : ;

: an
an

;
: :an
:an ;

b : c

c
:

Then the tableauT for � [CONS(D) contains just one set B:

B = fTa1;Fa1; : : : ;Tan;Fan;Tc;Tbg:

There are2n ways of openingT corresponding to each choice of deleting either
Tai or Fai for i = 1; : : : ; n from B. On the other hand we can easily see that
all opened tableaux still containTc, andTb, and this suffices to know thatc will
be in all extensions of�. Thus, if the purpose is inference, one may wonder if
the explicit construction and inspection of all candidatesT 0 is really needed. In
principle, the answer seems affirmative: by Gottlob’s results all problems concern-
ing default reasoning lay on the second level of the polynomial hierarchy and are
complete in their respective classes. Still in practical applications, some heuristics
are to be developed to keep the construction feasible.

As we already remarked at the beginning of this section, the approach pursued
by Amati et al. is totally different, and is based on an incremental construction of
each extension at a time.

498 NICOLA OLIVETTI

A default rule can be seen as a tableau rule which prescribes to add its con-
sequent to a tableau whenever its preconditions are satisfied by the tableau. The
authors call the general pattern of these tableau rulesdefault tableau restriction
rule to emphasize that the addition of a default consequent restrict possible coun-
termodels of the set of input formulas. Let� be a set of formulas, for any default:

d =
� : �

the corresponding tableau rule can be stated as follows:

� ` � �; � 6` ?
� [fg

That is, if� ` � and� [f�g is consistent, then add to �. We say that the rule
is applicable if the two conditions are satisfied. Furthermore let us say that� is
�-saturated if for all applicable default tableau rules

� ` � �; � 6` ?
� [fg

we have� ` .
Given a default theory(�; D), the default tableau rule is applied to build up a

sequence of tableaux, starting from a tableau for� up to a saturated theory. The
construction proceeds as follows:

� (step 0) LetT0 = Tab(T�).

� (step i+1). Suppose we have builtTi; let d =
� : �
 2 D, check whether

Ti
 Tab(F�) is closed and
Ti
 Tab(T�) is open.

This is done by opening a special subtableau. If the test succeed, that isd is
applicable toTi, we let

Ti+1 = Ti
 Tab(T):

That isT is added to every open branch ofTi.

If the test fails fromTi we can try with another defaultd 2 D. In this way we
generate a (finite17) sequence of tableauxT0; : : : ; Tn. The sequence terminates

17ProvidedD is finite.

TABLEAUX FOR NONMONOTONIC LOGICS 499

with Tn, if Tn is �-saturated in the sense that for every defaultd = � : �
 2 D, if

d is applicable toTn thenTn
Tab(F) is closed. The authors prove that there is a
complete mapping between such�-saturated tableauxTn satisfying an additional
stability condition and extensions.

The stability conditionsays that for every defaultd =
� : �
 2 D, which

has been used in some stepTi of the construction,Tn
 Tab(T�) is open. This
condition ensures that a default applied at a certain stage of the construction cannot
become unapplicable at a later stage.

THEOREM 19. Given a default theory(�; D), E is a consistent extension of
(�; D) if and only if there is a finite sequence of tableauxT0 = Tab(T�); : : : ; Tn,
such thatTn is �-saturated, satisfies the stability condition, and

E = Th(f� : T� 2 Tng [f: : F 2 Tng):

EXAMPLE 20. Let � = (�; D) be a default theory with� = ;, andD =
fd1; d2g, where

d1 =
: a

a
; d2 =

: :a
:a :

We start building a tableauT0 for �:

T0 = ;;

then, we consider the first defaultd1 and we check whether

T0
 Tab(Ta) is open.

(the other condition is trivially satisfied as there are no prerequisites). Since it is
open, we put

T1 = T0
 Tab(Ta) = fTag:
We now considerd2, and we check whether

T1
 Tab(T:a) is open,

but it is closed. Thus, we cannot add the consequent. It is easy to see thatT1 is
both saturated and stable. Hence it represents an extension. It is clear that if we
considerd2 first, and thend1 we obtain the other extension containing:a.

Let � = (�; D), where,� = ;, andD = fdg

d =
: :a
a
:

The tableau forT0 for � is empty. We check whetherT0
 Tab(T:a) is open.
Since it is, we put

T1 = T0
 Tab(Ta) = fTag:

500 NICOLA OLIVETTI

It is easy to see thatT1 is saturated, but sinceT1
 Tab(T:a) is closed,T1 is not
stable. Thus, the theory has no extensions.

Finally, let� = (�; D), with � = ; andD = fd1; d2g, where

d1 =
a : b

b
; d1 =

b : a

a
:

The tableauT0 for � is empty, we considerd1 and we check whether:

T0
 Tab(Ta) is closed, and
T0
 Tab(Tb) is open.

The first condition fails. If we considerd2, we have the same result. ThusT0 is
saturated, and obviously stable. HenceTh(;) is the only extension of�.

As the first example shows, the final�- saturated tableau depend on the order in
which defaults are selected and applied along the construction. To each possible
ordering of defaults, it corresponds to a possibly different final tableau. Thus in
order to generate all extensions and check a formula in them we must carry on the
construction for all possible ordering of defaults.

6.2 Tableaux for Variants of Default Logic

The two methods we have examined for Reiter’s logic can be both adapted to
variant of default logic, such as Łukaszewicz’ and Schaub’s ones. It only requires
a few minor modifications.

The extension of the Risch–Schwind approach to these latter variants, is based
on the following theorem on extensions[Risch, 1996].

THEOREM 21. Let� = (�; D) be a default theory, then

� E is a m-extension of� with respect toF , if and only if there is amaximal
grounded subsetD0 � D, such thatE = Th(� [CONS(D0)), F =
JUST (D0) and it satisfies:

(iL) for all d 2 D0, d =
� : �
 , � 2 E, and:� 62 E.

� (E;C) is a c-extension for� if and only if there is amaximalgrounded
subsetD0 � D, such thatE = Th(� [CONS(D0)), C = Th(� [
CONS(D0) [JUST (D0)) and it satisfies:

(iS) for all d 2 D0, d =
� : �
 , � 2 E, andE [JUST (D0) is

consistent.

¿From the theorem, we also have thatTh(�[CONS(D00) is a c-extension iff
there is an m-extensionTh(�[CONS(D0)), such thatD00 is a maximal grounded
subset ofD0 such thatJUST (D00) is consistent.

TABLEAUX FOR NONMONOTONIC LOGICS 501

The tableau method for computing m-extensions is similar to that one for Re-
iter’s default logic; namely, it is simpler for we do not require that defaults which
do not participate to an extension must be unapplicable with respect to it; (this
is the role of condition 2 in Theorem 15). Thus, the algorithm for computing m-
extensions is obtained from that one for Reiter’s extensions, by simply omitting
Step (iv).

EXAMPLE 22. (a) We consider the default theory(�; D) of Example 7. By
applying the algorithm, we first compute

Tab(T�)
 Tab(TCONS(D)) = fTsu;Twh;Tho;Tfi;Tti;Twklg;

which is open. Then, we have to find all maximal subsetsDi of D, which are
consistent with� and with their own justifications (each justification is considered
separately). We get

D1 = fd1g; D2 = fd2g; D3 = fd3g:

Each subset is obviously grounded, thus we have three m-extensions as expected.
(b) Let us consider the theory(;; fdg), whered = : :a

a , then
Tab(T�)
 Tab(Tcons(d)) = fTag, which is open, but if we addTjust(d),

it becomes closed. Thus, we must removed, and the only m-extension is given by
Th(;).

Let us turn to Schaub’s variant. In the light of the previous remark, we just have
to consider the algorithm for computing m-extensions and modify the justification
test performed in step (ii):

GivenDj , find all its maximal subsetsDm
j such that

Tab(T�)
 Tab(TCONS(Dm
j))
 Tab(TJUST (Dm

j))

is open.

EXAMPLE 23 (Brewka’sbroken armexample). Let� = (fbr(ri) _ br(le)g;
fd1; d2g), where

d1 =
: us(ri) ^ :br(ri)

us(ri)
d2 =

: us(le) ^ :br(le)
us(le)

g:

We first computeTab(T�)
 Tab(TCONS(fd1; d2g)) (we label both the con-
sequent and the justification) so that we obtain:

T = ffTbr(ri);Tus(ri)1;Tus(le)2g; fTbr(le);Tus(ri)1;Tus(le)2gg

which is open. Then we have the justification test. To this purpose, we compute
T
 Tab(TJUST (D)) and we get:

502 NICOLA OLIVETTI

ffTbr(ri);Tus(ri)1;Tus(le)2;Fbr(ri)1;Fbr(le)2g,
fTbr(le);Tus(ri)1;Tus(le)2;Fbr(ri)1;Fbr(le)2gg,

both branches are closed. We can re-open it in two ways: either removing the
first default (we re-open the first branch), or the second one (we re-open the sec-
ond branch). The two resulting sets are grounded. Consequently, we get two
c-extensions corresponding to the conclusions of the two. Notice the difference
with the justification test in Łukaszewicz’s variant. In the latter case we would
check that

T
 Tab(Tjust(d1)) andT
 Tab(Tjust(d1)) are open.

Since both of them are open, we would get just one m-extension corresponding to
Th(� [CONS(d1; d2)).

The tableau methodology of Aielloet al. can be extended to these variants of

default logic as well. For Łukaszewic’s variant, a default� : �
 , is interpreted as

the following inference rule:

� ` � � [f�; g 6` ?
� [fg :

We introduce a new criterium of applicability, given a defaultd =
� : �
 , we say

thatd is applicableto � iff

1. Tab(T�)
 Tab(F�) is closed

2. Tab(T�)
 Tab(T(� ^)) is open.

Given a default theory(�; D), default rules are applied to build up a sequence
of tableauxTi. We also need to record what defaults have been applied at each
step (by means of setsDi).

� (step0) We letT0 = Tab(T�) andD0 = ;.
� (stepk) Let d be a default, ifd is applicable toTk�1 and alld0 2 Dk�1 are

applicable toTk�1
 Tab(T), then we let

Tk = Tk�1
 Tab(T),
Dk = Dk�1 [fdg.

The incremental construction is carried on until a saturated tableauTn is reached.
The authors prove that the deductive closure ofTn is an m-extension. TheF -
part of the extension is given byJUST (Dn). Moreover, all m-extensions can be
constructed in this way.

TABLEAUX FOR NONMONOTONIC LOGICS 503

EXAMPLE 24. We consider the theory of 7. LetD0 = ; and

T0 = Tab(T�) = fTsu;Twh;Thog:

Let us considerd1; to see whether it is applicable, we must check that

1) T0
 Tab(Fpre(d1)) = T0 [fFsug is closed,
2) T0
 Tab(Tcons(d1);Tjust(d1)) = T0 [fTfi;Ftig is open,
3) for all d 2 D0, T0
 Tab(Tcons(d1))
 Tab(Tjust(d)) is open.

The three tests succeed, thus we can add the consequent ofd1 to T0 and we let

T1 = T0 [fTfig; D1 = fd1g:

We considerd2, we check whether

1) T0
 Tab(Fpre(d2)) = T1 [fFwhg is closed,
2) T1
 Tab(Tcons(d2);Tjust(d2)) = T1 [fTti;Fwklg is open,
3)T1
Tab(Tcons(d2))
Tab(Tjust(d1)) = T1[fTti;Tfi;Ftig
is open.

The first two succeed, but the third fails, thus we cannot applyd2 to T1. Let us
considerd3, we have that

T1
 Tab(Fpre(d3)) = T1 [fFhog is closed, but also
T1
 Tab(Tcons(d3);Tjust(d3)) = T1 [fTwkl;Ffig is closed,

whereas it should be open; thusd3 is not applicable.T1 is obviously saturated, and
represents one m-extension. The other two can be generated by considering the
defaults in a different order.

For Schaub’s variant, we have to expand the basic machinery by taking into
accountpairs of sets of formulas(�+;��), and hence pairs of tableaux. The

reason is that c-extensions arepairs of sets of formulas. A default rule� : �
 is

interpreted as the following inference rule:

�+ ` � �� [f�; g 6` ?
�+ [fg;�� [f� ^ g :

The meaning is that: if�+ ` � and� ^ is consistent with��, then add to �+

and� ^ to ��.
In tableaux terms, we say that a defaultd is applicable to a pair(�+;��) iff

1. Tab(T�+)
 Tab(F�) is closed

2. Tab(T��)
 Tab(T� ^) is open.

504 NICOLA OLIVETTI

We redefine accordingly the notion of saturation. We say that(�+;��) is satu-

rated with respect to a set of defaultsD iff for all d = � : �
 2 D, if d is appli-

cable to(�+;��), thenTab(T�+)
 Tab(F) andTab(T��)
 Tab(F ^ �)
are closed.18 The same definition of applicability and saturation make sense if
(�+;��) is already a pair of expanded tableaux.

Given a default theory(�; D), default rules are applied to build up a sequence
of pairsof tableauxhT+

i ; T
�
i i.

� (step0) We letT+
0 = T�0 = Tab(T�).

� (stepk) Let d =
� : �
 be a default, ifd is applicable to(T+

k�1; T
�
k�1), then

we let

T+
k = T+

k�1
 Tab(T),
T�k = T�k�1
 Tab(T� ^).

The incremental construction is carried on until a saturated pair of tableaux
(T+

n ; T
�
n) is reached. The authors prove that the deductive closure of the two

components gives a c-extension(E;C), namelyE = Th(T+
n) andC = Th(T�n).

Moreover, all c-extensions may be generated this way.

EXAMPLE 25 (Brewka’sbroken armexample). Let� = (fbr(ri) _ br(le)g;
fd1; d2g), where

d1 =
: us(ri) ^ :br(ri)

us(ri)
d2 =

: us(le) ^ :br(le)
us(le)

g:

We have that
T+
0 = T�0 = ffTbr(ri)g; fTbr(le)gg:

Considerd1, we check whether

1) T+
0
 Tab(Fpre(d1)) is closed, and

2) T�0
 Tab(Tjust(d1);Tcons(d1)) =

18The authors make use of pairs of theories and of pairs of formulas in order to give a uniform pre-
sentation of all variants of default logic. In a theory(�+;��), the first component�+ represents the
actual knowledge, and�� its support, that is additional information, such as consistent assumptions.
Formulas are also considered in this paired fashion: given� = h�+; ��i, �+ is the asserted for-
mula and�� its justification (a consistency assumption). This machinery is somewhat reminiscent of
Brewka’s assertional language. A default rule is presented in the general form:

�+ : ��

+; � ;

and its meaning, is the following: given a theory(�+;��), if �+ proves�+, and�� is consistent
with ��, then add+ to �+ and� to ��. The conclusion is split in two parts, one is added to�+

and the other to��, the support of�+. However, for Reiter’s as well as for Łukaszewicz’s logic , we
have that+ = �, and the two components�+, �� can be identified, having the same role. This is
why we have chosen a simplified presentation in these two cases.

TABLEAUX FOR NONMONOTONIC LOGICS 505

= ffTbr(ri);Tus(ri);Fbr(ri)g; fTbr(le);Tus(ri);Fbr(ri)gg
is open.

Both tests succeed, hence we let

T+
1 = T+

0
 Tab(Tcons(d1))
= ffTbr(ri);Tus(ri)g; fTbr(le);Tus(ri)gg

T�1 = T�0
 Tab(Tcons(d1);Tjust(d1))

= fTbr(le);Tus(ri);Fbr(ri)g:

We now considerd2,

1) T+
1
 Tab(Fpre(d2)) is closed, but

2) T�1
 Tab(Tjust(d2);Tcons(d2)) =
= fTbr(le);Tus(ri);Fbr(ri);Tus(le);Fus(le)g
is closed,

whereas it should be open. Thusd2 is not applicable. Since(T+
1 ; T

�
1) is saturated,

it gives a c-extension which containus(ri) and:us(le). If we considerd2 first
and thend1, we obtain the symmetric one.

7 TABLEAUX FOR MINIMAL ENTAILMENT

In this section, we will treat tableaux for the propositional case, and we will defer
the first order case as well as domain minimization (only meaningful in a first-
order context) to the next section. We first consider the case when all atoms are
minimized. Our intent is to modify the standard tableau construction so that any
tableau for(�; �) is closed iff� j=m �. We divert from the classical case in two
respects.

First, we reformulate the rules of tableau expansion in order to eliminate the
sign-switching rules for negation. That is, instead of eliminating negation by
switching the sign of a formula:�, and then processing�, we process directly
:� without changing its sign. In Figure 2 we reformulate the table rules for split-
ting formulas.

The reason for this reformulation is thatTp andF:p will turn out to have a dif-
ferent meaning. Then, we reformulate accordingly the usual notion of completed
branch, by distinguishing the case ofT-signed formulas andF-signed formulas.

DEFINITION 26. We say that a branchB is T-completed (F- completed) if all
itsT-signed (F-signed formulas) are literals. A branchB is completed if it is both
T- completed andF-completed.

We introduce a new definition of closed branch.

DEFINITION 27. We say that a branchB is T-closed (F-closed) if it contains
aT� andT:�, for some formula�, (respectively,F� andF:�). We say that

506 NICOLA OLIVETTI

� �1 �2
T(� ^) T� T
T:(� _) T:� T:
T:(�!) T� T:
T::� T�
F(� _) F� F
F:(� ^) F:� F:
F(�!) F:� F
F::� F�

� �1 �2
T(� _) T� T
T:(� ^) T:� T:
T(�!) T:� T
F(� ^) F� F
F:(� _) F:� F:
F:(�!) F� F:

Figure 2.

a branchB is ordinary closedif is eitherT-closed, orF-closed, or it contains a
formulaT� andF�.

We say that a branchB is m-closedif

� it is T-completed;

� for some literal:p, we haveF:p 2 B, butTp 62 B.

Finally, we say that a branchB is closedif it is either ordinary-closed or m-closed.

The intuitive meaning of m-closure is as follows: suppose thatB is m-closed
because ofF:q. Then, for every modelM (if any) which makes true allT-
formulas ofB, there is a smaller modelN which makes true allT-formulas of
B and makesq false. Thus we can considerB as closed, for it cannot provide a
minimal countermodel.

Notice that the condition of m-closure is a negative condition, and hence it is
nonmonotonic. If we add some formulas to an m-closed branchB, the resulting
branch might no longer be m-closed. We introduce another condition which allows
one to get rid of non-minimal branches. Given a branchB we let:

At(B) = fp : Tp 2 B andp is an atomg:

DEFINITION 28. Given a branchB in a tableauT , we say thatB is ignorable
if there is another branchB0 2 T , such that (a)B0 is T-completed, (b) it is not
T-closed, and (c)

At(B0) � At(B):

TABLEAUX FOR NONMONOTONIC LOGICS 507

Clauses (a) and (b) ensures thatB0 is a (partial) model of the initialT-formulas,
clause (c) expresses the preference for the smaller one.

A branch which is neither closed, nor ignorable is called a counterexample branch.
Finally, we say that a tableauT is closed iff all branches ofT are either closed or
ignorable.

EXAMPLE 29.
We check ifp _ q j=m :p _ :q. The initial tableau contains:

fTp _ q;F:p _ :qg;

which generates the final two branches:

fTp;F:p;F:qg; fTq;F:p;F:qg:

Both of them are m-closed, thus the tableau is closed.
Let us check ifp! q j=m :q. The initial tableau contains:

fTp! q;F:qg;

which generates the following branches:

fT:p;F:qg; fTq;F:qg;

the first branch is m-closed the second one is ignorable, thus the tableau is closed.
We finally check whether

p _ q; p! r j=m :r:

The initial tableau contains:

fTp _ q;Tp! r;F:rg;

from which we obtain the following three branches (we omit theT-closed one).

B1 = fTp;Tr;F:rg; B2 = fTq;T:p;F:rg; B3 = fTq;Tr;F:rg:

BranchB2 is m-closed, branchB3 is ignorable because ofB2, butB1 is a coun-
terexample branch. It is easily seen that the evaluationV , with V (p) = V (r) = 1,
is a minimal model of(p _ q) ^ (p! r), which falsifies:r.
The method is sound and complete with respect to minimal entailment.

THEOREM 30. For any finite set of formulas� and formulas�, it holds that
� j=m � if and only if any tableau for(�; �) is closed.

508 NICOLA OLIVETTI

The method can be easily adapted to the case of minimal entailment with variable
atoms (that one we denoted byj=P, whereP are the atoms to be minimized). All
we need to do is to change the notion of m-closure, and the ignorability condition
as follows. For the former, we say thatB isP-m-closed if it isT-completed, and
for some literal:p, such thatp 2 P, we haveF:p 2 B, butTp 62 B.

For the latter, we letP(B) be the set of atomsp 2 P such thatTp 2 B.
Given a branchB in a tableauT , we say thatB isP-ignorableif there is another

branchB0 2 T , such that (a)B0 is T-completed, (b) it is notT-closed, and (c)
P(B0) � P(B).

Let us consider the following example (a similar one is discussed in [Brewka,
1985]).

Let � be the conjunction of the following formulas:

german(tom) ^ :abnormal(tom)! drink beer(tom),
german(tom),
eats cake(tom)! :drink beer(tom).

We minimize all atoms, butdrinks beer(tom), since we want to determine whether
Tom drinks beer or not. That is we take:

P = fgerman(tom); abnormal(tom); eats cake(tom)g:

The initial tableauT containsT� andFdrink beer(tom). The following branches
are generated (we only list those ones which are notT-closed):

B1 = fTabn(tom);Tger(tom);T:eats cake(tom);Fdrink b(tom)g;

B2 = fTabn(tom);Tger(tom);T:drink b(tom);Fdrink b(tom)g;
B3 = fTdrink b(tom);Tger(tom);T:eats cake(tom);Fdrink b(tom)g:

We have thatB3 is closed;B1 andB2 areP-ignorable because ofB3. Hence the
tableau proves that� j=P drink beer(tom).

The general case, with fixed atoms is slightly more complex, although we recall
that fixed-atoms can be always eliminated. This case has been studied in[Kuhna,
1993], where a tableau method to generate�P;Q minimal models is proposed.
The main result of that paper is a characterization of minimal models in terms of
tableau branches for the general case. Given two disjointed sets of atomsP, Q,
let Fixed be the set of atoms not inP [Q. For a tableau branchB, we use
the notationFixed(B) to denote the set ofT-signed literals inB, whose atoms
belongs toFixed. Let� be a set of formulas, given an open branchB 2 Tab(T�)
(namely, a set ofT-signed literals), we consider the following property:

LetB1; : : : ; Bk 2 Tab(T�) be all open branches such thatP(Bi) �
P(B). If k > 0, then for i = 1; : : : ; k, there are literalsli 2

TABLEAUX FOR NONMONOTONIC LOGICS 509

Fixed(Bi), such thatB [fTlc1; : : : ;Tlckg 19 is open.

There is a complete correspondence between open branchesB which satisfy the
above property and�P;Q minimal models of�: if B is open and satisfies the
above property for some literalsl1; : : : ; lk, then every maximal consistent exten-
sion of

B [f:p : p 62 P(B)g [fTlc1; : : : ;Tlckg
is a�P;Q minimal model of�. On the other hand, to every�P;Q minimal model
of � it corresponds to an open branchB which satisfies the above property. This
result suggests a discipline to check whether an open branchB represents a mini-
mal model or not. We have to completeB by adding the complement of a literal in
Fixed(B0) for each potentialP-smaller branchB0. If we can make a consistent
choice for every suchB0, thenB represent a minimal model, otherwise it does
not. In the paper, the author discusses how to implement the method with some
efficiency.

We conclude this section by a brief discussion of efficiency issues. From a the-
oretical point of view, Gottlob’s results classify all types of propositional minimal
entailment to the second level of the polynomial hierarchy; thus the complexity
of this form of nonmonotonic inference is the same as default reasoning and au-
toepistemic logic. The critical point of the method is the fact that in order to decide
whether to keep or not a branch we must compare it, in the worst case, with any
other else.

Although, in practice reasonable heuristics can be developed (often a branch
can be detected as ignorable, without a complete expansion of the tableau), we can
still wonder whether there is or not an alternative to branch comparison. In the
next subsection, we will show that this problem is connected to that one of finding
acut freesequent calculus for minimal entailment.

A Gentzen Calculus for Minimal Entailment

In this section we transform the tableau method for the basic form of minimal
entailment into a Gentzen calculus. The calculus we present below, called MLK,
is equivalent to that one in[Olivetti, 1992], although it does not contain an explicit
rule for negation, but is closer to the tableau method of the previous section. This
calculus is a useful tool for proof-theoretical investigation on minimal entailment.
In [Olivetti, 1992] it is shown how to extend the calculus to minimal entailment
with variable and fixed atoms; here we will present the calculus only for the basic
case of minimization.

Sequents have the form
� ` �;

19By lc we denote the complementary literal ofl.

510 NICOLA OLIVETTI

where� and� are sets of formulas. We write�; �1; : : : �n instead of�[f�1; : : : ;
�ng, and�1;�2 instead of�1 [�2.

As usual, there are two type of rules: logical and structural; logical rules are the
standard ones and can be read as an upside version of tableau rules. In order to
state them concisely we refer to the splitting table in Figure 2, with the following
understanding:

if a formula� occurs in the left (right) part, then it is treated as it were
T� (F�).

Thus, the rules are as follows:

� Logical rules
�; �1; �2 ` �

�; � ` �

� ` �; �1; �2

� ` �; �

if � is of type� and�1; �2 are the�-subformulas of�.

�; 1;` � �; 2;` �

�; ` �

� ` �; 1 � ` �; 2

� ` �;

if is of type� and 1; 2 are the�-subformulas of .

� Structural rules

(CM)

� ` � � ` �

�; � ` �

(CUT)

� ` �;�1 �; � ` �2

� ` �1;�2

� Initial sequents
� ` �;

provided either

(a) � \� 6= ;, or for some�, both�;:� 2 �, or�;:� 2 �, or

(b) � and� are sets of literals and for some literal:p 2 �, p 62 �.

Let MLK be the calculus containing the above rules. We can make a few observa-
tions. First, notice that the logical rules are just the upside version of the tableau
rules, for instance, we have:

� ` �; � � ` �;:
� ` �;:(�!)

TABLEAUX FOR NONMONOTONIC LOGICS 511

Rule CM is usually calledcautious monotony. Notice that the first premise of
cautious monotony is restricted to contain just a single consequent. Cut rule re-
quires that the left part of the second premise contains exactly all formulas of the
left part of the first premise (�), together with the cut formula (�). Regarding to
initial sequents, we notice that condition (a) of the definition of initial sequents
corresponds to the ordinary tableau closure, whereas condition (b) corresponds to
m-closure in tableaux. It can be shown that the rule ofright weakeningis ad-
missible in this system; the corresponding rule on the left does not hold, being
equivalent to monotonicity. The calculus we have presented satisfies the axioms
for preferentialentailment, as defined in[Krauset al., 1990], in the context of an
axiomatic treatment of nonmonotonic logics.

EXAMPLE 31. We show thatp _ q j=m :p _ :q, by a derivation in MLK:

p ` :p;:q
p ` :p _ :q

q ` :p;:q
q ` :p _ :q

p _ q ` :p _ :q

We show thatp! q j=m :q, by the following derivation:

` :p; q
` p! q ` :q
p! q ` :q

The last step of the derivation above is by CM rule.

The calculus is a sound and complete formalization of minimal entailment.

THEOREM 32. Let� be a set of formulas, and� a formula we have that

� j=m � , � ` � is derivable in MLK:

In MLK, cut is not eliminatable. This can be seen by the following example.

EXAMPLE 33. It is easy to see that:

(p ^ q) _ (p ^ :q) j=m :q:

By the previous theorem we have that the sequent

(�) (p ^ q) _ (p ^ :q) ` :q

is derivable in MLK, but any cut-free derivation of the above sequent can have as
a last step only (a) the application of the logical rule for_ in the left part (a case of

512 NICOLA OLIVETTI

�-rule), or (b) the application of CM. In case (a), we should be able to derive both

p ^ q ` :q andp ^ :q ` :q:

But, it is obvious (by the correctness of MLK) that the first sequent cannot be
derived. In case (b), we should be able to derive both

` (p ^ q) _ (p ^ :q) and` :q:

But, again, the first sequent cannot be derived by the correctness of MLK. On the
other hand, there is a derivation of sequent (*), whose last steps are:

...

(p ^ q) _ (p ^ :q) ` p

...
p ` (p ^ q) _ (p ^ :q) p ` :q
p; (p ^ q) _ (p ^ :q) ` :q

(p ^ q) _ (p ^ :q) ` :q

Given the correspondence between the tableau rules and MLK rules, we can
give a partial answer to the issue of branch comparison in tableaux we were con-
cerned in the previous section. The next proposition highlights the connection
between cut-elimination in MLK and branch comparison in tableaux.

PROPOSITION 34.The following are equivalent:

1. No tableau proof of� j=m � requires branch comparison;20

2. There is a MLK derivation of� ` �, which makes use neither of CM rule,
nor of CUT rule.

Although cut-elimination fails in MLK, one can still hope that some form of
analyticcut suffice, as in the example above.21

8 THE FIRST ORDER CASE

In this section we will shortly review the problems concerning the extension of the
methods we have presented to first-order languages. We will concentrate on the
preferential approach.

First, we notice that all nonmonotonic formalisms we have presented become
seriously uneffective at the first-order level. This is clear for fixpoint-based for-
malisms which presuppose the ability of deciding unprovability, and hence at the

20That is to say, no ignorable branch is generated in the tableau construction.
21An analytic calculus for minimal entailment has been recently proposed in[Bonatti and Olivetti,

1997].

TABLEAUX FOR NONMONOTONIC LOGICS 513

first-order level are not even recursive-enumerable. The same is true for prefer-
ential-based methods such as minimal entailment. Every relevant question about
minimal models of an arbitrary theory may be not even arithmetic (existence of
countable minimal models is�1

2-complete, and hence truth in all countable mini-
mal models is�1

2-complete in the analytical hierarchy[Schlipf, 1987]).
But intractability is not the only problem. For methods based on the fixpoint

approach, there is no complete agreement on what is supposed to be their first-
order formulation. For instance, it is not clear how to interpret in autoepistemic
logic a formula such as9xLp(x). Similarly, in default logic, given the base theory
9xp(x), it is not evident what may be the meaning of an open default rule such as

p(x) : q(x)

r(x) :

For all these reasons, in most of the cases severe restrictions are put on the use
of first-order logic. Usually, the treatment is confined to universal function-free
theories. This avoids the difficulty about the existential quantifier and skolemiza-
tion. On the other hand, these restrictions give a decidable fragment of first-order
logic.

There are two additional assumptions which are taken into consideration when
dealing with first-order nonmonotonic logics. The first one is the so-calleddo-
main closure axiom. Given a function-free set of formulas�, whose constants are
a1; : : : ; an,DCA(�) is

8x(x = a1 _ : : : _ x = an):

The axiom states that the only existing objects are those named by the constants.
By this axiom we can replace quantified formulas by propositional disjunctions
and conjunctions.

Another critical issue is the identity of constants: for instance, given the only
informationp(a) we can infer by minimal entailment:p(b) , only if a 6= b. For
a similar example in default logic, let us consider the theory containing only the
following default rule:

: :p(a)

p(b)

The theory has an extension iffa = b cannot be proved. To deal with this kind
of problems, it is usually made the simplifying assumption that different constants
denote different objects. In the function-free case, this assumption can be repre-
sented by the axiom ^

i6=j

ai 6= aj ;

whereai; aj range over all constants of the language. This assumption is called
unique name assumption(UNA). The two restrictions DCA and UNA have been

514 NICOLA OLIVETTI

first introduced for the logical analysis of databases and allow us to reduce a first-
order theory to a propositional theory. When dealing with first-order nonmono-
tonic reasoning these restrictions are often implicitly assumed. For instance in
[Schwind and Risch, 1994] the tableau method is said to be applicable to first-order
default theories with open defaults. The authors consider function-free universal
theories and suggest to interpret an open-default rule as the set of its propositional
instances. This is tantamount to assume the DCA restriction.

To conclude, we are faced with the following situation: on the one hand first-
order nonmonotonic methods are uncomputable, and for fixpoint methods there is
not even agreement on their formulation, on the other hand we can make rather
strong assumptions which trivialize the first-order case. Because of this situation,
we have chosen to confine our treatment to minimal entailment. The first-order
formulation of minimal entailment (in all variants) has a clear semantics which is
not a later development, but it is its original definition.

8.1 Minimal Entailment

In contrast with other formalisms, minimal entailment has originally been intro-
duced in a first-order setting and it has a well-defined meaning. In the previous
section we have developed a tableau procedure for the propositional case. We won-
der whether and how it can be extended to the first-order case. There are several
difficulties. In view of the previous considerations, we cannot expect to have an
effective and complete method. This is already seen from the fact that the method
we have presented requires that some branch be completed in order to check both
the m-closure and the ignorability condition. But a first-order tableau may fail to
terminate, by leading to generate infinite branches. We must therefore restrict our
concern to a subset of first-order logic for which a standard tableau procedure is
ensured to terminate. Namely, we must restrict to sets of formulas� having a finite
model property of the sort: ifM j= �, then there is afinitesubstructureM 0 of M
such thatM 0 j= �. For instance, this can be ensured by considering function-free
�2-formulas. Thus, a tableau may only contain function-free formulas of type�2

with labelT, and of type�2 with labelF. In this way, we ensure that the tableau
construction terminates.

But termination, and hence completeness, is not the only difficulty. It is not
obvious how to extend the propositional procedure in asoundmanner. For in-
stance, the formula� = 8x(p(x) ! r(x)) is not a minimal consequence of
� = f9x(p(x) ^ q(x)); 9x(q(x) ^ r(x))g. However, let us build a tableau for
(�; �) as shown in Figure 3.

The tableau has only one branch. Since the branch containsF:p(c), but not
Tp(c), it is m-closed, and hence the tableau is closed. The problem is that, in the
tableau construction, we have implicitly assumed that everyskolemconstant, i.e.
introduced by the quantifier rules (T9,F8), denotes a different individual. This is
not correct. TheT-labelled formulas contained in the last node minimally entail
:p(c) only if a 6= c. Indeed, a counterexample is given by a minimal modelM

TABLEAUX FOR NONMONOTONIC LOGICS 515

fT9x(p(x) ^ q(x));T9(q(x) ^ r(x));F8x(p(x) ! r(x))g

fT(p(a) ^ q(a));T9x(q(x) ^ r(x));F8x(p(x) ! r(x))g

fTp(a);Tq(a);T9x(q(x) ^ r(x));F8x(p(x) ! r(x))g

fTp(a);Tq(a);T(q(b) ^ r(b));F8x(p(x) ! r(x))g

fTp(a);Tq(a);Tq(b);Tr(b);F8x(p(x)! r(x))g

fTp(a);Tq(a);Tq(b);Tr(b);Fp(c)! r(c)g

fTp(a);Tq(a);Tq(b);Tr(b);F:p(c);Fr(c)g

Figure 3.

of the initial theory�, whereaM = cM = d1, bM = d2, pM = fd1g, qM =
fd1; d2g, rM = fd2g. A possible solution to this problem would be to branch
according toa = c _ a 6= c, for every pair of constantsa andc.22 Alternatively,
we can modify the rules for (T9, F8) to incorporate such a branching. We give
the rule forT9:
Modified existential rule

If T9x�[x] occurs in a branch, we createn + 1 branches, where
a1; : : : ; an are the constants already occurring in the branch; in each
one of the firstn branchesT9x�[x] is replaced byT�[ai], and in the
lastn+ 1-oneT9x�[x] is replaced byT�[c], for a new constantc.

This modification of existential quantifier rule is due to Hintikka who proposed
a tableau method for a form of domain minimization, (see next section).

But, even in the case we do not have to deal with existentially quantified formu-
las the method does not work correctly. Let�1 be the following set of formulas:

�1; f8x(p(x) _ q(x));8x(q(x) ! r(a));:q(a)g:

It is easy to see that�1 does not minimally entail:r(a). A counterexample may

22If we assume theUnique Name Assumption(UNA) we can restrict this branching to the case in
whicha is aSkolemconstant andc is an arbitrary constant.

516 NICOLA OLIVETTI

be easily found by considering minimal models whose domains haven � 2 ele-
ments. However, let us generate a tableau:

fT8x(p(x) _ q(x));T8(q(x) ! r(a));T:q(a);F:r(a)g

fT(p(a) _ q(a));T8x(q(x) ! r(a));T:q(a);F:r(a)g

fT(p(a) _ q(a));T(q(a) ! r(a));T:q(a);F:r(a)g

fTp(a);T(q(a) ! r(a));T:q(a);F:r(a)g

fTp(a);T:q(a);F:r(a)g
!
!
!! a

a
aa

fTp(a);Tr(a);T:q(a);F:r(a)g

Figure 4.

Figure 4 only shows branches which are notT-closed. Branch

B1 = fTp(a);T:q(a);T:q(a);F:r(a)g

is m-closed, whereas

B2 = fTp(a);Tr(a);T:q(a);F:r(a)g

is ignorable, hence the tableau is closed. The formula:r(a) would be a minimal
consequence of�1 just in casea were the only object of the universe.

In other words, the tableau procedure deals correctly with minimization, but
only on Herbrand models. But minimal entailment has the pathology that, even
in the case of auniversaltheory, Herbrand models are not sufficient for determin-
ing minimal consequences. For ordinary logical consequence we know that given
a universal formula� and an existential formula , if holds in all Herbrand
models of�, then� j= . A corresponding property does not hold for minimal
entailment. The reason is that the class ofminimal models of a universal theory
is not necessarily closed undersubstructures. This problem seems fatal for the
development of a general and clean method even foruniversaltheories.

On the other hand, there are syntactic restrictions which prevent such a pathol-
ogy, for instance theallowednesscondition, well-known from database and logic
programming literature[Lloyd, 1984]. It turns out that for universal,allowed,
function-free theories� and existential formulas , the tableau method is sound
and complete, under theunique name assumption[Olivetti, 1992].

TABLEAUX FOR NONMONOTONIC LOGICS 517

8.2 Domain Minimization

Hintikka [1988] has proposed a modification of standard first-order tableaux as
a proof-theoretical approximation of domain-minimization. His tableau method
implements domain minimization in the following way. Suppose that we want to
check whether� ‘minimally entails’ .

1. We generate the tableau forT�.

2. The rule for existential quantifier is modified as described in the previous
section, to the purpose ofreusing constantsas much as possible, instead of
introducing new ones.

3. Branches are compared as follows: given two completed open branchesB1

andB2, B1 << B2 iff B1 has been completed exactly the same asB2,
except that it has re-used some old constants, instead of introducing one or
more new ones (in9-elimination steps). This relation determines a partial
order on branches, so that we can consider minimal elements wih respect to
it.

4. To each minimal branchB, we add the axiomDCA(B).

5. We check in every minimal branch, that is, we addF , and we expand
the tableau.

Lorenz[1994] has shown that Hintikka’s entailment notion is not a good approxi-
mation of domain minimization, for it does not preserve logical equivalence. Let
us consider the following example:p(a) is logically equivalent top(a) _ 9x(x 6=
a ^ p(a)). In Figure 5 it is shown a tableau for the latter formula.

fT(p(a) _ 9x(x 6= a ^ p(a)))g

B1 : fTp(a)g
"
"" b

bb

fT9x(x 6= a ^ p(a))g

fT(a 6= a ^ p(a))g

B2 : fTa 6= a;Tp(a)g

�
�� H

HH

fT(c 6= a ^ p(a))g

B3 : fTc 6= a;Tp(a)g

Figure 5.

In the tableau, branchB2 is closed and hence disregarded. BothB1 andB3

are minimal according to Hintikka’s definition, since they are uncomparable. We
can conclude that, whereas the former formulaP (a) entails in Hintikka sense the

518 NICOLA OLIVETTI

formula8x x = a (as it is immediate to see), the equivalent formulaP (a)_9x(x 6=
a ^ P (a)) does not.

Lorenz has shown how to modify Hintikka’s method to obtain a tableau proce-
dure for his stronger notion ofvariabledomain minimal entailment. The point is
to allow the comparison of branches which arise also from different logical alter-
natives provided by the tableau expansion rules. We call two completed open
branchesB1 andB2 comparableif it is not the case thata = b 2 B1, but
a 6= b 2 B2. Let us denote bySKO(B) the set of skolem constants introduced in
a branchB. For the rest, the method is the same as Hintikka’s one. Lorenz calls
the entailment determined by his tableau procedure sk-consequence.

The comparison relation becomes:B1 << B2 iff

1. B1 andB2 are comparable;

2. there exists aninjectivemappingG : SKO(B1) ! SKO(B2), such that
range(G) � SKO(B2).

The previous example is now handled correctly, since branchesB1 andB3 can
now be compared and it is easy to see thatB1 << B3.

In [Lorenz, 1994] there is a soundness and completeness result for finitely well-
founded theories, that is well-founded theories whose variable domain minimal
models are finite.

THEOREM 35. If � is finitely well-founded, then� is a variable domain minimal
consequence of� if and only if� is an sk-consequence of�.

It remains open the problem of finding an exact characterization by tableaux of
the original notion of domain minimization.

9 FURTHER DEVELOPMENTS

In this section we survey some of the most recent research in the area without any
pretence to completeness.

We group the proposals in families of logics, although some of the works cover
more than one nonmonotonic formalism.

Circumscription

In [1996a], Niemelä has introduced an efficient method for circumscription based
on ahypertableauxcalculus (see[Baumgartneret al., 1996]). We describe the
method for set of clauses, in the basic case of propositional minimization, Niemel¨a
has then extended it to other form of minimal entailment/circumscription[Niemelä,
1996]. We write a clauseK as follows

a1 ^ : : : ^ am ! b1 _ : : : _ bn;

TABLEAUX FOR NONMONOTONIC LOGICS 519

we allow m;n = 0 and we defineHead(K) = fb1; : : : ; bng, Body(K) =
fa1; : : : ; amg. The tableau procedure is based on the following characterization of
minimal models: let� be a set of clauses,M be an interpretation and

N�(M) = f:a j 9K 2 �; a 2 Head(K);M 6j= ag:

Then we have

M is a minimal model of� iff M j= � and for every atoma,M j= a
implies� [N�(M) j= a.

The above characterization of minimal models can be re-stated in terms of tableau
branches, allowing to check their minimality without explicitly comparing them.

We first describe the basic hypertableaux construction. A tableau for� j=m
is constructed as follows. The root of the tableau is labelled with� [�� , where
�� =

�
�C1; : : : ; �Ck

	
is a set of clauses representing: in CNF. Tableau branches

are extended according to the following two rules:

a1 ^ : : : ^ am ! b1 _ : : : _ bn
a1; : : : ; am

:b1; : : : ;:bj�1;:bj+1; : : : ;:bn
bj

a1 ^ : : : ^ am ! b1 _ : : : _ bn
a1; : : : ; am

:bj j bj
A branchB is closedif it contains a clauseb1 ^ : : : ^ bn ! (n � 1) together

with the atomsb1; : : : ; bn . A branchB is finishedif, whenevera1 ^ : : : ^ am !
b1 _ : : : _ bn 2 B, anda1; : : : am 2 B, then somebj 2 B. A branchB is
ungrounded in� if for some atoma onB, � [N�(B) 6j= a , where

N�(B) = f:a j 9K 2 �; a 2 Head(K)�B g :

A tableauT for (�; �) is MM-closediff every branch is closed or ungrounded in
�. It can be shown that

THEOREM 36. � j=m � iff any tableau for(�; �) is MM-closed.

We can observe that ungrounded branches correspond to branches which are ei-
ther m-closed or ignorable according to the tableau procedure of section 7. We can
replace the ignorability test by the ungroundedness test. The ungroundedness test,
by itself, is a provability test which can be implemented, for instance, by another
tableau construction. The main advantage of this approach is that ungroundness
is a local condition, whence in order to check it we do not need to keep other

520 NICOLA OLIVETTI

branches for comparison. This leads to a polynomial space complexity which is
not ensured by the other method of section 7.

The use of hypertableaux for minimal model generation has been independently
explored by[Bry and Yahya, 1996] along somewhat different lines.

Autoepistemic and NonMonotonic Modal Logics

Donini, Massacciet al. in [1996] have developed a uniform tableau method for the
whole class of nonmonotonic modal logics based on a modal preferential seman-
tics developed by Schwarz[1992]. Their tableau procedure is very general and
is parametric with respect to the underlying modal logic and the preference crite-
ria on Kripke structures. Within their framework they can capture Autoepistemic
logic, the Logic of Minimal Knowledge[Halpern and Moses, 1985], and default
logic via its modal translation. Their tableau systems are refutational as usual;
open branches of a tableau, which are possible counterexamples, are checked to
see whether they correspond to most-preferred models. This check involves the
construction of another tableau, whose open branches (if any) may specify more
preferred models (calledopponent models), in this case the candidate counterex-
ample branch of the original tableau can be ruled out or ignored. The required
semantic notions are rather complex to give a short exposition of their work, we
refer the reader to[Donini et al., 1996].

In [1994], Niemelä has proposed several algorithms for autoepistemic logic, its
variants, and default logic; these procedures are rather different from the tableau
procedure presented in section 5. His proof-procedures are not strictly related to
tableaux, although they are analytic, and can be implemented using a variety of
theorem prover mechanisms. However, tableaux may still play a significant role.
We limit the exposition to autoepistemic logic. The starting notion is the one offull
set(see end of section 5), which provides a finitary characterization of expansions.

Let � be a finite set of formulas, bySub(�) we denote the set of subformulas
of �, we also define:

SfL(�) = fL� 2 Sub(�)g and:SfL(�) = f:L� j L� 2 SfL(�)g.
We say that a subsetB � SfL(�) [:SfL(�) is a full set for �, if for every
L� 2 SfL(�)

� L� 2 B , � [B `AE �;

� :L� 2 B , � [B 6`AE �;

where`AE is the trivial extension of propositional calculus in whichL-formulas
are just treated as propositional atoms.

Full sets exactly correspond to stable expansions. To explain the precise con-
nection, we first extend the relatioǹAE according to the provability meaning of
theL-operator. We define (recursively)

� `AEL � , � [SB�(�) `AE � where

TABLEAUX FOR NONMONOTONIC LOGICS 521

SB�(�) = fL� 2 SIL(�) j � `AEL �g [
[f:L� j � 2 SIL(�) ^ � 6`AEL �g

SIL(�) denotes the set of immediateL- subformulas of�, that is not in the scope
of another L-operator.

THEOREM 37 ([Niemelä, 1994]). The mappingE

E�(B) = f j � [B `AEL g
is a bijection betweenfull setsandstable expansions.

The relation� `AEL is decidable. It is relatively easy to devise a tableau-
based algorithm for it. In order to check whether� `AEL , one builds a tableau
system in a similar way to the one described in section 5. A hierarchy of auxiliary
tableaux is created in order to evaluate theL-subformulas of (on the opposite,
theL-subformulas of� are treated just as propositional atoms), until tableaux for
subformulas of with no occurrences ofL are reached. These terminal tableaux
can be completed in the ordinary way, and according to their status (open or closed)
we recursively proceede backwards to update the other tableaux, as described in
the method of 5. At the end we have that� `AEL iff the (updated) tableau for
(�;) is closed.

In order to perform autoepistemic reasoning we need a way of generating the
full sets. This can be done by the method described in section 5; as we have
remarked, each admissible labelling corresponds to a full set. But there are more
efficient ways to generate full sets than guessing the admissible labellings. In
figure 6, we present the procedureFULL FIND, which builds a full set of a
given set of formulas�, if there exists one.

We say thatB covers� iff for every 2 SfL(�), eitherL 2 B or :L 2
B. The procedureFULL FIND(�; B; F) makes use of an auxiliary procedure
EXTEND,23 B represent the temptative full set being created,F represent the
set ofL yet uncovered byB which should be added toB and are, so to say,
‘frozen’. The initial call isFULL FIND(�; ;; ;) and it returns either a full set
B of � or false if it does not exist.

Intuitively, the procedure EXTEND expandsB by ‘positive introspection’ as
much as possible. WhenB can no longer be extended, we check whetherB con-
tains some:�which should not be inB (this happens if�[B[F `AE �). In this
caseB cannot be extended to a full set and we report failure. If this is not the case
we check whether all L-subformulas of� are covered byB [F . If this is the case
andF � B, thenB covers� and we report success, otherwise (ifF 6� B) some
subformula of� cannot be covered byB and we report failure. If some formula
L� is not covered byB [F , we try to add:L� toB, and see whetherB can be
extended to a full set. If it cannot we retry puttingL� in F .

23In Niemelä’s paper [1994] the procedure EXTEND is calledPOSM and the procedure
FULL FIND is calledDERM .

522 NICOLA OLIVETTI

EXTEND(�; B; F)

repeatB0 := B

for all L� 2 SfL(�)
B := B [fL�g if � [B [F `AE �

until B = B0

returnB

FULL FIND(�; B; F)
B := EXTEND(�; B; F)

if for some:L� 2 B, � [B [F `AE � then returnfalse

else ifSfL(�) � SfL(B) [F then

if F � B then returntrue
elsereturnfalse;

elseletL� such thatL� 62 B and:L� 62 B

if FULL FIND(�; B0 [f:L�g; F) = false

then
returnFULL FIND(�; B; F [fL�g)

elsereturntrue

Figure 6.

The algorithm can be adapted to obtain a uniform decision method for both
skeptical and credulous consequence. By definition we have

� � `c � , 9B full set : � [B `AEL �;

� � `s � , :9B full set : � [B 6`AEL �;

In the credulous case we must find a full setB satisfying� [B `AEL �, and we
succeed as soon as we find it; in the skeptical case we try to build a “counterexam-
ple” full setB such that�[B 6`AEL � and we succeeds if the search of such full
setB fails. The case are dual and being able to decide whether� [B `AEL �,
we can modify the procedure FULLFIND in a way that instead of returningtrue,
it returns the outcome of̀AEL-derivability testtest(�; B; �) with respect to the
full setB being constructed.

A similar method have been devised by Niemel¨a [1995] for default logic, in
which the role of the full sets is played by sets of justifications.

TABLEAUX FOR NONMONOTONIC LOGICS 523

Default logic

A different line of research, started by Bonatti, aims to a pure proof-theoretical
reconstruction of the major families of nonmonotonic formalisms based on sequent
calculi, which are independent from any search strategy. The methodology has
been applied so far to default logic, (both in the credulous and skeptical case)
[Bonatti and Olivetti, 1997a], to autoepistemic logic (in the credulous case for
normal theories)[Bonatti, 1996], and to circumscription[Bonatti and Olivetti,
1997]. The main features of the calculi are that they areanalytic, they comprise
anaxiomatic rejection method(in the form of a sequent calculi by itself), and they
make use ofprovability assumptions, that can be either used as facts, or be confuted
by means of the rejection method. These calculi can also be used to investigate the
power and the efficiency of nonmonotonic reasoning (for instance they have been
used to prove non-elementary speed-up results with respect to classical logic[Egly
and Tompits, 1997]). In the following, we briefly sketch the calculus for skeptical
default inference contained in[Bonatti and Olivetti, 1997a].

The calculus is organized in three levels and is shown in Figure 7. The base
level is the one of the classical sequent calculus and the anti-sequent calculus.
The latter is a calculus for non-theoremhood. Each derivation in the anti-sequent
calculus is nothing else than a completed open branch in a tableau proof turned
upside down. Ananti-sequentis a pair of sets of sentences, denoted by� 6` �, and
its intended meaning is: there exists a model of� where all the sentences of� are
false. An anti-sequent� 6` � is an axiom of the anti-sequent calculus if, and only
if, � and� are disjoint sets of propositional variables. In fig 7(a) for brevity we
give the rules only for negation and conjunction, the rules for classical provability
are omitted. The anti-sequent calculus preserves many properties of the standard
sequent calculus (permutation, symmetry, subformula properties).

The second level and the third level are specific to default logic. The distinction
between these two levels is not necessary in principle, but it enhances and some-
what simplify the presentation. The intermediate level is the one of monotonic
inference rule, which are calledresidues. Such rules are default rules without
justification, that is inference rules of the form�=�, whose meaning is: if� is
derivable, then also� is derivable. LetL denote the propositional language, we
defineLres , by stipulating:

Lres = L [f�=� j �; � 2 Lg:

Given a subsetS of Lres , we can define the deductive closure ofS under classical
provability and residues, denoted byThres(S), as the least setS0 � L which
satisfies the following conditions:

a) S \ L � S0;
b) if S0 ` �, then� 2 S0;
c) if � 2 S0, and�= 2 S, then 2 S0.

524 NICOLA OLIVETTI

In can be easily shown that for anyS � Lres , Thres(S) exists. A sound and
complete (anti)-sequent calculus with respect toThres-(un)derivability is obtained
by adding rules(Re1)-(Re4)of Figure 7 (b) to the classical sequent and antisequent
calculus restricted toL.

The third level is the one of the skeptical sequent calculus for default logic. The
calculus makes use ofconstraintsof the formM� or L� , where� 2 L . We
say that a set of sentencesE satisfiesa constraintM� if E 6` :� ; we say thatE
satisfiesL� if E ` � .

A skeptical default sequentis a 3-tupleh�;�;� i , denoted by�; � ` � ,
where� is a set of constraints,� is a propositional default theory (i.e. a set of
propositional formulas and defaults), and� is a set of propositional sentences.
The intended meaning of the above sequent is: the disjunction of the formulas in
�,
W

�, belongs to all the extensions of� that satisfy the constraints�. When
this is the case, we say that the sequent istrue. We give a quick explanation of
the rules 7 (c). Rule (Sk1) can be read backwards as a default-elimination rule; it
performs a case analysis on the applicability of the default being eliminated, the
first premise considers the case when the justification� is consistent, so that the
default can be replaced by its residue; the second premise consider the case when
the justification is inconsistent, so that the default itself can be eliminated. Rules
(Sk2) and (Sk3) assert that the lower sequent is vacously true if some constraint
(respectively of the formM�; L�) cannot be satisfied. Finally (Sk4) asserts that
skeptical default provability extends classical provability.

THEOREM 38 (Soundness-Completeness).A sequent is derivable if and only if
it is true.

We can notice that the rules for residues cannot be applied until allproper
defaults—that is, defaults with nonempty justification—have been eliminated. This
causes proof trees to be exponentially large in the size of the default theory. How-
ever, in general, it is not necessary to consider every default, in order to derive
a skeptical conclusion. It is possible to give a sound (and obviously complete)
generalization of rules (Sk2)-(Sk4) which may be used to reduce dramatically the
proof size. In the generalized rules� may contain proper defaults. For instance
the generalization of (Sk4) is the following rule:

�0;�0 ` �

� ; � ` �

where�0 � f� j L� 2 � g , �0 � �res def
= � \ Lres . The idea under the gen-

eralization is that each extension of� that satisfies�, contains both the proposi-
tional sentences of� and all the sentences� such thatL� 2 � ; moreover, these
sentences are closed under classical entailment and the residues occurring in� .
Therefore, the sentences in this closure can be used to prove the conclusion of
a skeptical sequent. The other rules are generalized similarly, see[Bonatti and
Olivetti, 1997a].

TABLEAUX FOR NONMONOTONIC LOGICS 525

� 6` �; �
(: 6`)

�;:� 6` �

�; � 6` �
(6` :)

� 6` �;:�

�; �; � 6` �
(^ 6`)

�; � ^ � 6` �

� 6` �; �
(6` �^)

� 6` �; � ^ �

� 6` �; �
(6` ^�)

� 6` �; � ^ �

(a) Rules of the anti-sequent calculus restricted toL.

� ` �
(Re1)

�; �= ` �

� ` � �; ` �
(Re2)

�; �= ` �

� 6` � � 6` �
(Re3)

�; �= 6` �

�; 6` �
(Re4)

�; �= 6` �

(b) Rules for residues restricted toLres .

M�;� ; �; �= ` � L:�;� ; � ` �
(Sk1)

� ; �;
� : �

` �

� ` :�
(Sk2) (�)

M�; � ; � ` �

� 6` �
(Sk3) (�)

L�; � ; � ` �

� ` �
(Sk4) (�)

� ; � ` �

(c) Rules for defaults and constraints. (*) It must be� � Lres .

Figure 7. Skeptical sequent calculus

526 NICOLA OLIVETTI

To conclude, we point out what we regard as the main novelties of the works
we have described in this section.

First, we can notice the use of efficient and specific proof-procedures such as
the hypertableaux calculus to optimize the search of minimal models[Niemelä,
1996a]. One idea arising in different contexts of nonmonotonic logics which admit
a preferential semantic, is that, in order to see whether a tableau branch represents
a preferred model, the branch is, so to say, ‘challenged’ by another tableau con-
struction which may determine a more preferred model. This is what happens in
Niemelä’s method for circumscription with the ungroundedness test, and also in
the tableau procedures for nonmonotonic modal logics by Doniniet al. [1996].
By such an auxiliary tableau construction, one can decide whether a branch is
most-preferred without comparing it to any other.

Another aspect which is worth mentioning is that there has been a conceptual
progress in dealing withskepticalreasoning. The first approaches to skeptical
reasoning were simply enumerative: one had to build all extensions/expansions
and check the goal formula in each one of them. In contrast, the new method by
Niemelä for autoepistemic reasoning and the skeptical sequent calculus presented
in this section, perform skeptical reasoning in a rather different way. The former,
performs skeptical reasoning by searching for a counterexample full-set which
witness the non-derivability of the goal formula. In principle one does not need
to carry on the construction of each full set to the end, for one can often discover
in advance that it will not lead to a counterexample. The latter performs skeptical
reasoning by a case analysis on default applicability which may save the actual
examination of each default rule and the construction of each default extension.

As a final remark, we can compare the state of the art of tableau systems for
nonmonotonic reasoning to the state of the art of tableau-based deduction in other
areas. The impression is that there is still much work to be done, not only in the
design of efficient algorithms and search strategies, but also in the achievement of
a uniform tableau methodology. A substantial progress on this side could come
from the development of a well-accepted and unifying semantics for all the main
nonmonotonic formalisms, which at present is still under investigation.

ACKNOWLEDGEMENTS

I am indebted to Camilla Schwind for her careful checking of the previous versions
of the manuscript and for her fruitful suggestions. I also thank Piero Bonatti, Laura
Giordano and Vincent Risch for their advices and for the useful discussions we
had.

Universit̀a di Torino, Italy.

TABLEAUX FOR NONMONOTONIC LOGICS 527

REFERENCES

[Amati et al., 1996] G. Amati, L. Carlucci Aiello, D. Gabbay, and F. Pirri. A proof-theoretical ap-
proach to default reasoning I: tableaux for default logic.Journal of Logic and Computation, 6:205–
232, 1996.

[Baumgartneret al., 1996] P. Baumgartner, U.furbach and I. Niemel¨a. Hyper tableaux. InLogic in AI.
Proc. Europ.workshop on Logics in AI, LNAI n. 1126, pp. 1–17. Springer-Verlag, 1996.

[Besnard, 1989] P. Besnard.An Introduction to default-logic. Springer-Verlag, 1989.
[Bonatti, 1996] P. A. Bonatti. Sequent calculus for default and autoepistemic logic. InTABLEAUX’96,

LNAI n. 1071, pages 127–142. Springer-Verlag, 1996.
[Bonatti and Olivetti, 1997] P. A. Bonatti and N. Olivetti. A sequent calculus for circumscription. In

Preliminary Proceedings of CSL’97, pages 95–107, Aarhus, 1997. To appear inProceedings of CSL
‘97, LNCS, Springer, 1998.

[Bonatti and Olivetti, 1997a] P. A. Bonatti and N. Olivetti. A sequent calculus for skeptical default
logic. In TABLEAUX’97, LNAI n. 1227, pages 107–121, 1997.

[Bossu and Siegel, 1985] G. Bossu and P. Siegel. Saturation, non-monotonic reasoning and the
closed-world-assumption.Artificial Intelligence, 25:13–63, 1985.

[Brewka, 1985] G. Brewka. Non-monotonic reasoning: logical foundations of commonsense. Cam-
bridge Tracts in Theoretical Computer Science 12, Cambridge University Press, 1985.

[Brewka, 1992] G. Brewka. Cumulative default logic: in defence of nonmonotonic inference rules.
Artificial Intelligence, 50:183–206, 1992.

[Bry and Yahya, 1996] F. Bry and A. Yahya. Minimal model generation with positive hyper- resolu-
tion tableaux. InTABLEAUX’96, LNAI n. 1071, pages 143–159. Springer-Verlag, 1996.

[Delgrande, 1988] J. P. Delgrande. A first-order conditional logics for prototypical properties.Artifi-
cial Intelligence, 36:63–90, 1988.

[Delgrandeet al., 1994] J. P. Delgrande, T. Schaub, and W. K. Jackson. Alternative approaches to
default logic.Artificial Intelligence, 70:167–237, 1994.

[Donini et al., 1996] M. Donini, F. Massacci, D. Nardi, and R. Rosati. A uniform tableaux method
for nonmonotonic modal logics. InLogic in AI, (Proc. Europ. Work. on Logics in AI), LNAI 1126,
pages 87–103. Springer-Verlag, 1996.

[Egly and Tompits, 1997] U. Egly and H. Tompits. Non-elementary speed-ups in default reasoning.
In FAPR’97, LNAI n. 1244, pages 237–251, 1997.

[Etherington, 1988] D. Etherington.Reasoning with incomplete information. Pitman, 1988.
[Giordano and Martelli, 1994] L. Giordano and A. Martelli. On cumulative default reasoning.Artifi-

cial Intelligence, 50:183–206, 1994.
[Gottlob, 1992] G. Gottlob. Complexity results for non-monotonic logics.J. of Logic and Computa-

tion, 2:397–425, 1992.
[Halpern and Moses, 1985] J. Y. Halpern and Y. Moses. Toward a theory of knowledge and ignorance:

Preliminary report. Technical report, CD-TR 92/34, IBM, 1985.
[Hintikka, 1988] J. Hintikka. Model minimization - an alternative to circumscription.J. of Automated

Reasoning, 4:1–13, 1988.
[Konolige, 1988] K. Konolige. On the relation between default and autoepistemic logic.Artificial

Intelligence, 35:343–382, 1988.
[Krauset al., 1990] S. Kraus, D. Lehmann, and M. Magidor. Nonmonotonic reasoning, preferential

models and cumulative logics.Artificial Intelligence, 44:167–207, 1990.
[Kuhna, 1993] P. Kuhna. Circumscription and minimal models for propositional logics. InProc. of

the First Workshop on Theorem Proving with Analytic Tableaux and Related Methods, Marseille,
1993.

[Lifschitz, 1985] V. Lifschitz. Closed world databases and circumscription.Artificial Intelligence,
27:229–235, 1985.

[Lifschitz, 1985a] V. Lifschitz. Computing circumscription. InProc. of IJCAI’85, pages 121–129.
Morgan Kaufmann, 1985.

[Lifschitz, 1986] V. Lifschitz. On the satisfability of circumscription.Artificial Intelligence, 28:17–
27, 1986.

[Lin, 1990] F. Lin. Circumscription in a modal logic. InProc. of TARK88, pages 193–219. Morgan
Kaufmann, 1990.

[Lloyd, 1984] J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 1984.

528 NICOLA OLIVETTI

[Lorenz, 1994] S. Lorenz. A tableau prover for domain minimization.J. of Automated Reasoning,
13:375–390, 1994.

[Łukasiewicz, 1990] W. Łukasiewicz. Considerations on default logic. InProc. of TARK90, pages
219–193. Morgan Kaufmann, 1990.

[Makinson, 1989] D. Makinson. General theory of cumulative inference. InProceedings of the
Second International Workshop on Non-Monotonic Reasoning, LNAI 346, pages 1–18. Springer-
Verlag, 1989.

[McCarthy, 1980] J. McCarthy. Circumscription, a form of non- monotonic reasoning.Artificial
Intelligence, 13:27–39, 1980.

[McCarthy, 1986] J. McCarthy. Applications of circumscription, to formalizing commonsense knowl-
edge.Artificial Intelligence, 28:89–118, 1986.

[McDermott, 1982] D. McDermott. Non-monotonic logic ii: non-monotonic modal theories.J. of the
ACM, 29:33–57, 1982.

[McDermott and Doyle, 1980] D. McDermott and J. Doyle. Non-monotonic logic i.Artificial Intelli-
gence, 13:41–72, 1980.

[Moore, 1982] R. Moore. Semantical considerations on non- monotonic logics.Atificial Intelligence,
29:33–57, 1982.

[Niemelä, 1988] I. Niemelä. Decision procedures for autoepistemic logic. InProc. of the Nineth
Conference on Automated Deduction (CADE-88), LNCS n. 310, pages 541–546. Springer-Verlag,
1988.

[Niemelä, 1991] I. Niemelä. Towards automatic autoepistemic reasoning. InLogic in AI, (Proc.
Europ. Work. on Logics in AI), LNAI 478. Springer-Verlag, 1991.

[Niemelä, 1994] I. Niemelä. A decision method for nonmonotonic reasoning based on autoepistemic
reasoning.Journal of Automated Reasoning, 14:3–42, 1994.

[Niemelä, 1995] I. Niemelä. Toward efficient default reasoning. InProc. of IJCAI’95, pages 312–318.
Morgan Kaufmann, 1995.

[Niemelä, 1996] I. Niemelä. Implementing circumscription using a tableau method. InProc. of
ECAI’96, pages 80–84. Pitman Publishing, 1996.

[Niemelä, 1996a] I. Niemelä. A tableaux calculus for mininal model reasoning. InTABLEAUX’96,
LNAI n. 1071, pages 278–294. Springer-Verlag, 1996.

[Olivetti, 1989] N. Olivetti. Circumscription and closed world assumption.Atti della Accademia delle
Scienze di Torino, 123 Fasc. 5-6, 1989.

[Olivetti, 1992] N. Olivetti. Tableaux and sequent calculus for minimal entailment.J. of Automated
Reasoning, 9:99–139, 1992.

[Reiter, 1980] R. Reiter. A logic for default reasoning.Artificial Intelligence, 13:81–132, 1980.
[Reiter, 1987] R. Reiter. Nonmonotonic reasoning.Ann. Rev. Computer Science, 2:147–186, 1987.
[Risch, 1996] V. Risch. Analytic tableaux for default logics.J. of Applied Non-Classical Logics,

6:71–88, 1996.
[Schaub, 1992] T. Schaub. On constrained default theories. InProc. of ECAI-92, pages 304–308.

Wiley, 1992.
[Schlipf, 1987] J. S. Schlipf. Decidability and definability with circumscription.Annals of Pure and

Applied Logic, 35:173–191, 1987.
[Schwarz, 1990] G. Schwarz. Autoepistemic modal logics. InProc. of TARK90, pages 97–109. Mor-

gan Kaufmann, 1990.
[Schwarz, 1992] G. Schwarz. Minimal model semantics for nonmonotonic modal logics. InProc. of

KR’92, pages 581–590. Morgan Kaufmann, 1992.
[Schwind, 1990] C. Schwind. A tableau-based theorem prover for a decidable subset of default logic.

In Proc. of the Tenth Conference on Automated Deduction (CADE-90), pages 541–546. Springer-
Verlag, 1990.

[Schwind and Risch, 1994] C. Schwind and V. Risch. Tableau-based charachterization and theorem-
proving for default logic.J. of Automated Reasoning, 13:223–242, 1994.

[Shoham, 1987] Y. Shoham. Non-monotonic logics: meaning and utility,. InProc. of IJCAI-87.
Morgan Kaufmann, 1987.

REINER HÄHNLE

TABLEAUX FOR MANY-VALUED LOGICS

1 INTRODUCTION

This article reports on research done in the intersection between many-valued log-
ics and logical calculi related to tableaux. A lot of important issues in many-
valued logic, such as algebras arising from many-valued logic, many-valued func-
tion minimization, philosophical topics, or applications are not discussed here; for
these, we refer the reader to general monographs and overviews such as[Rosser
and Turquette, 1952; Rescher, 1969; Urquhart, 1986; Bolc and Borowik, 1992;
Malinowski, 1993; Hähnle, 1994; Panti, to appear]. More questionable, perhaps,
than the omissions is the need for a handbook chapter ontableauxfor many-valued
logics in the first place.

Two objections can readily be raised: (i) complete, generic sequent and tableau
systems for arbitrary finitely-valued first-order logics were developed (for exam-
ple) in [Rousseau, 1967; Takahashi, 1967] and [Carnielli, 1987; Carnielli, 1991],
one could leave it at that; (ii) why not concentrate on other inference procedures
such as resolution?

In my opinion, of course, both objections can be defeated. First, applications
in computer science demand, as usually,efficiently automatizablecalculi. The
papers cited under (i) above only provide the merest theoretical foundations. Much
work needs to be done before these can be turned into actual code. We hope
to demonstrate that tableau systems are a particularly well-suited starting point
for the development of computational insights into many-valued logics. Second,
there has been no efficient theorem proving framework for infinitely-valued logics
until recently—the solution turns out to be an enriched tableau calculus. Another
pertinent reason for choosing tableau calculi is, of course, the lack of normal forms
in many-valued logics in general.1 In fact, we will see that tableau procedures
even can be viewed as algorithms for normal form translation and in this sense
they enable the use of resolution based approaches for many-valued logics in the
first place.2 Also certain deduction tasks (for example, in program verification)
inhibit the use of normal forms, in which case one is forced to resort to genuine
non-clausal proof procedures.

There is another, more indirect, reason for investigating tableau calculi for
many-valued logics: we claim that a close interplay between model theoretic and

1This does not contradict the fact that for certain logics normal forms exist as is witnessed by the
remarkable result of Mundici[1994].

2There are non-clausal resolution methods for many-valued logics[Stachniak and O’Hearn, 1990;
O’Hearn and Stachniak, 1992], but, as already their classical counterparts, they suffer from efficiency
problems.

530 REINER ḦAHNLE

proof theoretic tools is necessary and fruitful during the development of proof pro-
cedures for non-classical logics. Since many-valued logics have a simpler syntax
and semantics than, say, modal or temporal logics, the development is perhaps
more advanced here than in other non-classical logics. Therefore, we hope that the
present chapter can serve as a paradigmatic example showing that both model the-
oretic and proof theoretic analyses have an impact on each other and that building
proof procedures for non-classical logics cannot dispense with either of them.

Finally, as will be pointed out, there has been a considerable amount of redun-
dancy in research related to sequent and tableau calculi for many-valued logics.
The same techniques were invented repeatedly without much advance being made.
Hopefully, the present chapter, and the highly visible context in which it stands,
will help to avoid further waste of time.

A somewhat fuller, but not quite up-to-date, account on automated reasoning in
many-valued logics in general is[Hähnle, 1994]. A very recent, although con-
densed, overview is[Hähnle and Escalada-Imaz, 1997].

2 MANY-VALUED LOGIC

In this section we collect basic definitions and concepts from many-valued logics
as well as some examples.

2.1 Syntax

DEFINITION 1. Let�0 be apropositional signature, that is, a denumerable set
of propositional variablesfp0; p1; : : :g.

A first-order signature� is a triplehP�;F�; ��i, whereP� is a non-empty
family of predicate symbols, F� is a possibly empty family offunction symbols
disjoint fromP�, and�� assigns a non-negative arity to each member ofP�[F�.

Let Term� be the set of�-termsoverobject variablesVar = fx0; x1; : : :g and
let Term0

� be the set of ground terms.

DEFINITION 2. In the propositional case we define the set ofatomic formulas
(or atomsfor short) to be�0, in the first-order case let

At� = fp(t1; : : : ; tn)jp2P�; ��(p) = n; ti2Term�g :

DEFINITION 3. A propositional languageis a pairL0 = h�; �i, where� is a
finite or denumerable set oflogical connectivesand� defines the arity of each
connective. Connectives with arity0 are calledlogical constants.

The setL0
� of L0-formulas over� is inductively defined as the smallest set with

the following properties:

1. � � L0
�.

TABLEAUX FOR MANY-VALUED LOGICS 531

2. If �2� and�(�) = 0 then�2L0
�.

3. If �1; : : : ; �m2L0
�, �2� and�(�) = m then�(�1; : : : ; �m)2L0

�.

NOTATION 4. We denote propositional languagesh�; �i with finite sets of con-
nectives ash�1=�(�1); : : : ; �r=�(�r)i, where� = f�1; : : : ; �rg. Moreover, we
make the usual conventions on bracketing and infix notation for well-known con-
nective symbols.

EXAMPLE 5. The language ofpropositional Łukasiewiczlogic is given byLŁuk =
h:=1;� =2i. Examples of well-formed formulas are:p � (q � p), :(p � p).
DEFINITION 6. A first-order languageis a tripleL = h�;�; �i such thath�; �i
is a propositional language and� is a finite or denumerable set ofquantifiers. The
setL� of L-formulas over� is inductively defined as the smallest set with the
following properties:

1. At� � L�.

2. If �1; : : : ; �m2L�, �2� and�(�) = m then�(�1; : : : ; �m)2L�.

3. If �2�, �2L�, andx2Var occurs not in� then(�x)�2L�.

We extend our notation for propositional languages in the obvious way.

EXAMPLE 7. The language of first-orderKleene logiccoincides with the lan-
guage of classical first-order logic and is defined byLKle = h:=1;_=2;^=2;8; 9i.

2.2 Semantics

DEFINITION 8. Theset of truth valuesN is either the unit interval on the rational
numbers, denoted with[0; 1], or it is a finite set of rational numbers of the form
f0; 1

n�1 ; : : : ;
n�2
n�1 ; 1g, wheren2IN. In either casejN j denotes the cardinality of

N .

DEFINITION 9. If L0 = h�; �i is a propositional language then we call a pair
A = hN;Ai, whereN is a set of truth values andA assigns to each�2� a function
A(�) : N�(�) ! N a propositional matrixfor L0.

When no confusion can arise we use the same symbol for� andA(�).

DEFINITION 10. If L = h�;�; �i is a first-order language then we call a triple
A = hN;A;Qi, whereN is finite,hN;Ai is a propositional matrix andQ assigns
to each�2� a functionQ(�) : P+(N) ! N a first-order matrix for L (we
abbreviate2Nnf;g by P+(N)). Q(�) is called thedistribution functionof the
quantifier�.

This generalized notion of a quantifier is due to Rosser and Turquette[1952,
Chapter IV]. The above, simplified, definition is due to Mostowski[1957]. The

532 REINER ḦAHNLE

phrasedistribution quantifierfor referring to quantifiers of this kind was coined by
Carnielli [1987].

DEFINITION 11. A pairL = hL;Ai consisting of a propositional (first-order)
language and a propositional (first-order) matrix for it is calledjN j-valued propo-
sitional (first-order) logic.

Sometimes a logic is equipped with a non-empty subsetD of the set of truth
values called thedesignated truth values.

EXAMPLE 12. LetN be arbitrary andn = jN j. Then we define the family of
n-valued Łukasiewicz logics to be the propositional logics with languageLŁuk,
designated truth valuesD = f1g, and the matrix defined by:

:i = 1� i(1)

i � j = minf1; 1� i+ jg(2)

The propositional part of the family ofn-valued Kleene logics relative to the lan-
guageLKle is defined by

:i = 1� i(3)

i _ j = maxfi; jg(4)

i ^ j = minfi; jg(5)

In each casemin;max;+;� are interpreted naturally onN . First-ordern-valued
Kleene logics can be defined by stipulatingQ(8) = min,Q(9) = max.

DEFINITION 13. LetL be a propositional logic. Apropositional interpretation
over� is a functionI : �! N . I is extended to arbitrary�2L0

� in the usual way:

1. If � is a logical constant thenI(�) = A(�).

2. If � = �(�1; : : : ; �r), thenI(�(�1; : : : ; �r)) = A(�)(I(�1); : : : ; I(�r)).

DEFINITION 14. LetL be ann-valued propositional logic.L is functionally
completeiff for every k � 0 and for every functionf : Nk ! N there is a
formula�f 2 L� such that for allfp1; : : : ; pkg � � and for all�-interpretations
I: I(�f (p1; : : : ; pk)) = f(I(p1); : : : ; I(pk)).

DEFINITION 15. LetL be a first-order logic. Afirst-order structureM over� is
a pairhD; Ii, whereD is a non-empty set, called thedomainand aninterpretation
I that mapsp2P� to functionsI(p) : D�(p) ! N andf2F� to functionsI(f) :
D�(f) ! D.

A variable assignmentis a function� : Var! D. Ford2D thed-variant atx
of � is defined as

�dx(y) =

�
d x = y
�(y) x 6= y

TABLEAUX FOR MANY-VALUED LOGICS 533

Given a structureM and a variable assignment� we define avaluation function
vM ;� : Term! D on arbitrary termst as usual:

1. If t2Var thenvM ;�(t) = �(t).

2. If t = f(t1; : : : ; tn) thenvM ;�(t) = I(f)(vM ;�(t1); : : : ; vM ;�(tn)).

vM ;� is extended on arbitrary formulas� to vM ;� : L� ! N via:

1. If � = p(t1; : : : ; tn) thenvM ;�(�) = I(p)(vM ;�(t1); : : : ; vM ;�(tn)).

2. If � = �(�1; : : : ; �m) thenvM ;�(�) = A(�)(vM ;�(�1); : : : ; vM ;�(�m)).

3. Thedistributionof � (atx) is dM ;�;x(�) = fvM;�dx
(�)jd2Dg.3

If � = (�x) thenvM ;�(�) = Q(�)(dM ;�;x()).

DEFINITION 16. LetS � N . A propositional formula� is said to beproposi-
tionally S-satisfiableiff there is an interpretationI such thatI(�) 2 S. We say
then thatI is anS-modelof �. � is anS-tautology, in symbols� �, iff every
interpretationS-satisfies�.

DEFINITION 17. LetS � N . A first-order formula� is said to be(first-order)
S-satisfiable4 iff there is a structureM and a variable assignment� such that
vM ;�(�) 2 S. We say that a structureM is anS-modelof � iff vM ;�(�) 2 S for
all variable assignments�. � is S-valid, in symbols� �, iff every structure is an
S-model of�.

DEFINITION 18. LetS � N . A (propositional or first-order) formula is a
logical S-consequenceof �, in symbols� � iff every S-model of� is anS-
model of . � and arelogicallyS-equivalentiff each is a logicalS-consequence
of the other.

If a logic is equipped with designated truth valuesD, and ifD is obvious from
the context, then we saysatisfiableinstead ofD-satisfiable,modelinstead ofD-
model etc.

2.3 Representation of Finitely-valued Connectives

In the present subsection we state and prove a fundamental result regarding the rep-
resentation of finitely-valued connectives or, equivalently, of functions over finite
domains. The result is straightforward, but nevertheless it constitutes the theoret-
ical basis of tableaux and Gentzen calculi for finitely-valued propositional logics.

NOTATION 19. We usehi; �i for the fact thatI(�) = i under a fixed, but arbitrary
interpretationI.

3Note that the value ofdM ;�;x is always a non-empty set.
4The concepts ofS-satisfiability andS-validity seem to appear in[Kirin, 1966] for the first time.

534 REINER ḦAHNLE

THEOREM 20. Let� = �(�1; : : : ; �m) (m � 1) be a formula from ann-valued
logic L, and let i 2 N be such thati is in the range ofA(�). Then there are
numbersM1;M2 � nm, index setsI1; : : : ; IM1

; J1; : : : ; JM2
� f1; : : : ;mg, and

truth valuesirs; jkl with 1 � r �M1; 1 � k �M2 ands 2 Ir; l 2 Jk such that

hi; �i holds iff
M1_
r=1

^
s2Ir

hirs; �si holds iff
M2^
k=1

_
l2Jk

hjkl; �li holds.

We call the first aDNF representationof hi; �i, the second aCNF representation
of hi; �i.5 The numbersM1,M2 are thesizeof the representation.

Proof sketch.To obtain a DNF representation let

A(�)�1(i) = fhi1; : : : ; imi 2 Nmj A(�)(i1; : : : ; im) = ig ;

M1 = jA(�)�1(i)j, I1 = � � � = IM1
= f1; : : : ;mg, and lethir1; : : : ; irmi be the

r-th tuple inA(�)�1(i) according to an arbitrary enumeration. It is easy to check
that this indeed is a DNF representation ofhi; �i.

The proof of the CNF part is similar. �

A full proof of the theorem can be found (or follows from results), for instance,
in [Rousseau, 1967; Takahashi, 1967; Carnielli, 1987; Zach, 1993; Baaz and
Fermüller, 1995a].

EXAMPLE 21. A CNF representation of three-valued Łukasiewicz implication
(2) and the truth value assignment1

2 is :�
h1
2
; pi_h1

2
; qi
�
^
�
h1; pi_h0; qi

�

A DNF representation of the same expression is:�
h1
2
; pi^h0; qi

�
_
�
h1; pi^h1

2
; qi
�

3 EARLY WORK AND PRECURSORS

The oldest proof theoretic characterizations of many-valued logic are, of course,
the Hilbert style systems given by Post and Łukasiewicz. They can be found,

5Some authors[Rosser and Turquette, 1952; Zach, 1993; Baaz and Ferm¨uller, 1995a] prefer the
expressioni-th partial normal formwhich we do not adopt, because it does not give an indication of
whether it is based on a CNF or DNF. Indeed, Rosser and Turquette worked with CNF representations
only.

TABLEAUX FOR MANY-VALUED LOGICS 535

for example, in [Rescher, 1969; Bolc and Borowik, 1992]. But after Gentzen
had introduced his sequent calculi, many-valued versions of them appeared in due
course. We would like to mention the work of Schr¨oter[1955], Kirin [1963; 1966],
Rousseau[1967; 1970] and Takahashi[1967; 1970]. The papers[Rousseau, 1967;
Takahashi, 1967] already consider finitely-valued logics with generic connectives;
Takahashi[1970] even considers infinitely-valued logics with continous distribu-
tion quantifiers, where the truth value set may be an arbitrary compact Hausdorff
space. We describe briefly the most important variants of sequent systems for
many-valued logics.

3.1 Sequent Systems with Meta Connectives

The first question that arises in connection with sequents for many-valued logics
is how to associate subformulas with the truth values they are supposed to take on.
Recall that the meaning of a classical sequent of the form�) � is: one of the
formulas in� is false or one of the formulas in� is true (or equivalently: if all
the formulas in� are true, then at least one of the formulas in� is true). If we
introducesignsor meta connectivesthat assert the truth value of a formula we can
rewrite this sequent into

h0; 1i _ � � � _ h0; ni _ h1; �1i _ � � � _ h1; �mi ;

where� = f1; : : : ; ng, � = f�1; : : : ; �mg and the meaning of a pairhi; �i
is as defined in Section 2.3. A more compact representation of the above sequent
would be [Takahashi, 1967]

(f0g � �) [(f1g ��) ;

where Cartesian products are used to abbreviate sets of truth value assertions, and
a sequent is a set of such assertions which must be thought as a disjunction of its
elements.

In order to arrive at inference rules one uses Theorem 20 in Section 2.3 to
characterize a truth value assertion to a complex many-valued formula as a CNF
representation over truth value assertions to its direct subformulas. From the CNF
representation of a truth value assignment to a formula with leading connective
� one can immediately derive an introduction rule by noting that the setDk of
disjuncts occurring in each disjunctionDk =

W
l2Jk
hjkl; �li is (part of) a many-

valued sequent

� [D1 � � � � [DM

�
;

whenever
VM
k=1Dk is a CNF representation of somehi; �(�1; : : : ; �m)i 2 �.

From Theorem 20 in Section 2.3 it is obvious that this rule is invertible, that is,

536 REINER ḦAHNLE

the conjunction of its premisses holds if and only if its conclusion holds.

EXAMPLE 22. The introduction rule for three-valued Łukasiewicz implication
and the truth value assignment1

2 is (cf. Example 21 in Section 2.3):

� [fh 12 ; pi; h 12 ; qig � [fh1; pi; h0; qig
� [fh 12 ; p � qig

Like in two-valued logic one can designdual sequent systemsin which sequents
correspond to conjunctions, axioms to contradictory formulas, and introduction
rules are obtained from DNF representations of truth value assignments. The de-
tails are completely straightforward and are left as an exercise to the reader.

There is another usage of introduction rules based on DNF representationsnot
within dual, but within standard sequent systems: if

WM
r=1 Cr is a DNF represen-

tation of hi; �(�1; : : : ; �m)i 2 �, thenfor eachCr =
V
s2Ir
hirs; �si there is a

sound introduction rule

� [fhirs1 ; �s1 ig � � � � [fhirsjIrj ; �sjIr jig
�

The consequence is that one obtains many introduction rules for each con-
nective and the rules are no longer invertible. But there are advantages: certain
infinitely-valued logics still have finite proof trees[Takahashi, 1970], although
the calculus contains infinitely many introduction rules and sequents in general
may contain infinitely many truth assertions.

EXAMPLE 23. The DNF based introduction rules for three-valued Łukasiewicz
implication and the truth value assignment1

2 are (cf. Example 21 in Section 2.3):

� [fh 12 ; pig � [fh0; qig
� [fh 12 ; p � qig

� [fh1; pig � [fh 12 ; qig
� [fh 12 ; p � qig

Finally we mention that there is a version of sequent calculi for many-valued
logics that employsn-ary sequents rather than explicit truth value assignments
[Rousseau, 1967]. First observe that, clearly, each sequent can be written in the
form

(f0g � �0) [(f 1
n�1g � � 1

n�1
) [� � � [(f1g � �1)

for suitable sets of formulas�0; : : : ;�1 (where some of the�i may be empty).
Instead we can use Rousseau’s[1967] notation

TABLEAUX FOR MANY-VALUED LOGICS 537

�0 j � 1
n�1
j � � � j �1

in which thei-th slot contains the formulas being asserted truth valuei. We
stress that all those notations for many-valued sequents are slight variants of each
other.

Note that if logical constants are a part of the logical language, then further
axioms of the form

j j � � � jfcg j � � � j j

are needed, wherec constantly evaluates toi and it occurs in thei-th slot.
In any notation axioms and weakening rules are completely straightforward.

Axiomatic sequents in Rousseau’s notation, for example, are of the form

f�g j f�g j � � � j f�g

while cut rules6 (in Takahashi’s notation) would be as follows:

� [fhi; �ig � [fhj; �ig
�

for i 6= j(6)

The translation of axioms into a different notation, the DNF version of axioms
for 0-ary connectives, and the construction of a suitable weakening rule is left as
an exercise to the reader.

An immediate consequence of Theorem 20 in Section 2.3 is that (just as in
classical logic) in any finitely-valued logic one can give a cut-free and complete
sequent systemwithout any elimination rulesthat characterizes its tautologies,
becauseanycombination of connective and truth value is expressible.

Quantifier rules will not be treated in this section. Later, we will give quantifier
rules for tableaux from which sequent rules can easily be derived.

Finally, we remark that, exactly as in classical sequent calculi, one has the
choice between separate weakening rules versus combining weakening and in-
troduction rules, between representing sequents as sets versus representing them
as lists (contraction and exchange rules are needed then), and so on.

All approaches mentioned so far employ meta connectives in one way or an-
other to characterize more than two truth values. On other words, information
that is present in the semantics, namely the number of truth values and, through
DNF/CNF representation of connectives, also the truth tables of connectives are
explicitly introduced into the proof theory.

6Cut elimination is possible just as in classical logic[Takahashi, 1970].

538 REINER ḦAHNLE

3.2 Other Calculi

From the point of view of traditional proof theory it is more natural, however, to
characterize logics by the means that are already present in classical sequent cal-
culi. Obviously, this cannot be achieved for arbitrary many-valued logics, but there
exist partial results in this direction that include traditional sequent systems for
several well-known many-valued logics. Those systems typically work by weak-
ening or modifying the structural rules[Avron, 1991; Hösli, 1993] (contraction,
for instance, is not valid in Łukasiewicz logic) or by using elimination rules which
cannot be replaced by introduction rules[Hoogewijs and Elnadi, 1994]. Such se-
quent systems cannot be transformed into tableau systems which is why we do not
discuss them any further here, but refer to the cited papers.

There is an intermediate way between a purely proof theoretical characteriza-
tion and the explicit use of meta connectives: in functionally complete logics for
each truth valuei 2 N there is a formula�i such thatI(�i) = i for all interpreta-
tionsI. Such formulas can substitute meta connectives. If, in addition, a suitable
connective that expresses equality onN is defined, then one can, in principle,
design complete calculi without the need to introduce meta connectives. Kirin
[1963; 1966], Saloni[1972], and Orłowska[1985] give treatments of variants of
finitely-valued Post logic in this spirit.7

Even for logics that arenot functionally complete (such as the family of Kleene
logics) refutation based proof systems such as resolution can be obtained by work-
ing with so-calledverifiers instead of working with formulas that correspond to
truth values; verifiers essentially are minimal sets of formulas that suffice to ex-
press inconsistency. In[Stachniak, 1988; Stachniak and O’Hearn, 1990] a version
of non-clausal resolution[Murray, 1982] is given that does not use meta connec-
tives. There seems, however, nothing to be gained from not using meta connectives
in a tableau framework and we do not pursue this topic further.

4 SIGNED TABLEAUX

4.1 Simple Tableau Systems

In D’Agostino’s Chapter we saw that classical (signed) tableau systems correspond
in a one-to-one manner to cut-free dual (DNF based) sequent systems without
elimination rules. This correspondence extends in a straightforward manner to
many-valued dual sequent systems and many-valued signed tableaux, respectively,
if we associate each truth value assignmenthi; �i that occurs in a dual sequent with
a signed formulai �.

7The syntax of Post logics can be defined withhshift=1;_=2i designated truth valuesfm; : : : ; 1g
for somem > 0 and matrixi_j = maxfi; jg, shift(i) = minf1; i+ 1

n�1
g. Post logics are function-

ally complete and, therefore, are often defined with different sets of connectives.

TABLEAUX FOR MANY-VALUED LOGICS 539

EXAMPLE 24. The sequent rules given in Example 23 in Section 3.1 translate
into the tableau rule shown below on the left. On the right we give the rule for sign
0.

1
2 (� �)
1
2 � 1 �
0 1

2

0 (� �)
1 �
0

(7)

Each DNF based introduction rule corresponds to one rule extension. The side
formulas� of the sequent rule correspond to the current tableau branch on which
the rule is applied.

DEFINITION 25. If
WM
r=1 Cr is a DNF representation ofhi; �(�1; : : : ; �m)i

(m � 1) with Cr =
V
s2Ir
hirs; �si (1 � r � M), then amany-valued tableau

rule for i �(�1; : : : ; �m) is defined as

i �(�1; : : : ; �m)

C1 � � � CM
;

whereCr = firs �sj s 2 Irg.
The notion of a tableau for a signed formulai � is defined exactly as in the

classical case, but with respect to many-valued rules. We must, however, change
the notion of closure:

DEFINITION 26. LetT be a many-valued tableau andB one of its branches.B
is closediff one of the following conditions holds:

1. There are signed formulasi �, j � onB such thati 6= j.

2. There is a signed formulai �(�1; : : : ; �m) (m � 0) onB such thati does
not occur in the range ofA(�).

T is closed iff each of its branches is closed.

THEOREM 27 ([Surma, 1974]). Let� be a formula in a finitely-valued logic and
letS � N . Then� isS-valid iff there exist finite, closed many-valued tableaux for
eachi � with i 2 NnS.

EXAMPLE 28. In Łukasiewicz logic a formula is valid iff it isf1g-valid. We
prove thatp�(q�p) is a valid formula in three-valued Łukasiewicz logic. We must
construct a finite, many-valued tableau for each of0 p�(q�p) and 1

2 p�(q�p)
using the rules from Example 24. Such tableaux are depicted in Figure 1.

Many-valued tableau systems as given in the present subsection are of consider-
able generality (they work for all finitely-valued first-order logics with distribution
quantifiers), but they have a number of drawbacks:

540 REINER ḦAHNLE

0 p�(q�p)

1 p

0 q�p

1 q

0 p

1

2 p�(q�p)

1

2 p

0 q�p

1 q

0 p

1 p

1

2 q�p

1

2 q

0 p

1 q

1

2 p

Figure 1. Tableau proof trees of Example 28

1. The tableaux contain a large amount of redundancy. One observes that the
tree on the left is isomorphic to the tree that results when� is interpreted as
classical implication. Moreover, modulo the signs it occurs as a subtree of
the tree on the right.

2. In general, several tableaux must be built for just one proof (the number of
tableaux is the cardinality of the set of non-designated truth values).

3. Infinitely-valued logics cannot be handled effectively with this approach as
infinitary branching trees would result.

Historical Note In two-valued logic, signed tableau systems have a long tradi-
tion, see the introductory article by Fitting in this handbook.

Signed tableaux for many-valued logics were first considered in a paper by
Suchón [1974], where a signed tableau system for the family of finitely-valued
Łukasiewicz logics is given. Generic signed tableau systems that correspond to
dual sequent systems as sketched above first were described by Surma[1974];
other sources are[Carnielli, 1985; Carnielli, 1987; Carnielli, 1991; Baaz and
Zach, 1992; Zabel, 1993; Bloesch, 1994]. While the work of Carnielli general-
izes the approach of Surma[1974] to finitely-valued first-order logic with distribu-
tion quantifiers and Zabel considers also infinitely-valued logics, the other papers
apparently were written independently.8

8It must also be noted that, with the exception of Zabel[1993] none of the papers is fully aware
of the earlier work done for sequent systems mentioned in the previous section and they give their
own soundness and completeness proofs. This is a pity, because the key ingredients of many-valued
tableau systems are already inherently present in sequent systems, for example, signs,n-ary trees, and
the DNF representation of many-valued connectives. From the correspondence between dual sequent
systems and tableaux it is obvious that the latter are sound and complete. None of the cited papers
developed computationally sophisticated representations or refinements; instead the basics of many-
valued tableaux were re-invented time and again.

TABLEAUX FOR MANY-VALUED LOGICS 541

4.2 Sets as Signs

It turns out that a simple device, which looks like a mere representational optimiza-
tion at first sight, has far reaching consequences for the efficiency and generality
of tableau methods for many-valued logic.

Consider, for example, Łukasiewicz Logic: if we want to prove with the tableau
method that a formula� is valid in this logic, then we must refute the following
statement:

� can evaluate to0

or

: : :

or

� can evaluate ton�2n�1

9>>>>>>>=
>>>>>>>;

for a suitable interpretationI

corresponding to the construction ofn� 1 closed tableaux for0 �, . . . , n�2n�1 �,
respectively.

As an abbreviation for the disjunctive statement above one can introduce the
following notation:

f0; : : : ; n�2n�1g �(8)

Rousseau[1967] and Takahashi[1967] in fact used a very similar notation to
write down their sequent rules. The crucial observation, however, is that we can
use truth value sets as signs systematically to optimize many-valued tableau sys-
tems.

This immediately eliminates the need to build more than one tableau in order
to prove a many-valued formula as valid by simply starting with a signed formula
like (8).

But tableau rules become considerably more concise as well. In three-valued
Łukasiewicz logic, , for example, we start a tableau withf0; 12g� which character-
izes non-designatedness of�. Now assume that� has� as its top-level connective.
That is we ask: under which conditions on�1, �2 doesI(�1 � �2) 6= 1 hold?

Graphically, this can be described as characterizing the shaded entries in the
truth table of�:

542 REINER ḦAHNLE

� 0
1

2
1

0 1 1 1

1

2

1

2
1 1

1 0
1

2
1

(9)

Naı̈vely, this can be achieved by disjunctively combining the two rules that
result from a DNF representation of0 �1 � �2 and 1

2 �1 � �2, respectively, as
they are given in Example 24 in Section 4.1.

If, however, one allows formulas that are signed with truth values sets to appear
in the conclusion as well, then a single and smaller rule is sufficient:

f0; 12g �1 � �2
f 12 ; 1g �1 f1g �1
f0g �2 f0; 12g �2

(10)

Each rule extension covers two of the shaded entries in the truth table.

EXAMPLE 29. We redo Example 28 using rule (10):

f0; 1

2g p�(q�p)

f 1

2 ; 1g p

f0g q�p

f1g q

f0g p

f1g p

f0; 1

2g q�p

f 1

2 ; 1g q

f0g p

f1g q

f0; 1

2g p

One of the two tableaux needed in Example 28 of Section 4.1 is represented im-
plicitly in the single tableau shown above.

The previous example suggests that sets of truth values as signs can be seen as
a kind ofsemantic structure sharing, schematically depicted in Figure 2. Another
explanation of their representational power is that a DNF sets-as-signs rule has
the metalogical structure

WVW
i �, wherei is a truth value that is it contains

an additional level of nesting of connectives as compared to a simple rule. See
also Section 7.2, where DNF sets-as-signs rules are interpreted as OR-AND-OR
circuits.

TABLEAUX FOR MANY-VALUED LOGICS 543

�����
PPPP

�
�

��

B
B
B
B

J
J
J
J

�
�
�
�

B
B
B
B

@
@
@@

�
�
�
� B

B
B
B

�
�
�
� B

B
B
B

@
@

@@I
@

@
@@I

@
@

@@I

i �

j �

partially isomorphic
subtrees

=)

����� HH
H

�
�
�
�

B
B
B
B
�
�
�� B
B
BB

L
L
LL
�
�
�
�

fi; jg �

Figure 2. Schema of semantic structure sharing using sets-as-signs

Now we restate the above considerations more formally:

DEFINITION 30. LetS�P+(N) be a family of truth value sets. Let� be a
formula andS2S. Then we call the expressionS � signed formula. If p is an
atomic formula, thenS p is asigned literal.

Propositional formulas signed with truth value sets can be directly given a se-
mantics as follows: instead of the matrix

A = hN;Ai

in order to define a many-valued logicL we take thepower algebrainduced by
someS (cf. Definition 11 in Section 2.2):

AS = hS;P(A)i;

where

P(A)(�):

�
P+(N)

�(�) ! P+(N)
hS1; : : : ; S�(�)i7!

SfA(�)(i1; : : : ; i�(�)) j ij 2 Sj ; 1 � j � �(�)g

Let us callAS asets-as-signs semanticsof L (wrt S).

DEFINITION 31. LetL be a propositional logic defined wrt a sets-as-signs se-
manticsAS. A propositional sets-as-signs interpretation9 over � is a function
IS : �! S. IS is extended on arbitrary�2L0

� just asI, but wrtAS.
A signed formulaS � with S 2 S is satisfiableiff IS(�) � S for someIS iff

I(�) 2 S for someI.

9This is calledextended interpretationby Lu [1996].

544 REINER ḦAHNLE

Therangeof anm-ary connective� is rg(�) = (P(A)(�))(Nm).

It is straightforward to see that if a sets-as-signs interpretationIS satisfiesS �
then all interpretationsI such thatI(p) 2 IS(p) for all p 2 � satisfyS � as well.

Using the sets-as-signs semantics for a logic one can prove similarly as Theo-
rem 20 in Section 2.3:

THEOREM 32 ([Hähnle, 1990]). Let� = S �(�1; : : : ; �m) (m � 1, S 2 S) be
a signed formula from ann-valued logicL with sets-as-signs semanticsAS such
thatS \ rg(�) 6= ;. Further assume that

ffigj i 2 Ng � S(11)

holds. Then there are numbersM1;M2 � nm, index setsI1, . . . , IM1
, J1, . . . ,

JM2
� f1; : : : ;mg, and signsSrs; Skl 2 S with 1 � r � M1; 1 � k � M2 and

s 2 Ir ; l 2 Jk such that

� is satisfiable iff
WM1

r=1

V
s2Ir

(Srs �s is satisfiable)

iff
VM2

k=1

W
l2Jk

(Skl �l is satisfiable),

where
W

and
V

denote classical meta disjunction and conjunction, respectively,
and have their usual meaning. We call the first expression asets-as-signs DNF
representationof �, the second asets-as-signs CNF representationof �.

In the previous theorem the condition ‘S 2 S’ can be relaxed to ‘S = S1[� � �[
St for somefS1; : : : ; Stg � S’ by applying the theorem separately to eachSi. If
quantifiers with arbitrary signs are to be processed this in fact becomes necessary.
With the relaxed condition it is trivially possible to give representations of arbitrary
S � N by (11).

Sets-as-signs representations of many-valued functions can either be computed
manually as exemplified in (10) or the problem can be reformulated as a many-
valued function minimization problem and can be computed with methods from
that field: for instance, an optimal sets-as-signs DNF (CNF) representation of a
many-valued function can be obtained by computing a minimal covering set of
prime implicates (implicants) over signed clauses of that function[Hähnle, 1994,
Section 4.5]. Further connections between tableau rules and logic design are dis-
cussed in Sections 7.1 and 7.2.

Of course, not every setS is suitable to obtain optimal representations. Making
S large usually allows for short representations. Neither condition (11) nor thatAS

is an algebra is necessary to obtain representations for allS 2 S (the latter is only
needed to have a well-defined semantics). On the other hand, taking all possible
2jNj� 1 signs is usually not feasible. H¨ahnle[1994] gives sufficient conditions on
S guaranteeing that representations for allS 2 S can be obtained. One example
for a weaker condition by which (11) can be replaced is the following:

TABLEAUX FOR MANY-VALUED LOGICS 545

For all i 2 N there areS1; : : : ; Sk 2 S such that
Tk
j=1 Sj = fig(12)

In the following we will only consider such sets of signs that satisfy this condi-
tion.

DEFINITION 33. If
WM
r=1

V
s2Ir

Srs �s is a sets-as-signs DNF representation of
� = S �(�1; : : : ; �m) (m � 1), then amany-valued sets-as-signs tableau rulefor
� is defined as

S �(�1; : : : ; �m)

C1 � � � CM
;

whereCr = fSrs �sj s 2 Irg.
Again, the notion of a tableau for a signed formulaS � is defined exactly as in

the classical case, but with respect to many-valued sets-as-signs rules. Some care
must be spent on the definition of closure:

DEFINITION 34. LetT be a many-valued sets-as-signs tableau andB one of its
branches.B is closediff one of the following conditions holds:

1. There are signed formulasS1 �; : : : ; Sr � onB such that
Tr
i=1 Si = ;. In

this case we say that (the set of signed formulas on)B is inconsistent.10

2. There is a signed formulaS �(�1; : : : ; �m) (m � 0) onB such thatS \
rg(�) = ;.

T is closed iff each of its branches is closed. A branch that is not closed is
calledopen.

THEOREM 35 ([Hähnle, 1990]). Let � be a formula in a finitely-valued logic
and let; 6= S � N . Then� is S-valid iff there exists a finite, closed many-valued
sets-as-signs tableau for(NnS) �.

Proof sketch.Soundness is completely straightforward by repeated application of
Theorem 32 in Section 4.2. For completeness, assume� is S-valid and consider
an open branchB in a many-valued sets-as-signs tableau for(NnS)� in which all
possible rules have been applied.

Now we need the many-valued sets-as-signs version of a well-known concept
from classical logic:

DEFINITION 36. A many-valued sets-as-signs Hintikka setis a set of signed
formulasH such that:

10Just as in classical logic it is sufficient to restrict the definition to the case when� is atomic.
Accordingly one says thatB is atomically inconsistent.

546 REINER ḦAHNLE

1. H is open in the sense of Definition 34 (where branches are identified with
sets of signed formulas).

2. If � = S �(�1; : : : ; �m) 2 H and
WM
r=1 Cr is a sets-as-signs DNF represen-

tation of� thenCr � H for at least one1 � r �M .

THEOREM 37 (Hintikka Lemma).Every many-valued sets-as-signs Hintikka set
H has a model.

Proof. FromH we construct directly a satisfying sets-as-signs interpretation over
AP+(N). For eachp 2 � letH(p) be the set of signed literals with atomp in H.

IS(p) =

� T
Sp2H(p) S H(p) 6= ;

N H(p) = ;

IS is well-defined asH is atomically consistent. By structural induction on the
depth of formulas one proves thatIS indeed satisfiesH. The literal case follows
directly from the definition ofIS. AssumeIS satisfies smaller formulas than the
complex formulaS 2 H. By Definitions 36(1), 34(2) and Theorem 32 of Sec-
tion 4.2S has a sets-as-signs DNF representation

WM
r=1 Cr. Hence,Cr �H for

some1 � r � M by Definition 36(2). By the induction hypothesis,IS satisfies
Cr and again by Theorem 32 of Section 4.2,IS satisfiesS . �

We proceed with the proof of Theorem 35. Obviously,B is a Hintikka set (we
may assumeS 6= N for otherwise the theorem holds trivially), hence it has a
model. This means thatI(�) 2 (NnS) for someI contradictingS-validity of �.

�

The use of sets-as-signs rules has not only the structure sharing effect among
refutations of different truth value assertions as shown in Example 29, a sets-as-
signs rule can even possess a lower branching factor than each of the single-value
rules corresponding to its sign. To see this, consider the connective�, whose truth
table is shown in Figure 3. The many-valued tableau rules for0 and1

2 , and the sets-
as-signs rule forf0; 12g are depicted as well. The latter rule has only one extension,
whereas each of the other rules has two extensions. Connectives can occur nested
in a formula, thus for eachn � 3 there exist classes of formulas�m andn-valued
logics for which the smallest sets-as-signs tableau is exponentially shorter than the
smallest many-valued tableau (with respect to the number of nodes).

Even if the number of needed signs may be large (up to2n � 1) it still pays to
use sets-as-signs, because the information stored in the signs has to be stored in the
tableau anyway. To see this, consider a signed formulaS� with S � N . Now, if S
is not available then one has to find signsS1; : : : ; Sk such thatS = S1[� � �[Sk and
instead ofS � one hask branches ork separate tableaux containingS1 �,. . . ,Sk �,
causingk � 1 additional copies of�. Hence, if2n � 1 different signs are needed
in order to obtain minimal representations in a given logic this simply reflects the

TABLEAUX FOR MANY-VALUED LOGICS 547

� 0 1
2 1

0 1 1 1

1
2

1
2 0 1

1 0 1
2 1

1
2 (� �)
1
2 � 1 �
0 1

2

0 (� �)
1 � 1

2 �
0 1

2

f0; 12g (� �)
f 12 ; 1g �
f0; 12g

Figure 3. Truth table and some tableau rules for�

complexity of the given logic and with using less signs the size of proofs will be
even larger.

One could also generate signs and tableau rules ‘on demand’, because — de-
pending on the query — only a small portion of all signs might be needed.

Tautological formulas AssumeS = rg(�). Obviously, each signed formula of
the formS0 �(�1; : : : ; �r) such thatS � S0 is a tautology. As it cannot contribute
to the closure of any branch, such formulas may be deleted whenever they occur
in a tableau.

Complexity of Tableau Rules The size of a tableau is largely determined by the
maximal size of CNF/DNF representations (the branching factor of tableau rules).
In [Hähnle, 1994] (for arity 2), [Rousseau, 1967; Rousseau, 1970; Zach, 1993;
Baaz and Ferm¨uller, 1995a] (for general arityr) several results about worst-case
complexity of rules are stated and proved which are collected in the following
table:

n = jN j, arity r DNF CNF
singleton signs nr nr�1

sets-as-signs nr�1 nr�1

All bounds are sharp. The same connective� can serve for all cases:

�(i1; : : : ; ir) =
((i1 + � � �+ ir) � (n� 1)) mod n

n� 1

Historical note Sets-as-signs were first introduced by H¨ahnle[1990], a fuller ac-
count can be found in[Hähnle, 1994]. Similar, though slightly less general ideas
were independently expressed by Doherty[1990; 1991] and Murray and Rosen-
thal [1991]. Signs that implicitly correspond to sets of truth values also appear
in [Suchoń, 1974; Fitting, 1991; Zabel, 1993; Nait Abdallah, 1995]. Rousseau
[1970] proved the CNF-case of Theorem 32 in Section 4.2 when only signs of the

548 REINER ḦAHNLE

form f0; : : : ; ig or fj; : : : ; 1g occur (see also Section 6.1). In the same paper also
an intuitionistic version of this result is proved.

4.3 First-order Logic

DEFINITION 38. A signed first-order formulaS � is satisfied by a structureM
and variable assignment� iff � is S-satisfied byM and�. M is a model ofS �
iff it is an S-model of�.

NOTATION 39. The notation(�x)�(x) emphasizes that the body of the quanti-
fied formula possibly contains free occurrences of the quantified variable. If�(x)
is the body of a quantified variable andt is any term, then the expression�(t)
denotes the result of replacing all occurences ofx in �(x) with t.

Recall that the semantics of a first-order quantifier� in many-valued logic is
defined via a distribution functionQ(�) : P+(N) ! N which maps each distri-
bution of truth values to a truth value. Just as in the propositional case, where a
DNF representation of a signed formulai �(�1; : : : ; �m) or S �(�1; : : : ; �m) led
to a tableau rule for the given sign and connective, we may use a suitable DNF
representation of the distribution function of a quantifier to obtain a tableau rule.
Informally, we must characterize the distributions that are mapped to one of the
truth values that occur in the sign of the premiss.

PROPOSITION 40.Let (Q(�))�1(S) = f; 6= I � N j Q(�)(I) 2 Sg. Then a
signed quantified formulaS(�x)�(x) is satisfiable iff there is anI 2 (Q(�))�1(S)
such that:

1. for eachi 2 I , there is a ground termci not occurring in�(x) such that all
fig �(ci) and

2. I �(t) for all ground termst

are simultaneously satisfiable.

Proof. LetM, � be such thatQ(�)(dM ;�;x(�(x))) = vM ;�((�x)�(x)) 2 S. Let
I = dM ;�;x(�(x)). By definition ofdM ;�;x, for anyi 2 I there is adi 2 D with
v

M ;�
di
x

(�(x)) = i. Let M0 be exactly asM, but vM 0;�(ci) = di. Then for all
i 2 I : vM 0;�(�(ci)) = vM 0;�

di
x

(�(x)) = vM ;�
di
x

(�(x)) = i which gives (1). On
the other hand, lett be any ground term and assumevM ;�(t) = d. (2) is implied
by vM 0;�(�(t)) = vM 0;�dx

(�(x)) = vM ;�dx
(�(x)) 2 dM ;�;x(�(x)) = I . The other

direction is similar. �

Conditions (1) and (2) in the previous proposition informally tell that for each
distributionI 2 (Q(�))�1(S): (1) there is a witnessci for eachi 2 I assuring that
the truth valuei is reached by� and (2) no other truth values thanI are reached
by �. They can be conveniently expressed in rule format using Skolem constants
and arbitrary ground terms exactly as in the quantifier rules for classical logic

TABLEAUX FOR MANY-VALUED LOGICS 549

(see Letz’s Chapter). The following rule is sound and complete by the previous
proposition:

S (�x)�(x)
fi11g �(c1) � � � fim1g �(c1)

...
...

fi1k1g �(ck1) � � � fimkmg �(ckm)
I1 �(t1) � � � Im �(tm)

(13)

Here (Q(�))�1(S) = fI1; : : : ; Img, Ij = fij1; : : : ; ijkjg, the c1; c2; : : : are
new Skolem constants and thet1; : : : ; tm are arbitrary ground terms.

As an immediate simplification we note that ifIj = fij1g for somej, then in
the corresponding extension it is sufficient to list merely the signed formulaIj�(t).
Moreover, one can always delete tautological signed formulas of the formN �(t).

In the Chapter by Letz, free variable first-order rules are given, where instead of
an arbitrary ground termt a free variableX is introduced which is to be instanti-
ated later. Skolem constants then have to be parameterized with the free variables
that are present in the premise. The free variable version of (13) is:

S (�x)�(x)
fi11g �(f11(X1; : : : ; Xr)) � � � fim1g �(fm1(X1; : : : ; Xr))

...
...

fi1k1g �(f1k1(X1; : : : ; Xr)) � � � fimkmg �(fmkm(X1; : : : ; Xr))
I1 �(Y1) � � � Im �(Ym)

(14)

HerefX1; : : : ; Xrg are the free variables of(�x)�(x), fY1; : : : ; Ymg are new
free variables, and thefjk are newr-ary Skolem function symbols; the rest is
as above. Completeness of this rule is established by a straightforward combina-
tion of the techniques in[Fitting, 1996; Hähnle, 1994], soundness by a suitable
adaption of [Hähnle and Schmitt, 1994] to the many-valued case. Further liber-
alizations along the lines of[Beckertet al., 1993; Baaz and Ferm¨uller, 1995] are
possible.

In the presence of quantifiers the usefulness of sets-as-signs becomes even more
striking. The reason is that condition (2) in Proposition 40 is awkward and com-
plicated to represent, when only singleton signs are available, cf.[Carnielli, 1991;
Zabel, 1993]. Again, the use of sets-as-signs can lead to exponential speed-ups.

If we compute the tableau rule with the premisef0; 12g(8x)�(x) in three-valued
first-order Kleene logic according to the method suggested by Proposition 40, then
we obtain the rule shown in Figure 4.

This rule is obviously not the simplest possible one, for example, the rule dis-

550 REINER ḦAHNLE

f0; 12g (8x)�(x)

f0g �(c) f0g �(c) f0g �(c) f0g �(c) f 12g �(c)

f 12g �(d) f 12g �(d) f 12g �(d)

f1g �(e) f1g �(e) f1g �(e)

f0; 12g �(t2) f0; 1g �(t4) f 12 ; 1g �(t6)

Figure 4. Tableau rule forf0; 12g (8x)�(x) in three-valued logic

played in Figure 5(c) is also sound and complete.11 In Proposition 40 we encoded
each truth value set in(Q(8))�1(f0; 12g) with Skolem conditions. If we turn this
process around, and ask ourselves which distributions of truth values can be en-
coded using conjunctions of Skolem conditions of the formI �(c) orJ�(t) (where
I; J � N , c is ‘new’ andt is arbitrary) then we see that this ‘Skolem language’
is quite powerful. In order to appreciate the following results some background in
lattice theory is necessary, see, for example[Davey and Priestley, 1990].

THEOREM 41 ([Hähnle, 1998]). 12 LetN be a finite set of truth values,S �
N . If (Q(�))�1(S) is a filter13 of the Boolean set lattice2N generated byF =
fi1; : : : ; irg � N , then the rule displayed in Figure 5(a) is sound and complete. If
(Q(�))�1(S)[f;g is an ideal of the Boolean set lattice2N generated byJ � N ,
then the rule displayed in Figure 5(b) is sound and complete.

S (�x)�(x)
fi1g �(c1)

...
firg �(cr)

(a)

S (�x)�(x)
J �(t)

(b)

f0; 12g (8x)�(x)

f0; 12g �(t)

(c)

Figure 5. Tableau rules when(Q(�))�1(S) is a filter or an ideal

The significance of the preceding theorem stems from the fact that lattice-based
quantifiers have exactly the required form of distributions.

11The rule in Figure 5(c) appears already in[Saloni, 1972] in the context of first-order Post logics.
12A similar theorem, but for singleton signs only, is proved by Zabel[1993, Section 1.3.3].
13Note that in a finite lattice each filter (ideal) is principal, hence generated by a single element as

its upset (downset).

TABLEAUX FOR MANY-VALUED LOGICS 551

THEOREM 42 ([Hähnle, 1998]). 14 Let the truth value setN be partially ordered
such that it constitutes a finite distributive latticeL = hN;u;ti and define quan-
tifiers viaQ(�) = u,Q(�) = t. Then the following tableau rules are sound and
complete (* i and+ i denote upsets and downsets inL, respectively):

If i is meet-irreducible: Ifi is join-irreducible:

fig (�x)�(x)
fig �(c)
* i �(t)

+ i (�x)�(x)
+ i �(c)

fig (�x)�(x)
fig �(c)
+ i �(t)

* i (�x)�(x)
* i �(c)

For all i:

* i (�x)�(x)
* i �(t)

+ i (�x)�(x)
+ i �(t)

This theorem gives a direct justification for the rule in Figure 5(c), because8 is
defined via the meet operator on the totally ordered chainN in which all elements
but1 are meet-irreducible.

More general, but less compact, rules can be found that work for non-irreducible
elements[Hähnle, 1998] and even for non-distributive semi-lattices and interval-
shaped signs[Salzer, 1996a]. There is also an algorithm for computing minimial
CNF/DNF representations of distribution quantifiers developed by Salzer[1996a].

Fitting [1991] gives signed tableau rules for the case when the set of truth values
forms a certain type ofbilattice [Ginsberg, 1988], however, as Fitting requires
his rules to follow Smullyan’s uniform notation (cf. D’Agostino’s Chapter and
[Smullyan, 1995]), the class of logics for which they work is somewhat restricted.

Like -rules in first-order classical tableaux (cf. Letz’s Chapter) a many-valued
quantifier rule is not invertible whenever a universal expression (that is a free vari-
able or an arbitrary ground term) occurs in its conclusion. It is, therefore, necessary
to apply such rules arbitrarily often in a fair manner on the branches containing
their premisses.

An interesting complication as compared to the classical case is that Skolem-
ization of formulas seems not easily to be possible as a preprocessing step that is
merely by applying suitable term substituions and without application of any ex-
tension rules. In other words, in contrast to classical logic quantifier elimination
in many-valued logic can blow up a formula exponentially.

14A less general result for singleton signs was shown by Zach[1993, Section 1.7] and Baaz and
Fermüller [1995a, Example 4.20].

552 REINER ḦAHNLE

5 TABLEAUX AS TRANSLATION PROCEDURES

5.1 Translation to Signed Clauses

In the previous sections we saw that DNF (CNF) representations of complex signed
formulas correspond to tableau (sequent) rules. A tableau (sequent) proof is noth-
ing else than the recursive application of rules until a contradiction (an axiom)
is reached in each branch (end sequent). If we start with a satisfiable (a non-
tautological) formula, then we end up with some branches (end sequents) that
cannot be closed (are not axioms). In the propositional case each formula in each
branch (sequent) needs only once to have a rule applied to it (cf. D’Agostino’s
Chapter), hence a propositional tableau (sequent) proof is always finite. It is well
known that in classical logic the disjunction (conjunction) over the conjunctively
(disjunctively) connected literals in each open branch (non-axiomatic end sequent)
constitutes a DNF (CNF) of the original formula. This relation extends to many-
valued tableau (sequent) proofs in a straightforward manner.

In the following we describe the computation of CNF representations of arbi-
trary formulas from any finitely-valued logic. The DNF case is essentially dual
for the propositional level. Anyway, only a CNF is interesting to compute in the
first-order case as universal quantifiers distribute over conjunctions, but not over
disjunctions.

In this subsection we concentrate on the translation into CNF for the sets-as-
signs case. A thorough and systematic treatment of the CNF singleton signs case
which includes full proofs as well as many complexity results on the branching
factor of rules can be found in[Baaz and Ferm¨uller, 1995a].

Instead of sequents for sake of readability and to stress the similarity of sequent
rules and tableau rules we use a tableau-like notation that we calldual tableaux
(cf. [Kapetanovi´c and Krapeˇz, 1989] for classical dual tableaux). We use double
vertical barsjj in the conclusion to indicate dual tableau rules. In this notation, the
rule from Example 22 in Section 3.1 is written as below. On the right is an example
for a dual sets-as-signs rule (also for three-valued Łukasiewicz implication).

1
2 (� �)
1
2 � 1 �
1
2 0

f0; 12g (� �)
f 12 ; 1g � f1g �

f0g f0; 12g
As to the quantifier rules, first we provide a CNF version of Proposition 40 in

Section 4.3. The main idea for it is to express ‘characterize one of the setsI in
(Q(�))�1(S)’ equivalently with ‘exclude all of the setsI not in (Q(�))�1(S)’.
For a distributiondM ;�;x(�) not to be equal toI there are two possibilities: (1)
there is a witnessc such that the truth value of�(c) lies outside ofI or (2)
dM ;�;x(�) is a proper subset ofI .

PROPOSITION 43.Let (Q(�))�1(S) = P+(N)n(Q(�))�1(S). Then a signed
quantified formulaS (�x)�(x) is satisfiable iff for all the setsI = fi1; : : : ; irg 2

TABLEAUX FOR MANY-VALUED LOGICS 553

(Q(�))�1(S):

1. there is ani 2 (NnI) and a constant termc not occurring in�(x) such that
fig �(c) is satisfiable (iff(NnI) �(c) is satisfiable) or

2. there is a proper (non-empty) subsetJ of I such thatJ �(t) is satisfiable for
all ground termst.

As before, from this proposition one can derive tableau rules for distribution
quantifiers. Hereby, condition (2) is slightly reformulated as:

20. there areM, � such that for at least onei 2 I , dM ;�;x(�(x)) is a non-empty
subset ofInfig.

Note that in the case whenjI j = 1 (20) is not satisfiable and can be dropped. A
generic dual free variable quantifier rule then is as follows:

S (�x)�(x)

(NnI1) �(f1(X1; : : : ; Xr)) � � � (NnIm) �(fm(X1; : : : ; Xr))

(I1nfi11g) �(Y1) � � � (Imnfim1g) �(Y1)
...

...
(I1nfi1k1g) �(Yk1) � � � (Imnfimkmg) �(Ykm)

(15)

Here(Q(�))�1(S) = fI1; : : : ; Img, Ij = fij1; : : : ; ijkjg, fX1; : : : ; Xrg are
the free variables of(�x)�(x), fY1; : : : ; Ymaxfk1;:::;kmgg are new free variables,
and thefi are newr-ary Skolem function symbols.

As an example, let us compute the CNF version of the rule displayed in Figure
4. We have(Q(8))�1(f0; 12g) = ff1gg producing the rule:

f0; 12g (8x)�(x)

f0; 12g �(f(X1; : : : ; Xr))

A singleton signs version of (15) can be easily obtained by splitting a formula
of the formfj1; : : : ; jrg � that occurs in an extension intor disjunctsfjkg �.
This is possible, because in the CNF case conditions on formulas in extensions
are disjunctively combined. There is no such simple representation for quantifiers
with singleton signs in the DNF case.

Dual tableaux can be used to obtain a simple algorithm for converting formulas
from finitely-valued first-order logic into a CNF over signed first-order atoms.

DEFINITION 44. LetS � be a signed formula from a finitely-valued first-order
logic. A dual sets-as-signs tableaufor it is defined exactly as a sets-as-signs

554 REINER ḦAHNLE

tableau with the exception that each formula is removed from those branches in
which it had a rule applied to it.

Even quantified formulas that create universal expressions are deleted in a dual
tableau. This is legitimate, however, as we are working with a CNF and free
variables remain implicitly universally quantified (cf. Definition 46 below). It is
obvious that after a finite number of steps from each signed formula a dual tableau
is reached to which no more rules can be applied. We call such a tableaucom-
pleted. All formulas occurring in a completed tableau either are signed literals or
they satisfy condition (2) in Definition 34, Section 4.2. In the latter case they are
unsatisfiable and can be dropped. Tautological branches need not be considered at
all:

DEFINITION 45. A branchB in a dual tableau is calledtautologicalif either

1. there are signed formulasS1 �; : : : ; Sr � onB such that
Sr
i=1 Si = N or

2. there is a signed formulaS �(�1; : : : ; �r) onB such that rg(�) � S or

3. there is a signed formulaS (�x)�(x) onB such that rg(Q(�)) � S.

DEFINITION 46. An expression of the form
Wr
i=1 Li, where theLi are signed

literals is asigned clause. It is satisfiable iff there is a structureM such that for
all variable assignments� at least one of theLi is satisfied byM and�.15 An
expression of the form

Vm
j=1 Cj , where theCj are signed clauses, is asigned CNF

formula. It is satisfiable iff allCj are satisfiable. The empty clause (r = 0) is
always unsatisfiable.

LetS � be a signed formula from a finitely-valued first-order logic and letT be
a completed dual sets-as-signs tableau for it. LetB1; : : : ; Bm be the sets of literals
occurring in the non-tautological branchesB1; : : : ; Bm of T . Then the expressionVm
i=1

W
L2Bi

Li is asigned CNFof S �.

Using Proposition 43 one proves

THEOREM 47. For any finitely-valued first-order logic there is an effective pro-
ceduref that maps any signed formulaS� into a signed CNF formula = f(S�)
such that for all�, S: S � is satisfiable iff is satisfiable.

The signed CNF of a many-valued formula has a simple and uniform structure
which can serve as the basis for resolution style proof procedures. As this is a
handbook oftableaumethods we only mention the relevant literature:[Murray
and Rosenthal, 1991a; H¨ahnle, 1996; Baaz and Ferm¨uller, 1995a].

The signed CNF of a many-valued formula is finite, but it can be exponential
in size wrt the input. In classical logic the situation can be improved by using
a structure preserving CNF transformation[Plaisted and Greenbaum, 1986] (as

15So just as in classical logic, clauses are universally quantified implicitly.

TABLEAUX FOR MANY-VALUED LOGICS 555

opposed to alanguage preservingtransformation). It works by extending the sig-
nature of the given formula with suitable predicates which serve as abbreviations
for subformulas. In rule form this can be conveniently expressed as:

T(�)

T(p�)
p� :p�
:� �

(16)

This rule is applied to a dual tableauT in which a complex formula� does occur
as a proper subformula in at least one node. Each occurrence of� is replaced with a
new propositional variablep� (in the first-order case with an atomp�(x1; : : : ; xr),
wherex1; : : : ; xr are the free variables of�) and the tableau is extended with two
new branches as shown. This process terminates when all formulas in the tableau
are at most of depth 2.

As � does not occur anymore inT as a proper subformula the ‘elimination’ of
each subformula creates at most two new branches. The number of subformulas
of a given formula is linear in its size. Therefore, a signed CNF which is linear in
the size of the input can be obtained by first applying rule (16) as long as possible
and then the standard dual tableau rules.

The two right branches in the conclusion of (16) ensure that� p� $ � holds.
This observation leads immediately to a many-valued version of the algorithm:

T(�)

T(p�)
f0g p� � � � f1g p�
Nnf0g � � � � Nnf1g �

(17)

Here,� may occur in several signed formulas inT with possibly differing sign.
Not merely two, butjN j = n additional extensions are generated. Then right
extensions express: for alli 2 N : fig-satisfiability ofp� impliesfig-satisfiability
of � iff (for all S � N : p� is S-satisfiable iff� is S-satisfiable) iff for allI:
I(p�) = I(�).

Complexity of Tableau Rules The branching factor of sets-as-signs tableau
rules for distribution quantifiers is bounded by2n � 2. It is easy to see that this
bound is sharp for the representation used in Propositions 40 in Section 4.3 and
43. It is unknown whether better representations exist in general, however, for the
special case of a CNF representation and of singleton signs an improved bound
of 2n�1 was obtained in[Zach, 1993; Baaz and Ferm¨uller, 1995a] which is also
proved to be sharp.

556 REINER ḦAHNLE

5.2 Polarity

In classical logic a well-known fact is used to simplify structure-preserving CNF’s:

If � occurs only with positive (negative) polarity inT(�) thenT(�) is satisfi-
able iffT(p�) ^ (p� ! �) (T(p�) ^ (p� �)) is satisfiable.

In the many-valued case one can takefS � N j S � occurs inT(�)g as the
polarity of an unsigned subformula. Based on this notion of polarity it is possible
to prove:

THEOREM 48 ([Hähnle, 1994b]). Assume� occurs inT(�) with polarityR =
fS1; : : : ; Smg thenT(�) is satisfiable ifffT(p�); f1g (p�)R �)g is satisfiable,
where

i)R j =

�
0 if i 62 Sk; j 2 Sk; for anySk 2 R
1 otherwise

A signed CNF with polarity optimization is obtained by applying the following
rule and a minimal rule forf1g (p�)R �) as long as possible and then applying
minimal dual sets-as-signs rules to the resulting dual tableau (the rules must be
applied to maximal subformulas so thatR is always known):

T(�)
T(p�) f1g (p�)R �)

(18)

HereR is the polarity of� in T(�).
In Section 6.1 a coarser and much simpler notion of polarity for a subclass of

signed CNF formulas will be introduced.

5.3 Translation to Mixed Integer Programs

In this section we strictly focus on propositional logic. In addition, some back-
ground knowledge of linear optimization is useful as provided, for example, in
[Schrijver, 1986]. It is a well known fact (see, for example,[Hooker, 1988;
Jeroslow, 1988]) that propositional classical CNF formulas correspond to certain
0-1 integer programs. More precisely, given a set� of classical propositional
clauses over a propositional signature� one transforms each clause

p1_ � � � _pk_:pk+1_ � � � _:pk+m(19)

into a linear inequation

�k
i=1pi ��m

j=k+1pj � 1�m(20)

TABLEAUX FOR MANY-VALUED LOGICS 557

The variables from� are then interpreted asarithmetical variablesoverf0; 1g.
It is easy to see that the resulting set of inequations is solvable iff� is satisfiable.

In the remainder of this section we show that with a combination of the arith-
metical reduction just sketched and a suitable structure preserving CNF translation
a polynomial time reduction from satisfiability in infinitely-valued propositional
logics to 0-1 mixed integer programming is obtained.

With the expressionlinear inequationwe mean in the following always a term
of the forma1p1 + � � �+ ampm � c, wherea1; : : : ; am; c 2 ZZ and thepi are vari-
ables overN or overf0; 1g (w.l.o.g. we may prefer an equivalent representation of
the inequation without explicit mention), whereN either is finite or infinite as in
Definition 8, Section 2.2. An expression of the forma1p1 + � � �+ ampm is called
a linear term.

DEFINITION 49. LetJ be a finite set of linear inequations andK a linear term.
Let � be the set of variables occurring inJ andK. AssumeN is finite. Then
hJ;Ki is a (bounded) integer program(IP).16 If N is infinite, then we have a
(bounded) 0-1 mixed integer program(MIP). When all variables in� run over
infiniteN we have a(bounded) linear program(LP).

A variable assignment to� such that all inequations inJ are satisfied is called
a feasible solutionof hJ;Ki. A variable assignment to� such that the value of
K is minimal among all feasible solutions is called anoptimal solution. hJ;Ki is
feasibleiff there are feasible solutions.

PROPOSITION 50 (see[Schrijver, 1986]). Each of the problems to check whether
a 0-1 MIP (resp., an IP) has feasible solutions and to find an optimal/feasible so-
lution is NP-complete. The problem to check whether an LP has feasible solutions
and to find an optimal/feasible solution is in P.

DEFINITION 51. Let �i denote the setfj 2 N j j � ig and let �i denote the
setfj 2 N j j � ig. If a signS is equal to either�i or �i for somei 2 N , then
it is calledregular sign.

PROPOSITION 52. �i � is satisfiable iff� � i is solvable when� and i are

considered as arithmetical variables. Similary,�i � is satisfiable iff� � i is
solvable.

We extend dual sets-as-signs tableaux to constraint tableaux:

DEFINITION 53. Aconstraint tableauis a dual sets-as-signs tableau over regular
signs of the form�I , �I , whereI is a linear term. In addition, nodes may be
linear inequations instead of signed formulas.

Consider the following signed rule obtained from a structure preserving CNF
rule, where� is any classical disjunctive formula (cf. (16)):

16The terminteger is justified, because the elements ofN can w.l.o.g. assumed to be of the form
f0; 1; : : : ; n� 1g.

558 REINER ḦAHNLE

�i �

�i p� �1 p�_:� �1 :p�_�
(21)

Assume the rule is applied only to formulas� occuring on the top-level, that is
with positive polarity. Then we can delete the middle extension according to the
polarity optimization introduced in the previous section. The remaining extension
�1 :p�_� claims that:p�_� is satisfiable. Using (20) and the fact that� is

equivalent to�1 _ �2 one obtains:

�i �

�i p� �1 + �2 � p� � 0

Renamingp� � �1 into j and applying Proposition 52 yields:

�i �

�i�j �1 �j �2

Essentially the same technique can be used to derive a rule for, say, Łukasiewicz
implication (2) and the sign�i . The first steps are very similar as above and
yield the rule below on the left. With Proposition 52 the rule below on the right is
obtained.

�i � �
�i p� �1 p�_(� �)

�i � �
�i p� �p� � �

Recall that� � = minf1; 1 � � + g. In order to express this definition
with linear inequations we introduce af0; 1g-valued variabley which is supposed
to be smaller or equal thani. Under this condition1� �+ � y � p� + y holds
iff �p� � � is satisfiable. Thus we can rewrite the rule as follows:

�i � �
�i p� y � i 1� �+ � y � p� + y

Renamingp� + y + �� 1 into j and applying Proposition 52 finally yields:

TABLEAUX FOR MANY-VALUED LOGICS 559

�i � �
�1�i+j�y � y � i �j+y

(22)

Note thati andj run overN whiley is two-valued. As no step of the translation
relies on the size ofN , this rule is sound and complete for arbitraryN including
infiniteN . A rule for �i is derived similarly:

�i � �
�1�i+j � �j

(23)

Now assume we want to test tautologyhood of a formula� in Łukasiewicz logic.
First one recursively applies (22) and (23) to�c � until only linear inequations
and signed literals are left. The latter are turned into inequations with Proposition
52. Let us call the set of resulting inequationsJ. The form of the rules guarantees
that (i) each branch contains exactly one inequation (ii) the number of branches is
linear in the size of�. Soundness and completeness of the rules implies that�c �
is satisfiable iffJ considered as part of an (M)IP is feasible.

WhenN is finite we setc = n�2
n�1 . ThenJ is infeasible iffI(�) = 1 for all

I iff � is a tautology. WhenN is infinite, consider the 0-1 MIPhJ; ci. Then the
optimal solution ofhJ; ci is 1 iff I(�) = 1 for all I iff � is a tautology. Satisfiability
problems can be expressed similarly, see[Hähnle, 1994a].

The same reduction technique to 0-1 MIP works for other infinitely-valued log-
ics as well. The main requirement is that connectives� with �(�) = k can be
represented with a 0-1 MIP over[0; 1]k+m�f0; 1gr for somem; r � 0 [Jeroslow,
1988].

EXAMPLE 54. To show thatp � (q � p) is a tautology of infinitely-valued
Łukasiewicz logic apply (22) and (23), then Proposition 52.

�c p � (q � p)
�1�c+j�y p y � c �j+y q � p
p�j+c+y�1 �1�j+k�z q z � j + y �k+z p

q+j�k+z�1 �p+k+z�0

We show that for every optimal solution of the resulting 0-1 MIP problemc = 1:
assume there was a feasible solution such thatc < 1, hence asy is two-valued, by
y � c, y = 0. If j�c were greater than0 from y = 0 andp�j+c+y�1 one could
infer p � 1+j�c > 1, a contradiction top 2 [0; 1]; thus,j � c which givesz = 0

560 REINER ḦAHNLE

observingz � j + y andc < 1, y = 0, z two-valued. FromN = [0; 1] we know
that�q��1. From this andq+j�k�1 infer j�k�0. Adding this to�p+k�0
gives�p+j�0 which together withp�j+c�1 givesc�1—contradiction. On the
other hand,�1 p � (q � p) is trivially satisfiable, thusc = 1 yields indeed a
solution.

From Proposition 50 and the observations above one has the following theorem:

THEOREM 55 ([Mundici, 1987]). The problem of deciding tautologyhood (sat-
isfiability) in infinitely-valued Łukasiewicz logic is in Co-NP (is in NP).

We close with two final remarks: first, Co-NP-, respectively, NP-hardness is
easy to show: the idea is to construct a polynomial-size (inp) formulac(p) which
forcesp to take on classical truth values merely, see[Mundici, 1987] for details
(this technique is applicable to other infinitely-valued logics as well); second, sim-
ilar results follow routinely, once sound and complete constraint tableau rules like
(22) and (23) are available for a given logic.

Historical Note A constraint tableau calculus was developed independently by
Hähnle[1992; 1994a] and Zabel[1993, Chapter 8]. We followed the notation of
[Hähnle, 1994a], but chose a more compact derivation. The main differences to
[Zabel, 1993] are: the latter does not employ a structure preserving translation,
hence he does neither obtain a reduction to 0-1 MIP nor Theorem 55. On the
other hand, the resulting constraints contain no integer variables, thus the required
constraint language is simple enough to be polynomially decidable. Moreover,
constraints are simplified as soon as they are generated in Zabel’s calculus.

The complexity result for infinitely-valued Łukasiewicz logic is due to Mundici
[1987]. Whereas the (NP-containment part of the) latter relies on particular prop-
erties of Łukasiewicz logic the tableau-based technique applies to any so-called
bMIP-representablelogic, see[Hähnle, 1994a] for details.

6 EFFICIENT DEDUCTION IN MVL

Up to now the main concern were non-clausal tableaux. The translation procedures
from the previous section offer to consider many-valued clausal tableau as well.17

Many computational refinements are a lot simpler to define in the clausal case.
Moreover, the intricacies of many-valued quantifiers have been dealt with in the
translation rules. Once a signed CNF is obtained the usual lifting property holds.
Therefore, we consider mainly ground formulas in the present section.

17Once one has obtained a (signed) CNF, it is also possible to develop resolution rules. See[Lu
et al., 1993; Murray and Rosenthal, 1994; Baaz and Ferm¨uller, 1995a; H¨ahnle, 1996] for some results
along these lines.

TABLEAUX FOR MANY-VALUED LOGICS 561

6.1 Regular Formulas

DEFINITION 56. Let� be a signed CNF formula. If all signs that occur in� are
regular, then� is called aregular formula. Literal occurrences of the form�i p
(�j q) in a regular formula are said to havepositive (negative) polarity.

The significance of regular formulas is justified by the following

PROPOSITION 57 ([Murray and Rosenthal, 1994; H¨ahnle, 1996]). If the number
of truth values is finite then for every signed CNF formula� there is a regular
formula	 such that� and	 are logically equivalent.

Note, however, that the ‘regularization’ of a signed CNF formula can grow
exponentially long.

Combining Proposition 57 with Theorem 47 from Section 5.1 one sees that reg-
ular formulas are sufficient to express any satisfiability problem of finitely-valued
first-order logic.

The main advantage of regular formulas is that they have a CNF structure and
all literals have either positive or negative polarity. In addition, any inconsistent
set of regular literals has an inconsistent subset of cardinality two. This makes
it possible to define similar refinements of many-valued tableaux as there are of
classical clause tableaux. In the following sections we describe some important
cases, but first we would like to mention that the concept of regular formulas can
be lifted to the non-clausal case:

Consider an arbitrary signed formulaS �. Even ifS is regular, in general the
signs occurring in a CNF/DNF representation need not. On the other hand, a DNF
representation in which only regular signs occur can always be easily obtained:
simply compute a singleton signs representation forS � and replace each formula
of the formfig with �i and �j .

In general aminimal representation of a signed formula involves non-regular
signs. For some logics, however, at least one of the minimal representations is
also regular. One such class of logics was defined in[Hähnle, 1991] called, not
surprisingly,regular logics. Regular logics have an even stronger property: the
tableau rule derived from a regular minimal DNF representation follows one of the
uniform notation rule schemata�, �, , or � from classicallogic (cf. the Chapters
by D’Agostino and Letz in this volume). The consequence is that formulas from
regular logics have no larger tableau proofs than classical problems. Moreover,
classical theorem proving tools can be used with only slight modifications for reg-
ular logics as well. Still, regular logics are not a trivial subclass of finitely-valued
logics as is demonstrated in[Hähnle, 1994].

Historical Note Post logics (see footnote on p. 538) are often equipped with
unary connectivesDi for i 2 N having the matrix

Di(j) =

�
1 j � i
0 j < 1

;

562 REINER ḦAHNLE

in particular, when investigated in connection with Post algebras, see[Epstein,
1960]. Obviously,Di(�) is f1g-satisfiable iff �i � is satisfiable. Thus they can
replace regular signs. Used in this spirit, a sequent system for first-order Post
logics (where8 and9 are defined as in Kleene logic) which is equivalent to a dual
sets-as-signs tableau system with regular signs was given by Saloni[1972]. The
strong properties of Post algebras which can be seen as a natural generalization of
Boolean algebras explain to some extent the usefulness of regular signs.

6.2 Tableau Variants Based on Regular Formulas

Many-valued Horn Formulas, KE and DPL Procedures

DEFINITION 58. A many-valued Horn formulais a regular formula in which
each clause contains at most one positive literal.

THEOREM 59 ([Hähnle, 1996]). Satisfiability of propositional many-valued Horn
formulas� can be decided inO(j�j) steps whenN is fixed and finite.

Many deduction procedures implicitly or explicitly rely on the existence of a
simple procedure for the Horn case. The above notion of a many-valued Horn
formula allows to extend such procedures naturally to the case of multiple truth
values.

Consider the following version of the KE system (cf. D’Agostino’s Chapter in
this volume) intended for finitely-valued propositional regular formulas:18

S p
C1_S0 p_C2

C1_C2
if S \ S0 = ;

�i p �i+ 1
n�1 p

if i < 1
(24)

By a straightforward adaption of the classical proofs the following results can
be seen to hold:

� The rules are sound and complete for regular formulas.

� The non-branching rule alone is complete for many-valued Horn formulas.

Recall that in the classical case, KE for propositional formulas in CNF is vir-
tually indistinguishable from the Davis-Putnam-Loveland procedure if unary rules
are preferred. The non-branching rule can be seen as a variant ofmany-valued unit
resolution. The branching rule is, of course, an instance of many-valued analytic
cut, but in the context of KE systems the termprinciple of bipartition (PBP)(of
the set of truth values) is more appropriate. Heuristics for choosing the branching
literal that are successful in the classical case can be extended to the many-valued

18A branch is closed when it contains the empty clause.

TABLEAUX FOR MANY-VALUED LOGICS 563

case, see[Hähnle, 1996]. Note that in the many-valued case the value ofi must
be supplied by such a heuristic as well.

The rules above are not complete for signed CNF formulas as can be easily seen
with the inconsistent three-valued example� = ff0; 12g p; f0; 1g p; f 12 ; 1g pg.
Unit resolution is not applicable and PBP always yields a literal that is already
present in one extension. On the other hand, consider the regularization of�:
f � 1

2
p; �0 p_ �1 p; � 1

2
pg. One unit resolution step yields�0 p which ren-

ders the KE tableau closed. An alternative to regularization would be to introduce
an additional rule that allowsresiduationsuch as the following:19

S p
C1_S0 p_C2

C1_(S\S0) p_C2
if S \ S0 6= ;

Obviously, we have a trade-off between the cost of computing a normal form
and the simplicity of the required deduction rules. On the one hand, the regulariza-
tion of a formula can blow it up exponentially, on the other hand, a simple format
allows for efficient implementation.

Connection Tableaux

DEFINITION 60. A many-valued clause tableaufor a signed CNF ground for-
mula� is a finitely branching tree whose nodes are signed literals constructed by
the following rules:

1. The single node> is a many-valued clause tableau.

2. If T is already a many-valued clause tableau,
Wr
i=1 Li is a signed clause in

�, then a many-valued clause tableau can be obtained by appendingr new
nodes containing exactly theLi toT.

One is tempted to define many-valued connection tableaux analogously to the
classical case (cf. Letz’s Chapter) as

a many-valued clause tableau in which every inner node forms an in-
consistent set with one or more of its immediate successors.

The problem is that this does not constitute a complete family of tableaux for
signed CNF as the following example shows:

	 = ff0; 12g p_f0; 12g q; f0; 12g p_f0; 1g q; f0; 12g p_f 12 ; 1g q;
f 12 ; 1g p_f0; 12g q; f 12 ; 1g p_f0; 1g q; f 12 ; 1g p_f 12 ; 1g q;
f0; 1g p_f0; 12g q; f0; 1g p_f0; 1g q; f0; 1g p_f 12 ; 1g qg

19Compare the present discussion to the one in[Lu et al., 1993] which is restricted to resolution,
but nevertheless calls upon the same problems. Residuation is calledreductionin [Kifer and Subrah-
manian, 1992], see also Definition 63 below.

564 REINER ḦAHNLE

	 is inconsistent, but simple inspection shows that there is no closed connec-
tion tableau for it. After the first expansion of any clause no further extension is
possible. The problem is that the connection condition cannot easily be defined
when more than two-element sets are needed to establish inconsistency.

In the case of regular formulas, however, we obtain a complete refinement20

and, moreover, their definition can be slightly simplified:

DEFINITION 61. A many-valued connection tableaufor a regular formula is a
many-valued clause tableau in which every inner node forms an inconsistent set
with oneof its immediate successors.

6.3 Regular Tableaux and Factorized Tableaux

For the rest of this section we work with arbitrary signed CNF formulas, not just
with regular formulas. Note that the notion of a regular tableau, to be defined
below, has nothing in common with the previously introduced regular formulas
and they should not be confused. Recall from D’Agostino’s Chapter that in a
regular clause tableau no branch contains more than one occurrence of the same
literal. For the many-valued case we must extend this definition to accomodate
signs. Obviously, one can do better than to simply exclude identical signed literals,
because a literal of the form�i p is implied by �j p if j � i and should not be
repeated.

In fact, an even more restrictive version of regularity is complete:21 assume that
S1 p; : : : ; Sr p are on a branchB and we can construct a model forB. Then one
has a model as well for allS p such that(

Tr
i=1 Si) � S � N . This consideration

leads to the following definitions:

DEFINITION 62. A branchB in a many-valued clause tableau is regular iff for
all sets of signed literalsS1 p; : : : ; Sr p (r � 1) onB, if (

Tr
i=1 Si) � S � N then

S p does not occur onB belowS1 p; : : : ; Sr p.
A regular many-valued clause tableauis a many-valued clause tableau in which

all branches are regular.

DEFINITION 63. We define thereductionof a set of signed literalsC as the
set that is obtained when each subset of the formS1 p; : : : ; Sr p is replaced by
(
Tr
i=1 Si).

DEFINITION 64. LetC;D be sets of signed literals. We say thatD subsumes22

C iff for each signed literalS p in D there is a literalS0 p in the reduction ofC
such thatS0 � S.

20The completeness proof of the classical result (see Letz’s chapter) can be adapted in a straightfor-
ward manner.

21For regular formulas, however, the following does not add anything to the condition stated in the
previous paragraph.

22Here we define subsumption between conjunctively connected sets of literals. Subsumption be-
tween signed clauses is defined dually.

TABLEAUX FOR MANY-VALUED LOGICS 565

We work with the reduction ofC rather than withC itself, because we want,
for instance,ff0; 12g p; f 12 ; 1g pg to be subsumed byff 12g pg.

Note that without sets-as-signs the definition would become substantially more
complicated.

It is straightforward to prove that ifC subsumesD thenfDg � C.
We can use subsumption, for instance, to make many-valued clause tableaux

more powerful similar as in the classical case:

DEFINITION 65. A many-valued clause tableau isclosed with factorizationiff
each branchB either is closed or there is a closed branchB0 such thatB is sub-
sumed by an initial segmentB00 ofB0 which is not an initial segment ofB as well.
Branches closed by factorization are marked. Closures by factorization must not
be cyclic.23

6.4 Many-valued Analytic Cuts

The singleton signs cut rule (see, e.g.[Takahashi, 1967]) is very simple. Let us
consider the DNF version of (6):

0 � � � � 1 �(25)

In the sets-as-signs case many other variants of a cut rule are possible, see,
for example, (24). Moreover, considerable care must be taken to control their
application. An analysis of many-valued cut rules in the sets-as-signs case was
done in [Hähnle, 1994, Section 6.1]. The following is a much simplified and
improved presentation.

Recall from D’Agostino’s Chapter that the deductive power of (i) tableau rules
with local lemmas, (ii) tableaux with analytic cut and (iii) KE systems was exactly
the same that is they are equivalent w.r.t. relative proof length complexity. In
Figure 6 it is demonstrated that exactly the same branches can be generated with
either one of the mentioned formalisms.

�
�1 �2
:�2

(�+LG)
(�)

�
:�2 �2

�1 �2
�

(Cut)

(�-KE)

�
:�2 �2
�1

(PB)

(i) �-rule with local
lemmas

(ii) �-rule and analytic
cut

(iii) Principle of Biva-
lence and KE�-rule

Figure 6. Equivalent extensions of classical tableau rules

23See D’Agostino’s Chapter for a formal definition.

566 REINER ḦAHNLE

In truth table (9) we saw how the union of the extensions of a sets-as-signs rule
correspond to a complete covering of the truth table entries that occur in the sign
of the premise. This covering is not necessarily a partition that is some entries are
possibly covered in more than one extension as, for example, it is the case with the
field containing0 in (9).

With analytic cut, respectively, with local lemmas one can enforce that the ex-
tensions of a rule form a partition of the entries to be covered. For the classical
case this can be seen in Figure 7(a) in which the lighter shaded area corresponds to
the left extensions in Figure 6 and the darker shaded area to the right extensions.

_ 0 1

0 0 1

1 1 1

� 0
1

2
1

0 1 1 1

1

2

1

2
1 1

1 0
1

2
1

(a) A partitioning of clas-
sical disjunction

(b) A partitioning of Łukasie-
wicz implication

Figure 7. Partitions of truth table entries that generate analytic cuts

In Figure 7(b) a partition of the entries that contain the truth value1 in the truth
table of Łukasiewicz implication is displayed. In Figure 8(a) a non-partitioning
rule for truth value1 and Łukasiewicz implication is shown. The rule correspond-
ing to the partition in Figure 7(b) is displayed in Figure 8(b). Formally, we define
partitioning rules as follows:

f1g � �
f0g � f0; 12g �

f 12 ; 1g f1g

f1g � �
f0g � f 12g � f1g �

f 12 ; 1g f1g

(a) Non-partitioning rule,
many-valued case

(b) Many-valued rule with local
lemmas for the partition shown
in Figure 7(b).

Figure 8. Equivalent extensions of many-valued tableau rules

DEFINITION 66. Let� =
WM
r=1 Cr be a sets-as-signs DNF representation of

� = S �(�1; : : : ; �m) (m � 1). We call� a partitioning DNF representationor a
DNF representation with local lemmasof � iff for any two conjunctsCi, Cj with

TABLEAUX FOR MANY-VALUED LOGICS 567

i 6= j the set of literalsCi [Cj is inconsistent.Partitioning sets-as-signs rules,
respectively,sets-as-signs rules with local lemmasare sets-as-signs rules based on
a partitioning DNF representation.

Just as in classical logic (cf. Figure 6) it is possible toderivemany-valued local
lemma rules from arbitrary ones with the help of many-valued analytic cut:

S1 � � � � Sm � m � 2, fS1; : : : ; Smg set partition ofN(26)

Note that in the light of our previous analysis it suffices to define the cut rule
based onpartitions of N rather than on the broader class ofcoveringsin order
to serve as the proper generalization of Takahashi’s and Rousseau’s cut rules for
singleton signs. This sharpens the analysis given in[Hähnle, 1994, Section 6.1.4].

The partition displayed in Figure 7(b) obviously corresponds to the following
instance of the many-valued cut rule:f0g � f 12g � f1g �. With it we can derive
the rule in Figure 8(b) from the rule in Figure 8(a). One first applies the cut rule
and then in each extension the rule in Figure 8(a):

f1g � �
f0g � f 12g � f1g �

f0g � f0; 12g � f0g � f0; 12g � f0g � f0; 12g �
f 12 ; 1g f1g f 12 ; 1g f1g f 12 ; 1g f1g

� � �

(Cut)

It is an immediate consequence of Definition 64 that if the literals on a branch
B subsume the literals on a branchB0 then wheneverB0 can be closedB can be
closed as well. Therefore, it is only necessary to keep extensions which are not
subsumed any other extension (subsumed extensions are denoted with arrows in
the rule above). If we delete as well inconsistent extensions then the reductions
of the remaining extensions are exactly those of the rule in Figure 8(b). With a
different cut rule we would have obtained a different partitioning rule.

7 CONNECTIONS AND APPLICATIONS

7.1 Many-valued Decision Diagrams

Binary decision diagrams (BDDs) are a family of efficient data structures for rep-
resentation of Boolean formulas; a standard reference is[Bryant, 1986]. Their
main strength is that they can represent the models of very large satisfiable formu-
las in an efficient manner. Moreover, insertion of new formulas and combination
of BDDs can be done quickly as well. There exist very efficient packages for
BDD manipulation [Braceet al., 1990] whose use is very popular in hardware
verification [Burchet al., 1990].

568 REINER ḦAHNLE

Basically, BDDs are a representation of Boolean functions based on the three-
placeif-then-else connective:

if i then j else k =

�
j if i = 1
k if i = 0

Every Boolean function can be expressed with a formula that contains no con-
nective butif-then-else and logical constants0 and1, where atomic formulas
occur as the first argument ofif-then-elseand nowhere else. For instance,p^q
is equivalent to

if p then (if q then 1 else 0) else 0 :

Such a representation of a formula is called a BDD. A systematic way to obtain
a BDD representation of a formula or logical function� is provided by theBoole-
Shannon expansion.24 Assume that the atoms occurring in� arefp1; : : : ; pmg and
denote this with�(p1; : : : ; pm). Then

�(p1; p2; : : : ; pm) =
if p1 then �(1; p2; : : : ; pm) else �(0; p2; : : : ; pm)

(27)

Recursive application of (27) and replacing variable-free formulas with their
function value obviously gives a BDD representation.

Usually, BDDs are assumed to bereducedandordered(ROBDDs). Reduced
means that the syntactic tree of a BDD is turned into a graph by identifying iso-
morphic subtrees and applying a simplification step based on the equation

(if i then j else j) = j :

Ordered means that relative to a given total ordering� of the atoms, whenever
q occurs in the body ofif p ... thenp � q must hold. An important property
of ROBDDs is that two ROBDDs of the same Boolean function are identical up to
isomorphism that is they are astrong normal formfor Boolean functions.

The relevance of BDDs to the present chapter comes from the facts that first,
there is a close relationship between BDDs and tableaux with local lemmas[Po-
segga, 1993] and second, they can be extended tomany-valued decision diagrams
and finitely-valued logics in a natural way by simply replacing theif-then-else

with an(n+ 1)-arycase-of connective inn-valued logic:

24In the BDD and function minimization literature this equation is usually attributed to Shan-
non [1938], however, it appears already in[Boole, 1854]. Expansions are sometimes called
decompositions.

TABLEAUX FOR MANY-VALUED LOGICS 569

case i of
0 : j0;

1
n�1 : j 1

n�1
;

� � � � � �
1 : j1

esac

=

8>><
>>:

j0 if i = 0
j 1
n�1

if i = 1
n�1

� � � � � �
j1 if i = 1

Orłowska[1967] gave a proof procedure for propositional Post logic based on
an MDD-like structure, but she used a different notation. MDDs were rediscovered
in [Thayseet al., 1979; Srinivasanet al., 1990] in connection with the growing
interest in BDD methods. There it is also shown that like their binary counter-
partsn-valued MDDs are functionally complete and they can be computed with a
generalized Boole-Shannon-expansion.

�(p1; p2; : : : ; pm) =

case i of

0 : �(0; p2; : : : ; pm);
1

n�1 : �(1
n�1 ; p2; : : : ; pm);

� � � � � �
1 : �(1; p2; : : : ; pm)

esac

(28)

and that ROMDDs (calledcanonical function graphsin [Srinivasanet al., 1990])
are a strong normal form representation ofn-valued functions.

As already mentioned, BDDs and tableaux with local lemmas (or, more gener-
ally, tableaux with partitioning rules as introduced in Definition 66 in the previous
section) bear a close relationship. Consider the tableau rule and BDD depicted in
Figure 9(a) and (b).

f1g (p _ q)
f1g p f0g p

f1g q

p

q

0

0

0

1

1

1

1

p

1

0

q

1

2

1

2

0

1

1

2

0

1

q

1

0

0

1

2

1

2

1

1

(a) (b) (c)

Figure 9. Signed tableaux with local lemmas versus BDDs and MDDs

In the BDDthen andelse branches are labelled with1 and0, respectively.
An edge labelled withi that comes out of a nodep can be seen as an assertion of

570 REINER ḦAHNLE

the truth valuei to p, in other words a signed formulafig p. Now the following
relationship between tableaux with local lemmas and BDDs holds (cf.[Posegga,
1993]): for each set of signed literals corresponding to the edges on a path in
a BDD for � that ends with1 there is an open branch in any tableau with local
lemmas forf1g � containing exactly the same literals and vice versa.

This relationship extends to singleton signs tableaux with partitioning rules and
MDDs in the following way: for each set of signed literals corresponding to the
edges on a path in an MDD for� that ends withj there is an open branch in
any singleton sets tableau with partitioning rules forfjg � containing exactly the
same literals and vice versa. For instance, the reduced MDD forf 12g (p � q),
the three-valued Łukasiewicz implication defined in (2), is displayed in Figure
9(c); the paths ending with12 correspond to the extensions of the tableau rule from
Example 24 in Section 4.1.

A BDD or MDD representation (or the literals on the open branches of a par-
titioning tableau) can be seen as a Boolean polynomial over signed literals with
truth values as coefficients. Let us write a signed literal of the formfig p aspi,
‘and’ as ‘�’, ‘or’ as ‘+’. Then, by (27), for example,

p _ q = p1 � (1 _ q) + p0 � (0 _ q)
= p1 � 1 + p0 � (q1 � (0 _ 1) + q0 � (0 _ 0))

= p1 � 1 + p0 � q1 � 1 + p0 � q0 � 0

Polynomial representations can be generalized. In the many-valued case one
may, of course, consider arbitrary signed literals of the formS p. Written aspS

they are well-known in logic circuit synthesis and optimization[Sasao, 1981],
sometimes under the nameset literal or universal literal.25 On the other hand,
there is no reason to restrict oneself to unary functions for the base of a polyno-
mial representation. Of course one needs to make restrictions lest the resulting
representations are useless. Equation (28), for example, might be generalized to

�(p1; : : : ; pj ; : : : ; pm) = �i2N	i � �(p1; : : : ; i; : : : ; pm)(29)

for a certain basef	0; : : : ;	1g. Examples for the Boolean case are theor-
thonormal expansionsof Löwenheim[1910], see also[Brown, 1990]. Expansions
for many-valued logic have been suggested and investigated in many papers. Inter-
esting recent results are in[Sasao, 1992; Becker and Dreschler, 1994]. Orthonor-
mal expansions were recently generalized to many-valued logic[Perkowski, 1992]
in an attempt to systematize the plethora of existing subclasses. Certain orthonor-

25In logic optimization often restrictions on the form ofS are imposed, for example, a popular class
of literals arewindow literals, whereS is of the form[i; j] with i � j. Recently, however, the use of
completely general literals has been advocated[Dueck and Butler, 1994].

TABLEAUX FOR MANY-VALUED LOGICS 571

mal expansions based on unary functions result in partitioning sets-as-signs rules
as introduced in Definition 66 in the previous section. More general expansions
have no representation in rule form; on the other hand, arbitrary sets-as-signs
tableau rules do not necessarily correspond to any expansion of the form (29). The
reason for this is that tableau rules work by analysing the leading connective of
a complex formula, whereas expansion schemas as used in MDDs and logic syn-
thesis work by analysing a certain variable of the formula. The exact relationship
between both approaches remains to be investigated.

7.2 Logic Synthesis

In this section we strengthen the links between tableau-based deduction and logic
design by demonstrating that OR-AND-OR implementations can be synthesized
via sets-as-signs tableaux. As a background reading on logical circuit synthesis
we suggest[Braytonet al., 1984].

EXAMPLE 67. (cf. [Sasao, 1993]) Let the Boolean 4-ary functionf(z; w; x; y)
be defined by the Karnaugh map in Figure 10(a). It is possible to interpretf as
a four-valued binary functionf(Y;X) (displayed in Figure 10(c)) via the corre-
spondence given in Figure 10(b). A minimal sets-as-signs DNF tableau rule for
f1g f(Y;X) is easily obtained:

f1g f(Y;X)

f0; 13 ; 23gX f 23 ; 1gX f 13gX f0; 1gX
f0g Y f 13g Y f 23g Y f1g Y

Decoding the variables in the extensions into(z; w; x; y) one obtains:

1 f(z; w; x; y)

0 x _ 1 y 1 x 0 x
1 y 0 y

0 z 0 z 1 z 1 z
0 w 1w 1 w 0 w

This rule, however, can directly serve as a specification for the OR-AND-OR
circuit displayed in Figure 11.

In general, the specification of a functionf can be nested, thus several rule
applications may be needed. The structure of the open branches of the result-
ing tableau gives the AND-OR or PLA (see below) part of the circuit, while the
signed literals in the extensions represent another level of ORs (only one OR gate
is needed in the example). Instead of a whole level of ORs one can also supply
a fixed structure: ann-bit decoder (in the examplen is 2) mapping a group ofn
two-valued variables to an2n-valued variable. This class of circuits is also known
asprogrammable logic arrays(PLA) with n-bit decoder.

572 REINER ḦAHNLE

xy
00 01 11 10

00 1 1 1 0

zw
01 0 0 1 1
11 0 1 0 0
10 1 0 0 1

x y X
z w Y
0 0 0
0 1 1

3

1 0 1
1 1 2

3

X
0 1

3
2
3

1
0 1 1 1 0

Y
1
3

0 0 1 1
2
3

0 1 0 0
1 1 0 0 1

(a) Karnaugh map off (b) variable mapping (c) four-valued truth table

Figure 10. The function from Example 67 as Karnaugh map and four-valued truth
table

x
y !"	

z
w �
x
z
w �

!"&'	 f(x; y; w; z)

x

y

z

w �
y
z
w �

Figure 11. OR-AND-OR circuit

TABLEAUX FOR MANY-VALUED LOGICS 573

It is shown in [Sasao, 1981] that AND-OR realizations with decoders and,
even more so, OR-AND-OR realizations can be consideraby smaller than mere
AND-OR realizations. As is to be expected, among other factors the choice of the
mapping between binary and many-valued variables influences the quality of the
result [Sasao, 1984].

Although we exhibited many parallels and correspondences between many-
valued calculi and methods from logic design, in both areas rather different goals
are pursued: The methods developed for obtaining minimal representations of
many-valued functions in logic design are often of a heuristical26 nature which
means they yield in general only a near minimal solution; on the other hand, they
can deal with rather large inputs. The functions to be modelled as a circuit are,
of course, typically not constant, hence neither tautologies nor unsatisfiable. And
finally, the specification of logic design problems is almost always purely proposi-
tional. Still we think it would be fruitful if both fields became better aware of each
other.

7.3 Implementations

The main purpose of this handbook is to provide a reference for the theoretical
foundations of the tableau method. Implementational issues are discussed in a
generic way in a separate chapter. Any kind of information on actual implemen-
tations or on applications is doomed to become quickly outdated. Despite this we
feel that our presentation would be incomplete without even a short glance on ex-
isting implementations and tableau-specific applications as provided in the present
and in the following subsection.

Theorem Provers 3T
AP [Beckertet al., 1996a; Beckertet al., 1996] is a Prolog-

based implementation27 of a generic tableau-based theorem prover for full
order-sorted first-order finitely-valued logic. Its two-valued instance has
special routines for treating equality. It requires Sicstus Prolog and a Unix
machine to run.

The proverDeep Thought28 [Gerberding, 1996] offers a subset of the func-
tionality of 3TAP and essentially is a reimplementation in C. It runs on Ami-
gas and various Unix platforms.

The system KARNAK [Hoogewijs and Elnadi, 1994] is a theorem prover
for a variant of Kleene’s three-valued logic, cf. Example 7 in Section 2.1.
As the underlying calculus does not employ explicit meta connectives it is
an example for the line of development sketched in Section 3.2. Another

26There are exact methods, though: see, for example,[Braytonet al., 1993].
27
3TAP is available without charge fromhttp://i12www.ira.uka.de/~threetap/.

28Deep Thoughtis available without charge from
http://kirmes.inferenzsysteme.informatik.th-darmstadt.de/~stefan/dt.html.

574 REINER ḦAHNLE

implementation of a reasoning system for an extended three-valued Kleene
logic is reported in[Doherty, 1991a].

An implementation of the method outlined in Section 5.3 with Constraint
Logic Programming languages such as Eclipse or CLP(R) is provided in
[Hähnle, 1997].

MDD and Function Minimization Packages In the light of the links between
MDDs, logic minimization and tableaux established in Sections 7.1 and 7.2
we provide two pointers to implementations in that area:[Srinivasanet
al., 1990] reports the implementation of an MDD package in the spirit of
the well-known BDD implementation by Brace et al.[1990] while [Rudell
and Sangiovanni-Vincentelli, 1987] describes a more specialized package
for many-valued function minimization.

Miscellaneous ToolsThe system MULTLOG[Salzer, 1996; Vienna Group, 1996]
automatically derives singleton signs tableau, sequent (dual tableau), and
natural deduction rules for given finitely-valued connectives and quantifiers
and can be considered as an automation of the corresponding constructive
proofs in [Baaz and Ferm¨uller, 1995a].

7.4 Applications Specific to Many-valued Tableaux

In the following we restrict ourselves to material with direct relevance for tableau-
like systems. A more complete list of (potential) applications of many-valued
deduction can be found in[Hähnle, 1994, Chapter 7].

� As is evident from D’Agostinoet al.’s Chapter in this volume, tableaux
are particularly suitable to characterize various non-monotonic and default
logics. Doherty[1990; 1991; 1991a] gives a tableau formulation of a non-
monotonic three-valued logic using sets-as-signs rules.

� The use of many-valued logic to deal with partiality in mathematics and pro-
gram verification has been suggested several times, for example, in the spec-
ification languages VDM[Blikle, 1991] and Spectrum[Broy et al., 1993].
As many program verification systems are based on sequent calculi[Heisel
et al., 1991], tableau-based many-valued deduction can improve the degree
of automation in such systems. A tableau system for a sorted many-valued
logic modelling partially defined mathematical expressions was suggested
by [Kerber and Kohlhase, 1996].

� MDD methods (cf. Section 7.1,[Srinivasanet al., 1990]) can be used in
formal hardware verification[Bryant and Seger, 1990; H¨ahnle and Kernig,
1993; Sasao, 1996]. If their expressivity is to be increased by introducing
quantification it might be advantageous to view them as variants of tableaux.

TABLEAUX FOR MANY-VALUED LOGICS 575

� A many-valued tableau system with applications in knowledge representa-
tion was reported in[Straccia, 1997].

� Moscatoet al. [1994; 1995] use many-valued signed tableaux to improve
deduction in intuitionistic and modal logic.

7.5 Many-valued Logics and Substructural Logics

In this section we briefly sketch how many-valued logics and substructural logics
as discussed in D’Agostinoet al.’s Chapter can be related.

Consider singleton-signed formulasfig � in some many-valued logicL with
truth valuesN . It is straightforward to define aframe semanticsF for L by letting
N be the points ofF and by forcing� at i, wheneverfig � is valid in L. In a
similar way, the semantic conditions of the connectives are determined by their
meaning inL (note that this construction does in general not work in the opposite
direction: connectives determined by a frame semantics might simply be not truth
functional).

The resulting frame will typically be very unnatural unless the many-valued
connectives fulfill some of the algebraic properties commonly present in frame
semantics. This is the case for such logics as Łukasiewicz logic or Post logic for
which meaningful algebraic semantics exist.

A closer investigation of the correspondances between many-valued and sub-
structural logics could turn out to be fruitful indeed. Among the many possible
perspectives are the following: if a substructural logiccan be (partially) repre-
sented as a many-valued logic, then the well-understood proof theory of signed
many-valued logic opens a door to its automation; or transfer the idea of using sets
of truth values as signs to the substructural case thus arriving at sets of points. Like
in the many-valued case a lot theoretical and practical advantages could be gained
from doing so.

8 INSTEAD OF A CONCLUSION

The investigation of the tableau case answered the question for the basic computa-
tional components of many-valued logic such as: what are atomically inconsistent
sets, what are saturated sets, which meta connectives are needed for an adequate
representation of many-valued semantics, what is polarity, what is a link etc.

Once these questions are answered, one can design many-valued versions of
other deduction paradigms than tableaux as well.

In our experience, redundancies in non-classical proof procedures tend to be
more obvious in tableau frameworks than in other procedures (for instance, the
excessive duplication of formulas when only singleton signs are present is a lot
harder to see in resolution based systems). Thus we hope that the present chapter
can serve both as an argument for using tableaux in non-classical deduction as well
as a paradigmatic example for problems and solutions in non-classical deduction.

576 REINER ḦAHNLE

ACKNOWLEDGEMENTS

I would like to thank Verena Rose and Daniele Mundici (second reader of this
chapter) for many useful comments on a draft of this text. I also profited from
several stimulating discussions with the Vienna Group on Many-Valued Logic
(Matthias Baaz, Christian Ferm¨uller, Gernot Salzer, and Richard Zach).

University of Karlsruhe, Germany.

REFERENCES

[Avron, 1991] A. Avron. Natural 3-valued logics—characterization and proof theory.Journal of
Symbolic Logic, 56(1):276–294, 1991.

[Baaz and Ferm¨uller, 1995] M. Baaz and C. G. Ferm¨uller. Nonelementary speedups between different
versions of tableaux. In Peter Baumgartner, Reiner H¨ahnle, and Joachim Posegga, editors,Proc.
4th Workshop on Deduction with Tableaux and Related Methods, St. Goar, Germany, volume 918
of LNCS, pages 217–230. Springer-Verlag, 1995.

[Baaz and Ferm¨uller, 1995a] M. Baaz and C. G. Ferm¨uller. Resolution-based theorem proving for
many-valued logics.Journal of Symbolic Computation, 19(4):353–391, April 1995.

[Baaz and Zach, 1992] M. Baaz and R. Zach. Note on calculi for a three-valued logic for logic pro-
gramming.Bulletin of the EATCS, 48:157–164, 1992.

[Becker and Dreschler, 1994] B. Becker and R. Drechsler. Efficient graph-based representation of
multi-valued functions with an application to genetic algorithms. InProc. 24th International Sym-
posium on Multiple-Valued Logic, Boston/MA, pages 65–72. IEEE Press, Los Alamitos, May 1994.

[Beckertet al., 1996] B. Beckert, R. H¨ahnle, K. Geiß, P. Oel, C. Pape, and M. Sulzmann. The Many-
Valued Tableau-Based Theorem Prover3TAP , Version 4.0. Interner Bericht 3/96, Universit¨at Karl-
sruhe, Fakult¨at für Informatik, 1996.

[Beckertet al., 1996a] B. Beckert, R. H¨ahnle, P. Oel, and M. Sulzmann. The tableau-based theorem
prover3TAP , version 4.0. In Michael McRobbie and John Slaney, editors,Proc. 13th Conference on
Automated Deduction, New Brunswick/NJ, USA, volume 1104 ofLNCS, pages 303–307. Springer-
Verlag, 1996.

[Beckertet al., 1993] B. Beckert, R. H¨ahnle, and P. H. Schmitt. Theeven moreliberalized�-rule in
free variable semantic tableaux. In G. Gottlob, A. Leitsch, and D. Mundici, editors,Proceedings
of the third Kurt Gödel Colloquium KGC’93, Brno, Czech Republic, volume 713 ofLNCS, pages
108–119. Springer-Verlag, August 1993.

[Blikle, 1991] A. Blikle. Three-valued predicates for software specification and validation.Funda-
menta Informaticae, XIV:387–410, 1991.

[Bloesch, 1994] A. Bloesch. Tableau style proof systems for various many-valued logics. Technical
Report 94-18, Software Verification Research Center, Dept. of Computer Science, University of
Queensland, April 1994.

[Bolc and Borowik, 1992] L. Bolc and P. Borowik.Many-Valued Logics. 1: Theoretical Foundations.
Springer-Verlag, 1992.

[Boole, 1854] G. Boole.An Investigation of the Laws of Thought. Walton, London, 1854. Reprinted
by Dover Books, New York, 1954.

[Braceet al., 1990] K. S. Brace, R. L. Rudell, and R. E. Bryant. Efficient implementation of a BDD
package. InProc. 27th ACM/IEEE Design Automation Conference, pages 40–45. IEEE Press, Los
Alamitos, 1990.

[Braytonet al., 1984] R. K. Brayton, G. D. Hachtel, C. T. McMullen, and A. L. Sangiovanni-
Vincentelli. Logic Minimization Algorithms for VLSI Synthesis. Kluwer, Boston, 1984.

[Braytonet al., 1993] R. K. Brayton, P. C. McGeer, J. V. Sanghavi, and A. L. Sangiovanni-Vincentelli.
A new exact minimizer for two-level logic synthesis. In Tsutomu Sasao, editor,Logic Synthesis and
Optimization, chapter 1, pages 1–32. Kluwer, Norwell/MA, USA, 1993.

[Brown, 1990] F. M. Brown. Boolean Reasoning. Kluwer, Norwell/MA, USA, 1990.

TABLEAUX FOR MANY-VALUED LOGICS 577

[Broy et al., 1993] M. Broy, C. Facchi, R. Grosu, R. Hettler, H. Hussmann, Dieter Nazareth, Franz
Regensburger, and Ketil Stølen. The requirement and design specification language Spectrum, an
informal introduction, version 1.0. Technical report, Institut f¨ur Informatik, Technische Universit¨at
München, March 1993.

[Bryant and Seger, 1990] R. E. Bryant and C.-J. H. Seger. Formal verification of digital circuits using
symbolic ternary system models. In E. M. Clarke and R. P. Kurshan, editors,Computer-Aided
Verification: Proc. of the 2nd International Conference CAV’90, LNCS 531, pages 33–43. Springer-
Verlag, 1991.

[Bryant, 1986] R. E. Bryant. Graph-based algorithms for Boolean function manipulation.IEEE Trans-
actions on Computers, C-35:677–691, 1986.

[Burchet al., 1990] J. R. Burch, E. M. Clarke, K. L. McMillan, and D. L. Dill. Sequential circuit
verification using symbolic model checking. InProc. 27th Design Automation Conference (DAC
90), pages 46–51, 1990.

[Carnielli, 1985] W. Carnielli. An algorithm for axiomatizing and theorem proving in finite many-
valued propositional logics.Logique et Analyse, 28(112):363–368, 1985.

[Carnielli, 1987] W. A. Carnielli. Systematization of finite many-valued logics through the method of
tableaux.Journal of Symbolic Logic, 52(2):473–493, June 1987.

[Carnielli, 1991] W. A. Carnielli. On sequents and tableaux for many-valued logics.Journal of Non-
Classical Logic, 8(1):59–76, May 1991.

[Davey and Priestley, 1990] B. A. Davey and H. A. Priestley.Introduction to Lattices and Order.
Cambridge Mathematical Textbooks. Cambridge University Press, Cambridge, 1990.

[Doherty, 1990] P. Doherty. Preliminary report: NM3 — a three-valued non-monotonic formalism.
In Z. Raś, M. Zemankova, and M. Emrich, editors,Proc. of 5th Int. Symposium on Methodologies
for Intelligent Systems, Knoxville, TN, pages 498–505. North-Holland, 1990.

[Doherty, 1991] P. Doherty. A constraint-based approach to proof procedures for multi-valued logics.
In First World Conference on the Fundamentals of Artificial Intelligence WOCFAI-91, Paris, 1991.

[Doherty, 1991a] P. Doherty. NML3 — A Non-Monotonic Formalism with Explicit Defaults. PhD
thesis, University of Link¨oping, Sweden, 1991.

[Dueck and Butler, 1994] G. W. Dueck and J. T. Butler. Multiple-valued logic operations with uni-
versal literals. InProc. 24th International Symposium on Multiple-Valued Logic, Boston/MA, pages
73–79. IEEE Press, Los Alamitos, May 1994.

[Epstein, 1960] G. Epstein. The lattice theory of Post algebras.Transactions of the American Mathe-
matical Society, 95(2):300–317, May 1960.

[Fitting, 1991] M. C. Fitting. Bilattices and the semantics of logic programming.Journal of Logic
Programming, 11(2):91–116, August 1991.

[Fitting, 1996] M. C. Fitting. First-Order Logic and Automated Theorem Proving. Springer-Verlag,
New York, 1996. First edition, 1990.

[Gerberding, 1996] S. Gerberding. DT—an automated theorem prover for multiple-valued first-order
predicate logics. InProc. 26th International Symposium on Multiple-Valued Logics, Santiago de
Compostela, Spain, pages 284–289. IEEE Press, Los Alamitos, May 1996.

[Ginsberg, 1988] M. L. Ginsberg. Multi-valued logics.Computational Intelligence, 4(3), 1988.
[Hähnle, 1990] R. Hähnle. Towards an efficient tableau proof procedure for multiple-valued logics. In

Egon Börger, Hans Kleine B¨uning, Michael M. Richter, and Wolfgang Sch¨onfeld, editors,Selected
Papers from Computer Science Logic, CSL’90, Heidelberg, Germany, volume 533 ofLNCS, pages
248–260. Springer-Verlag, 1991.

[Hähnle, 1991] R. Hähnle. Uniform notation of tableaux rules for multiple-valued logics. InProc. In-
ternational Symposium on Multiple-Valued Logic, Victoria, pages 238–245. IEEE Press, Los Alami-
tos, 1991.

[Hähnle, 1992] R. Hähnle. A new translation from deduction into integer programming. In Jacques
Calmet and John A. Campbell, editors,Proc. Int. Conf. on Artificial Intelligence and Symbolic
Mathematical Computing AISMC-1, Karlsruhe, Germany, volume 737 ofLNCS, pages 262–275.
Springer-Verlag, 1992.

[Hähnle, 1994] R. Hähnle. Automated Deduction in Multiple-Valued Logics, volume 10 ofInterna-
tional Series of Monographs on Computer Science. Oxford University Press, 1994.

[Hähnle, 1994a] R. Hähnle. Many-valued logic and mixed integer programming.Annals of Mathe-
matics and Artificial Intelligence, 12(3,4):231–264, December 1994.

[Hähnle, 1994b] R. Hähnle. Short conjunctive normal forms in finitely-valued logics.Journal of
Logic and Computation, 4(6):905–927, 1994.

578 REINER ḦAHNLE

[Hähnle, 1996] R. Hähnle. Exploiting data dependencies in many-valued logics.Journal of Applied
Non-Classical Logics, 6(1):49–69, 1996.

[Hähnle, 1997] R. Hähnle. Proof theory of many-valued logic—linear optimization—logic design:
Connections and interactions.Soft Computing—A Fusion of Foundations, Methodologies and Ap-
plications, 1(3):107–119, September 1997.

[Hähnle, 1998] R. Hähnle. Commodious axiomatization of quantifiers in multiple-valued logic.Stu-
dia Logica, 61(1):101–121, 1998. Special Issue on Many-Valued Logics, their Proof Theory and
Algebras.

[Hähnle and Escalada-Imaz, 1997] R. Hähnle and G. Escalada-Imaz. Deduction in many-valued log-
ics: a survey.Mathware & Soft Computing, IV(2):69–97, 1997.

[Hähnle and Kernig, 1993] R. Hähnle and W. Kernig. Verification of switch level designs with many-
valued logic. In Andrei Voronkov, editor,Proc. LPAR’93, St. Petersburg, Russia, volume 698 of
LNCS, pages 158–169. Springer-Verlag, 1993.

[Hähnle and Schmitt, 1994] R. Hähnle and P. H. Schmitt. The liberalized�-rule in free variable se-
mantic tableaux.Journal of Automated Reasoning, 13(2):211–222, October 1994.

[Heiselet al., 1991] M. Heisel, W. Reif, and W. Stephan. Formal software development in the KIV
system. In L. McCartney, editor,Automating Software Design. AAAI Press, 1991.

[Hoogewijs and Elnadi, 1994] A. Hoogewijs and T. M. Elnadi. KARNAK: an automated theorem
prover for PPC. The CAGe Reports 10, University of Gent, Computer Algebra Group, 1994.

[Hooker, 1988] J. N. Hooker. A quantitative approach to logical inference.Decision Support Systems,
4:45–69, 1988.

[Hösli, 1993] B. Hösli. Robuste Logik. PhD thesis, Eidgen¨ossische Technische Hochschule Z¨urich,
1993.

[Jeroslow, 1988] R. G. Jeroslow.Logic-Based Decision Support. Mixed Integer Model Formulation.
Elsevier, Amsterdam, 1988.

[Kapetanovi´c and Krapeˇz, 1989] M. Kapetanovi´c and A. Krapeˇz. A proof procedure for the first-order
logic. Publications de l’Institut Mathematiqu, nouvelle s´erie, 59(45):3–5, 1989.

[Kerber and Kohlhase, 1996] M. Kerber and M. Kohlhase. A tableau calculus for partial functions.
In Collegium Logicum. Annals of the Kurt-G¨odel-Society, volume 2, pages 21–49. Springer-Verlag,
Wien New York, 1996.

[Kifer and Subrahmanian, 1992] M. Kifer and V. S. Subrahmanian. Theory of generalized annotated
logic programming and its applications.Jornal of Logic Programming, 12:335–367, 1992.

[Kirin, 1963] V. G. Kirin. On the polynomial representation of operators in then-valued propositional
calculus (in Serbocroatian).Glasnik Mat.-Fiz. Astronom. Druˇstvo Mat. Fiz. Hravtske Ser. II, 18:3–
12, 1963. Reviewed in MR 29 (1965) p. 420.

[Kirin, 1966] V. G. Kirin. Gentzen’s method of the many-valued propositional calculi.Zeitschrift für
mathematische Logik und Grundlagen der Mathematik, 12:317–332, 1966.

[Löwenheim, 1910] L. Löwenheim. Über die Auflösung von Gleichungen im logischen Gebi-
etekalkül. Mathematische Annalen, 68:169–207, 1910.

[Lu, 1996] J. J. Lu. Logic programming with signs and annotations.Journal of Logic and Computa-
tion, 6(6):755–778, 1996.

[Lu et al., 1993] J. J. Lu, N. V. Murray, and E. Rosenthal. Signed formulas and annotated logics.
In Proc. 23rd International Symposium on Multiple-Valued Logics, pages 48–53. IEEE Press, Los
Alamitos, 1993.

[Malinowski, 1993] G. Malinowski.Many-Valued Logics, volume 25 ofOxford Logic Guides. Oxford
University Press, 1993.

[Miglioli et al., 1994] P. Miglioli, U. Moscato, and M. Ornaghi. An improved refutation system for
intuitionistic predicate logic.Journal of Automated Reasoning, 13(3):361–374, 1994.

[Miglioli et al., 1995] P. Miglioli, U. Moscato, and M. Ornaghi. Refutation systems for propositional
modal logics. In P. Baumgartner, R. H¨ahnle, and J. Posegga, editors,Proc. 4th Workshop on Deduc-
tion with Tableaux and Related Methods, St. Goar, Germany, volume 918 ofLNCS, pages 95–105.
Springer-Verlag, 1995.

[Mostowksi, 1957] A. Mostowski. On a generalization of quantifiers.Fundamenta Mathematicæ,
XLIV:12–36, 1957.

[Mundici, 1987] D. Mundici. Satisfiability in many-valued sentential logic is NP-complete.Theoret-
ical Computer Science, 52:145–153, 1987.

[Mundici, 1994] D. Mundici. A constructive proof of McNaughton’s Theorem in infinite-valued logic.
Journal of Symbolic Logic, 59(2):596–602, June 1994.

TABLEAUX FOR MANY-VALUED LOGICS 579

[Murray, 1982] N. V. Murray. Completely non-clausal theorem proving.Artificial Intelligence, 18:67–
85, 1982.

[Murray and Rosenthal, 1991] N. V. Murray and E. Rosenthal. Improving tableau deductions in
multiple-valued logics. InProceedings 21st International Symposium on Multiple-Valued Logic,
Victoria, pages 230–237. IEEE Press, Los Alamitos, May 1991.

[Murray and Rosenthal, 1991a] N. V. Murray and E. Rosenthal. Resolution and path-dissolution in
multiple-valued logics. InProceedings International Symposium on Methodologies for Intelligent
Systems, Charlotte, LNAI. Springer-Verlag, 1991.

[Murray and Rosenthal, 1994] N. V. Murray and E. Rosenthal. Adapting classical inference tech-
niques to multiple-valued logics using signed formulas.Fundamenta Informaticae, 21(3):237–253,
1994.

[Nait Abdallah, 1995] M. Areski Nait Abdallah. The Logic of Partial Information. Monographs in
Theoretical Computer Science — An EATCS Series. Springer-Verlag, 1995.

[O’Hearn and Stachniak, 1992] P. O’Hearn and Z. Stachniak. A resolution framework for finitely-
valued first-order logics.Journal of Symbolic Computing, 13:235–254, 1992.

[Orłowska, 1967] E. Orłowska. Mechanical proof procedure for then-valued propositional calculus.
Bull. de L’Acad. Pol. des Sci., S´erie des sci. math., astr. et phys., XV(8):537–541, 1967.

[Orłowska, 1985] E. Orłowska. Mechanical proof methods for Post Logics.Logique et Analyse,
28(110):173–192, 1985.

[Panti, to appear] G. Panti. Multi-valued logics. In D. Gillies and P. Smets, editors,Handbook of De-
fensible Reasoning and Uncertainty Management Systems, volume 1, chapter 2. Kluwer, to appear.

[Perkowski, 1992] M. A. Perkowski. The generalized orthonormal expansion of functions with
multiple-valued inputs and some of its application. InProc. 22nd International Symposium on
Multiple-Valued Logic, pages 442–450. IEEE Press, Los Alamitos, May 1992.

[Plaisted and Greenbaum, 1986] D. A. Plaisted and S. Greenbaum. A structure-preserving clause
form translation.Journal of Symbolic Computation, 2:293–304, 1986.

[Posegga, 1993] J. Posegga.Deduktion mit Shannongraphen f¨ur Prädikatenlogik erster Stufe. PhD
thesis, University of Karlsruhe, 1993. diski 51, infix Verlag.

[Rescher, 1969] N. Rescher.Many-Valued Logic. McGraw-Hill, New York, 1969.
[Rosser and Turquette, 1952] J. B. Rosser and A. R. Turquette.Many-Valued Logics. North-Holland,

Amsterdam, 1952.
[Rousseau, 1967] G. Rousseau. Sequents in many valued logic I.Fundamenta Mathematicæ, LX:23–

33, 1967.
[Rousseau, 1970] G. Rousseau. Sequents in many valued logic II.Fundamenta Mathematicæ,

LXVII:125–131, 1970.
[Rudell and Sangiovanni-Vincentelli, 1987] R. Rudell and A. Sangiovanni-Vincentelli. Multiple-

valued minimization for PLA optimization. IEEE Transactions on Computer-Aided Design,
6(5):727–750, September 1987.

[Saloni, 1972] Z. Saloni. Gentzen rules for m-valued logic.Bull. de L’Acad. Pol. des Sci., S´erie des
sci. math., astr. et phys., XX:819–825, 1972.

[Salzer, 1996] G. Salzer. MUltlog: an expert system for multiple-valued logics. InCollegium Log-
icum. Annals of the Kurt-G¨odel-Society, volume 2. Springer-Verlag, Wien New York, 1996.

[Salzer, 1996a] G. Salzer. Optimal axiomatizations for multiple-valued operators and quantifiers
based on semilattices. In Michael McRobbie and John Slaney, editors,Proc. 13th Conference on
Automated Deduction, New Brunswick/NJ, USA, volume 1104 ofLNCS, pages 688–702. Springer-
Verlag, 1996.

[Sasao, 1981] T. Sasao. Multiple-valued decomposition of generalized Boolean functions and the
complexity of programmable logic arrays.IEEE Transactions on Computers, C-30:635–643,
September 1981.

[Sasao, 1984] T. Sasao. Input variable assignment and output phase optimization of PLA’s.IEEE
Transactions on Computers, C-33(10):879–894, October 1984.

[Sasao, 1992] T. Sasao. Optimization of multi-valued AND-XOR expressions using multiple-place
decision diagrams. InProc. 22nd International Symposium on Multiple-Valued Logic, pages 451–
458. IEEE Press, Los Alamitos, May 1992.

[Sasao, 1993] T. Sasao. Logic synthesis with EXOR gates. In Tsutomu Sasao, editor,Logic Synthesis
and Optimization, chapter 12, pages 259–286. Kluwer, Norwell/MA, USA, 1993.

580 REINER ḦAHNLE

[Sasao, 1996] T. Sasao. Ternary decision diagrams and their applications. In Tsutomu Sasao
and Masahiro Fujita, editors,Representations of Discrete Functions, chapter 12, pages 269–292.
Kluwer, Norwell/MA, USA, 1996.

[Schrijver, 1986] A. Schrijver.Theory of Linear and Integer Programming. Wiley-Interscience Series
in Discrete Mathematics. John Wiley & Sons, 1986.

[Schröter, 1955] K. Schröter. Methoden zur Axiomatisierung beliebiger Aussagen- und Pr¨adikaten-
kalküle. Zeitschrift für math. Logik und Grundlagen der Mathematik, 1:241–251, 1955.

[Shannon, 1938] C. E. Shannon. A symbolic analysis of relay and switching circuits.AIEE Transac-
tions, 67:713–723, 1938.

[Smullyan, 1995] R. M. Smullyan. First-Order Logic. Dover Publications, New York, second cor-
rected edition, 1995. First published 1968 by Springer-Verlag.

[Srinivasanet al., 1990] A. Srinivasan, T. Kam, S. Malik, and R. E. Brayton. Algorithms for discrete
function manipulation. InProc. IEEE International Conference on CAD, Santa Clara/CA, USA,
pages 92–95. IEEE Press, Los Alamitos, November 1990.

[Stachniak, 1988] Z. Stachniak. The resolution rule: An algebraic perspective. InProc. of Algebraic
Logic and Universal Algebra in Computer Science Conf., pages 227–242. Springer LNCS 425,
Heidelberg, 1988.

[Stachniak and O’Hearn, 1990] Z. Stachniak and P. O’Hearn. Resolution in the domain of strongly
finite logics.Fundamenta Informaticae, XIII:333–351, 1990.

[Straccia, 1997] U. Straccia. A sequent calculus for reasoning in four-valued description logics. In
Didier Galmiche, editor,Proc. International Conference on Automated Reasoning with Analytic
Tableaux and Related Methods, Pont-`a-Mousson, France, volume 1227 ofLNCS, pages 343–357.
Springer-Verlag, 1997.

[Suchoń, 1974] W. Sucho´n. La méthode de Smullyan de construire le calcul n-valent de Łukasiewicz
avec implication et n´egation.Reports on Mathematical Logic, Universities of Cracow and Katow-
ice, 2:37–42, 1974.

[Surma, 1974] S. J. Surma. An algorithm for axiomatizing every finite logic. In David C. Rine, editor,
Computer Science and Multiple-Valued Logics, pages 143–149. North-Holland, Amsterdam, sec-
ond edition, 1984. Selected Papers from the International Symposium on Multiple-Valued Logics
1974.

[Takahashi, 1967] M. Takahashi. Many-valued logics of extended Gentzen style I.Science Reports
of the Tokyo Kyoiku Daigaku, Section A, 9(231):95–116, 1967. MR 37.39, Zbl 172.8.

[Takahashi, 1970] M. Takahashi. Many-valued logics of extended Gentzen style II.Journal of Sym-
bolic Logic, 35(4):493–528, December 1970.

[Thayseet al., 1979] A. Thayse, M. Davio, and J.-P. Deschamps. Optimization of multiple-valued
decision diagrams. InProc. International Symposium on Multiple-Valued Logics, ISMVL’79, Rose-
mont/IL, USA, pages 171–177. IEEE Press, Los Alamitos, 1979.

[Urquhart, 1986] A. Urquhart. Many-valued logic. In D. Gabbay and F. Guenthner, editors,Handbook
of Philosophical Logic, Vol. III: Alternatives in Classical Logic, chapter 2, pages 71–116. Reidel,
Dordrecht, 1986.

[Vienna Group, 1996] Vienna Group for Multiple Valued Logics. MUltlog 1.0: Towards an expert
system for many-valued logics. In Michael McRobbie and John Slaney, editors,Proc. 13th Confer-
ence on Automated Deduction, New Brunswick/NJ, USA, volume 1104 ofLNCS, pages 226–230.
Springer-Verlag, 1996.

[Zabel, 1993] N. Zabel. Nouvelles Techniques de D´eduction Automatique en Logiques Polyvalentes
Finies et Infinies du Premier Ordre. PhD thesis, Institut National Polytechnique de Grenoble, April
1993.

[Zach, 1993] R. Zach. Proof theory of finite-valued logics. Master’s thesis, Institut f¨ur Algebra und
Diskrete Mathematik, TU Wien, September 1993. Available as Technical Report TUW-E185.2-
Z.1-93.

JOACHIM POSEGGA AND PETER H. SCHMITT

IMPLEMENTING SEMANTIC TABLEAUX
What is it people want to hear about an implementation? Most likely they will

be content to hear that it works, or better that it works extremely well. Who cares
on the sun deck of a cruise ship what happens in the engine-room? There is some
excuse for this attitude: implementation is often associated with nitty-gritty de-
tails, with cumbersome work-arounds caused by insufficencies of the program-
ming language, or with genial short cuts through several levels of abstraction in
the specification. This is definitely not what we want to present in this chapter. It
is tempting to join the group in their deck chairs and talk elegantly about how one
would theoretically realize an implementation, step-by-step refining the top level
specification and carefully weighing-up all design decisions. This is a possible
approach. For this time we decided on a presentation half-way between the two
portrayed alternatives. We will present runnable code, but in an easily accessible
language that also has the advantage that some of the important procedures used in
theorem proving algorithms are already available as built-ins or library functions.
We are speaking of Prolog. The reader is invited to type the theorem proving pro-
grams he will find in this chapter into his favorite Prolog system and enjoy playing
around with them.

The programs are based on, or inspired by, the theleanTAP theorem prover
[Beckert and Posegga, 1994]. The idea behindleanTAP is to implement logical
calculi by minimal means. This has two advantages: Firstly, the resulting programs
are small, which makes them easier to understand them. Second, they provide an
ideal starting point as they can be easily modified or adapted to specific needs.
Furthermore, they are more than mere toy systems and surprisingly fast.

We will provide extensive comments on these programs and in one case also a
complete soundness and correctness proof. Different alternatives for representing
the tableaux and for organizing the proof search will be considered and exemplified
by small Prolog programs.

A draw back of this approach is that the reader will be required to understand
Prolog. But let us hasten to assure that acquaintance with the basic ideas of Prolog
will suffice, all of which may be found e.g. on the first 22 pages of[Clocksin
and Mellish, 1981]. In addition we will need in the soundness and correctness
proof a formal semantics of the underlying programming language. To this end we
will review below the basic computation model of Prolog, the computation tree.
This offers another possibility for the reader to acquire an understanding for this
language or to consolidate it.

The plan for this chapter is as follows: Section 1 fixes a couple of assumptions
we will make for discussing our approaches to implementing tableaux. This in-
volves some Prolog-oriented issues, as well as certain points about the tableaux
calculi underlying our implementations. In Section 2 an algorithm for deriving
Skolemized negation normal form is presented. The input formulæ for the pro-
grams given subsequently will be in Skolemized negation normal form. Section 3

582 JOACHIM POSEGGA AND PETER H. SCHMITT

presents the first and simplest version of our theorem prover. The program has been
proposed in[Beckert and Posegga, 1994]; here we recall it and prove its sound-
ness and completeness. Section 4 extends the program by a powerful heuristic
calleduniversal formulæ. Building upon a theorem prover that represents tableaux
as graphs in Section 5, we present a compilation-based approach to tableau-based
deduction in Section 6. Section 7 discusses lemmata in tableau calculi which leads
us to Binary Decision Diagrams (BDDs). Section 8 functions as a conclusion by
giving some ideas on how one can build upon the presented programs when work-
ing towards his or her own implementation.

1 PRELIMINARIES

There are a couple of issues one needs to consider when carrying out implementa-
tions of deduction systems. Clearly, the concrete calculus that is to be implemented
and the language chosen for an implementation are of most importance.

We have chosen to use Prolog as the implementation language used in this chap-
ter. The reason for this is pragmatic: Prolog is a very convenient language for im-
plementing first-order reasoning, since the primitives of Prolog are already quite
close to first-order logic. This allows one to program in a very elegant and short
style, as we will see in the sequel. Nevertheless there are some subtle points to be
considered if we want to obtain efficient code:

As we want to achieve efficient code, we will want, to take advantage of the
strengths of Prolog systems. One is that Prolog’s depth-first search with backtrack-
ing is usually implemented very efficiently. Fortunately, this is also a well-suited
search strategy for implementing deduction. Unfortunately, Prolog’s search strat-
egy is incomplete, since it chooses whatever comes first in the database instead of
having afair selection scheme. Since we want to implement logicallycomplete
deduction systems, we will have to overcome this drawback; one way to tackle
it is switching to a bounded depth-first search. The desired completeness can be
obtained by successively increasing a depth bound.1

It is also important to observe that Prolog’s efficiency is strongly enhanced by
indexing on the first argument position of the clause head. Thus, putting the right
information in the first argument pays off.

The Prolog code we will give in the sequel is standard Prolog (in Edinburgh
syntax) and should run on most Prolog systems.2 We assume that the following
Prolog predicates, user defined or otherwise, are available:

1The other choice would have been to implement fairness. But given the facts that no convinc-
ing fairness criteria are known and the difficulty in changing Prolog’s search strategy without losing
efficiency, this is not a viable alternative.

2The code was developed and tested with Sicstus Prolog , but runs without changes with Quintus
Prolog and Eclispe ; other Prolog dialects might require little changes to our programs.

IMPLEMENTING SEMANTIC TABLEAUX 583

append/3. append(L1,L2,L3)succeeds ifL3 is the result of appending the lists
L1 andL2.

unify/2. unify(T1,T2) unifies the Prolog termsT1 andT2 by soundunifica-
tion.

Logical formulæ will be represented by Prolog terms as follows:

Prolog atom atomic formula
- negation
; disjunction
, conjunction
all(X,F) universal quantification with

X a Prolog variable and
F the scope of quantification.

Thus(p(a),all(X,(-p(X);p(f(X))))) stands for

p(a) ^ 8x(:p(x) _ p(f(x))):

Furthermore, we assume that no variable is used twice for quantification within
a set of input formulæ, e.g. a formula of the form

8x(q(x)! q(x)) ^ 8x(p(x))

should be avoided. This assumption is in fact not neccessary for using the
programs we will present, but it makes them more consise and easier to unter-
stand.

As we now have presented a rough idea of the means by which we will imple-
ment deductions, let us say a word on the calculi we will implement.

We will consider theorem provers for classical first-order logic without equality
and will use a tableau calculus in its free-variable version, see Section 4 in ‘First-
order Tableau Methods’. Usually tableau calculi are set up for general formulæ
with many logical connectives. We decided from a presentational perspective to
use only formulæ in negation normal form using only universal quantifiers.3 Arbi-
trary formulæ will be reduced to this format in a preprocessing step.

The issue whether preprocessing or normalization by tableau rules
during tableau expansion is the better choice is not resolved at the moment, and
maybe there will never be a definite answer. But separating preprocessing from the
actual proof search certainly leads to a much clearer presentation. It is of course
possible to extend the implementations we will give below to non-negation normal
form formulæ without preprocessing, if one wishes to do so.

3Note, that we do not require formulæ to be in prenex normal form.

584 JOACHIM POSEGGA AND PETER H. SCHMITT

2 PREPROCESSING

2.1 Computing a Negation Normal Form

Recall that the conversion into negation normal form is linear w.r.t. the length of
a formula not containing equivalences.4 Most operations for deriving negation
normal form are straightforward. What is not straightforward is coming up with a
good Skolemization; this is one reason we give a complete Prolog implementation
of the conversion. The second is that we show how to optimize the negation normal
form without extra cost by changing the order of disjunctively connected formulæ.

The predicate used for computing a negation normal form is

nnf(+Fml,+FreeV,-NNF,-Paths)

Fml is the formula to be transformed,FreeV is the list of free variables occurring in
Fml, NNF is bound to the Prolog term representing the computed negation normal
form of Fml, andPaths is bound to the number of disjunctive paths inNNF (resp.
Fml). We will see soon what this latter information is good for.

We implement a convenient syntax for first-order formulæ, using as logical con-
nectives ‘v’ (disjunction), ‘&’ (conjunction), ‘=>’ (implication), and ‘<=>’ (equiv-
alence).

The Prolog query we are going to use for computing the negation normal form
of a closed formula bound toFml is nnf(Fml,[],NNF,_).5 The corresponding
program is given in Figure 1. The first clause of the predicatennf (lines 1–11)
corresponds to the standard rules in semantic tableaux; nothing exciting is done—
we just use tautologies for rewriting formulæ. For universally quantified formulæ,
we add the quantified variable toFreeV to compute the negation normal form of
the scope (12–13).

Skolemization has to be carried out very carefully, since straightforwardly
Skolemizing can easily hinder finding a proof: In the first edition of[Fitting,
1996] Skolem-termsw containing all variables that appear free on a branch are in-
serted; this is correct, but too restrictive: it often prevents inconsistent branches
from closing. The current state of the art[Beckertet al., 1993] is less restric-
tive: It suffices to use a Skolem-term that is unique (up to variable renaming) to
the existentially quantified formula; this term only needs to hold the free variables
occurring in the formula. An ideal candidate for such a term is the formula itself.
This way of Skolemization has actually been known for more than fifty years: it re-
sembles the�-formulæ described in[Hilbert and Bernays, 1939,x1]. Lines 14–17
show how this can be elegantly implemented in Prolog.

We generate a copyFml1 of Fml; only the variableX gets renamed, since all oth-
ers are contained inFreeV andX is replaced byFml. Note, that we couldnot have

4If the formula contains equivalences, its negation normal form becomes exponential when com-
puted in a naive way; more clever algorithms result in an at most quadratic NNF[Eder, 1992].

5The symbol , called anonymous variable, is a convenient way to name Prolog variables, you don’t
care about

IMPLEMENTING SEMANTIC TABLEAUX 585

% Rewriting logical connectives:

1 nnf(Fml,FreeV,NNF,Paths) :-

2 (Fml = -(-A) -> Fml1 = A;

3 Fml = -all(X,F) -> Fml1 = ex(X,-F);

4 Fml = -ex(X,F) -> Fml1 = all(X,-F);

5 Fml = -(A v B) -> Fml1 = -A & -B;

6 Fml = -(A & B) -> Fml1 = -A v -B;

7 Fml = (A => B) -> Fml1 = -A v B;

8 Fml = -(A => B) -> Fml1 = A & -B;

9 Fml = (A <=> B) -> Fml1 = (A & B) v (-A & -B);

10 Fml = -(A <=> B) -> Fml1 = (A & -B) v (-A & B)),!,

11 nnf(Fml1,FreeV,NNF,Paths).

% Universal Quantification:

12 nnf(all(X,F),FreeV,all(X,NNF),Paths) :- !,

13 nnf(F,[X|FreeV],NNF,Paths).

% Skolemization:

14 nnf(ex(X,Fml),FreeV,NNF,Paths) :- !,

15 copy_term((X,Fml,FreeV),(Fml,Fml1,FreeV)),

16 copy_term((X,Fml1,FreeV),(ex,Fml2,FreeV)),

17 nnf(Fml2,FreeV,NNF,Paths).

% Conjunctions:

18 nnf(A & B,FreeV,(NNF1,NNF2),Paths) :- !,

19 nnf(A,FreeV,NNF1,Paths1),

20 nnf(B,FreeV,NNF2,Paths2),

21 Paths is Paths1 * Paths2.

% Disjunctions:

22 nnf(A v B,FreeV,NNF,Paths) :- !,

23 nnf(A,FreeV,NNF1,Paths1),

24 nnf(B,FreeV,NNF2,Paths2),

25 Paths is Paths1 + Paths2,

26 (Paths1 > Paths2 -> NNF = (NNF2;NNF1);

27 NNF = (NNF1;NNF2)).

% Literals:

28 nnf(Lit,_,Lit,1).

Figure 1. Computing negation normal form

586 JOACHIM POSEGGA AND PETER H. SCHMITT

used unificationX = Fml since this would have created a cyclic term. The for-
mulaFml1 still containsX. The secondcopy term goal substitutes the (arbitrary)
constantex for X. Here is an example: the goalnnf(ex(X,p(X,Y)),[Y],NNF,)

will succeed and bindFml to p(X,Y), Fml1 to p(p(X,Y),Y), Fml2 to
p(p(ex,Y),Y). We have to pay a price for not introducing a new function sym-
bol by reusing the formula: the set of function symbols has to be disjoint from
the set of predicate symbols. Let us mention at this point another restriction on
the input formula: it should not contain the same variable for different quantifiers,
e.g. 8X(q(X) ^ 9X(r(X)) is not allowed. But these are pathological formulas
anyhow and we may remedy the situation by renaming bound variables.

In Sicstus Prologcopy term behaves as if it were defined by

copy_term(X,Y) :-

assert('copy of'(X)),

retract('copy of'(Y)).

If t is a prolog term with the Prolog variablesX,A,B,C then the querycopy_term
((X,t,[A,B,C]),(X1,Y,[A,B,C])) succeeds bindingY to a copy oft whereX
is replaced byX1. The variableX1 is new, in the sense that any subsequent binding
of X does not affectX1. For example, the query

copy_term(f(X),f(Y)),X=a,Y=b.

succeeds.
The free variablesFreeVmust appear as an argument in both parameters in line

15 and 16, since we donotwant to rename them.
From a logical point of view, this might look a bit odd, as we turn predicate

symbols into function symbols when Skolemizing in this way. However, it works
under the assumption that disjoint sets of predicate and function symbols are used.
This is usually the case; if not, we can simply ‘wrap’ the inserted scope in a new
function symbol.

The next clause (17–20) is routine, besides counting disjunctive paths. The
number of disjunctive paths in a formula (i.e. the number of branches a fully ex-
panded tableau for it will have) is used when handling disjunctions (12–26): we
put the less branching formula to the left. That way the number of choice points
during the proof search is reduced, sinceleanTAP expands the left formula first.

The last clause will match literals and is again straightforward.

3 A SIMPLE AND EFFICIENT TABLEAUX-BASED THEOREM PROVER

In this section we present a simple Prolog implementation of the tableau method
for formulæ in Skolemized negation normal form. This is not only a pedagogical
device, it really works: type the code from Figure 2 — we will refer to this program
by the symbolleanTAP in the following — into your favorite Prolog system and

IMPLEMENTING SEMANTIC TABLEAUX 587

it will run extremely well at least on small examples. A second objective of this
section is the proof thatleanTAP is a correct implementation. More precisely, we
will eventually show

THEOREM 1.

1. TheleanTAP program terminates on all inputs.

2. If the queryprove(fml,h ,[],[],d) to the programleanTAP returns
success as an answer, wherefml is a formula,h is a list of formulæ and
d is a natural number, than:fml is a logical consequence ofh.

3. If :fml is a logical consequence ofh then there is a natural numberd such
that the queryprove(fml,h ,[],[],d) to leanTAP terminates with suc-
cess.

In the proof of this theorem we will not deal with the logical consequence rela-
tion directly but make use of the completeness theorem established in a previous
chapter:

:fml is a logical consequence ofh
iff

there is a closed tableau for[fml j h].

A tableauT for a listL of formulæ starts with a non ramifying branchB, the nodes
in B being labelled by the formulæ inL in some order.

Before going into details we will briefly outline the working principle of the
leanTAP program:

prove(Fml,[],[],[],VLim)succeeds ifFml can be proven inconsistent with-
out using more thanVLim free variables on each branch.

The proof proceeds by considering individual branches (from left to right) of a
tableau; the parametersFml, UnExp, andLits represent the current branch:Fml is
the formula being expanded,UnExp holds a list of formulæ not yet expanded, and
Lits is a list of the literals present on the current branch.FreeV is a list of the free
variables on the branch. A positive integerVarLim is used to initiate backtracking;
it is an upper bound for the length ofFreeV.

We will number clauses of theleanTAP -program by the line in which they start
in the listing of Figure 2. Clause 1 handles conjunctions: the first conjunct is
selected, the other is put in the list of not yet expanded formulæ. Handling dis-
junctions, clause 3 splits the current branch and two new goals have to be proven.

Universally quantified formulæ require a little more effort. Clause 6 uses the
built-in predicatelength(X,Y), which succeeds ifX is a list of lengthY. The
symbol\+ denotes negation in Sicstus Prolog. The built-in predicatecopy_term

has already been explained above.
Application of clause 6 initiates backtracking if the depth boundVarLim is

reached. Otherwise, we generate a ‘fresh’ instance of the formula withcopy_term,

588 JOACHIM POSEGGA AND PETER H. SCHMITT

% Conjunction:

1 prove((A,B),UnExp,Lits,FreeV,VarLim) :- !,

2 prove(A,[B|UnExp],Lits,FreeV,VarLim).

% Disjunction:

3 prove((A;B),UnExp,Lits,FreeV,VarLim) :- !,

4 prove(A,UnExp,Lits,FreeV,VarLim),

5 prove(B,UnExp,Lits,FreeV,VarLim).

% Universal Quantification:

6 prove(all(X,Fml),UnExp,Lits,FreeV,VarLim) :- !,

7 \+ length(FreeV,VarLim),

8 copy_term((X,Fml,FreeV),(X1,Fml1,FreeV)),

9 append(UnExp,[all(X,Fml)],UnExp1),

10 prove(Fml1,UnExp1,Lits,[X1|FreeV],VarLim).

% Closing Branches:

11 prove(Lit,_,[L|Lits],_,_) :-

12 (Lit = -Neg; -Lit = Neg) ->

13 (unify(Neg,L); prove(Lit,[],Lits,_,_)).

% Extending Branches:

14 prove(Lit,[Next|UnExp],Lits,FreeV,VarLim) :-

15 prove(Next,UnExp,[Lit|Lits],FreeV,VarLim).

Figure 2. A complete and sound tableau prover

without renaming the free variables inFreeV. The original-formula is stored for
subsequent use, and the renamed scope becomes the current formula.

Clause 11 closes branches; it is the only one which is not determinate. Note
that it will only be entered with a literal as its first argument.Neg is bound to
the negated literal and sound unification is tried against the literals on the current
branch. The clause calls itself recursively and traverses the list in its second argu-
ment; no other clause will match sinceUnExp is set to the empty list. Clause 11
incorporates the design decision to look for complementary formulas only at the
level of literals. This suffices for completeness, but closure with arbitrary comple-
mentary formulas can be faster.6

6As an example, take� ^ :�, where� is an arbitrarily complex formula. In practice, however,
such phenomena occur very rarely.

IMPLEMENTING SEMANTIC TABLEAUX 589

The last clause is reached if the current branch cannot be closed. We add the
current formula (always a literal) to the list of literals on the branch and pick a
formula waiting for expansion.

3.1 Proving Completeness & Correctness ofleanTAP

To reason about the execution of the programleanTAP we need an operational
semantics of Prolog as a programming language. We will use for this purpose the
computation tree,TP , associated with a Prolog programP . This concept will be
explained in detail below. Computation trees are a very simple model for an oper-
ational semantics of Prolog and other descriptions are available, see e.g.[Börger
and Rosenzweig, 1994]. But leanTAP uses the cut ‘!’ only in obvious ways,
negation only in line 7 and none of the meta programming features at all. Only the
‘->’ construct in line 12 may not be completely standard. Thus, the overhead for
a deeper operational model does not pay off.

To begin our explanation of the concept of the computation tree,TP , we remark
that the nodes of this tree are labelled by the states of computation that arise dur-
ing the execution of a Prolog programP . At this level of abstraction a state of
computation consists of a list,goallist, of atomic formulæ, called goals, and a sub-
stitution� of the Prolog variables occurring in this list. If a goal list[F1; : : : ; Fk]
and a substitution� are attached to a noden, then it is really the list of formulæ
[�(F1); : : : ; �(Fk)] that we consider. But it will prove convenient to separate this
information into a formula part and a substitution part.

Now we turn to the question, what are the successor nodes of a noden labelled
with a pair(goallist; �)? Among the list of goals still to be solved Prolog always
chooses the first one. Putting aside for the moment the case of the empty list
of goals we writegoallist = [goal j restgoals]. An attempt is made to unify
�(goal) with the head of a clause in the programP ; to be precise the variables
in the clause are first renamed to guarantee that it has no common variables with
�(goal). Assume that a most general unifier� exists for�(goal) and the head
head of a clausehead:- body 2 P , then there will be a successor noden1 of
n labelled with(body + restgoals; � � �). Here, ‘+’ denotes the concatenation
of two lists and� composition of substitutions. For each successful unification
a successor node ofn will be created in this way from left to right in the order
of appearance inP . Branches inTP will always be calledcomputationsto avoid
confusion with branches in other tree structures, e.g. branches in a tableau. A
computation terminates successfully if it is a finite branch inTP and its last node
nf is labelled with the empty list of goals. The substitution in the label ofnf is
called theanswer substitutionof the computation. A computation fails if its last
node is labelled with([goal j restgoals]; �), such that�(goal) is not unifiable with
the head of any clause inP . The root ofTP is labelled with the initial list of goals,
goallist0, i.e. the query entered by the user, and the empty substitution. Since the
shape of the computation tree also depends ongoallist0, we should strictly speak

590 JOACHIM POSEGGA AND PETER H. SCHMITT

of the computation treeTP;query for a programP and a queryquery. We will use
TP wheneverquery is clear from the context.

The computation tree provides only a static picture of the evaluation of a Prolog
program. The dynamic behaviour is easily explained: evaluation starts with the
root node of the tree. Whenever there is branching, Prolog chooses the leftmost
continuation. If a computation fails, Prolog backs up to the next branching point
and then continues along the leftmost continuation that has not yet been explored.
This is called backtracking in Prolog terminology. If all backtracking alternatives
at all branching points have been exhausted without reaching the empty list of
goals the evaluation fails. Of course there is, as with all programming languages,
the possibility that your program was not written carefully enough and evaluation
runs into an infinite loop.

After this general description of computation trees we will take a closer look at
the computation trees associated with theleanTAP program. The root node will
be labelled with the one-element goal list

[prove(fml,h,[],[],d)]

with fml being a formula,h a list of formulæ andd a natural number. Any noden
with goal list

[prove((fml1,fml2),h,lits,freev,d) | Restgoals]

will have a successor node arising from clause 1. The same goal also unifies with
the head of the clauses 11 and 14 and there should be corresponding successor
nodes in the computation tree. This is the right time to explain the meaning of
the symbol ‘!’, called cut. When ‘!’ is reached during the evaluation of the body
of a clause with headhead all alternative clauses that satisfyhead will be cut
off. In the case at hand here there is consequently no branching at noden in the
computation tree. The same remark applies to nodes labelled with

[prove((fml1;fml2),h,lits,freev,d) | Restgoals].

The cut in clause 3 prevents branching. Note also that this time the length of the
list of goals is increased. The universal quantifier case requires more explanations.
Here we look at a noden labelled with

[prove(all(X,fml),h,lits,freev,d) | Restgoals]

and clause 6 is called.\+length(freev,d) succeeds if the length of the list
freev is strictly less than the numberd.7 length/2 is a built-in predicate in most
Prolog systems. It may not be available in your system and you will have to pro-
gram it yourself. The same may also be true for the predicatecopy_term/2. The
append predicate has already been mentioned above. Clause 6 is the only clause

7Recall that ‘n+’ denotes Prologs negation as failure.

IMPLEMENTING SEMANTIC TABLEAUX 591

that changes the value of the fourth argument of theprove predicate. Because of
the cut ‘!’ in the body of clause 6 noden has only one successor node. Since the
input formulæ do not contain existential quantifiers or negation signs in front of
composite subformulæ it only remains to consider nodes labelled with

[prove(fml,h,lits,freev,d) | Restgoals]

for fml a literal. These nodes may have two successors, the first and leftmost
arising from an application of clause 11 and the second arising from clause 14.
We only comment on clause 11. A goal of the formG1 -> G2 is resolved by
Prolog’s evaluation mechanism by first calling goalG1. If this fails, G1 -> G2

also fails. In the special case of clause 11 this will never happen, see below. If
G1 succeeds then the goalG2 is called. On backtracking only alternative solutions
to G2 are considered,G1 is not considered again. This is crucial in the case of
clause 11. HereG1 = (fml = -Neg ; -fml = Neg) is a disjunctive goal: first
(fml = -Neg) is tried and only if this fails is(-fml = Neg) considered. Iffml
is a positive literal the first subgoal fails andNeg gets bound to-fml, which is the
dual offml. If fml is a negative literal,-fml0, then the first subgoal succeeds
binding the Prolog variableNeg to fml0, the dual offml. Without the Prolog-
implication ‘->’, backtracking would call the second subgoal and this would yield
the unwanted solutionNeg = -fml. Since the disjunctive goal in front of the ‘->’
sign in the body of clause 11 succeeds exactly once we will not mention it in the
computation tree. The leftmost successor node will instead be labelled with the
goal sequence whose head is the disjunctive goal

(unify(Neg,L) ; prove(Lit,[],Lits,_,_))

where the substitution of this node bindsNeg to the dual of the literalfml. If
unify(Neg,L) succeeds then clause 11 has been successful and Prolog´s evalua-
tion mechanism will start to work on the next goal in the sequencerestgoals. The
answer substitution is the most general unifier of the two literals. On backtrack-
ing all possible most general unifiers betweenlit and some literal in the list of
literalslits will be produced. Ifunify(Neg,L) fails then the clause on line (11)
will recursively be called with the third argumentLits instead of[Lit | Lits].
Note also that the second argument is now set to[].

Let us consider as a specific example theleanTAP proof of (p _ (q ^ r)) !
((p _ q) ^ (p _ r)), which is just one half of the distributive law of proposi-
tional logic. The query submitted toleanTAP is prove(F; []; []; X; d) whereF
is the negation of the formula to be proved, explicitely given in Figure 3. In this
and the following figures of computation trees we only show goals of the form
prove(fml; h; lits; varlist; d), and sometimes also of the formunify(l1; l2). A
successful computation of the corresponding computation tree is shown in Figure
3. To prevent the picture from becoming too confusing we did not show the failed
computations to the left of the successful path nor the branchings to the right that
were not explored. This is (almost) made up for in Figure 4 on page 593. Figure 5

592 JOACHIM POSEGGA AND PETER H. SCHMITT

input formula F = (F1; F2)
with F1 = (p; (q; r))
and F2 = (F21;F22)
with F21 = (�p;�q)
and F22 = (�p;�r)

1 hprove(F; []; [])i
2 hprove(F1; [F2]; [])i
3 hprove(p; [F2]; []); prove((q; r); [F2]; [])i
4 hprove(F2; []; [p]); prove((q; r); [F2]; [])i
5 hprove(F21; []; [p]); prove(F22; []; [p]); prove((q; r); [F2]; [])i
6 hprove(�p; [�q]; [p]); prove(F22; []; [p]); prove((q; r); [F2]; [])i
7 hprove(F22; []; [p]); prove((q; r); [F2]; [])i
8 hprove(�p; [�r]; [p]); prove((q; r); [F2]; [])i
9 hprove((q; r); [F2]; [])i

10 hprove(q; [r; F2]; [])i
11 hprove(r; [F2]; [q])i
12 hprove(F2; []; [r; q])i
13 hprove(F21; []; [r; q]); prove(F22; []; [r; q])i
14 hprove(�p; [�q]; [r; q]); prove(F22; []; [r; q])i
15 hprove(�q; []; [�p; r; q]); prove(F22; []; [r; q])i
16 hprove(F22; []; [r; q])i
17 hprove(�p; [�r]; [r; q])i
18 hprove(�r; []; [�p; r; q])i
19 hi

We have suppressed the last two arguments of theprove predicate since they are not
relevant for propositional formulas.

Figure 3. A successful computation for theleanTAP program with a propositional
input formula

shows the computatation tree forleanTAP with the first-order input formula

p(a) ^ :p(f(f(a))) ^ 8x(p(x)! p(f(x)))

Proof. Theorem 1, part 1.
By definition any computation tree is finitely branching. Thus a computation tree is
finite if all its computations are finite. LetT be the computation tree forleanTAP
and thequery = prove(fml,h,[],[],d). By gs(n) = hg1; : : : ; gki we de-
note the goal sequence attached to noden in T. For each individual goalg =
prove(fml; h; lits; varlist;
d) we define a complexity measurec(g) which is the quadruplehc1(g); c2(g);

IMPLEMENTING SEMANTIC TABLEAUX 593

1

2

3

fail 4

5

6

7

8

� �

unify(p; p) �

9

10

fail 11

� 12

unify(�r; q) prove(r; []; []) 13

fail fail 14

� 15

unify(p; r) unify(q;�p)

fail prove(�p; []; [q]) fail prove(�q; []; [r; q])

unify(p; q) prove(�p; []; []) unify(q; r) prove(�q; []; [q])

fail fail fail unify(q; q)

16

17

18

Numbers refer to the nodes in figure 3. 19

Figure 4. The computation tree for theleanTAP program with a propositional
input formula

594 JOACHIM POSEGGA AND PETER H. SCHMITT

input formula F = (F1; F2; F3)
with F1 = p(a)
and F2 = �p(f(f(a)))
and F3 = all(X; (�p(X); p(f(X)))

1 hprove(F; []; []; []; 2)i
2 hprove(p(a); [�p(f(f(a))); F3]; []; []; 1)i
3 hprove(�p(f(f(a))); [F3]; [p(a)]; []; 1)i
4 hprove(F3; []; [�p(f(f(a))); p(a)]; []; 1)i
5 hprove((�p(Y); p(f(Y))); [F3]; [�p(f(f(a))); p(a)]; [Y]; 1)i
6 hprove(�p(Y); [F3]; [�p(f(f(a))); p(a)]; [Y]; 1);

prove(p(f(Y)); [F3]; [�p(f(f(a))); p(a)]; [Y]; 1)i
7 hprove(p(f(a)); [F3]; [�p(f(f(a))); p(a)]; [a]; 1)i
8 hprove(F3; []; [p(f(a));�p(f(f(a))); p(a)]; [a]; 1)i
9 hprove((�p(Z); p(f(Z))); [F3]; [p(f(a));�p(f(f(a))); p(a)];

[Z; a]; 1)i
10 hprove(�p(Z); [F3]; [p(f(a));�p(f(f(a))); p(a)]; [Z; a]; 1);

prove(p(f(Z)); [F3]; [p(f(a));�p(f(f(a))); p(a)]; [Z; a]; 1)i
11 hprove(p(f(f(a))); [F3]; [p(f(a));�p(f(f(a))); p(a)]; [f(a); a]; 1)i
12 hi

Figure 5. First-order example of a successfulleanTAP computation

c3(g); c4(g)i of the numbersci(g) defined below ordered lexicographically with
c1(g) as the leading component.

c1(g) = d� length(varlist),
c2(g) = total number of logical connectives infml andh,
c3(g) = length ofh,
c4(g) = length oflits.

Since nodes in the computation tree are labeled by goal sequences rather than sin-
gle goals we need to extend the complexity measure to listsgs = hg1; : : : ; gki
of goals. We do this by settingc(gs) = hc(g1); : : : ; c(gk)i and defining a partial
ordering� on lists of quadruples of natural numbers.

DEFINITION 2 (�).
The relation� is the least transitive relation satisfying the following three condi-
tions:

hc2; : : : ; cni � hc1; c2; : : : ; cni
he1; c2; : : : ; cni � hc1; c2; : : : ; cni if e1 < c1

he1; e2; c2 : : : ; cni � hc1; c2 : : : ; cni if e1 < c1 ande2 < c1

IMPLEMENTING SEMANTIC TABLEAUX 595

A goal sequencegs1 is of smaller complexity than goal sequencegs2 iff

c(gs1) � c(gs2)

The crucial observation, which is easily checked by looking at theleanTAP pro-
gram, is that for any application of a program clause leading from the goal se-
quencegs1 to the immediate successorgs2 we havec(gs2) � c(gs1). Thus finite-
ness of computations will follow when we can show that� does not allow infinite
descending chains. �

LEMMA 3 (Wellfoundedness of�).
The ordering� on lists of quadruples of natural numbers does not allow infinite
descending chains.

Proof.
Assume to the contrary that an infinite descending chains1 � : : : sn � sn+1 : : :
exists. Each elementsi in this chain is a list. Letm be the least number occuring
as the length of somesi. We must havem > 0 since the empty listhi, which is
the least element with respect to�, cannot occur among thesi. Choosei0 such
that si0 = hs01; : : : s0mi has lengthm. We considersi = hsi1; : : : sir; s02; : : : s0mi
andsj = hsj1; : : : sjk; s02; : : : s0mi for j > i � i0. By choice ofm andi0 we must
haver; k > 0. It is easily checked that all elementssj1; : : : s

j
k are strictly smaller

with respect to< than all elementssi1; : : : s
i
r. From this it follows that the first

elements in the listssi with i � i0 form a descending chain contradicting the well-
foundedness of the lexicographical ordering on quadruples of natural numbers.�

We now turn to the proof of correctness and completeness. for both parts we will
use the fact that the tableaux that can be reached from an initial setffmlg[h 8 of
formulæ can be retrieved from the goal sequences in the computation tree starting
with prove(fml; h; []; []; d). It turns out that this is not directly possible for all
nodes. If at a noden execution of clause 11 is possible two successor nodes will be
created, one corresponding to theunify(l1; l2) predicate in the body of the clause
and the other to theprove(fml; []; lits; varlist; d) predicate. Nodes of the second
type will be calledexception nodes. At exception nodes the correspondence with
the tableau structure breaks down. We first associate with every non-exception
noden of the computation tree for aleanTAP -program the structuretab0(n) and
secondly define a tableau structure(tab(n); �(n)) for all nodesn.

For our purposes a tableau will simply be a set of branches and a branch is
simply a set of formulæ.

DEFINITION 4 (Tableau at nodes of the computation tree).
Let n be a node in the computation tree with attached goal sequencegs(n) =

8Strictly speakingh is a list, we assume without mentioning thath is converted into the set of its
elements wheneverh is used as an argument for a set theoretic operation like[.

596 JOACHIM POSEGGA AND PETER H. SCHMITT

hg1; : : : ; gri with gi = prove(fmli; hi; litsi; varlist; d) Then

branch(gi) = ffmlig [hi [litsi
tab0(n) = fbranch(gi) j 1 � i � rg

The definition oftab(n) and�(n) proceed by induction on the nodes inT . For the
root noden0 we have

tab(n0) = tab0(n0)
�(n0) = ;

If noden1 is reached from noden with gs(n) = hg1; : : : ; gri by an application of
theunify goal in the body of clause 11 then

tab(n1) = tab0(n1)
�(n1) = �u � �(n)

Here�u is the most general unifier computed in the successful execution ofunify.
If noden1 is an exception node reached fromn then

tab(n1) = tab(n)
�(n1) = �(n)

In all other cases where noden1 is reached from noden

tab(n1) = tab0(n1)
�(n1) = �(n)

LEMMA 5. For every noden in the computation tree of the queryprove(fml;
h; []; []; d) there is a tableauT for ffmlg [h such that the tableau�(n)(tab(n))
contains all open branches ofT .

Proof. (of the lemma)
The proof proceeds by induction on the nodes in the computation tree and is
obviously true for the root node. Letn be a node andT a tableau such that
�(n)(tab(n)) contains all open branches ofT . Whenn1 is reached fromn by
a program clause 1, 3 or 6 then�(n1)(tab(n1)) contains all open branches of
the tableauT1, T3 or T6 respectively, whereTi is reached fromT by an appli-
cation of an�, � or rule respectively. Ifn1 is reached fromn by program
clause 14tab and� remain unchanged and there is nothing to show. The same
is true whenn1 is an exception node. It remains to consider the case whenn1
is reached fromn by theunify predicate in the body of program clause 11. If
g =prove(fml; h; lits; varlist; d) is the leftmost goal ings(n) thentab(n1) =
tab(n) n fbranch(g)g. But since�u(branch(g)) is closed the statement of the
lemma remains true for noden1. �

Proof. (Theorem 1 Part 2)
When leanTAP terminates successfully at noden then tab(n) is the empty set.
This implies by the previous lemma that there is a tableau for the initial set of
formulæ with no open branches. Thus correctness ofleanTAP is proved. �

IMPLEMENTING SEMANTIC TABLEAUX 597

Proof. Theorem 1 (Part 3).
This part of the proof starts from the assumption that the formulaF is a logical
consequence of the list of formulæH . Thus there exists a closed tableauT for
[F j H]. This T may, on the face of it, not match very well with the tableau
that theleanTAP program tries to construct. From the completeness proof of the
tableau calculus (Letz’s Chapter) we know already more: not only does there exist
a closed tableau, butevery fair expansion strategy will eventually produce a closed
tableau. It thus remains to show the tableaux(tab(n); �(n) that are associated to
leanTAP ´s computation tree constitutes a fair tableau search strategy.
Proof sketch:
There are only two kinds of branching points in the computation tree ofleanTAP .
The first reflects the alternatives to solve a goal of the formprove(lit; h; lits;
varlist; d) wherelit is a literal. Either clasue 11 or clause 14 are applicable.
Clause 11 is tried first and if this does not lead to successful termination finiteness
of the computation tree will force backtracking and clause 14 will be taken. This
shows that for any noden and any branchb 2 tab(n) any formulafml 2 b, that is
not a literal, will eventually be expanded, unless the computation has in the mean-
time already ended successfully.
The second kind of branching points occur in the execution of the body of clause 11;
there the alternative to unifylit with the first element in the listlits or to shorten
the list lits arises. First unification is pursued. If this does not lead to successful
termination finiteness of the computation tree again forces the second alternative
to be considered. In this way all possibilities to close a branch will be explored.
It remains to observe that by increasing the boundd in the initial query to the
leanTAP -program the number of occurences of a particular universal formula on
each branch may be arbitrarily increased.
Altogether this shows thatleanTAP pursues a fair search strategy. �

4 INCLUDING UNIVERSAL FORMULAE

There are many known heuristics which can be included into a tableau-based theo-
rem prover. Including heuristics usually means either strengthening the underlying
calculus for gaining shorter proofs, or directing the proof search in order to avoid
useless search. Both are not universally good ideas: the fact that proof lengths
decrease does not say anything on the difficulty of actuallyfinding these shorter
proofs, and guiding the proof search usually involves some effort for computing
the particular guidelines. Heuristics are not a panacea: one must carefully analyze
whether it really pays off to include a concrete heuristic. The more focussed an
application of a theorem prover, the better the chances that appropriate heuristics
increase the efficiency of an implementation.

598 JOACHIM POSEGGA AND PETER H. SCHMITT

(:p(a) _:p(b)) ^ (8x p(x))

:p(a) _:p(b)

8x p(x)

p(X)

:p(a) :p(b)

Figure 6. An example for the use of universal formulae

From some heuristics, however, most application areas benefit and it is gen-
erally a good idea to give them at least a try. One of these domain-independent
heuristics is calleduniversal formulae. The idea behind it is the following:

Universally quantified formulae are often used more than once for closing a
tableau, and each time a different substitution for the free variables is needed. The
standard procedure in semantic tableaux for this is to apply the-rule to the cor-
responding formulae more than once and generate several instances of them. Each
instance contains different free variables, which can be bound differently for clos-
ing branches. The problem is that the more instances of-formulae are created,
the bigger the tableau (i.e. the search space) grows. Here it helps to recognize
‘universal’ formulae; these can be used arbitrarily often in a proof with different
substitutions for some of their free variables.

DEFINITION 6. Suppose� is a formula on some tableau branchB. � is universal
with respect to the variablex if the following holds for every modelM and every
ground substitution�:

If M j= B�, thenM j= ((8x)�)�:

Notational agreement:If we want to refer to a variablex which is universal w.r.t.
a certain formula on some branch, and it is clear which branch and formula are
meant, we will simply write ‘the universal variablex’ in the sequel.

A more detailed discussion of universal formulae can be found in[Beckert
and Posegga, 1995] and also in [Beckert and H¨ahnle, 1992]; we give a slightly
simplified account here. Figure 6 gives an example: The variableX is universal to
both branches and thus they can be closed without applying the-rule again.

The problem of recognizing universal formulae is undecidable in general. How-
ever, a wide and important class of universal formulæ can be recognized quite eas-
ily: assume there is a sequence of tableau rule applications that does not contain

IMPLEMENTING SEMANTIC TABLEAUX 599

% Conjunction:

1 prove((A,B),UnExp,Lits,DisV,FreeV,UnivV,VarLim) :- !,

2 prove(A,[(UnivV:B)|UnExp],Lits,DisV,FreeV,UnivV,VarLim).

% Disjunction:

3 prove((A;B),UnExp,Lits,DisV,FreeV,UnivV,VarLim) :- !,

4 copy_term((Lits,DisV),(Lits1,DisV)),

5 prove(A,UnExp,Lits,(DisV+UnivV),FreeV,[],VarLim),

6 prove(B,UnExp,Lits1,(DisV+UnivV),FreeV,[],VarLim).

% Universal Quantification:

7 prove(all(X,Fml),UnExp,Lits,DisV,FreeV,UnivV,VarLim) :- !,

8 \+ length(FreeV,VarLim),

9 copy_term((X,Fml,FreeV),(X1,Fml1,FreeV)),

10 append(UnExp,[(UnivV:all(X,Fml))],UnExp1),

11 prove(Fml1,UnExp1,Lits,DisV,[X1|FreeV],[X1|UnivV],VarLim).

% Closing Branches:

12 prove(Lit,_,[L|Lits],_,_,_,_) :-

13 (Lit = -Neg; -Lit = Neg) ->

14 (unify(Neg,L); prove(Lit,[],Lits,_,_,_,_)).

% Extending Branches:

15 prove(Lit,[(UnivV:Next)|UnExp],Lits,DisV,FreeV,_,VarLim) :-

16 prove(Next,UnExp,[Lit|Lits],DisV,FreeV,UnivV,VarLim).

Figure 7.leanTAP with universal variables

a disjunctive rule (i.e. the tableau does not branch). All formulae that are gener-
ated by this sequence are universal w.r.t. the free variables introduced within the
sequence. Substitutions for these variables can be ignored, since the sequence
could be repeated arbitrarily often for generating new copies of these variables —
without generating new branches.

Including this optimization in the previously discussed implementation is not
a major undertaking: we simply collect a list of ‘universal’ variables for each
formula. For this, the arity ofprove is extended from 5 to 7:

prove(Fml,UnExp,Lits,DisV,FreeV,UnivV,VarLim)

UnivV andDisV are new parameters, the use of all others remains unchanged.
UnivV is a list of the universal variables in the current formulaFml. DisV repre-
sents something like their counterpart: it is a Prolog term containing all variables

600 JOACHIM POSEGGA AND PETER H. SCHMITT

on the current branch which arenot universal in one of the formulae (we will call
these the ‘disjunctive variables’).9 Each unexpanded formula inUnExp will have
the list of its universal variables attached. The Prolog functor ‘:’ is used for this
purpose.

The prover is now started with the goal

prove(Fml,[],[],[],[],[],VarLim)

for showing the inconsistency ofFml. We will discuss the extended program by
explaining the differences to our previous version.

| ?- prove((all(X,p(X)),(-(p(a));-(p(b)))),[],[],[],[],[],1) .

Call: prove((all(X1,p(X1)),(-(p(a));-(p(b)))),[],[],[],[],[],1)

Call: prove(all(X1,p(X1)),[[]:(-(p(a));-(p(b)))],[],[],[],[],1)

Call: prove(p(X2),[[]:(-(p(a));-(p(b))),[]:all(X1,p(X1))],[],

[],[X2],[X2],1)

Call: prove((-(p(a));-(p(b))),[[]:all(X1,p(X1))],[p(X2)],

[],[X2],[],1)

Call: prove(-(p(a)),[[]:all(X1,p(X1))],[p(X2)],[]+[],[X2],[],1)

Exit: prove(-(p(a)),[[]:all(X1,p(X1))],[p(a)],[]+[],[a],[],1)

Call: prove(-(p(b)),[[]:all(X1,p(X1))],[p(X3)],[]+[],[a],[],1)

Exit: prove(-(p(b)),[[]:all(X1,p(X1))],[p(b)],[]+[],[a],[],1)

Exit: prove((-(p(a));-(p(b))),[[]:all(X1,p(X1))],[p(a)],

[],[a],[],1)

Exit: prove(p(a),[[]:(-(p(a));-(p(b))),[]:all(X1,p(X1))],[],

[],[a],[a],1)

Exit: prove(all(X1,p(X1)),[[]:(-(p(a));-(p(b)))],[],[],[],[],1)

Exit: prove((all(X1,p(X1)),(-(p(a));-(p(b)))),[],[],[],[],[],1)

Figure 8. Trace of problem shown in Fig. 6

All universal variables of a conjunction are universal for each component (lines
1 and 2 in Figure 6).10

When dealing with disjunctions (3–6), we exploit universality of variables and
rename these variables on both branches. Experiments have shown that for most
examples it is best to only rename the variables in the literals. We could also
rename the universal variables inUnExp, but this requires an extra effort which
does not pay off in many cases.

9To be precise:DisV holds the variables which are not universal w.r.t. a formula on the current
branch, whereasUnivV holds the variables universal w.r.t. the current formula.

10The implementation given here results in both conjunctions sharing universal variables. This is
correct but not necessary: the variables could be renamed in one conjunct.

IMPLEMENTING SEMANTIC TABLEAUX 601

Besides this, disjunctions also destroys universality: the universal variables of
a disjunction are therefore not universal to its components. The tableau is split
and these variables become non-universal on both resulting branches. We there-
fore add them toDisV by creating a new Prolog term.11 Universal variables of
other formulae on the right-hand branch are renamed bycopy term. This allows
universal variables to be instantiated differently on the two resulting branches.

When introducing a new variable by the quantifier rule (7–11), this variable
becomes universal for the scope (it may loose that status if a disjunction in the
scope is expanded, see above).

The next clause (lines 12–14) remains unchanged, besides having two more
parameters.

Recall that the sixth parameter ofprove holds the universal variables of the
current formula (not of the whole branch). Thus, when extending branches in the
last clause we must change this argument.

Figure 8 shows a trace of the program when run on the example in Figure 6.

4.1 Performance

It is interesting to compare the performance of the two programs we have presented
in Figures 2 and 7. Table 1 gives the respective figures for some of Pelletier’s
problems [Pelletier, 1986]. The negated theorem has been placed in front of the
axioms and the program of Figure 1 for computing negation normal form was
applied as a preprocessing step.

Some of the theorems, like Problem 38, are quite hard: the3T
AP prover [Beck-

ertet al., 1992], for instance, needs more than ten times as long. Schubert’s Steam-
roller (Pelletier No. 47) cannot be solved; this is no surprise, since the problem is
designed for forward chaining systems based on conjunctive normal form. It can
only be proven in tableau-based systems if good heuristics for selecting-formulae
are used. Using a queue, as in our case, is not sufficient. We console ourselves
with Problems No. 34 and 38, which are barely solvable in a comparable time by
CNF-based provers unless sophisticated algorithms for deriving conjunctive nor-
mal forms are applied. Pelletier No. 34 (also called ‘Andrew’s Challenge’) is not
solvable without universal formulae, either. This example demonstrates the useful-
ness of the heuristic for complex problems. The use of universal formulae, how-
ever, also has disadvantages: the runtime for other problems (like 38) increased,
as there is some overhead involved with maintaining universal variables.12

11We could use a list, but creating a new term by ‘+’ (an arbitrary functor) is faster.
12The overhead, however, is not dramatic: in practice, an implementation is slowed down by a

constant factor of about 2. On the other hand, exploiting universal formulae can result in an exponential
speedup.

602 JOACHIM POSEGGA AND PETER H. SCHMITT

Table 1. Performance of the programs given in Figure 6/Figure 7 for Pelletier’s
problem set (the runtime has been measured on a SUN SPARC 10 workstation
with SICStus Prolog 2.1; ‘0msec’ means ‘not measurable’)

No. Limit Branches Closings Time
VarLim closed tried msec

32 3/3 10/10 10/10 10/10
33 1/1 11/11 11/11 0/10
34 ??/5 –/79 –/79 1/109
35 4/2 1/1 1/1 0/0
36 6/6 3/3 3/3 0/0
37 7/7 8/8 8/8 9/30
38 4/4 90/90 101/101 210/489
39 1/1 2/2 2/2 0/0
40 3/3 4/4 5/5 0/0
41 3/3 4/4 5/5 0/9
42 3/3 5/5 5/5 9/19
43 5/5 18/18 18/18 109/179
44 3/3 5/5 5/5 10/19
45 5/5 17/17 17/17 39/79
46 5/5 53/53 63/63 59/189

5 TABLEAUX AS GRAPHS

Taken literally, the theoretical treatment of semantic tableaux seems to suggest
that tableaux are trees. However, the programs presented so far as well as the
completeness proof consider tableaux as sets of branches. One standard approach
to improve an implementation is to look for efficient data structures. Using trees
would be an impovement over sets of branches, but acyclic graphs are even better.
Since graphs use structure sharing, i.e. multiple occurences of the same subtree
are replaced by pointers to only one occurence of the subtree, they allow for a very
compact representation of the branches of a tableau which may in extreme cases
be exponentially smaller than a tree representation.

This section investigates such a graphical representation of tableaux. The un-
derlying idea is to reduce the amount of computation required during deduction by
moving some of the effort for expanding formulae into preprocessing. The prepro-
cessing computes a graph representation of a partially extended tableau, where�-
and�-formulae are already fully expanded and need not be considered during the
proof search any more.

We begin with an explanation of the syntax used to describe graphs. The sim-
plest tableau graph consists of one node labelled with the atom ‘1’. This atom is
used as a marker for the end of branches, i.e. it is the last entry in all branches of

IMPLEMENTING SEMANTIC TABLEAUX 603

a tableau graph. IfF andG are graphs, thenF _ G will be the graph with a top
node labelled with the connective_ from which two edges lead to the top nodes of
graphF and graphG respectively. In addition we will use the graph constructor^
which is particular to the class of graphs considered here. IfF andG are graphs
thenF ^G denotes the graph obtained fromG by adding a new top noden0 above
the original top node ofG. Noden0 is labelled byF . This offers the possibility to
represent graphs inside of graphs and we use it for treating universal quantifiers.

The following function maps a formula in negation normal form into a graphical
representation of its partially expanded tableau:

DEFINITION 7. (Mapping Formulæ to Tableau Graphs)
Let F be a first-order formula in Skolemized negation normal form, and let ‘1’
denote the atomic truth constant13

tgraph(F)
def
=

8>>><
>>>:

F ^ 1 if F is a literal

tgraph(A)
h

1
tgraph(B)

i
if F = (A ^ B)

tgraph(A) _ tgraph(B) if F = (A _ B)
(8x tgraph(F 0)) ^ 1 if F = 8x F 0

where

F
h
G

G0

i
def
=

8<
:

A ^ (B
�
G
G0

�
) if F = A ^ B

(A
�
G
G0

�
) _ (B

�
G
G0

�
) if F = A _ B

G0 if F = G

The replacement function used to deal with a conjunctionsA^B has the effect
of appending the graph forB at the end of all branches of thetgraph(A).

Universally quantified formulae are represented by deriving a representation for
a fully expanded tableau of the scope of the formula and putting it into one node
together with a reference to the quantified variable. In this way we use nesting of
graphs for treating quantified formulae. Note that an application of the replacement
mapping does never touch these nested graphs.

Figure 9 contains two examples. The left tableau graph shows the principle
of structure sharing: the graph is smaller than a fully expanded tableau for the
formula below, but the paths in the graph correspond to the branches of such a
tableau. The graph on the right-hand side is a tableau graph with a universally
quantified formula: the quantified formula is represented as a subgraph.

It may at first seem difficult to realize structure sharing in Prolog since it does
not support the use of pointers. The key to the solution is to use difference lists for

the implementation of the replacement operation: literally, an expression ‘F
h

1
G

i
’

means that each occurrence of ‘1’ is replaced by an instance ofG. If instead of1
we use a Prolog variableX then assigningG toX will have the same effect. Figure
10 shows a literal translation of Definition 7 into Prolog. A goaltgraph(Fml,G1)

13W.l.g. we assume that ‘1’ does not occur inF .

604 JOACHIM POSEGGA AND PETER H. SCHMITT

_

p q

_

r s

1

(p_ q) ^ (r _ s)

p(a)

8x

_

:p(x) p(f(x))

1

:p(f(f(a)))

1

p(a) ^ 8x (:p(x) _ p(f(x))) ^ :p(f(f(a)))

Figure 9. Sample tableau graphs

will succeed with bindingG1 to a tableau graph forFml. Note, that the computation
of tgraph(Fml,G1) requires only linear effort w.r.t. to the length of the input
formula Fml. For the propositional formula in Figure 9 thetgraph procedure
outputs the term

G = (p; ((r;); (s;)); (q; ((r;); (s;))

which seems to duplicate the subterm((r;); (s;)), but this happens only when
the term is printed. Internally it is represented something like

G = X1;X2 Z = (Z1;Z2)
X1 = (p; Z) Z1 = (r;)
X2 = (q; Z) Z2 = (s;)

Figure 11 lists a prover that takes such a tableau graph as input. More precisely,
the branch end markers will first be set totrue and the difference list construct
will be removed. The combination of the two programs thus looks like

tgraph(Fml,Graph/true) , gprove(Graph,[],[],[],d)

For showing that the original formula is inconsistent, we must check that each
path in the represented tableau is closed. This is done by recursively descending
the graph and constructing paths. A path is closed if there exists a substitution that
generates a contradiction within the literals of the path. The proof search succeeds
when all paths are closed.

IMPLEMENTING SEMANTIC TABLEAUX 605

% Conjunction:

1 tgraph((A,B),GraphA/GraphEnd):-!,

2 tgraph(A,GraphA/GraphB),

3 tgraph(B,GraphB/GraphEnd).

% Disjunction:

4 tgraph((A;B),(GraphA;GraphB)/GraphEnd) :-!,

5 tgraph(A,GraphA/GraphEnd),

6 tgraph(B,GraphB/GraphEnd).

% Universal Quantification:

7 tgraph(all(X,F),(all(X,GraphF),TEnd)/TEnd):- !,

8 tgraph(F,GraphF/true).

% Literals:

9 tgraph(Literal,(Literal,End)/End).}

Figure 10. Implementing Definition 7

If a path cannot be closed, we must perform the equivalent of applying a-rule
in a standard tableau; recall that universally quantified formulae are represented as
nested subgraphs, which contain a tableau for the scope of the quantified formula.
We can simulate the application of a-rule by appending a copy of the subgraph
to the branch we are currently considering.14 We implement this by collecting the
entry-points to such subgraphs until we end up at the end of a branch. If it is not
closed, we select one of the subgraphs for expansion.

The implementation shown in Figure 11 uses the predicate

gprove(TGraph,Gammas,Lits,FreeV,VarLim)

whereTGraph is a tableau graph, computed by the predicatetgraph/2 as ex-
plained above.VarLim limits the number of free variables on every branch during
the proof search (analogously to the previous programs). The other arguments,
which are initially set to the empty list, represent the currently considered branch:
Gamma will hold all universally quantified sub-tableau graphs that are valid on the
current branch, andLits will hold all literals on it. Free variables that have been
introduced are collected inFreeV.

The procedure for proving that the tableau graph given as input is inconsistent
mainly consists of expanding the individual branches or paths in the graph. The

14In more formal notion this means: if8x� is on a branch, we conjunctively add�0 to it, where�0

is a copy of� with x being renamed. This is correct, as(8x�)! �0 is valid.

606 JOACHIM POSEGGA AND PETER H. SCHMITT

1 memberunify(X,[H|T]) :- unify(X,H);memberunify(X,T).

% Disjunction:

2 gprove((A;B),Gammas,Lits,FreeV,VarLim) :- !,

3 gprove(A,Gammas,Lits,FreeV,VarLim),

4 gprove(B,Gammas,Lits,FreeV,VarLim).

% Noticing Universal Quantification:

5 gprove((all(X,Gr),Rest),Gammas,Lits,FreeV,VarLim) :- !,

6 gprove(Rest,[all(X,Gr)|Gammas],Lits,FreeV,VarLim).

% Applying Universal Quantification:

7 gprove(true,[all(X,Gr)|Gammas],Lits,FreeV,VarLim) :- !,

8 \+ length(FreeV,VarLim),

9 copy_term((X,Gr,FreeV),(X1,Gr1,FreeV)),

10 append(Gammas,[all(X,Gr)],Gammas1),

11 gprove(Gr1,Gammas1,Lits,[X1|FreeV],VarLim).

% Closing Branches:

12 gprove((Lit,Rest),Gammas,Lits,FreeV,VarLim) :-

13 (Lit = -Neg; -Lit = Neg) -> memberunify(Neg,Lits)

14 ; gprove(Rest,Gammas,[Lit|Lits],FreeV,VarLim).

Figure 11. Deduction with tableau graphs

first and the last clauses shown in Figure 11 work in a way similar to that ex-
plained in previous versions of theleanTAP program: the first clause corresponds
to the implementation of a�-rule, whilst the last one closes a branch. Just for
a change, we have encoded the latter clause slightly differently using a predicate
memberunify/2: it does what its name suggests: namely implements the standard
member predicate, but using sound unification.

The only part in the program that is a bit tricky are clauses 5 and 7: these im-
plement the treatment of universally quantified formulæ. As it is a good heuristic
to postpone the expansion of-formulae as long as possible, we first just collect
them inGamma when decending a branch in the tableau graph. This is what the
second clause does in a quite obvious way. Whenever we reach a leaf (denoted by
true) of a branch, the subgraphs representing-formulae come in again: program
clause 7 selects the first one in the list unless the limit for free variables is reached
(line 8) and replaces all free variables in the subgraph (line 9). For fairness rea-
sons, the formula just expanded is moved to the end of the listGammas (line 10),
and the proof search continues with one more free variable on the branch.

IMPLEMENTING SEMANTIC TABLEAUX 607

The program is textually not much smaller than the previous version working
with sets of branches as the data structure for tableaux, but there is less work to
be carried out during the proof search. On the other hand one cannot expect too
much of a speed up, since during proof search all branches have to be considered,
no matter how succinctly they have been represented. We have observed a typi-
cal increase of the performance of the graphical version of about 25%. The main
reason for this is that multiple expansion of formulae is avoided and less applica-
tions of tableau rules are needed. As an example consider a formula of the type
(A _ B) ^ (C _ D). leanTAP will expand one of the conjuncts twice. This is
avoided here.

6 COMPILING THE PROOF SEARCH

The tableau graphs introduced in the last section provide a very compact repre-
sentation of fully expanded tableaux; they can also be used for further preprocess-
ing, like computing information about contradictory literals in advance, applying
propositional simplifications, etc. One optimization we will further investigate is
thecompilationof semantic tableaux.

Compilation-based provers have been introduced by Stickel[1988]; the idea of
this approach is to translate formulæ into executable programs that carry out the
proof search during run time; it is well known that this can increase the efficiency
of the proof search considerably. The reason is basically the following: rather
than using a meta-interpreter that handles tableaux (or representations thereof),
we compile this interpreter down into the language we used for implementing the
meta-interpreter. The result is a program that carries out the proof search for a
particular set of axioms, in contrast to the meta-interpreter, which must be able to
handleanyset of axioms. This is directly comparable to interpreter and compilers
in standard programming languages: Whilst an interpreter must be able to handle
any program in the language, the result of compiling it is machine code for one
particular program, and therefore potentially much more efficient.

Compilation-based approaches to theorem proving are usually carried out for
model elimination-based calculi, only. They work by mapping formulæ in clausal
form into Prolog programs, thus taking advantage of the fact that Prolog programs
are Horn clauses. The resulting programs can be understood as logical variants of
the clauses they have been generated for, where all contrapositives of the clauses
have been created.15 The approach presented here works differently; its principle
was described in[Posegga, 1993a] and builds upon the following idea:

Instead of using a program asgprove for descending the graphically repre-
sented tableau, wegeneratea program that performs the search procedure. Thus,

15Variants exist that avoid the use of contrapositives, but require a more complex deduction algorithm
[Baumgartner and Furbach, 1994].

608 JOACHIM POSEGGA AND PETER H. SCHMITT

1 % Auxiliary predicate that instantiates a list of variables

2 % to a list of integers.

3 %

4 instantiate(_,[]).

5 instantiate(N,[N|Tail]) :- N1 is N + 1,instantiate(N1,Tail).

6

7 tgraph(Formula,Graph) :-

8 tgraph(Formula,IDs/[],Graph/(0:true)),

9 instantiate(1,IDs).

10

11 tgraph((A,B),IDs/IDsTail,GrA/GrEnd):-!,

12 tgraph(A,IDs/IDsB,GrA/GrB),

13 tgraph(B,IDsB/IDsTail,GrB/GrEnd).

14

15 tgraph((A;B),[N|IDs]/IDsTail,(N:(GrA;GrB))/GrEnd) :-!,

16 tgraph(A,IDs/IDsB,GrA/GrEnd),

17 tgraph(B,IDsB/IDsTail,GrB/GrEnd).

18

19 tgraph(all(X,F),[N|IDs]/IDsT,

20 (N:(all(X,GrF),GrEnd))/GrEnd) :-!,

21 tgraph(F,IDs/IDsT,GrF/(0:true)).

22

23 tgraph(Literal,[N|IDs]/IDs,(N:(Literal,End))/End).

Figure 12. Deriving tableau graphs with labelled nodes

we move from interpreting the graphical representation of a tableau to compil-
ing it into a program and executing the generated code. This is the main difference
from compilation-based model-elimination mentioned above: the latter transforms
clauses into declaratively equivalent Prolog clauses, whereas our approach gener-
ates a procedurally equivalent Prolog program. This can, in principle, be carried
out in any high-level programming language. We will, however, follow the line
of this chapter and describe how to program a compiler in Prolog that generates
Prolog programs.

Before we explain the idea of the compilation procedure we need a preparatory
step: we have to extend the tableau-graph generation of Figure 10 by adding labels
to the nodes in the graph. These will eventually serve as unique names for the
generated Prolog clauses, and are necessary to control the search process and avoid
duplication of Prolog clauses.

Figure 12 shows how the program for deriving tableau graphs from Figure 10
can be extended to generating graphs with labels; it works in the same way as
the previous program, but additionally collects a list of Prolog variables. When
the construction of the graph is completed procedureinstantiate/2 instantiates

IMPLEMENTING SEMANTIC TABLEAUX 609

1

2 : p 3 : q

4

5 : r 6 : s

0 : true

(p _ q) ^ (r _ s)

1 : p(a)

2 : 8x

3

4 : :p(x) 5 : p(f(x))

0 : true

6 : :p(f(f(a)))

0 : true

p(a) ^ 8x (:p(x) _ p(f(x))) ^ :p(f(f(a)))

Figure 13. Sample labelled tableau graphs

these variables to integers starting with1. These lists of integers will serve as
labels. In principle, it does not matter what sort of labels are used; integers are just
a convenient choice. Note, that the label0 is used as the label of the leaftrue. The
formulas from Figure 9 yield the result

G =

1:(2:(p,4:(5:(r,0:true);6:(s,0:true)));

3:(q,4:(5:(r,0:true);6:(s,0:true)))

respectively

G =

1:(p(a),2:(all(X,3:(4:(-(p(X)),0:true);5:(p(f(X)),0:true))),

6:(p(f(f(a))),0:true)))

for the tgraph-procedure. A graphical representation of these outputs is shown in
Figure 13.

Figure 18 lists a program that compiles labelled tableau graphs into Prolog pro-
grams. Its main predicate iscomp/3. For a labelled tableau graphltgraph the
call comp(ltgraph,X,Y) produces a Prolog programPltgraph. Technically this
is achieved by using the built-inassert predicate that adds the clauses ofPltgraph

to the global database. The second and third arguments ofcomp are occupied by
uninstantiated variables at the first call. They implement a sophisticated encoding

610 JOACHIM POSEGGA AND PETER H. SCHMITT

to pass variable bindings between the generated Prolog clauses and will be ex-
plained in detail below. To explain the program in Figure 18 we have to describe
the Prolog programPltgraph it produces and the workings of the compiling pro-
gram itself. It makes sense to look at the produced Prolog code first. The main
predicate inPltgraph is

node(+Id,+Binding,+Path,+MaxVars,+Gamma).

where

Id is the label16 (identifier) of the corresponding node in the tableau graph.

Binding is a list of bindings for the variables in the tableau graph. As Prolog
clauses are, by definition, variable disjoint, it is used to pass the variable
bindings through thenode-clauses at run time. The use of this parameter is
a bit tricky, we will discuss it below.

Path is the path that has been constructed so far.

MaxVars, the maximal number of free variables we want to allow.

Gamma is a list of labels of nodes which contain universally quantified subgraphs.

Thenode/5 clauses will succeed if the tableau graph below its label is inconsis-
tent. This test is performed by considering the individual paths in the graph and
by showing that all of them can be closed with a common substitution for the free
variables appearing in the paths.

TheBinding-parameter will be instantiated to a list: for each universally quan-
tified variable in the initial tableau graph, there is a fixed position in the list that
holds the current binding for the corresponding variable. The variable that was
first encountered will always correspond to the first position in the binding list, the
second encountered variable to the second position and so on. The third, forth and
fifth arguments are used as ingprove: the argumentPath holds the current path
in the considered tableau (as a list of literals),MaxVars limits the number of free
variables on a branch, andGamma collects applicable-formulae.

Figure 14 gives the generated Prolog code for our running example: Lines1–
11 are not generated by thecomp-procedure. They are part of thenode-definition
independently of the input graph. Lines1–3 defineclose, a simple predicate
which closes branches. Line5 defines the top level predicate for starting the proof
search, where the only parameter serves as a gamma limit. The clause starting in
line 7 defines the action of the search procedure when a leaf of the tableau graph
is reached. If the current path can be closed the calling goal succeeds. IfMaxVars

16These labels appear as the first argument, since most Prolog systems perform indexing on the first
argument of a clause. Thus, the identifier is at the right position to allow fast access to clauses by their
labels.

IMPLEMENTING SEMANTIC TABLEAUX 611

1 close(Lit,[L|Lits]) :-

2 (Lit = -Neg; -Lit = Neg) ->

3 (unify(Neg,L); close(Lit,Lits)).

4

5 start(N) :- node(1,_,[],N,[]),!.

6

7 node(0,B,P,MaxVars,[Id|Gamma]):-

8 MaxVars > 0, MaxVars1 is MaxVars - 1,

9 append(Gamma,[Id],NewGamma),

10 node(Id,B,P,MaxVars1,NewGamma).

11

12 node(1, A, B, C, D) :-

13 (close(p(a), B)

14 ; node(2, A, [p(a)|B], C, D)).

15 node(2, A, B, C, D) :-

16 node(6, A, B, C, [3|D]).

17 node(3, [_|E], A, B, C) :-

18 node(4, [D|E], A, B, C),

19 node(5, [D|E], A, B, C).

20 node(4, [D|E], A, B, C) :-

21 (close(-(p(D)), A)

22 ; node(0, [D|E], [-(p(D))|A], B, C)).

23 node(5, [D|E], A, B, C) :-

24 (close(p(f(D)), A)

25 ; node(0, [D|E], [p(f(D))|A], B, C)).

26 node(6, [D|E], A, B, C) :-

27 (close(-(p(f(f(a)))), A)

28 ; node(0, [D|E], [-(p(f(f(a))))|A], B, C)).

Figure 14. Prolog Code forp(a) ^ 8X(p(x)! p(f(X))) ^ :p(f(f(a)))

is reached the goal fails. Otherwise the next universally quantified subgraph from
the listGamma is enter at its top node.

Lines12–28 is the compiled code for the tableau graph in Figure 13: the clauses
node(1,. . .) andnode(6,. . .) correspond top(a) andp(f(f(a))) in the graph.
The universally quantified subgraph is implemented by the clausenode(2,. . .).
node(3,. . .) implements the disjunction, andnode(4,. . .) andnode(5,. . .)
correspond to the literals in the disjunct.

The trace of the program from Fig. 14 forMaxvars = 2 is shown in Fig. 15
In our running example there is only one variable, this is not enough to see how

thebindings parameter works in general. Let us consider as a second example
the labelled tableau graph in Figure 16 and the prolog programm that is compiled

612 JOACHIM POSEGGA AND PETER H. SCHMITT

1 C: start(2)

2 C: node(1,X,[],2,[])

3 C: close(p(a),[])

3 F: close(p(a),[])

3 C: node(2,X,[p(a)],2,[])

4 C: node(6,X,[p(a)],2,[3])

5 C: close(-(p(f(f(a)))),[p(a)])

5 F: close(-(p(f(f(a)))),[p(a)])

5 C: node(0,[Y|Z],[-(p(f(f(a)))),p(a)],2,[3])

9 C: node(3,[Y|Z],[-(p(f(f(a)))),p(a)],1,[3])

10 C: node(4,[U|Z],[-(p(f(f(a)))),p(a)],1,[3])

11 C: close(-(p(U)),[-(p(f(f(a)))),p(a)])

11 E: close(-(p(a)),[-(p(f(f(a)))),p(a)])

10 E: node(4,[a|Z],[-(p(f(f(a)))),p(a)],1,[3])

26 C: node(5,[a|Z],[-(p(f(f(a)))),p(a)],1,[3])

27 C: close(p(f(a)),[-(p(f(f(a)))),p(a)])

27 F: close(p(f(a)),[-(p(f(f(a)))),p(a)])

27 C: node(0,[a|Z],[p(f(a)),-(p(f(f(a)))),p(a)],1,[3])

31 C: node(3,[a|Z],[p(f(a)),-(p(f(f(a)))),p(a)],0,[3])

32 C: node(4,[W|Z],[p(f(a)),-(p(f(f(a)))),p(a)],0,[3])

33 C: close(-(p(W)),[p(f(a)),-(p(f(f(a)))),p(a)])

33 E: close(-(p(f(a))),[p(f(a)),-(p(f(f(a)))),p(a)])

32 E: node(4,[f(a)|Z],[p(f(a)),-(p(f(f(a)))),p(a)],0,[3])

50 C: node(5,[f(a)|Z],[p(f(a)),-(p(f(f(a)))),p(a)],0,[3])

51 C: close(p(f(f(a))),[p(f(a)),-(p(f(f(a)))),p(a)])

51 E: close(p(f(f(a))),[p(f(a)),-(p(f(f(a)))),p(a)])

50 E: node(5,[f(a)|Z],[p(f(a)),-(p(f(f(a)))),p(a)],0,[3])

31 E: node(3,[a|Z],[p(f(a)),-(p(f(f(a)))),p(a)],0,[3])

. . . .

1 E: start(2)

C = Call, E = Exit, F = Fail

Figure 15. Trace of the program from Figure 14

IMPLEMENTING SEMANTIC TABLEAUX 613

from it in Figure 17.17

Thebinding parameter will in this case be a three-element list which holds the
bindings of the universal variablesX ,Y ,Z of the input formula. In lines 12 and 15
of Figure 17 the first element of the binding list is accessed and used to instantitate
p(X) respectivelyq(X). In lines 23 and 26 the first two positions are accessed,
and the second position is used to instantiateq(Y) respectivelyr(Y). Finally in
lines 34 and 37 all three positions are accessed, but only the third position is used
to instantiater(Z) respectivelyp(f(Z)). The first two positions are passed on to
the subsequent calls of the predicatenode.

The open tailR avoids annecessary overhead, if only the first variable is needed
the remaining positions will be lumped together in the remaining listR and passed
on without change.

In line 9 of Figure 17 the Prolog variablethat occupies the first position in
the binding list does not occur in the body of the clause. The value ofwill not
be passed on to the calls ofnode(5,[A|R],X3,X4,X5)andnode(6,[A|R],X3,
X4,X5). Instead, a new variableA is introduced. This is exactly the effect of a-
rule application for variableX . This also explains why the length of thebinding-
list equals the number of quantified variables in hte original tableau graph no mat-
ter how often the-rule is invoked. In lines 20 and 31 the same happens for the
second and third variable, in our caseY andZ. Note that the values of the other
positions of the binding list are passed on unchanged.

Now we have a look at the compilation program, see Figure 18 on page 616. Its
main predicate is

comp(+TableauGraph,+BindIn,+BindOut),

whereTableauGraph is a tableau graph with the leaf0:true andBindIn and
BindOut are initially the empty list.

We will refer to the binding list in the head of anode-clause as theinbound
binding, and the to binding list in the body of anode-clause as theoutbound
binding. The compiling predicatecomp constructs both lists while descending the
tableau graph; the lists for inbound and outbound binding are passed through the
calls ofcomp without the trailing Prolog variable for a possible tail. The position
of a variable’s binding in the list is determined by the order in which the variables
occur in the input graph. The only place where new variables are introduced is
when compiling a universally quantified node. Then, the inbound and outbound
lists are extended by one slot at their ends (lines 17,18 of Figure 18).

Line1 terminates the recursion if a leaf is reached. The clause in line3 succeeds
if a node-clause with the sameid-number has already been added. No further
action will follow in this case.

Lines6–13 compile a disjunction: in6 and7, we append a tail to the inbound
and outbound binding and assert anode-clause which implements a disjunction:

17For brevity we have omitted that part of the code that does not depend on the input graph, cf.
Figure 14

614 JOACHIM POSEGGA AND PETER H. SCHMITT

1 : p(a)

2 : �(p(f(a))

3 : 8X

4

5 : �p(X) 6 : q(X)

0 : true

7 : 8Y

8

9 : �q(Y) 10 : r(Y)

0 : true

11 : 8Z

12

13 : �r(Z)) 14 : p(f(z))

0 : true

0 : true

p(a) ^ :p(f(a)) ^ 8X(:p(X) _ q(X))
8Y (:q(Y) _ r(Y)) ^ 8Z(:r(Z) _ p(f(Z)))

Figure 16. Third example of a labelled tableau graph

IMPLEMENTING SEMANTIC TABLEAUX 615

1 node(1,X2,X3,X4,X5) :- (close(p(a),X3);

2 node(2,X2,[p(a)|X3],X4,X5)).

3

4 node(2,X2,X3,X4,X5) :- (close(-(p(f(a))),X3);

5 node(3,X2,[-(p(f(a)))|X3],X4,X5)).

6

7 node(3,X2,X3,X4,X5) :- node(7,X2,X3,X4,[4|X5]).

8

9 node(4,[_|R],X3,X4,X5) :- node(5,[A|R],X3,X4,X5),

10 node(6,[A|R],X3,X4,X5).

11

12 node(5,[A|R],X3,X4,X5) :- (close(-(p(A)),X3);

13 node(0,[A|R],[-(p(A))|X3],X4,X5)).

14

15 node(6,[A|R],X3,X4,X5) :- (close(q(A),X3);

16 node(0,[A|R],[q(A)|X3],X4,X5)).

17

18 node(7,X2,X3,X4,X5) :- node(11,X2,X3,X4,[8|X5]).

19

20 node(8,[A,_|R],X3,X4,X5) :- node(9,[A,B|R],X3,X4,X5),

21 node(10,[A,B|R],X3,X4,X5)).

22

23 node(9,[A,B|R],X3,X4,X5) :- (close(-(q(B)),X3);

24 node(0,[A,B|R],[-(q(B))|X3],X4,X5)).

25

26 node(10,[A,B|R],X3,X4,X5) :- (close(r(B),X3);

27 node(0,[A,B|R],[r(B)|X3],X4,X5)).

28

29 node(11,X2,X3,X4,X5) :- node(0,X2,X3,X4,[12|X5]).

30

31 node(12,[A,B,_|R],X3,X4,X5) :- node(13,[A,B,C|R],X3,X4,X5),

32 node(14,[A,B,C|R],X3,X4,X5).

33

34 node(13,[A,B,C|R],X3,X4,X5) :- (close(-(r(C)),X3);

35 node(0,[A,B,C|R],[-(r(C))|X3],X4,X5)),

36

37 node(14,[A,B,C|R],X3,X4,X5) :- (close(p(f(C)),X3);

38 node(0,[A,B,C|R],[p(f(C))|X3],X4,X5)),

Figure 17. Code for third example of a labelled tableau graph

616 JOACHIM POSEGGA AND PETER H. SCHMITT

1 comp(0:true,_,_):- !.

2

3 comp((Id:_),_,_) :- clause(node(Id,_,_,_,_),_),!.

4

5 % Disjunctions:

6 comp(Id:((LeftId:Left);(RightId:Right)),BindIn,BindOut):-!,

7 append(BindIn,BTail,BI),

8 append(BindOut,BTail,BO),

9 assert((node(Id,BI,P,MaxVars,Gamma) :-

10 node(LeftId,BO,P,MaxVars,Gamma),

11 node(RightId,BO,P,MaxVars,Gamma))),

12 comp(LeftId:Left,BindOut,BindOut),

13 comp(RightId:Right,BindOut,BindOut).

14

15 % Univ. quantification:

16 comp(Id:(all(X,(ScId:Scope)),SuccId:Succ),BindIn,BindOut):-!,

17 append(BindIn,[_],ScBindIn),

18 append(BindOut,[X],ScBindOut),

19 assert((node(Id,Bind,P,MaxVars,Gamma) :-

20 node(SuccId,Bind,P,MaxVars,[ScId|Gamma]))),

21 comp(ScId:Scope,ScBindIn,ScBindOut),

22 comp(SuccId:Succ,ScBindOut,ScBindOut).

23

24 % Literals:

25 comp(Id:(Lit,SuccId:Succ),BindIn,BindOut) :-!,

26 append(BindIn,BTail,BI),

27 append(BindOut,BTail,BO),

28 assert((node(Id,BI,Path,MaxVars,Gamma):-

29 close(Lit,Path)

30 ;node(SuccId,BO,[Lit|Path],MaxVars,Gamma))),

31 comp(SuccId:Succ,BindOut,BindOut).

Figure 18. Compiling tableau graphs

IMPLEMENTING SEMANTIC TABLEAUX 617

two goals that correspond to both generated branches must be solved. After assert-
ing the clause, we continue to compile both disjuncts.

Lines 16–22 compile universally quantified subgraphs; we generate inbound
and outbound bindings for compiling the scope of the universal quantification,
as discussed above. The compiled code for the current tableau graph node does
not use these: the only action we perform is to add the address of this node to
the list Gamma, and continue by calling the nodeafter the universally quantified
subgraph. Thus, at runtime, we donot enter the universally quantified subgraph
on the first transversal of the graph, but just ‘jump’ over it ignoring its contents.
The actual renaming of the quantified variable takes place if we enter the code for
the subgraph during runtime: line21 calls the compiler for this subgraph, which
will generate the corresponding code. Line22 calls the compiler for the next node
after the subgraph. Note, that the changed inbound and outbound binding is only
relevant for compiling these clauses. The current clause we compile does not
refer to any variables, so it is sufficient to pass the bindings with a simple Prolog
variable. Here, it is calledBind.

The purpose of the last clause is again quite obvious: when compiling a literal,
we either close the current branch or (if this fails) call the clause for the next node.

Compiling formulae into Prolog code yields another speedup compared to the
version dealing with tableau graphs: depending on the quality of your Prolog com-
piler, speed can easily double. An interesting point is that the compilation princi-
ple can be integrated into the ‘interpreting’ versions of our tableau provers: One
could, for instance, compile theories that are often used in advance and load the
corresponding Prolog code when required.

Compilation is a powerful technique for theorem provers, but it also has its
limits. It is important to understand that it does not increase the efficiency of a
calculus, but ‘just’ the efficiency of its implementation. For achieving the former
we must modify the underlying calculus; one possible way is by using lemmata.

7 INCLUDING LEMMATA

Lemmata have already been mentioned in Section 4 of the Chapter ‘Tableaux
Methods for Classical Propositional Logic’. Here, we will treat the technical as-
pects of including lemmata into the proof search, after having recalled the basic
idea behind lemmata.

7.1 What are Lemmata?

Lemmata can be seen as one way to strengthen a tableau calculus. Although the use
of lemmata can shorten proofs, this does not mean that the shorter proofs are also
easier to find. In a sense, this reduces the depth of the search space for the price
of broadening it. However, if we consider certain classes of theorems that have

618 JOACHIM POSEGGA AND PETER H. SCHMITT

a) Standard Disjunction: � _

�

�

0 1

0 0 1

1 1 1

b) Disjunction with Lemmata:
� _

� :�

�

0 1

0 0 1

1 1 1

Figure 19. Lemmata from the truth-table point of view

exponential proof length (like, for instance, the pigeon-hole formulæ), including
lemmata is often the only way to cope with such problems.

There are two perspectives from which one can look at lemmata; one is the truth
table point of view, the other is a more ‘operational’ point of view. The former is
illustrated in Figure 19: Part a) gives the truth table for the usual treatment of
disjunction in a tableau calculus, Part b) for a disjunction with lemmata. Each of
the two branches in a tableau resulting from expanding a disjunction corresponds
to one of the shaded areas in the truth table. In a), the entry where both subformulæ
are true (the bottom-right entry) is covered twice: this means, that this entry in the
truth table is ‘covered’ by two branches.

This entry is covered only once with a disjunction rule with lemmata. In terms
of tableaux, this means that we add the information that the other disjunct is false
to one branch when decomposing a disjunction. By this, we cover each entry only
on one branch. Thus, the information on branches is more specific than in the
case above: no interpretation for the two disjuncts will satisfy both branches. The
difference also becomes clear if we consider a fully expanded tableau for a given
formula: Whilst with the standard rule for disjunctions, all paths form a DNF for
the formula, we will get an XOR-normal form if lemmata are included.

Figure 20 presents this semantic consideration from another, more operational
point of view: here, a lemma can be seen as a shorthand for a subproof, which
would have to be carried out multiply during the proof if we did not use lemmata.
As such subproofs can be arbitrarily complex, lemmata can considerably decrease
the length of proofs.

IMPLEMENTING SEMANTIC TABLEAUX 619

P _ (Q _ P)

P Q _ P

Q P

P _ (Q _ P)

P :P

Q _ P

Q P

Lem
ma

Contradiction

Figure 20. Lemmata from an operational point of view

7.2 Integrating Lemmata into our Framework

Lemmata are easily included into a tableau calculus by modifying the�-rules ac-
cording to Figure 19: the right branch will hold the negation of the disjunct that
went to the left, i.e., we recall on the right branch that the left branch is closed.18

Unfortunately, this has two nasty side effects: Firstly, it is not a very good rep-
resentation, as one disjunct appears twice in the expansion: We would need to
represent a formula and its corresponding lemma separately. Secondly, we cannot
restrict a prover to negation normal form anymore, since the required negation for
building the lemma would destroy the normal form during run time.19

Fortunately, there are well known solutions to this problem: we can take out
the screw driver and manipulate the basic representation underlying our prover:
instead of building upon the disjunctive normal form-representation for tableaux,
we change to anif-then-elserepresentation:

DEFINITION 8. The set ofif-then-elseexpressionsSH is the smallest set such
that:

1. f0; 1g � SH
2. If A is atomic andB�;B+ 2 SH thensh(A;B�;B+) 2 SH.

3. If B;B�;B+ 2 SH, thensh((8x B);B�;B+) 2 SH
The semantics ofsh(A;C;B) is defined as:if A thenB elseC, i.e.: (A ^ B) _
(:A ^ C).

18Note, that this does not require that the left branch is actually closed before proceeding with the
right branch.

19The latter point can be resolved if lemma generation is moved into preprocessing, e.g. if we ex-
tended the derivation of negation normal form appropriately. However, the problem of considerably
increasing the size of tableaux remains.

620 JOACHIM POSEGGA AND PETER H. SCHMITT

A

B 1

0 C

0 1

+�

�
+

� +

A _ (B ^C)

A :A

B ^C

B

C

Lemma

Figure 21. BDD and tableau forA _ (B ^ C)

Definition 8 defines a class of formulae which, when represented graphically,
are calledBDDsor Binary Decision Diagrams.20 These formulae are built solely
by atomic formulae, anif-then-else–connective and the atomic truth constants1
and0.

BDDs are usually defined for propositional logic, only. For handling quantifiers,
we use nestedif-then-else-expressions, analogously to tableau graphs in Definition
7. As with tableau graphs, we can easily map first-order formulae into BDDs:

DEFINITION 9. LetF be a first-order formula in Skolemized negation normal
form; then

f2Sh(F) =

8>>>>>>><
>>>>>>>:

f2Sh(A)
h

1
f2Sh(B)

i
if F = A^B

f2Sh(A)
h

0
f2Sh(B)

i
if F = A_B

sh((8x f2Sh(A)); 0; 1) if F = 8x A
sh(F; 0; 1) or sh(F; 1; 0) if F is a Literal

Figure 21 shows the BDDf2Sh(A _ (B ^ C)) and a corresponding tableaux
with lemmata. If we apply the same trick as used for tableau graphs to BDDs, we
can derive a graphical representation instead of a tree: the replacement operation is
carried out analogously to that which was explained for Definition 7 by replacing

20Note, that the notion ‘BDD’ is often used in the literature to refer to ordered, reduced BDDs (ROB-
DDs); this is not meant here: we use non-ordered, and non-reduced BDDs. ROBDDs are considered
later in Section (7.3).

IMPLEMENTING SEMANTIC TABLEAUX 621

edges, rather than nodes.
The motivation for BDDs is to handle lemmata in a better way than by modify-

ing the�-rule; the paths to1-leaves in BDDs are indeed nothing but a representa-
tion of branches in a tableau with disjunctive rules that incorporate lemmata. The
reader is invited to verify this by examining Figure 21.

It is beyond the scope of this chapter to formalize this in detail, so we will
just give the basic idea (see[Posegga, 1993b] for details), restricted to proposi-
tional logic: The key to understanding it is to compare branches in fully expanded
tableaux to paths in BDDs:

Assume we have a fully expanded tableauF for a propositional formulaF ;
we can then interpret the branches inF as conjunctions of literals. Then, the
disjunction of all branches inF is a DNF forF .

Paths in BDDs can be regarded analogously: In propositional logic, each node
in a BDD is labelled with an atomic formula. Thus, a path can be seen as a se-
quence of signed atoms. The signs denote which ‘exit’ was chosen at each node: if
thethen-part was used, the sign is positive, otherwise it is negative. Analogously to
branches in tableaux, we can regard these paths as a conjunction of literals, where
the sign attached to the atoms denotes whether the literal is negated or not. The
difference to tableaux is that there are two kinds of paths, namely paths to1-leafs
and paths to0-leafs. The paths to1-leaves play the same role as the branches in
tableaux, i.e., they are a DNF for the underlying formula. The0-paths, however,
build a DNF for thenegatedformula, i.e., the conjunction of all0-paths inf2Sh(F)
is a DNF for:F .

To summarize, tableaux represent models of formulæ, whilst BDDs represent
modelsandcounter models. Note, that both our graphical representation for fully
expanded tableaux (cf. Definition 7) and BDDs (Definition 9) can be computed
linearly w.r.t. to the length of the negation normal form of a formula. With BDDs,
we thus get the additional information of counter models more or less ‘for free’.

It remains to show that BDDs actually fulfill their intended purpose, i.e. that
they represent tableau with lemmata. We shall argue informally: Figure 20 shows
how lemmata can be integrated when decomposing disjunctions in a tableau cal-
culus; we add the negated left conjunct to the right branch. This means, the right
branch will contain information about all counter models of the left disjunct when
the tableau is fully expanded. The disjunction rule for computing a BDD for a for-
mula acts similarly: forA _ B, f2Sh(B) is inserted for the0-leaf of f2Sh(A). As
the0-paths off2Sh(A) represent counter models ofA, the1-paths of the resulting
graph will contain these. It is not very hard to show formally that the1-paths of a
BDD for a formulaF are identical to the branches in corresponding tableau forF :
by induction over the structure ofF , we relate1-paths to branches of a tableau for
F , and0-paths to branches of a tableau for:F . The proof is left as an exercise to
the reader.

When implementing deduction based on BDDs, the first step required is to
translate formulae into the graphs. Based on the mapping given in Definition 9, we
can implement this very elegantly in Prolog; Figure 22 shows a simple program

622 JOACHIM POSEGGA AND PETER H. SCHMITT

1 f2bdd((A,B),True_B,False,BDD_A) :-!,

2 f2bdd(A,BDD_B,False,BDD_A),

3 f2bdd(B,True_B,False,BDD_B).

4 f2bdd((A;B),True,False_B,BDD_A):-!,

5 f2bdd(A,True,BDD_B,BDD_A),

6 f2bdd(B,True,False_B,BDD_B).

7 f2bdd(all(X,Fml),True,False,

8 (all(X,BDD_Fml) -> True; False)) :-!,

9 f2bdd(Fml,1,0,BDD_Fml).

10 f2bdd(Literal,True,False,BDD):-

11 (Literal= -Lit) -> BDD = (Lit -> False; True)

12 ; BDD= (Literal -> True; False).

Figure 22. Implementing Definition 9

which is nearly a literal translation of Definition 9:
We use the prologif-then-elseconstruct ‘... -> ... ; ...’ to denote

if-then-else. The clause

f2bdd(Formula,True,False,BDD)

succeeds ifBDD is a BDD forFormula with the true-leaf True and thefalse-leaf
False.

The first clause handles conjunctions. We recursively compute graphs forA and
B, and insert the latter for thetrue-leaf of the graph forA. This corresponds to the
first case in Definition 9.

Disjunctions work analogously, but the graph forB goes to the false-leaf of the
graph forA.

Universal quantification is handled as with tableau graphs. Note, that the leaves
inside universally quantified subgraphs are instantiated to the constantstrue and
false.

Figure 23 gives an example: it shows a graphical representation of the binding
of BDD after successful termination of the Prolog query:

f2bdd((p(a),-p(f(f(a))),all(X,(-p(X);p(f(X))))),true,false,BDD)

IMPLEMENTING SEMANTIC TABLEAUX 623

p(a)

:p(f(f(a)))

8x

p(x)

p(f(x))

1 0

+

�

+ �

0 1

�

+

�

+

+
�

Figure 23. An example BDD

Deduction with BDDs

From what we have seen about BDDs, it should be clear how the presented algo-
rithms for deduction with tableau graphs can be adapted to BDDs; the underlying
principle is the same: BDDs represent a disjunctive normal form and the paths
in BDDs are the analog to branches in tableaux. Thus, when trying to show that
a given BDD represents an inconsistent formula, we inspect its paths and try to
find contradictory literals on each of them. Extension steps for applying univer-
sal quantification work in the same way as for tableau graphs. It is not difficult
to modify the Prolog programs given for tableau graphs such that they work on
BDDs instead.

7.3 Reduced, Ordered Binary Decision Diagrams

The reader being familiar with Binary Decision Diagrams will have noticed that
we use BDDs in their non-reduced, non-ordered form.21 In the literature, how-
ever, BDDs appear mostly as reduced, ordered BDDs (ROBDDs)[Bryant, 1986;
Bryant, 1992; Goubault and Posegga, 1994]. One reason for this is that BDDs

21These are also calledfree BDDsby some authors,Shannon graphsby others.

624 JOACHIM POSEGGA AND PETER H. SCHMITT

are originally a propositional formalism; ROBDDs are a subclass of propositional
BDDs, where

1. each path respects a given ordering on atomic formulae,

2. no path contains multiple occurrences of the same literal, and

3. no subgraph occurs more than once in a BDD.

As a consequence of this, ROBDDs form a unique normal form for Boolean func-
tions. ROBDDs have been successfully applied to various domains. Especially
experience in hardware verification (see e.g.[Braceet al., 1990]) has shown that
ROBDDs are well suited as an underlying data structure for proving properties of
propositional formulae.

Our view was different: we did not use BDDs as a canonical normal form (ie: as
ROBDDs), but regarded them simply as another representation of disjunctive nor-
mal forms, which is sometimes better (i.e. smaller) than tableaux. From this point
of view, BDDs are nothing but a logical formulae — possibly in a graphical rep-
resentation. The logical connective underlying this representation isif-then-else.22

A calculus based on BDDs uses the same inference principles as a tableau calcu-
lus — just the underlying datastructure is different, see[Goubault and Posegga,
1994] for a more detailed discussion of the relation between BDDs and Automated
Reasoning.

Furthermore, we used BDDs for representing first-order formulae, and showing
that they are inconsistent. This is also not a standard use of ROBDDs: these
have been designed forrepresentingBoolean functions, rather than for showing
that the function never evaluates to1. The main purpose of ordering atoms and
maintaining a reduced graphical representation in ROBDDs is, however, to ease
the representation of Boolean functions: it results in auniquerepresentation (w.r.t.
the ordering).

It is clear that a unique normal form for first-order logic is not computable, since
the language of first-order logic is undecidable. This might appear as an argument
against the use of ordered in BDDs for first-order logic, but it is not: it just says
that we will not achieve a unique normal form, but does not tell anything about
the efficiency of an ordered, reduced format w.r.t. the unordered BDDs we have
used.23 It might well be the case that a first-order calculus based on ROBDDs
works more efficient for a certain class of formulae than one based on BDDs. The
opposite, however, can also be the case. The answer to ‘what should I choose?’ is
not context-free.

22Such formulæ have already been considered in 1854 by George Boole[Boole, 1958]; Alonzo
Church showed about one century later thatif-then-elseis a primitive basis for propositional logic
[Church, 1956,x24, pp. 129ff].

23The use of ROBDDs in a tableau-like setting can, from a purely logical point of view, be seen as
using regular tableaux. Consult Letz’s Chapter for details.

IMPLEMENTING SEMANTIC TABLEAUX 625

8 A GLIMPSE INTO THE FUTURE

Automated Deduction is at present neither an engineering discipline, nor pure
mathematics. The key to successfully applying Automated Deduction is careful
analysis and experimenting. Both are equally important and depend on each other.
The above considerations on BDDs vs. ROBDDs stress an important point in
working on Automated Deduction: There is no panacea. For nearly each heuris-
tic, or modification to a calculus, there is a counterexample where things become
worse than before. The language of first-order logic is not decidable, and it is
highly unlikely that this will ever change. This makes the field hard, but it also
makes it interesting: we will never run out of problems.

Our motivation for writing this chapter as it is was to support experimenting:
we presented a couple of implementation techniques which preserve the openess
of tableau calculi. It is unlikely (although not impossible) that one of programs
we presented will exactly fit for a concrete application one has. But the reader is
likely to find a starting point in this chapter.

It is hard to give any reasonable predictions of the future course of automated
theorem proving in general and tableau-based automated theorem proving in par-
ticular. But it is pretty clear that the distinctions between fully automated theorem
provers and interactive ones will fade. Interactive components will be added to
upto now fully automated systems and automated systems will be integrated in
interactive proof development systems. As one example for an interactive prover
based on a sequent calculus one may name IMPS (Interactive Mathematical Proof
System) described in[Farmeret al., 1992] and [Farmeret al., 1993]. Instead of
implementing one prover for one logical calculus it has also been tried to develop
shells that help realize a custom-made logical system. Within the family of sequent
calculi such an approach has been undertaken in[Richardset al., 1994].

9 A BRIEF HISTORICAL SURVEY ON TABLEAU-BASED PROVERS

The following list of implementations of theorem provers can certainly not claim
to be exhaustive. Apart from the difficulty of locating the relevant information it
is also not clear where to draw the line between tableau-based theorem provers
and those that are not. We tended to include programs based on sequent calculi
because of their close relationship to tableaux, but left out systems based on natural
deduction. We also did not consider provers for propositional logic only. The
following account is for the greatest part gleaned from[Beckert and Posegga,
1995].

The first tableau-based theorem prover that we know of was developed in the
late fifties by Dag Prawitz, H˚akan Prawitz, and Neri Voghera[Prawitz et al.,
1960]. It ran on a computer named Facit EDB (manufactured by ABÅdvidabergs
Industrier). The tableau calculus implemented was already quite similar to today´s
versions; it did not, however, use free variables. This prover was perhaps the

626 JOACHIM POSEGGA AND PETER H. SCHMITT

earliest for first-order logic at all.24

At about the same time, Hao Wang implemented a prover for first-order logic,
that was based on a sequent calculus similar to semantic tableaux[Wang, 1960].
The program ran on IBM 704-computers.

Ewa Orłowska implemented a calculus that can be seen as tableau-based in
1967 on a GIER digital computer25. The calculus was based on derivingif-then-
elsenormal forms rather than disjunctive normal forms. Only the propositional
part of the calculus was implemented.

We are not aware of any implementation-oriented research around tableaux in
the seventies; there have been a number of theoretic contributions to tableau calculi
but nothing seems to have been implemented.

In the eighties, the research lab of IBM in Heidelberg, Germany was a major
driving force of tableau-based deduction: Wolfgang Sch¨onfeld developed a prover
within a project on legal reasoning[Schönfeld, 1985]. It was based on free-
variable semantic tableaux and used unification for closing branches. A few years
later Peter Schmitt developed the THOT theorem prover at IBM[Schmitt, 1987];
this was also an implementation of free-variable tableaux and part of a project aim-
ing at natural language understanding. Both implementations have been carried
out in Prolog. Based on experiences with the THOT theorem prover, the devel-
opment of the3TAP system started around 1990 at Karlsruhe University[Beckert
et al., 1992b]; the project was funded by IBM Germany and carried out by Peter
Schmitt and Reiner H¨ahnle. The3TAP prover was again written in Prolog and im-
plemented a calculus for free-variable tableaux, both for classical first-order logic
with equality as well as for multi-valued logics. This program can bee seen as the
direct ancestor ofleanTAP .

Besides the line of research outlined above there was also other work on tableau-
based deduction in the eighties: Oppacher and Suen published their well-known
paper on the HARP theorem prover in 1988[Oppacher and Suen, 1988]. This
prover was implemented in LISP and is probably the best-known instance of a
tableau-based deduction system. Another implementation, the Helsinki Logic Ma-
chine (HLM), is a Prolog program that actually implements about 60 different cal-
culi, among them semantic tableaux for classical first-order logic, non-monotonic
logic, dynamic logic, and autoepistemic logic. Approximately at the same time a
tableau-based prover was implemented at Karlsruhe University by Thomas K¨aufl
[Käufl and Zabel, 1990]; the system, called ‘Tatzelwurm’, implemented classical
first-order logic with equality, but did not use a calculus based on free variables.
Its main purpose was to be used as an inference engine in a program verification
system.

24Actually, Prawitzet al. implemented a calculus for first-order logic without function symbols; that,
however, has the same expressiveness as full first-order logic.

25The GIER (Geodaetisk Instituts Elektroniske Regnemaskine) was produced by Regnecentralen in
Copenhagen (Denmark) in the early sixties.

IMPLEMENTING SEMANTIC TABLEAUX 627

Since 1990, the interest in tableau-based deduction continuously increased,
and we will not try continue our survey beyond this date. From 1992 onwards,
the activities of the international tableau community are quite well documented,
as annual workshops were started; we refer the interested reader to the work-
shop proceedings of these workshops[Fronhöferet al., 1992; Basinet al., 1993;
Brodaet al., 1994].26 Another interesting source of information on implementa-
tions are the system abstracts in the proceedings of the CADE conferences since
1986. Among the newer developments let us mention the sequent calculus based
prover called GAZER[Barker-Plummer and Rothenberg, 1992]. GAZER is im-
plemented in Prolog.

Joachim Posegga
Deutsche Telekom AG, Research Center, Darmstadt, Germany.

Peter Schmittt
Universiẗat Karlsruhe, Germany.

REFERENCES

[Brodaet al., 1994] K. Broda, M. D’Agostino, R. Gor´e, R. Johnson, and S. Reeves. 3rd workshop on
theorem proving with analytic tableaux and related methods. Technical Report TR-94/5, Imperial
College London, Department of Computing, London, England, April 1994. (Workshop held in
Abingdon, England).

[Baumgartner and Furbach, 1994] P. Baumgartner and U. Furbach. Model Elimination without Con-
trapositives. In A. Bundy, editor,12th Conference on Automated Deduction, volume 814 ofLecture
Notes in Artificial Intelligence, pages 87–101. Springer, 1994.

[Basinet al., 1993] D. Basin, B. Fronh¨ofer, R. Hähnle, J. Posegga, and C. Schwind. 2nd workshop on
theorem proving with analytic tableaux and related methods. Technical Report 213, Max-Planck-
Institut für Informatik, Saarbr¨ucken, Germany, May1993. (Workshop held in Marseilles, France).

[Beckertet al., 1992] B. Beckert, S. Gerberding, R. H¨ahnle, and W. Kernig. The tableau-based theo-
rem prover3TAP for multiple-valued logics. In11th Conference on Automated Deduction, Lecture
Notes in Computer Science, pp. 758–760, Springer-Verlag. 1992.

[Beckertet al., 1992b] B. Beckert, S. Gerberding, R. H¨ahnle, and W. Kernig. The tableau-based theo-
rem prover3TAP for multiple-valued logics. In11th International Conference on Automated Deduc-
tion (CADE), Lecture Notes in Computer Science, pages 758–760, Albany, NY, Springer-Verlag,
1992.

[Beckert and H¨ahnle, 1992] B. Beckert and R. H¨ahnle. An improved method for adding equality to
free variable semantic tableaux. In Depak Kapur, editor,11th Conference on Automated Deduction,
Lecture Notes in Computer Science, pages 507–521, Albany,NY, 1992. Springer-Verlag.

[Beckertet al., 1993] B. Beckert, R. H¨ahnle, and P. H. Schmitt. The even more liberalized�–rule in
free variable semantic tableaux. In G. Gottlob, A. Leitsch, and D. Mundici, editors,Proceedings of
the 3rd Kurt Gödel Colloquium (KGC), Lecture Notes in Computer Science, pages 108–119, Brno,
Czech Republic, 1993. Springer-Verlag.

[Boole, 1958] G. Boole.An investigation of the laws of thought, on which are founded the mathemat-
ical theories of logic and probabilities. Dover, New York, January1958. (First Edition 1854).

[Beckert and Posegga, 1994] B. Beckert and J. Posegga.leanTAP : lean, tableau-based theorem prov-
ing. In A. Bundy, editor,12th Conference on Automated Deduction, volume 814 ofLecture Notes
in Artificial Intelligence, Nancy, France, June/July 1994. Springer-Verlag.

26Proceedings of subsequent workshops will be published within Springer’s LNCS series.

628 JOACHIM POSEGGA AND PETER H. SCHMITT

[Beckert and Posegga, 1995] B. Beckert and J. Posegga.leanTAP : Lean tableau-based deduction.
Journal of Automated Reasoning, 15(3):339–358, 1995.

[Barker-Plummer and Rothenberg, 1992] D. Barker-Plummer and A. Rothenberg. The GAZER theo-
rem prover. In11th International Conference on Automated Deduction (CADE), Lecture Notes in
Computer Science, pages 726–730, Albany, NY, 1992. Springer-Verlag.

[Börger and Rosenzweig, 1993] E. Börger and D. Rosenzweig. Full prolog in a nutshell. In D. S.
Warren, editor,Proceedings of the 10th International Conference on Logic Programming, page
832. MIT Press, 1993.

[Börger and Rosenzweig, 1994] E. Börger and D. Rosenzweig. A mathematical definition of full Pro-
log. Science of Computer Programming, 1994. See also[Börger and Rosenzweig, 1993].

[Braceet al., 1990] K. S. Brace, R. L. Rudell, and R. E. Bryant. Efficient implementation of a BDD
package. InProc. 27th ACM/IEEE Design Automation Conference, pages 40 – 45. IEEE Press,
1990.

[Bryant, 1986] R. Y. Bryant. Graph–based algorithms for Boolean function manipulation.IEEE
Trans. Computers, C–35, 1986.

[Bryant, 1992] R. Y. Bryant. Symbolic boolean manipulation with ordered binary decision diagrams.
Technical report, CMU, 1992.

[Church, 1956] A. Church. Introduction to Mathematical Logic, volume 1. Princeton University
Press, Princeton, New Jersey, 1956. Sixth printing 1970 .

[Clocksin and Mellish, 1981] W. F. Clocksin and C. S. Mellish.Programming in Prolog. Springer-
Verlag, 1981.

[Eder, 1992] E. Eder. Relative Complexities of First-Order Calculi. Artificial Intelligence. Vieweg
Verlag, 1992.

[Farmeret al., 1992] W. M. Farmer, J. D. Guttman, and F. J. Thayer. IMPS: System description.
In 11th International Conference on Automated Deduction (CADE), Lecture Notes in Computer
Science, pages 701–705, Albany, NY, 1992. Springer-Verlag.

[Farmeret al., 1993] W. M. Farmer, J. D. Guttman, and F. J. Thayer. IMPS: An interactive mathemat-
ical proof system.Journal of Automated Reasoning, 11(2):213–248, October 1993.

[Fronhöferet al., 1992] B. Fronhöfer, R. Hähnle, and T. K¨aufl. Workshop on theorem proving with
analytic tableaux and related methods. Technical Report 8/92, Universit¨at Karlsruhe, Fakult¨at für
Informatik, Karlsruhe, Germany, Mar1992. (Workshop held in Lautenbach, Germany).

[Fitting, 1996] M. C. Fitting. First-Order Logic and Automated Theorem Proving. Springer-Verlag,
1996. First edition, 1990.

[Goubault and Posegga, 1994] J. Goubault and J. Posegga. BDDs and automated deduction. InProc.
8th International Symposium on Methodologies for Intelligent Systems (ISMIS), Lecture Notes in
Artificial Intelligence, Charlotte, NC, October1994. Springer-Verlag.

[Hilbert and Bernays, 1939] D. Hilbert and P. Bernays.Grundlagen der Mathematik II, volume 50
of Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer
Berücksichtigung der Anwendungsgebiete. Springer-Verlag, 1939.

[Käufl and Zabel, 1990] T. Käufl and N. Zabel. Cooperation of decision procedures in a tableau-based
theorem prover.Revue d’Intelligence Artificielle, 4(3), 1990.

[Oppacher and Suen, 1988] F. Oppacher and E. Suen. HARP: A tableau-based theorem prover.Jour-
nal of Automated Reasoning, 4:69–100, 1988.

[Pelletier, 1986] F. J. Pelletier. Seventy-five problems for testing automatic theorem provers.Journal
of Automated Reasoning, 2:191–216, 1986.

[Posegga, 1993a] J. Posegga. Compiling proof search in semantic tableaux. InProc. 7th International
Symposium on Methodologies for Intelligent Systems (ISMIS), volume 671 ofLecture Notes in
Computer Science, pages 67–77, Trondheim, Norway, June1993. Springer-Verlag.

[Posegga, 1993b] J. Posegga.Deduktion mit Shannongraphen f¨ur Prädikatenlogik erster Stufe. Infix
Verlag, Sankt Augustin, Germany, 1993.

[Prawitzet al., 1960] D. Prawitz, H. Prawitz, and N. Voghera. A mechanical proof procedure and its
realization in an electronic computer.Journal of the ACM, 7(1–2):102–128, 1960.

[Richardset al., 1994] B. L. Richards, I. Kraan, A. Smaill, and G. A. Wiggins. Mollusc: A general
proof-development shell for sequent-based logics. In ALAN Bundy, editor,12th International Con-
ference on Automated Deduction (CADE), volume 814 ofLNAI, pages 826–830. Springer, 1994.

[Schönfeld, 1985] W. Schönfeld. Prolog extensions based on tableau calculus. In9th International
Joint Conference on Artificial Intelligence, Los Angeles, volume 2, pages 730–733, 1985.

IMPLEMENTING SEMANTIC TABLEAUX 629

[Schmitt, 1987] P. H. Schmitt. The THOT theorem prover. Technical Report 87.9.7, IBM Germany,
Scientific Center, Heidelberg, Germany, 1987.

[Stickel, 1988] M. E. Stickel. A Prolog Technology Theorem Prover.Journal of Automated Reason-
ing, 4(4):353–380, 1988.

[Wang, 1960] H. Wang. Toward mechanical mathematics.IBM Journal of Research and Develop-
ment, 4(1), January1960.

630

GRAHAM WRIGHTSON

A BIBLIOGRAPHY ON ANALYTIC TABLEAUX
THEOREM PROVING

We have attempted to make this bibliography as comprehensive as possible with
respect to published works relating to automated reasoning with analytic tableaux.
The emphasis has been on the automated aspect rather than the tableaux. The lit-
erature published by logicians and philosophers relating to tableaux as a means for
demonstrating valid arguments in logic is quite large and such literature, with few
exceptions, has not been included in this collection. This leaves us with about 200
entries almost all of which are concerned with the attempts of computer scientists
to automate formal reasoning using analytic tableaux and to apply the techniques
to various problem areas. The entries have been divided into several categories:
Early Work, Books and Proceedings, Classical Logic, Non-Classical Logic, Im-
plementations, and Applications.

Naturally any entry might fall into one or more of these categories, such as
some paper dealing with tableaux in temporal logic applied to real-time system
verification. In these cases the author used his judgement and entered it into one
or the other categories rather than have two entries of the some work.

EARLY WORK

This section includes some of the early papers on tableaux theorem proving by
computer. It also has a few of the early works on tableaux as a validity testing
technique in logic.

[1] I. Anellis. From semantic tableaux to Smullyan trees: the history of the
falsifiability tree method.Modern Logic, 1(1):36–69, June 1990.

This paper gives a good overview of the early work on tableaux automation.

[2] I. Anellis. Erratum, From semantic tableaux to Smullyan trees: the history
of the falsifiability tree method.Modern Logic, 2(2):219, Dec. 1991.

[3] E. W. Beth. Semantic entailment and formal derivability.Mededelingen der
Kon. Ned. Akad. v. Wet., 18(13), 1955. new series.

Everet Beth was one of the first to come up with the idea of tableaux. This paper is now difficult
to obtain but it has been reprinted in various collections including K. Berka and L. Kreiser,
editors, Logik-Texte. Kommentierte Auswahl zur Geschichte der modernen Logik, pages 262–
266. Akademie-Verlag, Berlin, 1986

[4] E. W. Beth. On Machines Which Prove Theorems.Simon Stevin Wisen
Naturkundig Tijdschrift, 32:49–60, 1958.

632 GRAHAM WRIGHTSON

Beth quickly saw the possibility of using computers to prove theorems and actually started
the (presumably) first research group trying to do it with tableaux. This paper also appeared in
J.Siekmann and G.Wrightson, editors, Automation of Reasoning, volume 1, pp.79-90, Springer
Verlag, Berlin, 1983.

[5] R. W. Binkley and R. L. Clark. A Cancellation Algorithm for Elementary
Logic. Theoria, 33:79–97, 1967.

Binkley and Clark developed an algorithm based on a tableaux-like approach. It was later
used by others in an attempt to apply it to modal logic - presumably the first such attempt.
Corrections to this paper appeared in the same journal, p.85, 1968. This paper and its correction
also appeared in J.Siekmann and G.Wrightson, editors, Automation of Reasoning, volume 2,
pp.27-47, Springer Verlag, Berlin, 1983.

[6] J. K. J. Hintikka. Form and content in quantification theory.Acta Philo-
sophica Fennica, VIII, 1955.

[7] S. Kanger. Provability in logic.Acta Universitatis Stockolmiensis, Stockolm
studies in Philosophy, 1, 1957.

[8] V. G. Kirin. Gentzen’s method of the many-valued propositional calculi.
Zeitschrift f̈ur mathematische Logik und Grundlagen der Mathematik, 12:
317–332, 1966.

[9] S. Kripke. Semantical analysis of modal logic I: Normal modal proposi-
tional calculi. Zeitschrift f̈ur Mathematische Logik und Grundlagen der
Mathematik, 9:67–96, 1963.

Kripke was the first to develop a semantics for modal logics, and hence for many other non-
classical logics, through the introduction of the ’possible worlds’, a notion which saw the de-
velopment of tableaux consisting of many sub-tableaux - one for each possible world. We bring
these three papers of Kripke’s because of their significance even though they are not concerned
with the automation aspect. Some modal logic systems are still difficult to automate.

[10] S. Kripke. Semantical considerations on modal logic.Acta Philosophica
Fennica, Proceedings of a colloquium on modal and many-valued logics
1962, 16:83–94, 1963.

[11] S. Kripke. Semantical analysis of modal logic II: Non-normal modal propo-
sitional calculi. InSymposium on the Theory of Models, pages 206–220.
North-Holland, Amsterdam, 1965.

[12] G. Mints. Proof theory in the USSR 1925 – 1969.Journal of Symbolic
Logic, 56(2):385–424, 1991.

[13] R. J. Popplestone. Beth-tree methods in automatic theorem-proving. In
N. L. Collins and D. Michie, editors,Machine Intelligence, pages 31–46.
American Elsevier, 1967.

[14] D. Prawitz. Advances and Problems in Mechanical Proof Procedures. In
Meltzer and Michie, editors,Machine Intelligence 4, volume 2, pages 73–
89. Edinburgh University Press, Edinburgh, 1969.

A BIBLIOGRAPHY ON ANALYTIC TABLEAUX THEOREM PROVING 633

Prawitz was also one of the first to begin automation of logic and did some significant work
which later lead to important breakthroughs by others. This paper also appeared in J.Siekmann
and G.Wrightson, editors, Automation of Reasoning, volume 2, pp.283-297, Springer Verlag,
Berlin, 1983.

[15] D. Prawitz, H. Prawitz, and N. Voghera. A Mechanical Proof Procedure and
its Realization in an Electronic Computer.J. ACM, 7:102–128, 1960.

This paper also appeared in J.Siekmann and G.Wrightson, editors, Automation of Reasoning,
volume 1, pp.202-228, Springer Verlag, Berlin, 1983.

[16] K. Schröter. Methoden zur Axiomatisierung beliebiger Aussagen- und Pr¨a-
dikatenkalküle. Zeitschrift f̈ur math. Logik und Grundlagen der Mathe-
matik, 1:241–251, 1955.

[17] R. M. Smullyan. A unifying principle in quantification theory.Proceedings
of the National Academy of Sciences, 49(6):828–832, June 1963.

Smullyan was the first to introduce a unified notation for the format of reduction rules in
tableaux.

[18] R. M. Smullyan. Analytic natural deduction.Journal of Symbolic Logic,
30:123–139, 1965.

[19] R. M. Smullyan. Trees and nest structures.Journal of Symbolic Logic,
31:303–321, 1966.

BOOKS AND PROCEEDINGS

In this section we list some of the books covering the field as well as proceedings
of the four international Workshops on Analytic Tableaux and Related Methods.

[1] P. B. Andrews. An Introduction to Mathematical Logic and Type Theory:
To Truth Through Proof. Academic Press, Orlando, Florida, 1986.

[2] D. Basin, R. Hähnle, B. Fronh¨ofer, J. Posegga, and C. Schwind, editors.
Workshop on Theorem Proving with Analytic Tableaux and Related Meth-
ods, MPI-I-93-213, Saarbr¨ucken, 1993. Max-Planck-Institut f¨ur Informatik.

[3] P. Baumgartner, R. H¨ahnle, and J. Posegga, editors.4th Workshop on
Theorem Proving with Analytic Tableaux and Related Methods, LNAI 918.
Springer Verlag, 1995.

Proceedings of the 4th Workshop on Theorem Proving with Analytic Tableaux and Related
Methods held in St.Goar, Germany.

[4] J. L. Bell and M. Machover. A Course in Mathematical Logic. North-
Holland, Amsterdam, 1977.

634 GRAHAM WRIGHTSON

[5] E. W. Beth. The Foundations of Mathematics. North-Holland, Amsterdam,
1959. Revised Edition 1964.

[6] W. Bibel. Automated Theorem Proving. Vieweg, Braunschweig, second
revised edition, 1987.

[7] W. Bibel and E. Eder. Methods and calculi for deduction. In D. M. Gabbay,
C. J. Hogger, and J. A. Robinson, editors,Handbook of Logic in Artificial
Intelligence and Logic Programming, volume 1: Logical Foundations, pages
67–182. Oxford University Press, Oxford, 1992.

In this overview article Bibel and Eder present several of the main approaches to automated
theorem proving.

[8] J. C. Bradfield. Verifying Temporal Proporties of Systems. Birkhaeuser,
Boston, 1992.

One of the main areas of application of automated reasoning is concerned with automatically
demonstrating that a given complex system has certain desirable properties.

[9] K. Broda, M. D’Agostino, R. Gor´e, R. Johnson, and S. Reeves, editors.3rd
Workshop on Theorem Proving with Analytic Tableaux and Related Meth-
ods, TR-94/5, London, 1994. Imp. College of Science, Technology and
Medicine.

Proceedings of the 3rd Workshop on Theorem Proving with Analytic Tableaux and Related
Methods held in Abingdon, United Kingdom. Selected papers from this conference have now
appeared in a special issue of the Journal of the Interest Group in Pure and Applied Logics
(IGPL), Volume 3, Number 6, October 1995, with guest editors: K. Broda, M. D’Agostino, R.
Gore, R. Johnson, S. Reeves.

[10] C. C. Chang and H. J. Keisler.Model Theory. North-Holland Publishing
Company, third edition, 1990.

[11] R. J. G. B. de Queiroz and D. Gabbay.An introduction to labelled natural
deduction. Oxford University Press, Oxford, 1992.

In this book a recently developed technique based on referencing of formulas is presented. This
is cutting-edge research.

[12] E. Eder. Relative Complexities of First-Order Calculi. Artificial Intelli-
gence. Vieweg Verlag, 1992.

Eder shows the relative computational complexities of several calculi using simulation.

[13] M. C. Fitting. Intuitionistic Logic Model Theory and Forcing. North-
Holland Publishing Co., Amsterdam, 1969.

[14] M. C. Fitting. Proof Methods for Modal and Intutionistic Logics. Reidel,
Dordrecht, 1983.

A BIBLIOGRAPHY ON ANALYTIC TABLEAUX THEOREM PROVING 635

This book is not concerned with automation but is listed because it gives a good overview
of many non-classical logics and tableaux techniques as used in these logics. This has been
reviewed by R. A. Bull in:
Review of ‘Melvin C. Fitting, Proof Methods for Modal and Intutionistic Logics, Synthese
Library, Vol. 169, Reidel, 1983’. Journal of Symbolic Logic, 50:855–856, 1985.

[15] M. C. Fitting. First-Order Logic and Automated Theorem Proving. Springer,
New York, 1996. First edition, 1990.

This is probably the best book in recent years to provide a good introduction to the tableaux
method and to resolution. It is excellent for beginners in the field. More importantly, from a
research point of view, Fitting’s tableaux permit the use of free variables, thus providing a way
in which unification can be used in tableaux. This is surely the most significant breakthrough
for the tableaux method in recent years.

[16] B. Fronhöfer, R. Hähnle, and T. K¨aufl, editors.Workshop on Theorem Prov-
ing with Analytic Tableaux and Related Methods, Lautenbach/Germany.
University of Karlsruhe, Dept. of Computer Science, Internal Report 8/92,
Mar. 1992.

Proceedings of the 1st Workshop on Theorem Proving with Analytic Tableaux and Related
Methods held in Lautenbach, Germany.

[17] J. H. Gallier. Logic for Computer Science: Foundations of Automated The-
orem Proving. Harper and Row, New York, 1986.

[18] R. Hähnle. Automated Deduction in Multiple-Valued Logics, volume 10 of
International Series of Monographs on Computer Science. Oxford Univer-
sity Press, 1994.

Hähnle has specialised in applying tableaux to multiple-valued logics. This book is his doctoral
dissertation and is the most comprehensive work on the topic so far.

[19] R. Hähnle. Short conjunctive normal forms in finitely-valued logics.Jour-
nal of Logic and Computation, 4(6):905–927, 1994.

[20] A. Heyting. Intuitionism, an Introduction. North-Holland, Amsterdam,
1956. Revised Edition 1966.

[21] J. Hintikka. Knowledge and Belief. Cornell University Press, 1962.

[22] G. E. Hughes and M. J. Cresswell.An Introduction to Modal Logic. Methuen
and Co., London, 1968.

[23] R. C. Jeffrey. Formal Logic: Its Scope and Limits. McGraw-Hill, New
York, 1967.

Although rather dated now, this book gives a good and easy introduction to tableaux. It is not
concerned with computerisation.

[24] S. C. Kleene.Introduction to Metamathematics. D. Van Nostrand, North-
Holland, P. Noordhoff, 1950.

636 GRAHAM WRIGHTSON

[25] D. W. Loveland. Automated Theorem Proving. A Logical Basis, volume 6
of Fundamental Studies in Computer Science. North-Holland, Amsterdam,
1978.

Loveland’s book covers resolution and his invention, model elimination. Model elimination
has many close connections to the tableaux technique and it is often implemented in automated
reasoning software.

[26] Z. Manna and R. Waldinger.The Logical Basis for Computer Programming.
Addison-Wesley, 1990. 2 vols.

[27] N. Rescher and A. Urquhart.Temporal Logic. Springer-Verlag, 1971.

[28] J. Siekmann and G. Wrightson, editors.Automation of Reasoning, volume
1 and 2. Springer-Verlag, New York, 1983.

This is a collection of many of the papers from the early work in automated reasoning up to
1970.

[29] R. Smullyan.First-Order Logic. Springer, New York, 1968.

Although this work has nothing to do with automation it is one of the classical works on ana-
lytical tableaux by one of the early researchers in the field and it is often quoted. It is highly
recommended. A reprinting has appeared in Dover Press, 1995.

[30] M. E. Szabo, editor. The Collected Papers of Gerhard Gentzen. North-
Holland, Amsterdam, 1969.

[31] A. Tarski. Logic, Semantics, Metamathematics. Oxford, 1956. J. H.
Woodger translator.

[32] P. B. Thistlewaite, M. A. McRobbie, and B. K. Meyer.Automated Theorem
Proving in Non Classical Logics. Pitman, 1988.

Another book on non-classical logic theorem proving by three people who have been very
active in this field, particularly regarding relevant logic.

[33] S. Toledo. Tableau Systems for First Order Number Theory and Cer-
tain Higher Order Theories, volume 447 ofLecture Notes in Mathematics.
Springer-Verlag, Berlin, 1975.

[34] L. Wallen. Automated Deduction in Non-Classical Logics. The MIT Press,
Cambridge, Mass., 1990.

[35] G. Wrightson. Special issue on analytic tableaux.Journal of Automated
Reasoning, 13(2), 1994.

This is the first of two special issues on analytic tableaux.

[36] G. Wrightson. Special issue on analytic tableaux.Journal of Automated
Reasoning, 13(3), 1994.

This is the second of two special issues on analytic tableaux.

A BIBLIOGRAPHY ON ANALYTIC TABLEAUX THEOREM PROVING 637

CLASSICAL LOGIC

In this section we present papers which are concerned primarily with the use of
tableaux in propositional or first-order predicate logic.

[1] P. B. Andrews. Theorem proving through general matings.JACM, 28:193–
214, 1981.

Andrews’ paper introduces the idea of a mating, a set of pairs of complementary and unifiable
literals in set of formulae which would demonstrate the unsatisfiability of the set of formulae.
Although not directly concerned with tableaux it has since turned out that this idea can be
applied in several of the automated reasoning approaches.

[2] K. Aspetsberger and S. Bayerl. Two Parallel Versions of the Connection
Method for Propositional Logic on the L-Machine. In H. Stoyan, editor,
GWAI’85, volume 118 ofInformatik Fachberichte, Dassel/Solling, FRG,
September 23–28, 1985. Springer Verlag. Also: Technical Report 85-8,
RISC-Linz, Johannes Kepler University, Linz, Austria, 1985.

[3] U. Assmann. Combining Model Elimination and Resolution Techniques.
In K. Broda, M. D’Agostino, R. Gor´e, R. Johnson, and S. Reeves, edi-
tors,3rd Workshop on Theorem Proving with Analytic Tableaux and Related
Methods, TR-94/5, pages 3–11, London, 1994. Imperial College of Science
Technology and Medicine.

[4] O. Astrachan and M. Stickel. Caching and lemmaizing in model elimination
theorem provers. In D. Kapur, editor,Proceedings, 11th Conference on
Automated Deduction (CADE), Albany/NY, USA, pages 224–238. Springer
LNAI 607, 1992.

[5] A. Avron. Gentzen-type systems, resolution and tableaux.Journal of
Automated Reasoning, 10(2):265–281, 1993.

[6] M. Baaz and C. G. Ferm¨uller. Non-elementary Speedups between Different
Versions of Tableaux. In P. Baumgartner, R. H¨ahnle, and J. Posegga, edi-
tors,4th Workshop on Theorem Proving with Analytic Tableaux and Related
Methods, LNAI 918, pages 217–230, Berlin, 1995. Springer Verlag.

This is a continuation of the work in [18] and [55].

[7] M. Baaz, C. G. Ferm¨uller, and R. Zach. Dual systems of sequents and
tableaux for many-valued logics.Bulletin of the European Association for
Theoretical Computer Science, 51, 1993.

[8] P. Baumgartner. A Model Elimination Calculus with Built-in Theories.
In H.-J. Ohlbach, editor,Proceedings of the 16-th German AI-Conference
(GWAI-92), pages 30–42. Springer Verlag, 1992. LNAI 671.

Just as for the equality predicate, special theories have special features which need special
consideration when being built into the theorem proving algorithm.

638 GRAHAM WRIGHTSON

[9] P. Baumgartner. Refinements of Theory Model Elimination and a Variant
without Contrapositives. In A. Cohn, editor,11th European Conference
on Artificial Intelligence, ECAI 94. Wiley, 1994. (Long version in: Re-
search Report 8/93, University of Koblenz, Institute for Computer Science,
Koblenz, Germany).

[10] P. Baumgartner and U. Furbach. Consolution as a Framework for Compar-
ing Calculi. Journal of Symbolic Computation, 16(5), 1993. Academic
Press.

Consolution was introduced by Eder and is used here to compare various calculi.

[11] P. Baumgartner and U. Furbach. Model Elimination Without Contraposi-
tives and Its Application to PTTP.Journal of Automated Reasoning, 13(3):
339–360, 1994.

[12] P. Baumgartner, U. Furbach, and F. Stolzenburg. Model Elimination, Logic
Programming and Computing Answers. In14th International Joint Confer-
ence on Artificial Intelligence (IJCAI 95), volume 1, pages 335–340, 1995.
(Long version in: Research Report 1/95, University of Koblenz, Germany).

[13] P. Baumgartner and F. Stolzenburg. Constraint Model Elimination and a
PTTP-Implementation. In P. Baumgartner, R. H¨ahnle, and J. Posegga, edi-
tors,4th Workshop on Theorem Proving with Analytic Tableaux and Related
Methods, LNAI 918, pages 201–216, Berlin, 1995. Springer Verlag.

[14] B. Beckert. Adding Equality to Semantic Tableaux. In K. Broda, M.
D’Agostino, R. Goré, R. Johnson, and S. Reeves, editors,3rd Workshop on
Theorem Proving with Analytic Tableaux and Related Methods, TR-94/5,
pages 29–41, London, 1994. Imperial College of Science Technology and
Medicine.

[15] B. Beckert. Semantic tableaux with equality.Journal of Logic and Compu-
tation, 1996. To appear.

[16] B. Beckert, S. Gerberding, and R. H¨ahnle. The tableau-based theorem
prover 3TAP for multiple-valued logics. In D. Kapur, editor,CADE, pages
507–521. Springer-Verlag, LNCS 607, 1992.

[17] B. Beckert and R. H¨ahnle. Deduction by combining semantic tableaux
and integer programming. Presented at Computer Science Logic, CSL’95,
Paderborn, Germany, Sept. 1995.

[18] B. Beckert, R. H¨ahnle, and P. Schmitt. The even more liberalized�-rule in
free-variable semantic tableaux. In G. Gottlob, A. Leitsch, and D. Mundici,
editors,Proceedings of the 3rd Kurt G̈odel Colloquium, Brno, Czech Repub-
lic, LNCS 713, pages 108–119. Springer-Verlag, 1993.

A BIBLIOGRAPHY ON ANALYTIC TABLEAUX THEOREM PROVING 639

[19] B. Beckert and J. Posegga.leanTAP : Lean Tableau-based Deduction.Jour-
nal of Automated Reasoning, 15(3):339–358, 1995.

[20] C. Belleann´ee and R. Vorc’h. A Tableau Proof of Linear Size for the Pi-
geon Formulas using Symmetry. In K. Broda, M. D’Agostino, R. Gor´e,
R. Johnson, and S. Reeves, editors,3rd Workshop on Theorem Proving with
Analytic Tableaux and Related Methods, TR-94/5, pages 43–49, London,
1994. Imperial College of Science Technology and Medicine.

[21] E. W. Beth. On Padoa’s method in the theory of definition.Indag. Math.,
15:330–339, 1953.

[22] E. W. Beth. Some consequences of the theorem of L¨owenheim-Skolem-
Gödel-Malcev.Indag. Math., 15, 1953.

[23] W. Bibel. Tautology testing with a generalized matrix method.Theoretical
Computer Science, 8:31–44, 1979.

Bibel introduces his matrix method in this paper.

[24] W. Bibel. Matings in matrices.Communications of the ACM, 26:844–852,
1983.

Here Bibel combines his matrix approach with Andrews’ matings.

[25] W. Bibel. Automated Theorem Proving. Vieweg, Braunschweig, second
revised edition, 1987.

[26] W. Bibel. Short proofs of the pigeonhole formulas based on the connection
method.Journal of Automated Reasoning, 6(3):287–298, Sept. 1990.

When links are introduced to matrices, Bibel then calls this the connection method.

[27] W. Bibel, S. Brüning, U. Egly, D. Korn, and T. Rath. Issues in Theorem
Proving Based on the Connection Method. In P. Baumgartner, R. H¨ahnle,
and J. Posegga, editors,4th Workshop on Theorem Proving with Analytic
Tableaux and Related Methods, LNAI 918, pages 1–16, Springer Verlag,
Berlin, 1995.

[28] W. Bibel and E. Eder. Methods and calculi for deduction. In D. M. Gabbay,
C. J. Hogger, and J. A. Robinson, editors,Handbook of Logic in Artificial
Intelligence and Logic Programming, volume 1: Logical Foundations, pages
67–182. Oxford University Press, Oxford, 1992.

In this overview article Bibel and Eder present several of the main approaches to automated
theorem proving.

[29] K. Bowen. Programming with full first-order logic. In Hayes, Michie, and
Pao, editors,Machine Intelligence, volume 10, pages 421–440. 1982.

640 GRAHAM WRIGHTSON

[30] K. Broda. The application of semantic tableaux with unification to auto-
mated deduction. PhD thesis, Department of Computing, Imperial College,
University of London, 1991.

[31] S. Brüning. Exploiting Equivalences in Connection Calculi.Journal of the
Interest Group in Pure and Applied Logics (IGPL), 3(6):857–886, 1995.

[32] R. Caferra and N. Zabel. An application of many-valued logic to decide
propositional S5 formulae: a strategy designed for a parameterised tableaux-
based theorem prover. In P. Jorrand and V. Sgurev, editors,Artificial In-
telligence iV: Methodology, Systems, Applications (AIMSA), pages 23–32.
Elsevier Science Publishers B.V. (North-Holland), 1990.

[33] R. Caferra and N. Zabel. A tableaux method for systematic simultaneous
search for refutations and models using equational problems.Journal of
Logic and Computation, 3(1):3–26, 1993.

[34] M. Clausen. Multivariate polynomials, standard tableaux, and representa-
tions of symmetric groups.Journal of Symbolic Computation, 11(5 and
6):483–522, May/June 1991.

[35] R. Cleaveland. Tableau-based model checking in the propositional mu-
calculus.Acta Informatica, 27, 1990.

[36] J. Coldwell. Paradigms for improving the control structure of analytic
tableaux. PhD thesis, University of Newcastle, Australia, 1995.

[37] J. Coldwell and G. Wrightson. Some deletion rules for analytic tableaux.
In Annual Australasian Logic Conference. University of Sydney, 1990. Ab-
stract in Journal of Symbolic Logic, vol. 56(3), Sept 1991, pp. 1108-1114.

[38] J. Coldwell and G. Wrightson. A truncation technique for clausal analytic
tableaux.Information Processing Letters, 42:273–281, 1992.

[39] J. Coldwell and G. Wrightson. Lemmas and links in analytic tableau. In
Proceedings of the 7th Australian Joint Conference on Artificial Intelligence,
pages 275–282, Armidale, 1994. University of New England, World Scien-
tific.

Links can be introduced into tableaux just as they were used in Kowalski’s connection graph
resolution and Bibel’s connection method.

[40] J. Coldwell and G. Wrightson. The modified a-rule for link inheritance. In
Proceedings of the 8th Australian Joint Conference on Artificial Intelligence,
Canberra, 1995. Australian Defence Force Academy.

[41] R. H. Cowen. A characterization of logical consequence in quantification
theory. Notre Dame Journal of Formal Logic, 16:375–377, 1973.

A BIBLIOGRAPHY ON ANALYTIC TABLEAUX THEOREM PROVING 641

[42] R. H. Cowen. Solving algebraic problems in propositional logic by tableau.
Archiv für Mathematische Logik und Grundlagenforschung, 22(3–4):187–
190, 1982.

[43] R. H. Cowen. Combinatorial analytic tableaux.Reports on Mathematical
Logic, 27:29–39, 1993.

[44] M. D’Agostino. Are tableaux an improvement on truth tables? Cut-free
proofs and bivalence.Journal of Logic, Language and Information, 1:235–
252, 1992.

[45] M. D’Agostino and M. Mondadori. The taming of the cut.Journal of Logic
and Computation, 4:285–319, 1994.

[46] G. V. Davydov. Synthesis of the resolution method with the inverse method.
Journal of Soviet Mathematics, 1:12–18, 1973. Translated from Zapiski
Nauchnykh Seminarov Leningradskogo Otdeleniya Mathematicheskogo In-
stituta im. V. A. Steklova Akademii Nauk SSSR, vol. 20, pp. 24–35, 1971.

[47] E. Eder. Consolution and its relation with resolution. InProceedings,
International Joint Conference on Artificial Intelligence (IJCAI), pages 132–
136, 1991.

Consolution provides a certain abstraction of resolution and some other calculi to give further
insight into the techniques.

[48] M. C. Fitting. Partial models and logic programming.Theoretical Computer
Science, 48:229–255, 1987.

[49] M. C. Fitting. Tableaux for Logic Programming.Journal of Automated
Reasoning, 13(2):175–188, Oct. 1994.

This is an excellent paper by Fitting illustrating the use of tableaux in logic programming
through the recursive call of tableaux.

[50] M. C. Fitting. A program to compute G¨odel-Löb fixpoints. To appear, 1995.

[51] G. Gentzen. Untersuchungen ¨uber das logische Schliessen.Mathematis-
che Zeitschrift, 39:176–210, 405–431, 1935. English translation, ”Inves-
tigations into logical deduction,” in M. E. Szabo, The Collected Papers of
Gerhard Gentzen, North-Holland, Amsterdam, 1969.

[52] J. Goubault. A BDD-based Skolemization Procedure.Journal of the Interest
Group in Pure and Applied Logics (IGPL), 3(6):827–855, 1995.

[53] M. Grundy.Theorem Prover Generation Using Refutation Procedures. PhD
thesis, Department of Computer Science, University of Sydney, June 1990.

642 GRAHAM WRIGHTSON

[54] M. Grundy. A Stepwise Mapping from Resolution to Tableau Calculi. In
K. Broda, M. D’Agostino, R. Gor´e, R. Johnson, and S. Reeves, editors,3rd
Workshop on Theorem Proving with Analytic Tableaux and Related Meth-
ods, TR-94/5, pages 89–103, London, 1994. Imperial College of Science
Technology and Medicine.

[55] R. Hähnle and P. H. Schmitt. The Liberalized�-Rule in Free Variable
Semantic Tableaux.Journal of Automated Reasoning, 13(2):211–222, Oct.
1994.

This paper shows how to slacken the constraints for the use of the�-rule.

[56] P. Hertz.Über Axiomensysteme f¨ur beliebige Satzsysteme.Mathematische
Annalen, 101:457–514, 1929.

[57] J. Hintikka. A new approach to sentential logics.Soc. Scient. Fennica,
Comm. Phys.-Math., 17(2), 1953.

[58] C. A. Johnson. Factorization and circuit in the connection method.Journal
of the ACM, 40(3):536–557, July 1993.

[59] R. Johnson. Tableau Structure Prediction. In K. Broda, M. D’Agostino,
R. Goré, R. Johnson, and S. Reeves, editors,3rd Workshop on Theorem
Proving with Analytic Tableaux and Related Methods, TR-94/5, pages 113–
127, London, 1994. Imperial College of Science Technology and Medicine.

[60] S. Klingenbeck. Generating Finite Counter Examples with Semantic
Tableaux. In P. Baumgartner, R. H¨ahnle, and J. Posegga, editors,4th
Workshop on Theorem Proving with Analytic Tableaux and Related Meth-
ods, LNAI 918, pages 31–46, Berlin, 1995. Springer Verlag.

[61] S. Klingenbeck and R. H¨ahnle. Semantic tableaux with ordering restric-
tions. In A. Bundy, editor,Proceedings, 12th International Conference on
Automated Deduction (CADE), Nancy/France, LNAI 814, pages 708–722.
Springer Verlag, 1994. To appear in Journal of Logic and Computation,
1996.

[62] J. Komara and P. J. Voda. Syntactic Reduction of Predicate Tableaux to
Propositional Tableaux. In P. Baumgartner, R. H¨ahnle, and J. Posegga, edi-
tors,4th Workshop on Theorem Proving with Analytic Tableaux and Related
Methods, LNAI 918, pages 231–246, Berlin, 1995. Springer Verlag.

[63] R. Letz. First-Order Calculi and Proof Procedures for Automated Deduc-
tion. PhD thesis, TH Darmstadt, June 1993.

[64] R. Letz, K. Mayr, and C. Goller. Controlled Integration of Cut Rule into
Connection Tableau Calculi.Journal of Automated Reasoning, 13(3):297–
338, Dec. 1994.

A BIBLIOGRAPHY ON ANALYTIC TABLEAUX THEOREM PROVING 643

[65] R. Letz, J. Schumann, S. Bayerl, and W. Bibel. SETHEO: A high-perfomance
theorem prover.Journal of Automated Reasoning, 8(2):183–212, 1992.

[66] R. Li and A. Sernadas. Reasoning about objects using a tableau method.
Journal of Logic Computing, 1(5):575–611, Oct. 1991.

[67] Z. Lis. Wynikanie Semantyczne a Wynikanie Formalne (Logical conse-
quence, semantic and formal).Studia Logica, 10:39–60, 1960. Polish, with
Russian and English summaries.

[68] K. Mayr. Link Deletion in Model Elimination. In P. Baumgartner, R. H¨ahnle,
and J. Posegga, editors,4th Workshop on Theorem Proving with Analytic
Tableaux and Related Methods, LNAI 918, pages 169–184, Berlin, 1995.
Springer Verlag.

[69] G. L. Mogilevskii and D. A. Ostroukhov. A mechanical propositional cal-
culus using Smullyan’s analytic tables.Cybernetics, 14:526–529, 1978.
Translation fromKibernetika, 4, 43–46 (1978).

[70] M. Mondadori. Efficient Inverse Tableaux.Journal of the Interest Group in
Pure and Applied Logics (IGPL), 3(6):939–953, 1995.

[71] N. V. Murray and E. Rosenthal. Dissolution: Making paths vanish.Journal
of the ACM, 3(40):504–535, 1993.

[72] N. V. Murray and E. Rosenthal. On the relative merits of path dissolution
and the method of analytic tableaux.Theoretical Computer Science, 131,
1994.

Dissolution is another proof technique which has resolution as a special case.

[73] D. Nardi. Formal synthesis of a unification algorithm by the deductive-
tableau method.Journal of Logic Programming, 7(1):1–43, July 1989.

[74] G. Neugebauer. Reachability analysis for the extension procedure — a topo-
logical result. In Y. Deville, editor,Logic Program Synthesis and Transfor-
mation. Proceedings of LOPSTR’93, Workshops In Computing. Springer
Verlag, 1994.

[75] G. Neugebauer and U. Petermann. Specifications of Inference Rules and
Their Automatic Translation. In P. Baumgartner, R. H¨ahnle, and J. Posegga,
editors,4th Workshop on Theorem Proving with Analytic Tableaux and Re-
lated Methods, LNAI 918, pages 185–200, Berlin, 1995. Springer Verlag.

[76] G. Neugebauer and T. Schaub. A pool-based connection calculus. In
C. Bozşahin, U. Halıcı, K. Oflazar, and N. Yalabık, editors,Proceedings of
Third Turkish Symposium on Artificial Intelligence and Neural Networks,
pages 297–306. Middle East Technical University Press, 1994.

644 GRAHAM WRIGHTSON

[77] M. Ohnishi and K. Matsumoto. A system for strict implication.Annals of
the Japan Assoc. for Philosophy of Science, 2:183–188, 1964.

[78] U. Petermann. How to build in an open theory into connection calculi.
Journal on Computer and Artificial Intelligence, 11(2):105–142, 1992.

[79] U. Petermann. Completeness of the pool calculus with an open built in
theory. In G. Gottlob, A. Leitsch, and D. Mundici, editors,3rd Kurt Gödel
Colloquium ’93, volume LNCS 713. Springer Verlag, 1993.

[80] U. Petermann. A framework for integrating equality reasoning into the
extension procedure. InProceedings Workshop on Theorem Proving with
Analytic Tableaux and Related Methods, Marseille, 1993, pages 195–207,
1993.

[81] U. Petermann. A complete connection calculus with rigid E-unification. In
JELIA94, volume LNCS 838, pages 152–167. Springer Verlag, 1994.

[82] D. Prawitz. An improved proof procedure.Theoria, 26, 1960. Reprinted in
Automation of Reasoning, Jörg Siekmann and Graham Wrightson, Springer-
Verlag, (1983), vol 1, pp 244 – 264., vol. 1, pp 162 – 199.

[83] D. Pym and L. Wallen. Investigations into proof-search in a system of
first-order dependent function types. In10th International Conference on
Automated Deduction, Kaiserslautern, FRG, July 24–27, 1990, LNAI 449,
pages 236–250, Berlin, 1990. Springer Verlag.

[84] H. Rasiowa. Algebraic treatment of the functional calculi of Heyting and
Lewis. Fundamenta Mathematica, 38, 1951.

[85] H. Rasiowa. Algebraic models of axiomatic theories.Fundamenta Mathe-
matica, 41, 1954.

[86] S. V. Reeves.Theorem-proving by Semantic Tableaux. PhD thesis, Univer-
sity of Birmingham, 1985.

[87] S. V. Reeves. Adding equality to semantic tableaux.Journal of Automated
Reasoning, 3:225–246, 1987.

[88] S. V. Reeves. Semantic tableaux as a framework for automated theorem-
proving. In C. S. Mellish and J. Hallam, editors,Advances in Artificial
Intelligence (Proceedings of AISB-87), pages 125–139. Wiley, 1987.

[89] K. Schneider, T. Kropf, and R. Kumar. Accelerating tableaux proofs using
compact representations.Journal of Formal Methods in System Design,
pages 145–176, 1994.

A BIBLIOGRAPHY ON ANALYTIC TABLEAUX THEOREM PROVING 645

[90] K. Schneider, R. Kumar, and T. Kropf. Efficient representation and com-
putation of tableau proofs. In L.J.M. Claesen and M.J.C. Gordon, editors,
International Workshop on Higher Order Logic Theorem Proving and its
Applications, pages 39–58, Leuven, Belgium, Sept. 1992. North-Holland.

[91] J. Schröder. Körner’s criterion of relevance and analytic tableaux.Journal
of Philosophical Logic, 21(2):183–192, 1992.

[92] G. Sidebottom. Implementing CLP (B) using the Connection Theorem
Proving Method and a Clause Management System.Journal of Symbolic
Computation, 15(1):27–48, Jan. 1993.

[93] R. M. Smullyan. Abstract quantification theory. In A. Kino, J. Myhill,
and R. E. Vesley, editors,Intuitionism and Proof Theory, Proceedings of the
Summer Conference at Buffalo N. Y. 1968, pages 79–91. North-Holland,
Amsterdam, 1970.

[94] M. E. Stickel. Upside-Down Meta-Interpretation of the Model Elimina-
tion Theorem-Proving Procedure for Deduction and Abduction.Journal of
Automated Reasoning, 13(2):189–2120, Oct. 1994.

[95] A. Tarski. Der Aussagenkalk¨ul und die Topologie.Fundamenta Mathemat-
ica, 31:103–34, 1938. Reprinted as ‘Sentential calculus and topology’ in A.
Tarski, Logic, Semantics, Metamathematics, Oxford 1956.

[96] V. Vialard. Handling Models in Propositional Logic. In K. Broda, M.
D’Agostino, R. Goré, R. Johnson, and S. Reeves, editors,3rd Workshop on
Theorem Proving with Analytic Tableaux and Related Methods, TR-94/5,
pages 213–219, London, 1994. Imperial College of Science Technology
and Medicine.

[97] R. Vorc’h. A Connection-based Point of View of Propositional Cut Elimi-
nation. In K. Broda, M. D’Agostino, R. Gor´e, R. Johnson, and S. Reeves,
editors,3rd Workshop on Theorem Proving with Analytic Tableaux and Re-
lated Methods, TR-94/5, pages 221–231, London, 1994. Imperial College
of Science Technology and Medicine.

[98] K. Wallace and G. Wrightson. Regressive Merging in Model Elimination
Tableau-based Theorem Provers.Journal of the Interest Group in Pure and
Applied Logics (IGPL), 3(4):921–937, 1995.

[99] K. J. Wallace.Proof Truncation Techniques in Model Elimination Tableaux.
PhD thesis, University of Newcastle, Australia, 1994.

[100] L. A. Wallen. Generating connection calculi from tableau and sequent based
proof systems. In A. Cohn and J. Thomas, editors,Artificial Intelligence
and its Applications, pages 35–50, Warwick, England, 1986. AISB85, John
Wiley & Sons. Edinburgh University, Edinburgh EH1 2QL, U.K.

646 GRAHAM WRIGHTSON

[101] H. Wang. Toward mechanical mathematics.IBM Journal for Research and
Development, 4:2–22, 1960. Reprinted inA Survey of Mathematical Logic,
Hao Wang, North-Holland, (1963), pp 224 – 268, and inAutomation of
Reasoning, Jörg Siekmann and Graham Wrightson, Springer-Verlag, (1983),
vol 1, pp 244 – 264.

[102] C. Weidenbach. First Order Tableaux with Sorts.Journal of the Interest
Group in Pure and Applied Logics (IGPL), 3(4):887–906, 1995.

[103] G. Wrightson. Semantic tableaux with links. InAI’87 Conference, 1987.

[104] G. Wrightson and J. Coldwell. Truncating analytic tableaux. In13th Aus-
tralian Computer Science Conference, pages 412–420, Melbourne, 1990.
Monash University.

NON-CLASSICAL LOGIC

Here we list papers on tableaux theorem proving in various non-classical logics
modal, intuistionistic, relevant, linear, default, multi-valued.

[1] G. Amati, L. C. Aiello, D. Gabbay, and F. Pirri. A proof-theoretical ap-
proach to default reasoning I: Tableaux for default logic.Journal of Logic
and Computation, to appear.

[2] M. Baaz and C. G. Ferm¨uller. Resolution-based theorem proving for many-
valued logics. Journal of Symbolic Computation, 19(4):353–391, Apr.
1995.

[3] B. Beckert, S. Gerberding, R. H¨ahnle, and W. Kernig. The many-valued
tableau-based theorem prover 3TAP. In D. Kapur, editor,Proceedings, 11th
International Conference on Automated Deduction (CADE), Albany/NY, pp.
758–760. Springer LNAI 607, 1992.

[4] N. D. Belnap Jr. A useful four-valued logic. In J. M. Dunn and G. Epstein,
editors,Modern Uses of Multiple-Valued Logic, pages 8–37. D. Reidel,
Dordrecht and Boston, 1977.

[5] E. W. Beth. Semantic construction of intuitionistic logic.Mededelingen der
Kon. Ned. Akad. v. Wet., 19(11), 1956. new series.

[6] A. Bloesch. Signed Tableaux – a Basis for Automated Theorem Proving
in Nonclassical Logics. PhD thesis, University of Queensland, Brisbane,
Australia, 1993.

[7] A. Buchsbaum and T. Pequeno. Automated Deduction with Non-classical
Negations. In K. Broda, M. D’Agostino, R. Gor´e, R. Johnson, and S. Reeves,

A BIBLIOGRAPHY ON ANALYTIC TABLEAUX THEOREM PROVING 647

editors,3rd Workshop on Theorem Proving with Analytic Tableaux and Re-
lated Methods, TR-94/5, pages 51–63, London, 1994. Imperial College of
Science, Technology and Medicine.

[8] R. A. Bull. Review of ‘Melvin Fitting, Proof Methods for Modal and In-
tuitionistic Logics, Synthese Library, Vol. 169, Reidel, 1983’.Journal of
Symbolic Logic, 50:855–856, 1985.

[9] P. Bystrov. Tableau variants of some modal and relevant systems.Polish
Acad. Sci. Inst. Philos. Sociol. Bull. Sectl Logic, 17:92–103, 1988.

[10] R. Caferra and N. Zabel. An application of many-valued logic to de-
cide propositionalS5 formulae: a strategy designed for a parameterized
tableaux-based theorem prover. InProceedings, Artificial Intelligence—
Methodology Systems Application (AIMSA’90), pages 23–32, 1990.

[11] W. A. Carnielli. Systematization of finite many-valued logics through the
method of tableaux.Journal of Symbolic Logic, 52(2):473–493, June 1987.

[12] W. A. Carnielli. On sequents and tableaux for many-valued logics.Journal
of Non-Classical Logic, 8(1):59–76, May 1991.

[13] H. F. Chau. A proof search system for a modal substructural logic based
on labelled deductive systems. In A. Voronkov, editor,Proceedings, 4th
International Conference on Logic Programming and Automated Reasoning
(LPAR’93), St. Petersburg, pages 64–75. Springer Verlag, LNAI 698, 1993.

[14] M. D’Agostino and D. M. Gabbay. A Generalization of Analytic Deduction
via Labelled Deductive Systems. Part I: Basic Substructural Logics.Journal
of Automated Reasoning, 13:243–281, 1994.

[15] B. Davidson, F. C. Jackson, and R. Pargetter. Modal trees fort ands5.
Notre Dame Journal of Formal Logic, 18(4):602–606, 1977.

’Trees’ is often used synonymously with ’tableaux’.

[16] P. de Groote. Linear Logic with Isabelle: Pruning the Proof Search Tree.
In P. Baumgartner, R. H¨ahnle, and J. Posegga, editors,4th Workshop on
Theorem Proving with Analytic Tableaux and Related Methods, LNAI 918,
pages 263–277, Berlin, 1995. Springer Verlag.

[17] S. Demri. Using Connection Method in Modal Logics: Some Advantages.
In P. Baumgartner, R. H¨ahnle, and J. Posegga, editors,4th Workshop on
Theorem Proving with Analytic Tableaux and Related Methods, LNAI 918,
pages 63–78, Berlin, 1995. Springer Verlag.

[18] P. Doherty. A constraint-based approach to proof procedures for multi-
valued logics. InFirst World Conference on the Fundamentals of Artificial
Intelligence WOCFAI–91, Paris, 1991.

648 GRAHAM WRIGHTSON

[19] J. M. Dunn. Intuitive semantics for first-degree entailments and ‘coupled
trees’. Philosophical Studies, 29:149–168, 1976.

[20] J. M. Dunn. Relevance logic and entailment. In D. Gabbay and F. Guen-
thner, editors,Handbook of Philosophical Logic, volume 3, chapter III.3,
pages 117–224. Kluwer, Dordrecht, 1986.

[21] E. A. Emerson. Automata, tableaux and temporal logics (extended abstract).
In Proceedings, Conference on Logics of Programs, Brooklyn, pages 79–87.
Springer, LNCS 193, 1985.

[22] E. A. Emerson and J. Y. Halpern. Decision procedures and expressiveness
in the temporal logic of branching time.Journal of Computer and System
Sciences, 30:1–24, 1985.

[23] R. Feys.Modal Logics. Number IV in Collection de Logique Math´ematique,
Sèrie B. E. Nauwelaerts (Louvain), Gauthier-Villars (Paris), 1965. Joseph
Dopp, editor.

[24] M. C. Fitting. A tableau proof method admitting the empty domain.Notre
Dame Journal of Formal Logic, 12:219–224, 1971.

[25] M. C. Fitting. Tableau methods of proof for modal logics.Notre Dame
Journal of Formal Logic, 13:237–247, 1972.

[26] M. C. Fitting. A modal logic analog of Smullyan’s fundamental theorem.
Zeitschrift f̈ur mathematische Logik und Gründlagen der Mathematik, 19:1–
16, 1973.

[27] M. C. Fitting. A tableau system for propositional S5.Notre Dame Journal
of Formal Logic, 18:292–294, 1977.

[28] M. C. Fitting. First-order modal tableaux.Journal of Automated Reasoning,
4:191–213, 1988.

[29] M. C. Fitting. Bilattices in logic programming. In20th International Sym-
posium on Multiple-Valued Logic, Charlotte, pages 238–247. IEEE Press,
Los Alamitos, 1990.

[30] M. C. Fitting. Modal logic should say more than it does. In J.-L. Lassez and
G. Plotkin, editors,Computational Logic, Essays in Honor of Alan Robin-
son, pages 113–135. MIT Press, Cambridge, MA, 1991.

[31] M. C. Fitting. A modal Herbrand theorem. To appear, 1995.

[32] M. C. Fitting. Tableaus for many-valued modal logic.Studia Logica,
55:63–87, 1995.

A BIBLIOGRAPHY ON ANALYTIC TABLEAUX THEOREM PROVING 649

[33] M. C. Fitting, W. Marek, and M. Truszczynski. The pure logic of necessita-
tion. Journal of Logic and Computation, 2:349–373, 1992.

[34] R. Goré. Semi-analytic tableaux for modal logics with applications to non-
monotonicity.Logique et Analyse, 133-134:73–104, 1991.

[35] R. Goré. The cut-elimination theorem for Diodorean modal logics. InProc.
of the Logic Colloquium, Veszprem, Hungary, 1992. Abstract in theJournal
of Symbolic Logic, vol. 58, number 3, pp. 1141–1142, 1993.

[36] R. Goré. Cut-free sequent and tableau systems for propositional normal
modal logics. PhD thesis, Computer Laboratory, University of Cambridge,
England, 1992.

[37] R. Goré. Cut-free sequent and tableau systems for propositional Diodorean
modal logics.Studia Logica, 53:433–457, 1994.

[38] G. Governatori. Labelled Tableaux for Multi-Modal Logics. In P. Baum-
gartner, R. H¨ahnle, and J. Posegga, editors,4th Workshop on Theorem Prov-
ing with Analytic Tableaux and Related Methods, LNAI 918, pages 79–94,
Berlin, 1995. Springer Verlag.

[39] C. Groeneboer and J. P. Delgrande. Tableau-based theorem proving in nor-
mal conditional logics. InProceedings, AAAI’88, St. Paul, MN, pages 171–
176, 1988.

[40] R. Hähnle. Towards an efficient tableau proof procedure for multiple-valued
logics. InProceedings, Workshop on Computer Science Logic (CSL), Hei-
delberg, pages 248–260. Springer, LNCS 533, 1990.

[41] R. Hähnle. Uniform notation of tableaux rules for multiple-valued logics. In
Proceedings, International Symposium on Multiple-Valued Logic (ISMVL),
Victoria, pages 238–245. IEEE Press, 1991.

[42] R. Hähnle. Efficient deduction in many-valued logics. InProc. Interna-
tional Symposium on Multiple-Valued Logics, ISMVL’94, Boston/MA, USA,
pages 240–249. IEEE Press, Los Alamitos, 1994.

[43] R. Hähnle. Many-valued logic and mixed integer programming.Annals of
Mathematics and Artificial Intelligence, 12(3,4):231–264, Dec. 1994.

[44] R. Hähnle and O. Ibens. Improving temporal logic tableaux using integer
constraints. In D. Gabbay and H.-J. Ohlbach, editors,Proceedings, Inter-
national Conference on Temporal Logic (ICTL), Bonn, LNCS 827, pages
535–539. Springer-Verlag, 1994.

[45] J. Hintikka. Modality and quantification.Theoria, 27:110–128, 1961.

650 GRAHAM WRIGHTSON

[46] J. Hintikka. Model minimization - an alternative to circumscription.J. of
Automated Reasoning, 4:1–13, 1988.

[47] J. Hudelmaier. On a Contraction-free Sequent Calculus for the Modal Logic
S4. In K. Broda, M. D’Agostino, R. Gor´e, R. Johnson, and S. Reeves, edi-
tors,3rd Workshop on Theorem Proving with Analytic Tableaux and Related
Methods, TR-94/5, pages 105–111, London, 1994. Imperial College of Sci-
ence, Technology and Medicine.

[48] J. Hudelmaier and P. Schroeder-Heister. Classical Lambek Logic. In
P. Baumgartner, R. H¨ahnle, and J. Posegga, editors,4th Workshop on Theo-
rem Proving with Analytic Tableaux and Related Methods, LNAI 918, pages
247–262, Berlin, 1995. Springer Verlag.

[49] R. Johnson. A blackboard approach to parallel temporal tableaux. In Jor-
rand, P. and V. Sgurev, editors,Artificial Intelligence, Methodologies, Sys-
tems, and Applications (AIMSA), pages 183–194, Singapore, 1994. World
Scientific.

[50] J. R. Kenevan and R. E. Neapolitan. A model theoretic approach to propo-
sitional fuzzy logic using Beth tableaux. In L. A. Zadeh and J. Kacprzyk,
editors,Fuzzy Logic for the Management of Uncertainty, pages 141–158.
John Wiley & Sons, 1992.

[51] M. Kohlhase. Higher-Order Tableaux. In P. Baumgartner, R. H¨ahnle,
and J. Posegga, editors,4th Workshop on Theorem Proving with Analytic
Tableaux and Related Methods, LNAI 918, pages 294–309, Berlin, 1995.
Springer Verlag.

This is one of the few papers in recent years which considers tableaux for higher-order logic.
Kohlhase is a member of a group researching higher order logic theorem proving.

[52] S. Kripke. A completeness theorem in modal logic.Journal of Symbolic
Logic, 24:1–14, 1959.

[53] P. Kuhna. Circumscription and minimal models for propositional logics. In
Proc. of the 2nd Workshop on Theorem Proving with Analytic Tableaux and
Related Methods, pages 143–155, Marseille, 1993. Tech. Report MPI-I-93-
213.

[54] S. Lorenz. A Tableau Prover for Domain Minimization.Journal of Auto-
mated Reasoning, 13(3):375–390, Dec. 1994.

[55] J. J. Lu, N. V. Murray, and E. Rosenthal. Signed formulas and annotated
logics. InProceedings, International Symposium on Multiple-Valued Logics
(ISMVL), pages 48–53, 1993.

Another paper looking at labelled deduction systems.

A BIBLIOGRAPHY ON ANALYTIC TABLEAUX THEOREM PROVING 651

[56] F. Massacci. Strongly analytic tableaux for normal modal logics. In
A. Bundy, editor,12th International Conference on Automated Deduction,
LNAI 814, pages 723–737, Nancy, France, 1994. Springer-Verlag.

[57] K. Matsumoto. Decision procedure for modal sentential calculus S3.Osaka
Mathematical Journal, 12:167–175, 1960.

[58] M. C. Mayer and F. Pirri. First-order abduction via tableau and sequent
calculi. Bulletin of the IPGL, 1(1):99–117, 1993.

[59] M. C. Mayer and F. Pirri. Propositional Abduction in Modal Logic.Journal
of the Interest Group in Pure and Applied Logics (IGPL), 3(6):907–919,
1995.

[60] T. McCarty. Clausal intuitionistic logic: I. Fixed-point semantics.Journal
of Logic Programming, 5:1–31, 1988.

[61] T. McCarty. Clausal intuitionistic logic: II. Tableau proof procedures.Jour-
nal of Logic Programming, 5:93–132, 1988.

[62] M. A. McRobbie and N. D. Belnap. Relevant analytic tableaux.Studia
Logica, XXXVIII:187–200, 1979.

This is one of the first papers on automated reasoning using tableaux applied to relevant logic.

[63] R. K. Meyer, M. A. McRobbie, and N. D. Belnap Jr. Linear Analytic
Tableaux. In P. Baumgartner, R. H¨ahnle, and J. Posegga, editors,4th
Workshop on Theorem Proving with Analytic Tableaux and Related Meth-
ods, LNAI 918, pages 278–293, Berlin, 1995. Springer Verlag.

It turns out that there is a close connection between linear logic and relevant logic.

[64] P. Miglioli, U. Moscato, and M. Ornaghi. An Improved Refutation Sys-
tem for Intuitionistic Predicate Logic.Journal of Automated Reasoning,
13(3):361–374, Dec. 1994.

[65] P. Miglioli, U. Moscato, and M. Ornaghi. How to avoid Duplications
in Refutation Systems for Intuitionistic and Kuroda Logic. In K. Broda,
M. D’Agostino, R. Goré, R. Johnson, and S. Reeves, editors,3rd Workshop
on Theorem Proving with Analytic Tableaux and Related Methods, TR-94/5,
pages 169–187, London, 1994. Imperial College of Science, Technology
and Medicine.

[66] P. Miglioli, U. Moscato, and M. Ornaghi. Refutation systems for propo-
sitional modal logics. In P. Baumgartner, R. H¨ahnle, and J. Posegga, edi-
tors,4th Workshop on Theorem Proving with Analytic Tableaux and Related
Methods, LNAI 918, pages 95–105, Berlin, 1995. Springer Verlag.

652 GRAHAM WRIGHTSON

[67] G. Mints. Proof theory in the USSR 1925 – 1969.Journal of Symbolic
Logic, 56(2):385–424, 1991.

[68] G. L. Mogilevskii and D. A. Ostroukhov. A mechanical propositional cal-
culus using Smullyan’s analytic tables.Cybernetics, 14:526–529, 1978.
Translation fromKibernetika, 4, 43–46 (1978).

[69] C. G. Morgan and E. Orłowska. Kripke and relational style semantics and
associated tableau proof systems for arbitrary finite valued logics. InPro-
ceedings, 2nd Workshop on Theorem Proving with Tableau-Based and Re-
lated Methods, Marseille. Tech. Report, MPII Saarbr¨ucken, 1993.

[70] N. V. Murray and E. Rosenthal. Improving tableau deductions in multiple-
valued logics. InProceedings, 21st International Symposium on Multiple-
Valued Logic, Victoria, pages 230–237. IEEE Computer Society Press, Los
Alamitos, May 1991.

[71] N. V. Murray and E. Rosenthal. Resolution and path-dissolution in multiple-
valued logics. InProceedings, International Symposium on Methodolo-
gies for Intelligent Systems (ISMIS), Charlotte, LNCS 542, pages 570–579,
Berlin, 1991. Springer Verlag.

[72] A. Nakamura and H. Ono. On the size of refutation Kripke models for some
linear modal and tense logics.Studia Logica, 34:325–333, 1980.

[73] I. Niemelä. Decision procedure for autoepistemic logic. InProceedings of
the 9th International Conference on Automated Deduction, pages 675–684,
Argonne, USA, May 1988. Springer-Verlag.

[74] Z. Ognjanovic. A tableau-like proof procedure for normal modal logics.
Theoretical Computer Science, 129, 1994.

[75] M. Ohnishi. Gentzen decision procedures for Lewis’s systems S2 and S3.
Osaka Mathematical Journal, 13:125–137, 1961.

[76] M. Ohnishi and K. Matsumoto. Gentzen method in modal calculi I.Osaka
Mathematical Journal, 9:113–130, 1957.

[77] M. Ohnishi and K. Matsumoto. Gentzen method in modal calculi II.Osaka
Mathematical Journal, 11:115–120, 1959.

[78] N. Olivetti. Tableaux and sequent calculus for minimal entailment.Journal
of Automated Reasoning, 9(1):99–139, Aug. 1992.

[79] E. Orłowska. Mechanical proof methods for Post Logics.Logique et
Analyse, 28(110):173–192, 1985.

A BIBLIOGRAPHY ON ANALYTIC TABLEAUX THEOREM PROVING 653

[80] J. Otten and C. Kreitz. A Connection Based Proof Method for Intuitionistic
Logic. In P. Baumgartner, R. H¨ahnle, and J. Posegga, editors,4th Workshop
on Theorem Proving with Analytic Tableaux and Related Methods, LNAI
918, pages 122–137, Berlin, 1995. Springer Verlag.

[81] R. Plius̆kevic̆ius. The Saturated Tableaux for Linear Miniscoped Horn-like
Temporal Logic. Journal of Automated Reasoning, 13(3):391–408, Dec.
1994.

[82] V. Risch. Analytic tableaux for default logics. InAAAI Fall Symposium on
Automated deduction in Nonstandard Logics, pages 149–155, 1993.

[83] V. Risch. Une caracterisation en termes de tableaux semantiques pour la
logique des defauts au sens de Lukaszewicz.Revue d’intelligence artifi-
cielle, 25(5):347–418, 1993.

[84] V. Risch and C. B. Schwind. Tableau-Based Characterization and Theorem
Proving for Default Logic. Journal of Automated Reasoning, 13(2):243–
281, Oct. 1994.

This is one of the few publications using tableaux in non-monotonic logics.

[85] G. Rousseau. Sequents in many valued logic I.Fundamenta Mathematica,
60:23–33, 1967.

[86] P. H. Schmitt. Perspectives in multi-valued logic. In R. Studer, editor,
Proceedings International Scientific Symposium on Natural Language and
Logic, Hamburg, LNCS 459, pages 206–220, Berlin, 1989. Springer Verlag.

[87] P. H. Schmitt and W. Wernecke. Tableau calculus for order-sorted logic. In
K. H. Bläsius, U. Hedst¨uck, and C.-R. Rollinger, editors,Sorts and Types
in Artificial Intelligence, Proc. of the workshop, Ehringerfeld, 1989, volume
418 ofLNCS, pages 49–60, Berlin, 1990. Springer Verlag.

[88] S. Schmitt and C. Kreitz. On Transforming Intuitionistic Matrix Proofs into
Standard-Sequent Proofs. In P. Baumgartner, R. H¨ahnle, and J. Posegga, ed-
itors,4th Workshop on Theorem Proving with Analytic Tableaux and Related
Methods, LNAI 918, pages 106–121, Berlin, 1995. Springer Verlag.

[89] C. B. Schwind. A tableaux-based theorem prover for a decidable subset
of default logic. In M. E. Stickel, editor,10th International Conference
on Automated Deduction, LNAI 449, pages 528–542, Kaiserslautern, FRG,
July 24–27, 1990. Springer-Verlag.

[90] N. Shankar. Proof search in the intuitionistic sequent calculus. In D. Kapur,
editor,Automated Deduction — CADE-11, number 607 in Lecture Notes in
Artificial Intelligence, pages 522–536. Springer-Verlag, Berlin, 1992.

654 GRAHAM WRIGHTSON

[91] R. L. Slaght. Modal tree constructions.Notre Dame Journal of Formal
Logic, 18(4):517–526, 1977.

[92] R. M. Smullyan. A generalization of intuitionistic and modal logics. In
H. Leblanc, editor,Truth, Syntax and Modality, Proceedings of the Temple
University Conference on Alternative Semantics, pages 274–293. North-
Holland, Amsterdam, 1973.

[93] W. Suchoń. La méthode de Smullyan de construire le calcul n-valent des
propositions de Łukasiewicz avec implication et n´egation.Reports on Math-
ematical Logic, Universities of Cracow and Katowice, 2:37–42, 1974.

[94] S. J. Surma. An algorithm for axiomatizing every finite logic. In D. C.
Rine, editor,Computer Science and Multiple-Valued Logics, pages 143–149.
North–Holland, Amsterdam, 1984.

Second Edition

[95] M. Takahashi. Many-valued logics of extended Gentzen style I.Sci. Rep.
Tokyo Kyoiku Daigaku Sect. A, 9:271, 1967.

[96] J. Underwood. Tableau for Intuitionistic Predicate Logic as Metatheory.
In P. Baumgartner, R. H¨ahnle, and J. Posegga, editors,4th Workshop on
Theorem Proving with Analytic Tableaux and Related Methods, LNAI 918,
pages 138–153, Berlin, 1995. Springer Verlag.

[97] L. A. Wallen. Automated Proof Search in Non-Classical Logics: Efficient
Matrix Proof Methods for Modal and Intuitionistic Logics. PhD thesis,
University of Edinburgh, 1987.

[98] L. A. Wallen. Matrix Proof Methods for Modal Logics. InProc. of IJCAI
87, pages 917–923. Morgan Kaufman, 1987.

[99] G. Wrightson. Non-classical logic theorem proving.Journal of Automated
Reasoning, 1:5–48, 1985.

[100] Zabel. Analytic tableaux for finite and infinite post logics. In A. M.
Borzyszkowski and S. Sokotowski, editors,Symposium on Mathematical
Foundations of Computer Science, LNCS 711, pages 767–776, Berlin, 1993.
Springer Verlag.

[101] N. Zabel. Nouvelles Techniques de Déduction Automatique en Logiques
Polyvalentes Finies et Infinies du Premier Ordre. PhD thesis, Institut Na-
tional Polytechnique de Grenoble, Apr. 1993.

A BIBLIOGRAPHY ON ANALYTIC TABLEAUX THEOREM PROVING 655

IMPLEMENTATIONS

The section lists publications describing various implementations of the tableaux
method or similar approaches such as the connection method or model elimination.

[1] O. Astrachan. METEOR: Exploring Model Elimination Theorem Proving.
Journal of Automated Reasoning, 13(3):283–296, Dec. 1994.

[2] P. Baumgartner and U. Furbach. PROTEIN: APROver with aTheory
ExtensionInterface. In A. Bundy, editor,Automated Deduction – CADE-12,
volume 814 ofLNAI, pages 769–773. Springer Verlag, 1994.

[3] L. Catach. TABLEAUX: A general theorem prover for modal logics.Jour-
nal of Automated Reasoning, 7(4):489–510, Dec. 1991.

[4] H. C. M. de Swart and W. M. J. Ophelders. Tableaux versus Resolution a
Comparison.Fundamentae Informaticae, 18:109–127, 1993.

[5] E. Eder. An implementation of a theorem prover based on the connec-
tion method. In W. Bibel and B. Petkoff, editors,Proceedings, Artificial
Intelligence—Methodology Systems Application (AIMSA’84), pages 121–
128. North-Holland, Sept. 1984.

[6] C. Goller, R. Letz, K. Mayr, and J. M. P. Schumann. SETHEO V3.2: Re-
cent developments. In A. Bundy, editor,12th International Conference on
Automated Deduction, Nancy, France, June/July 1994, LNAI 814, pages
778–782, Berlin, 1994. Springer Verlag.

[7] M. Koshimura and R. Hasegawa. Modal Propositional Tableaux in a Model
Generation Theorem-prover. In K. Broda, M. D’Agostino, R. Gor´e, R. John-
son, and S. Reeves, editors,3rd Workshop on Theorem Proving with Analytic
Tableaux and Related Methods, TR-94/5, pages 145–151, London, 1994.
Imperial College of Science, Technology and Medicine.

[8] Y. Malach and Z. Manna. TABLOG: The deductive-tableau programming
language. InConference Record of the 1984 ACM Symposium on LISP and
Functional Programming, Austin, TX, pages 323–330, New York, NY, 1984.
ACM.

[9] F. Oppacher and E. Suen. HARP: A tableau-based theorem prover.Journal
of Automated Reasoning, 4(1):69–100, Mar. 1988.

[10] J. Schumann. Tableau-based Theorem Provers: Systems and Implementa-
tions. Journal of Automated Reasoning, 13(3):409–421, 1994.

This is a list of tableaux based theorem provers indicating the contacts for the implementers
and a brief description of the systems.

656

INDEX

A-characteristic label, 432, 436
Abrusci, M., 421
accessibility, 450{453
accessible from, 300
additives, 407, 408, 413, 414, 416
admissible rules, 313
algebra of the labels, see labelling

algebra
Allwein, G., 421
�, 57
analysis, 62

directional sense of, 62
analytic

rule, 52
rule application, 52

analytic application of PB, 103,
106, 434

analytic argument, 61
analytic cut, 78, 92{115

property, 103
system, 119

analytic restriction of KE, 103,
106

ancestor clash restricted tableaux,
71

AND-OR circuit with decoder, 569
Anderson, A. R., 398, 399, 403,

409, 415
arity, 528
atom, see formula, atomic
atomic closure property, 431, 457
atomic formula, 298
atomic label, 429, 442
autoepistemic logics, 472
Avron, A., 60, 402, 403, 407, 418,

421
axiom names, 299

axioms, 60
Go, 299
2, 299
3, 299
4, 299
5, 299
B, 299
Dbr, 299
Dum, 299
D, 299
Grz, 299
G, 299
K, 299
L, 299
M, 299
R, 299
T, 299
X, 299
Zem, 299
Z, 299

background reasoner
complete, 218
ground, 208
incremental, 246
monotonic, 204
total, 204

backtracking, 263, 271, 273
barrier, 419
basic superposition

rigid, 239{241
BCK implication, 426
BCK logic, 398
BDD, see binary decision diagram
Belnap Jr., N. D., 398, 399, 402,

403, 408{410, 415, 416,
419

�, 57

658 Index

Beth, E. W., 87
Bibel, W., 75
binary decision diagram, 566
Blanch�e, R., 97
block tableau system, 256
Bochensky, I. M., 97
Boolean polynomial, 568
Boolean valuation, 47, 49, 62, 96
Boolos, G., 111
Bo�zi�c, M., 451, 452
branch

S-saturated, 53
checked, 90
closed, 51

many-valued, 537
sets-as-signs, 543

inconsistent
sets-as-signs, 543

M-saturated, 90
open, 51, 59

sets-as-signs, 543
regular

many-valued, 562
saturated, 52
tautological

in dual sets-as-signs
tableau, 552

branching rules, 57
Broda, K., 90, 120, 426
Bull, R., 453
Buss, S., 56

canonical
application of PB, 104, 434
canonical, 424{426, 435
procedure for KE, 101{105
restriction of KE, 109, 110
KE-tree, 104

categorial logic, 398
cautious monotony, 509
Cellucci, C., 63, 64n, 66n, 92, 97
Chang, C. L., 104
characteristic axioms

Euclidean R, 301

reexive R, 301
serial R, 301
symmetric R, 301
transitive R, 301
weakly-connected R, 301

Chrysippus, 97
Church, A., 45, 54
Church{Turing thesis, 54
circumscription, 481
CL-saturated, 330
clash priority tableaux, 71
classical

cut system, 117
dilemma, 64
implication, 422
logic, 397, 398, 448

perturbations of, 398
classical negation, 408
reductio ad absurdum, 64, 121
substructural logics, 421, 422,

445{450
clause, 67

empty, 552
signed, 552

closed tableau, see tableau, closed
closed world assumption, 481
cluster, 302

degenerate, 302
�nal, 302
last, 302
nondegenerate, 302
proper, 302
simple, 302

CNF, see formula, CNF
CNF representation, 532, 533, 550

sets-as-signs, 542, 550, 559
CNF translation

language preserving, 553
structure preserving, 553{555

with many-valued polarity,
554

completed
branch, 102, 386
tableau, 58, 59

Index 659

completeness
theory reasoning, 218
with respect to L-frames, 309
of CL, 330
of tableaux, 58

computational complexity, 53{57
conditional, 403{404
conditions on R

antisymmetry, 302
asymmetry, 302
Euclidean-ness, 301
intransitivity, 302
irreexivity, 302
reexivity, 301
seriality, 301
strict-order, 302
symmetry, 301
transitivity, 301
weak-connectedness, 301
weak-directedness, 301
weakly-directed, 301

conuence, 52, 72, 74, 412
conuence of tableaux, 58
conjugate, 99
conjunction, 404{405

additive, 405, 413, 415, 435,
436

classical, 404, 407
context-dependent, 405, 407,

413
context-free, 405, 413
multiplicative, 414, 435

connection method, 75
connective

many-valued, 528, 531, 572
consequence

strong, 199
constrained variables, 441{445, 449
continuity, 423, 447
contraction, 257, 259, 269, 276,

310, 401{403, 405, 410,
418, 419, 423, 424, 436,
439, 440

axiom, 411, 419, 431

contraposition law, 412
Cook, S., 54, 56, 85, 86, 110
correspondences, 301
countermodel, 48, 50, 62, 63, 76,

78
credulous derivability, 473
cumulativity, 479
Curry, H. B., 398
cut, 80, 312, 401, 405, 417

elimination, 89, 96, 111, 256,
272

many-valued, 535, 563{565
rule, 60, 67, 88, 89, 92, 93,

95{97, 104, 105, 107, 116,
399, 402{404, 425

formula, 107
free proof, 60, 61, 75{78, 88,

89

D'Agostino, M., 92, 97, 420, 421,
426, 450, 451

Davis, M., 93, 104
Davis{Putnam procedure, 93{95,

104
de Morgan, W., 64{66

law, 64{66, 450
normal form, 419

deadends
de�nition of, 379

decision algorithm, 59
decision problem, 59
decision procedure, 59
decomposition, 566
deep thought, 571
defaults, 475
deg(A), 315
deg(X), 315
degree, 315
derived rule, 116, 313
deterministic algorithm, 54
directedness, 454
disjunction, 406

additive, 406, 413, 415, 436,
437

660 Index

classical, 407
context-dependent, 406, 407,

413
context-free, 406, 407, 413
multiplicative, 414

disjunctive syllogism, 99
distribution, 531, 546

quanti�er, 530
function, 529, 546

distributivity, 415, 439, 447
DNF representation, 532, 534, 540,

546
partitioning, 564
sets-as-signs, 542, 543, 559

domain
circumscription, 481
closure axiom, 511
minimal entailement, 483

Do�sen, K., 398, 421, 437, 451, 452
double negation law, 406, 408, 445
downward

continuity, 446
saturated, 50, 220

DPP, 93{95
duality lemma, 455{457
Dummett, M., 61
Dunn, M., 399, 400, 421

E-analysed formula, 102
E-complete branch, 102{104
E-rules, 97, 99, 107
E-uni�cation

ground, 237
mixed, 241{242
rigid, 237{239
simultaneous, 234, 243
universal, 237

eliminating contraction, 359
elimination rules, 60, 97, 99
empty clause, 68
equality

reasoning
partial, 227{232
total, 233{242

theory, 200
Euclideanism, 454
eventuality, 330

ful�lled, 330
ex-falso rule, 116, 440, 443
exchange, 310, 401, 403, 404, 406,

407, 410, 423, 424, 450,
455

expansion, 401, 403, 416, 417, 423,
424, 428

Boole{Shannon, 566
many-valued, 568
orthonormal, 568
rule, 50

of branching type, 50
of linear type, 50

system, 49, 53
complete, 52, 53
conuent, 52, 53

expansive non-monotonic models,
428

exponential time, 54, 419
extension, 475

c-extension, 480
m-extension, 478

fairness, 219
feasible problems, 53
feasible solution, 555, 557
�lter, 548
�nite frames

K4DLZ, 359
K4DL, 359
K4L, 359
S4:2, 359
S4:3:1, 359
S4:3, 359
S4F, 359
S4R, 359

�nite model property, 302, 320
Fischer-Servi, G., 451
�ssion, 413, 414
Fitch, F. B., 398
Fitting, M., 57, 95, 104, 426

Index 661

forcing, 423, 452, 453
formula, 298

atomic, 528
CNF

signed, 552, 559
�rst-order

many-valued, 529
sets-as-signs, 546

Horn
many-valued, 560

propositional
many-valued, 528
sets-as-signs, 541

regular, 559, 562
signed

many-valued, 536
sets-as-signs, 540, 541

frame, 300, 573
free variables in the labels, 433
Frege, G., 68
ful�lled node, 59
function graph, 567
function minimization, 542, 566,

572
functional interpretations, 257
functionally complete, 530, 536
fundamental theorem, 290
fusion, 413, 414

G4, 60, 61, 62
Gabbay, D. M., 46, 47, 97, 120,

402, 420, 421, 426, 450,
451

Garey, M. R., 46, 54
Garson, J., 397
generalized disjunctions and con-

junctions, 104
Gentzen, G., 46, 59{61, 63, 63n,

75, 76, 78, 81, 82, 87{
89, 92, 99, 105, 106, 398,
399, 399n, 400, 400n, 401,
403, 404, 408, 409, 410,
419, 426

Gentzen system, 46, 87

Girard, J.-Y., 63n, 66n, 88, 398,
402, 403, 405, 407, 413,
418, 419

global constraints, 436, 443, 444
grounded, 490

hardware veri�cation, 572
Hauptsatz, 60, 75, 76, 88, 89
Herbrand, J., 93
Heyting, A., 63
Hintikka, J., 85

lemma, 50, 103
set, 50, 53, 58, 221

many-valued, 543
Horn clauses, 105, 397
Howard, W. A., 398, 420
hypertableaux, 516
H�ahnle, R., 97

ideal, 548
identity, 399, 401{406
ignorable, 504
implementation

of many-valued tableau, 571
information frame, 445{449, 451,

456
commutative, 446, 448
contractive, 446, 458, 459
directed, 454, 463
Euclidean, 454
expansive, 446, 460
involutive, 448
modal, 452, 453, 455, 461
monotonic, 446, 459{461
reexive, 454, 458, 459
regular, 462, 463
serial, 453
symmetric, 454, 460
transitive, 454, 459, 460

information token, 446
integer program, 555
intercalation calculus, 67
interpretation

extended, 541

662 Index

�rst-order
many-valued, 530

propositional
many-valued, 530
many-valued, sets-as-signs,

544
many-valued, sets-as-signs,

541
introduction rules, 60
intuitionistic

implication, 422, 423, 426
logic, 60, 397, 443, 448
substructural logics, 421, 422,

434{445, 447
intuitions for the rules, 321
invertibility, 314, 328

lemma, 328
rules, 62, 63

involutive
model, 448
negation, 404, 406, 409, 422,

445, 447{450
IP, see integer program

Je�rey, R., 92
Johansson, I., 405
Johnson, D. S., 46, 54

KE, 95{119, 421, 422, 426, 427,
429, 434

KE-proof, 99, 103
KE-refutation, 99
KE-tree, 97{99, 102
Kanger, S., 371
Karnak, 571
Karnaugh map, 569
KE system, 560, 563
key, 203

incremental, 246
Kleene, S. C., 60, 61, 62

logic, 530, 536, 547, 571
Komori, Y., 421, 437
Kowalski, R. A., 397
Kripke, S., 369, 420{423, 426, 445

model, 422
semantics, 264, 294

L1-deadends
de�nition of, 379

L-accessibility
de�nition of, 379

L-frame, 302
L-model, 302

for a �nite set X , 302
L-satis�able, 302
L-tableau, 91
L-valid, 302
labelled

deductive systems, 402, 420{
422, 426

formulae, 420
refutation system, 421
signed formulae, 427
tableaux, 402, 420{464

labelling algebra, 420, 421, 427,
429, 431, 433, 434, 439,
441, 443, 447, 449, 456,
462

basic, 429, 430, 444
modal, 456
speci�c, 430

labelling language, 429, 442
Lafont, Y., 398
�-complexity, 105
Lambek, J., 398, 402, 403

calculus, 403
implications, 426

language
�rst-order

many-valued, 529
propositional

many-valued, 528
lattice

distributive, 549
law of excluded middle, 89
LDS, 420{422
Lee, R. C. T, 104

Index 663

left-handed sequent system, 408{
410, 415, 418

lemma generation, 91, 114
Letz, R., 71, 74, 75, 120
liberalized rules, 431
linear logic, 60, 402, 403, 408, 418{

419, 431{433, 448
exponential-free, 418

linear
implication, 423, 426
inequation, 555
optimization, 554
program, 555
rules, 57
term, 555

literal, 67
complement of a, 67
negative, 67
positive, 67
signed, 541

LJ, 421, 426, 444
LKE, 426{450
LK, 59, 60, 421
local constraints, 435, 436, 441
logic

�rst-order
many-valued, 530, 538

in�nitely-valued, 534, 538, 557
non-monotonic, 572
propositional

many-valued, 530, 541
regular, 559
substructural, 573

logic design, 542, 568{572
logic programming, 397
logic programs, 397
logical

many-valued consequence, 531
many-valued constant, 528, 535
many-valued equivalence, 531
operators

classical meaning of the, 63{
65

constructive meaning of the,
63, 65

Loveland, D., 75
LP, see linear program
LS-formula, 431, 427, 434
 Lukasiewicz logic, 530, 536{539,

557, 573

m-closed, 504
MacCaull, W., 421
major premiss, 101
many-valued decision diagram, 565{

569, 572
material implication, 298
matrix

characterisations, 257
�rst-order, 529
propositional, 529, 541

Matulis, V. A., 62
maximum modal degree, 315
McRobbie, M. A., 402, 408{410,

416, 419
MDD, see many-valued decision

diagram
mdeg(A), 315
mdeg(X), 315
Meredith, D., 398
merging, 90{113
meta connective, 533, 536, 571
Meyer, R. K., 398, 402, 408, 416,

419, 448
midsequent theorem, 290
mingle

axiom, 416, 417, 433
closure, 417, 418
implication, 423, 426
system, 400, 401, 417

minimal entailment, 481
minimal logic, 443
minor premiss, 101
MIP, see mixed integer program
mixed integer program, 555, 557
MLK, 507
modal

664 Index

constraints, 455
degree, 315
implication logic (MIL), 455{

464
implication model, 452
LKE rules, 456{464
logics, 294
substructural logics, 450{464

model, 300
�rst-order

many-valued, 531
propositional

many-valued, 531, 544
model

elimination, 75
existence theorem, 256, 273

modus ponens, 99, 420, 421
modus tollens, 99
monadic predicate logic, 266
Mondadori, M., 92, 97, 120
monotonicity, 312, 399{401, 436,

439, 440
multi-conclusion sequents, 406
multiplicatives, 407{409, 413{416,

449
multiset, 60
Murray, N., 86

names of axioms, 302
natural deduction, 59{61, 63{66,

76, 88, 89, 99, 105, 111{
113, 115, 119, 400, 420

normal, 63, 67
negation, 405{406
negation rules, 439{441, 447
Nelson, D., 398
new atomic label, 421, 427, 429
NJ, 59
NK, 59
non-constructive dilemma, 116, 121
non-deterministic algorithm, 54
non-deterministic Turing Machine,

54
NP, 54, 55, 555, 558

NP-completeness, 46, 54

object variable, 528
of course, 419
Ono, H., 421, 437
operational, 402

rules, 398, 399n, 401, 404, 424,
425, 444

optimal solution, 555, 557
OR-AND-OR circuit, 540, 569, 571

P, 46, 53{55, 555
p-simulation, 56, 87, 96, 105
Pappus, 62
parent clash restricted tableaux,

75
partial

normal form, 532
orderings, 200
theory reasoning, 205
valuation, 47

partition
of truth table, 564

path connected tableaux, 71{75
PB, 95{105, 107, 110, 113, 116,

427{429, 433, 434, 436,
441

formula, 96, 97, 103
inference, 97

Peirce, C. S., 65
law, 65

permutation, 263
persistence, 422, 423, 447, 452
piece of information, 446
PLA, see programmable logic ar-

ray
Plotkin, G. D., 451, 452
polarity, 554, 556

in many-valued logic, 554, 559
polynomial

simulation, 56
size proofs, 55
time, 46, 53{55

positive

Index 665

logic, 397
paradox, 400, 413

Post, E., 45
algebra, 560
logic, 536, 548, 559, 567, 573

power algebra, 541
Prawitz, D., 48, 61, 63, 63n, 76,

99, 112, 116, 119
prime implicant, 542
prime implicate, 542
primitive propositions, 298
principle of

bivalence, 87, 89, 95, 427
non-contradiction, 87, 427, 428

Prior, A. N., 398
program veri�cation, 572
programmable logic array, 569
Prolog, 397
proof

interpretation, 258, 265, 272,
277

length, 45, 46, 56, 66, 105
complexity, 563

procedure, 54
polynomially bounded, 55

search, 56, 76, 105, 111
system, 54{56

polynomially bounded, 55{
56

theoretic tableaux, 402, 408{
419

theory, 536
punt, 92
pure literal, 72, 74, 93
Putnam, H., 93

quanti�er
many-valued, 529, 546, 572

lattice-based, 548

R, 429, 433
reachable from, 300
Reckhow, R., 54, 56, 85, 86, 110
reduction, 562

reexivity, 454
refutation trees, 274
refuter, 203
regular modal implication systems,

462
regularity, 69{71
relative complexity, 55
relevance logic, 60, 397{400, 402,

403, 408, 409, 416, 418,
432, 433, 448

distribution-free, 416, 418
relevant implication, 421, 423, 426,

429
residuation, 203, 561
resolution, 63, 67{68, 272

many-valued, 558
non-clausal, 527, 536

resource logics, 398
�-complexity, 105
Robinson, J. A., 68
Rosenthal, E., 86
Routley, R., 448
Routley, V., 448
rules-admissible, 313
Russo, A., 420, 426, 451

S-decreasing set of formulae, 424,
425

s-formula, 49
satis�ed, 49

S-inconsistent, 52
S-tree, 51{52

completed, 53
s.o.m. frame, 445, 446
s.o.m. model, 422{427, 429, 445{

447
s.o.m. models, 435
Sambin, G., 421
satis�ability

�rst-order
many-valued, 531, 546

propositional
in�nitely-valued, 558
many-valued, 531, 541

666 Index

many-valued Horn, 560
signed clause, 552
signed CNF formula, 552

satis�ability problem, 59
saturated set, 50
Schroeder-Heister, P., 68
Sch�utte, K., 88
Scott, D., 48, 67
search space, 48
sees, 300
Segerberg, K., 453
semantics

many-valued, 529{531
sets-as-signs, 541

semi-analytic cut, 341
semi-decision procedure, 59
semilattice ordered monoid, 422
semivaluation, 48
separation-by-closure property, 431,

457
sequent, 47, 60, 533{535, 538, 550,

560, 572
n-ary, 534
antecedent of a, 47, 60, 62
axiomatic, 535
dual, 534
many-valued, 533, 572
succedent of a, 47, 60, 62

sequent calculi, 59{63
cut-free, 60
invertible, 59

sequent calculus, 59, 63, 64, 67,
75, 88, 89, 92, 97, 105,
256, 258, 398, 399, 399n,
400, 404, 408, 410, 421,
423, 426, 435

cut-free, 60, 61, 85, 89, 92
sequent rule, 61

contraction, 310
cut, 312
derived, 313
elimination, 535
exchange, 310
introduction, 534

invertible, 314, 533, 534, 549
natural deduction, 572
structural, 310, 536
thinning, 312
weakening, 535

seriality, 453
set literal, 568
set of s-formulae

R-saturated, 50
S-saturated, 50
expansion of a, 50
explicitly inconsistent, 49
satis�able, 49

Sieg, W., 63, 67
sign, 533

regular, 555, 559
signature

�rst-order, 528
propositional, 528

signed formula, 49
conjugate of a, 49

simulation, 56
skeptical default sequent, 522
skeptical derivability, 473
Skolem normal form, 292
skolemisation, 290, 294

in many-valued logic, 547, 549,
551

SLD-resolution, 397
Smullyan, R., 57{59, 63, 68, 69,

71, 76, 82, 84, 85, 87,
89{92, 96, 110, 113, 408,
414

notation, 99
soundness

theory reasoning, 217
with respect to L-frames, 309
of tableaux, 58

speci�cation language, 572
spectrum, 572
sphere, 452
splitting rule, 93, 104
stable expansion, 472
standard proof system, 106, 119

Index 667

starred formulae, 343
static rules, 321

invertibility, 317
Statman, R., 61, 112
STE-modi�cation, 251
Stirling, C. P., 451, 452
Stockmeyer, L., 46, 54
strict

implication, 419
subformulae, 316

strictness, 71
strong transitivity principle, 115
strongly

analytic application of PB, 103,
104, 106, 113

analytic restriction ofKE, 113,
115

analytic KE-tree, 103
structural

constraints, 423, 424, 426, 427,
430, 434, 444

rules, 60, 259, 310, 399, 399n,
401{404, 410, 413, 423,
424, 444

structure: many-valued, 530
subformula, 49, 316

principle, 89, 103
property, 52, 61, 88, 96, 103,

107, 111, 256, 434
, 331

substructural
implication, 422{434
logics, 398{464

subsumption
many-valued, 562

successor, 300
Sundholm, G., 60, 63, 67
surgical cut, 402{407
symmetry, 454
Sympson, A. K., 451

3TAP , 242
T -

complementary, 203

consequence
strong, 201

refuter, 203
residue, 203
satis�able, 201

tableau, 215
structure, 201
tautology, 201
universal, 212
unsatis�able, 201

tableau
analytic, 63
clausal

many-valued, 561, 558{563
closed, 58, 59, 68, 70, 76, 79,

80, 82{84, 86, 88, 90
many-valued, 537
sets-as-signs, 543

completed
sets-as-signs, 552

connection
many-valued, 562

constraint, 555, 558
dual

many-valued, 550
factorized

many-valued, 563
free variable

many-valued, 547
M-closed, 90
M-completed, 90
many-valued, 537
regular

many-valued, 562
sets-as-signs, 543

dual, 552
with analytic cut, 563
with lemmas, 563

tableau calculi
CGrz, 344
CG, 344
CK4Go, 344
CS5�, 341
CyB, 323

668 Index

CyK4:2, 343
CyK4:2G, 343
CyK45D, 323
CyK45, 323
CyS4, 323
CyS5, 323
CyS50, 323
CK45D, 323
CK45, 323
CK4D, 323
CK4, 323
CK, 323
CPC, 323
CS4, 323
CS4:2, 342
CS4F, 342
CS4R, 342
CT, 323
LCB, 376
LCD, 376
LCGo, 389
LCGrz, 389
LCG, 389
LCK45D, 376
LCK45, 376
LCK4B, 376
LCK4D, 376
LCK4, 376
LCK5, 376
LCKB, 376
LCKD5, 376
LCKDB, 376
LCK, 376
LCPC, 376
LCS4, 376
LCS5, 376
LCT , 376

tableau rule
�rst-order

sets-as-signs, 547, 548
sets-as-signs dual, 551

many-valued, 537, 572
complete, 542, 543, 547{549,

557, 558

size of, 545, 553
sound, 542, 543, 547{549,

557, 558
partitioning

sets-as-signs, 565, 569
propositional

sets-as-signs, 540, 543, 569
sets-as-signs dual, 550

with local lemmas
sets-as-signs, 565, 567

tableau rules
(50), 322
(5), 322
(B), 322
(D), 322
(G), 344
(Grz), 344
(K), 322
(K4), 322
(KD), 322
(S4), 322
(T), 322
(Tdia), 322
(�), 341
(sfc), 322
(sfcT), 322
(S4:2), 342
(S4F), 342
(S4R), 342

tableau systems
explicit, 305
implicit, 305

tableaux with lemma generation,
91

TAC, 92
Tarski, A., 399
TAUT, 53, 56, 107
tautology

in�nitely-valued, 558
many-valued, 531, 545, 547

tautology problem, 54
temporal logics

�rst-order linear, 364
Tennant, N., 116, 121

Index 669

tensor, 404
term, 528

ground, 528
theory, 200

reasoning
completeness, 218, 220, 222,

224
partial, 205
soundness, 217
tableau rules, 208, 210, 213
total, 205

universal, 202
thinning, 63, 259, 312, 358

built into rules, 313
rule, 60, 62, 63, 76, 78

Thistlewaite, P. B., 60, 416
Thomas, I., 62
three-valued semantics, 87, 89
tightly connected tableaux, 75
time

branching
dense, 349
discrete, 349

linear
dense, 348
discrete, 348

TLM, 91, 92
TM, 90, 92
total

background reasoner, 204
theory reasoning, 205
valuation, 47

transitional rules, 321
transitivity, 399, 401, 405, 454

of deduction, 115
tree

closed, 51
open, 51
resolution, 68, 86, 87

true at world w, 300
truth

set, 50
table, 45, 64, 85, 96, 105{107,

109, 110

many-valued, 539
method, 45, 46, 109, 119

value
designated, 530, 538, 539
many-valued, 529
set as sign, see formula, signed,

sets-as-signs
Turing, A., 45, 53, 54

machine, 53, 54

undecidabilty of R, 416
uni�cation, 289
uniform notation, 549, 559
unique name assumption, 511
unit label, 429
unit resolution, 104, 105
unit resolution rule, 93
universal literal, 568
unsigned formula, 49
upward continuity, 447
Urquhart, A., 46, 55, 56, 68, 83,

86, 86n, 87, 120, 416, 421,
423, 429

use criterion, 400, 410, 414, 417{
419

validity
many-valued, 531, 537

valuation
�rst-order

many-valued, 531
Van Benthem, J., 398
variable assignment, 530
variable domain minimal entailment,

483
VDM, 572
Vellino, A., 71, 75, 90, 120
veri�er, 536

Wagner, F., 397
Wallen, L., 426
Wansing, H., 421, 437
weak subformula, 52
weakening, 401, 403, 405, 409, 413,

419, 423, 424, 432, 443

670 Index

axiom, 431
well-formed formula, 298
why not, 419
Wittgenstein, L., 45

X�
CL

S4.2, 342
S4F, 342
S4R, 342

